Sample records for fiber type switching

  1. The other fiber, the other fabric, the other way

    NASA Astrophysics Data System (ADS)

    Stephens, Gary R.

    1993-02-01

    Coaxial cable and distributed switches provide a way to configure high-speed Fiber Channel fabrics. This type of fabric provides a cost-effective alternative to a fabric of optical fibers and centralized cross-point switches. The fabric topology is a simple tree. Products using parallel busses require a significant change to migrate to a serial bus. Coaxial cables and distributed switches require a smaller technology shift for these device manufacturers. Each distributed switch permits both medium type and speed changes. The fabric can grow and bridge to optical fibers as the needs expand. A distributed fabric permits earlier entry into high-speed serial operations. For very low-cost fabrics, a distributed switch may permit a link configured as a loop. The loop eliminates half of the ports when compared to a switched point-to-point fabric. A fabric of distributed switches can interface to a cross-point switch fabric. The expected sequence of migration is: closed loops, small closed fabrics, and, finally, bridges, to connect optical cross-point switch fabrics. This paper presents the concept of distributed fabrics, including address assignment, frame routing, and general operation.

  2. All-optical switching application based on optical nonlinearity of Yb(3+) doped aluminosilicate glass fiber with a long-period fiber gratings pair.

    PubMed

    Kim, Yune; Kim, Nam; Chung, Youngjoo; Paek, Un-Chul; Han, Won-Taek

    2004-02-23

    We propose a new fiber-type all-optical switching device based on the optical nonlinearity of Yb(3+) doped fiber and a long-period fiber gratings(LPG) pair. The all-optical ON-OFF switching with the continuous wave laser signal at ~1556nm in the LPG pair including the 25.5cm long Yb(3+) doped fiber was demonstrated up to ~200Hz upon pumping with the modulated square wave pulses at 976nm, where a full optical switching with the ~18dB extinction ratio was obtained at the launched pump power of ~35mW.

  3. 78 FR 49308 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... latency fiber connection option, and provide a waiver of installation fees for subscriptions through..., including a 40Gb fiber connection, a 10Gb fiber connection, a 1Gb fiber connection, and a 1Gb copper... fiber connection offering, which uses new ultra- low latency switches.\\4\\ A switch is a type of network...

  4. Magneto-optic garnet and liquid crystal optical switches

    NASA Technical Reports Server (NTRS)

    Krawczak, J. A.; Torok, E. J.; Harvey, W. A.; Hewitt, F. G.; Nelson, G. L.

    1984-01-01

    Magnetic stripe domain and liquid crystal devices are being developed and evaluated as fiber optic switches that can be utilized for nonblocking type nxm optical matrix switches in networking and optical processing. Liquid crystal switches are characterized by very low insertion loss and crosstalk, while stripe domain switches commutate in less than one microsecond. Both switches operate on multimode, randomly polarized fiber light with potentially large values for (n,m). The applications of these magnetic stripe domain and liquid crystal devices are discussed.

  5. A novel micro/nano 1 × 4 mechanical optical switch

    NASA Astrophysics Data System (ADS)

    Lin, Wu-Lang; Fan, Kuang-Chao; Chiang, Li-Hung; Yang, Yao-Joe; Kuo, Wen-Cheng; Chung, Tien-Tung

    2006-07-01

    This paper presents the design, fabrication and testing of a novel 1 × 4 mechanical optical switch, whose components are fabricated by precision machining and MEMS technologies. The switch uses two relays as the two actuators whose switching direction is perpendicular to each other by an orthogonal arrangement. We adopt a direct fiber-to-fiber principle that aligns the input fiber directly to four output fibers. This configuration eliminates the use of traditional parts such as collimators, turning mirrors or prisms. In addition, due to the use of a fiber holder, the fiber position errors could be reduced to less than 0.27 µm using the two-stage geometry error reduction principle. We have successfully developed a simple and low-cost switch, which performs like most of the 1 × 4 mechanical optical switches that dominate the optics communications market. The advantages of our switch are a small size (20 × 20 × 25 mm3), low cost, high reliability, and the latching function does not need external force for maintaining the state. The experimental results showed that the insertion losses of the four channels are ch1: 0.68 dB, ch2: 1.49 dB, ch3: 0.71 dB and ch4: 0.97 dB. The switching time is 5 ms, the crosstalk <=80 dB. The reliability tests of the insertion loss after 10 000 cycles in four channels yield ch1: 1.67 dB, ch2: 1.63 dB, ch3: 0.75 dB and ch4: 0.98 dB. The size and the cost of our 1 × 4 mechanical optical switch are only about 1/5-1/10 and 1/10 of the series-connect-type and prism-type switches, respectively.

  6. Improved fatigue resistance in Gsα-deficient and aging mouse skeletal muscles due to adaptive increases in slow fibers

    PubMed Central

    Feng, Han-Zhong; Chen, Min; Weinstein, Lee S.

    2011-01-01

    Genetically modified mice with deficiency of the G protein α-subunit (Gsα) in skeletal muscle showed metabolic abnormality with reduced glucose tolerance, low muscle mass, and low contractile force, along with a fast-to-slow-fiber-type switch (Chen M, Feng HZ, Gupta D, Kelleher J, Dickerson KE, Wang J, Hunt D, Jou W, Gavrilova O, Jin JP, Weinstein LS. Am J Physiol Cell Physiol 296: C930–C940, 2009). Here we investigated a hypothesis that the switching to more slow fibers is an adaptive response with specific benefit. The results showed that, corresponding to the switch of myosin isoforms, the thin-filament regulatory proteins troponin T and troponin I both switched to their slow isoforms in the atrophic soleus muscle of 3-mo-old Gsα-deficient mice. This fiber-type switch involving coordinated changes of both thick- and thin-myofilament proteins progressed in the Gsα-deficient soleus muscles of 18- to 24-mo-old mice, as reflected by the expression of solely slow isoforms of myosin and troponin. Compared with age-matched controls, Gsα-deficient soleus muscles with higher proportion of slow fibers exhibited slower contractile and relaxation kinetics and lower developed force, but significantly increased resistance to fatigue, followed by a better recovery. Gsα-deficient soleus muscles of neonatal and 3-wk-old mice did not show the increase in slow fibers. Therefore, the fast-to-slow-fiber-type switch in Gsα deficiency at older ages was likely an adaptive response. The benefit of higher fatigue resistance in adaption to metabolic deficiency and aging provides a mechanism to sustain skeletal muscle function in diabetic patients and elderly individuals. PMID:21680879

  7. Supplementing healthy rats with a high-niacin dose has no effect on muscle fiber distribution and muscle metabolic phenotype.

    PubMed

    Scholz, Kristen; Kynast, Anna Marie; Couturier, Aline; Mooren, Frank-Christoph; Krüger, Karsten; Most, Erika; Eder, Klaus; Ringseis, Robert

    2014-08-01

    It was recently shown that niacin prevents the obesity-induced type I to type II fiber switching in skeletal muscle of obese rats and favors the development of a more oxidative metabolic phenotype and thereby increases whole body utilization of fatty acids. Whether niacin also causes type II to type I fiber switching in skeletal muscle of healthy rats has not been investigated yet. Thus, the present study aimed to investigate whether niacin supplementation influences fiber distribution and metabolic phenotype of different skeletal muscles with a distinct type I-to-type II fiber ratio in healthy rats. Twenty-four male, 10-week-old Sprague-Dawley rats were randomly assigned into two groups of 12 rats each and fed either a control diet with 30 mg supplemented niacin/kg diet (control group) or a high-niacin diet with 780 mg supplemented niacin/kg diet (high-niacin group). After 27 days of treatment, the percentage number of type I fibers in rectus femoris, gastrocnemius, and tibialis anterior muscles was 5-10% greater in the niacin group than in the control group, but did not differ between groups in soleus and vastus intermedius muscles. Transcript levels of genes encoding transcription factors regulating fiber switching, fiber-specific myosin heavy chain isoforms, and proteins involved in fatty acid utilization, oxidative phosphorylation, and angiogenesis did not differ between groups. The results show that niacin has only negligible effects on fiber distribution and its regulation as well as the metabolic phenotype of skeletal muscle in healthy rats.

  8. A Mechanical Switch Using Spectral Microshifts

    NASA Astrophysics Data System (ADS)

    Mitchell, Gordon L.; Saaski, Elric W.; Hartl, James C.

    1989-02-01

    Among the simplest fiber optic sensors, are those which operate in a binary fashion; they were the first sensor types to be developed. Early experiments with fiber bundles and shutters produced demonstrations of, for example, displacement sensors. Typical applications range from position sensing for aircraft landing gear to counting objects on a production line. Because they frequently replace electrical snap action switches, binary sensors are generally called optical switches. Optical switch applications account for a much larger market than the more complex analog measurements discussed in the balance of this volume. This paper presents an optical switch concept that uses a single fiber and is tolerant of back reflections. The sensor element is a low finesse Fabry-Perot pressure sensor which replaces the electrical contact in a conventional snap action switch.

  9. Developing Laryngeal Muscle of Xenopus laevis as a Model System: Androgen-Driven Myogenesis Controls Fiber Type Transformation

    PubMed Central

    Nasipak, Brian; Kelley, Darcy B.

    2014-01-01

    The developmental programs that contribute to myogenic stem cell proliferation and muscle fiber differentiation control fiber numbers and twitch type. In this study, we describe the use of an experimental model system—androgen-regulated laryngeal muscle of juvenile clawed frogs, Xenopus laevis—to examine the contribution of proliferation by specific populations of myogenic stem cells to expression of the larynx-specific myosin heavy chain isoform, LM. Androgen treatment of juveniles (Stage PM0) resulted in up-regulation of an early (Myf-5) and a late (myogenin) myogenic regulatory factor; the time course of LM up-regulation tracked that of myogenin. Myogenic stem cells stimulated to proliferate by androgen include a population that expresses Pax-7, a marker for the satellite cell myogenic stem cell population. Since androgen can switch muscle fiber types from fast to slow even in denervated larynges, we developed an ex vivo culture system to explore the relation between proliferation and LM expression. Cultured whole larynges maintain sensitivity to androgen, increasing in size and LM expression. Blockade of cell proliferation with cis-platin prevents the switch from slow to fast twitch muscle fibers as assayed by ATPase activity. Blockade of cell proliferation in vivo also resulted in inhibition of LM expression. Thus, both in vivo and ex vivo, inhibition of myogenic stem cell proliferation blocks androgen-induced LM expression and fiber type switching in juveniles. PMID:21954146

  10. Niacin supplementation increases the number of oxidative type I fibers in skeletal muscle of growing pigs

    PubMed Central

    2013-01-01

    Background A recent study showed that niacin supplementation counteracts the obesity-induced muscle fiber switching from oxidative type I to glycolytic type II and increases the number of type I fibers in skeletal muscle of obese Zucker rats. These effects were likely mediated by the induction of key regulators of fiber transition, PGC-1α and PGC-1β, leading to muscle fiber switching and up-regulation of genes involved in mitochondrial fatty acid import and oxidation, citrate cycle, oxidative phosphorylation, mitochondrial biogenesis. The aim of the present study was to investigate whether niacin supplementation causes type II to type I muscle and changes the metabolic phenotype of skeletal muscles in growing pigs. Results 25 male, 11 wk old crossbred pigs (Danzucht x Pietrain) with an average body weight of 32.8 ± 1.3 (mean ± SD) kg were randomly allocated to two groups of 12 (control group) and 13 pigs (niacin group) which were fed either a control diet or a diet supplemented with 750 mg niacin/kg diet. After 3 wk, the percentage number of type I fibers in three different muscles (M. longissismus dorsi, M. quadriceps femoris, M. gastrocnemius) was greater in the niacin group and the percentage number of type II fibers was lower in the niacin group than in the control group (P < 0.05). The mRNA levels of PGC-1β and genes involved in mitochondrial fatty acid catabolism (CACT, FATP1, OCTN2), citrate cycle (SDHA), oxidative phosphorylation (COX4/1, COX6A1), and thermogenesis (UCP3) in M. longissimus dorsi were greater in the niacin group than in the control group (P < 0.05). Conclusions The study demonstrates that niacin supplementation induces type II to type I muscle fiber switching, and thereby an oxidative metabolic phenotype of skeletal muscle in pigs. Given that oxidative muscle types tend to develop dark, firm and dry pork in response to intense physical activity and/or high psychological stress levels preslaughter, a niacin-induced change in the muscle´s fiber type distribution may influence meat quality of pigs. PMID:24010567

  11. The effect of transcutaneous application of carbon dioxide (CO{sub 2}) on skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oe, Keisuke; Ueha, Takeshi; Sakai, Yoshitada, E-mail: sakai.yoshitada@gm.himeji-du.ac.jp

    2011-04-01

    Highlights: {yields} PGC-1{alpha} is up-regulated as a result of exercise such as mitochondrial biogenesis and muscle fiber-type switching, and up-regulation of VEGF. {yields} We demonstrated transcutaneous application of CO{sub 2} up-regulated the gene expression of PGC-1{alpha}, SIRT1 and VEGF, and instance of muscle fiber switching. {yields} Transcutaneous application of CO{sub 2} may cause similar effect to aerobic exercise in skeletal muscle. -- Abstract: In Europe, carbon dioxide therapy has been used for cardiac disease and skin problems for a long time. However there have been few reports investigating the effects of carbon dioxide therapy on skeletal muscle. Peroxisome proliferators-activated receptormore » (PPAR)-gamma coactivator-1 (PGC-1{alpha}) is up-regulated as a result of exercise and mediates known responses to exercise, such as mitochondrial biogenesis and muscle fiber-type switching, and neovascularization via up-regulation of vascular endothelial growth factor (VEGF). It is also known that silent mating type information regulation 2 homologs 1 (SIRT1) enhances PGC-1{alpha}-mediated muscle fiber-type switching. Previously, we demonstrated transcutaneous application of CO{sub 2} increased blood flow and a partial increase of O{sub 2} pressure in the local tissue known as the Bohr effect. In this study, we transcutaneously applied CO{sub 2} to the lower limbs of rats, and investigated the effect on the fast muscle, tibialis anterior (TA) muscle. The transcutaneous CO{sub 2} application caused: (1) the gene expression of PGC-1{alpha}, silent mating type information regulation 2 homologs 1 (SIRT1) and VEGF, and increased the number of mitochondria, as proven by real-time PCR and immunohistochemistry, (2) muscle fiber switching in the TA muscle, as proven by isolation of myosin heavy chain and ATPase staining. Our results suggest the transcutaneous application of CO{sub 2} may have therapeutic potential for muscular strength recovery resulting from disuse atrophy in post-operative patients and the elderly population.« less

  12. Inorganic Nitrate Mimics Exercise-Stimulated Muscular Fiber-Type Switching and Myokine and γ-Aminobutyric Acid Release.

    PubMed

    Roberts, Lee D; Ashmore, Tom; McNally, Ben D; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Lindsay, Ross; Siervo, Mario; Williams, Elizabeth A; Murray, Andrew J; Griffin, Julian L

    2017-03-01

    Exercise is an effective intervention for the prevention and treatment of type 2 diabetes. Skeletal muscle combines multiple signals that contribute to the beneficial effects of exercise on cardiometabolic health. Inorganic nitrate increases exercise efficiency, tolerance, and performance. The transcriptional regulator peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) coordinates the exercise-stimulated skeletal muscle fiber-type switch from glycolytic fast-twitch (type IIb) to oxidative slow-twitch (type I) and intermediate (type IIa) fibers, an effect reversed in insulin resistance and diabetes. We found that nitrate induces PGC1α expression and a switch toward type I and IIa fibers in rat muscle and myotubes in vitro. Nitrate induces the release of exercise/PGC1α-dependent myokine FNDC5/irisin and β-aminoisobutyric acid from myotubes and muscle in rats and humans. Both exercise and nitrate stimulated PGC1α-mediated γ-aminobutyric acid (GABA) secretion from muscle. Circulating GABA concentrations were increased in exercising mice and nitrate-treated rats and humans; thus, GABA may function as an exercise/PGC1α-mediated myokine-like small molecule. Moreover, nitrate increased circulating growth hormone levels in humans and rodents. Nitrate induces physiological responses that mimic exercise training and may underlie the beneficial effects of this metabolite on exercise and cardiometabolic health. © 2017 by the American Diabetes Association.

  13. Muscle fiber types composition and type identified endplate morphology of forepaw intrinsic muscles in the rat.

    PubMed

    Pan, Feng; Mi, Jing-Yi; Zhang, Yan; Pan, Xiao-Yun; Rui, Yong-Jun

    2016-06-01

    The failure to accept reinnervation is considered to be one of the reasons for the poor motor functional recovery of intrinsic hand muscles (IHMs) after nerve injury. Rat could be a suitable model to be used in simulating motor function recovery of the IHMs after nerve injury as to the similarities in function and anatomy of the muscles between human and rat. However, few studies have reported the muscle fiber types composition and endplate morphologic characteristics of intrinsic forepaw muscles (IFMs) in the rat. In this study, the myosin heavy chain isoforms and acetylcholine receptors were stained by immunofluorescence to show the muscle fiber types composition and endplates on type-identified fibers of the lumbrical muscles (LMs), interosseus muscles (IMs), abductor digiti minimi (AM) and flexor pollicis brevis (FM) in rat forepaw. The majority of IFMs fibers were labeled positively for fast-switch fiber. However, the IMs were composed of only slow-switch fiber. With the exception of the IMs, the other IFMs had a part of hybrid fibers. Two-dimensional morphological characteristics of endplates on I and IIa muscle fiber had no significant differences among the IFMs. The LMs is the most suitable IFMs of rat to stimulate reinnervation of the IHMs after nerve injury. Gaining greater insight into the muscle fiber types composition and endplate morphology in the IFMs of rat may help understand the pathological and functional changes of IFMs in rat model stimulating reinnervation of IHMs after peripheral nerve injury.

  14. [Intracranial pressure monitoring apparatus for clinical use balanced pressure sensors].

    PubMed

    Numoto, M

    1976-04-01

    Three types of pressure sensors, (1) electric pressure switch, (2) fiber optic pressure switch and (3) pressure indicating bag for intracranial pressure monitoring which were developed by the author are described. Advantages and disadvantages between them are also discussed. The electric pressure switch is relatively simple in construction but has a possibility of producing micro-shock hazard in case of accidental electric leakage. The fiber optic pressure switch is the safest for the micro shock but its structure is rather complicated and fragile. The pressure indicating bag is simple to make and durable to use. However, it has a hydrostatic effect.

  15. Q-Switched and Mode Locked Short Pulses from a Diode Pumped, YB-Doped Fiber Laser

    DTIC Science & Technology

    2009-03-26

    a rod-type photonic crystal fiber [14]. Commercial pulsed fiber laser systems currently offered by Polar Onyx range from 1-10 W, with pulse... Onyx , Fiber laser products http://www.polaronyx.com/Uranus_introduction.htm . 20. Business Wire Press Release, “SPI Lasers 30W pulsed fiber laser

  16. Watt-level passively Q-switched double-cladding fiber laser based on graphene oxide saturable absorber.

    PubMed

    Yu, Zhenhua; Song, Yanrong; Dong, Xinzheng; Li, Yanlin; Tian, Jinrong; Wang, Yonggang

    2013-10-10

    A watt-level passively Q-switched ytterbium-doped double-cladding fiber laser with a graphene oxide (GO) absorber was demonstrated. The structure of the GO saturable absorber mirror (GO-SAM) was of the sandwich type. A maximum output power of 1.8 W was obtained around a wavelength of 1044 nm. To the best of our knowledge, this is the highest output power in Q-switched fiber lasers based on a GO saturable absorber. The pure GO was protected from the oxygen in the air so that the damage threshold of the GO-SAM was effectively raised. The gain fiber was a D-shaped ytterbium-doped double-cladding fiber. The pulse repetition rates were tuned from 120 to 215 kHz with pump powers from 3.89 to 7.8 W. The maximum pulse energy was 8.37 μJ at a pulse width of 1.7 μs.

  17. Fiber Optic Handpiece Illumination Systems

    DTIC Science & Technology

    1989-01-01

    only available from the manufacturer. Method of Light Activation Three systems are currently employed: 1. Handpiece Air Pressure Switch . The...Average Easy 3. Type of lamp (note brand and part #): 4. Method of light activation: Touch Air pressure Switch 5. Will it activate while the operator

  18. Impairments Computation for Routing Purposes in a Transparent-Access Optical Network Based on Optical CDMA and WDM

    NASA Astrophysics Data System (ADS)

    Musa, Ahmed

    2016-06-01

    Optical access networks are becoming more widespread and the use of multiple services might require a transparent optical network (TON). Multiplexing and privacy could benefit from the combination of wavelength division multiplexing (WDM) and optical coding (OC) and wavelength conversion in optical switches. The routing process needs to be cognizant of different resource types and characteristics such as fiber types, fiber linear impairments such as attenuation, dispersion, etc. as well as fiber nonlinear impairments such as four-wave mixing, cross-phase modulation, etc. Other types of impairments, generated by optical nodes or photonic switches, also affect the signal quality (Q) or the optical signal to noise ratio (OSNR), which is related to the bit error rate (BER). Therefore, both link and switch impairments must be addressed and somehow incorporated into the routing algorithm. However, it is not practical to fully integrate all photonic-specific attributes in the routing process. In this study, new routing parameters and constraints are defined that reflect the distinct characteristics of photonic networking. These constraints are applied to the design phase of TON and expressed as a cost or metric form that will be used in the network routing algorithm.

  19. Single-frequency gain-switched Ho-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Geng, Jihong; Wang, Q.; Luo, T.; Case, B.; Jiang, S.; Amzajerdian, Farzin; Yu, Jirong

    2012-10-01

    We demonstrate a single-frequency gain-switched Ho-doped fiber laser based on heavily doped silicate glass fiber fabricated in house. A Q-switched Tm-doped fiber laser at 1.95μm was used to gain-switch the Ho-doped fiber laser via in-band pumping. Output power of the single-frequency gain-switched pulses has been amplified in a cladding-pumped Tm-Ho-codoped fiber amplifier with 1.2m active fiber pumped at 803nm. Two different nonlinear effects, i.e., modulation instability and stimulated Brillouin scattering, could be seen in the 10μm-core fiber amplifier when the peak power exceeds 3kW. The single-frequency gain-switched fiber laser was operated at 2.05μm, a popular laser wavelength for Doppler lidar application. This is the first demonstration of this kind of fiber laser.

  20. Alternative Controller for a Fiber-Optic Switch

    NASA Technical Reports Server (NTRS)

    Peters, Robert

    2007-01-01

    A simplified diagram of a relatively inexpensive controller for a DiCon VX (or equivalent) fiber-optic switch -- an electromechanically actuated switch for optically connecting one or two input optical fibers to any of a number of output optical fibers is shown. DiCon VX fiber-optic switches are used primarily in research and development in the telecommunication industry. This controller can control any such switch having up to 32 output channels.

  1. Interrogation and mitigation of polarization effects for standard and birefringent FBGs

    NASA Astrophysics Data System (ADS)

    Ibrahim, Selwan K.; Van Roosbroeck, Jan; O'Dowd, John A.; Van Hoe, Bram; Lindner, Eric; Vlekken, Johan; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.

    2016-05-01

    Optical sensors based on Fiber Bragg Gratings (FBGs) are used in several applications and industries. Several inscription techniques and type of fibers can be used. However, depending on the writing process, type of fiber used and the packaging of the sensor a Polarization Dependent Frequency Shift (PDFS) can often be observed with polarized tunable laser based optical interrogators. Here we study the PDFS of the FBG peak for the different FBG types. A PDFS of <1pm up to >20pm was observed across the FBGs. To mitigate and reduce this effect we propose a polarization mitigation technique which relies on a synchronous polarization switch to reduce the effect typically by a factor greater than 4. In other scenarios the sensor itself is designed to be birefringent (Bi-FBG) to allow pressure and/or simultaneous temperature and strain measurements. Using the same polarization switch we demonstrate how we can interrogate the Bi-FBGs with high accuracy to enable high performance of such sensors to be achievable.

  2. Micro optical fiber display switch based on the magnetohydrodynamic (MHD) principle

    NASA Astrophysics Data System (ADS)

    Lian, Kun; Heng, Khee-Hang

    2001-09-01

    This paper reports on a research effort to design, microfabricate and test an optical fiber display switch based on magneto hydrodynamic (MHD) principal. The switch is driven by the Lorentz force and can be used to turn on/off the light. The SU-8 photoresist and UV light source were used for prototype fabrication in order to lower the cost. With a magnetic field supplied by an external permanent magnet, and a plus electrical current supplied across the two inert sidewall electrodes, the distributed body force generated will produce a pressure difference on the fluid mercury in the switch chamber. By change the direction of current flow, the mercury can turn on or cut off the light pass in less than 10 ms. The major advantages of a MHD-based micro-switch are that it does not contain any solid moving parts and power consumption is much smaller comparing to the relay type switches. This switch can be manufactured by molding gin batch production and may have potential applications in extremely bright traffic control,, high intensity advertising display, and communication.

  3. An electromagnetically actuated fiber optic switch using magnetized ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Pandojirao-S, Praveen; Dhaubanjar, Naresh; Phuyal, Pratibha C.; Chiao, Mu; Chiao, J.-C.

    2008-03-01

    This paper presents the design, fabrication and testing of a fiber optic switch actuated electromagnetically. The ferromagnetic gel coated optical fiber is actuated using external electromagnetic fields. The ferromagnetic gel consists of ferromagnetic powders dispersed in epoxy. The fabrication utilizes a simple cost-effective coating setup. A direct fiberto-fiber alignment eliminates the need for complementary optical parts and the displacement of fiber switches the laser coupling. The magnetic characteristics of magnetized ferromagnetic materials are performed using alternating gradient magnetometer and the magnetic hysteresis curves are measured for different ferromagnetic materials including iron, cobalt, and nickel. Optical fiber switches with various fiber lengths are actuated and their static and dynamic responses for the same volume of ferromagnetic gel are summarized. The highest displacement is 1.345 mm with an input current of 260mA. In this paper, the performance of fiber switches with various coating materials is presented.

  4. Gain-switched laser diode seeded Yb-doped fiber amplifier delivering 11-ps pulses at repetition rates up to 40-MHz

    NASA Astrophysics Data System (ADS)

    Ryser, Manuel; Neff, Martin; Pilz, Soenke; Burn, Andreas; Romano, Valerio

    2012-02-01

    Here, we demonstrate all-fiber direct amplification of 11 picosecond pulses from a gain-switched laser diode at 1063 nm. The diode was driven at a repetition rate of 40 MHz and delivered 13 μW of fiber-coupled average output power. For the low output pulse energy of 0.33 pJ we have designed a multi-stage core pumped preamplifier based on single clad Yb-doped fibers in order to keep the contribution of undesired amplified spontaneous emission as low as possible and to minimize temporal and spectral broadening. After the preamplifier we reduced the 40 MHz repetition rate to 1 MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we achieved amplification of 72 dBs to an output pulse energy of 5.7 μJ, pulse duration of 11 ps and peak power of >0.6 MW.

  5. Optical switch

    DOEpatents

    Reedy, R.P.

    1985-01-18

    An optical switching device is provided whereby light from a first glass fiber or a second glass fiber may be selectively transmitted into a third glass fiber. Each glass fiber is provided with a focusing and collimating lens system. In one mode of operation, light from the first glass fiber is reflected by a planar mirror into the third glass fiber. In another mode of operation, light from the second glass fiber passes directly into the third glass fiber. The planar mirror is attached to a rotatable table which is rotated to provide the optical switching.

  6. Optical switch

    DOEpatents

    Reedy, R.P.

    1987-11-10

    An optical switching device is provided whereby light from a first glass fiber or a second glass fiber may be selectively transmitted into a third glass fiber. Each glass fiber is provided with a focusing and collimating lens system. In one mode of operation, light from the first glass fiber is reflected by a planar mirror into the third glass fiber. In another mode of operation, light from the second glass fiber passes directly into the third glass fiber. The planar mirror is attached to a rotatable table which is rotated to provide the optical switching. 3 figs.

  7. 1.9 μm square-wave passively Q-witched mode-locked fiber laser.

    PubMed

    Ma, Wanzhuo; Wang, Tianshu; Su, Qingchao; Wang, Furen; Zhang, Jing; Wang, Chengbo; Jiang, Huilin

    2018-05-14

    We propose and demonstrate the operation of Q-switched mode-locked square-wave pulses in a thulium-holmium co-doped fiber laser. By using a nonlinear amplifying loop mirror, continuous square-wave dissipative soliton resonance pulse is obtained with 4.4 MHz repetition rate. With the increasing pump power, square-wave pulse duration can be broadened from 1.7 ns to 3.2 ns. On such basis Q-switched mode-locked operation is achieved by properly setting the pump power and the polarization controllers. The internal mode-locked pulses in Q-switched envelope still keep square-wave type. The Q-switched repetition rate can be varied from 41.6 kHz to 74 kHz by increasing pump power. The corresponding average single-pulse energy increases from 2.67 nJ to 5.2 nJ. The average peak power is also improved from 0.6 W to 1.1 W when continuous square-wave operation is changed into Q-switched mode-locked operation. It indicates that Q-switched mode-locked operation is an effective method to increase the square-wave pulse energy and peak power.

  8. Q-switched oscillation in thulium-doped fiber lasers using preloaded dynamic microbending technique

    NASA Astrophysics Data System (ADS)

    Sakata, H.; Takahashi, N.; Ushiro, Y.

    2018-01-01

    We demonstrate Q-switched pulse generation in thulium-doped fiber lasers by introducing piezoelectric-driven microbend with preloaded stress. We employed a pair of corrugated chips each attached on piezoelectric actuators (PAs) to clamp the fiber in a ring laser resonator. The thulium-doped fiber is pumped by a laser diode emitting at 1.63 μm and generates the Q-switched laser pulses at around 1.9 μm by switching off the PAs. The laser pulse performance is improved by optimizing the preload and switch-off period for the PAs. The Q-switched pulses with a peak power of 2.8 W and a pulsewidth of 900 ns are observed for a launched pump power of 161 mW. We expect that the in-fiber Q-switching technique will provide efficient laser systems for environmental sensing and medical applications.

  9. Delivering dispersion-managed soliton and Q-switched pulse in fiber laser based on graphene and nonlinear optical loop mirror

    NASA Astrophysics Data System (ADS)

    Wang, W. B.; Wang, F.; Yu, Q.; Zhang, X.; Lu, Y. X.; Gu, J.

    2016-11-01

    We propose and experimentally demonstrate a bidirectional erbium-doped fiber laser delivering dispersion-managed soliton (DMS) and Q-switched pulse based on a graphene-polyvinyl alcohol (PVA) and nonlinear optical loop mirror (NOLM) saturable absorbers (SAs). In proposed structure, the DMS is achieved in clockwise (CW) direction and Q-switched pulse is obtained in counter-clockwise (CCW) direction. By properly adjusting the intracavity attenuators (ATT) and polarizer controllers (PCs), DMS in the CW direction and Q-switched pulse in the CCW direction can be obtained, respectively or simultaneously. The DMS with full width at half maximum (FWHM) of ~480 fs, signal to noise ratio (SNR) of ~60 dB and repetition frequency about 3.907 MHz is obtained. The Q-switched pulse is established at a pump power of 180 mW with a repetition rate of ~43.5 kHz and FWHM of ~8.18 μs. When the pump power is increased to 700 mW, Q-switched pulse with a repetition rate of ~107.1 kHz and FWHM of ~2.15 μs is generated. When the two type pulses are formed simultaneously, the maximum repetition rate of Q-switched pulse is 55.8 kHz and minimum FWHM is 2.81 μs, the DMS can be formed by properly adjusting PC and ATT in this case. To the best of our knowledge, it is the first time that Q-switched pulse and DMS have been acquired respectively or simultaneously in a fiber laser.

  10. 220 microJ Monolithic Single-Frequency Q-switched Fiber Laser at 2 micrometers by Using Highly Tm-doped Germanate Fibers

    DTIC Science & Technology

    2011-09-15

    actively Q-switching all-fiber lasers include mag- netostriction modulation of fiber Bragg gratings ( FBGs ), stretching of FBGs with piezoelectric...report an all- fiber single-frequency actively Q-switched laser operat- ing at ∼1920 nm by using a piezo to press the fiber in the FBG cavity based on...fusion-spliced between two FBGs as shown in Fig. 1. One FBG has a high reflectivity (HR) grating imprinted on a non-PM silica fiber. The other FBG

  11. Compact passively Q-switched single-frequency Er3+/Yb3+ codoped phosphate fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanfei; Wang, Simin; Lin, Wei; Mo, Shupei; Zhao, Qilai; Yang, Changsheng; Feng, Zhouming; Deng, Huaqiu; Peng, Mingying; Yang, Zhongmin; Xu, Shanhui

    2017-05-01

    We present a compact passively Q-switched single-frequency fiber laser based on a 12-mm-long laboratory-built highly Er3+/Yb3+ codoped phosphate fiber (EYDPF) and a semiconductor saturable absorber mirror (SESAM). An effective cavity length of less than 20 mm ensures the stable single-frequency operation of the Q-switched fiber laser. By employing a SESAM for Q-switching, a single-pulse energy of more than 34.4 nJ is realized with the narrowest pulse duration of 95 ns, and the repetition rate of the Q-switched fiber laser reaches over 600 kHz. In addition, the optical signal-to-noise ratio of the output laser is as high as 68.0 dB.

  12. Latching micro optical switch

    DOEpatents

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  13. Design of a Multicast Optical Packet Switch Based on Fiber Bragg Grating Technology for Future Networks

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Yeh, Tzuoh-Chyau; Cheng, Shyr-Yuan

    2011-09-01

    In this paper, a non-blocking multicast optical packet switch based on fiber Bragg grating technology with optical output buffers is proposed. Only the header of optical packets is converted to electronic signals to control the fiber Bragg grating array of input ports and the packet payloads should be transparently destined to their output ports so that the proposed switch can reduce electronic interfaces as well as the bit rate. The modulation and the format of packet payloads may be non-standard where packet payloads could also include different wavelengths for increasing the volume of traffic. The advantage is obvious: the proposed switch could transport various types of traffic. An easily implemented architecture which can provide multicast services is also presented. An optical output buffer is designed to queue the packets if more than one incoming packet should reach to the same destination output port or including any waiting packets in optical output buffer that will be sent to the output port at a time slot. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The fiber Bragg grating arrays for both input ports and output ports are designed for routing incoming packets using optical code division multiple access technology.

  14. Optical switch

    DOEpatents

    Reedy, Robert P.

    1987-01-01

    An optical switching device (10) is provided whereby light from a first glass fiber (16) or a second glass fiber (14) may be selectively transmitted into a third glass fiber (18). Each glass fiber is provided with a focusing and collimating lens system (26, 28, 30). In one mode of operation, light from the first glass fiber (16) is reflected by a planar mirror (36) into the third glass fiber (18). In another mode of operation, light from the second glass fiber (14) passes directly into the third glass fiber (18). The planar mirror (36) is attached to a rotatable table (32) which is rotated to provide the optical switching.

  15. Active Q switching of a fiber laser with a microsphere resonator

    NASA Astrophysics Data System (ADS)

    Kieu, Khanh; Mansuripur, Masud

    2006-12-01

    We propose and demonstrate an active Q-switched fiber laser using a high-Q microsphere resonator as the Q-switching element. The laser cavity consists of an Er-doped fiber as the gain medium, a glass microsphere reflector (coupled through a fiber taper) at one end of the cavity, and a fiber Bragg grating reflector at the other end. The reflectivity of the microsphere is modulated by changing the gap between the microsphere and the fiber taper. Active Q switching is realized by oscillating the microsphere in and out of contact with the taper. Using this novel technique, we have obtained giant pulses (maximum peak power ˜102W, duration ˜160ns) at a low pump-power threshold (˜3mW).

  16. High-power highly stable passively Q-switched fiber laser based on monolayer graphene

    NASA Astrophysics Data System (ADS)

    Wu, Hanshuo; Song, Jiaxin; Wu, Jian; Xu, Jiangming; Xiao, Hu; Leng, Jinyong; Zhou, Pu

    2018-03-01

    We demonstrate a monolayer graphene-based passively Q-switched fiber laser with three-stage amplifiers that can deliver an average power of over 80 W at 1064 nm. The highest average power achieved is 84.1 W, with a pulse energy of 1.67 mJ. To the best of our knowledge this is the first report of a high-power passively Q-switched fiber laser in the 1 µm range. More importantly, the Q-switched fiber laser operated stably during a week of tests for a few hours per day, which proves the stability and practical application potential of graphene in high-power pulsed fiber lasers.

  17. Comparative study of 2-DOF micromirrors for precision light manipulation

    NASA Astrophysics Data System (ADS)

    Young, Johanna I.; Shkel, Andrei M.

    2001-08-01

    Many industry experts predict that the future of fiber optic telecommunications depends on the development of all-optical components for switching of photonic signals from fiber to fiber throughout the networks. MEMS is a promising technology for providing all-optical switching at high speeds with significant cost reductions. This paper reports on the the analysis of two designs for 2-DOF electrostatically actuated MEMS micromirrors for precision controllable large optical switching arrays. The behavior of the micromirror designs is predicted by coupled-field electrostatic and modal analysis using a finite element analysis (FEA) multi-physics modeling software. The analysis indicates that the commonly used gimbal type mirror design experiences electrostatic interference and would therefore be difficult to precisely control for 2-DOF motion. We propose a new design approach which preserves 2-DOF actuation while minimizing electrostatic interference between the drive electrodes and the mirror. Instead of using two torsional axes, we use one actuator which combines torsional and flexural DOFs. A comparative analysis of the conventional gimbal design and the one proposed in this paper is performed.

  18. An actively Q-switched fiber laser with cylindrical vector beam generation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaojiao; Zhang, Zuxing; Cai, Yu; Wan, Hongdan; Wang, Zhiqiang; Zhang, Lin

    2018-03-01

    We demonstrate an actively Q-switched fiber laser with cylindrical vector beam (CVB) emission using a few-mode fiber Bragg grating as the mode selection component and an acousto-optic modulator to achieve Q-switching. To the best of our knowledge, this is the first such demonstration. Using a linear cavity configuration, an actively Q-switched CVB with a pulse width of about 64 ns, a pulse energy of 4.25 µJ and a repetition rate of 20 kHz has been obtained. Moreover, by tuning the polarization controllers radially and azimuthally, polarized Q-switched beams can be excited separately with a polarization purity of  >94.5%. This compact Q-switched fiber laser with ns CVB pulse output could find potential applications in the field of material processing, nonlinear optics and so on.

  19. All-fiber passively Q-switched thulium-doped fiber laser by using a holmium-doped fiber as saturable absorber

    NASA Astrophysics Data System (ADS)

    Durán Sánchez, M.; Álvarez-Tamayo, R. I.; Posada-Ramírez, B.; Alaniz-Baylón, J.; Bravo-Huerta, E.; Santiago-Hernández, H.; Hernández-Arriaga, M. V.; Bello-Jiménez, Miguel; Ibarra-Escamilla, B.; Kuzin, E. A.

    2018-02-01

    We report a linear cavity all-fiber passive Q-switched thulium-doped fiber laser operating at the 2 μm wavelength range. The laser configuration is based on a thulium-doped fiber used as a gain medium and an unpumped segment of holmium-doped fiber which acts as a fiber saturable absorber. The cavity is formed by a fiber optical loop mirror and the flat end facet of the holmium-doped fiber. The fiber segments as saturable absorber is a 1-m long single mode doubleclad holmium-doped fiber. Q-switched pulses are obtained at the wavelength of 2024.5 nm with a pulse width of 1.1 μs. The pulse repetition rate increases as a linear function of the applied pump power. The maximum pulse repetition rate of 100 kHz was obtained with a pump power of 2.4 W.

  20. MEMS micromirrors for optical switching in multichannel spectrophotometers

    NASA Astrophysics Data System (ADS)

    Tuantranont, Adisorn; Lomas, Tanom; Bright, Victor M.

    2004-04-01

    This paper reports for the first time that a novel MEMS-based micromirror switch has successfully demonstrated for optical switching in a multi-channel fiber optics spectrophotometer system. The conventional optomechanical fiber optic switches for multi-channel spectrophotometers available in market are bulky, slow, low numbers of channels and expensive. Our foundry MEMS-based micromirror switch designed for integrating with commercially available spectrophotometers offers more compact devices, increased number of probing channels, higher performance and cheaper. Our MEMS-based micromirror switch is a surface micromachined mirror fabricated through MUMPs foundry. The 280 μm x 280 μm gold coated mirror is suspended by the double-gimbal structure for X and Y axis scanning. Self-assembly by solders is used to elevate the torsion mirror 30 μm over the substrate to achieve large scan angle. The solder self-assembly approach dramatically reduces the time to assembly the switch. The scan mirror is electrostatically controlled by applying voltages. The individual probing signal from each probing head is guided by fibers with collimated lenses and incidents on the center of the mirror. The operating scan angle is in the range of 3.5 degrees with driving voltage of 0-100 V. The fastest switching time of 4 millisecond (1 ms rise time and 3 ms fall time) is measured corresponding to the maximum speed of the mirror of 0.25 kHz when the mirror is scanning at +/- 1.5 degrees. The micromirror switch is packaged with a multi-mode fiber bundle using active alignment technique. A centered fiber is the output fiber that is connected to spectrophotometer. Maximum insertion loss of 5 dB has been obtained. The accuracy of measured spectral data is equivalent to the single channel spectrophotometer with a small degradation on probing signal due to fiber coupling.

  1. Demonstration of pulse controlled all-optical switch/modulator.

    PubMed

    Akin, Osman; Dinleyici, M S

    2014-03-15

    An all-optical pulse controlled switch/modulator based on evanescent coupling between a polymer slab waveguide and a single mode fiber is demonstrated. Very fast all-optical modulation/switching is achieved via Kerr effect of the nonlinear polymer placed in the evanescent region of the optical fiber. Local refractive index perturbation (Δn=-1.45612×10(-5)) on the thin film leads to 0.374 nW power modulation at the fiber output, which results in a switching efficiency of ≈1.5%.

  2. Fiber-optical switch controlled by a single atom.

    PubMed

    O'Shea, Danny; Junge, Christian; Volz, Jürgen; Rauschenbeutel, Arno

    2013-11-08

    We demonstrate highly efficient switching of optical signals between two optical fibers controlled by a single atom. The key element of our experiment is a whispering-gallery-mode bottle microresonator, which is coupled to a single atom and interfaced by two tapered fiber couplers. This system reaches the strong coupling regime of cavity quantum electrodynamics, leading to a vacuum Rabi splitting in the excitation spectrum. We systematically investigate the switching efficiency of our system, i.e., the probability that the fiber-optical switch redirects the light into the desired output. We obtain a large redirection efficiency reaching a raw fidelity of more than 60% without postselection. Moreover, by measuring the second-order correlation functions of the output fields, we show that our switch exhibits a photon-number-dependent routing capability.

  3. Power inverter with optical isolation

    DOEpatents

    Duncan, Paul G.; Schroeder, John Alan

    2005-12-06

    An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.

  4. Passively Q-switched wavelength-tunable 1-μm fiber lasers with tapered-fiber-based black phosphorus saturable absorbers

    NASA Astrophysics Data System (ADS)

    Song, Huaqing; Wang, Qi; Wang, Dongdong; Li, Li

    2018-03-01

    In this paper, we demonstrated passively Q-switched wavelength-tunable 1-μm fiber lasers utilizing few-layer black phosphorus saturable absorbers. The few-layer BP was deposited onto the tapered fibers by an optically driven process. The wavelength tunability was achieved with a fiber Sagnac loop comprised of a piece of polarization maintaining fiber and a polarization controller. Stable Q-switching laser operations were observed at wavelengths ranging from 1040.5 to 1044.6 nm at threshold pump power of 220 mW. Maximal pulse energy of 141.27 nJ at a repetition rate of 63 kHz was recorded under pump power of 445 mW.

  5. Process control using fiber optics and Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kemsley, E. K.; Wilson, Reginald H.

    1992-03-01

    A process control system has been constructed using optical fibers interfaced to a Fourier transform infrared (FT-IR) spectrometer, to achieve remote spectroscopic analysis of food samples during processing. The multichannel interface accommodates six fibers, allowing the sequential observation of up to six samples. Novel fiber-optic sampling cells have been constructed, including transmission and attenuated total reflectance (ATR) designs. Different fiber types have been evaluated; in particular, plastic clad silica (PCS) and zirconium fluoride fibers. Processes investigated have included the dilution of fruit juice concentrate, and the addition of alcohol to fruit syrup. Suitable algorithms have been written which use the results of spectroscopic measurements to control and monitor the course of each process, by actuating devices such as valves and switches.

  6. Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, J.; Yan, K.; Zhou, Y.

    2015-11-09

    We proposed and demonstrated an all fiber passively Q-switching laser to generate cylindrical-vector beam, a two dimensional material, tungsten disulphide (WS{sub 2}), was adopted as a saturable absorber inside the laser cavity, while a few-mode fiber Bragg grating was used as a transverse mode-selective output coupler. The repetition rate of the Q-switching output pulses can be varied from 80 kHz to 120 kHz with a shortest duration of 958 ns. Attributed to the high damage threshold and polarization insensitivity of the WS{sub 2} based saturable absorber, the radially polarized beam and azimuthally polarized beam can be easily generated in the Q-switching fiber laser.

  7. Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm.

    PubMed

    Wei, Chen; Luo, Hongyu; Shi, Hongxia; Lyu, YanJia; Zhang, Han; Liu, Yong

    2017-04-17

    In this paper, we demonstrate a wavelength widely tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm. The laser can be tuned over 170 nm (2699 nm~2869.9 nm) for various pump power levels, while maintaining stable μs-level single-pulse gain-switched operation with controllable output pulse duration at a selectable repetition rate. To the best of our knowledge, this is the first wavelength tunable gain-switched fiber laser in the 3 μm spectral region with the broadest tuning range (doubling the record tuning range) of the pulsed fiber lasers around 3 μm. Influences of pump energy and power on the output gain-switched laser performances are investigated in detail. This robust, simple, and versatile mid-infrared pulsed fiber laser source is highly suitable for many applications including laser surgery, material processing, sensing, spectroscopy, as well as serving as a practical seed source in master oscillator power amplifiers.

  8. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit.

    PubMed

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2016-12-21

    Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10 -9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.

  9. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit

    NASA Astrophysics Data System (ADS)

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J.; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2016-12-01

    Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10-9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.

  10. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit

    PubMed Central

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J.; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2016-01-01

    Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than −30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10−9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers. PMID:28000735

  11. Wavelength-tunable Q-switched Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Ye, Jun; Xu, Jiangming; Zhang, Hanwei; Wu, Jian; Zhou, Pu

    2018-03-01

    In this presentation, a wavelength-tunable Q-switched Raman fiber laser is presented for the first time, which has a backward pumped configuration, including a section of 3 km passive fiber, a homemade tunable pump source and a highly reflective fiber loop mirror. The output wavelength of the Raman fiber laser can be tuned continuously with ~44 nm range via adjusting the pump wavelength. By inserting an acoustic-optical modulator, the Q-value of the cavity can be switched between high and low level. As a result, pulsed output with a repetition rate of 500 kHz and duration time of 60-80 ns is achieved.

  12. Pump-Induced, Dual-Frequency Switching in a Short-Cavity, Ytterbium-Doped Fiber Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, W.; Marciante, J.R.

    2008-07-23

    Using a short linear cavity composed of a section of highly ytterbium-doped fiber surrounded by two fiber Bragg gratings, dual frequency switching is achieved by tuning the pump power of the laser. The dual-frequency switching is generated by the thermal effects of the absorbed pump in the ytterbium-doped fiber. At each frequency, the laser shows single-longitudinal-mode behavior. In each single-mode regime, the optical signal-to-noise ratio of the laser is greater than 50 dB. The dual-frequency, switchable, fiber laser can be designed for various applications by the careful selection of the two gratings.

  13. Graphene Oxide saturable absorber for generating eye-safe Q-switched fiber laser

    NASA Astrophysics Data System (ADS)

    Rosol, A. H. A.; Jusoh, Z.; Rahman, H. A.; Rusdi, M. F. M.; Harun, S. W.; Latiff, A. A.

    2017-06-01

    This paper reports the generation of Q-switched fiber laser using thulium doped fiber (TDF) as a gain medium and graphene oxide (GO) as a saturable absorber (SA). The GO powder is embedded into polyvinyl alcohol (PVA) to form an SA film based on a drop-casting technique. GO-SA film is sandwiched between two fiber connectors and tighten by FC adapter before it is incorporated into an TDF laser cavity for Q-switching pulse generation. At 344 mW pump level, a stable Q-switching regime presence at 1943 nm with a 3-dB spectral bandwidth of 9 nm. The maximum repetition rate, pulse width, and pulse energy are at 25 kHz, 4.2 µs, and 0.68 µJ, respectively. All finding results are comparable with other reported pulse fiber lasers.

  14. Picosecond pulse generation in a hybrid Q-switched laser source by using a microelectromechanical mirror.

    PubMed

    Couderc, Vincent; Crunteanu, Aurelian; Fabert, Marc; Doutre, Florent; El Bassri, Farid; Pagnoux, Dominique; Jalocha, Alain

    2012-02-27

    We present a novel Q-switched laser source using a micro-optical-electromechanical mirror (MOEM) designed for short pulse emission. It is based on a hybrid configuration including a passively Q-switched microchip laser coupled to a fiber cavity closed by a cantilever type MOEM acting as an active modulator. This specially designed mirror with a single reflecting gold membrane is switched by low bias voltage ~50 V (peak to peak). This device emits pulses at tunable repetition rates up to 1.6 kHz, with ~564 ps duration and 3.4 kW peak power, which constitutes the shortest pulse duration ever reported with MOEMs based pulsed lasers.

  15. Methods and apparatus for optical switching using electrically movable optical fibers

    DOEpatents

    Peterson, Kenneth A [Albuquerque, NM

    2007-03-13

    Methods and apparatuses for electrically controlled optical switches are presented. An electrically controlled optical switch includes a fixture formed using a laminated dielectric material, a first optical fiber having a fixed segment supported by the fixture and a movable segment extending into a cavity, a second optical fiber having a fixed segment supported by the fixture and an extended segment where an optical interconnect may be established between the first optical fiber and the second optical fiber, and a first electrical actuator functionally coupled to the fixture and the first fiber which alters a position of the moveable segment, based upon a control signal, for changing a state of the optical interconnect between one of two states.

  16. Range Imaging without Moving Parts

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Scott, V. Stanley, III; Ramos-Izquierdo, Luis

    2008-01-01

    Range-imaging instruments of a type now under development are intended to generate the equivalent of three-dimensional images from measurements of the round-trip times of flight of laser pulses along known directions. These instruments could also provide information on characteristics of targets, including roughnesses and reflectivities of surfaces and optical densities of such semi-solid objects as trees and clouds. Unlike in prior range-imaging instruments based on times of flight along known directions, there would be no moving parts; aiming of the laser beams along the known directions would not be accomplished by mechanical scanning of mirrors, prisms, or other optical components. Instead, aiming would be accomplished by using solid-state devices to switch input and output beams along different fiber-optic paths. Because of the lack of moving parts, these instruments could be extraordinarily reliable, rugged, and long-lasting. An instrument of this type would include an optical transmitter that would send out a laser pulse along a chosen direction to a target. An optical receiver coaligned with the transmitter would measure the temporally varying intensity of laser light reflected from the target to determine the distance and surface characteristics of the target. The transmitter would be a combination of devices for generating precise directional laser illumination. It would include a pulsed laser, the output of which would be coupled into a fiber-optic cable with a fan-out and solid-state optical switches that would enable switching of the laser beam onto one or more optical fibers terminated at known locations in an array on a face at the focal plane of a telescope. The array would be imaged by the telescope onto the target space. The receiver optical system could share the aforementioned telescope with the transmitter or could include a separate telescope aimed in the same direction as that of the transmitting telescope. In either case, light reflected from the target would be focused by the receiver optical system onto an array of optical fibers matching the array in the transmitter. These optical fibers would couple the received light to one or more photodetector( s). Optionally, the receiver could include solid-state optical switches for choosing which optical fiber(s) would couple light to the photodetector(s). This instrument architecture is flexible and can be optimized for a wide variety of applications and levels of performance. For example, it is scalable to any number of pixels and pixel resolutions and is compatible with a variety of ranging and photodetection methodologies, including, for example, ranging by use of modulated (including pulsed and encoded) light signals. The use of fixed arrays of optical fibers to generate controlled illumination patterns would eliminate the mechanical complexity and much of the bulk of optomechanical scanning assemblies. Furthermore, digital control of the selection of the fiber-optic pathways for the transmitted beams could afford capabilities not seen in previous three-dimensional range-imaging systems. Instruments of this type could be specialized for use as, for example, proximity detectors, three-dimensional robotic vision systems, airborne terrain-mapping systems, and inspection systems.

  17. Optical bandwidth in coupling: the multicore photonic switch.

    PubMed

    Attard, Alfred E

    2003-05-20

    In the present study, the bandwidth of a photonic switch described previously [Appl. Opt. 37,2296 (1998); 38, 3239 (1999)] is evaluated. First the optical bandwidth is evaluated for coupling between two fiber-core waveguides, in which the cores are embedded within the same cladding. Then the coupling bandwidth is determined for a fiber-core-to-slab-core waveguide, in which the cores are embedded within the same cladding. These bandwidths are then compared and contrasted with the bandwidths of the photonic switch, which consists of two fiber cores and a control waveguide. Two configurations of the photonic switch are considered: one in which the control waveguide is a fiber core and one in which the control waveguide is a slab core. For the photonic switch, the bandwidth characteristics are more complicated than for the coupled pairs, and these characteristics are discussed in detail.

  18. Poly (N-vinyl Carbazole) - Polypyrrole/graphene oxide nanocomposite material on tapered fiber for Q-switched pulse generation

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Faruki, M. J.; Jasim, A. A.; Ooi, S. I.; Thambiratnam, K.

    2018-02-01

    A passively Q-switched fiber laser using a Saturable Absorber (SA) fabricated from a new Poly (N-vinyl Carbazole) - Polypyrrole/Graphene Oxide (PNVC-PPy/GO) nanocomposite material deposited on a tapered fiber is proposed and demonstrated. The PNVC-PPy/GO composition is deposited along a 3 mm length of the 6.5 cm tapered fiber which has a tapered waist of 8 μm. Q-switched pulses are obtained with repetition rates of 25.15-42.7 kHz and pulse widths of 5.74-2.48 μs over a pump power range of 12.8-40.0 mW. A maximum average power of 0.19 mW and pulse energy of 4.43 nJ are also observed. The proposed Q-switched maintains advantages of a simple design and low fabrication cost while at the same time generating high quality Q-switched pulses.

  19. Fiber-optical switch using cam-micromotor driven by scratch drive actuators

    NASA Astrophysics Data System (ADS)

    Kanamori, Y.; Aoki, Y.; Sasaki, M.; Hosoya, H.; Wada, A.; Hane, K.

    2005-01-01

    We fabricated a 1 × 1 fiber-optic switch using a cam-micromotor driven by scratch drive actuators (SDAs). Using the cam-micromotor, mechanical translation and precise positioning of an optical fiber were performed. An optical fiber of diameter 50 µm was bent and pushed out with a cam-mechanism driven by the SDAs fabricated by surface micromachining. The maximum rotation speed of the cam-micromotor was 7.5 rpm at a driving frequency of 1.5 kHz. The transient time of the switch to attenuate coupling efficiency less than -40 dB was around 10 ms.

  20. Cost-effective optical switch matrix for microwave phased-array

    NASA Technical Reports Server (NTRS)

    Pan, J. J.; Chia, S. L.; Li, W. Z.; Grove, C. H.

    1991-01-01

    An all-fiber (6x6) optical shutter switch matrix with the control system for microwave phased array has been demonstrated. The device offers the advantages of integrated configuration, low cost, low power consumption, small size, and light weight. The maximum extinction ratio (among 36 individual pixel) of this switch matrix at 840 nm is 24.2 dB, and the switching time is less than 120 microsec. In addition to phased array application, this low cost switch matrix is extremely attractive for fiber optic switching networks.

  1. Micromachined mirrors for raster-scanning displays and optical fiber switches

    NASA Astrophysics Data System (ADS)

    Hagelin, Paul Merritt

    Micromachines and micro-optics have the potential to shrink the size and cost of free-space optical systems, enabling a new generation of high-performance, compact projection displays and telecommunications equipment. In raster-scanning displays and optical fiber switches, a free-space optical beam can interact with multiple tilt- up micromirrors fabricated on a single substrate. The size, rotation angle, and flatness of the mirror surfaces determine the number of pixels in a raster-display or ports in an optical switch. Single-chip and two-chip optical raster display systems demonstrate static mirror curvature correction, an integrated electronic driver board, and dynamic micromirror performance. Correction for curvature caused by a stress gradient in the micromirror leads to resolution of 102 by 119 pixels in the single-chip display. The optical design of the two-chip display features in-situ mirror curvature measurement and adjustable image magnification with a single output lens. An electronic driver board synchronizes modulation of the optical source with micromirror actuation for the display of images. Dynamic off-axis mirror motion is shown to have minimal influence on resolution. The confocal switch, a free-space optical fiber cross- connect, incorporates micromirrors having a design similar to the image-refresh scanner. Two micromirror arrays redirect optical beams from an input fiber array to the output fibers. The switch architecture supports simultaneous switching of multiple wavelength channels. A 2x2 switch configuration, using single-mode optical fiber at 1550 mn, is demonstrated with insertion loss of -4.2 dB and cross-talk of -50.5 dB. The micromirrors have sufficient size and angular range for scaling to a 32x32 cross-connect switch that has low insertion-loss and low cross-talk.

  2. Optical network scaling: roles of spectral and spatial aggregation.

    PubMed

    Arık, Sercan Ö; Ho, Keang-Po; Kahn, Joseph M

    2014-12-01

    As the bit rates of routed data streams exceed the throughput of single wavelength-division multiplexing channels, spectral and spatial traffic aggregation become essential for optical network scaling. These aggregation techniques reduce network routing complexity by increasing spectral efficiency to decrease the number of fibers, and by increasing switching granularity to decrease the number of switching components. Spectral aggregation yields a modest decrease in the number of fibers but a substantial decrease in the number of switching components. Spatial aggregation yields a substantial decrease in both the number of fibers and the number of switching components. To quantify routing complexity reduction, we analyze the number of multi-cast and wavelength-selective switches required in a colorless, directionless and contentionless reconfigurable optical add-drop multiplexer architecture. Traffic aggregation has two potential drawbacks: reduced routing power and increased switching component size.

  3. Thyroid hormone regulates muscle fiber type conversion via miR-133a1.

    PubMed

    Zhang, Duo; Wang, Xiaoyun; Li, Yuying; Zhao, Lei; Lu, Minghua; Yao, Xuan; Xia, Hongfeng; Wang, Yu-Cheng; Liu, Mo-Fang; Jiang, Jingjing; Li, Xihua; Ying, Hao

    2014-12-22

    It is known that thyroid hormone (TH) is a major determinant of muscle fiber composition, but the molecular mechanism by which it does so remains unclear. Here, we demonstrated that miR-133a1 is a direct target gene of TH in muscle. Intriguingly, miR-133a, which is enriched in fast-twitch muscle, regulates slow-to-fast muscle fiber type conversion by targeting TEA domain family member 1 (TEAD1), a key regulator of slow muscle gene expression. Inhibition of miR-133a in vivo abrogated TH action on muscle fiber type conversion. Moreover, TEAD1 overexpression antagonized the effect of miR-133a as well as TH on muscle fiber type switch. Additionally, we demonstrate that TH negatively regulates the transcription of myosin heavy chain I indirectly via miR-133a/TEAD1. Collectively, we propose that TH inhibits the slow muscle phenotype through a novel epigenetic mechanism involving repression of TEAD1 expression via targeting by miR-133a1. This identification of a TH-regulated microRNA therefore sheds new light on how TH achieves its diverse biological activities. © 2014 Zhang et al.

  4. Thyroid hormone regulates muscle fiber type conversion via miR-133a1

    PubMed Central

    Zhang, Duo; Wang, Xiaoyun; Li, Yuying; Zhao, Lei; Lu, Minghua; Yao, Xuan; Xia, Hongfeng; Wang, Yu-cheng; Liu, Mo-Fang; Jiang, Jingjing; Li, Xihua

    2014-01-01

    It is known that thyroid hormone (TH) is a major determinant of muscle fiber composition, but the molecular mechanism by which it does so remains unclear. Here, we demonstrated that miR-133a1 is a direct target gene of TH in muscle. Intriguingly, miR-133a, which is enriched in fast-twitch muscle, regulates slow-to-fast muscle fiber type conversion by targeting TEA domain family member 1 (TEAD1), a key regulator of slow muscle gene expression. Inhibition of miR-133a in vivo abrogated TH action on muscle fiber type conversion. Moreover, TEAD1 overexpression antagonized the effect of miR-133a as well as TH on muscle fiber type switch. Additionally, we demonstrate that TH negatively regulates the transcription of myosin heavy chain I indirectly via miR-133a/TEAD1. Collectively, we propose that TH inhibits the slow muscle phenotype through a novel epigenetic mechanism involving repression of TEAD1 expression via targeting by miR-133a1. This identification of a TH-regulated microRNA therefore sheds new light on how TH achieves its diverse biological activities. PMID:25512392

  5. Actively Q-switched dual-wavelength pumped Er3+ :ZBLAN fiber laser at 3.47 µm.

    PubMed

    Bawden, Nathaniel; Matsukuma, Hiraku; Henderson-Sapir, Ori; Klantsataya, Elizaveta; Tokita, Shigeki; Ottaway, David J

    2018-06-01

    We demonstrate the first actively Q-switched fiber laser operating in the 3.5 μm regime. The dual-wavelength pumped system makes use of an Er 3+ doped ZBLAN fiber and a germanium acousto-optic modulator. Robust Q-switching saw a pulse energy of 7.8 μJ achieved at a repetition rate of 15 kHz, corresponding to a peak power of 14.5 W.

  6. Radially polarized and passively Q-switched fiber laser

    PubMed Central

    Lin, Di; Xia, Kegui; Li, Ruxin; Li, Xiaojun; Li, Guoqiang; Ueda, Ken-ichi; Li, Jianlang

    2017-01-01

    We report, for the first time to our knowledge, a radially polarized and passively Q-switched Yb-doped fiber laser. By using a Cr4+:YAG crystal as a saturable absorber and a photonic crystal grating as a polarization mirror, a radially polarized pulse is produced, which has 202 W of peak power, 75 ns duration, and ~92% polarization purity at a 56.6 kHz repetition rate. The Q-switched pulse with radial polarization from the fiber laser would facilitate numerous applications. PMID:21042354

  7. Estrogen/ERR-α signaling axis is associated with fiber-type conversion of upper airway muscles in patients with obstructive sleep apnea hypopnea syndrome.

    PubMed

    Chen, H H; Lu, J; Guan, Y F; Li, S J; Hu, T T; Xie, Z S; Wang, F; Peng, X H; Liu, X; Xu, X; Zhao, F P; Yu, B L; Li, X P

    2016-06-02

    Estrogen is related with the low morbidity associated with obstructive sleep apnea hypopnea syndrome (OSAS) in women, but the underlying mechanisms remain largely unknown. In this study, we examined the relationship between OSAS and estrogen related receptor-α (ERR-α). We found that the expression levels of ERR-α and Myh7 were both downregulated in palatopharyngeal tissues from OSAS patients. In addition, we report that ERR-α is dynamically expressed during differentiation of C2C12 myoblasts. Knockdown of ERR-α via instant siRNA resulted in reduced expression of Myh7, but not Myh4. Furthermore, differentiation of C2C12 cells under 3% chronic intermittent hypoxia, a model resembling human OSAS, was impaired and accompanied by a obvious reduction in Myh7 expression levels. Moreover, activation of ERR-α with 17β-estradiol (E2) increased the expression of Myh7, whereas pretreatment with the ERR-α antagonist XCT790 reversed the E2-induced slow fiber-type switch. A rat ovariectomy model also demonstrated the switch to fast fiber type. Collectively, our findings suggest that ERR-α is involved in estrogen-mediated OSAS by regulating Myhc-slow expression. The present study illustrates an important role of the estrogen/ERR-α axis in the pathogenesis of OSAS, and may represent an attractive therapeutic target, especially in postmenopausal women.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnov, Igor, E-mail: Igor.Krasnov@hzg.de; Müller, Martin, E-mail: Martin.Mueller@hzg.de; Institute of Materials Research, Helmholtz-Zentrum Geesthacht

    An optically active bio-material is created by blending natural silk fibers with photoisomerizable chromophore molecules—azobenzenebromide (AzBr). The material converts the energy of unpolarized light directly into mechanical work with a well-defined direction of action. The feasibility of the idea to produce optically driven microsized actuators on the basis of bio-material (silk) is proven. The switching behavior of the embedded AzBr molecules was studied in terms of UV/Vis spectroscopy. To test the opto-mechanical properties of the modified fibers and the structural changes they undergo upon optically induced switching, single fiber X-ray diffraction with a micron-sized synchrotron radiation beam was combined inmore » situ with optical switching as well as with mechanical testing and monitoring. The crystalline regions of silk are not modified by the presence of the guest molecules, hence occupy only the amorphous part of the fibers. It is shown that chromophore molecules embedded into fibers can be reversibly switched between the trans and cis conformation by illumination with light of defined wavelengths. The host fibers respond to this switching with a variation of the internal stress. The amplitude of the mechanical response is independent of the applied external stress and its characteristic time is shorter than the relaxation time of the usual mechanical response of silk.« less

  9. Optical interconnect technologies for high-bandwidth ICT systems

    NASA Astrophysics Data System (ADS)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  10. Skeletal Muscle-Specific Overexpression of PGC-1α Induces Fiber-Type Conversion through Enhanced Mitochondrial Respiration and Fatty Acid Oxidation in Mice and Pigs.

    PubMed

    Zhang, Lin; Zhou, Ying; Wu, Wangjun; Hou, Liming; Chen, Hongxing; Zuo, Bo; Xiong, Yuanzhu; Yang, Jinzeng

    2017-01-01

    Individual skeletal muscles in the animal body are heterogeneous, as each is comprised of different fiber types. Type I muscle fibers are rich with mitochondria, and have high oxidative metabolisms while type IIB fibers have few mitochondria and high glycolytic metabolic capacity. Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), a transcriptional co-activator that regulates mitochondrial biogenesis and respiratory function, is implicated in muscle fiber-type switching. Over-expression of PGC-1α in transgenic mice increased the proportion of red/oxidative type I fiber. During pig muscle growth, an increased number of type I fibers can give meat more red color. To explore the roles of PGC-1α in regulation of muscle fiber type conversion, we generated skeletal muscle-specific PGC-1α transgenic mice and pig. Ectopic over-expression of PGC-1α was detected in both fast and slow muscle fibers. The transgenic animals displayed a remarkable amount of red/oxidative muscle fibers in major skeletal muscle tissues. Skeletal muscles from transgenic mice and pigs have increased expression levels of oxidative fiber markers such as MHC1, MHC2x, myoglobin and Tnni1, and decreased expressions of glycolytic fiber genes (MHC2a, MHC2b, CASQ-1 and Tnni2). The genes responsible for the TCA cycle and oxidative phosphorylation, cytochrome coxidase 2 and 4, and citrate synthase were also increased in the transgenic mice and pigs. These results suggested that transgenic over-expressed PGC-1α significantly increased muscle mitochondrial biogenesis, resulting in qualitative changes from glycolytic to oxidative energy generation. The transgenic animals also had elevated levels of PDK4 and PPARγ proteins in muscle tissue, which can lead to increased glycogen deposition and fatty acid oxidation. Therefore, the results support a significant role of PGC-1α in conversion of fast glycolytic fibers to slow and oxidative fiber through enhanced mitochondrial respiration and fatty acid oxidation, and transgenic over-expression of PGC-1α in skeletal muscle leads to more red meat production in pigs.

  11. Micro-Ball-Lens Optical Switch Driven by SMA Actuator

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    The figure is a simplified cross section of a microscopic optical switch that was partially developed at the time of reporting the information for this article. In a fully developed version, light would be coupled from an input optical fiber to one of two side-by-side output optical fibers. The optical connection between the input and the selected output fiber would be made via a microscopic ball lens. Switching of the optical connection from one output fiber to another would be effected by using a pair of thin-film shape-memory-alloy (SMA) actuators to toggle the lens between two resting switch positions. There are many optical switches some made of macroscopic parts by conventional fabrication techniques and some that are microfabricated and, hence, belong to the class of microelectromechanical systems (MEMS). Conventionally fabricated optical switches tend to be expensive. MEMS switches can be mass-produced at relatively low cost, but their attractiveness has been diminished by the fact that, heretofore, MEMS switches have usually been found to exhibit high insertion losses. The present switch is intended to serve as a prototype of low-loss MEMS switches. In addition, this is the first reported SMA-based optical switch. The optical fibers would be held in V grooves in a silicon frame. The lens would have a diameter of 1 m; it would be held by, and positioned between, the SMA actuators, which would be made of thin films of TiNi alloy. Although the SMA actuators are depicted here as having simple shapes for the sake of clarity of illustration, the real actuators would have complex, partly net-like shapes. With the exception of the lens and the optical fibers, the SMA actuators and other components of the switch would be made by microfabrication techniques. The components would be assembled into a sandwich structure to complete the fabrication of the switch. To effect switching, an electric current would be passed through one of the SMA actuators to heat it above its transition temperature, thereby causing it to deform to a different "remembered" shape. The two SMA actuators would be stiff enough that once switching had taken place and the electrical current was turned off, the lens would remain latched in the most recently selected position. In a test, the partially developed switch exhibited an insertion loss of only -1.9 dB and a switching contrast of 70 dB. One the basis of prior research on SMA actuators and assuming a lens displacement of 125 m between extreme positions, it has been estimated that the fully developed switch would be capable of operating at a frequency as high as 10 Hz.

  12. Quantum Zeno Blockade for Next Generation Optical Switching in Fiber Systems

    DTIC Science & Technology

    2013-09-01

    and utilized a self - referential quantum process tomography method to observe the Zeno effect in optical fiber using the ultrafast all- optical switch...controllable and can be used as a knob to study the core physics behind the Zeno-based switching. For this experiment, we developed a self - referential ...efficient optical communications. The quantum Zeno effect can be used to induce or inhibit optical switching through a variety of processes , all of

  13. Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Luo, Hongyu; He, Yulian; Liu, Yong; Luo, Binbin; Sun, Zhongyuan; Zhang, Lin; Turitsyn, Sergei K.

    2014-05-01

    A diode-cladding-pumped mid-infrared passively Q-switched Ho3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 μJ with a pulse width of 1.68 μs and signal to noise ratio (SNR) of ~50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 μm. To the best of our knowledge, this is the first 3 μm region SESAM based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers.

  14. Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser

    NASA Astrophysics Data System (ADS)

    Li, J. F.; Luo, H. Y.; He, Y. L.; Liu, Y.; Zhang, L.; Zhou, K. M.; Rozhin, A. G.; Turistyn, S. K.

    2014-06-01

    A diode-cladding-pumped mid-infrared passively Q-switched Ho3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 µJ with a pulse width of 1.68 µs and signal-to-noise ratio (SNR) of ~50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 µm. To the best of our knowledge, this is the first 3 µm region SESAM-based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers.

  15. All-optical phase shifter and switch near 1550nm using tungsten disulfide (WS2) deposited tapered fiber.

    PubMed

    Wu, Kan; Guo, Chaoshi; Wang, Hao; Zhang, Xiaoyan; Wang, Jun; Chen, Jianping

    2017-07-24

    All-optical phase shifters and switches play an important role for various all-optical applications including all-optical signal processing, sensing and communication. In this paper, we demonstrate a fiber all-optical phase shifter using few-layer 2D material tungsten disulfide (WS 2 ) deposited on a tapered fiber. WS 2 absorbs injected 980 nm pump (control light) and generates heat, which changes the refractive index of both WS 2 and tapered fiber due to thermo-optic effect and achieves a maximum phase shift of 6.1π near 1550 nm. The device has a loss of 3.7 dB. By constructing a Mach-Zehnder interferometer with WS 2 based phase shifter in one arm, an all-optical switch is also obtained with an extinction ratio of 15 dB and a rise time of 7.3 ms. This all fiber low-cost and compact optical phase shifter and switch demonstrates the potential of 2D transition metal dichalcogenides for all-optical signal processing devices.

  16. Transition metal dichalcogenide (WS2 and MoS2) saturable absorbers for Q-switched Er-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Li, Lu; Lv, Ruidong; Liu, Sicong; Wang, Xi; Wang, Yonggang; Chen, Zhendong; Wang, Jiang

    2018-05-01

    This report demonstrates a stable Q-switched Er-doped fiber laser with MoS2 (WS2)-based saturable absorber (SA) in the net normal dispersion regime. The SA is obtained by mixing MoS2 (WS2) nanosheets with polyvinyl alcohol (PVA) into polystyrene cells, and then evaporating them to form MoS2 (WS2)/PVA film. The modulation depth values for MoS2/PVA and WS2/PVA are measured to be 2.7% and 2.1% respectively. Employing the MoS2 (WS2)/PVA film in the Er-doped fiber laser cavity, stable Q-switching operation is achieved with central wavelength of 1560 nm. The shortest pulse durations of the two Q-switched fiber lasers are, respectively, 3.97 and 3.71 µs, and their maximum single pulse energies are measured to be 131.52 and 126.96 nJ. The experimental results clearly show that MoS2 (WS2) is a promising nonlinear material, and that improvements in Q-switching performance due to two SAs in the net normal dispersion regime might be helpful in the design of fiber lasers.

  17. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar

    NASA Technical Reports Server (NTRS)

    Suckow, Will; Roberts, Tony; Switzer, Gregg; Terwilliger, Chelle

    2011-01-01

    Current fiber switch technologies use mechanical means to redirect light beams, resulting in slow switch time, as well as poor reliability due to moving parts wearing out quickly at high speeds. A non-mechanical ability to switch laser output into one of multiple fibers within a fiber array can provide significant power, weight, and costs savings to an all-fiber system. This invention uses an array of crystals that act as miniature prisms to redirect light as an electric voltage changes the prism s properties. At the heart of the electro-optic fiber-optic switch is an electro- optic crystal patterned with tiny prisms that can deflect the beam from the input fiber into any one of the receiving fibers arranged in a linear array when a voltage is applied across the crystal. Prism boundaries are defined by a net dipole moment in the crystal lattice that has been poled opposite to the surrounding lattice fabricated using patterned, removable microelectrodes. When a voltage is applied across the crystal, the resulting electric field changes the index of refraction within the prism boundaries relative to the surrounding substrate, causing light to deflect slightly according to Snell s Law. There are several materials that can host the necessary monolithic poled pattern (including, but not limited to, SLT, KTP, LiNbO3, and Mg:LiNbO3). Be cause this is a solid-state system without moving parts, it is very fast, and does not wear down easily. This invention is applicable to all fiber networks, as well as industries that use such networks. The unit comes in a compact package, can handle both low and high voltages, and has a high reliability (100,000 hours without maintenance).

  18. Directly q-switched high power resonator based on XLMA-fibers

    NASA Astrophysics Data System (ADS)

    Giesberts, M.; Fitzau, O.; Hoffmann, H.-D.; Lange, R.; Bachert, C.; Krause, V.

    2018-02-01

    In this paper we present a simple approach to achieving nanosecond pulses from a directly q-switched high-power resonator based on extra-large mode area (XLMA) fibers with a beam quality factor M2 < 15. An average output power of > 500 W has been demonstrated for repetition frequencies between 50-100 kHz. The resonator consists of a single fiber q-switched with soldered Pockels-cells which exhibit a very high contrast ratio leading to output pulses down to about 10 ns and peak powers up to > 250 kW at 1064 nm wavelength. By using this design instead of a fiber MOPA setup, a cost-effective and less complex system could be implemented.

  19. Fiber-Optic Pyrometer with Optically Powered Switch for Temperature Measurements

    PubMed Central

    Pérez-Prieto, Sandra; López-Cardona, Juan D.; Blanco, Enrique; Moreno-López, Jorge

    2018-01-01

    We report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point. PMID:29415477

  20. Fiber-Optic Pyrometer with Optically Powered Switch for Temperature Measurements.

    PubMed

    Vázquez, Carmen; Pérez-Prieto, Sandra; López-Cardona, Juan D; Tapetado, Alberto; Blanco, Enrique; Moreno-López, Jorge; Montero, David S; Lallana, Pedro C

    2018-02-06

    We report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point.

  1. Optical fiber switch

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  2. Spatial-mode switchable ring fiber laser based on low mode-crosstalk all-fiber mode MUX/DEMUX

    NASA Astrophysics Data System (ADS)

    Ren, Fang; Yu, Jinyi; Wang, Jianping

    2018-05-01

    We report an all-fiber ring laser that emits linearly polarized (LP) modes based on the intracavity all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). Multiple LP modes in ring fiber laser are generated by taking advantage of mode MUX/DEMUX. The all-fiber mode MUX/DEMUX are composed of cascaded mode-selective couplers (MSCs). The output lasing mode of the ring fiber laser can be switched among the three lowest-order LP modes by employing combination of a mode MUX and a simple N × 1 optical switch. The slope efficiencies, optical spectra and mode profiles are measured.

  3. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating.

    PubMed

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-07-31

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure.

  4. Slow recovery of the impaired fatigue resistance in postunloading mouse soleus muscle corresponding to decreased mitochondrial function and a compensatory increase in type I slow fibers

    PubMed Central

    Feng, Han-Zhong; Chen, Xuequn; Malek, Moh H.

    2015-01-01

    Unloading or disuse rapidly results in skeletal muscle atrophy, switching to fast-type fibers, and decreased resistance to fatigue. The recovery process is of major importance in rehabilitation for various clinical conditions. Here we studied mouse soleus muscle during 60 days of reloading after 4 wk of hindlimb suspension. Unloading produced significant atrophy of soleus muscle with decreased contractile force and fatigue resistance, accompanied by switches of myosin isoforms from IIa to IIx and IIb and fast troponin T to more low-molecular-weight splice forms. The total mass, fiber size, and contractile force of soleus muscle recovered to control levels after 15 days of reloading. However, the fatigue resistance showed a trend of worsening during this period with significant infiltration of inflammatory cells at days 3 and 7, indicating reloading injuries that were accompanied by active regeneration with upregulations of filamin-C, αB-crystallin, and desmin. The fatigue resistance partially recovered after 30–60 days of reloading. The expression of peroxisome proliferator-activated receptor γ coactivator 1α and mitofusin-2 showed changes parallel to that of fatigue resistance after unloading and during reloading, suggesting a causal role of decreased mitochondrial function. Slow fiber contents in the soleus muscle were increased after 30–60 days of reloading to become significantly higher than the normal level, indicating a secondary adaption to compensate for the slow recovery of fatigue resistance. PMID:26447205

  5. Switchable Q-switched and modelocked operation in ytterbium doped fiber laser under all-normal-dispersion configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Pranb K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Chandra Pal

    2015-03-15

    We have constructed an Yb-doped fiber laser in all-normal-dispersion configuration which can be independently operated in Q-switched or modelocked configuration with the help of a simple fiber optic ring resonator (FORR). In the presence of FORR, the laser operates in Q-switched mode producing stable pulses in the range of 1 μs-200 ns with repetition rate in the range of 45 kHz-82 kHz. On the other hand, the laser can be easily switched to mode-locked operation by disjoining the FORR loop producing train of ultrashort pulses of ∼5 ps duration (compressible to ∼150 fs) at ∼38 MHz repetition rate. The transmissionmore » characteristics of FORR in combination with the nonlinear polarization rotation for passive Q-switching operation is numerically investigated and experimentally verified. The laser can serve as a versatile seed source for power amplifier which can be easily configured for application in the fields that require different pulsed fiber lasers.« less

  6. Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber.

    PubMed

    Huang, Yizhong; Luo, Zhengqian; Li, Yingyue; Zhong, Min; Xu, Bin; Che, Kaijun; Xu, Huiying; Cai, Zhiping; Peng, Jian; Weng, Jian

    2014-10-20

    We propose and demonstrate a MoS2-based passively Q-switched Er-doped fiber laser with a wide tuning range of 1519.6-1567.7 nm. The few-layer MoS2 nano-platelets are prepared by the liquid-phase exfoliation method, and are then made into polymer-composite film to construct the fiber-compatible MoS2 saturable absorber (SA). It is measured at 1560 nm wavelength, that such MoS2 SA has the modulation depth of ∼ 2% and the saturable optical intensity of ∼ 10 MW/cm(2). By further inserting the filmy MoS2-SA into an Er-doped fiber laser, stable Q-switching operation with a 48.1 nm continuous tuning from S- to C-waveband is successfully achieved. The shortest pulse duration and the maximum pulse energy are 3.3 μs and 160 nJ, respectively. The repetition rate and the pulse duration under different operation conditions have been also characterized. To the best of our knowledge, it is the first demonstration of MoS2 Q-switched, widely-tunable fiber laser.

  7. Gold nanorod as saturable absorber for Q-switched Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Xu-De; Luo, Zhi-Chao; Liu, Hao; Zhao, Nian; Liu, Meng; Zhu, Yan-Fang; Xue, Jian-Ping; Luo, Ai-Ping; Xu, Wen-Cheng

    2015-07-01

    We reported on the generation of Q-switched pulse in an Yb-doped fiber laser by using a filmy polyvinyl alcohol (PVA)-based gold nanorods (GNRs) saturable absorber (SA). The GNRs are synthesized through seed-mediated method whose longitudinal surface plasmon resonance (SPR) absorption peak is located at 1038 nm. The modulation depth of the GNRs SA is ∼4.06%. By gradually increasing the pump power from 62 mW to 128 mW, the repetition rate of Q-switched pulse increases from 8.78 kHz to 20.78 kHz and the pulse duration decreases from 9.43 μs to 3.65 μs. In addition, the dual-wavelength switchable Q-switched operation was also observed. The obtained results further expand the applications of GNRs SA to the field of Q-switched pulsed fiber lasers at 1.0 μm waveband.

  8. All-fiber pulse shortening of passively Q-switched microchip laser pulses down to sub-200 fs.

    PubMed

    Lehneis, R; Steinmetz, A; Limpert, J; Tünnermann, A

    2014-10-15

    We present an all-fiber concept that generates ultrashort pulses using a passively Q-switched microchip seed laser. A proof-of-principle configuration combines nonlinear pulse compression applying a chirped fiber-Bragg-grating, dispersion-free pulse shortening by means of a fiber-integrated spectral filtering, and a final hollow-core-fiber compression to reach the sub-200-fs pulse-duration region. In a compact all-fiber pulse-shortening unit, initial 100 ps long microchip pulses at 1064 nm wavelength have been shortened to 174 fs and shifted to 1034 nm while preserving a high temporal quality.

  9. Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers.

    PubMed

    Matsuura, Yuji; Tsuchiuchi, Akio; Noguchi, Hiroshi; Miyagi, Mitsunobu

    2007-03-10

    To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.

  10. Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror

    PubMed Central

    Shen, Yanlong; Wang, Yishan; Luan, Kunpeng; Huang, Ke; Tao, Mengmeng; Chen, Hongwei; Yi, Aiping; Feng, Guobin; Si, Jinhai

    2016-01-01

    A diode-cladding pumped mid-infrared passively Q-switched Er3+-doped ZBLAN fiber laser with an average output power of watt-level based on a semiconductor saturable absorber mirror (SESAM) is demonstrated. Stable pulse train was produced at a slope efficiency of 17.8% with respect to launched pump power. The maximum average power of 1.01 W at a repetition rate of 146.3 kHz was achieved with a corresponding pulse energy of 6.9 μJ, from which the maximum peak power was calculated to be 21.9 W. To the best of our knowledge, the average power and the peak power are the highest in 3 μm region passively Q-switched fiber lasers. The influence of gain fiber length on the operation regime of the fiber laser has been investigated in detail. PMID:27225029

  11. Apparatus for weighing and identifying characteristics of a moving vehicle

    DOEpatents

    Muhs, Jeffrey D.; Jordan, John K.; Tobin, Jr., Kenneth W.; LaForge, John V.

    1993-01-01

    Apparatus for weighing a vehicle in motion is provided by employing a plurality of elongated fiber-optic sensors defined by an optical fiber embedded in an encasement of elastomeric material and disposed parallel to each other on the roadway in the path of moving vehicles. Each fiber-optic sensor is provided with contact grid means which can be selectively altered to provide the fiber-optic sensors with sensitivities to vehicular weight different from each other for weighing vehicles in an extended weight range. Switch means are used in conjunction with the fiber-optic sensors to provide signals indicative of the speed of the moving vehicle, the number of axles on the vehicle, weight distribution, tire position, and the wheelbase of the vehicle. The use of a generally N-shaped configuration of switch means also provides a determination of the number of tires on each axle and the tire footprint. When switch means in this configuration are formed of optical fibers, the extent of light transmission through the fibers during contact with the tires of the vehicle is indicative of the vehicle weight.

  12. Apparatus for weighing and identifying characteristics of a moving vehicle

    DOEpatents

    Muhs, J.D.; Jordan, J.K.; Tobin, K.W. Jr.; LaForge, J.V.

    1993-11-09

    Apparatus for weighing a vehicle in motion is provided by employing a plurality of elongated fiber-optic sensors defined by an optical fiber embedded in an encasement of elastomeric material and disposed parallel to each other on the roadway in the path of moving vehicles. Each fiber-optic sensor is provided with contact grid means which can be selectively altered to provide the fiber-optic sensors with sensitivities to vehicular weight different from each other for weighing vehicles in an extended weight range. Switch means are used in conjunction with the fiber-optic sensors to provide signals indicative of the speed of the moving vehicle, the number of axles on the vehicle, weight distribution, tire position, and the wheelbase of the vehicle. The use of a generally N-shaped configuration of switch means also provides a determination of the number of tires on each axle and the tire footprint. When switch means in this configuration are formed of optical fibers, the extent of light transmission through the fibers during contact with the tires of the vehicle is indicative of the vehicle weight. 15 figures.

  13. Dual-wavelength passively Q-switched ytterbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber and intracavity polarization

    NASA Astrophysics Data System (ADS)

    Al-Hayali, S. K. M.; Al-Janabi, A. H.

    2018-03-01

    We have experimentally demonstrated the operation of a dual-wavelength passively Q-switched ytterbium-doped fiber laser by using a saturable absorber (SA) based on Fe3O4 nanoparticles in a magnetic fluid. The SA was fabricated by depositing magnetic fluid at the end of an optical fiber ferrule. By performing adjustments to the pump power and polarization controller state in the cavity, a stable dual-wavelength lasing operation was generated without intracavity spectral filters or modulation elements. The Q-switched laser output was achieved at a pump threshold of 80 mW with a maximum output pulse energy of 38.8 nJ, a repetition rate of 73.4 kHz and a minimum pulse width of 3.4 µs. To the best of the authors’ knowledge, this is the first demonstration of a dual-wavelength passively Q-switched fiber laser using Fe3O4 nanoparticles as the SA in the 1.0 µm operation region.

  14. Passively Q-switched dual-wavelength thulium-doped fiber laser based on a multimode interference filter and a semiconductor saturable absorber

    NASA Astrophysics Data System (ADS)

    Wang, M.; Huang, Y. J.; Ruan, S. C.

    2018-04-01

    In this paper, we have demonstrated a theta cavity passively Q-switched dual-wavelength fiber laser based on a multimode interference filter and a semiconductor saturable absorber. Relying on the properties of the fiber theta cavity, the laser can operate unidirectionally without an optical isolator. A semiconductor saturable absorber played the role of passive Q-switch while a section of single-mode-multimode-single-mode fiber structure served as an multimode interference filter and was used for selecting the lasing wavelengths. By suitably manipulating the polarization controller, stable dual-wavelength Q-switched operation was obtained at ~1946.8 nm and ~1983.8 nm with maximum output power and minimum pulse duration of ~47 mW and ~762.5 ns, respectively. The pulse repetition rate can be tuned from ~20.2 kHz to ~79.7 kHz by increasing the pump power from ~2.12 W to ~5.4 W.

  15. Asynchronous transfer mode distribution network by use of an optoelectronic VLSI switching chip.

    PubMed

    Lentine, A L; Reiley, D J; Novotny, R A; Morrison, R L; Sasian, J M; Beckman, M G; Buchholz, D B; Hinterlong, S J; Cloonan, T J; Richards, G W; McCormick, F B

    1997-03-10

    We describe a new optoelectronic switching system demonstration that implements part of the distribution fabric for a large asynchronous transfer mode (ATM) switch. The system uses a single optoelectronic VLSI modulator-based switching chip with more than 4000 optical input-outputs. The optical system images the input fibers from a two-dimensional fiber bundle onto this chip. A new optomechanical design allows the system to be mounted in a standard electronic equipment frame. A large section of the switch was operated as a 208-Mbits/s time-multiplexed space switch, which can serve as part of an ATM switch by use of an appropriate out-of-band controller. A larger section with 896 input light beams and 256 output beams was operated at 160 Mbits/s as a slowly reconfigurable space switch.

  16. Picosecond 1064-nm fiber laser with tunable pulse width and low timing jitter

    NASA Astrophysics Data System (ADS)

    Tian, Wenyan; Zhang, Shukui

    2018-02-01

    We report an all-fiber, linearly polarized, 1.1-W, 1064-nm fiber laser based on a two-stage Ytterbium-doped fiber amplifier seeded by a gain-switched diode laser with tunable pulse width from 21 to 200 ps at repetition rates of 0.5-1.5 GHz. Timing jitter of our 1064-nm fiber laser was measured to be 0.60 ps over 10 Hz-40 MHz when the gain-switched diode laser was operated at a repetition rate of 0.5, 1, and 1.5 GHz. The fiber laser offers an excellent long term power stability of +/- 0.3% and wavelength stability of +/- 0.01 nm over 8 hours

  17. Fiber optic crossbar switch for automatically patching optical signals

    NASA Technical Reports Server (NTRS)

    Bell, C. H. (Inventor)

    1983-01-01

    A system for automatically optically switching fiber optic data signals between a plurality of input optical fibers and selective ones of a plurality of output fibers is described. The system includes optical detectors which are connected to each of the input fibers for converting the optic data signals appearing at the respective input fibers to an RF signal. A plurality of RF to optical signal converters are arranged in rows and columns. The output of each of the optical detectors are each applied to a respective row of optical signal converted for being converters back to an optical signal when the particular optical signal converter is selectively activated by a dc voltage.

  18. All fiber passively Q-switched laser

    DOEpatents

    Soh, Daniel B. S.; Bisson, Scott E

    2015-05-12

    Embodiments relate to an all fiber passively Q-switched laser. The laser includes a large core doped gain fiber having a first end. The large core doped gain fiber has a first core diameter. The laser includes a doped single mode fiber (saturable absorber) having a second core diameter that is smaller than the first core diameter. The laser includes a mode transformer positioned between a second end of the large core doped gain fiber and a first end of the single mode fiber. The mode transformer has a core diameter that transitions from the first core diameter to the second core diameter and filters out light modes not supported by the doped single mode fiber. The laser includes a laser cavity formed between a first reflector positioned adjacent the large core doped gain fiber and a second reflector positioned adjacent the doped single mode fiber.

  19. A Novel Reliable WDM-PON System

    NASA Astrophysics Data System (ADS)

    Chen, Benyang; Gan, Chaoqin; Qi, Yongqian; Xia, Lei

    2011-12-01

    In this paper, a reliable Wavelength-Division-Multiplexing Passive Optical Network (WDM-PON) system is proposed. It can provide the protection against both the feeder fiber failure and the distribution fiber failure. When the fiber failure occurs, the corresponding switches in the OLT and in the ONU can switch to the protection link without affecting the users in normal status. That is to say, the protection for one ONU is independent of the other ONUs.

  20. Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm.

    PubMed

    Tsai, Tzong-Yow; Fang, Yen-Cheng; Huang, Huai-Min; Tsao, Hong-Xi; Lin, Shih-Ting

    2010-11-08

    We demonstrate a novel passively pulsed all-Yb3+ all-fiber laser pumped by a continuous-wave 915-nm pump laser diode. The laser was saturable absorber Q-switched at 976 nm and gain-switched at 1064 nm, using the method of mode-field-area mismatch. With a pump power of 
105 mW, the laser iteratively produced a 976-nm pulse with an energy of 2.8 μJ and a duration of 280 ns, followed by a 1064-nm pulse with 1.1 μJ and a 430-ns duration at a repetition rate of 9 kHz. A set of rate equations was established to simulate the self-balancing mechanism and the correlation between the Q- and gain-switched photon numbers and the populations of the gain and absorber fibers.

  1. A random Q-switched fiber laser

    PubMed Central

    Tang, Yulong; Xu, Jianqiu

    2015-01-01

    Extensive studies have been performed on random lasers in which multiple-scattering feedback is used to generate coherent emission. Q-switching and mode-locking are well-known routes for achieving high peak power output in conventional lasers. However, in random lasers, the ubiquitous random cavities that are formed by multiple scattering inhibit energy storage, making Q-switching impossible. In this paper, widespread Rayleigh scattering arising from the intrinsic micro-scale refractive-index irregularities of fiber cores is used to form random cavities along the fiber. The Q-factor of the cavity is rapidly increased by stimulated Brillouin scattering just after the spontaneous emission is enhanced by random cavity resonances, resulting in random Q-switched pulses with high brightness and high peak power. This report is the first observation of high-brightness random Q-switched laser emission and is expected to stimulate new areas of scientific research and applications, including encryption, remote three-dimensional random imaging and the simulation of stellar lasing. PMID:25797520

  2. Light driven optofluidic switch developed in a ZnO-overlaid microstructured optical fiber.

    PubMed

    Konidakis, Ioannis; Konstantaki, Maria; Tsibidis, George D; Pissadakis, Stavros

    2015-11-30

    A great challenge of Optofluidics remains the control of the fluidic properties of a photonic circuit by solely utilizing light. In this study, the development of a ZnO nanolayered microstructured optical fiber (MOF) Fabry-Perot interferometer is demonstrated, along with its fully reversible optofluidic switching behaviour. The actuation and switching principle is entirely based on the employment of light sources, i.e. UV 248 nm and green 532 nm lasers, while using modest irradiation doses. The synthesized ZnO within the MOF capillaries acts as a light triggered wettability transducer, allowing the controlled water filling and draining of the MOF Fabry-Perot cavity. The progression of the optofluidic cycle is monitored in situ with optical microscopy, while Fabry-Perot reflection spectra are monitored in real time to probe temporal infiltration behaviour. Finally, a first insight on the light triggered switching mechanism, employing photoluminescence and spectrophotometric measurements is presented. Results appear highly promising towards the design of smart in-fiber optofluidic light switching devices, suitable for actuating and sensing applications.

  3. Narrow-linewidth broadly tunable Yb-doped Q-switched fiber laser using multimode interference filter.

    PubMed

    Chakravarty, Usha; Mukhopadhyay, P K; Kuruvilla, A; Upadhyaya, B N; Bindra, K S

    2017-05-01

    A narrow-linewidth broadly tunable Yb-doped Q-switched fiber laser using an acousto-optic modulator and multimode interference filter (MMIF) in the linear bulk cavity resonator and an all-fiber ring cavity resonator has been demonstrated. Insertion of an MMIF in the linear cavity resonator using bulk components decreased the spectral bandwidth of the Q-switched signal by two orders of magnitude from 11 to less than 0.1 nm. Spectral tunability of more than 16 nm in the range from 1057 to 1073 nm has also been achieved by the combination of MMIF and a standard polarization controller (SPC). A decrease in the pulse duration with a decrease in the spectral bandwidth of the output signal has also been recorded. The pulse duration of the Q-switched signal was reduced from ∼305 to ∼240  ns by the introduction of the MMIF in the resonator at the same value of the input pump power. In the case of the all-fiber Q-switched ring cavity resonator, the spectral bandwidth of the Q-switched signal was reduced by two orders of magnitude from ∼17 to less than 0.1 nm due to the introduction of the MMIF in the resonator. The spectral tunability of more than 12 nm in the range from 1038 to 1050 nm was achieved by an MMIF and an SPC.

  4. Mo0.5W0.5S2 for Q-switched pulse generation in ytterbium-doped fiber laser.

    PubMed

    Wang, Junli; Chen, Lei; Dou, Chenxi; Yan, Haiting; Meng, Lingjie; Wei, Zhiyi

    2018-06-01

    In this work, we fabricate the Mo 0.5 W 0.5 S 2 by microwave-assisted solvothermal method, and report the Q-switched Yb-doped fiber lasers (YDFL) using Mo 0.5 W 0.5 S 2 polymer film and tapered fiber as the saturable absorbers (SAs). The modulation depth and saturable intensity of the film SA are 5.63% and 6.82 MW cm -2 . The shortest pulse duration and the maximum single pulse energy are 1.22 μs and 148.8 nJ for the film SA, 1.46 μs and 339 nJ for the fiber-taper SA. To the best of our knowledge, this is the first report on the Q-switched YDFL using Mo 0.5 W 0.5 S 2 SAs.

  5. Mo0.5W0.5S2 for Q-switched pulse generation in ytterbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Junli; Chen, Lei; Dou, Chenxi; Yan, Haiting; Meng, Lingjie; Wei, Zhiyi

    2018-06-01

    In this work, we fabricate the Mo0.5W0.5S2 by microwave-assisted solvothermal method, and report the Q-switched Yb-doped fiber lasers (YDFL) using Mo0.5W0.5S2 polymer film and tapered fiber as the saturable absorbers (SAs). The modulation depth and saturable intensity of the film SA are 5.63% and 6.82 MW cm‑2. The shortest pulse duration and the maximum single pulse energy are 1.22 μs and 148.8 nJ for the film SA, 1.46 μs and 339 nJ for the fiber-taper SA. To the best of our knowledge, this is the first report on the Q-switched YDFL using Mo0.5W0.5S2 SAs.

  6. Bi2Te3 based passively Q-switched at 1042.76 and 1047 nm wavelength

    NASA Astrophysics Data System (ADS)

    Salim, M. A. M.; Shaharuddin, R. A.; Ismail, M. A.; Harun, S. W.; Ahmad, H.; Azzuhri, Saaidal R.

    2017-12-01

    In this paper, we propose and demonstrate the generation of dual wavelength based photonic crystal fiber passively Q-switched using few-layer TI:Bi2Te3 (bismuth telluride) saturable absorbers in a 1 micron waveband. The system employs a few-layer bismuth, induced onto a fiber ferrule using a dry oven method. A centered dual-wavelength output at 1042.76 and 1047.0 nm was produced from the Ytterbium doped fiber laser setup by incorporating 10 cm of photonic crystal fiber and finely adjusting the polarization controller. The self-started Q-switch had a pump power of 132.15 mW and a frequency ranging from 3.79 to 15.63 kHz. Therefore, TI:Bi2Te3 was suitable as a potential broadband SA in a 1 micron region.

  7. Experimental observation of different soliton types in a net-normal group-dispersion fiber laser.

    PubMed

    Feng, Zhongyao; Rong, Qiangzhou; Qiao, Xueguang; Shao, Zhihua; Su, Dan

    2014-09-20

    Different soliton types are observed in a net-normal group-dispersion fiber laser based on nonlinear polarization rotation for passive mode locking. The proposed laser can deliver a dispersion-managed soliton, typical dissipation solitons, and a quasi-harmonic mode-locked pulse, a soliton bundle, and especially a dark pulse by only appropriately adjusting the linear cavity phase delay bias using one polarization controller at the fixed pump power. These nonlinear waves show different features, including the spectral shapes and time traces. The experimental observations show that the five soliton types could exist in the same laser cavity, which implies that integrable systems, dissipative systems, and dark pulse regimes can transfer and be switched in a passively mode-locked laser. Our studies not only verify the numeral simulation of the different soliton-types formation in a net-normal group-dispersion operation but also provide insight into Ginzburg-Landau equation systems.

  8. Precise measurement of single-mode fiber lengths using a gain-switched distributed feedback laser with delayed optical feedback.

    PubMed

    Wada, Kenji; Matsukura, Satoru; Tanaka, Amaka; Matsuyama, Tetsuya; Horinaka, Hiromichi

    2015-09-07

    A simple method to measure single-mode optical fiber lengths is proposed and demonstrated using a gain-switched 1.55-μm distributed feedback laser without a fast photodetector or an optical interferometer. From the variation in the amplified spontaneous emission noise intensity with respect to the modulation frequency of the gain switching, the optical length of a 1-km single-mode fiber immersed in water is found to be 1471.043915 m ± 33 μm, corresponding to a relative standard deviation of 2.2 × 10(-8). This optical length is an average value over a measurement time of one minute under ordinary laboratory conditions.

  9. In-band pumped Q-switched fiber laser based on monolayer graphene

    NASA Astrophysics Data System (ADS)

    Wu, Hanshuo; Wu, Jian; Xiao, Hu; Leng, Jinyong; Xu, Jiangming; Zhou, Pu

    2017-06-01

    We propose and demonstrate an in-band pumped all-fiberized passively Q-switched laser emitting at 1080 nm. A single mode 1030 nm fiber laser is used as the pump source, while a 2D material, CVD-grown monolayer graphene, is adopted as a saturable absorber inside the ring cavity. The repetition rate of the output pulses can be varied from 12.74 to 24.6 kHz with the pulse duration around 12 µs. The maximum average output power is 34.25 mW, with the pulse energy of 1.392 µJ. This work proves the practicability of achieving passively Q-switched operation via in-band pump.

  10. Innovative architecture of switching device for expanding the applications in fiber to the home (FTTH)

    NASA Astrophysics Data System (ADS)

    Mahmoud, Mohamed; Fayed, Heba A.; Aly, Moustafa H.; Aboul Seoud, A. K.

    2011-08-01

    A new device, optical cross add drop multiplexer (OXADM), is proposed and analyzed. It uses the combination concept of optical add drop multiplexer (OADM) and optical cross connect (OXC). It enables a wavelength switch while implementing add and drop functions simultaneously. So, it expands the applications in fiber to the home (FTTH) and optical core networks. A very high isolation crosstalk level (~ 60 dB) is achieved. Also, a bidirectional OXADM and N×N OXADM are proposed. Finally, a multistage OXADM is presented making some sort of wavelength buffering. To make these devices operate more efficient, tunable fiber Bragg gratings (TFBGs) switches are used to control the operation mechanism.

  11. The simultaneous generation of soliton bunches and Q-switched-like pulses in a partially mode-locked fiber laser with a graphene saturable absorber

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhong; Wang, Zhi; Liu, Yan-ge; He, Ruijing; Wang, Guangdou; Yang, Guang; Han, Simeng

    2018-05-01

    We experimentally report the coexistence of soliton bunches and Q-switched-like pulses in a partially mode-locked fiber laser with a microfiber-based graphene saturable absorber. The soliton bunches, like isolated spikes with extreme amplitude and ultrashort duration, randomly generate in the background of the Q-switched-like pulses. The soliton bunches have some pulse envelopes in which pulses operate at a fundamental repetition rate in the temporal domain. Further investigation shows that the composite pulses are highly correlated with the noise-like pulses. Our work can make a further contribution to enrich the understanding of the nonlinear dynamics in fiber lasers.

  12. Role of Frontotemporal Fiber Tract Integrity in Task-Switching Performance of Healthy Controls and Patients with Temporal Lobe Epilepsy

    PubMed Central

    Kucukboyaci, N. Erkut; Girard, H.M.; Hagler, D.J.; Kuperman, J.; Tecoma, E.S.; Iragui, V.J.; Halgren, E.; McDonald, C.R.

    2012-01-01

    The objective of this study is to investigate the relationships among frontotemporal fiber tract compromise and task-switching performance in healthy controls and patients with temporal lobe epilepsy (TLE). We performed diffusion tensor imaging (DTI) on 30 controls and 32 patients with TLE (15 left TLE). Fractional anisotropy (FA) was calculated for four fiber tracts [uncinate fasciculus (UncF), arcuate fasciculus (ArcF), dorsal cingulum (CING), and inferior fronto-occipital fasciculus (IFOF)]. Participants completed the Trail Making Test-B (TMT-B) and Verbal Fluency Category Switching (VFCS) test. Multivariate analyses of variances (MANOVAs) were performed to investigate group differences in fiber FA and set-shifting performances. Canonical correlations were used to examine the overall patterns of structural-cognitive relationships and were followed by within-group bivariate correlations. We found a significant canonical correlation between fiber FA and task-switching performance. In controls, TMT-B correlated with left IFOF, whereas VFCS correlated with FA of left ArcF and left UncF. These correlations were not significant in patients with TLE. We report significant correlations between frontotemporal fiber tract integrity and set-shifting performance in healthy controls that appear to be absent or attenuated in patients with TLE. These findings suggest a breakdown of typical structure-function relationships in TLE that may reflect aberrant developmental or degenerative processes. PMID:22014246

  13. Q-switched dual-wavelength pumped 3.5-μm erbium-doped mid-Infrared fiber laser

    NASA Astrophysics Data System (ADS)

    Bawden, Nathaniel; Matsukuma, Hiraku; Henderson-Sapir, Ori; Klantsataya, Elizaveta; Tokita, Shigeki; Ottaway, David J.

    2018-02-01

    Short pulse operation of fiber lasers operating at wavelengths up 3 micron have been reported in recent years. At longer wavelengths, fiber lasers have only been demonstrated with a continuous operation mode. Short pulse operation in the mid-IR is necessary for utilizing such lasers in laser radars and for medical applications. Our previous numerical work suggested that Q-switching is possible on the 3.5 μm transition in erbium-doped ZBLAN in a similar manner to work demonstrated on the 2.8 μm transition in erbium. In this work we report on initial experimental results of a Q-switched, dualwavelength pumped fiber laser operating on the 3.5 μm transition in erbium-doped ZBLAN glass fibers. Using a hybrid fiber and open resonator configuration utilizing an acousto-optic modulator we demonstrated stable single pulse Q-switching while operating at repetition rates of 20 kHz and up to 120 kHz. The laser achieved a peak power of 8 W with pulse energy of 7 μJ while operating at 25 kHz. Long pulse widths on the order of 1 μs were obtained. The low peak power and long pulses are likely the result of both low gain of the transition and additional losses in the resonator which are currently being investigated. Our latest results will be presented.

  14. A stable dual-wavelength Q-switch using a compact passive device containing photonics crystal fiber embedded with carbon platinum

    NASA Astrophysics Data System (ADS)

    Safaei, R.; Amiri, I. S.; Rezayi, M.; Ahmad, H.

    2018-01-01

    A compact fiber laser utilizing platinum nanoparticles doped on carbon (Pt/C) embedded in photonic crystal fiber capable of generating a stable Q-switch dual-wavelength is designed and verified. Stable Q-switch pulses, with a repetition rate of 73.6 kHz, pulse width of 1.45 µs and power of 3.8 nJ in two separated wavelengths of 1557.39 nm and 1558.86 nm at a pump power of 350 mW, have been obtained. This is a novel method for generating Q-switch dual-wavelength pulses using a well-protected component that introduces both a saturable absorber and Mach-Zehnder interferometer effects simultaneously in the laser cavity. Furthermore, to best of our knowledge, this is the first time that Pt/C nanoparticles have been used in a saturable absorber for optical pulse generation.

  15. Experimental investigation of high power pulsed 2.8 μm Er3+-doped ZBLAN fiber lasers

    NASA Astrophysics Data System (ADS)

    Shen, Yanlong; Wang, Yishan; Huang, Ke; Luan, Kunpeng; Chen, Hongwei; Tao, Mengmeng; Yu, Li; Yi, Aiping; Si, Jinhai

    2017-05-01

    We report on the recent progress on high power pulsed 2.8 μm Er3+-doped ZBLAN fiber laser through techniques of passively and actively Q-switching in our research group. In passively Q-switched operation, a diode-cladding-pumped mid-infrared passively Q-switched Er3+-doped ZBLAN fiber laser with an average output power of watt-level based on a semiconductor saturable absorber mirror (SESAM) was demonstrated. Stable pulse train was produced at a slope efficient of 17.8% with respect to launched pump power. The maximum average power of 1.01 W at a repetition rate of 146.3 kHz was achieved with a corresponding pulse energy of 6.9 μJ. The maximum peak power was calculated to be 21.9 W. In actively Q-switched operation, a diode-pumped actively Q-switched Er3+-doped ZBLAN fiber laser at 2.8 μm with an optical chopper was reported. The maximum laser pulse energy of up to 130 μJ and a pulse width of 127.3 ns at a repetition rate of 10 kHz with an operating wavelength of 2.78 μm was obtained, yielding the maximum peak power of exceeding 1.1 kW.

  16. Stable nonlinear Mach-Zehnder fiber switch

    DOEpatents

    Digonnet, Michel J. F.; Shaw, H. John; Pantell, Richard H.; Sadowski, Robert W.

    1999-01-01

    An all-optical fiber switch is implemented within a short Mach-Zehnder interferometer configuration. The Mach-Zehnder switch is constructed to have a high temperature stability so as to minimize temperature gradients and other thermal effects which result in undesirable instability at the output of the switch. The Mach-Zehnder switch of the preferred embodiment is advantageously less than 2 cm in length between couplers to be sufficiently short to be thermally stable, and full switching is accomplished by heavily doping one or both of the arms between the couplers so as to provide a highly nonlinear region within one or both of the arms. A pump input source is used to affect the propagation characteristics of one of the arms to control the output coupling ratio of the switch. Because of the high nonlinearity of the pump input arm, low pump powers can be used, thereby alleviating difficulties and high cost associated with high pump input powers.

  17. Acousto-Optic Q-Switched Fiber Laser-Based Intra-Cavity Photoacoustic Spectroscopy for Trace Gas Detection

    PubMed Central

    Zhang, Qinduan; Chang, Jun; Wang, Zongliang; Wang, Fupeng; Qin, Zengguang

    2017-01-01

    We proposed a new method for gas detection in photoacoustic spectroscopy based on acousto-optic Q-switched fiber laser by merging a transmission PAS cell (resonant frequency f0 = 5.3 kHz) inside the fiber laser cavity. The Q-switching was achieved by an acousto-optic modulator, achieving a peak pulse power of ~679 mW in the case of the acousto-optic modulation signal with an optimized duty ratio of 10%. We used a custom-made fiber Bragg grating with a central wavelength of 1530.37 nm (the absorption peak of C2H2) to select the laser wavelength. The system achieved a linear response (R2 = 0.9941) in a concentration range from 400 to 7000 ppmv, and the minimum detection limit compared to that of a conventional intensity modulation system was enhanced by 94.2 times. PMID:29295599

  18. Tunable Q-switched erbium doped fiber laser based on metal transition oxide saturable absorber and refractive index characteristic of multimode interference effects

    NASA Astrophysics Data System (ADS)

    Mohammed, D. Z.; Khaleel, Wurood Abdulkhaleq; Al-Janabi, A. H.

    2017-12-01

    Ferro-oxide (Fe3O4) nanoparticles were used as a saturable absorber (SA) for a passively Q-switched erbium doped fiber laser (EDFL) with ring cavity. The Q-switching operation was achieved at a pump threshold of 80 mW. The proposed fiber laser produces stable pulses train of repetition rate ranging from 25 kHz to 80 kHz as the pump power increases from threshold to 342 mW. The minimum recorded pulse width was 2.7 μs at 342 mW. The C-band tunability operation was performed using single mode-multimode-single mode fiber (SM-MM-SM) structure. The laser exhibited a total tuning range of 7 nm, maximum sensitivity of 106.9 nm, optical signal to noise ratio (OSNR) of 38 dB and 3-dB linewidth of 0.06 nm.

  19. Acousto-Optic Q-Switched Fiber Laser-Based Intra-Cavity Photoacoustic Spectroscopy for Trace Gas Detection.

    PubMed

    Zhang, Qinduan; Chang, Jun; Wang, Qiang; Wang, Zongliang; Wang, Fupeng; Qin, Zengguang

    2017-12-25

    We proposed a new method for gas detection in photoacoustic spectroscopy based on acousto-optic Q-switched fiber laser by merging a transmission PAS cell (resonant frequency f ₀ = 5.3 kHz) inside the fiber laser cavity. The Q-switching was achieved by an acousto-optic modulator, achieving a peak pulse power of ~679 mW in the case of the acousto-optic modulation signal with an optimized duty ratio of 10%. We used a custom-made fiber Bragg grating with a central wavelength of 1530.37 nm (the absorption peak of C₂H₂) to select the laser wavelength. The system achieved a linear response (R² = 0.9941) in a concentration range from 400 to 7000 ppmv, and the minimum detection limit compared to that of a conventional intensity modulation system was enhanced by 94.2 times.

  20. Tm:germanate Fiber Laser: Tuning And Q-switching

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Walsh, Brian M.; Reichle, Donald J.; DeYoung, R. J.; Jiang, Shibin

    2007-01-01

    A Tm:germanate fiber laser produced >0.25 mJ/pulse in a 45 ns pulse. It is capable of producing multiple Q-switched pulses from a single p ump pulse. With the addition of a diffraction grating, Tm:germanate f iber lasers produced a wide, but length dependent, tuning range. By s electing the fiber length, the tuning range extends from 1.88 to 2.04 ?m. These traits make Tm:germanate lasers suitable for remote sensin g of water vapor.

  1. Dynamics of a gain-switched distributed feedback ridge waveguide laser in nanoseconds time scale under very high current injection conditions.

    PubMed

    Klehr, A; Wenzel, H; Brox, O; Schwertfeger, S; Staske, R; Erbert, G

    2013-02-11

    We present detailed experimental investigations of the temporal, spectral and spatial behavior of a gain-switched distributed feedback (DFB) laser emitting at a wavelength of 1064 nm. Gain-switching is achieved by injecting nearly rectangular shaped current pulses having a length of 50 ns and a very high amplitude up to 2.5 A. The repetition frequency is 200 kHz. The laser has a ridge waveguide (RW) for lateral waveguiding with a ridge width of 3 µm and a cavity length of 1.5 mm. Time resolved investigations show, depending on the amplitude of the current pulses, that the optical power exhibits different types of oscillatory behavior during the pulses, accompanied by changes in the lateral near field intensity profiles and optical spectra. Three different types of instabilities can be distinguished: mode beating with frequencies between 25 GHz and 30 GHz, switching between different lateral intensity profiles with a frequency of 0.4 GHz and self-sustained oscillations with a frequency of 4 GHz. The investigations are of great relevance for the utilization of gain-switched DFB-RW lasers as seed lasers for fiber laser systems and in other applications, which require a high optical power.

  2. ROADMs for reconfigurable metro networks

    NASA Astrophysics Data System (ADS)

    Homa, Jonathan; Bala, Krishna

    2009-01-01

    Reconfigurable Optical Add-Drop Multiplexers (ROADMs) are the key nodal sub-systems that are used to implement modern DWDM networks. They provide network flexibility by switching wavelengths among fibers under software control without expensive conversion to the electronic domain. They speed up provisioning time, reduce operational costs and eliminate human errors. Two general types of ROADMs are used in Metro optical networks, two-degree and multi-degree, where the degree refers to the numbers of DWDM fibers entering and exiting the ROADM node. A twodegree ROADM is like a location on a highway with off and on ramps to drop off and accept local traffic while a multidegree ROADM is like an interchange where highways meet and is used for interconnecting DWDM rings or for mesh networking. The paper describes two-degree and multi-degree ROADM architectures and how these relate to the technology alternatives used to implement the ROADMs themselves. Focus is provided on the role and expected evolution of the wavelength selective switch (WSS) which is the primary engine used to power ROADMs.

  3. High peak power actively Q-switched mid-infrared fiber lasers at 3 μm

    NASA Astrophysics Data System (ADS)

    Shen, Yanlong; Wang, Yishan; Luan, Kunpeng; Chen, Hongwei; Tao, Mengmeng; Si, Jinhai

    2017-04-01

    Diode-pumped pulsed Er3+-doped ZBLAN fiber lasers at 2.8 μm actively Q-switched by using an mechanical Q-switch with feedbacks of a protected gold mirror and a blazing grating were investigated, respectively. A pulse energy of 0.13 mJ and repetition rate of 10 kHz with a pulse width of 127.3 ns at 2.78 μm was obtained when using a protected gold mirror as the feedback. By replacing the mirror with a blazing grating in Littrow configuration, the wavelength of the Q-switched pulse train was tunable with over 100 nm tuning range from 2.71 to 2.82 μm and a linewidth of 1.5 nm. A maxinmum pulse energy of up to 0.15 mJ and repetition rate of 10 kHz with a pulse width of 92.6 ns was achieved, yielding the maximum peak power of exceeding 1.6 kW. The pulse energy and peak power, to our knowledge, are the highest ever reported in the mid-infrared Q-switched fiber lasers.

  4. Mitochondrial fatty acid biosynthesis and muscle fiber plasticity in very long-chain acyl-CoA dehydrogenase-deficient mice.

    PubMed

    Tucci, Sara; Mingirulli, Nadja; Wehbe, Zeinab; Dumit, Verónica I; Kirschner, Janbernd; Spiekerkoetter, Ute

    2018-01-01

    The white skeletal muscle of very long-chain acyl-CoA-dehydrogenase-deficient (VLCAD -/- ) mice undergoes metabolic modification to compensate for defective β-oxidation in a progressive and time-dependent manner by upregulating glucose oxidation. This metabolic regulation seems to be accompanied by morphologic adaptation of muscle fibers toward the glycolytic fiber type II with the concomitant upregulation of mitochondrial fatty acid biosynthesis (mFASII) and lipoic acid biosynthesis. Dietary supplementation of VLCAD -/- mice with different medium-chain triglycerides over 1 year revealed that odd-chain species has no effect on muscle fiber switch, whereas even-chain species inhibit progressive metabolic adaptation. Our study shows that muscle may undergo adaptive mechanisms that are modulated by dietary supplementation. We describe for the first time a concomitant change of mFASII in this muscular adaptation process. © 2017 Federation of European Biochemical Societies.

  5. Monolithic all-fiber repetition-rate tunable gain-switched single-frequency Yb-doped fiber laser.

    PubMed

    Hou, Yubin; Zhang, Qian; Qi, Shuxian; Feng, Xian; Wang, Pu

    2016-12-12

    We report a monolithic gain-switched single-frequency Yb-doped fiber laser with widely tunable repetition rate. The single-frequency laser operation is realized by using an Yb-doped distributed Bragg reflection (DBR) fiber cavity, which is pumped by a commercial-available laser diode (LD) at 974 nm. The LD is electronically modulated by the driving current and the diode output contains both continuous wave (CW) and pulsed components. The CW component is set just below the threshold of the single-frequency fiber laser for reducing the requirement of the pump pulse energy. Above the threshold, the gain-switched oscillation is trigged by the pulsed component of the diode. Single-frequency pulsed laser output is achieved at 1.063 μm with a pulse duration of ~150 ns and a linewidth of 14 MHz. The repetition rate of the laser output can be tuned between 10 kHz and 400 kHz by tuning the electronic trigger signal. This kind of lasers shows potential for the applications in the area of coherent LIDAR etc.

  6. Nonlinear performance of asymmetric coupler based on dual-core photonic crystal fiber: Towards sub-nanojoule solitonic ultrafast all-optical switching

    NASA Astrophysics Data System (ADS)

    Curilla, L.; Astrauskas, I.; Pugzlys, A.; Stajanca, P.; Pysz, D.; Uherek, F.; Baltuska, A.; Bugar, I.

    2018-05-01

    We demonstrate ultrafast soliton-based nonlinear balancing of dual-core asymmetry in highly nonlinear photonic crystal fiber at sub-nanojoule pulse energy level. The effect of fiber asymmetry was studied experimentally by selective excitation and monitoring of individual fiber cores at different wavelengths between 1500 nm and 1800 nm. Higher energy transfer rate to non-excited core was observed in the case of fast core excitation due to nonlinear asymmetry balancing of temporal solitons, which was confirmed by the dedicated numerical simulations based on the coupled generalized nonlinear Schrödinger equations. Moreover, the simulation results correspond qualitatively with the experimentally acquired dependences of the output dual-core extinction ratio on excitation energy and wavelength. In the case of 1800 nm fast core excitation, narrow band spectral intensity switching between the output channels was registered with contrast of 23 dB. The switching was achieved by the change of the excitation pulse energy in sub-nanojoule region. The performed detailed analysis of the nonlinear balancing of dual-core asymmetry in solitonic propagation regime opens new perspectives for the development of ultrafast nonlinear all-optical switching devices.

  7. Analysis of an optically controlled photonic switch.

    PubMed

    Attard, A E

    1999-05-20

    The principle that the coupling of light between two fiber waveguides can be controlled by the resonant interference of a third waveguide has been developed [Attard, Appl. Opt. 37, 2296-2302 (1998)]. Here significant details concerning the operation of a photonic switch are obtained, and a more complete analysis is presented. Multiple-resonant conditions are identified for slab and fiber control waveguides at large indices of refraction. Thus a selection of materials with an appropriate refractive index and a Kerr coefficient is rendered more easily. Furthermore it is shown that the light used to control the index of refraction in the control waveguide does not enter the output of the photonic switch but remains confined to the control waveguide, for either a slab or a multimode fiber control waveguide. Spatial fluctuations of the control light beam in the control waveguide do not affect the operation of the photonic switch. Tolerances have been determined for the spacing between the control waveguide and the photonic coupler and also for the index of refraction of the control waveguide.

  8. Mid-infrared Fe2+:ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser

    NASA Astrophysics Data System (ADS)

    Ning, Shougui; Feng, Guoying; Dai, Shenyu; Zhang, Hong; Zhang, Wei; Deng, Lijuan; Zhou, Shouhuan

    2018-02-01

    A mid-infrared (mid-IR) semiconductor saturable absorber mirror (SESAM) based on Fe2+:ZnSe for passively Q-switched Er3+-doped ZBLAN fiber laser has been demonstrated. Fe2+:ZnSe SESAM was fabricated by electron beam evaporation method. Fe2+ was innovatively doped into the reflective Bragg stack, in which ZnSe layer served as both doped matrix and high refractive layer during the fabricating process. By using the Fe2+:ZnSe SESAM, stable passively Q-switched pulses with the minimum pulse width of 0.43 μs under a repetition rate of 160.82 kHz were obtained. The recorded maximum average output power of 873 mW with a peak power of 12.59 W and pulse energy of 5.43 μJ were achieved. The results demonstrated a new method for fabricating Fe2+:ZnSe SESAM, which can be used in compact mid-IR Q-switched fiber laser.

  9. A Filmy Black-Phosphorus Polyimide Saturable Absorber for Q-Switched Operation in an Erbium-Doped Fiber Laser.

    PubMed

    Feng, Tianxian; Mao, Dong; Cui, Xiaoqi; Li, Mingkun; Song, Kun; Jiang, Biqiang; Lu, Hua; Quan, Wangmin

    2016-11-11

    We demonstrate an erbium-doped fiber laser passively Q-switched by a black-phosphorus polyimide film. The multi-layer black-phosphorus (BP) nanosheets were prepared via a liquid exfoliation approach exploiting N -methylpyrrolidone as the dispersion liquid. By mixing the BP nanosheets with polyimide (PI), a piece of BP-PI film was obtained after evaporating the mixture in a petri dish. The BP-PI saturable absorber had a modulation depth of 0.47% and was inserted into an erbium-doped fiber laser to realize passive Q-switched operations. The repetition rate of the Q-switched laser increased from 5.73 kHz to 31.07 kHz when the laser pump was enhanced from 31.78 mW to 231.46 mW. Our results show that PI is an excellent host material to protect BP from oxidation, and the BP-PI film can act as a promising nonlinear optical device for laser applications.

  10. Investigation on the applications of fiber grating lasers in industrial sensing and pollution monitoring

    NASA Astrophysics Data System (ADS)

    Xu, Yuanzhong

    The main objective of the project was to develop ``eye-safe'' fiber-grating lasers for pollution measurement and monitoring. Fiber grating lasers have a number of advantages such as narrow linewidth and precise wavelength control over the semiconductor counterparts. Three types of Erbium doped fiber grating lasers emitting in 1.5 μm band were developed and characterized in this work. We first used an entirely original approach to develop tunable dual-wavelength switchable fiber grating laser for differential absorption spectroscopy. The lam can switch between two wavelengths with each wavelength being independently tunable. It's characterized by >6-mW output power, <2% intensity fluctuation, 100s Hz switching speed and 1:100,000 wavelength extinction ratio. The outstanding advantage of this approach is the simplicity in laser configuration as well as in detection system for dual wavelength laser, because it uses only an overlapped gain medium and one detector for both wavelengths. Main drawbacks of the prototype laser are slow switching speed (100s Hz) and multimode operation, which could be overcome by cavity dampening and modification in laser configuration. Short cavity erbium-doped fiber grating lasers using high Erbium concentration were also studied. A 6-cm long fiber-grating laser pumped by a 980-nm laser diode was constructed. The linewidth of the laser is very narrow (~100s kHz) but its output slope efficiency is relatively low (~1%). Furthermore, the ion clustering effect arising from high Er concentration tends to cause self-pulsation and thus instability to the laser. By replacing the Erbium doped fiber with Er/Yb codoped one, the fiber grating laser was made more stable and efficient. The ion clustering effect disappears in the laser output due to the low Erbium concentration in Er/Yb codoped fiber, while the Er/Yb codoped fiber's two orders higher pump absorption at 980 nm results in as large as 10 ~ 30% output slope efficiency in about 2 cm long laser. On the other hand, strong pump absorption in Er/Yb fiber was found to cause significant thermal effects in Er/Yb fiber grating lasers, which can be eliminated by ensuring proper thermal dissipation. Because of fiber laser's long lifetime at the upper laser level, its wavelength cannot be directly modulated at high speed. The widely used wavelength modulation spectroscopy (WMS) method is thus not suitable when using fiber laser sources in gas detection. The wavelength sweep scheme was thus employed as an alternative. Laser wavelength/frequency requirement and noise cancellation in this scheme are discussed. For a demonstration of fiber grating laser's application to pollutant monitoring and industrial sensing, laser spectroscopy of C2H 2 gas was undertaken with the Er/Yb codoped fiber-grating laser. A 10 -4 detection sensitivity was achieved. This is the first time, to our knowledge, that a single frequency fiber-grating laser was used in rapid laser spectroscopy. The investigation has shown that the fiber grating lasers are high performance as well as low cost, rugged and portable laser sources, very suitable for industrial sensing and pollution monitoring. A number of important pollutants, such as CO, CO2, H2S and C2H2 have absorption peaks around 1.55-μm wavelength and thus can be sensed with these lasers. Although the fiber lasers investigated here operate in the 1.5-μm window, the results are also very useful for fiber lasers that use the same operation principle in other wavelength regions.

  11. All-optical switching in GaAs microdisk resonators by a femtosecond pump-probe technique through tapered-fiber coupling.

    PubMed

    Lin, Yen-Chih; Mao, Ming-Hua; Lin, You-Ru; Lin, Hao-Hsiung; Lin, Che-An; Wang, Lon A

    2014-09-01

    We demonstrate ultrafast all-optical switching in GaAs microdisk resonators using a femtosecond pump-probe technique through tapered-fiber coupling. The temporal tuning of the resonant modes resulted from the refractive index change due to photoexcited carrier density variation inside the GaAs microdisk resonator. Transmission through the GaAs microdisk resonator can be modulated by more than 10 dB with a switching time window of 8 ps in the switch-off operation using pumping pulses with energies as low as 17.5 pJ. The carrier lifetime was fitted to be 42 ps, much shorter than that of the bulk GaAs, typically of the order of nanoseconds. The above observation indicates that the surface recombination plays an important role in increasing the switching speed.

  12. Narrow-linewidth Q-switched random distributed feedback fiber laser.

    PubMed

    Xu, Jiangming; Ye, Jun; Xiao, Hu; Leng, Jinyong; Wu, Jian; Zhang, Hanwei; Zhou, Pu

    2016-08-22

    A narrow-linewidth Q-switched random fiber laser (RFL) based on a half-opened cavity, which is realized by narrow-linewidth fiber Bragg grating (FBG) and a section of 3 km passive fiber, has been proposed and experimentally investigated. The narrow-linewidth lasing is generated by the spectral filtering of three FBGs with linewidth of 1.21 nm, 0.56 nm, and 0.12 nm, respectively. The Q switching of the distributed cavity is achieved by placing an acousto-optical modulator (AOM) between the FBG and the passive fiber. The maximal output powers of the narrow-linewidth RFLs with the three different FBGs are 0.54 W, 0.27 W, and 0.08 W, respectively. Furthermore, the repetition rates of the output pulses are 500 kHz, and the pulse durations are about 500 ns. The corresponding pulse energies are about 1.08 μJ, 0.54 μJ, and 0.16 μJ, accordingly. The linewidth of FBG can influence the output characteristics in full scale. The narrower the FBG, the higher the pump threshold; the lower the output power at the same pump level, the more serious the linewidth broadening; and thus the higher the proportion of the CW-ground exists in the output pulse trains. Thanks to the assistance of the band-pass filter (BPF), the proportion of the CW-ground of narrow-linewidth Q-switched RFL under the relative high-pump-low-output condition can be reduced effectively. The experimental results indicate that it is challenging to demonstrate a narrow-linewidth Q-switched RFL with high quality output. But further power scaling and linewidth narrowing is possible in the case of operating parameters, optimization efforts, and a more powerful pump source. To the best of our knowledge, this is the first demonstration of narrow-linewidth generation in a Q-switched RFL.

  13. Large optical 3D MEMS switches in access networks

    NASA Astrophysics Data System (ADS)

    Madamopoulos, Nicholas; Kaman, Volkan; Yuan, Shifu; Jerphagnon, Olivier; Helkey, Roger; Bowers, John E.

    2007-09-01

    Interest is high among residential customers and businesses for advanced, broadband services such as fast Internet access, electronic commerce, video-on-demand, digital broadcasting, teleconferencing and telemedicine. In order to satisfy such growing demand of end-customers, access technologies such as fiber-to-the-home/building (FTTH/B) are increasingly being deployed. Carriers can reduce maintenance costs, minimize technology obsolescence and introduce new services easily by reducing active elements in the fiber access network. However, having a passive optical network (PON) also introduces operational and maintenance challenges. Increased diagnostic monitoring capability of the network becomes a necessity as more and more fibers are provisioned to deliver services to the end-customers. This paper demonstrates the clear advantages that large 3D optical MEMS switches offer in solving these access network problems. The advantages in preventative maintenance, remote monitoring, test and diagnostic capability are highlighted. The low optical insertion loss for all switch optical connections of the switch enables the monitoring, grooming and serving of a large number of PON lines and customers. Furthermore, the 3D MEMS switch is transparent to optical wavelengths and data formats, thus making it easy to incorporate future upgrades, such higher bit rates or DWDM overlay to a PON.

  14. An 8 cm long holmium-doped fiber saturable absorber for Q-switched fiber laser generation at 2-μm region

    NASA Astrophysics Data System (ADS)

    Rahman, M. F. A.; Dhar, A.; Das, S.; Dutta, D.; Paul, M. C.; Rusdi, M. F. M.; Latiff, A. A.; Dimyati, K.; Harun, S. W.

    2018-07-01

    We demonstrate a Q-switched all-fiber laser operating at 2-μm region by adding a piece of 8 cm long holmium doped fiber (HDF) as a fiber saturable absorber (SA) in Thulium doped fiber laser (TDFL) ring cavity. Doping of Ho ions into yttria-alumina silica glass was done through conventional Modified Chemical Vapor Deposition (MCVD) technique in conjunction with solution doping process. The fabricated HDF has a linear absorption of 3 dB with a core diameter and a numerical aperture of 10 μm and 0.18, respectively. A self-started Q-switching operation begins at 418 mW pump level and continually dominant until 564 mW pump level. As the pump power increases, stable pulse train presence from 30.61 kHz to 38.89 kHz while the pulse width reduces from 3.18 μs to 2.27 μs. Both maximum output power and maximum peak power are obtained at 5.05 mW and 57.2 mW, respectively, while the maximum pulse energy is calculated to be 129 nJ. The signal-to-noise ratio (SNR) of the fundamental frequency is 50 dB. Our work may contribute to the discovery of stable, robust, and economic SA for pulse fiber laser generation at 2-μm region.

  15. On-command on/off switching of progenitor cell and cancer cell polarized motility and aligned morphology via a cytocompatible shape memory polymer scaffold.

    PubMed

    Wang, Jing; Quach, Andy; Brasch, Megan E; Turner, Christopher E; Henderson, James H

    2017-09-01

    In vitro biomaterial models have enabled advances in understanding the role of extracellular matrix (ECM) architecture in the control of cell motility and polarity. Most models are, however, static and cannot mimic dynamic aspects of in vivo ECM remodeling and function. To address this limitation, we present an electrospun shape memory polymer scaffold that can change fiber alignment on command under cytocompatible conditions. Cellular response was studied using the human fibrosarcoma cell line HT-1080 and the murine mesenchymal stem cell line C3H/10T1/2. The results demonstrate successful on-command on/off switching of cell polarized motility and alignment. Decrease in fiber alignment causes a change from polarized motility along the direction of fiber alignment to non-polarized motility and from aligned to unaligned morphology, while increase in fiber alignment causes a change from non-polarized to polarized motility along the direction of fiber alignment and from unaligned to aligned morphology. In addition, the findings are consistent with the hypothesis that increased fiber alignment causes increased cell velocity, while decreased fiber alignment causes decreased cell velocity. On-command on/off switching of cell polarized motility and alignment is anticipated to enable new study of directed cell motility in tumor metastasis, in cell homing, and in tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The all-fiber cladding-pumped Yb-doped gain-switched laser.

    PubMed

    Larsen, C; Hansen, K P; Mattsson, K E; Bang, O

    2014-01-27

    Gain-switching is an alternative pulsing technique of fiber lasers, which is power scalable and has a low complexity. From a linear stability analysis of rate equations the relaxation oscillation period is derived and from it, the pulse duration is defined. Good agreement between the measured pulse duration and the theoretical prediction is found over a wide range of parameters. In particular we investigate the influence of an often present length of passive fiber in the cavity and show that it introduces a finite minimum in the achievable pulse duration. This minimum pulse duration is shown to occur at longer active fibers length with increased passive length of fiber in the cavity. The peak power is observed to depend linearly on the absorbed pump power and be independent of the passive fiber length. Given these conclusions, the pulse energy, duration, and peak power can be estimated with good precision.

  17. Optical Power Transfer System for Powering a Remote Mobility System for Multiple Missions

    NASA Technical Reports Server (NTRS)

    Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)

    2016-01-01

    An optical power transfer system for powering a remote mobility system for multiple missions comprising a high power source and a chilling station connected to a laser source. The laser source transmits a high optical energy to a beam switch assembly via an optical fiber. The beam switch assembly is optically connected to actively cooled fiber spoolers. Docking stations are adapted for securing the fiber spoolers until alternatively ready for use by a remote mobility system. The remote mobility system is optically connected to the fiber spoolers and has a receiving port adapted for securing the fiber spoolers thereon. The fiber spooler transmits the optical energy to a power conversion system which converts the optical energy received to another usable form of energy. More than one power source may be used where the remote mobility system transfers from one source to another while maintaining an operational radius to each source.

  18. Multilocation Video Conference By Optical Fiber

    NASA Astrophysics Data System (ADS)

    Gray, Donald J.

    1982-10-01

    An experimental system that permits interconnection of many offices in a single video conference is described. Video images transmitted to conference participants are selected by the conference chairman and switched by a microprocessor-controlled video switch. Speakers can, at their choice, transmit their own images or images of graphics they wish to display. Users are connected to the Switching Center by optical fiber subscriber loops that carry analog video, digitized telephone, data and signaling. The same system also provides user-selectable distribution of video program and video library material. Experience in the operation of the conference system is discussed.

  19. Functional nanometer-scale structures

    NASA Astrophysics Data System (ADS)

    Chan, Tsz On Mario

    Nanometer-scale structures have properties that are fundamentally different from their bulk counterparts. Much research effort has been devoted in the past decades to explore new fabrication techniques, model the physical properties of these structures, and construct functional devices. The ability to manipulate and control the structure of matter at the nanoscale has made many new classes of materials available for the study of fundamental physical processes and potential applications. The interplay between fabrication techniques and physical understanding of the nanostructures and processes has revolutionized the physical and material sciences, providing far superior properties in materials for novel applications that benefit society. This thesis consists of two major aspects of my graduate research in nano-scale materials. In the first part (Chapters 3--6), a comprehensive study on the nanostructures based on electrospinning and thermal treatment is presented. Electrospinning is a well-established method for producing high-aspect-ratio fibrous structures, with fiber diameter ranging from 1 nm--1 microm. A polymeric solution is typically used as a precursor in electrospinning. In our study, the functionality of the nanostructure relies on both the nanostructure and material constituents. Metallic ions containing precursors were added to the polymeric precursor following a sol-gel process to prepare the solution suitable for electrospinning. A typical electrospinning process produces as-spun fibers containing both polymer and metallic salt precursors. Subsequent thermal treatments of the as-spun fibers were carried out in various conditions to produce desired structures. In most cases, polymer in the solution and the as-spun fibers acted as a backbone for the structure formation during the subsequent heat treatment, and were thermally removed in the final stage. Polymers were also designed to react with the metallic ion precursors during heat treatment in some cases, which led to desired chemical phase formation. The residue of polymer thermal decomposition was also controlled and utilized for certain functionality in some nanostructures. Throughout this study, we successfully fabricated several novel functional structures and revealed a new formation mechanism of metal/metal oxide nanotubes. The magnetic and electrical properties of these nanostructures were studied and optimized for applications in soft magnetic materials and spintronics devices. In the second part, (Chapter 7) a study on memristive switching devices with magnetron-sputtered metal-semiconductor-metal thin film structures based on ZnO is presented. Resistive random access memory (RRAM) is a new, non-volatile memory based on the memristor effect theoretically predicted by Leon Chua in 1971 and first experimentally demonstrated by Hewlett Packard in 2008. The unit cell of a RRAM (a memristor) is a two-terminal device in which the switching medium is sandwiched between the top and bottom electrodes and the resistance of the switching medium can be modulated by applying an electrical signal (current or voltage) to the electrodes. On the other hand, the significance of a memristor, as the fourth element of circuit elements besides resistor, capacitor and inductor, is not limited to just being a candidate for next-generation memory. Owing to the unique i-v characteristics of non-linear memristors that cannot be duplicated with any combinations of the other three basic elements in a passive circuitry, many new electrical functions are being developed based on the memristors. In our study, various contact electrode combinations and semiconductor doping profiles were utilized to achieve different functional resistive switching behaviors and to help fundamentally understand the underlying switching mechanisms in ZnO-based thin film structures. Two distinctive switching mechanisms (ferroelectric charge-induced resistive switching and dopant-induced filament-type resistive switching) have been identified in specified structures. Among them, the ferroelectric charge induced resistive switching is new to the existing mechanisms; and the crucial role of the electrode oxide layer in the filament type resistive switching was reported for the first time. Based on these studies, a unique structure that is believed to combine the two competing switching mechanisms was demonstrated. The new memory structure acts like a complimentary resistive switching memory (CRS) that is designed to eliminate the cross-talk issue in RRAM.

  20. Application of the fractional Fourier transform to the design of LCOS based optical interconnects and fiber switches.

    PubMed

    Robertson, Brian; Zhang, Zichen; Yang, Haining; Redmond, Maura M; Collings, Neil; Liu, Jinsong; Lin, Ruisheng; Jeziorska-Chapman, Anna M; Moore, John R; Crossland, William A; Chu, D P

    2012-04-20

    It is shown that reflective liquid crystal on silicon (LCOS) spatial light modulator (SLM) based interconnects or fiber switches that use defocus to reduce crosstalk can be evaluated and optimized using a fractional Fourier transform if certain optical symmetry conditions are met. Theoretically the maximum allowable linear hologram phase error compared to a Fourier switch is increased by a factor of six before the target crosstalk for telecom applications of -40 dB is exceeded. A Gerchberg-Saxton algorithm incorporating a fractional Fourier transform modified for use with a reflective LCOS SLM is used to optimize multi-casting holograms in a prototype telecom switch. Experiments are in close agreement to predicted performance.

  1. [New type distributed optical fiber temperature sensor (DTS) based on Raman scattering and its' application].

    PubMed

    Wang, Jian-Feng; Liu, Hong-Lin; Zhang, Shu-Qin; Yu, Xiang-Dong; Sun, Zhong-Zhou; Jin, Shang-Zhong; Zhang, Zai-Xuan

    2013-04-01

    Basic principles, development trends and applications status of distributed optical fiber Raman temperature sensor (DTS) are introduced. Performance parameters of DTS system include the sensing optical fiber length, temperature measurement uncertainty, spatial resolution and measurement time. These parameters have a certain correlation and it is difficult to improve them at the same time by single technology. So a variety of key techniques such as Raman amplification, pulse coding technique, Raman related dual-wavelength self-correction technique and embedding optical switching technique are researched to improve the performance of the DTS system. A 1 467 nm continuous laser is used as pump laser and the light source of DTS system (1 550 nm pulse laser) is amplified. When the length of sensing optical fiber is 50 km the Raman gain is about 17 dB. Raman gain can partially compensate the transmission loss of optical fiber, so that the sensing length can reach 50 km. In DTS system using pulse coding technique, pulse laser is coded by 211 bits loop encoder and correlation calculation is used to demodulate temperature. The encoded laser signal is related, whereas the noise is not relevant. So that signal-to-noise ratio (SNR) of DTS system can be improved significantly. The experiments are carried out in DTS system with single mode optical fiber and multimode optical fiber respectively. Temperature measurement uncertainty can all reach 1 degrees C. In DTS system using Raman related dual-wavelength self-correction technique, the wavelength difference of the two light sources must be one Raman frequency shift in optical fiber. For example, wavelength of the main laser is 1 550 nm and wavelength of the second laser must be 1 450 nm. Spatial resolution of DTS system is improved to 2 m by using dual-wavelength self-correction technique. Optical switch is embedded in DTS system, so that the temperature measurement channel multiply extended and the total length of the sensing optical fiber effectively extended. Optical fiber sensor network is composed.

  2. Fiber-optic beam control systems using microelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun

    This dissertation, for the first time, proposes, studies, and experimentally demonstrated novel fiber-optic beam control systems based on the use of microelectromechanical system (MEMS) technology in which the miniaturized versions of mechanical systems can be obtained. Beam control modules include optical add/drop filters, optical switches, variable photonic delay lines (VPDLs), and variable optical attenuators (VOAs). The optical add/drop filter functions as a multiwavelength optical switch that offers the ability to drop and add a certain number of desired wavelengths at an intermediate location where access to all the propagating optical channels is not required between transmission terminals. The VOA can also be used in networks where stocking and tracking of fixed attenuators is difficult. Other specific applications of the VOA are optical gain equalization and polarization dependent loss and gain compensation required in high data-rate wavelength division multiplexed (WDM) lightwave systems. A VPDL can be used to adjust timing amongst multiwavelength optical signals in order to reduce timing jitter and burst traffic in photonic packet switching and parallel signal processing systems. In this dissertation, a small tilt micromirror device is proposed for the implementation of all fiber-optic beam control modules. In particular, the macro-pixel approach where several micromirrors are used to manipulate the desired optical beam is introduced to realize high speed and fault tolerant beam control modules. To eliminate the need of careful optical alignment, an all fiber-connectorized multiwavelength optical switch structure is presented and experimentally demonstrated by using a fiber-loop mirror concept with polarization control. In addition, liquid crystal (LC) devices are studied and are used to implement a compact retro- reflective 2 x 2 fiber-optic switch. Compared to MEMS- based mirror technology, the LC technology is more sensitive to temperature, thereby inappropriate to deploy in a harsh environment. With the benefit provided by WDM systems, wavelength sensitive fiber-optic beam controllers are proposed, offering wavelength sensitive time delay and amplitude controls that can be applied in several applications ranging from optical communications to high speed parallel signal processing. (Abstract shortened by UMI.)

  3. Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application

    PubMed Central

    Zeng, Lvming; Chen, Zhongping; Kim, Chang-Seok

    2016-01-01

    We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the high repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging. PMID:27110032

  4. Exploiting nonlinear properties of pure and Sn-doped Bi2Te2Se for passive Q-switching of all-polarization maintaining ytterbium- and erbium-doped fiber lasers.

    PubMed

    Bogusławski, Jakub; Kowalczyk, Maciej; Iwanowski, Przemysław; Hruban, Andrzej; Diduszko, Ryszard; Piotrowski, Kazimierz; Dybko, Krzysztof; Wojciechowski, Tomasz; Aleszkiewicz, Marta; Sotor, Jarosław

    2017-08-07

    Due to their broadband nonlinear optical properties, low-dimensional materials are widely used for pulse generation in fiber and solid-state lasers. Here we demonstrate novel materials, Bi 2 Te 2 Se (BTS) and Sn-doped Bi 2 Te 2 Se (BSTS), which can be used as a universal saturable absorbers for distinct spectral regimes. The material was mechanically exfoliated from a bulk single-crystal and deposited onto a side-polished fiber. We have performed characterization of the fabricated devices and employed them in polarization-maintaining ytterbium- and erbium-doped fiber lasers. This enabled us to obtain self-starting passively Q-switched regime at 1 µm and 1.56 µm. The oscillators emitted stable, linearly polarized radiation with the highest single pulse energy approaching 692 nJ. Both lasers are characterized by the best performance observed in all-polarization maintaining Q-switched fiber lasers with recently investigated new saturable absorbers, which was enabled by a very high damage threshold of the devices. This demonstrates the great potential of the investigated materials for the ultrafast photonics community.

  5. Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piao, Zhonglie; Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, California 92612; Zeng, Lvming

    We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the highmore » repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging.« less

  6. Optimization of a Fabry-Perot Q-switch fiber optic laser

    NASA Astrophysics Data System (ADS)

    Armas Rivera, Ivan; Beltrán Pérez, Georgina; Kuzin, Evgene; Castillo Mixcóatl, Juan; Muñoz Aguirre, Severino

    2013-11-01

    Optical fiber Q-Switch lasers have been used in a variety of application areas in science as well as in industry owing to their multiple characteristics. A possible application is that owing to their high output power they can be used as pumping sources for supercontinuum generation. Such source can be employed in optical coherence tomography (OCT) focused to dermatology. Therefore it is important to develop sources with emission wavelength that are not injurious to human skin. In the present work erbium doped fiber (EDF) was used owing that its emission wavelength (1550 nm) is adequate for this purpose. The most efficient way of achieving high power in a Q-Switch laser is optimizing all the parameters involved in the pulses generation, such as pumping power, active medium length and modulation frequency. The results show that using a fiber length of 7 meters is possible to get 10 μJ of energy, a peak power of 140 W, an average power of 27.5mW with temporal widths of 500 ns. The laser uses an acousto-optic device to modulate the internal loses inside the cavity. As highly reflecting mirrors, a Sagnac Interferometer and a Fiber Bragg Grating was employed.

  7. Switching Matrix For Optical Signals

    NASA Technical Reports Server (NTRS)

    Grove, Charles H.

    1990-01-01

    Proposed matrix of electronically controlled shutters switches signals in optical fibers between multiple input and output channels. Size, weight, and power consumption reduced. Device serves as building block for small, low-power, broad-band television- and data-signal-switching systems providing high isolation between nominally disconnected channels.

  8. Mid-infrared passively switched pulsed dual wavelength Ho3+-doped fluoride fiber laser at 3 μm and 2 μm

    PubMed Central

    Li, Jianfeng; Luo, Hongyu; Wang, Lele; Liu, Yong; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin; Turistsyn, Sergei K.

    2015-01-01

    Cascade transitions of rare earth ions involved in infrared host fiber provide the potential to generate dual or multiple wavelength lasing at mid-infrared region. In addition, the fast development of saturable absorber (SA) towards the long wavelengths motivates the realization of passively switched mid-infrared pulsed lasers. In this work, by combing the above two techniques, a new phenomenon of passively Q-switched ~3 μm and gain-switched ~2 μm pulses in a shared cavity was demonstrated with a Ho3+-doped fluoride fiber and a specifically designed semiconductor saturable absorber (SESAM) as the SA. The repetition rate of ~2 μm pulses can be tuned between half and same as that of ~3 μm pulses by changing the pump power. The proposed method here will add new capabilities and more flexibility for generating mid-infrared multiple wavelength pulses simultaneously that has important potential applications for laser surgery, material processing, laser radar, and free-space communications, and other areas. PMID:26041105

  9. Blue Flag Distributed Wargaming System

    DTIC Science & Technology

    1992-07-01

    combat simulation , and multi- site video teleconferencing (VTC). The Warrior Flag 90 feasibility demonstration was sponsored by the 4441st Tactical...provide RS-422 cross patching, loop -back and test points. At the hub six CSUs and two fiber optic modems were cabled in the normal-thru configuration...spare crypto or the fiber optic modem may be placed on-line via a patch. Loop plugs were provided for testing. Clock switches were provided to switch

  10. A liquid lens switching-based motionless variable fiber-optic delay line

    NASA Astrophysics Data System (ADS)

    Khwaja, Tariq Shamim; Reza, Syed Azer; Sheikh, Mumtaz

    2018-05-01

    We present a Variable Fiber-Optic Delay Line (VFODL) module capable of imparting long variable delays by switching an input optical/RF signal between Single Mode Fiber (SMF) patch cords of different lengths through a pair of Electronically Controlled Tunable Lenses (ECTLs) resulting in a polarization-independent operation. Depending on intended application, the lengths of the SMFs can be chosen accordingly to achieve the desired VFODL operation dynamic range. If so desired, the state of the input signal polarization can be preserved with the use of commercially available polarization-independent ECTLs along with polarization-maintaining SMFs (PM-SMFs), resulting in an output polarization that is identical to the input. An ECTL-based design also improves power consumption and repeatability. The delay switching mechanism is electronically-controlled, involves no bulk moving parts, and can be fully-automated. The VFODL module is compact due to the use of small optical components and SMFs that can be packaged compactly.

  11. Reconfigurable radio-over-fiber system based on optical switch and tunable filter

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Yin, Rui; Ji, Wei; Sun, Kai; Zhang, Shicheng

    2017-09-01

    As the best candidate for wireless-access networks, radio-over-fiber (RoF) technology can carry a variety of business. It is necessary to provide differentiated services for different users, so the network needs to produce signals with different modulation formats and different frequencies. A reconfigurable RoF system based on a switch and tunable optical filter that can realize modulation format conversion and multiple frequency signal switching functions is designed. It has a good performance in terms of bit error rate and an eye diagram. The design can help to use radio frequency resources efficiently and make dynamic bandwidth resources controllable.

  12. 36 W Q-switched Ho:YAG laser at 2097 nm pumped by a Tm fiber laser: evaluation of different Ho3+ doping concentrations

    NASA Astrophysics Data System (ADS)

    Antipov, O. L.; Eranov, I. D.; Kositsyn, R. I.

    2017-01-01

    A laser oscillator based on Ho:YAG crystal pumped by a Tm fiber laser with an acousto-optical Q-switch was optimized for maximum output power and pulse-to-pulse stability. Stable operation at 2097 nm in Q-switched mode is demonstrated, with pulse repetition rates from 10 to 30 kHz, and output power of 36 W (at 55 W of pump power at 1908 nm) in the good quality beam. The influence of Ho ion up-conversion and thermal lensing on the oscillation efficiency is discussed.

  13. Fiber-optic interconnection networks for spacecraft

    NASA Technical Reports Server (NTRS)

    Powers, Robert S.

    1992-01-01

    The overall goal of this effort was to perform the detailed design, development, and construction of a prototype 8x8 all-optical fiber optic crossbar switch using low power liquid crystal shutters capable of operation in a network with suitable fiber optic transmitters and receivers at a data rate of 1 Gb/s. During the earlier Phase 1 feasibility study, it was determined that the all-optical crossbar system had significant advantages compared to electronic crossbars in terms of power consumption, weight, size, and reliability. The result is primarily due to the fact that no optical transmitters and receivers are required for electro-optic conversion within the crossbar switch itself.

  14. 1940 nm all-fiber Q-switched fiber laser

    NASA Astrophysics Data System (ADS)

    Ahmadi, P.; Estrada, A.; Katta, N.; Lim, E.; McElroy, A.; Milner, T. E.; Mokan, V.; Underwood, M.

    2017-02-01

    We present development of a nanosecond Q-switched Tm3+-doped fiber laser with 16 W average power and 4.4 kW peak power operating at 1940 nm. The laser has a master oscillator power amplifier design, and uses large mode area Tm3+-doped fibers as the gain medium. Special techniques are used to splice Tm3+-doped fibers to minimize splice loss. The laser design is optimized to reduce non-linear effects, including modulation instability. Pulse width broadening due to high gain is observed and studied in detail. Medical surgery is a field of application where this laser may be able to improve clinical practice. The laser together with scanning galvanometer mirrors is used to cut precisely around small footprint vessels in tissue phantoms without leaving any visible residual thermal damage. These experiments provide proof-of-principle that this laser has promising potential in the laser surgery application space.

  15. Advanced optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Kazovsky, Leonid G.

    1994-03-01

    Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.

  16. Effects of withdrawing high-fiber ingredients before marketing on finishing pig growth performance, carcass characteristics, and intestinal weights.

    PubMed

    Coble, Kyle F; DeRouchey, Joel M; Tokach, Mike D; Dritz, Steve S; Goodband, Robert D; Woodworth, Jason C

    2018-02-15

    Two experiments were conducted to determine the duration of high-fiber ingredient removal from finishing pig diets before marketing to restore carcass yield and carcass fat iodine value (IV), similar to pigs continuously fed a corn-soybean meal diet. In experiment 1, 288 pigs (initially 38.4 ± 0.3 kg body weight [BW]) were used in an 88-d study and fed either a low-fiber corn-soybean meal diet from day 0 to 88 or a high-fiber diet containing 30% corn distillers dried grains with solubles and 19% wheat middlings until day 20, 15, 10, 5, or 0 before slaughter and switched to the low-fiber corn-soybean meal diet thereafter. Diets were not balanced for net energy. From day 0 to 88, pigs continuously fed the high-fiber diet tended to have increased average daily feed intake (P = 0.072) and decreased G:F and carcass yield (P = 0.001) compared with pigs fed the low-fiber corn-soybean meal diet. Pigs continuously fed the high-fiber diet had greater (P < 0.010) IV of jowl, backfat, belly, and ham collar fat than those fed the low-fiber corn-soybean meal diet throughout. As days of withdrawal increased, pigs previously fed the high-fiber diet had increased carcass yield (quadratic; P = 0.039). Pigs continuously fed the high-fiber diet had heavier (percentage of hot carcass weight [HCW]) full large intestines (P = 0.003) than pigs fed the corn-soybean meal diet. Full large intestine weight decreased (linear; P = 0.018) as withdrawal time increased. Belly fat IV tended (linear; P = 0.080) to improve as withdrawal time increased. In experiment 2, a total of 1,089 pigs (initially 44.5 ± 0.1 kg BW) were used in a 96-d study with the same dietary treatments as in experiment 1, except pigs were fed the high-fiber diet until day 24, 19, 14, 9, or 0 before slaughter and then switched to the corn-soybean meal diet. Pigs fed the high-fiber diet throughout had decreased average daily gain and G:F (P = 0.001) compared with those fed the low-fiber corn-soybean meal diet. For pigs initially fed the high-fiber diet and then switched to the low-fiber corn-soybean meal diet, G:F tended to improve (linear; P = 0.070) as withdrawal period increased. Pigs fed the high-fiber diet throughout had decreased HCW (P = 0.001) compared with those fed the low-fiber corn-soybean meal diet and HCW marginally increased (quadratic; P = 0.077) as withdrawal period increased. In summary, switching pigs from a high-fiber diet to a corn-soybean meal diet for up to 24 d before market increased carcass yield (experiment 1) or HCW (experiment 2) with the improvement most prominent during the first 5 to 9 d after withdrawal.

  17. 78 FR 50132 - Self-Regulatory Organizations; NASDAQ OMX BX, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... into the System for execution. Each of BX's current connection offerings uses different switches... 10Gb Ultra low latency fiber connection option, and provide a waiver of installation fees for... to the Exchange, including a 40Gb fiber connection, a 10Gb fiber connection, a 1Gb fiber connection...

  18. High-power Q-switched erbium-ytterbium codoped fiber laser using multiwalled carbon nanotubes saturable absorber

    NASA Astrophysics Data System (ADS)

    Ab Razak, Mohd Zulhakimi; Saleh, Zatul Saliza; Ahmad, Fauzan; Anyi, Carol Livan; Harun, Sulaiman W.; Arof, Hamzah

    2016-10-01

    Due to an enormous potential of pulsed lasers in applications such as manufacturing, metrology, environmental sensing, and biomedical diagnostics, a high-power and stable Q-switched erbium-ytterbium codoped double-clad fiber laser (EYDFL) incorporating of multiwall carbon nanotubes (MWCNTs) saturable absorber (SA) made based on polyvinyl alcohol (PVA) with a 3∶2 ratio is demonstrated. The SA was fabricated by mixing a dilute PVA solution with an MWCNTs homogeneous solution. Subsequently, the mixture was sonicated and centrifuged to produce a homogeneous suspension that was left to dry at room temperature to form the MWCNTs-PVA film. The SA was formed by inserting the film between a pair of FC/PC fiber connectors. Then, it was integrated into the EYDFL's ring cavity, which uses a 5-m-long erbium-ytterbium codoped fiber (EYDF). The lasing threshold for the Q-switched EYDFL was at 330 mW. At the maximum available pump power of 900 mW, the proposed EYDFL produced Q-switched pulses with a repetition rate of 74.85 kHz, pulsewidth of ˜3.6 μs, and an average output power of about 5 mW. The maximum energy per pulse of ˜85 nJ was obtained at pump power of ˜700 mW with peak power of 21 mW.

  19. Novel WRM-based architecture of hybrid PON featuring online access and full-fiber-fault protection for smart grid

    NASA Astrophysics Data System (ADS)

    Li, Xingfeng; Gan, Chaoqin; Liu, Zongkang; Yan, Yuqi; Qiao, HuBao

    2018-01-01

    In this paper, a novel architecture of hybrid PON for smart grid is proposed by introducing a wavelength-routing module (WRM). By using conventional optical passive components, a WRM with M ports is designed. The symmetry and passivity of the WRM makes it be easily integrated and very cheap in practice. Via the WRM, two types of network based on different ONU-interconnected manner can realize online access. Depending on optical switches and interconnecting fibers, full-fiber-fault protection and dynamic bandwidth allocation are realized in these networks. With the help of amplitude modulation, DPSK modulation and RSOA technology, wavelength triple-reuse is achieved. By means of injecting signals into left and right branches in access ring simultaneously, the transmission delay is decreased. Finally, the performance analysis and simulation of the network verifies the feasibility of the proposed architecture.

  20. Passively synchronized Q-switched and mode-locked dual-band Tm3+:ZBLAN fiber lasers using a common graphene saturable absorber

    NASA Astrophysics Data System (ADS)

    Jia, Chenglai; Shastri, Bhavin J.; Abdukerim, Nurmemet; Rochette, Martin; Prucnal, Paul R.; Saad, Mohammed; Chen, Lawrence R.

    2016-11-01

    Dual-band fiber lasers are emerging as a promising technology to penetrate new industrial and medical applications from their dual-band properties, in addition to providing compactness and environmental robustness from the waveguide structure. Here, we demonstrate the use of a common graphene saturable absorber and a single gain medium (Tm3+:ZBLAN fiber) to implement (1) a dual-band fiber ring laser with synchronized Q-switched pulses at wavelengths of 1480 nm and 1840 nm, and (2) a dual-band fiber linear laser with synchronized mode-locked pulses at wavelengths of 1480 nm and 1845 nm. Q-switched operation at 1480 nm and 1840 nm is achieved with a synchronized repetition rate from 20 kHz to 40.5 kHz. For synchronous mode-locked operation, pulses with full-width at half maximum durations of 610 fs and 1.68 ps at wavelengths of 1480 nm and 1845 nm, respectively, are obtained at a repetition rate of 12.3 MHz. These dual-band pulsed sources with an ultra-broadband wavelength separation of ~360 nm will add new capabilities in applications including optical sensing, spectroscopy, and communications.

  1. Passively synchronized Q-switched and mode-locked dual-band Tm3+:ZBLAN fiber lasers using a common graphene saturable absorber.

    PubMed

    Jia, Chenglai; Shastri, Bhavin J; Abdukerim, Nurmemet; Rochette, Martin; Prucnal, Paul R; Saad, Mohammed; Chen, Lawrence R

    2016-11-02

    Dual-band fiber lasers are emerging as a promising technology to penetrate new industrial and medical applications from their dual-band properties, in addition to providing compactness and environmental robustness from the waveguide structure. Here, we demonstrate the use of a common graphene saturable absorber and a single gain medium (Tm 3+ :ZBLAN fiber) to implement (1) a dual-band fiber ring laser with synchronized Q-switched pulses at wavelengths of 1480 nm and 1840 nm, and (2) a dual-band fiber linear laser with synchronized mode-locked pulses at wavelengths of 1480 nm and 1845 nm. Q-switched operation at 1480 nm and 1840 nm is achieved with a synchronized repetition rate from 20 kHz to 40.5 kHz. For synchronous mode-locked operation, pulses with full-width at half maximum durations of 610 fs and 1.68 ps at wavelengths of 1480 nm and 1845 nm, respectively, are obtained at a repetition rate of 12.3 MHz. These dual-band pulsed sources with an ultra-broadband wavelength separation of ~360 nm will add new capabilities in applications including optical sensing, spectroscopy, and communications.

  2. Resonant UPS topologies for the emerging hybrid fiber-coaxial networks

    NASA Astrophysics Data System (ADS)

    Pinheiro, Humberto

    Uninterruptible power supply (UPS) systems have been extensively applied to feed critical loads in many areas. Typical examples of critical loads include life-support equipment, computers and telecommunication systems. Although all UPS systems have a common purpose to provide continuous power-to critical loads, the emerging hybrid fiber-coaxial networks have created the need for specific types of UPS topologies. For example, galvanic isolation for the load and the battery, small size, high input power factor, and trapezoidal output voltage waveforms are among the required features of UPS topologies for hybrid fiber-coaxial networks. None of the conventional UPS topologies meet all these requirements. Consequently. this thesis is directed towards the design and analysis of UPS topologies for this new application. Novel UPS topologies are proposed and control techniques are developed to allow operation at high switching frequencies without penalizing the converter efficiency. By the use of resonant converters in the proposed UPS topologies. a high input power factor is achieved without requiring a dedicated power factor correction stage. In addition, a self-sustained oscillation control method is proposed to ensure soft switching under all operating conditions. A detailed analytical treatment of the resonant converters in the proposed UPS topologies is presented and design procedures illustrated. Simulation and experimental results are presented to validate the analyses and to demonstrate the feasibility of the proposed schemes.

  3. Pulsed operation of Tm-doped fiber lasers using piezoelectric-driven microbend applied to elliptical coating fibers

    NASA Astrophysics Data System (ADS)

    Sakata, H.; Kimpara, K.; Komori, K.; Tomiki, M.

    2014-05-01

    We report Q-switched pulse generation in Tm-doped fiber lasers by introducing piezoelectric-driven microbend into an elliptical coating fiber in a fiber ring resonator. Compared with the untreated circular fiber having a diameter of 240 μm, the elliptical coating fiber was flattened to have a major axis diameter of about 300 μm. We employed a pair of comblike plates attached on the piezoelectric actuators in order to bend the fiber from both sides. The output pulse power is improved by optimizing the tooth-width and spatial period of the comb-like plates, so that the elliptical coating fiber is easily bent and the propagation mode is efficiently coupled to radiation modes around λ = 1.9 μm. The Tm-doped fiber is pumped by a laser diode emitting at 1.63 μm and the pump light is introduced to the fiber ring resonator via the wavelength division multiplexing coupler. The emission spectra showed that the center oscillation wavelength was typically 1.92 μm. When the pump power was increased to 156 mW, the output pulse showed a peak power of 42.5 W with a pulse width of 1.06 μs. We expect that the in-fiber Q-switching technique will provide simple laser systems for environmental sensing and medical applications.

  4. Repetitive switching for an electromagnetic rail gun

    NASA Astrophysics Data System (ADS)

    Gruden, J. M.

    1983-12-01

    Previous testing on a repetitive opening switch for inductive energy storage has proved the feasibility of the rotary switch concept. The concept consists of a rotating copper disk (rotor) with a pie-shaped insulator section and brushes which slide along each of the rotor surfaces. While on top of the copper surface, the brushes and rotor conduct current allowing the energy storage inductor to charge. When the brushes slide onto the insulator section, the current cannot pass through the rotor and is diverted into the load. This study investigates two new brush designs and a rotor modification designed to improve the current commutating capabilities of the switch. One brush design (fringe fiber) employs carbon fibers on the leading and trailing edge of the brush to increase the resistive commutating action as the switch opens and closes. The other brush design uses fingers to conduct current to the rotor surface, effectively increasing the number of brush contact points. The rotor modification was the placement of tungsten inserts at the copper-insulator interfaces.

  5. Switchable dual-wavelength fiber laser based on PCF Sagnac loop and broadband FBG

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Lou, Shuqin; Feng, Suchun; Wang, Liwen; Li, Honglei; Guo, Tieying; Jian, Shuisheng

    2009-11-01

    Switchable dual-wavelength fiber laser with photonic crystal fiber (PCF) Sagnac loop and broadband fiber Bragg grating (BFBG) at room temperature is demonstrated. By adjusting the polarization controller (PC) appropriately, the laser can be switched between the stable single- and dual-wavelength lasing operations by exploiting polarization hole burning (PHB) and spectral hole burning effects (SHB).

  6. NONLINEAR AND FIBER OPTICS: Propagation of femtosecond solitons in a fiber-optic loop

    NASA Astrophysics Data System (ADS)

    Zakhidov, É. A.; Mirtadzhiev, F. M.; Khaĭdarov, D. V.; Kuznetsov, A. V.; Okhotnikov, A. G.

    1991-03-01

    An investigation was made of the propagation of fundamental femtosecond soliton pulses in a fiber-optic loop, which is an element with promising applications in logic operations. It is shown that such a loop can filter off the nonsoliton component effectively. The conditions for high-contrast self-switching of fundamental solitons in a fiber-optic loop are identified.

  7. Investigation of the laser pumping power impact on the operating regimes of a laser passively Q-switched by a saturated absorber

    NASA Astrophysics Data System (ADS)

    Benarab, Mustapha; Mokdad, Rabah; Djellout, Hocine; Benfdila, Arezki; Lamrous, Omar; Meyrueis, Patrick

    2011-09-01

    We have adapted the point model for the study of an all-fiber laser doped with Nd3+ and Q-switched by a saturable fiber absorber doped with Cr4+. Calculations of the output power of the 1084 nm laser are considered as a function of the pump power supplied by a 790 nm laser diode. The analysis of the simulation results reveals the existence of pulsed, sinusoidal, and dc operating regimes.

  8. Phase-sensitive fiber-based parametric all-optical switch.

    PubMed

    Parra-Cetina, Josué; Kumpera, Aleš; Karlsson, Magnus; Andrekson, Peter A

    2015-12-28

    We experimentally demonstrate, for the first time, an all-optical switch in a phase-sensitive fiber optic parametric amplifier operated in saturation. We study the effect of phase variation of the signal and idler waves on the pump power depletion. By changing the phase of a 0.9 mW signal/idler pair wave by π/2 rad, a pump power extinction ratio of 30.4 dB is achieved. Static and dynamic characterizations are also performed and time domain results presented.

  9. Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Wei, Rongfei; Zhang, Hang; Hu, Zhongliang; Qiao, Tian; He, Xin; Guo, Qiangbing; Tian, Xiangling; Chen, Zhi; Qiu, Jianrong

    2016-07-01

    High-yield MoS2 nanosheets with strong nonlinear optical (NLO) responses in a broad near-infrared range were synthesized by a facile hydrothermal method. The observation of saturable absorption, which was excited by the light with photon energy smaller than the gap energy of MoS2, can be attributed to the enhancement of the hybridization between the Mo d-orbital and S p-orbital by the oxygen incorporation into MoS2. High-yield MoS2 nanosheets with high modulation depth and large saturable intensity generated a stable, passively Q-switched fiber laser pulse at 1.56 μm. The high output power of 1.08 mW can be attained under a very low pump power of 30.87 mW. Compared to recently reported passively Q-switched fiber lasers utilizing exfoliated MoS2 nanosheets, the efficiency of the laser for our passive Q-switching operation is larger and reaches 3.50%. This research may extend the understanding on the NLO properties of MoS2 and indicate the feasibility of the high-yield MoS2 nanosheets to passively Q-switched fiber laser effectively at low pump strengths.

  10. Optical switches and switching methods

    DOEpatents

    Doty, Michael

    2008-03-04

    A device and method for collecting subject responses, particularly during magnetic imaging experiments and testing using a method such as functional MRI. The device comprises a non-metallic input device which is coupled via fiber optic cables to a computer or other data collection device. One or more optical switches transmit the subject's responses. The input device keeps the subject's fingers comfortably aligned with the switches by partially immobilizing the forearm, wrist, and/or hand of the subject. Also a robust nonmetallic switch, particularly for use with the input device and methods for optical switching.

  11. Q-switched all-fiber laser with short pulse duration based on tungsten diselenide

    NASA Astrophysics Data System (ADS)

    Li, Wenyi; OuYang, Yuyi; Ma, Guoli; Liu, Mengli; Liu, Wenjun

    2018-05-01

    Fiber lasers are widely used in industrial processing, sensing, medical and communications applications due to their simple structure, good stability and low cost. With the rapid development of fiber lasers and the sustained improvement of industrial laser quality requirements, researchers in ultrafast optics focus on how to get laser pulses with high output power and narrow pulse duration. Q-switched technology is one of the most effective techniques to generate ultrashort pulses. In this paper, a tungsten diselenide saturable absorber with 16.82% modulation depth is prepared by chemical vapor deposition. Experimental results show that when the pump power changes from 115.7 mW to 630 mW, the all-fiber laser can achieve a stable Q-switched pulse output. The repetition rate of the output pulse varies from 80.32 kHz to 204.2 kHz, the pulse duration is 581 ns, the maximum output power is 17.1 mW and the maximum pulse energy is 83.7 nJ. Results in this paper show that tungsten diselenide can be applied to ultrafast optics, which is a kind of saturable absorption material with excellent properties.

  12. A novel fast optical switch based on two cascaded Terahertz Optical Asymmetric Demultiplexers (TOAD).

    PubMed

    Wang, Bing; Baby, Varghese; Tong, Wilson; Xu, Lei; Friedman, Michelle; Runser, Robert; Glesk, Ivan; Prucnal, Paul

    2002-01-14

    A novel optical switch based on cascading two terahertz optical asymmetric demultiplexers (TOAD) is presented. By utilizing the sharp edge of the asymmetric TOAD switching window profile, two TOAD switching windows are overlapped to produce a narrower aggregate switching window, not limited by the pulse propagation time in the SOA of the TOAD. Simulations of the cascaded TOAD switching window show relatively constant window amplitude for different window sizes. Experimental results on cascading two TOADs, each with a switching window of 8ps, but with the SOA on opposite sides of the fiber loop, show a minimum switching window of 2.7ps.

  13. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    PubMed

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing. Copyright © 2014, American Association for the Advancement of Science.

  14. Actively Q-switched, thulium-holmium-codoped fiber laser incorporating a silicon-based, variable-optical-attenuator-based Q switch.

    PubMed

    Jung, Minwan; Han Lee, Ju

    2013-04-20

    An actively Q-switched thulium-holmium-codoped fiber laser incorporating an Si-based variable optical attenuator (VOA) is experimentally demonstrated. It has been shown that an Si-based VOA with a response time of hundreds of nanoseconds can be used as a cost-effective 2 μm Q switch due to its extremely wide operating bandwidth from 1.5 to 2 μm, and low electrical power consumption. In our study, the laser's slope efficiency was measured to be ~17% at an operating wavelength of 1.89 μm. The repetition rate tuning range was from 20 to 80 kHz, which was limited by the optical damage threshold and the response time. The minimum temporal pulsewidth was measured to be ~184 ns at a modulation frequency of 20 kHz, and the corresponding maximum peak power was ~10 W.

  15. Connective tissue fibroblasts and Tcf4 regulate myogenesis

    PubMed Central

    Mathew, Sam J.; Hansen, Jody M.; Merrell, Allyson J.; Murphy, Malea M.; Lawson, Jennifer A.; Hutcheson, David A.; Hansen, Mark S.; Angus-Hill, Melinda; Kardon, Gabrielle

    2011-01-01

    Muscle and its connective tissue are intimately linked in the embryo and in the adult, suggesting that interactions between these tissues are crucial for their development. However, the study of muscle connective tissue has been hindered by the lack of molecular markers and genetic reagents to label connective tissue fibroblasts. Here, we show that the transcription factor Tcf4 (transcription factor 7-like 2; Tcf7l2) is strongly expressed in connective tissue fibroblasts and that Tcf4GFPCre mice allow genetic manipulation of these fibroblasts. Using this new reagent, we find that connective tissue fibroblasts critically regulate two aspects of myogenesis: muscle fiber type development and maturation. Fibroblasts promote (via Tcf4-dependent signals) slow myogenesis by stimulating the expression of slow myosin heavy chain. Also, fibroblasts promote the switch from fetal to adult muscle by repressing (via Tcf4-dependent signals) the expression of developmental embryonic myosin and promoting (via a Tcf4-independent mechanism) the formation of large multinucleate myofibers. In addition, our analysis of Tcf4 function unexpectedly reveals a novel mechanism of intrinsic regulation of muscle fiber type development. Unlike other intrinsic regulators of fiber type, low levels of Tcf4 in myogenic cells promote both slow and fast myogenesis, thereby promoting overall maturation of muscle fiber type. Thus, we have identified novel extrinsic and intrinsic mechanisms regulating myogenesis. Most significantly, our data demonstrate for the first time that connective tissue is important not only for adult muscle structure and function, but is a vital component of the niche within which muscle progenitors reside and is a critical regulator of myogenesis. PMID:21177349

  16. Study of Polydiacetylene-Poly (Ethylene Oxide) Electrospun Fibers Used as Biosensors

    PubMed Central

    Alam, A K M Mashud; Yapor, Janet P.; Reynolds, Melissa M.; Li, Yan Vivian

    2016-01-01

    Polydiacetylene (PDA) is an attractive conjugated material for use in biosensors due to its unique characteristic of undergoing a blue-to-red color change in response to external stimuli. 10,12-Pentacosadiynoic acid (PCDA) and poly (ethylene oxide) (PEO) were used in this study to develop fiber composites via an electrospinning method at various mass ratios of PEO to PCDA, solution concentrations, and injection speeds. The PEO-PDA fibers in blue phase were obtained via photo-polymerization upon UV-light irritation. High mass ratios of PEO to PCDA, low polymer concentrations of spinning solution, and low injection speeds promoted fine fibers with small diameters and smooth surfaces. The colorimetric transition of the fibers was investigated when the fibers were heated at temperatures ranging from 25 °C to 120 °C. A color switch from blue to red in the fibers was observed when the fibers were heated at temperatures greater than 60 °C. The color transition was more sensitive in the fibers made with a low mass ratio of PEO to PCDA due to high fraction of PDA in the fibers. The large diameter fibers also promoted the color switch due to high reflectance area in the fibers. All of the fibers were analyzed using Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) and compared before and after the color change occurred. The colorimetric transitional mechanism is proposed to occur due to conformational changes in the PDA macromolecules. PMID:28773326

  17. Study of Polydiacetylene-Poly (Ethylene Oxide) Electrospun Fibers Used as Biosensors.

    PubMed

    Alam, A K M Mashud; Yapor, Janet P; Reynolds, Melissa M; Li, Yan Vivian

    2016-03-16

    Polydiacetylene (PDA) is an attractive conjugated material for use in biosensors due to its unique characteristic of undergoing a blue-to-red color change in response to external stimuli. 10,12-Pentacosadiynoic acid (PCDA) and poly (ethylene oxide) (PEO) were used in this study to develop fiber composites via an electrospinning method at various mass ratios of PEO to PCDA, solution concentrations, and injection speeds. The PEO-PDA fibers in blue phase were obtained via photo-polymerization upon UV-light irritation. High mass ratios of PEO to PCDA, low polymer concentrations of spinning solution, and low injection speeds promoted fine fibers with small diameters and smooth surfaces. The colorimetric transition of the fibers was investigated when the fibers were heated at temperatures ranging from 25 °C to 120 °C. A color switch from blue to red in the fibers was observed when the fibers were heated at temperatures greater than 60 °C. The color transition was more sensitive in the fibers made with a low mass ratio of PEO to PCDA due to high fraction of PDA in the fibers. The large diameter fibers also promoted the color switch due to high reflectance area in the fibers. All of the fibers were analyzed using Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) and compared before and after the color change occurred. The colorimetric transitional mechanism is proposed to occur due to conformational changes in the PDA macromolecules.

  18. A time-domain fluorescence diffusion optical tomography system for breast tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Gao, Feng; Wu, LinHui; Ma, Wenjuan; Yang, Fang; Zhou, Zhongxing; Zhang, Limin; Zhao, Huijuan

    2011-02-01

    A prototype time-domain fluorescence diffusion optical tomography (FDOT) system using near-infrared light is presented. The system employs two pulsed light sources, 32 source fibers and 32 detection channels, working separately for acquiring the temporal distribution of the photon flux on the tissue surface. The light sources are provided by low power picosecond pulsed diode lasers at wavelengths of 780 nm and 830 nm, and a 1×32-fiber-optic-switch sequentially directs light sources to the object surface through 32 source fibers. The light signals re-emitted from the object are collected by 32 detection fibers connected to four 8×1 fiber-optic-switch and then routed to four time-resolved measuring channels, each of which consists of a collimator, a filter wheel, a photomultiplier tube (PMT) photon-counting head and a time-correlated single photon counting (TCSPC) channel. The performance and efficacy of the designed multi-channel PMT-TCSPC system are assessed by reconstructing the fluorescent yield and lifetime images of a solid phantom.

  19. Effects of adding metals to MoS2 in a ytterbium doped Q-switched fiber laser

    NASA Astrophysics Data System (ADS)

    Khaleque, Abdul; Liu, Liming

    2018-03-01

    Molybdenum disulfide (MoS2) is widely used in lubricants, metallic alloys and in electronic and optical components. It is also used as saturable absorbers (SAs) in lasers (e.g. fiber lasers): a simple deposition of MoS2 on the fiber end can create a saturable absorber without the necessity of extensive alignment of the optical beam. In this article, we study the effects of adding different metals (Cr, Au, and Al) to MoS2 in a ytterbium (Yb)-doped Q-switched fiber laser. Experimental results show that the addition of a thin layer of gold and aluminium can reduce pulse durations to about 5.8 μs and 8.5 μs, respectively, compared with pure MoS2 with pulse duration of 12 μs. Experimental analysis of the combined metal and MoS2 based composite SAs can be useful in fiber laser applications where it may also find applications in medical, three dimensional (3D) active imaging and dental applications.

  20. Dispersion-free pulse duration reduction of passively Q-switched microchip lasers.

    PubMed

    Lehneis, R; Steinmetz, A; Jauregui, C; Limpert, J; Tünnermann, A

    2012-11-01

    We present a dispersion-free method for the pulse duration reduction of passively Q-switched microchip laser (MCL) seed sources. This technique comprises two stages: one that carries out the self-phase modulation induced spectral broadening in a waveguide structure and a subsequent spectral filtering stage in order to shorten the pulses in time domain. The setup of a proof-of-principle experiment consists of a fiber-amplified passively Q-switched MCL, a passive single-mode fiber used as nonlinear element in which the spectrum is broadened, and a reflective volume-Bragg-grating acting as bandpass filter. A reduction of the pulse duration from 118 to 32 ps with high temporal quality has been achieved with this setup.

  1. Modeling of mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Shaulov, Gary

    This thesis presents the results of analytical and numerical simulations of mode-locked fiber lasers and their components: multiple quantum well saturable absorbers and nonlinear optical loop mirrors. Due to the growing interest in fiber lasers as a compact source of ultrashort pulses there is a need to develop a full understanding of the advantages and limitations of the different mode-locked techniques. The mode-locked fiber laser study performed in this thesis can be used to optimize the design and performance of mode-locked fiber laser systems. A group at Air Force Research Laboratory reported a fiber laser mode-locked by multiple quantum well (MQW) saturable absorber with stable pulses generated as short as 2 ps [21]. The laser cavity incorporates a chirped fiber Bragg grating as a dispersion element; our analysis showed that the laser operates in the soliton regime. Soliton perturbation theory was applied and conditions for stable pulse operation were investigated. Properties of MQW saturable absorbers and their effect on cavity dynamics were studied and the cases of fast and slow saturable absorbers were considered. Analytical and numerical results are in a good agreement with experimental data. In the case of the laser cavity with a regular fiber Bragg grating, the properties of MQW saturable absorbers dominate the cavity dynamics. It was shown that despite the lack of a soliton shaping mechanism, there is a regime in parameter space where stable or quasi-stable solitary waves solutions can exist. Further a novel technique of fiber laser mode-locking by nonlinear polarization rotation was proposed. Polarization rotation of vector solitons was simulated in a birefringent nonlinear optical loop mirror (NOLM) and the switching characteristics of this device was studied. It was shown that saturable absorber-like action of NOLM allows mode-locked operation of the two fiber laser designs. Laser cavity designs were proposed: figure-eight-type and sigma-type cavity.

  2. Tunable Mechanics in Electrospun Composites via Hierarchical Organization.

    PubMed

    Wanasekara, Nandula D; Matolyak, Lindsay E; Korley, LaShanda T J

    2015-10-21

    Design strategies from nature provide vital clues for the development of synthetic materials with tunable mechanical properties. Employing the concept of hierarchy and controlled percolation, a new class of polymer nanocomposites containing a montmorillonite (MMT)-reinforced electrospun poly(vinyl alcohol) (PVA) filler embedded within a polymeric matrix of either poly(vinyl acetate) (PVAc) or ethylene oxide-epichlorohydrin copolymer (EO-EPI) were developed to achieve a tunable mechanical response upon exposure to specific stimuli. Mechanical response and switching times upon hydration were shown to be dependent on the weight-fraction of MMT in the PVA electrospun fibers and type of composite matrix. PVA/MMT.PVAc composite films retained excellent two-way switchability for all MMT fractions; however, the switching time upon hydration was decreased dramatically as the MMT content was increased due to the highly hydrophilic nature of MMT. Additionally, for the first time, significant two-way switchability of PVA/MMT.EO-EPI composites was achieved for higher weight fractions (12 wt %) of MMT. An extensive investigation into the effects of fiber diameter, crystallinity, and MMT content revealed that inherent rigidity of MMT platelets plays an important role in controlling the mechanical response of these hierarchical electrospun composites.

  3. Optical Diagnostics of Multi-Gap Gas Switches for Linear Transformer Drivers

    NASA Astrophysics Data System (ADS)

    Sheng, Liang; Li, Yang; Sun, Tieping; Cong, Peitian; Zhang, Mei; Peng, Bodong; Zhao, Jizhen; Yue, Zhiqin; Wei, Fuli; Yuan, Yuan

    2014-07-01

    The trigger characteristics of a multi-gap gas switch with double insulating layers, a square-groove electrode supporter and a UV pre-ionizing structure are investigated aided by a high sensitivity fiber-bundle array detector, a UV fiber detector, and a framing camera, in addition to standard electrical diagnostics. The fiber-bundle-array detector is used to track the turn-on sequence of each electrode gap at a timing precision of 0.6 ns. Each fiber bundle, including five fibers with different azimuth angles, aims at the whole emitting area of each electrode gap and is fed to a photomultiplier tube. The UV fiber detector with a spectrum response of 260-320 nm, including a fused-quartz fiber of 200 μm in diameter and a solar-blinded photomultiplier tube, is adopted to study the effect of UV pre-ionizing on trigger characteristics. The framing camera, with a capacity of 4 frames per shot and an exposure time of 5 ns, is employed to capture the evolution of channel arcs. Based on the turn-on light signal of each electrode gap, the breakdown delay is divided into statistical delay and formative delay. A decrease in both of them, a smaller switch jitter and more channel arcs are observed with lower gas pressure. An increase in trigger voltage can reduce the statistical delay and its jitter, while higher trigger voltage has a relatively small influence on the formative delay and the number of channel arcs. With the UV pre-ionizing structure at 0.24 MPa gas pressure and 60 kV trigger voltage, the statistical delay and its jitter can be reduced by 1.8 ns and 0.67 ns, while the formative delay and its jitter can only be reduced by 0.5 ns and 0.25 ns.

  4. Multiple-mode reconfigurable electro-optic switching network for optical fiber sensor array

    NASA Technical Reports Server (NTRS)

    Chen, Ray T.; Wang, Michael R.; Jannson, Tomasz; Baumbick, Robert

    1991-01-01

    This paper reports the first switching network compatible with multimode fibers. A one-to-many cascaded reconfigurable interconnection was built. A thin glass substrate was used as the guiding medium which provides not only higher coupling efficiency from multimode fiber to waveguide but also better tolerance of phase-matching conditions. Involvement of a total-internal-reflection hologram and multimode waveguide eliminates interface problems between fibers and waveguides. The DCG polymer graft has proven to be reliable from -180 C to +200 C. Survivability of such an electrooptic system in harsh environments is further ensured. LiNbO3 was chosen as the E-O material because of its stability at high temperatures (phase-transition temperature of more than 1000 C) and maturity of E-O device technology. Further theoretical calculation was conducted to provide the optimal interaction length and device capacitance.

  5. Au nanocage/SiO2 saturable absorber for passive Q-switching Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Bai, Jinxi; Li, Ping; Guo, Lei; Zhang, Baitao; Hu, Qiongyu; Wang, Lili; Liu, Binghai; Chen, Xiaohan

    2018-05-01

    Au nanocages/SiO2 (Au-NCs/SiO2) with the surface plasmon resonance peak at 1060 nm were fabricated and experimentally exploited as the saturable absorber in an all-fiber passively Q-switched ytterbium-doped fiber laser for the first time. Under a pump power of 440 mW, the average output power of 10.6 mW was obtained with the pulse duration 1.4 µs and the repetition rate of 126.9 kHz at 1060.5 nm with the 3 dB spectral width of 0.131 nm. The results indicate that Au-NCs/SiO2 exhibits the potential for applications in the field of pulse lasers.

  6. Using an interference spectrum as a short-range absolute rangefinder with fiber and wideband source

    NASA Astrophysics Data System (ADS)

    Hsieh, Tsung-Han; Han, Pin

    2018-06-01

    Recently, a new type of displacement instrument using spectral-interference has been found, which utilizes fiber and a wideband light source to produce an interference spectrum. In this work, we develop a method that measures the absolute air-gap distance by taking wavelengths at two interference spectra minima. The experimental results agree with the theoretical calculations. It is also utilized to produce and control the spectral switch, which is much easier than other previous methods using other control mechanisms. A scanning mode of this scheme for stepped surface measurement is suggested, which is verified by a standard thickness gauge test. Our scheme is different to one available on the market that may use a curve-fitting method, and some comparisons are made between our scheme and that one.

  7. Multi-Gigabit Fiber Optic Wide Area Network Development.

    DTIC Science & Technology

    1991-07-01

    to propagate, no modal dispersion can occur. In multimode fiber , a parabolic index profile across the core is often used so that mode travel times are...In the fiber plant, such as connectors, splices couplers, splitters, switches, tunable filters , wavelength division multiplexers and demultiplexers...losses are much higher, at around 0.5 dB, and are usually avoided in long-haul systems. 30 Some fiber plant components have a filtering effect on the

  8. Pure antimony film as saturable absorber for Q-switched erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Rahman, M. F. A.; Zhalilah, M. Z.; Latiff, A. A.; Rosol, A. H. A.; Lokman, M. Q.; Bushroa, A. R.; Dimyati, K.; Harun, S. W.

    2018-04-01

    This paper reports on the use of Antimony (Sb) polymer film to generate stable Q-switching pulses in Erbium-doped fiber laser (EDFL) cavity. The SA is fabricated by coating a thin layer of Sb on a polyvinyl alcohol (PVA) film through physical vapour deposition (PVD) process. A 1 × 1 mm area of the film SA is cut and integrated into between two fiber ferrules inside the laser cavity for intra-cavity loss modulation. Self-starting and stable Q-switched pulses are obtained within a pump power range from 60 to 142 mW. Within this range, the repetition rate increases from 70.82 to 98.04 kHz, while pulse width decreases from 7.42 to 5.36 μs. The fundamental frequency signal-to-noise ratio of the pulse signal is 74 dB, which indicates the excellent stability of the pulses. The maximum output power and pulse energy are 8.45 mW and 86.19 nJ, respectively. Our demonstration shows that Sb film SA capable of generating stable pulses train operating at 1.55-micron region.

  9. Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy

    PubMed Central

    Li, Frank; Buck, Danielle; De Winter, Josine; Kolb, Justin; Meng, Hui; Birch, Camille; Slater, Rebecca; Escobar, Yael Natelie; Smith, John E.; Yang, Lin; Konhilas, John; Lawlor, Michael W.; Ottenheijm, Coen; Granzier, Henk L.

    2015-01-01

    Nebulin is a giant filamentous protein that is coextensive with the actin filaments of the skeletal muscle sarcomere. Nebulin mutations are the main cause of nemaline myopathy (NEM), with typical adult patients having low expression of nebulin, yet the roles of nebulin in adult muscle remain poorly understood. To establish nebulin's functional roles in adult muscle, we studied a novel conditional nebulin KO (Neb cKO) mouse model in which nebulin deletion was driven by the muscle creatine kinase (MCK) promotor. Neb cKO mice are born with high nebulin levels in their skeletal muscles, but within weeks after birth nebulin expression rapidly falls to barely detectable levels Surprisingly, a large fraction of the mice survive to adulthood with low nebulin levels (<5% of control), contain nemaline rods and undergo fiber-type switching toward oxidative types. Nebulin deficiency causes a large deficit in specific force, and mechanistic studies provide evidence that a reduced fraction of force-generating cross-bridges and shortened thin filaments contribute to the force deficit. Muscles rich in glycolytic fibers upregulate proteolysis pathways (MuRF-1, Fbxo30/MUSA1, Gadd45a) and undergo hypotrophy with smaller cross-sectional areas (CSAs), worsening their force deficit. Muscles rich in oxidative fibers do not have smaller weights and can even have hypertrophy, offsetting their specific-force deficit. These studies reveal nebulin as critically important for force development and trophicity in adult muscle. The Neb cKO phenocopies important aspects of NEM (muscle weakness, oxidative fiber-type predominance, variable trophicity effects, nemaline rods) and will be highly useful to test therapeutic approaches to ameliorate muscle weakness. PMID:26123491

  10. Sub-5-ps, multimegawatt peak-power pulses from a fiber-amplified and optically compressed passively Q-switched microchip laser.

    PubMed

    Steinmetz, A; Jansen, F; Stutzki, F; Lehneis, R; Limpert, J; Tünnermann, A

    2012-07-01

    We report on high-energy picosecond pulse generation from a passively Q-switched and fiber-amplified microchip laser system. Initially, the utilized microchip lasers produce pulses with durations of around 100 ps at 1064 nm central wavelength. These pulses are amplified to energies exceeding 100 μJ, simultaneously chirped and spectrally broadened by self-phase modulation using a double stage amplifier based on single-mode LMA photonic crystal fibers at repetition rates of up to 1 MHz. Subsequently, the pulse duration of chirped pulses is reduced by means of nonlinear pulse compression to durations of 2.7 ps employing a conventional grating compressor and 4.7 ps using a compact compressor based on a chirped volume Bragg grating.

  11. Novel optoelectronic devices; Proceedings of the Meeting, The Hague, Netherlands, Mar. 31-Apr. 2, 1987

    NASA Technical Reports Server (NTRS)

    Adams, Michael J. (Editor)

    1987-01-01

    The present conference on novel optoelectronics discusses topics in the state-of-the-art in this field in the Netherlands, quantum wells, integrated optics, nonlinear optical devices and fiber-optic-based devices, ultrafast optics, and nonlinear optics and optical bistability. Attention is given to the production of fiber-optics for telecommunications by means of PCVD, lifetime broadening in quantum wells, nonlinear multiple quantum well waveguide devices, tunable single-wavelength lasers, an Si integrated waveguiding polarimeter, and an electrooptic light modulator using long-range surface plasmons. Also discussed are backward-wave couplers and reflectors, a wavelength-selective all-fiber switching matrix, the impact of ultrafast optics in high-speed electronics, the physics of low energy optical switching, and all-optical logical elements for optical processing.

  12. All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers.

    PubMed

    Mao, Dong; He, Zhiwen; Lu, Hua; Li, Mingkun; Zhang, Wending; Cui, Xiaoqi; Jiang, Biqiang; Zhao, Jianlin

    2018-04-01

    We demonstrate a mode converter with an insertion loss of 0.36 dB based on mode coupling of tapered single-mode and two-mode fibers, and realize all-fiber flexible cylindrical vector lasers at 1550 nm. Attributing to the continuous distribution of a tangential electric field at taper boundaries, the laser is switchable between the radially and azimuthally polarized states by adjusting the input polarization. In the temporal domain, the operation is controllable among continuous-wave, Q-switched, and mode-locked statuses by changing the saturable absorber or pump strength. The duration of Q-switched radially/azimuthally polarized laser spans from 10.4/10.8 to 6/6.4 μs at the pump range of 38 to 58 mW, while that of the mode-locked pulse varies from 39.2/31.9 to 5.6/5.2 ps by controlling the laser bandwidth. The proposed laser combines the features of a cylindrical vector beam, a fiber laser, and an ultrafast pulse, providing a special and cost-effective source for practical applications.

  13. All-optical switching of magnetoresistive devices using telecom-band femtosecond laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Li; Chen, Jun-Yang; Wang, Jian-Ping, E-mail: jpwang@umn.edu, E-mail: moli@umn.edu

    Ultrafast all-optical switching of the magnetization of various magnetic systems is an intriguing phenomenon that can have tremendous impact on information storage and processing. Here, we demonstrate all-optical switching of GdFeCo alloy films using a telecom-band femtosecond fiber laser. We further fabricate Hall cross devices and electrically readout all-optical switching by measuring anomalous Hall voltage changes. The use of a telecom laser and the demonstrated all-optical switching of magnetoresistive devices represent the first step toward integration of opto-magnetic devices with mainstream photonic devices to enable novel optical and spintronic functionalities.

  14. PT-symmetry of coupled fiber lasers

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey V.; Churkin, Dmitry V.; Makarenko, Maxim; Vatnik, Ilya; Suchkov, Sergey V.; Sukhorukov, Andrey A.

    2017-10-01

    In this work, we propose a concept of a coupled fiber laser exhibiting PT-symmetry properties. We consider a system operated via Raman gain. The scheme comprises two identical fiber loops (ring cavities) connected by means of two fiber couplers with variable phase shift between them. We show that by changing the phase shift one can switch between generation regimes, realizing either PT-symmetric or PT-broken solution. Furthermore, the paper investigates some peculiarities of the system such as power oscillations and the role of nonlinear phase shift in fiber rings.

  15. Self-healing ring-based WDM-PON

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Gan, Chaoqin; Zhu, Long

    2010-05-01

    In this paper, a survivable ring-based wavelength-division-multiplexing (WDM)-passive optical network (PON) for fiber protection is proposed. Protections for feeder fiber and distributed fiber are independent in the scheme. Optical line terminal (OLT) and optical network units (ONUs) can automatically switch to protection link when fiber failure occurs. Protection distributed fiber is not required in the scheme. Cost-effective components are used in ONUs to minimize costs of network. A simulation study is performed to demonstrate the scheme. Its result shows good performance of upstream and downstream signals.

  16. Improved wavelength coded optical time domain reflectometry based on the optical switch.

    PubMed

    Zhu, Ninghua; Tong, Youwan; Chen, Wei; Wang, Sunlong; Sun, Wenhui; Liu, Jianguo

    2014-06-16

    This paper presents an improved wavelength coded time-domain reflectometry based on the 2 × 1 optical switch. In this scheme, in order to improve the signal-noise-ratio (SNR) of the beat signal, the improved system used an optical switch to obtain wavelength-stable, low-noise and narrow optical pulses for probe and reference. Experiments were set up to demonstrate a spatial resolution of 2.5m within a range of 70km and obtain the beat signal with line width narrower than 15 MHz within a range of 50 km in fiber break detection. A system for wavelength-division-multiplexing passive optical network (WDM-PON) monitoring was also constructed to detect the fiber break of different channels by tuning the current applied on the gating section of the distributed Bragg reflector (DBR) laser.

  17. Distributed intrusion monitoring system with fiber link backup and on-line fault diagnosis functions

    NASA Astrophysics Data System (ADS)

    Xu, Jiwei; Wu, Huijuan; Xiao, Shunkun

    2014-12-01

    A novel multi-channel distributed optical fiber intrusion monitoring system with smart fiber link backup and on-line fault diagnosis functions was proposed. A 1× N optical switch was intelligently controlled by a peripheral interface controller (PIC) to expand the fiber link from one channel to several ones to lower the cost of the long or ultra-long distance intrusion monitoring system and also to strengthen the intelligent monitoring link backup function. At the same time, a sliding window auto-correlation method was presented to identify and locate the broken or fault point of the cable. The experimental results showed that the proposed multi-channel system performed well especially whenever any a broken cable was detected. It could locate the broken or fault point by itself accurately and switch to its backup sensing link immediately to ensure the security system to operate stably without a minute idling. And it was successfully applied in a field test for security monitoring of the 220-km-length national borderline in China.

  18. Q-switched Er:YAG radiation transmission through an oxide glass fiber for medical applications

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Dimitris N.; Papagiakoumou, Eirini; Serafetinides, Alexander A.

    2002-09-01

    In the last few years, there has been an increasing interest for the 3 μm laser radiation in various medical applications, as this wavelength is strongly absorbed by the water and the other components of soft and hard tissue. An intensive development effort is going on throughout the world, in order to develop reliable lasers emitting in the 3 μm wavelength range. Our laser development effort with the Q-switched Er:YAG laser is briefly described in this article. Additionally for medical applications there is a great demand for good flexible delivery systems, in the mid-IR wavelength region. In this work the radiation transmission of a Q-switched Er:YAG laser, emitting at 2.94 μm, through high power (HP) oxide glass fibers of 450 μm core diameter was studied. Attenuation measurements were obtained as a function of the laser energy input and as a function of curvature, at 90 °, 180° and 360° bending angle. The output beam quality was studied using a beam profiler. Experiments with the same delivery system transmitting free-running Er:YAG laser radiation, were performed for comparison. The results are promising for the delivery of Q-switched Er:YAG laser radiation, as the fibers exhibited attenuation of 0.7 dB/m, and no damage of them was observed.

  19. New CATV fiber-to-the-subscriber architectures

    NASA Astrophysics Data System (ADS)

    Kim, Gary

    1991-01-01

    Although the cable television industry has seriously proposed the widespread use of optical fiber technology as the foundation of its networks only since 1988 an important financial watershed already has been reached. Based on stunningly rapid AM technology developments and new research by industry engineers the CATV industry has already reached the point where building new optical trunk is cheaper than building conventional coaxial cable plant. Although as recently as 1988 it might have seemed preposterous to suggest that the financial crossover point between optical media and copper media would soon be reached that indeed has occurred. Using a topology dubbed the " fiber trunk and feeder engineers at American Television Communications the second-largest U. S. CATV operator have demonstrated that it is currently feasible to build new optical fiber trunking networks at costs equal to or less than conventional 450-MHz coaxial cable plant. Installation of the first such network already is underway and it is expected that the significant change in fiber economics will further spur the already-heady pace of fiber introduction in the CATV industry. That in turn will create new types of networks with topologies resembling telephone " star" networks more than conventional " tree-and-branch" systems. The new optically-based networks will be far more reliable more flexible and better adapted to signal switching than conventional CATV networks have been. Although the new networks will be put into place

  20. High-slope-efficiency 2.06 μm Ho: YLF laser in-band pumped by a fiber-coupled broadband diode.

    PubMed

    Ji, Encai; Liu, Qiang; Nie, Mingming; Cao, Xuezhe; Fu, Xing; Gong, Mali

    2016-03-15

    We first demonstrate the laser performance of a compact 2.06 μm Ho: YLF laser resonantly pumped by a broadband fiber-coupled diode. In continuous-wave (CW) operation, maximum output power of 1.63 W, corresponding to a slope efficiency of 89.2%, was obtained with a near diffraction-limited beam quality. In actively Q-switched operation, maximum pulse energy of 1.1 mJ was achieved at the repetition frequency of 100 Hz. The minimum pulse duration was 43 ns. The performance in both the CW and Q-switched regimes indicates that the current fiber-coupled diode in-band pumped Ho: YLF laser has great potential in certain conditions that require several watts of output power or several millijoules of short pulse energy.

  1. Microelectromechanical apparatus for elevating and tilting a platform

    DOEpatents

    Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.

    2003-04-08

    A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

  2. Microelectromechanical apparatus for elevating and tilting a platform

    DOEpatents

    Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.

    2004-07-06

    A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with-the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

  3. Pregnancy and Smoothelin-like Protein 1 (SMTNL1) Deletion Promote the Switching of Skeletal Muscle to a Glycolytic Phenotype in Human and Mice.

    PubMed

    Lontay, Beata; Bodoor, Khaldon; Sipos, Adrienn; Weitzel, Douglas H; Loiselle, David; Safi, Rachid; Zheng, Donghai; Devente, James; Hickner, Robert C; McDonnell, Donald P; Ribar, Thomas; Haystead, Timothy A

    2015-07-17

    Pregnancy promotes physiological adaptations throughout the body, mediated by the female sex hormones progesterone and estrogen. Changes in the metabolic properties of skeletal muscle enable the female body to cope with the physiological challenges of pregnancy and may also be linked to the development of insulin resistance. We conducted global microarray, proteomic, and metabolic analyses to study the role of the progesterone receptor and its transcriptional regulator, smoothelin-like protein 1 (SMTNL1) in the adaptation of skeletal muscle to pregnancy. We demonstrate that pregnancy promotes fiber-type changes from an oxidative to glycolytic isoform in skeletal muscle. This phenomenon is regulated through an interaction between SMTNL1 and progesterone receptor, which alters the expression of contractile and metabolic proteins. smtnl1(-/-) mice are metabolically less efficient and show impaired glucose tolerance. Pregnancy antagonizes these effects by inducing metabolic activity and increasing glucose tolerance. Our results suggest that SMTNL1 has a role in mediating the actions of steroid hormones to promote fiber switching in skeletal muscle during pregnancy. Our findings also bear on the management of gestational diabetes that develops as a complication of pregnancy in ~4% of women. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Proposal of optical mode switch

    NASA Astrophysics Data System (ADS)

    Takakura, Ryuta; Jizodo, Makoto; Fujino, Asuka; Tanaka, Tatsushi; Hamamoto, Kiichi

    2014-08-01

    Here, we propose a novel optical mode switch, which is a new concept of the optical switch. It can overcome the matrix size limitation issue, which has been a general issue for the waveguide optical space switch, because of its simple fiber coupling configuration. In addition, it contributes to the lossless mux/demux function such as wavelength multiplexing with powerless mode conversion unlike wavelength conversion. In this paper, we propose the principle of the optical mode switch. The simulation results showed less than -30 dB mode crosstalk, with less than only 0.1 dB excess loss for a two-mode optical switch. Moreover, the scalable configuration up to four modes is also proposed in this paper.

  5. Suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding.

    PubMed

    Huss, Rafael; Wilhelm, Ralf; Kolleck, Christian; Neumann, Jörg; Kracht, Dietmar

    2010-06-07

    The onset of parasitic oscillations limits the extraction efficiency and therefore energy scaling of Q-switched lasers. A solid-state laser was end pumped with a fiber-coupled diode laser and operated in q-cw as well as in passively Q-switched operation. For Q-switched operation, we demonstrate the suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding.

  6. Radially polarized and passively Q-switched Yb-doped fiber laser based on intracavity birefringent mode discrimination

    NASA Astrophysics Data System (ADS)

    Sun, Xuehuan; Wu, Yongxiao; Chen, Sanbin; Li, Jianlang

    2018-05-01

    In this paper, we demonstrated a passive Q-switched ytterbium-doped fiber laser with radially polarized beam emission by using a c-cut YVO4 birefringent crystal as the intracavity polarization discriminator, and a Cr4+:YAG crystal as the saturable absorber and output coupler. The maximum averaged laser power reached 3.89 W with a high slope efficiency of 66.5%. The laser pulse had a peak power of 161 W, 160 ns duration, and 151 kHz repetition rate at the absorbed pump power of 6.48 W. Such a radially polarized pulse would facilitate numerous applications.

  7. Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber

    PubMed Central

    Zhang, M.; Hu, Guohua; Hu, Guoqing; Howe, R. C. T.; Chen, L.; Zheng, Z.; Hasan, T.

    2015-01-01

    We demonstrate a ytterbium (Yb) and an erbium (Er)-doped fiber laser Q-switched by a solution processed, optically uniform, few-layer tungsten disulfide saturable absorber (WS2-SA). Nonlinear optical absorption of the WS2-SA in the sub-bandgap region, attributed to the edge-induced states, is characterized by 3.1% and 4.9% modulation depths with 1.38 and 3.83 MW/cm2 saturation intensities at 1030 and 1558 nm, respectively. By integrating the optically uniform WS2-SA in the Yb- and Er-doped laser cavities, we obtain self-starting Q-switched pulses with microsecond duration and kilohertz repetition rates at 1030 and 1558 nm. Our work demonstrates broadband sub-bandgap saturable absorption of a single, solution processed WS2-SA, providing new potential efficacy for WS2 in ultrafast photonic applications. PMID:26657601

  8. A multi-ring optical packet and circuit integrated network with optical buffering.

    PubMed

    Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya

    2012-12-17

    We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate < 1 × 10(-4)) operation was achieved with optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.

  9. Switchable multi-wavelength fiber ring laser based on a compact in-fiber Mach-Zehnder interferometer with photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Chen, W. G.; Lou, S. Q.; Feng, S. C.; Wang, L. W.; Li, H. L.; Guo, T. Y.; Jian, S. S.

    2009-11-01

    Switchable multi-wavelength fiber ring laser with an in-fiber Mach-Zehnder interferometer incorporated into the ring cavity serving as wavelength-selective filter at room temperature is demonstrated. The filter is formed by splicing a section of few-mode photonic crystal fiber (PCF) and two segments of single mode fiber (SMF) with the air-holes on the both sides of PCF intentionally collapsed in the vicinity of the splices. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-, dual- and triple-wavelength lasing operations by exploiting polarization hole burning (PHB) effect.

  10. Fiber lasers and their applications [Invited].

    PubMed

    Shi, Wei; Fang, Qiang; Zhu, Xiushan; Norwood, R A; Peyghambarian, N

    2014-10-01

    Fiber lasers have seen progressive developments in terms of spectral coverage and linewidth, output power, pulse energy, and ultrashort pulse width since the first demonstration of a glass fiber laser in 1964. Their applications have extended into a variety of fields accordingly. In this paper, the milestones of glass fiber laser development are briefly reviewed and recent advances of high-power continuous wave, Q-switched, mode-locked, and single-frequency fiber lasers in the 1, 1.5, 2, and 3 μm regions and their applications in such areas as industry, medicine, research, defense, and security are addressed in detail.

  11. Switch configuration for migration to optical fiber network

    NASA Technical Reports Server (NTRS)

    Zobrist, George W.

    1993-01-01

    The purpose is to investigate the migration of an Ethernet LAN segment to fiber optics. At the present time it is proposed to support a Fiber Distributed Data Interface (FDDI) backbone and to upgrade the VAX cluster to fiber optic interface. Possibly some workstations will have an FDDI interface. The remaining stations on the Ethernet LAN will be segmented. The rationale for migrating from the present Ethernet configuration to a fiber optic backbone is due to the increase in the number of workstations and the movement of applications to a windowing environment, extensive document transfers, and compute intensive applications.

  12. Dye-doped nanostructure polypyrrole film for electrochemically switching solid-phase microextraction of Ni(II) and ICP-OES analysis of waste water.

    PubMed

    Shamaeli, Ehsan; Alizadeh, Naader

    2012-01-01

    A nanostructure fiber based on conducting polypyrrole synthesized by an electrochemical method has been developed, and used for electrochemically switching solid-phase microextraction (ES-SPME). The ES-SPME was prepared by the doping of eriochrome blue in polypyrrole (PPy-ECB) and used for selectively extracting the Ni(II) cation in the presence of some transition and heavy metal ions. The cation-exchange behavior of electrochemically prepared polypyrrole on stainless-steel with and without eriochrome blue (ECB) dye was characterized using ICP-OES analysis. The effects of the scan rate for electrochemical synthesis, uptake and the release potential on the extraction behavior of the PPy-ECB conductive fiber were studied. Uptake and release time profiles show that the process of electrically switched cation exchange could be completed within 250 s. The results of the present study point concerning the possibility of developing a selective extraction process for Ni(II) from waste water was explored using such a nanostructured PPy-ECB film through an electrically switched cation exchange. 2012 © The Japan Society for Analytical Chemistry

  13. Passively Q-switched Tm-doped fiber laser based on concave gold bipyramids assembled quasi-2D saturable absorber

    NASA Astrophysics Data System (ADS)

    Song, Jiaxin; Wu, Hanshuo; Wu, Jian; Xu, Jiangming; Xiao, Hu; Leng, Jinyong; Zhou, Pu; Liu, Zejin

    2018-07-01

    We demonstrated a concave gold bipyramids (CAuBPs) quasi-2D saturable absorbers (SAs) based ~2 μm band fiber laser for the first time. CAuBPs were synthesized by using modified aqueous wet-chemical synthesis method. Through controlling the size and morphology of CAuBPs, the longitudinal surface plasmon resonance peak of CAuBPs based quasi-2D SA is tuned to be ~2 μm. Passively Q-switched lasing of thulium-doped fiber laser is achieved successfully with a maximum average output power of 9.72 mW and ~9% slope efficiency. The minimum pulse width is 4.56 µs at the repetition rate of 20 kHz. Experimental results reveals that CAuBPs could be used as SAs in the 2 µm region, which verifies the saturable absorption properties of CAuBPs.

  14. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers

    PubMed Central

    Li, Jianfeng; Luo, Hongyu; Zhai, Bo; Lu, Rongguo; Guo, Zhinan; Zhang, Han; Liu, Yong

    2016-01-01

    Black phosphorus (BP) as a novel class of two-dimension (2D) materials has recently attracted enormous attention as a result of its unique physical and chemical features. The remarkably strong light-matter interaction and tunable direct band-gap at a wide range make it an ideal candidate especially in the mid-infrared wavelength region as the saturable absorber (SA). In this paper, the simple and effective liquid phase exfoliation (LPE) method was used to fabricate BP. By introducing the same BP SA into two specifically designed rare earth ions doped fluoride fiber lasers at mid-infrared wavebands, Q-switching with the pulse energy of 4.93 μJ and mode-locking with the pulse duration of 8.6 ps were obtained, respectively. The operation wavelength of ~2970 nm for generated pulse is the reported longest wavelength for BP SA based fiber lasers. PMID:27457338

  15. Q-switched erbium doped fiber laser based on single and multiple walled carbon nanotubes embedded in polyethylene oxide film as saturable absorber

    NASA Astrophysics Data System (ADS)

    Ahmed, M. H. M.; Ali, N. M.; Salleh, Z. S.; Rahman, A. A.; Harun, S. W.; Manaf, M.; Arof, H.

    2015-01-01

    A passive, stable and low cost Q-switched Erbium-doped fiber laser (EDFL) is demonstrated using both single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), which are embedded in polyethylene oxide (PEO) film as a saturable absorber (SA). The film is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity for Q-switching pulse generation operating at wavelength of 1533.6 nm. With SWCNTs, the laser produces a stable pulse train with repetition rate and pulse width ranging from 9.52 to 33.33 kHz and 16.8 to 8.0 μs while varying the 980 nm pump power from 48.5 mW to 100.4 mW. On the other hand, with MWCNTs, the repetition rate and pulse width can be tuned in a wider range of 6.12-33.62 kHz and 9.5- 4.2 μs, respectively as the pump power increases from 37.9 to 120.6 mW. The MWCNTs produce the pulse train at a lower threshold and attain a higher repetition rate compared to the SWCNTs. This is due to thicker carbon nanotubes layer of the MWCNTs which provides more absorption and consequently higher damage threshold. The Q-switched EDFL produces the highest pulse energy of 531 nJ at pump power of 37.9 mW with the use of MWCNTs-PEO SA.

  16. SPARKy-Spring Ankle with Regenerative Kinematics

    DTIC Science & Technology

    2011-09-01

    fiber keel. In our design considerations, we kept the passive carbon fiber keel to allow for walking in the event of battery failure. b. Test...used include a motor encoder, ankle encoder, and a heel switch. 7. Energy efficient carbon fiber keel is integrated into the device. Figure 6... Isometric and side views of SPARKy Phase 1 as modeled in SolidWorks. The Robotic Tendon actuator provides a dynamic moment about the ankle joint. Lever

  17. The Hippo signal transduction network for exercise physiologists

    PubMed Central

    Hamilton, D. Lee; Tremblay, Annie M.

    2016-01-01

    The ubiquitous transcriptional coactivators Yap (gene symbol Yap1) and Taz (gene symbol Wwtr1) regulate gene expression mainly by coactivating the Tead transcription factors. Being at the center of the Hippo signaling network, Yap and Taz are regulated by the Hippo kinase cassette and additionally by a plethora of exercise-associated signals and signaling modules. These include mechanotransduction, the AKT-mTORC1 network, the SMAD transcription factors, hypoxia, glucose homeostasis, AMPK, adrenaline/epinephrine and angiotensin II through G protein-coupled receptors, and IL-6. Consequently, exercise should alter Hippo signaling in several organs to mediate at least some aspects of the organ-specific adaptations to exercise. Indeed, Tead1 overexpression in muscle fibers has been shown to promote a fast-to-slow fiber type switch, whereas Yap in muscle fibers and cardiomyocytes promotes skeletal muscle hypertrophy and cardiomyocyte adaptations, respectively. Finally, genome-wide association studies in humans have linked the Hippo pathway members LATS2, TEAD1, YAP1, VGLL2, VGLL3, and VGLL4 to body height, which is a key factor in sports. PMID:26940657

  18. Design and analysis of photonic optical switches with improved wavelength selectivity

    NASA Astrophysics Data System (ADS)

    Wielichowski, Marcin; Patela, Sergiusz

    2005-09-01

    Efficient optical modulators and switches are the key elements of the future all-optical fiber networks. Aside from numerous advantages, the integrated optical devices suffer from excessive longitudinal dimensions. The dimensions may be significantly reduced with help of periodic structures, such as Bragg gratings, arrayed waveguides or multilayer structures. In this paper we describe methods of analysis and example of analytical results of a photonic switch with properties modified by the application of periodic change of effective refractive index. The switch is composed of a strip-waveguide directional coupler and a transversal Bragg grating.

  19. Multiple-Ring Digital Communication Network

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    1992-01-01

    Optical-fiber digital communication network to support data-acquisition and control functions of electric-power-distribution networks. Optical-fiber links of communication network follow power-distribution routes. Since fiber crosses open power switches, communication network includes multiple interconnected loops with occasional spurs. At each intersection node is needed. Nodes of communication network include power-distribution substations and power-controlling units. In addition to serving data acquisition and control functions, each node acts as repeater, passing on messages to next node(s). Multiple-ring communication network operates on new AbNET protocol and features fiber-optic communication.

  20. Driver-receiver combined optical transceiver modules for bidirectional optical interconnection

    NASA Astrophysics Data System (ADS)

    Park, Hyo-Hoon; Kang, Sae-Kyoung; Kim, Do-Won; Nga, Nguyen T. H.; Hwang, Sung-Hwan; Lee, Tae-Woo

    2008-02-01

    We review a bidirectional optical link scheme for memory-interface applications. A driver-receiver combined optical transceiver (TRx) modules was demonstrated on an optical printed-circuit board (OPCB) platform. To select the bidirectional electric input/output signals, a driver-receiver combined TRx IC with a switching function was designed in 0.18-μm CMOS technology. The TRx IC was integrated with VCSEL/PD chips for optical link in the TRx module. The optical TRx module was assembled on a fiber-embedded OPCB, employing a 90°-bent fiber connector for 90° deflection of light beams between the TRx module and the OPCB. The TRx module and the 90° connector were passively assembled on the OPCB, using ferrule-type guide pins/ holes. Employing these constituent components, the bidirectional optical link between a pair of TRx modules has been successfully demonstrated up to 1.25 Gb/s on the OPCB.

  1. Electro-optical 1 x 2, 1 x N and N x N fiber-optic and free-space switching over 1.55 to 3.0 μm using a Ge-Ge(2)Sb(2)Te(5)-Ge prism structure.

    PubMed

    Hendrickson, Joshua; Soref, Richard; Sweet, Julian; Majumdar, Arka

    2015-01-12

    New device designs are proposed and theoretical simulations are performed on electro-optical routing switches in which light beams enter and exit the device either from free space or from lensed fibers. The active medium is a ~100 nm layer of phase change material (Ge(2)Sb(2)Te(5) or GeTe) that is electrically "triggered" to change its phase, giving "self-holding" behavior in each of two phases. Electrical current is supplied to that film by a pair of transparent highly doped conducting Ge prisms on both sides of the layer. For S-polarized light incident at ~80° on the film, a three-layer Fabry-Perot analysis, including dielectric loss, predicts good 1 x 2 and 2 x 2 switch performance at infrared wavelengths of 1.55, 2.1 and 3.0 μm, although the performance at 1.55 μm is degraded by material loss and prism mismatch. Proposals for in-plane and volumetric 1 x 4 and 4 x 4 switches are also presented. An unpolarized 1 x 2 switch projects good performance at mid infrared.

  2. Functions of the Type 1 BMP Receptor Acvr1 (Alk2) in Lens Development: Cell Proliferation, Terminal Differentiation, and Survival

    PubMed Central

    Rajagopal, Ramya; Dattilo, Lisa K.; Kaartinen, Vesa; Deng, Chu-Xia; Umans, Lieve; Zwijsen, An; Roberts, Anita B.; Bottinger, Erwin P.; Beebe, David C.

    2009-01-01

    Purpose Bone morphogenetic protein (BMP) signaling is essential for the induction and subsequent development of the lens. The purpose of this study was to analyze the function(s) of the type 1 BMP receptor, Acvr1, in lens development. Methods Acvr1 was deleted from the surface ectoderm of mouse embryos on embryonic day 9 using the Cre-loxP method. Cell proliferation, cell cycle exit, and apoptosis were measured in tissue sections by immunohistochemistry, immunofluorescence, and TUNEL staining. Results Lenses formed in the absence of Acvr1. However, Acvr1CKO (conditional knockout) lenses were small. Acvr1 signaling promoted proliferation at early stages of lens formation but inhibited proliferation at later stages. Inhibition of cell proliferation by Acvr1 was necessary for the proper regionalization of the lens epithelium and promoted the withdrawal of lens fiber cells from the cell cycle. In spite of the failure of all Acvr1CKO fiber cells to withdraw from the cell cycle, they expressed proteins characteristic of differentiated fiber cells. Although the stimulation of proliferation was Smad independent, the ability of Acvr1 to promote cell cycle exit later in development depended on classical R-Smad-Smad4 signaling. Loss of Acvr1 led to an increase in apoptosis of lens epithelial and fiber cells. Increased cell death, together with the initial decrease in proliferation, appeared to account for the smaller sizes of the Acvr1CKO lenses. Conclusions This study revealed a novel switch in the functions of Acvr1 in regulating lens cell proliferation. Previously unknown functions mediated by this receptor included regionalization of the lens epithelium and cell cycle exit during fiber cell differentiation. PMID:18566469

  3. Fully integrated Q-switch for commercial high-power resonator with solitary XLMA-fiber

    NASA Astrophysics Data System (ADS)

    Lange, R.; Bachert, C.; Rehmann, G.; Weber, H.; Luxen, R.; Enns, H.; Schenk, M.; Hosdorf, S.; Marfels, S.; Bay, M.; Kösters, A.; Krause, V.; Giesberts, M.; Fitzau, O.; Hoffmann, H.-D.

    2018-02-01

    In surface processing applications the correlation of laser power to processing speed demands a further enhancement of the performance of short-pulsed laser sources with respect to the investment costs. The frequently applied concept of master oscillator power amplifier relies on a complex structure, parts of which are highly sensitive to back reflected amplified radiation. Aiming for a simpler, robust source using only a single ytterbium doped XLMA fiber in a q-switched resonator appears as promising design approach eliminating the need for subsequent amplification. This concept requires a high power-tolerant resonator which is provided by the multikilowatt laser platform of Laserline including directly water-cooled active fiber thermal management. Laserline GmbH and Fraunhofer Institute for Laser Technology joined their forces1 to upgrade standard high power laser sources for short-pulsed operation exceeding 1 kW of average power. Therefor a compact, modular qswitch has been developed. In this paper the implementation of a polarization independent q-switch into an off-the-shelf multi-kilowatt diodepumped continuous wave fiber source is shown. In this early step of implementation we demonstrated more than 1000 W of average power at pulse lengths below 50 ns FWHM and 7.5 mJ pulse energy. The M2 corresponds to 9.5. Reliability of the system is demonstrated based on measurements including temperature and stability records. We investigated the variation possibilities concerning pulse parameters and shape as well as upcoming challenges in power up-scaling.

  4. Multifunction Imaging and Spectroscopic Instrument

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2004-01-01

    A proposed optoelectronic instrument would perform several different spectroscopic and imaging functions that, heretofore, have been performed by separate instruments. The functions would be reflectance, fluorescence, and Raman spectroscopies; variable-color confocal imaging at two different resolutions; and wide-field color imaging. The instrument was conceived for use in examination of minerals on remote planets. It could also be used on Earth to characterize material specimens. The conceptual design of the instrument emphasizes compactness and economy, to be achieved largely through sharing of components among subsystems that perform different imaging and spectrometric functions. The input optics for the various functions would be mounted in a single optical head. With the exception of a targeting lens, the input optics would all be aimed at the same spot on a specimen, thereby both (1) eliminating the need to reposition the specimen to perform different imaging and/or spectroscopic observations and (2) ensuring that data from such observations can be correlated with respect to known positions on the specimen. The figure schematically depicts the principal components and subsystems of the instrument. The targeting lens would collect light into a multimode optical fiber, which would guide the light through a fiber-selection switch to a reflection/ fluorescence spectrometer. The switch would have four positions, enabling selection of spectrometer input from the targeting lens, from either of one or two multimode optical fibers coming from a reflectance/fluorescence- microspectrometer optical head, or from a dark calibration position (no fiber). The switch would be the only moving part within the instrument.

  5. Optical zero-differential pressure switch and its evaluation in a multiple pressure measuring system

    NASA Technical Reports Server (NTRS)

    Powell, J. A.

    1977-01-01

    The design of a clamped-diaphragm pressure switch is described in which diaphragm motion is detected by a simple fiber-optic displacement sensor. The switch was evaluated in a pressure measurement system where it detected the zero crossing of the differential pressure between a static test pressure and a tank pressure that was periodically ramped from near zero to fullscale gage pressure. With a ramping frequency of 1 hertz and a full-scale tank pressure of 69 N/sq cm gage (100 psig), the switch delay was as long as 2 milliseconds. Pressure measurement accuracies were 0.25 to 0.75 percent of full scale. Factors affecting switch performance are also discussed.

  6. Optical backplane interconnect switch for data processors and computers

    NASA Technical Reports Server (NTRS)

    Hendricks, Herbert D.; Benz, Harry F.; Hammer, Jacob M.

    1989-01-01

    An optoelectronic integrated device design is reported which can be used to implement an all-optical backplane interconnect switch. The switch is sized to accommodate an array of processors and memories suitable for direct replacement into the basic avionic multiprocessor backplane. The optical backplane interconnect switch is also suitable for direct replacement of the PI bus traffic switch and at the same time, suitable for supporting pipelining of the processor and memory. The 32 bidirectional switchable interconnects are configured with broadcast capability for controls, reconfiguration, and messages. The approach described here can handle a serial interconnection of data processors or a line-to-link interconnection of data processors. An optical fiber demonstration of this approach is presented.

  7. Crossbar Switches For Optical Data-Communication Networks

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P.

    1994-01-01

    Optoelectronic and electro-optical crossbar switches called "permutation engines" (PE's) developed to route packets of data through fiber-optic communication networks. Basic network concept described in "High-Speed Optical Wide-Area Data-Communication Network" (NPO-18983). Nonblocking operation achieved by decentralized switching and control scheme. Each packet routed up or down in each column of this 5-input/5-output permutation engine. Routing algorithm ensures each packet arrives at its designated output port without blocking any other packet that does not contend for same output port.

  8. An All-Optical Picosecond Switch in Polydiacetylene

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Paley, Mark S.

    2002-01-01

    Polydiacetylene derivative of 2-methyl-4-nitroaniline (PDAMNA) showed a picosecond switching property. This phenomenon was demonstrated by wave guiding a cw He-Ne laser collinearly with a mode-locked picosecond Nd:YAG laser at 532 nm through a hollow fiber coated on the inside with a thin film of PDAMNA. The z-scan investigations of PDAMNA thin film revealed that the PDAMNA system is a three level system and the switching is caused by excited state absorption of the He-Ne beam.

  9. Selenium semiconductor core optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, G. W.; Qian, Q., E-mail: qianqi@scut.edu.cn; Peng, K. L.

    2015-02-15

    Phosphate glass-clad optical fibers containing selenium (Se) semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Suchmore » crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.« less

  10. Tunable narrow linewidth all-fiber thulium-doped fiber laser in a 2 µm-band using two Hi-Bi fiber optical loop mirrors

    NASA Astrophysics Data System (ADS)

    Posada-Ramírez, B.; Durán-Sánchez, M.; Álvarez-Tamayo, R. I.; Ibarra-Escamilla, B.; Hernández-Arriaga, M. V.; Sánchez-de-la-Llave, D.; Kuzin, E. A.

    2017-08-01

    We propose an all-fiber Tm-doped fiber laser with a tunable and narrow laser line generated in a wavelength region of 2 µm. A single laser line with a linewidth below 0.05 nm, tunable in a wavelength range of 44.25 nm, is obtained. The laser linewidth and the discrete wavelength tuning range depend on the characteristics of the two fiber optical loop mirrors with high birefringence in the loop that forms the cavity. Dual-wavelength laser operation is also observed at tuning range limits with a wavelength separation of 47 nm. Alternate wavelength switching is also observed.

  11. Switchable dual-wavelength erbium-doped fiber laser based on the photonic crystal fiber loop mirror and chirped fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Guo; Lou, Shu-Qin; Wang, Li-Wen; Li, Hong-Lei; Guo, Tieying; Jian, Shui-Sheng

    2010-03-01

    The switchable dual-wavelength erbium-doped fiber laser (EDFL) with a two-mode photonic crystal fiber (PCF) loop mirror and a chirped fiber Bragg grating (CFBG) at room temperature is proposed and experimentally demonstrated. The two-mode PCF loop mirror is formed by inserting a piece of two-mode PCF into a Sagnac loop mirror, with the air-holes of the PCF intentionally collapsing at the splices. By adjusting the state of the polarization controller (PC) appropriately, the laser can be switched between the stable single- and dual-wavelength operations by means of the polarization hole burning (PHB) and spectral hole burning (SHB) effects.

  12. Novel polarization diversity without switch duplication of a Si-wire PILOSS optical switch.

    PubMed

    Tanizawa, Ken; Suzuki, Keijiro; Ikeda, Kazuhiro; Namiki, Shu; Kawashima, Hitoshi

    2016-04-04

    We demonstrate the compact polarization diversity based on the bidirectional full-port use of a path-independent-insertion-loss (PILOSS) optical switch. A polarization-diversity 4 × 4 strictly non-blocking optical switch is developed using a single thermooptic PILOSS Si-wire switch and fiber-based polarization beam splitters (PBSs) and combiners (PBCs). We measure characteristics of the switch and confirm that the proposed configuration demonstrates the performance in the insertion loss, polarization-dependent loss (PDL), and differential group delay (DGD) comparable with that of a conventional polarization-diversity 4 × 4 PILOSS switch using double switch elements. On the other hand, higher crosstalk is observed. The crosstalk increase is associated with the backward crosstalk at a waveguide intersection based on a directional coupler. The effect of the backward crosstalk on the total crosstalk is estimated, and future prospects are discussed.

  13. Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repasky, Kevin

    2014-02-01

    A fiber sensor array for sub-surface CO 2 concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 μm. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO 2 to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from themore » DFB laser interacts with the CO 2 before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO 2 absorption features where a transmission measurement is made allowing the CO 2 concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO 2 concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO 2 concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO 2/day began on July 10, 2012. The elevated subsurface CO 2 concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project provided opportunities for two graduate students to participate in research directly related to geologic carbon sequestration. Furthermore, commercialization of the technology developed is being pursued with five different companies via the Department of energy SBIR/STTR program« less

  14. Self-healing failures in the aerial plant

    NASA Astrophysics Data System (ADS)

    Kiss, Gabor D.

    1994-03-01

    This account begins in the wee hours of a bitterly cold night in the winter of '92 - '93. A fiber optic transmission system starts to incur unacceptable errors and switches to a protect channel. The system is being run at 1550 nm because it is a route which is long enough to otherwise require a repeater at 1310 nm. OTDR measurement shows high splice losses. By dawn the high-loss splices have partially recovered so the system is switched back to the original fibers. Failure of the mechanical splices is suspected, the RBOC requests post-mortem assistance from Bellcore, and a team is dispatched immediately to work with RBOC personnel in determining the cause of the failure.

  15. Displacement monitoring of switch track and its slab on a bridge of high speed railway by FBG

    NASA Astrophysics Data System (ADS)

    Li, Weilai; Li, He; Cheng, Jian; Huang, Xiaomei; Pan, Jianjun; Zhou, Ciming; Yang, Minghong

    2011-05-01

    In a 350km/h high speed railway line, there is a seamless switch with ballastless slabs built on a bridge. 54 Fiber Bragg Grating detecting cells are employed to monitor the displacement of track and slab. The cell is of extending function of measurement range, up to 50mm displacement, and is of good linearity. Protecting methods for cells and fiber are adopted to keep them surviving from the harsh conditions. The results show that in 75 days, the displacement of the track and sleeper slab was 8-9mm, and the displacement is of high correlation with daily environmental temperature change.

  16. Fiber optic interconnect and optoelectronic packaging challenges for future generation avionics

    NASA Astrophysics Data System (ADS)

    Beranek, Mark W.

    2007-02-01

    Forecasting avionics industry fiber optic interconnect and optoelectronic packaging challenges that lie ahead first requires an assumption that military avionics architectures will evolve from today's centralized/unified concept based on gigabit laser, optical-to-electrical-to-optical switching and optical backplane technology, to a future federated/distributed or centralized/unified concept based on gigabit tunable laser, electro-optical switch and add-drop wavelength division multiplexing (WDM) technology. The requirement to incorporate avionics optical built-in test (BIT) in military avionics fiber optic systems is also assumed to be correct. Taking these assumptions further indicates that future avionics systems engineering will use WDM technology combined with photonic circuit integration and advanced packaging to form the technical basis of the next generation military avionics onboard local area network (LAN). Following this theme, fiber optic cable plants will evolve from today's multimode interconnect solution to a single mode interconnect solution that is highly installable, maintainable, reliable and supportable. Ultimately optical BIT for fiber optic fault detection and isolation will be incorporated as an integral part of a total WDM-based avionics LAN solution. Cost-efficient single mode active and passive photonic component integration and packaging integration is needed to enable reliable operation in the harsh military avionics application environment. Rugged multimode fiber-based transmitters and receivers (transceivers) with in-package optical BIT capability are also needed to enable fully BIT capable single-wavelength fiber optic links on both legacy and future aerospace platforms.

  17. Investigation of local ferroelectric and piezoelectric effects on mats of electrospun poly(vinylidene fluoride) (PVDF) fibers

    NASA Astrophysics Data System (ADS)

    Durgaprasad, P.; Hemalatha, J.

    2018-04-01

    Poly(vinylidene fluoride) (PVDF) fiber mat was synthesized by using electrospinning technique by using DMF/Acetone as mixed solvent. Structural and functional group studies were studied by using X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy respectively. The morphology of the fiber mat was investigated by using scanning electron microscopy (SEM) which revealed the formation of uniform fibers with an average diameter of 500nm. The local ferroelectric, piezo electric properties and also the domain switching of the fiber mats were investigated by Dynamic Contact Electrostatic Force Microscopy (DC-EFM) studies. The peizoelectric/ferroelectric response was recorded and analyzed.

  18. Bidirectional optical bistability in a dual-pumped erbium doped fiber ring laser.

    PubMed

    Lai, W J; Shum, P; Binh, L

    2004-11-15

    We investigate bidirectional optical wave propagations in a dual-pumped erbium doped fiber ring laser without isolator, and observe optical bistability behaviors. Consequently, we propose and construct a NOLM-NALM fiber ring laser to demonstrate and exploit this bidirectional optical bistability phenomenon in optical switching by introducing two tunable variable ratio couplers in the system. Numerical analyses based on the proposed laser structure have also been demonstrated corroborated with the experimental results.

  19. Thermoresponsive electrospun fibers for water harvesting applications

    NASA Astrophysics Data System (ADS)

    Thakur, Neha; Baji, Avinash; Ranganath, Anupama Sargur

    2018-03-01

    Temperature triggered switchable cellulose acetate-poly(N-isopropylacrylamide) (CA-PNIPAM) core-shell and blend nanofibers are fabricated for controlled moisture harvesting applications. Core-shell fibers are fabricated using a co-axial electrospinning setup whereas the conventional electrospinning setup is employed for fabricating the blend fibers. Investigation of their wettability behaviour demonstrated that the blend fibers are superhydrophilic whereas the core-shell fibers are hydrophilic at ambient temperature. Furthermore, both the samples have an ability to switch between the two states viz. hydrophilic to hydrophobic state based on thermal stimulus. The core-shell fibers are shown to have higher moisture sorption ability compared to the blend fibers. This study investigates the mechanism behind the switchable wettability behaviour of the core-shell fibers and demonstrates the crucial role played by the functional groups present on the surface layer of fibers in governing their moisture collection efficiency.

  20. Integration of GaN/AlN all-optical switch with SiN/AlN waveguide utilizing spot-size conversion.

    PubMed

    Iizuka, Norio; Yoshida, Haruhiko; Managaki, Nobuto; Shimizu, Toshimasa; Hassanet, Sodabanlu; Cumtornkittikul, Chiyasit; Sugiyama, Masakazu; Nakano, Yoshiaki

    2009-12-07

    Spot-size converters for an all-optical switch utilizing the intersubband transition in GaN/AlN multiple quantum wells are studied with the purpose of reducing operation power by improving the coupling efficiency between the input fiber and the switch. With a stair-like spot-size converter, the absorption saturation of 5 dB is achieved with a pulse energy of 25 pJ. The switch is integrated with a SiN/AlN waveguide and spot-size converters, and the structure provides the possibility of an integration of the switch with other functional devices. To further improve the coupling loss between the waveguide and the switch, triangular-shaped converters are investigated, demonstrating losses as low as 2 dB/facet.

  1. Rapid switch-off of the human myosin heavy chain IIX gene after heavy load muscle contractions is sustained for at least four days.

    PubMed

    Andersen, J L; Gruschy-Knudsen, T

    2018-02-01

    Long-term heavy load contractions decrease the relative amount of the myosin heavy chain (MHC) IIX isoform in human skeletal muscle, but the timing of the down-regulation in the short term is unknown. Untrained subjects performed two resistance bouts, in two consecutive days, with one leg, the other leg serving as a control (age 24±1, n=5). Muscle biopsies were obtained in both legs before, immediately after, and 24, 54, and 96 hours after exercise. Serial cryosection analysis combined immunohistochemistry and ATPase histochemistry with In Situ hybridization to identify the distribution of MHC isoforms and their corresponding transcripts, enabling identification of transitional fibers. Fibers positive solely for MHC IIX mRNA decreased in the exercised leg throughout the study period. At 96 hours post-exercise, no fibers solely expressed MHC IIX mRNA. In contrast, the number of fibers expressing MHC IIA mRNA increased throughout the study period. The percentage of fibers expressing mRNA for MHC I was unchanged in both legs at all time points. Pronounced depletion of glycogen in the MHC IIX fibers of the exercised leg verifies that the type IIX fibers were active during the heavy load contractions. Major mismatch between MHC at the mRNA and protein levels was only found in the fibers of the exercised leg. These data provide unequivocal in situ evidence of an immediate shutdown of the MHC IIX gene after resistance exercise. A further novel finding was that the silencing of the MHC IIX gene is sustained at least 4 days after removal of the stimulus. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Fiber optics for aircraft engine/inlet control

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1981-01-01

    NASA programs that focus on the use of fiber optics for aircraft engine/inlet control are reviewed. Fiber optics for aircraft control is attractive because of its inherent immunity to EMI and RFI noise. Optical signals can be safely transmitted through areas that contain flammable or explosive materials. The use of optics also makes remote sensing feasible by eliminating the need for electrical wires to be connected between sensors and computers. Using low-level optical signals to control actuators is also feasible when power is generated at the actuator. Each application of fiber optics for aircraft control has different requirements for both the optical cables and the optical connectors. Sensors that measure position and speed by using slotted plates can use lossy cables and bundle connectors if data transfer is in the parallel mode. If position and speed signals are multiplexed, cable and connector requirements change. Other sensors that depend on changes in transmission through materials require dependable characteristics of both the optical cables and the optical connectors. A variety of sensor types are reviewed, including rotary position encoders, tachometers, temperature sensors, and blade tip clearance sensors for compressors and turbines. Research on a gallium arsenide photoswitch for optically switched actuators that operate at 250 C is also described.

  3. Vector solitons in harmonic mode-locked erbium-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Habruseva, Tatiana; Mkhitaryan, Mkhitar; Mou, Chengbo; Rozhin, Aleksey; Turitsyn, Sergei K.; Sergeyev, Sergey V.

    2014-05-01

    We report experimental study of vector solitons for the fundamental and harmonic mode-locked operation in erbiumdoper fiber lasers with carbon nanotubes based saturable absorbers and anomalous dispersion cavities. We measure evolution of the output pulses polarization and demonstrate vector solitons with various polarization attractors, including locked polarization, periodic polarization switching, and polarization precession.

  4. Optical computer switching network

    NASA Technical Reports Server (NTRS)

    Clymer, B.; Collins, S. A., Jr.

    1985-01-01

    The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.

  5. ImNet: a fiber optic network with multistar topology for high-speed data transmission

    NASA Astrophysics Data System (ADS)

    Vossebuerger, F.; Keizers, Andreas; Soederman, N.; Meyer-Ebrecht, Dietrich

    1993-10-01

    ImNet is a fiber-optic local area network, which has been developed for high speed image communication in Picture Archiving and Communication Systems (PACS). A comprehensive analysis of image communication requirements in hospitals led to the conclusion that there is a need for networks which are optimized for the transmission of large datafiles. ImNet is optimized for this application in contrast to current-state LANs. ImNet consists of two elements: a link module and a switch module. The point-to-point link module can be up to 4 km by using fiber optic cable. For short distances up to 100 m a cheaper module using shielded twisted pair cable is available. The link module works bi-directionally and handles all protocols up to OSI-Level 3. The data rate per link is up to 140 MBit/s (clock rate 175 MHz). The switch module consists of the control unit and the cross-point-switch array. The array has up to fourteen interfaces for link modules. Up to fourteen data transfers each with a maximal transfer rate of 400 MBit/s can be handled at the same time. Thereby the maximal throughput of a switch module is 5.6 GBit/s. Out of these modules a multi-star network can be built i.e., an arbitrary tree structure of stars. This topology allows multiple transmissions at the same time as long as they do not require identical links. Therefore the overall throughput of ImNet can be a multiple of the datarate per link.

  6. Compact Mach-Zehnder interferometer based on photonic crystal fiber and its application in switchable multi-wavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Lou, Shuqin; Wang, Liwen; Li, Honglei; Guo, Tieying; Jian, Shuisheng

    2009-08-01

    The compact Mach-Zehnder interferometer is proposed by splicing a section of photonic crystal fiber (PCF) and two pieces of single mode fiber (SMF) with the air-holes of PCF intentionally collapsed in the vicinity of the splices. The depedence of the fringe spacing on the length of PCF is investigated. Based on the Mach-Zehnder interferometer as wavelength-selective filter, a switchable dual-wavelength fiber ring laser is demonstrated with a homemade erbiumdoped fiber amplifier (EDFA) as the gain medium at room temperature. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-and dual -wavelength lasing operations by exploiting polarization hole burning (PHB) effect.

  7. Ultra-wide bandpass filter based on long-period fiber gratings and the evanescent field coupling between two fibers.

    PubMed

    Kim, Myoung Jin; Jung, Yong Min; Kim, Bok Hyeon; Han, Won-Taek; Lee, Byeong Ha

    2007-08-20

    We demonstrate a fiber-based bandpass filter with an ultra-wide spectral bandwidth. The ultra-wide band feature is achieved by inscribing a long-period fiber grating (LPG) in a specially-designed low index core single mode fiber. To get the bandpass function, the evanescent field coupling between two attached fibers is utilized. By applying strain, the spectral shape of the pass-band is adjusted to flat-top and Gaussian shapes. For the flat-top case, the bandwidth is obtained ~ 160 nm with an insertion loss of ~ 2 dB. With strain, the spectral shape is switched into a Gaussian one, which has ~ 120 nm FWHM and ~ 4.18 dB insertion loss at the peak.

  8. Measuring optical fiber length by use of a short-pulse optical fiber ring laser in a self-injection seeding scheme.

    PubMed

    Wang, Yi-Ping; Wang, Dong Ning; Jin, Wei

    2006-09-01

    A method for measuring the length of an optical fiber by use of an optical fiber ring laser pulse source is proposed and demonstrated. The key element of the optical fiber ring laser is a gain-switched Fabry-Perot laser diode operated in a self-injection seeding scheme. This method is especially suitable for measuring a medium or long fiber, and a resolution of 0.1 m is experimentally achieved. The measurement is implemented by accurately determining the pulse frequency that can maximize the output power of the fiber ring laser. The measurement results depend only on the refractive index of the fiber corresponding to this single wavelength, instead of the group index of the fiber, which represents a great advantage over both optical time-domain reflectometry and optical low-coherence reflectometry methods.

  9. Multi-Wavelength Q-Switched Ytterbium-Doped Fiber Laser with Multi-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Al-Masoodi, A. H. H.; Ahmed, M. H. M.; Arof, H.; Harun, S. W.

    2018-03-01

    We demonstrate a passively multi-wavelength Q-switched Ytterbium-doped fiber laser (YDFL) based on a multi-wall carbon nanotubes embedded in polyethylene oxide film as saturable absorber. The YDFL generates a stable multi-wavelength with spacing of 1.9 nm as the 980 nm pump power is fixed within 62. 4 mW and 78.0 mW. The repetition rate of the laser is tunable from 10.41 to 29.04 kHz by increasing the pump power from the threshold power of 62.4 mW to 78 mW. At 78 mW pump power, the maximum pulse energy of 38 nJ and the shortest pulse width of 8.87 µs are obtained.

  10. Radar signal transmission and switching over optical networks

    NASA Astrophysics Data System (ADS)

    Esmail, Maged A.; Ragheb, Amr; Seleem, Hussein; Fathallah, Habib; Alshebeili, Saleh

    2018-03-01

    In this paper, we experimentally demonstrate a radar signal distribution over optical networks. The use of fiber enables us to distribute radar signals to distant sites with a low power loss. Moreover, fiber networks can reduce the radar system cost, by sharing precise and expensive radar signal generation and processing equipment. In order to overcome the bandwidth challenges in electrical switches, a semiconductor optical amplifier (SOA) is used as an all-optical device for wavelength conversion to the desired port (or channel) of a wavelength division multiplexing (WDM) network. Moreover, the effect of chromatic dispersion in double sideband (DSB) signals is combated by generating optical single sideband (OSSB) signals. The optimal values of the SOA device parameters required to generate an OSSB with a high sideband suppression ratio (SSR) are determined. We considered various parameters such as injection current, pump power, and probe power. In addition, the effect of signal wavelength conversion and transmission over fiber are studied in terms of signal dynamic range.

  11. Call for Papers: Photonics in Switching

    NASA Astrophysics Data System (ADS)

    Wosinska, Lena; Glick, Madeleine

    2006-04-01

    Call for Papers: Photonics in Switching

    Guest Editors:

    Lena Wosinska, Royal Institute of Technology (KTH) / ICT Sweden Madeleine Glick, Intel Research, Cambridge, UK

    Technologies based on DWDM systems allow data transmission with bit rates of Tbit/s on a single fiber. To facilitate this enormous transmission volume, high-capacity and high-speed network nodes become inevitable in the optical network. Wideband switching, WDM switching, optical burst switching (OBS), and optical packet switching (OPS) are promising technologies for harnessing the bandwidth of WDM optical fiber networks in a highly flexible and efficient manner. As a number of key optical component technologies approach maturity, photonics in switching is becoming an increasingly attractive and practical solution for the next-generation of optical networks. The scope of this special issue is focused on the technology and architecture of optical switching nodes, including the architectural and algorithmic aspects of high-speed optical networks.

    Scope of Submission

    The scope of the papers includes, but is not limited to, the following topics:
    • WDM node architectures
    • Novel device technologies enabling photonics in switching, such as optical switch fabrics, optical memory, and wavelength conversion
    • Routing protocols
    • WDM switching and routing
    • Quality of service
    • Performance measurement and evaluation
    • Next-generation optical networks: architecture, signaling, and control
    • Traffic measurement and field trials
    • Optical burst and packet switching
    • OBS/OPS node architectures
    • Burst/Packet scheduling and routing algorithms
    • Contention resolution/avoidance strategies
    • Services and applications for OBS/OPS (e.g., grid networks, storage-area networks, etc.)
    • Burst assembly and ingress traffic shaping
    • Hybrid OBS/TDM or OBS/wavelength routing

    Manuscript Submission

    To submit to this special issue, follow the normal procedure for submission to JON and select ``Photonics in Switching' in the features indicator of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line ``Photonics in Switching.' Additional information can be found on the JON website: http://www.osa-jon.org/journal/jon/author.cfm. Submission Deadline: 15 September 2006

  12. Motion-artifact-robust, polarization-resolved second-harmonic-generation microscopy based on rapid polarization switching with electro-optic Pockells cell and its application to in vivo visualization of collagen fiber orientation in human facial skin

    PubMed Central

    Tanaka, Yuji; Hase, Eiji; Fukushima, Shuichiro; Ogura, Yuki; Yamashita, Toyonobu; Hirao, Tetsuji; Araki, Tsutomu; Yasui, Takeshi

    2014-01-01

    Polarization-resolved second-harmonic-generation (PR-SHG) microscopy is a powerful tool for investigating collagen fiber orientation quantitatively with low invasiveness. However, the waiting time for the mechanical polarization rotation makes it too sensitive to motion artifacts and hence has hampered its use in various applications in vivo. In the work described in this article, we constructed a motion-artifact-robust, PR-SHG microscope based on rapid polarization switching at every pixel with an electro-optic Pockells cell (PC) in synchronization with step-wise raster scanning of the focus spot and alternate data acquisition of a vertical-polarization-resolved SHG signal and a horizontal-polarization-resolved one. The constructed PC-based PR-SHG microscope enabled us to visualize orientation mapping of dermal collagen fiber in human facial skin in vivo without the influence of motion artifacts. Furthermore, it implied the location and/or age dependence of the collagen fiber orientation in human facial skin. The robustness to motion artifacts in the collagen orientation measurement will expand the application scope of SHG microscopy in dermatology and collagen-related fields. PMID:24761292

  13. Optical resolution photoacoustic microscopy using novel high-repetition-rate passively Q-switched microchip and fiber lasers.

    PubMed

    Shi, Wei; Kerr, Shaun; Utkin, Ilya; Ranasinghesagara, Janaka; Pan, Lei; Godwal, Yogesh; Zemp, Roger J; Fedosejevs, Robert

    2010-01-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is a novel imaging technology for visualizing optically absorbing superficial structures in vivo with lateral spatial resolution determined by optical focusing rather than acoustic detection. Since scanning of the illumination spot is required, OR-PAM imaging speed is limited by both scanning speed and laser pulse repetition rate. Unfortunately, lasers with high repetition rates and suitable pulse durations and energies are not widely available and can be cost-prohibitive and bulky. We are developing compact, passively Q-switched fiber and microchip laser sources for this application. The properties of these lasers are discussed, and pulse repetition rates up to 100 kHz are demonstrated. OR-PAM imaging was conducted using a previously developed photoacoustic probe, which enabled flexible scanning of the focused output of the lasers. Phantom studies demonstrate the ability to image with lateral spatial resolution of 7±2 μm with the microchip laser system and 15±5 μm with the fiber laser system. We believe that the high pulse repetition rates and the potentially compact and fiber-coupled nature of these lasers will prove important for clinical imaging applications where real-time imaging performance is essential.

  14. High repetition rate, high energy, actively Q-switched all-in-fiber laser

    NASA Astrophysics Data System (ADS)

    Lecourt, J. B.; Bertrand, A.; Guillemet, S.; Hernandez, Y.; Giannone, D.

    2010-05-01

    We report an actively Q-switched Ytterbium-doped all-in-fibre laser delivering 10ns pulses with high repetition rate (from 100kHz to 1MHz). The laser operation has been validated at three different wavelengths (1040, 1050 and 1064nm). The laser can deliver up to 20Watts average power with an high beam quality (M2 = 1).

  15. Experimental demonstration of tunable multiple optical orthogonal codes sequences-based optical label for optical packets switching

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun; Zhou, Heng; Ling, Yun; Wang, Yawei; Xu, Bo

    2010-03-01

    In this paper, the tunable multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) is experimentally demonstrated for the first time. The tunable MOOCS-based optical label is performed by using fiber Bragg grating (FBG)-based optical en/decoders group and optical switches configured by using Field Programmable Gate Array (FPGA), and the optical label is erased by using Semiconductor Optical Amplifier (SOA). Some waveforms of the MOOCS-based optical label, optical packet including the MOOCS-based optical label and the payloads are obtained, the switching control mechanism and the switching matrix are discussed, the bit error rate (BER) performance of this system is also studied. These experimental results show that the tunable MOOCS-OPS scheme is effective.

  16. The CHC22 Clathrin-GLUT4 Transport Pathway Contributes to Skeletal Muscle Regeneration

    PubMed Central

    Griffin, Christine A.; Esk, Christopher; Torres, Jorge A.; Ohkoshi, Norio; Ishii, Akiko; Tamaoka, Akira; Funke, Birgit H.; Kucherlapati, Raju; Margeta, Marta; Rando, Thomas A.; Brodsky, Frances M.

    2013-01-01

    Mobilization of the GLUT4 glucose transporter from intracellular storage vesicles provides a mechanism for insulin-responsive glucose import into skeletal muscle. In humans, clathrin isoform CHC22 participates in formation of the GLUT4 storage compartment in skeletal muscle and fat. CHC22 function is limited to retrograde endosomal sorting and is restricted in its tissue expression and species distribution compared to the conserved CHC17 isoform that mediates endocytosis and several other membrane traffic pathways. Previously, we noted that CHC22 was expressed at elevated levels in regenerating rat muscle. Here we investigate whether the GLUT4 pathway in which CHC22 participates could play a role in muscle regeneration in humans and we test this possibility using CHC22-transgenic mice, which do not normally express CHC22. We observed that GLUT4 expression is elevated in parallel with that of CHC22 in regenerating skeletal muscle fibers from patients with inflammatory and other myopathies. Regenerating human myofibers displayed concurrent increases in expression of VAMP2, another regulator of GLUT4 transport. Regenerating fibers from wild-type mouse skeletal muscle injected with cardiotoxin also showed increased levels of GLUT4 and VAMP2. We previously demonstrated that transgenic mice expressing CHC22 in their muscle over-sequester GLUT4 and VAMP2 and have defective GLUT4 trafficking leading to diabetic symptoms. In this study, we find that muscle regeneration rates in CHC22 mice were delayed compared to wild-type mice, and myoblasts isolated from these mice did not proliferate in response to glucose. Additionally, CHC22-expressing mouse muscle displayed a fiber type switch from oxidative to glycolytic, similar to that observed in type 2 diabetic patients. These observations implicate the pathway for GLUT4 transport in regeneration of both human and mouse skeletal muscle, and demonstrate a role for this pathway in maintenance of muscle fiber type. Extrapolating these findings, CHC22 and GLUT4 can be considered markers of muscle regeneration in humans. PMID:24204966

  17. Compact 151 W green laser with U-type resonator for prostate surgery

    NASA Astrophysics Data System (ADS)

    Bazyar, Hossein; Aghaie, Mohammad; Daemi, Mohammad Hossein; Bagherzadeh, Seyed Morteza

    2013-04-01

    We analyzed, designed and fabricated a U-type resonator for intra-cavity frequency doubling of a diode-side-pumped Q-switched Nd:YAG rod laser with high power and high stability for surgery of prostatic tissue. The resonator stability conditions were analyzed graphically in the various configurations for a U-type resonator. We obtained green light at 532 nm using a single KTP crystal, with average output power of 151 W at 10 kHz repetition rate, and with 113 ns pulse duration at 810 W input pump power. We achieved 1064-532 nm conversion efficiency of 75.8%, and pump-to-green optical-optical efficiency of 18.6%. The green power fluctuation was ±1.0% and pointing stability was better than 4 μrad. The green laser output was coupled to a side-firing medical fiber to transfer the laser beam to the prostatic tissue.

  18. Cations as Switches of Amyloid-Mediated Membrane Disruption Mechanisms: Calcium and IAPP

    PubMed Central

    Sciacca, Michele F.M.; Milardi, Danilo; Messina, Grazia M.L.; Marletta, Giovanni; Brender, Jeffrey R.; Ramamoorthy, Ayyalusamy; La Rosa, Carmelo

    2013-01-01

    Disruption of the integrity of the plasma membrane by amyloidogenic proteins is linked to the pathogenesis of a number of common age-related diseases. Although accumulating evidence suggests that adverse environmental stressors such as unbalanced levels of metal ions may trigger amyloid-mediated membrane damage, many features of the molecular mechanisms underlying these events are unknown. Using human islet amyloid polypeptide (hIAPP, aka amylin), an amyloidogenic peptide associated with β-cell death in type 2 diabetes, we demonstrate that the presence of Ca2+ ions inhibits membrane damage occurring immediately after the interaction of freshly dissolved hIAPP with the membrane, but significantly enhances fiber-dependent membrane disruption. In particular, dye leakage, quartz crystal microbalance, atomic force microscopy, and NMR experiments show that Ca2+ ions promote a shallow membrane insertion of hIAPP, which leads to the removal of lipids from the bilayer through a detergent-like mechanism triggered by fiber growth. Because both types of membrane-damage mechanisms are common to amyloid toxicity by most amyloidogenic proteins, it is likely that unregulated ion homeostasis, amyloid aggregation, and membrane disruption are all parts of a self-perpetuating cycle that fuels amyloid cytotoxicity. PMID:23332070

  19. Optical coupling elements for coherent optical multiport receivers

    NASA Astrophysics Data System (ADS)

    Langenhorst, Ralf

    1992-05-01

    Three by three (3 by 3) and four by four (4 by 4) port coupling elements and receivers for heterodyne multiport systems are realized. Commercial (3 by 3) fiber coupling elements were used to achieve a usual (3 by 3) port receiver and a (3 by 3) port receiver in pushpull switching, whose concept was theoretically and experimentally analyzed. It is established that intensity oscillations of laser sources are suppressed by pushpull switching. The influence of thermal noise of opto-electronic input levels is shown to be weaker than in usual (3 by 3) port and (4 by 4) port receivers. Thermal noise effect in pushpull switching is similar to this one in heterodyne receivers. An integrated optical coupling element in LiNbO3 was made with bridge circuit from four waveguide coupling elements and two phase converters, which are electro-optically tunable so that a continuous regulation of intermediate frequency phase can be compensated by temperature variations of the element. To obtain fiber-to-fiber losses lower than a dB, a compact crystal optical coupling element was developed with reference to polarization properties of optical waves. This element supplied the eight necessary intermediate frequency output signals. A direct experimental comparison of bandwidth efficiency of multiport and heterodyne receivers shows a factor two in optical area and a factor three in electrical frequency area.

  20. Design of a novel passive flexure-based mechanism for microelectromechanical system optical switch assembly

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbin; Sun, Xiantao; Chen, Weihai; Chen, Wenjie; Jiang, Lusha

    2014-12-01

    In microelectromechanical system (MEMS) optical switch assembly, the collision always exists between the optical fiber and the edges of the U-groove due to the positioning errors between them. It will cause the irreparable damage since the optical fiber and the silicon-made U-groove are usually very fragile. Typical solution is first to detect the positioning errors by the machine vision or high-resolution sensors and then to actively eliminate them with the aid of the motion of precision mechanisms. However, this method will increase the cost and complexity of the system. In this paper, we present a passive compensation method to accommodate the positioning errors. First, we study the insertion process of the optical fiber into the U-groove to analyze all possible positioning errors as well as the conditions of successful insertion. Then, a novel passive flexure-based mechanism based on the remote center of compliance concept is designed to satisfy the required insertion condition. The pseudo-rigid-body-model method is utilized to calculate the stiffness of the mechanism along the different directions, which is verified by finite element analysis (FEA). Finally, a prototype of the passive flexure-based mechanism is fabricated for performance tests. Both FEA and experimental results indicate that the designed mechanism can be used to the MEMS optical switch assembly.

  1. Design of a novel passive flexure-based mechanism for microelectromechanical system optical switch assembly.

    PubMed

    Zhang, Jianbin; Sun, Xiantao; Chen, Weihai; Chen, Wenjie; Jiang, Lusha

    2014-12-01

    In microelectromechanical system (MEMS) optical switch assembly, the collision always exists between the optical fiber and the edges of the U-groove due to the positioning errors between them. It will cause the irreparable damage since the optical fiber and the silicon-made U-groove are usually very fragile. Typical solution is first to detect the positioning errors by the machine vision or high-resolution sensors and then to actively eliminate them with the aid of the motion of precision mechanisms. However, this method will increase the cost and complexity of the system. In this paper, we present a passive compensation method to accommodate the positioning errors. First, we study the insertion process of the optical fiber into the U-groove to analyze all possible positioning errors as well as the conditions of successful insertion. Then, a novel passive flexure-based mechanism based on the remote center of compliance concept is designed to satisfy the required insertion condition. The pseudo-rigid-body-model method is utilized to calculate the stiffness of the mechanism along the different directions, which is verified by finite element analysis (FEA). Finally, a prototype of the passive flexure-based mechanism is fabricated for performance tests. Both FEA and experimental results indicate that the designed mechanism can be used to the MEMS optical switch assembly.

  2. Study of nonlinear liquid effects into ytterbium-doped fiber laser for multi-wavelength generation

    NASA Astrophysics Data System (ADS)

    Lozano-Hernandez, T.; Jauregui-Vazquez, D.; Estudillo-Ayala, J.; Herrera-Piad, L. A.; Rojas-Laguna, R.; Hernandez-Garcia, J. M.; Sierra-Hernandez, J. M.

    2018-02-01

    We present an experimental study of liquid refractive index effects into Ytterbium ring fiber laser cavity configuration. The laser is operated using a bi-tapered optical fiber immersed in water-alcohol concentrations. When the tapered fiber is dipped into a distilled water, a single lasing line with a peak power centered at 1025 nm is achieved. Afterward, by changing the polarization state into the cavity the lasing line can be switched. Moreover, by modifying the refractive index liquid surrounding media the lasing lines can be controlled and special liquid provide nonlinear response. The laser offers compactness, low effective cost and good stability.

  3. High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique

    NASA Astrophysics Data System (ADS)

    Didierjean, Julien; Castaing, Marc; Balembois, François; Georges, Patrick; Perrodin, Didier; Fourmigué, Jean Marie; Lebbou, Kherreddine; Brenier, Alain; Tillement, Olivier

    2006-12-01

    We present optical characterization and laser results achieved with single-crystal fibers directly grown by the micro-pulling-down technique. We investigate the spectroscopic and optical quality of the fiber, and we present the first laser results. We achieved a cw laser power of 10 W at 1064 nm for an incident pump power of 60 W at 808 nm and 360 kW peak power for 12 ns pulses at 1 kHz in the Q-switched regime. It is, to the best of our knowledge, the highest laser power ever achieved with directly grown single-crystal fibers.

  4. New shielding configurations for a simultaneous PET/MRI scanner at 7T

    PubMed Central

    Peng, Bo J.; Wu, Yibao; Cherry, Simon R.; Walton, Jeffrey H.

    2014-01-01

    Understanding sources of electromagnetic interference are important in designing any electronic system. This is especially true when combining positron emission tomography (PET) and magnetic resonance imaging (MRI) in a multimodality system as coupling between the subsystems can degrade the performance of either modality. For this reason, eliminating radio frequency (RF) interference and gradient-induced eddy currents have been major challenges in building simultaneous hybrid PET/MRI systems. MRI requires negligible RF interference at the Larmor resonance frequency, while RF interference at almost any frequency may corrupt PET data. Moreover, any scheme that minimizes these interactions would, ideally, not compromise the performance of either subsystem. This paper lays out a plan to resolve these problems. A carbon fiber composite material is found to be a good RF shield at the Larmor frequency (300 MHz in this work) while introducing negligible gradient eddy currents. This carbon fiber composite also provides excellent structural support for the PET detector components. Low frequency electromagnetic radiation (81 kHz here) from the switching power supplies of the gradient amplifiers was also found to interfere with the PET detector. Placing the PET detector module between two carbon fiber tubes and grounding the inner carbon fiber tube to the PET detector module ground reduced this interference. Further reductions were achieved by adding thin copper (Cu) foil on the outer carbon fiber case and electrically grounding the PET detector module so that all 3 components had a common ground, i.e. with the PET detector in an electrostatic cage. Finally, gradient switching typical in MRI sequences can result in count losses in the particular PET detector design studied. Moreover, the magnitude of this effect depends on the location of the detector within the magnet bore and which MRI gradient is being switched. These findings have a bearing on future designs of PET/MRI systems. PMID:24380812

  5. Spatial Soliton Interactions for Photonic Switching. Part I

    DTIC Science & Technology

    2000-03-07

    technique , a fully vectorial, first-order nonlinear wave equation that consistently includes terms two -orders beyond the slowly-varying amplitude , slowly...by using two tunable mode-locked Er-doped fiber lasers ," in Conference on Optical Fiber Communications, OSA Technical Digest Series, vol. 4, 1994...instead, based on optical logic gates. In addition, optical logic could be used for contention resolution, real-time encryption /decryption, and other

  6. Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes

    NASA Astrophysics Data System (ADS)

    Vieweg, N.; Krumbholz, N.; Hasek, T.; Wilk, R.; Bartels, V.; Keseberg, C.; Pethukhov, V.; Mikulics, M.; Wetenkamp, L.; Koch, M.

    2007-06-01

    We present a compact, robust, and transportable fiber-coupled THz system for inline monitoring of polymeric compounding processes in an industrial environment. The system is built on a 90cm x 90cm large shock absorbing optical bench. A sealed metal box protects the system against dust and mechanical disturbances. A closed loop controller unit is used to ensure optimum coupling of the laser beam into the fiber. In order to build efficient and stable fiber-coupled antennas we glue the fibers directly onto photoconductive switches. Thus, the antenna performance is very stable and it is secured from dust or misalignment by vibrations. We discuss fabrication details and antenna performance. First spectroscopic data obtained with this system is presented.

  7. Generation of vector dissipative and conventional solitons in large normal dispersion regime.

    PubMed

    Yun, Ling

    2017-08-07

    We report the generation of both polarization-locked vector dissipative soliton and group velocity-locked vector conventional soliton in a nanotube-mode-locked fiber ring laser with large normal dispersion, for the first time to our best knowledge. Depending on the polarization-depended extinction ratio of the fiber-based Lyot filter, the two types of vector solitons can be switched by simply tuning the polarization controller. In the case of low filter extinction ratio, the output vector dissipative soliton exhibits steep spectral edges and strong frequency chirp, which presents a typical pulse duration of ~23.4 ps, and can be further compressed to ~0.9 ps. In the contrastive case of high filter extinction ratio, the vector conventional soliton has clear Kelly sidebands with transform-limited pulse duration of ~1.8 ps. Our study provides a new and simple method to achieve two different vector soliton sources, which is attractive for potential applications requiring different pulse profiles.

  8. Reduction of timing jitter in passively Q-switched microchip lasers using self-injection seeding.

    PubMed

    Steinmetz, Alexander; Nodop, Dirk; Martin, Andreas; Limpert, Jens; Tünnermann, Andreas

    2010-09-01

    We present an efficient, simple, and passive technique for the reduction of timing jitter in passively Q-switched microchip lasers via self-injection seeding using a fiber delay line. The presented approach mitigates one inherent issue of passively Q-switched lasers without the need for active stabilization. At a repetition rate of a few hundred kilohertz and pulse duration of approximately 200 ps delivered by a microchip laser, the rms jitter is reduced from several nanoseconds down to 20 ps, hence, significantly below the pulse duration of the laser source.

  9. Construction and Passive Q-Switching of a Ring-Cavity Erbium-Doped Fiber Laser Using Carbon Nanotubes as a Saturable Absorber

    NASA Astrophysics Data System (ADS)

    Scott, Austin Murphy

    The purpose of this thesis is to design, build, test, and achieve pulsed operation of a ring-cavity erbium-doped fiber laser using carbon nanotubes as a saturable absorber. The erbium-doped fiber is characterized first, cross-sections are calculated, and the gain value is determined. Subsequently, the ring cavity is constructed and the laser is operated in the continuous wave regime. Much time is then spent trying to characterize and utilize the carbon nanotubes successfully. Many dispersions are made using multiple solvents and dispersing media, various images are taken with both scanning electron and Raman microscopy, and attempts at purification are made. Saturable absorbers are then created both by coating the end facet of a fiber with a dispersion containing carbon nanotubes and by inserting a fabricated poly-methyl-methacrylate (PMMA) and single-walled carbon nanotube (SWCNT) polymer composite film between two fiber end facets. Once inserted into the cavity, the saturable absorbers passively Q-switch the laser in three distinct cases. A fiber end facet coating of SWCNTs dispersed into isopropanol produced pulses with duration of 17.45 +/- 0.11 micros and 2.74 +/- 0.14 micros, with repetition rates of 25.36 +/- 0.53 kHz and 37.77 +/- 0.33 kHz, respectively. A second fiber end facet coating of SWCNTs dispersed into dimethylformamide (DMF) produced pulses with duration of 12.28 +/- 1.08 micros and 3.58 +/- 0.12 micros, with repetition rates of 25.13 +/- 0.63 kHz and 26.46 +/- 0.13 kHz, respectively. The PMMA plus SWCNT polymer composite film produced pulses of 0.716 +/- 0.007 micros duration and 142.8 +/- 1 kHz repetition rate.

  10. Passively Q-switched of EDFL employing multi-walled carbon nanotubes with diameter less than 8 nm as saturable absorber

    NASA Astrophysics Data System (ADS)

    Nur Fatin Zuikafly, Siti; Ahmad, Fauzan; Haniff Ibrahim, Mohd; Wadi Harun, Sulaiman

    2017-11-01

    The paper demonstrates passively Q-switched erbium-doped fiber laser implementing multiwalled carbon nanotubes (MWCNTs) based saturable absorber. The paper is the first to report the use of the MWCNTs with diameter less than 8 nm as typically, the diameter used is 10 to 20 nm. The MWCNTs is incorporated with water soluble host polymer, polyvinyl alcohol (PVA) to produce a MWCNTs polymer composite thin film which is then sandwiched between two fiber connectors. The fabricated SA is employed in the laser experimental setup in ring cavity. The Q-switching regime started at threshold pump power of 103 mW and increasable to 215 mW. The stable pulse train from 41.6 kHz to 76.92 kHz with maximum average output power and pulse energy of 0.17 mW and 3.39 nJ are produced. The shortest pulse width of 1.9 μs is obtained in the proposed experimental work, making it the lowest pulse width ever reported using MWCNTs-based saturable absorber.

  11. Q-switched Nd:YAG optical vortex lasers.

    PubMed

    Kim, D J; Kim, J W; Clarkson, W A

    2013-12-02

    Q-switched operation of a high-quality Nd:YAG optical vortex laser with the first order Laguerre-Gaussian mode and well-determined helical wavefronts using a fiber-based pump beam conditioning scheme is reported. A simple two-mirror resonator incorporating an acousto-optic Q-switch was employed, along with an etalon and a Brewster plate to enforce the particular helicity of the output. The laser yielded Q-switched pulses with ~250 μJ pulse energy and ~33 ns pulse duration (FWHM) at a 0.1 kHz repetition rate for 5.1 W of absorbed pump power. The handedness of the helical wavefronts was preserved regardless of the repetition rates. The prospects of further power scaling and improved laser performance are discussed.

  12. Optical switch based on thermocapillarity

    NASA Astrophysics Data System (ADS)

    Sakata, Tomomi; Makihara, Mitsuhiro; Togo, Hiroyoshi; Shimokawa, Fusao; Kaneko, Kazumasa

    2001-11-01

    Space-division optical switches are essential for the protection, optical cross-connects (OXCs), and optical add/drop multiplexers (OADMs) needed in future fiber-optic communication networks. For applications in these areas, we proposed a thermocapillarity switch called oil-latching interfacial-tension variation effect (OLIVE) switch. An OLIVE switch is a micro-mechanical optical switch fabricated on planar lightwave circuits (PLC) using micro-electro-mechanical systems (MEMS) technology. It consists of a crossing waveguide that has a groove at each crossing point and a pair of microheaters. The groove is partially filled with the refractive-index-matching liquid, and optical signals are switched according to the liquid's position in the groove, i.e., whether it is passing straight through the groove or reflecting at the sidewall of the groove. The liquid is driven by thermocapillarity and latched by capillarity. Using the total internal reflection to switch the optical path, the OLIVE switch exhibits excellent optical characteristics, such as high transparency (insertion loss: < 2 dB), high extinction ratio (> 50 dB), and low crosstalk (< -50 dB). Moreover, since this switch has a simple structure and bi-stability, it has wide variety of applications in wavelength division multiplexing (WDM) networks.

  13. Feasibility of Using Interstate Highway Right-of-Way to Obtain a More Survivable Fiber-Optics Network

    DTIC Science & Technology

    1988-01-01

    to rees- tablish connectivity for governmental users on a damaged net- work in...telephone call originates as an electrical current at a user’s home or business and travels to a telephone switching office over a local loop of copper...infrastructure. HISTORICAL PERSPECTIVE A timeline of key events with respect to the two key study components-fiber-optics communications

  14. Transmission performance of a wavelength and NRZ-to-RZ format conversion with pulsewidth tunability by combination of SOA- and fiber-based switches.

    PubMed

    Tan, Hung Nguyen; Matsuura, Motoharu; Kishi, Naoto

    2008-11-10

    An all-optical signal processing scheme coupling wavelength conversion and NRZ-to-RZ data format conversion with pulsewidth tunability into one by combination of SOA- and fiber-based switches, is experimentally demonstrated, and its transmission performance is investigated. An 1558 nm NRZ data signal is converted to RZ data format at 1546 nm with widely tunable pulsewidth from 20 % to 80 % duty cycle at the bit-rate of 10 Gb/s. The investigation on transmission performance of the converted RZ signals at each different pulsewidth is carried out over various standard single-mode fiber (SSMF) links up to 65 km long without dispersion compensation. The results clarify a significant improvement on transmission performance of converted signal in comparison with the conventional NRZ signal through tunable pulsewidth management and show the existence of an optimal pulsewidth for the RZ data format at each transmission distance with particular cumulative dispersion. The optimal pulsewidths of the converted RZ signal and its corresponding power penalties against the NRZ signal are also investigated in different SSMF links.

  15. Fiber type conversion by PGC-1α activates lysosomal and autophagosomal biogenesis in both unaffected and Pompe skeletal muscle.

    PubMed

    Takikita, Shoichi; Schreiner, Cynthia; Baum, Rebecca; Xie, Tao; Ralston, Evelyn; Plotz, Paul H; Raben, Nina

    2010-12-13

    PGC-1α is a transcriptional co-activator that plays a central role in the regulation of energy metabolism. Our interest in this protein was driven by its ability to promote muscle remodeling. Conversion from fast glycolytic to slow oxidative fibers seemed a promising therapeutic approach in Pompe disease, a severe myopathy caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA) which is responsible for the degradation of glycogen. The recently approved enzyme replacement therapy (ERT) has only a partial effect in skeletal muscle. In our Pompe mouse model (KO), the poor muscle response is seen in fast but not in slow muscle and is associated with massive accumulation of autophagic debris and ineffective autophagy. In an attempt to turn the therapy-resistant fibers into fibers amenable to therapy, we made transgenic KO mice expressing PGC-1α in muscle (tgKO). The successful switch from fast to slow fibers prevented the formation of autophagic buildup in the converted fibers, but PGC-1α failed to improve the clearance of glycogen by ERT. This outcome is likely explained by an unexpected dramatic increase in muscle glycogen load to levels much closer to those observed in patients, in particular infants, with the disease. We have also found a remarkable rise in the number of lysosomes and autophagosomes in the tgKO compared to the KO. These data point to the role of PGC-1α in muscle glucose metabolism and its possible role as a master regulator for organelle biogenesis - not only for mitochondria but also for lysosomes and autophagosomes. These findings may have implications for therapy of lysosomal diseases and other disorders with altered autophagy.

  16. Velocity, force, power, and Ca2+ sensitivity of fast and slow monkey skeletal muscle fibers

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Bodine, S. C.; Romatowski, J. G.; Widrick, J. J.

    1998-01-01

    In this study, we determined the contractile properties of single chemically skinned fibers prepared from the medial gastrocnemius (MG) and soleus (Sol) muscles of adult male rhesus monkeys and assessed the effects of the spaceflight living facility known as the experiment support primate facility (ESOP). Muscle biopsies were obtained 4 wk before and immediately after an 18-day ESOP sit, and fiber type was determined by immunohistochemical techniques. The MG slow type I fiber was significantly smaller than the MG type II, Sol type I, and Sol type II fibers. The ESOP sit caused a significant reduction in the diameter of type I and type I/II (hybrid) fibers of Sol and MG type II and hybrid fibers but no shift in fiber type distribution. Single-fiber peak force (mN and kN/m2) was similar between fiber types and was not significantly different from values previously reported for other species. The ESOP sit significantly reduced the force (mN) of Sol type I and MG type II fibers. This decline was entirely explained by the atrophy of these fiber types because the force per cross-sectional area (kN/m2) was not altered. Peak power of Sol and MG fast type II fiber was 5 and 8.5 times that of slow type I fiber, respectively. The ESOP sit reduced peak power by 25 and 18% in Sol type I and MG type II fibers, respectively, and, for the former fiber type, shifted the force-pCa relationship to the right, increasing the Ca2+ activation threshold and the free Ca2+ concentration, eliciting half-maximal activation. The ESOP sit had no effect on the maximal shortening velocity (Vo) of any fiber type. Vo of the hybrid fibers was only slightly higher than that of slow type I fibers. This result supports the hypothesis that in hybrid fibers the slow myosin heavy chain would be expected to have a disproportionately greater influence on Vo.

  17. Radiation Protection of New Lightweight Electromagnetic Interference Shielding Materials Determined

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Weight savings as high as 80 percent could be achieved by simply switching from aluminum electromagnetic interference (EMI) shielding covers for spacecraft power systems to EMI covers made from intercalated graphite fiber composites. Because EMI covers typically make up about one-fifth of the power system mass, this change would decrease the mass of a spacecraft power system by more than 15 percent. Intercalated graphite fibers are made by diffusing guest atoms or molecules, such as bromine, between the carbon planes of the graphite fibers. The resulting bromine-intercalated fibers have mechanical and thermal properties nearly identical to pristine graphite fibers, but their resistivity is lower by a factor of 5, giving them better electrical conductivity than stainless steel and making these composites suitable for EMI shielding.

  18. Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber and feedback fiber loop

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Ning, Tigang; Jian, Shuisheng

    2009-06-01

    Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating (PMFBG) is demonstrated. Due to the enhancement of the polarization hole burning (PHB) by the PMFBG, the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.336 nm at room temperature by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a compound-ring cavity and a saturable absorber (SA). The optical signal-to-noise ratio (OSNR) is over 45 dB. The amplitude variation in nearly one and half an hour is less than 0.2 dB.

  19. TRPV1, TRPA1, and TRPM8 channels in inflammation, energy redirection, and water retention: role in chronic inflammatory diseases with an evolutionary perspective.

    PubMed

    Straub, Rainer H

    2014-09-01

    Chronic inflammatory diseases are accompanied by a systemic response of the body, necessary to redirect energy-rich fuels to the activated immune system and to induce volume expansion. The systemic response is switched on by two major pathways: (a) circulating cytokines enter the brain, and (b) signals via sensory nerve fibers are transmitted to the brain. Concerning item b, sensory nerve terminals are equipped with a multitude of receptors that sense temperature, inflammation, osmolality, and pain. Thus, they can be important to inform the brain about peripheral inflammation. Central to these sensory modalities are transient receptor potential channels (TRP channels) on sensory nerve endings. For example, TRP vanilloid 1 (TRPV1) can be activated by heat, inflammatory factors (e.g., protons, bradykinin, anandamide), hyperosmolality, pungent irritants, and others. TRP channels are multimodal switches that transmit peripheral signals to the brain, thereby inducing a systemic response. It is demonstrated how and why these TRP channels (TRPV1, TRP ankyrin type 1 (TRPA1), and TRP melastatin type 8 (TRPM8)) are important to start up a systemic response of energy expenditure, energy allocation, and water retention and how this is linked to a continuously activated immune system in chronic inflammatory diseases.

  20. Common errors in textbook descriptions of muscle fiber size in nontrained humans.

    PubMed

    Chalmers, Gordon R; Row, Brandi S

    2011-09-01

    Exercise science and human anatomy and physiology textbooks commonly report that type IIB muscle fibers have the largest cross-sectional area of the three fiber types. These descriptions of muscle fiber sizes do not match with the research literature examining muscle fibers in young adult nontrained humans. For men, most commonly type IIA fibers were significantly larger than other fiber types (six out of 10 cases across six different muscles). For women, either type I, or both I and IIA muscle fibers were usually significantly the largest (five out of six cases across four different muscles). In none of these reports were type IIB fibers significantly larger than both other fiber types. In 27 studies that did not include statistical comparisons of mean fiber sizes across fiber types, in no cases were type IIB or fast glycolytic fibers larger than both type I and IIA, or slow oxidative and fast oxidative glycolytic fibers. The likely reason for mistakes in textbook descriptions of human muscle fiber sizes is that animal data were presented without being labeled as such, and without any warning that there are interspecies differences in muscle fiber properties. Correct knowledge of muscle fiber sizes may facilitate interpreting training and aging adaptations.

  1. Improved passive optical network architectures to support local area network emulation and protection

    NASA Astrophysics Data System (ADS)

    Wong, Elaine; Nadarajah, Nishaanthan; Chae, Chang-Joon; Nirmalathas, Ampalavanapillai; Attygalle, Sanjeewa M.

    2006-01-01

    We describe two optical layer schemes which simultaneously facilitate local area network emulation and automatic protection switching against distribution fiber breaks in passive optical networks. One scheme employs a narrowband fiber Bragg grating placed close to the star coupler in the feeder fiber of the passive optical network, while the other uses an additional short length distribution fiber from the star coupler to each customer for the redirection of the customer traffic. Both schemes use RF subcarrier multiplexed transmission for intercommunication between customers in conjunction with upstream access to the central office at baseband. Failure detection and automatic protection switching are performed independently by each optical network unit that is located at the customer premises in a distributed manner. The restoration of traffic transported between the central office and an optical network unit in the event of the distribution fiber break is performed by interconnecting adjacent optical network units and carrying out signal transmissions via an independent but interconnected optical network unit. Such a protection mechanism enables multiple adjacent optical network units to be simultaneously protected by a single optical network unit utilizing its maximum available bandwidth. We experimentally verify the feasibility of both schemes with 1.25 Gb/s upstream baseband transmission to the central office and 155 Mb/s local area network data transmission on a RF subcarrier frequency. The experimental results obtained from both schemes are compared, and the power budgets are calculated to analyze the scalability of each scheme.

  2. Recent New Ideas and Directions for Space-Based Nulling Interferometry

    NASA Technical Reports Server (NTRS)

    Serabyn, Eugene (Gene)

    2004-01-01

    This document is composed of two viewgraph presentations. The first is entitled "Recent New Ideas and Directions for Space-Based Nulling Interferometry." It reviews our understanding of interferometry compared to a year or so ago: (1) Simpler options identified, (2) A degree of flexibility is possible, allowing switching (or degradation) between some options, (3) Not necessary to define every component to the exclusion of all other possibilities and (4) MIR fibers are becoming a reality. The second, entitled "The Fiber Nuller," reviews the idea of Combining beams in a fiber instead of at a beamsplitter.

  3. Suppressing a Putative Sterol Carrier Gene Reduces Plasmodesmal Permeability and Activates Sucrose Transporter Genes during Cotton Fiber Elongation.

    PubMed

    Zhang, Zhiyuan; Ruan, Yong-Ling; Zhou, Na; Wang, Fang; Guan, Xueying; Fang, Lei; Shang, Xiaoguang; Guo, Wangzhen; Zhu, Shuijin; Zhang, Tianzhen

    2017-08-01

    Plasmodesmata (PDs) play vital roles in cell-to-cell communication and plant development. Emerging evidence suggests that sterols are involved in PD activity during cytokinesis. However, whether sterols contribute to PD gating between established cells remains unknown. Here, we isolated GhSCP2D , a putative sterol carrier protein gene from elongating cotton ( Gossypium hirsutum ) fibers. In contrast to wild-type fiber PDs, which opened at 5 to 10 d postanthesis (DPA) and closed only at 15 to 25 DPA, plants with suppressed GhSCP2D expression had reduced sterol contents and closed PDs at 5 through 25 DPA The GhSCP2D- suppressed fibers exhibited callose deposition at the PDs, likely due to reduced expression of GhPdBG3-2A/D , which encodes a PD-targeting β-1,3-glucanase. Both GhPdBG3-2A/D expression and callose deposition were sensitive to a sterol biosynthesis inhibitor. Moreover, suppressing GhSCP2D upregulated a cohort of SUT and SWEET sucrose transporter genes in fiber cells. Collectively, our results indicate that (1) GhSCP2D is required for GhPdBG3-2A/D expression to degrade callose at the PD, thereby contributing to the establishment of the symplasmic pathway; and (2) blocking the symplasmic pathway by downregulating GhSCP2D activates or increases the expression of SUTs and SWEETs , leading to the switch from symplasmic to apoplasmic pathways. © 2017 American Society of Plant Biologists. All rights reserved.

  4. Modeling of optical mirror and electromechanical behavior

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Lu, Chao; Liu, Zishun; Liu, Ai Q.; Zhang, Xu M.

    2001-10-01

    This paper presents finite element (FE) simulation and theoretical analysis of novel MEMS fiber-optical switches actuated by electrostatic attraction. FE simulation for the switches under static and dynamic loading are first carried out to reveal the mechanical characteristics of the minimum or critical switching voltages, the natural frequencies, mode shapes and response under different levels of electrostatic attraction load. To validate the FE simulation results, a theoretical (or analytical) model is then developed for one specific switch, i.e., Plate_40_104. Good agreement is found between the FE simulation and the analytical results. From both FE simulation and theoretical analysis, the critical switching voltage for Plate_40_104 is derived to be 238 V for the switching angel of 12 degree(s). The critical switching on and off times are 431 microsecond(s) and 67 microsecond(s) , respectively. The present study not only develops good FE and analytical models, but also demonstrates step by step a method to simplify a real optical switch structure with reference to the FE simulation results for analytical purpose. With the FE and analytical models, it is easy to obtain any information about the mechanical behaviors of the optical switches, which are helpful in yielding optimized design.

  5. Architecture design and performance evaluation of multigranularity optical networks based on optical code division multiplexing

    NASA Astrophysics Data System (ADS)

    Huang, Shaowei; Baba, Ken-Ichi; Murata, Masayuki; Kitayama, Ken-Ichi

    2006-12-01

    In traditional lambda-based multigranularity optical networks, a lambda is always treated as the basic routing unit, resulting in low wavelength utilization. On the basis of optical code division multiplexing (OCDM) technology, a novel OCDM-based multigranularity optical cross-connect (MG-OXC) is proposed. Compared with the traditional lambda-based MG-OXC, its switching capability has been extended to support fiber switching, waveband switching, lambda switching, and OCDM switching. In a network composed of OCDM-based MG-OXCs, a single wavelength can be shared by distinct label switched paths (LSPs) called OCDM-LSPs, and OCDM-LSP switching can be implemented in the optical domain. To improve the network flexibility for an OCDM-LSP provisioning, two kinds of switches enabling hybrid optical code (OC)-wavelength conversion are designed. Simulation results indicate that a blocking probability reduction of 2 orders can be obtained by deploying only five OCs to a single wavelength. Furthermore, compared with time-division-multiplexing LSP (TDM-LSP), owing to the asynchronous accessibility and the OC conversion, OCDM-LSPs have been shown to permit a simpler switch architecture and achieve better blocking performance than TDM-LSPs.

  6. Efficient Q-switched operation in 1.64 μm Er:YAG tapered rod laser

    NASA Astrophysics Data System (ADS)

    Polyakov, Vadim M.; Vitkin, Vladimir V.; Krylov, Alexandr A.; Uskov, Alexander V.; Mak, Andrey A.

    2017-02-01

    We model output characteristics of the 1645 nm 8 mJ 10 ns 100 Hz Q-switched Er:YAG DPSSL. The laser is end pumped at a wavelength of 1532 nm. Fiber-coupled diode laser module was 10 nm FWHM, 12 W CW, 200 μm, NA 0.22. Various tapering of the active rod has been considered for 1 mm diameter, 20 mm long and 0.5% Er doping. We discuss the heat deposition process, the energy storage efficiency and the average power limitations for Q-switched regime of generation and amplification, and find the system scalable for the high power operation.

  7. Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Chen, Ming; Jian, Shuisheng

    2009-08-01

    Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber laser at room temperature is demonstrated. One fiber Bragg grating (FBG) directly written in a polarization-maintaining and photosensitive erbiumdoped fiber (PMPEDF) as the wavelength-selective component is used in a linear laser cavity. Due to the polarization hole burning (PHB) enhanced by the polarization-maintaining fiber Bragg grating (PMFBG), the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.202 nm by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a saturable absorber (SA). The optical signal-tonoise ratio (OSNR) of the laser is over 40 dB. The amplitude variation in nearly one and half an hour is less than 0.5 dB for both wavelengths.

  8. Power system applications of fiber optics

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Johnston, A.; Lutes, G.; Daud, T.; Hyland, S.

    1984-01-01

    Power system applications of optical systems, primarily using fiber optics, are reviewed. The first section reviews fibers as components of communication systems. The second section deals with fiber sensors for power systems, reviewing the many ways light sources and fibers can be combined to make measurements. Methods of measuring electric field gradient are discussed. Optical data processing is the subject of the third section, which begins by reviewing some widely different examples and concludes by outlining some potential applications in power systems: fault location in transformers, optical switching for light fired thyristors and fault detection based on the inherent symmetry of most power apparatus. The fourth and final section is concerned with using optical fibers to transmit power to electric equipment in a high voltage situation, potentially replacing expensive high voltage low power transformers. JPL has designed small photodiodes specifically for this purpose, and fabricated and tested several samples. This work is described.

  9. Apparatus and Method for Elimination of Polarization-Induced Fading in Fiber-optic Sensor System

    NASA Technical Reports Server (NTRS)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    The invention is an apparatus and method of eliminating polarization-induced fading in interferometric fiber-optic sensor system having a wavelength-swept laser optical signal. The interferometric return signal from the sensor arms are combined and provided to a multi-optical path detector assembly and ultimately to a data acquisition and processing unit by way of a switch that is time synchronized with the laser scan sweep cycle.

  10. Novel single skeletal muscle fiber analysis reveals a fiber type-selective effect of acute exercise on glucose uptake.

    PubMed

    Cartee, Gregory D; Arias, Edward B; Yu, Carmen S; Pataky, Mark W

    2016-11-01

    One exercise session can induce subsequently elevated insulin sensitivity that is largely attributable to greater insulin-stimulated glucose uptake by skeletal muscle. Because skeletal muscle is a heterogeneous tissue comprised of diverse fiber types, our primary aim was to determine exercise effects on insulin-independent and insulin-dependent glucose uptake by single fibers of different fiber types. We hypothesized that each fiber type featuring elevated insulin-independent glucose uptake immediately postexercise (IPEX) would be characterized by increased insulin-dependent glucose uptake at 3.5 h postexercise (3.5hPEX). Rat epitrochlearis muscles were isolated and incubated with 2-[ 3 H]deoxyglucose. Muscles from IPEX and sedentary (SED) controls were incubated without insulin. Muscles from 3.5hPEX and SED controls were incubated ± insulin. Glucose uptake (2-[ 3 H]deoxyglucose accumulation) and fiber type (myosin heavy chain isoform expression) were determined for single fibers dissected from the muscles. Major new findings included the following: 1) insulin-independent glucose uptake was increased IPEX in single fibers of each fiber type (types I, IIA, IIB, IIBX, and IIX), 2) glucose uptake values from insulin-stimulated type I and IIA fibers exceeded the values for the other fiber types, 3) insulin-stimulated glucose uptake for type IIX exceeded IIB fibers, and 4) the 3.5hPEX group vs. SED had greater insulin-stimulated glucose uptake in type I, IIA, IIB, and IIBX but not type IIX fibers. Insulin-dependent glucose uptake was increased at 3.5hPEX in each fiber type except for IIX fibers, although insulin-independent glucose uptake was increased IPEX in all fiber types (including type IIX). Single fiber analysis enabled the discovery of this fiber type-related difference for postexercise, insulin-stimulated glucose uptake. Copyright © 2016 the American Physiological Society.

  11. Microsecond reconfigurable NxN data-communication switch using DMD

    NASA Astrophysics Data System (ADS)

    Blanche, Pierre-Alexandre; Miles, Alexander; Lynn, Brittany; Wissinger, John; Carothers, Daniel; Norwood, Robert A.; Peyghambarian, Nasser

    2014-03-01

    We present here the use the DMD as a diffraction-based optical switch, where Fourier diffraction patterns are used to steer the incoming beams to any output configuration. We have implemented a single-mode fiber coupled N X N switch and demonstrated its ability to operate over the entire telecommunication C-band centered at 1550 nm. The all-optical switch was built primarily with off-the-shelf components and a Texas Instruments DLP7000™with an array of 1024 X 768 micromirrors. This DMD is capable of switching 100 times faster than currently available technology (3D MOEMS). The switch is robust to typical failure modes, protocol and bit-rate agnostic, and permits full reconfigurable optical add drop multiplexing (ROADM). The switch demonstrator was inserted into a networking testbed for the majority of the measurements. The testbed assembled under the Center for Integrated Access Networks (ClAN), a National Science Foundation (NSF) Engineering Research Center (ERC), provided an environment in which to simulate and test the data routing functionality of the switch. A Fujitsu Flashwave 9500 PS was used to provide the data signal, which was sent through the switch and received by a second Flashwave node. We successfully transmitted an HD video stream through a switched channel without any measurable data loss.

  12. Intelligent switches of integrated lightwave circuits with core telecommunication functions

    NASA Astrophysics Data System (ADS)

    Izhaky, Nahum; Duer, Reuven; Berns, Neil; Tal, Eran; Vinikman, Shirly; Schoenwald, Jeffrey S.; Shani, Yosi

    2001-05-01

    We present a brief overview of a promising switching technology based on Silica on Silicon thermo-optic integrated circuits. This is basically a 2D solid-state optical device capable of non-blocking switching operation. Except of its excellent performance (insertion loss<5dB, switching time<2ms...), the switch enables additional important build-in functionalities. It enables single-to- single channel switching and single-to-multiple channel multicasting/broadcasting. In addition, it has the capability of channel weighting and variable output power control (attenuation), for instance, to equalize signal levels and compensate for unbalanced different optical input powers, or to equalize unbalanced EDFA gain curve. We examine the market segments appropriate for the switch size and technology, followed by a discussion of the basic features of the technology. The discussion is focused on important requirements from the switch and the technology (e.g., insertion loss, power consumption, channel isolation, extinction ratio, switching time, and heat dissipation). The mechanical design is also considered. It must take into account integration of optical fiber, optical planar wafer, analog electronics and digital microprocessor controls, embedded software, and heating power dissipation. The Lynx Photon.8x8 switch is compared to competing technologies, in terms of typical market performance requirements.

  13. Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber.

    PubMed

    Gregg, P; Mirhosseini, M; Rubano, A; Marrucci, L; Karimi, E; Boyd, R W; Ramachandran, S

    2015-04-15

    We demonstrate that a |q|=1/2 plate, in conjunction with appropriate polarization optics, can selectively and switchably excite all linear combinations of the first radial mode order |l|=1 orbital angular momentum (OAM) fiber modes. This enables full mapping of free-space polarization states onto fiber vector modes, including the radially (TM) and azimuthally polarized (TE) modes. The setup requires few optical components and can yield mode purities as high as ∼30  dB. Additionally, just as a conventional fiber polarization controller creates arbitrary elliptical polarization states to counteract fiber birefringence and yield desired polarizations at the output of a single-mode fiber, q-plates disentangle degenerate state mixing effects between fiber OAM states to yield pure states, even after long-length fiber propagation. We thus demonstrate the ability to switch dynamically, potentially at ∼GHz rates, between OAM modes, or create desired linear combinations of them. We envision applications in fiber-based lasers employing vector or OAM mode outputs, as well as communications networking schemes exploiting spatial modes for higher dimensional encoding.

  14. Proteome-wide Adaptations of Mouse Skeletal Muscles during a Full Month in Space.

    PubMed

    Tascher, Georg; Brioche, Thomas; Maes, Pauline; Chopard, Angèle; O'Gorman, Donal; Gauquelin-Koch, Guillemette; Blanc, Stéphane; Bertile, Fabrice

    2017-07-07

    The safety of space flight is challenged by a severe loss of skeletal muscle mass, strength, and endurance that may compromise the health and performance of astronauts. The molecular mechanisms underpinning muscle atrophy and decreased performance have been studied mostly after short duration flights and are still not fully elucidated. By deciphering the muscle proteome changes elicited in mice after a full month aboard the BION-M1 biosatellite, we observed that the antigravity soleus incurred the greatest changes compared with locomotor muscles. Proteomics data notably suggested mitochondrial dysfunction, metabolic and fiber type switching toward glycolytic type II fibers, structural alterations, and calcium signaling-related defects to be the main causes for decreased muscle performance in flown mice. Alterations of the protein balance, mTOR pathway, myogenesis, and apoptosis were expected to contribute to muscle atrophy. Moreover, several signs reflecting alteration of telomere maintenance, oxidative stress, and insulin resistance were found as possible additional deleterious effects. Finally, 8 days of recovery post flight were not sufficient to restore completely flight-induced changes. Thus in-depth proteomics analysis unraveled the complex and multifactorial remodeling of skeletal muscle structure and function during long-term space flight, which should help define combined sets of countermeasures before, during, and after the flight.

  15. Cations as switches of amyloid-mediated membrane disruption mechanisms: calcium and IAPP.

    PubMed

    Sciacca, Michele F M; Milardi, Danilo; Messina, Grazia M L; Marletta, Giovanni; Brender, Jeffrey R; Ramamoorthy, Ayyalusamy; La Rosa, Carmelo

    2013-01-08

    Disruption of the integrity of the plasma membrane by amyloidogenic proteins is linked to the pathogenesis of a number of common age-related diseases. Although accumulating evidence suggests that adverse environmental stressors such as unbalanced levels of metal ions may trigger amyloid-mediated membrane damage, many features of the molecular mechanisms underlying these events are unknown. Using human islet amyloid polypeptide (hIAPP, aka amylin), an amyloidogenic peptide associated with β-cell death in type 2 diabetes, we demonstrate that the presence of Ca(2+) ions inhibits membrane damage occurring immediately after the interaction of freshly dissolved hIAPP with the membrane, but significantly enhances fiber-dependent membrane disruption. In particular, dye leakage, quartz crystal microbalance, atomic force microscopy, and NMR experiments show that Ca(2+) ions promote a shallow membrane insertion of hIAPP, which leads to the removal of lipids from the bilayer through a detergent-like mechanism triggered by fiber growth. Because both types of membrane-damage mechanisms are common to amyloid toxicity by most amyloidogenic proteins, it is likely that unregulated ion homeostasis, amyloid aggregation, and membrane disruption are all parts of a self-perpetuating cycle that fuels amyloid cytotoxicity. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism.

    PubMed

    Chen, Wei; Zhang, Xiaoting; Birsoy, Kivanc; Roeder, Robert G

    2010-06-01

    As conventional transcriptional factors that are activated in diverse signaling pathways, nuclear receptors play important roles in many physiological processes that include energy homeostasis. The MED1 subunit of the Mediator coactivator complex plays a broad role in nuclear receptor-mediated transcription by anchoring the Mediator complex to diverse promoter-bound nuclear receptors. Given the significant role of skeletal muscle, in part through the action of nuclear receptors, in glucose and fatty acid metabolism, we generated skeletal muscle-specific Med1 knockout mice. Importantly, these mice show enhanced insulin sensitivity and improved glucose tolerance as well as resistance to high-fat diet-induced obesity. Furthermore, the white muscle of these mice exhibits increased mitochondrial density and expression of genes specific to type I and type IIA fibers, indicating a fast-to-slow fiber switch, as well as markedly increased expression of the brown adipose tissue-specific UCP-1 and Cidea genes that are involved in respiratory uncoupling. These dramatic results implicate MED1 as a powerful suppressor in skeletal muscle of genetic programs implicated in energy expenditure and raise the significant possibility of therapeutical approaches for metabolic syndromes and muscle diseases through modulation of MED1-nuclear receptor interactions.

  17. Giant Pulse Phenomena in a High Gain Erbium Doped Fiber Amplifier

    NASA Technical Reports Server (NTRS)

    Li, Stephen X.; Merritt, Scott; Krainak, Michael A.; Yu, Anthony

    2018-01-01

    High gain Erbium Doped Fiber Amplifiers (EDFAs) are vulnerable to optical damage when unseeded, e.g. due to nonlinear effects that produce random, spontaneous Q-switched (SQS) pulses with high peak power, i.e. giant pulses. Giant pulses can damage either the components within a high gain EDFA or external components and systems coupled to the EDFA. We explore the conditions under which a reflective, polarization-maintaining (PM), core-pumped high gain EDFA generates giant pulses, provide details on the evolution of normal pulses into giant pulses, and provide results on the transient effects of giant pulses on an amplifier's fused-fiber couplers, an effect which we call Fiber Overload Induced Leakage (FOIL). While FOIL's effect on fused-fiber couplers is temporary, its damage to forward pump lasers in a high gain EDFA can be permanent.

  18. Fiber optic evanescent field sensor for detection of explosives and CO2 dissolved in water

    NASA Astrophysics Data System (ADS)

    Orghici, R.; Willer, U.; Gierszewska, M.; Waldvogel, S. R.; Schade, W.

    2008-02-01

    A fiber optic approach for the determination of the carbon dioxide concentration in the gas or fluid phase during sequestration, as well as for the sensing of the explosive TNT is described. The sensor consists of a quartz glass multimode fiber with core diameter of 200 μm and is based on the evanescent field principle. Cladding and jacket of the fiber are removed in the sensing portion, therefore interaction between light within the fiber and the surrounding medium is possible. A single-mode distributed feedback (DFB) laser diode with an emission wavelength around λ= 1.57 μm and a frequency doubled passively Q-switched Cr4+:Nd3+:YAG microchip laser (λ= 1064 nm)are used as light sources. The experimental setup and the sensitivity of the evanescent field sensor are characterized.

  19. Development and Testing of a Scanning Differential Absorption Lidar For Carbon Sequestration Site Monitoring

    NASA Astrophysics Data System (ADS)

    Soukup, B.; Johnson, W.; Repasky, K. S.; Carlsten, J. L.

    2013-12-01

    A scanning differential absorption lidar (DIAL) instrument for carbon sequestration site monitoring is under development and testing at Montana State University. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the on-line absorption wavelength at 1571.4067 nm and the second operating at the off-line wavelength at 1571.2585 nm. Two in-line fiber optic switches are used to switch between on-line and off-line operation. After the fiber optic switches, an acousto-optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 J and a pulse repetition frequency of 15 kHz. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a fiber coupled photo-multiplier tube (PMT) module operating in the photon counting mode. The PMT has a 3% quantum efficiency, a dark count rate of 90 kHz, and a maximum count rate of 1 MHz. Recently, a fiber coupled avalanche photodiode (APD) operating in the geiger mode has been incorporated into the DIAL receiver. The APD has a quantum efficiency of 10%, a dark count rate of 10 kHz, and a maximum count rate of 1 MHz and provides a much larger dynamic range than the PMT. Both the PMT and APD provide TTL logic pulses that are monitored using a multichannel scaler card used to count the return photons as a function of time of flight and are thus interchangeable. The DIAL instrument was developed at the 1.571 m wavelength to take advantage of commercial-off-the-shelf components. The instrument is operated using a custom Labview program that switches to the DMLD operating at the on-line wavelength, locks this laser to a user defined wavelength setting, and collects return signals for a user defined time. The control program switches to the DMLD operating at the off-line wavelength where data is again collected for a user defined time. The control program repeats this process until stopped by the operator. The DIAL instrument has been operated at the Zero Emission Research Technology (ZERT) field site located on the Montana State University campus and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. Data collected by the DIAL instrument at both field sites demonstrate that the DIAL is capable of retrieving night time CO2 number density profiles out to a range of 2.5 km with a 150 m range resolution. The DIAL retrievals are validated using a co-located Li-COR 820 gas analyzer placed along the DIAL optical path allowing comparison at a single range as a function of time.

  20. Adhesive Fiber Stratification in Uropathogenic Escherichia coli Biofilms Unveils Oxygen-Mediated Control of Type 1 Pili

    PubMed Central

    Floyd, Kyle A.; Moore, Jessica L.; Eberly, Allison R.; Good, James A. D.; Shaffer, Carrie L.; Zaver, Himesh; Almqvist, Fredrik; Skaar, Eric P.; Caprioli, Richard M.; Hadjifrangiskou, Maria

    2015-01-01

    Bacterial biofilms account for a significant number of hospital-acquired infections and complicate treatment options, because bacteria within biofilms are generally more tolerant to antibiotic treatment. This resilience is attributed to transient bacterial subpopulations that arise in response to variations in the microenvironment surrounding the biofilm. Here, we probed the spatial proteome of surface-associated single-species biofilms formed by uropathogenic Escherichia coli (UPEC), the major causative agent of community-acquired and catheter-associated urinary tract infections. We used matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) to analyze the spatial proteome of intact biofilms in situ. MALDI-TOF IMS revealed protein species exhibiting distinct localizations within surface-associated UPEC biofilms, including two adhesive fibers critical for UPEC biofilm formation and virulence: type 1 pili (Fim) localized exclusively to the air-exposed region, while curli amyloid fibers localized to the air-liquid interface. Comparison of cells grown aerobically, fermentatively, or utilizing an alternative terminal electron acceptor showed that the phase-variable fim promoter switched to the “OFF” orientation under oxygen-deplete conditions, leading to marked reduction of type 1 pili on the bacterial cell surface. Conversely, S pili whose expression is inversely related to fim expression were up-regulated under anoxic conditions. Tethering the fim promoter in the “ON” orientation in anaerobically grown cells only restored type 1 pili production in the presence of an alternative terminal electron acceptor beyond oxygen. Together these data support the presence of at least two regulatory mechanisms controlling fim expression in response to oxygen availability and may contribute to the stratification of extracellular matrix components within the biofilm. MALDI IMS facilitated the discovery of these mechanisms, and we have demonstrated that this technology can be used to interrogate subpopulations within bacterial biofilms. PMID:25738819

  1. Ferroelectric liquid crystal device based photonic controllers for microwave antenna arrays

    NASA Astrophysics Data System (ADS)

    Madamopoulos, Nicholas

    For the first time, this dissertation proposes, studies, analyzes, and experimentally demonstrates the use of ferroelectric liquid crystal (FLC) technology for wideband phased array control applications. FLC devices are used as polarization switches in photonic delay lines (PDLs) to control and process optical signals that drive the elements of a phased array antenna (PAA). The use of photonics for PAA control is, at present, a vital area of applied research. This dissertation work concludes with the demonstration of a multichannel 7-bit PDL system for a wideband PAA such as the Navy's advanced Aegis radar system. The unique system issues and problems to be examined and solved in this Ph.D. dissertation include the theoretical analysis and experimental demonstration of different PDL architectures covering a sub-nanosecond to several nanoseconds time delay range. New noise reduction/suppression schemes are proposed, studied and applied to give record level time delay system performance in terms of signal-to-leakage noise ratio, and switching speeds (e.g., 35 microseconds) required for fast radar scan. We show that the external modulation FO link gives more degrees of freedom to the system engineer, and we propose a novel synchronous RF signal calibration time delay control technique to obtain optimum dynamic range performance for our PDL. The use of low loss fibers for remoting of the photonic beamformer, as well as the losses associated with multiple fiber interconnects that limit the maximum number of array channels in the systems are studied. Different fiber optic coupling techniques are investigated for enhanced fiber coupling. Multimode fibers are used, for the first time, at the output plane of the PDL to obtain improved coupling efficiency. We demonstrate a low ~1.7 dB optical insertion loss/bit, which is very close to the desired insertion loss required for the Navy system. A novel approach for hardware reduction based on wavelength multiplexing is proposed, where the use of a combination of wavelength dependent and wavelength independent optical paths provides the required time delays. Finally, new switching fabric approaches are studied based on polarization selective holograms and their potential use for the implementation of PDLs is discussed.

  2. Compact probing system using remote imaging for industrial plant maintenance

    NASA Astrophysics Data System (ADS)

    Ito, F.; Nishimura, A.

    2014-03-01

    Laser induced breakdown spectroscopy (LIBS) and endoscope observation were combined to design a remote probing device. We use this probing device to inspect a crack of the inner wall of the heat exchanger. Crack inspection requires speed at first, and then it requires accuracy. Once Eddy Current Testing (ECT) finds a crack with a certain signal level, another method should confirm it visually. We are proposing Magnetic particle Testing (MT) using specially fabricated the Magnetic Particle Micro Capsule (MPMC). For LIBS, a multichannel spectrometer and a Q-switch YAG laser were used. Irradiation area is 270 μm, and the pulse energy was 2 mJ. This pulse energy corresponds to 5-2.2 MW/cm2. A composite-type optical fiber was used to deliver both laser energy and optical image. Samples were prepared to heat a zirconium alloy plate by underwater arc welding in order to demonstrate severe accidents of nuclear power plants. A black oxide layer covered the weld surface and white particles floated on water surface. Laser induced breakdown plasma emission was taken into the spectroscope using this optical fiber combined with telescopic optics. As a result, we were able to simultaneously perform spectroscopic measurement and observation. For MT, the MPMC which gathered in the defective area is observed with this fiber. The MPMC emits light by the illumination of UV light from this optical fiber. The size of a defect is estimated with this amount of emission. Such technology will be useful for inspection repair of reactor pipe.

  3. Stable transformation and expression of GhEXPA8 fiber expansin gene to improve fiber length and micronaire value in cotton

    PubMed Central

    Bajwa, Kamran S.; Shahid, Ahmad A.; Rao, Abdul Q.; Bashir, Aftab; Aftab, Asia; Husnain, Tayyab

    2015-01-01

    Cotton fiber is multigenic trait controlled by number of genes. Previous studies suggest that one of these genes may be responsible for switching cotton fiber growth on and off to influence the fiber quality produced from a cotton seed. In the present study, the Gossypium hirsutum GhEXPA8 fiber expansin gene was introduced into local cotton variety NIAB 846 by using an Agrobacterium-mediated gene transformation. The neomycin phosphotransferase (NPTII) gene was used as a selection marker for screening of putative transgenic cotton plants. Integration and expression of the fiber expansin gene in cotton plants was confirmed with molecular techniques including Southern blot analyses, real-time PCR. Cellulose assay was used for measurement of cellulose contents of transgenic cotton fiber. The data collected from 3 years of field performance of the transgenic cotton plants expressing GhEXPA8 showed that significant improvement has been made in fiber lengths and micronaire values as compared to control G. hirsutum variety NIAB 846 cotton plants. Statistical techniques were also used for analysis of fiber and agronomic characteristics. The results of this study support improvement of cotton fiber through genetic modification. PMID:26583018

  4. On the impact of fiber-delay-lines (FDL) in an all-optical network (AON) bottleneck without wavelength conversion

    NASA Astrophysics Data System (ADS)

    Argibay-Losada, Pablo Jesus; Sahin, Gokhan

    2014-08-01

    Random access memories (RAM) are fundamental in conventional electronic switches and routers to manage short-term congestion and to decrease data loss probabilities. Switches in all-optical networks (AONs), however, do not have access to optical RAM, and therefore are prone to much higher loss levels than their electronic counterparts. Fiber-delay-lines (FDLs), able to delay an optical data packet a fixed amount of time, have been proposed in the literature as a means to alleviate those high loss levels. However, they are extremely bulky to manage, so their usage introduces a trade-off between practicality and performance in the design and operation of the AON. In this paper we study the influence that FDLs have in the performance of flows crossing an all-optical switch that acts as their bottleneck. We show how extremely low numbers of FDLs (e.g., 1 or 2) can help in reducing losses by several orders of magnitude in several illustrative scenarios with high aggregation levels. Our results therefore suggest that FDLs can be a practical means of dealing with congestion in AONs in the absence of optical RAM buffers or of suitable data interchange protocols specifically designed for AONs.

  5. A shift in energy metabolism anticipates the onset of sarcopenia in rhesus monkeys

    PubMed Central

    Pugh, Thomas D.; Conklin, Matthew W.; Evans, Trent D.; Polewski, Michael A.; Barbian, Hannah J.; Pass, Rachelle; Anderson, Bradley D.; Colman, Ricki J.; Eliceiri, Kevin W.; Keely, Patricia J.; Weindruch, Richard; Beasley, T. Mark; Anderson, Rozalyn M.

    2013-01-01

    Summary Age-associated skeletal muscle mass loss curtails quality of life and may contribute to defects in metabolic homeostasis in older persons. The onset of sarcopenia occurs in middle age in rhesus macaques although the trigger has yet to be identified. Here we show that a shift in metabolism occurs in advance of the onset of sarcopenia in rhesus vastus lateralis. Multiphoton laser scanning microscopy detects a shift in the kinetics of photon emission from autofluorescent metabolic cofactors NADH and FAD. Lifetime of both fluorophores is shortened at mid-age and this is observed in both free and bound constituent pools. Levels of FAD and free NADH are increased and the NAD/NADH redox ratio is lower. Concomitant with this, expression of fiber type myosin isoforms is altered resulting in a shift in fiber type distribution, activity of cytochrome c oxidase involved in mitochondrial oxidative phosphorylation is significantly lower, and the sub-cellular organization of mitochondria in oxidative fibers is compromised. A regulatory switch involving the transcriptional coactivator PGC-1α directs metabolic fuel utilization and governs the expression of structural proteins. Age did not significantly impact total levels of PGC-1α; however, its sub-cellular localization was disrupted, suggesting that PGC-1α activities may be compromised. Consistent with this, intracellular lipid storage is altered and there is shift to larger lipid droplet size that likely reflect a decline in lipid turnover or a loss in efficiency of lipid metabolism. We suggest that changes in energy metabolism contribute directly to skeletal muscle aging in rhesus monkeys. PMID:23607901

  6. Compact, passively Q-switched, all-solid-state master oscillator-power amplifier-optical parametric oscillator (MOPA-OPO) system pumped by a fiber-coupled diode laser generating high-brightness, tunable, ultraviolet radiation.

    PubMed

    Peuser, Peter; Platz, Willi; Fix, Andreas; Ehret, Gerhard; Meister, Alexander; Haag, Matthias; Zolichowski, Paul

    2009-07-01

    We report on a compact, tunable ultraviolet laser system that consists of an optical parametric oscillator (OPO) and a longitudinally diode-pumped Nd:YAG master oscillator-power amplifier (MOPA). The pump energy for the whole laser system is supplied via a single delivery fiber. Nanosecond pulses are produced by an oscillator that is passively Q-switched by a Cr(4+):YAG crystal. The OPO is pumped by the second harmonic of the Nd:YAG MOPA. Continuously tunable radiation is generated by an intracavity sum-frequency mixing process within the OPO in the range of 245-260 nm with high beam quality. Maximum pulse energies of 1.2 mJ were achieved, which correspond to an optical efficiency of 3.75%, relating to the pulse energy of the MOPA at 1064 nm.

  7. An L-band multi-wavelength Brillouin-erbium fiber laser with switchable frequency spacing

    NASA Astrophysics Data System (ADS)

    Zhou, Xuefang; Hu, Kongwen; Wei, Yizhen; Bi, Meihua; Yang, Guowei

    2017-01-01

    In this paper, a novel L-band multi-wavelength Brillouin-erbium fiber laser consisting of two ring cavities is proposed and demonstrated. The frequency spacing can be switched, corresponding to the single and double Brillouin frequency shifts, by toggling the optical switch. Under a 980 nm pump power of 600 mw, and a Brillouin pump power of 4 mW and wavelength of 1599.4 nm, up to 16 Stokes signals with a frequency spacing of 0.089 nm and 5 Stokes signals with double spacing of 0.178 nm are generated. A wavelength tunability of 15 nm (1593 nm  -  1608 nm) is realized for both frequency spacings. The fluctuation of Stokes signals for both single and double Brillouin spacing regimes in the proposed setup is less than 1.5 dB throughout a 30 min time span.

  8. Widely tunable eye-safe laser by a passively Q-switched photonic crystal fiber laser and an external-cavity optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Chang, H. L.; Zhuang, W. Z.; Huang, W. C.; Huang, J. Y.; Huang, K. F.; Chen, Y. F.

    2011-09-01

    We report on a widely tunable passively Q-switched photonic crystal fiber (PCF) laser with wavelength tuning range up to 80 nm. The PCF laser utilizes an AlGaInAs quantum well/barrier structure as a saturable absorber and incorporates an external-cavity optical parametric oscillator (OPO) to achieve wavelength conversion. Under a pump power of 13.1 W at 976 nm, the PCF laser generated 1029-nm radiation with maximum output energy of 750 μJ and was incident into an external-cavity OPO. The output energy and peak power of signal wave was found to be 138 μJ and 19 kW, respectively. By tuning the temperature of nonlinear crystal, periodically poled lithium niobate (PPLN), in the OPO, the signal wavelength in eye-safe regime from 1513 to 1593 nm was obtained.

  9. Magnetic properties of permalloy wires in vycor capillaries

    NASA Astrophysics Data System (ADS)

    Lubitz, P.; Ayers, J. D.; Davis, A.

    1991-11-01

    Thin wires of NiFe alloys with compositions near 80% Ni were prepared by melting the alloy in vycor tubes and drawing fibers from the softened glass. The resulting fibers consist of relatively thick-walled vycor capillaries containing permalloy wires filling a few percent of the volume. The wires are continuous over considerable lengths, uniform in circular cross section, nearly free of contact with the walls and can be drawn to have diameters less than 1 μm. Their magnetic properties are generally similar to bulk permalloy, but show a variety of magnetic switching behaviors for fields along the wire axis, depending on composition, wire diameter, and thermal history. As pulled, the wires can show sharp switching, reversible rotation or mixed behavior. This method can produce NiFe alloy wires suitable for use in applications as sensor, memory or inductive elements; other alloys, such as supermalloy and sendust, also can be fabricated as fine wires by this method.

  10. An Evolutionary Perspective on Yeast Mating-Type Switching

    PubMed Central

    Hanson, Sara J.; Wolfe, Kenneth H.

    2017-01-01

    Cell differentiation in yeast species is controlled by a reversible, programmed DNA-rearrangement process called mating-type switching. Switching is achieved by two functionally similar but structurally distinct processes in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. In both species, haploid cells possess one active and two silent copies of the mating-type locus (a three-cassette structure), the active locus is cleaved, and synthesis-dependent strand annealing is used to replace it with a copy of a silent locus encoding the opposite mating-type information. Each species has its own set of components responsible for regulating these processes. In this review, we summarize knowledge about the function and evolution of mating-type switching components in these species, including mechanisms of heterochromatin formation, MAT locus cleavage, donor bias, lineage tracking, and environmental regulation of switching. We compare switching in these well-studied species to others such as Kluyveromyces lactis and the methylotrophic yeasts Ogataea polymorpha and Komagataella phaffii. We focus on some key questions: Which cells switch mating type? What molecular apparatus is required for switching? Where did it come from? And what is the evolutionary purpose of switching? PMID:28476860

  11. Laser-triggered vacuum switch

    DOEpatents

    Brannon, Paul J.; Cowgill, Donald F.

    1990-01-01

    A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable.

  12. 1-mJ Q-switched diode-pumped Nd:BaY2F8 laser

    NASA Astrophysics Data System (ADS)

    Agnesi, Antonio; Carraro, Giovanni; Guandalini, Annalisa; Reali, Giancarlo; Sani, Elisa; Toncelli, Alessandra; Tonelli, Mauro

    2004-08-01

    We report what is to our knowledge the first high repetition rate Q-switched Nd:BaY2F8 (Nd:BaYF) laser pumped with a multiwatt fiber-coupled diode array tuned at 806 nm. As much as 2.42 W of average power and up to 1.05 mJ of pulse energy were obtained with 6.1 W of absorbed pump power, with excellent beam quality (M2<1.2) and linear polarization.

  13. Laser-triggered vacuum switch

    DOEpatents

    Brannon, P.J.; Cowgill, D.F.

    1990-12-18

    A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable. 10 figs.

  14. Changes in skeletal muscle biochemistry and histology relative to fiber type in rats with heart failure.

    PubMed

    Delp, M D; Duan, C; Mattson, J P; Musch, T I

    1997-10-01

    One of the primary consequences of left ventricular dysfunction (LVD) after myocardial infarction is a decrement in exercise capacity. Several factors have been hypothesized to account for this decrement, including alterations in skeletal muscle metabolism and aerobic capacity. The purpose of this study was to determine whether LVD-induced alterations in skeletal muscle enzyme activities, fiber composition, and fiber size are 1) generalized in muscles or specific to muscles composed primarily of a given fiber type and 2) related to the severity of the LVD. Female Wistar rats were divided into three groups: sham-operated controls (n = 13) and rats with moderate (n = 10) and severe (n = 7) LVD. LVD was surgically induced by ligating the left main coronary artery and resulted in elevations (P < 0.05) in left ventricular end-diastolic pressure (sham, 5 +/- 1 mmHg; moderate LVD, 11 +/- 1 mmHg; severe LVD, 25 +/- 1 mmHg). Moderate LVD decreased the activities of phosphofructokinase (PFK) and citrate synthase in one muscle composed of type IIB fibers but did not modify fiber composition or size of any muscle studied. However, severe LVD diminished the activity of enzymes involved in terminal and beta-oxidation in muscles composed primarily of type I fibers, type IIA fibers, and type IIB fibers. In addition, severe LVD induced a reduction in the activity of PFK in type IIB muscle, a 10% reduction in the percentage of type IID/X fibers, and a corresponding increase in the portion of type IIB fibers. Atrophy of type I fibers, type IIA fibers, and/or type IIB fibers occurred in soleus and plantaris muscles of rats with severe LVD. These data indicate that rats with severe LVD after myocardial infarction exhibit 1) decrements in mitochondrial enzyme activities independent of muscle fiber composition, 2) a reduction in PFK activity in type IIB muscle, 3) transformation of type IID/X to type IIB fibers, and 4) atrophy of type I, IIA, and IIB fibers.

  15. Changes in skeletal muscle biochemistry and histology relative to fiber type in rats with heart failure

    NASA Technical Reports Server (NTRS)

    Delp, M. D.; Duan, C.; Mattson, J. P.; Musch, T. I.

    1997-01-01

    One of the primary consequences of left ventricular dysfunction (LVD) after myocardial infarction is a decrement in exercise capacity. Several factors have been hypothesized to account for this decrement, including alterations in skeletal muscle metabolism and aerobic capacity. The purpose of this study was to determine whether LVD-induced alterations in skeletal muscle enzyme activities, fiber composition, and fiber size are 1) generalized in muscles or specific to muscles composed primarily of a given fiber type and 2) related to the severity of the LVD. Female Wistar rats were divided into three groups: sham-operated controls (n = 13) and rats with moderate (n = 10) and severe (n = 7) LVD. LVD was surgically induced by ligating the left main coronary artery and resulted in elevations (P < 0.05) in left ventricular end-diastolic pressure (sham, 5 +/- 1 mmHg; moderate LVD, 11 +/- 1 mmHg; severe LVD, 25 +/- 1 mmHg). Moderate LVD decreased the activities of phosphofructokinase (PFK) and citrate synthase in one muscle composed of type IIB fibers but did not modify fiber composition or size of any muscle studied. However, severe LVD diminished the activity of enzymes involved in terminal and beta-oxidation in muscles composed primarily of type I fibers, type IIA fibers, and type IIB fibers. In addition, severe LVD induced a reduction in the activity of PFK in type IIB muscle, a 10% reduction in the percentage of type IID/X fibers, and a corresponding increase in the portion of type IIB fibers. Atrophy of type I fibers, type IIA fibers, and/or type IIB fibers occurred in soleus and plantaris muscles of rats with severe LVD. These data indicate that rats with severe LVD after myocardial infarction exhibit 1) decrements in mitochondrial enzyme activities independent of muscle fiber composition, 2) a reduction in PFK activity in type IIB muscle, 3) transformation of type IID/X to type IIB fibers, and 4) atrophy of type I, IIA, and IIB fibers.

  16. Vector rectangular-shape laser based on reduced graphene oxide interacting with a long fiber taper.

    PubMed

    Gao, Lei; Zhu, Tao; Huang, Wei; Zeng, Jing

    2014-10-01

    A vector dual-wavelength rectangular-shape laser (RSL) based on a long fiber taper deposited with reduced graphene oxide is proposed, where nonlinearity is enhanced due to a large evanescent-field-interacting length and strong field confinement of an 8 mm fiber taper with a waist diameter of 4 μm. Graphene flakes are deposited uniformly on the taper waist with light pressure effect, so this structure guarantees both excellent saturable absorption and high nonlinearity. The RSL with a repetition rate of 7.9 MHz shows fast polarization switching in two orthogonal polarization directions, and temporal and spectral characteristics are investigated.

  17. LOLS Research in Technology for the Development and Application of New Fiber-Based Sensors

    PubMed Central

    Coelho, João; Nespereira, Marta; Silva, Catarina; Rebordão, José

    2012-01-01

    This paper presents the research made at the Laboratory of Optics, Lasers and Systems (LOLS) of the Faculty of Sciences of University of Lisbon, Portugal, in the field of fiber-based sensors. Three areas are considered: sensor encapsulation for natural aqueous environments, refractive index modulation and laser micropatterning. We present the main conclusions on the issues and parameters to take in consideration for the encapsulation process and results of its design and application. Mid-infrared laser radiation was applied to produce long period fiber gratings and nanosecond pulses of near-infrared Q-switch laser were used for micropatterning. PMID:22736970

  18. Limiting of microjoule femtosecond pulses in air-guided modes of a hollow photonic-crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konorov, S.O.; Serebryannikov, E.E.; Sidorov-Biryukov, D.A.

    Self-phase-modulation-induced spectral broadening of laser pulses in air-guided modes of hollow photonic-crystal fibers (PCFs) is shown to allow the creation of fiber-optic limiters for high-intensity ultrashort laser pulses. The performance of PCF limiters is analyzed in terms of elementary theory of self-phase modulation. Experiments performed with 100 fs microjoule pulses of 800 nm Ti:sapphire laser radiation demonstrate the potential of hollow PCFs as limiters for 10 MW ultrashort laser pulses and show the possibility to switch the limiting level of output radiation energy by guiding femtosecond pulses in different PCF modes.

  19. Controlled higher-order transverse mode conversion from a fiber laser by polarization manipulation

    NASA Astrophysics Data System (ADS)

    Huang, Bin; Yi, Qian; Yang, Lingling; Zhao, Chujun; Wen, Shuangchun

    2018-02-01

    We report a vectorial fiber laser with controlled transverse mode conversion by intra-cavity polarization manipulation. By combining a q-plate and two quarter-wave plates (QWPs), we can generate a switchable polarization state output represented by the higher-order Poincaré sphere (l = +1, l = -1), and distinguish the fourfold degenerate LP11 mode. The four transverse vector modes can be obtained and switched in a flexible way, and the slope efficiency of the fiber laser can reach up to 39.4%. This compactness, high efficiency, and switchable operation potential will benefit a range of applications, such as materials processing, particle manipulation, etc.

  20. Polarization switch of four-wave mixing in a lawtunable fiber optical parametric oscillator.

    PubMed

    Yang, Kangwen; Ye, Pengbo; Zheng, Shikai; Jiang, Jieshi; Huang, Kun; Hao, Qiang; Zeng, Heping

    2018-02-05

    We reported the simultaneous generation and selective manipulation of scalar and cross-phase modulation instabilities in a fiber optical parametric oscillator. Numerical and experimental results show independent control of parametric gain by changing the input pump polarization state. The resonant cavity enables power enhancement of 45 dB for the spontaneous sidebands, generating laser pulses tunable from 783 to 791 nm and 896 to 1005 nm due to the combination of four-wave mixing, cascaded Raman scattering and other nonlinear effects. This gain controlled, wavelength tunable, fiber-based laser source may find applications in the fields of nonlinear biomedical imaging and stimulated Raman spectroscopy.

  1. Intrauterine growth-restricted sheep fetuses exhibit smaller hindlimb muscle fibers and lower proportions of insulin-sensitive Type I fibers near term.

    PubMed

    Yates, Dustin T; Cadaret, Caitlin N; Beede, Kristin A; Riley, Hannah E; Macko, Antoni R; Anderson, Miranda J; Camacho, Leticia E; Limesand, Sean W

    2016-06-01

    Intrauterine growth restriction (IUGR) reduces muscle mass and insulin sensitivity in offspring. Insulin sensitivity varies among muscle fiber types, with Type I fibers being most sensitive. Differences in fiber-type ratios are associated with insulin resistance in adults, and thus we hypothesized that near-term IUGR sheep fetuses exhibit reduced size and proportions of Type I fibers. Placental insufficiency-induced IUGR fetuses were ∼54% smaller (P < 0.05) than controls and exhibited hypoxemia and hypoglycemia, which contributed to 6.9-fold greater (P < 0.05) plasma norepinephrine and ∼53% lower (P < 0.05) plasma insulin concentrations. IUGR semitendinosus muscles contained less (P < 0.05) myosin heavy chain-I protein (MyHC-I) and proportionally fewer (P < 0.05) Type I and Type I/IIa fibers than controls, but MyHC-II protein concentrations, Type II fibers, and Type IIx fibers were not different. IUGR biceps femoris muscles exhibited similar albeit less dramatic differences in fiber type proportions. Type I and IIa fibers are more responsive to adrenergic and insulin regulation than Type IIx and may be more profoundly impaired by the high catecholamines and low insulin in our IUGR fetuses, leading to their proportional reduction. In both muscles, fibers of each type were uniformly smaller (P < 0.05) in IUGR fetuses than controls, which indicates that fiber hypertrophy is not dependent on type but rather on other factors such as myoblast differentiation or protein synthesis. Together, our findings show that IUGR fetal muscles develop smaller fibers and have proportionally fewer Type I fibers, which is indicative of developmental adaptations that may help explain the link between IUGR and adulthood insulin resistance. Copyright © 2016 the American Physiological Society.

  2. Complete chirp analysis of a gain-switched pulse using an interferometric two-photon absorption autocorrelation.

    PubMed

    Chin, Sang Hoon; Kim, Young Jae; Song, Ho Seong; Kim, Dug Young

    2006-10-10

    We propose a simple but powerful scheme for the complete analysis of the frequency chirp of a gain-switched optical pulse using a fringe-resolved interferometric two-photon absorption autocorrelator. A frequency chirp imposed on the gain-switched pulse from a laser diode was retrieved from both the intensity autocorrelation trace and the envelope of the second-harmonic interference fringe pattern. To verify the accuracy of the proposed phase retrieval method, we have performed an optical pulse compression experiment by using dispersion-compensating fibers with different lengths. We have obtained close agreement by less than a 1% error between the compressed pulse widths and numerically calculated pulse widths.

  3. High-power femtosecond pulses without a modelocked laser

    PubMed Central

    Fu, Walter; Wright, Logan G.; Wise, Frank W.

    2017-01-01

    We demonstrate a fiber system which amplifies and compresses pulses from a gain-switched diode. A Mamyshev regenerator shortens the pulses and improves their coherence, enabling subsequent amplification by parabolic pre-shaping. As a result, we are able to control nonlinear effects and generate nearly transform-limited, 140-fs pulses with 13-MW peak power—an order-of-magnitude improvement over previous gain-switched diode sources. Seeding with a gain-switched diode results in random fluctuations of 2% in the pulse energy, which future work using known techniques may ameliorate. Further development may allow such systems to compete directly with sources based on modelocked oscillators in some applications while enjoying unparalleled robustness and repetition rate control. PMID:29214187

  4. High energy Er-doped Q-switched fiber laser with WS2 saturable absorber

    NASA Astrophysics Data System (ADS)

    Li, Lu; Wang, Yonggang; Wang, Zhen Fu; Wang, Xi; Yang, Guowen

    2018-01-01

    The report presents a stable Q-switched Er-doped fiber (EDF) laser with WS2-based saturable absorber (SA). The SA is obtained by mixing WS2 dispersion with polyvinyl alcohol (PVA) into polystyrene cells, and then evaporating them to form WS2/PVA film. The modulation depth (MD) of WS2/PVA is 2% and the saturable intensity (Isat) is 27.2 MW/cm2. Employing the WS2/PVA film into EDF laser cavity, stable Q-switched operation is achieved with central wavelength of 1560 nm. The repetition rate can be tuned from 16.15 to 60.88 kHz with increasing pump power from 30 to 320 mW. The single pulse energy increases from 82 to 195 nJ and then decreases down to 156 nJ with increasing pump power from 30 to 320 mW. The pulse width shows the same variation trend. The shortest pulse duration of 2.396 μs and the maximum single pulse energy of 195 nJ are obtained at the pump power of 220 mW. To the best of our knowledge, 195 nJ is the largest single pulse energy at 1.55 μm region with TMDs as Q-switcher. The signal-to-noise ratio (SNR) is measured to be 60 dB at the pump power of 130 mW. The long term stability of working is good too. The experimental results evidently show that the WS2/PVA SA can work as a promising Q-switcher for high power fiber lasers.

  5. Development and Deployment of a Compact Eye-Safe Scanning Differential absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide for Monitoring/Verification/Accounting at Geologic Sequestration Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repasky, Kevin

    2014-03-31

    A scanning differential absorption lidar (DIAL) instrument for monitoring carbon dioxide has been developed. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto- optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66more » {micro}J, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 {micro}m. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photo-multiplier tube (PMT) module operating in the photon counting mode. The DIAL instrument has been operated from a laboratory environment on the campus of Montana State University, at the Zero Emission Research Technology (ZERT) field site located in the agricultural research area on the western end of the Montana State University campus, and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. DIAL data has been collected and profiles have been validated using a co-located Licor LI-820 Gas Analyzer point sensor.« less

  6. Effect of Young's modulus on bubble formation and pressure waves during pulsed holmium ablation of tissue phantoms

    NASA Astrophysics Data System (ADS)

    Jansen, E. Duco; Asshauer, Thomas; Frenz, Martin; Delacretaz, Guy P.; Motamedi, Massoud; Welch, Ashley J.

    1995-05-01

    Mechanical injury during pulsed laser ablation of tissue is caused by rapid bubble expansions and collapse or by laser-induced pressure waves. In this study the effect of material elasticity on the ablation process has been investigated. Polyacrylamide tissue phantoms with various water concentrations (75-95%) were made. The Young's moduli of the gels were determined by measuring the stress-strain relationship. An optical fiber (200 or 400 micrometers ) was translated into the clear gel and one pulse of holmium:YAG laser radiation was given. The laser was operated in either the Q-switched mode (tau) p equals 500 ns, Qp equals 14 +/- 1 mJ, 200 micrometers fiber, Ho equals 446 mJ/mm2) or the free-running mode ((tau) p equals 100 microsecond(s) , Qp equals 200 +/- 5 mJ, 400 micrometers fiber, Ho equals 1592 mJ/mm2). Bubble formation inside the gels was recorded using a fast flash photography setup while simultaneously recording pressures with a PVDP needle hydrophone (40 ns risetime) positioned in the gel, approximately 2 mm away from the fibertip. A thermo-elastic expansion wave was measured only during Q-switched pulse delivery. The amplitude of this wave (approximately equals 40 bar at 1 mm from the fiber) did not vary significantly in any of the phantoms investigated. Rapid bubble formation and collapse was observed inside the clear gels. Upon bubble collapse, a pressure transient was emitted; the amplitude of this transient depended strongly on bubble size and geometry. It was found that (1) the bubble was almost spherical for the Q-switched pulse and became more elongated for the free-running pulse, and (2) the maximum bubble size and thus the collapse amplitude decreased with an increase in Young's modulus (from 68 +/- 11 bar at 1 mm in 95% water gel to 25 +/- 10 bar at 1 mm in 75% water gel).

  7. Optically triggered high voltage switch network and method for switching a high voltage

    DOEpatents

    El-Sharkawi, Mohamed A.; Andexler, George; Silberkleit, Lee I.

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  8. Fabrication and demonstration of 1 × 8 silicon-silica multi-chip switch based on optical phased array

    NASA Astrophysics Data System (ADS)

    Katayose, Satomi; Hashizume, Yasuaki; Itoh, Mikitaka

    2016-08-01

    We experimentally demonstrated a 1 × 8 silicon-silica hybrid thermo-optic switch based on an optical phased array using a multi-chip integration technique. The switch consists of a silicon chip with optical phase shifters and two silica-based planar lightwave circuit (PLC) chips composed of optical couplers and fiber connections. We adopted a rib waveguide as the silicon waveguide to reduce the coupling loss and increase the alignment tolerance for coupling between silicon and silica waveguides. As a result, we achieved a fast switching response of 81 µs, a high extinction ratio of over 18 dB and a low insertion loss of 4.9-8.1 dB including a silicon-silica coupling loss of 0.5 ± 0.3 dB at a wavelength of 1.55 µm.

  9. A Fully Implemented 12 × 12 Data Vortex Optical Packet Switching Interconnection Network

    NASA Astrophysics Data System (ADS)

    Shacham, Assaf; Small, Benjamin A.; Liboiron-Ladouceur, Odile; Bergman, Keren

    2005-10-01

    A fully functional optical packet switching (OPS) interconnection network based on the data vortex architecture is presented. The photonic switching fabric uniquely capitalizes on the enormous bandwidth advantage of wavelength division multiplexing (WDM) wavelength parallelism while delivering minimal packet transit latency. Utilizing semiconductor optical amplifier (SOA)-based switching nodes and conventional fiber-optic technology, the 12-port system exhibits a capacity of nearly 1 Tb/s. Optical packets containing an eight-wavelength WDM payload with 10 Gb/s per wavelength are routed successfully to all 12 ports while maintaining a bit error rate (BER) of 10-12 or better. Median port-to-port latencies of 110 ns are achieved with a distributed deflection routing network that resolves packet contention on-the-fly without the use of optical buffers and maintains the entire payload path in the optical domain.

  10. GLOBECOM '88 - IEEE Global Telecommunications Conference and Exhibition, Hollywood, FL, Nov. 28-Dec. 1, 1988, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    Various papers on communications for the information age are presented. Among the general topics considered are: telematic services and terminals, satellite communications, telecommunications mangaement network, control of integrated broadband networks, advances in digital radio systems, the intelligent network, broadband networks and services deployment, future switch architectures, performance analysis of computer networks, advances in spread spectrum, optical high-speed LANs, and broadband switching and networks. Also addressed are: multiple access protocols, video coding techniques, modulation and coding, photonic switching, SONET terminals and applications, standards for video coding, digital switching, progress in MANs, mobile and portable radio, software design for improved maintainability, multipath propagation and advanced countermeasure, data communication, network control and management, fiber in the loop, network algorithm and protocols, and advances in computer communications.

  11. Wideband fiber optic communications link

    NASA Astrophysics Data System (ADS)

    Bray, J. R.

    1984-12-01

    This thesis examined the feasibility of upgrading a nine port fiber optic bundle telecommunications system to a single strand fiber optic system. Usable pieces of equipment were identified and new Light Emitting Diodes (LED), Photodetectors and single strand SMA styled fiber optic connectors were ordered. Background research was conducted in the area of fiber optic power launching, fiber losses, connector losses and efficiencies. A new modulation/demodulation circuit was designed and constructed using parts from unused equipment. A new front panel was constructed to house the components, switches and connectors. A 2-m piece of optical fiber was terminated with the new connectors and tested for connector loss, numeric aperture and attenuation. The new LED was characterized by its emission radiation pattern and the entire system was tested for functional operation, frequency response and bandwidth of operation. An operations manual was prepared to ensure proper use in the future. The result was a two piece, single strand, fiber optic communications systems fully TTL compatible, capable of transmitting digital signals from 80 Kbit/sec to 20 Mbit/sec. The system was tested in a half duplex mode using both baseband and carrier modulated signals.

  12. Reconfiguration of the multiwavelength operation of optical fiber ring lasers by the modifiable intra-cavity induced losses of an in-fiber tip probe modal Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J. M.; Rodríguez-Carreón, V. C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A. A.; Rojas-Laguna, R.

    2018-03-01

    A straightforward and versatile method for switching from single to different multiwavelength laser emission in ring cavity fiber lasers is proposed and demonstrated experimentally. The method is based on using the changeable interference pattern from an optical fiber modal Michelson interferometer as a wavelength selective filter into the ring cavity laser. The interferometer is constructed using a bi-conical tapered fiber and a single-mode fiber segment, with these being spliced together to form an optical fiber tip probe. When the length of the single-mode fiber piece is modified, the phase difference between the interfering modes of the interferometer causes a change in the interferometer free spectral range. As a consequence, the laser intra-cavity losses lead to gain competition, which allows us to adjust the number of simultaneously generated laser lines. A multiwavelength reconfiguration of the laser from one up to a maximum of eight emission lines was obtained, with a maximum SNR of around 47 dBm.

  13. Temporal Adaptive Changes in Contractility and Fatigability of Diaphragm Muscles from Streptozotocin-Diabetic Rats

    PubMed Central

    Brotto, Marco; Brotto, Leticia; Jin, J.-P.; Nosek, Thomas M.; Romani, Andrea

    2010-01-01

    Diabetes is characterized by ventilatory depression due to decreased diaphragm (DPH) function. This study investigated the changes in contractile properties of rat DPH muscles over a time interval encompassing from 4 days to 14 weeks after the onset of streptozotocin-induced diabetes, with and without insulin treatment for 2 weeks. Maximum tetanic force in intact DPH muscle strips and recovery from fatiguing stimulation were measured. An early (4-day) depression in contractile function in diabetic DPH was followed by gradual improvement in muscle function and fatigue recovery (8 weeks). DPH contractile function deteriorated again at 14 weeks, a process that was completely reversed by insulin treatment. Maximal contractile force and calcium sensitivity assessed in Triton-skinned DPH fibers showed a similar bimodal pattern and the same beneficial effect of insulin treatment. While an extensive analysis of the isoforms of the contractile and regulatory proteins was not conducted, Western blot analysis of tropomyosin suggests that the changes in diabetic DPH response depended, at least in part, on a switch in fiber type. PMID:20467472

  14. Temporal adaptive changes in contractility and fatigability of diaphragm muscles from streptozotocin-diabetic rats.

    PubMed

    Brotto, Marco; Brotto, Leticia; Jin, J-P; Nosek, Thomas M; Romani, Andrea

    2010-01-01

    Diabetes is characterized by ventilatory depression due to decreased diaphragm (DPH) function. This study investigated the changes in contractile properties of rat DPH muscles over a time interval encompassing from 4 days to 14 weeks after the onset of streptozotocin-induced diabetes, with and without insulin treatment for 2 weeks. Maximum tetanic force in intact DPH muscle strips and recovery from fatiguing stimulation were measured. An early (4-day) depression in contractile function in diabetic DPH was followed by gradual improvement in muscle function and fatigue recovery (8 weeks). DPH contractile function deteriorated again at 14 weeks, a process that was completely reversed by insulin treatment. Maximal contractile force and calcium sensitivity assessed in Triton-skinned DPH fibers showed a similar bimodal pattern and the same beneficial effect of insulin treatment. While an extensive analysis of the isoforms of the contractile and regulatory proteins was not conducted, Western blot analysis of tropomyosin suggests that the changes in diabetic DPH response depended, at least in part, on a switch in fiber type.

  15. Demonstration of 720×720 optical fast circuit switch for intra-datacenter networks

    NASA Astrophysics Data System (ADS)

    Ueda, Koh; Mori, Yojiro; Hasegawa, Hiroshi; Matsuura, Hiroyuki; Ishii, Kiyo; Kuwatsuka, Haruhiko; Namiki, Shu; Sato, Ken-ichi

    2016-03-01

    Intra-datacenter traffic is growing more than 20% a year. In typical datacenters, many racks/pods including servers are interconnected via multi-tier electrical switches. The electrical switches necessitate power-consuming optical-to- electrical (OE) and electrical-to-optical (EO) conversion, the power consumption of which increases with traffic. To overcome this problem, optical switches that eliminate costly OE and EO conversion and enable low power consumption switching are being investigated. There are two major requirements for the optical switch. First, it must have a high port count to construct reduced tier intra-datacenter networks. Second, switching speed must be short enough that most of the traffic load can be offloaded from electrical switches. Among various optical switches, we focus on those based on arrayed-waveguide gratings (AWGs), since the AWG is a passive device with minimal power consumption. We previously proposed a high-port-count optical switch architecture that utilizes tunable lasers, route-and-combine switches, and wavelength-routing switches comprised of couplers, erbium-doped fiber amplifiers (EDFAs), and AWGs. We employed conventional external cavity lasers whose wavelength-tuning speed was slower than 100 ms. In this paper, we demonstrate a large-scale optical switch that offers fast wavelength routing. We construct a 720×720 optical switch using recently developed lasers whose wavelength-tuning period is below 460 μs. We evaluate the switching time via bit-error-ratio measurements and achieve 470-μs switching time (includes 10-μs guard time to handle EDFA surge). To best of our knowledge, this is the first demonstration of such a large-scale optical switch with practical switching time.

  16. Digital Telematics: Present and Future.

    ERIC Educational Resources Information Center

    Stalberg, Christian E.

    1987-01-01

    This overview of developments in international telecommunications networks focuses on their importance for developing countries and the necessary interdependence of all countries. Highlights include digital technology, telephone service, packet switching networks, communications satellites, fiber optic cables, and possible future developments.…

  17. Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching

    NASA Astrophysics Data System (ADS)

    Peng, Kaung-Jay; Wu, Chun-Lung; Lin, Yung-Hsiang; Wang, Hwai-Yung; Cheng, Chih-Hsien; Chi, Yu-Chieh; Lin, Gong-Ru

    2018-01-01

    Using the evanescent-wave saturation effect of hydrogen-free low-temperature synthesized few-layer graphene covered on the cladding region of a side-polished single-mode fiber, a blue pump/infrared probe-based all-optical switch is demonstrated with specific wavelength-dependent probe modulation efficiency. Under the illumination of a blue laser diode at 405 nm, the few-layer graphene exhibits cross-gain modulation at different wavelengths covering the C- and L-bands. At a probe power of 0.5 mW, the L-band switching throughput power variant of 16 μW results in a probe modulation depth of 3.2%. Blue shifting the probe wavelength from 1580 to 1520 nm further enlarges the switching throughput power variant to 24 mW and enhances the probe modulation depth to 5%. Enlarging the probe power from 0.5 to 1 mW further enlarges the switching throughput power variant from 25 to 58 μW to promote its probe modulation depth of up to 5.8% at 1520 nm. In contrast, the probe modulation depth degrades from 5.1% to 1.2% as the pumping power reduces from 85 to 24 mW, which is attributed to the saturable absorption of the few-layer graphene-based evanescent-wave absorber. The modulation depth at wavelength of 1550 nm under a probe power of 1 mW increases from 1.2% to 5.1%, as more carriers can be excited when increasing the blue laser power from 24 to 85 mW, whereas it decreases from 5.1% to 3.3% by increasing the input probe power from 1 to 2 mW to show an easier saturated condition at longer wavelength.

  18. Framework for waveband switching in multigranular optical networks: part I-multigranular cross-connect architectures [Invited

    NASA Astrophysics Data System (ADS)

    Cao, Xiaojun; Anand, Vishal; Qiao, Chunming

    2006-12-01

    Optical networks using wavelength-division multiplexing (WDM) are the foremost solution to the ever-increasing traffic in the Internet backbone. Rapid advances in WDM technology will enable each fiber to carry hundreds or even a thousand wavelengths (using dense-WDM, or DWDM, and ultra-DWDM) of traffic. This, coupled with worldwide fiber deployment, will bring about a tremendous increase in the size of the optical cross-connects, i.e., the number of ports of the wavelength switching elements. Waveband switching (WBS), wherein wavelengths are grouped into bands and switched as a single entity, can reduce the cost and control complexity of switching nodes by minimizing the port count. This paper presents a detailed study on recent advances and open research issues in WBS networks. In this study, we investigate in detail the architecture for various WBS cross-connects and compare them in terms of the number of ports and complexity and also in terms of how flexible they are in adjusting to dynamic traffic. We outline various techniques for grouping wavelengths into bands for the purpose of WBS and show how traditional wavelength routing is different from waveband routing and why techniques developed for wavelength-routed networks (WRNs) cannot be simply applied to WBS networks. We also outline how traffic grooming of subwavelength traffic can be done in WBS networks. In part II of this study [Cao , submitted to J. Opt. Netw.], we study the effect of wavelength conversion on the performance of WBS networks with reconfigurable MG-OXCs. We present an algorithm for waveband grouping in wavelength-convertible networks and evaluate its performance. We also investigate issues related to survivability in WBS networks and show how waveband and wavelength conversion can be used to recover from failures in WBS networks.

  19. Evanescent wave assisted nanomaterial coating.

    PubMed

    Mondal, Samir K; Pal, Sudipta Sarkar; Kumbhakar, Dharmadas; Tiwari, Umesh; Bhatnagar, Randhir

    2013-08-01

    In this work we present a novel nanomaterial coating technique using evanescent wave (EW). The gradient force in the EW is used as an optical tweezer for tweezing and self-assembling nanoparticles on the source of EW. As a proof of the concept, we have used a laser coupled etched multimode optical fiber, which generates EW for the EW assisted coating. The section-wise etched multimode optical fiber is horizontally and superficially dipped into a silver/gold nanoparticles solution while the laser is switched on. The fiber is left until the solution recedes due to evaporation leaving the fiber in air. The coating time usually takes 40-50 min at room temperature. The scanning electron microscope image shows uniform and thin coating of self-assembled nanoparticles due to EW around the etched section. A coating thickness <200 nm is achieved. The technique could be useful for making surface-plasmon-resonance-based optical fiber probes and other plasmonic circuits.

  20. Cognitive fiber Bragg grating sensors system based on fiber Fabry-Perot tunable filter technology

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Wang, Pengfei; Zou, Jilin; Xie, Jing; Cui, Hong-Liang

    2011-05-01

    The wavelength demodulation based on a Fiber Fabry-Pérot Tunable Filter (FFP-TF) is a common method for multiplexing Fiber Bragg Grating (FBG) sensors. But this method cannot be used to detect high frequency signals due to the limitation by the highest scanning rate that the FFP-TF can achieve. To overcome this disadvantage, in this paper we present a scheme of cognitive sensors network based on FFP-TF technology. By perceiving the sensing environment, system can automatically switch into monitoring signals in two modes to obtain better measurement results: multi measurement points, low frequency (<1 KHz) signal, and few measurement points but high frequency (~50 KHz) signals. This cognitive sensors network can be realized in current technology and satisfy current most industrial requirements.

  1. Numerical calculation of phase-matching properties in photonic crystal fibers with three and four zero-dispersion wavelengths.

    PubMed

    Zhao, Xingtao; Liu, Xiaoxu; Wang, Shutao; Wang, Wei; Han, Ying; Liu, Zhaolun; Li, Shuguang; Hou, Lantian

    2015-10-19

    Photonic crystal fibers with three and four zero-dispersion wavelengths are presented through special design of the structural parameters, in which the closing to zero and ultra-flattened dispersion can be obtained. The unique phase-matching properties of the fibers with three and four zero-dispersion wavelengths are analyzed. Variation of the phase-matching wavelengths with the pump wavelengths, pump powers, dispersion properties, and fiber structural parameters is analyzed. The presence of three and four zero-dispersion wavelengths can realize wavelength conversion of optical soliton between two anomalous dispersion regions, generate six phase-matching sidebands through four-wave mixing and create more new photon pairs, which can be used for the study of supercontinuum generation, optical switches and quantum optics.

  2. Switched Broadband Services For The Home

    NASA Astrophysics Data System (ADS)

    Sawyer, Don M.

    1990-01-01

    In considering the deployment of fiber optics to the residence, two critical questions arise: what are the leading services that could be offered to justify the required investment; and what is the nature of the business that would offer these services to the consumer ? This talk will address these two questions together with the related issue of how the "financial engine" of today's television distribution infrastructure - TV advertising - would be affected by an open access system based on fiber optics coupled with broadband switching. On the business side, the talk concludes that the potential for open ended capacity expansion, fair competition between service providers, and new interactive services inherent in an open access, switched broadband system are the critical items in differentiating it from existing video and TV distribution systems. On the question of broadband services, the talk will highlight several new opportunities together with some findings from recent market research conducted by BNR. The talk will show that there are variations on existing services plus many new services that could be offered and which have real consumer appeal. The postulated open access system discussed here is visualized as having ultimately 1,000 to 2,000 video channels available to the consumer. Although this may appear to hopelessly fragment the TV audience and destroy the current TV advertising infrastructure, the technology of open access, switched broadband will present many new advertising techniques, which have the potential to be far more effective than those available today. Some of these techniques will be described in this talk.

  3. Contribution of Central μ-Receptors to Switching Pulmonary C-Fibers-Mediated Rapid Shallow Breathing into An Apnea by Fentanyl in Anesthetized Rats

    PubMed Central

    Zhang, Zhenxiong; Zhang, Cancan; Zhuang, Jianguo; Xu, Fadi

    2012-01-01

    Our previous study has shown that activating peripheral μ-receptors is necessary for switching the bronchopulmonary C-fibers (PCFs)-mediated rapid shallow breathing (RSB) into an apnea by systemic administration of fentanyl. The brainstem nuclei, such as the medial nucleus tractus solitarius (mNTS) and the Pre-Botzinger Complex (PBC), are required for completing the PCF-mediated respiratory reflexes. Moreover, these areas contain abundant μ-receptors and their activation prolongs expiratory duration (TE). Thus, we asked if central μ-receptors, especially those in the mNTS and PBC, are involved in fully expressing this RSB-apnea switch by fentanyl. In anesthetized rats, the cardiorespiratory responses to right atrial injection of phenylbiguanide (PBG, 3–6 μg/kg) were repeated after: 1) fentanyl (iv), a μ-receptor agonist, alone (8 μg/kg, iv); 2) fentanyl following microinjection of naloxone methiodide (NXM, an opioid receptor antagonist) into the cisterna magna (10 μg/4 μl); 3) the bilateral mNTS (10 mM, 20 nl); or 4) PBC (10 mM, 20 nl). Our results showed that PBG shortened TE by 37 ± 6 % (RSB, from 0.41 ± 0.05 to 0.26 ± 0.03 s, P < 0.01), but it markedly prolonged TE by 5.8-fold (an apnea, from 0.50 ± 0.04 s to 2.9 ± 0.57 s, P < 0.01) after fentanyl (iv). Pretreatment with NXM injected into the cisterna magna or the PBC, but not the mNTS, prevented the fentanyl-induced switch. This study, along with our previous results mentioned above, suggests that although peripheral μ-receptors are essential for triggering the fentanyl-induced switch, central μ-receptors, especially those in the PBC, are required to fully exhibit such switch. PMID:22759907

  4. Gigabit Wireless for Network Connectivity

    ERIC Educational Resources Information Center

    Schoedel, Eric

    2009-01-01

    Uninterrupted, high-bandwidth network connectivity is crucial for higher education. Colleges and universities increasingly adopt gigabit wireless solutions because of their fiber-equivalent performance, quick implementation, and significant return on investment. For just those reasons, Rush University Medical Center switched from free space optics…

  5. Optical fiber loops and helices: tools for integrated photonic device characterization and microfluidic trapping

    NASA Astrophysics Data System (ADS)

    Ren, Yundong; Zhang, Rui; Ti, Chaoyang; Liu, Yuxiang

    2016-09-01

    Tapered optical fibers can deliver guided light into and carry light out of micro/nanoscale systems with low loss and high spatial resolution, which makes them ideal tools in integrated photonics and microfluidics. Special geometries of tapered fibers are desired for probing monolithic devices in plane as well as optical manipulation of micro particles in fluids. However, for many specially shaped tapered fibers, it remains a challenge to fabricate them in a straightforward, controllable, and repeatable way. In this work, we fabricated and characterized two special geometries of tapered optical fibers, namely fiber loops and helices, that could be switched between one and the other. The fiber loops in this work are distinct from previous ones in terms of their superior mechanical stability and high optical quality factors in air, thanks to a post-annealing process. We experimentally measured an intrinsic optical quality factor of 32,500 and a finesse of 137 from a fiber loop. A fiber helix was used to characterize a monolithic cavity optomechanical device. Moreover, a microfluidic "roller coaster" was demonstrated, where microscale particles in water were optically trapped and transported by a fiber helix. Tapered fiber loops and helices can find various applications ranging from on-the-fly characterization of integrated photonic devices to particle manipulation and sorting in microfluidics.

  6. Multiwavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Das, Goutam

    This thesis studies experimentally and theoretically a few designs of multiwavelength fiber lasers. Four different configurations are proposed and demonstrated; all of which can operate at room temperatures. An elliptical core erbium-doped fiber is used as the gain medium, which is single mode along the minor axis and multimode along the major axis. The principle of operation is based on the anisotropic gain effect of an elliptical core erbium-doped fiber. Stable multiwavelength operation is achieved at room temperatures. A polarization controller is used to control and select the lasing wavelengths. The stability of the lasing lines, in the presence of anisotropic gain effects, has been examined. The maximum number of stable lasing lines that may be obtained depends on the number of modes supported by the erbium-doped fiber. The effects of the dimensions of the fiber are also studied. A ring resonator is formed using an elliptical core erbium-doped fiber. The basic theoretical expression for the threshold pump power for each lasing line is developed. The theoretical results are in excellent agreement with the values obtained experimentally. The dependence of the separations between the lasing wavelengths on the dimensions of the erbium-doped fiber is examined. A theoretical study of a Sagnac loop interferometer and its applications in a passive ring resonator is reported. A ring resonator is formed by using the Sagnac loop filter in the cavity. The experimental results show that the separations between the lasing wavelengths may be controlled by adjusting the birefringence of the Sagnac loop interferometer. These experimental results agree with the theoretical findings. Similarly, another resonator is formed using a Sagnac loop reflector and a broadband reflector in a Fabry-Perot configuration. An optical switch is made, where two wavelengths may be switched by using a polarization controller in the cavity. To study the stability of the lasing wavelengths, the outputs of the lasers are monitored for a few hours using an optical spectrum analyzer with a resolution bandwidth of 0.06 nm. The experimental results show that intensity fluctuations of the lasing lines of less than 0.2 dB are possible with no changes in wavelength. High concentrations of erbium in the fiber degrade the stability of the lasing wavelengths resulting in greater intensity fluctuations. The lasers may be made to lase in the C band or L band by adjusting the length of the erbium-doped fiber in the cavity.

  7. Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers.

    PubMed

    Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Aono, Masakazu

    2012-01-10

    An atomic switch is a nanoionic device that controls the diffusion of metal ions/atoms and their reduction/oxidation processes in the switching operation to form/annihilate a conductive path. Since metal atoms can provide a highly conductive channel even if their cluster size is in the nanometer scale, atomic switches may enable downscaling to smaller than the 11 nm technology node, which is a great challenge for semiconductor devices. Atomic switches also possess novel characteristics, such as high on/off ratios, very low power consumption and non-volatility. The unique operating mechanisms of these devices have enabled the development of various types of atomic switch, such as gap-type and gapless-type two-terminal atomic switches and three-terminal atomic switches. Novel functions, such as selective volatile/nonvolatile, synaptic, memristive, and photo-assisted operations have been demonstrated. Such atomic switch characteristics can not only improve the performance of present-day electronic systems, but also enable development of new types of electronic systems, such as beyond von- Neumann computers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Myosin isoforms and contractile properties of single fibers of human Latissimus Dorsi muscle.

    PubMed

    Paoli, Antonio; Pacelli, Quirico F; Cancellara, Pasqua; Toniolo, Luana; Moro, Tatiana; Canato, Marta; Miotti, Danilo; Reggiani, Carlo

    2013-01-01

    The aim of our study was to investigate fiber type distribution and contractile characteristics of Latissimus Dorsi muscle (LDM). Samples were collected from 18 young healthy subjects (9 males and 9 females) through percutaneous fine needle muscle biopsy. The results showed a predominance of fast myosin heavy chain isoforms (MyHC) with 42% of MyHC 2A and 25% of MyHC 2X, while MyHC 1 represented only 33%. The unbalance toward fast isoforms was even greater in males (71%) than in females (64%). Fiber type distribution partially reflected MyHC isoform distribution with 28% type 1/slow fibers and 5% hybrid 1/2A fibers, while fast fibers were divided into 30% type 2A, 31% type A/X, 4% type X, and 2% type 1/2X. Type 1/slow fibers were not only less abundant but also smaller in cross-sectional area than fast fibers. During maximal isometric contraction, type 1/slow fibers developed force and tension significantly lower than the two major groups of fast fibers. In conclusion, the predominance of fast fibers and their greater size and strength compared to slow fibers reveal that LDM is a muscle specialized mainly in phasic and powerful activity. Importantly, such specialization is more pronounced in males than in females.

  9. Flexible circuits with integrated switches for robotic shape sensing

    NASA Astrophysics Data System (ADS)

    Harnett, C. K.

    2016-05-01

    Digital switches are commonly used for detecting surface contact and limb-position limits in robotics. The typical momentary-contact digital switch is a mechanical device made from metal springs, designed to connect with a rigid printed circuit board (PCB). However, flexible printed circuits are taking over from the rigid PCB in robotics because the circuits can bend while carrying signals and power through moving joints. This project is motivated by a previous work where an array of surface-mount momentary contact switches on a flexible circuit acted as an all-digital shape sensor compatible with the power resources of energy harvesting systems. Without a rigid segment, the smallest commercially-available surface-mount switches would detach from the flexible circuit after several bending cycles, sometimes violently. This report describes a low-cost, conductive fiber based method to integrate electromechanical switches into flexible circuits and other soft, bendable materials. Because the switches are digital (on/off), they differ from commercially-available continuous-valued bend/flex sensors. No amplification or analog-to-digital conversion is needed to read the signal, but the tradeoff is that the digital switches only give a threshold curvature value. Boundary conditions on the edges of the flexible circuit are key to setting the threshold curvature value for switching. This presentation will discuss threshold-setting, size scaling of the design, automation for inserting a digital switch into the flexible circuit fabrication process, and methods for reconstructing a shape from an array of digital switch states.

  10. Muscle Fiber Types and Training.

    ERIC Educational Resources Information Center

    Karp, Jason R.

    2001-01-01

    The specific types of fibers that make up individual muscles greatly influence how people will adapt to their training programs. This paper explains the complexities of skeletal muscles, focusing on types of muscle fibers (slow-twitch and fast-twitch), recruitment of muscle fibers to perform a motor task, and determining fiber type. Implications…

  11. A hybrid optical switch architecture to integrate IP into optical networks to provide flexible and intelligent bandwidth on demand for cloud computing

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Hall, Trevor J.

    2013-12-01

    The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users. As a consequence, the nature of the Internet traffic has been fundamentally transformed from a pure packet-based pattern to today's predominantly flow-based pattern. Cloud computing has also brought about an unprecedented growth in the Internet traffic. In this paper, a hybrid optical switch architecture is presented to deal with the flow-based Internet traffic, aiming to offer flexible and intelligent bandwidth on demand to improve fiber capacity utilization. The hybrid optical switch is capable of integrating IP into optical networks for cloud-based traffic with predictable performance, for which the delay performance of the electronic module in the hybrid optical switch architecture is evaluated through simulation.

  12. Polydiacetylene as an all-optical picosecond Switch

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin A.; Frazier, D. O.; Paley, M. S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Polydiacetylene derivative of 2-methyl-4-nitroaniline (PDAMNA) shows a picosecond switching property, which illustrated a partial all-optical picosecond NAND logic gate. The switching phenomenon was demonstrated by waveguiding two collinear beams at 633 nm and 532 nm through a hollow fiber of 50 micrometers diameter, coated from inside with a thin film of PDAMNA. A Z-scan investigations of a PDAMNA thin film on quartz substrate revealed that the switching effect was attributed to an excited state absorption in the systems. The studies also showed that the polymer suffers a photo-oxidation beyond an intensity level of 2.9 x 10(exp 6) w/square cm. The photo-oxidized film has different physical properties that are different from the original film before oxidation. The life time of both excited states before and after oxidation as well as their absorption coefficients were estimated by fitting a three level system model to the experimental results.

  13. Time-domain fiber loop ringdown sensor and sensor network

    NASA Astrophysics Data System (ADS)

    Kaya, Malik

    Optical fibers have been mostly used in fiber optic communications, imaging optics, sensing technology, etc. Fiber optic sensors have gained increasing attention for scientific and structural health monitoring (SHM) applications. In this study, fiber loop ringdown (FLRD) sensors were fabricated for scientific, SHM, and sensor networking applications. FLRD biosensors were fabricated for both bulk refractive index (RI)- and surface RI-based DNA sensing and one type of bacteria sensing. Furthermore, the effect of glucose oxidase (GOD) immobilization at the sensor head on sensor performance was evaluated for both glucose and synthetic urine solutions with glucose concentration between 0.1% and 10%. Detection sensitivities of the glucose sensors were achieved as low as 0.05%. For chemical sensing, heavy water, ranging from 97% to 10%, and several elemental solutions were monitored by using the FLRD chemical sensors. Bulk index-based FLRD sensing showed that trace elements can be detected in deionized water. For physical sensing, water and cracking sensors were fabricated and embedded into concrete. A partially-etched single-mode fiber (SMF) was embedded into a concrete bar for water monitoring while a bare SMF without any treatment was directly embedded into another concrete bar for monitoring cracks. Furthermore, detection sensitivities of water and crack sensors were investigated as 10 ml water and 0.5 mm surface crack width, respectively. Additionally fiber loop ringdown-fiber Bragg grating temperature sensors were developed in the laboratory; two sensor units for water, crack, and temperature sensing were deployed into a concrete cube in a US Department of Energy test bed (Miami, FL). Multi-sensor applications in a real concrete structure were accomplished by testing the six FLRD sensors. As a final stage, a sensor network was assembled by multiplexing two or three FLRD sensors in series and parallel. Additionally, two FLRD sensors were combined in series and parallel by using a 2x1 micro-electromechanical system optical switch to control sensors individually. For both configurations, contributions of each sensor to two or three coupled signals were simulated theoretically. Results show that numerous FLRD sensors can be connected in different configurations, and a sensor network can be built up for multi-function sensing applications.

  14. Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dong-Yang; Wen, Jing-Ji; Bai, Cheng-Hua

    2015-09-15

    An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.

  15. Implementation of a tactical voice/data network over FDDI. [Fiber Distributed Data Interface

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Halloran, F.; Martinez, J.

    1988-01-01

    An asynchronous high-speed fiber-optic local-area network is described that simultaneously supports packet data traffic with synchronous TI voice traffic over a standard asynchronous FDDI (fiber distributed data interface) token-ring channel. A voice interface module was developed that parses, buffers, and resynchronizes the voice data to the packet network. The technique is general, however, and can be applied to any deterministic class of networks, including multitier backbones. In addition, the higher layer packet data protocols may operate independently of those for the voice, thereby permitting great flexibility in reconfiguring the network. Voice call setup and switching functions are performed external to the network with PABX equipment.

  16. High-energy directly diode-pumped Q-switched 1617 nm Er:YAG laser at room temperature.

    PubMed

    Wang, Mingjian; Zhu, Liang; Chen, Weibiao; Fan, Dianyuan

    2012-09-01

    We describe high-energy Erbium-doped yttrium aluminum garnet (Er:YAG) lasers operating at 1617 nm, resonantly pumped using 1532 nm fiber-coupled laser diodes. A maximum continuous wave output power of 4.3 W at 1617 nm was achieved with an output coupler of 20% transmission under incident pump power of 29.7 W, resulting in an optical conversion of 14% with respect to the incident pump power. In Q-switched operation, the pulse energy of 11.8 mJ at 100 Hz pulse repetition frequency and 81 ns pulse duration was obtained. This energy is the highest pulse energy reported for a directly diode-pumped Q-switched Er:YAG laser operating at 1617 nm.

  17. Predictors for switch from unipolar major depressive disorder to bipolar disorder type I or II: a 5-year prospective study.

    PubMed

    Holma, K Mikael; Melartin, Tarja K; Holma, Irina A K; Isometsä, Erkki T

    2008-08-01

    In this naturalistic study, we investigated the rate, time course, and predictors of a diagnostic switch from unipolar major depressive disorder (MDD) to bipolar disorder type I or II during a 5-year follow-up. The Vantaa Depression Study included at baseline 269 psychiatric outpatients (82.9%) and inpatients (17.1%) with DSM-IV MDD, diagnosed using structured and semi-structured interviews and followed up at 6 months, 18 months, and 5 years between February 1, 1997 and April 30, 2004. Information on 248 MDD patients (92.2%) was available for analyses of the risk of diagnostic switch. Cox proportional hazards models were used. Twenty-two subjects (8.9%) with previous unipolar MDD switched to bipolar disorder type II and 7 (2.8%) to type I. Median time for switch to bipolar type I was significantly shorter than to type II. In Cox proportional hazards analyses, severity of MDD (hazard ratio [HR] = 1.08, 95% CI = 1.00 to 1.15, p = .036), obsessive-compulsive disorder (OCD) (HR = 5.00, 95% CI = 2.04 to 12.5, p < .001), social phobia (HR = 2.33, 95% CI = 1.00 to 5.26, p = .050), and large number of cluster B personality disorder symptoms (HR = 1.10, 95% CI = 1.02 to 1.20, p = .022) predicted switch. Among outpatients with MDD in secondary level psychiatric settings, diagnostic switch to bipolar disorder usually refers to type II rather than type I. The few switching to bipolar type I do so relatively early. Predictors for diagnostic switch include not only features of mood disorder, such as severity, but may also include some features of psychiatric comorbidity, such as concurrent social phobia, OCD, and symptoms of cluster B personality disorders.

  18. Nerve fiber layer (NFL) degeneration associated with acute q-switched laser exposure in the nonhuman primate

    NASA Astrophysics Data System (ADS)

    Zwick, Harry; Zuclich, Joseph A.; Stuck, Bruce E.; Gagliano, Donald A.; Lund, David J.; Glickman, Randolph D.

    1995-01-01

    We have evaluated acute laser retinal exposure in non-human primates using a Rodenstock scanning laser ophthalmoscope (SLO) equipped with spectral imaging laser sources at 488, 514, 633, and 780 nm. Confocal spectral imaging at each laser wavelength allowed evaluation of the image plane from deep within the retinal vascular layer to the more superficial nerve fiber layer in the presence and absence of the short wavelength absorption of the macular pigment. SLO angiography included both fluorescein and indocyanine green procedures to assess the extent of damage to the sensory retina, the retinal pigment epithelium (RPE), and the choroidal vasculature. All laser exposures in this experiment were from a Q-switched Neodymium laser source at an exposure level sufficient to produce vitreous hemorrhage. Confocal imaging of the nerve fiber layer revealed discrete optic nerve sector defects between the lesion site and the macula (retrograde degeneration) as well as between the lesion site and the optic disk (Wallerian degeneration). In multiple hemorrhagic exposures, lesions placed progressively distant from the macula or overlapping the macula formed bridging scars visible at deep retinal levels. Angiography revealed blood flow disturbance at the retina as well as at the choroidal vascular level. These data suggest that acute parafoveal laser retinal injury can involve both direct full thickness damage to the sensory and non-sensory retina and remote nerve fiber degeneration. Such injury has serious functional implications for both central and peripheral visual function.

  19. Infrared laser transillumination CT imaging system using parallel fiber arrays and optical switches for finger joint imaging

    NASA Astrophysics Data System (ADS)

    Sasaki, Yoshiaki; Emori, Ryota; Inage, Hiroki; Goto, Masaki; Takahashi, Ryo; Yuasa, Tetsuya; Taniguchi, Hiroshi; Devaraj, Balasigamani; Akatsuka, Takao

    2004-05-01

    The heterodyne detection technique, on which the coherent detection imaging (CDI) method founds, can discriminate and select very weak, highly directional forward scattered, and coherence retaining photons that emerge from scattering media in spite of their complex and highly scattering nature. That property enables us to reconstruct tomographic images using the same reconstruction technique as that of X-Ray CT, i.e., the filtered backprojection method. Our group had so far developed a transillumination laser CT imaging method based on the CDI method in the visible and near-infrared regions and reconstruction from projections, and reported a variety of tomographic images both in vitro and in vivo of biological objects to demonstrate the effectiveness to biomedical use. Since the previous system was not optimized, it took several hours to obtain a single image. For a practical use, we developed a prototype CDI-based imaging system using parallel fiber array and optical switches to reduce the measurement time significantly. Here, we describe a prototype transillumination laser CT imaging system using fiber-optic based on optical heterodyne detection for early diagnosis of rheumatoid arthritis (RA), by demonstrating the tomographic imaging of acrylic phantom as well as the fundamental imaging properties. We expect that further refinements of the fiber-optic-based laser CT imaging system could lead to a novel and practical diagnostic tool for rheumatoid arthritis and other joint- and bone-related diseases in human finger.

  20. Integrated Optical Circuit Engineering

    NASA Astrophysics Data System (ADS)

    Sriram, S.

    1985-04-01

    Implementation of single-mode optical fiber systems depends largely on the availability of integrated optical components for such functions as switching, multiplexing, and modulation. The technology of integrated optics is maturing very rapidly, and its growth justifies the optimism that now exists in the optical community.

  1. Design of an All-Optical Network Based on LCoS Technologies

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Shiau, Yhi

    2016-06-01

    In this paper, an all-optical network composed of the ROADMs (reconfigurable optical add-drop multiplexer), L2/L3 optical packet switches, and the fiber optical cross-connection for fiber scheduling and measurement based on LCoS (liquid crystal on silicon) technologies is proposed. The L2/L3 optical packet switches are designed with optical output buffers. Only the header of optical packets is converted to electronic signals to control the wavelength of input ports and the packet payloads can be transparently destined to their output ports. An optical output buffer is designed to queue the packets when more than one incoming packet should reach to the same destination output port. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The wavelength of input ports is designed for routing incoming packets using LCoS technologies. Finally, the proposed OFS (optical flow switch) with input buffers can quickly transfer the big data to the output ports and the main purpose of the OFS is to reduce the number of wavelength reflections. The all-optical content delivery network is comprised of the OFSs for a large amount of audio and video data transmissions in the future.

  2. The pulsed dye laser versus the Q-switched Nd:YAG laser in laser-induced shock-wave lithotripsy.

    PubMed

    Thomas, S; Pensel, J; Engelhardt, R; Meyer, W; Hofstetter, A G

    1988-01-01

    To date, there are two fairly well-established alternatives for laser-induced shock-wave lithotripsy in clinical practice. The Q-switched Nd:YAG laser is distinguished by the high-stone selectivity of its coupler systems. The necessity of a coupler system and its fairly small conversion rate of light energy into mechanical energy present serious drawbacks. Furthermore, the minimal outer diameter of the transmission system is 1.8 mm. The pulsed-dye laser can be used with a highly flexible and uncomplicated 200-micron fiber. However, the laser system itself is more complicated than the Q-switched Nd:YAG laser and requires a great deal of maintenance. Biological evaluation of damage caused by direct irradiation shows that both laser systems produce minor damage of different degrees. YAG laser lithotripsy with the optomechanical coupler was assessed in 31 patients with ureteral calculi. The instability and limited effectiveness of the fiber application system necessitated auxiliary lithotripsy methods in 14 cases. Dye-laser lithotripsy is currently being tested in clinical application. Further development, such as systems for blind application or electronic feedback mechanisms to limit adverse tissue effects, have yet to be optimized. Nevertheless, laser-induced shock-wave lithotripsy has the potential to become a standard procedure in the endourologic management of stone disease.

  3. Ovonic type switching in tin selenide thin films

    NASA Technical Reports Server (NTRS)

    Baxter, C. R.; Mclennan, W. D.

    1975-01-01

    Amorphous tin selenide thin films which possess Ovonic type switching properties are fabricated using vacuum deposition techniques. The devices are fabricated in a planar configuration and consist of amorphous tin selenide deposited over silver contacts. Results obtained indicate that Ovonic type memory switching does occur in these films with the energy density required for switching from a high impedance to a low impedance state being dependent on the spacing between the electrodes of the device. There is also a strong implication that the switching is a function of the magnitude of the applied voltage pulse.

  4. In vitro assessment of fiber sweeping speed during Q-switched 532-nm laser tissue ablation

    NASA Astrophysics Data System (ADS)

    Rajabhandharaks, Danop; Kang, Hyun Wook; Ko, Woo Jin; Stinson, Douglas; Choi, Benjamin

    2011-03-01

    Photoselective vaporization of the prostate (PVP) is considered a minimally invasive procedure to treat benign prostatic hyperplasia (BPH). During the PVP, the prostate gland is irradiated by the 532-nm laser and the fiber is swept and dragged along the urethra. In this study the speed of sweeping fiber during the PVP is being investigated. In vitro porcine kidney model was used (N=100) throughout the experiment. A Q-switched 532-nm laser, equipped with sidefiring 750-Um fiber, was employed and set to power levels of 120 and 180 W. The speed of fiber sweeping was the only variable in this study and varied at 0 (i.e. no sweeping), 0.5, 1.0, 1.5, and 2.0 sweep/s. Ablation rate, depth, and coagulation thickness were quantified. Based on the current settings, ablation rate decreased as sweeping speed increased and was maximized between 0 to 1.0 sweep/s for 120-W power level and between 0 to 0.5 sweep/s for 180-W power level. Ablation rate at 180 W was higher than that at 120 W, regardless of sweeping speed. Ablation depth at both 120 and 180 W was maximized at 0 sweep/s and decreased 35% at 0.5 sweep/s. The overall coagulation thickness was less than 1.5 mm and comparable from 0 to 1.5 sweep/s (0.8~0.9 mm) and increased at 2.0 sweep/s (~1.1 mm). This study demonstrated that tissue ablation performance was contingent upon sweeping speed and maximized at slow sweeping speed due to longer laser-tissue interaction time and larger area coverage by the 532-nm light.

  5. Fiber Optic Laser Accelerometer

    DTIC Science & Technology

    2007-11-06

    embodiment of a fiber laser accelerometer 10. The fiber laser accelerometer 10 includes a fiber laser 12. Fiber laser 12 can be either a Fabry - Perot type...cavity fiber laser or a distributed feedback fiber laser. In a 4 Attorney Docket No. 97966 Fabry - Perot type fiber laser, the laser cavity is a length...type of signal. A receiver 26 receives the phase shifted signal. Receiver 26 is capable of demodulating and detecting the signal from the fiber laser by

  6. Fast packet switch architectures for broadband integrated services digital networks

    NASA Technical Reports Server (NTRS)

    Tobagi, Fouad A.

    1990-01-01

    Background information on networking and switching is provided, and the various architectures that have been considered for fast packet switches are described. The focus is solely on switches designed to be implemented electronically. A set of definitions and a brief description of the functionality required of fast packet switches are given. Three basic types of packet switches are identified: the shared-memory, shared-medium, and space-division types. Each of these is described, and examples are given.

  7. Fiber Optic Communication System For Medical Images

    NASA Astrophysics Data System (ADS)

    Arenson, Ronald L.; Morton, Dan E.; London, Jack W.

    1982-01-01

    This paper discusses a fiber optic communication system linking ultrasound devices, Computerized tomography scanners, Nuclear Medicine computer system, and a digital fluoro-graphic system to a central radiology research computer. These centrally archived images are available for near instantaneous recall at various display consoles. When a suitable laser optical disk is available for mass storage, more extensive image archiving will be added to the network including digitized images of standard radiographs for comparison purposes and for remote display in such areas as the intensive care units, the operating room, and selected outpatient departments. This fiber optic system allows for a transfer of high resolution images in less than a second over distances exceeding 2,000 feet. The advantages of using fiber optic cables instead of typical parallel or serial communication techniques will be described. The switching methodology and communication protocols will also be discussed.

  8. A fiber-based quasi-continuous-wave quantum key distribution system

    PubMed Central

    Shen, Yong; Chen, Yan; Zou, Hongxin; Yuan, Jianmin

    2014-01-01

    We report a fiber-based quasi-continuous-wave (CW) quantum key distribution (QKD) system with continuous variables (CV). This system employs coherent light pulses and time multiplexing to maximally reduce cross talk in the fiber. No-switching detection scheme is adopted to optimize the repetition rate. Information is encoded on the sideband of the pulsed coherent light to fully exploit the continuous wave nature of laser field. With this configuration, high secret key rate can be achieved. For the 50 MHz detected bandwidth in our experiment, when the multidimensional reconciliation protocol is applied, a secret key rate of 187 kb/s can be achieved over 50 km of optical fiber against collective attacks, which have been shown to be asymptotically optimal. Moreover, recently studied loopholes have been fixed in our system. PMID:24691409

  9. Healthcare Provider Type and Switch to Biologics in Psoriasis: Evidence from Real-World Practice.

    PubMed

    Calara, Paul S; Norlin, Jenny M; Althin, Rikard; Carlsson, Katarina Steen; Schmitt-Egenolf, Marcus

    2016-04-01

    Previous research indicates an uneven uptake of biologics in patients with moderate-to-severe psoriasis in Sweden. Therefore, it is essential to scrutinise variations in treatment patterns. The aim of this study was to evaluate the extent to which the uptake of biologics for psoriasis differs between types of healthcare provider. Three types of provider were identified within 52 units participating in the Swedish National Registry for Systemic Psoriasis Treatment (PsoReg): university hospitals, non-university hospitals and individual practices. Biologics-naïve patients (n = 3165) were included in analyses to investigate the probability of switch to biologics. The numbers of patients fulfilling the criteria for moderate-to-severe psoriasis [Psoriasis Area and Severity Index (PASI) ≥10 and Dermatology Life Quality Index (DLQI) ≥10] among patients who switched to biologics and patients who did not switch were reported. A logistic regression model was used to calculate how healthcare provider type influenced the probability of switch to biologics whilst adjusting for patient characteristics and disease severity. During registration, 16% of patients switched to biologics while 84% remained on conventional systemic treatment. In 7% of patients, the criteria PASI ≥10 and DLQI ≥10 was fulfilled at their last visit without switching to biologics, whereas in 10% of patients the criteria was not fulfilled prior to switch. After controlling for patient characteristics and disease severity, small or no difference in the probability of switch was observed between provider types. Disease severity does not explain the decision to switch or not to switch to biologics for a disproportionate number of patients. There seems to be an uneven uptake of biologics in Swedish clinical practice, but the type of healthcare provider cannot explain this variation. More research is needed on what factors influence the prescription of biologics.

  10. Hibernating squirrel muscle activates the endurance exercise pathway despite prolonged immobilization

    PubMed Central

    Xu, Ran; Andres-Mateos, Eva; Mejias, Rebeca; MacDonald, Elizabeth M.; Leinwand, Leslie A.; Merriman, Dana K.; Fink, Rainer H. A.; Cohn, Ronald D.

    2013-01-01

    Skeletal muscle atrophy is a very common clinical challenge in many disuse conditions. Maintenance of muscle mass is crucial to combat debilitating functional consequences evoked from these clinical conditions. In contrast, hibernation represents a physiological state in which there is natural protection against disuse atrophy despite prolonged periods of immobilization and lack of nutrient intake. Even though peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1-α (PGC-1α) is a central mediator in muscle remodeling pathways, its role in the preservation of skeletal muscle mass during hibernation remains unclear. Since PGC-1α regulates muscle fiber type formation and mitochondrial biogenesis, we analyzed muscles of 13-lined ground squirrels. We find that animals in torpor exhibit a shift to slow-twitch Type I muscle fibers. This switch is accompanied by activation of the PGC-1α-mediated endurance exercise pathway. In addition, we observe increased antioxidant capacity without evidence of oxidative stress, a marked decline in apoptotic susceptibility, and enhanced mitochondrial abundance and metabolism. These results show that activation of the endurance exercise pathway can be achieved in vivo despite prolonged periods of immobilization, and therefore might be an important mechanism for skeletal muscle preservation during hibernation. This PGC-1α regulated pathway may be a potential therapeutic target promoting skeletal muscle homeostasis and oxidative balance to prevent muscle loss in a variety of inherited and acquired neuromuscular disease conditions. PMID:23333568

  11. Acceleration Strain Transducer with Increased Sensitivity

    DTIC Science & Technology

    2009-09-22

    utilizing a fiber laser sensor. The fiber laser accelerometer 10 includes a fiber laser 12. Fiber laser 12 can be either a Fabry - Perot type cavity...fiber laser or a distributed feedback fiber laser. In a Fabry - Perot type fiber laser, the laser cavity is a length of erbium- doped optical fiber...designs can produce the same type of signal. A receiver 26 receives the phase shifted signal. Receiver 26 is capable of demodulating and detecting

  12. Fiber transformation and replacement in low-frequency stimulated rabbit fast-twitch muscles.

    PubMed

    Schuler, M; Pette, D

    1996-08-01

    The fast-to-slow conversion of rabbit skeletal muscles by chronic low-frequency (10 Hz, 12 h daily) stimulation involves (1) sequential fast-to-slow fiber-type transitions in the order of type IID-->type IIA-->type I, and (2) the replacement of deteriorating fast-twitch glycolytic fibers by new fibers derived from satellite cells and myotubes. These two processes were analyzed in 30- and 60-day stimulated extensor digitorum longus and tibialis anterior muscles. Fast-to-slow transforming fibers were identified by myofibrillar actomyosin histochemistry as type C fibers and immunohistochemically by their reaction with monoclonal antibodies specific to slow and fast myosin heavy chain isoforms. In situ hybridization of mRNA specific to the myosin heavy chain I isoform identified all fibers expressing slow myosin, i.e., type I and C fibers. The fraction of transforming fibers ranged between 35% and 50% in 30-day stimulated muscles. The percentage of type I fibers (20%) was threefold elevated in extensor digitorum longus muscle, but unaltered (3.5%) in tibialis anterior muscle, suggesting that fast-to-slow fiber conversion was more advanced in the former than in the latter. Fiber replacement was indicated by the finding that the fiber populations of both muscles contained 15% myotubes or small fibers with central nuclei. In situ hybridization revealed that myotubes and small regenerating fibers uniformly expressed myosin heavy chain I mRNA. Similarly, high percentages of slow-myosin-expressing myotubes and small fibers were found in 60-day stimulated muscles.

  13. High-power microwave generation using optically activated semiconductor switches

    NASA Astrophysics Data System (ADS)

    Nunnally, William C.

    1990-12-01

    The two prominent types of optically controlled switches, the optically controlled linear (OCL) switch and the optically initiated avalanche (OIA) switch, are described, and their operating parameters are characterized. Two transmission line approaches, one using a frozen-wave generator and the other using an injected-wave generator, for generation of multiple cycles of high-power microwave energy using optically controlled switches are discussed. The point design performances of the series-switch, frozen-wave generator and the parallel-switch, injected-wave generator are compared. The operating and performance limitations of the optically controlled switch types are discussed, and additional research needed to advance the development of the optically controlled, bulk, semiconductor switches is indicated.

  14. Crosstalk analyse of DFB fiber laser hydrophone array based on time division multiplexing

    NASA Astrophysics Data System (ADS)

    Li, Yu; Huang, Junbin; Gu, Hongcan; Tang, Bo; Wu, Jing

    2014-12-01

    In this paper, the crosstalk of a time division multiplexed (TDM) system of distributed feedback (DFB) fiber laser (FL)hydrophones based on optical switch using Phase Generated Carrier (PGC) method was quantitatively analyzed. After mathematical deduction, the relationship among crosstalk, multiplexing scale and extinction ratio of optical switch was given. The simulation results show that to realize a TDM system of DFB fiber laser hydrophones with crosstalk lower than -40dB, the average extinction ratio should be higher than 24.78dB for a 4- channel system, while higher than 28.45dB for an 8- channel system. Two experiments to analyze the array crosstalk to a certain channel in an 8- channel array were conducted in this paper. Firstly, by testing the powers of leak laser to a certain channel from others, the array crosstalk to this channel was obtained according to the equation mathematically deduced in this paper. The result shows the array crosstalk to a certain channel of the 8-channel array was -7.6dB. An experiment of underwater acoustic detection was carried out finally to get the real array crosstalk to this certain channel, and the experimental result shows that the array crosstalk to this channel is -8.8dB, which is close to the calculated result.

  15. Photonics

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Optoelectronic materials and devices are examined. Optoelectronic devices, which generate, detect, modulate, or switch electromagnetic radiation are being developed for a variety of space applications. The program includes spatial light modulators, solid state lasers, optoelectronic integrated circuits, nonlinear optical materials and devices, fiber optics, and optical networking photovoltaic technology and optical processing.

  16. Demonstration of 20Gb/s polarization-insensitive wavelength switching system for high-speed free-space optical network

    NASA Astrophysics Data System (ADS)

    Qian, Feng-chen; Ye, Ya-lin; Wen, Yu; Duan, Tao; Feng, Huan

    2015-10-01

    A 20Gb/s polarization-insensitive all-optical wavelength switching system for high-speed free-space optical communication (FSO) network is experimentally demonstrated All-optical wavelength conversion (AOWC) is implemented using four-wave mixing (FWM) by highly-nonlinear fiber (HNLF). In the experimental setup, a simple actively mode-locked fiber ring laser (AML-FRL) with repetition frequency from 1 to 15 GHz is used to generate eight 2.5Gb/s tributary signals, which are multiplexed into one 20Gb/s optical data stream. At the receiver, the 20 Gb/s OTDM data stream is demultiplexed down to 2.5 Gb/s via a polarization-insensitive FWM scheme. The whole space communication distance is over 10 meters in building hallway. The experimental results show that this system can stably run over 24 hours at 10-9 BER level, thus the proposed architecture can work at higher rate with wavelength-division multiplexing (WDM) and high order modulation schemes.

  17. Spaceflight effects on single skeletal muscle fiber function in the rhesus monkey.

    PubMed

    Fitts, R H; Desplanches, D; Romatowski, J G; Widrick, J J

    2000-11-01

    The purpose of this investigation was to understand how 14 days of weightlessness alters the cellular properties of individual slow- and fast-twitch muscle fibers in the rhesus monkey. The diameter of the soleus (Sol) type I, medial gastrocnemius (MG) type I, and MG type II fibers from the vivarium controls averaged 60 +/- 1, 46 +/- 2, and 59 +/- 2 microm, respectively. Both a control 1-G capsule sit (CS) and spaceflight (SF) significantly reduced the Sol type I fiber diameter (20 and 13%, respectively) and peak force, with the latter declining from 0.48 +/- 0.01 to 0.31 +/- 0.02 (CS group) and 0.32 +/- 0.01 mN (SF group). When the peak force was expressed as kiloNewtons per square meter (kN/m(2)), only the SF group showed a significant decline. This group also showed a significant 15% drop in peak fiber stiffness that suggests that fewer cross bridges were contracting in parallel. In the MG, SF but not CS depressed the type I fiber diameter and force. Additionally, SF significantly depressed absolute (mN) and relative (kN/m(2)) force in the fast-twitch MG fibers by 30% and 28%, respectively. The Ca(2+) sensitivity of the type I fiber (Sol and MG) was significantly reduced by growth but unaltered by SF. Flight had no significant effect on the mean maximal fiber shortening velocity in any fiber type or muscle. The post-SF Sol type I fibers showed a reduced peak power and, at peak power, an elevated velocity and decreased force. In conclusion, CS and SF caused atrophy and a reduced force and power in the Sol type I fiber. However, only SF elicited atrophy and reduced force (mN) in the MG type I fiber and a decline in relative force (kN/m(2)) in the Sol type I and MG type II fibers.

  18. Spaceflight effects on single skeletal muscle fiber function in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Desplanches, D.; Romatowski, J. G.; Widrick, J. J.

    2000-01-01

    The purpose of this investigation was to understand how 14 days of weightlessness alters the cellular properties of individual slow- and fast-twitch muscle fibers in the rhesus monkey. The diameter of the soleus (Sol) type I, medial gastrocnemius (MG) type I, and MG type II fibers from the vivarium controls averaged 60 +/- 1, 46 +/- 2, and 59 +/- 2 microm, respectively. Both a control 1-G capsule sit (CS) and spaceflight (SF) significantly reduced the Sol type I fiber diameter (20 and 13%, respectively) and peak force, with the latter declining from 0.48 +/- 0.01 to 0.31 +/- 0.02 (CS group) and 0.32 +/- 0.01 mN (SF group). When the peak force was expressed as kiloNewtons per square meter (kN/m(2)), only the SF group showed a significant decline. This group also showed a significant 15% drop in peak fiber stiffness that suggests that fewer cross bridges were contracting in parallel. In the MG, SF but not CS depressed the type I fiber diameter and force. Additionally, SF significantly depressed absolute (mN) and relative (kN/m(2)) force in the fast-twitch MG fibers by 30% and 28%, respectively. The Ca(2+) sensitivity of the type I fiber (Sol and MG) was significantly reduced by growth but unaltered by SF. Flight had no significant effect on the mean maximal fiber shortening velocity in any fiber type or muscle. The post-SF Sol type I fibers showed a reduced peak power and, at peak power, an elevated velocity and decreased force. In conclusion, CS and SF caused atrophy and a reduced force and power in the Sol type I fiber. However, only SF elicited atrophy and reduced force (mN) in the MG type I fiber and a decline in relative force (kN/m(2)) in the Sol type I and MG type II fibers.

  19. UV diode-pumped solid state laser for medical applications

    NASA Astrophysics Data System (ADS)

    Apollonov, Victor V.; Konstantinov, K. V.; Sirotkin, A. A.

    1999-07-01

    A compact, solid-state, high-efficiency, and safe UV laser medical system with optical fiber output was created for treatment of destructive forms of pulmonary tuberculosis. A frequency-quadruped quasi-CW Nd:YVO4 laser system pumped by laser-diode array is investigated with various resonator configurations. A longitudinal end-pumping scheme was used in a compact acousto-optical Q-switched laser for producing stable pulses of UV radiation at the repetition frequency 10-20 kHz and the duration 7-10 ns with the fiber-guide output power exceeding 10 mW.

  20. Optical pulse response of a fibre ring resonator

    NASA Astrophysics Data System (ADS)

    Pandian, G. S.; Seraji, Faramarz E.

    1991-06-01

    This article presents the optical pulse response analysis of a fiber ring resonator. It is shown that several interesting functions, namely optical pulse generation, and equalization of fiber dispersion can be realized by using the resonator. The theory is presented in an easy to understand manner, by first considering the steady-state response. The results of the transient pulse response are explained in relation to the steady state results. The results related to optical pulse shaping will be of interest to the future when coherent optical pulse and switching circuits will become available.

  1. Systematic Genetic Screen for Transcriptional Regulators of the Candida albicans White-Opaque Switch

    PubMed Central

    Lohse, Matthew B.; Ene, Iuliana V.; Craik, Veronica B.; Hernday, Aaron D.; Mancera, Eugenio; Morschhäuser, Joachim; Bennett, Richard J.; Johnson, Alexander D.

    2016-01-01

    The human fungal pathogen Candida albicans can reversibly switch between two cell types named “white” and “opaque,” each of which is stable through many cell divisions. These two cell types differ in their ability to mate, their metabolic preferences and their interactions with the mammalian innate immune system. A highly interconnected network of eight transcriptional regulators has been shown to control switching between these two cell types. To identify additional regulators of the switch, we systematically and quantitatively measured white–opaque switching rates of 196 strains, each deleted for a specific transcriptional regulator. We identified 19 new regulators with at least a 10-fold effect on switching rates and an additional 14 new regulators with more subtle effects. To investigate how these regulators affect switching rates, we examined several criteria, including the binding of the eight known regulators of switching to the control region of each new regulatory gene, differential expression of the newly found genes between cell types, and the growth rate of each mutant strain. This study highlights the complexity of the transcriptional network that regulates the white–opaque switch and the extent to which switching is linked to a variety of metabolic processes, including respiration and carbon utilization. In addition to revealing specific insights, the information reported here provides a foundation to understand the highly complex coupling of white–opaque switching to cellular physiology. PMID:27280690

  2. Effects of Calorie Restriction and Fiber Type on Glucose Uptake and Abundance of Electron Transport Chain and Oxidative Phosphorylation Proteins in Single Fibers from Old Rats.

    PubMed

    Wang, Haiyan; Arias, Edward B; Yu, Carmen S; Verkerke, Anthony R P; Cartee, Gregory D

    2017-11-09

    Calorie restriction (CR; reducing calorie intake by ~40% below ad libitum) can increase glucose uptake by insulin-stimulated muscle. Because skeletal muscle is comprised of multiple, heterogeneous fiber types, our primary aim was to determine the effects of CR (initiated at 14 weeks old) and fiber type on insulin-stimulated glucose uptake by single fibers of diverse fiber types in 23-26-month-old rats. Isolated epitrochlearis muscles from AL and CR rats were incubated with [3H]-2-deoxyglucose ± insulin. Glucose uptake and fiber type were determined for single fibers dissected from the muscles. We also determined CR-effects on abundance of several key metabolic proteins in single fibers. CR resulted in: (a) significantly (p < .05 to .001) greater glucose uptake by insulin-stimulated type I, IIA, IIB, IIBX, and IIX fibers; (b) significantly (p < .05 to .001) reduced abundance of several mitochondrial electron transport chain (ETC) and oxidative phosphorylation (OxPhos) proteins in type I, IIA, and IIBX but not IIB and IIX fibers; and (c) unaltered hexokinase II abundance in each fiber type. These results demonstrate that CR can enhance glucose uptake in each fiber type of rat skeletal muscle in the absence of upregulation of the abundance of hexokinase II or key mitochondrial ETC and OxPhos proteins. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Silicon Micromachining in RF and Photonic Applications

    NASA Technical Reports Server (NTRS)

    Lin, Tsen-Hwang; Congdon, Phil; Magel, Gregory; Pang, Lily; Goldsmith, Chuck; Randall, John; Ho, Nguyen

    1995-01-01

    Texas Instruments (TI) has developed membrane and micromirror devices since the late 1970s. An eggcrate space membrane was used as the spatial light modulator in the early years. Discrete micromirrors supported by cantilever beams created a new era for micromirror devices. Torsional micromirror and flexure-beam micromirror devices were promising for mass production because of their stable supports. TI's digital torsional micromirror device is an amplitude modulator (known as the digital micromirror device (DMD) and is in production development, discussed elsewhere. We also use a torsional device for a 4 x 4 fiber-optic crossbar switch in a 2 cm x 2 cm package. The flexure-beam micromirror device is an analog phase modulator and is considered more efficient than amplitude modulators for use in optical processing systems. TI also developed millimeter-sized membranes for integrated optical switches for telecommunication and network applications. Using a member in radio frequency (RF) switch applications is a rapidly growing area because of the micromechanical device performance in microsecond-switching characteristics. Our preliminary membrane RF switch test structure results indicate promising speed and RF switching performance. TI collaborated with MIT for modeling of metal-based micromachining.

  4. Design and Development of a Series Switch for High Voltage in RF Heating

    NASA Astrophysics Data System (ADS)

    Patel, Himanshu K.; Shah, Deep; Thacker, Mauli; Shah, Atman

    2013-02-01

    Plasma is the fourth state of matter. To sustain plasma in its ionic form very high temperature is essential. RF heating systems are used to provide the required temperature. Arching phenomenon in these systems can cause enormous damage to the RF tube. Heavy current flows across the anode-cathode junction, which need to be suppressed in minimal time for its protection. Fast-switching circuit breakers are used to cut-off the load from the supply in cases of arching. The crowbar interrupts the connection between the high voltage power supply (HVPS) and the RF tube for a temporary period between which the series switch has to open. The crowbar shunts the current across the load but in the process leads to short circuiting the HVPS. Thus, to protect the load as well as the HVPS a series switch is necessary. This paper presents the design and development of high voltage Series Switch for the high power switching applications. Fiber optic based Optimum triggering scheme is designed and tested to restrict the time delay well within the stipulated limits. The design is well supported with the experimental results for the whole set-up along with the series switch at various voltage level before its approval for operation at 5.2 kV.

  5. A Telecommunications Primer for College Presidents. Part I. The Technologies Defined. Educational Technology Profile 25.

    ERIC Educational Resources Information Center

    Smith, Ralph Lee

    1978-01-01

    Intended for use by presidents, planners, and administrators to acquaint them with developments in electronic communications, this primer describes cable television, common carrier, videotape recorders and videodiscs, satellites, microwave, circuit integration, digital transmission, data packet switching, and fiber optics. (LBH)

  6. Information Technology and the Third Industrial Revolution.

    ERIC Educational Resources Information Center

    Fitzsimmons, Joe

    1994-01-01

    Discusses the so-called third industrial revolution, or the information revolution. Topics addressed include the progression of the revolution in the U.S. economy, in Europe, and in Third World countries; the empowering technologies, including digital switches, optical fiber, semiconductors, CD-ROM, networks, and combining technologies; and future…

  7. The Advent of WDM and the All-Optical Network: A Reality Check.

    ERIC Educational Resources Information Center

    Lutkowitz, Mark

    1998-01-01

    Discussion of the telecommunications industry focuses on WDM (wavelength division multiplexing) as a solution for dealing with capacity constraints. Highlights include fiber optic technology; cross-connecting and switching wavelengths; SONET (Synchronous Optical Network) and wavelength networking; and optical TDM (Time Division Multiplexing). (LRW)

  8. Graphene oxide based reflective saturable absorber for Q-switched and mode-locked YVO4/Nd:YVO4/YVO4 laser

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Wang, Yonggang; Chen, Zhendong; Jiao, Zhiyong

    2018-05-01

    A reflective graphene oxide saturable absorber is fabricated and used in a Q-switched and mode-locked YVO4/Nd:YVO4/YVO4 laser. Stable Q-switched and mode-locked pulses with a repetition rate of 8 MHz can be obtained at a pump power of 9 W by using an X-type resonator. Pulses obtained in an X-type resonator possess higher stability, output power, and repetition rate, compared with those in a Z-type resonator. The pulse width and the repetition rate of the Q-switched envelop in an X-type resonator are superior to those in the reported Q-switched and mode-locked lasers with graphene oxide.

  9. Solid state switch panel. [determination of optimum transducer type for required switches

    NASA Technical Reports Server (NTRS)

    Beenfeldt, E.

    1973-01-01

    An intensive study of various forms of transducers was conducted with application towards hermetically sealing the transducer and all electronics. The results of the study indicated that the Hall effect devices and a LED/phototransistor combination were the most practical for this type of application. Therefore, hardware was developed utilizing a magnet/Hall effect transducer for single action switches and LED/phototransistor transducers for rotary multiposition or potentiometer applications. All electronics could be housed in a hermetically sealed compartment. A number of switches were built and models were hermetically sealed to prove the feasibility of this type of fabrication. One of each type of switch was subjected to temperature cycling, vibration, and EMI tests. The results of these tests are presented.

  10. Alpha3, a transposable element that promotes host sexual reproduction.

    PubMed

    Barsoum, Emad; Martinez, Paula; Aström, Stefan U

    2010-01-01

    Theoretical models predict that selfish DNA elements require host sex to persist in a population. Therefore, a transposon that induces sex would strongly favor its own spread. We demonstrate that a protein homologous to transposases, called alpha3, was essential for mating type switch in Kluyveromyces lactis. Mutational analysis showed that amino acids conserved among transposases were essential for its function. During switching, sequences in the 5' and 3' flanking regions of the alpha3 gene were joined, forming a DNA circle, showing that alpha3 mobilized from the genome. The sequences encompassing the alpha3 gene circle junctions in the mating type alpha (MATalpha) locus were essential for switching from MATalpha to MATa, suggesting that alpha3 mobilization was a coupled event. Switching also required a DNA-binding protein, Mating type switch 1 (Mts1), whose binding sites in MATalpha were important. Expression of Mts1 was repressed in MATa/MATalpha diploids and by nutrients, limiting switching to haploids in low-nutrient conditions. A hairpin-capped DNA double-strand break (DSB) was observed in the MATa locus in mre11 mutant strains, indicating that mating type switch was induced by MAT-specific DSBs. This study provides empirical evidence for selfish DNA promoting host sexual reproduction by mediating mating type switch.

  11. Infrared wavelength dependence of leaky mode losses and steady state distribution in W-type glass optical fibers

    NASA Astrophysics Data System (ADS)

    Djordjevich, Alexandar; Simović, Ana; Savović, Svetislav; Drljača, Branko

    2018-07-01

    Infrared wavelength dependence of leaky mode losses and steady state distribution (SSD) in W-type glass optical fibers (doubly clad fibers with three layers) is investigated in this paper for parametrically varied depths and widths of the fiber's intermediate optical layer. This enables a tailoring of configuration of the W-type fiber to suit an application at hand. We have shown that the proposed W-type fiber has better transmission characteristics at longer infrared wavelengths.

  12. Dissemination of optical-comb-based ultra-broadband frequency reference through a fiber network.

    PubMed

    Nagano, Shigeo; Kumagai, Motohiro; Li, Ying; Ido, Tetsuya; Ishii, Shoken; Mizutani, Kohei; Aoki, Makoto; Otsuka, Ryohei; Hanado, Yuko

    2016-08-22

    We disseminated an ultra-broadband optical frequency reference based on a femtosecond (fs)-laser optical comb through a kilometer-scale fiber link. Its spectrum ranged from 1160 nm to 2180 nm without additional fs-laser combs at the end of the link. By employing a fiber-induced phase noise cancellation technique, the linewidth and fractional frequency instability attained for all disseminated comb modes were of order 1 Hz and 10-18 in a 5000 s averaging time. The ultra-broad optical frequency reference, for which absolute frequency is traceable to Japan Standard Time, was applied in the frequency stabilization of an injection-seeded Q-switched 2051 nm pulse laser for a coherent light detection and ranging LIDAR system.

  13. Low-profile fiber connector for co-packaged optics

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; DeJong, Michael; Butler, Douglas L.; Clark, Jeffrey S.; Sutton, Clifford G.

    2018-02-01

    We developed a small form factor connector that can be assembled on all four sides of a high-data switch package for fiber connectivity. This paper discusses a novel connector approach that has the potential to meet all co-packaging requirements including solder-reflow-compatibility, de-mateability, low insertion loss and state-of-the art FAU attach. The connector was attached to the PIC for performance evaluation. The average insertion loss across all eight fibers of the assembly was 1.77 dB, including the three optical interfaces: (1) MT-to-MT between connector and receptacle, (2) receptacle-to-PLC and (3) PIC-to-FAU. Also included is the propagation loss of the PIC waveguide. Optical return loss was measured to be -55 dB or lower.

  14. Switchable multi-wavelength fiber laser based on modal interference

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Jiang, Sun; Qi, Yan-Hui; Kang, Ze-Xin; Jian, Shui-Sheng

    2015-08-01

    A comb fiber filter based on modal interference is proposed and demonstrated in this paper. Here two cascaded up-tapers are used to excite the cladding mode, and a core-offset jointing point is used to act as an interference component. Experimental results show that this kind of structure possesses a comb filter property in a range of the C-band. The measured extinction ratio is better than 12 dB with an insertion loss of about 11 dB. A switchable multi-wavelength erbium-doped fiber laser based on this novel comb filter is demonstrated. By adjusting the polarization controller, the output laser can be switched among single-, dual-, and three-wavelengths with a side mode suppression ratio of better than 45 dB.

  15. All-fiber wavelength-tunable picosecond nonlinear reflectivity measurement setup for characterization of semiconductor saturable absorber mirrors

    NASA Astrophysics Data System (ADS)

    Viskontas, K.; Rusteika, N.

    2016-09-01

    Semiconductor saturable absorber mirror (SESAM) is the key component for many passively mode-locked ultrafast laser sources. Particular set of nonlinear parameters is required to achieve self-starting mode-locking or avoid undesirable q-switch mode-locking for the ultra-short pulse laser. In this paper, we introduce a novel all-fiber wavelength-tunable picosecond pulse duration setup for the measurement of nonlinear properties of saturable absorber mirrors at around 1 μm center wavelength. The main advantage of an all-fiber configuration is the simplicity of measuring the fiber-integrated or fiber-pigtailed saturable absorbers. A tunable picosecond fiber laser enables to investigate the nonlinear parameters at different wavelengths in ultrafast regime. To verify the capability of the setup, nonlinear parameters for different SESAMs with low and high modulation depth were measured. In the operating wavelength range 1020-1074 nm, <1% absolute nonlinear reflectivity accuracy was demonstrated. Achieved fluence range was from 100 nJ/cm2 to 2 mJ/cm2 with corresponding intensity from 10 kW/cm2 to 300 MW/cm2.

  16. Controllable all-fiber generation/conversion of circularly polarized orbital angular momentum beams using long period fiber gratings

    NASA Astrophysics Data System (ADS)

    Han, Ya; Liu, Yan-Ge; Wang, Zhi; Huang, Wei; Chen, Lei; Zhang, Hong-Wei; Yang, Kang

    2018-01-01

    Mode-division multiplexing (MDM) is a promising technology for increasing the data-carrying capacity of a single few-mode optical fiber. The flexible mode manipulation would be highly desired in a robust MDM network. Recently, orbital angular momentum (OAM) modes have received wide attention as a new spatial mode basis. In this paper, we firstly proposed a long period fiber grating (LPFG) system to realize mode conversions between the higher order LP core modes in four-mode fiber. Based on the proposed system, we, for the first time, demonstrate the controllable all-fiber generation and conversion of the higher order LP core modes to the first and second order circularly polarized OAM beams with all the combinations of spin and OAM. Therefore, the proposed LPFG system can be potentially used as a controllable higher order OAM beam switch and a physical layer of the translating protocol from the conventional LP modes communication to the OAM modes communication in the future mode carrier telecommunication system and light calculation protocols.

  17. Development of optical packet and circuit integrated ring network testbed.

    PubMed

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate < 1×10(-4)) operation was achieved with optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. © 2011 Optical Society of America

  18. The use of 2D and 3D WA-BPM models to analyze total-internal-reflection-based integrated optical switches

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Brambilla, Gilberto; Semenova, Yuliya; Wu, Qiang; Zheng, Jie; Farrell, Gerald

    2011-08-01

    The well known beam propagation method (BPM) has become one of the most useful, robust and effective numerical simulation tools for the investigation of guided-wave optics, for example integrated optical waveguides and fiber optic devices. In this paper we examine the use of the 2D and 3D wide angle-beam propagation method (WA-BPM) combined with the well known perfectly matched layer (PML) boundary conditions as a tool to analyze TIR based optical switches, in particular the relationship between light propagation and the geometrical parameters of a TIR based optical switch. To analyze the influence of the length and the width of the region in which the refractive index can be externally controlled, the 3D structure of a 2x2 TIR optical switch is firstly considered in 2D using the effective index method (EIM). Then the influence of the etching depth and the tilt angle of the reflection facet on the switch performance are investigated with a 3D model.

  19. Polio endgame: the global switch from tOPV to bOPV.

    PubMed

    Garon, Julie; Seib, Katherine; Orenstein, Walter A; Ramirez Gonzalez, Alejandro; Chang Blanc, Diana; Zaffran, Michel; Patel, Manish

    2016-06-01

    Globally, polio cases have reached an all-time low, and type 2 poliovirus (one of three) is eradicated. Oral polio vaccine (OPV) has been the primary tool, however, in rare cases, OPV induces paralysis. In 2013, the World Health Assembly endorsed the phased withdrawal of OPV and introduction of inactivated poliovirus vaccine (IPV) into childhood routine immunization schedules. Type 2 OPV will be withdrawn through a globally synchronized "switch" from trivalent OPV (all three types) to bivalent OPV (types 1 and 3). The switch will happen in 155 OPV-using countries between April 17(th) and May 1(st), 2016. Planned activities to reduce type 2 outbreak risks post-switch include the following: tOPV campaigns to increase type 2 immunity prior to the switch, monovalent OPV2 stockpiling to respond to outbreaks should they occur, containment of both wild and vaccine type 2 viruses, enhanced acute flaccid paralysis (AFP) and environmental surveillance, outbreak response protocols, and ensured access to IPV and bivalent OPV.

  20. Phenotypic conversion of distinct muscle fiber populations to electrocytes in a weakly electric fish.

    PubMed

    Unguez, G A; Zakon, H H

    1998-09-14

    In most groups of electric fish, the electric organ (EO) derives from striated muscle cells that suppress many muscle phenotypic properties. This phenotypic conversion is recapitulated during regeneration of the tail in the weakly electric fish Sternopygus macrurus. Mature electrocytes, the cells of the electric organ, are considerably larger than the muscle fibers from which they derive, and it is not known whether this is a result of muscle fiber hypertrophy and/or fiber fusion. In this study, electron micrographs revealed fusion of differentiated muscle fibers during the formation of electrocytes. There was no evidence of hypertrophy of muscle fibers during their phenotypic conversion. Furthermore, although fish possess distinct muscle phenotypes, the extent to which each fiber population contributes to the formation of the EO has not been determined. By using myosin ATPase histochemistry and anti-myosin heavy chain (MHC) monoclonal antibodies (mAbs), different fiber types were identified in fascicles of muscle in the adult tail. Mature electrocytes were not stained by the ATPase reaction, nor were they labeled by any of the anti-MHC mAbs. In contrast, mature muscle fibers exhibited four staining patterns. The four fiber types were spatially arranged in distinct compartments with little intermixing; peripherally were two populations of type I fibers with small cross-sectional areas, whereas more centrally were two populations of type II fibers with larger cross-sectional areas. In 2- and 3-week regenerating blastema, three fiber types were clearly discerned. Most (> 95%) early-forming electrocytes had an MHC phenotype similar to that of type II fibers. In contrast, fusion among type I fibers was rare. Together, ultrastructural and immunohistochemical analyses revealed that the fusion of muscle fibers gives rise to electrocytes and that this fusion occurs primarily among the population of type II fibers in regenerating blastema.

  1. Contraction-induced injury to single permeabilized muscle fibers from normal and congenitally-clefted goat palates.

    PubMed

    Rader, Erik P; Cederna, Paul S; Weinzweig, Jeffrey; Panter, Kip E; Yu, Deborah; Buchman, Steven R; Larkin, Lisa M; Faulkner, John A

    2007-03-01

    Levator veli palatini muscles from normal palates of adult humans and goats are predominantly slow oxidative (type 1) fibers. However, 85% of levator veli palatini fibers from cleft palates of adult goats are physiologically fast (type 2). This fiber composition difference between cleft and normal palates may have implications in palatal function. For limb muscles, type 2 muscle fibers are more susceptible to lengthening contraction-induced injury than are type 1 fibers. We tested the hypothesis that, compared with single permeabilized levator veli palatini muscle fibers from normal palates of adult goats, those from cleft palates are more susceptible to lengthening contraction-induced injury. Congenital cleft palates were the result of chemically-induced decreased movement of the fetal head and tongue causing obstruction of palatal closure. Each muscle fiber was maximally activated and lengthened. Fiber type was determined by contractile properties and gel electrophoresis. Susceptibility to injury was assessed by measuring the decrease in maximum force following the lengthening contraction, expressed as a percentage of the initial force. Compared with fibers from normal palates that were all type 1 and had force deficits of 23 +/- 1%, fibers from cleft palates were all type 2 and sustained twofold greater deficits, 40 +/- 1% (p = .001). Levator veli palatini muscles from cleft palates of goats contain predominantly type 2 fibers that are highly susceptible to lengthening contraction-induced injury. This finding may have implications regarding palatal function and the incidence of velopharyngeal incompetence.

  2. All-optical encryption based on interleaved waveband switching modulation for optical network security.

    PubMed

    Fok, Mable P; Prucnal, Paul R

    2009-05-01

    All-optical encryption for optical code-division multiple-access systems with interleaved waveband-switching modulation is experimentally demonstrated. The scheme explores dual-pump four-wave mixing in a 35 cm highly nonlinear bismuth oxide fiber to achieve XOR operation of the plaintext and the encryption key. Bit 0 and bit 1 of the encrypted data are represented by two different wavebands. Unlike on-off keying encryption methods, the encrypted data in this approach has the same intensity for both bit 0 and bit 1. Thus no plaintext or ciphertext signatures are observed.

  3. Mechanical cause for acute left lung atelectasis after neonatal aortic arch repair with arterial switch operation: Conservative management.

    PubMed

    Maddali, Madan Mohan; Kandachar, Pranav Subbaraya; Al-Hanshi, Said; Al Ghafri, Mohammed; Valliattu, John

    2017-01-01

    Respiratory complications due to mechanical obstruction of the airways can occur following pediatric cardiac surgery. Clinically significant intrathoracic vascular compression of the airway can occur when extensive dissection and mobilization of arch and neck vessels is involved as in repair of interrupted aortic arch. This case report describes a neonate who underwent interrupted aortic arch repair along with an arterial switch operation and developed a left lung collapse immediately after tracheal extubation. Fiber-optic bronchoscopy revealed vascular compression as the real culprit. The child was successfully managed conservatively.

  4. Effects of Fiber Type and Size on the Heterogeneity of Oxygen Distribution in Exercising Skeletal Muscle

    PubMed Central

    Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.

    2012-01-01

    The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531

  5. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology

    PubMed Central

    Xie, Wen-Ge; Wang, Peng-Zhao; Wang, Jian-Zhang

    2018-01-01

    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach–Zehnder interferometer (MZI) typed sensors, Fabry–Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed. PMID:29419745

  6. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.

    PubMed

    Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang

    2018-02-08

    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.

  7. Loss of Prox1 in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy.

    PubMed

    Petchey, Louisa K; Risebro, Catherine A; Vieira, Joaquim M; Roberts, Tom; Bryson, John B; Greensmith, Linda; Lythgoe, Mark F; Riley, Paul R

    2014-07-01

    Correct regulation of troponin and myosin contractile protein gene isoforms is a critical determinant of cardiac and skeletal striated muscle development and function, with misexpression frequently associated with impaired contractility or disease. Here we reveal a novel requirement for Prospero-related homeobox factor 1 (Prox1) during mouse heart development in the direct transcriptional repression of the fast-twitch skeletal muscle genes troponin T3, troponin I2, and myosin light chain 1. A proportion of cardiac-specific Prox1 knockout mice survive beyond birth with hearts characterized by marked overexpression of fast-twitch genes and postnatal development of a fatal dilated cardiomyopathy. Through conditional knockout of Prox1 from skeletal muscle, we demonstrate a conserved requirement for Prox1 in the repression of troponin T3, troponin I2, and myosin light chain 1 between cardiac and slow-twitch skeletal muscle and establish Prox1 ablation as sufficient to cause a switch from a slow- to fast-twitch muscle phenotype. Our study identifies conserved roles for Prox1 between cardiac and skeletal muscle, specifically implicated in slow-twitch fiber-type specification, function, and cardiomyopathic disease.

  8. Loss of Prox1 in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy

    PubMed Central

    Petchey, Louisa K.; Risebro, Catherine A.; Vieira, Joaquim M.; Roberts, Tom; Bryson, John B.; Greensmith, Linda; Lythgoe, Mark F.; Riley, Paul R.

    2014-01-01

    Correct regulation of troponin and myosin contractile protein gene isoforms is a critical determinant of cardiac and skeletal striated muscle development and function, with misexpression frequently associated with impaired contractility or disease. Here we reveal a novel requirement for Prospero-related homeobox factor 1 (Prox1) during mouse heart development in the direct transcriptional repression of the fast-twitch skeletal muscle genes troponin T3, troponin I2, and myosin light chain 1. A proportion of cardiac-specific Prox1 knockout mice survive beyond birth with hearts characterized by marked overexpression of fast-twitch genes and postnatal development of a fatal dilated cardiomyopathy. Through conditional knockout of Prox1 from skeletal muscle, we demonstrate a conserved requirement for Prox1 in the repression of troponin T3, troponin I2, and myosin light chain 1 between cardiac and slow-twitch skeletal muscle and establish Prox1 ablation as sufficient to cause a switch from a slow- to fast-twitch muscle phenotype. Our study identifies conserved roles for Prox1 between cardiac and skeletal muscle, specifically implicated in slow-twitch fiber-type specification, function, and cardiomyopathic disease. PMID:24938781

  9. Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control.

    PubMed

    Geng, Chao; Luo, Wen; Tan, Yi; Liu, Hongmei; Mu, Jinbo; Li, Xinyang

    2013-10-21

    A novel approach of tip/tilt control by using divergence cost function in stochastic parallel gradient descent (SPGD) algorithm for coherent beam combining (CBC) is proposed and demonstrated experimentally in a seven-channel 2-W fiber amplifier array with both phase-locking and tip/tilt control, for the first time to our best knowledge. Compared with the conventional power-in-the-bucket (PIB) cost function for SPGD optimization, the tip/tilt control using divergence cost function ensures wider correction range, automatic switching control of program, and freedom of camera's intensity-saturation. Homemade piezoelectric-ring phase-modulator (PZT PM) and adaptive fiber-optics collimator (AFOC) are developed to correct piston- and tip/tilt-type aberrations, respectively. The PIB cost function is employed for phase-locking via maximization of SPGD optimization, while the divergence cost function is used for tip/tilt control via minimization. An average of 432-μrad of divergence metrics in open loop has decreased to 89-μrad when tip/tilt control implemented. In CBC, the power in the full width at half maximum (FWHM) of the main lobe increases by 32 times, and the phase residual error is less than λ/15.

  10. Systematic Genetic Screen for Transcriptional Regulators of the Candida albicans White-Opaque Switch.

    PubMed

    Lohse, Matthew B; Ene, Iuliana V; Craik, Veronica B; Hernday, Aaron D; Mancera, Eugenio; Morschhäuser, Joachim; Bennett, Richard J; Johnson, Alexander D

    2016-08-01

    The human fungal pathogen Candida albicans can reversibly switch between two cell types named "white" and "opaque," each of which is stable through many cell divisions. These two cell types differ in their ability to mate, their metabolic preferences and their interactions with the mammalian innate immune system. A highly interconnected network of eight transcriptional regulators has been shown to control switching between these two cell types. To identify additional regulators of the switch, we systematically and quantitatively measured white-opaque switching rates of 196 strains, each deleted for a specific transcriptional regulator. We identified 19 new regulators with at least a 10-fold effect on switching rates and an additional 14 new regulators with more subtle effects. To investigate how these regulators affect switching rates, we examined several criteria, including the binding of the eight known regulators of switching to the control region of each new regulatory gene, differential expression of the newly found genes between cell types, and the growth rate of each mutant strain. This study highlights the complexity of the transcriptional network that regulates the white-opaque switch and the extent to which switching is linked to a variety of metabolic processes, including respiration and carbon utilization. In addition to revealing specific insights, the information reported here provides a foundation to understand the highly complex coupling of white-opaque switching to cellular physiology. Copyright © 2016 by the Genetics Society of America.

  11. Mechanically switchable polymer fibers for sensing in biological conditions

    NASA Astrophysics Data System (ADS)

    McMillan, Sean; Rader, Chris; Jorfi, Mehdi; Pickrell, Gary; Foster, E. Johan

    2017-02-01

    The area of in vivo sensing using optical fibers commonly uses materials such as silica and polymethyl methacrylate, both of which possess much higher modulus than human tissue. The mechanical mismatch between materials and living tissue has been seen to cause higher levels of glial encapsulation, scarring, and inflammation, leading to failure of the implanted medical device. We present the use of a fiber made from polyvinyl alcohol (PVA) for use as an implantable sensor as it is an easy to work with functionalized polymer that undergoes a transition from rigid to soft when introduced to water. This ability to switch from stiff to soft reduces the severity of the immune response. The fabricated PVA fibers labeled with fluorescein for sensing applications showed excellent response to various stimuli while exhibiting mechanical switchability. For the dry fibers, a tensile storage modulus of 4700 MPa was measured, which fell sharply to 145 MPa upon wetting. The fibers showed excellent response to changing pH levels, producing values that were detectable in a range consistent with those seen in the literature and in proposed applications. The results show that these mechanically switchable fibers are a viable option for future sensing applications.

  12. A voltage-division-type low-jitter self-triggered repetition-rate switch.

    PubMed

    Su, Jian-Cang; Zeng, Bo; Gao, Peng-Cheng; Li, Rui; Wu, Xiao-Long; Zhao, Liang

    2016-10-01

    A voltage-division-type (V/N) low-jitter self-triggered multi-stage switch is put forward. It comprises of a triggered corona gap, several quasi-uniform-field gaps, and an inversion inductor. When the corona gap is in the stage of self-breakdown, the multi-stage gaps are triggered and the switch is closed via an over-voltage. This type of V/N switch has the advantage of compact structure since the auxiliary components like the gas-blowing system and the triggered system are eliminated from the whole system. It also has advantages such as low breakdown jitter and high energy efficiency. The dependence of the self-triggered voltage on the over-voltage factor and the switch operating voltage is deduced. A switch of this type is designed and fabricated and experiments to research its characteristics are conducted. The results show that this switch can operate on a voltage of 1 MV at 50 Hz and can generate 1000 successive pulses with a jitter as low as 3% and an energy efficiency as high as 90%. This V/N switch can work under a high repetition rate with a long lifetime.

  13. Inversion of the chromosomal region between two mating type loci switches the mating type in Hansenula polymorpha.

    PubMed

    Maekawa, Hiromi; Kaneko, Yoshinobu

    2014-11-01

    Yeast mating type is determined by the genotype at the mating type locus (MAT). In homothallic (self-fertile) Saccharomycotina such as Saccharomyces cerevisiae and Kluveromyces lactis, high-efficiency switching between a and α mating types enables mating. Two silent mating type cassettes, in addition to an active MAT locus, are essential components of the mating type switching mechanism. In this study, we investigated the structure and functions of mating type genes in H. polymorpha (also designated as Ogataea polymorpha). The H. polymorpha genome was found to harbor two MAT loci, MAT1 and MAT2, that are ∼18 kb apart on the same chromosome. MAT1-encoded α1 specifies α cell identity, whereas none of the mating type genes were required for a identity and mating. MAT1-encoded α2 and MAT2-encoded a1 were, however, essential for meiosis. When present in the location next to SLA2 and SUI1 genes, MAT1 or MAT2 was transcriptionally active, while the other was repressed. An inversion of the MAT intervening region was induced by nutrient limitation, resulting in the swapping of the chromosomal locations of two MAT loci, and hence switching of mating type identity. Inversion-deficient mutants exhibited severe defects only in mating with each other, suggesting that this inversion is the mechanism of mating type switching and homothallism. This chromosomal inversion-based mechanism represents a novel form of mating type switching that requires only two MAT loci.

  14. Unexpected dependence of RyR1 splice variant expression in human lower limb muscles on fiber-type composition.

    PubMed

    Willemse, Hermia; Theodoratos, Angelo; Smith, Paul N; Dulhunty, Angela F

    2016-02-01

    The skeletal muscle ryanodine receptor Ca(2+) release channel (RyR1), essential for excitation-contraction (EC) coupling, demonstrates a known developmentally regulated alternative splicing in the ASI region. We now find unexpectedly that the expression of the splice variants is closely related to fiber type in adult human lower limb muscles. We examined the distribution of myosin heavy chain isoforms and ASI splice variants in gluteus minimus, gluteus medius and vastus medialis from patients aged 45 to 85 years. There was a strong positive correlation between ASI(+)RyR1 and the percentage of type 2 fibers in the muscles (r = 0.725), and a correspondingly strong negative correlation between the percentages of ASI(+)RyR1 and percentage of type 1 fibers. When the type 2 fiber data were separated into type 2X and type 2A, the correlation with ASI(+)RyR1 was stronger in type 2X fibers (r = 0.781) than in type 2A fibers (r = 0.461). There was no significant correlation between age and either fiber-type composition or ASI(+)RyR1/ASI(-)RyR1 ratio. The results suggest that the reduced expression of ASI(-)RyR1 during development may reflect a reduction in type 1 fibers during development. Preferential expression of ASI(-) RyR1, having a higher gain of in Ca(2+) release during EC coupling than ASI(+)RyR1, may compensate for the reduced terminal cisternae volume, fewer junctional contacts and reduced charge movement in type 1 fibers.

  15. Fiber types of the anterior and lateral cervical muscles in elderly males.

    PubMed

    Cornwall, Jon; Kennedy, Ewan

    2015-09-01

    The anterior and lateral cervical muscles (ALCM) are generally considered to be postural, yet few studies have investigated ALCM fiber types to help clarify the function of these muscles. This study aimed to systematically investigate ALCM fiber types in cadavers. Anterior and lateral cervical muscles (four scalenus anterior, medius, posterior muscles; five longus colli, five longus capitis taken bilaterally from one cadaver) were removed from four male embalmed cadavers (mean age 87.25 years). Paraffin-embedded specimens were sectioned then stained immunohistochemically to identify type I and II skeletal muscle fibers. Proportional fiber type numbers and cross-sectional area (CSA) occupied by fiber types were determined using stereology (random systematic sampling). Results were analyzed using ANOVA (P < 0.05) and descriptive statistics. Scalenus anterior had the greatest average number and CSA of type I fibers (71.9 and 83.7%, respectively); longus capitis had the lowest number (48.5%) and CSA (61.4%). All scalene muscles had significantly greater type I CSA than longus capitis and longus colli; scalenus anterior and medius had significantly greater type I numbers than longus capitis and longus colli. Some significant differences were observed between individual cadavers in longus colli for CSA, and longus capitis for number. The ALCM do not share a common functional fiber type distribution, although similar fiber type distributions are shared by longus colli and longus capitis, and by the scalene muscles. Contrary to conventional descriptions, longus colli and longus capitis have type I fiber proportions indicative of postural as well as phasic muscle function.

  16. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis.

    PubMed

    Bloemberg, Darin; Quadrilatero, Joe

    2012-01-01

    Skeletal muscle is a heterogeneous tissue comprised of fibers with different morphological, functional, and metabolic properties. Different muscles contain varying proportions of fiber types; therefore, accurate identification is important. A number of histochemical methods are used to determine muscle fiber type; however, these techniques have several disadvantages. Immunofluorescence analysis is a sensitive method that allows for simultaneous evaluation of multiple MHC isoforms on a large number of fibers on a single cross-section, and offers a more precise means of identifying fiber types. In this investigation we characterized pure and hybrid fiber type distribution in 10 rat and 10 mouse skeletal muscles, as well as human vastus lateralis (VL) using multicolor immunofluorescence analysis. In addition, we determined fiber type-specific cross-sectional area (CSA), succinate dehydrogenase (SDH) activity, and α-glycerophosphate dehydrogenase (GPD) activity. Using this procedure we were able to easily identify pure and hybrid fiber populations in rat, mouse, and human muscle. Hybrid fibers were identified in all species and made up a significant portion of the total population in some rat and mouse muscles. For example, rat mixed gastrocnemius (MG) contained 12.2% hybrid fibers whereas mouse white tibialis anterior (WTA) contained 12.1% hybrid fibers. Collectively, we outline a simple and time-efficient method for determining MHC expression in skeletal muscle of multiple species. In addition, we provide a useful resource of the pure and hybrid fiber type distribution, fiber CSA, and relative fiber type-specific SDH and GPD activity in a number of rat and mouse muscles.

  17. Quitting activity and tobacco brand Switching: findings from the ITC-4 Country Survey

    PubMed Central

    Cowie, Genevieve A.; Swift, Elena; Partos, Timea; Borland, Ron

    2015-01-01

    Objective Among Australian smokers, to examine associations between cigarette brand switching, quitting activity and possible causal directions by lagging the relationships in different directions. Methods Current smokers from nine waves (2002 to early 2012) of the ITC-4 Country Survey Australian dataset were surveyed. Measures were brand switching, both brand family and product type (roll-your-own versus factory-made cigarettes) reported in adjacent waves, interest in quitting, recent quit attempts, and one month sustained abstinence. Results Switching at one interval was unrelated to concurrent quit interest. Quit interest predicted switching at the following interval, but the effect disappeared once subsequent quit attempts were controlled for. Recent quit attempts more strongly predicted switching at concurrent (OR 1.34, 95% CI=1.18–1.52, p<0.001) and subsequent intervals (OR 1.31, 95% CI= 1.12–1.53, p=0.001) than switching predicted quit attempts, with greater asymmetry when both types of switching were combined. One month sustained abstinence and switching were unrelated in the same interval; however after controlling for concurrent switching and excluding type switchers, sustained abstinence predicted lower chance of switching at the following interval (OR=0.66, 95% CI=0.47–0.93, p=0.016). Conclusions The asymmetry suggests brand switching does not affect subsequent quitting. Implications Brand switching does not appear to interfere with quitting. PMID:25827182

  18. Quitting activity and tobacco brand switching: findings from the ITC-4 Country Survey.

    PubMed

    Cowie, Genevieve A; Swift, Elena; Partos, Timea; Borland, Ron

    2015-04-01

    Among Australian smokers, to examine associations between cigarette brand switching, quitting activity and possible causal directions by lagging the relationships in different directions. Current smokers from nine waves (2002 to early 2012) of the ITC-4 Country Survey Australian dataset were surveyed. Measures were brand switching, both brand family and product type (roll-your-own versus factory-made cigarettes) reported in adjacent waves, interest in quitting, recent quit attempts, and one month sustained abstinence. Switching at one interval was unrelated to concurrent quit interest. Quit interest predicted switching at the following interval, but the effect disappeared once subsequent quit attempts were controlled for. Recent quit attempts more strongly predicted switching at concurrent (OR 1.34, 95%CI=1.18-1.52, p<0.001) and subsequent intervals (OR 1.31, 95%CI=1.12-1.53, p=0.001) than switching predicted quit attempts, with greater asymmetry when both types of switching were combined. One month sustained abstinence and switching were unrelated in the same interval; however, after controlling for concurrent switching and excluding type switchers, sustained abstinence predicted lower chance of switching at the following interval (OR=0.66, 95%CI=0.47-0.93, p=0.016). The asymmetry suggests brand switching does not affect subsequent quitting. Brand switching does not appear to interfere with quitting. © 2015 Public Health Association of Australia.

  19. Effect of salbutamol on innervated and denervated rat soleus muscle.

    PubMed

    Soić-Vranić, T; Bobinac, D; Bajek, S; Jerković, R; Malnar-Dragojević, D; Nikolić, M

    2005-12-01

    The objective of the present investigation was to perform a 14-day time-course study of treatment with salbutamol, a beta2 adrenoceptor agonist, on rat soleus muscle in order to assess fiber type selectivity in the hypertrophic response and fiber type composition. Male Wistar rats were divided into four groups: control (N = 10), treated with salbutamol (N = 30), denervated (N = 30), and treated with salbutamol after denervation (N = 30). Salbutamol was injected intraperitoneally in the rats of the 2nd and 4th groups at a concentration of 0.3 mg/kg twice a day for 2 weeks. The muscles were denervated using the crush method with pean. The animals were sacrificed 3, 6, 9, 12, and 14 days after treatment. Frozen cross-sections of soleus muscle were stained for myosin ATPase, pH 9.4. Cross-sectional area and percent of muscle fibers were analyzed morphometrically by computerized image analysis. Treatment with salbutamol induced hypertrophy of all fiber types and a higher percentage of type II fibers (21%) in the healthy rat soleus muscle. Denervation caused marked atrophy of all fibers and conversion from type I to type II muscle fibers. Denervated muscles treated with salbutamol showed a significantly larger cross-sectional area of type I muscle fibers, 28.2% compared to the denervated untreated muscle. Moreover, the number of type I fibers was increased. These results indicate that administration of salbutamol is able to induce changes in cross-sectional area and fiber type distribution in the early phase of treatment. Since denervation-induced atrophy and conversion from type I to type II fibers were improved by salbutamol treatment we propose that salbutamol, like other beta2 adrenoceptor agonists, may have a therapeutic potential in improving the condition of skeletal muscle after denervation.

  20. Fiber Typing of the Erector Spinae and Multifidus Muscles in Healthy Controls and Back Pain Patients: A Systematic Literature Review.

    PubMed

    Cagnie, Barbara; Dhooge, Famke; Schumacher, Charline; De Meulemeester, Kayleigh; Petrovic, Mirko; van Oosterwijck, Jessica; Danneels, Lieven

    2015-01-01

    Understanding the changes in muscle fiber typing is relevant in the context of muscle disorders because it provides information on the metabolic profile and functional capacity. The aim of this study was to systematically review the literature comparing muscle fiber typing in the back muscles of healthy subjects with low back pain (LBP) patients. Predefined keywords regarding muscle fiber typing and back muscles were combined in PubMed and Web of Science electronic search engines from inception to August 2014. Full-text articles were independently screened by 2 independent, blinded researchers. Full texts fulfilling the predefined inclusion criteria were assessed on risk of bias by 2 independent researchers, and relative data were extracted. Data were not pooled because of heterogeneity in biopsy locations and population. From the 214 articles that were identified, 18 met the inclusion criteria. These articles evaluated the muscle fiber type distribution or proportional fiber type area between muscles, muscle layers, men, and women or healthy subjects and LBP patients. Regarding muscle fiber type distribution, findings in healthy subjects and LBP patients show no or inconclusive evidence for intermuscular and interindividual differentiation. Studies evaluating the proportional fiber type area also suggest little intermuscular differentiation but provide plausible evidence that the proportional area occupied by type I fibers is higher in women compared to men. The evidence for differentiation based on the presence of low back pain is conflicting. This study found that the evidence regarding muscle fiber typing in back muscles is either inconclusive or shows little differences. The most plausible evidence exists for differentiation in proportional fiber type area depending on sex. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  1. A low timing jitter picosecond microchip laser pumped by pulsed LD

    NASA Astrophysics Data System (ADS)

    Wang, Sha; Wang, Yan-biao; Feng, Guoying; Zhou, Shou-huan

    2016-07-01

    SESAM passively Q-switched microchip laser is a very promising instrument to replace mode locked lasers to obtain picosecond pulses. The biggest drawback of a passively Q-switched microchip laser is its un-avoided large timing jitter, especially when the pump intensity is low, i.e. at low laser repetition rate range. In order to obtain a low timing jitter passively Q-switched picosecond microchip laser in the whole laser repetition rate range, a 1000 kHz pulsed narrow bandwidth Fiber Bragg Grating (FBG) stablized laser diode was used as the pump source. By tuning the pump intensity, we could control the output laser frequency. In this way, we achieved a very low timing jitter passively Q-switched picosecond laser at 2.13 mW, 111.1 kHz. The relative timing jitter was only 0.0315%, which was around 100 times smaller compared with a cw LD pumped microchip working at hundred kilohertz repetition rate frequency range.

  2. Functional characteristics of the rat jaw muscles: daily muscle activity and fiber type composition.

    PubMed

    Kawai, Nobuhiko; Sano, Ryota; Korfage, Joannes A M; Nakamura, Saika; Tanaka, Eiji; van Wessel, Tim; Langenbach, Geerling E J; Tanne, Kazuo

    2009-12-01

    Skeletal muscles have a heterogeneous fiber type composition, which reflects their functional demand. The daily muscle use and the percentage of slow-type fibers have been shown to be positively correlated in skeletal muscles of larger animals but for smaller animals there is no information. The examination of this relationship in adult rats was the purpose of this study. We hypothesized a positive relationship between the percentage of fatigue-resistant fibers in each muscle and its total duration of use per day. Fourteen Wistar strain male rats (410-450 g) were used. A radio-telemetric device was implanted to record muscle activity continuously from the superficial masseter, deep masseter, anterior belly of digastric and anterior temporalis muscles. The degree of daily muscle use was quantified by the total duration of muscle activity per day (duty time) exceeding specified levels of the peak activity (2, 5, 20 and 50%). The fiber type composition of the muscles was examined by the myosin heavy chain content of the fibers by means of immunohistochemical staining. At lower activity levels (exceeding 2 and 5% of the peak activity), the duty time of the anterior belly of digastric muscle was significantly (P < 0.01) longer than those of the other muscles. The anterior belly of digastric muscle also contained the highest percentage of slow-type fibers (type I fiber and hybrid fiber co-expressing myosin heavy chain I + IIA) (ca. 11%; P < 0.05). By regression analysis for all four muscles, an inter-muscular comparison showed a positive relationship between the duty time (exceeding 50% of the peak activity) and the percentage of type IIX fibers (P < 0.05), which demonstrate intermediate physiological properties relative to type IIA and IIB fibers. For the jaw muscles of adult male rats, the variations of fiber type composition and muscle use suggest that the muscle containing the largest amounts of slow-type fibers (the anterior belly of digastric muscle) is mainly involved in low-amplitude activities and that the amount of type IIX fibers is positively related to the generation of large muscle forces, validating our hypothesis.

  3. Gene polymorphisms and fiber-type composition of human skeletal muscle.

    PubMed

    Ahmetov, Ildus I; Vinogradova, Olga L; Williams, Alun G

    2012-08-01

    The ability to perform aerobic or anaerobic exercise varies widely among individuals, partially depending on their muscle-fiber composition. Variability in the proportion of skeletal-muscle fiber types may also explain marked differences in aspects of certain chronic disease states including obesity, insulin resistance, and hypertension. In untrained individuals, the proportion of slow-twitch (Type I) fibers in the vastus lateralis muscle is typically around 50% (range 5-90%), and it is unusual for them to undergo conversion to fast-twitch fibers. It has been suggested that the genetic component for the observed variability in the proportion of Type I fibers in human muscles is on the order of 40-50%, indicating that muscle fiber-type composition is determined by both genotype and environment. This article briefly reviews current progress in the understanding of genetic determinism of fiber-type proportion in human skeletal muscle. Several polymorphisms of genes involved in the calcineurin-NFAT pathway, mitochondrial biogenesis, glucose and lipid metabolism, cytoskeletal function, hypoxia and angiogenesis, and circulatory homeostasis have been associated with fiber-type composition. As muscle is a major contributor to metabolism and physical strength and can readily adapt, it is not surprising that many of these gene variants have been associated with physical performance and athlete status, as well as metabolic and cardiovascular diseases. Genetic variants associated with fiber-type proportions have important implications for our understanding of muscle function in both health and disease.

  4. Motor unit and muscle fiber type grouping after peripheral nerve injury in the rat.

    PubMed

    Gordon, Tessa; de Zepetnek, Joanne E Totosy

    2016-11-01

    Muscle unit (MU) fibers innervated by one motoneuron and corresponding muscle fiber types are normally distributed in a mosaic. We asked whether, 4-8months after common peroneal nerve transection and random surgical alignment of nerve stumps in rat tibialis anterior muscles 1) reinnervated MU muscle and muscle fiber type clumping is invariant and 2) slow and fast motoneurons regenerate their nerve fibers within original endoneurial pathways. MU contractile forces were recorded in vivo, the MUs classified into types according to their contractile speed and fatigability, and one MU subjected to alternate exhaustive stimulation-recovery cycles to deplete glycogen for histochemical MU fiber recognition and enumeration, and muscle fiber typing. MU muscle fibers occupied defined territories whose size increased with MU force and muscle fiber numbers in normal and reinnervated muscles. The reinnervated MU muscle fiber territories were significantly smaller, the fibers clumped within 1-3 groups in 90% of the MUs, and each fiber lying adjacent to another significantly more frequently. Most reinnervated slow muscle fibers were normally located in the deep muscle compartment but substantial numbers were located abnormally in the superficial compartment. Our findings that well reinnervated muscle fibers clump in small muscles contrast with our earlier findings of clumping in large muscles only when reinnervated MU numbers were significantly reduced. We conclude that fiber type clumping is predictive of muscle reinnervation in small but not large muscles. In the latter muscles, clumping is more indicative of sprouting after partial nerve injuries than of muscle reinnervation after complete nerve injuries. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Advanced optical components for next-generation photonic networks

    NASA Astrophysics Data System (ADS)

    Yoo, S. J. B.

    2003-08-01

    Future networks will require very high throughput, carrying dominantly data-centric traffic. The role of Photonic Networks employing all-optical systems will become increasingly important in providing scalable bandwidth, agile reconfigurability, and low-power consumptions in the future. In particular, the self-similar nature of data traffic indicates that packet switching and burst switching will be beneficial in the Next Generation Photonic Networks. While the natural conclusion is to pursue Photonic Packet Switching and Photonic Burst Switching systems, there are significant challenges in realizing such a system due to practical limitations in optical component technologies. Lack of a viable all-optical memory technology will continue to drive us towards exploring rapid reconfigurability in the wavelength domain. We will introduce and discuss the advanced optical component technologies behind the Photonic Packet Routing system designed and demonstrated at UC Davis. The system is capable of packet switching and burst switching, as well as circuit switching with 600 psec switching speed and scalability to 42 petabit/sec aggregated switching capacity. By utilizing a combination of rapidly tunable wavelength conversion and a uniform-loss cyclic frequency (ULCF) arrayed waveguide grating router (AWGR), the system is capable of rapidly switching the packets in wavelength, time, and space domains. The label swapping module inside the Photonic Packet Routing system containing a Mach-Zehnder wavelength converter and a narrow-band fiber Bragg-grating achieves all-optical label swapping with optical 2R (potentially 3R) regeneration while maintaining optical transparency for the data payload. By utilizing the advanced optical component technologies, the Photonic Packet Routing system successfully demonstrated error-free, cascaded, multi-hop photonic packet switching and routing with optical-label swapping. This paper will review the advanced optical component technologies and their role in the Next Generation Photonic Networks.

  6. Immunohistochemical analysis of laryngeal muscles in normal horses and horses with subclinical recurrent laryngeal neuropathy.

    PubMed

    Rhee, Hannah S; Steel, Catherine M; Derksen, Frederik J; Robinson, N Edward; Hoh, Joseph F Y

    2009-08-01

    We used immunohistochemistry to examine myosin heavy-chain (MyHC)-based fiber-type profiles of the right and left cricoarytenoideus dorsalis (CAD) and arytenoideus transversus (TrA) muscles of six horses without laryngoscopic evidence of recurrent laryngeal neuropathy (RLN). Results showed that CAD and TrA muscles have the same slow, 2a, and 2x fibers as equine limb muscles, but not the faster contracting fibers expressing extraocular and 2B MyHCs found in laryngeal muscles of small mammals. Muscles from three horses showed fiber-type grouping bilaterally in the TrA muscles, but only in the left CAD. Fiber-type grouping suggests that denervation and reinnervation of fibers had occurred, and that these horses had subclinical RLN. There was a virtual elimination of 2x fibers in these muscles, accompanied by a significant increase in the percentage of 2a and slow fibers, and hypertrophy of these fiber types. The results suggest that multiple pathophysiological mechanisms are at work in early RLN, including selective denervation and reinnervation of 2x muscle fibers, corruption of neural impulse traffic that regulates 2x and slow muscle fiber types, and compensatory hypertrophy of remaining fibers. We conclude that horses afflicted with mild RLN are able to remain subclinical by compensatory hypertrophy of surviving muscle fibers.

  7. Effect of 23-day muscle disuse on sarcoplasmic reticulum Ca2+ properties and contractility in human type I and type II skeletal muscle fibers.

    PubMed

    Lamboley, C R; Wyckelsma, V L; Perry, B D; McKenna, M J; Lamb, G D

    2016-08-01

    Inactivity negatively impacts on skeletal muscle function mainly through muscle atrophy. However, recent evidence suggests that the quality of individual muscle fibers is also altered. This study examined the effects of 23 days of unilateral lower limb suspension (ULLS) on specific force and sarcoplasmic reticulum (SR) Ca(2+) content in individual skinned muscle fibers. Muscle biopsies of the vastus lateralis were taken from six young healthy adults prior to and following ULLS. After disuse, the endogenous SR Ca(2+) content was ∼8% lower in type I fibers and maximal SR Ca(2+) capacity was lower in both type I and type II fibers (-11 and -5%, respectively). The specific force, measured in single skinned fibers from three subjects, decreased significantly after ULLS in type II fibers (-23%) but not in type I fibers (-9%). Western blot analyses showed no significant change in the amounts of myosin heavy chain (MHC) I and MHC IIa following the disuse, whereas the amounts of sarco(endo)plasmic reticulum Ca(2+)-ATPase 1 (SERCA1) and calsequestrin increased by ∼120 and ∼20%, respectively, and the amount of troponin I decreased by ∼21%. These findings suggest that the decline in force and power occurring with muscle disuse is likely to be exacerbated in part by reductions in maximum specific force in type II fibers, and in the amount of releasable SR Ca(2+) in both fiber types, the latter not being attributable to a reduced calsequestrin level. Furthermore, the ∼3-wk disuse in human elicits change in SR properties, in particular a more than twofold upregulation in SERCA1 density, before any fiber-type shift. Copyright © 2016 the American Physiological Society.

  8. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth.

    PubMed

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon; Vendelbo, Mikkel Holm; Paoli, Frank de; Vissing, Kristian

    2014-10-15

    Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type-specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers (P < 0.01) and exhibited a group difference from Ecc (P < 0.05), which did not increase. Myonuclei content in type I fibers increased in all groups (P < 0.01), while a specific accretion of myonuclei in type II fibers was observed in the Whey-Conc (P < 0.01) and Placebo-Ecc (P < 0.01) groups. Similarly, whereas type I fiber CSA increased independently of intervention (P < 0.001), type II fiber CSA increased exclusively with Whey-Conc (P < 0.01) and type II fiber hypertrophy correlated with whole muscle hypertrophy exclusively following Conc training (P < 0.01). In conclusion, isolated concentric knee extensor resistance training appears to constitute a stronger driver of SC content than eccentric resistance training while type II fiber hypertrophy was accentuated when combining concentric resistance training with whey protein supplementation. Copyright © 2014 the American Physiological Society.

  9. Simple ps microchip Nd:YVO4 laser with 3.3-ps pulses at 0.2 to 1.4 MHz and single-stage amplification to the microjoule level

    NASA Astrophysics Data System (ADS)

    Türkyilmaz, Erdal; Lohbreier, Jan; Günther, Christian; Mehner, Eva; Kopf, Daniel; Giessen, Harald; Braun, Bernd

    2016-06-01

    Commercial picosecond sources have found widespread applications. Typical system parameters are pulse widths below 20 ps, repetition rates between 0.1 and 2 MHz, and microjoule level pulse energies. Most systems are based on short pulse mode-locked oscillators, regenerative amplifiers, and pockel cells as active beam switches. In contrast, we present a completely passive system, consisting of a passively Q-switched microchip laser, a single-stage amplifier, and a pulse compressor. The Q-switched microchip laser has a 50-μm-long Nd:YVO4 gain material optically bonded to a 4.6-mm-thick undoped YVO4 crystal. It delivers pulse widths of 40 ps and repetition rates of 0.2 to 1.4 MHz at a wavelength of 1.064 μm. The pulse energy is a few nanojoule. These 40-ps pulses are spectrally broadened in a standard single-mode fiber and then compressed in a 24-mm-long chirped Bragg grating to as low as 3.3 ps. The repetition rate can be tuned from ˜0.2 to 1.4 MHz by changing the pump power, while the pulse width and the pulse energy from the microchip laser are unchanged. The spectral broadening in the fiber is observed throughout the pulse repetition rate, supporting sub-10-ps pulses. Finally, the pulses are amplified in a single-stage Nd:YVO4 amplifier up to the microjoule level (up to 4 μJ pulse energy). As a result, the system delivers sub-10-ps pulses at a microjoule level with about 1 MHz repetition rate, and thus fulfills the requirements for ps-micromachining. It does not contain any active switching elements and can be integrated in a very compact setup.

  10. Lithotripsy of gallstones by means of a quality-switched giant-pulse neodymium:yttrium-aluminum-garnet laser. Basic in vitro studies using a highly flexible fiber system.

    PubMed

    Hochberger, J; Gruber, E; Wirtz, P; Dürr, U; Kolb, A; Zanger, U; Hahn, E G; Ell, C

    1991-11-01

    The quality-switched neodymium:yttrium-aluminum-garnet laser represents a new instrument for athermal fragmentation of gallstones by transformation of optical energy into mechanical energy in the form of shock waves via local plasma formation. A highly flexible 300-micron fiber transmission system was used in basic investigations to determine the influence of varying pulse repetition rates (5-30 Hz) and pulse energies (15 and 20 mJ) on shock wave intensity and stone fragmentation in vitro for 105 biliary calculi of known size and chemical composition. After performance of 1200 shock wave pressure measurements using polyvinylidenefluoride hydrophones, stone fragmentation was analyzed by determination of fragment removal rates (volume of fragments removed per fragmentation time), ablation rates (mean volume removed per laser pulse), and median fragment sizes for each laser setting. With the quality-switched neodymium:yttrium-aluminum-garnet laser system, all concrements could be reliably disintegrated into small fragments (median diameter, 0.7-1.7 mm). Compared with pure cholesterol stones, a significantly higher fragment removal rate was achieved in cholesterol stones containing 30% calcium phosphate (P = 0.039), in cholesterol stones containing 20% pigment (P = 0.015), and in pure pigment stones (P = 0.007). Fragment removal rates, local shock wave pressures, and median grain sizes were significantly higher at a pulse energy of 20 mJ than with 15 mJ. Shock wave pressures showed a distinct dependence on pulse repetition rates at 20 mJ, yet not at 15 mJ. Because there is no evident hazard of thermal damage to tissue using the quality-switched neodymium:yttrium-aluminum-garnet laser, it appears to be a promising device for nonsurgical biliary stone therapy.

  11. Soliton interactions and complexes for coupled nonlinear Schrödinger equations.

    PubMed

    Jiang, Yan; Tian, Bo; Liu, Wen-Jun; Sun, Kun; Li, Min; Wang, Pan

    2012-03-01

    Under investigation in this paper are the coupled nonlinear Schrödinger (CNLS) equations, which can be used to govern the optical-soliton propagation and interaction in such optical media as the multimode fibers, fiber arrays, and birefringent fibers. By taking the 3-CNLS equations as an example for the N-CNLS ones (N≥3), we derive the analytic mixed-type two- and three-soliton solutions in more general forms than those obtained in the previous studies with the Hirota method and symbolic computation. With the choice of parameters for those soliton solutions, soliton interactions and complexes are investigated through the asymptotic and graphic analysis. Soliton interactions and complexes with the bound dark solitons in a mode or two modes are observed, including that (i) the two bright solitons display the breatherlike structures while the two dark ones stay parallel, (ii) the two bright and dark solitons all stay parallel, and (iii) the states of the bound solitons change from the breatherlike structures to the parallel one even with the distance between those solitons smaller than that before the interaction with the regular one soliton. Asymptotic analysis is also used to investigate the elastic and inelastic interactions between the bound solitons and the regular one soliton. Furthermore, some discussions are extended to the N-CNLS equations (N>3). Our results might be helpful in such applications as the soliton switch, optical computing, and soliton amplification in the nonlinear optics.

  12. Switching Between Menthol and Nonmenthol Cigarettes: Findings From the U.S. Cohort of the International Tobacco Control Four Country Survey

    PubMed Central

    Hyland, Andrew J.; Bansal-Travers, Maansi; Vogl, Lisa M.; Chen, Jiping; Evans, Sarah E.; Fong, Geoffrey T.; Cummings, Kenneth Michael; O’Connor, Richard J.

    2014-01-01

    Introduction: This article examines trends in switching between menthol and nonmenthol cigarettes, smoker characteristics associated with switching, and associations among switching, indicators of nicotine dependence, and quitting activity. Methods: Participants were 5,932 U.S. adult smokers who were interviewed annually as part of the International Tobacco Control Four Country Survey between 2002 and 2011. Generalized estimating equations (GEEs) were used to examine the prevalence of menthol cigarette use and switching between menthol and nonmenthol cigarettes (among 3,118 smokers who participated in at least 2 consecutive surveys). We also evaluated characteristics associated with menthol cigarette use and associations among switching, indicators of nicotine dependence, and quitting activity using GEEs. Results: Across the entire study period, 27% of smokers smoked menthol cigarettes; prevalence was highest among Blacks (79%), young adults (36%), and females (30%). Prevalence of switching between menthol and nonmenthol cigarettes was low (3% switched to menthol and 8% switched to nonmenthol), and switchers tended to revert back to their previous type. Switching types was not associated with indicators of nicotine dependence or quit attempts. However, those who switched cigarette brands within cigarette types were more likely to attempt to quit smoking. Conclusions: While overall switching rates were low, the percentage who switched from menthol to nonmenthol was significantly higher than the percentage who switched from nonmenthol to menthol. An asymmetry was seen in patterns of switching such that reverting back to menthol was more common than reverting back to nonmenthol, particularly among Black smokers. PMID:24984878

  13. RF MEMS Switches with SiC Microbridges for Improved Reliability

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Zorman, Christian A.; Oldham, Daniel R.

    2008-01-01

    Radio frequency (RF) microelectromechanical (MEMS) switches offer superior performance when compared to the traditional semiconductor devices such as PIN diodes or GaAs transistors. MEMS switches have a return loss (RL) better than -25 dB, negligible insertion loss (IL), isolation better than -30 dB, and near zero power consumption. However, RF MEMS switches have several drawbacks the most serious being long-term reliability. The ability for the switch to operate for millions or even billions of cycles is a major concern and must be addressed. MEMS switches are basically grouped in two categories, capacitive and metal-to-metal contact. The capacitive type switch consists of a movable metal bridge spanning a fixed electrode and separated by a narrow air gap and thin insulating material. The metal-to-metal contact type utilizes the same basic design but without the insulating material. After prolonged operation the metal bridges, in most of these switches, begin to sag and eventually fail to actuate. For the metal-to-metal type, the two metal layers may actually fuse together. Also if the switches are not packaged properly or protected from the environment moisture may build up and cause stiction between the top and bottom electrodes rendering them useless. Many MEMS switch designs have been developed and most illustrate fairly good RF characteristics. Nevertheless very few have demonstrated both great RF performance and ability to perform millions/billions of switching cycles. Of these, nearly all are of metal-to-metal type so as the frequency increases RF performance decreases.

  14. Spatial Light Modulators as Optical Crossbar Switches

    NASA Technical Reports Server (NTRS)

    Juday, Richard

    2003-01-01

    A proposed method of implementing cross connections in an optical communication network is based on the use of a spatial light modulator (SLM) to form controlled diffraction patterns that connect inputs (light sources) and outputs (light sinks). Sources would typically include optical fibers and/or light-emitting diodes; sinks would typically include optical fibers and/or photodetectors. The sources and/or sinks could be distributed in two dimensions; that is, on planes. Alternatively or in addition, sources and/or sinks could be distributed in three dimensions -- for example, on curved surfaces or in more complex (including random) three-dimensional patterns.

  15. A Smart Eddy Current Sensor Dedicated to the Nondestructive Evaluation of Carbon Fibers Reinforced Polymers.

    PubMed

    Naidjate, Mohammed; Helifa, Bachir; Feliachi, Mouloud; Lefkaier, Iben-Khaldoun; Heuer, Henning; Schulze, Martin

    2017-08-31

    This paper propose a new concept of an eddy current (EC) multi-element sensor for the characterization of carbon fiber-reinforced polymers (CFRP) to evaluate the orientations of plies in CFRP and the order of their stacking. The main advantage of the new sensors is the flexible parametrization by electronical switching that reduces the effort for mechanical manipulation. The sensor response was calculated and proved by 3D finite element (FE) modeling. This sensor is dedicated to nondestructive testing (NDT) and can be an alternative for conventional mechanical rotating and rectangular sensors.

  16. Versatile monolithic 2-micron laser systems

    NASA Astrophysics Data System (ADS)

    Wysmolek, M.; Steinke, M.; Neumann, J.; Kracht, D.

    2018-02-01

    To answer a growing demand in development of high power pulsed and continuous wave sources at 2 micron spectral range we have participated in several projects, which resulted in a delivery of versatile monolithic sources providing picosecond, nanosecond and CW laser signal. As an example of pulsed sources we developed all-fiber monolithic devices based on a directly modulated laser diode and gain-switched laser diode to generate nanosecond and picosecond pulses, respectively, which are amplified in the same fiber amplifier chain up to 50 µJ with 96 ps and more than 1 mJ with pulses longer than 35 ns.

  17. Limited fiber type grouping in self-reinnervation cat tibialis anterior muscles.

    PubMed

    Unguez, G A; Roy, R R; Bodine-Fowler, S; Edgerton, V R

    1996-10-01

    The percent and distribution patterns of three immunohistochemically identified fiber types within the anterior compartment of the cat tibialis anterior were determined 6 months after denervation and self-reinnervation. After self-reinnervation, mean frequencies of slow (9%) and fast (91%) fibers were similar to those in control (12% and 88%, respectively) muscles. However, a lower proportion of fast-1 (26%) and a higher proportion of fast-2 (65%) fibers were observed in self-reinnervated than control (32% and 56%) muscles. Quantitation of adjacencies between fibers of similar myosin heavy chain (MHC) phenotype, a measure of type grouping, revealed that the frequencies of two slow or two fast-1 fibers being adjacent in self-reinnervated muscles were similar to control. In contrast, the frequency of fast-2/fast-2 fiber adjacencies found in self-reinnervated muscles (45%) was significantly higher than in control muscles (37%). In both groups, the frequency of adjacencies between slow, fast-1, or fast-2 fibers was largely attributable to the number of each fiber type present. These data show that the incidence of grouping within each fiber type present was not altered after 6 months of self-reinnervation. Minimal changes in the spatial distribution of fiber types following self-reinnervation in adults suggests a limited degree of conversion of muscle fibers to a MHC phenotype matching the motoneuron characteristics.

  18. Muscle fiber-type conversion in the transgenic pigs with overexpression of PGC1α gene in muscle.

    PubMed

    Ying, Fei; Zhang, Liang; Bu, Guowei; Xiong, Yuanzhu; Zuo, Bo

    2016-11-25

    The peroxisome proliferator-activated receptor gamma, co-activator 1 alpha(PGC1α) effectively induced the biosynthesis of the mitochondria and the energy metabolism, and also regulated the muscle fiber-type shift. Overexpression of PGC1α gene in mice led to higher oxidative muscle fiber composition in muscle. However, no researches about the significant differences of muscle fiber phenotype in pigs after PGC1α overexpression had been reported. The composition of muscle fiber-types which were distinguished by four myosin heavy chain(MYHC) isoforms, can significantly affect the muscle functions. In our study, we generated the transgenic pigs to investigate the effect of overexpression of PGC1α gene on muscle fiber-type conversion. The results showed that the number of oxidative muscle fiber(type1 muscle fiber) was increased and the number of glycolytic muscle fiber(type2b muscle fiber) was decreased in the transgenic pigs. Furthermore, we found that PGC1α overexpression up-regulated the expression of MYHC1 and MYHC2a and down-regulated the expression of MYHC2b.The analysis of genes expression demonstrated the main differentially expressed genes were MSTN, Myog and FOXO1. In conclusion, the overexpression of PGC1α gene can promote the glycolytic muscle fiber transform to the oxidative muscle fiber in pigs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Constant Fiber Number During Skeletal Muscle Atrophy and Modified Arachidonate Metabolism During Hypertrophy

    NASA Technical Reports Server (NTRS)

    Templeton, G.

    1985-01-01

    A previously documented shift from Type I to IIA predominance of the soleus muscle during rat suspension was further investigated to determine if this shift was by selective reduction of a single fiber type, simultaneous reduction and formation of fibers with different fiber types, or a transformation of fiber type by individual fibers. By partial acid digestion and dissection, average total soleus fiber number was found to be 3022 + or - 80 (SE) and 3008 + or - 64 before and after four-week suspension (n=12). Another area of current research was based on previous studies which indicate that prostaglandins are biosynthesized by skeletal muscle and evoke protein synthesis and degradation.

  20. Analysis of fiber type transformation and histology in chronic electrically stimulated canine rectus abdominis muscle island-flap stomal sphincters.

    PubMed

    Majzoub, Ramsey K; Bardoel, Janou W J M; Maldonado, Claudio; Barker, John H; Stadelmann, Wayne K

    2003-01-01

    Dynamic skeletal muscle flaps are designed to perform a specific functional task through contraction and relaxation of their muscle fibers. The most commonly used dynamic skeletal flaps today are for cardiomyoplasty and anal or urinary myoplasty. Low-frequency chronic stimulation of these flaps enables them to use their intrinsic energy stores in a more efficient manner through aerobic metabolic pathways for increased endurance and improved work capacity. The purpose of this study was to (1) determine whether fiber type transformation from fatigue-prone (type II) muscle fibers to fatigue-resistant (type I) muscle fibers could be demonstrated in the authors' chronic canine stomal sphincter model where the rectus abdominis muscle was used to create a functional stomal sphincter, (2) assess whether there is any correlation between the degree of muscle fiber type transformation and the continence times, and (3) examine the long-term effects of the training regimens on the skeletal muscle fibers through histologic and volumetric analysis. Eight dynamic island-flap sphincters were created from a part of the rectus abdominis muscle in mongrel dogs by preserving the deep inferior epigastric vascular pedicle and the most caudal investing intercostal nerve. The muscular sphincters were wrapped around a blind loop of distal ileum and trained with pacing electrodes. Two different training protocols were used. In group A (n = 4), a preexisting anal dynamic graciloplasty training protocol was used. A revised protocol was used in group B (n = 4). Muscle biopsy specimens were obtained before and after training from the rectus abdominis muscle sphincter. Fiber type transformation was assessed using a monoclonal antibody directed against the fatigue-prone type II fibers. Pretraining and posttraining skeletal muscle specimens were examined histologically. A significant fiber type conversion was achieved in both group A and group B animals, with each group achieving greater than 50 percent conversion from fatigue-prone (type II) muscle fibers to fatigue-resistant (type I) muscle fibers. The continence time was different for both groups. Biopsy specimens 1 cm from the electrodes revealed that fiber type transformation was uniform throughout this region of the sphincters. Skeletal muscle fibers within both groups demonstrated a reduction in their fiber diameter and volume. Fiber type transformation is possible in this unique canine island-flap rectus abdominis sphincter model. The relative design of the flap with preservation of the skeletal muscle resting length and neuronal and vascular supply are important characteristics when designing a functional dynamic flap for stomal continence.

  1. Vacuum-surface flashover switch with cantilever conductors

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2001-01-01

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  2. Time stretch dispersive Fourier transform based single-shot pulse-by-pulse spectrum measurement using a pulse-repetition-frequency-variable gain-switched laser

    NASA Astrophysics Data System (ADS)

    Furukawa, Hideaki; Makino, Takeshi; Wang, Xiaomin; Kobayashi, Tetsuya; Asghari, Mohammad H.; Trinh, Paul; Jalali, Bahram; Man, Wai Sing; Tsang, Kwong Shing; Wada, Naoya

    2018-02-01

    The time stretch dispersive Fourier Transform (TS-DFT) technique based on a fiber chromatic dispersion is a powerful tool for pulse-by-pulse single-shot spectrum measurement for highrepetition rate optical pulses. The distributed feedback laser diode (DFB-LD) with the gain switch operation can flexibly change the pulse repetition frequency (PRF). In this paper, we newly introduce a semiconductor gain-switched DFB-LD operating from 1 MHz up to 1 GHz PRF into the TS-DFT based spectrum measurement system to improve the flexibility and the operability. The pulse width can be below 2 ps with a pulse compression technique. We successfully measure the spectrum of each optical pulse at 1 GHz, 100 MHz, and 10 MHz PRF, and demonstrate the flexibility of the measurement system.

  3. Evidence for ACTN3 as a Speed Gene in Isolated Human Muscle Fibers.

    PubMed

    Broos, Siacia; Malisoux, Laurent; Theisen, Daniel; van Thienen, Ruud; Ramaekers, Monique; Jamart, Cécile; Deldicque, Louise; Thomis, Martine A; Francaux, Marc

    2016-01-01

    To examine the effect of α-actinin-3 deficiency due to homozygosity for the ACTN3 577X-allele on contractile and morphological properties of fast muscle fibers in non-athletic young men. A biopsy was taken from the vastus lateralis of 4 RR and 4 XX individuals to test for differences in morphologic and contractile properties of single muscle fibers. The cross-sectional area of the fiber and muscle fiber composition was determined using standard immunohistochemistry analyses. Skinned single muscle fibers were subjected to active tests to determine peak normalized force (P0), maximal unloading velocity (V0) and peak power. A passive stretch test was performed to calculate Young's Modulus and hysteresis to assess fiber visco-elasticity. No differences were found in muscle fiber composition. The cross-sectional area of type IIa and IIx fibers was larger in RR compared to XX individuals (P<0.001). P0 was similar in both groups over all fiber types. A higher V0 was observed in type IIa fibers of RR genotypes (P<0.001) but not in type I fibers. The visco-elasticity as determined by Young's Modulus and hysteresis was unaffected by fiber type or genotype. The greater V0 and the larger fast fiber CSA in RR compared to XX genotypes likely contribute to enhanced whole muscle performance during high velocity contractions.

  4. Experimental demonstration of the switching dose-rate method on doped optical fibers

    NASA Astrophysics Data System (ADS)

    Thomas, J.; Myara, M.; Troussellier, L.; Régnier, E.; Burov, E.; Gilard, O.; Sottom, M.; Signoret, P.

    2017-11-01

    Optical technology developed for ground and submarine telecommunications is becoming of strong interest for next generation satellites. In addition to inter-satellite laser communications and LIDAR's, new applications are being considered such as on-board distribution and processing of microwave signals, fiber sensors or gyroscopes as well. Whereas common optical / optoelectronic components are known to be weakly sensitive to radiations, the essential optical amplifiers are strongly degraded in such an environment because of the RIA (Radio-Induced-Absorption) experienced by the Erbium-Doped Fiber (EDF) itself [1-3]. This degradation is mainly caused by the presence of co-doping ions, such as Aluminium or Germanium, inserted in the fibre to assist the inclusion of the Erbium ions in the silica matrix or to provide to the optical fibre its guiding properties.

  5. A 100 mW-level single-mode switchable dual-wavelength erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Cheng, Jianqun; Zhang, Liaolin; Sharafudeen, Kaniyarakkal; Qiu, Jianrong

    2013-10-01

    A switchable dual-wavelength CW erbium-doped fiber laser with two cascaded fiber Bragg gratings has been proposed and demonstrated experimentally at room temperature. The laser uses a linear resonant cavity configuration incorporating a Sagnac loop with a polarization controller (PC) and can switch flexibly to output a single wavelength or dual wavelengths based on the polarization hole burning (PHB) effect. The slope efficiency and maximum output power can reach 23% and 96 mW, respectively. The two lasing peaks of the laser, with a narrow linewidth output and an optical signal-to-noise ratio of more than 50 dB, are located in the C and L bands of the optical communication window, respectively. The laser shows good stability with respect to the wavelength and output power.

  6. "Reliability Of Fiber Optic Lans"

    NASA Astrophysics Data System (ADS)

    Code n, Michael; Scholl, Frederick; Hatfield, W. Bryan

    1987-02-01

    Fiber optic Local Area Network Systems are being used to interconnect increasing numbers of nodes. These nodes may include office computer peripherals and terminals, PBX switches, process control equipment and sensors, automated machine tools and robots, and military telemetry and communications equipment. The extensive shared base of capital resources in each system requires that the fiber optic LAN meet stringent reliability and maintainability requirements. These requirements are met by proper system design and by suitable manufacturing and quality procedures at all levels of a vertically integrated manufacturing operation. We will describe the reliability and maintainability of Codenoll's passive star based systems. These include LAN systems compatible with Ethernet (IEEE 802.3) and MAP (IEEE 802.4), and software compatible with IBM Token Ring (IEEE 802.5). No single point of failure exists in this system architecture.

  7. All-optical switch with two periodically modulated nonlinear waveguides.

    PubMed

    Xie, Qiongtao; Luo, Xiaobing; Wu, Biao

    2010-02-01

    We propose a type of all-optical switch which consists of two periodically modulated nonlinear optical waveguides placed in parallel. Compared to the all-optical switch based on the traditional nonlinear directional coupler without periodic modulation, this all-optical switch has much lower switching threshold power and sharper switching width.

  8. Intermuscular relationship of human muscle fiber type proportions: slow leg muscles predict slow neck muscles.

    PubMed

    Vikne, Harald; Gundersen, Kristian; Liestøl, Knut; Maelen, Jan; Vøllestad, Nina

    2012-04-01

    Our aim in this study was to examine whether the muscle fiber type proportions in different muscles from the same individual are interrelated. Samples were excised from five skeletal muscles in each of 12 human autopsy cases, and the fiber type proportions were determined by immunohistochemistry. We further examined the intermuscular relationship in fiber type proportion by reanalyzing three previously published data sets involving other muscles. Subjects demonstrated a predominantly high or low proportion of type 1 fibers in all examined muscles, and the overall difference between individuals was statistically significant (P < 0.001). Accordingly, the type 1 fiber proportions in most muscles were positively correlated (median r = 0.42, range -0.03-0.80). Similar results were also obtained from the three reanalyzed data sets. We suggest the existence of an across-muscle phenotype with respect to fiber type proportions; some individuals display generally faster muscles and some individuals slower muscles when compared with others. Copyright © 2011 Wiley Periodicals, Inc.

  9. Skeletal Muscle Fatigability and Myosin Heavy Chain Fiber Type in Resistance Trained Men.

    PubMed

    Bagley, James R; McLeland, Kathryn A; Arevalo, Jose A; Brown, Lee E; Coburn, Jared W; Galpin, Andrew J

    2017-03-01

    Bagley, JR, McLeland, KA, Arevalo, JA, Brown, LE, Coburn, JW, and Galpin, AJ. Skeletal muscle fatigability and myosin heavy chain fiber type in resistance trained men. J Strength Cond Res 31(3): 602-607, 2017-Forty years ago, Thorstensson and Karlsson in 1976 described the link between muscle fatigability and fiber type, finding that more fast-twitch fibers were associated with a quicker onset of quadriceps fatigue. This provided the foundation for the Classic Thorstensson Test of fatigability and subsequent noninvasive fiber type prediction equation. This equation was developed with data from recreationally active (REC) men but has been implemented in participants with heterogeneous physical activity/exercise backgrounds. The accuracy of this approach in resistance trained (RET) men has not been established. Moreover, muscle fiber typing techniques have evolved considerably since this seminal work. Therefore, we reexamined this relationship using RET men and a more sensitive fiber typing method (single fiber myosin heavy chain [MHC] isoform classification). Fifteen RET men (age = 24.8 ± 1.3 years) performed maximal knee extensions (via isokinetic dynamometry) to determine peak torque (PT) and quadriceps fatigue percentage (FP) after 30 and 50 repetitions. Vastus lateralis (VL) single fiber MHC type was determined and fibers were grouped as %Fast (expressing MHC IIa, IIa/IIX, or IIx; no MHC I containing fibers). Resistance trained men exhibited 46% greater PT (RET = 207 ± 28 N·m vs. REC = 130 ± 8 N·m) and 28% more %Fast (RET = 61 ± 4% vs. REC = 44 ± 4%) than REC men. Additionally, RET men had a relatively homogeneous FP (64 ± 1%) ranging from 53 to 72%. No relationship was found between FP and MHC fiber type (R = 0.01, p > 0.05). The Classic Thorstensson Test may not accurately estimate VL fiber type composition in RET men, highlighting the (a) unique phenotypical/functional adaptations induced by chronic RET and (b) the need for more sensitive cellular/molecular analyses in RET muscle.

  10. Muscle fiber type-specific response of Hsp70 expression in human quadriceps following acute isometric exercise.

    PubMed

    Tupling, A R; Bombardier, E; Stewart, R D; Vigna, C; Aqui, A E

    2007-12-01

    To investigate the time course of fiber type-specific heat shock protein 70 (Hsp70) expression in human skeletal muscle after acute exercise, 10 untrained male volunteers performed single-legged isometric knee extensor exercise at 60% of their maximal voluntary contraction (MVC) with a 50% duty cycle (5-s contraction and 5-s relaxation) for 30 min. Muscle biopsies were collected from the vastus lateralis before (Pre) exercise in the rested control leg (C) and immediately after exercise (Post) in the exercised leg (E) only and on recovery days 1 (R1), 2 (R2), 3 (R3), and 6 (R6) from both legs. As demonstrated by Western blot analysis, whole muscle Hsp70 content was unchanged (P > 0.05) immediately after exercise (Pre vs. Post), was increased (P < 0.05) by approximately 43% at R1, and remained elevated throughout the entire recovery period in E only. Hsp70 expression was also assessed in individual muscle fiber types I, IIA, and IIAX/IIX by immunohistochemistry. There were no fiber type differences (P > 0.05) in basal Hsp70 expression. Immediately after exercise, Hsp70 expression was increased (P < 0.05) in type I fibers by approximately 87% but was unchanged (P > 0.05) in type II fibers (Pre vs. Post). At R1 and throughout recovery, Hsp70 content in E was increased above basal levels (P < 0.05) in all fiber types, but Hsp70 expression was always highest (P < 0.05) in type I fibers. Hsp70 content in C was not different from Pre at any time throughout recovery. Glycogen depletion was observed at Post in all type II, but not type I, fibers, suggesting that the fiber type differences in exercise-induced Hsp70 expression were not related to glycogen availability. These results demonstrate that the time course of exercise-induced Hsp70 expression in human skeletal muscle is fiber type specific.

  11. Optical MEMS platform for low-cost on-chip integration of planar light circuits and optical switching

    NASA Astrophysics Data System (ADS)

    German, Kristine A.; Kubby, Joel; Chen, Jingkuang; Diehl, James; Feinberg, Kathleen; Gulvin, Peter; Herko, Larry; Jia, Nancy; Lin, Pinyen; Liu, Xueyuan; Ma, Jun; Meyers, John; Nystrom, Peter; Wang, Yao Rong

    2004-07-01

    Xerox Corporation has developed a technology platform for on-chip integration of latching MEMS optical waveguide switches and Planar Light Circuit (PLC) components using a Silicon On Insulator (SOI) based process. To illustrate the current state of this new technology platform, working prototypes of a Reconfigurable Optical Add/Drop Multiplexer (ROADM) and a l-router will be presented along with details of the integrated latching MEMS optical switches. On-chip integration of optical switches and PLCs can greatly reduce the size, manufacturing cost and operating cost of multi-component optical equipment. It is anticipated that low-cost, low-overhead optical network products will accelerate the migration of functions and services from high-cost long-haul markets to price sensitive markets, including networks for metropolitan areas and fiber to the home. Compared to the more common silica-on-silicon PLC technology, the high index of refraction of silicon waveguides created in the SOI device layer enables miniaturization of optical components, thereby increasing yield and decreasing cost projections. The latching SOI MEMS switches feature moving waveguides, and are advantaged across multiple attributes relative to alternative switching technologies, such as thermal optical switches and polymer switches. The SOI process employed was jointly developed under the auspice of the NIST APT program in partnership with Coventor, Corning IntelliSense Corp., and MicroScan Systems to enable fabrication of a broad range of free space and guided wave MicroOptoElectroMechanical Systems (MOEMS).

  12. Diet‐induced obesity alters skeletal muscle fiber types of male but not female mice

    PubMed Central

    DeNies, Maxwell S.; Johnson, Jordan; Maliphol, Amanda B.; Bruno, Michael; Kim, Annabelle; Rizvi, Abbas; Rustici, Kevyn; Medler, Scott

    2014-01-01

    Abstract Skeletal muscles are highly plastic tissues capable dramatic remodeling in response to use, disuse, disease, and other factors. Growing evidence suggests that adipose tissues exert significant effects on the basic fiber‐type composition of skeletal muscles. In the current study, we investigated the long‐term effects of a high‐fat diet and subsequent obesity on the muscle fiber types in C57 BLK/6J mice. Litters of mice were randomly assigned to either a high‐fat diet or a control group at the time of weaning, and were maintained on this diet for approximately 1 year. Single fibers were harvested from the soleus and plantaris muscles, and fiber types were determined using SDS‐PAGE. The high‐fat diet mice were significantly heavier than the control mice (39.17 ± 2.7 g vs. 56.87 ± 3.4 g; P < 0.0003), but muscle masses were not different. In male mice, the high‐fat diet was associated with a significantly lower proportion of slow, type I fibers in the soleus muscle (40.4 ± 3.5% vs. 29.33 ± 2.6%; P < 0.0165). Moreover, the proportion of type I fibers in the soleus of male mice was inversely proportional to the relative fatness of the male mice (P < 0.003; r2 = 0.65), but no association was observed in female mice. In male mice, the decline in type I fibers was correlated with an increase in type I/IIA hybrid fibers, suggesting that the type I fibers were transformed primarily into these hybrids. The reported trends indicate that type I fibers are most susceptible to the effects of obesity, and that these fiber‐type changes can be sex specific. PMID:24744883

  13. The histochemical profile of the rat extensor digitorum longus muscle differentiates after birth and dedifferentiates in senescence.

    PubMed

    Lehnert, M; Laurer, H; Maier, B; Frank, J; Marzi, I; Steudel, W-I; Mautes, A

    2007-01-01

    Age dependent motor unit dedifferentiation is a key component of impaired muscle function in advanced age. Here, we tested the hypothesis that rat muscle histochemical profile during the lifespan of an individual has an age-specific pattern since comprehensive longitudinal studies of muscle differentiation after birth and dedifferentiation in advanced age are scarce. Our results show that extensor digitorum longus muscle (EDL) is comprised only of two fiber types after birth, type slow-oxidative (SO) and type SDH-intermediate (SDH-INT), the latter being indicative for the presence of polyneuronal innervation. In contrast to the constantly growing cross-sectional area of the muscle fibers, a dramatic decrease in SDH-INT proportion occurs between day 14 and 21 after birth resulting in a complete loss of fiber type SDH-INT at the age of 90 days (p<0.05). At the age of 270 days, the fiber type composition of rat EDL dedifferentiates as shown by the reappearance of the SDH-INT type with a further increase at the age of 540 days (p<0.05). These changes in histochemical fiber type spectra are brought about by fiber type conversion within the fast twich fibers. The findings of the present study provide further evidence that fiber type conversion is a basic mechanism leading to motor unit differentiation and dedifferentiation during ontogenesis. Fiber type conversion shows a distinct time specific pattern and is also characteristic for motor unit regeneration after peripheral nerve repair. Factors that influence fiber type conversion and thereby motor unit organization may provide a future therapeutic option to enhance the regenerative capacity of motor units.

  14. Power requirements reducing of FBG based all-optical switching

    NASA Astrophysics Data System (ADS)

    Scholtz, Ľubomír.; Solanská, Michaela; Ladányi, Libor; Müllerová, Jarmila

    2017-12-01

    Although Fiber Bragg gratings (FBGs) are well known devices, their using as all-optical switching elements has been still examined. Current research is focused on optimization of their properties for their using in future all-optical networks. The main problem are high switching intensities needed for achieving the changes of the transmission state. Over several years switching intensities have been reduced from hundreds of GW/cm2 to tens of MW/cm2 by selecting appropriate gratings and signal parameters or using suitable materials. Two principal nonlinear effects with similar power requirements can result in the bistable transmission/reflection of an input optical pulse. In the self-phase modulation (SPM) regime switching is achieved by the intense probe pulse itself. Using cross-phase modulation (XPM) a strong pump alters the FBG refractive index experienced by a weak probe pulse. As a result of this the detuning of the probe pulse from the center of the photonic band gap occurs. Using of XPM the effect of modulation instability is reduced. Modulation instability which is the main SPM degradation mechanism. We focused on nonlinear FBGs based on chalcogenide glasses which are very often used in various applications. Thanks to high nonlinear parameters chalcogenide glasses are suitable candidates for reducing switching intensities of nonlinear FBGs.

  15. Myosin content of individual human muscle fibers isolated by laser capture microdissection.

    PubMed

    Stuart, Charles A; Stone, William L; Howell, Mary E A; Brannon, Marianne F; Hall, H Kenton; Gibson, Andrew L; Stone, Michael H

    2016-03-01

    Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. Copyright © 2016 the American Physiological Society.

  16. Preferential type II muscle fiber damage from plyometric exercise.

    PubMed

    Macaluso, Filippo; Isaacs, Ashwin W; Myburgh, Kathryn H

    2012-01-01

    Plyometric training has been successfully used in different sporting contexts. Studies that investigated the effect of plyometric training on muscle morphology are limited, and results are controversial with regard to which muscle fiber type is mainly affected. To analyze the skeletal muscle structural and ultrastructural change induced by an acute bout of plyometric exercise to determine which type of muscle fibers is predominantly damaged. Descriptive laboratory study. Research laboratory. Eight healthy, untrained individuals (age = 22 ± 1 years, height = 179.2 ± 6.4 cm, weight = 78.9 ± 5.9 kg). Participants completed an acute bout of plyometric exercise (10 sets of 10 squat-jumps with a 1-minute rest between sets). Blood samples were collected 9 days and immediately before and 6 hours and 1, 2, and 3 days after the acute intervention. Muscle samples were collected 9 days before and 3 days after the exercise intervention. Blood samples were analyzed for creatine kinase activity. Muscle biopsies were analyzed for damage using fluorescent and electron transmission microscopy. Creatine kinase activity peaked 1 day after the exercise bout (529.0 ± 317.8 U/L). Immunofluorescence revealed sarcolemmal damage in 155 of 1616 fibers analyzed. Mainly fast-twitch fibers were damaged. Within subgroups, 7.6% of type I fibers, 10.3% of type IIa fibers, and 14.3% of type IIx fibers were damaged as assessed by losses in dystrophin staining. Similar damage was prevalent in IIx and IIa fibers. Electron microscopy revealed clearly distinguishable moderate and severe sarcomere damage, with damage quantifiably predominant in type II muscle fibers of both the glycolytic and oxidative subtypes (86% and 84%, respectively, versus only 27% of slow-twitch fibers). We provide direct evidence that a single bout of plyometric exercise affected mainly type II muscle fibers.

  17. Myosin content of individual human muscle fibers isolated by laser capture microdissection

    PubMed Central

    Stone, William L.; Howell, Mary E. A.; Brannon, Marianne F.; Hall, H. Kenton; Gibson, Andrew L.; Stone, Michael H.

    2015-01-01

    Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. PMID:26676053

  18. Relationships among muscle fiber type composition, fiber diameter and MRF gene expression in different skeletal muscles of naturally grazing Wuzhumuqin sheep during postnatal development.

    PubMed

    Siqin, Qimuge; Nishiumi, Tadayuki; Yamada, Takahisa; Wang, Shuiqing; Liu, Wenjun; Wu, Rihan; Borjigin, Gerelt

    2017-12-01

    The aim of this study was to determine the relationships among muscle fiber-type composition, fiber diameter, and myogenic regulatory factor (MRF) gene expression in different skeletal muscles during development in naturally grazing Wuzhumuqin sheep. Three major muscles (i.e. the Longissimus dorsi (LD), Biceps femoris (BF) and Triceps brachii (TB)) were obtained from 20 Wuzhumuqin sheep and 20 castrated rams at each of the following ages: 1, 3, 6, 9, 12 and 18 months. Muscle fiber-type composition and fiber diameter were measured using histochemistry and morphological analysis, and MRF gene expression levels were determined using real-time PCR. In the LD muscle, changes in the proportion of each of different types of fiber (I, IIA and IIB) were relatively small. In the BF muscle, a higher proportion of type I and a 6.19-fold lower proportion of type IIA fibers were observed (P < 0.05). In addition, the compositions of type I and IIA fibers continuously changed in the TB muscle (P < 0.05). Moreover, muscle diameter gradually increased throughout development (P < 0.05). Almost no significant difference was found in MRF gene expression patterns, which appeared to be relatively stable. These results suggest that changes in fiber-type composition and increases in fiber size may be mutually interacting processes during muscle development. © 2017 The Authors Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  19. Atomic switches: atomic-movement-controlled nanodevices for new types of computing

    PubMed Central

    Hino, Takami; Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Nayak, Alpana; Ohno, Takeo; Aono, Masakazu

    2011-01-01

    Atomic switches are nanoionic devices that control the diffusion of metal cations and their reduction/oxidation processes in the switching operation to form/annihilate a metal atomic bridge, which is a conductive path between two electrodes in the on-state. In contrast to conventional semiconductor devices, atomic switches can provide a highly conductive channel even if their size is of nanometer order. In addition to their small size and low on-resistance, their nonvolatility has enabled the development of new types of programmable devices, which may achieve all the required functions on a single chip. Three-terminal atomic switches have also been developed, in which the formation and annihilation of a metal atomic bridge between a source electrode and a drain electrode are controlled by a third (gate) electrode. Three-terminal atomic switches are expected to enhance the development of new types of logic circuits, such as nonvolatile logic. The recent development of atomic switches that use a metal oxide as the ionic conductive material has enabled the integration of atomic switches with complementary metal-oxide-semiconductor (CMOS) devices, which will facilitate the commercialization of atomic switches. The novel characteristics of atomic switches, such as their learning and photosensing abilities, are also introduced in the latter part of this review. PMID:27877376

  20. Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Ching

    2011-12-01

    This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.

  1. Coherent control of flexural vibrations in dual-nanoweb fibers using phase-modulated two-frequency light

    NASA Astrophysics Data System (ADS)

    Koehler, J. R.; Noskov, R. E.; Sukhorukov, A. A.; Novoa, D.; Russell, P. St. J.

    2017-12-01

    Coherent control of the resonant response in spatially extended optomechanical structures is complicated by the fact that the optical drive is affected by the backaction from the generated phonons. Here we report an approach to coherent control based on stimulated Raman-like scattering, in which the optical pressure can remain unaffected by the induced vibrations even in the regime of strong optomechanical interactions. We demonstrate experimentally coherent control of flexural vibrations simultaneously along the whole length of a dual-nanoweb fiber, by imprinting steps in the relative phase between the components of a two-frequency pump signal, the beat frequency being chosen to match a flexural resonance. Furthermore, sequential switching of the relative phase at time intervals shorter than the lifetime of the vibrations reduces their amplitude to a constant value that is fully adjustable by tuning the phase modulation depth and switching rate. The results may trigger new developments in silicon photonics, since such coherent control uniquely decouples the amplitude of optomechanical oscillations from power-dependent thermal effects and nonlinear optical loss.

  2. Globular structure of human ovulatory cervical mucus.

    PubMed

    Brunelli, Roberto; Papi, Massimiliano; Arcovito, Giuseppe; Bompiani, Adriano; Castagnola, Massimo; Parasassi, Tiziana; Sampaolese, Beatrice; Vincenzoni, Federica; De Spirito, Marco

    2007-12-01

    Human cervical mucus is a heterogeneous mixture of mucin glycoproteins whose relative concentration changes during the ovulatory phases, thereby producing different mucus aggregation structures that can periodically permit the transit of spermatozoa for fertilization. In preovulatory phase, mucus is arranged in compact fiber-like structures where sperm transit is hindered. Previously, through observations made of fixed and dehydrated samples, a permissive structure in the ovulatory phase was attributed to the larger diameters of pores in the mucus network. Instead, by means of atomic force microscopy, we can show, for the first time, that unfixed ovulatory mucus is composed by floating globules of mucin aggregates. This finding sheds new light on the mechanism that governs spermatozoa transit toward the uterine cavity. In addition, we demonstrate that the switch from globular ovulatory to fibrous preovulatory mucus largely depends on a pH-driven mechanism. Analysis of mucin 5B primary sequence, the main mucin in ovulatory mucus, highlights pH-sensitive domains that are associated to flexible regions prone to drive aggregation. We suggest an involvement of these domains in the fiber-to-globule switch in cervical mucus.

  3. Impacts of doping concentration on the saturable characteristics of Tm-Ho codoped fiber saturable absorber

    NASA Astrophysics Data System (ADS)

    Tao, Mengmeng; Feng, Guobin; Yu, Ting; Ye, Xisheng; Wang, Zhenbao; Shen, Yanlong; Zhao, Jun

    2018-03-01

    Impacts of Tm ion concentration and Ho ion concentration on the saturable behaviors of Tm-Ho codoped fiber saturable absorbers and the output characteristics of the passively Q-switched laser systems are investigated and analyzed both at the initial lasing state and the stable passive Q-switching state. Simulations show that, varying concentrations of Tm and Ho ions have different impacts on the temporal evolution processes but similar effects on the macroscopic characteristics of the laser system. The root for the impacts of dopant concentrations is the population of the 3H6 energy level and the cavity loss it induces. For Tm ions, the rise of the Tm concentration improves the population of the 3H6 energy level directly, while, for Ho ions, higher Ho concentration leads to larger recovery rate of the 3H6 energy level, thus increasing the population of the 3H6 energy level indirectly. As for limited total dopant concentration, the Tm:Ho concentration ratio can be optimized for different applications.

  4. Study of the OCDMA Transmission Characteristics in FSO-FTTH at Various Distances, Outdoor

    NASA Astrophysics Data System (ADS)

    Aldouri, Muthana Y.; Aljunid, S. A.; Fadhil, Hilal A.

    2013-06-01

    It is important to apply the field Programmable Gate Array (FPGA), and Optical Switch technology as an encoder and decoder for Spectral Amplitude Coding Optical Code Division Multiple Access (SAC-OCDMA) Free Space Optic Fiber to the Home (FSO-FTTH) transmitter and receiver system design. The encoder and decoder module will be using FPGA as a code generator, optical switch using as encode and decode of optical source. This module was tested by using the Modified Double Weight (MDW) code, which is selected as an excellent candidate because it had shown superior performance were by the total noise is reduced. It is also easy to construct and can reduce the number of filters required at a receiver by a newly proposed detection scheme known as AND Subtraction technique. MDW code is presented here to support Fiber-To-The-Home (FTTH) access network in Point-To-Multi-Point (P2MP) application. The conversion used a Mach-Zehnder interferometer (MZI) wavelength converter. The performances are characterized through BER and bit rate (BR), also, the received power at a variety of bit rates.

  5. In-plane only retardation switching by certain type of smectic liquid crystal panels

    NASA Astrophysics Data System (ADS)

    Mochizuki, Akihiro

    2018-02-01

    A certain type of smectic C phase liquid crystal material panel shows in-plane only retardation switching during its electric field applied driving. This paper explains some chronological approach how such an interesting phenomenon was found and how the in-plane only retardation switching was verified.

  6. High voltage DC switchgear development for multi-kW space power system: Aerospace technology development of three types of solid state power controllers for 200-1100VDC with current ratings of 25, 50, and 80 amperes with one type utilizing an electromechanical device

    NASA Technical Reports Server (NTRS)

    Billings, W. W.

    1981-01-01

    Three types of solid state power controllers (SSPC's) for high voltage, high power DC system applications were developed. The first type utilizes a SCR power switch. The second type employes an electromechanical power switch element with solid state commutation. The third type utilizes a transistor power switch. Significant accomplishments include high operating efficiencies, fault clearing, high/low temperature performance and vacuum operation.

  7. Receptive fields and gustatory responsiveness of frog glossopharyngeal nerve. A single fiber analysis

    PubMed Central

    1990-01-01

    Receptive fields and responsiveness of single fibers of the glossopharyngeal (IXth) nerve were investigated using electrical, gustatory (NaCl, quinine HCl, acetic acid, water, sucrose, and CaCl2), thermal, and mechanical stimulation of the single fungiform papillae distributed on the dorsal tongue surface in frogs. 172 single fibers were isolated. 58% of these fibers (99/172) were responsive to at least one of the gustatory stimuli (taste fibers), and the remaining 42% (73/172) were responsive only to touch (touch fibers). The number of papillae innervated by a single fiber (receptive field) was between 1 and 17 for taste fibers and between 1 and 10 for touch fibers. The mean receptive field of taste fibers (X = 6.6, n = 99) was significantly larger than that of touch fibers (X = 3.6, n = 73) (two-tailed t test, P less than 0.001). In experiments with natural stimulation of single fungiform papillae, it was found that every branch of a single fiber has a similar responsiveness. Taste fibers were classified into 14 types (Type N, Q, A, NA, NCa, NCaA, NCaW, NCaAW, NCaWS, NQ, NQA, NQAS, NQWarm, Multiple) on the basis of their responses to gustatory and thermal stimuli. The time course of the response in taste fibers was found to be characteristic of their types. For example, the fibers belonging to Type NQA showed phasic responses, those in Type NCa showed tonic responses, etc. These results indicate that there are several groups of fibers in the frog IXth nerve and that every branch of an individual fiber has a similar responsiveness to the parent fiber. PMID:2374001

  8. Effects of an acute bout of resistance exercise on fiber-type specific to GLUT4 and IGF-1R expression.

    PubMed

    Gallagher, Philip M; Touchberry, Chad D; Teson, Kelli; McCabe, Everlee; Tehel, Michelle; Wacker, Michael J

    2013-05-01

    The effects of resistance exercise on fiber-type-specific expression of insulin-like growth factor I receptor (IGF-1R) and glucose transporter 4 (GLUT4) was determined in 6 healthy males. The expression of both genes increased in Type I fibers (p < 0.05), but only GLUT4 increased (p < 0.05) in Type II fibers. These data demonstrates that an acute bout of resistance exercise can up-regulate mechanisms of glucose uptake in slow and fast-twitch fibers, but the IGF signaling axis may not be as effective in fast-twitch fibers.

  9. Nd:GdVO4 ring laser pumped by laser diodes

    NASA Astrophysics Data System (ADS)

    Hao, E. J.; Li, T.; Wang, Z. D.; Zhang, Y.

    2013-02-01

    The design and operation of a laser diode-pumped Nd:GdVO4 ring laser is described. A composite crystal (Nd:GdVO4/YVO4) with undoped ends is single-end pumped by a fiber-coupled laser diode (LD) at 808 nm. A four-mirror ring cavity is designed to keep the laser operating unidirectionally, which eliminates spatial hole burning in the standing-wave cavity. This laser can operate either as continuous wave (CW) or Q-switched. The single-frequency power obtained was 9.1 W at 1063 nm. Q-switched operation produced 0.23 mJ/pulse at 20 kHz in the fundamental laser.

  10. Wavelength-tunable, sub-picosecond pulses from a passively Q-switched microchip laser system.

    PubMed

    Lehneis, R; Steinmetz, A; Limpert, J; Tünnermann, A

    2013-07-15

    We present a novel concept to generate sub-picosecond pulses from a passively Q-switched Nd:YVO4 microchip laser system with an adjustable wavelength shift up to a few tens of nanometers around the original emission wavelength of 1064 nm. This concept comprises two stages: one that carries out a nonlinear compression of fiber-amplified microchip pulses and a subsequent stage in which the compressed pulses are coupled into a further waveguide structure followed by a bandpass filter. In a proof-of-principle experiment, pedestal-free 0.62 ps long pulses have been demonstrated with a wavelength shift to 1045 nm.

  11. Intelligent optical networking with photonic cross connections

    NASA Astrophysics Data System (ADS)

    Ceuppens, L.; Jerphagnon, Olivier L.; Lang, Jonathan; Banerjee, Ayan; Blumenthal, Daniel J.

    2002-09-01

    Optical amplification and dense wavelength division multiplexing (DWDM) have fundamentally changed optical transport networks. Now that these technologies are widely adopted, the bottleneck has moved from the outside line plant to nodal central offices, where electrical switching equipment has not kept pace. While OEO technology was (and still is) necessary for grooming and traffic aggregation, the transport network has dramatically changed, requiring a dramatic rethinking of how networks need to be designed and operated. While todays transport networks carry remarkable amounts of bandwidth, their optical layer is fundamentally static and provides for only simple point-to-point transport. Efficiently managing the growing number of wavelengths can only be achieved through a new breed of networking element. Photonic switching systems (PSS) can efficiently execute these functions because they are bit rate, wavelength, and protocol transparent. With their all-optical switch cores and interfaces, PSS can switch optical signals at various levels of granularity wavelength, sub band, and composite DWDM fiber levels. Though cross-connect systems with electrical switch cores are available, they perform these functions at very high capital costs and operational inefficiencies. This paper examines enabling technologies for deployment of intelligent optical transport networks (OTN), and takes a practical perspective on survivability architecture migration and implementation issues.

  12. Refractive-index dispersion measurement of bulk optical materials using a fiber raman laser widely tunable in the visible and near-infrared

    NASA Astrophysics Data System (ADS)

    Ilev, Ilko K.; Kumagai, Hiroshi; Toyoda, Koichi

    1997-01-01

    We propose a simple, highly sensitive fiber-optic autocollimation method for refractive-index dispersion measurement of solid-state and liquid bulk optical materials using a double-pass fiber Raman laser with Littrow-prism-tuned emission. The optical fiber is a key element of the scheme and serves simultaneously as a point laser source for the test, as a highly sensitive point receiver (or spatial filter) of the autocollimation backreflectance signal and as a medium for nonlinear frequency conversion and generation of a broadband continuum spectrum. When the Raman medium is a graded-index multimode fiber with powerful pumping (over 100 kW) using the second harmonic of a Q-switched Nd:YAG laser (λp=532nm), we obtain widely tunable (0.54-1.01 μm) generation in both the visible and near-IR ranges. The results obtained in the refractive-index dispersion measurements are fitted to the Sellmeier dispersion equation and the standard deviation of the experimental data from the analytical curve does not exceed 5x10-5.

  13. Study of imaging fiber bundle coupling technique in IR system

    NASA Astrophysics Data System (ADS)

    Chen, Guoqing; Yang, Jianfeng; Yan, Xingtao; Song, Yansong

    2017-02-01

    Due to its advantageous imaging characteristic and banding flexibility, imaging fiber bundle can be used for line-plane-switching push-broom infrared imaging. How to precisely couple the fiber bundle in the optics system is the key to get excellent image for transmission. After introducing the basic system composition and structural characteristics of the infrared systems coupled with imaging fiber bundle, this article analysis the coupling efficiency and the design requirements of its relay lenses with the angle of the numerical aperture selecting in the system and cold stop matching of the refrigerant infrared detector. For an actual need, one relay coupling system has been designed with the magnification is -0.6, field of objective height is 4mm, objective numerical aperture is 0.15, which has excellent image quality and enough coupling efficiency. In the end, the push broom imaging experiment is carried out. The results show that the design meets the requirements of light energy efficiency and image quality. This design has a certain reference value for the design of the infrared fiber optical system.

  14. Fiber-optic perimeter security system based on WDM technology

    NASA Astrophysics Data System (ADS)

    Polyakov, Alexandre V.

    2017-10-01

    Intelligent underground fiber optic perimeter security system is presented. Their structure, operation, software and hardware with neural networks elements are described. System allows not only to establish the fact of violation of the perimeter, but also to locate violations. This is achieved through the use of WDM-technology division spectral information channels. As used quasi-distributed optoelectronic recirculation system as a discrete sensor. The principle of operation is based on registration of the recirculation period change in the closed optoelectronic circuit at different wavelengths under microstrain exposed optical fiber. As a result microstrain fiber having additional power loss in a fiber optical propagating pulse, which causes a time delay as a result of switching moments of the threshold device. To separate the signals generated by intruder noise and interference, the signal analyzer is used, based on the principle of a neural network. The system detects walking, running or crawling intruder, as well as undermining attempts to register under the perimeter line. These alarm systems can be used to protect the perimeters of facilities such as airports, nuclear reactors, power plants, warehouses, and other extended territory.

  15. Electrical switching in cadmium boracite single crystals

    NASA Technical Reports Server (NTRS)

    Takahashi, T.; Yamada, O.

    1981-01-01

    Cadmium boracite single crystals at high temperatures ( 300 C) were found to exhibit a reversible electric field-induced transition between a highly insulative and a conductive state. The switching threshold is smaller than a few volts for an electrode spacing of a few tenth of a millimeter corresponding to an electric field of 100 to 1000 V/cm. This is much smaller than the dielectric break-down field for an insulator such as boracite. The insulative state reappears after voltage removal. A pulse technique revealed two different types of switching. Unstable switching occurs when the pulse voltage slightly exceeds the switching threshold and is characterized by a pre-switching delay and also a residual current after voltage pulse removal. A stable type of switching occurs when the voltage becomes sufficiently high. Possible device applications of this switching phenomenon are discussed.

  16. Ablation of porcine ligamentum flavum with Ho:YAG, q-switched Ho:YAG, and quadrupled Nd:YAG lasers.

    PubMed

    Johnson, Matt R; Codd, Patrick J; Hill, Westin M; Boettcher, Tara

    2015-12-01

    Ligamentum flavum (LF) is a tough, rubbery connective tissue providing a portion of the ligamentous stability to the spinal column, and in its hypertrophied state forms a significant compressive pathology in degenerative spinal stenosis. The interaction of lasers and this biological tissue have not been thoroughly studied. Technological advances improving endoscopic surgical access to the spinal canal makes selective removal of LF using small, flexible tools such as laser-coupled fiber optics increasingly attractive for treatment of debilitating spinal stenosis. Testing was performed to assess the effect of Ho:YAG, Q-switched Ho:YAG, and frequency quadrupled Nd:YAG lasers on samples of porcine LF. The objective was to evaluate the suitability of these lasers for surgical removal of LF. LF was resected from porcine spine within 2 hours of sacrifice and stored in saline until immediately prior to laser irradiation, which occurred within an additional 2 hours. The optical absorbance of a sample was measured over the spectral band from 190 to 2,360 nm both before and after dehydration. For the experiments using the Ho:YAG (λ = 2,080 nm, tp  = 140 µs, FWHM) and Q-Switched Ho:YAG (λ = 2,080 nm, tp  = 260 ns, FWHM) lasers, energy was delivered to the LF through a laser-fiber optic with 600 µm core and NA = 0.39. For the experiment using the frequency quadrupled Nd:YAG laser (λ = 266 nm, tp  = 5 ns FWHM), rather than applying the laser energy through a laser-fiber, the energy was focused through an aperture and lens directly onto the LF. Five experiments were conducted to evaluate the effect of the given lasers on LF. First, using the Ho:YAG laser, the single-pulse laser-hole depth versus laser fluence was measured with the laser-fiber in direct contact with the LF (1 g force) and with a standoff distance of 1 mm between the laser-fiber face and the LF. Second, with the LF remaining in situ and the spine bisected along the coronal plane, the surface temperature of the LF was measured with an IR camera during irradiation with the Ho:YAG laser, with and without constant saline flush. Third, the mass loss was measured over the course of 450 Ho:YAG pulses. Fourth, hole depth and temperature were measured over 30 pulses of fixed fluence from the Ho:YAG and Q-Switched Ho:YAG lasers. Fifth, the ablation rate and surface temperature were measured as a function of fluence from the Nd:YAG laser. Several LF staining and hole-depth measurement techniques were also explored. Aside from the expected absorbance peaks corresponding to the water in the LF, the most significant peaks in absorbance were located in the spectral band from 190 to 290 nm and persisted after the tissue was dehydrated. In the first experiment, using the Ho:YAG laser and with the laser-fiber in direct contact with the LF, the lowest single-pulse fluence for which LF was visibly removed was 35 J/cm(2) . Testing was conducted at 6 fluences between 35 and 354 J/cm(2) . Over this range the single-pulse hole depth was shown to be near linear (R(2)  = 0.9374, M = 1.6), ranging from 40 to 639 µm (N = 3). For the case where the laser-fiber face was displaced 1 mm from the LF surface, the lowest single-pulse fluence for which tissue was visibly removed was 72 J/cm(2) . Testing was conducted at 4 energy densities between 72 and 180 J/cm(2) . Over this range the single-pulse hole depth was shown to be near linear (R(2)  = 0.8951, M = 1.4), ranging from 31 to 220 µm (N = 3). In the second experiment, with LF in situ, constant flushing with room temperature saline was shown to drastically reduce surface temperature during exposure to Ho:YAG at 5 Hz with the laser-fiber in direct contact with the LF. Without saline, over 1 minute of treatment with a per-pulse fluence of 141 mJ/cm(2) , the average maximum surface temperature measured 110°C. With 10 cc's of saline flushed over 1 minute and a per-pulse laser fluence of 212 mJ/cm(2) , the average maximum surface temperature was 35°C. In the third experiment, mass loss was shown to be linear over 450 pulses of 600 mJ from the Ho:YAG laser (212 J/cm(2) , direct contact, N = 4; 108 J/cm(2) , 1 mm standoff, N = 4). With the laser-fiber in direct contact, an average of 53 mg was removed (R(2)  = 0.996, M = 0.117) and with 1 mm laser-fiber standoff, an average of 44 mg was removed (R(2)  = 0.9988, M = 0.097). In the fourth experiment, 30 pulses of the Ho:YAG and Q-Switched Ho:YAG lasers at 1 mm standoff, and 5 Hz produced similar hole depths for the tested fluences of 9 J/cm(2) (151 and 154 µm, respectively) and 18 J/cm(2) (470 and 442 µm, respectively), though the Ho:YAG laser produced significantly more carbonization around the rim of the laser-hole. The increased carbonization was corroborated by higher measured LF temperature. In all tests with the Ho:YAG and Q-Switched Ho:YAG, an audible photo-acoustic affect coincided with the laser pulse. In the fifth experiment, with the frequency quadrupled Nd:YAG laser at 15 Hz for 450 pulses, ablation depth per pulse was shown to be linear for the fluence range of 0.18 - 0.73 J/cm(2) (R(2)  = 0.989, M = 2.4). There was no noticeable photo-acoustic effect nor charring around the rim of the laser-hole. The Ho:YAG, Q-Switched Ho:YAG, and frequency quadrupled Nd:YAG lasers were shown to remove ligamentum flavum (LF). A single pulse of the Ho:YAG laser was shown to cause tearing of the tissue and a large zone of necrosis surrounding the laser-hole. Multiple pulses of the Ho:YAG and Q-Switched Ho:YAG lasers caused charring around the rim of the laser-hole, though the extent of charring was more extensive with the Ho:YAG laser. Charring caused by the Ho:YAG laser was shown to be mitigated by continuously flushing the affected LF with saline during irradiation. The Nd:YAG laser was shown to ablate LF with no gross visible indication of thermal damage to surrounding LF. © 2015 Wiley Periodicals, Inc.

  17. Exploring the Mechanisms of Differentiation, Dedifferentiation, Reprogramming and Transdifferentiation

    PubMed Central

    Xu, Li; Zhang, Kun; Wang, Jin

    2014-01-01

    We explored the underlying mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation (cell type switchings) from landscape and flux perspectives. Lineage reprogramming is a new regenerative method to convert a matured cell into another cell including direct transdifferentiation without undergoing a pluripotent cell state and indirect transdifferentiation with an initial dedifferentiation-reversion (reprogramming) to a pluripotent cell state. Each cell type is quantified by a distinct valley on the potential landscape with higher probability. We investigated three driving forces for cell fate decision making: stochastic fluctuations, gene regulation and induction, which can lead to cell type switchings. We showed that under the driving forces the direct transdifferentiation process proceeds from a differentiated cell valley to another differentiated cell valley through either a distinct stable intermediate state or a certain series of unstable indeterminate states. The dedifferentiation process proceeds through a pluripotent cell state. Barrier height and the corresponding escape time from the valley on the landscape can be used to quantify the stability and efficiency of cell type switchings. We also uncovered the mechanisms of the underlying processes by quantifying the dominant biological paths of cell type switchings on the potential landscape. The dynamics of cell type switchings are determined by both landscape gradient and flux. The flux can lead to the deviations of the dominant biological paths for cell type switchings from the naively expected landscape gradient path. As a result, the corresponding dominant paths of cell type switchings are irreversible. We also classified the mechanisms of cell fate development from our landscape theory: super-critical pitchfork bifurcation, sub-critical pitchfork bifurcation, sub-critical pitchfork with two saddle-node bifurcation, and saddle-node bifurcation. Our model showed good agreements with the experiments. It provides a general framework to explore the mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation. PMID:25133589

  18. Acceleration Strain Transducer

    DTIC Science & Technology

    2007-11-05

    accelerometer 10 includes a fiber laser 12. Fiber laser 12 can be either a Fabry - Perot type cavity fiber laser or a distributed feedback fiber laser. In a... Fabry - Perot type fiber laser, the laser cavity is a length of erbium- doped optical fiber with a Bragg grating written in the fiber core at either end of...the phase shifted signal. Receiver 26 is capable of demodulating and detecting the signal from the fiber laser by various methods well known in the

  19. Characteristics of Monolithically Integrated InGaAs Active Pixel Imager Array

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Cunningham, T. J.; Pain, B.; Lange, M. J.; Olsen, G. H.

    2000-01-01

    Switching and amplifying characteristics of a newly developed monolithic InGaAs Active Pixel Imager Array are presented. The sensor array is fabricated from InGaAs material epitaxially deposited on an InP substrate. It consists of an InGaAs photodiode connected to InP depletion-mode junction field effect transistors (JFETs) for low leakage, low power, and fast control of circuit signal amplifying, buffering, selection, and reset. This monolithically integrated active pixel sensor configuration eliminates the need for hybridization with silicon multiplexer. In addition, the configuration allows the sensor to be front illuminated, making it sensitive to visible as well as near infrared signal radiation. Adapting the existing 1.55 micrometer fiber optical communication technology, this integration will be an ideal system of optoelectronic integration for dual band (Visible/IR) applications near room temperature, for use in atmospheric gas sensing in space, and for target identification on earth. In this paper, two different types of small 4 x 1 test arrays will be described. The effectiveness of switching and amplifying circuits will be discussed in terms of circuit effectiveness (leakage, operating frequency, and temperature) in preparation for the second phase demonstration of integrated, two-dimensional monolithic InGaAs active pixel sensor arrays for applications in transportable shipboard surveillance, night vision, and emission spectroscopy.

  20. Effect of swim exercise training on human muscle fiber function

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Costill, D. L.; Gardetto, P. R.

    1989-01-01

    The effect of swim exercise training on the human muscle fiber function was investigated in swimmers trained in a typical collegiate swim-training program followed by an intensified 10-day training period. The measured parameters included the peak tension (P0), negative log molar Ca(2+) concentration (pCa)-force, and maximal shortening speed (Vmax) of the slow-twitch type I and fast-twitch type II fibers obtained by biopsy from the deltoid muscle. The P0 values were found to be not altered after either the training or the 10-day intensive program. The type I fibers from the trained swimmers showed pCa-force curves shifted to the right, such that higher free Ca(2+) levels were required to elicit a given percent of P0. The training program significantly increased the Vmax in the type I fibers and decreased that of the type II fibers, and the 10-day intensive training produced a further significant decrease of the type II fibers.

  1. A study of the effect of pregnancy on muscle fibers of the rectus abdominis muscle of the rat.

    PubMed

    Martin, W D

    1979-11-01

    Samples of the rectus abdominis muscle were taken from Sprague-Dawley rats at 0, 3, 6, 6, 12, 15, 18, and 21 days of pregnancy, and at 1, 3, 6, 9, 12, and 15 days of postpartum. Sections were incubated for actomyosin adenosine triphosphatase activity following preincubation at a basic pH. Muscle fibers within a unit area of each sample were identified as to fiber type according to their enzyme activity, and the population of each type counted. The proportion of each fiber type was calculated and the diameter of 24 fibers of each type measured. No changes were noted in the muscle fiber proportions through the course of the experiment. Differential changes in muscle fiber diameters were noted in each of the three muscle fiber types. Slow oxidative fibers underwent an increase in diameter through the last half of pregnancy. The diameter was further increased as stretch of the muscle was released after birth, and did not decrease in the postpartum period. Fast glycolytic fibers decreased in diameter during the last half of pregnancy, but returned to the prepregnancy diameter in the first postpartum day. The diameter of the fast oxidative glycolytic fibers remained unchanged through the course of pregnacy and in the postpartum period.

  2. Special-purpose fiber type 475--toxicological assessment.

    PubMed

    Bernstein, D M

    2007-02-01

    Type 475 special-purpose glass fiber is rather unique among the family of synthetic mineral fibers. It is used not for insulation but for "high-end" filtration products designed for high and ultra-high purity filtration of air and liquids. The designation for these types of filters varies with country and includes HEPA, ULPA, EU 10-13, EN1822, and S3. In its evaluation, type 475 has been grouped together with E-glass another special-purpose fibre often with little distinction made in terms of its chemistry and corresponding toxicological response. The detailed review of the available toxicology data on type 475 glass fibers clearly shows that following inhalation of this fiber even at relatively high doses, which likely exceed that at which lung overload in the rat is known to occur, type 475 glass fibers are not fibrogenic and do not cause tumors. These data clearly show an important differentiation in potency between type 475 glass fibers and E-glass and support treating these two types of fibers independently and not equating them though the term "special-purpose fibers." Analysis of the intraperitoneal studies taking into account fibre dimensions shows that at 109 fibers injected, there was a 0.3 tumor incidence. While these studies indicate according to the European Commission (EC) classification criteria that 475 should not be fully exonerated as a carcinogen, the results of the inhalation study fully support classification in category 3. The IP results are more difficult to interpret, however, the IP study itself provides no toxicological basis for determining what range of dose-response should correspond to EU category 3 or 2. Following the EC classification criteria, the toxicological data clearly indicate that 475 fibers are appropriately classified in EC category 3.

  3. Recruitment of single muscle fibers during submaximal cycling exercise.

    PubMed

    Altenburg, T M; Degens, H; van Mechelen, W; Sargeant, A J; de Haan, A

    2007-11-01

    In literature, an inconsistency exists in the submaximal exercise intensity at which type II fibers are activated. In the present study, the recruitment of type I and II fibers was investigated from the very beginning and throughout a 45-min cycle exercise at 75% of the maximal oxygen uptake, which corresponded to 38% of the maximal dynamic muscle force. Biopsies of the vastus lateralis muscle were taken from six subjects at rest and during the exercise, two at each time point. From the first biopsy single fibers were isolated and characterized as type I and II, and phosphocreatine-to-creatine (PCr/Cr) ratios and periodic acid-Schiff (PAS) stain intensities were measured. Cross sections were cut from the second biopsy, individual fibers were characterized as type I and II, and PAS stain intensities were measured. A decline in PCr/Cr ratio and in PAS stain intensity was used as indication of fiber recruitment. Within 1 min of exercise both type I and, although to a lesser extent, type II fibers were recruited. Furthermore, the PCr/Cr ratio revealed that the same proportion of fibers was recruited during the whole 45 min of exercise, indicating a rather constant recruitment. The PAS staining, however, proved inadequate to fully demonstrate fiber recruitment even after 45 min of exercise. We conclude that during cycling exercise a greater proportion of type II fibers is recruited than previously reported for isometric contractions, probably because of the dynamic character of the exercise. Furthermore, the PCr/Cr ratio method is more sensitive in determining fiber activation than the PAS stain intensity method.

  4. Slow-Twitch Fiber Proportion in Skeletal Muscle Correlates With Insulin Responsiveness

    PubMed Central

    McCurry, Melanie P.; Marino, Anna; South, Mark A.; Howell, Mary E. A.; Layne, Andrew S.; Ramsey, Michael W.; Stone, Michael H.

    2013-01-01

    Context: The metabolic syndrome, characterized by central obesity with dyslipidemia, hypertension, and hyperglycemia, identifies people at high risk for type 2 diabetes. Objective: Our objective was to determine how the insulin resistance of the metabolic syndrome is related to muscle fiber composition. Design: Thirty-nine sedentary men and women (including 22 with the metabolic syndrome) had insulin responsiveness quantified using euglycemic clamps and underwent biopsies of the vastus lateralis muscle. Expression of insulin receptors, insulin receptor substrate-1, glucose transporter 4, and ATP synthase were quantified with immunoblots and immunohistochemistry. Participants and Setting: Participants were nondiabetic, metabolic syndrome volunteers and sedentary control subjects studied at an outpatient clinic. Main Outcome Measures: Insulin responsiveness during an insulin clamp and the fiber composition of a muscle biopsy specimen were evaluated. Results: There were fewer type I fibers and more mixed (type IIa) fibers in metabolic syndrome subjects. Insulin responsiveness and maximal oxygen uptake correlated with the proportion of type I fibers. Insulin receptor, insulin receptor substrate-1, and glucose transporter 4 expression were not different in whole muscle but all were significantly less in the type I fibers of metabolic syndrome subjects when adjusted for fiber proportion and fiber size. Fat oxidation and muscle mitochondrial expression were not different in the metabolic syndrome subjects. Conclusion: Lower proportion of type I fibers in metabolic syndrome muscle correlated with the severity of insulin resistance. Even though whole muscle content was normal, key elements of insulin action were consistently less in type I muscle fibers, suggesting their distribution was important in mediating insulin effects. PMID:23515448

  5. A One-Step Immunostaining Method to Visualize Rodent Muscle Fiber Type within a Single Specimen

    PubMed Central

    Sawano, Shoko; Komiya, Yusuke; Ichitsubo, Riho; Ohkawa, Yasuyuki; Nakamura, Mako; Tatsumi, Ryuichi; Ikeuchi, Yoshihide; Mizunoya, Wataru

    2016-01-01

    In this study, we present a quadruple immunostaining method for rapid muscle fiber typing of mice and rats using antibodies specific to the adult myosin heavy chain (MyHC) isoforms MyHC1, 2A, 2X, and 2B, which are common marker proteins of distinct muscle fiber types. We developed rat monoclonal antibodies specific to each MyHC isoform and conjugated these four antibodies to fluorophores with distinct excitation and emission wavelengths. By mixing the four types of conjugated antibodies, MyHC1, 2A, 2X, and 2B could be distinguished within a single specimen allowing for facile delineation of skeletal muscle fiber types. Furthermore, we could observe hybrid fibers expressing MyHC2X and MyHC2B together in single longitudinal muscle sections from mice and rats, that was not attained in previous techniques. This staining method is expected to be applied to study muscle fiber type transition in response to environmental factors, and to ultimately develop techniques to regulate animal muscle fiber types. PMID:27814384

  6. Muscle fiber-type conversion in the transgenic pigs with overexpression of PGC1α gene in muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying, Fei; Zhang, Liang; Bu, Guowei

    The peroxisome proliferator-activated receptor gamma, co-activator 1 alpha(PGC1α) effectively induced the biosynthesis of the mitochondria and the energy metabolism, and also regulated the muscle fiber-type shift. Overexpression of PGC1α gene in mice led to higher oxidative muscle fiber composition in muscle. However, no researches about the significant differences of muscle fiber phenotype in pigs after PGC1α overexpression had been reported. The composition of muscle fiber-types which were distinguished by four myosin heavy chain(MYHC) isoforms, can significantly affect the muscle functions. In our study, we generated the transgenic pigs to investigate the effect of overexpression of PGC1α gene on muscle fiber-typemore » conversion. The results showed that the number of oxidative muscle fiber(type1 muscle fiber) was increased and the number of glycolytic muscle fiber(type2b muscle fiber) was decreased in the transgenic pigs. Furthermore, we found that PGC1α overexpression up-regulated the expression of MYHC1 and MYHC2a and down-regulated the expression of MYHC2b.The analysis of genes expression demonstrated the main differentially expressed genes were MSTN, Myog and FOXO1. In conclusion, the overexpression of PGC1α gene can promote the glycolytic muscle fiber transform to the oxidative muscle fiber in pigs.« less

  7. Fat content in individual muscle fibers of lean and obese subjects.

    PubMed

    Malenfant, P; Joanisse, D R; Thériault, R; Goodpaster, B H; Kelley, D E; Simoneau, J A

    2001-09-01

    To examine skeletal muscle intracellular triglyceride concentration in different fiber types in relation to obesity. Skeletal muscle fiber type distribution and intracellular lipid content were measured in vastus lateralis samples obtained by needle biopsy from lean and obese individuals. Seven lean controls (body mass index (BMI) 23.0+/-3.3 kg/m(2); mean+/-s.d.) and 14 obese (BMI 33.7+/-2.7 kg/m(2)) individuals; both groups included comparable proportions of men and women. Samples were histochemically stained for the identification of muscle fiber types (myosin ATPase) and intracellular lipid aggregates (oil red O dye). The number and size of fat aggregates as well as their concentration within type I, IIA and IIB muscle fiber types were measured. The cellular distribution of the lipid aggregates was also examined. The size of fat aggregates was not affected by obesity but the number of lipid droplets within muscle fibers was twice as abundant in obese compared to lean individuals. This was seen in type I (298+/-135 vs 129+/-75; obese vs lean, P<0.05), IIA (132+/-67 vs 79+/-29; P<0.05), and IIB (103+/-63 vs 51+/-13; P<0.05) muscle fibers. A more central distribution of lipid droplets was observed in muscle fibers of obese compared to lean subjects (27.2+/-5.7 vs 19.7+/-6.4%; P<0.05). The higher number of lipid aggregates and the disposition to a greater central distribution in all fiber types in obesity indicate important changes in lipid metabolism and/or storage that are fiber type-independent.

  8. Organization of the channel-switching process in parallel computer systems based on a matrix optical switch

    NASA Technical Reports Server (NTRS)

    Golomidov, Y. V.; Li, S. K.; Popov, S. A.; Smolov, V. B.

    1986-01-01

    After a classification and analysis of electronic and optoelectronic switching devices, the design principles and structure of a matrix optical switch is described. The switching and pair-exclusion operations in this type of switch are examined, and a method for the optical switching of communication channels is elaborated. Finally, attention is given to the structural organization of a parallel computer system with a matrix optical switch.

  9. SMASH - semi-automatic muscle analysis using segmentation of histology: a MATLAB application.

    PubMed

    Smith, Lucas R; Barton, Elisabeth R

    2014-01-01

    Histological assessment of skeletal muscle tissue is commonly applied to many areas of skeletal muscle physiological research. Histological parameters including fiber distribution, fiber type, centrally nucleated fibers, and capillary density are all frequently quantified measures of skeletal muscle. These parameters reflect functional properties of muscle and undergo adaptation in many muscle diseases and injuries. While standard operating procedures have been developed to guide analysis of many of these parameters, the software to freely, efficiently, and consistently analyze them is not readily available. In order to provide this service to the muscle research community we developed an open source MATLAB script to analyze immunofluorescent muscle sections incorporating user controls for muscle histological analysis. The software consists of multiple functions designed to provide tools for the analysis selected. Initial segmentation and fiber filter functions segment the image and remove non-fiber elements based on user-defined parameters to create a fiber mask. Establishing parameters set by the user, the software outputs data on fiber size and type, centrally nucleated fibers, and other structures. These functions were evaluated on stained soleus muscle sections from 1-year-old wild-type and mdx mice, a model of Duchenne muscular dystrophy. In accordance with previously published data, fiber size was not different between groups, but mdx muscles had much higher fiber size variability. The mdx muscle had a significantly greater proportion of type I fibers, but type I fibers did not change in size relative to type II fibers. Centrally nucleated fibers were highly prevalent in mdx muscle and were significantly larger than peripherally nucleated fibers. The MATLAB code described and provided along with this manuscript is designed for image processing of skeletal muscle immunofluorescent histological sections. The program allows for semi-automated fiber detection along with user correction. The output of the code provides data in accordance with established standards of practice. The results of the program have been validated using a small set of wild-type and mdx muscle sections. This program is the first freely available and open source image processing program designed to automate analysis of skeletal muscle histological sections.

  10. Propagation and switching of light in rectangular waveguiding structures

    NASA Astrophysics Data System (ADS)

    Sala, Anca L.

    1998-10-01

    In this dissertation, we investigate the conditions for the propagation and processing of temporal optical solitons in the rectangular geometry waveguides which are expected to play an important role as processing elements in optical communication systems. It is anticipated that the optical signals carrying information through optical fibers will be in the form of temporal soliton pulses, which can propagate undistorted for long distances under the condition that the dispersion is balanced by a nonlinearity in the optical fiber. An important parameter in the equation that governs temporal soliton propagation in a waveguide is the second derivative of the propagation vector with respect to the angular frequency, /omega, denoted by β/prime'. We evaluate β/prime' for rectangular waveguides using a channel model of the waveguide, which takes into account the two transverse dimensions of the rectangular channel. Significant differences are found in the values of β/prime' obtained from our model and those obtained from the more traditional, one dimensional slab model. A major additional effort in the present thesis relates to the development of a theory of temporal soliton switching in a planar geometry nonlinear directional coupler. The theory is formulated in terms of the supermodes of the total structure, and again accounts for the two transverse dimensions of the channels. To accurately determine the coupling length and switching power of the nonlinear coupler, we apply corrections to the propagation constants of the supermodes that account for the non-zero electromagnetic fields in the outer corner regions of the waveguide channels. It is shown for the case of a SiO2 based nonlinear directional coupler operating at the central wavelength of 1.55 μm, that these corrections have a significant effect on both the coupling length and the switching power. Finally, we develop the conditions under which single mode rectangular waveguides can have zero dispersion at the optical communications wavelengths 1.31 μm or 1.55 μm, and discuss the end-to-end coupling of rectangular waveguides to the standard optical fibers used in optical communications. Our results are expected to serve as a guide for the design of planar geometry based processing elements in a variety of optical communications devices.

  11. Room temperature single photon source using fiber-integrated hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Vogl, Tobias; Lu, Yuerui; Lam, Ping Koy

    2017-07-01

    Single photons are a key resource for quantum optics and optical quantum information processing. The integration of scalable room temperature quantum emitters into photonic circuits remains to be a technical challenge. Here we utilize a defect center in hexagonal boron nitride (hBN) attached by Van der Waals force onto a multimode fiber as a single photon source. We perform an optical characterization of the source in terms of spectrum, state lifetime, power saturation and photostability. A special feature of our source is that it allows for easy switching between fiber-coupled and free space single photon generation modes. In order to prove the quantum nature of the emission we measure the second-order correlation function {{g}(2)}≤ft(τ \\right) . For both fiber-coupled and free space emission, the {{g}(2)}≤ft(τ \\right) dips below 0.5 indicating operation in the single photon regime. The results so far demonstrate the feasibility of 2D material single photon sources for scalable photonic quantum information processing.

  12. Open-cavity fiber laser with distributed feedback based on externally or self-induced dynamic gratings.

    PubMed

    Lobach, Ivan A; Drobyshev, Roman V; Fotiadi, Andrei A; Podivilov, Evgeniy V; Kablukov, Sergey I; Babin, Sergey A

    2017-10-15

    Dynamic population inversion gratings induced in an active medium by counter-propagating optical fields may have a reverse effect on writing laser radiation via feedback they provide. In this Letter we report, to the best of our knowledge, on the first demonstration of an open-cavity fiber laser in which the distributed feedback is provided by a dynamic grating "written" in a Yb-doped active fiber, either by an external source or self-induced via a weak (∼0.1%) reflection from an angle-cleaved fiber end. It has been shown that meters-long dynamic grating is formed with a narrow bandwidth (<50  MHz) and a relatively high-reflection coefficient (>7%) securing single-frequency operation, but the subsequent hole-burning effects accompanied by new grating formation lead to the switching from one longitudinal mode to another. providing a regular pulse-mode dynamics. As a result, periodically generated pulse trains cover a spectrum range of several terahertz delivering millions of cavity modes in sequent pulses.

  13. Development of a solid-state sodium Doppler lidar using an all-fiber-coupled injection seeding unit for simultaneous temperature and wind measurements in the mesopause region.

    PubMed

    Xia, Yuan; Du, LiFang; Cheng, XueWu; Li, FaQuan; Wang, JiHong; Wang, ZeLong; Yang, Yong; Lin, Xin; Xun, YuChang; Gong, ShunSheng; Yang, GuoTao

    2017-03-06

    A solid-state sodium (Na) Doppler lidar developed at YanQing Station, Beijing, China (40°N, 116°E) aiming to simultaneous wind and temperature measurement of mesopause region was reported. The 589 nm pulse laser was produced by two injection seeded 1064 nm and 1319 nm Nd:YAG pulse lasers using the sum-frequency generation (SFG) technique. A fiber amplifier is implemented to boost the seed power at 1064 nm, enabling a robust, all-fiber-coupled design for seeding laser unit, absolute laser frequency locking, and cyclic three-frequency switching necessary for simultaneous temperature and wind measurements. The all-fiber-coupled injection seeding configuration together with the solid-state Nd:YAG lasers make the Na Doppler lidar more compact and greatly reduce the system maintenance, which is conducive to transportable and unattended operation. A preliminary observational result obtained with this solid-state sodium Doppler lidar was also reported in this paper.

  14. Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics.

    PubMed

    Kieu, K; Schneebeli, L; Norwood, R A; Peyghambarian, N

    2012-03-26

    We have developed a novel integrated platform for liquid photonics based on liquid core optical fiber (LCOF). The platform is created by fusion splicing liquid core optical fiber to standard single-mode optical fiber making it fully integrated and practical - a major challenge that has greatly hindered progress in liquid-photonic applications. As an example, we report here the realization of ultralow threshold Raman generation using an integrated CS₂ filled LCOF pumped with sub-nanosecond pulses at 532 nm and 1064 nm. The measured energy threshold for the Stokes generation is 1nJ, about three orders of magnitude lower than previously reported values in the literature for hydrogen gas, a popular Raman medium. The integrated LCOF platform opens up new possibilities for ultralow power nonlinear optics such as efficient white light generation for displays, mid-IR generation, slow light generation, parametric amplification, all-optical switching and wavelength conversion using liquids that have orders of magnitude larger optical nonlinearities compared with silica glass.

  15. Skeletal muscle stem cell characteristics and myonuclei content in patients with rheumatoid arthritis: a cross-sectional study.

    PubMed

    Boutrup, Rasmus Jentoft; Farup, Jean; Vissing, Kristian; Kjaer, Michael; Mikkelsen, Ulla Ramer

    2018-06-01

    To investigate satellite cells (SCs) and myonuclei characteristics in patients with rheumatoid arthritis (RA). Resting biopsies from m. vastus lateralis were obtained from thirteen RA patients and thirteen matched healthy controls (CON). Muscle biopsies were immunohistochemically stained and analyzed for fiber type specific content of SCs (Pax7 + ), proliferating SCs (Pax7 + /MyoD + ) and differentiating SCs (myogenin + ). Furthermore, we quantified fiber type specific content of myonuclei and myofiber cross-sectional area (CSA). Finally, newly formed/regenerating fibers expressing neonatal MHC (nMHC + ) were determined. The fiber type specific number of SCs did not differ between RA patients and CON, nor did the content of proliferating or differentiating SCs. In contrast, the content of myonuclei per fiber was higher in RA patients than CON for both type I (2.01 ± 0.41 vs. 1.42 ± 0.40 myonuclei/fiber, p < 0.01) and type II fibers (2.01 ± 0.41 vs. 1.37 ± 0.32 myonuclei/fiber, p < 0.01). No differences were observed in fiber composition, fiber type specific CSA or content of nMHC + fibers. Our results indicate an increased propensity for myogenic differentiation of SC leading to an elevated myonuclear content in the skeletal muscle of RA patients. It is hypothesized that this could be a compensatory regulatory response related to the chronic inflammation in these patients.

  16. Satellite networks in the ISDN era

    NASA Astrophysics Data System (ADS)

    Amadesi, P.; Haines, P.; Patacchini, A.

    1986-12-01

    The development of an integrated service digital network (ISDN) capable of supporting a wide range of services using a small set of standard multipurpose user-network interfaces is examined. The ISDN environment is expected to consist of functional elements such as, circuit switching, packet switching, and common channel signaling. The use of satellites or fiber optics in the ISDN is evaluated. The relation between satellites and the ISDN in the short-, medium-, and long-terms is analyzed. The recommendations of the consultative committee, CCIR, concerning the definition of the hypothetical reference digital path and the required quality and availability for ISDN applications, and the proposed plans of Eutelsat and Intelsat for satellite systems compatible with an ISDN are discussed. The application of business satellite networks and packet satellite networks to an ISDN is studied. The long-term objectives for an ISDN is a wideband system that accommodates digital transmission on circuit and packet switched bases.

  17. GLOBECOM '89 - IEEE Global Telecommunications Conference and Exhibition, Dallas, TX, Nov. 27-30, 1989, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    The present conference discusses topics in multiwavelength network technology and its applications, advanced digital radio systems in their propagation environment, mobile radio communications, switching programmability, advancements in computer communications, integrated-network management and security, HDTV and image processing in communications, basic exchange communications radio advancements in digital switching, intelligent network evolution, speech coding for telecommunications, and multiple access communications. Also discussed are network designs for quality assurance, recent progress in coherent optical systems, digital radio applications, advanced communications technologies for mobile users, communication software for switching systems, AI and expert systems in network management, intelligent multiplexing nodes, video and image coding, network protocols and performance, system methods in quality and reliability, the design and simulation of lightwave systems, local radio networks, mobile satellite communications systems, fiber networks restoration, packet video networks, human interfaces for future networks, and lightwave networking.

  18. Switching of bound vector solitons for the coupled nonlinear Schrödinger equations with nonhomogenously stochastic perturbations

    NASA Astrophysics Data System (ADS)

    Sun, Zhi-Yuan; Gao, Yi-Tian; Yu, Xin; Liu, Ying

    2012-12-01

    We investigate the dynamics of the bound vector solitons (BVSs) for the coupled nonlinear Schrödinger equations with the nonhomogenously stochastic perturbations added on their dispersion terms. Soliton switching (besides soliton breakup) can be observed between the two components of the BVSs. Rate of the maximum switched energy (absolute values) within the fixed propagation distance (about 10 periods of the BVSs) enhances in the sense of statistics when the amplitudes of stochastic perturbations increase. Additionally, it is revealed that the BVSs with enhanced coherence are more robust against the perturbations with nonhomogenous stochasticity. Diagram describing the approximate borders of the splitting and non-splitting areas is also given. Our results might be helpful in dynamics of the BVSs with stochastic noises in nonlinear optical fibers or with stochastic quantum fluctuations in Bose-Einstein condensates.

  19. Switching of bound vector solitons for the coupled nonlinear Schrödinger equations with nonhomogenously stochastic perturbations.

    PubMed

    Sun, Zhi-Yuan; Gao, Yi-Tian; Yu, Xin; Liu, Ying

    2012-12-01

    We investigate the dynamics of the bound vector solitons (BVSs) for the coupled nonlinear Schrödinger equations with the nonhomogenously stochastic perturbations added on their dispersion terms. Soliton switching (besides soliton breakup) can be observed between the two components of the BVSs. Rate of the maximum switched energy (absolute values) within the fixed propagation distance (about 10 periods of the BVSs) enhances in the sense of statistics when the amplitudes of stochastic perturbations increase. Additionally, it is revealed that the BVSs with enhanced coherence are more robust against the perturbations with nonhomogenous stochasticity. Diagram describing the approximate borders of the splitting and non-splitting areas is also given. Our results might be helpful in dynamics of the BVSs with stochastic noises in nonlinear optical fibers or with stochastic quantum fluctuations in Bose-Einstein condensates.

  20. Optical technologies for the Internet of Things era

    NASA Astrophysics Data System (ADS)

    Ji, Philip N.

    2017-08-01

    Internet of Things (IoT) is a network of interrelated physical objects that can collect and exchange data with one another through embedded electronics, software, sensors, over the Internet. It extends Internet connectivity beyond traditional networking devices to a diverse range of physical devices and everyday things that utilize embedded technologies to communicate and interact with the external environment. The IoT brings automation and efficiency improvement to everyday life, business, and society. Therefore IoT applications and market are growing rapidly. Contrary to common belief that IoT is only related to wireless technology, optical technologies actually play important roles in the growth of IoT and contribute to its advancement. Firstly, fiber optics provides the backbone for transporting large amount of data generated by IoT network in the core , metro and access networks, and in building or in the physical object. Secondly, optical switching technologies, including all-optical switching and hybrid optical-electrical switching, enable fast and high bandwidth routing in IoT data processing center. Thirdly, optical sensing and imaging delivers comprehensive information of multiple physical phenomena through monitoring various optical properties such as intensity, phase, wavelength, frequency, polarization, and spectral distribution. In particular, fiber optic sensor has the advantages of high sensitivity, low latency, and long distributed sensing range. It is also immune to electromagnetic interference, and can be implemented in harsh environment. In this paper, the architecture of IoT is described, and the optical technologies and their applications in the IoT networks are discussed with practical examples.

Top