Science.gov

Sample records for fiber-based optical frequency

  1. Fiber-based femtosecond optical frequency comb stabilized to iodine frequency standard

    NASA Astrophysics Data System (ADS)

    Bagayev, S. N.; Denisov, V. I.; Dychkov, A. S.; Koliada, N. A.; Nyushkov, B. N.; Pivtsov, V. S.; Farnosov, S. A.; Antropov, A. A.

    2017-01-01

    A fiber-based femtosecond optical frequency comb spanning wavelengths from 1 to 2 μm was stabilized precisely to an iodine frequency standard by means of heterodyne optical phase-locked loops. It enables transfer of frequency stability across electromagnetic spectrum and implementation of compact optical clocks with ∼10-15 long-term instability.

  2. Recent developments in fiber-based optical frequency comb and its applications

    NASA Astrophysics Data System (ADS)

    Xia, Wei; Chen, Xuzong

    2016-04-01

    Fiber-based optical frequency combs, characterized by compact configuration and outstanding optical properties, have been developed into state-of-the-art precision instruments which are no longer used just for optical frequency metrology, but for a number of applications, including optical clocks, attosecond science, exoplanet searches, medical diagnostics, physicochemical processes control and advanced manufacturing. This short perspective presents some of the milestones and highlights in the evolution of fiber-based optical frequency combs and the technical revolution that are brought by them for a wide range of applications. Along the way, both the challenges and opportunities in the future development of the fiber-based optical frequency comb technology have been described as well.

  3. Direct Spectroscopy in Hollow Optical with Fiber-Based Optical Frequency Combs

    DTIC Science & Technology

    2015-07-09

    optically- referenced erbium fiber laser frequency comb is demonstrated. In Section 4 , the comb stability is characterized through comparison with a cw...Performance 3.  DATES COVERED (From - To)      01-06-2011 to 31-05-2015 4 .  TITLE AND SUBTITLE DIRECT SPECTROSCOPY IN HOLLOW OPTICAL WITH FIBER-BASED...corrected (< 1σ) using proper modeling of a shift due to line-shape. To improve portability, a sealed photonic microcell (PMC) is characterized on the

  4. Optical properties assessment for liquid phantoms using fiber based frequency-modulated light scattering interferometry

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2014-03-01

    Fiber based frequency-modulated light scattering interferometry (FMLSI) is developed for optical properties studies of liquid phantoms, made of Intralipid®. By employing optical frequency modulation on a tunable diode laser, the power spectrum of the heterodyne-detected intensity fluctuations through the dynamic turbid medium is a combination of the time-of-flight distribution and the Doppler power spectrum due to the movement of the scattering particles. The reduced scattering coefficient, absorption coefficient and Brownian diffusion constant are retrieved by employing nonlinear fitting to the power spectrum based on diffusion theory.

  5. Hollow-core photonic-crystal-fiber-based optical frequency references

    NASA Astrophysics Data System (ADS)

    Holá, Miroslava; Hrabina, Jan; Mikel, Břetislav; Lazar, Josef; Číp, Ondřej

    2016-12-01

    This research deals with preparation of an optical frequency references based on hollow-core photonic crystal fibers (HC-PCF). This fiber-based type of absorption cells represents a effiecient way how to replace classic bulky and fragile glass made tubes references with low-weight and low-volume optical fibers. This approach allows not only to increase possible interaction length between incident light and absorption media but it also carries a possibility of manufacturing of easy-operable reference which is set up just by plugging-in of optical connectors into the optical setup. We present the results of preparation, manufacturing and filling of a set of fiber-based cells intended for lasers frequency stabilization. The work deals with setting and optimalization of HC-PCF splicing processes, minimalization of optical losses between HC-PCF and SMF fiber transitions and finishing of HC-PCF spliced ends with special care for optimal closing of hollow-core structure needed for avoiding of absorption media leakage.

  6. Environmental-adaptability analysis of an all polarization-maintaining fiber-based optical frequency comb.

    PubMed

    Feng, Ye; Xu, Xin; Hu, Xiaohong; Liu, Yuanshan; Wang, Yishan; Zhang, Wei; Yang, Zhi; Duan, Lina; Zhao, Wei; Cheng, Zhao

    2015-06-29

    We demonstrate an all polarization-maintaining (PM) fiber-based optical frequency comb and provide the detailed environmental stability analysis results. The frequency comb has been built by commercial available PM fiber completely, and its static uncertainty in optical domain is 350 Hz in 1 s when referenced to a low noise oven controlled crystal oscillator. The acoustic resonant frequencies of the system have been measured. It is proved that acoustic-vibration induced phase noise could be eliminated by low pass vibration-isolation structure. Further, the existence of the optimum working temperature is illustrated. At this temperature (289.6 K), the out-loop integrated phase noise of f(r) and the temperature-drift induced instability of f(CEO) reach the lowest level 31.6 μrad and 0 kHz/(mW∙K) respectively. Finally, the system is proved to be stable under different humidity (18% ~80%) by a 240-day-long record of the f(CEO).

  7. Highly stabilized optical frequency comb interferometer with a long fiber-based reference path towards arbitrary distance measurement.

    PubMed

    Nakajima, Yoshiaki; Minoshima, Kaoru

    2015-10-05

    An optical frequency comb interferometer with a 342-m-long fiber-based optical reference path was developed. The long fiber-based reference path was stabilized to 10(-12)-order stability by using a fiber noise cancellation technique, and small temperature changes on the millikelvin order were detected by measuring an interferometric phase signal. Pulse number differences of 30 and 61 between the measurement and reference paths were determined precisely, with slight tuning of the 53.4 MHz repetition frequency. Moreover, with pulse number difference of 61, a 6.4-m-wide scanning for the relative pulse position is possible only by 1 MHz repetition frequency tuning, which makes pulses overlapped for arbitrary distance. Such wide-range high-precision delay length scanning can be used to measure arbitrary distances by using a highly stabilized long fiber-based reference path.

  8. Optical fiber-based photocathode

    NASA Astrophysics Data System (ADS)

    Cǎsǎndruc, Albert; Bücker, Robert; Kassier, Günther; Miller, R. J. Dwayne

    2016-08-01

    We present the design of a back-illuminated photocathode for electron diffraction experiments based on an optical fiber, and experimental characterization of emitted electron bunches. Excitation light is guided through the fiber into the experimental vacuum chamber, eliminating typical alignment difficulties between the emitter metal and the optical trigger and position instabilities, as well as providing reliable control of the laser spot size and profile. The in-vacuum fiber end is polished and coated with a 30 nm gold (Au) layer on top of 3 nm of chromium (Cr), which emits electrons by means of single-photon photoemission when femtosecond pulses in the near ultraviolet (257 nm) are fed into the fiber on the air side. The emission area can be adjusted to any value between a few nanometers (using tapered fibers) and the size of a multi-mode fiber core (100 μm or larger). In this proof-of-principle experiment, two different types of fibers were tested, with emission spot diameters of 50 μm and 100 μm, respectively. The normalized thermal electron beam emittance (TE) was measured by means of the aperture scan technique, and a TE of 4.0 π nm was measured for the smaller spot diameter. Straightforward enhancements to the concept allowed to demonstrate operation in an electric field environment of up to 7 MV/m.

  9. Optical fiber-based CDMA networks

    NASA Astrophysics Data System (ADS)

    Gameiro, Atilio M. S.

    1996-01-01

    In this communication we consider the use of an optical fiber based fixed infrastructure for code division multiple access (CDMA) mobile networks. In such a scenario, the base stations are linked to the central station through optical fiber using subcarrier multiplexing (SCM) technology. One of the major problems associated with optical SCM is the nonlinearity of the laser diodes (LD). In this communication we model the LD as a memoryless nonlinearity and evaluate the effect of the nonlinearity on the SCM transmission CDMA signals. We find that the behavior departs significantly from what happens in FDMA and depends critically on the nonlinearity of the LD being a compressing or an expanding one. In the former case significant performance degradation may occur whereas for the latter the degradation is usually not dramatic.

  10. Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium.

    PubMed

    Akamatsu, Daisuke; Nakajima, Yoshiaki; Inaba, Hajime; Hosaka, Kazumoto; Yasuda, Masami; Onae, Atsushi; Hong, Feng-Lei

    2012-07-02

    A narrow linewidth diode laser system at 689 nm is realized by phase-locking an extended cavity diode laser to one tooth of a narrow linewidth optical frequency comb. The optical frequency comb is phase-locked to a narrow linewidth laser at 1064 nm, which is frequency stabilized to a high-finesse optical cavity. We demonstrate the magneto-optical trapping of Sr using an intercombination transition with the developed laser system.

  11. Hybrid bidirectional radio-over-fiber-based orthogonal frequency division multiple access-passive optical network supporting 60/120 GHz using offset quadrate phase shift keying

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Chen, Chen; Qiu, Kun

    2015-09-01

    A hybrid bidirectional orthogonal frequency division multiple access-passive optical network (OFDMA-PON) based on offset quadrate phase shift keying (OQPSK) to support 60- and 120-GHz radio-over-fiber system is proposed. The system can support wired/wireless applications and enable the dynamic bandwidth allocation according to a subscriber's application. It is successfully achieved by using the millimeter waves (MMWs) generation and the carrier-reuse technique. In the proposed scheme, the MMW bands used for downlink (DL) and uplink transmissions are generated at the optical line terminal by the dual-arm Mach-Zehnder modulators. Both 60- and 120-GHz MMWs are obtained for the transmission of the high bit-rate services in source-free optical network units (ONUs), only using a single 15-GHz sinusoidal wave source. The Rayleigh backscattering effect is considered in the proposed OQPSK-based OFDMA-PON. For DL transmission over a 30-km single-mode fiber, the power penalties are less than 0.8 and 1 dB for the OQPSK-OFDM wired data at 10 Gb/s and the OQPSK-OFDM wireless data at 5 Gb/s, respectively.

  12. Polarimetry noise in fiber-based optical coherence tomography instrumentation

    PubMed Central

    Zhang, Ellen Ziyi; Vakoc, Benjamin J.

    2011-01-01

    High noise levels in fiber-based polarization-sensitive optical coherence tomography (PS-OCT) have broadly limited its clinical utility. In this study we investigate contribution of polarization mode dispersion (PMD) to the polarimetry noise. We develop numerical models of the PS-OCT system including PMD and validate these models with empirical data. Using these models, we provide a framework for predicting noise levels, for processing signals to reduce noise, and for designing an optimized system. PMID:21935044

  13. A compact nonlinear fiber-based optical autocorrelation peak discriminator.

    PubMed

    Fok, M P; Deng, Y; Prucnal, P R

    2009-06-08

    We experimentally demonstrate a nonlinear fiber-based optical autocorrelation peak discriminator. The approach exploits four-wave mixing in a 37-cm highly-nonlinear bismuth-oxide fiber that provides a passive and compact means for rejecting cross-correlation peaks. The autocorrelation peak discriminator plays an important role in improving the detection of optical CDMA signals. Eye diagrams and bit-error rates are measured at different power ratios. Significant receiver sensitivity improvements are obtained and error-floors are removed. The experimental results show that the autocorrelation peak discriminator works well even when the amplitudes of individual cross-correlation peaks are higher than that of the autocorrelation peak.

  14. Generation of femtosecond optical vortex pulse in fiber based on an acoustically induced fiber grating.

    PubMed

    Zhang, Wending; Wei, Keyan; Mao, Dong; Wang, Heng; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2017-02-01

    We proposed a method for generation of a femtosecond optical vortex pulse in a two-mode fiber based on an acoustically induced fiber grating (AIFG) driven by a radio frequency source. Theoretical analysis and experimental results demonstrated that the left- and right-handed circular polarization fundamental modes of the femtosecond optical pulse could be converted to the linearly polarized ±1-order optical vortex modes through the AIFG with the mode conversion efficiency of ∼95%. The off-axial interference experiment and the polarization angle-dependent intensity examination were performed to verify the topological charge and the polarization state of the femtosecond optical vortex, respectively.

  15. Fiber-based devices for DWDM optical communication systems

    NASA Astrophysics Data System (ADS)

    Gu, Claire; Xu, Yuan; Liu, Yisi; Pan, Jing-Jong; Zhou, Fengqing; Dong, Liang; He, Henry

    2005-01-01

    Photonic devices with low insertion loss are important in dense wavelength division multiplexing (DWDM) systems. Currently most of these devices, such as variable optical attenuators (VOA), switches, filters, and dispersion compensators, etc., involve bulk (or micro-optic) components that require conversions between fibers and free-space optical elements leading to high insertion loss. Recently, we have proposed, analyzed, and demonstrated several fiber based devices for DWDM optical communication systems. Here we present an in-line fiber VOA, a 2x2 switchable wavelength add/drop filter, and high performance dispersion compensators. The VOA is built with a side-polished fiber covered with a liquid crystal overlay. By varying the orientation of the liquid crystal molecules using an applied electric field, the loss of the device can be controlled. The 2x2 wavelength switch is designed by recording electrically switchable holographic gratings in a layer of holographic polymer dispersed liquid crystal (H-PDLC) sandwiched between two side-polished fibers. The dispersion compensators are based on high precision fiber Bragg gratings (FBG). A unique method for writing FBGs with arbitrary phase and amplitude distributions is demonstrated. All of these devices are analyzed theoretically and demonstrated experimentally. Both theoretical and experimental results will be presented and discussed. These devices are suitable for DWDM optical information transmission and network management.

  16. Advances in Optical Fiber-Based Faraday Rotation Diagnostics

    SciTech Connect

    White, A D; McHale, G B; Goerz, D A

    2009-07-27

    In the past two years, we have used optical fiber-based Faraday Rotation Diagnostics (FRDs) to measure pulsed currents on several dozen capacitively driven and explosively driven pulsed power experiments. We have made simplifications to the necessary hardware for quadrature-encoded polarization analysis, including development of an all-fiber analysis scheme. We have developed a numerical model that is useful for predicting and quantifying deviations from the ideal diagnostic response. We have developed a method of analyzing quadrature-encoded FRD data that is simple to perform and offers numerous advantages over several existing methods. When comparison has been possible, we have seen good agreement with our FRDs and other current sensors.

  17. New fiber-based approaches for optical biopsy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Weber, Jessie R.; Rivière, Christophe; Proulx, Antoine; Gallant, Pascal; Mermut, Ozzy

    2017-02-01

    Optical biopsy of tissue using fiber optic probes has proven to be a powerful tool for non-invasive and minimally invasive diagnostics. However, there are still many challenges to improving diagnostic value and commercial translation of these techniques. Many fiber-based methods are limited by background noise, which impairs sensitivity and specificity. Aspects of quality control, such as adequacy of the target of interest sampled and validation of optical measurements with histopathology can be problematic. Complexity, cost, and disposability or sterilizability are roadblocks to widespread clinical use. Here, we present new approaches to using fibers for optical biopsy aimed at solving these problems. Specifically, the new concepts are designed with the goals of being simple and disposable, to improve control of light delivery and collection from the sample, and to inherently enable better quality control of the biopsy process. A concept-of-operation aimed at nearly zero impact to the work flow of the biopsy and standard pathology procedures will be outlined. Several concepts for fiber implementations will be presented. A trade-off analysis of the concepts used to select a first implementation for testing will be presented. Preliminary experimental validation in phantoms and tissue samples will be presented for the selected configuration.

  18. Optical fiber-based system for continuous measurement of in-bore projectile velocity

    NASA Astrophysics Data System (ADS)

    Wang, Guohua; Sun, Jinglin; Li, Qiang

    2014-08-01

    This paper reports the design of an optical fiber-based velocity measurement system and its application in measuring the in-bore projectile velocity. The measurement principle of the implemented system is based on Doppler effect and heterodyne detection technique. The analysis of the velocity measurement principle deduces the relationship between the projectile velocity and the instantaneous frequency (IF) of the optical fiber-based system output signal. To extract the IF of the fast-changing signal carrying the velocity information, an IF extraction algorithm based on the continuous wavelet transforms is detailed. Besides, the performance of the algorithm is analyzed by performing corresponding simulation. At last, an in-bore projectile velocity measurement experiment with a sniper rifle having a 720 m/s muzzle velocity is performed to verify the feasibility of the optical fiber-based velocity measurement system. Experiment results show that the measured muzzle velocity is 718.61 m/s, and the relative uncertainty of the measured muzzle velocity is approximately 0.021%.

  19. Optical fiber-based system for continuous measurement of in-bore projectile velocity.

    PubMed

    Wang, Guohua; Sun, Jinglin; Li, Qiang

    2014-08-01

    This paper reports the design of an optical fiber-based velocity measurement system and its application in measuring the in-bore projectile velocity. The measurement principle of the implemented system is based on Doppler effect and heterodyne detection technique. The analysis of the velocity measurement principle deduces the relationship between the projectile velocity and the instantaneous frequency (IF) of the optical fiber-based system output signal. To extract the IF of the fast-changing signal carrying the velocity information, an IF extraction algorithm based on the continuous wavelet transforms is detailed. Besides, the performance of the algorithm is analyzed by performing corresponding simulation. At last, an in-bore projectile velocity measurement experiment with a sniper rifle having a 720 m/s muzzle velocity is performed to verify the feasibility of the optical fiber-based velocity measurement system. Experiment results show that the measured muzzle velocity is 718.61 m/s, and the relative uncertainty of the measured muzzle velocity is approximately 0.021%.

  20. High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin.

    PubMed

    Saxer, C E; de Boer, J F; Park, B H; Zhao, Y; Chen, Z; Nelson, J S

    2000-09-15

    A high-speed single-mode fiber-based polarization-sensitive optical coherence tomography (PS OCT) system was developed. With a polarization modulator, Stokes parameters of reflected flight for four input polarization states are measured as a function of depth. A phase modulator in the reference arm of a Michelson interferometer permits independent control of the axial scan rate and carrier frequency. In vivo PS OCT images of human skin are presented, showing subsurface structures that are not discernible in conventional OCT images. A phase retardation image in tissue is calculated based on the reflected Stokes parameters of the four input polarization states.

  1. Improved optical axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Matcher, Stephen J.

    2013-03-01

    We report on a new calibration technique that permits the accurate extraction of sample Jones matrix and hence fast-axis orientation by using fiber-based polarization-sensitive optical coherence tomography (PS-OCT) that is completely based on non polarization maintaining fiber such as SMF-28. In this technique, two quarter waveplates are used to completely specify the parameters of the system fibers in the sample arm so that the Jones matrix of the sample can be determined directly. The device was validated on measurements of a quarter waveplate and an equine tendon sample by a single-mode fiber-based swept-source PS-OCT system.

  2. High performance fiber-based optical coherent detection

    NASA Astrophysics Data System (ADS)

    Chen, Youming

    The sensitivity of signal detection is of major interest for optical high speed communication systems and LIght Detection And Ranging (lidar) systems. Sensitive receivers in fiber-optical networks can reduce transmitter power or amplifier amplification requirements and extend link spans. High receiver sensitivity allows links to be established over long distances in deep space satellite communication systems and large atmospheric attenuation to be overcome in terrestrial free space communications. For lidar systems, the sensitivity of signal detection determines how far and how accurately the lidar can detect the remote objects. Optical receivers employ either coherent or direct detection. In addition to amplitude, coherent detection extracts frequency and phase information from received signals, whereas direct detection extracts the received pulse amplitude only. In theory, coherent detection should yield the highest receiver sensitivity. Another possible technique to improve detection sensitivity is to employ a fiber preamplifier. This technique has been successfully demonstrated in direct detection systems but not in the coherent detection systems. Due to the existence of amplified spontaneous emission (ASE) inside the amplifier, the sensitivity of coherent detection varies with the data rate or pulse rate. For this reason, optically preamplified coherent detection is not used in applications as commonly as optically preamplified direct detection. We investigate the performance of coherent detection employing a fiber amplifier and time-domain-filter. The fiber amplifier is used as the optical preamplifier of the coherent detection system. To reduce the noise induced by the preamplifier to a maximum extent, we investigate the noise properties for both a single pass amplifier and a double pass amplifier. The relative intensity noise and linewidth broadening caused by ASE have been experimentally characterized. The results show that the double pass amplifier has

  3. Fiber-based modulated optical reflectance configuration allowing for offset pump and probe beams

    NASA Astrophysics Data System (ADS)

    Fleming, A.; Folsom, C.; Jensen, C.; Ban, H.

    2016-12-01

    A new fiber-based modulated optical reflectance configuration is developed in this work. The technique maintains the fiber-based heating laser (pump) and detection laser (probe) in close proximity at a fixed separation distance in a ceramic ferrule. The pump beam periodically heats the sample inducing thermal waves into the sample. The probe beam measures the temperature response at a known distance from the pump beam over a range of heating modulation frequencies. The thermal diffusivity of the sample may be calculated from the phase response between the input heat flux and the temperature response of a sample having a reflective surface. The unique measurement configuration is ideal for in situ measurements and has many advantages for laboratory-based systems. The design and development of the system are reported along with theoretical justification for the experimental design. The thermal diffusivities of Ge and SiC are measured and found to be within 10% of reported literature values. The diffusivity for SiO2 is measured with a relative difference of approximately 100% from the literature value when the ferrule is in contact with the sample. An additional measurement was made on the SiO2 sample with the ferrule not in contact resulting in a difference of less than 2% from the literature value. The difference in the SiO2 measurement when the ferrule is in contact with the sample is likely due to a parallel heat transfer path through the dual-fiber ferrule assembly.

  4. Customized analog circuit design for fiber-based optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Bonnema, Garret T.; Gossage, Kirk W.; Wade, Norman H.; Medford, June; Barton, Jennifer K.

    2006-01-01

    Optical coherence microscopy (OCM) is an interferometric method for acquiring high-resolution, depth-resolved, en face images. In this article we demonstrate a fiber-based OCM system with analog fringe generation and signal demodulation. A high power operational amplifier drives a mirrored piezoelectric stack mounted in the reference arm of the interferometer causing a displacement equal to 0.42 times the light source center wavelength. The drive signal is synchronized with the demodulation frequency of two analog lock-in amplifiers which extract the first and second harmonics of the interferometric component of the signal. Four outputs (X and Y components of first and second harmonics) are acquired with a data-acquisition board and combined to eliminate the slow phase drift in the interferometer. A sample image of carrot tap root is presented. High dynamic range images are obtained at acquisition speeds up to 40000pixels/s.

  5. Performance analysis of fiber-based free-space optical communications with coherent detection spatial diversity.

    PubMed

    Li, Kangning; Ma, Jing; Tan, Liying; Yu, Siyuan; Zhai, Chao

    2016-06-10

    The performances of fiber-based free-space optical (FSO) communications over gamma-gamma distributed turbulence are studied for multiple aperture receiver systems. The equal gain combining (EGC) technique is considered as a practical scheme to mitigate the atmospheric turbulence. Bit error rate (BER) performances for binary-phase-shift-keying-modulated coherent detection fiber-based free-space optical communications are derived and analyzed for EGC diversity receptions through an approximation method. To show the net diversity gain of a multiple aperture receiver system, BER performances of EGC are compared with a single monolithic aperture receiver system with the same total aperture area (same average total incident optical power on the aperture surface) for fiber-based free-space optical communications. The analytical results are verified by Monte Carlo simulations. System performances are also compared for EGC diversity coherent FSO communications with or without considering fiber-coupling efficiencies.

  6. Passive endoscopic polarization sensitive optical coherence tomography with completely fiber based optical components

    NASA Astrophysics Data System (ADS)

    Cahill, Lucas; Lee, Anthony M. D.; Pahlevaninezhad, Hamid; Ng, Samson; MacAulay, Calum E.; Poh, Catherine; Lane, Pierre

    2015-03-01

    Polarization Sensitive Optical Coherence Tomography (PSOCT) is a functional extension of Optical Coherence Tomography (OCT) that is sensitive to well-structured, birefringent tissue such as scars, smooth muscle and cartilage. In this work, we present a novel completely fiber based swept source PSOCT system using a fiber-optic rotary pullback catheter. This PSOCT implementation uses only passive optical components and requires no calibration while adding minimal additional cost to a standard structural OCT imaging system. Due to its complete fiber construction, the system can be made compact and robust, while the fiber-optic catheter allows access to most endoscopic imaging sites. The 1.5mm diameter endoscopic probe can capture 100 frames per second at pullback speeds up to 15 mm/s allowing rapid traversal of large imaging fields. We validate the PSOCT system with known birefringent tissues and demonstrate in vivo PSOCT imaging of human oral scar tissue.

  7. High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin

    SciTech Connect

    Saxer, Christopher E.; Boer, Johannes F. de; Park, B. Hyle; Zhao, Yonghua; Chen, Zhongping; Nelson, J. Stuart

    2000-09-15

    A high-speed single-mode fiber-based polarization-sensitive optical coherence tomography (PS OCT) system was developed. With a polarization modulator, Stokes parameters of reflected flight for four input polarization states are measured as a function of depth. A phase modulator in the reference arm of a Michelson interferometer permits independent control of the axial scan rate and carrier frequency. In vivo PS OCT images of human skin are presented, showing subsurface structures that are not discernible in conventional OCT images. A phase retardation image in tissue is calculated based on the reflected Stokes parameters of the four input polarization states. (c) 2000 Optical Society of America.

  8. Fiber-based multiple-access frequency synchronization via 1f-2f dissemination

    NASA Astrophysics Data System (ADS)

    Zhu, Xi; Wang, Bo; Gao, Chao; Wang, Li-Jun

    2016-09-01

    Considering the reference frequency dissemination requirements of the Square Kilometre Array telescope (SKA) project, on the basis of the 1f-2f precision frequency synchronization scheme, we propose and demonstrate a fiber-based multiple-access frequency synchronization scheme. The dissemination reference frequency can be recovered at arbitrary nodes along the entire fiber link. It can be applied to antennas close proximity to the SKA central station, and will lead to a better SKA frequency synchronization network. As a performance test, we recover the disseminated 100-MHz reference frequency at an arbitrary node chosen as being 5 km away from the transmitting site. Relative frequency stabilities of 2.0×10-14/s and 1.6×10-16/104s are obtained. We also experimentally verify the feasibility of a frequency dissemination link with three access points. Project supported by the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2013YQ09094303).

  9. Experimental demonstration of an all-optical fiber-based Fredkin gate.

    PubMed

    Kostinski, Natalie; Fok, Mable P; Prucnal, Paul R

    2009-09-15

    We propose and report on what we believe to be the first experimental demonstration of an all-optical fiber-based Fredkin gate for reversible digital logic. The simple 3-input/3-output fiber-based nonlinear optical loop mirror architecture requires only minor alignment for full operation. A short nonlinear element, heavily doped GeO(2) fiber (HDF), allows for a more compact design than typical nonlinear fiber gates. The HDF is ideal for studying reversibility, functioning as a noise-limited medium, as compared to the semiconductor optical amplifier, while allowing for cross-phase modulation, a nondissipative optical interaction. We suggest applications for secure communications, based on "cool" computing.

  10. Optical biopsy fiber-based fluorescence spectroscopy instrumentation

    NASA Astrophysics Data System (ADS)

    Katz, Alvin; Ganesan, Singaravelu; Yang, Yuanlong; Tang, Gui C.; Budansky, Yury; Celmer, Edward J.; Savage, Howard E.; Schantz, Stimson P.; Alfano, Robert R.

    1996-04-01

    Native fluorescence spectroscopy of biomolecules has emerged as a new modality to the medical community in characterizing the various physiological conditions of tissues. In the past several years, many groups have been working to introduce the spectroscopic methods to diagnose cancer. Researchers have successfully used native fluorescence to distinguish cancerous from normal tissue samples in rat and human tissue. We have developed three generations of instruments, called the CD-scan, CD-ratiometer and CD-map, to allow the medical community to use optics for diagnosing tissue. Using ultraviolet excitation and emission spectral measurements on both normal and cancerous tissue of the breast, gynecology, colon, and aerodigestive tract can be separated. For example, from emission intensities at 340 nm to 440 nm (300 nm excitation), a statistically consistent difference between malignant tissue and normal or benign tissue is observed. In order to utilize optical biopsy techniques in a clinical setting, the CD-scan instrument was developed, which allows for rapid and reliable in-vitro and in-vivo florescence measurements of the aerodigestive tract with high accuracy. The instrumentation employs high sensitivity detection techniques which allows for lamp excitation, small diameter optical fiber probes; the higher spatial resolution afforded by the small diameter probes can increase the ability to detect smaller tumors. The fiber optic probes allow for usage in the aerodigestive tract, cervix and colon. Needle based fiber probes have been developed for in-vivo detection of breast cancer.

  11. Protective antireflection coatings for optical IR fibers based on silver halogenides

    NASA Astrophysics Data System (ADS)

    Glebov, V. N.; Leonov, Pavel G.; Malyutin, A. M.; Yakunin, Vladimir P.

    2002-04-01

    The polycrystalline optical IR fibers based on silver halogenides AgCl-AgBr exhibiting low losses (0.5 dB/m and less) in the wavelength range from 4.0 to 16.0 micrometers are of interest in technical and medico-biological applications as fiber optic sensing devices and flexible systems for delivery of low-power CO2 and CO lasers radiation.

  12. Analysis of a plastic optical fiber-based displacement sensor.

    PubMed

    Jiménez, Felipe; Arrue, Jon; Aldabaldetreku, Gotzon; Durana, Gaizka; Zubia, Joseba; Ziemann, Olaf; Bunge, Christian-Alexander

    2007-09-01

    An easy-to-manufacture setup for a displacement sensor based on plastic optical fiber (POF) is analyzed, showing computational and experimental results. If the displacement is the consequence of force or pressure applied to the device, this can be used as a force or pressure transducer. Its principle of operation consists of bending a POF section around a flexible cylinder and measuring light attenuation when the whole set is subjected to side pressure. Attenuations are obtained computationally as a function of side deformation for different design parameters. Experimental results with an actually built prototype are also provided.

  13. Optical fiber based imaging of bioengineered tissue construct

    NASA Astrophysics Data System (ADS)

    Sapoznik, Etai; Niu, Guoguang; Lu, Peng; Zhou, Yu; Xu, Yong; Soker, Shay

    2016-04-01

    Imaging cells and tissues through opaque and turbid media is challenging and presents a major barrier for monitoring maturation and remodeling of bioengineered tissues. The fiber optics based imaging system described here offers a new approach for fluorescent cell imaging. A micro imaging channel is embedded in a Polycaprolactone (PCL) electrospun scaffold designed for cell seeding, which allows us to use an optical fiber to locally deliver excitation laser close to the fluorescent cells. The emission is detected by an Electron Multiplying Charge Coupled Device (EMCCD) detector and image reconstruction of multiple excitation points is achieved with a working distance of several centimeters. The objective of this study is to assess the effects of system parameters on image reconstruction outcomes. Initial studies using fluorescent beads indicated that scaffold thickness had a small effect on image quality, whereas scaffold composition (collagen content), fluorophore spectra, and the reconstruction window size had a large effect. The results also suggest that a far-red fluorescent emission is preferential when using collagenous scaffolds with a thickness of up to 500 μm. Using these optimized parameters, we were able to image fluorescently labeled cells on a scaffold with a resolution of 15-20 μm, and have also measured muscle progenitor cell differentiation and scaffold surface coverage with endothelial cells. In the future, this imaging platform can be applied to other bioengineered tissues for non-invasive monitoring both in vitro and in vivo.

  14. Optic axis determination by fiber-based polarization-sensitive swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2011-03-01

    We describe a fiber-based variable-incidence-angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3-D optical axis of birefringent biological tissues. Single-plane VIAPS- OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fiber on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fiber. A proposed algorithm based on the angle between Stokes vectors on the Poincaré sphere is confirmed to work for all settings of the sample arm fiber. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.

  15. Amylin Detection with a Miniature Optical-Fiber Based Sensor

    NASA Astrophysics Data System (ADS)

    Liu, Zhaowen; Ann, Matsko; Hughes, Adam; Reeves, Mark

    We present results of a biosensor based on shifts in the localized surface plasmon resonance of gold nanoparticles self-assembled on the end of an optical fiber. This system allows for detection of protein expression in low sensing volumes and for scanning in cell cultures and tissue samples. Positive and negative controls were done using biotin/avidin and the BSA/Anti-BSA system. These demonstrate that detection is specific and sensitive to nanomolar levels. Sensing of amylin, an important protein for pancreatic function, was performed with polyclonal and monoclonal antibodies. The measured data demonstrates the difference in sensitivity to the two types of antibodies, and titration experiments establish the sensitivity of the sensor. Further experiments demonstrate that the sensor can be regenerated and then reused.

  16. Fiber-based optical trapping for cell mechanics study and microrheology

    NASA Astrophysics Data System (ADS)

    Ti, Chaoyang; Thomas, Gawain M.; Yu, Xiaokong; Wen, Qi; Tao, Mingjiang; Liu, Yuxiang

    2016-09-01

    In this work, we developed fiber based optical trapping system and explored its applications in biology and physics. We aim to replace objective lenses with optical fibers, both for optical trapping and particle position detection. Compared with objective lens based counterparts, fiber based optical trapping systems are small, low-cost, integratable, independent of objective lenses, and can work in turbid mediums. These advantages make fiber optical trapping systems ideal for applications in tightly confined spaces as well as integration with various microscopy techniques. We demonstrate the applications of fiber optical trapping systems in both single-cell mechanics and microrheology study of asphalt binders. Fiber optical trapping system is being used to study mechanical properties of viscoelastic hydrogel, as an important extra cellular matrix (ECM) material that is used to understand the force propagation on cell membranes on 2D substrates or in 3D compartments. Moreover, the fiber optical trapping system has also been demonstrated to measure the cellular response to the external mechanical stimuli. Direct measurements of cellular traction forces in 3D compartments are underway. In addition, fiber optical trapping systems are used to measure the microscale viscoelastic properties of asphalt binders, in order to improve the fundamental understanding of the relationship between mechanical and chemical properties of asphalt binders. This fundamental understanding could help targeted asphalt recycling and pavement maintenance. Fiber optical trapping systems are versatile and highly potential tools that can find applications in various areas ranging from mechanobiology to complex fluids.

  17. Instrumentation of fiber-based functional optical coherence tomographic imaging system

    NASA Astrophysics Data System (ADS)

    Yu, Xiaofeng; Ding, Zhihua; Chen, Yuheng; Huang, Lina; Wu, Lan; Liu, Xu

    2005-01-01

    Optical coherence tomography (OCT) has been developed not only for morphological imaging, but also for functional imaging. By combining Doppler velocimetry with optical sectioning capability of OCT, we developed one branch of functional OCT (F-OCT) termed optical Doppler tomography (ODT). This newly developed fiber-based F-OCT system can provide structural image and Doppler image simultaneously, and is ready for extension to another branch of F-OCT termed as polarization-sensitive OCT (PS-OCT). Measurements of in vivo human skin and fresh milk flowing inside capillary tube are presented to demonstrate the capability of the developed system.

  18. Fiber-based frequency-degenerate polarization-entanglement photon pair sources for information encoding

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Zhang, Wei; Huang, Yidong

    2016-11-01

    We propose and experimentally demonstrate a generation scheme of telecom-band fiber-based frequency-degenerate polarization-entanglement photon pair source. Basing on the vector spontaneous four wave mixing process in a Sagnac fiber loop along the clockwise and counter-clockwise directions, two frequency-degenerate and polarization orthogonal biphoton states generate and then lead to the polarization entanglement states by the interference at the beamsplitter. The raw fringe visibilities of the two-photon interferences are 97% and 92%, respectively. Information can be encoded on the generated photon pairs using the polarization entangled Bell states. It is demonstrated by a simplified Bell state measurement with a fringe visibility of 83%.

  19. Microstructured Optical Fiber-based Biosensors: Reversible and Nanoliter-Scale Measurement of Zinc Ions.

    PubMed

    Heng, Sabrina; McDevitt, Christopher A; Kostecki, Roman; Morey, Jacqueline R; Eijkelkamp, Bart A; Ebendorff-Heidepriem, Heike; Monro, Tanya M; Abell, Andrew D

    2016-05-25

    Sensing platforms that allow rapid and efficient detection of metal ions would have applications in disease diagnosis and study, as well as environmental sensing. Here, we report the first microstructured optical fiber-based biosensor for the reversible and nanoliter-scale measurement of metal ions. Specifically, a photoswitchable spiropyran Zn(2+) sensor is incorporated within the microenvironment of a liposome attached to microstructured optical fibers (exposed-core and suspended-core microstructured optical fibers). Both fiber-based platforms retains high selectivity of ion binding associated with a small molecule sensor, while also allowing nanoliter volume sampling and on/off switching. We have demonstrated that multiple measurements can be made on a single sample without the need to change the sensor. The ability of the new sensing platform to sense Zn(2+) in pleural lavage and nasopharynx of mice was compared to that of established ion sensing methodologies such as inductively coupled plasma mass spectrometry (ICP-MS) and a commercially available fluorophore (Fluozin-3), where the optical-fiber-based sensor provides a significant advantage in that it allows the use of nanoliter (nL) sampling when compared to ICP-MS (mL) and FluoZin-3 (μL). This work paves the way to a generic approach for developing surface-based ion sensors using a range of sensor molecules, which can be attached to a surface without the need for its chemical modification and presents an opportunity for the development of new and highly specific ion sensors for real time sensing applications.

  20. Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification

    PubMed Central

    Hochreiner, Armin; Bauer-Marschallinger, Johannes; Burgholzer, Peter; Jakoby, Bernhard; Berer, Thomas

    2013-01-01

    In photoacoustic imaging the ultrasonic signals are usually detected by contacting transducers. For some applications contact with the tissue should be avoided. As alternatives to contacting transducers interferometric means can be used to acquire photoacoustic signals remotely. In this paper we report on non-contact three and two dimensional photoacoustic imaging using an optical fiber-based Mach-Zehnder interferometer. A detection beam is transmitted through an optical fiber network onto the surface of the specimen. Back reflected light is collected and coupled into the same optical fiber. To achieve a high signal/noise ratio the reflected light is amplified by means of optical amplification with an erbium doped fiber amplifier before demodulation. After data acquisition the initial pressure distribution is reconstructed by a Fourier domain reconstruction algorithm. We present remote photoacoustic imaging of a tissue mimicking phantom and on chicken skin. PMID:24298397

  1. Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification.

    PubMed

    Hochreiner, Armin; Bauer-Marschallinger, Johannes; Burgholzer, Peter; Jakoby, Bernhard; Berer, Thomas

    2013-01-01

    In photoacoustic imaging the ultrasonic signals are usually detected by contacting transducers. For some applications contact with the tissue should be avoided. As alternatives to contacting transducers interferometric means can be used to acquire photoacoustic signals remotely. In this paper we report on non-contact three and two dimensional photoacoustic imaging using an optical fiber-based Mach-Zehnder interferometer. A detection beam is transmitted through an optical fiber network onto the surface of the specimen. Back reflected light is collected and coupled into the same optical fiber. To achieve a high signal/noise ratio the reflected light is amplified by means of optical amplification with an erbium doped fiber amplifier before demodulation. After data acquisition the initial pressure distribution is reconstructed by a Fourier domain reconstruction algorithm. We present remote photoacoustic imaging of a tissue mimicking phantom and on chicken skin.

  2. High precision long-term stable fiber-based optical synchronization system

    NASA Astrophysics Data System (ADS)

    Li, Yurong; Wang, Xiaochao; Jiang, Youen; Qiao, Zhi; Li, Rao; Fan, Wei

    2016-10-01

    A fiber-based high precision long-term stable time synchronization system for multi-channel laser pulses is presented using fiber pulse stacker combined with high-speed optical-electrical conversion and electronics processing technology. This scheme is used to synchronize two individual lasers including a mode-lock laser and a time shaping pulse laser system. The relative timing jitter between two laser pulses achieved with this system is 970 fs (rms) in five minutes and 3.5 ps (rms) in five hours. The synchronization system is low cost and can work at over several tens of MHz repetition rate.

  3. Optical fiber-based laser remote sensor for airborne measurement of wind velocity and turbulence.

    PubMed

    Spuler, Scott M; Richter, Dirk; Spowart, Michael P; Rieken, Kathrin

    2011-02-20

    We discuss an optical fiber-based continuous-wave coherent laser system for measuring the wind speed in undisturbed air ahead of an aircraft. The operational principles of the instrument are described, and estimates of performance are presented. The instrument is demonstrated as a single line of sight, and data from the inaugural test flight of August 2010 is presented. The system was successfully operated under various atmospheric conditions, including cloud and clear air up to 12 km (40,300 ft).

  4. Fiber-based free-space optical coherent receiver with vibration compensation mechanism.

    PubMed

    Zhang, Ruochi; Wang, Jianmin; Zhao, Guang; Lv, Junyi

    2013-07-29

    We propose a novel fiber-based free-space optical (FSO) coherent receiver for inter-satellite communication. The receiver takes advantage of established fiber-optic components and utilizes the fine-pointing subsystem installed in FSO terminals to minimize the influence of satellite platform vibrations. The received beam is coupled to a single-mode fiber, and the coupling efficiency of the system is investigated both analytically and experimentally. A receiving sensitivity of -38 dBm is obtained at the forward error correction limit with a transmission rate of 22.4 Gbit/s. The proposed receiver is shown to be a promising component for inter-satellite optical communication.

  5. Micromachined array tip for multifocus fiber-based optical coherence tomography.

    PubMed

    Yang, Victor X D; Munce, Nigel; Pekar, Julius; Gordon, Maggie L; Lo, Stewart; Marcon, Norman E; Wilson, Brian C; Vitkin, I Alex

    2004-08-01

    High-resolution optical coherence tomography demands a large detector bandwidth and a high numerical aperture for real-time imaging, which is difficult to achieve over a large imaging depth. To resolve these conflicting requirements we propose a novel multifocus fiber-based optical coherence tomography system with a micromachined array tip. We demonstrate the fabrication of a prototype four-channel tip that maintains a 9-14-microm spot diameter with more than 500 microm of imaging depth. Images of a resolution target and a human tooth were obtained with this tip by use of a four-channel cascaded Michelson fiber-optic interferometer, scanned simultaneously at 8 kHz with geometric power distribution across the four channels.

  6. Development of an Optical Fiber-Based MR Compatible Gamma Camera for SPECT/MRI Systems

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Watabe, Tadashi; Kanai, Yasukazu; Watabe, Hiroshi; Hatazawa, Jun

    2015-02-01

    Optical fiber is a promising material for integrated positron emission tomography (PET) and magnetic resonance imaging (MRI) PET/MRI systems. Because its material is plastic, it has no interference between MRI. However, it is unclear whether this material can also be used for a single photon emission tomography (SPECT)/MRI system. For this purpose, we developed an optical fiber-based block detector for a SPECT/MRI system and tested its performance by combining 1.2 ×1.2 ×6 mm Y2SiO5 (YSO) pixels into a 15 ×15 block and was coupled it to an optical fiber image guide that used was 0.5-mm in diameter with 80-cm long double clad fibers. The image guide had 22 ×22 mm rectangular input and an equal size output. The input of the optical fiber-based image guide was bent at 90 degrees, and the output was optically coupled to a 1-in square high quantum efficiency position sensitive photomultiplier tube (HQE-PSPMT). The parallel hole, 7-mm-thick collimator made of tungsten plastic was mounted on a YSO block. The diameter of the collimator holes was 0.8 mm which was positioned one-to-one coupled to the YSO pixels. We evaluated the intrinsic and system performances. We resolved most of the YSO pixels in a two-dimensional histogram for Co-57 gamma photons (122-keV) with an average peak-to-value ratio of 1.5. The energy resolution was 38% full-width at half-maximum (FWHM). The system resolution was 1.7-mm FWHM, 1.5 mm from the collimator surface, and the sensitivity was 0.06%. Images of a Co-57 point source could be successfully obtained inside 0.3 T MRI without serious interference. We conclude that the developed optical fiber-based YSO block detector is promising for SPECT/MRI systems.

  7. Fiber-based optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering (CARS) microscopy.

    PubMed

    Gottschall, Thomas; Meyer, Tobias; Baumgartl, Martin; Dietzek, Benjamin; Popp, Jürgen; Limpert, Jens; Tünnermann, Andreas

    2014-09-08

    Imaging based on coherent anti-Stokes Raman scattering (CARS) relies on the interaction of high peak-power, synchronized picosecond pulses with narrow bandwidths and a well-defined frequency difference. Recently a new type of fiber-based CARS laser source based on four-wave-mixing (FWM) has been developed. In order to enhance its spectral resolution and efficiency, a FWM based fiber optical parametric oscillator (FOPO) is proposed in this work. The source delivers 180 mW with 5.6 kW peak power for the CARS pump and 130 mW with 2.9 kW peak power for the Stokes signal. CARS resonances around 2850 and 2930 cm(-1) can be resolved with a resolution of 1 cm(-1) enabling high-contrast, spectrally resolved CARS imaging of biological tissue.

  8. Portable, Fiber-Based, Diffuse Reflection Spectroscopy (DRS) Systems for Estimating Tissue Optical Properties

    PubMed Central

    Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E.; Ramanujam, Nimmi

    2010-01-01

    Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer. PMID:21499501

  9. Development of optical fiber-based respiration sensor for noninvasive respiratory monitoring

    NASA Astrophysics Data System (ADS)

    Yoo, Wook Jae; Jang, Kyoung Won; Seo, Jeong Ki; Heo, Ji Yeon; Moon, Jin Soo; Jun, Jae Hoon; Park, Jang-Yeon; Lee, Bongsoo

    2011-01-01

    In this study, two types of nasal-cavity-attached fiber-optic respiration sensors have been fabricated for noninvasive respiratory monitoring. One is a silver halide optical-fiber-based respiration sensor that can measure the variations of infrared radiation generated by the respiratory airflow from a nasal cavity. The other is a thermochromic-pigment-based fiber-optic respiration sensor that can measure the intensity of reflected light which changes owing to color variations of the temperature-sensing film according to the temperature difference between inspiratory and expiratory air. We have demonstrated the similarities of the respiratory signals using the fiber-optic respiration sensors and the temperature transducer of the BIOPAC® system. In addition, we verified that respiratory signals without the deterioration of the MR image can be obtained using the fiber-optic respiration sensors. It is anticipated that the proposed noninvasive fiberoptic respiration sensors will be highly effective for respiratory monitoring of a patient during MRI procedures.

  10. Development of a flexible optical fiber based high resolution integrated PET∕MRI system.

    PubMed

    Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Watabe, Tadashi; Aoki, Masaaki; Sugiyama, Eiji; Kato, Katsuhiko; Hatazawa, Jun

    2012-11-01

    The simultaneous measurement of PET and magnetic resonance imaging (MRI) is an emerging field for molecular imaging research. Although optical fiber based PET∕MRI systems have advantages on less interference between PET and MRI, there is a drawback in reducing the scintillation light due to the fiber. To reduce the problem, the authors newly developed flexible optical fiber bundle based block detectors and employed them for a high resolution integrated PET∕MRI system. The flexible optical fiber bundle used 0.5 mm diameter, 80 cm long double clad fibers which have dual 12 mm × 24 mm rectangular inputs and a single 24 mm × 24 mm rectangular output. In the input surface, LGSO scintillators of 0.025 mol.% (decay time: ∼31 ns: 0.9 mm × 1.3 mm × 5 mm) and 0.75 mol.% (decay time: ∼46 ns: 0.9 mm × 1.3 mm × 6 mm) were optically coupled in depth direction to form depth-of-interaction detector, arranged in 11 × 13 matrix and optically coupled to the fiber bundle. The two inputs of the bundle are bent for 90°, bound to one, and are optically coupled to a Hamamatsu 1-in. square position sensitive photomultiplier tube. Light loss due to the fiber bundle could be reduced and the performance of the block detectors was improved. Eight optical fiber based block detectors (16 LGSO blocks) were arranged in a 56 mm diameter ring to form a PET system. Spatial resolution and sensitivity were 1.2 mm full-width at half-maximum and 1.2% at the central field-of-view, respectively. Sensitivity change was less than 1% for 2 °C temperature changes. This PET system was integrated with a 0.3 T permanent magnet MRI system which has 17 cm diameter hole at the yoke area for insertion of the PET detector ring. There was no observable interference between PET and MRI. Simultaneous imaging of PET and MRI was successfully performed for small animal studies. The authors confirmed that the developed high resolution PET∕MRI system is promising for molecular

  11. Development of a flexible optical fiber based high resolution integrated PET/MRI system

    SciTech Connect

    Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Watabe, Tadashi; Aoki, Masaaki; Sugiyama, Eiji; Kato, Katsuhiko; Hatazawa, Jun

    2012-11-15

    Purpose: The simultaneous measurement of PET and magnetic resonance imaging (MRI) is an emerging field for molecular imaging research. Although optical fiber based PET/MRI systems have advantages on less interference between PET and MRI, there is a drawback in reducing the scintillation light due to the fiber. To reduce the problem, the authors newly developed flexible optical fiber bundle based block detectors and employed them for a high resolution integrated PET/MRI system. Methods: The flexible optical fiber bundle used 0.5 mm diameter, 80 cm long double clad fibers which have dual 12 mm Multiplication-Sign 24 mm rectangular inputs and a single 24 mm Multiplication-Sign 24 mm rectangular output. In the input surface, LGSO scintillators of 0.025 mol.% (decay time: {approx}31 ns: 0.9 mm Multiplication-Sign 1.3 mm Multiplication-Sign 5 mm) and 0.75 mol.% (decay time: {approx}46 ns: 0.9 mm Multiplication-Sign 1.3 mm Multiplication-Sign 6 mm) were optically coupled in depth direction to form depth-of-interaction detector, arranged in 11 Multiplication-Sign 13 matrix and optically coupled to the fiber bundle. The two inputs of the bundle are bent for 90 Degree-Sign , bound to one, and are optically coupled to a Hamamatsu 1-in. square position sensitive photomultiplier tube. Results: Light loss due to the fiber bundle could be reduced and the performance of the block detectors was improved. Eight optical fiber based block detectors (16 LGSO blocks) were arranged in a 56 mm diameter ring to form a PET system. Spatial resolution and sensitivity were 1.2 mm full-width at half-maximum and 1.2% at the central field-of-view, respectively. Sensitivity change was less than 1% for 2 Degree-Sign C temperature changes. This PET system was integrated with a 0.3 T permanent magnet MRI system which has 17 cm diameter hole at the yoke area for insertion of the PET detector ring. There was no observable interference between PET and MRI. Simultaneous imaging of PET and MRI was

  12. Characterization of the stress and refractive-index distributions in optical fibers and fiber-based devices

    NASA Astrophysics Data System (ADS)

    Hutsel, Michael R.

    2011-07-01

    Optical fiber technology continues to advance rapidly as a result of the increasing demands on communication systems and the expanding use of fiber-based sensing. New optical fiber types and fiber-based communications components are required to permit higher data rates, an increased number of channels, and more flexible installation requirements. Fiber-based sensors are continually being developed for a broad range of sensing applications, including environmental, medical, structural, industrial, and military. As optical fibers and fiber-based devices continue to advance, the need to understand their fundamental physical properties increases. The residual-stress distribution (RSD) and the refractive-index distribution (RID) play fundamental roles in the operation and performance of optical fibers. Custom RIDs are used to tailor the transmission properties of fibers used for long-distance transmission and to enable fiber-based devices such as long-period fiber gratings (LPFGs). The introduction and modification of RSDs enable specialty fibers, such as polarization-maintaining fiber, and contribute to the operation of fiber-based devices. Furthermore, the RSD and the RID are inherently linked through the photoelastic effect. Therefore, both the RSD and the RID need to be characterized because these fundamental properties are coupled and affect the fabrication, operation, and performance of fibers and fiber-based devices. To characterize effectively the physical properties of optical fibers, the RSD and the RID must be measured without perturbing or destroying the optical fiber. Furthermore, the techniques used must not be limited in detecting small variations and asymmetries in all directions through the fiber. Finally, the RSD and the RID must be characterized concurrently without moving the fiber to enable the analysis of the relationship between the RSD and the RID. Although many techniques exist for characterizing the residual stress and the refractive index in

  13. Nanosecond pulse shaping at 780 nm with fiber-based electro-optical modulators and a double-pass tapered amplifier

    DOE PAGES

    Rogers, III, C. E.; Gould, P. L.

    2016-02-01

    Here, we describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.

  14. Optical fibers based on compositions of polymers and liquid crystals for gas detection

    NASA Astrophysics Data System (ADS)

    Shibaev, Petr; Tantillo, Anthony

    Optical fibers based on compositions of methacrylic and vinyl polymers mixed with low molar mass liquid crystals were prepared and studied as promising gas sensors. A range of concentrations producing anisotropic fibers that are mostly sensitive to the vapors of organic solvents was determined. The fibers were prepared by stretching gel-like compositions of polymers and liquid crystals. Mechanical properties of the compositions leading to the most stable fibers were studied. It was found that under certain conditions the fibers develop multilayered structure with anisotropic (mostly liquid crystalline) core. These fibers are very sensitive to changing gaseous atmosphere and to the presence of organic solvent vapors. The sensitivity of different types of fibers to a variety of organic solvents vapors was determined. Some fibers were crosslinked by using hydrogen bonding molecules. The behavior of these optical fibers with respect to the influence of organic vapors with and without hydrogen donor/acceptor moieties was also analyzed. It was shown that hydrogen bonding increases the mechanical strength of the fibers but does not affect substantially their sensitivity to gases. Optical calculations and model discussion accompany the presentation of experimental data.

  15. Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift.

    PubMed

    Wu, Hao; Wang, Ruoxu; Liu, Deming; Fu, Songnian; Zhao, Can; Wei, Huifeng; Tong, Weijun; Shum, Perry Ping; Tang, Ming

    2016-04-01

    We proposed and demonstrated a few-mode fiber (FMF) based optical-fiber sensor for distributed curvature measurement through quasi-single-mode Brillouin frequency shift (BFS). By central-alignment splicing FMF and single-mode fiber (SMF) with a fusion taper, a SMF-components-compatible distributed curvature sensor based on FMF is realized using the conventional Brillouin optical time-domain analysis system. The distributed BFS change induced by bending in FMF has been theoretically and experimentally investigated. The precise BFS response to the curvature along the fiber link has been calibrated. A proof-of-concept experiment is implemented to validate its effectiveness in distributed curvature measurement.

  16. Dual frequency optical cavity

    DOEpatents

    George, E.V.; Schipper, J.F.

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a T configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  17. Dual frequency optical cavity

    DOEpatents

    George, E. Victor; Schipper, John F.

    1985-01-01

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a "T" configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  18. Dissemination stability and phase noise characteristics in a cascaded, fiber-based long-haul radio frequency dissemination network.

    PubMed

    Gao, C; Wang, B; Zhu, X; Yuan, Y B; Wang, L J

    2015-09-01

    To study the dissemination stability and phase noise characteristics of the cascaded fiber-based RF dissemination, we perform an experiment using three sets of RF modulated frequency dissemination systems. The experimental results show that the total transfer stability of the cascaded system can be given by σ(T)(2)=∑(i=1)(N)σ(i)(2) (σ(i) is the frequency dissemination stability of the ith segment and N is the quantity of segments). Furthermore, for each segment, the phase noise of recovered frequency signal is also measured. The results show that for an N-segment, cascaded dissemination system, its stability degrades only by a factor of N. This sub-linear relation makes the cascaded, RF-dissemination method a very attractive one for long-haul, time and frequency dissemination network.

  19. A high-efficiency fiber-based imaging system for co-registered autofluorescence and optical coherence tomography

    PubMed Central

    Pahlevaninezhad, Hamid; Lee, Anthony M. D.; Shaipanich, Tawimas; Raizada, Rashika; Cahill, Lucas; Hohert, Geoffrey; Yang, Victor X. D.; Lam, Stephen; MacAulay, Calum; Lane, Pierre

    2014-01-01

    We present a power-efficient fiber-based imaging system capable of co-registered autofluorescence imaging and optical coherence tomography (AF/OCT). The system employs a custom fiber optic rotary joint (FORJ) with an embedded dichroic mirror to efficiently combine the OCT and AF pathways. This three-port wavelength multiplexing FORJ setup has a throughput of more than 83% for collected AF emission, significantly more efficient compared to previously reported fiber-based methods. A custom 900 µm diameter catheter ‒ consisting of a rotating lens assembly, double-clad fiber (DCF), and torque cable in a stationary plastic tube ‒ was fabricated to allow AF/OCT imaging of small airways in vivo. We demonstrate the performance of this system ex vivo in resected porcine airway specimens and in vivo in human on fingers, in the oral cavity, and in peripheral airways. PMID:25401011

  20. A high-efficiency fiber-based imaging system for co-registered autofluorescence and optical coherence tomography.

    PubMed

    Pahlevaninezhad, Hamid; Lee, Anthony M D; Shaipanich, Tawimas; Raizada, Rashika; Cahill, Lucas; Hohert, Geoffrey; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre

    2014-09-01

    We present a power-efficient fiber-based imaging system capable of co-registered autofluorescence imaging and optical coherence tomography (AF/OCT). The system employs a custom fiber optic rotary joint (FORJ) with an embedded dichroic mirror to efficiently combine the OCT and AF pathways. This three-port wavelength multiplexing FORJ setup has a throughput of more than 83% for collected AF emission, significantly more efficient compared to previously reported fiber-based methods. A custom 900 µm diameter catheter ‒ consisting of a rotating lens assembly, double-clad fiber (DCF), and torque cable in a stationary plastic tube ‒ was fabricated to allow AF/OCT imaging of small airways in vivo. We demonstrate the performance of this system ex vivo in resected porcine airway specimens and in vivo in human on fingers, in the oral cavity, and in peripheral airways.

  1. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment.

    PubMed

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-07-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments.

  2. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment

    PubMed Central

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-01-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments. PMID:26203364

  3. Robust interferometric frequency lock between cw lasers and optical frequency combs.

    PubMed

    Benkler, Erik; Rohde, Felix; Telle, Harald R

    2013-02-15

    A transfer interferometer is presented which establishes a versatile and robust optical frequency locking link between a tunable single frequency laser and an optical frequency comb. It enables agile and continuous tuning of the frequency difference between both lasers while fluctuations and drift effects of the transfer interferometer itself are widely eliminated via common mode rejection. Experimental results will be presented for a tunable extended-cavity 1.5 μm laser diode locked to an Er-fiber based frequency comb.

  4. New optical frequency domain differential mode delay measurement method for a multimode optical fiber.

    PubMed

    Ahn, T; Moon, S; Youk, Y; Jung, Y; Oh, K; Kim, D

    2005-05-30

    A novel mode analysis method and differential mode delay (DMD) measurement technique for a multimode optical fiber based on optical frequency domain reflectometry has been proposed for the first time. We have used a conventional OFDR with a tunable external cavity laser and a Michelson interferometer. A few-mode optical multimode fiber was prepared to test our proposed measurement technique. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method.

  5. Precision optical reference frequencies

    NASA Astrophysics Data System (ADS)

    Riehle, Fritz; Schnatz, Harald; Zinner, G.; Trebst, Tilmann; Helmcke, Juergen

    1999-05-01

    Optical reference frequencies are provided by lasers of which the frequencies are stabilized to suitable absorption lines. Presently, twelve reference frequencies/wavelengths within the wavelengths range from 243 nm to 10.3 micrometers are recommended by the International Committee of Weights and Measures as references for the realization of the meter and scientific applications. As typical examples, we describe a diode-pumped, frequency doubled YAG-laser stabilized to an absorption line of molecular iodine and a Ca-stabilized laser. The latter one has been developed in two versions, a transportable system utilizing a small beam of thermal Ca atoms and a stationary standard based on laser cooled and trapped Ca atoms. The frequency of the Ca standard based on cold Ca atoms has been measured by a frequency chain allowing a phase-coherent comparison against the primary standard of time and frequency, the caesium clock. Its value is vCa equals 455 986 240 494.13 kHz with a relative standard uncertainty of 2.5 (DOT) 10-13.

  6. Optical fiber-based MR-compatible sensors for medical applications: an overview.

    PubMed

    Taffoni, Fabrizio; Formica, Domenico; Saccomandi, Paola; Di Pino, Giovanni; Schena, Emiliano

    2013-10-18

    During last decades, Magnetic Resonance (MR)--compatible sensors based on different techniques have been developed due to growing demand for application in medicine. There are several technological solutions to design MR-compatible sensors, among them, the one based on optical fibers presents several attractive features. The high elasticity and small size allow designing miniaturized fiber optic sensors (FOS) with metrological characteristics (e.g., accuracy, sensitivity, zero drift, and frequency response) adequate for most common medical applications; the immunity from electromagnetic interference and the absence of electrical connection to the patient make FOS suitable to be used in high electromagnetic field and intrinsically safer than conventional technologies. These two features further heightened the potential role of FOS in medicine making them especially attractive for application in MRI. This paper provides an overview of MR-compatible FOS, focusing on the sensors employed for measuring physical parameters in medicine (i.e., temperature, force, torque, strain, and position). The working principles of the most promising FOS are reviewed in terms of their relevant advantages and disadvantages, together with their applications in medicine.

  7. Optical Fiber-Based MR-Compatible Sensors for Medical Applications: An Overview

    PubMed Central

    Taffoni, Fabrizio; Formica, Domenico; Saccomandi, Paola; Di Pino, Giovanni; Schena, Emiliano

    2013-01-01

    During last decades, Magnetic Resonance (MR)—compatible sensors based on different techniques have been developed due to growing demand for application in medicine. There are several technological solutions to design MR-compatible sensors, among them, the one based on optical fibers presents several attractive features. The high elasticity and small size allow designing miniaturized fiber optic sensors (FOS) with metrological characteristics (e.g., accuracy, sensitivity, zero drift, and frequency response) adequate for most common medical applications; the immunity from electromagnetic interference and the absence of electrical connection to the patient make FOS suitable to be used in high electromagnetic field and intrinsically safer than conventional technologies. These two features further heightened the potential role of FOS in medicine making them especially attractive for application in MRI. This paper provides an overview of MR-compatible FOS, focusing on the sensors employed for measuring physical parameters in medicine (i.e., temperature, force, torque, strain, and position). The working principles of the most promising FOS are reviewed in terms of their relevant advantages and disadvantages, together with their applications in medicine. PMID:24145918

  8. Body-monitoring and health supervision by means of optical fiber-based sensing systems in medical textiles.

    PubMed

    Quandt, Brit M; Scherer, Lukas J; Boesel, Luciano F; Wolf, Martin; Bona, Gian-Luca; Rossi, René M

    2015-02-18

    Long-term monitoring with optical fibers has moved into the focus of attention due to the applicability for medical measurements. Within this Review, setups of flexible, unobtrusive body-monitoring systems based on optical fibers and the respective measured vital parameters are in focus. Optical principles are discussed as well as the interaction of light with tissue. Optical fiber-based sensors that are already used in first trials are primarily selected for the section on possible applications. These medical textiles include the supervision of respiration, cardiac output, blood pressure, blood flow and its saturation with hemoglobin as well as oxygen, pressure, shear stress, mobility, gait, temperature, and electrolyte balance. The implementation of these sensor concepts prompts the development of wearable smart textiles. Thus, current sensing techniques and possibilities within photonic textiles are reviewed leading to multiparameter designs. Evaluation of these designs should show the great potential of optical fibers for the introduction into textiles especially due to the benefit of immunity to electromagnetic radiation. Still, further improvement of the signal-to-noise ratio is often necessary to develop a commercial monitoring system.

  9. Fiber optic frequency transfer link

    NASA Technical Reports Server (NTRS)

    Primas, Lori E. (Inventor); Sydnor, Richard L. (Inventor); Lutes, George F. (Inventor)

    1991-01-01

    A reference frequency distribution system is disclosed for transmitting a reference frequency from a reference unit to a remote unit while keeping the reference frequency at the reference unit and the remote unit in phase. A fiber optic cable connects the reference unit to the remote unit. A frequency source at the reference unit produces a reference frequency having an adjustable phase. A fiber optic transmitter at the reference unit modulates a light beam with the reference frequency and transmits the light beam into the fiber optic cable. A 50/50 reflector at the remote unit reflects a first portion of the light beam from the reference unit back into the fiber optic cable to the reference unit. A first fiber optic receiver disposed at the remote unit receives a second portion of the light beam and demodulates the reference frequency to be used at the remote unit. A second fiber optic receiver disposed at the reference unit receives the first portion of the light beam and demodulates a reference frequency component. A phase conjugator is connected to the frequency source for comparing the phase of the reference frequency component to the phase of the reference frequency modulating the light beam being transmitted from the reference unit to maintain a conjugate (anti-symmetric) relationship between the reference frequency component and the reference frequency modulating the light beam where virtually no phase difference exists between the phase of the reference frequency component and the phase of the reference frequency modulating the light beam.

  10. Arbitrary optical frequency synthesis traced to an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Cai, Zihang; Zhang, Weipeng; Yang, Honglei; Li, Yan; Wei, Haoyun

    2016-11-01

    An arbitrary optical frequency synthesizer with a broad tuning range and high frequency accuracy is presented. The system includes an external cavity diode laser (ECDL) as the output laser, an Erbium-doped optical frequency comb being a frequency reference, and a control module. The optical frequency from the synthesizer can be continuously tuned by the large-scale trans-tooth switch and the fine intra-tooth adjustment. Robust feedback control by regulating the current and PZT voltage enables the ECDL to phase-lock to the Erbium-doped optical frequency comb, therefore to keep stable frequency output. In the meanwhile, the absolute frequency of the synthesizer is determined by the repetition rate, the offset frequency and the beat frequency. All the phase lock loops in the system are traced back to a Rubidium clock. A powerful and friendly software is developed to make the operation convenient by integrating the functions of frequency setting, tuning, tracing, locking and measuring into a LabVIEW interface. The output frequency tuning span and the uncertainty of the system are evaluated as >6 THz and <3 kHz, respectively. The arbitrary optical frequency synthesizer will be a versatile tool in diverse applications, such as synthetic wavelength based absolute distance measurement and frequency-stabilized Cavity Ring-Down Spectroscopy.

  11. Single all-fiber-based nanosecond-pulsed supercontinuum source for multispectral photoacoustic microscopy and optical coherence tomography.

    PubMed

    Shu, Xiao; Bondu, Magalie; Dong, Biqin; Podoleanu, Adrian; Leick, Lasse; Zhang, Hao F

    2016-06-15

    We report the usefulness of a single all-fiber-based supercontinuum (SC) source for combined photoacoustic microscopy (PAM) and optical coherence tomography (OCT). The SC light is generated by a tapered photonic crystal fiber pumped by a nanosecond pulsed master oscillator power amplifier at 1064 nm. The spectrum is split into a shorter wavelength band (500-800 nm) for single/multi-spectral PAM and a longer wavelength band (800-900 nm) band for OCT. In vivo mouse ear imaging was achieved with an integrated dual-modality system. We further demonstrated its potential for spectroscopic photoacoustic imaging by doing multispectral measurements on retinal pigment epithelium and blood samples with 15-nm linewidth.

  12. Miniature Fabry-Perot pressure sensor created by using UV-molding process with an optical fiber based mold.

    PubMed

    Bae, H; Yu, M

    2012-06-18

    We present a miniature Fabry-Perot pressure sensor fabricated at the tip of an optical fiber with a pre-written Bragg grating by using UV-molding polymer process. The mold is constructed by integrating an optical fiber of 80 μm diameter with a zirconia ferrule. The optical fiber based mold makes it possible to use optical aligning method to monitor the coupled intensity between the mold-side and replica-side fibers, rendering a maskless alignment process with a submicrometer accuracy. A polymer-metal composite thin diaphragm is employed as the pressure transducer. The overall sensor size is around 200 μm in diameter. Experimental study shows that the sensor exhibits a good linearity over a pressure range of 1.9-7.9 psi, with a sensitivity of 0.0106 μm/psi. The fiber Bragg grating is exploited for simultaneous temperature measurements or compensation for temperature effects in pressure readings. The sensor is expected to benefit many fronts that require miniature and inexpensive sensors for reliable pressure measurement, especially biomedical applications.

  13. Optical feedback-induced light modulation for fiber-based laser ablation.

    PubMed

    Kang, Hyun Wook

    2014-11-01

    Optical fibers have been used as a minimally invasive tool in various medical fields. However, due to excessive heat accumulation, the distal end of a fiber often suffers from severe melting or devitrification, leading to the eventual fiber failure during laser treatment. In order to minimize thermal damage at the fiber tip, an optical feedback sensor was developed and tested ex vivo. Porcine kidney tissue was used to evaluate the feasibility of optical feedback in terms of signal activation, ablation performance, and light transmission. Testing various signal thresholds demonstrated that 3 V was relatively appropriate to trigger the feedback sensor and to prevent the fiber deterioration during kidney tissue ablation. Based upon the development of temporal signal signatures, full contact mode rapidly activated the optical feedback sensor possibly due to heat accumulation. Modulated light delivery induced by optical feedback diminished ablation efficiency by 30% in comparison with no feedback case. However, long-term transmission results validated that laser ablation assisted with optical feedback was able to almost consistently sustain light delivery to the tissue as well as ablation efficiency. Therefore, an optical feedback sensor can be a feasible tool to protect optical fiber tips by minimizing debris contamination and delaying thermal damage process and to ensure more efficient and safer laser-induced tissue ablation.

  14. Optical fiber-based setup for in vivo measurement of the delayed fluorescence lifetime of oxygen sensors

    NASA Astrophysics Data System (ADS)

    Piffaretti, Filippo M.; Santhakumar, Kanappan; Forte, Eddy; van den Bergh, Hubert E.; Wagnières, Georges A.

    2011-03-01

    A new optical-fiber-based spectrofluorometer for in vivo or in vitro detection of delayed fluorescence is presented and characterized. This compact setup is designed so that it can be readily adapted for future clinical use. Optical excitation is done with a nitrogen laser-pumped, tunable dye laser, emitting in the UV-vis part of the spectrum. Excitation and luminescence signals are carried to and from the biological tissues under investigation, located out of the setup enclosure, by a single optical fiber. These measurements, as well as measurements performed without a fiber on in vitro samples in a thermostable quartz cell, in a controlled-atmosphere enclosure, are possible due to the efficient collection of the laser-induced luminescence light which is collected and focused on the detector with a high aperture parabolic mirror. The detection is based on a gated photomultiplier which allows for time-resolved measurements of the delayed fluorescence intensity. Thus, relevant luminescence lifetimes, typically in the sub-microsecond-to-millisecond range, can be measured with near total rejection of the sample's prompt fluorescence. The instrument spectral and temporal resolution, as well as its sensitivity, is characterized and measurement examples are presented. The primary application foreseen for this setup is the monitoring and adjustment of the light dose delivered during photodynamic therapy.

  15. Optical fiber-based setup for in vivo measurement of the delayed fluorescence lifetime of oxygen sensors.

    PubMed

    Piffaretti, Filippo; Piffaretti, Filippo M; Santhakumar, Kanappan; Forte, Eddy; van den Bergh, Hubert E; Wagnières, Georges A

    2011-03-01

    A new optical-fiber-based spectrofluorometer for in vivo or in vitro detection of delayed fluorescence is presented and characterized. This compact setup is designed so that it can be readily adapted for future clinical use. Optical excitation is done with a nitrogen laser-pumped, tunable dye laser, emitting in the UV-vis part of the spectrum. Excitation and luminescence signals are carried to and from the biological tissues under investigation, located out of the setup enclosure, by a single optical fiber. These measurements, as well as measurements performed without a fiber on in vitro samples in a thermostable quartz cell, in a controlled-atmosphere enclosure, are possible due to the efficient collection of the laser-induced luminescence light which is collected and focused on the detector with a high aperture parabolic mirror. The detection is based on a gated photomultiplier which allows for time-resolved measurements of the delayed fluorescence intensity. Thus, relevant luminescence lifetimes, typically in the sub-microsecond-to-millisecond range, can be measured with near total rejection of the sample's prompt fluorescence. The instrument spectral and temporal resolution, as well as its sensitivity, is characterized and measurement examples are presented. The primary application foreseen for this setup is the monitoring and adjustment of the light dose delivered during photodynamic therapy.

  16. Diamagnetic tellurite glass and fiber based magneto-optical current transducer.

    PubMed

    Chen, Qiuling; Ma, Qiuhua; Wang, Hui; Chen, Qiuping

    2015-10-10

    Diamagnetic TeO2-ZnO-Na2O glasses and fibers were fabricated and characterized for magneto-optical current-sensor applications. Two prototypes based on the obtained glass and fibers were constructed. An analysis of the distribution of the magnetic field flux inside the conductor was performed. Hardware and developed software were constructed for the acquisition of weak output signals induced by a low current. The good sensitivities of the fiber magneto-optical current transducer and the bulk magneto-optical current transducer are due to the high Verdet constant and homemade signal-acquisition hardware.

  17. Application of a high power Yb fiber-based laser compatible with commercial optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy.

    PubMed

    Hage, Charles-Henri; Boisset, Simon; Ibrahim, Ali; Morin, Franck; Hoenninger, Clemens; Grunske, Tobias; Souissi, Sami; Heliot, Laurent; Leray, Aymeric

    2014-06-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is a powerful tool for chemical analysis at a subcellular level, frequently used for imaging lipid dynamics in living cells. We report a high-power picosecond fiber-based laser and its application for optical parametric oscillator (OPO) pumping and CARS microscopy. This fiber-based laser has been carefully characterized. It produces 5 ps pulses with 0.8 nm spectral width at a 1,030 nm wavelength with more than 10 W of average power at 80 MHz repetition rate; these spectral and temporal properties can be slightly modified. We then study the influence of these modifications on the spectral and temporal properties of the OPO. We find that the OPO system generates a weakly spectrally chirped signal beam constituted of 3 ps pulses with 0.4 nm spectral width tunable from 790 to 930 nm optimal for CARS imaging. The frequency doubling unconverted part is composed of 7-8 ps pulses with 0.75 nm spectral width compatible with CARS imaging. We also study the influence of the fiber laser properties on the CARS signal generated by distilled water. In agreement with theory, we find that shorter temporal pulses allow higher peak powers and thus higher CARS signal, if the spectral widths are less than 10 cm(-1) . We demonstrate that this source is suitable for performing CARS imaging of living cells during several hours without photodamages. We finally demonstrate CARS imaging on more complex aquatic organisms called copepods (micro-crustaceans), on which we distinguish morphological details and lipid reserves.

  18. Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography

    PubMed Central

    2010-01-01

    We present a new ultra high resolution spectral domain polarization sensitive optical coherence tomography (PS-OCT) system based on polarization maintaining (PM) fibers. The method transfers the principles of our previous bulk optic PS-OCT systems to a fiberized setup. The phase shift between the orthogonal polarization states travelling in the two orthogonal modes of the PM fiber is compensated by software in post processing. Thereby, the main advantage of our bulk optics setups, i.e. the use of only a single input polarization state to simultaneously acquire reflectivity, retardation, optic axis orientation, and Stokes vector, is maintained. The use of a broadband light source of 110 nm bandwidth provides improved depth resolution and smaller speckle size. The latter is important for improved resolution of depolarization imaging. We demonstrate our instrument for high-resolution PS-OCT imaging of the healthy human retina. PMID:20052196

  19. Microstructured optical fiber-based micro-cavity sensor for chemical detection

    NASA Astrophysics Data System (ADS)

    Kim, Bongkyun; Ahn, Jin-Chul; Chung, Phil-Sang; Chung, Youngjoo

    2014-02-01

    The studies on microstructured optical fibers (MOF) have drawn considerable interest and played an important role in many applications. MOFs provide unique optical properties and controllable modal properties because of their flexibilities on manipulation of the transmission spectrum and the waveguide dispersion properties. MOFs are especially useful for optical sensing applications because the micro-structured air channels in MOF can host various types of analytes such as liquids, gases, and chemical molecules. Recently, many studies have focused on the development of MOF-based optical sensors for various gases and chemical molecules. We propose a compact, and highly sensitive optical micro-cavity chemical sensor using microstructured fiber. The sensor probe is composed of a hollow optical fiber and end cleaved microstructured fiber with a solid core. The interference spectrum resulting from the reflected light at the silica and air interfaces changes when the micro-cavity is infiltrated with external chemical molecules. This structure enables the direct detection of chemical molecules such as volatile organic compounds (VOCs) without the introduction of any permeable material.

  20. U-bent plastic optical fiber based plasmonic biosensor for nucleic acid detection

    NASA Astrophysics Data System (ADS)

    Gowri, A.; Sai, V. V. R.

    2017-05-01

    This study presents the development of low cost, rapid and highly sensitive plasmonic sandwich DNA biosensor using U-bent plastic optical fiber (POF) probes with high evanescent wave absorbance sensitivity and gold nanoparticles (AuNP) as labels. Plastic optical fiber (PMMA core and fluorinated polymer as cladding) offer ease in machinability and handling due to which optimum U-bent geometry (with fiber and bend diameter of 0.5 and 1.5 mm respectively) for high sensitivity could be achieved. A sensitive fiber optic DNA biosensor is realized by (i) modifying the PMMA surface using ethylenediamine (EDA) in order to maximize the immobilization of capture oligonucleotides (ONs) and (ii) conjugating probe ONs to AuNP labels of optimum size ( 35 nm) with high extinction coefficient and optimal ON surface density. The sandwich hybridization assay on U-bent POF probes results in increase in optical absorbance through the probe with increase in target ON concentration due to the presence of increased number of AuNPs. The absorbance of light passing through the U-bent probe due to the presence of AuNP labels on its surface as result of sandwich DNA hybridization is measured using a halogen lamp and a fiber optic spectrometer. A picomolar limit of detection of target ON (0.2 pM or 1 pg/ml or 5 attomol in 25 μL) is achieved with this biosensing scheme, indicating its potential for the development of a highly sensitive DNA biosensor.

  1. Evaluation of optical properties for real photonic crystal fiber based on total variation in wavelet domain

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Wang, Xin; Lou, Shuqin; Lian, Zhenggang; Zhao, Tongtong

    2016-09-01

    An evaluation method based on the total variation model (TV) in wavelet domain is proposed for modeling optical properties of real photonic crystal fibers (PCFs). The TV model in wavelet domain is set up to suppress the noise of the original image effectively and rebuild the cross section images of real PCFs with high accuracy. The optical properties of three PCFs are evaluated, including two kinds of PCFs that supplied from the Crystal Fiber A/S and a homemade side-leakage PCF, by using the combination of the proposed model and finite element method. Numerical results demonstrate that the proposed method can obtain high noise suppression ratio and effectively reduce the noise of cross section images of PCFs, which leads to an accurate evaluation of optical properties of real PCFs. To the best of our knowledge, it is the first time to denoise the cross section images of PCFs with the TV model in the wavelet domain.

  2. IR optical fiber-based noncontact pyrometer for drop tube instrumentation

    NASA Technical Reports Server (NTRS)

    May, R. G.; Moneyhun, S.; Saleh, W.; Sudeora, S.; Claus, R. O.; Buoncristiani, A. M.

    1989-01-01

    The design of a two color pyrometer with infrared optical fiber bundles for collection of the infrared radiation is described. The pyrometer design is engineered to facilitate its use for measurement of the temperature of small, falling samples in a microgravity materials processing experiment using a 100 meter long drop tube. Because the samples are small and move rapidly through the field of view of the pyrometer, the optical power budget of the detection system is severly limited. Strategies for overcoming this limitation are discussed.

  3. An optical fiber-based sensor array for the monitoring of zinc and copper ions in aqueous environments.

    PubMed

    Kopitzke, Steven; Geissinger, Peter

    2014-02-17

    Copper and zinc are elements commonly used in industrial applications as aqueous solutions. Before the solutions can be discharged into civil or native waterways, waste treatment processes must be undertaken to ensure compliance with government guidelines restricting the concentration of ions discharged in solution. While currently there are methods of analysis available to monitor these solutions, each method has disadvantages, be it high costs, inaccuracy, and/or being time-consuming. In this work, a new optical fiber-based platform capable of providing fast and accurate results when performing solution analysis for these metals is described. Fluorescent compounds that exhibit a high sensitivity and selectivity for either zinc or copper have been employed for fabricating the sensors. These sensors demonstrated sub-part-per-million detection limits, 30-second response times, and the ability to analyze samples with an average error of under 10%. The inclusion of a fluorescent compound as a reference material to compensate for fluctuations from pulsed excitation sources has further increased the reliability and accuracy of each sensor. Finally, after developing sensors capable of monitoring zinc and copper individually, these sensors are combined to form a single optical fiber sensor array capable of simultaneously monitoring concentration changes in zinc and copper in aqueous environments.

  4. An Optical Fiber-Based Sensor Array for the Monitoring of Zinc and Copper Ions in Aqueous Environments

    PubMed Central

    Kopitzke, Steven; Geissinger, Peter

    2014-01-01

    Copper and zinc are elements commonly used in industrial applications as aqueous solutions. Before the solutions can be discharged into civil or native waterways, waste treatment processes must be undertaken to ensure compliance with government guidelines restricting the concentration of ions discharged in solution. While currently there are methods of analysis available to monitor these solutions, each method has disadvantages, be it high costs, inaccuracy, and/or being time-consuming. In this work, a new optical fiber-based platform capable of providing fast and accurate results when performing solution analysis for these metals is described. Fluorescent compounds that exhibit a high sensitivity and selectivity for either zinc or copper have been employed for fabricating the sensors. These sensors demonstrated sub-part-per-million detection limits, 30-second response times, and the ability to analyze samples with an average error of under 10%. The inclusion of a fluorescent compound as a reference material to compensate for fluctuations from pulsed excitation sources has further increased the reliability and accuracy of each sensor. Finally, after developing sensors capable of monitoring zinc and copper individually, these sensors are combined to form a single optical fiber sensor array capable of simultaneously monitoring concentration changes in zinc and copper in aqueous environments. PMID:24549250

  5. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure

    NASA Astrophysics Data System (ADS)

    Wang, Huaping; Xiang, Ping

    2016-07-01

    Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.

  6. Light-directed functionalization methods for high-resolution optical fiber based biosensors

    NASA Astrophysics Data System (ADS)

    Kahyaoglu, Leyla Nesrin; Madangopal, Rajtarun; Stensberg, Matthew; Rickus, Jenna L.

    2005-05-01

    Recent advances in miniaturization and analyte-sensitive fluorescent indicators make optical fiber biosensors promising alternatives to microelectrodes. Optical sensing offers several advantages over electrochemical methods including increased stability and better spatial control to monitor physiological processes at cellular resolutions. The distal end of an optical fiber can be functionalized with different fluorophore/polymer combinations through mechanical, dip-coating or photopolymerization techniques. Unlike mechanical and dip-coating schemes, photopolymerization can spatially confine the sensing layer in the vicinity of light in a more reproducible and controllable manner. The objective of this study was to fabricate microscale fluorescence lifetime based optrodes using UV-induced photopolymerization. Six commercially available acrylate based monomers were investigated for stable entrapment of the oxygen sensitive porphyrin dye (PtTFPP) dye via photopolymerization at the end of optical fibers. Of these, the acrylate-functionalized alkoxysilane monomer, 3-methacryloxypropyl-trimethoxysilane (tradename Dynasylan MEMO) showed maximal response to changes in oxygen concentration. Dye-doped polymer microtips were grown at the ends 50 μm optical fibers and sensitivity and response time were optimized by varying both the concentration of doped dye and the excitation power used for polymerization. The resulting sensors showed linear response within the physiologically relevant range of oxygen concentrations and fast response times. While applied here to oxygen sensing, the photopolymer formulation and process parameters described are compatible with a wide range of available organic dyes and can be used to pattern arrays of spots, needles or more complex shapes at high spatial resolution.

  7. A fiber-based implantable multi-optrode array with contiguous optical and electrical sites

    NASA Astrophysics Data System (ADS)

    Chen, Sanyuan; Pei, Weihua; Gui, Qiang; Chen, Yuanfang; Zhao, Shanshan; Wang, Huan; Chen, Hongda

    2013-08-01

    Objective. Although various kinds of optrodes are designed to deliver light and sense electrophysiological responses, few have a tightly closed optical delivering site or electrical recording site. The large space between them often blurs the stimulation location and light intensity threshold. Approach. Based on an optical fiber, we develop an optrode structure which has a coniform tip where the light exit point and gold-based electrode site are located. The optrode is fabricated by integrating a metal membrane electrode on the outside of a tapered fiber. Half of the cone-shape tip is covered by a layer of gold membrane to form the electrode. A commercial fiber connector, mechanical transfer (MT) module, is chosen to assemble the multi-optrode array (MOA). The MT connector acts as both the holder of the optrode array and an aligning part to connect the MOA with the light source. Main results. We fabricated a pluggable MOA weighing only 0.2 g. The scanning electron microscope images showed a tight cover of the metal layer on the optrode tip with an exposure area of 1500 µm2. The electrochemical impedance of the optrode at 1 kHz was 100 kΩ on average and the light emission intensity reached 13 mW. The optical modulating and electrophysiological recording ability of the MOA was validated by monitoring the response of cells in a ChR2-expressing mouse's cerebral cortex. Neurons that maintained high cluster quality (signal-to-noise ratio = 5:1) and coherence in response to trains of 20 Hz stimulation were monitored. Significance. The optrode array reduces the distance between the optical stimulating sites and electrophysiological sites dramatically and can supply multiple channels to guide different lights simultaneously. This optrode with its novel structure may lead to a different kind of optical neural control prosthetic device, opening up a new option for neural modulation in the brain.

  8. Optical Fiber-Based In Situ Spectroscopy of Pigmented Single Colonies

    PubMed Central

    Wiggli, M.; Ghosh, R.; Bachofen, R.

    1996-01-01

    We have adapted a commercially available fiber-optic spectroradiometer with diode array detection to record reflection and absorption spectra from single, 1-mm-diameter bacterial colonies. A careful assessment of the performance of the spectroradiometer for this application is reported. In a model study employing colonies from various phototrophic bacteria, we show that the reflectance spectra are reliable within the range of 450 to 820 nm, whereas the transmission spectra yield accurate peak intensities and absorption maxima from 400 to 900 nm. For screening of populations of about 10(sup4) colonies, fiber-optic transmission spectroscopy provides an attractive and inexpensive alternative to present techniques based on charge-coupled device imaging technology. PMID:16535403

  9. Distributed optical fiber-based theoretical and empirical methods monitoring hydraulic engineering subjected to seepage velocity

    NASA Astrophysics Data System (ADS)

    Su, Huaizhi; Tian, Shiguang; Cui, Shusheng; Yang, Meng; Wen, Zhiping; Xie, Wei

    2016-09-01

    In order to systematically investigate the general principle and method of monitoring seepage velocity in the hydraulic engineering, the theoretical analysis and physical experiment were implemented based on distributed fiber-optic temperature sensing (DTS) technology. During the coupling influence analyses between seepage field and temperature field in the embankment dam or dike engineering, a simplified model was constructed to describe the coupling relationship of two fields. Different arrangement schemes of optical fiber and measuring approaches of temperature were applied on the model. The inversion analysis idea was further used. The theoretical method of monitoring seepage velocity in the hydraulic engineering was finally proposed. A new concept, namely the effective thermal conductivity, was proposed referring to the thermal conductivity coefficient in the transient hot-wire method. The influence of heat conduction and seepage could be well reflected by this new concept, which was proved to be a potential approach to develop an empirical method monitoring seepage velocity in the hydraulic engineering.

  10. Optical-fiber-based laser-induced breakdown spectroscopy for detection of early caries

    NASA Astrophysics Data System (ADS)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-06-01

    A laser-induced breakdown spectroscopy (LIBS) system targeting for the in vivo analysis of tooth enamel is described. The system is planned to enable real-time analysis of teeth during laser dental treatment by utilizing a hollow optical fiber that transmits both Q-switched Nd:YAG laser light for LIBS and infrared Er:YAG laser light for tooth ablation. The sensitivity of caries detection was substantially improved by expanding the spectral region under analysis to ultraviolet (UV) light and by focusing on emission peaks of Zn in the UV region. Subsequently, early caries were distinguished from healthy teeth with accuracy rates above 80% in vitro.

  11. Thermal characterization of submicron polyacrylonitrile fibers based on optical heating and electrical thermal sensing

    SciTech Connect

    Hou Jinbo; Wang Xinwei; Zhang Lijun

    2006-10-09

    In this work, the thermal diffusivity of single submicron ({approx}800 nm) polyacrylonitrile (PAN) fibers is characterized using the recently developed optical heating and electrical thermal sensing technique. In the experiment, a thin Au film (approximately in the nanometer range) is coated on the surface of nonconductive PAN fibers. A periodically modulated laser beam is used to irradiate suspended individual fibers to achieve noncontact periodical heating. The periodical temperature response of the sample is monitored by measuring the electrical resistance variation of the thin Au coating. The experimental results for three different synthesized PAN fibers with varying Au coating thickness are presented and discussed.

  12. Optical-fiber-based laser-induced breakdown spectroscopy for detection of early caries.

    PubMed

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-06-01

    A laser-induced breakdown spectroscopy (LIBS) system targeting for the in vivo analysis of tooth enamel is described. The system is planned to enable real-time analysis of teeth during laser dental treatment by utilizing a hollow optical fiber that transmits both Q-switched Nd:YAG laser light for LIBS and infrared Er:YAG laser light for tooth ablation. The sensitivity of caries detection was substantially improved by expanding the spectral region under analysis to ultraviolet (UV) light and by focusing on emission peaks of Zn in the UV region. Subsequently, early caries were distinguished from healthy teeth with accuracy rates above 80% in vitro.

  13. Active Faraday optical frequency standard.

    PubMed

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks.

  14. Principle of Quantum Key Distribution on an Optical Fiber Based on Time Shifts of TB Qubits

    NASA Astrophysics Data System (ADS)

    Zadorin, A. S.; Makhorin, D. A.

    2016-07-01

    The possibility of the physical realization of a quantum key distribution scheme in an optical-fiber communication channel based on time coding of two- and three-level single-photon quantum states is demonstrated. It is proposed to employ shifts of TB qubits (time-bin qubits) as protected code combinations, transmitted over a quantum channel, and for registering individual photons - the corresponding qutrits prepared in unbalanced Mach-Zehnder interferometers. The possibility of enhancing the level of protection of the code combinations as a result of taking into account information about qubit basis states and their statistics is indicated. A computer model of the time coding of TB qubits based on the BB84 protocol is developed, and results of calculations confirming the realizability of the indicated principle are presented.

  15. Easy to Use Plastic Optical Fiber-Based Biosensor for Detection of Butanal

    PubMed Central

    Varriale, Antonio; Staiano, Maria; Di Pietrantonio, Fabio; Notargiacomo, Andrea; Zeni, Luigi; D’Auria, Sabato

    2015-01-01

    The final goal of this work is to achieve a selective detection of butanal by the realization of a simple, small-size and low cost experimental approach. To this end, a porcine odorant-binding protein was used in connection with surface plasmon resonance transduction in a plastic optical fiber tool for the selective detection of butanal by a competitive assay. This allows to reduce the cost and the size of the sensing device and it offers the possibility to design a “Lab-on-a-chip” platform. The obtained results showed that this system approach is able to selectively detect the presence of butanal in the concentration range from 20 μM to 1000 μM. PMID:25789470

  16. System and method for optical fiber based image acquisition suitable for use in turbine engines

    DOEpatents

    Baleine, Erwan; A V, Varun; Zombo, Paul J.; Varghese, Zubin

    2017-05-16

    A system and a method for image acquisition suitable for use in a turbine engine are disclosed. Light received from a field of view in an object plane is projected onto an image plane through an optical modulation device and is transferred through an image conduit to a sensor array. The sensor array generates a set of sampled image signals in a sensing basis based on light received from the image conduit. Finally, the sampled image signals are transformed from the sensing basis to a representation basis and a set of estimated image signals are generated therefrom. The estimated image signals are used for reconstructing an image and/or a motion-video of a region of interest within a turbine engine.

  17. Colloidal Metamaterials at Optical Frequencies

    DTIC Science & Technology

    2014-07-18

    AFRL-OSR-VA-TR-2014-0184 Colloidal Metamaterials at Optical Frequencies Jennifer Dionne LELAND STANFORD JUNIOR UNIV CA Final Report 07/18/2014...Prescribed by ANSI Std. Z39.18 Colloidal Metamaterials at Optical Frequencies Annual Report, June 30, 2014 A. Investigators PI: Jennifer Dionne...team has combined theoretical and experimental methods to produce a colloidally -synthesized metamaterial fluid, or “metafluid,” exhibiting strong

  18. No-core fiber-based highly sensitive optical fiber pH sensor

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Vanita; Pathak, Akhilesh Kumar; Singh, Vinod Kumar

    2017-05-01

    The present work describes the fabrication and characterization of an optical fiber pH sensor using a sol-gel technique. The sensing head configuration is incorporated using a short section of no-core fiber, coated with tetraethyl orthosilicate and spliced at the end of a single mode fiber with a bulge. Different types of indicators (bromophenol blue, cresol red, and chlorophenol red) were used to achieve a wide pH range from 2 to 13. High sensitivities of the fabricated device were found to be 1.02 and -0.93 nm/pH for acidic and alkaline solutions, respectively. From the characterization results, it was noted that there is an impact of ionic strength and an effect of the temperature of liquid on the response characteristic, which is an advantage of the existing device over the other pH sensors. The fabricated sensor exhibited good reflection spectrum, indicating a blueshift in resonance wavelength for alkaline solutions and a redshift for acidic solutions.

  19. Blood pulse wave velocity and pressure sensing via fiber based and free space based optical sensors

    NASA Astrophysics Data System (ADS)

    Sirkis, Talia; Beiderman, Yevgeny; Agdarov, Sergey; Beiderman, Yafim; Zalevsky, Zeev

    2017-02-01

    Continuous noninvasive measurement of vital bio-signs, such as cardiopulmonary parameters, is an important tool in evaluation of the patient's physiological condition and health monitoring. On the demand of new enabling technologies, some works have been done in continuous monitoring of blood pressure and pulse wave velocity. In this paper, we introduce two techniques for non-contact sensing of vital bio signs. In the first approach the optical sensor is based on single mode in-fibers Mach-Zehnder interferometer (MZI) to detect heartbeat, respiration and pulse wave velocity (PWV). The introduced interferometer is based on a new implanted scheme. It replaces the conventional MZI realized by inserting of discontinuities in the fiber to break the total internal reflection and scatter/collect light. The proposed fiber sensor was successfully incorporated into shirt to produce smart clothing. The measurements obtained from the smart clothing could be obtained in comfortable manner and there is no need to have an initial calibration or a direct contact between the sensor and the skin of the tested individual. In the second concept we show a remote noncontact blood pulse wave velocity and pressure measurement based on tracking the temporal changes of reflected secondary speckle patterns produced in human skin when illuminated by a laser beams. In both concept experimental validation of the proposed schemes is shown and analyzed.

  20. Plastic optical fiber-based biosensor platform for rapid cell detection.

    PubMed

    Wandermur, Gisele; Rodrigues, Domingos; Allil, Regina; Queiroz, Vanessa; Peixoto, Raquel; Werneck, Marcelo; Miguel, Marco

    2014-04-15

    This work presents a novel, fast response time, plastic optic fiber (POF) biosensor to detect Escherichia coli. It discloses the technique for the development, calibration and measurement of this robust and simple-to-construct POF biosensor. The probes in U-shaped format were manufactured with a specially developed device. The calibration process led to the evaluation of the sensitivity, accuracy and repeatability by using solutions of sucrose for obtaining refractive indices (RI) in the range 1.33-1.39 IR equivalent of water and bacteria, respectively. The POF probes were functionalized with antibody anti-E. coli serotype O55 and tested firstly with saline and then with bacterial concentrations of 10(4), 10(6), and 10(8) colony forming units/ml (CFU/ml). The optoelectronic setup consists of an 880 nm LED connected to the U-shaped probe driven by a sine waveform generated by the Simulink (from Matlab(®)). On the other side of the probe a photodetector generates a photocurrent which is amplified by a transconductance amplifier. The output voltage signal is read by the analog-to-digital (A/D) input of the microcontroller. In all tested concentrations, the results presented a tendency of a decrease in the output signal with time, due to the attachment of the bacteria to the POF probe and consequent increase in the RI close to the sensitive area of the fiber surface. It has been shown that the system is capable of providing positive response to the bacterial concentration in less than 10 min, demonstrating good possibilities to be commercially developed as a portable field sensor. © 2013 Published by Elsevier B.V.

  1. Few-mode optical fiber based simultaneously distributed curvature and temperature sensing.

    PubMed

    Wu, Hao; Tang, Ming; Wang, Meng; Zhao, Can; Zhao, Zhiyong; Wang, Ruoxu; Liao, Ruolin; Fu, Songnian; Yang, Chen; Tong, Weijun; Shum, Perry Ping; Liu, Deming

    2017-05-29

    The few-mode fiber (FMF) based Brillouin sensing operated in quasi-single mode (QSM) has been reported to achieve the distributed curvature measurement by monitoring the bend-induced strain variation. However, its practicality is limited by the inherent temperature-strain cross-sensitivity of Brillouin sensors. Here we proposed and experimentally demonstrated an approach for simultaneously distributed curvature and temperature sensing, which exploits a hybrid QSM operated Raman-Brillouin system in FMFs. Thanks to the larger spot size of the fundamental mode in the FMF, the Brillouin frequency shift change of the FMF is used for curvature estimation while the temperature variation is alleviated through Raman signals with the enhanced signal-to-noise ratio (SNR). Within 2 minutes measuring time, a 1.5 m spatial resolution is achieved along a 2 km FMF. The worst resolution of the square of fiber curvature is 0.333 cm(-2) while the temperature resolution is 1.301 °C at the end of fiber.

  2. Direct measurement of instantaneous source speed for a HDR brachytherapy unit using an optical fiber based detector

    SciTech Connect

    Minamisawa, R. A.; Rubo, R. A.; Seraide, R. M.; Rocha, J. R. O.; Almeida, A.

    2010-10-15

    Purpose: Several attempts to determine the transit time of a high dose rate (HDR) brachytherapy unit have been reported in the literature with controversial results. The determination of the source speed is necessary to accurately calculate the transient dose in brachytherapy treatments. In these studies, only the average speed of the source was measured as a parameter for transit dose calculation, which does not account for the realistic movement of the source, and is therefore inaccurate for numerical simulations. The purpose of this work is to report the implementation and technical design of an optical fiber based detector to directly measure the instantaneous speed profile of a {sup 192}Ir source in a Nucletron HDR brachytherapy unit. Methods: To accomplish this task, we have developed a setup that uses the Cerenkov light induced in optical fibers as a detection signal for the radiation source moving inside the HDR catheter. As the {sup 192}Ir source travels between two optical fibers with known distance, the threshold of the induced signals are used to extract the transit time and thus the velocity. The high resolution of the detector enables the measurement of the transit time at short separation distance of the fibers, providing the instantaneous speed. Results: Accurate and high resolution speed profiles of the {sup 192}Ir radiation source traveling from the safe to the end of the catheter and between dwell positions are presented. The maximum and minimum velocities of the source were found to be 52.0{+-}1.0 and 17.3{+-}1.2 cm/s. The authors demonstrate that the radiation source follows a uniformly accelerated linear motion with acceleration of |a|=113 cm/s{sup 2}. In addition, the authors compare the average speed measured using the optical fiber detector to those obtained in the literature, showing deviation up to 265%. Conclusions: To the best of the authors' knowledge, the authors directly measured for the first time the instantaneous speed profile of

  3. Broadband ultrasonic sensor array via optical frequency domain reflectometry

    NASA Astrophysics Data System (ADS)

    Gabai, Haniel; Steinberg, Idan; Eyal, Avishay

    2015-03-01

    We introduce a new approach for multiplexing fiber-based ultrasound sensors using Optical Frequency Domain Reflectometry (OFDR). In the present demonstration of the method, each sensor was a short section of Polyimide-coated single-mode fiber. One end of the sensing fiber was pigtailed to a mirror and the other end was connected, via a fiber optic delay line, to a 1X4 fiber coupler. The multiplexing was enabled by using a different delay to each sensor. Ultrasonic excitation was performed by a 1MHz transducer which transmitted 4μs tone-bursts above the sensor array. The ultrasound waves generated optical phase variations in the fibers which were detected using the OFDR method. The ultrasound field at the sensors was successfully reconstructed without any noticeable cross-talk.

  4. Pulsed optically pumped frequency standard

    SciTech Connect

    Godone, Aldo; Micalizio, Salvatore; Levi, Filippo

    2004-08-01

    We reconsider the idea of a pulsed optically pumped frequency standard conceived in the early 1960s to eliminate the light-shift effect. The development of semiconductor lasers and of pulsed electronic techniques for atomic fountains and new theoretical findings allow an implementation of this idea which may lead to a frequency standard whose frequency stability is limited only by the thermal noise in the short term and by the temperature drift in the long term. We shall also show both theoretically and experimentally the possibility of doubling the atomic quality factor with respect to the classical Ramsey technique approach.

  5. Frequency-modulated light scattering interferometry employed for optical properties and dynamics studies of turbid media

    PubMed Central

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2014-01-01

    In the present work, fiber-based frequency-modulated light scattering interferometry (FMLSI) is developed and employed for studies of optical properties and dynamics in liquid phantoms made from Intralipid®. The fiber-based FMLSI system retrieves the optical properties by examining the intensity fluctuations through the turbid medium in a heterodyne detection scheme using a continuous-wave frequency-modulated coherent light source. A time resolution of 21 ps is obtained, and the experimental results for the diluted Intralipid phantoms show good agreement with the predicted results based on published data. The present system shows great potential for assessment of optical properties as well as dynamic studies in liquid phantoms, dairy products, and human tissues. PMID:25136504

  6. Frequency-Domain Optical Mammogram

    DTIC Science & Technology

    2002-10-01

    have performed the proposed analysis of frequency-domain optical mammograms for a clinical population of about 150 patients. This analysis has led to...model the propagation of light in tissue14-20 have led to new approaches to optical mammography. As The authors are with the Department of Electrical...Modulation Methods, and Signal Detection /406 7.2.1 Lasers and arc lamps / 407’ 7.2.2 Pulsed sources / 407 7.2.3 Laser diodes and light-emitting diodes ( LEDs

  7. Dynamic optical frequency domain reflectometry.

    PubMed

    Arbel, Dror; Eyal, Avishay

    2014-04-21

    We describe a dynamic Optical Frequency Domain Reflectometry (OFDR) system which enables real time, long range, acoustic sensing at high sampling rate. The system is based on a fast scanning laser and coherent detection scheme. Distributed sensing is obtained by probing the Rayleigh backscattered light. The system was tested by interrogation of a 10 km communication type single mode fiber and successfully detected localized impulse and sinusoidal excitations.

  8. A FEMTOSECOND-LEVEL FIBER-OPTICS TIMING DISTRIBUTION SYSTEM USING FREQUENCY-OFFSET INTERFEROMETRY

    SciTech Connect

    Staples, J.W.; Byrd, J.; Doolittle, L.; Huang, G.; Wilcox, R.

    2009-10-17

    An optical fiber-based frequency and timing distribution system based on the principle of heterodyne interferometry has been in development at LBNL for several years. The fiber drift corrector has evolved from an RF-based to an optical-based system, from mechanical correctors (piezo and optical trombone) to fully electronic, and the electronics from analog to fully digital, all using inexpensive off-the-shelf commodity fiber components. Short-term optical phase jitter and long-term phase drift are both in the femtosecond range over distribution paths of 2 km or more.

  9. Different ways to active optical frequency standards

    NASA Astrophysics Data System (ADS)

    Pan, Duo; Xue, Xiaobo; Zhang, Xiaogang; Chen, Jingbiao

    2016-06-01

    Active optical frequency standard, or active optical clock, is a new concept of optical frequency standard, where a weak feedback with phase coherence information in optical bad-cavity limitation is formed, and the continuous self-sustained coherent stimulated emission between two atomic transition levels with population inversion is realized. Through ten years of both theoretical and experimental exploration, the narrow linewidth and suppression of cavity pulling effect of active optical frequency standard have been initially proved. In this paper, after a simple review, we will mainly present the most recent experimental progresses of active optical frequency standards in Peking University, including 4-level cesium active optical frequency standards and active Faraday optical frequency standards. The future development of active optical frequency standards is also discussed.

  10. Photonic-Chip Supercontinuum with Tailored Spectra for Counting Optical Frequencies

    NASA Astrophysics Data System (ADS)

    Carlson, David R.; Hickstein, Daniel D.; Lind, Alex; Olson, Judith B.; Fox, Richard W.; Brown, Roger C.; Ludlow, Andrew D.; Li, Qing; Westly, Daron; Leopardi, Holly; Fortier, Tara M.; Srinivasan, Kartik; Diddams, Scott A.; Papp, Scott B.

    2017-07-01

    We explore a photonic-integrated-circuit platform that implements optical-frequency measurements and timekeeping with a perspective towards next-generation portable and spaceborne frequency references and optical-clock networks. The stoichiometric-silicon-nitride waveguides we create provide an efficient and low-noise medium for nonlinear spectral broadening and supercontinuum generation with fiber-based optical-frequency combs. In particular, we demonstrate detailed control over supercontinuum emission to target specific atomic-transition wavelengths and perform an optical-clock comparison using on-chip supercontinuum sources. We report a clock-limited relative frequency instability of 3.8 ×10-15 at τ =2 s between a 1550-nm cavity-stabilized reference laser and NIST's calcium atomic-clock laser at 657 nm using a two-octave waveguide-supercontinuum frequency comb.

  11. Microresonator Frequency Comb Optical Clock

    DTIC Science & Technology

    2014-07-22

    with other high-performance and chip-scale atomic frequency references [ 20 ]. 2. EXPERIMENTAL METHODS Figure 1(a) shows a schematic of our microcomb...control, we broaden the initial 20 nm bandwidth an additional factor of 10 to 200 nm. The ∼2 ps duration optical waveform obtained directly from the micro...control of its spectrum. The central line of the microcomb is phase locked to the 1560 nm DFB laser, which is separate from the pump la- ser . [9,15

  12. Interaction of high-density and low-density lipoproteins to solid surfaces coated with cholesterol as determined by an optical fiber-based biosensor

    NASA Astrophysics Data System (ADS)

    Singh, Bal R.; Poirier, Michelle A.

    1993-05-01

    In recent years, the use of fiber optics has become an important tool in biomedicine and biotechnology. We are involved in developing and employing a new system which, through the use of fiber optics, may be capable of measuring the content of cholesterol and lipoproteins in blood samples in real time. In the optical fiber-based biosensor, a laser beam having a wavelength of 512 nm (green light) is launched into an optical fiber, which transmits the light to its distal end. An evanescent wave (travelling just outside the fiber core) is used to excite rhodamine-labelled HDL or LDL which become bound to the fiber or to fiber-bound molecules. The fluorescence (red light) is coupled back into the fiber and detected with a photodiode. Preliminary work has involved testing of high density lipoprotein (HDL) binding to a cholesterol-coated fiber and to a bare fiber and low density lipoprotein (LDL) binding to a cholesterol-coated fiber. A significant difference was observed in the binding rate of HDL (5 (mu) g/mL and lower) to a bare fiber as opposed to a cholesterol-coated fiber. The binding rate of HDL (5 (mu) g/mL) to a bare fiber was 7.5 (mu) V/sec and to a cholesterol-coated fiber was 3.5 (mu) V/sec. We have calculated the binding affinity of LDL to a cholesterol- coated fiber as 1.4 (mu) M-1. These preliminary results suggest that the optical fiber-based biosensor can provide a unique and promising approach to the analysis of lipoprotein interaction with solid surfaces and with cholesterol. More importantly, the results suggest that this technique may be used to assess the binding of blood proteins to artificial organs/tissues, and to measure the amount of cholesterol, HDL and LDL in less than a minute.

  13. BMFO-PVDF electrospun fiber based tunable metamaterial structures for electromagnetic interference shielding in microwave frequency region

    NASA Astrophysics Data System (ADS)

    Revathi, Venkatachalam; Dinesh Kumar, Sakthivel; Subramanian, Venkatachalam; Chellamuthu, Muthamizhchelvan

    2015-11-01

    Metamaterial structures are artificial structures that are useful in controlling the flow of electromagnetic radiation. In this paper, composite fibers of sub-micron thickness of barium substituted magnesium ferrite (Ba0.2Mg0.8Fe2O4) - polyvinylidene fluoride obtained by electrospinning is used as a substrate to design electromagnetic interference shielding structures. While electrospinning improves the ferroelectric properties of the polyvinylidene fluoride, the presence of barium magnesium ferrite modifies the magnetic property of the composite fiber. The dielectric and magnetic properties at microwave frequency measured using microwave cavity perturbation technique are used to design the reflection as well as absorption based tunable metamaterial structures for electromagnetic interference shielding in microwave frequency region. For one of the structures, the simulation indicates that single negative metamaterial structure becomes a double negative metamaterial under the external magnetic field.

  14. Optical Frequency Synthesizer based on an Octave Spanning Frequency Comb

    NASA Astrophysics Data System (ADS)

    Udem, Thomas

    2001-05-01

    We have shown that the modes of a femtosecond mode-locked laser are distributed uniformly in frequency space and can be used like a ruler to measure large optical frequency differences. To measure absolute optical frequencies we created a frequency comb that contained a full optical octave to measure the gap that is spanned by this octave. Unlike the complex harmonic frequency chains used in the past this new approach uses only one laser source and is nevertheless capable of measuring almost any optical frequency with the same set up. We applied the new technique to determine the absolute frequencies of the cesium D_1, of several components in Iodine around 563;THz, a sharp clock transition in a single trapped Indium ion and the hydrogen 1S-2S transition. We also tested its performance by comparing two similar set-ups.

  15. Frequency domain optical parametric amplification

    PubMed Central

    Schmidt, Bruno E.; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François

    2014-01-01

    Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength. PMID:24805968

  16. Design of a porous cored hexagonal photonic crystal fiber based optical sensor with high relative sensitivity for lower operating wavelength

    NASA Astrophysics Data System (ADS)

    Sen, Shuvo; Chowdhury, Sawrab; Ahmed, Kawsar; Asaduzzaman, Sayed

    2017-03-01

    In this article, highly sensitive and low confinement loss enriching micro structured photonic crystal fiber (PCF) has been suggested as an optical sensor. The proposed PCF is porous cored hexagonal (P-HPCF) where cladding contains five layers with circular air holes and core vicinity is formed by two layered elliptical air holes. Two fundamental propagation characteristics such as the relative sensitivity and confinement loss of the proposed P-HPCF have been numerically scrutinized by the full vectorial finite element method (FEM) simulation procedure. The optimized values are modified with different geometrical parameters like diameters of circular or elliptical air holes, pitches of the core, and cladding region over a spacious assortment of wavelength from 0.8 µm to 1.8 µm. All pretending results exhibit that the relative sensitivity is enlarged according to decrement of wavelength of the transmission band (O+E+S+C+L+U). In addition, all useable liquids reveal the maximum sensitivity of 57.00%, 57.18%, and 57.27% for n=1.33, 1.354, and 1.366 respectively by lower band. Moreover, effective area, nonlinear coefficient, frequency, propagation constant, total electric energy, total magnetic energy, and wave number in free space of the proposed P-HPCF have been reported recently.

  17. Optical Frequency Synthesizer for Precision Spectroscopy

    NASA Astrophysics Data System (ADS)

    Holzwarth, R.; Udem, Th.; Hänsch, T. W.; Knight, J. C.; Wadsworth, W. J.; Russell, P. St. J.

    2000-09-01

    We have used the frequency comb generated by a femtosecond mode-locked laser and broadened to more than an optical octave in a photonic crystal fiber to realize a frequency chain that links a 10 MHz radio frequency reference phase-coherently in one step to the optical region. By comparison with a similar frequency chain we set an upper limit for the uncertainty of this new approach to 5.1×10-16. This opens the door for measurement and synthesis of virtually any optical frequency and is ready to revolutionize frequency metrology.

  18. Simultaneous 1310/1550 dual-band swept laser source and fiber-based dual-band common-path swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Mao, Youxin; Chang, Shoude; Murdock, Erroll; Flueraru, Costel

    2011-08-01

    A simultaneous two wavelength band swept laser source and a fiber-based dual-band common-path swept source optical coherence tomography is reported. Simultaneous 1310/1550 dual-wavelength tuning is performed by using two fiber-ring cavities with corresponding optical semiconductor amplifier as their gain mediums and two narrowband optical filters with a single dual-window polygonal scanner. Measured average output powers of 60 mW and 27 mW have been achieved for 1310 and 1550 nm bands, respectively, while the two wavelengths were swept simultaneously from 1227 nm to 1387 nm for 1310 nm band and from 1519 nm to 1581 nm for 1550 nm band at an A-scan rate of 65 kHz. A broadband 1310/1550 wavelength-division multiplexing is used for coupling two wavelengths into a common-path single-mode GRIN-lensed fiber probe to form a dual-band common-path swept-source optical coherence tomography. Simultaneous OCT imaging at 1310 and 1550 nm is achieved by using a depth ratio correction method. This technique allows potentially for in vivo endoscopic high-speed functional OCT imaging with high quality spectroscopic contrast with low computational costs. On the other hand, the common path configuration is able to reject common mode noise and potentially implement high stability quantitative phase measurements.

  19. REVIEW: Optical frequency standards and femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Baklanov, E. V.; Pokasov, P. V.

    2003-05-01

    A review is presented of the state of the art in a new direction in quantum electronics based on the use of femtosecond lasers for precision frequency measurements and the development of optical frequency and time standards.

  20. Hollow-core photonic crystal fiber based multifunctional optical system for trapping, position sensing, and detection of fluorescent particles.

    PubMed

    Shinoj, V K; Murukeshan, V M

    2012-05-15

    We demonstrate a novel multifunctional optical system that is capable of trapping, imaging, position sensing, and fluorescence detection of micrometer-sized fluorescent test particles using hollow-core photonic crystal fiber (HC-PCF). This multifunctional optical system for trapping, position sensing, and fluorescent detection is designed such that a near-IR laser light is used to create an optical trap across a liquid-filled HC-PCF, and a 473 nm laser is employed as a source for fluorescence excitation. This proposed system and the obtained results are expected to significantly enable an efficient integrated trapping platform employing HC-PCF for diagnostic biomedical applications.

  1. Optical fiber-based sensor of harmful gas fabricated using the electronic self-assembly monolayer process

    NASA Astrophysics Data System (ADS)

    Arregui, Francisco J.; Matias, Ignacio R.; Claus, Richard O.; Cooper, Kristi L.

    2001-06-01

    A dichloromethane (DCM) gas optical fiber sensor has been fabricated building up a grating with poly(diallyldimethyl) ammonium chloride), poly(sodium-4-styrenesulfonate) and Poly S-119 using the Electrostatic Self-Assembly Monolayer Process. The mechanism of this sensor relies on the reflectance change of an optical grating deposited at the end of a standard communications multimode optical fiber. The total length of this grating is less than 1.5 micrometers and the structure is HLHLH, where H means material with higher refractive index and L means material with lower refractive index. Experiments with an Optical Spectrum Analyzer showed that with this technique it is also possible to choose the optical working wavelength and the reference wavelength of the sensor, in this case 1310 and 1645 nm respectively, around 1 dB of variation was observed at the working wavelength when the sensor was exposed to DCM gas. Neither hysteresis nor cross-sensitivity with temperature were detected. In addition, experimental results after 8 months from the fabrication of the sensors are also presented.

  2. Frequency-Domain Optical Mammography

    DTIC Science & Technology

    2001-10-01

    optical measurements on breast-like phantoms (Months 19-24) a. Prepare the breast-like phantoms (optical inhomogeneities + strongly scattering...reveals contralateral hemodynamic changes upon hemi- imaging of solid phantoms for optical mammography. Appl Opt field paradigm. Vision Res 41: 97...1064 nm for the Nd:YAG, 660-1180 nm (tunable) for the Ti:sapphire, and 625-780 nm (tunable) for dye lasers using DCM or oxanine 1 dyes. A unique

  3. Single mode optical fiber based devices and systems for mid-infrared light generation, communication and metrology

    NASA Astrophysics Data System (ADS)

    Kulkarni, Ojas P.

    Fiber-optic systems and devices for broadband mid-infrared light generation, communication and optical metrology are developed in this thesis. Using the nonlinear properties of low mid-infrared loss ZrF4-BaF 2-LaF3-AlF3-NaF (ZBLAN) fiber, a mid-infrared supercontinuum (SC) laser based on a thulium-doped fiber amplifier (TDFA) with spectrum extending from ˜1.9-4.5 microm is demonstrated. A higher efficiency, power-scalable, all-fiber integrated mid-infrared light source is realized capable of generating ˜0.7 W time-average power in wavelengths beyond 3.8 microm. The novelty of the laser lies in its two-step spectral shifting architecture. First, amplified laser diode pulses at 1.55 microm are used to generate a SC extending beyond 2 microm in standard SMF using modulation-instability initiated pulse break-up. A TDFA stage is then used to amplify the ˜2 microm components in the standard SMF continuum. By subsequently coupling the amplified ˜2 microm pulses in to a ZBLAN fiber, an SC with up to ˜2.6 W average power, and ˜9% optical conversion efficiency from the power-amp pump to mid-IR output is demonstrated. The two-step methodology leads to extension in the long wavelength edge of the SC from 4.2 microm to ˜4.5 microm, compared to previously demonstrated systems and ˜2.5 times higher optical efficiency in generating wavelengths beyond 3.8 microm. Numerical simulations are also presented based on solving the generalized non-linear Schrodinger equation to verify and extend experimental results. A broadband surface-normal optical modulator for communication applications with operation demonstrated over 1200--2400 nm is also presented. The modulator uses free-carrier effect in GaAs and mode selectivity of SMF to generate up to ˜43% modulation depth with a maximum operating speed of ˜270 MHz. The broad wavelength range of operation of the modulator can potentially enable higher throughput wavelength-division multiplexed optical network architectures based on

  4. Coherent Optical Frequency Synthesis and Distribution

    NASA Astrophysics Data System (ADS)

    Ye, Jun; Hall, John L.; Jost, John; Ma, Long-Sheng; Peng, Jin-Long

    2002-06-01

    We demonstrate a simple optical clock based on an optical transition of iodine molecules, providing a frequency stability superior to most rf sources. Combined with a femtosecond-laser-based optical comb to provide the phase coherent clock mechanism linking the optical and microwave spectra, we derive an rf clock signal of comparable stability over an extended period. In fact, the stability (5 × 10-14 at 1 s) of the cw laser locked on the iodine transition is transferred to every comb component throughout the optical octave bandwidth (from 532 nm to 1064 nm) with a precision of 3.5 × 10-15. Stability characterization of the optical clock is below 3 × 10-13 at 1 s (currently limited by the microwave sources). The long-term stability of this simple optical standard is demonstrated to be better than 4.6 × 10-13 over a year. To realize a genuine optical frequency synthesizer, another widely tunable single-frequency cw laser has been employed to randomly access the stabilized optical comb and lock to a desired comb component. The goal is to generate on demand a highly stable single-frequency optical signal in any part of the visible spectrum with a useful output power.

  5. Optical fiber-based full Mueller polarimeter for endoscopic imaging using a two-wavelength simultaneous measurement method.

    PubMed

    Vizet, Jérémy; Manhas, Sandeep; Tran, Jacqueline; Validire, Pierre; Benali, Abdelali; Garcia-Caurel, Enric; Pierangelo, Angelo; De Martino, Antonello; Pagnoux, Dominique

    2016-07-01

    This paper reports a technique based on spectrally differential measurement for determining the full Mueller matrix of a biological sample through an optical fiber. In this technique, two close wavelengths were used simultaneously, one for characterizing the fiber and the other for characterizing the assembly of fiber and sample. The characteristics of the fiber measured at one wavelength were used to decouple its contribution from the measurement on the assembly of fiber and sample and then to extract sample Mueller matrix at the second wavelength. The proof of concept was experimentally validated by measuring polarimetric parameters of various calibrated optical components through the optical fiber. Then, polarimetric images of histological cuts of human colon tissues were measured, and retardance, diattenuation, and orientation of the main axes of fibrillar regions were displayed. Finally, these images were successfully compared with images obtained by a free space Mueller microscope. As the reported method does not use any moving component, it offers attractive integration possibilities with an endoscopic probe.

  6. Optical fiber-based full Mueller polarimeter for endoscopic imaging using a two-wavelength simultaneous measurement method

    NASA Astrophysics Data System (ADS)

    Vizet, Jérémy; Manhas, Sandeep; Tran, Jacqueline; Validire, Pierre; Benali, Abdelali; Garcia-Caurel, Enric; Pierangelo, Angelo; Martino, Antonello De; Pagnoux, Dominique

    2016-07-01

    This paper reports a technique based on spectrally differential measurement for determining the full Mueller matrix of a biological sample through an optical fiber. In this technique, two close wavelengths were used simultaneously, one for characterizing the fiber and the other for characterizing the assembly of fiber and sample. The characteristics of the fiber measured at one wavelength were used to decouple its contribution from the measurement on the assembly of fiber and sample and then to extract sample Mueller matrix at the second wavelength. The proof of concept was experimentally validated by measuring polarimetric parameters of various calibrated optical components through the optical fiber. Then, polarimetric images of histological cuts of human colon tissues were measured, and retardance, diattenuation, and orientation of the main axes of fibrillar regions were displayed. Finally, these images were successfully compared with images obtained by a free space Mueller microscope. As the reported method does not use any moving component, it offers attractive integration possibilities with an endoscopic probe.

  7. Trapped-Ion Optical Frequency Standards

    NASA Astrophysics Data System (ADS)

    Schmidt, Piet O.; Leroux, Ian D.

    Optical frequency standards based on trapped atoms are the most accurate measurement devices we have available. They not only serve as superior time keepers but also lend themselves to a wide variety of applications ranging from tests of fundamental physics to the measurement of heights in relativistic geodesy. This chapter provides an introduction to the basics of optical frequency standards and clocks based on trapped ions and their applications.

  8. Time-frequency spectrograms of optical pulses

    SciTech Connect

    Beck, M.

    1995-11-01

    The authors present a discussion of several different types of joint time-frequency distributions of optical pulses. Particular attention is paid to the Wigner distribution W(t,{omega}), as it is the fundamental distribution from which all others can be derived. They elucidate the relationship between the Wigner distribution and other spectrograms of current-interest, such as that obtained from frequency-resolved optical gating (FROG).

  9. Digitally enhanced optical fiber frequency reference.

    PubMed

    McRae, Terry G; Ngo, Silvie; Shaddock, Daniel A; Hsu, Magnus T L; Gray, Malcolm B

    2014-04-01

    We use digitally enhanced heterodyne interferometry to measure the stability of optical fiber laser frequency references. Suppression of laser frequency noise by over four orders of magnitude is achieved using post processing time delay interferometry, allowing us to measure the mechanical stability for frequencies as low as 100 μHz. The performance of the digitally enhanced heterodyne interferometer platform used here is not practically limited by the dynamic range or bandwidth issues that can occur in feedback stabilization systems. This allows longer measurement times, better frequency discrimination, a reduction in spatially uncorrelated noise sources and an increase in interferometer sensitivity. An optical fiber frequency reference with the stability reported here, over a signal band of 20 mHz-1 Hz, has potential for use in demanding environments, such as space-based interferometry missions and optical flywheel applications.

  10. Reference frequency transmission over optical fiber

    NASA Technical Reports Server (NTRS)

    Lutes, G.; Kirk, A.

    1986-01-01

    A 100-MHz reference frequency from a hydrogen maser frequency standard has been transmitted via optical fiber over a 14-km distance with a measured stability of 1.5 X 10 to the-15 power for 1000 seconds averaging time. This capability was demonstrated in a frequency distribution experiment performed in April, 1986. The reference frequency was transmitted over a single-mode fiber-optic link from Deep Space Station (DSS) 13 to DSS 12 and back. The background leading up to the experiment and the significance of stable reference frequency distribution in the Deep Space Network (DSN) is discussed. Also described are the experiment, including the fiber-optic link, the measurement method and equipment, and finally the results of the experiment.

  11. General model of signal propagation in a Raman amplified single-mode fiber based coherent optical communication system

    NASA Astrophysics Data System (ADS)

    Cheng, Jingchi; Tang, Ming; Fu, Songnian; Shum, Perry Ping; Liu, Deming

    2016-12-01

    The distributed Raman amplifier (DRA) has been widely utilized in state-of-the-art coherent optical communication systems using multi-level modulation formatted signals in order to improve transmission performance. A general model based on Jones vector notation governing the signal propagation under Raman amplified link is proposed. Primary physics including both linear and nonlinear effects have been taken into account. The numerical approach for solving the equations is illustrated in detail. Using the model, system characterization and optimization can be easily performed. We also compare our model with the commonly used coarse-step method. It is found that the coarse-step method will exaggerate the cross-polarization modulation induced impairments by over 6 dB and will become unusable when the pump power is as high as several Watts. The proposed model provides a guideline for the simulation of Raman amplified coherent transmission systems.

  12. A new single-mode LMA optical fiber based on an anti-resonance in the cladding

    NASA Astrophysics Data System (ADS)

    Sharabi, Avidan; Sheintop, Uzziel; Goldin, Shlomo

    2016-03-01

    A novel single-mode large-mode-area (LMA) optical fiber is proposed. The primary part of the cladding is a thin layer with high refractive index. The layer possesses a periodic array of holes (or intrusions) which are either drawn in the propagation direction or drilled in the radial direction. When the holes (or intrusions) are drawn in the propagation direction, the periodicity of their array is in the azimuthal direction. The core may be hollow. The light confinement is achieved via a transmission anti-resonance. Namely, the array of holes allows coupling between an optical mode inside the primary cladding layer and the light both in the core and in the outer space. The light then sees two channels to penetrate the cladding: direct transmission and holes-assisted transmission. A distractive interference between these channels is achieved at an appropriate combination of fiber parameters. The fiber can be designed to hold nearly anyone of TE/TMnm modes. Computer simulations of the fiber were performed using COMSOL. The open boundary was simulated using a perfectly matched layer and the attenuation constants of different modes were determined via the imaginary parts of their propagation constants. As an example, a fiber holding a single TE01 mode inside a core of 100 μm diameter for the vacuum wavelength 1.55 μm was designed. The attenuation constant of the TE01 mode was found to be 5.8 ṡ 10-6 [dB/cm] while the other modes had attenuation of at least 4 orders of magnitude larger. Required fabrication tolerances were calculated and the fabrication of fibers of lengths 10 - 1000 m was found to be feasible. The bandwidth of the fiber was found to be in the range of 5 - 35 nm, depending on its length. Possible applications include high-power CW and pulsed lasers and amplifiers, sensors and others.

  13. High-resolution optical frequency dissemination on a telecommunications network with data traffic.

    PubMed

    Kéfélian, Fabien; Lopez, Olivier; Jiang, Haifeng; Chardonnet, Christian; Amy-Klein, Anne; Santarelli, Giorgio

    2009-05-15

    We transferred the frequency of an ultrastable laser over a 108-km-long urban fiber link comprising 22 km of an optical communications network fiber simultaneously carrying Internet data traffic. The metrological signal and the digital data signal were transferred over two different frequency channels in a dense wavelength-division multiplexing scheme. The metrological signal was inserted in and extracted from the communication network using bidirectional off-the-shelf optical add-drop multiplexers. The link-induced phase noise was measured and canceled with a round-trip technique using an all-fiber-based interferometer. The compensated link showed an Allan deviation of a few 10(-16) at 1 s and below 10(-19) at 10,000 s. This work paves the way to a wide dissemination of ultrastable optical clock signals between distant laboratories via the Internet.

  14. Real-time measurement of the vaginal pressure profile using an optical-fiber-based instrumented speculum

    NASA Astrophysics Data System (ADS)

    Parkinson, Luke A.; Gargett, Caroline E.; Young, Natharnia; Rosamilia, Anna; Vashi, Aditya V.; Werkmeister, Jerome A.; Papageorgiou, Anthony W.; Arkwright, John W.

    2016-12-01

    Pelvic organ prolapse (POP) occurs when changes to the pelvic organ support structures cause descent or herniation of the pelvic organs into the vagina. Clinical evaluation of POP is a series of manual measurements known as the pelvic organ prolapse quantification (POP-Q) score. However, it fails to identify the mechanism causing POP and relies on the skills of the practitioner. We report on a modified vaginal speculum incorporating a double-helix fiber-Bragg grating structure for distributed pressure measurements along the length of the vagina and include preliminary data in an ovine model of prolapse. Vaginal pressure profiles were recorded at 10 Hz as the speculum was dilated incrementally up to 20 mm. At 10-mm dilation, nulliparous sheep showed higher mean pressures (102±46 mmHg) than parous sheep (39±23 mmHg) (P=0.02), attributable largely to the proximal (cervical) end of the vagina. In addition to overall pressure variations, we observed a difference in the distribution of pressure that related to POP-Q measurements adapted for the ovine anatomy, showing increased tissue laxity in the upper anterior vagina for parous ewes. We demonstrate the utility of the fiber-optic instrumented speculum for rapid distributed measurement of vaginal support.

  15. Dual hollow core fiber-based Fabry-Perot interferometer for measuring the thermo-optic coefficients of liquids.

    PubMed

    Lee, Cheng-Ling; Ho, Hsuan-Yu; Gu, Jheng-Hong; Yeh, Tung-Yuan; Tseng, Chung-Hao

    2015-02-15

    A microcavity fiber Fabry-Perot interferometer (MFFPI) that is based on dual hollow core fibers (HCFs) is developed for measuring the thermo-optic coefficients (TOCs) of liquids. The proposed MFFPI was fabricated by fusion-splicing a tiny segment of the main-HCF with a diameter D of 30 μm and another section of feeding-HCF with a diameter of 5 μm. Then, the main-HCF was filled with liquid by capillary action through the feeding-HCF by immersing the MFFPI in the liquid. The TOCs of the Cargille liquid (n(D)=1.3), deionized (DI) water, and ethanol were accurately determined from the shift of the interference wavelength, which was due to the temperature variation. Our experimental results were also compared with other published studies to investigate the effectiveness of the proposed sensing scheme. The major advantage is that the miniature MFFPI can achieve the measurement of the TOCs of the liquids with picoliter volume, and the measured liquids also can be sealed off and stored inside the HCF to prevent contamination.

  16. Frequency Selective Volumes for Optical Spatial Filters

    SciTech Connect

    E Topsakal; JL Volakis

    2004-04-15

    A new model is proposed for modeling metallic losses at optical frequencies and is used in the analysis of Frequency Selective Surfaces (FSSs) and Volumes (FSVs). Conventional methods for simulating metallic losses are also outlined and a comparison with those models is given for a patch FSS. Measured data for a slot-ring FSS are also given for model validation.

  17. Semiconductor laser gyro with optical frequency dithering

    SciTech Connect

    Prokof'eva, L P; Sakharov, V K; Shcherbakov, V V

    2014-04-28

    The semiconductor laser gyro is described, in which the optical frequency dithering implemented by intracavity phase modulation suppresses the frequency lock-in and provides the interference of multimode radiation. The sensitivity of the device amounted to 10–20 deg h{sup -1}. (laser gyroscopes)

  18. Frequency agile optical parametric oscillator

    SciTech Connect

    Velsko, Stephan P.

    1998-01-01

    The frequency agile OPO device converts a fixed wavelength pump laser beam to arbitrary wavelengths within a specified range with pulse to pulse agility, at a rate limited only by the repetition rate of the pump laser. Uses of this invention include Laser radar, LIDAR, active remote sensing of effluents/pollutants, environmental monitoring, antisensor lasers, and spectroscopy.

  19. Frequency agile optical parametric oscillator

    DOEpatents

    Velsko, S.P.

    1998-11-24

    The frequency agile OPO device converts a fixed wavelength pump laser beam to arbitrary wavelengths within a specified range with pulse to pulse agility, at a rate limited only by the repetition rate of the pump laser. Uses of this invention include Laser radar, LIDAR, active remote sensing of effluents/pollutants, environmental monitoring, antisensor lasers, and spectroscopy. 14 figs.

  20. High-resolution differential mode delay measurement for a multimode optical fiber using a modified optical frequency domain reflectometer.

    PubMed

    Ahn, T-J; Kim, D

    2005-10-03

    A novel differential mode delay (DMD) measurement technique for a multimode optical fiber based on optical frequency domain reflectometry (OFDR) has been proposed. We have obtained a high-resolution DMD value of 0.054 ps/m for a commercial multimode optical fiber with length of 50 m by using a modified OFDR in a Mach-Zehnder interferometer structure with a tunable external cavity laser and a Mach-Zehnder interferometer instead of Michelson interferometer. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method. DMD resolution with our proposed OFDR technique is more than an order of magnitude better than a result obtainable with a conventional time-domain method.

  1. Tutorial on fiber-based sources for biophotonic applications

    NASA Astrophysics Data System (ADS)

    Taylor, James R.

    2016-06-01

    Fiber-based lasers and master oscillator power fiber amplifier configurations are described. These allow spectral versatility coupled with pulse width and pulse repetition rate selection in compact and efficient packages. This is enhanced through the use of nonlinear optical conversion in fibers and fiber-coupled nonlinear crystals, which can be integrated to provide all-fiber pump sources for diverse application. The advantages and disadvantages of sources based upon supercontinuum generation, stimulated Raman conversion, four-wave mixing, parametric generation and difference frequency generation, allowing spectral coverage from the UV to the mid-infrared, are considered.

  2. Optical frequency standards for time and length applications

    NASA Astrophysics Data System (ADS)

    Hong, Feng-Lei

    2017-01-01

    The last decade has witnessed tremendous progress in research on optical frequency metrology. Optical frequency standards using optical lattice and single-ion trap technologies have reached levels of stability and accuracy that surpass the performance of the best Cs fountain atomic clocks by orders of magnitude. Optical frequency standards are also used for various applications including length metrology. Optical frequency measurement and links using optical frequency combs and optical fibres play important roles in the development of optical frequency standards. This article introduces optical frequency standards recommended by the International Committee for Weights and Measures (CIPM) along with updates provided by recent research results. Frequency ratio measurements and remote frequency comparisons are addressed in relation to the work whose goal is to redefine the second. Optical frequency standard and optical frequency comb applications are also described.

  3. Nobel Lecture: Defining and measuring optical frequencies

    NASA Astrophysics Data System (ADS)

    Hall, John L.

    2006-10-01

    Four long-running currents in laser technology met and merged in 1999-2000. Two of these were the quest toward a stable repetitive sequence of ever-shorter optical pulses and, on the other hand, the quest for the most time-stable, unvarying optical frequency possible. The marriage of UltraFast and UltraStable lasers was brokered mainly by two international teams and became exciting when a special “designer” microstructure optical fiber was shown to be nonlinear enough to produce “white light” from the femtosecond laser pulses, such that the output spectrum embraced a full optical octave. Then, for the first time, one could realize an optical frequency interval equal to the comb’s lowest frequency, and count out this interval as a multiple of the repetition rate of the femtosecond pulse laser. This “gear-box” connection between the radio frequency standard and any/all optical frequency standards came just as Sensitivity-Enhancing ideas were maturing. The four-way Union empowered an explosion of accurate frequency measurement results in the standards field and prepares the way for refined tests of some of our cherished physical principles, such as the time-stability of some of the basic numbers in physics (e.g., the “fine-structure” constant, the speed of light, certain atomic mass ratios etc.), and the equivalence of time-keeping by clocks based on different physics. The stable laser technology also allows time-synchronization between two independent femtosecond lasers so exact they can be made to appear as if the source were a single laser. By improving pump/probe experiments, one important application will be in bond-specific spatial scanning of biological samples. This next decade in optical physics should be a blast.

  4. Stabilized fiber-optic frequency distribution system

    NASA Technical Reports Server (NTRS)

    Primas, L. E.; Lutes, G. F.; Sydnor, R. L.

    1989-01-01

    A technique for stabilizing reference frequencies transmitted over fiber-optic cable in a frequency distribution system is discussed. The distribution system utilizes fiber-optic cable as the transmission medium to distribute precise reference signals from a frequency standard to remote users. The stability goal of the distribution system is to transmit a 100-MHz signal over a 22-km fiber-optic cable and maintain a stability of 1 part in 10(17) for 1000-second averaging times. Active stabilization of the link is required to reduce phase variations produced by environmental effects, and is achieved by transmitting the reference signal from the frequency standard to the remote unit and then reflecting back to the reference unit over the same optical fiber. By comparing the phase of the transmitted and reflected signals at the reference unit, phase variations of the remote signal can be measured. An error voltage derived from the phase difference between the two signals is used to add correction phase.

  5. Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals.

    PubMed

    Ding, Zhenyang; Yao, X Steve; Liu, Tiegen; Du, Yang; Liu, Kun; Han, Qun; Meng, Zhuo; Chen, Hongxin

    2012-12-17

    We present a novel method to achieve a space-resolved long- range vibration detection system based on the correlation analysis of the optical frequency-domain reflectometry (OFDR) signals. By performing two separate measurements of the vibrated and non-vibrated states on a test fiber, the vibration frequency and position of a vibration event can be obtained by analyzing the cross-correlation between beat signals of the vibrated and non-vibrated states in a spatial domain, where the beat signals are generated from interferences between local Rayleigh backscattering signals of the test fiber and local light oscillator. Using the proposed technique, we constructed a standard single-mode fiber based vibration sensor that can have a dynamic range of 12 km and a measurable vibration frequency up to 2 kHz with a spatial resolution of 5 m. Moreover, preliminarily investigation results of two vibration events located at different positions along the test fiber are also reported.

  6. Nonlinear optical protection against frequency agile lasers

    SciTech Connect

    McDowell, V.P.

    1988-08-04

    An eye-protection or equipment-filter device for protection from laser energy is disclosed. The device may be in the form of a telescope, binoculars, goggles, constructed as part of equipment such as image intensifiers or range designators. Optical elements focus the waist of the beam within a nonlinear frequency-doubling crystal or nonlinear optical element or fiber. The nonlinear elements produce a harmonic outside the visible spectrum in the case of crystals, or absorb the laser energy in the case of nonlinear fibers. Embodiments include protectors for the human eye as well as filters for sensitive machinery such as TV cameras, FLIR systems or other imaging equipment.

  7. Optical frequency comb generation by pulsed pumping

    NASA Astrophysics Data System (ADS)

    Malinowski, Marcin; Rao, Ashutosh; Delfyett, Peter; Fathpour, Sasan

    2017-06-01

    A synchronously pumped Kerr cavity is proposed and studied for power-efficient frequency comb generation in optical microring resonators. The system is modeled using the Lugiato-Lefever equation. Analytical solutions are provided for an ideal case and extended by numerical methods to account for optical loss and higher orders of dispersion. It is shown that the average power requirement is reduced by the duty cycle of the pulse with respect to the conventional continuous-wave-pumped microrings, and it is significantly lower than the pulsed pumping of straight waveguides.

  8. Optical wire guided lumpectomy: frequency domain measurements

    NASA Astrophysics Data System (ADS)

    Dayton, A. L.; Keränen, V. T.; Prahl, S. A.

    2009-02-01

    In practice, complete removal of the tumor during a lumpectomy is difficult; the published rates of positive margins range from 10% to 50%. A spherical lumpectomy specimen with tumor directly in the middle may improve the success rate. A light source placed within the tumor may accomplish this goal by creating a sphere surrounding the tumor that can serve as a guide for resection. In an optical phantom and a prophylactic mastectomy specimen, sinusoidally modulated light within the medium was collected by optical fiber(s) at fixed distance(s) from the source and used to measure the optical properties. These optical properties were then used to calculate the distance the light had traveled through the medium. The fiber was coupled to an 830nm diode laser that was modulated at 100, 200 and 300 MHz. A handheld optical probe collected the modulated light and a network analyzer measured the phase lag. This data was used to calculate the distance the light traveled from the emitting fiber tip to the probe. The optical properties were μa = 0.004mm-1 and μ1s = 0.38mm-1 in the phantom. The optical properties for the tissue were μa = 0.005mm-1 and μ1s = 0.20mm-1. The prediction of distance from the source was within 4mm of the actual distance at 30mm in the phantom and within 3mm of the actual distance at 25mm in the tissue. The feasibility of a frequency domain system that makes measurements of local optical properties and then extrapolates those optical properties to make measurements of distance with a separate probe was demonstrated.

  9. Observation of fundamental thermal noise in optical fibers down to infrasonic frequencies

    NASA Astrophysics Data System (ADS)

    Dong, Jing; Huang, Junchao; Li, Tang; Liu, Liang

    2016-01-01

    The intrinsic thermal noise in optical fibers represents the ultimate limit for fiber-based systems. However, at infrasonic frequencies, the spectral behavior of the intrinsic thermal noise is still unclear. In this letter, we present measurements of the fundamental thermal noise in optical fibers that are obtained using a balanced fiber Michelson interferometer. When an ultra-stable laser is used as the laser source and other noise sources are carefully controlled, the 1/f spectral density of the thermal noise is observed down to infrasonic frequencies, and the measured magnitude is consistent with the results of theoretical predictions at frequencies over the range from 0.2 Hz to 20 kHz. Moreover, as observed experimentally, the level of the 1/f thermal noise can be reduced by changing the coatings of the optical fibers. This therefore indicates one possible way to reduce thermal noise in optical fibers at low Fourier frequencies. Finally, the inconsistency between the experimental data and the existing theory for thermomechanical noise is discussed.

  10. Multipulse interferometric frequency-resolved optical gating

    SciTech Connect

    Siders, C.W.; Siders, J.L.W.; Omenetto, F.G.; Taylor, A.J.

    1999-04-01

    The authors review multipulse interferometric frequency-resolved optical gating (MI-FROG) as a technique, uniquely suited for pump-probe coherent spectroscopy using amplified visible and near-infrared short-pulse systems and/or emissive targets, for time-resolving ultrafast phase shifts and intensity changes. Application of polarization-gate MI-FROG to the study of ultrafast ionization in gases is presented.

  11. Study on high coupling efficiency Er-doped fiber laser for femtosecond optical frequency comb

    NASA Astrophysics Data System (ADS)

    Pang, Lihui; Liu, Wenjun; Han, Hainian; Wei, Zhiyi

    2016-09-01

    The femtosecond laser is crucial to the operation of the femtosecond optical frequency comb. In this paper, a passively mode-locked erbium-doped fiber laser is presented with 91.4 fs pulse width and 100.8 MHz repetition rate, making use of the nonlinear polarized evolution effect. Using a 976 nm pump laser diode, the average output power is 16 mW from the coupler and 27 mW from the polarization beam splitter at the pump power of 700 mW. The proposed fiber laser can offer excellent temporal purity in generated pulses with high power, and provide a robust source for fiber-based frequency combs and supercontinuum generation well suited for industrial applications.

  12. Optical-frequency-comb based ultrasound sensor

    NASA Astrophysics Data System (ADS)

    Minamikawa, Takeo; Ogura, Takashi; Masuoka, Takashi; Hase, Eiji; Nakajima, Yoshiaki; Yamaoka, Yoshihisa; Minoshima, Kaoru; Yasui, Takeshi

    2017-03-01

    Photo-acoustic imaging is a promising modality for deep tissue imaging with high spatial resolution in the field of biology and medicine. High penetration depth and spatial resolution of the photo-acoustic imaging is achieved by means of the advantages of optical and ultrasound imaging, i.e. tightly focused beam confines ultrasound-generated region within micrometer scale and the ultrasound can propagate through tissues without significant energy loss. To enhance the detection sensitivity and penetration depth of the photo-acoustic imaging, highly sensitive ultrasound detector is greatly desired. In this study, we proposed a novel ultrasound detector employing optical frequency comb (OFC) cavity. Ultrasound generated by the excitation of tightly focused laser beam onto a sample was sensed with a part of an OFC cavity, being encoded into OFC. The spectrally encoded OFC was converted to radio-frequency by the frequency link nature of OFC. The ultrasound-encoded radio-frequency can therefore be directly measured with a high-speed photodetector. We constructed an OFC cavity for ultrasound sensing with a ring-cavity erbium-doped fiber laser. We provided a proof-of-principle demonstration of the detection of ultrasound that was generated by a transducer operating at 10 MHz. Our proposed approach will serve as a unique and powerful tool for detecting ultrasounds for photo-acoustic imaging in the future.

  13. Frequency stabilization for multilocation optical FDM networks

    NASA Astrophysics Data System (ADS)

    Jiang, Quan; Kavehrad, Mohsen

    1993-04-01

    In a multi-location optical FDM network, the frequency of each user's transmitter can be offset-locked, through a Fabry-Perot, to an absolute frequency standard which is distributed to the users. To lock the local Fabry-Perot to the frequency standard, the standard has to be frequency-dithered by a sinusoidal signal and the sinusoidal reference has to be transmitted to the user location since the lock-in amplifier in the stabilization system requires the reference for synchronous detection. We proposed two solutions to avoid transmitting the reference. One uses an extraction circuit to obtain the sinusoidal signal from the incoming signal. A nonlinear circuit following the photodiode produces a strong second-order harmonic of the sinusoidal signal and a phase-locked loop is locked to it. The sinusoidal reference is obtained by a divide- by-2 circuit. The phase ambiguity (0 degree(s) or 180 degree(s)) is resolved by using a selection- circuit and an initial scan. The other method uses a pseudo-random sequence instead of a sinusoidal signal to dither the frequency standard and a surface-acoustic-wave (SAW) matched-filter instead of a lock-in amplifier to obtain the frequency error. The matched-filter serves as a correlator and does not require the dither reference.

  14. Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line.

    PubMed

    Kéfélian, Fabien; Jiang, Haifeng; Lemonde, Pierre; Santarelli, Giorgio

    2009-04-01

    We report the frequency stabilization of an erbium-doped fiber distributed-feedback laser using an all-fiber-based Michelson interferometer of large arm imbalance. The interferometer uses a 1 km SMF-28 optical fiber spool and an acousto-optic modulator allowing heterodyne detection. The frequency-noise power spectral density is reduced by more than 40 dB for Fourier frequencies ranging from 1 Hz to 10 kHz, corresponding to a level well below 1 Hz2/Hz over the entire range; it reaches 10(-2) Hz2/Hz at 1 kHz. Between 40 Hz and 30 kHz, the frequency noise is shown to be comparable to the one obtained by Pound-Drever-Hall locking to a high-finesse Fabry-Perot cavity. Locking to a fiber delay line could consequently represent a reliable, simple, and compact alternative to cavity stabilization for short-term linewidth reduction.

  15. Generation of multiple optical frequencies referenced to a frequency comb for precision free-space frequency transfer

    NASA Astrophysics Data System (ADS)

    Chun, Byung Jae; Kang, Hyun Jay; Kim, Young-Jin; Kim, Seung-Woo

    2016-03-01

    Generating multiple optical frequencies referenced to the frequency standard is an important task in optical clock dissemination and optical communication. An apparatus for frequency-comb-referenced generation of multiple optical frequencies is demonstrated for high-precision free-space transfer of multiple optical frequencies. The relative linewidth and frequency instability at each channel corresponds to sub-1 Hz and 1.06×10-15 at 10 s averaging time, respectively. During the free-space transfer, the refractive index change of transmission media caused by atmospheric turbulences induces phase and frequency noise on optical frequencies. These phase and frequency noise causes induced linewidth broadening and frequency shift in optical frequencies which can disturb the accurate frequency transfer. The proposed feedback loop with acousto-optic modulator can monitor and compensate phase/frequency noise on optical frequencies. As a result, a frequency-comb-referenced single optical mode is compensated with a high signal to noise ratio (SNR) of 80 dB. By sharing the same optical paths, this feedback loop is confirmed to be successfully transferred to the neighboring wavelength channels (a 100 GHz spaced channel). This result confirms our proposed system can transfer optical frequencies to the remote site in free-space without performance degradation.

  16. Optical generation of radio-frequency power

    SciTech Connect

    Hietala, V.M.; Vawter, G.A.; Brennan, T.M.; Hammons, B.E.; Meyer, W.J.

    1994-11-01

    An optical technique for high-power radio-frequency (RF) signal generation is described. The technique uses a unique photodetector based on a traveling-wave design driven by an appropriately modulated light source. The traveling-wave photodetector (TWPD) exhibits simultaneously a theoretical quantum efficiency approaching 100 % and a very large electrical bandwidth. Additionally, it is capable of dissipating the high-power levels required for the RF generation technique. The modulated light source is formed by either the beating together of two lasers or by the direct modulation of a light source. A system example is given which predicts RF power levels of 100`s of mW`s at millimeter wave frequencies with a theoretical ``wall-plug`` efficiency approaching 34%.

  17. Demonstration of the frequency modulation of optical signals with a high frequency deviation parameter

    SciTech Connect

    Shamray, A V; Kozlov, A S; Il'ichev, I V; Petrov, M P

    2008-03-31

    A new type of an integrated optical modulator for the frequency coding of optical signals is developed and fabricated. The modulator operation is based on the original technology of the electric control of a Bragg grating. The frequency modulation of an optical signal with the frequency deviation of 25 GHz is demonstrated experimentally. The modular was used to transfer the ASCII code through an optical fibre. (optical communication)

  18. Fiber-based multiple-beam reflection interferometer for single-longitudinal-mode generation in fiber laser based on semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Terentyev, V. S.; Simonov, V. A.; Babin, S. A.

    2017-02-01

    A technique of single-longitudinal-mode selection in a fiber laser by means of a fiber multiple-beam reflection interferometer (FRI) has been experimentally demonstrated for the first time. The laser is based on a semiconductor optical amplifier placed in a linear fiber cavity formed by a fiber Bragg grating (FBG), and the FRI generates at 1529.24 nm with output power of 1 mW in single-frequency regime with a linewidth of about 217 kHz and polarization extinction ratio of  >30 dB. The FRI technique potentially enables fast tuning (within the FBG bandwidth of ~0.9 nm in our case) by varying the base length of the FRI that can be used in a number of practical applications.

  19. Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb.

    PubMed

    Inaba, Hajime; Hosaka, Kazumoto; Yasuda, Masami; Nakajima, Yoshiaki; Iwakuni, Kana; Akamatsu, Daisuke; Okubo, Sho; Kohno, Takuya; Onae, Atsushi; Hong, Feng-Lei

    2013-04-08

    We propose a novel, high-performance, and practical laser source system for optical clocks. The laser linewidth of a fiber-based frequency comb is reduced by phase locking a comb mode to an ultrastable master laser at 1064 nm with a broad servo bandwidth. A slave laser at 578 nm is successively phase locked to a comb mode at 578 nm with a broad servo bandwidth without any pre-stabilization. Laser frequency characteristics such as spectral linewidth and frequency stability are transferred to the 578-nm slave laser from the 1064-nm master laser. Using the slave laser, we have succeeded in observing the clock transition of (171)Yb atoms confined in an optical lattice with a 20-Hz spectral linewidth.

  20. Phase-coherent synthesis of optical frequencies and waveforms

    NASA Astrophysics Data System (ADS)

    Ye, J.; Cundiff, S. T.; Foreman, S.; Fortier, T. M.; Hall, J. L.; Holman, K. W.; Jones, D. J.; Jost, J. D.; Kapteyn, H. C.; v. Leeuwen, K. A. H.; Ma, L. S.; Murnane, M. M.; Peng, J. L.; Shelton, R. K.

    2002-06-01

    Precision phase control of an ultrawide-bandwidth optical-frequency comb has produced remarkable and unexpected progress in both areas of optical-frequency metrology and ultrafast optics. A frequency comb (with 100 MHz spacing) spanning an entire optical octave (>300 THz) has been produced, corresponding to millions of marks on a frequency "ruler" that are stable at the Hz level. The precision comb has been used to establish a simple optical clock based on an optical transition of iodine molecules, providing an rf clock signal with a frequency stability comparable to that of an optical standard, and which is superior to almost all conventional rf sources. To realize a high-power cw optical frequency synthesizer, a separate, widely tunable single-frequency cw laser has been employed to randomly access the stabilized optical comb and lock to any desired comb component. Carrier-envelope phase stabilization of few-cycle optical pulses has recently been realized. This advance in femtosecond technology is important for both extreme non-linear optics and optical-frequency metrology. With two independent femtosecond lasers, we have not only synchronized their relative pulse timing at the femtosecond level, but have also phase-locked their carrier frequencies, thus establishing phase coherence between the two lasers. By coherently stitching the optical bandwidth together, a "synthesized" pulse has been generated with its 2nd-order autocorrelation signal displaying a shorter width than those of the two "parent" lasers.

  1. Phase-coherent synthesis of optical frequencies and waveforms

    NASA Astrophysics Data System (ADS)

    Ye, J.; Cundiff, S. T.; Foreman, S.; Fortier, T. M.; Hall, J. L.; Holman, K. W.; Jones, D. J.; Jost, J. D.; Kapteyn, H. C.; v. Leeuwen, K. A. H.; Ma, L. S.; Murnane, M. M.; Peng, J. L.; Shelton, R. K.

    Precision phase control of an ultrawide-bandwidth optical-frequency comb has produced remarkable and unexpected progress in both areas of optical-frequency metrology and ultrafast optics. A frequency comb (with 100 MHz spacing) spanning an entire optical octave (>300 THz) has been produced, corresponding to millions of marks on a frequency ``ruler'' that are stable at the Hz level. The precision comb has been used to establish a simple optical clock based on an optical transition of iodine molecules, providing an rf clock signal with a frequency stability comparable to that of an optical standard, and which is superior to almost all conventional rf sources. To realize a high-power cw optical frequency synthesizer, a separate, widely tunable single-frequency cw laser has been employed to randomly access the stabilized optical comb and lock to any desired comb component. Carrier-envelope phase stabilization of few-cycle optical pulses has recently been realized. This advance in femtosecond technology is important for both extreme non-linear optics and optical-frequency metrology. With two independent femtosecond lasers, we have not only synchronized their relative pulse timing at the femtosecond level, but have also phase-locked their carrier frequencies, thus establishing phase coherence between the two lasers. By coherently stitching the optical bandwidth together, a ``synthesized'' pulse has been generated with its 2nd-order autocorrelation signal displaying a shorter width than those of the two ``parent'' lasers.

  2. The optical frequency comb fibre spectrometer

    NASA Astrophysics Data System (ADS)

    Coluccelli, Nicola; Cassinerio, Marco; Redding, Brandon; Cao, Hui; Laporta, Paolo; Galzerano, Gianluca

    2016-10-01

    Optical frequency comb sources provide thousands of precise and accurate optical lines in a single device enabling the broadband and high-speed detection required in many applications. A main challenge is to parallelize the detection over the widest possible band while bringing the resolution to the single comb-line level. Here we propose a solution based on the combination of a frequency comb source and a fibre spectrometer, exploiting all-fibre technology. Our system allows for simultaneous measurement of 500 isolated comb lines over a span of 0.12 THz in a single acquisition; arbitrarily larger span are demonstrated (3,500 comb lines over 0.85 THz) by doing sequential acquisitions. The potential for precision measurements is proved by spectroscopy of acetylene at 1.53 μm. Being based on all-fibre technology, our system is inherently low-cost, lightweight and may lead to the development of a new class of broadband high-resolution spectrometers.

  3. The optical frequency comb fibre spectrometer

    PubMed Central

    Coluccelli, Nicola; Cassinerio, Marco; Redding, Brandon; Cao, Hui; Laporta, Paolo; Galzerano, Gianluca

    2016-01-01

    Optical frequency comb sources provide thousands of precise and accurate optical lines in a single device enabling the broadband and high-speed detection required in many applications. A main challenge is to parallelize the detection over the widest possible band while bringing the resolution to the single comb-line level. Here we propose a solution based on the combination of a frequency comb source and a fibre spectrometer, exploiting all-fibre technology. Our system allows for simultaneous measurement of 500 isolated comb lines over a span of 0.12 THz in a single acquisition; arbitrarily larger span are demonstrated (3,500 comb lines over 0.85 THz) by doing sequential acquisitions. The potential for precision measurements is proved by spectroscopy of acetylene at 1.53 μm. Being based on all-fibre technology, our system is inherently low-cost, lightweight and may lead to the development of a new class of broadband high-resolution spectrometers. PMID:27694981

  4. The optical frequency comb fibre spectrometer.

    PubMed

    Coluccelli, Nicola; Cassinerio, Marco; Redding, Brandon; Cao, Hui; Laporta, Paolo; Galzerano, Gianluca

    2016-10-03

    Optical frequency comb sources provide thousands of precise and accurate optical lines in a single device enabling the broadband and high-speed detection required in many applications. A main challenge is to parallelize the detection over the widest possible band while bringing the resolution to the single comb-line level. Here we propose a solution based on the combination of a frequency comb source and a fibre spectrometer, exploiting all-fibre technology. Our system allows for simultaneous measurement of 500 isolated comb lines over a span of 0.12 THz in a single acquisition; arbitrarily larger span are demonstrated (3,500 comb lines over 0.85 THz) by doing sequential acquisitions. The potential for precision measurements is proved by spectroscopy of acetylene at 1.53 μm. Being based on all-fibre technology, our system is inherently low-cost, lightweight and may lead to the development of a new class of broadband high-resolution spectrometers.

  5. Frequency domain optical tomography in human tissue

    NASA Astrophysics Data System (ADS)

    Yao, Yuqi; Wang, Yao; Pei, Yaling; Zhu, Wenwu; Hu, Jenhun; Barbour, Randall L.

    1995-10-01

    In this paper, a reconstruction algorithm for frequency-domain optical tomography in human tissue is presented. A fast and efficient multigrid finite difference (MGFD) method is adopted as a forward solver to obtain the simulated detector responses and the required imaging operator. The solutions obtained form MGFD method for 3D problems with weakly discontinuous cocoefficients are compared with analyzed solutions to determine the accuracy of the numerical method. Simultaneous reconstruction of both absorption and scattering coefficients for tissue-like media is accomplished by solving a perturbation equation using the Born approximation. This solution is obtained by a conjugate gradient descent method with Tikhonov regularization. Two examples are given to show the quality of the reconstruction results. Both involve the examination of anatomically accurate optical models of tissue derived from segmented 3D magnetic resonance images to which have been assigned optical coefficients to the designated tissue types. One is a map of a female breast containing two small 'added pathologies', such as tumors. The other is a map of the brain containing a 'local bleeding' area, representing a hemorrhage. The reconstruction results show that the algorithm is computationally practical and can yield qualitatively correct geometry of the objects embedded in the simulated human tissue. Acceptable results are obtaiend even when 10% noise is present in the data.

  6. Time-domain optical reflectometry measurements using a frequency comb interferometer.

    PubMed

    Taurand, Geneviève; Giaccari, Philippe; Deschênes, Jean-Daniel; Genest, Jérôme

    2010-08-10

    We characterize the temporal response of fiber-optic components using a fiber-based frequency comb interferometer; measurements are compared and validated against a commercial instrument. The main advantage of the instrument lies in the absence of moving parts or a tunable laser, leading to very fast scanning. A measurement of a mechanical distortion, cycled at 130 Hz, on a fiber Bragg grating (FBG) is presented. A complete profile of the mechanical distortion is taken every 2.5 ms (400 Hz scanning speed) and each "snapshot" is taken in 200 micros. This scanning speed was arbitrarily chosen, and the instrument could be set to scan much faster, up to hundreds of kilohertz. With high-reflectivity FBGs, the same instrument could scan simultaneously the profile of 140 wavelength-multiplexed FBGs at 2 kHz.

  7. Optical Tunable-Based Transmitter for Multiple Radio Frequency Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung (Inventor); Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor); Freeman, Jon C. (Inventor)

    2016-01-01

    An optical tunable transmitter is used to transmit multiple radio frequency bands on a single beam. More specifically, a tunable laser is configured to generate a plurality of optical wavelengths, and an optical tunable transmitter is configured to modulate each of the plurality of optical wavelengths with a corresponding radio frequency band. The optical tunable transmitter is also configured to encode each of the plurality of modulated optical wavelengths onto a single laser beam for transmission of a plurality of radio frequency bands using the single laser beam.

  8. All optical measurement of an unknown wideband microwave frequency

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Priye, V.; Raj Singh, R.

    2016-12-01

    A novel all optical measurement scheme is proposed to measure wideband microwave frequencies up to 30 GHz. The proposed method is based on a four-wave mixing (FWM) approach in a semiconductor optical amplifier (SOA) of both even order side-bands generated by an unknown microwave frequency modulating an optical carrier. The optical power of a generated FWM signal depends on frequency spacing between extracted side-bands. A mathematical relation is established between FWM power and frequency of an unknown signal. A calibration curve is drawn based on the mathematical relation which predicts the unknown frequency from power withdrawn after FWM.

  9. Generation of optical frequency combs in fibres

    NASA Astrophysics Data System (ADS)

    Zajnulina, M.; Chavez Boggio, J. M.; Rieznik, A. A.; Haynes, R.; Roth, M. M.

    2013-05-01

    We numerically investigated the possibility of generating high-quality ultra-short optical pulses with broad frequencycombs spectra in a system consisting of three optical fibres. In this system, the first fibre is a conventional single-mode fibre, the second one is erbium-doped, and the last one is a low-dispersion fibre. The system is pumped with a modulated sine-wave generated by two equally intense lasers with the wavelengths λ1and λ2 such that their central wavelength is at λc = (λ1 + λ2)/2 = 1531 nm. The modelling was performed using the generalised nonlinear Schrödinger equation which includes the Kerr and Raman effects, as well as the higher-order dispersion and gain. We took a close look at the pulse evolution in the first two stages and studied the pulse behaviour depending on the group-velocity dispersion and the nonlinear parameter of first fibre, as well as the initial laser frequency separation. For these parameters, the optimum lengths of fibre 1 and 2 were found that provide low-noise pulses. To characterise the pulse energy content, we introduced a figure of merit that was dependent on the group-velocity dispersion, the nonlinearity of fibre 1, and the laser separation.

  10. Sub-Doppler Resolution Spectroscopy of the Fundamental Band of HCl with AN Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Iwakuni, K.; Abe, M.; Sasada, H.

    2013-06-01

    We have demonstrated wavelength modulation spectroscopy of HCl using a difference-frequency-generation (DFG) source and an enhanced-cavity absorption cell. The frequency axis of the spectrum is calibrated by a fiber-based optical frequency comb which is locked to a Rb clock linked with TAI. The pump and signal sources of DFG are a 1.06-μm Nd:YAG laser and a 1.55-μm ECLD, and the idler wave is generated in a waveguide-type PPLN. The hyperfine structure caused by the Cl nucleus with the spin 3/2 is resolved for the R(0), R(1), and R(2) transitions in the fundamental vibration band. The hyperfine components of Δ F = +1, 0, -1, and the cross-over resonances are observed with a typical line width of about 220 kHz, and the transition frequencies are measured with an uncertainty of less than 10 kHz. The pressure- and power-dependences of the transition frequency and the spectral intensity of the cross-over resonances are also investigated.

  11. Fiber-based optofluidics

    NASA Astrophysics Data System (ADS)

    Domachuk, P.; Eggleton, B. J.

    2007-05-01

    Optofluidics is the combination of photonic and microfluidic technologies to achieve enhanced functionality and compactness in devices with applications in sensing, chemistry, biomedical engineering, photonic devices and fundamental microfluidics research. Such a broad definition of the field lends itself many embodiments. Fiber optics provides a unique and versatile platform for building optofluidic devices. Optical fibers can be used not only in their traditional role, acting as a high quality waveguide for delivering light to an optofluidic device. Microstructured optical fibers and the voids that constitute them can provide a home for the fluid phase. Photonic crystal fibers, for example, can be filled with fluids to change the band gap properties of the fiber. The use of the fluid phase to tune photonic structures has several benefits. The fluid phase is inherently mobile allowing the tuning medium to be dynamically reconfigured through any connected aperture of the device. The nature of the fluid can also be adjusted through its chemistry, allowing for a very broad range of optical properties thus further enhancing tunability. Very high refractive index contrasts can be obtained between the fluid phase and the surrounding air, which can lead to great compactness in interferometric devices and novel, tunable, interferometric structures such as the single beam interferometer presented here. One of the great utilities of optofluidic devices is that where a photonic structure is tuned using microfluidics, the same structure can be used in reverse, where a photonic structure is exposed to an unknown fluid and can act as a sensor. A fiber Fabry-Perot is utilized here to measure the concentration of saline.

  12. Fiber-based photon-pair source capable of hybrid entanglement in frequency and transverse mode, controllably scalable to higher dimensions

    PubMed Central

    Cruz-Delgado, D.; Ramirez-Alarcon, R.; Ortiz-Ricardo, E.; Monroy-Ruz, J.; Dominguez-Serna, F.; Cruz-Ramirez, H.; Garay-Palmett, K.; U’Ren, A. B.

    2016-01-01

    We have designed and implemented a photon-pair source, based on the spontaneous four wave mixing (SFWM) process in a few-mode fiber, in a geometry which permits multiple, simultaneous SFWM processes, each associated with a distinct combination of transverse modes for the four participating waves. In our source: i) each process is group-velocity-matched so that it is, by design, nearly-factorable, and ii) the spectral separation between neighboring processes is greater than the marginal spectral width of each process. Consequently, there is a direct correspondence between the joint amplitude of each process and each of the Schmidt mode pairs of the overall two-photon state. Our approach permits hybrid entanglement in discrete frequency and in transverse mode, whereby control of the number of supported fiber transverse modes allows scalability to higher dimensions while spectral filtering may be used for straightforward Schmidt mode discrimination. PMID:27271284

  13. Fiber-based photon-pair source capable of hybrid entanglement in frequency and transverse mode, controllably scalable to higher dimensions.

    PubMed

    Cruz-Delgado, D; Ramirez-Alarcon, R; Ortiz-Ricardo, E; Monroy-Ruz, J; Dominguez-Serna, F; Cruz-Ramirez, H; Garay-Palmett, K; U'Ren, A B

    2016-06-07

    We have designed and implemented a photon-pair source, based on the spontaneous four wave mixing (SFWM) process in a few-mode fiber, in a geometry which permits multiple, simultaneous SFWM processes, each associated with a distinct combination of transverse modes for the four participating waves. In our source: i) each process is group-velocity-matched so that it is, by design, nearly-factorable, and ii) the spectral separation between neighboring processes is greater than the marginal spectral width of each process. Consequently, there is a direct correspondence between the joint amplitude of each process and each of the Schmidt mode pairs of the overall two-photon state. Our approach permits hybrid entanglement in discrete frequency and in transverse mode, whereby control of the number of supported fiber transverse modes allows scalability to higher dimensions while spectral filtering may be used for straightforward Schmidt mode discrimination.

  14. Fiber-based photon-pair source capable of hybrid entanglement in frequency and transverse mode, controllably scalable to higher dimensions

    NASA Astrophysics Data System (ADS)

    Cruz-Delgado, D.; Ramirez-Alarcon, R.; Ortiz-Ricardo, E.; Monroy-Ruz, J.; Dominguez-Serna, F.; Cruz-Ramirez, H.; Garay-Palmett, K.; U’Ren, A. B.

    2016-06-01

    We have designed and implemented a photon-pair source, based on the spontaneous four wave mixing (SFWM) process in a few-mode fiber, in a geometry which permits multiple, simultaneous SFWM processes, each associated with a distinct combination of transverse modes for the four participating waves. In our source: i) each process is group-velocity-matched so that it is, by design, nearly-factorable, and ii) the spectral separation between neighboring processes is greater than the marginal spectral width of each process. Consequently, there is a direct correspondence between the joint amplitude of each process and each of the Schmidt mode pairs of the overall two-photon state. Our approach permits hybrid entanglement in discrete frequency and in transverse mode, whereby control of the number of supported fiber transverse modes allows scalability to higher dimensions while spectral filtering may be used for straightforward Schmidt mode discrimination.

  15. Optical frequency-domain reflectometry for microbend sensor demodulation.

    PubMed

    Pierce, S G; MacLean, A; Culshaw, B

    2000-09-01

    The operation of an incoherent optical frequency-domain reflectometer for monitoring the continuous Rayleigh backscatter in a multimode optical fiber is presented. A simple but effective model to predict the value of beat frequencies arising in the system when excited by a linearly frequency-swept amplitude modulation has been developed. We have verified the model's predictions by experimental measurement of beat frequencies and modulation depth indices of different lengths of standard graded-index multimode optical fiber. Demonstration of the system sensitivity to the detection of microbending loss is then discussed. In particular the detection of loss in a hydrogel-based water-sensing cable allows an alternative interrogation to conventional optical time-domain reflectometry techniques to be implemented. We demonstrate that the incoherent optical frequency-domain reflectometer is capable of detecting and locating sections of increased loss in a multimode optical fiber, and we discuss the fundamental limits on spatial resolution and dynamic range.

  16. A double-taper optical fiber-based radiation wave other than evanescent wave in all-fiber immunofluorescence biosensor for quantitative detection of Escherichia coli O157:H7.

    PubMed

    Zhang, Zhonghuan; Hua, Fei; Liu, Ting; Zhao, Yong; Li, Jun; Yang, Ruifu; Yang, Changxi; Zhou, Lei

    2014-01-01

    Cylindrical or taper-and-cylinder combination optical fiber probe based on evanescent wave has been widely used for immunofluorescence biosensor to detect various analytes. In this study, in contrast to the contradiction between penetration depth and analyte diameter of optical fiber probe-based evanescent wave, we demonstrate that double-taper optical fiber used in a radiation wave-based all-fiber immunofluorescence biosensor (RWAIB) can detect micron-scale analytes using Escherichia coli O157:H7 as representative target. Finite-difference time-domain method was used to compare the properties of evanescent wave and radiation wave (RW). Ray-tracing model was formulated to optimize the taper geometry of the probe. Based on a commercial multi-mode fiber, a double-taper probe was fabricated and connected with biosensor through a "ferrule connector" optical fiber connector. The RWAIB configuration was accomplished using commercial multi-mode fibers and fiber-based devices according to the "all-fiber" method. The standard sample tests revealed that the sensitivity of the proposed technique for E. coli O157:H7 detection was 10(3) cfu · mL(-1). Quantitation could be achieved within the concentration range of 10(3) cfu · mL(-1) to 107 cfu · mL(-1). No non-specific recognition to ten kinds of food-borne pathogens was observed. The results demonstrated that based on the double-taper optical fiber RWAIB can be used for the quantitative detection of micron-scale targets, and RW sensing is an alternative for traditional evanescent wave sensing during the fabrication of fiber-optic biosensors.

  17. Stabilisation of a fibre frequency synthesiser using acousto-optical and electro-optical modulators

    NASA Astrophysics Data System (ADS)

    Koliada, N. A.; Nyushkov, B. N.; Pivtsov, V. S.; Dychkov, A. S.; Farnosov, S. A.; Denisov, V. I.; Bagayev, S. N.

    2016-12-01

    A fibre-optic frequency synthesiser is developed that is stabilised to the optical frequency standard based on molecular iodine ({\\text{Nd : YAG/I}}2). The possibility of transferring stability of the optical frequency standard to other optical frequencies in the IR range 1 - 2 \\unicode{956}{\\text{m}} and to the RF range by using synthesiser phase-locked loops (PLLs) with acousto-optical and electro-optical modulators is experimentally demonstrated. The additive instability introduced into the optical frequency comb of the synthesiser (which arises due to PLL residual random errors) is several orders less than the intrinsic instability of the reference optical frequency standard employed (i.e., is noticeably less than 1 × 10-13 for 1 {\\text{s}} and 5 × 10-15 for 1000 {\\text{s}}).

  18. Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology

    NASA Technical Reports Server (NTRS)

    Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh

    1998-01-01

    This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.

  19. Effect of laser frequency noise on fiber-optic frequency reference distribution

    NASA Technical Reports Server (NTRS)

    Logan, R. T., Jr.; Lutes, G. F.; Maleki, L.

    1989-01-01

    The effect of the linewidth of a single longitude-mode laser on the frequency stability of a frequency reference transmitted over a single-mode optical fiber is analyzed. The interaction of the random laser frequency deviations with the dispersion of the optical fiber is considered to determine theoretically the effect on the Allan deviation (square root of the Allan variance) of the transmitted frequency reference. It is shown that the magnitude of this effect may determine the limit of the ultimate stability possible for frequency reference transmission on optical fiber, but is not a serious limitation to present system performance.

  20. Distributed optical multiplexing with precise frequency allocation using fiber frequency conversion

    NASA Astrophysics Data System (ADS)

    Kato, Tomoyuki; Okabe, Ryo; Watanabe, Shigeki

    2013-12-01

    Effective utilization of fiber capacity in optical communication networks is required to keep up with the increasing traffic demand. Precise optical frequency allocation among carriers is essential for improving the spectral efficiency to utilize the limited spectral resource. In this paper, we show a distributed optical multiplexing scheme, in which data signals are sequentially multiplexed by frequency-division multiplexing on a single-wavelength optical carrier using fiber frequency conversion with locally provided optical subcarrier signals. The scheme achieves dense packing of distributed multi-channel signals with precise frequency allocation using free-running lasers. Using the scheme we demonstrate a precise multiplexing of coherent-optical orthogonal frequency-division multiplexing and Nyquist wavelength-division multiplexing.

  1. Method and apparatus for optical communication by frequency modulation

    DOEpatents

    Priatko, Gordon J.

    1988-01-01

    Laser optical communication according to this invention is carried out by producing multi-frequency laser beams having different frequencies, splitting one or more of these constituent beams into reference and signal beams, encoding information on the signal beams by frequency modulation and detecting the encoded information by heterodyne techniques. Much more information can be transmitted over optical paths according to the present invention than with the use of only one path as done previously.

  2. Collisional frequency shift of a trapped-ion optical clock

    NASA Astrophysics Data System (ADS)

    Vutha, Amar C.; Kirchner, Tom; Dubé, Pierre

    2017-08-01

    Collisions with background gas can perturb the transition frequency of trapped ions in an optical atomic clock. We develop a nonperturbative framework based on a quantum channel description of the scattering process and use it to derive a master equation which leads to a simple analytic expression for the collisional frequency shift. As a demonstration of our method, we calculate the frequency shift of the Sr+ optical atomic clock transition due to elastic collisions with helium.

  3. Method and apparatus for optical communication by frequency modulation

    SciTech Connect

    Priatko, G.J.

    1988-12-13

    Laser optical communication according to this invention is carried out by producing multi-frequency laser beams having different frequencies, splitting one or more of these constituent beams into reference and signal beams, encoding information on the signal beams by frequency modulation and detecting the encoded information by heterodyne techniques. Much more information can be transmitted over optical paths according to the present invention than with the use of only one path as done previously.

  4. Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer.

    PubMed

    Xu, Yanping; Lu, Ping; Qin, Zengguang; Harris, Jeremie; Baset, Farhana; Lu, Ping; Bhardwaj, Vedula Ravi; Bao, Xiaoyi

    2013-02-11

    In this study, a novel fiber-optic sensor consisting of a tapered bend-insensitive fiber based Mach-Zehnder interferometer is presented to realize damped and continuous vibration measurement. The double cladding structure and the central coating region of the in-fiber interferometer ensure an enhanced mechanical strength, reduced external disturbance, and a more uniform spectrum. A damped vibration frequency range of 29-60 Hz as well as continuous vibration disturbances ranging from 1 Hz up to 500 kHz are successfully demonstrated.

  5. Femtosecond frequency combs for optical clocks and timing transfer

    NASA Astrophysics Data System (ADS)

    Foreman, Seth M.

    The rapid development of femtosecond optical frequency combs over the last decade has brought together ultrastable phase control of both cw and mode-locked lasers and ultrafast time-domain applications. Frequency-domain laser stabilization techniques applied to the ultrashort-pulse trains emitted by a mode-locked laser result in a level of optical phase control previously achievable only for radio frequencies and microwaves. I present our work extending such control to mode-locked lasers for both timing and frequency stabilization applications of optical frequency combs. I first present a microwave technique for synchronizing two independent modelocked lasers at a level of timing precision less than the duration of an optical cycle, below 1 fs of residual rms timing jitter. Using these synchronized pulses, simultaneous sum- and difference-frequency generation of 400-nm and tunable mid-infrared fs pulses is demonstrated, opening the door for broadband coherent control of atomic and molecular systems. For frequency metrology, I report on an offset-free clockwork for an optical clock based on the 3.39-mum transition in methane. The clockwork's simplicity leads to a robust and reliable table-sized optical frequency reference with instability approaching a few parts in 1014. Then I describe a directly-octave-spanning, self-referenced Ti:sapphire laser employed as the robustly-running phase-coherent clockwork for an 87Sr optical lattice clock. The optical comb distributes the 2-s coherence time of the 698-nm ultrastable clock laser to its modes spanning the visible and near-IR spectrum, and is therefore simultaneously used as a hub for measuring absolute frequencies or frequency ratios between the Sr clock and other remotely-located microwave and optical atomic standards. Finally, I report on the transfer of ultrastable frequency references, both microwave and optical, through 10-km-scale optical fiber links. Actively stabilizing the optical phase delay of such a fiber

  6. Optical frequency tripling with improved suppression and sideband selection.

    PubMed

    Thakur, Manoj P; Medeiros, Maria C R; Laurêncio, Paula; Mitchell, John E

    2011-12-12

    A novel optical dispersion tolerant millimetre-wave radio-over-fibre system using optical frequency tripling technique with enhanced and selectable sideband suppression is demonstrated. The implementation utilises cascaded optical modulators to achieve either an optical single sideband (OSSB) or double sideband-suppressed carrier (DSB-SC) signal with high sideband suppression. Our analysis and simulation results indicate that the achievable suppression ratio of this configuration is only limited by other system factors such as optical noise and drifting of the operational conditions. The OSSB transmission system performance is assessed experimentally by the transport of 4 WiMax channels modulating a 10 GHz optical upconverted RF carrier as well as for optical frequency doubling and tripling. The 10 GHz and tripled carrier at 30 GHz are dispersion tolerant resulting both in an average relative constellation error (RCE) of -28.7 dB after 40 km of fibre.

  7. Frequency Resolution of an Acousto-Optical Spectrometer

    DTIC Science & Technology

    1993-08-03

    AD-A267 822 FOREIGN AEROSPACE SCIENCE AND TECHNOLOGY CENTER DTIC S ELECTE AUG 111993 D FREQUENCY RESOLUTION OF AN ACOUSTO - OPTICAL SPECTROMETER by... D ~t• i,5"t~o’• A i +’- 1 Av.:+l +,O ,J Dist Avi! .. DTIC QUALITY I1V’PEMTED 3 FREQUENCY RESOLUTION OF AN ACOUSTO - OPTICAL SPECTROMETER... optical spectrometer (AOS) system as affected by the acousto - optical deflector and the coherent light beam truncation ratio, and examines the response

  8. Frequency Measurements of Al+ and Hg+ Optical Standards

    NASA Astrophysics Data System (ADS)

    Itano, W. M.; Bergquist, J. C.; Rosenband, T.; Wineland, D. J.; Hume, D.; Chou, C.-W.; Jefferts, S. R.; Heavner, T. P.; Parker, T. E.; Diddams, S. A.; Fortier, T. M.

    2010-02-01

    Frequency standards based on narrow optical transitions in 27Al+ and 199Hg+ ions have been developed at NIST. Both standards have absolute reproducibilities of a few parts in 1017. This is about an order of magnitude better than the fractional uncertainty of the SI second, which is based on the 133Cs hyperfine frequency. Use of femtosecond laser frequency combs makes it possible to compare the optical frequency standards to microwave frequency standards or to each other. The ratio of the Al+ and Hg+ frequencies can be measured more accurately than the reproducibility of the primary cesium frequency standards. Frequency measurements made over time can be used to set limits on the time variation of fundamental constants, such as the fine structure constant α or the quark masses.

  9. Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting

    PubMed Central

    Yun, S. H.; Tearney, G. J.; de Boer, J. F.; Bouma, B. E.

    2009-01-01

    A novel technique using an acousto-optic frequency shifter in optical frequency domain imaging (OFDI) is presented. The frequency shift eliminates the ambiguity between positive and negative differential delays, effectively doubling the interferometric ranging depth while avoiding image cross-talk. A signal processing algorithm is demonstrated to accommodate nonlinearity in the tuning slope of the wavelength-swept OFDI laser source. PMID:19484034

  10. An optical frequency standard based on ultracold magnesium atoms

    NASA Astrophysics Data System (ADS)

    Goncharov, A. N.; Bonert, A. E.; Brazhnikov, D. V.; Prudnikov, O. N.; Tropnikov, M. A.; Kuznetsov, S. A.; Taichenachev, A. V.; Bagayev, S. N.

    2017-01-01

    This paper presents the recent experimental results on development of an optical frequency standard based on ultra cold magnesium atoms with relative frequency uncertainty and long term stability at the level of Δv/v <10‑16. We stabilized the frequency of our clock laser system at 655 THz to narrow Ramsey fringes in a time separated laser fields interacting with cooled Mg atoms localized in a magneto-optical trap (MOT). The intercombination line 1S0→3P1 was used as the reference for frequency stabilization. The results of stabilization were studied with femtosecond comb based on Ti:Sa laser.

  11. 10-GHz Self-Referenced Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Bartels, Albrecht; Heinecke, Dirk; Diddams, Scott A.

    2009-10-01

    The femtosecond laser-based frequency comb has played a key role in high-precision optical frequency metrology for a decade. Although often referred to as a precise optical frequency ruler, its tick marks are in fact too densely spaced for direct observation and individual use, limiting important applications in spectroscopy, astronomy, and ultrafast electromagnetic waveform control. We report on a femtosecond laser frequency comb with a 10-gigahertz repetition rate that creates a stabilized output spectrum with coverage from 470 to 1130 nanometers. The individual modes can be directly resolved with a grating spectrometer and are visible by eye.

  12. Stable radio-frequency transfer over optical fiber by phase-conjugate frequency mixing.

    PubMed

    He, Yabai; Orr, Brian J; Baldwin, Kenneth G H; Wouters, Michael J; Luiten, Andre N; Aben, Guido; Warrington, R Bruce

    2013-08-12

    We demonstrate long-distance (≥100-km) synchronization of the phase of a radio-frequency reference over an optical-fiber network without needing to actively stabilize the optical path length. Frequency mixing is used to achieve passive phase-conjugate cancellation of fiber-length fluctuations, ensuring that the phase difference between the reference and synchronized oscillators is independent of the link length. The fractional radio-frequency-transfer stability through a 100-km "real-world" urban optical-fiber network is 6 × 10(-17) with an averaging time of 10(4) s. Our compensation technique is robust, providing long-term stability superior to that of a hydrogen maser. By combining our technique with the short-term stability provided by a remote, high-quality quartz oscillator, this system is potentially applicable to transcontinental optical-fiber time and frequency dissemination where the optical round-trip propagation time is significant.

  13. Frequency-resolved optical grating using third-harmonic generation

    SciTech Connect

    Tsang, T.; Krumbuegel, M.A.; Delong, K.W.

    1995-12-01

    We demonstrate the first frequency-resolved optical gating measurement of an laser oscillator without the time ambiguity using third-harmonic generation. The experiment agrees well with the phase-retrieved spectrograms.

  14. Frequency Measurement System of Optical Clocks Without a Flywheel Oscillator.

    PubMed

    Fujieda, Miho; Ido, Tetsuya; Hachisu, Hidekazu; Gotoh, Tadahiro; Takiguchi, Hiroshi; Hayasaka, Kazuhiro; Toyoda, Kenji; Yonegaki, Kenji; Tanaka, Utako; Urabe, Shinji

    2016-12-01

    We developed a system for the remote frequency comparison of optical clocks. The system does not require a flywheel oscillator at the remote end, making it possible to evaluate optical frequencies even in laboratories, where no stable microwave reference, such as an Rb clock, a Cs clock, or a hydrogen maser exists. The system is established by the integration of several systems: a portable carrier-phase two-way satellite frequency transfer station and a microwave signal generation system by an optical frequency comb from an optical clock. The measurement was as quick as a conventional method that employs a local microwave reference. We confirmed the system uncertainty and instability to be at the low 10(-15) level using an Sr lattice clock.

  15. Optical-Fiber-Based, Time-Resolved Photoluminescence Spectrometer for Thin-Film Absorber Characterization and Analysis of TRPL Data for CdS/CdTe Interface: Preprint

    SciTech Connect

    Kuciauskas, D.; Duenow, J. N.; Kanevce, A.; Li, J. V.; Young, M. R.; Dippo, P.; Levi, D. H.

    2012-06-01

    We describe the design of a time resolved photoluminescence (TRPL) spectrometer for rapid semiconductor absorber characterization. Simplicity and flexibility is achieved by using single optical fiber to deliver laser pulses and to collect photoluminescence. We apply TRPL for characterization of CdS/CdTe absorbers after deposition, CdCl2 treatment, Cu doping, and back contact formation. Data suggest this method could be applied in various stages of PV device processing. Finally, we show how to analyze TRPL data for CdS/CdTe absorbers by considering laser light absorption depth and intermixing at CdS/CdTe interface.

  16. Metamaterial filters at optical-infrared frequencies.

    PubMed

    Brückner, Jean-Baptiste; Le Rouzo, Judikaël; Escoubas, Ludovic; Berginc, Gérard; Calvo-Perez, Olivier; Vukadinovic, Nicolas; Flory, François

    2013-07-15

    We propose two distinctive designs of metamaterials demonstrating filtering functions in the visible and near infrared region. Since the emissivity is related to the absorption of a material, these filters would then offer a high emissivity in the visible and near infrared, and a low one beyond those wavelengths. Usually, such a system find their applications in the thermo-photovoltaics field as it can find as well a particular interest in optoelectronics, especially for optical detection. Numerical analysis has been performed on common metamaterial designs: a perforated metallic plate and a metallic cross grating. Through all these structures, we have demonstrated the various physical phenomena contributing to a reduction in the reflectivity in the optical and near infrared region. By showing realistic geometric parameters, the structures were not only designed to demonstrate an optical filtering function but were also meant to be feasible on large surfaces by lithographic methods such as micro contact printing or nano-imprint lithography.

  17. The Optically Pumped Cs Frequency Standard at the NRLM

    DTIC Science & Technology

    1987-12-01

    References 1. J.L. Picqu6, "Hyperfine optical pumping of a cesium atomic beam, and applications," Metrologia, vo1.13, pp.115-119, 1977. 2. M. Arditi and... Arditi , "A caesium beam atomic clock with laser optical pumping, as a potential frequency standard," Metrologia, vo1.18, pp.59-66, 1982. 4. G

  18. Spectroscopy of Metamaterials from Infrared to Optical Frequencies

    DTIC Science & Technology

    2006-03-01

    negative permeability,” Phys. Rev. Lett. 94, 37402 (2005). 14. F . Wooten , Optical Properties of Solids (Academic, 1972). 15. For example, see M. Born...for materials with differ- ent symmetry properties of the constitutive relations. The terms and are called the magneto- optical permittivi- ties...Spectroscopy of metamaterials from infrared to optical frequencies Willie J. Padilla Materials Science and Technology Division, Center for Integrated

  19. Improved optical frequency standards at 612 nm

    SciTech Connect

    Bertinetto, F.; Cordiale, P.; Fontana, S.

    1994-12-31

    Using FM Spectroscopy as the detection method in an experiment of optical saturation absorption, a fractional stability (Allan variance) of 5 x 10{sup -14} has been observed for an integration time of 10{sup 3} s, and a reproducibility better than 1 part in 10{sup 11} has been achieved.

  20. Modal Frequency Detection in Composite Beams Using Fiber Optic Sensors

    DTIC Science & Technology

    2011-07-28

    optic sensors showed more sensitivity and better signal-to-noise ratios. The analytical classical beam theory and a finite element model validated the...61 C. INPUT AND OUTPUT FOR THE FINITE ELEMENT MODEL ..... 88 B IB LIO G RA PH Y...beam compared to MATLAB generated frequencies of classical beam theory and frequencies calculated using a finite element model (FEM

  1. Compensated Fiber-Optic Frequency Distribution Equipment

    DTIC Science & Technology

    2010-11-01

    availability of long- haul components at 1550 nm. If installing a new system with new fiber, it may also make sense to use dispersion-shifted fiber, which...selected the 1550 nm (C-Band) for the optical wavelength. Although this wavelength requires CD correction in long haul systems, it makes good sense for...CD, we place both lasers on the same ITU channel, and adjust their center wavelengths to within a few GHz of each other. Ideally, the two signals

  2. Water wave frequency detection by optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyi; Bao, Xiaoyi; Rennie, Colin D.; Nistor, Ioan; Cornett, Andrew

    2008-12-01

    An optical fiber sensor has been developed and applied to measure frequency of water waves based on wave induced polarization change of the light. The fiber sensor can accurately detect water wave frequency for regular and irregular waves. The optimum sag of sensing fiber to the sensor output's linearity has been studied. The agreement of the fiber sensor and wave gauge in frequency and time domain suggests that the fiber sensor has great potential for passive acoustic sensing and wave monitoring.

  3. A multi-point laser Doppler vibrometer with fiber-based configuration

    SciTech Connect

    Yang, C.; Guo, M.; Liu, H.; Yan, K.; Xu, Y. J.; Fu, Y.; Miao, H.

    2013-12-15

    Laser Doppler vibrometer (LDV) is a non-contact optical interferometric system to measure vibrations of structures and machines with a high precision. Normal LDV can only offer a single-point measurement. Scanning LDV is usually impractical to do measurement on transient events. In this paper, a fiber-based self-synchronized multi-point LDV is proposed. The multiple laser beams with different frequency shifts are generated from one laser source. The beams are projected onto a vibrating object, reflected and interfered with a common reference beam. The signal including vibration information of multiple spatial points is captured by one single-pixel photodetector. The optical system is mainly integrated by fiber components for flexibility in measurement. Two experiments are conducted to measure a steady-state simple harmonic vibration of a cantilever beam and a transient vibration of a beam clamped at both ends. In the first measurement, a numerical interpolation is applied to reconstruct the mode shape with increased number of data points. The vibration mode obtained is compared with that from FEM simulation. In transient vibration measurement, the first five resonant frequencies are obtained. The results show the new-reported fiber-based multipoint LDV can offer a vibration measurement on various spatial points simultaneously. With the flexibility of fiber configuration, it becomes more practical for dynamic structural evaluation in industrial areas.

  4. Metrology with AN Optical Feedback Frequency Stabilized Crds

    NASA Astrophysics Data System (ADS)

    Kassi, Samir; Burkart, Johannes

    2015-06-01

    We will present a metrological application of our recently developed Optical Feedback Frequency Stabilized - Cavity Ring Down Spectrometer (OFFS-CRDS). This instrument, which ideally fits with an optical frequency comb for absolute frequency calibration, relies on the robust lock of a steady cavity ring down resonator against a highly stable, radiofrequency tuned optical source. At 1.6 μm, over 7 nm, we demonstrate Lamb dip spectroscopy of CO_2 with line frequency retrieval at the kHz level, a dynamic in excess of 700,000 on the absorption scale and a detectivity of 4x10-13cm-1Hz-1/2. Such an instrument nicely meets the requirements for the most demanding spectroscopy spanning from accurate isotopic ratio determination and very precise lineshape recordings to Boltzmann constant redefinition.

  5. Optical Frequency Standards Based on Neutral Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Riehle, Fritz; Helmcke, Juergen

    The current status and prospects of optical frequency standards based on neutral atomic and molecular absorbers are reviewed. Special attention is given to an optical frequency standard based on cold Ca atoms which are interrogated with a pulsed excitation scheme leading to resolved line structures with a quality factor Q > 10^12. The optical frequency was measured by comparison with PTB's primary clock to be νCa = 455 986 240 494.13 kHz with a total relative uncertainty of 2.5 x10^-13. After a recent recommendation of the International Committee of Weights and Measures (CIPM), this frequency standard now represents one of the most accurate realizations of the length unit.

  6. Fast frequency hopping codes applied to SAC optical CDMA network

    NASA Astrophysics Data System (ADS)

    Tseng, Shin-Pin

    2015-06-01

    This study designed a fast frequency hopping (FFH) code family suitable for application in spectral-amplitude-coding (SAC) optical code-division multiple-access (CDMA) networks. The FFH code family can effectively suppress the effects of multiuser interference and had its origin in the frequency hopping code family. Additional codes were developed as secure codewords for enhancing the security of the network. In considering the system cost and flexibility, simple optical encoders/decoders using fiber Bragg gratings (FBGs) and a set of optical securers using two arrayed-waveguide grating (AWG) demultiplexers (DeMUXs) were also constructed. Based on a Gaussian approximation, expressions for evaluating the bit error rate (BER) and spectral efficiency (SE) of SAC optical CDMA networks are presented. The results indicated that the proposed SAC optical CDMA network exhibited favorable performance.

  7. Photon frequency-mode matching using acousto-optic frequency beam splitters

    SciTech Connect

    Jones, Nick S.; Stace, T. M.

    2006-03-15

    It is a difficult engineering task to create distinct solid state single photon sources which nonetheless emit photons at the same frequency. It is also hard to create entangled photon pairs from quantum dots. In the spirit of quantum engineering we propose a simple optical circuit which can, in the right circumstances, make frequency distinguishable photons frequency indistinguishable. Our circuit can supply a downstream solution to both problems, opening up a large window of allowed frequency mismatches between physical mechanisms. The only components used are spectrum analysers or prisms and an acousto-optic modulator. We also note that an acousto-optic modulator can be used to obtain Hong-Ou-Mandel two photon interference effects from the frequency distinguishable photons generated by distinct sources.

  8. Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms

    PubMed Central

    Zhang, S. Y.; Wu, J. T.; Zhang, Y. L.; Leng, J. X.; Yang, W. P.; Zhang, Z. G.; Zhao, J. Y.

    2015-01-01

    Optical clocks have been the focus of science and technology research areas due to their capability to provide highest frequency accuracy and stability to date. Their superior frequency performance promises significant advances in the fields of fundamental research as well as practical applications including satellite-based navigation and ranging. In traditional optical clocks, ultrastable optical cavities, laser cooling and particle (atoms or a single ion) trapping techniques are employed to guarantee high stability and accuracy. However, on the other hand, they make optical clocks an entire optical tableful of equipment, and cannot work continuously for a long time; as a result, they restrict optical clocks used as very convenient and compact time-keeping clocks. In this article, we proposed, and experimentally demonstrated, a novel scheme of optical frequency standard based on comb-directly-excited atomic two-photon transitions. By taking advantage of the natural properties of the comb and two-photon transitions, this frequency standard achieves a simplified structure, high robustness as well as decent frequency stability, which promise widespread applications in various scenarios. PMID:26459877

  9. Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms.

    PubMed

    Zhang, S Y; Wu, J T; Zhang, Y L; Leng, J X; Yang, W P; Zhang, Z G; Zhao, J Y

    2015-10-13

    Optical clocks have been the focus of science and technology research areas due to their capability to provide highest frequency accuracy and stability to date. Their superior frequency performance promises significant advances in the fields of fundamental research as well as practical applications including satellite-based navigation and ranging. In traditional optical clocks, ultrastable optical cavities, laser cooling and particle (atoms or a single ion) trapping techniques are employed to guarantee high stability and accuracy. However, on the other hand, they make optical clocks an entire optical tableful of equipment, and cannot work continuously for a long time; as a result, they restrict optical clocks used as very convenient and compact time-keeping clocks. In this article, we proposed, and experimentally demonstrated, a novel scheme of optical frequency standard based on comb-directly-excited atomic two-photon transitions. By taking advantage of the natural properties of the comb and two-photon transitions, this frequency standard achieves a simplified structure, high robustness as well as decent frequency stability, which promise widespread applications in various scenarios.

  10. Precise Stabilization of the Optical Frequency of WGMRs

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Matsko, Andrey; Yu, Nan; Maleki, Lute; Iltchenko, Vladimir

    2009-01-01

    Crystalline whispering gallery mode resonators (CWGMRs) made of crystals with axial symmetry have ordinary and extraordinary families of optical modes. These modes have substantially different thermo-refractive constants. This results in a very sharp dependence of differential detuning of optical frequency on effective temperature. This frequency difference compared with clock gives an error signal for precise compensation of the random fluctuations of optical frequency. Certain crystals, like MgF2, have turnover points where the thermo-refractive effect is completely nullified. An advantage for applications using WGMRs for frequency stabilization is in the possibility of manufacturing resonators out of practically any optically transparent crystal. It is known that there are crystals with negative and zero thermal expansion at some specific temperatures. Doping changes properties of the crystals and it is possible to create an optically transparent crystal with zero thermal expansion at room temperature. With this innovation s stabilization technique, the resultant WGMR will have absolute frequency stability The expansion of the resonator s body can be completely compensated for by nonlinear elements. This results in compensation of linear thermal expansion (see figure). In three-mode, the MgF2 resonator, if tuned at the turnover thermal point, can compensate for all types of random thermal-related frequency drift. Simplified dual-mode method is also available. This creates miniature optical resonators with good short- and long-term stability for passive secondary frequency ethalon and an active resonator for active secondary frequency standard (a narrowband laser with long-term stability).

  11. A method of developing frequency encoded multi-bit optical data comparator using semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Garai, Sisir Kumar

    2011-02-01

    Optical data comparator is the part and parcel of arithmetic and logical unit of any optical data processor and it is working as a building block in a larger optical circuit, as an optical switch in all optical header processing and optical packet switching based all optical telecommunications system. In this article the author proposes a method of developing an all optical single bit comparator unit and subsequently extending the proposal to develop a n-bit comparator exploiting the nonlinear rotation of the state of polarization of the probe beam in semiconductor optical amplifier (SOA). Here the dataset to be compared are taken in frequency encoded/decoded form throughout the communication. The major advantages of frequency encoding over all other conventional techniques are that as the frequency of any signal is fundamental one so it can preserve its identity throughout the communication of optical signal and minimizes the probability of bit error problem. For frequency routing purpose optical add/drop multiplexer (ADM) is used which not only route the pump beams properly but also to amplify the pump beams efficiently. Switching speed of 'MZI-SOA switch' as well as SOA based switches are very fast with good on-off contrast ratio and as a result it is possible to obtain very fast action of optical data comparator.

  12. Optical zooming interferometer for subnanometer positioning using an optical frequency comb

    SciTech Connect

    Kajima, Mariko; Minoshima, Kaoru

    2010-10-20

    A high-precision positioning stage based on an optical zooming interferometer is proposed. Two external-cavity diode lasers, stabilized to a femtosecond optical frequency comb, are used as optical sources. The zooming principle is demonstrated, and the positioning resolution of 0.2 nm is achieved. The positioning accuracy was partly evaluated.

  13. Frequency comb metrology with an optical parametric oscillator.

    PubMed

    Balskus, K; Schilt, S; Wittwer, V J; Brochard, P; Ploetzing, T; Jornod, N; McCracken, R A; Zhang, Z; Bartels, A; Reid, D T; Südmeyer, T

    2016-04-18

    We report on the first demonstration of absolute frequency comb metrology with an optical parametric oscillator (OPO) frequency comb. The synchronously-pumped OPO operated in the 1.5-µm spectral region and was referenced to an H-maser atomic clock. Using different techniques, we thoroughly characterized the frequency noise power spectral density (PSD) of the repetition rate frep, of the carrier-envelope offset frequency fCEO, and of an optical comb line νN. The comb mode optical linewidth at 1557 nm was determined to be ~70 kHz for an observation time of 1 s from the measured frequency noise PSD, and was limited by the stability of the microwave frequency standard available for the stabilization of the comb repetition rate. We achieved a tight lock of the carrier envelope offset frequency with only ~300 mrad residual integrated phase noise, which makes its contribution to the optical linewidth negligible. The OPO comb was used to measure the absolute optical frequency of a near-infrared laser whose second-harmonic component was locked to the F = 2→3 transition of the 87Rb D2 line at 780 nm, leading to a measured transition frequency of νRb = 384,228,115,346 ± 16 kHz. We performed the same measurement with a commercial fiber-laser comb operating in the 1.5-µm region. Both the OPO comb and the commercial fiber comb achieved similar performance. The measurement accuracy was limited by interferometric noise in the fibered setup of the Rb-stabilized laser.

  14. A scheme of developing frequency encoded tristate-optical logic operations using semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Garai, Sisir Kumar

    2010-03-01

    The ever increasing demand for very fast and agile optical networks requires very fast execution of different optical and logical operations as well as large information handling capacities at the same time. In conventional binary logic based operations the information is represented by two distinct states only (0 and 1 state). It limits the large information handling capacity and speed of different arithmetic and optical logic operations. Tristate based logic operations can be accommodated with optics successfully in data processing, as this type of operation can enhance the speed of operation as well as increase the information handling capacity. Here in this communication the author proposes a new method to implement all-optical different logic gates with tristate logic using the frequency-encoding principle. The frequency encoding/decoding based optical communication has distinctly great advantages because the frequency is the fundamental character of an optical signal and it preserves its identity throughout the communication. The principle of the rotation of the state of polarization of a probe beam through semiconductor optical amplifier (SOA), frequency routing property of an optical add/drop multiplexer (AD) and high frequency conversion property of reflecting semiconductor optical amplifiers (RSOA) have been exploited here to implement the desired AND, OR, NAND and NOR logic operations with tristate logic.

  15. Frequency domain optical tomography using a Monte Carlo perturbation method

    NASA Astrophysics Data System (ADS)

    Yamamoto, Toshihiro; Sakamoto, Hiroki

    2016-04-01

    A frequency domain Monte Carlo method is applied to near-infrared optical tomography, where an intensity-modulated light source with a given modulation frequency is used to reconstruct optical properties. The frequency domain reconstruction technique allows for better separation between the scattering and absorption properties of inclusions, even for ill-posed inverse problems, due to cross-talk between the scattering and absorption reconstructions. The frequency domain Monte Carlo calculation for light transport in an absorbing and scattering medium has thus far been analyzed mostly for the reconstruction of optical properties in simple layered tissues. This study applies a Monte Carlo calculation algorithm, which can handle complex-valued particle weights for solving a frequency domain transport equation, to optical tomography in two-dimensional heterogeneous tissues. The Jacobian matrix that is needed to reconstruct the optical properties is obtained by a first-order "differential operator" technique, which involves less variance than the conventional "correlated sampling" technique. The numerical examples in this paper indicate that the newly proposed Monte Carlo method provides reconstructed results for the scattering and absorption coefficients that compare favorably with the results obtained from conventional deterministic or Monte Carlo methods.

  16. Fiber optic reference frequency distribution to remote beam waveguide antennas

    NASA Technical Reports Server (NTRS)

    Calhoun, Malcolm; Kuhnle, Paul; Law, Julius

    1995-01-01

    In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.

  17. Mounting system for optical frequency reference cavities

    NASA Technical Reports Server (NTRS)

    Notcutt, Mark (Inventor); Hall, John L. (Inventor); Ma, Long-Sheng (Inventor)

    2008-01-01

    A technique for reducing the vibration sensitivity of laser-stabilizing optical reference cavities is based upon an improved design and mounting method for the cavity, wherein the cavity is mounted vertically. It is suspended at one plane, around the spacer cylinder, equidistant from the mirror ends of the cavity. The suspension element is a collar of an extremely low thermal expansion coefficient material, which surrounds the spacer cylinder and contacts it uniformly. Once the collar has been properly located, it is cemented in place so that the spacer cylinder is uniformly supported and does not have to be squeezed at all. The collar also includes a number of cavities partially bored into its lower flat surface, around the axial bore. These cavities are support points, into which mounting base pins will be inserted. Hence the collar is supported at a minimum of three points.

  18. Frequency noise processes in a strontium ion optical clock

    NASA Astrophysics Data System (ADS)

    Barwood, G. P.; Huang, G.; King, S. A.; Klein, H. A.; Gill, P.

    2015-02-01

    A recent comparison of the frequencies of a pair of optical clocks based on the 674 nm 2S1/2-2D5/2 optical clock transition in 88Sr+ has highlighted the need to understand factors affecting frequency instability. We have developed statistical models to show that our clock is capable of reaching the quantum projection noise limit; for our clock using 100 ms probe pulses, this is ˜3 × 10-15/√τ. However, this optical clock uses atomic transitions with a linear Zeeman shift, which can lead to a degradation in stability in the presence of magnetic field noise. We show that this generally leads to an increase in white frequency noise, even in cases dominated by magnetic field flicker or random walk noise. By taking into account both the quantum projection and magnetic field noise we are able to explain our observed frequency instabilities. This analysis will relate to any optical clock with a linear Zeeman shift where cancellation of this shift is achieved by interrogating pairs of components. Furthermore, implementing automatic control of lasers and minimization of micromotion requires pausing of the frequency servo occasionally; this leads to only a small degradation of frequency stability.

  19. Precision spectroscopy of acetylene transitions using an optical frequency synthesizer.

    PubMed

    Ahtee, V; Merimaa, M; Nyholm, K

    2009-09-01

    An optical frequency synthesizer is used for saturation spectroscopy of acetylene near 1540 nm. In the synthesizer, a user-specified frequency is generated from an atomic time base by phase locking the second harmonic of a cw near-IR external-cavity diode laser (ECDL) to a Ti:sapphire frequency comb. By stepping the repetition rate of the frequency comb, the ECDL frequency is swept over an acetylene transition in a saturated absorption spectroscopy setup. Hence, a spectral lineshape is measured with an absolute frequency scale. Line-center frequencies determined by fitting theoretical line profiles to the measured data are in good agreement with values measured with the ECDL stabilized to acetylene by third-harmonic locking and with the values recommended by the International Committee for Weights and Measures (CIPM).

  20. Phase and frequency tracking considerations for heterodyne optical communications

    NASA Astrophysics Data System (ADS)

    Kaufmann, J. E.

    Heterodyne optical communications systems represent a potential for substantial performance improvement over direct detection systems. Certain difficulties can arise, however, in heterodyne systems, in connection with a frequency instability of the employed laser. In general, frequency or phase tracking will be needed at the receiver to avoid significant degradations in communications performance and requirements for increased transmitter power unless very stable lasers are available. The present investigation is concerned with receiver phase and frequency tracking schemes suitable for heterodyne PSK and MFSK (multilevel frequency-shift-keying) systems in a space communications context, although this work is also applicable to fiberoptic systems.

  1. Optical techniques for time and frequency transfer

    NASA Technical Reports Server (NTRS)

    Baumont, Francoise; Gaignebet, Jean

    1994-01-01

    Light has been used as a means for time synchronization for a long time. The flight time was supposed to be negligible. The first scientific determination of the velocity of the light was done by measuring a round trip flight time on a given distance. The well known flying clock experiment leading to Einstein's General Relativity is another example. The advent of lasers, particularly short pulse and modulated ones, as well as the improvements of the timing equipments have led to new concepts for time and frequency transfer. We describe some experiments using different techniques and configurations which have been proposed and tested in this field since the beginning of the space age. Added to that, we set out advantages, drawbacks, and performances achieved in the different cases.

  2. Direct Absorption Spectroscopy with Electro-Optic Frequency Combs

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Long, David A.; Plusquellic, David F.; Hodges, Joseph T.

    2017-06-01

    The application of electro-optic frequency combs to direct absorption spectroscopy has increased research interest in high-agility, modulator-based comb generation. This talk will review common architectures for electro-optic frequency comb generators as well as describe common self-heterodyne and multi-heterodyne (i.e., dual-comb) detection approaches. In order to achieve a sufficient signal-to-noise ratio on the recorded interferogram while allowing for manageable data volumes, broadband electro-optic frequency combs require deep coherent averaging, preferably in real-time. Applications such as cavity-enhanced spectroscopy, precision atomic and molecular spectroscopy, as well as time-resolved spectroscopy will be introduced. D.A. Long et al., Opt. Lett. 39, 2688 (2014) A.J. Fleisher et al., Opt. Express 24, 10424 (2016)

  3. Femtosecond fibre laser stabilisation to an optical frequency standard using a KTP electro-optic crystal

    SciTech Connect

    Nyushkov, B N; Pivtsov, V S; Koliada, N A; Kaplun, A B; Meshalkin, A B

    2015-05-31

    A miniature intracavity KTP-based electro-optic phase modulator has been developed which can be used for effective stabilisation of an optical frequency comb of a femtosecond erbiumdoped fibre laser to an optical frequency standard. The use of such an electro-optic modulator (EOM) has made it possible to extend the working frequency band of a phase-locked loop system for laser stabilisation to several hundred kilohertz. We demonstrate that the KTP-based EOM is sufficiently sensitive even at a small optical length, which allows it to be readily integrated into cavities of femtosecond fibre lasers with high mode frequency spacings (over 100 MHz). (extreme light fields and their applications)

  4. Revealing carrier-envelope phase through frequency mixing and interference in frequency resolved optical gating.

    PubMed

    Snedden, E W; Walsh, D A; Jamison, S P

    2015-04-06

    We demonstrate that full temporal characterisation of few-cycle electromagnetic pulses, including retrieval of the carrier envelope phase (CEP), can be directly obtained from Frequency Resolved Optical Gating (FROG) techniques in which the interference between non-linear frequency mixing processes is resolved. We derive a framework for this scheme, defined Real Domain FROG (ReD-FROG), for the cases of interference between sum and difference frequency components and between fundamental and sum / difference frequency components. A successful numerical demonstration of ReD-FROG as applied to the case of a self-referenced measurement is provided. A proof-of-principle experiment is performed in which the CEP of a single-cycle THz pulse is accurately obtained and demonstrates the possibility for THz detection beyond optical probe duration limitations inherent to electro-optic sampling.

  5. Ultra-broadband microwave frequency down-conversion based on optical frequency comb.

    PubMed

    Fang, Xiao; Bai, Ming; Ye, Xiuzhu; Miao, Jungang; Zheng, Zheng

    2015-06-29

    Based on optical frequency comb (OFC), a photonic-assisted ultra-broadband microwave signal down-converting method is proposed. In the proposed scheme, microwave signal at 2~20GHz can be down-converted to 0~1GHz intermediate frequency (IF) signals by an OFC of 2GHz frequency space at different order of comb lines. By slightly switching the frequency space of OFC, the frequency of the signal to be measured can be retrieved through the frequency shift of the down-converted IF signal. The validity of this proposed unknown signal detection method is verified by the experiments. The proposed method is proven to be flexible, low-cost and easily implemented, which requires only a low-frequency tunable microwave source while provides ultra-broadband down-converting frequency range.

  6. Mid-IR Microresonator-Based Optical Frequency Combs

    DTIC Science & Technology

    2015-09-01

    region of the optical spectrum , a critical enabler for a wide range of new military and civilian chemo/bio sensing applications. 2. Major...observed with a standard optical spectrum analyzer (OSA). This artifact stems from millisecond-scale time averaging performed by OSAs, which masks the...faster dynamics of the chaotic comb. Conversely, the corresponding comb-produced beat note, observed with a radio-frequency (RF) spectrum analyzer

  7. One-way quantum computing in the optical frequency comb.

    PubMed

    Menicucci, Nicolas C; Flammia, Steven T; Pfister, Olivier

    2008-09-26

    One-way quantum computing allows any quantum algorithm to be implemented easily using just measurements. The difficult part is creating the universal resource, a cluster state, on which the measurements are made. We propose a scalable method that uses a single, multimode optical parametric oscillator (OPO). The method is very efficient and generates a continuous-variable cluster state, universal for quantum computation, with quantum information encoded in the quadratures of the optical frequency comb of the OPO.

  8. Differential processing for frequency chirp measurement using optical pulse synthesizer

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Ken; Seki, Satoshi; Tsuda, Hiroyuki; Takenouchi, Hirokazu; Kurokawa, Takashi

    2017-03-01

    In this study, we introduced an optical pulse synthesizer (OPS) to measure frequency chirps of optical pulses by differential processing. The OPS has a single-chip integrated structure of all elements for the differential filtering and enables stable measurement. Because the exact filter causes a large loss, we employed a phase-only filter, whose frequency response was only in phase. We measured chirp rates of pulses which were induced by propagating standard single mode fibers with different lengths. The retrieved chirp rates were comparable to calculated results. We simulated accuracy of the method and concluded that our experiment had phase control accuracy within 0.07π.

  9. Optical frequency comb interference profilometry using compressive sensing.

    PubMed

    Pham, Quang Duc; Hayasaki, Yoshio

    2013-08-12

    We describe a new optical system using an ultra-stable mode-locked frequency comb femtosecond laser and compressive sensing to measure an object's surface profile. The ultra-stable frequency comb laser was used to precisely measure an object with a large depth, over a wide dynamic range. The compressive sensing technique was able to obtain the spatial information of the object with two single-pixel fast photo-receivers, with no mechanical scanning and fewer measurements than the number of sampling points. An optical experiment was performed to verify the advantages of the proposed method.

  10. Multiplexed sub-Doppler spectroscopy with an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Long, D. A.; Fleisher, A. J.; Plusquellic, D. F.; Hodges, J. T.

    2016-12-01

    An optical frequency comb generated with an electro-optic phase modulator and a chirped radio-frequency waveform is used to perform pump-probe spectroscopy on the D1 and D2 transitions of atomic potassium at 770.1 and 766.7 nm, respectively. With a comb tooth spacing of 200 kHz and an optical bandwidth of 2 GHz the hyperfine transitions can be observed simultaneously. Interferograms are recorded in as little as 5 µs (a timescale corresponding to the inverse of the comb tooth spacing). Importantly, the sub-Doppler features can be measured as long as the laser carrier frequency lies within the Doppler profile, thus removing the need for slow scanning or a priori knowledge of the frequencies of the sub-Doppler features. Sub-Doppler optical frequency comb spectroscopy has the potential to dramatically reduce acquisition times and allow for rapid and accurate assignment of complex molecular and atomic spectra which are presently intractable.

  11. Rectennas at optical frequencies: How to analyze the response

    SciTech Connect

    Joshi, Saumil; Moddel, Garret

    2015-08-28

    Optical rectennas, antenna-coupled diode rectifiers that receive optical-frequency electromagnetic radiation and convert it to DC output, have been proposed for use in harvesting electromagnetic radiation from a blackbody source. The operation of these devices is qualitatively different from that of lower-frequency rectennas, and their design requires a new approach. To that end, we present a method to determine the rectenna response to high frequency illumination. It combines classical circuit analysis with classical and quantum-based photon-assisted tunneling response of a high-speed diode. We demonstrate the method by calculating the rectenna response for low and high frequency monochromatic illumination, and for radiation from a blackbody source. Such a blackbody source can be a hot body generating waste heat, or radiation from the sun.

  12. Rectennas at optical frequencies: How to analyze the response

    NASA Astrophysics Data System (ADS)

    Joshi, Saumil; Moddel, Garret

    2015-08-01

    Optical rectennas, antenna-coupled diode rectifiers that receive optical-frequency electromagnetic radiation and convert it to DC output, have been proposed for use in harvesting electromagnetic radiation from a blackbody source. The operation of these devices is qualitatively different from that of lower-frequency rectennas, and their design requires a new approach. To that end, we present a method to determine the rectenna response to high frequency illumination. It combines classical circuit analysis with classical and quantum-based photon-assisted tunneling response of a high-speed diode. We demonstrate the method by calculating the rectenna response for low and high frequency monochromatic illumination, and for radiation from a blackbody source. Such a blackbody source can be a hot body generating waste heat, or radiation from the sun.

  13. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    SciTech Connect

    Dewani, Aliya A. O’Keefe, Steven G.; Thiel, David V.; Galehdar, Amir

    2015-02-15

    A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  14. Multiphoton, optical fiber-based fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Bereś-Pawlik, ElŻbieta; Stawska, Hanna; Popenda, Maciej; Pajewski, Łukasz; Malinowska, Natalia; Hossa, Robert

    2016-12-01

    This paper presents investigation of normal and cancerous tissue by the means of one and two photon fluorescence spectroscopy. A comparison those methods has been conducted, allowing for eventual determination of granting the best possible diagnostic results.

  15. Optoelectronic Infrastructure for Radio Frequency and Optical Phased Arrays

    NASA Technical Reports Server (NTRS)

    Cai, Jianhong

    2015-01-01

    Optoelectronic integrated circuits offer radiation-hardened solutions for satellite systems in addition to improved size, weight, power, and bandwidth characteristics. ODIS, Inc., has developed optoelectronic integrated circuit technology for sensing and data transfer in phased arrays. The technology applies integrated components (lasers, amplifiers, modulators, detectors, and optical waveguide switches) to a radio frequency (RF) array with true time delay for beamsteering. Optical beamsteering is achieved by controlling the current in a two-dimensional (2D) array. In this project, ODIS integrated key components to produce common RF-optical aperture operation.

  16. Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator

    PubMed Central

    Coluccelli, Nicola; Cassinerio, Marco; Gambetta, Alessio; Laporta, Paolo; Galzerano, Gianluca

    2015-01-01

    The frequency noise of an optical frequency comb is routinely measured through the hetherodyne beat of one comb tooth against a stable continuous-wave laser. After frequency-to-voltage conversion, the beatnote is sent to a spectrum analyzer to retrive the power spectral density of the frequency noise. Because narrow-linewidth continuous-wave lasers are available only at certain wavelengths, heterodyning the comb tooth can be challenging. We present a new technique for direct characterization of the frequency noise of an optical frequency comb, requiring no supplementary reference lasers and easily applicable in all spectral regions from the terahertz to the ultraviolet. The technique is based on the combination of a low finesse Fabry-Perot resonator and the so-called “fringe-side locking” method, usually adopted to characterize the spectral purity of single-frequency lasers, here generalized to optical frequency combs. The effectiveness of this technique is demonstrated with an Er-fiber comb source across the wavelength range from 1 to 2 μm. PMID:26548900

  17. Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator.

    PubMed

    Coluccelli, Nicola; Cassinerio, Marco; Gambetta, Alessio; Laporta, Paolo; Galzerano, Gianluca

    2015-11-09

    The frequency noise of an optical frequency comb is routinely measured through the hetherodyne beat of one comb tooth against a stable continuous-wave laser. After frequency-to-voltage conversion, the beatnote is sent to a spectrum analyzer to retrive the power spectral density of the frequency noise. Because narrow-linewidth continuous-wave lasers are available only at certain wavelengths, heterodyning the comb tooth can be challenging. We present a new technique for direct characterization of the frequency noise of an optical frequency comb, requiring no supplementary reference lasers and easily applicable in all spectral regions from the terahertz to the ultraviolet. The technique is based on the combination of a low finesse Fabry-Perot resonator and the so-called "fringe-side locking" method, usually adopted to characterize the spectral purity of single-frequency lasers, here generalized to optical frequency combs. The effectiveness of this technique is demonstrated with an Er-fiber comb source across the wavelength range from 1 to 2 μm.

  18. Kerr optical frequency combs: theory, applications and perspectives

    NASA Astrophysics Data System (ADS)

    Chembo, Yanne K.

    2016-06-01

    The optical frequency comb technology is one of the most important breakthrough in photonics in recent years. This concept has revolutionized the science of ultra-stable lightwave and microwave signal generation. These combs were originally generated using ultrafast mode-locked lasers, but in the past decade, a simple and elegant alternativewas proposed,which consisted in pumping an ultra-high-Q optical resonator with Kerr nonlinearity using a continuous-wave laser. When optimal conditions are met, the intracavity pump photons are redistributed via four-wave mixing to the neighboring cavity modes, thereby creating the so-called Kerr optical frequency comb. Beyond being energy-efficient, conceptually simple, and structurally robust, Kerr comb generators are very compact devices (millimetric down to micrometric size) which can be integrated on a chip. They are, therefore, considered as very promising candidates to replace femtosecond mode-locked lasers for the generation of broadband and coherent optical frequency combs in the spectral domain, or equivalently, narrow optical pulses in the temporal domain. These combs are, moreover, expected to provide breakthroughs in many technological areas, such as integrated photonics, metrology, optical telecommunications, and aerospace engineering. The purpose of this review article is to present a comprehensive survey of the topic of Kerr optical frequency combs.We provide an overview of the main theoretical and experimental results that have been obtained so far. We also highlight the potential of Kerr combs for current or prospective applications, and discuss as well some of the open challenges that are to be met at the fundamental and applied level.

  19. WGM Resonators for Terahertz-to-Optical Frequency Conversion

    NASA Technical Reports Server (NTRS)

    Strekalov,Dmitry; Savchenkov, Anatoliy; Matsko, Andrey; Nu, Nan

    2008-01-01

    Progress has been made toward solving some practical problems in the implementation of terahertz-to-optical frequency converters utilizing whispering-gallery-mode (WGM) resonators. Such frequency converters are expected to be essential parts of non-cryogenic terahertz- radiation receivers that are, variously, under development or contemplated for a variety of applications in airborne and spaceborne instrumentation for astronomical and military uses. In most respects, the basic principles of terahertz-to-optical frequency conversion in WGM resonators are the same as those of microwave (sub-terahertz)-to-optical frequency conversion in WGM resonators, various aspects of which were discussed in the three preceeding articles. To recapitulate: In a receiver following this approach, a preamplified incoming microwave signal (in the present case, a terahertz signal) is up-converted to an optical signal by a technique that exploits the nonlinearity of the electromagnetic response of a whispering-gallery-mode (WGM) resonator made of LiNbO3 or another suitable electro-optical material. Upconversion takes place by three-wave mixing in the resonator. To ensure the required interaction among the optical and terahertz signals, the WGM resonator must be designed and fabricated to function as an electro-optical modulator while simultaneously exhibiting (1) resonance at the required microwave and optical operating frequencies and (2) phase matching among the microwave and optical signals circulating in the resonator. Downstream of the WGM resonator, the up-converted signal is processed photonically by use of a tunable optical filter or local oscillator and is then detected. The practical problems addressed in the present development effort are the following: Satisfaction of the optical and terahertz resonance-frequency requirement is a straightforward matter, inasmuch as the optical and terahertz spectra can be measured. However, satisfaction of the phase-matching requirement is

  20. Optical frequency upconversion technique for transmission of wireless MIMO-type signals over optical fiber.

    PubMed

    Shaddad, R Q; Mohammad, A B; Al-Gailani, S A; Al-Hetar, A M

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.

  1. Optical Frequency Upconversion Technique for Transmission of Wireless MIMO-Type Signals over Optical Fiber

    PubMed Central

    Shaddad, R. Q.; Mohammad, A. B.; Al-Gailani, S. A.; Al-Hetar, A. M.

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength. PMID:24772009

  2. Novel phase-locking schemes for the carrier envelope offset frequency of an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Okubo, Sho; Onae, Atsushi; Hosaka, Kazumoto; Sera, Hideyuki; Inaba, Hajime; Hong, Feng-Lei

    2015-11-01

    We propose simple schemes to phase-lock the carrier envelope offset frequency (fceo) referring to the repetition rate (frep) of an optical frequency comb. We demonstrate the locking of fceo such that fceo = (1/2)frep, (1/3)frep, and (2/3)frep. The Allan deviation and signal-to-noise ratio of the coherent δ-function peak for the in-loop beat signal are 5.3 × 10-17/τ and 80-85 dB·Hz, respectively, where τ is the averaging time of the frequency measurement. These new locking schemes simplify the sign and mode-number determination in frequency measurements.

  3. Method of shifting and fixing optical frequency of an optical resonator, and optical resonator made by same

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy A. (Inventor); Strekalov, Dmitry V. (Inventor); Maleki, Lute (Inventor); Matsko, Andrey B. (Inventor); Iltchenko, Vladimir S. (Inventor); Martin, Jan M. (Inventor)

    2010-01-01

    A method of shifting and fixing an optical frequency of an optical resonator to a desired optical frequency, and an optical resonator made by such a method are provided. The method includes providing an optical resonator having a surface and a refractive index, and obtaining a coating composition having a predetermined concentration of a substance and having a refractive index that is substantially similar to the refractive index of the optical resonator. The coating composition inherently possesses a thickness when it is applied as a coating. The method further includes determining a coating ratio for the surface of the optical resonator and applying the coating composition onto a portion of the surface of the optical resonator based upon the determined coating ratio.

  4. Squeezing Alters Frequency Tuning of WGM Optical Resonator

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Maleki, Lute

    2010-01-01

    Mechanical squeezing has been found to alter the frequency tuning of a whispering-gallery-mode (WGM) optical resonator that has an elliptical shape and is made of lithium niobate. It may be possible to exploit this effect to design reconfigurable optical filters for optical communications and for scientific experiments involving quantum electrodynamics. Some background information is prerequisite to a meaningful description of the squeezing-induced alteration of frequency tuning: The spectrum of a WGM resonator is represented by a comblike plot of intensity versus frequency. Each peak of the comblike plot corresponds to an electromagnetic mode represented by an integer mode number, and the modes are grouped into sets represented by integer mode indices. Because lithium niobate is an electro-optically active material, the WGM resonator can be tuned (that is, the resonance frequencies can be shifted) by applying a suitable bias potential. The frequency shift of each mode is quantified by a tuning rate defined as the ratio between the frequency shift and the applied potential. In the absence of squeezing, all modes exhibit the same tuning rate. This concludes the background information. It has been demonstrated experimentally that when the resonator is squeezed along part of either of its two principal axes, tuning rates differ among the groups of modes represented by different indices (see figure). The differences in tuning rates could be utilized to configure the resonance spectrum to obtain a desired effect; for example, through a combination of squeezing and electrical biasing, two resonances represented by different mode indices could be set at a specified frequency difference something that could not be done through electrical biasing alone.

  5. Frequency-domain single-shot optical frequency comb tomography using VIPA

    NASA Astrophysics Data System (ADS)

    Miyaoka, Takumi; Shioda, Tatsutoshi

    2016-03-01

    Novel two-dimensional single-shot imaging optical system based on Frequency-domain interferometry using a virtually imaged phased array is proposed. The VIPA simultaneously outputs incoherent optical frequency combs (OFCs) whose teeth interval are scanned as a function of its output angle. Teeth intervals of the OFCs only in a reference are spatially swept by using of a VIPA whose advantage compared to an optical resonator. Thus, the single-shot imaging system can be realized with the FSR scanned frequency-domain OFC interference monitored by CCD. This system enable high speed 2-dimensional tomographic image without mechanical moving part. And the axial measurement range is not limited by using multi-order interference that is generated by OFCs interferometry. We will present the operation principle with its confirmed results in terms of both simulation and experiment.

  6. Stabilized Fiber-Optic Distribution of Reference Frequency

    NASA Technical Reports Server (NTRS)

    Calhoun, Malcolm; Tjoelker, Robert; Diener, William; Dick, G. John; Wang, Rabi; Kirk, Albert

    2003-01-01

    An optoelectronic system distributes a reference signal of low noise and highly stabilized phase and frequency (100 MHz) from an atomic frequency standard to a remote facility at a distance up to tens of kilometers. The reference signal is transmitted to the remote station as amplitude modulation of an optical carrier signal propagating in an optical fiber. The stabilization scheme implemented in this system is intended particularly to suppress phase and frequency fluctuations caused by vibrations and by expansion and contraction of the optical fiber and other components in diurnal and seasonal heating and cooling cycles. The system (see figure) comprises several subsystems, the main one being (1) a hydrogen-maser or linear-ion-trap frequency standard in an environmentally controlled room in a signal-processing center (SPC), (2) a stabilized fiber-optic distribution assembly (SFODA), (3) a compensated sapphire oscillator (CSO) in an environmentally controlled room in the remote facility, (4) thermally stabilized distribution amplifiers and cabling from the environmentally controlled room to end users, and (5) performance- measuring equipment.

  7. Optical isotropy at terahertz frequencies using anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Lee, In-Sung; Sohn, Ik-Bu; Kang, Chul; Kee, Chul-Sik; Yang, Jin-Kyu; Lee, Joong Wook

    2016-07-01

    We demonstrate optically isotropic filters in the terahertz (THz) frequency range using structurally anisotropic metamaterials. The proposed metamaterials with two-dimensional arrangements of anisotropic H-shaped apertures show polarization-independent transmission due to the combined effects of the dipole resonances of resonators and antennas. Our results may offer the potential for the design and realization of versatile THz devices and systems.

  8. High frequency optical pulse generation by frequency doubling using polarization rotation

    NASA Astrophysics Data System (ADS)

    Liu, Yang

    2016-05-01

    In this work, we propose and experimentally characterize a stable 40 GHz optical pulse generation by frequency doubling using polarization rotation in a phase modulator (PM). Only half the electrical driving frequency is required (i.e. 20 GHz); hence the deployment cost can be reduced. Besides, precise control of the bias of the PM is not required. The generated optical pulses have a high center-mode-suppression-ratio (CMSR) of  >  28 dB. The single sideband (SSB) noise spectrum is also measured, and the time-domain waveforms under different CMSRs are also analyzed and discussed.

  9. Can precursors improve the transmission of energy at optical frequencies?

    PubMed Central

    Lukofsky, David; Bessette, Jonathan; Jeong, Heejeong; Garmire, Elsa; Österberg, Ulf

    2009-01-01

    The recent interest in precursors has been fuelled by the possibility of using them for the efficient transmission of information through absorbing media at radio or optical frequencies. Here we demonstrate that the low attenuation experienced by the Brillouin precursor is attributed to the inherently low absorption of dispersive media near DC, a characteristic already exploited with communications systems using the extremely low frequency (ELF) band. Pulses, regardless of their temporal width and carrier frequency, always obey Beer's law as long as they propagate in the linear time invariant regime. We conclude with an FDTD simulation of the Maxwell–Bloch equations that shows how optical coherent bleaching effects, which take place in the linear time variant regime of the Lorentz oscillator model, can cause sustained deviations from Beer's law over relatively long distances of water. PMID:19639054

  10. Frequency Comparison of Two High-Accuracy Al+ Optical Clocks

    NASA Astrophysics Data System (ADS)

    Chou, C. W.; Hume, D. B.; Koelemeij, J. C. J.; Wineland, D. J.; Rosenband, T.

    2010-02-01

    We have constructed an optical clock with a fractional frequency inaccuracy of 8.6×10-18, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser cool the Al+ ion and detect its quantum state. The frequency of the S01↔P03 clock transition is compared to that of a previously constructed Al+ optical clock with a statistical measurement uncertainty of 7.0×10-18. The two clocks exhibit a relative stability of 2.8×10-15τ-1/2, and a fractional frequency difference of -1.8×10-17, consistent with the accuracy limit of the older clock.

  11. An optical beam frequency reference with 10{sup -14} range frequency instability

    SciTech Connect

    McFerran, J. J.; Hartnett, J. G.; Luiten, A. N.

    2009-07-20

    The authors report on a thermal beam optical frequency reference with a fractional frequency instability of 9.2x10{sup -14} at 1 s reducing to 2.0x10{sup -14} at 64 s before slowly rising. The {sup 1}S{sub 0}{r_reversible}{sup 3}P{sub 1} intercombination line in neutral {sup 40}Ca is used as a frequency discriminator. A diode laser at 423 nm probes the ground state population after a Ramsey-Borde sequence of 657 nm light-field interactions on the atoms. The measured fractional frequency instability is an order of magnitude improvement on previously reported thermal beam optical clocks. The photon shot-noise of the read-out produces a limiting square root {lambda}-variance of 7x10{sup -14}/{radical}({tau})

  12. Doppler imaging with dual-detection full-range frequency domain optical coherence tomography

    PubMed Central

    Meemon, Panomsak; Lee, Kye-Sung; Rolland, Jannick P.

    2010-01-01

    Most of full-range techniques for Frequency Domain Optical Coherence Tomography (FD-OCT) reported to date utilize the phase relation between consecutive axial lines to reconstruct a complex interference signal and hence may exhibit degradation in either mirror image suppression performance or detectable velocity dynamic range or both when monitoring a moving sample such as flow activity. We have previously reported a technique of mirror image removal by simultaneous detection of the quadrature components of a complex spectral interference called a Dual-Detection Frequency Domain OCT (DD-FD-OCT) [Opt. Lett. 35, 1058-1060 (2010)]. The technique enables full range imaging without any loss of acquisition speed and is intrinsically less sensitive to phase errors generated by involuntary movements of the subject. In this paper, we demonstrate the application of the DD-FD-OCT to a phase-resolved Doppler imaging without degradation in either mirror image suppression performance or detectable velocity dynamic range that were observed in other full-range Doppler methods. In order to accommodate for Doppler imaging, we have developed a fiber-based DD-FD-OCT that more efficiently utilizes the source power compared with the previous free-space DD-FD-OCT. In addition, the velocity sensitivity of the phase-resolved DD-FD-OCT was investigated, and the relation between the measured Doppler phase shift and set flow velocity of a flow phantom was verified. Finally, we demonstrate the Doppler imaging using the DD-FD-OCT in a biological sample. PMID:21258488

  13. Phase-coherent all-optical frequency division by three

    SciTech Connect

    Lee, Dong-Hoon; Klein, Marvin E.; Meyn, Jan-Peter; Wallenstein, Richard; Gross, Petra; Boller, Klaus-Jochen

    2003-01-01

    The properties of all-optical phase-coherent frequency division by 3, based on a self-phase-locked continuous-wave (cw) optical parametric oscillator (OPO), are investigated theoretically and experimentally. The frequency to be divided is provided by a diode laser master-oscillator power-amplifier system operated at a wavelength of 812 nm and used as the pump source of the OPO. Optical self-phase-locking of the OPO signal and idler waves is achieved by mutual injection locking of the signal wave and the intracavity frequency-doubled idler wave. The OPO process and the second-harmonic generation of the idler wave are simultaneously phase matched through quasi-phase-matching using two periodically poled sections of different period manufactured within the same LiNbO{sub 3} crystal. An optical self-phase-locking range of up to 1 MHz is experimentally observed. The phase coherence of frequency division by three is measured via the phase stability of an interference pattern formed by the input and output waves of the OPO. The fractional frequency instability of the divider is measured to be smaller than 7.6x10{sup -14} for a measurement time of 10 s (resolution limited). The self-phase-locking characteristics of the cw OPO are theoretically investigated by analytically solving the coupled field equations in the steady-state regime. For the experimental parameters of the OPO, the calculations predict a locking range of 1.3 MHz and a fractional frequency instability of 1.6x10{sup -15}, in good agreement with the experimental results.

  14. Locking optical frequency comb with a GPS controlled Cs clock

    NASA Astrophysics Data System (ADS)

    Wei, Z.; Han, H.; Zhang, W.; Li, D.; Wang, L.; Shen, N.; Nie, Y.

    We developed an optical frequency comb based on the home-made femtosecond Ti sapphire laser at a repetition rate of 90MHz offest frequency at a signal noise ratio of 45dB was measured with the self-reference technique By locking the offset frequency to the repetition rate frequency we controlled the relative frequency fluctuation within 1Hz Further locking the repetition rate to a Cs clock controlled with a frequency signal which is received from Global Position System GPS a long-term stabilization of 6X10-14 was demonstrated To pursue the new frequency comb worked at the XUV range by high order harmonic generation we also delveloped a new femtosecond oscillator only with three chipred mirrors and a 10 output coupler pulse duration of as shorter as 7fs was directly generated which shows an even simplest laser resonator for few cycles pulse generation Presently we used the frequency comb to measure and compare the actual frequency of an iodine-stabilized 532nm laser an enhanced resonator pumped with the 7fs Ti sapphire laser for XUV comb is being establish

  15. Plasmon nanoparticle superlattices as optical-frequency magnetic metamaterials.

    PubMed

    Alaeian, Hadiseh; Dionne, Jennifer A

    2012-07-02

    Nanocrystal superlattices have emerged as a new platform for bottom-up metamaterial design, but their optical properties are largely unknown. Here, we investigate their emergent optical properties using a generalized semi-analytic, full-field solver based on rigorous coupled wave analysis. Attention is given to superlattices composed of noble metal and dielectric nanoparticles in unary and binary arrays. By varying the nanoparticle size, shape, separation, and lattice geometry, we demonstrate the broad tunability of superlattice optical properties. Superlattices composed of spherical or octahedral nanoparticles in cubic and AB(2) arrays exhibit magnetic permeabilities tunable between 0.2 and 1.7, despite having non-magnetic constituents. The retrieved optical parameters are nearly polarization and angle-independent over a broad range of incident angles. Accordingly, nanocrystal superlattices behave as isotropic bulk metamaterials. Their tunable permittivities, permeabilities, and emergent magnetism may enable new, bottom-up metamaterials and negative index materials at visible frequencies.

  16. Analysis on error of laser frequency locking for fiber optical receiver in direct detection wind lidar based on Fabry-Perot interferometer and improvements

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Dou, Xiankang; Sun, Dongsong; Shu, Zhifeng; Xia, Haiyun; Gao, Yuanyuan; Hu, Dongdong; Shangguan, Mingjia

    2014-12-01

    Direct detection Doppler wind lidar (DWL) has been demonstrated for its capability of atmospheric wind detection ranging from the troposphere to stratosphere with high temporal and spatial resolution. We design and describe a fiber-based optical receiver for direct detection DWL. Then the locking error of the relative laser frequency is analyzed and the dependent variables turn out to be the relative error of the calibrated constant and the slope of the transmission function. For high accuracy measurement of the calibrated constant for a fiber-based system, an integrating sphere is employed for its uniform scattering. What is more, the feature of temporally widening the pulse laser allows more samples be acquired for the analog-to-digital card of the same sampling rate. The result shows a relative error of 0.7% for a calibrated constant. For the latter, a new improved locking filter for a Fabry-Perot Interferometer was considered and designed with a larger slope. With these two strategies, the locking error for the relative laser frequency is calculated to be about 3 MHz, which is equivalent to a radial velocity of about 0.53 m/s and demonstrates the effective improvements of frequency locking for a robust DWL.

  17. Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation

    PubMed Central

    Vakoc, B. J.; Yun, S. H.; Tearney, G. J.; Bouma, B. E.

    2009-01-01

    A novel optical frequency-domain imaging system is demonstrated that employs a passive optical demodulation circuit and a chirped digital acquisition clock derived from a voltage-controlled oscillator. The demodulation circuit allows the separation of signals from positive and negative depths to better than 50 dB, thereby eliminating depth degeneracy and doubling the imaging depth range. Our system design is compatible with dual-balanced and polarization-diverse detection, important techniques in the practical biomedical application of optical frequency-domain imaging. PMID:16480209

  18. Parametric frequency upconversion, optical fiber transmission, and streak camera recording

    SciTech Connect

    Lowry, M.E.; Rotter, M.D.

    1987-01-30

    The use of optical fiber for the transmission of information over relatively long distances is being recognized as the only viable solution to many data transmission problems, particularly those requiring high information density and faithful temporal content. This necessary reliance upon the optical carrier has meant that the image-tube based optical streak camera is often the instrument of choice for recording single-shot multi-parameter events with high temporal resolution. However, current photocathode technology is incompatible with the trend of the optical fiber industry toward the use of the 1300 to 1600 nm wavelength regime. To retain the advantages of optical streak-camera recording and optical fiber transmission, a way must be found to ''upconvert'' the optical carrier to higher energy. This report describes the use of an intense lazer pump beam coincident with the IR signal into a non-linear crystal (LiIO/sub 3/) to increase the signal's frequency. A beam splitter is used to separate the signal from the pump beam at the detector. The physical theory underlying this process is described. (JDH)

  19. Generation of frequency-chirped optical pulses with felix

    SciTech Connect

    Knippels, G.M.H.; Meer, A.F.G. van der; Mols, R.F.X.A.M.

    1995-12-31

    Frequency-chirped optical pulses have been produced in the picosecond regime by varying the energy of the electron beam on a microsecond time scale. These pulses were then compressed close to their bandwidth limit by an external pulse compressor. The amount of chirp can be controlled by varying the sweep rate on the electron beam energy and by cavity desynchronisation. To examine the generated chirp we used the following diagnostics: a pulse compressor, a crossed beam autocorrelator, a multichannel electron spectrometer and multichannel optical spectrometer. The compressor is build entirely using reflective optics to permit broad band operation. The autocorrelator is currently operating from 6 {mu}m to 30 {mu}m with one single crystal. It has been used to measure pulses as short as 500 fs. All diagnostics are evacuated to prevent pulse shape distortion or pulse lengthening caused by absorption in ambient water vapour. Pulse length measurements and optical spectra will be presented for different electron beam sweep rates, showing the presence of a frequency chirp. Results on the compression of the optical pulses to their bandwidth limit are given for different electron sweep rates. More experimental results showing the dependence of the amount of chirp on cavity desynchronisation will be presented.

  20. Optical Frequency Measurements Relying on a Mid-Infrared Frequency Standard

    NASA Astrophysics Data System (ADS)

    Rovera, G. Daniele; Acef, Ouali

    Only a small number of groups are capable of measuring optical frequencies throughout the world. In this contribution we present some of the underlying philosophy of such frequency measurement systems, including some important theoretical hints. In particular, we concentrate on the approach that has been used with the BNM-LPTF frequency chain, where a separate secondary frequency standard in the mid-infrared has been used. The low-frequency section of the chain is characterized by a measurement of the phase noise spectral density Sφ at 716GHz.Most of the significant measurements performed in the last decade are briefly presented, together with a report on the actual stability and reproducibility of the CO2/ OsO4 frequency standard.Measuring the frequency of an optical frequency standard by direct comparison with the signal available at the output of a primary frequency standard (usually between 5MHz and 100MHz) requires a multiplication factor greater than 107. A number of possible configurations, using harmonic generation, sum or difference frequency generation, have been proposed and realized in the past [1,2,3,4,5,6] and in more recent times [7]. A new technique, employing a femtosecond laser, is presently giving its first impressive results [8].All of the classical frequency chains require a large amount of manpower, together with a great deal of simultaneously operating hardware. This has the consequence that only a very few systems are actually in an operating condition throughout the world.

  1. Enhanced link availability for free space optical time-frequency transfer using adaptive optic terminals

    NASA Astrophysics Data System (ADS)

    Petrillo, Keith G.; Dennis, Michael L.; Juarez, Juan C.; Souza, Katherine T.; Baumann, Esther; Bergeron, Hugo; Coddington, Ian; Deschenes, Jean-Daniel; Giorgetta, Fabrizio R.; Newbury, Nathan R.; Sinclair, Laura C.; Swann, William C.

    2016-05-01

    Optical time and frequency transfer offers extremely high precision wireless synchronization across multiple platforms for untethered distributed systems. While large apertures provide antenna gain for wireless systems which leads to robust link budgets and operation over increased distance, turbulence disrupts the beam and limits the full realization of the antenna gain. Adaptive optics can correct for phase distortions due to turbulence which potentially increases the total gain of the aperture to that for diffraction-limited operation. Here, we explore the use of adaptive optics terminals for free-space time and frequency transfer. We find that the requirement of reciprocity in a two-way time and frequency transfer link is maintained during the phase compensation of adaptive optics, and that the enhanced link budget due to aperture gain allows for potential system operation over ranges of at least tens of kilometers.

  2. Fibre optics wavemeters calibration using a self-referenced optical frequency comb

    SciTech Connect

    Galindo-Santos, J.; Velasco, A. V.; Corredera, P.

    2015-01-15

    Self-referenced optical frequency combs enable the measurement of optical frequencies with a very high accuracy, achieving uncertainties close to the atomic clock used as reference (<10{sup −13} s). In this paper, we present the technique for the measurement of laser frequencies for optical communications followed at IO-CSIC and its application to the calibration of two wavemeters in the 1.5 μm optical communication window. Calibration uncertainties down to 12 MHz and 59 MHz were obtained, respectively, for each of the devices. Furthermore, the long-term behaviour of the higher resolution wavemeter was studied during a 750 h period of sustained operation, exhibiting a dispersion in the measurements of 7.72 MHz. Temperature dependence of the device was analysed, enabling to further reduce dispersion down to a 2.15 MHz range, with no significant temporal deviations.

  3. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers

    PubMed Central

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-01-01

    A glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba2TiSi2O8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers. PMID:28358045

  4. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers.

    PubMed

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-03-30

    A glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba2TiSi2O8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.

  5. Nonlinear magneto-optical rotation with frequency-modulated light

    NASA Astrophysics Data System (ADS)

    Kimball, Derek Forrest

    We demonstrate a magnetometric technique suitable for precision measurements of fields ranging from the sub-microgauss level to above the Earth field. It is based on resonant nonlinear magneto-optical rotation (NMOR) caused by alkali atoms contained in a vapor cell with anti-relaxation (paraffin) wall coating. The physical mechanisms causing NMOR are discussed in detail, with particular attention paid to the role of optically induced atomic polarization---responsible for the ultra-narrow (˜1 Hz) NMOR resonances we employ for magnetometric measurements. Linearly polarized, frequency-modulated laser light is used for optical pumping and probing. If the time-dependent optical rotation is measured at the first harmonic of the modulation frequency Om, ultra-narrow resonances are observed at near-zero magnetic fields, and at fields where the Larmor frequency OL is an integer multiple of the light modulation frequency. We demonstrate a sensitivity of 5 x 10-10G/ Hz and show that the projected magnetometric sensitivity of the technique can exceed 10-11G/ Hz . The technique of nonlinear magneto-optical rotation with frequency-modulated light (FM NMOR) allows selective generation and study of atomic polarization moments of up to the highest rank kappa = 2F possible for a quantum state with total angular momentum F. Various polarization moments are distinguished by the periodicity of light-polarization rotation induced by the atoms during Larmor precession and exhibit distinct light-intensity and frequency dependences. We study the FM NMOR signals from various optically induced polarization moments of Rb atoms. We also report on the use of an atomic magnetometer based on FM NMOR to detect nuclear magnetization of xenon gas. The magnetization of a spin-exchange-polarized xenon sample, prepared remotely to the detection apparatus, is measured with an atomic sensor. An average magnetic field of ˜10 nG induced by the xenon sample on the atomic sensor is detected with signal

  6. Frequency-dependent optical steering from subwavelength plasmonic structures.

    PubMed

    Djalalian-Assl, A; Gómez, D E; Roberts, A; Davis, T J

    2012-10-15

    We show theoretically and with numerical simulations that the direction of the in-plane scattering from a subwavelength optical antenna system can be controlled by the frequency of the incident light. This optical steering effect does not rely on propagation phase shifts or diffraction but arises from phase shifts in the localized surface plasmon modes of the antenna. An analytical model is developed to optimize the parameters for the configuration, showing good agreement with a rigorous numerical simulation. The simulation predicts a 25° angular shift in the direction of the light scattered from two gold nanorods for a wavelength change of 12 nm.

  7. Frequency converter implementing an optical analogue of the cosmological redshift.

    PubMed

    Ginis, Vincent; Tassin, Philippe; Craps, Ben; Veretennicoff, Irina

    2010-03-01

    According to general relativity, the frequency of electromagnetic radiation is altered by the expansion of the universe. This effect-commonly referred to as the cosmological redshift--is of utmost importance for observations in cosmology. Here we show that this redshift can be reproduced on a much smaller scale using an optical analogue inside a dielectric metamaterial with time-dependent material parameters. To this aim, we apply the framework of transformation optics to the Robertson-Walker metric. We demonstrate theoretically how perfect redshifting or blueshifting of an electromagnetic wave can be achieved without the creation of sidebands with a device of finite length.

  8. Analysis of secured Optical Orthogonal Frequency Division Multiplexed System

    NASA Astrophysics Data System (ADS)

    Gill, Harsimranjit Singh; Bhatia, Kamaljit Singh; Gill, Sandeep Singh

    2017-05-01

    In this paper, security issues for optical orthogonal frequency division multiplexed (OFDM) systems are emphasized. The encryption has been done on the data of coded OFDM symbols using data encryption standard (DES) algorithm before transmitting through the fiber. The results obtained justify that the DES provides better security to the input data without further bandwidth requirement. The data is transmitted to a distance of 1,000 km in a single-mode fiber with 16-quadrature amplitude modulation. The peak-to-average power ratio and optical signal-to-noise ratio of secure coded OFDM signal is fairly better than the conventional OFDM signal.

  9. Offset-free broadband Yb:fiber optical frequency comb for optical clocks.

    PubMed

    Nakamura, Takuma; Ito, Isao; Kobayashi, Yohei

    2015-07-27

    We demonstrate a passively offset-frequency stabilized optical frequency comb centered at 1060 nm. The offset-free comb was achieved through difference frequency generation (DFG) between two portions of a supercontinuum based on a Yb:fiber laser. As the DFG comb had only one degree of freedom, repetition frequency, full stabilization was achieved via locking one of the modes to an ultra-stable continuous wave (CW) laser. The DFG comb provided sufficient average power to enable further amplification, using Yb-doped fiber amplifier, and spectral broadening. The spectrum spanned from 690 nm to 1300 nm and the average power was of several hundred mW, which could be ideal for the comparison of optical clocks, such as optical lattice clocks operated with Sr (698 nm) and Hg (1063 nm) reference atoms.

  10. Nonlinear optics at low powers: Alternative mechanism of on-chip optical frequency comb generation

    NASA Astrophysics Data System (ADS)

    Rogov, Andrei S.; Narimanov, Evgenii E.

    2016-12-01

    Nonlinear optical effects provide a natural way of light manipulation and interaction and form the foundation of applied photonics, from high-speed signal processing and telecommunication to ultrahigh-bandwidth interconnects and information processing. However, relatively weak nonlinear response at optical frequencies calls for operation at high optical powers or boosting efficiency of nonlinear parametric processes by enhancing local-field intensity with high-quality-factor resonators near cavity resonance, resulting in reduced operational bandwidth and increased loss due to multiphoton absorption. We present an alternative to this conventional approach, with strong nonlinear optical effects at low local intensities, based on period-doubling bifurcations near nonlinear cavity antiresonance and apply it to low-power optical frequency comb generation in a silicon chip.

  11. Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb.

    PubMed

    Wu, Xuejian; Wei, Haoyun; Zhang, Hongyuan; Ren, Libing; Li, Yan; Zhang, Jitao

    2013-04-01

    We present a frequency-sweeping heterodyne interferometer to measure an absolute distance based on a frequency-tunable diode laser calibrated by an optical frequency comb (OFC) and an interferometric phase measurement system. The laser frequency-sweeping process is calibrated by the OFC within a range of 200 GHz and an accuracy of 1.3 kHz, which brings about a precise temporal synthetic wavelength of 1.499 mm. The interferometric phase measurement system consisting of the analog signal processing circuit and the digital phase meter achieves a phase difference resolution better than 0.1 deg. As the laser frequency is sweeping, the absolute distance can be determined by measuring the phase difference variation of the interference signals. In the laboratory condition, our experimental scheme realizes micrometer accuracy over meter distance.

  12. A distributed fiber optic sensor system for dike monitoring using Brillouin optical frequency domain analysis

    NASA Astrophysics Data System (ADS)

    Nöther, Nils; Wosniok, Aleksander; Krebber, Katerina; Thiele, Elke

    2008-03-01

    We report on the development of a complete system for spatially resolved detection of critical soil displacement in river embankments. The system uses Brillouin frequency domain analysis (BOFDA) for distributed measurement of strain in silica optical fibers. Our development consists of the measurement unit, an adequate coating for the optical fibers and a technique to integrate the coated optical fibers into geotextiles as they are commonly used in dike construction. We present several laboratory and field tests that prove the capability of the system to detect areas of soil displacement as small as 2 meters. These are the first tests of truly distributed strain measurements on optical fibers embedded into geosynthetics.

  13. Detecting high-frequency gravitational waves with optically levitated sensors.

    PubMed

    Arvanitaki, Asimina; Geraci, Andrew A

    2013-02-15

    We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.

  14. Routes to spatiotemporal chaos in Kerr optical frequency combs

    SciTech Connect

    Coillet, Aurélien; Chembo, Yanne K.

    2014-03-15

    We investigate the various routes to spatiotemporal chaos in Kerr optical frequency combs, obtained through pumping an ultra-high Q-factor whispering-gallery mode resonator with a continuous-wave laser. The Lugiato–Lefever model is used to build bifurcation diagrams with regards to the parameters that are externally controllable, namely, the frequency and the power of the pumping laser. We show that the spatiotemporal chaos emerging from Turing patterns and solitons display distinctive dynamical features. Experimental spectra of chaotic Kerr combs are also presented for both cases, in excellent agreement with theoretical spectra.

  15. Stable fiber-based Fabry-Perot cavity

    SciTech Connect

    Steinmetz, T.; Colombe, Y.; Hunger, D.; Haensch, T. W.; Balocchi, A.; Warburton, R. J.; Reichel, J.

    2006-09-11

    The development of a fiber-based, tunable optical cavity with open access is reported. The cavity is of the Fabry-Perot type and is formed with miniature spherical mirrors positioned on the end of single- or multimode optical fibers by a transfer technique, which involves lifting a high-quality mirror from a smooth convex substrate, either a ball lens or microlens. The cavities typically have a finesse of {approx}1000 and a mode volume of 600 {mu}m{sup 3}. The detection of small ensembles of cold Rb atoms guided through such a cavity on an atom chip is demonstrated.

  16. Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances.

    PubMed

    Wen, Fangfang; Zhang, Yue; Gottheim, Samuel; King, Nicholas S; Zhang, Yu; Nordlander, Peter; Halas, Naomi J

    2015-06-23

    A charge transfer plasmon (CTP) appears when an optical-frequency conductive pathway between two metallic nanoparticles is established, enabling the transfer of charge between nanoparticles when the plasmon is excited. Here we investigate the properties of the CTP in a nanowire-bridged dimer geometry. Varying the junction geometry controls its conductance, which modifies the resonance energies and scattering intensities of the CTP while also altering the other plasmon modes of the nanostructure. Reducing the junction conductance shifts this resonance to substantially lower energies in the near- and mid-infrared regions of the spectrum. The CTP offers both a high-information probe of optical frequency conductances in nanoscale junctions and a new, unique approach to controllably engineering tunable plasmon modes at infrared wavelengths.

  17. Cascade frequency generation regime in an optical parametric oscillator

    SciTech Connect

    Kolker, D B; Dmitriev, Aleksandr K; Gorelik, P; Vong, Franko; Zondy, J J

    2009-05-31

    In a parametric oscillator of a special two-sectional design based on a lithium niobate periodic structure, a cascade frequency generation regime was observed in which a signal wave pumped a secondary parametric oscillator, producing secondary signal and idler waves. The secondary parametric oscillator can be tuned in a broad range of {approx}200 nm with respect to a fixed wavelength of the primary idler wave. (nonlinear optical phenomena)

  18. Optical properties of human nails in THz frequency range

    NASA Astrophysics Data System (ADS)

    Guseva, Victoria A.; Gusev, Sviatoslav I.; Demchenko, Petr S.; Sedykh, Egor A.; Khodzitsky, Mikhail K.

    2017-03-01

    This work is devoted to investigation of optical properties (dispersion of refractive index, permittivity and absorption coefficient) of human nails in THz frequency range. These data were obtained by THz time-domain spectroscopy (TDS) technique in transmission mode. These results may be used to develop non-invasive technique of human pathologies control using nail as reference sample in reflection mode of THz TDS.

  19. Simultaneous transfer of optical frequency and time over 306 km long-haul optical fibre link

    NASA Astrophysics Data System (ADS)

    Hucl, Vaclav; Cizek, Martin; Pravdova, Lenka; Rerucha, Simon; Hrabina, Jan; Mikel, Bretislav; Smotlacha, Vladimir; Vojtech, Josef; Lazar, Josef; Cip, Ondrej

    2016-12-01

    Optical fibre links for distributing optical frequencies and time stamps were researched and experimentally tested in the past fifteen years. They have been used mainly for stability comparison of experimental optical clocks. But recent development puts demands on a technology transfer from laboratory experiments to the real industry. The remote calibration of interrogators of Fibre Bragg Grating strain sensory networks is one of important examples. The first step of the adoption the time and frequency broadcasting should be the drop-out free long-term operation of this technology between research laboratories connected via long-haul fibre links. We present a 306 km long-haul optical fibre link between the cities of Prague and Brno in the Czech Republic where a coherent transfer of stable optical frequency and a stable time signal has been firstly demonstrated. The link between ISI CAS Brno and CESNET Prague uses an internet communication fibre where a window of 1540-1546 nm is dedicated for the coherent transfer and 1PPS signal. The link is equipped with 6 bidirectional EDFA amplifiers. The optical frequency standard based on the highly-coherent laser Koheras Adjustik working at 1540.5 nm and stabilized with a saturation absorption spectroscopy technique was used for the coherent wave transfer. The suppression of the Doppler shift induced by the optical fibre was based on an accoustooptical modulator with a servo-loop including a fast PID controller processing the beat-note frequency given by mixing of the Adjustik laser (Brno) and the reflected frequency of this laser from the far end of 306 km long-haul fibre link (Prague). We verified the Doppler shift suppression for the coherent wave with a measuring method analysing the transport delay of the 1PPS signal.

  20. Frequency-domain optical tomographic imaging of arthritic finger joints.

    PubMed

    Hielscher, Andreas H; Kim, Hyun Keol; Montejo, Ludguier D; Blaschke, Sabine; Netz, Uwe J; Zwaka, Paul A; Illing, Gerd; Muller, Gerhard A; Beuthan, Jürgen

    2011-10-01

    We are presenting data from the largest clinical trial on optical tomographic imaging of finger joints to date. Overall we evaluated 99 fingers of patients affected by rheumatoid arthritis (RA) and 120 fingers from healthy volunteers. Using frequency-domain imaging techniques we show that sensitivities and specificities of 0.85 and higher can be achieved in detecting RA. This is accomplished by deriving multiple optical parameters from the optical tomographic images and combining them for the statistical analysis. Parameters derived from the scattering coefficient perform slightly better than absorption derived parameters. Furthermore we found that data obtained at 600 MHz leads to better classification results than data obtained at 0 or 300 MHz.

  1. Synthesis of Optical Frequencies and Ultrastable Femtosecond Pulse Trains from an Optical Reference Oscillator

    NASA Astrophysics Data System (ADS)

    Bartels, A.; Ramond, T. M.; Diddams, S. A.; Hollberg, L.

    Recently, atomic clocks based on optical frequency standards have been demonstrated [1,2]. A key element in these clocks is a femtosecond laser that downconverts the petahertz oscillation rate into countable ticks at 1 GHz. When compared to current microwave standards, these new optical clocks are expected to yield an improvement in stability and accuracy by roughly a factor of 1000. Furthermore, it is possible that the lowest noise microwave sources will soon be based on atomically-stabilized optical oscillators that have their frequency converted to the microwave domain via a femtosecond laser. Here, we present tests of the ability of femtosecond lasers to transfer stability from an optical oscillator to their repetition rates as well as to the associated broadband frequency comb. In a first experiment, we phase-lock two lasers to a stabilized laser diode and find that the relative timing jitter in their pulse trains can be on the order of 1 femtosecond in a 100 kHz bandwidth. It is important to distinguish this technique from previous work where a femtosecond laser has been stabilized to a microwave standard [3,4] or another femtosecond laser [5]. Furthermore, we extract highly stable microwave signals with a fractional frequency instability of 2×10-14 in 1 s by photodetection of the laser pulse trains. In a second experiment, we similarly phase-lock the femtosecond laser to an optical oscillator with linewidth less than 1 Hz [6]. The precision with which we can make the femtosecond frequency comb track this reference oscillator is then tested by a heterodyne measurement between a second stable optical oscillator and a mode of the frequency comb that is displaced 76 THz from the 1 Hz-wide reference. From this heterodyne signal we place an upper limit of 150 Hz on the linewidth of the elements of the frequency comb, limited by the noise in the measurement itself.

  2. Frequency-time coherence for all-optical sampling without optical pulse source

    PubMed Central

    Preußler, Stefan; Raoof Mehrpoor, Gilda; Schneider, Thomas

    2016-01-01

    Sampling is the first step to convert an analogue optical signal into a digital electrical signal. The latter can be further processed and analysed by well-known electrical signal processing methods. Optical pulse sources like mode-locked lasers are commonly incorporated for all-optical sampling, but have several drawbacks. A novel approach for a simple all-optical sampling is to utilise the frequency-time coherence of each signal. The method is based on only using two coupled modulators driven with an electrical sine wave. Since no optical source is required, a simple integration in appropriate platforms, such as Silicon Photonics might be possible. The presented method grants all-optical sampling with electrically tunable bandwidth, repetition rate and time shift. PMID:27687495

  3. Comparing a mercury optical lattice clock with microwave and optical frequency standards

    NASA Astrophysics Data System (ADS)

    Tyumenev, R.; Favier, M.; Bilicki, S.; Bookjans, E.; Le Targat, R.; Lodewyck, J.; Nicolodi, D.; Le Coq, Y.; Abgrall, M.; Guéna, J.; De Sarlo, L.; Bize, S.

    2016-11-01

    In this paper we report the evaluation of an optical lattice clock based on neutral mercury with a relative uncertainty of 1.7× {10}-16. Comparing this characterized frequency standard to a 133Cs atomic fountain we determine the absolute frequency of the {}1{{{S}}}0\\to {}3{{{P}}}0 transition of 199Hg as {ν }{Hg}=1128 575 290 808 154.62 {Hz}+/- 0.19 {Hz}({statistical})+/- 0.38 {Hz} (systematic), limited solely by the realization of the SI second. Furthermore, by comparing the mercury optical lattice clock to a 87Rb atomic fountain, we determine for the first time to our knowledge the ratio between the 199Hg clock transition and the 87Rb ground state hyperfine transition. Finally we present a direct optical to optical measurement of the 199Hg/87Sr frequency ratio. The obtained value of {ν }{Hg}/{ν }{Sr} = 2.629 314 209 898 909 15 with a fractional uncertainty of 1.8× {10}-16 is in excellent agreement with a similar measurement obtained by Yamanaka et al (2015 Phys. Rev. Lett. 114 230801). This makes this frequency ratio one of the few physical quantities agreed upon by different laboratories to this level of uncertainty. Frequency ratio measurements of the kind reported in this paper have a strong impact for frequency metrology and fundamental physics as they can be used to monitor putative variations of fundamental constants.

  4. High-Performance Optical Frequency References for Space

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Döringshoff, Klaus; Milke, Alexander; Sanjuan, Josep; Gohlke, Martin; Kovalchuk, Evgeny V.; Gürlebeck, Norman; Peters, Achim; Braxmaier, Claus

    2016-06-01

    A variety of future space missions rely on the availability of high-performance optical clocks with applications in fundamental physics, geoscience, Earth observation and navigation and ranging. Examples are the gravitational wave detector eLISA (evolved Laser Interferometer Space Antenna), the Earth gravity mission NGGM (Next Generation Gravity Mission) and missions, dedicated to tests of Special Relativity, e.g. by performing a Kennedy- Thorndike experiment testing the boost dependence of the speed of light. In this context we developed optical frequency references based on Doppler-free spectroscopy of molecular iodine; compactness and mechanical and thermal stability are main design criteria. With a setup on engineering model (EM) level we demonstrated a frequency stability of about 2·10-14 at an integration time of 1 s and below 6·10-15 at integration times between 100s and 1000s, determined from a beat-note measurement with a cavity stabilized laser where a linear drift was removed from the data. A cavity-based frequency reference with focus on improved long-term frequency stability is currently under development. A specific sixfold thermal shield design based on analytical methods and numerical calculations is presented.

  5. Atomically referenced 1-GHz optical parametric oscillator frequency comb.

    PubMed

    McCracken, Richard A; Balskus, Karolis; Zhang, Zhaowei; Reid, Derryck T

    2015-06-15

    The visible to mid-infrared coverage of femtosecond optical parametric oscillator (OPO) frequency combs makes them attractive resources for high-resolution spectroscopy and astrophotonic spectrograph calibration. Such applications require absolute traceability and wide comb-tooth spacing, attributes which until now have remained unavailable from any single OPO frequency comb. Here, we report a 1-GHz Ti:sapphire pumped OPO comb whose repetition and offset frequencies are referenced to Rb-stabilised microwave and laser oscillators respectively. This technique simultaneously achieves fully stabilized combs from both the Ti:sapphire laser and the OPO with sub-MHz comb-tooth linewidths, multi-hour locking stability and without the need for super-continuum generation.

  6. Spectrometer employing optical fiber time delays for frequency resolution

    DOEpatents

    Schuss, Jack J.; Johnson, Larry C.

    1979-01-01

    This invention provides different length glass fibers for providing a broad range of optical time delays for short incident chromatic light pulses for the selective spatial and frequency analysis of the light with a single light detector. To this end, the frequencies of the incident light are orientated and matched with the different length fibers by dispersing the separate frequencies in space according to the respective fiber locations and lengths at the input terminal of the glass fibers. This makes the different length fibers useful in the field of plasma physics. To this end the short light pulses can be scattered by a plasma and then passed through the fibers for analyzing and diagnosing the plasma while it varies rapidly with time.

  7. Optical Frequency Comb Spectroscopy of Rare Earth Atoms

    NASA Astrophysics Data System (ADS)

    Swiatlowski, Jerlyn; Palm, Christopher; Joshi, Trinity; Montcrieffe, Caitlin; Jackson Kimball, Derek

    2013-05-01

    We discuss progress in our experimental program to employ optical-frequency-comb-based spectroscopy to understand the complex spectra of rare-earth atoms. We plan to carry out systematic measurements of atomic transitions in rare-earth atoms to elucidate the energy level structure and term assignment and determine presently unknown atomic state parameters. This spectroscopic information is important in view of the increasing interest in rare-earth atoms for atomic frequency standards, in astrophysical investigations of chemically peculiar stars, and in tests of fundamental physics (tests of parity and time-reversal invariance, searches for time variation of fundamental constants, etc.). We are presently studying the use of hollow cathode lamps as atomic sources for two-photon frequency comb spectroscopy. Supported by the National Science Foundation under grant PHY-0958749.

  8. A simplified tunable frequency interval optical frequency comb generator using a single continuous-wave laser

    NASA Astrophysics Data System (ADS)

    Liu, Li; Xu, Tie-feng; Dai, Zhen-xiang; Dai, Shi-xun; Liu, Tai-jun

    2017-03-01

    We propose and demonstrate a simplified and tunable frequency interval optical frequency comb (OFC) generator based on a dual-drive Mach-Zehnder modulator (DD-MZM) using a single continuous-wave (CW) laser and low-power radio frequency (RF) driven signal. A mathematical model for the scheme is established. The 21- and 29-mode OFCs with frequency interval ranging from 6 GHz to 40 GHz are obtained under DD-MZM driven by a low-power RF signal within a maximum bandwidth of 1.12 THz. The generated OFCs exhibit spectral flatnesses of less than 0.5 dB and 0.8 dB within bandwidths of 160 GHz and 400 GHz, respectively.

  9. An Optical Frequency Comb Tied to GPS for Laser Frequency/Wavelength Calibration

    PubMed Central

    Stone, Jack A.; Egan, Patrick

    2010-01-01

    Optical frequency combs can be employed over a broad spectral range to calibrate laser frequency or vacuum wavelength. This article describes procedures and techniques utilized in the Precision Engineering Division of NIST (National Institute of Standards and Technology) for comb-based calibration of laser wavelength, including a discussion of ancillary measurements such as determining the mode order. The underlying purpose of these calibrations is to provide traceable standards in support of length measurement. The relative uncertainty needed to fulfill this goal is typically 10−8 and never below 10−12, very modest requirements compared to the capabilities of comb-based frequency metrology. In this accuracy range the Global Positioning System (GPS) serves as an excellent frequency reference that can provide the traceable underpinning of the measurement. This article describes techniques that can be used to completely characterize measurement errors in a GPS-based comb system and thus achieve full confidence in measurement results. PMID:27134794

  10. Defining and measuring optical frequencies: the optical clock opportunity--and more (Nobel lecture).

    PubMed

    Hall, John L

    2006-11-13

    Four long-running currents in laser technology met and merged in 1999-2000. Two of these were the quest toward a stable repetitive sequence of ever-shorter optical pulses and, on the other hand, the quest for the most time-stable, unvarying optical frequency possible. The marriage of ultrafast- and ultrastable lasers was brokered mainly by two international teams and became exciting when a special "designer" microstructure optical fiber was shown to be nonlinear enough to produce "white light" from the femtosecond laser pulses, such that the output spectrum embraced a full optical octave. Then, for the first time, one could realize an optical frequency interval equal to the comb's lowest frequency, and count out this interval as a multiple of the repetition rate of the femtosecond pulse laser. This "gear-box" connection between the radiofrequency standard and any/all optical frequency standards came just as sensitivity-enhancing ideas were maturing. The four-way union empowered an explosion of accurate frequency measurement results in the standards field and prepared the way for refined tests of some of our cherished physical principles, such as the time-stability of some of the basic numbers in physics (e.g. the "fine-structure" constant, the speed of light, certain atomic mass ratios), and the equivalence of time-keeping by clocks based on different physics. The stable laser technology also allows time-synchronization between two independent femtosecond lasers so exact they can be made to appear as if the source were a single laser. By improving pump-probe experiments, one important application will be in bond-specific spatial scanning of biological samples. This next decade in optical physics should be a blast!

  11. Flat nonlinear optics: metasurfaces for efficient frequency mixing

    NASA Astrophysics Data System (ADS)

    Nookala, Nishant; Lee, Jongwon; Liu, Yingnan; Bishop, Wells; Tymchenko, Mykhailo; Gomez-Diaz, J. Sebastian; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus-Christian; Wolf, Omri; Brener, Igal; Alu, Andrea; Belkin, Mikhail A.

    2017-02-01

    Gradient metasurfaces, or ultrathin optical components with engineered transverse impedance gradients along the surface, are able to locally control the phase and amplitude of the scattered fields over subwavelength scales, enabling a broad range of linear components in a flat, integrable platform1-4. On the contrary, due to the weakness of their nonlinear optical responses, conventional nonlinear optical components are inherently bulky, with stringent requirements associated with phase matching and poor control over the phase and amplitude of the generated beam. Nonlinear metasurfaces have been recently proposed to enable frequency conversion in thin films without phase-matching constraints and subwavelength control of the local nonlinear phase5-8. However, the associated optical nonlinearities are far too small to produce significant nonlinear conversion efficiency and compete with conventional nonlinear components for pump intensities below the materials damage threshold. Here, we report multi-quantum-well based gradient nonlinear metasurfaces with second-order nonlinear susceptibility over 106 pm/V for second harmonic generation at a fundamental pump wavelength of 10 μm, 5-6 orders of magnitude larger than traditional crystals. Further, we demonstrate the efficacy of this approach to designing metasurfaces optimized for frequency conversion over a large range of wavelengths, by reporting multi-quantum-well and metasurface structures optimized for a pump wavelength of 6.7 μm. Finally, we demonstrate how the phase of this nonlinearly generated light can be locally controlled well below the diffraction limit using the Pancharatnam-Berry phase approach5,7,9, opening a new paradigm for ultrathin, flat nonlinear optical components.

  12. GENERAL: A diode laser spectrometer at 634 nm and absolute frequency measurements using optical frequency comb

    NASA Astrophysics Data System (ADS)

    Yi, Lin; Yuan, Jie; Qi, Xiang-Hui; Chen, Wen-Lan; Zhou, Da-Wei; Zhou, Tong; Zhou, Xiao-Ji; Chen, Xu-Zong

    2009-04-01

    This paper reports that two identical external-cavity-diode-laser (ECDL) based spectrometers are constructed at 634 nm referencing on the hyperfine B-X transition R(80)8-4 of 127I2. The lasers are stabilized on the Doppler-free absorption signals using the third-harmonic detection technique. The instability of the stabilized laser is measured to be 2.8 × 10-12 (after 1000 s) by counting the beat note between the two lasers. The absolute optical frequency of the transition is, for the first time, determined to be 472851936189.5 kHz by using an optical frequency comb referenced on the microwave caesium atomic clock. The uncertainty of the measurement is less than 4.9 kHz.

  13. Multiplication of the frequency shift of optical radiation by means of cascade acousto-optic interaction

    SciTech Connect

    Kotov, V M

    2000-04-30

    A method for increasing the frequency shift of optical radiation by means of cascade acousto-optic diffraction of light is proposed and studied. The method is based on special features of anisotropic diffraction in an anisotropic medium and optical properties of gyrotropic media. Five-cascade diffraction of radiation from a He - Ne laser ({lambda}=0.633 {mu}m) in a TeO{sub 2} single crystal with an efficiency of 8% was obtained experimentally. (laser applications and other topics in quantum electronics)

  14. Cross-correlation frequency-resolved optical gating for characterization of an ultrashort optical pulse train

    NASA Astrophysics Data System (ADS)

    Nakano, Yuta; Imasaka, Totaro

    2017-05-01

    A technique involving cross-correlation frequency-resolved optical gating is applied in characterizing an optical pulse train consisting of several spectral components. An optical beat was used as a reference pulse for measuring the relative spectral phase among the spectral components in the test pulse generated by four-wave Raman mixing in hydrogen gas. It was confirmed that a change in the relative phase can be measured by monitoring the shift in the interference fringe and that Raman emissions generated by four-wave Raman mixing are phase locked.

  15. Frequency comparison of optical lattice clocks beyond the Dick limit

    NASA Astrophysics Data System (ADS)

    Takamoto, Masao; Takano, Tetsushi; Katori, Hidetoshi

    2011-05-01

    The supreme accuracy of atomic clocks relies on the universality of atomic transition frequencies. The stability of a clock, meanwhile, measures how quickly the clock's statistical uncertainties are reduced. The ultimate measure of stability is provided by the quantum projection noise, which improves as 1/√N by measuring N uncorrelated atoms. Quantum projection noise limited stabilities have been demonstrated in caesium clocks and in single-ion optical clocks, where the quantum noise overwhelms the Dick effect attributed to local oscillator noise. Here, we demonstrate a synchronous frequency comparison of two optical lattice clocks using 87Sr and 88Sr atoms, respectively, for which the Allan standard deviation reached 1 × 10-17 in an averaging time of 1,600 s by cancelling out the Dick effect to approach the quantum projection noise limit. The scheme demonstrates the advantage of using a large number (N ~ 1,000) of atoms in optical clocks and paves the way to investigating the inherent uncertainties of clocks and relativistic geodesy on a timescale of tens of minutes.

  16. Frequency-domain optical mammography: edge effect corrections.

    PubMed

    Fantini, S; Franceschini, M A; Gaida, G; Gratton, E; Jess, H; Mantulin, W W; Moesta, K T; Schlag, P M; Kaschke, M

    1996-01-01

    We have investigated the problem of edge effects in laser-beam transillumination scanning of the human breast. Edge effects arise from tissue thickness variability along the scanned area, and from lateral photon losses through the sides of the breast. Edge effects can be effectively corrected in frequency-domain measurements by employing a two-step procedure: (1) use of the phase information to calculate an effective tissue thickness for each pixel location; (2) application of the knowledge of tissue thickness to calculate an edge-corrected optical image from the ac signal image. The measurements were conducted with a light mammography apparatus (LIMA) designed for feasibility tests in the clinical environment. Operating in the frequency-domain (110 MHz), this instrument performs a transillumination optical scan at two wavelengths (685 and 825 nm). We applied the proposed two-step procedure to data from breast phantoms and from human breasts. The processed images provide higher contrast and detectability in optical mammography with respect to raw data breast images.

  17. Optimal light harvesting structures at optical and infrared frequencies.

    PubMed

    Villate-Guío, F; López-Tejeira, F; García-Vidal, F J; Martín-Moreno, L; de León-Pérez, F

    2012-11-05

    One-dimensional light harvesting structures with a realistic geometry nano-patterned on an opaque metallic film are optimized to render high transmission efficiencies at optical and infrared frequencies. Simple design rules are developed for the particular case of a slit-groove array with a given number of grooves that are symmetrically distributed with respect to a central slit. These rules take advantage of the hybridization of Fabry-Perot modes in the slit and surface modes of the corrugated metal surface. Same design rules apply for optical and infrared frequencies. The parameter space of the groove array is also examined with a conjugate gradient optimization algorithm that used as a seed the geometries optimized following physical intuition. Both uniform and nonuniform groove arrays are considered. The largest transmission enhancement, with respect to a uniform array, is obtained for a chirped groove profile. Such relative enhancement is a function of the wavelength. It decreases from 39 % in the optical part of the spectrum to 15 % at the long wavelength infrared.

  18. Fast interrogation of fiber Bragg grating sensors using electro-optic dual optical frequency combs

    NASA Astrophysics Data System (ADS)

    Bonilla-Manrique, O. E.; Garcia-Souto, J. A.; Martin-Mateos, P.; Jerez-Gonzalez, B.; Acedo, P.

    2015-09-01

    In this document, a FBG interrogation system based on a multimode optical source and a direct read-out is proposed for measuring fast phenomena such as vibrations and ultrasounds. The system is based on an electro-optic dual optical frequency-comb. This architecture allows the configuration of the multimode optical source parameters such as the number of modes that are within the reflected spectrum (FWHM) of the FBG. Results are presented for the dual-comb operating under optimized control when mapping these optical modes onto detectable tones of multiples of 100 kHz around a centre radiofrequency tone (40 MHz). Dynamic strain is induced onto the fiber through an actuator, which generates changes in the reflected wavelength of the FBG and in turn the modes within the reflected spectrum. The electrical signals are analyzed using fast Fourier transform algorithms allowing identification of the vibrations.

  19. Effect of soil temperature on optical frequency transfer through unidirectional dense-wavelength-division-multiplexing fiber-optic links.

    PubMed

    Pinkert, T J; Böll, O; Willmann, L; Jansen, G S M; Dijck, E A; Groeneveld, B G H M; Smets, R; Bosveld, F C; Ubachs, W; Jungmann, K; Eikema, K S E; Koelemeij, J C J

    2015-02-01

    Results of optical frequency transfer over a carrier-grade dense-wavelength-division-multiplexing (DWDM) optical fiber network are presented. The relation between soil temperature changes on a buried optical fiber and frequency changes of an optical carrier through the fiber is modeled. Soil temperatures, measured at various depths by the Royal Netherlands Meteorology Institute (KNMI) are compared with observed frequency variations through this model. A comparison of a nine-day record of optical frequency measurements through the 2×298  km fiber link with soil temperature data shows qualitative agreement. A soil temperature model is used to predict the link stability over longer periods (days-months-years). We show that optical frequency dissemination is sufficiently stable to distribute and compare, e.g., rubidium frequency standards over standard DWDM optical fiber networks using unidirectional fibers.

  20. High-frequency H-PDLC optical chopper for frequency division multiplexing fluorescence confocal microscope system

    NASA Astrophysics Data System (ADS)

    Jiang, Yanmeng; Zheng, Jihong; Tang, Pingyu; Wang, Tingting; Huang, Aiqin; Zhou, Zengjun; Zhuang, Songlin

    2011-10-01

    The optical chopper array based on Holographic Polymer Dispersed Liquid Crystal (H-PDLC) working at high frequencies, for example 1KHz, 2KHz, and its application in an improved Frequency Division Multiplexed Fluorescence Confocal Microscope (FDMFCM) system are reported in this article. The system is a combination of the confocal microscopy and the frequency division multiplexing technique. Taking advantages of the optical chopper array based on H-PDLC that avoids mechanical movements, the FDMFCM system is able to obtain better Signal-Noise Ratio (SNR), smaller volume, more independent channels and more efficient scanning. What's more, the FDMCFM maintained the high special resolution ability and realized faster temporal resolution than pervious system. Using the proposed device, the FDMFCM system conducts successful parallel detection of rat neural cells. Fluorescence intensity signals from two different points on the specimen, which represent concentration of certain kind of proteins in the sample cells, are achieved. The experimental results show that the proposed H-PDLC optical chopper array has feasibility in FDMFCM system, which owes to its unique characteristics such as fast response, simple fabrication and lower consumption etc. With the development of H-PDLC based devices, there will be prospective in upgrading FDMFCM system's performance in the biomedical area.

  1. 1-GHz harmonically pumped femtosecond optical parametric oscillator frequency comb.

    PubMed

    Balskus, K; Leitch, S M; Zhang, Z; McCracken, R A; Reid, D T

    2015-01-26

    We present the first example of a femtosecond optical parametric oscillator frequency comb harmonically-pumped by a 333-MHz Ti:sapphire laser to achieve a stabilized signal comb at 1-GHz mode spacing in the 1.1-1.6-µm wavelength band. Simultaneous locking of the comb carrier-envelope-offset and repetition frequencies is achieved with uncertainties over 1 s of 0.27 Hz and 5 mHz respectively, which are comparable with those of 0.27 Hz and 1.5 mHz achieved for 333-MHz fundamental pumping. The phase-noise power-spectral density of the CEO frequency integrated from 1 Hz-64 kHz was 2.8 rad for the harmonic comb, 1.0 rad greater than for fundamental pumping. The results show that harmonic operation does not substantially compromise the frequency-stability of the comb, which is shown to be limited only by the Rb atomic frequency reference used.

  2. Invited Article: A compact optically coherent fiber frequency comb

    NASA Astrophysics Data System (ADS)

    Sinclair, L. C.; Deschênes, J.-D.; Sonderhouse, L.; Swann, W. C.; Khader, I. H.; Baumann, E.; Newbury, N. R.; Coddington, I.

    2015-08-01

    We describe the design, fabrication, and performance of a self-referenced, optically coherent frequency comb. The system robustness is derived from a combination of an optics package based on polarization-maintaining fiber, saturable absorbers for mode-locking, high signal-to-noise ratio (SNR) detection of the control signals, and digital feedback control for frequency stabilization. The output is phase-coherent over a 1-2 μm octave-spanning spectrum with a pulse repetition rate of ˜200 MHz and a residual pulse-to-pulse timing jitter <3 fs well within the requirements of most frequency-comb applications. Digital control enables phase coherent operation for over 90 h, critical for phase-sensitive applications such as timekeeping. We show that this phase-slip free operation follows the fundamental limit set by the SNR of the control signals. Performance metrics from three nearly identical combs are presented. This laptop-sized comb should enable a wide-range of applications beyond the laboratory.

  3. Invited Article: A compact optically coherent fiber frequency comb.

    PubMed

    Sinclair, L C; Deschênes, J-D; Sonderhouse, L; Swann, W C; Khader, I H; Baumann, E; Newbury, N R; Coddington, I

    2015-08-01

    We describe the design, fabrication, and performance of a self-referenced, optically coherent frequency comb. The system robustness is derived from a combination of an optics package based on polarization-maintaining fiber, saturable absorbers for mode-locking, high signal-to-noise ratio (SNR) detection of the control signals, and digital feedback control for frequency stabilization. The output is phase-coherent over a 1-2 μm octave-spanning spectrum with a pulse repetition rate of ∼200 MHz and a residual pulse-to-pulse timing jitter <3 fs well within the requirements of most frequency-comb applications. Digital control enables phase coherent operation for over 90 h, critical for phase-sensitive applications such as timekeeping. We show that this phase-slip free operation follows the fundamental limit set by the SNR of the control signals. Performance metrics from three nearly identical combs are presented. This laptop-sized comb should enable a wide-range of applications beyond the laboratory.

  4. Noise-Immune Cavity-Enhanced Optical Frequency Comb Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rutkowski, Lucile; Khodabakhsh, Amir; Johanssson, Alexandra C.; Foltynowicz, Aleksandra

    2015-06-01

    We present noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS), a recently developed technique for sensitive, broadband, and high resolution spectroscopy. In NICE-OFCS an optical frequency comb (OFC) is locked to a high finesse cavity and phase-modulated at a frequency precisely equal to (a multiple of) the cavity free spectral range. Since each comb line and sideband is transmitted through a separate cavity mode in exactly the same way, any residual frequency noise on the OFC relative to the cavity affects each component in an identical manner. The transmitted intensity contains a beat signal at the modulation frequency that is immune to frequency-to-amplitude noise conversion by the cavity, in a way similar to continuous wave noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS). The light transmitted through the cavity is detected with a fast-scanning Fourier-transform spectrometer (FTS) and the NICE-OFCS signal is obtained by fast Fourier transform of the synchronously demodulated interferogram. Our NICE-OFCS system is based on an Er:fiber femtosecond laser locked to a cavity with a finesse of ˜9000 and a fast-scanning FTS equipped with a high-bandwidth commercial detector. We measured NICE-OFCS signals from the 3νb{1}+νb{3} overtone band of CO_2 around 1.57 μm and achieved absorption sensitivity 6.4×10-11cm-1 Hz-1/2 per spectral element, corresponding to a minimum detectable CO_2 concentration of 25 ppb after 330 s integration time. We will describe the principles of the technique and its technical implementation, and discuss the spectral lineshapes of the NICE-OFCS signals. A. Khodabakhsh, C. Abd Alrahman, and A. Foltynowicz, Opt. Lett. 39, 5034-5037 (2014). J. Ye, L. S. Ma, and J. L. Hall, J. Opt. Soc. Am. B 15, 6-15 (1998). A. Khodabakhsh, A. C. Johansson, and A. Foltynowicz, Appl. Phys. B (2015) doi:10.1007/s00340-015-6010-7.

  5. RA diagnostics applying optical tomography in frequency domain

    NASA Astrophysics Data System (ADS)

    Klose, Alexander D.; Prapavat, Viravuth; Minet, Olaf; Beuthan, Juergen; Mueller, Gerhard J.

    1998-01-01

    Our aim is to reconstruct the optical parameters in a slice of a finger joint phantom for further investigations about rheumatoid arthritis (RA). Therefore, we have developed a flexible NIR scanning system in order to collect amplitude and phase delay of photon density waves in frequency-domain. A cylindrical finger joint phantom was embedded in a container of Intralipid solution due to the application of an inverse method for infinite geometry. The joint phantom was investigated by a laser beam obtaining several projections. The average optical parameters of each projection was calculated. Using different reconstruction techniques, e.g. ART and SIRT with a special projection operator, we reconstructed the optical parameters in a slice. The projection operator can be heuristically described by a photon path density function of a homogeneous media with infinite geometry. Applied to an object with an unknown distribution of optical parameters it calculates the expectation value of the investigated object. The potentials and limits of these fast reconstruction methods will be presented.

  6. Optical frequency comb based multi-band microwave frequency conversion for satellite applications.

    PubMed

    Yang, Xinwu; Xu, Kun; Yin, Jie; Dai, Yitang; Yin, Feifei; Li, Jianqiang; Lu, Hua; Liu, Tao; Ji, Yuefeng

    2014-01-13

    Based on optical frequency combs (OFC), we propose an efficient and flexible multi-band frequency conversion scheme for satellite repeater applications. The underlying principle is to mix dual coherent OFCs with one of which carrying the input signal. By optically channelizing the mixed OFCs, the converted signal in different bands can be obtained in different channels. Alternatively, the scheme can be configured to generate multi-band local oscillators (LO) for widely distribution. Moreover, the scheme realizes simultaneous inter- and intra-band frequency conversion just in a single structure and needs only three frequency-fixed microwave sources. We carry out a proof of concept experiment in which multiple LOs with 2 GHz, 10 GHz, 18 GHz, and 26 GHz are generated. A C-band signal of 6.1 GHz input to the proposed scheme is successfully converted to 4.1 GHz (C band), 3.9 GHz (C band) and 11.9 GHz (X band), etc. Compared with the back-to-back (B2B) case measured at 0 dBm input power, the proposed scheme shows a 9.3% error vector magnitude (EVM) degradation at each output channel. Furthermore, all channels satisfy the EVM limit in a very wide input power range.

  7. Software reconfigurable highly flexible gain switched optical frequency comb source.

    PubMed

    Pascual, M Deseada Gutierrez; Zhou, Rui; Smyth, Frank; Anandarajah, Prince M; Barry, Liam P

    2015-09-07

    The authors present the performance and noise properties of a software reconfigurable, FSR and wavelength tunable gain switched optical frequency comb source. This source, based on the external injection of a temperature tuned Fabry-Pérot laser diode, offers quasi-continuous wavelength tunability over the C-band (30nm) and FSR tunability ranging from 6 to 14GHz. The results achieved demonstrate the excellent spectral quality of the comb tones (RIN ~-130dB/Hz and low phase noise of 300kHz) and its outstanding stability (with fluctuations of the individual comb tones of less than 0.5dB in power and 5pm in wavelength, characterized over 24hours) highlighting its suitability for employment in next generation flexible optical transmission networks.

  8. Multimodal optical molecular image reconstruction with frequency domain measurements.

    PubMed

    Bartels, M; Chen, W; Bardhan, R; Ke, S; Halas, N J; Wareing, T; McGhee, J; Joshi, A

    2009-01-01

    Multimodality molecular imaging is becoming more and more important to understand both the structural and the functional characteristics of tissue, organs and tumors. So far, invasive nuclear methods utilizing ionizing radiation have been the "gold standard" of molecular imaging. We investigate non-contact, non-invasive, patient-tolerant and inexpensive near infrared (NIR) frequency domain optical tomography (FDOT) as a functional complement to structural X-ray computed tomography (CT) data. We show a novel multifrequency NIR FDOT approach both in transmission and reflectance mode and employ radiative transport equation (RTE) for 3D reconstruction of a target with novel fluorescent gold nanoshell indocyanine green (NS ICG) in an ex vivo nude mouse. The results demonstrate that gold NS ICG with multifrequency NIR FDOT is a promising fluorophore for multimodal optical molecular image reconstruction.

  9. Multiphoton Raman Atom Optics with Frequency-Swept Adiabatic Passage

    NASA Astrophysics Data System (ADS)

    Kotru, Krish; Butts, David; Kinast, Joseph; Stoner, Richard

    2016-05-01

    Light-pulse atom interferometry is a promising candidate for future inertial navigators, gravitational wave detectors, and measurements of fundamental physical constants. The sensitivity of this technique, however, is often limited by the small momentum separations created between interfering atom wave packets (typically ~ 2 ℏk) . We address this issue using light-pulse atom optics derived from stimulated Raman transitions and frequency-swept adiabatic rapid passage (ARP). In experiments, these Raman ARP atom optics have generated up to 30 ℏk photon recoil momenta in an acceleration-sensitive atom interferometer, thereby enhancing the phase shift per unit acceleration by a factor of 15. Since this approach forgoes evaporative cooling and velocity selection, it could enable large-area atom interferometry at higher data rates, while also lowering the atom shot-noise-limited measurement uncertainty.

  10. Coherent multi-dimensional spectroscopy at optical frequencies in a single beam with optical readout

    NASA Astrophysics Data System (ADS)

    Seiler, Hélène; Palato, Samuel; Kambhampati, Patanjali

    2017-09-01

    Ultrafast coherent multi-dimensional spectroscopies form a powerful set of techniques to unravel complex processes, ranging from light-harvesting, chemical exchange in biological systems to many-body interactions in quantum-confined materials. Yet these spectroscopies remain complex to implement at the high frequencies of vibrational and electronic transitions, thereby limiting their widespread use. Here we demonstrate the feasibility of two-dimensional spectroscopy at optical frequencies in a single beam. Femtosecond optical pulses are spectrally broadened to a relevant bandwidth and subsequently shaped into phase coherent pulse trains. By suitably modulating the phases of the pulses within the beam, we show that it is possible to directly read out the relevant optical signals. This work shows that one needs neither complex beam geometries nor complex detection schemes in order to measure two-dimensional spectra at optical frequencies. Our setup provides not only a simplified experimental design over standard two-dimensional spectrometers but its optical readout also enables novel applications in microscopy.

  11. Tunable radio frequency photonics filter using a comb-based optical tapped delay line with an optical nonlinear multiplexer.

    PubMed

    Ziyadi, Morteza; Mohajerin-Ariaei, Amirhossein; Chitgarha, Mohammad Reza; Khaleghi, Salman; Almaiman, Ahmed; Cao, Yinwen; Abouzaid, Amin; Shamee, Bishara; Tur, Moshe; Paraschis, Loukas; Langrock, Carsten; Fejer, Martin M; Touch, Joseph D; Willner, Alan E

    2015-07-15

    A radio frequency (RF) photonic filter is experimentally demonstrated using an optical tapped delay line (TDL) based on an optical frequency comb and a periodically poled lithium niobate (PPLN) waveguide as multiplexer. The approach is used to implement RF filters with variable bandwidth, shape, and center-frequency.

  12. Design of plasmonic toroidal metamaterials at optical frequencies.

    PubMed

    Huang, Yao-Wei; Chen, Wei Ting; Wu, Pin Chieh; Fedotov, Vassili; Savinov, Vassili; Ho, You Zhe; Chau, Yuan-Fong; Zheludev, Nikolay I; Tsai, Din Ping

    2012-01-16

    Toroidal multipoles are the subject of growing interest because of their unusual electromagnetic properties different from the electric and magnetic multipoles. In this paper, we present two new related classes of plasmonic metamaterial composed of purposely arranged of four U-shaped split ring resonators (SRRs) that show profound resonant toroidal responses at optical frequencies. The toroidal and magnetic responses were investigated by the finite-element simulations. A phenomenon of reversed toroidal responses at higher and lower resonant frequencies has also been reported between this two related metamaterials which results from the electric and magnetic dipoles interaction. Finally, we propose a physical model based on coupled LC circuits to quantitatively analyze the coupled system of the plasmonic toroidal metamaterials.

  13. Multiplexed Saturation Spectroscopy with Electro-Optic Frequency Combs

    NASA Astrophysics Data System (ADS)

    Long, David A.; Fleisher, Adam J.; Plusquellic, David F.; Hodges, Joseph T.

    2017-06-01

    Electro-optic frequency combs recently have been applied to a wide range of physical and spectroscopic measurements because of attributes including, simplicity, robustness, flexibility, phase coherence, and high spectral power density. As an illustrative example, I will focus upon multiplexed saturation spectroscopy of atomic potassium (^{39}K) using ultra-high resolution frequency combs which contain up to a million individual teeth with spacings between 2 kHz and 2 MHz. Through the use of a self-heterodyne detection method, we have been able to simultaneously observe phenomena such as hole burning, hyperfine pumping, and electromagnetically induced transparency. I will discuss these measurements as well as future applications in molecular and atomic spectroscopy.

  14. Lattice-induced nonadiabatic frequency shifts in optical lattice clocks

    SciTech Connect

    Beloy, K.

    2010-09-15

    We consider the frequency shift in optical lattice clocks which arises from the coupling of the electronic motion to the atomic motion within the lattice. For the simplest of three-dimensional lattice geometries this coupling is shown to affect only clocks based on blue-detuned lattices. We have estimated the size of this shift for the prospective strontium lattice clock operating at the 390-nm blue-detuned magic wavelength. The resulting fractional frequency shift is found to be on the order of 10{sup -18} and is largely overshadowed by the electric quadrupole shift. For lattice clocks based on more complex geometries or other atomic systems, this shift could potentially be a limiting factor in clock accuracy.

  15. Study on optical frequency domain reflectometry based on tunable semiconductor laser

    NASA Astrophysics Data System (ADS)

    Li, Guoyu; Liu, Tongqing; Zhang, Liwei; Guan, Bai-ou

    2009-11-01

    The relation of beat frequency, sweep rate, optical frequency modulation excursion and length of fiber under test (FUT) based on tunable semiconductor laser is studied. Experimental results show that the frequency of beat signal will increase when the length of the FUT, optical frequency modulation excursion or sweep rate increases.

  16. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.

    PubMed

    Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo

    2016-11-26

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  17. All-optical stabilization of a soliton frequency comb in a crystalline microresonator.

    PubMed

    Jost, J D; Lucas, E; Herr, T; Lecaplain, C; Brasch, V; Pfeiffer, M H P; Kippenberg, T J

    2015-10-15

    We demonstrate the all-optical stabilization of a low-noise temporal soliton based microresonator based optical frequency comb in a crystalline resonator via a new technique to control the repetition rate. This is accomplished by thermally heating the microresonator with an additional probe laser coupled to an auxiliary optical resonator mode. The carrier-envelope offset frequency is controlled by stabilizing the pump laser frequency to a reference optical frequency comb. We analyze the stabilization by performing an out-of-loop comparison and measure the overlapping Allan deviation. This all-optical stabilization technique can prove useful as an actuator for self-referenced microresonator frequency combs.

  18. Fiber based polarization filter for radially and azimuthally polarized light.

    PubMed

    Jocher, Christoph; Jauregui, Cesar; Voigtländer, Christian; Stutzki, Fabian; Nolte, Stefan; Limpert, Jens; Tünnermann, Andreas

    2011-09-26

    We demonstrate a new fiber based concept to filter azimuthally or radially polarized light. This concept is based on the lifting of the modal degeneracy that takes place in high numerical aperture fibers. In such fibers, the radially and azimuthally polarized modes can be spectrally separated using a fiber Bragg grating. As a proof of principle, we filter azimuthally polarized light in a commercially available fiber in which a fiber Bragg grating has been written by a femtosecond pulsed laser. © 2011 Optical Society of America

  19. Fiber optic probe of free electron evanescent fields in the optical frequency range

    SciTech Connect

    So, Jin-Kyu MacDonald, Kevin F.; Zheludev, Nikolay I.

    2014-05-19

    We introduce an optical fiber platform which can be used to interrogate proximity interactions between free-electron evanescent fields and photonic nanostructures at optical frequencies in a manner similar to that in which optical evanescent fields are sampled using nanoscale aperture probes in scanning near-field microscopy. Conically profiled optical fiber tips functionalized with nano-gratings are employed to couple electron evanescent fields to light via the Smith-Purcell effect. We demonstrate the interrogation of medium energy (30–50 keV) electron fields with a lateral resolution of a few micrometers via the generation and detection of visible/UV radiation in the 700–300 nm (free-space) wavelength range.

  20. Multiple optical probing of high frequency semiconductor devices

    NASA Astrophysics Data System (ADS)

    Fetterman, Harold

    1989-11-01

    The purchase was made of a complete Nd:YAG pumped picosecond dye laser and related optical components. Matching support was provided for an autocorrelator, power meters, lock-in detectors and Optical Table to form a complete measurement system. The idea was to fabricate a picosecond system which would measure devices and systems out to at least 200 GHz. It would be used to validate Network analyzer measurements in the region of overlap and to develop a degree of confidence in the entire technique of S parameter measurement using picosecond pulses. The highest frequency GaAs and GaAs alloy devices were investigated. New types of devices, MMIC amplifiers and finally the operational constraints of optical interconnections were studied. The system proved to be so useful that all of these tests were preformed and were extended to the generation of millimeter radiation and the demonstration of spectroscopic use. Current measurements are on ballistic field effect devices and resonant tunneling structures which were fabricated by local industries and universities directly as a result of this unique measurement capability.

  1. BPSK optical mm-wave signal generation by septupling frequency via a single optical phase modulator

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Ma, Jianxin

    2016-09-01

    In this paper, we have proposed a novel and simple scheme to generate the BPSK optical millimeter wave (MMW) signal with frequency septupling by using an optical phase modulator (PM) and a wavelength selective switch (WSS). In this scheme, the PM is driven by a radio frequency (RF) BPSK signal at the optimized modulation index of 4.89 to assure the 4th and 3rd-order sidebands have equal amplitudes. An wavelength selective switch (WSS) is used to abstract the -4th and +3rd-order sidebands from the spectrum generated by RF BPSK signal modulating the lightwave to form the BPSK optical MMW signal with frequency septupling the driving RF signal. In these two tones, only the +3rd-order sideband bears the BPSK signal while the -4th-order sideband is unmodulated since the phase information is canceled by the even times multiplication of the phase of BPSK signal. The MMW signal can avoid the pulse walk-off effect and the amplitude fading effect caused by the fiber chromatic dispersion. By adjusting the modulation index to assure the two tones have equal amplitude, the generated optical MMW signal has the maximal opto-electrical conversion efficiency and good transmission performance.

  2. Automatic analysis of ciliary beat frequency using optical flow

    NASA Astrophysics Data System (ADS)

    Figl, Michael; Lechner, Manuel; Werther, Tobias; Horak, Fritz; Hummel, Johann; Birkfellner, Wolfgang

    2012-02-01

    Ciliary beat frequency (CBF) can be a useful parameter for diagnosis of several diseases, as e.g. primary ciliary dyskinesia. (PCD). CBF computation is usually done using manual evaluation of high speed video sequences, a tedious, observer dependent, and not very accurate procedure. We used the OpenCV's pyramidal implementation of the Lukas-Kanade algorithm for optical flow computation and applied this to certain objects to follow the movements. The objects were chosen by their contrast applying the corner detection by Shi and Tomasi. Discrimination between background/noise and cilia by a frequency histogram allowed to compute the CBF. Frequency analysis was done using the Fourier transform in matlab. The correct number of Fourier summands was found by the slope in an approximation curve. The method showed to be usable to distinguish between healthy and diseased samples. However there remain difficulties in automatically identifying the cilia, and also in finding enough high contrast cilia in the image. Furthermore the some of the higher contrast cilia are lost (and sometimes found) by the method, an easy way to distinguish the correct sub-path of a point's path have yet to be found in the case where the slope methods doesn't work.

  3. Optical frequency domain reflectometry: principles and applications in fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Kreger, Stephen T.; Rahim, Nur Aida Abdul; Garg, Naman; Klute, Sandra M.; Metrey, Daniel R.; Beaty, Noah; Jeans, James W.; Gamber, Robert

    2016-05-01

    Optical Frequency Domain Reflectometry (OFDR) is the basis of an emerging high-definition distributed fiber optic sensing (HD-FOS) technique that provides an unprecedented combination of resolution and sensitivity. OFDR employs swept laser interferometry to produce strain or temperature vs. sensor length with fiber Bragg gratings (FBGs) or Rayleigh scatter as the source signal. We look at the influence of HD-FOS on design and test of new, lighter weight, stronger and more fuel efficient vehicles. Examples include defect detection, model verification and structural health monitoring of composites, and temperature distribution monitoring of battery packs and inverters in hybrid and electric powertrains.

  4. Acousto-optical combined frequency splitters and shifters as components of a ring optical gyroscope

    SciTech Connect

    Kotov, V M

    1999-03-31

    An analysis is made of the task of symmetrisation of a Y-type directional coupler and of shifting the frequency of counterpropagating waves in a ring gyroscope by means of the relatively recently discovered new type of acousto-optical diffraction when the incident radiation is diffracted simultaneously into two orders. Anisotropic and isotropic acousto-optical diffraction in a uniaxial crystal is considered and expressions convenient for calculations are derived. Experiments carried out on isotropic diffraction in LiNbO{sub 3} confirm, on the whole, the theoretical predictions. (laser applications and other topics in quantum electronics)

  5. Measuring absolute frequencies beyond the GPS limit via long-haul optical frequency dissemination.

    PubMed

    Clivati, Cecilia; Cappellini, Giacomo; Livi, Lorenzo F; Poggiali, Francesco; de Cumis, Mario Siciliani; Mancini, Marco; Pagano, Guido; Frittelli, Matteo; Mura, Alberto; Costanzo, Giovanni A; Levi, Filippo; Calonico, Davide; Fallani, Leonardo; Catani, Jacopo; Inguscio, Massimo

    2016-05-30

    Global Positioning System (GPS) dissemination of frequency standards is ubiquitous at present, providing the most widespread time and frequency reference for the majority of industrial and research applications worldwide. On the other hand, the ultimate limits of the GPS presently curb further advances in high-precision, scientific and industrial applications relying on this dissemination scheme. Here, we demonstrate that these limits can be reliably overcome even in laboratories without a local atomic clock by replacing the GPS with a 642-km-long optical fiber link to a remote primary caesium frequency standard. Through this configuration we stably address the 1S0-3P0 clock transition in an ultracold gas of 173Yb, with a precision that exceeds the possibilities of a GPS-based measurement, dismissing the need for a local clock infrastructure to perform beyond-GPS high-precision tasks. We also report an improvement of two orders of magnitude in the accuracy on the transition frequency reported in literature.

  6. Compact optical processor for Hough and frequency domain features

    NASA Astrophysics Data System (ADS)

    Ott, Peter

    1996-11-01

    Shape recognition is necessary in a broad band of applications such as traffic sign or work piece recognition. It requires not only neighborhood processing of the input image pixels but global interconnection of them. The Hough transform (HT) performs such a global operation and it is well suited in the preprocessing stage of a shape recognition system. Translation invariant features can be easily calculated form the Hough domain. We have implemented on the computer a neural network shape recognition system which contains a HT, a feature extraction, and a classification layer. The advantage of this approach is that the total system can be optimized with well-known learning techniques and that it can explore the parallelism of the algorithms. However, the HT is a time consuming operation. Parallel, optical processing is therefore advantageous. Several systems have been proposed, based on space multiplexing with arrays of holograms and CGH's or time multiplexing with acousto-optic processors or by image rotation with incoherent and coherent astigmatic optical processors. We took up the last mentioned approach because 2D array detectors are read out line by line, so a 2D detector can achieve the same speed and is easier to implement. Coherent processing can allow the implementation of tilers in the frequency domain. Features based on wedge/ring, Gabor, or wavelet filters have been proven to show good discrimination capabilities for texture and shape recognition. The astigmatic lens system which is derived form the mathematical formulation of the HT is long and contains a non-standard, astigmatic element. By methods of lens transformation s for coherent applications we map the original design to a shorter lens with a smaller number of well separated standard elements and with the same coherent system response. The final lens design still contains the frequency plane for filtering and ray-tracing shows diffraction limited performance. Image rotation can be done

  7. Frequency Conversion of Short Optical Pulses in Negatively Spatially Dispersive Metamaterials

    DTIC Science & Technology

    2015-10-22

    Short Optical Pulses inNegatively Spatially Dispersive Metamaterials We show that particular spatial distributions of nanoscopic plasmonic building...distributions of nanoscopic plasmonic building blocks in metamaterials may enable extraordinary nonlinear-optical frequency-shifted reflectivity and...particular spatial distributions of nanoscopic plasmonic building blocks in metamaterials may enable extraordinary nonlinear-optical frequency-shifted

  8. Development of a prototype compact fibre frequency synthesiser for mobile femtosecond optical clocks

    SciTech Connect

    Pivtsov, V S; Korel', I I; Koliada, N A; Farnosov, S A; Denisov, V I; Nyushkov, B N

    2014-06-30

    A prototype compact fibre frequency synthesiser based on a femtosecond erbium fibre laser and an original hybrid highly nonlinear fibre is developed and preliminarily studied. This synthesiser will ensure an extremely low relative instability of synthesised frequencies (down to 10{sup -17}) with the use of a corresponding optical standard and will be used in mobile optical clocks. The realised frequency stabilisation principle makes the synthesiser universal and allows it to transfer the frequency stability of various types of optical standards to the synthesised radio- and optical frequencies. (extreme light fields and their applications)

  9. Fast, precise, and widely tunable frequency control of an optical parametric oscillator referenced to a frequency comb

    NASA Astrophysics Data System (ADS)

    Prehn, Alexander; Glöckner, Rosa; Rempe, Gerhard; Zeppenfeld, Martin

    2017-03-01

    Optical frequency combs (OFCs) provide a convenient reference for the frequency stabilization of continuous-wave lasers. We demonstrate a frequency control method relying on tracking over a wide range and stabilizing the beat note between the laser and the OFC. The approach combines fast frequency ramps on a millisecond timescale in the entire mode-hop free tuning range of the laser and precise stabilization to single frequencies. We apply it to a commercially available optical parametric oscillator (OPO) and demonstrate tuning over more than 60 GHz with a ramping speed up to 3 GHz/ms. Frequency ramps spanning 15 GHz are performed in less than 10 ms, with the OPO instantly relocked to the OFC after the ramp at any desired frequency. The developed control hardware and software are able to stabilize the OPO to sub-MHz precision and to perform sequences of fast frequency ramps automatically.

  10. Time-delay interferometry with optical frequency comb

    NASA Astrophysics Data System (ADS)

    Tinto, Massimo; Yu, Nan

    2015-08-01

    Heterodyne laser phase measurements in a space-based gravitational wave interferometer are degraded by the phase fluctuations of the onboard clocks, resulting in unacceptable sensitivity performance levels of the interferometric data. In order to calibrate out the clock phase noises, it has previously been suggested that additional interspacecraft phase measurements must be performed by modulating the laser beams. With the advent of self-referenced optical frequency combs, it is possible to generate a heterodyne microwave signal that is coherently referenced to the onboard laser. We show in this case that the microwave noise can be canceled directly by applying modified second-generation time-delay interferometric combinations to the heterodyne phase measurements. This approach avoids the use of modulated laser beams as well as the need for additional ultrastable oscillator clocks.

  11. Material candidates for optical frequency comb generation in microspheres.

    PubMed

    Riesen, Nicolas; Afshar V, Shahraam; François, Alexandre; Monro, Tanya M

    2015-06-01

    This paper evaluates the opportunities for using materials other than silica for optical frequency comb generation in whispering gallery mode microsphere resonators. Different materials are shown to satisfy the requirement of dispersion compensation in interesting spectral regions such as the visible or mid-infrared and for smaller microspheres. This paper also analyses the prospects of comb generation in microspheres within aqueous solution for potential use in applications such as biosensing. It is predicted that to achieve comb generation with microspheres in aqueous solution the visible low-loss wavelength window of water needs to be exploited. This is because efficient comb generation necessitates ultra-high Q-factors, which are only possible for cavities with low absorption of the evanescent field outside the cavity. This paper explores the figure of merit for nonlinear interaction efficiency and the potential for dispersion compensation at unique wavelengths for a host of microsphere materials and dimensions and in different surroundings.

  12. Demonstration of optical multicasting using Kerr frequency comb lines.

    PubMed

    Bao, Changjing; Liao, Peicheng; Kordts, Arne; Karpov, Maxim; Pfeiffer, Martin H P; Zhang, Lin; Yan, Yan; Xie, Guodong; Cao, Yinwen; Almaiman, Ahmed; Ziyadi, Morteza; Li, Long; Zhao, Zhe; Mohajerin-Ariaei, Amirhossein; Wilkinson, Steven R; Tur, Moshe; Fejer, Martin M; Kippenberg, Tobias J; Willner, Alan E

    2016-08-15

    We experimentally demonstrate optical multicasting using Kerr frequency combs generated from a Si3N4 microresonator. We obtain Kerr combs in two states with different noise properties by varying the pump wavelength in the resonator and investigate the effect of Kerr combs on multicasting. Seven-fold multicasting of 20 Gbaud quadrature phase-shift-keyed signals and four-fold multicasting of 16-quadrature amplitude modulation signals have been achieved when low-phase-noise combs are input into a periodically poled lithium niobate waveguide. In addition, we find that the wavelength conversion efficiency in the PPLN waveguide for chaotic combs with high noise is similar to that for low-noise combs, while the signal quality of the multicast copy is significantly degraded.

  13. Optical Frequency Domain Visualization of Electron Beam Driven Plasma Wakefields

    NASA Astrophysics Data System (ADS)

    Zgadzaj, Rafal; Downer, M. C.; Muggli, Patric; Yakimenko, Vitaly; Babzien, Marcus; Kusche, Karl; Fedurin, Mikhail

    2010-11-01

    Beam-driven plasma wakefield accelerators (PWFA), such as the ``plasma afterburner,'' are a promising approach for significantly increasing the particle energies of conventional accelerators. The study and optimization of PWFA would benefit from an experimental correlation between the parameters of the drive bunch, the accelerated bunch and the corresponding, accelerating plasma wave structure. However, the plasma wave structure has not yet been observed directly in PWFA. We will report our current work on noninvasive optical Frequency Domain Interferometric (FDI) and Holographic (FDH) visualization of beam-driven plasma waves. Both techniques employ two laser pulses (probe and reference) co-propagating with the particle drive-beam and its plasma wake. The reference pulse precedes the drive bunch, while the probe overlaps the plasma wave and maps its longitudinal and transverse structure. The experiment is being developed at the BNL/ATF Linac to visualize wakes generated by two and multi-bunch drive beams.

  14. Holographic frequency resolved optical gating for spatio-temporal characterization of ultrashort optical pulse

    NASA Astrophysics Data System (ADS)

    Mehta, Nikhil; Yang, Chuan; Xu, Yong; Liu, Zhiwen

    2014-09-01

    We introduce a novel method for characterizing the spatio-temporal evolution of ultrashort optical field by recording the spectral hologram of frequency resolved optical gating (FROG) trace. We show that FROG holography enables the measurement of phase (up to an overall constant) and group delay of the pulse which cannot be measured by conventional FROG method. To illustrate our method, we perform numerical simulation to generate holographic collinear FROG (cFROG) trace of a chirped optical pulse and retrieve its complex profile at multiple locations as it propagates through a hypothetical dispersive medium. Further, we experimentally demonstrate our method by retrieving a 67 fs pulse at three axial locations in the vicinity of focus of an objective lens and compute its group delay.

  15. Optical wireless communication using positive real-valued orthogonal frequency-division multiplexing and optical beamforming

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Man; Kwon, Ki-Keun

    2017-07-01

    The relatively unsatisfactory performance of optical wireless communication (OWC) with respect to WiFi and millimeter-wave communications has formed a key issue preventing its commercialization. We experimentally demonstrate an OWC technology using a combination of positive real-valued orthogonal frequency-division multiplexing (OFDM) and optical beamforming (OB). Due to the intensity-modulation and direct-detection aspects of OWC systems, a positive real-valued OFDM signal can be suitably utilized to maximize the OWC data rate. Further, the OB technique, which can focus laser light on a desired target, can be utilized to increase the OWC data rate and transmission distance. Our experimental results show that the received optical signal power and electrical signal increase by up to 42 and 25 dB, respectively. Further, the data rate increases by a factor of 200 with OB over the conventional approach.

  16. Optical dispersion spectroscopy using optical frequency comb applied to dual-heterodyne mixing

    NASA Astrophysics Data System (ADS)

    Kasuga, Kaishu; Miyamoto, Takayuki; Shioda, Tatsutoshi

    2016-03-01

    The optical dispersion can be obtained from the adjacent relative phase between neighbor peaks in the optical frequency comb. Thus, the dispersion measurement becomes possible by measuring the relative phase spectrum. Our group has experimentally confirmed the operation principle by parallel capturing of the dispersion spectrum using an arrayed waveguide grating. We have proposed a dual-heterodyne mixing that obtained relative phases (ΔΦ) by fitting data of beat intensity versus optical path length difference. The path difference was applied by a delay line. In this study, we removed the delay line to realize a fast measurement by measuring simultaneous three relative phases with path length differences corresponding to π⁄2 or π, with which we have measured the dispersion in millisecond speed (250 sec. in previous ). In general, it is effective to measured chromatic dispersion using high-speed signal transmission in the fundamental scientific research, such as the analysis of material properties and telecommunications. It is, however, that limit of cutoff frequency using measurement is the restriction on increasing of the speed. Our proposed method to observe it on a frequency domain is effective for the high-speed signal processing.

  17. Towards chip-scale optical frequency synthesis based on optical heterodyne phase-locked loop.

    PubMed

    Arafin, Shamsul; Simsek, Arda; Kim, Seong-Kyun; Dwivedi, Sarvagya; Liang, Wei; Eliyahu, Danny; Klamkin, Jonathan; Matsko, Andrey; Johansson, Leif; Maleki, Lute; Rodwell, Mark; Coldren, Larry

    2017-01-23

    An integrated heterodyne optical phase-locked loop was designed and demonstrated with an indium phosphide based photonic integrated circuit and commercial off-the-shelf electronic components. As an input reference, a stable microresonator-based optical frequency comb with a 50-dB span of 25 nm (~3 THz) around 1550 nm, having a spacing of ~26 GHz, was used. A widely-tunable on-chip sampled-grating distributed-Bragg-reflector laser is offset locked across multiple comb lines. An arbitrary frequency synthesis between the comb lines is demonstrated by tuning the RF offset source, and better than 100Hz tuning resolution with ± 5 Hz accuracy is obtained. Frequency switching of the on-chip laser to a point more than two dozen comb lines away (~5.6 nm) and simultaneous locking to the corresponding nearest comb line is also achieved in a time ~200 ns. A low residual phase noise of the optical phase-locking system is successfully achieved, as experimentally verified by the value of -80 dBc/Hz at an offset of as low as 200 Hz.

  18. Real-time monitoring of continuous-wave terahertz radiation using a fiber-based, terahertz-comb-referenced spectrum analyzer.

    PubMed

    Yasui, Takeshi; Nakamura, Ryotaro; Kawamoto, Kohji; Ihara, Atsushi; Fujimoto, Yoshihide; Yokoyama, Shuko; Inaba, Hajime; Minoshima, Kaoru; Nagatsuma, Tadao; Araki, Tsutomu

    2009-09-14

    We propose a fiber-based, terahertz-comb-referenced spectrum analyzer which has the advantages of being a portable, alignment-free, robust, and flexible apparatus suitable for practical use. To this end, we constructed a 1550-nm mode-locked Er-doped fiber laser whose mode-locked frequency was stabilized precisely by referring to a rubidium frequency standard, and used it to generate a highly stable terahertz (THz) frequency comb in a photoconductive antenna or an electro-optic crystal. By standardizing the THz comb, we determined the frequency accuracy of an active-frequency-multiplier-chain (AFMC) source to be 2.4 x 10(-11). Furthermore, the potential of the THz spectrum analyzer was effectively demonstrated by real-time monitoring of the spectral behavior of the AFMC source and a photomixing source of two free-running CW lasers at adjacent wavelengths.

  19. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs

    PubMed Central

    Posada-Roman, Julio E.; Garcia-Souto, Jose A.; Poiana, Dragos A.; Acedo, Pablo

    2016-01-01

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal. PMID:27898043

  20. Coherent Magnetic Response at Optical Frequencies Using Atomic Transitions

    NASA Astrophysics Data System (ADS)

    Brewer, Nicholas R.; Buckholtz, Zachary N.; Simmons, Zachary J.; Mueller, Eli A.; Yavuz, Deniz D.

    2017-01-01

    In optics, the interaction of atoms with the magnetic field of light is almost always ignored since its strength is many orders of magnitude weaker compared to the interaction with the electric field. In this article, by using a magnetic-dipole transition within the 4 f shell of europium ions, we show a strong interaction between a green laser and an ensemble of atomic ions. The electrons move coherently between the ground and excited ionic levels (Rabi flopping) by interacting with the magnetic field of the laser. By measuring the Rabi flopping frequency as the laser intensity is varied, we report the first direct measurement of a magnetic-dipole matrix element in the optical region of the spectrum. Using density-matrix simulations of the ensemble, we infer the generation of coherent magnetization with magnitude 5.5 ×10-3 A /m , which is capable of generating left-handed electromagnetic waves of intensity 1 nW /cm2 . These results open up the prospect of constructing left-handed materials using sharp transitions of atoms.

  1. Precision Calculation of Blackbody Radiation Shifts for Optical Frequency Metrology

    SciTech Connect

    Safronova, M. S.; Kozlov, M. G.; Clark, Charles W.

    2011-09-30

    We show that three group IIIB divalent ions, B{sup +}, Al{sup +}, and In{sup +}, have anomalously small blackbody radiation (BBR) shifts of the ns{sup 2} {sup 1}S{sub 0}-nsnp {sup 3}P{sub 0}{sup o} clock transitions. The fractional BBR shifts for these ions are at least 10 times smaller than those of any other present or proposed optical frequency standards at the same temperature, and are less than 0.3% of the Sr clock shift. We have developed a hybrid configuration-interaction + coupled-cluster method that provides accurate treatment of correlation corrections in such ions and yields a rigorous upper bound on the uncertainty of the final results. We reduce the BBR contribution to the fractional frequency uncertainty of the Al{sup +} clock to 4x10{sup -19} at T=300 K. We also reduce the uncertainties due to this effect at room temperature to 10{sup -18} level for B{sup +} and In{sup +} to facilitate further development of these systems for metrology and quantum sensing.

  2. Frequency-agile vector signal generation based on optical frequency comb and pre-coding

    NASA Astrophysics Data System (ADS)

    Qu, Kun; Zhao, ShangHong; Tan, QingGui; Liang, DanYa

    2017-06-01

    In this paper, we experimentally demonstrate the generation of frequency-agile vector signals based on an optical frequency comb (OFC) and unbalanced pre-coding technology by employing a dual-driven Mach-Zehnder Modulator (DD-MZM) and an intensity modulator (IM). The OFC is generated by the DD-MZM and sent to the IM as a carrier. The IM is driven by a 5 GHz 2 Gbaud quadrature phase-shift keying (QPSK) vector signal with unbalanced pre-coding. The -1st order sideband of one OFC line and the +1st order sideband of another OFC line are selected by a programmable pulse shaper (PPS), after square-low photodiode detection, the frequency-agile vector signal can be obtained. The results show that the 2 Gbaud QPSK vector signals at 30 GHz, 50 GHz, 70 GHz and 90 GHz can be generated by only pre-coding once. It is possible to achieve a bit-error-rate (BER) below 1e-3 for wireless transmissions over 0.5 m using this method.

  3. Frequency-resolved optical grating using surface third-harmonic generation

    SciTech Connect

    Tsang, T.; Krumbuegel, M.A.; Delong, K.W.; Fittinghoff, D.N.; Trebino, R.

    1995-11-01

    We demonstrate the frequency-resolved optical grating technique using third-harmonic generation on the surface of a cover glass with ultra-short optical pulses and compare that with the phase-retrieved spectrogram.

  4. Phase and Frequency Tracking-Accuracy in Direct-Detection Optical-Communication Systems.

    DTIC Science & Technology

    Lower bounds are given on the attainable mean-square performance in causally tracking the phase and frequency of a subcarrier that modulates an optical carrier in a direct-detection optical - communication system. (Author)

  5. 100-Gb/s coherent optical fiber communication with frequency domain equalization

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Li, Juhao; Yang, Chuanchuan; Chen, Zhangyuan; Zhao, Chunxu; Zhang, Su

    2010-12-01

    Multi- and single-carrier (SC) coherent optical fiber communication with frequency domain equalization (FDE) is discussed with emphasis on 100-Gb/s operation. 120-Gb/s coherent optical (CO-SCFDE) system over 317-km standard single-mode fiber is demonstrated. Coherent optical orthogonal frequency-division-multiplexing (CO-OFDM) and single-carrier frequency-division-multiplexing scheme (CO-SCFDM) are theoretically and experimentally compared.

  6. Photonic radio-frequency dissemination via optical fiber with high-phase stability.

    PubMed

    Wang, Xiaocheng; Liu, Zhangweiyi; Wang, Siwei; Sun, Dongning; Dong, Yi; Hu, Weisheng

    2015-06-01

    We demonstrate a photonic radio-frequency transmission system via optical fiber. Optical radio-frequency signal is generated utilizing a Mach-Zehnder modulator based on double-side-band with carrier suppression modulation scheme. The phase error induced by optical fiber transmission is transferred to an intermediate frequency signal by the dual-heterodyne phase error transfer scheme, and then canceled by a phase locked loop. With precise phase compensation, a radio frequency with high-phase stability can be obtained at the remote end. We performed 20.07-GHz radio-frequency transfer over 100-km optical fiber, and achieved residual phase noise of -65  dBc/Hz at 1-Hz offset frequency, and the RMS timing jitter in the frequency range from 0.01 Hz to 1 MHz reaches 110 fs. The long-term frequency stability also achieves 8×10(-17) at 10,000 s averaging time.

  7. Nonlinear Dynamics of Photonics for Optical Signal Processing - Optical Frequency Conversion and Optical DSB-to-SSB Conversion

    DTIC Science & Technology

    2015-09-17

    Multiplexing, Optical Amplifier , Terahertz Electronics, Four-wave mixing, Radio-over-fiber networks, Intensity-asymmetry 16. SECURITY CLASSIFICATION OF: 17...structure and operation. For the photonic microwave amplification, we have demonstrated that microwaves can be amplified “photonically” by up to 30 dB for...linewidth and stability. 3. Photonic microwave amplification: Goals: To “photonically” amplify microwaves for a broad frequency range, from a few tens

  8. A novel fiber-based adsorbent technology

    SciTech Connect

    Reynolds, T.A.

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  9. Continued analysis of optical frequency-modulated continuous-wave interference.

    PubMed

    Zheng, Jesse

    2005-02-10

    I continue to analyze systematically the theory of optical frequency-modulated continuous-wave (FMCW) interference. Two special cases, multiple-beam optical FMCW interference and multiple-wavelength optical FMCW interference, are discussed in detail. Multiple-beam optical FMCW interference generates a signal with multiple frequencies because of mutual interference among the waves. Multiple-wavelength optical FMCW interference produces a signal whose amplitude is modulated by a synthetic wave. The applications of both types of optical FMCW interference are also discussed.

  10. Time-frequency analysis of functional optical mammographic images

    NASA Astrophysics Data System (ADS)

    Barbour, Randall L.; Graber, Harry L.; Schmitz, Christoph H.; Tarantini, Frank; Khoury, Georges; Naar, David J.; Panetta, Thomas F.; Lewis, Theophilus; Pei, Yaling

    2003-07-01

    We have introduced working technology that provides for time-series imaging of the hemoglobin signal in large tissue structures. In this study we have explored our ability to detect aberrant time-frequency responses of breast vasculature for subjects with Stage II breast cancer at rest and in response to simple provocations. The hypothesis being explored is that time-series imaging will be sensitive to the known structural and functional malformations of the tumor vasculature. Mammographic studies were conducted using an adjustable hemisheric measuring head containing 21 source and 21 detector locations (441 source-detector pairs). Simultaneous dual-wavelength studies were performed at 760 and 830 nm at a framing rate of ~2.7 Hz. Optical measures were performed on women lying prone with the breast hanging in a pendant position. Two class of measures were performed: (1) 20- minute baseline measure wherein the subject was at rest; (2) provocation studies wherein the subject was asked to perform some simple breathing maneuvers. Collected data were analyzed to identify the time-frequency structure and central tendencies of the detector responses and those of the image time series. Imaging data were generated using the Normalized Difference Method (Pei et al., Appl. Opt. 40, 5755-5769, 2001). Results obtained clearly document three classes of anomalies when compared to the normal contralateral breast. 1) Breast tumors exhibit altered oxygen supply/demand imbalance in response to an oxidative challenge (breath hold). 2) The vasomotor response of the tumor vasculature is mainly depressed and exhibits an altered modulation. 3) The affected area of the breast wherein the altered vasomotor signature is seen extends well beyond the limits of the tumor itself.

  11. Ultra-stable long distance optical frequency distribution using the Internet fiber network.

    PubMed

    Lopez, Olivier; Haboucha, Adil; Chanteau, Bruno; Chardonnet, Christian; Amy-Klein, Anne; Santarelli, Giorgio

    2012-10-08

    We report an optical link of 540 km for ultrastable frequency distribution over the Internet fiber network. The stable frequency optical signal is processed enabling uninterrupted propagation on both directions. The robustness and the performance of the link are enhanced by a cost effective fully automated optoelectronic station. This device is able to coherently regenerate the return optical signal with a heterodyne optical phase locking of a low noise laser diode. Moreover the incoming signal polarization variation are tracked and processed in order to maintain beat note amplitudes within the operation range. Stable fibered optical interferometer enables optical detection of the link round trip phase signal. The phase-noise compensated link shows a fractional frequency instability in 10 Hz bandwidth of 5 × 10(-15) at one second measurement time and 2 × 10(-19) at 30,000 s. This work is a significant step towards a sustainable wide area ultrastable optical frequency distribution and comparison network.

  12. Generation of Flat Optical Frequency Comb based on Mach-Zehnder Modulator and Recirculating Frequency Shifter Loop

    NASA Astrophysics Data System (ADS)

    Wu, Shibao; Li, Yulong; Fei, Yue; Hu, Faze

    2014-06-01

    We propose a novel scheme to generate optical frequency comb by using Mach-Zehnder modulator and recirculating frequency shifter loop based on IQ modulator driven by radio frequency clock signals. A system of 4 flat and stable comb lines generation based on Mach-Zehnder modulator is set as the seed light source of the recirculating loop. Through theorical analysis and simulation it is shown that the proposed theoretical model is proved in good agreement with simulation results.

  13. Non-contact precision profile measurement to rough-surface objects with optical frequency combs

    NASA Astrophysics Data System (ADS)

    Onoe, Taro; Takahashi, Satoru; Takamasu, Kiyoshi; Matsumoto, Hirokazu

    2016-12-01

    In this research, we developed a new method for the high precision and contactless profile measurement of rough-surfaced objects using optical frequency combs. The uncertainty of the frequency beats of an optical frequency comb is very small (relative uncertainty is 10-10 in our laboratory). In addition, the wavelengths corresponding to these frequency beats are long enough to measure rough-surfaced objects. We can conduct high-precision measurement because several GHz frequency beats can be used if the capability of the detector permits. Moreover, two optical frequency combs with Rb-stabilized repetition frequencies are used for the measurement instead of an RF frequency oscillator; thus, we can avoid the cyclic error caused by the RF frequency oscillator. We measured the profile of a wood cylinder with a rough surface (diameter is approximately 113.2 mm) and compared the result with that of coordinate measuring machine (CMM).

  14. Optical Frequency Domain Visualization of Electron Beam Driven Plasma Wakefields

    SciTech Connect

    Zgadzaj, Rafal; Downer, Michael C.; Muggli, Patric; Yakimenko, Vitaly; Kusche, Karl; Fedurin, Michhail; Babzien, Marcus

    2010-11-04

    Bunch driven plasma wakefield accelerators (PWFA), such as the 'plasma afterburner', are a promising emerging method for significantly increasing the energy output of conventional particle accelerators. The study and optimization of this method would benefit from an experimental correlation of the drive bunch parameters and the accelerated particle parameters with the corresponding plasma wave structure. However, the plasma wave structure has not been observed directly so far. We will report ongoing development of a noninvasive optical Frequency Domain Interferometric (FDI) and Holographic (FDH) diagnostics of bunch driven plasma wakes. Both FDI and FDH have been previously demonstrated in the case of laser driven wakes. These techniques employ two laser pulses co-propagating with the drive particle bunch and the trailing plasma wave. One pulse propagates ahead of the drive bunch and serves as a reference, while the second is overlapped with the plasma wave and probes its structure. The multi-shot FDI and single-shot FDH diagnostics permit direct noninvasive observation of longitudinal and transverse structure of the plasma wakes. The experiment is being developed at the 70 MeV Linac in the Accelerator Test Facility at Brookhaven National Laboratory to visualize wakes generated by two and multi-bunch drive beams.

  15. Optical Frequency Domain Visualization of Electron Beam Driven Plasma Wakefields

    NASA Astrophysics Data System (ADS)

    Zgadzaj, Rafal; Downer, Michael C.; Muggli, Patric; Yakimenko, Vitaly; Kusche, Karl; Fedurin, Michhail; Babzien, Marcus

    2010-11-01

    Bunch driven plasma wakefield accelerators (PWFA), such as the "plasma afterburner," are a promising emerging method for significantly increasing the energy output of conventional particle accelerators [1]. The study and optimization of this method would benefit from an experimental correlation of the drive bunch parameters and the accelerated particle parameters with the corresponding plasma wave structure. However, the plasma wave structure has not been observed directly so far. We will report ongoing development of a noninvasive optical Frequency Domain Interferometric (FDI) [2] and Holographic (FDH) [3] diagnostics of bunch driven plasma wakes. Both FDI and FDH have been previously demonstrated in the case of laser driven wakes. These techniques employ two laser pulses co-propagating with the drive particle bunch and the trailing plasma wave. One pulse propagates ahead of the drive bunch and serves as a reference, while the second is overlapped with the plasma wave and probes its structure. The multi-shot FDI and single-shot FDH diagnostics permit direct noninvasive observation of longitudinal and transverse structure of the plasma wakes. The experiment is being developed at the 70 MeV Linac in the Accelerator Test Facility at Brookhaven National Laboratory to visualize wakes generated by two [4] and multi-bunch [5] drive beams.

  16. Frequency interleaving towards spectrally efficient directly detected optical OFDM for next-generation optical access networks.

    PubMed

    Mehedy, Lenin; Bakaul, Masuduzzaman; Nirmalathas, Ampalavanapillai

    2010-10-25

    In this paper, we theoretically analyze and demonstrate that spectral efficiency of a conventional direct detection based optical OFDM system (DDO-OFDM) can be improved significantly using frequency interleaving of adjacent DDO-OFDM channels where OFDM signal band of one channel occupies the spectral gap of other channel and vice versa. We show that, at optimum operating condition, the proposed technique can effectively improve the spectral efficiency of the conventional DDO-OFDM system as much as 50%. We also show that such a frequency interleaved DDO-OFDM system, with a bit rate of 48 Gb/s within 25 GHz bandwidth, achieves sufficient power budget after transmission over 25 km single mode fiber to be used in next-generation time-division-multiplexed passive optical networks (TDM-PON). Moreover, by applying 64- quadrature amplitude modulation (QAM), the system can be further scaled up to 96 Gb/s with a power budget sufficient for 1:16 split TDM-PON.

  17. Frequency-shifted interferometry for fiber-optic sensing

    NASA Astrophysics Data System (ADS)

    Ye, Fei

    This thesis studies frequency-shifted interferometry (FSI), a useful and versatile technique for fiber-optic sensing. I first present FSI theory by describing practical FSI configurations and discussing the parameters that affect system performance. Then, I demonstrate the capabilities of FSI in fiber-optic sensor multiplexing and high sensitivity chemical analysis. We implemented a cryogenic liquid level sensing system in which an array of 3 fiber Bragg grating (FBG) based sensors was interrogated by FSI. Despite sensors' spectral overlap, FSI is able to separate sensor signals according to their spatial locations and to measure their spectra, from which whether a sensor is in liquid or air can be unambiguously determined. I showed that a broadband source paired with a fast tunable filter can be used in FSI systems as the light source. An array of 9 spectrally overlapping FBGs was successfully measured by such a system, indicating the potential of system cost reduction as well as measurement speed improvement. I invented the the FSI-CRD technique, a highly sensitive FSI-based fiber cavity ring-down (CRD) method capable of deducing minuscule loss change in a fiber cavity from the intensity decay rate of continuous-wave light circulating in the cavity. As a proof-of-principle experiment, I successfully measured the fiber bend loss introduced in the fiber cavity with FSI-CRD, which was found to be 0.172 dB/m at a bend radius of 12.5 mm. We then applied FSI-CRD to evanescent-field sensing. We incorporated fiber tapers as the sensor head in the system and measured the concentration of 1-octyne solutions. A minimum detectable 1-octyne concentration of 0.29% was achieved with measurement sensitivity of 0.0094 dB/% 1-octyne. The same system also accurately detected the concentration change of sodium chloride (NaCl) and glucose solutions. Refractive index sensitivity of 1 dB/RIU with a measurement error of 1x10-4 dB was attined for NaCl solutions. Finally, I proposed a

  18. Design-oriented analytic model of phase and frequency modulated optical links

    NASA Astrophysics Data System (ADS)

    Monsurrò, Pietro; Saitto, Antonio; Tommasino, Pasquale; Trifiletti, Alessandro; Vannucci, Antonello; Cimmino, Rosario F.

    2016-07-01

    An analytic design-oriented model of phase and frequency modulated microwave optical links has been developed. The models are suitable for design of broadband high dynamic range optical links for antenna remoting and optical beamforming, where noise and linearity of the subsystems are a concern Digital filter design techniques have been applied to the design of optical filters working as frequency discriminator, that are the bottleneck in terms of linearity for these systems. The models of frequency modulated, phase modulated, and coherent I/Q link have been used to compare performance of the different architectures in terms of linearity and SFDR.

  19. Ytterbium fiber-based, 270 fs, 100 W chirped pulse amplification laser system with 1 MHz repetition rate

    NASA Astrophysics Data System (ADS)

    Zhao, Zhigang; Kobayashi, Yohei

    2016-01-01

    A 100 W Yb-doped, fiber-based, femtosecond, chirped pulse amplification laser system was developed with a repetition rate of 1 MHz, corresponding to a pulse energy of 100 µJ. Large-scale, fused-silica transmission gratings were used for both the pulse stretcher and compressor, with a compression throughput efficiency of ∼85%. A pulse duration of 270 fs was measured by second harmonic generation frequency-resolved optical gating (SHG-FROG). To the best of our knowledge, this is the shortest pulse duration ever achieved by a 100-W-level fiber chirped pulse amplification laser system at a repetition rate of few megahertz, without any special post-compression manipulation.

  20. Progress in optical frequency standards: ultracold Thulium, ions, and passive resonators

    NASA Astrophysics Data System (ADS)

    Kolachevsky, N.; Khabarova, K.; Semerikov, I.; Zalivako, I.; Borisenko, A.

    2017-01-01

    We report on different types of optical clocks and passive frequency references which are under development in our laboratories: optical lattice clock based on the inner-shell transition in the Tm atom at λ = 1.14μm, optical ion clock on single 27Al+ ion, and a family of lasers referenced to ultra-stable ULE and cryogenic silicon cavities.

  1. Baseband integrated acousto-optic frequency shifter/modulator module for fiber optic at 1.3 mum.

    PubMed

    Tsai, C S; Cheng, Z Y

    1993-01-01

    A baseband integrated acoustooptic (AO) frequency shifter/modulator module that consists of a pair of titanium-indiffused proton-exchanged (TIPE) waveguide lenses and a pair of cascaded guided-wave AO Bragg cells has been realized in a Y-cut LiNbO(3) waveguide substrate 0.1 cmx1.0 cmx2.0 cm in size. A device module operating at the optical wavelength of 1.3 mum has provided a -3-dB tunable bandwidth of 120 MHz at baseband. The frequency-shifted or -modulated light propagates in a fixed direction, irrespective of the magnitude of frequency shift or modulation, and is focused into a spot (FWHM) of 6.2-mum size on the output edge of the waveguide. Accordingly, this optical frequency shifter/module can be directly interfaced with single-mode optical fibers to facilitate applications in fiber optic systems.

  2. Two-photon microscopy using fiber-based nanosecond excitation

    PubMed Central

    Karpf, Sebastian; Eibl, Matthias; Sauer, Benjamin; Reinholz, Fred; Hüttmann, Gereon; Huber, Robert

    2016-01-01

    Two-photon excitation fluorescence (TPEF) microscopy is a powerful technique for sensitive tissue imaging at depths of up to 1000 micrometers. However, due to the shallow penetration, for in vivo imaging of internal organs in patients beam delivery by an endoscope is crucial. Until today, this is hindered by linear and non-linear pulse broadening of the femtosecond pulses in the optical fibers of the endoscopes. Here we present an endoscope-ready, fiber-based TPEF microscope, using nanosecond pulses at low repetition rates instead of femtosecond pulses. These nanosecond pulses lack most of the problems connected with femtosecond pulses but are equally suited for TPEF imaging. We derive and demonstrate that at given cw-power the TPEF signal only depends on the duty cycle of the laser source. Due to the higher pulse energy at the same peak power we can also demonstrate single shot two-photon fluorescence lifetime measurements. PMID:27446680

  3. Two-photon microscopy using fiber-based nanosecond excitation.

    PubMed

    Karpf, Sebastian; Eibl, Matthias; Sauer, Benjamin; Reinholz, Fred; Hüttmann, Gereon; Huber, Robert

    2016-07-01

    Two-photon excitation fluorescence (TPEF) microscopy is a powerful technique for sensitive tissue imaging at depths of up to 1000 micrometers. However, due to the shallow penetration, for in vivo imaging of internal organs in patients beam delivery by an endoscope is crucial. Until today, this is hindered by linear and non-linear pulse broadening of the femtosecond pulses in the optical fibers of the endoscopes. Here we present an endoscope-ready, fiber-based TPEF microscope, using nanosecond pulses at low repetition rates instead of femtosecond pulses. These nanosecond pulses lack most of the problems connected with femtosecond pulses but are equally suited for TPEF imaging. We derive and demonstrate that at given cw-power the TPEF signal only depends on the duty cycle of the laser source. Due to the higher pulse energy at the same peak power we can also demonstrate single shot two-photon fluorescence lifetime measurements.

  4. Frequency-dependent linewidth enhancement factor of optical injection-locked quantum dot/dash lasers.

    PubMed

    Wang, Cheng; Chaibi, Mohamed E; Huang, Heming; Erasme, Didier; Poole, Philip; Even, Jacky; Grillot, Frédéric

    2015-08-24

    Combining theoretical and experimental studies show that optical injection strongly changes the behavior of the linewidth enhancement factor (α(H)-factor) and the FM-to-AM indices ratio (FAIR) in quantum dash/dot semiconductor lasers. In contrast to solitary lasers, both the α(H)-factor and the FAIR at low-frequency modulation are reduced by optical injection. At high modulation frequency, however, the phase-amplitude coupling characteristics are little influenced by optical injection.

  5. Absolute frequency measurement of the 674-nm {sup 88}Sr{sup +} clock transition using a femtosecond optical frequency comb

    SciTech Connect

    Margolis, H.S.; Huang, G.; Barwood, G.P.; Lea, S.N.; Klein, H.A.; Rowley, W.R.C.; Gill, P.; Windeler, R.S.

    2003-03-01

    The frequency of the 5s {sup 2}S{sub 1/2}-4d {sup 2}D{sub 5/2} electric quadrupole transition at 674 nm in a single, trapped, laser-cooled {sup 88}Sr{sup +} ion has been measured with respect to the Systeme International (SI) second using a femtosecond laser optical frequency comb. The measured frequency of 444 779 044 095.52 kHz, with an estimated standard uncertainty of 0.10 kHz, is more accurate than, and in agreement with, the value previously measured using a conventional frequency chain.

  6. Note: Laser frequency shifting by using two novel triple-pass acousto-optic modulator configurations

    SciTech Connect

    Carlos-Lopez, E. de; Lopez, J. M.; Lopez, S.; Espinosa, M. G.; Lizama, L. A.

    2012-11-15

    We report the design of two novel triple-pass acousto-optic modulator systems. These designs are extensions of the well known acousto-optic modulator (AOM) double-pass configuration, which eliminates the angle dependence of the diffracted beam with respect to the modulation frequency. In a triple-pass system, however, the frequency dependence of the angle does not disappear but the frequency shift is larger, spanning 3 times the AOM central frequency. In some applications, such as optically pumped Cesium-beam frequency standards, the frequencies of the two laser beams remain fixed and a triple-pass optical system can be used to reduce to one the number of lasers used in such atomic clocks. The two triple-pass configurations use either a retro-reflecting mirror, or a right angle prism to pass for third time the laser beam through the AOM, obtaining diffraction efficiencies of about 27% and 44%, respectively.

  7. Generation of optical frequency combs in fibres: an optical pulse analysis

    NASA Astrophysics Data System (ADS)

    Zajnulina, Marina; Böhm, Michael; Blow, Keith; Chavez Boggio, José M.; Rieznik, Andres A.; Haynes, Roger; Roth, Martin M.

    2014-07-01

    The innovation of optical frequency combs (OFCs) generated in passive mode-locked lasers has provided astronomy with unprecedented accuracy for wavelength calibration in high-resolution spectroscopy in research areas such as the discovery of exoplanets or the measurement of fundamental constants. The unique properties of OCFs, namely a highly dense spectrum of uniformly spaced emission lines of nearly equal intensity over the nominal wavelength range, is not only beneficial for high-resolution spectroscopy. Also in the low- to medium-resolution domain, the OFCs hold the promise to revolutionise the calibration techniques. Here, we present a novel method for generation of OFCs. As opposed to the mode-locked laser-based approach that can be complex, costly, and difficult to stabilise, we propose an all optical fibre-based system that is simple, compact, stable, and low-cost. Our system consists of three optical fibres where the first one is a conventional single-mode fibre, the second one is an erbium-doped fibre and the third one is a highly nonlinear low-dispersion fibre. The system is pumped by two equally intense continuous-wave (CW) lasers. To be able to control the quality and the bandwidth of the OFCs, it is crucial to understand how optical solitons arise out of the initial modulated CW field in the first fibre. Here, we numerically investigate the pulse evolution in the first fibre using the technique of the solitons radiation beat analysis. Having applied this technique, we realised that formation of higherorder solitons is supported in the low-energy region, whereas, in the high-energy region, Kuznetsov-Ma solitons appear.

  8. Inter-satellite coherent optical communication locked frequency analysis and method

    NASA Astrophysics Data System (ADS)

    Guo, Haichao; She, Shang; Xiaojun, Li; Song, Dawei

    2014-10-01

    In free space optical homodyne receiver that analyze Residual carrier COSTAS loop, Inter-satellite LEO-GEO laser communication link frequency analysis, result from Doppler frequency shift 10GHz in the maximum range, LEO-GEO inter-satellite laser links between Doppler rate of change in the 20MHz/s. The optical homodyne COSTAS receiver is the application in inter-satellite optical link coherent communication system. The homodyne receiver is the three processes: Scanning frequency, Locked frequency and Locked phase, before the homodyne coherent communication. The processes are validated in lab., and the paper presents the locked frequency data and chart, LO laser frequency with triangle control scanning and receiving optical frequency is mixed less 100MHz intermediate frequency, locked frequency range between 100MHz and 1MHz basically, discriminator method determines mixing intermediate frequency less 1MHz between the signal laser and the LO laser with the low-pass filter due to frequency loop and phase loop noise. When two loops are running, the boundary frequency of laser tuning is fuzzy, so that we must be decoupling internal PID parameters. In the Locked frequency and phase COSTAS loop homodyne receiver gave the eye-diagram with Bit error rate 10E-7.

  9. Optical frequency combs generated by four-wave mixing in optical fibers for astrophysical spectrometer calibration and metrology.

    PubMed

    Cruz, Flavio C

    2008-08-18

    Optical frequency combs generated by multiple four-wave mixing in short and highly nonlinear optical fibers are proposed for use as high precision frequency markers, calibration of astrophysical spectrometers, broadband spectroscopy and metrology. Implementations can involve two optical frequency standards as input lasers, or one standard and a second laser phase-locked to it using a stable microwave reference oscillator. Energy and momentum conservation required by the parametric generation assures phase coherence among comb frequencies, while fibers with short lengths can avoid linewidth broadening and stimulated Brillouin scattering. In contrast to combs from mode-locked lasers or microcavities, the absence of a resonator allows large tuning of the frequency spacing from tens of gigahertz to beyond teraHertz.

  10. Ultra-wide frequency response measurement of an optical system with a DC photo-detector

    NASA Astrophysics Data System (ADS)

    Kuntz, Katanya B.; Wheatley, Trevor A.; Song, Hongbin; Webb, James G.; Mabrok, Mohamed A.; Huntington, Elanor H.; Yonezawa, Hidehiro

    2017-01-01

    Precise knowledge of an optical device's frequency response is crucial for it to be useful in most applications. Traditional methods for determining the frequency response of an optical system (e.g. optical cavity or waveguide modulator) usually rely on calibrated broadband photo-detectors or complicated RF mixdown operations. As the bandwidths of these devices continue to increase, there is a growing need for a characterization method that does not have bandwidth limitations, or require a previously calibrated device. We demonstrate a new calibration technique on an optical system (consisting of an optical cavity and a high-speed waveguide modulator) that is free from limitations imposed by detector bandwidth, and does not require a calibrated photo-detector or modulator. We use a low-frequency (DC) photo-detector to monitor the cavity's optical response as a function of modulation frequency, which is also used to determine the modulator's frequency response. Knowledge of the frequency-dependent modulation depth allows us to more precisely determine the cavity's characteristics (free spectral range and linewidth). The precision and repeatability of our technique is demonstrated by measuring the different resonant frequencies of orthogonal polarization cavity modes caused by the presence of a non-linear crystal. Once the modulator has been characterized using this simple method, the frequency response of any passive optical element can be determined.

  11. Frequency stability measurement of a transfer-cavity-stabilized diode laser by using an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Uetake, S.; Matsubara, K.; Ito, H.; Hayasaka, K.; Hosokawa, M.

    2009-10-01

    We report results of frequency stability measurements of an extended cavity diode laser (ECDL) whose frequency is stabilized by a non-evacuated scanning transfer cavity. The transfer cavity is locked to a commercial frequency stabilized helium-neon laser. Frequency stability is measured by use of an optical frequency comb. The environmental perturbations (variations of temperature, air pressure, and humidity) are also simultaneously measured. The observed frequency drift of the ECDL is well explained by environmental perturbations. An atmospheric pressure variation, which is difficult to control with a non-evacuated cavity, is mainly affected to the frequency stability. Thus we put the cavity into a simple O-ring sealed (non-evacuated) tube. With this simple O-ring sealed tube, the frequency drift is reduced by a factor of 3, and the Allan variance reaches a value of 2.4×10-10, corresponds to the frequency stability of 83 kHz, at the average time of 3000 s. Since the actual frequency drift is well estimated by simultaneous measurement of the ambient temperature, pressure, and humidity, a feed-forward compensation of frequency drifts is also feasible in order to achieve a higher frequency stability with a simple non-evacuated transfer cavity.

  12. Optical frequency standards based on mercury and aluminum ions

    NASA Astrophysics Data System (ADS)

    Itano, W. M.; Bergquist, J. C.; Brusch, A.; Diddams, S. A.; Fortier, T. M.; Heavner, T. P.; Hollberg, L.; Hume, D. B.; Jefferts, S. R.; Lorini, L.; Parker, T. E.; Rosenband, T.; Stalnaker, J. E.

    2007-09-01

    Single-trapped-ion frequency standards based on a 282 nm transition in 199Hg+ and on a 267 nm transition in 27Al + have been developed at NIST over the past several years. Their frequencies are measured relative to each other and to the NIST primary frequency standard, the NIST-F1 cesium fountain, by means of a self-referenced femtosecond laser frequency comb. Both ion standards have demonstrated instabilities and inaccuracies of less than 1 × 10 -16.

  13. Frequency Comparison of Al+ and Hg+ Optical Standards

    NASA Astrophysics Data System (ADS)

    Rosenband, T.; Hume, D. B.; Brusch, A.; Lorini, L.; Schmidt, P. O.; Fortier, T. M.; Stalnaker, J. E.; Diddams, S. A.; Newbury, N. R.; Swann, W. C.; Oskay, W. H.; Itano, W. M.; Wineland, D. J.; Bergquist, J. C.

    2008-04-01

    We compare the frequencies of two single ion frequency standards: 27Al+ and 199Hg+. Systematic fractional frequency uncertainties of both standards are below 10-16, and the statistical measurement uncertainty is below 5 × 10-17. Recent ratio measurements show a reproducibility that is better than 10-16.

  14. Optical frequency measurement of the 1S-3S two-photon transition in hydrogen

    NASA Astrophysics Data System (ADS)

    Arnoult, O.; Nez, F.; Julien, L.; Biraben, F.

    2010-11-01

    This article reports the first optical frequency measurement of the 1S-3S transition in hydrogen. The excitation of this transition occurs at a wavelength of 205 nm which is obtained with two frequency doubling stages of a titanium sapphire laser at 820 nm. Its frequency is measured with an optical frequency comb. The second-order Doppler effect is evaluated from the observation of the motional Stark effect due to a transverse magnetic field perpendicular to the atomic beam. The measured value of the 1S_{1/2}( F = 1)-3S1/2( F = 1) frequency splitting is 2 922 742 936.729(13) MHz with a relative uncertainty of 4.5 × 10-12. After the measurement of the 1S-2S frequency, this result is the most precise of the optical frequencies in hydrogen.

  15. Bend-insensitive fiber based vibration sensor

    NASA Astrophysics Data System (ADS)

    Xu, Yanping; Lu, Ping; Baset, Farhana; Bhardwaj, Vedula Ravi; Bao, Xiaoyi

    2014-05-01

    We report two novel fiber-optic vibration sensors based on standard telecom bend-insensitive fiber (BIF). A tapered BIF forming a fiber Mach-Zehnder interferometer could measure continuous and damped vibration from 1 Hz up to 500 kHz. An enclosed microcantilever is fabricated inside the BIF by chemical etching and fusion spliced with a readout singlemode fiber that exhibits a frequency range from 5 Hz to 10 kHz with high signal-to-noise ratio (SNR) up to 68 dB. The unique double cladding structure of the BIF ensures both sensors with advantages of compactness, high resistance to the external disturbance and stronger mechanical strength.

  16. Operating point stabilization of fiber-based line detectors for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Felbermayer, Karoline; Grün, Hubert; Berer, Thomas; Burgholzer, Peter

    2011-07-01

    Photoacoustic imaging is an upcoming technique in the field of biomedical imaging. Our group introduced fiber-based line detectors, which are used to acquire broad-band ultrasonic signals, several years ago. Up to now operating point stabilization of fiber-based line detectors was realized by tuning the wavelength of the detection laser. This is, because of the high costs, not applicable for parallel detection. An alternative stabilization method, the change of the optical path length, is presented in this paper. Changing of the optical path length is realized by stretching the fiber with piezoelectric tubes. Fringe patterns and operation point stabilization of both stabilization schemes are compared. Next, signal detection utilizing a polymer optical fiber in a Mach-Zehnder and Fabry-Perot interferometer is demonstrated, and the influence of the detection wavelength (633nm and 1550nm) is examined. Finally, two-dimensional imaging by utilizing a perfluorinated polymer fiber is demonstrated.

  17. A distance meter using a terahertz intermode beat in an optical frequency comb.

    PubMed

    Yokoyama, Shuko; Yokoyama, Toshiyuki; Hagihara, Yuki; Araki, Tsutomu; Yasui, Takeshi

    2009-09-28

    We propose a distance meter that utilizes an intermode beat of terahertz frequency in an optical frequency comb to perform high resolution and high dynamic range absolute distance measurements. The proposed system is based on a novel method, called multiheterodyne cross-correlation detection, in which intermode beat frequencies are scaled down to radio frequencies by optical mixing of two detuned optical frequency combs with a nonlinear optical crystal. Using this method, we obtained a 1.056 THz intermode beat and achieved a distance resolution of 0.820 microm from its phase measurement. Absolute distance measurement using 1.056 THz and 8.187 GHz intermode beats was also demonstrated in the range of 10 mm, resulting in a precision of 0.688 microm.

  18. Realisation of the metre by optical frequency comb: applications in length metrology

    NASA Astrophysics Data System (ADS)

    Ferreira-Barragáns, Silvia; Pérez-Hernández, Mª Mar; Samoudi, B.; Prieto, E.

    2011-05-01

    The frequency comb of a femtosecond laser can be used like a ruler for length metrology. This permits measuring absolute distances with direct traceability to the atomic Cesium clock of the time standard. Optical frequency combs have received much attention in recent years due to their enormous potential in optical frequency metrology applications. We have studied an Erbium doped femtosecond fiber laser for applications in optical frequency metrology and found agreement of the measured frequency to within 2x10-14. It has a number of advantages over other femtosecond lasers due to its greater compactness, longterm operation with less power consumption, compatibility with existing fiber optics and covering of the telecommunication range. With this system, the Spanish Centre of Metrology is establishing a new practical realization of the metre with an improved accuracy in two orders of magnitude with respect to the current system based on iodine stabilized lasers.

  19. A deep-UV optical frequency comb at 205 nm.

    PubMed

    Peters, E; Diddams, S A; Fendel, P; Reinhardt, S; Hänsch, T W; Udem, Th

    2009-05-25

    By frequency quadrupling a picosecond pulse train from a Ti:sapphire laser at 820 nm we generate a frequency comb at 205 nm with nearly bandwidth-limited pulses. The nonlinear frequency conversion is accomplished by two successive frequency doubling stages that take place in resonant cavities that are matched to the pulse repetition rate of 82 MHz. This allows for an overall efficiency of 4.5 % and produces an output power of up to 70 mW for a few minutes and 25 mW with continuous operation for hours. Such a deep UV frequency comb may be employed for direct frequency comb spectroscopy in cases where it is less efficient to convert to these short wavelengths with continuous wave lasers.

  20. Tracking performance of optical phase locking loop with frequency discrimination and control subloop

    NASA Astrophysics Data System (ADS)

    Wang, Yunxiang; Li, Biao; Guo, Yong; Wang, Zhiyong; Shi, Shuangjin; Su, Jun; Qiu, Qi

    2016-05-01

    Optical phase locking is a key technique in homodyne coherent optical communication, coherent optical detection, and active coherent laser beam combination. In these applications, environmental temperature variation and mechanical vibration would affect the accuracy of phase locking, or even cause losing lock. These disturbances are generally equivalent to introducing phase jitter, phase step, frequency ramp, and frequency step in the loop. A frequency discrimination and control subloop is introduced to improve the frequency acquisition, and the tracking performance is studied experimentally. The loop can track phase step in 0.2 ms, and precisely track ±π/2 sine phase jitter for jittering frequency lower than 1 kHz. For frequency ramp, the residual phase error is unaffected for ramping rates slower than 40 MHz/s. The frequency discrimination and control subloop makes the loop lock quickly under a frequency step larger than the pull-in frequency. The mean tracking time is 31 ms for a 1 MHz frequency step. The maximum trackable frequency step is around 160 MHz. Continuous or step variation of phase and frequency could be tracked by the loop with the frequency discrimination and control subloop.

  1. Controlling dipole-dipole frequency shifts in a lattice-based optical atomic clock

    SciTech Connect

    Chang, D.E.; Lukin, M.D.; Ye Jun

    2004-02-01

    Motivated by the ideas of using cold alkaline-earth atoms trapped in an optical lattice for realization of optical atomic clocks, we investigate theoretically the perturbative effects of atom-atom interactions on a clock transition frequency. These interactions are mediated by the dipole fields associated with the optically excited atoms. We predict resonancelike features in the frequency shifts when constructive interference among atomic dipoles occur. We theoretically demonstrate that by fine tuning the coherent dipole-dipole couplings in appropriately designed lattice geometries, the undesirable frequency shifts can be greatly suppressed.

  2. A novel method of developing all optical frequency encoded Fredkin gates

    NASA Astrophysics Data System (ADS)

    Garai, Sisir Kumar

    2014-02-01

    All optical reversible logic gates have significant applications in the field of optics and optoelectronics for developing different sequential and combinational circuits of optical computing, optical signal processing and in multi-valued logic operations and quantum computing. Here the author proposes a method for developing all optical three-input-output Fredkin gate and modified Fredkin gate using frequency encoded data. For this purpose the author has exploited the properties of efficient frequency conversion and faster switching speed of semiconductor optical amplifiers. Simulation results of the three input-output Fredkin gate testifies to the feasibility of the proposed scheme. These Fredkin gates are universal logic gates, and can be used to develop different all-optical logic and data processors in communication network.

  3. Instantaneous microwave frequency measurement using optical carrier suppression based DC power monitoring.

    PubMed

    Fu, Songnian; Tang, Ming; Shum, Perry

    2011-11-21

    A novel photonic-assisted technique for instantaneous microwave frequency measurement is proposed using two cascaded Mach-Zehnder modulators (MZMs) biased at the transmission null point. Then, the microwave frequency can be estimated by monitoring direct current (DC) optical power. Moreover, the measurement range and the measurement resolution can be optimized by setting the time delay between optical and electrical link and optical dispersion, respectively. The approach is theoretically investigated and experimentally verified with a measurement range of 8 GHz and a measurement error of less than ± 0.15 GHz. © 2011 Optical Society of America

  4. Analysis of microwave frequency combs generated by semiconductor lasers under hybrid optical injections

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Ting; Wu, Yi-Hua; Juan, Yu-Shan

    2015-03-01

    Microwave frequency combs utilizing hybrid optical injections schemes by varying the operational parameters, injection strength, repetition frequency, and detuning frequency are demonstrated and characterized. The dynamical hybrid optical injections are realized by both optical pulse injection and optical cw injection to the slave laser simultaneously under the condition of zero detuning frequency between two injecting source lasers. For pure pulse injection case, the amplitude variation of ±27.3 dB in a 30 GHz range is obtained. By further applying the injection strength of the cw injection to the pulses injected semiconductor laser, the amplitude variation of ±3.3 dB in a 30 GHz range in microwave frequency combs are observed when operating the cw injection system in a stable locking state. In order to examine the microwave frequency comb precisely, each operational parameters of the hybrid optical injections schemes are analyzed. The amplitude variation of microwave frequency combs is also strongly influenced by operating the cw injection system in different states. Comparing to the cw injection system operated in period-one states, the amplitude variation is reduced when operated in the stable locking states. Moreover, the bandwidth broadening in microwave frequency comb is expected when the cw injection system operating in a stable locking state. In this paper, strongly improve the amplitude variation of the microwave frequency combs generated utilizing hybrid injections scheme compared to single injection case are obtained and compared.

  5. A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions

    NASA Astrophysics Data System (ADS)

    Hou, Dong; Wu, Jiutao; Zhang, Shuangyou; Ren, Quansheng; Zhang, Zhigang; Zhao, Jianye

    2014-03-01

    We demonstrate an approach to create a stable erbium-fiber-based frequency comb at communication band by directly locking the combs to two rubidium atomic transitions resonances (electromagnetically induced transparency absorption and two-photon absorption), respectively. This approach directly transfers the precision and stability of the atomic transitions to the comb. With its distinguishing feature of compactness by removing the conventional octave-spanning spectrum and f-to-2f beating facilities and the ability to directly control the comb's frequency at the atomic transition frequency, this stable optical comb can be widely used in optical communication, frequency standard, and optical spectroscopy and microscopy.

  6. A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions

    SciTech Connect

    Hou, Dong; Wu, Jiutao; Zhang, Shuangyou; Ren, Quansheng; Zhang, Zhigang; Zhao, Jianye

    2014-03-17

    We demonstrate an approach to create a stable erbium-fiber-based frequency comb at communication band by directly locking the combs to two rubidium atomic transitions resonances (electromagnetically induced transparency absorption and two-photon absorption), respectively. This approach directly transfers the precision and stability of the atomic transitions to the comb. With its distinguishing feature of compactness by removing the conventional octave-spanning spectrum and f-to-2f beating facilities and the ability to directly control the comb's frequency at the atomic transition frequency, this stable optical comb can be widely used in optical communication, frequency standard, and optical spectroscopy and microscopy.

  7. Self-oscillating optical frequency comb generator based on an optoelectronic oscillator employing cascaded modulators.

    PubMed

    Dai, Jian; Xu, Xingyuan; Wu, Zhongle; Dai, Yitang; Yin, Feifei; Zhou, Yue; Li, Jianqiang; Xu, Kun

    2015-11-16

    An ultraflat self-oscillating optical frequency comb generator based on an optoelectronic oscillator employing cascaded modulators was proposed and experimentally demonstrated. By incorporating the optoelectronic oscillation loop with cascaded modulators into the optical frequency comb generator, 11 ultraflat comb lines would be generated, and the frequency spacing is equal to the oscillation frequency of the OEO. 10 and 12GHz optical frequency combs are demonstrated with the spectral power variation below 0.82dB and 0.93dB respectively. The corresponding spectral pure microwave source are also generated and evaluated. The corresponding single-sideband phase noise are as low as -122dBc/Hz and -115 dBc/Hz at 10 kHz offset frequency.

  8. Midinfrared frequency comb from self-stable degenerate GaAs optical parametric oscillator.

    PubMed

    Lee, Kevin F; Mohr, C; Jiang, J; Schunemann, Peter G; Vodopyanov, K L; Fermann, M E

    2015-10-05

    We pump a degenerate frequency-divide-by-two optical parametric oscillator (OPO) based on orientation-patterned GaAs with a stable Tm frequency comb at 2 micrometer wavelength and measure the OPO comb offset frequency and linewidth. We show frequency division by two with sub-Hz relative linewidth of the comb teeth. The OPO thermally self-stabilizes and oscillates for nearly an hour without any active control.

  9. Cylindrical PVF2 film based fiber optic phase modulator - Phase shift nonlinearity and frequency response

    NASA Astrophysics Data System (ADS)

    Sudarshanam, V. S.; Claus, Richard O.

    1993-03-01

    A new cylindrical coil configuration for polyvinylidene flouride (PVF2) film based fiber optic phase modulator is studied for the frequency response and nonlinearity of phase shift at the resonance frequency. This configuration, hitherto unapproached for PVF2 film modulators, offers resonance at well defined, controllable and higher frequencies than possible for the flat-strip configuration. Two versions of this configuration are presented that differ strongly in both the resonance frequency and the phase shift nonlinearity coefficient.

  10. Frequency multiplexed long range swept source optical coherence tomography

    PubMed Central

    Zurauskas, Mantas; Bradu, Adrian; Podoleanu, Adrian Gh.

    2013-01-01

    We present a novel swept source optical coherence tomography configuration, equipped with acousto-optic deflectors that can be used to simultaneously acquire multiple B-scans originating from different depths. The sensitivity range of the configuration is evaluated while acquiring five simultaneous B-scans. Then the configuration is employed to demonstrate long range B-scan imaging by combining two simultaneous B-scans from a mouse head sample. PMID:23760762

  11. Study of the cortical representation of whisker frequency selectivity using voltage-sensitive dye optical imaging

    PubMed Central

    Tsytsarev, Vassiliy; Pumbo, Elena; Tang, Qinggong; Chen, Chao-Wei; Kalchenko, Vyacheslav; Chen, Yu

    2016-01-01

    ABSTRACT The facial whiskers of rodents act as a high-resolution tactile apparatus that allow the animal to detect the finest details of its environment. Previously it was shown that whisker-sensitive neurons in the somatosensory cortex show frequency selectivity to small amplitude stimuli, An intravital voltage-sensitive dye optical imaging (VSDi) method in combination with the different frequency whisker stimulation was used in order to visualize neural activity in the mice somatosensory cortex in response to the stimulation of a single whisker by different frequencies. Using the intravital voltage-sensitive dye optical imaging (VSDi) method in combination with the different frequency whisker stimulation we visualized neural activity in the mice somatosensory cortex in response to the stimulation of a single whisker by different frequencies. We found that whisker stimuli with different frequencies led to different optical signals in the barrel field. Our results provide evidence that different neurons of the barrel cortex have different frequency preferences. This supports prior research that whisker deflections cause responses in cortical neurons within the barrel field according to the frequency of the stimulation. Many studies of the whisker frequency selectivity were performed using unit recording but to map spatial organization, imaging methods are essential. In the work described in the present paper, we take a serious step toward detailed functional mapping of the somatosensory cortex using VSDi. To our knowledge, this is the first demonstration of whisker frequency sensitivity and selectivity of barrel cortex neurons with optical imaging methods. PMID:28243518

  12. Ultrafast dynamics and stabilization in chip-scale optical frequency combs (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Shu Wei

    2017-02-01

    Optical frequency comb technology has been the cornerstone for scientific breakthroughs such as precision frequency metrology, re-definition of time, extreme light-matter interaction, and attosecond sciences. Recently emerged Kerr-active microresonators are promising alternatives to the current benchmark femtosecond laser platform. These chip-scale frequency combs, or Kerr combs, are unique in their compact footprints and offer the potential for monolithic electronic and feedback integration, thereby expanding the already remarkable applications of optical frequency combs. In this talk, I will first report the generation and characterization of low-phase-noise Kerr frequency combs. Measurements of the Kerr comb ultrafast dynamics and phase noise will be presented and discussed. Then I will describe novel strategies to fully stabilize Kerr comb line frequencies towards chip-scale optical frequency synthesizers with a relative uncertainty better than 2.7×10-16. I will show that the unique generation physics of Kerr frequency comb can provide an intrinsic self-referenced access to the Kerr comb line frequencies. The strategy improves the optical frequency stability by more than two orders of magnitude, while preserving the Kerr comb's key advantage of low SWaP and potential for chip-scale electronic and photonic integration.

  13. Fiber-based 1150-nm femtosecond laser source for the minimally invasive harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Huang, Jing-Yu; Guo, Lun-Zhang; Wang, Jing-Zun; Li, Tse-Chung; Lee, Hsin-Jung; Chiu, Po-Kai; Peng, Lung-Han; Liu, Tzu-Ming

    2017-03-01

    Harmonic generation microscopy (HGM) has become one unique tool of optical virtual biopsy for the diagnosis of cancer and the in vivo cytometry of leukocytes. Without labeling, HGM can reveal the submicron features of tissues and cells in vivo. For deep imaging depth and minimal invasiveness, people commonly adopt 1100- to 1300-nm femtosecond laser sources. However, those lasers are typically based on bulky oscillators whose performances are sensitive to environmental conditions. We demonstrate a fiber-based 1150-nm femtosecond laser source, with 6.5-nJ pulse energy, 86-fs pulse width, and 11.25-MHz pulse repetition rate. It was obtained by a bismuth borate or magnesium-doped periodically poled lithium niobate (MgO:PPLN) mediated frequency doubling of the 2300-nm solitons, generated from an excitation of 1550-nm femtosecond pulses on a large mode area photonic crystal fiber. Combined with a home-built laser scanned microscope and a tailor-made frame grabber, we achieve a pulse-per-pixel HGM imaging in vivo at a 30-Hz frame rate. This integrated solution has the potential to be developed as a stable HGM system for routine clinical use.

  14. Measurement of the Yb I S10-P11 transition frequency at 399 nm using an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Kleinert, Michaela; Gold Dahl, M. E.; Bergeson, Scott

    2016-11-01

    We determine the frequency of the Yb I S10-P11 transition at 399 nm using an optical frequency comb. Although this transition was measured previously using an optical transfer cavity [D. Das et al., Phys. Rev. A 72, 032506 (2005), 10.1103/PhysRevA.72.032506], recent work has uncovered significant errors in that method. We compare our result of 751 526 533.49 ± 0.33 MHz for the 174Yb isotope with those from the literature and discuss observed differences. We verify the correctness of our method by measuring the frequencies of well-known transitions in Rb and Cs, and by demonstrating proper control of systematic errors in both laser metrology and atomic spectroscopy. We also demonstrate the effect of quantum interference due to hyperfine structure in a divalent atomic system and present isotope shift measurements for all stable isotopes.

  15. Measuring sub-picosecond optical propagation delay changes on optical fibre using photonics and radio frequency components

    NASA Astrophysics Data System (ADS)

    Julie, Roufurd P. M.; Abbott, Thomas

    2016-02-01

    To synchronise the elements of a radio interferometer array, a phase stable reference frequency from a central clock is disseminated to the different elements of array. The reference frequency is modulated onto an optical carrier and transported over optical fibre over a distance of up to 12 km. For radio interferometric efficiency, the propagation delay of the transferred reference frequency is required to be stable to less than 3 picoseconds (ps) over 20 minutes. To enable this, the optical fibre transmission line is thermally shielded to minimise length changes due to thermal expansion and contraction on the optical fibre. A test setup and procedure, that measures propagation delay changes to the required accuracy and precision, is required to verify the efficiency of the thermal shielding on the installed optical fibre. This paper describes a method using photonic and radio frequency (RF) components together with an RF vector network analyser (VNA) and post-processing to measure changes in propagation delay on the optical fibre link to sub-picosecond levels. The measurement system has been tested to a stability of < 200 femtoseconds (fs) and a resolution of < 10 fs.

  16. High-precision, accurate optical frequency reference using a Fabry-Perót diode laser

    NASA Astrophysics Data System (ADS)

    Chang, Hongrok; Myneni, Krishna; Smith, David D.; Liaghati-Mobarhan, Hassan R.

    2017-06-01

    We show that the optical output of a temperature and current-tuned Fabry-Perót diode laser system, with no external optical feedback and in which the frequency is locked to Doppler-free hyperfine resonances of the 87Rb D2 line, can achieve high frequency stability and accuracy. Experimental results are presented for the spectral linewidth, frequency stability, and frequency accuracy of the source. Although our optical source is limited by a short-term spectral linewidth greater than 2 MHz, beat signal measurements from two such sources demonstrate a frequency stability of 1.1 kHz, or minimum Allan deviation of 4 ×1 0-12, at an integration time τ =15 s and with a frequency accuracy of 60 kHz at τ =300 s. We demonstrate the use of the optical source for the precision measurement of hyperfine level frequency spacings in the 5 P3 /2 excited state of 87Rb and provide an accurate frequency scale for optical spectroscopy.

  17. Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy.

    PubMed

    Vainio, M; Halonen, L

    2016-02-14

    Nonlinear optical frequency conversion is one of the most versatile methods to generate wavelength-tunable laser light in the mid-infrared region. This spectral region is particularly important for trace gas detection and other applications of molecular spectroscopy, because it accommodates the fundamental vibrational bands of several interesting molecules. In this article, we review the progress of the most significant nonlinear optics instruments for widely tunable, high-resolution mid-infrared spectroscopy: continuous-wave optical parametric oscillators and difference frequency generators. We extend our discussion to mid-infrared optical frequency combs, which are becoming increasingly important spectroscopic tools, owing to their capability of highly sensitive and selective parallel detection of several molecular species. To illustrate the potential and limitations of mid-infrared sources based on nonlinear optics, we also review typical uses of these instruments in both applied and fundamental spectroscopy.

  18. Two-fold transmission reach enhancement enabled by transmitter-side digital backpropagation and optical frequency comb-derived information carriers.

    PubMed

    Temprana, E; Myslivets, E; Liu, L; Ataie, V; Wiberg, A; Kuo, B P P; Alic, N; Radic, S

    2015-08-10

    We demonstrate a two-fold reach extension of 16 GBaud 16-Quadrature Amplitude Modulation (QAM) wavelength division multiplexed (WDM) system based on erbium doped fiber amplifier (EDFA)-only amplified standard and single mode fiber -based link. The result is enabled by transmitter-side digital backpropagation and frequency referenced carriers drawn from a parametric comb.

  19. Effect of noise on Frequency-Resolved Optical Gating measurements of ultrashort pulses

    SciTech Connect

    Fittinghoff, D.N.; DeLong, K.W.; Ladera, C.L.; Trebino, R.

    1995-02-01

    We study the effects of noise in Frequency-Resolved Optical Gating measurements of ultrashort pulses. We quantify the measurement accuracy in the presence of additive, muliplicative, and quantization noise, and discuss filtering and pre-processing of the data.

  20. Effect of coherence and polarization on frequency resolution in optical Fourier transforming system.

    PubMed

    Ostrovsky, Andrey S; Olvera-Santamaría, Miguel Á; Romero-Soría, Paulo C

    2011-12-01

    Using an example of vector Gaussian Schell-model beam, we demonstrate and analyze the dependence of the spatial frequency resolution in optical Fourier transforming system on the intrinsic coherence-polarization structure of illumination.

  1. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission.

    PubMed

    Longhi, Stefano

    2016-04-15

    Optical parametric amplification and oscillation provide powerful tools for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency down-conversion process and, thus, it cannot be realized for signal waves at a frequency ω3 higher than the frequency of the pump wave ω1. In this Letter, we suggest a route toward the realization of upconversion optical parametric amplification and oscillation, i.e., amplification of the signal wave by a coherent pump wave of lower frequency, assisted by stimulated emission of the auxiliary idler wave. When the signal field is resonated in an optical cavity, parametric oscillation is obtained. Design parameters for the observation of upconversion optical parametric oscillation at λ3=465 nm are given for a periodically poled lithium-niobate (PPLN) crystal doped with Nd(3+) ions.

  2. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place.

    PubMed

    Predehl, K; Grosche, G; Raupach, S M F; Droste, S; Terra, O; Alnis, J; Legero, Th; Hänsch, T W; Udem, Th; Holzwarth, R; Schnatz, H

    2012-04-27

    Optical clocks show unprecedented accuracy, surpassing that of previously available clock systems by more than one order of magnitude. Precise intercomparisons will enable a variety of experiments, including tests of fundamental quantum physics and cosmology and applications in geodesy and navigation. Well-established, satellite-based techniques for microwave dissemination are not adequate to compare optical clocks. Here, we present phase-stabilized distribution of an optical frequency over 920 kilometers of telecommunication fiber. We used two antiparallel fiber links to determine their fractional frequency instability (modified Allan deviation) to 5 × 10(-15) in a 1-second integration time, reaching 10(-18) in less than 1000 seconds. For long integration times τ, the deviation from the expected frequency value has been constrained to within 4 × 10(-19). The link may serve as part of a Europe-wide optical frequency dissemination network.

  3. Surface plasmon optical antennae in the infrared region with high resonant efficiency and frequency selectivity.

    PubMed

    Ueno, Kosei; Sun, Quan; Mino, Masahiro; Itoh, Takumi; Oshikiri, Tomoya; Misawa, Hiroaki

    2016-08-08

    Infrared light has received attention for sensor applications, including fingerprint spectroscopy, in the bioengineering and security fields. Surface plasmon physics enables the operation of a light harvesting optical antenna. Gold nanochains exhibit localized surface plasmon resonance (LSPR) in the infrared region with high frequency selectivity. However, a feasible design for optical antennae with a higher resonant efficiency and frequency selectivity as a function of structural design and periodicity is still unknown. In the present study, we investigated the relationship between the resonant efficiency and frequency selectivity as a function of the structural design of gold nanochains and explored structural periodicity for obtaining highly frequency-selective optical antennae. An optical antenna design with higher resonant efficiency is proposed on the basis of its efficient interaction with non-polarized light.

  4. Energetic radiation influence on temperature dependency of Brillouin frequency in optical fibers

    SciTech Connect

    Pheron, X.; Ouerdane, Y.; Delepine-Lesoille, S.; Boukenter, A.; Bertrand, J.

    2011-07-01

    We present a post mortem study of the influence of energetic radiation on optical fiber Brillouin sensors, both Brillouin spectrum and its temperature dependency in two different fibers, a photosensitive optical fiber and a SMF28. The target application is nuclear wastes repository monitoring where optical fiber Brillouin sensors might be exposed to energetic radiation. UV exposure induced optical losses, Brillouin frequency shifts up to 28 MHz and even a variation of the temperature dependency. The photosensitive optical fiber resulted more sensitive than SMF28{sup TM}. (authors)

  5. FBG sensor interrogation using fiber optical bistability in frequency domain

    NASA Astrophysics Data System (ADS)

    Lv, Guohui; Ou, Jinping; Ye, Hongan; Zhou, Zhi; Shang, Shaohua; Yang, Chao; Wang, Huiying

    2007-01-01

    In this paper, we propose a novel scheme of fiber Bragg grating interrogation by use of hybrid fiber optical bistable device (OBD). The OBD is realized in the fiber Bragg grating (FBG) sensing element. Light source is an electronic tuned widely swept ring fiber laser. In this experiment, FBG's are acting as optical intensity modulator and sensing elements at same time. Combined with feedback control circuit, the OBD can be used as an optic-fiber sensor working in digital type through bistable switching phenomenon. We discuss the mechanism of this bistable sensor. Scanning the bias Voltage on PZT, the bistable pulse signal can be counted by circuit that operates in the manner of a pulse-equivalent. If we use 16 bit Digital Analog Converter (DAC), the resolution will achieve 1pm level. High accuracy, high speed and high ratio of signal to noise are the advantages of this scheme.

  6. Frequency-resolved noise figure measurements of phase (in)sensitive fiber optical parametric amplifiers.

    PubMed

    Malik, R; Kumpera, A; Lorences-Riesgo, A; Andrekson, P A; Karlsson, M

    2014-11-17

    We measure the frequency-resolved noise figure of fiber optical parametric amplifiers both in phase-insensitive and phase-sensitive modes in the frequency range from 0.03 to 3 GHz. We also measure the variation in noise figure due to the degradation in pump optical signal to noise ratio and also as a function of the input signal powers. Noise figure degradation due to stimulated Brillouin scattering is observed.

  7. Frequency-modulated light scattering interferometry used for assessment of optical properties in turbid media

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2013-02-01

    Frequency-modulated light scattering interferometry, which employs a frequency-modulated coherent light source and examines the intensity fluctuation of the resulting scattered light using a heterodyne detection scheme, was utilized to evaluate the optical properties of liquid phantoms made of Intralipid® and Indian ink. Based on the diffusion theory, nonlinear fits to the power spectrum of the heterodyne-detected light intensity are performed and discussed in detail, and the optical properties of liquid phantoms are consequently retrieved.

  8. A new method for determining the plasma electron density using optical frequency comb interferometer

    SciTech Connect

    Arakawa, Hiroyuki Tojo, Hiroshi; Sasao, Hajime; Kawano, Yasunori; Itami, Kiyoshi

    2014-04-15

    A new method of plasma electron density measurement using interferometric phases (fractional fringes) of an optical frequency comb interferometer is proposed. Using the characteristics of the optical frequency comb laser, high density measurement can be achieved without fringe counting errors. Simulations show that the short wavelength and wide wavelength range of the laser source and low noise in interferometric phases measurements are effective to reduce ambiguity of measured density.

  9. Parallel multichannel optical correlator for frequency subband decomposition

    NASA Astrophysics Data System (ADS)

    Barbe, J.; Campos, Juan; Iemmi, Claudio C.; Nicolas, Josep

    2001-08-01

    Many applications require a complex processing, using for it a bank of filters. Different architectures have been proposed of optical processors to perform a parallel filtering. We prose a new multichannel architecture based in the translation Fourier Transform properties. These properties allowed us to design multichannels phase filters. The architecture does not need the introduction of any additional modification in the optical processor. We developed an application for texture classification in real time. We obtain excellent results in the texture classification process, 99 percent of images have been correctly classified.

  10. Mid-Range Spatial Frequency Errors in Optical Components.

    DTIC Science & Technology

    1983-01-01

    pattern. Malacara (1978, pp. 356-359) describes the diffraction intensity distri- bution on either side of the focal plane and presents a diagram of the...Leoble and Co., Ltd., Aug. 1963. Kintner, Eric C., and Richard M. Sillitto. "A New Analytic Method for Computing the Optical Transfer Function." OPTICA ...2, 1976. Malacara , Daniel (ed). Optical Shop Testing. New York: John Wiley and Sons, 1978. Reticon Corporation. Reticon G Series Data Sheet. Sunnyvale, CA: Reticon, 1976. 41 FILMED 9-85 DTIC

  11. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors.

    PubMed

    Engheta, Nader; Salandrino, Alessandro; Alù, Andrea

    2005-08-26

    We present the concept of circuit nanoelements in the optical domain using plasmonic and nonplasmonic nanoparticles. Three basic circuit elements, i.e., nanoinductors, nanocapacitors, and nanoresistors, are discussed in terms of small nanostructures with different material properties. Coupled nanoscale circuits and parallel and series combinations are also envisioned, which may provide road maps for the synthesis of more complex circuits in the IR and visible bands. Ideas for the optical implementation of right-handed and left-handed nanotransmission lines are also forecasted.

  12. Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network.

    PubMed

    Calosso, C E; Bertacco, E; Calonico, D; Clivati, C; Costanzo, G A; Frittelli, M; Levi, F; Mura, A; Godone, A

    2014-03-01

    We performed a two-way remote optical phase comparison on optical fiber. Two optical frequency signals were launched in opposite directions in an optical fiber and their phases were simultaneously measured at the other end. In this technique, the fiber noise is passively canceled, and we compared two optical frequencies at the ultimate 10(-21) stability level. The experiment was performed on a 47 km fiber that is part of the metropolitan network for Internet traffic. The technique relies on the synchronous measurement of the optical phases at the two ends of the link, which is here performed by digital electronics. This scheme offers some advantages with respect to active noise cancellation schemes, as the light travels only once in the fiber.

  13. Laser frequency stabilization by light shift of optical-magnetic double resonances

    NASA Astrophysics Data System (ADS)

    Zhan, Yuanzhi; Peng, Xiang; Lin, Zaisheng; Gong, Wei; Guo, Hong

    2015-05-01

    This work adopts the light shift of optical-magnetic double resonance frequency in metastable-state 4He atoms to lock the laser center frequency to the magic point. At this magic frequency, both the left-circularly and right-circularly optical pumping processes will give the same value of optical-magnetic double resonance. With this method and after locking, experimental results show that the laser frequency fluctuation is dramatically reduced to 2.79 MHz in 3600 seconds, comparing with 34.1 MHz drift in the free running mode. In application, with the locked magic laser frequency, the heading error for laser pumped 4He magnetometer can be eliminated much. The National Science Fund for Distinguished Young Scholars of China (Grant No. 61225003), the National Natural Science Foundation of China (Grant No. 61101081), and the National Hi-Tech Research and Development (863) Program.

  14. Dissemination of optical-comb-based ultra-broadband frequency reference through a fiber network.

    PubMed

    Nagano, Shigeo; Kumagai, Motohiro; Li, Ying; Ido, Tetsuya; Ishii, Shoken; Mizutani, Kohei; Aoki, Makoto; Otsuka, Ryohei; Hanado, Yuko

    2016-08-22

    We disseminated an ultra-broadband optical frequency reference based on a femtosecond (fs)-laser optical comb through a kilometer-scale fiber link. Its spectrum ranged from 1160 nm to 2180 nm without additional fs-laser combs at the end of the link. By employing a fiber-induced phase noise cancellation technique, the linewidth and fractional frequency instability attained for all disseminated comb modes were of order 1 Hz and 10-18 in a 5000 s averaging time. The ultra-broad optical frequency reference, for which absolute frequency is traceable to Japan Standard Time, was applied in the frequency stabilization of an injection-seeded Q-switched 2051 nm pulse laser for a coherent light detection and ranging LIDAR system.

  15. Three-dimensional photoacoustic imaging using fiber-based line detectors

    NASA Astrophysics Data System (ADS)

    Grün, Hubert; Berer, Thomas; Burgholzer, Peter; Nuster, Robert; Paltauf, Günther

    2010-03-01

    For photoacoustic imaging, usually point-like detectors are used. As a special sensing technology for photoacoustic imaging, integrating detectors have been investigated that integrate the acoustic pressure over an area or line that is larger than the imaged object. Different kinds of optical fiber-based detectors are compared regarding their sensitivity and resolution in three-dimensional photoacoustic tomography. In the same type of interferometer, polymer optical fibers yielded much higher sensitivity than glass fibers. Fabry-Pérot glass-fiber interferometers in turn gave higher sensitivity than Mach-Zehnder-type interferometers. Regarding imaging resolution, the single-mode glass fiber showed the best performance. Last, three-dimensional images of phantoms and insects using a glass-fiber-based Fabry-Pérot interferometer as integrating line detector are presented.

  16. Shipboard Radio Frequency and Free Space Optics Communications System using an Airborne Relay

    DTIC Science & Technology

    2005-09-01

    Optical OOK bit error rate vs Signal Count in an AWGN channel.................31 Figure 20. Beamsteering Mirrors in the Terabeam Elliptica 7421i...is represented as the sum of a Gaussian noise random variable and signal [14]. h 346.6261 10 J s−⋅ ⋅ f When dealing with near -optical frequencies

  17. Long-Distance Frequency Transfer Over an Urban Fiber Link Using Optical Phase Stabilization

    DTIC Science & Technology

    2008-12-01

    eliability, and the potential for phase noise cancellation. Microwave frequency transmission using amplitude odulation of an optical carrier has demonstrated...isolation box. About W of optical power, including 30% in the phase odulation sidebands, are typically sent onto the cavity ith a coupling

  18. Flight-Like Optical Reference Cavity for GRACE Follow-On Laser Frequency Stabilization

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; deVine, G.; Klipstein, W. M.; McKenzie, K.; Spero, R.; Thompson, R.; Yu, N.; Stephens, M.; Leitch, J.; Pierce, R.; Shaddock, D.; Lam, T.

    2011-01-01

    We describe a prototype optical cavity and associated optics that has been developed to provide a stable frequency reference for a future space-based laser ranging system. This instrument is being considered for inclusion as a technology demonstration on the recently announced GRACE follow-on mission, which will monitor variations in the Earth's gravity field.

  19. Optimization of spatial frequency domain imaging technique for estimating optical properties of food and biological materials

    USDA-ARS?s Scientific Manuscript database

    Spatial frequency domain imaging technique has recently been developed for determination of the optical properties of food and biological materials. However, accurate estimation of the optical property parameters by the technique is challenging due to measurement errors associated with signal acquis...

  20. Intermittent optical frequency measurements to reduce the dead time uncertainty of frequency link

    NASA Astrophysics Data System (ADS)

    Hachisu, Hidekazu; Ido, Tetsuya

    2015-11-01

    The absolute frequency of the 87Sr lattice clock transition was evaluated with an uncertainty of 1.1 × 10-15 using a frequency link to the international atomic time (TAI). The frequency uncertainty of a hydrogen maser used as a transfer oscillator was reduced by homogeneously distributed intermittent measurement over a five-day grid of TAI. Three sets of four or five days measurements as well as systematic uncertainty of the clock at 8.6 × 10-17 have resulted in an absolute frequency of 87Sr 1S0-3P0 clock transition to be 429 228 004 229 872.85 (47) Hz.

  1. Frequency-resolved optical-gating measurements of ultrashort pulses using surface third-harmonic generation

    SciTech Connect

    Tsang, T.; Krumbuegel, M.A.; DeLong, K.W.; Fittinghoff, D.N.; Trebino, R.

    1996-09-01

    We demonstrate what is to our knowledge the first frequency-resolved optical gating (FROG) technique to measure ultrashort pulses from an unamplified Ti:sapphire laser oscillator without direction-of-time ambiguity. This technique utilizes surface third-harmonic generation as the nonlinear-optical effect and, surprisingly, is the most sensitive third-order FROG geometry yet. {copyright} {ital 1996 Optical Society of America.}

  2. Frequency dependent optical conductivity of strained graphene at T=0 from an effective quantum field theory

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Jiang; Pan, Hui; Wang, Hai-Long

    2017-04-01

    An effective quantum field theory (EQFT) graphene sheet with arbitrary one dimensional strain field is derived from a microscopic effective low energy Hamiltonian. The geometric meaning of the strain-induced complex gauge field is clarified. The optical conductivity is also investigated, and a frequency dependent optical conductivity is obtained. The actual value of interband optical conductivity along the deformed direction is C0 + C1/ω2 in spite of the particular strain fields at T=0.

  3. Improvement in spatial frequency characteristics of magneto-optical Kerr microscopy

    NASA Astrophysics Data System (ADS)

    Ogasawara, Takeshi

    2017-10-01

    The spatial resolution of a conventional magneto-optical Kerr microscope, compared with those of conventional optical microscopes, inevitably deteriorates owing to oblique illumination. An approach to obtaining the maximum spatial resolution using multiple images with different illumination directions is demonstrated here. The method was implemented by rotating the illumination path around the optical axis using a motorized stage. The Fourier transform image of the observed magnetic domain indicates that the spatial frequency component that is lost in the conventional method is restored.

  4. Low Frequency Sampling Adaptive Thresholding for Free-Space Optical Communication Receivers with Multiplicative Noise

    DTIC Science & Technology

    2004-01-01

    LOW FREQUENCY SAMPLING ADAPTIVE THRESHOLDING FOR FREE-SPACE OPTICAL COMMUNICATION RECEIVERS WITH MULTIPLICATIVE NOISE H. R. Burris1, C...knowledge of the mean and variance of the bit levels. As stated above, in free-space optical communication links this will be problematic. An...the multiplicative noise Bayesian LRT detection threshold [3,6]. In free-space optical communication (FSO) systems, it is usually desirable to have

  5. Fiber based photonic-crystal acoustic sensor

    NASA Astrophysics Data System (ADS)

    Kilic, Onur

    Photonic-crystal slabs are two-dimensional photonic crystals etched into a dielectric layer such as silicon. Standard micro fabrication techniques can be employed to manufacture these structures, which makes it feasible to produce them in large areas, usually an important criterion for practical applications. An appealing feature of these structures is that they can be employed as free-space optical devices such as broadband reflectors. The small thickness of the slab (usually in the vicinity of half a micron) also makes it deflectable. These combined optical and mechanical properties make it possible to employ photonic-crystal slabs in a range of practical applications, including displacement sensors, which in turn can be used for example to detect acoustic waves. An additional benefit of employing a photonic-crystal slab is that it is possible to tailor its optical and mechanical properties by adjusting the geometrical parameters of the structure such as hole radius or shape, pitch, and the slab thickness. By altering the hole radius and pitch, it is possible to make broadband reflectors or sharp transmission filters out of these structures. Adjusting the thickness also affects its deformability, making it possible to make broadband mirrors compliant to acoustic waves. Altering the hole shape, for example by introducing an asymmetry, extends the functionalities of photonic-crystal slabs even further. Breaking the symmetry by introducing asymmetric holes enables polarization-sensitive devices such as retarders, polarization beam splitters, and photonic crystals with additional non-degenerate resonances useful for increased sensitivity in sensors. All these practical advantages of photonic-crystal slabs makes them suitable as key components in micromachined sensor applications. We report one such example of an application of photonic-crystal slabs in the form of a micromachined acoustic sensor. It consists of a Fabry-Perot interferometer made of a photonic

  6. Recent developments and proposed schemes for trapped ion frequency standards. [trapped mercury ions for microwave and optical frequency standards

    NASA Technical Reports Server (NTRS)

    Maleki, L.

    1982-01-01

    Ion traps are exciting candidates as future precision frequency sources. Recent developments demonstrate that mercury ion frequency standards are capable of a stability performance comparable to commercial cesium standards. There is, however, considerable room for improvement with regard to the signal to noise problem. The 40 GHz microwave frequency implies that a careful design should be implemented to ensure the elimination of the unwanted side bands in the microwave pump signal. A long life, high performance light source to be used in a trapped mercury ion microwave standard must be developed and the long term performance of a trapped mercury ion microwave standard must be investigated. While newly proposed two photon pumping schemes in conjuction with mercury ions promise exciting developments for both microwave and optical frequency standards, other ions that may be potential candidates should be evaluated for their usefulness.

  7. Fiber-based laser transmitter and laser spectroscopy of the oxygen A-band for remote detection of atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Stephen, Mark Andrew

    The Author reports on the design and construction of an oxygen spectroscopy laser sounding instrument designed to measure atmospheric pressure. This instrument was conceived and designed with a satellite application in mind so we discuss the requirements this places on the instrument and specifically the laser transmitter. We have developed a novel, pulsed, frequency-doubled, fiber-based laser transmitter for use in the instrument. The instrument concept uses the collision broadening of spectroscopic lines of the diatomic oxygen A-band to deduce atmospheric pressure. We report on the spectroscopic and instrument theory. We discuss the development of a high-power, narrow-frequency, tunable, single spatial mode pulsed laser transmitter. The transmitter is a master oscillator power amplifier (MOPA) design. The master oscillator is a fiber coupled DFB laser with external acousto-optic modulation. The amplifier is a diode pumped, erbium-doped fiber. We discuss the non-linear optical effect of stimulated Brillouin scattering (SBS) and how it limits the transmitter performance. We review various methods for overcoming SBS in erbium fiber amplifiers and then demonstrate the performance of a high SBS threshold fiber amplifier. We demonstrate the efficacy of this transmitter by integrating it into a spectroscopic instrument and make atmospheric measurements at a test site at Goddard. We also discuss future improvements.

  8. Dual frequency optical carrier technique for transmission of reference frequencies in dispersive media

    NASA Technical Reports Server (NTRS)

    Maleki, Lutfollah (Inventor)

    1993-01-01

    Two different carrier frequencies modulated by a reference frequency are transmitted to each receiver to be synchronized therewith. Each receiver responds to local phase differences between the two received signals to correct the phase of one of them so as to maintain the corrected signal as a reliable synchronization reference.

  9. Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by AN Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akiko; Matsuba, Ayumi; Misono, Masatoshi

    2014-06-01

    Optical frequency combs are powerful tools for precise frequency measurements in various wavelength regions. The combs have been applied not only to metrology, but also to molecular spectroscopy. Recently, we studied high resolution spectroscopy of iodine molecule assisted by an optical frequency comb. In the study, the comb was used for frequency calibration of a scanning dye laser. In this study, we developed a frequency calibration scheme with a comb and an acousto-optic modulator to realize more precise frequency measurement in a wide frequency range. And the frequency calibration scheme was applied to Doppler-free two-photon absorption (DFTPA) spectroscopy of naphthalene. Naphthalene is one of the prototypical aromatic molecules, and its detailed structure and dynamics in excited states have been reported. We measured DFTPA spectra of A^1B1u(v4=1) ← X^1A_g(v=0) transition around 298 nm. A part of obtained spectra is shown in the figure. The spectral lines are rotationally resolved and the resolution is about 100 kHz. The horizontal axis was calibrated by the developed frequency calibration system employing the comb. The uncertainties of the calibrated frequencies were determined by the fluctuations of the comb modes which were stabilized to a GPS-disciplined clock. A. Nishiyama, D. Ishikawa, and M. Misono, J. Opt. Soc. Am. B 30, 2107 (2013).

  10. High Accuracy Optical Inverse Square Law Experiment Using Inexpensive Light to Frequency Converters

    ERIC Educational Resources Information Center

    Wanser, Keith H.; Mahrley, Steve; Tanner, Joshua

    2012-01-01

    In this paper we report on the use of two different light to frequency converters, four different light sources, three of which are novel and inexpensive, and a hand held digital multimeter with a frequency counter, suitable for making accurate and rapid determination of the optical inverse square law exponent of -2 to better than [plus or…

  11. High resolution atomic coherent control via spectral phase manipulation of an optical frequency comb.

    PubMed

    Stowe, Matthew C; Cruz, Flavio C; Marian, Adela; Ye, Jun

    2006-04-21

    We demonstrate high resolution coherent control of cold atomic rubidium utilizing spectral phase manipulation of a femtosecond optical frequency comb. Transient coherent accumulation is directly manifested by the enhancement of signal amplitude and spectral resolution via the pulse number. The combination of frequency comb technology and spectral phase manipulation enables coherent control techniques to enter a new regime with natural linewidth resolution.

  12. High Resolution Atomic Coherent Control via Spectral Phase Manipulation of an Optical Frequency Comb

    SciTech Connect

    Stowe, Matthew C.; Cruz, Flavio C.; Marian, Adela; Ye Jun

    2006-04-21

    We demonstrate high resolution coherent control of cold atomic rubidium utilizing spectral phase manipulation of a femtosecond optical frequency comb. Transient coherent accumulation is directly manifested by the enhancement of signal amplitude and spectral resolution via the pulse number. The combination of frequency comb technology and spectral phase manipulation enables coherent control techniques to enter a new regime with natural linewidth resolution.

  13. High Accuracy Optical Inverse Square Law Experiment Using Inexpensive Light to Frequency Converters

    ERIC Educational Resources Information Center

    Wanser, Keith H.; Mahrley, Steve; Tanner, Joshua

    2012-01-01

    In this paper we report on the use of two different light to frequency converters, four different light sources, three of which are novel and inexpensive, and a hand held digital multimeter with a frequency counter, suitable for making accurate and rapid determination of the optical inverse square law exponent of -2 to better than [plus or…

  14. Two-Photon Spectroscopy in Rb for an Optical Frequency Standard

    NASA Astrophysics Data System (ADS)

    Martin, Kyle; Phelps, Gretchen; Lemke, Nathan; Blakley, Daniel; Erickson, Christopher; Burke, John; Applied Technology Associates Team; Space Dynamics Laboratory Team; Air Force Research Laboratory Team

    2016-05-01

    The Air Force Research Laboratory is pursuing optical atomic clocks for navigation and timing applications. Optical clocks are of particular interest owing to their very high oscillation frequencies. We present an optical rubidium atomic frequency standard (O-RAFS), based upon a two-photon transition at 778 nm, that utilizes readily available commercial off-the-shelf components. Compared to existing GPS clocks, O-RAFS offers reduced short-term instability (7 ×10-13 /√{ τ}), improved manufacturability, and competitive size, weight, and power, making it an attractive candidate for future space operation.

  15. Application of four wave mixing in precise radio frequency dissemination via optical fiber link

    NASA Astrophysics Data System (ADS)

    Lu, Xing; Lv, Zhiqiang; Chen, Xing; Gong, Zibo; Shi, Kebin

    2014-09-01

    We report on a new phase noise detection technique for radio frequency (RF) dissemination based on transferring mode locked laser pulses via optical fiber. The proposed approach is insusceptible to optical fiber interconnection reflection by combining optical frequency comb (OFC) expansion generated by four wave mixing (FWM) in dispersion shifted fiber (DSF) and wavelength division multiplexing (WDM) technique. An experimental system based on a fiber link of 100km was demonstrated. The measured fractional stability was 1.5×10-13 at 1s and 1.7×10-16 at 1000s.

  16. Elimination of the light shift in rubidium gas cell frequency standards using pulsed optical pumping

    NASA Technical Reports Server (NTRS)

    English, T. C.; Jechart, E.; Kwon, T. M.

    1978-01-01

    Changes in the intensity of the light source in an optically pumped, rubidium, gas cell frequency standard can produce corresponding frequency shifts, with possible adverse effects on the long-term frequency stability. A pulsed optical pumping apparatus was constructed with the intent of investigating the frequency stability in the absence of light shifts. Contrary to original expectations, a small residual frequency shift due to changes in light intensity was experimentally observed. Evidence is given which indicates that this is not a true light-shift effect. Preliminary measurements of the frequency stability of this apparatus, with this small residual pseudo light shift present, are presented. It is shown that this pseudo light shift can be eliminated by using a more homogeneous C-field. This is consistent with the idea that the pseudo light shift is due to inhomogeneity in the physics package (position-shift effect).

  17. High Resolution Spectroscopy of Naphthalene Calibrated by AN Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akiko; Nakashima, Kazuki; Matsuba, Ayumi; Misono, Masatoshi

    2015-06-01

    In high-resolution molecular spectroscopy, the precise measure of the optical frequency is crucial to evaluate minute shifts and splittings of the energy levels. On the other hand, in such spectroscopy, thousands of spectral lines distributed over several wavenumbers have to be measured by a continuously scanning cw laser. Therefore, the continuously changing optical frequency of the scanning laser has to be determined with enough precision. To satisfy these contradictory requirements, we have been developed two types of high-resolution spectroscopic systems employing an optical frequency comb. One of the systems employs RF band-pass filters to generate equally spaced frequency markers for optical frequency calibration, and is appropriate for wide wavelength-range measurement with relatively high scanning rate.^a In the other system, the beat frequency between the optical frequency comb and the scanning laser is controlled by an acousto-optic frequency shifter. This system is suitable for more precise measurement, and enables detailed analyses of frequency characteristics of scanning laser.^b In the present study, we observe Doppler-free two-photon absorption spectra of A^1B1u (v_4 = 1) ← X^1A_g (v = 0) transition of naphthalene around 298 nm. The spectral lines are rotationally resolved and the resolution is about 100 kHz. For ^qQ transition, the rotational lines are assigned, and molecular constants in the excited state are determined. In addition, we analyze the origin of the measured linewidth and Coriolis interactions between energy levels. To determine molecular constants more precisely, we proceed to measure and analyze spectra of other transitions, such as ^sS transitions. ^a A. Nishiyama, D. Ishikawa, and M. Misono, J. Opt. Soc. Am. B 30, 2107 (2013). ^b A. Nishiyama, A. Matsuba, and M. Misono, Opt. Lett. 39, 4923 (2014).

  18. Depth sensitivity of frequency domain optical measurements in diffusive media

    PubMed Central

    Sassaroli, Angelo; Torricelli, Alessandro; Spinelli, Lorenzo; Farina, Andrea; Durduran, Turgut; Cavalieri, Stefano; Pifferi, Antonio

    2017-01-01

    The depth sensitivity functions for AC amplitude, phase (PH) and DC intensity signals have been obtained in the frequency domain (where the source amplitude is modulated at radio-frequencies) by making use of analytical solutions of the photon diffusion equation in an infinite slab geometry. Furthermore, solutions for the relative contrast of AC, PH and DC signals when a totally absorbing plane is placed at a fixed depth of the slab have also been obtained. The solutions have been validated by comparisons with gold standard Monte Carlo simulations. The obtained results show that the AC signal, for modulation frequencies < 200 MHz, has a depth sensitivity with similar characteristics to that of the continuous-wave (CW) domain (source modulation frequency of zero). Thus, the depth probed by such a signal can be estimated by using the formula of penetration depth for the CW domain (Sci. Rep. 6, 27057 (2016)27256988). However, the PH signal has a different behavior compared to the CW domain, showing a larger depth sensitivity at shallow depths and a less steep relative contrast as a function of depth. These results mark a clear difference in term of depth sensitivity between AC and PH signals, and highlight the complexity of the estimation of the actual depth probed in tissue spectroscopy. PMID:28663921

  19. Depth sensitivity of frequency domain optical measurements in diffusive media.

    PubMed

    Binzoni, Tiziano; Sassaroli, Angelo; Torricelli, Alessandro; Spinelli, Lorenzo; Farina, Andrea; Durduran, Turgut; Cavalieri, Stefano; Pifferi, Antonio; Martelli, Fabrizio

    2017-06-01

    The depth sensitivity functions for AC amplitude, phase (PH) and DC intensity signals have been obtained in the frequency domain (where the source amplitude is modulated at radio-frequencies) by making use of analytical solutions of the photon diffusion equation in an infinite slab geometry. Furthermore, solutions for the relative contrast of AC, PH and DC signals when a totally absorbing plane is placed at a fixed depth of the slab have also been obtained. The solutions have been validated by comparisons with gold standard Monte Carlo simulations. The obtained results show that the AC signal, for modulation frequencies < 200 MHz, has a depth sensitivity with similar characteristics to that of the continuous-wave (CW) domain (source modulation frequency of zero). Thus, the depth probed by such a signal can be estimated by using the formula of penetration depth for the CW domain (Sci. Rep.6, 27057 (2016)). However, the PH signal has a different behavior compared to the CW domain, showing a larger depth sensitivity at shallow depths and a less steep relative contrast as a function of depth. These results mark a clear difference in term of depth sensitivity between AC and PH signals, and highlight the complexity of the estimation of the actual depth probed in tissue spectroscopy.

  20. Development Of Frequency Transfer Via Optical Fiber Link at NICT

    DTIC Science & Technology

    2008-12-01

    al., 2006 “Comparison between frequency standards in Europe and the USA at the 10-15 uncertainty level,” Metrologia , 43, 109-120. [4] H. Kiuchi, T...M. Hosokawa, 2008, “Evaluation of caesium atomic fountain NICT-CsF1,” Metrologia , 45, 139-148. [12] M. Kumagai, H. Ito, G. Santarelli, C. Locke, J

  1. Broadband characterization of congruent lithium niobate from mHz to optical frequencies

    NASA Astrophysics Data System (ADS)

    Cochard, Charlotte; Spielmann, Thiemo; Bahlawane, Naoufal; Halpin, Alexei; Granzow, Torsten

    2017-09-01

    Lithium niobate (LiNbO3) is a well known uniaxial ferroelectric material. Using impedance measurement, quasi-optical free-space characterization, THz time domain spectroscopy (THz-TDS) and ellipsometry, its dielectric permittivity/refractive index was characterized depending on the crystal orientation over a broad frequency range: 1 mHz to 1 PHz (λ = 300 nm). Three different frequency ranges, separated by well identified resonances, are observed: low frequency ‘free-piezoelectric’ response, intermediate frequency ‘clamped-ionic’ response and high frequency ‘electronic’ response. These features are discussed with an emphasis on the role of the crystallographic structure and piezoelectric response.

  2. Three-dimensional photonic metamaterials at optical frequencies.

    PubMed

    Liu, Na; Guo, Hongcang; Fu, Liwei; Kaiser, Stefan; Schweizer, Heinz; Giessen, Harald

    2008-01-01

    Metamaterials are artificially structured media with unit cells much smaller than the wavelength of light. They have proved to possess novel electromagnetic properties, such as negative magnetic permeability and negative refractive index. This enables applications such as negative refraction, superlensing and invisibility cloaking. Although the physical properties can already be demonstrated in two-dimensional (2D) metamaterials, the practical applications require 3D bulk-like structures. This prerequisite has been achieved in the gigahertz range for microwave applications owing to the ease of fabrication by simply stacking printed circuit boards. In the optical domain, such an elegant method has been the missing building block towards the realization of 3D metamaterials. Here, we present a general method to manufacture 3D optical (infrared) metamaterials using a layer-by-layer technique. Specifically, we introduce a fabrication process involving planarization, lateral alignment and stacking. We demonstrate stacked metamaterials, investigate the interaction between adjacent stacked layers and analyse the optical properties of stacked metamaterials with respect to an increasing number of layers.

  3. A novel method of developing all-optical frequency encoded memory unit exploiting nonlinear switching character of semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Kumar Garai, Sisir; Mukhopadhyay, Sourangshu

    2010-10-01

    The very fast running optical memory and optical logic gates are the basic building blocks for any optical computing data processing system. Realization of a very fast memory-cell in the optical domain is very challenging. In the last two decades many methods of implementing all-optical flip-flops have been proposed. Most of these suffer from speed limitation because of low switching response of the active devices. In our present communication the authors propose a method of developing a frequency encoded memory unit based on the switching action of semiconductor optical amplifier (SOA). Nonlinear polarization rotation characters of SOA and 'SOA based Mach-Zehnder Interferometer' switch, i.e. 'SOA-MZI' switch, are exploited for the purpose of some switching action with least switching power (<-3 dB m) and high switching contrast ratio (20 dB). Here two logic states ('0' state and '1' state) of the memory is encoded by two different frequencies, which will remain unchanged throughout the data communication irrespective of loss of light energy due to reflection, refraction, attenuation, etc. Though the SOA based switch runs with the operational speed 100 Gb/s, still due to the presence of the other optical components in the memory unit, the overall speed of the proposed system will come down to 10 Gb/s.

  4. CMOS in-pixel optical pulse frequency modulator

    NASA Astrophysics Data System (ADS)

    Nel, Nicolaas E.; du Plessis, M.; Joubert, T.-H.

    2016-02-01

    This paper covers the design of a complementary metal oxide semiconductor (CMOS) pixel readout circuit with a built-in frequency conversion feature. The pixel contains a CMOS photo sensor along with all signal-to-frequency conversion circuitry. An 8×8 array of these pixels is also designed. Current imaging arrays often use analog-to-digital conversion (ADC) and digital signal processing (DSP) techniques that are off-chip1. The frequency modulation technique investigated in this paper is preferred over other ADC techniques due to its smaller size, and the possibility of a higher dynamic range. Careful considerations are made regarding the size of the components of the pixel, as various characteristics of CMOS devices are limited by decreasing the scale of the components2. The methodology used was the CMOS design cycle for integrated circuit design. All components of the pixel were designed from first principles to meet necessary requirements of a small pixel size (30×30 μm2) and an output resolution greater than that of an 8-bit ADC. For the photodetector, an n+-p+/p-substrate diode was designed with a parasitic capacitance of 3 fF. The analog front-end stage was designed around a Schmitt trigger circuit. The photo current is integrated on an integration capacitor of 200 fF, which is reset when the Schmitt trigger output voltage exceeds a preset threshold. The circuit schematic and layout were designed using Cadence Virtuoso and the process used was the AMS CMOS 350 nm process using a power supply of 5V. The simulation results were confirmed to comply with specifications, and the layout passed all verification checks. The dynamic range achieved is 58.828 dB per pixel, with the output frequencies ranging from 12.341kHz to 10.783 MHz. It is also confirmed that the output frequency has a linear relationship to the photocurrent generated by the photodiode.

  5. Noise-Induced Phase Locking and Frequency Mixing in an Optical Bistable System with Delayed Feedback

    NASA Astrophysics Data System (ADS)

    Misono, Masatoshi; Miyakawa, Kenji

    2011-11-01

    The interplay between stochastic resonance (SR) and coherence resonance (CR) is experimentally studied in an optical bistable system with a time-delayed feedback loop. We demonstrate that the phase of the noise-induced motion is locked to that of the periodic input when the ratio of their frequencies is a simple rational number. We also demonstrate that the interplay between SR and CR generates frequency-mixed modes, and that the efficiency of frequency mixing is enhanced by the optimum noise.

  6. Freely designable optical frequency conversion in Raman-resonant four-wave-mixing process

    PubMed Central

    Zheng, Jian; Katsuragawa, Masayuki

    2015-01-01

    Nonlinear optical processes are governed by the relative-phase relationships among the relevant electromagnetic fields in these processes. In this Report, we describe the physics of arbitrary manipulation of Raman-resonant four-wave-mixing process by artificial control of relative phases. As a typical example, we show freely designable optical-frequency conversions to extreme spectral regions, mid-infrared and vacuum-ultraviolet, with near-unity quantum efficiencies. Furthermore, we show that such optical-frequency conversions can be realized by using a surprisingly simple technology where transparent plates are placed in a nonlinear optical medium and their positions and thicknesses are adjusted precisely. In a numerical simulation assuming practically applicable parameters in detail, we demonstrate a single-frequency tunable laser that covers the whole vacuum-ultraviolet spectral range of 120 to 200 nm. PMID:25748023

  7. High frequency optoelectronic oscillators based on the optical feedback of semiconductor mode-locked laser diodes.

    PubMed

    Haji, Mohsin; Hou, Lianping; Kelly, Anthony E; Akbar, Jehan; Marsh, John H; Arnold, John M; Ironside, Charles N

    2012-01-30

    Optical self seeding feedback techniques can be used to improve the noise characteristics of passively mode-locked laser diodes. External cavities such as fiber optic cables can increase the memory of the phase and subsequently improve the timing jitter. In this work, an improved optical feedback architecture is proposed using an optical fiber loop delay as a cavity extension of the mode-locked laser. We investigate the effect of the noise reduction as a function of the loop length and feedback power. The well known composite cavity technique is also implemented for suppressing supermode noise artifacts presented due to harmonic mode locking effects. Using this method, we achieve a record low radio frequency linewidth of 192 Hz for any high frequency (>1 GHz) passively mode-locked laser to date (to the best of the authors' knowledge), making it promising for the development of high frequency optoelectronic oscillators.

  8. Large-scale frequency- and time-domain quantum entanglement over the optical frequency comb (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pfister, Olivier

    2017-05-01

    When it comes to practical quantum computing, the two main challenges are circumventing decoherence (devastating quantum errors due to interactions with the environmental bath) and achieving scalability (as many qubits as needed for a real-life, game-changing computation). We show that using, in lieu of qubits, the "qumodes" represented by the resonant fields of the quantum optical frequency comb of an optical parametric oscillator allows one to create bona fide, large scale quantum computing processors, pre-entangled in a cluster state. We detail our recent demonstration of 60-qumode entanglement (out of an estimated 3000) and present an extension to combining this frequency-tagged with time-tagged entanglement, in order to generate an arbitrarily large, universal quantum computing processor.

  9. Optical frequency comb generation based on three parallel Mach-Zehnder modulators with recirculating frequency shifting loop

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Zhao, Shanghong; Li, Xiaojun; Tan, Qinggui

    2017-08-01

    We theoretically and numerically study an approach for optical frequency comb (OFC) generation, by utilizing recirculating frequency shifting (RFS) loop based on three parallel Mach-Zehnder modulators (MZMs). Our results show that three parallel MZMs can generate a single-side-band (SSB) signal with 36 dB optical carrier suppression (OCS) ratio. Furthermore, the 60-tone OFC signal with 30 dB side-mode suppression ratio (SMSR) and 4 dB maximum power fluctuation is achieved, and 20 of the OFC signal possess the power fluctuation of less than 1 dB. Our approach provides a novel way of generating OFC with excellent SMSR and good power fluctuation.

  10. Transportable cavity-stabilized laser system for optical carrier frequency transmission experiments.

    PubMed

    Parker, B; Marra, G; Johnson, L A M; Margolis, H S; Webster, S A; Wright, L; Lea, S N; Gill, P; Bayvel, P

    2014-12-10

    We report the design and performance of a transportable laser system at 1543 nm, together with its application as the source for a demonstration of optical carrier frequency transmission over 118 km of an installed dark fiber network. The laser system is based around an optical reference cavity featuring an elastic mounting that bonds the cavity to its support, enabling the cavity to be transported without additional clamping. The cavity exhibits passive fractional frequency insensitivity to vibration along the optical axis of 2.0×10(-11)  m(-1) s(2). With active fiber noise cancellation, the optical carrier frequency transmission achieves a fractional frequency instability, measured at the user end, of 2.6×10(-16) at 1 s, averaging down to below 3×10(-18) after 20,000 s. The fractional frequency accuracy of the transfer is better than 3×10(-18). This level of performance is sufficient for comparison of state-of-the-art optical frequency standards and is achieved in an urban fiber environment.

  11. Thulium-doped fiber laser utilizing a photonic crystal fiber-based optical low-pass filter with application in 1.7 μm and 1.8 μm band.

    PubMed

    Emami, Siamak Dawazdah; Khodaei, Amin; Gandan, Shumithira; Penny, Richard; Lim, Kok Sing; Abdul-Rashid, Hairul Azhar; Ahmad, Harith

    2015-07-27

    This paper describes a low pass filter based on photonics crystal fiber (PCF) partial ASE suppression, and its application within a 1.7 µm to 1.8 µm band thulium-doped fiber amplifier (TDFA) and a thulium-doped fiber laser (TDFL). The enlargement of air holes around the doped core region of the PCF resulted in a low-pass filter device that was able to attenuate wavelengths above the conventional long cut-off wavelength. These ensuing long cut-off wavelengths were 1.85 μm and 1.75 μm, and enabled a transmission mechanism that possessed a number of desirable characteristics. The proposed optical low-pass filter was applied within a TDFA and TDFL system. Peak spectrum was observed at around 1.9 μm for conventional TDF lasers, while the proposed TDF laser with PCF setup had fiber laser peak wavelengths measured at downshifted values of 1.74 μm and 1.81 μm.

  12. Multiple frequency optical mixer and demultiplexer and apparatus for remote sensing

    NASA Technical Reports Server (NTRS)

    Chen, Jeffrey R. (Inventor)

    2010-01-01

    A pulsed laser system includes a modulator module configured to provide pulsed electrical signals and a plurality of solid-state seed sources coupled to the modulator module and configured to operate, responsive to the pulsed electrical signals, in a pulse mode. Each of the plurality of solid-state seed sources is tuned to a different frequency channel separated from any adjacent frequency channel by a frequency offset. The pulsed laser system also includes a combiner that combines outputs from each of the solid state seed sources into a single optical path and an optical doubler and demultiplexer coupled to the single optical path and providing each doubled seed frequency on a separate output path.

  13. Photonic chip-based optical frequency comb using soliton Cherenkov radiation.

    PubMed

    Brasch, V; Geiselmann, M; Herr, T; Lihachev, G; Pfeiffer, M H P; Gorodetsky, M L; Kippenberg, T J

    2016-01-22

    Optical solitons are propagating pulses of light that retain their shape because nonlinearity and dispersion balance each other. In the presence of higher-order dispersion, optical solitons can emit dispersive waves via the process of soliton Cherenkov radiation. This process underlies supercontinuum generation and is of critical importance in frequency metrology. Using a continuous wave-pumped, dispersion-engineered, integrated silicon nitride microresonator, we generated continuously circulating temporal dissipative Kerr solitons. The presence of higher-order dispersion led to the emission of red-shifted soliton Cherenkov radiation. The output corresponds to a fully coherent optical frequency comb that spans two-thirds of an octave and whose phase we were able to stabilize to the sub-Hertz level. By preserving coherence over a broad spectral bandwidth, our device offers the opportunity to develop compact on-chip frequency combs for frequency metrology or spectroscopy.

  14. Frequency-Shifted Interferometry — A Versatile Fiber-Optic Sensing Technique

    PubMed Central

    Ye, Fei; Zhang, Yiwei; Qi, Bing; Qian, Li

    2014-01-01

    Fiber-optic sensing is a field that is developing at a fast pace. Novel fiber-optic sensor designs and sensing principles constantly open doors for new opportunities. In this paper, we review a fiber-optic sensing technique developed in our research group called frequency-shifted interferometry (FSI). This technique uses a continuous-wave light source, an optical frequency shifter, and a slow detector. We discuss the operation principles of several FSI implementations and show their applications in fiber length and dispersion measurement, locating weak reflections along a fiber link, fiber-optic sensor multiplexing, and high-sensitivity cavity ring-down measurement. Detailed analysis of FSI system parameters is also presented. PMID:24955943

  15. Research study of fiber-optic interferometry at very low frequencies

    NASA Astrophysics Data System (ADS)

    Edwards, R. B.

    1984-06-01

    A comprehensive review of fiber-optic interferometry shows that frequency-dependent phenomena affecting fiber-optic interferometric electromagnetic sensors at very low frequencies have been neither adequately understood nor quantitatively described. In addition to the electro-optical and magneto-strictive (or electro-strictive) factors that intrinsically limit transduction, other interactive mechanisms such as skin-depth and mechanical loading are commonly supposed to affect the detection sensitivity of the interferometric sensor. This research study of fiber-optic interferometry consists of the following: a review of fiber-optic interferometry, analyses aimed at understanding the mechanisms and quantifying where possible, their effects, and an investigation of means to reduce their impact on the performance of practical sensor implementations. Additional experimental studies have been planned in an attempt to address these interactive mechanisms, their effects and methods of mitigating them. The experimental studies have been performed on a best efforts basis due to cost and schedule constraints.

  16. Theoretical analysis and system design of two-photon based optical frequency standards

    NASA Astrophysics Data System (ADS)

    Burger, J. P.; Jivan, P.; Matthee, C.; Kritzinger, R.; Hussein, H.; Terra, O.

    2014-06-01

    The National Metrology Institute of South Africa (NMISA) is developing a new optical frequency standard based on the Rubidium two-photon transition in collaboration with the National Institute of Standards (NIS, Egypt) that will use both bulk and fiber optics in the system. This is system is called A-POD; an acronym for a portable photonic oscillator device. Rubidium two-photon standards can yield relatively simple and precise standards that are compatible with standard Ti:Sapphire optical frequency combs, as well as the need for a precise frequency standard in the optical telecommunication domain and for measurement of length with a visible beam. The robustness and transportability of the standard are important considerations for the optical frequency standard. This projects implements a framework for better two-photon standards that can be highly accurate, and possibly compete with much more complex clocks in the metrology environment, and especially so in the smaller national metrology institutes found in the developing world. This paper discusses the design constraints and the development considerations towards the optical setup. The robustness and transportability was greatly improved via the usage of optical fiber in the light source of the system, or even in atom-light interaction region. Of particular importance are the beam parameters inside the atomic interaction area. The extent of Doppler broadening and the intensity dependent line shift have to be optimized within practical extents, where both these aspects are affected by the beam shape and optical geometry. A way to fully treat the optical beam effects together with atomic movement is proposed. Furthermore a method is proposed to do real time compensation of intensity dependent light shift, which could have major applicability to frequency standards in general - the complexity is shifted from physical setups to digital signal processing, which is easily adaptable and stable.

  17. Asymmetric corner frequency in the 1/f FM-noise PSD of optical frequency combs generated by quantum-dash mode-locked lasers

    NASA Astrophysics Data System (ADS)

    Panapakkam, V.; Anthur, A.; Vujicic, V.; Gaimard, Q.; Merghem, K.; Aubin, G.; Lelarge, F.; Viktorov, E.; Barry, L. P.; Ramdane, A.

    2016-10-01

    We experimentally investigate the corner frequency in the 1/f frequency noise of the longitudinal modes of an InAs/InP quantum-dash based single-section passive mode-locked laser. The corner frequency features a strong asymmetry across the optical frequency comb with the values ranging from 10 MHz in the low-frequency side to 180 MHz in the high-frequency side. Actively mode-locking the laser induces a reduction in the corner frequency as it changes from 3 MHz in the low-frequency side to 70 MHz in the high-frequency side and the asymmetry persists.

  18. Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks.

    PubMed

    Akamatsu, Daisuke; Yasuda, Masami; Inaba, Hajime; Hosaka, Kazumoto; Tanabe, Takehiko; Onae, Atsushi; Hong, Feng-Lei

    2014-04-07

    The frequency ratio of the (1)S(0)(F = 1/2)-(3)P(0)(F = 1/2) clock transition in (171)Yb and the (1)S(0)(F = 9/2)-(3)P(0)(F = 9/2) clock transition in (87)Sr is measured by an optical-optical direct frequency link between two optical lattice clocks. We determined the ratio (ν(Yb)/ν(Sr)) to be 1.207 507 039 343 341 2(17) fractional standard uncertainty of 1.4 × 10(-15) [corrected]. The measurement uncertainty of the frequency ratio is smaller than that obtained from absolute frequency measurements using the International Atomic Time (TAI) link. The measured ratio agrees well with that derived from the absolute frequency measurement results obtained at NIST and JILA, Boulder, CO using their Cs-fountain clock. Our measurement enables the first international comparison of the frequency ratios of optical clocks. The measured frequency ratio will be reported to the International Committee for Weights and Measures for a discussion related to the redefinition of the second.

  19. Low Frequency Error Analysis and Calibration for High-Resolution Optical Satellite's Uncontrolled Geometric Positioning

    NASA Astrophysics Data System (ADS)

    Wang, Mi; Fang, Chengcheng; Yang, Bo; Cheng, Yufeng

    2016-06-01

    The low frequency error is a key factor which has affected uncontrolled geometry processing accuracy of the high-resolution optical image. To guarantee the geometric quality of imagery, this paper presents an on-orbit calibration method for the low frequency error based on geometric calibration field. Firstly, we introduce the overall flow of low frequency error on-orbit analysis and calibration, which includes optical axis angle variation detection of star sensor, relative calibration among star sensors, multi-star sensor information fusion, low frequency error model construction and verification. Secondly, we use optical axis angle change detection method to analyze the law of low frequency error variation. Thirdly, we respectively use the method of relative calibration and information fusion among star sensors to realize the datum unity and high precision attitude output. Finally, we realize the low frequency error model construction and optimal estimation of model parameters based on DEM/DOM of geometric calibration field. To evaluate the performance of the proposed calibration method, a certain type satellite's real data is used. Test results demonstrate that the calibration model in this paper can well describe the law of the low frequency error variation. The uncontrolled geometric positioning accuracy of the high-resolution optical image in the WGS-84 Coordinate Systems is obviously improved after the step-wise calibration.

  20. Eradication of HT-29 colorectal adenocarcinoma cells by controlled photorelease of CO from a CO-releasing polymer (photoCORP-1) triggered by visible light through an optical fiber-based device.

    PubMed

    Pinto, Miguel N; Chakraborty, Indranil; Sandoval, Cosme; Mascharak, Pradip K

    2017-10-28

    The gaseous signaling molecule carbon monoxide (CO) has recently been recognized for its wide range of physiological activity as well as its antineoplastic properties. However, site-specific delivery of this noxious gas presents a major challenge in hospital settings. In this work, a visible light-sensitive CO-releasing molecule (photoCORM) derived from manganese(I) and 2-(quinolyl)benzothiazole (qbt) namely, [Mn(CO)3(qbt)(4-vpy)](CF3SO3) (1), has been co-polymerized within a gas-permeable HEMA/EGDMA hydrogel. The resulting photoactive CO-releasing polymer (photoCORP-1) incorporates 1 such that neither the carbonyl complex nor its photoproduct(s) exits the polymer at any time. The material can be triggered to photorelease CO remotely by low-power broadband visible light (<1mWcm(-2)) with the aid of fiber optics technology. The CO photorelease rates of photoCORP-1 (determined by spectrophotometry) can be modulated by both the concentration of 1 in the hydrogel and the intensity of the light. A CO-delivery device has been assembled to deliver CO to a suspension of human colorectal adenocarcinoma cells (HT-29) under the control of visible light and the extent of CO-induced apoptotic death of the cancer cells has been determined via Annexin V/Propidium iodide stain and flow cytometry. This photoactive CO-releasing polymer could find use in delivering controlled doses of CO to cellular targets such as malignant tissues in remote parts of the body. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. All-optical microwave photonic filter based on two-frequency optical source

    NASA Astrophysics Data System (ADS)

    Morozov, Oleg G.; Sadeev, Tagir S.

    2011-04-01

    All-optical microwave filter has been a topic of interest for over two decades because of the many advantageous features such as large time-bandwidth product, wide tunability, high Q-factor, low loss, light weight, and immunity to electromagnetic interference offered by photonic devices. All-optical microwave photonic filter is a system used to implement microwave filtering in the optical domain, which can provide a large tunability and a high Q factor which are usually difficult to realize through conventional electronic methods. In addition, since the microwave signal is processed directly in the optical domain without additional optical-electrical and electrical-optical conversions, the photonic microwave filters are particularly suitable for applications such as optically controlled phased-array antennas, radio-over-fiber (RoF) systems, and other microwave-photonic links (MPLs). For these reasons, photonic microwave filters have attracted considerable interest for a few years.

  2. All-optical microwave photonic filter based on two-frequency optical source

    NASA Astrophysics Data System (ADS)

    Morozov, Oleg G.; Sadeev, Tagir S.

    2010-12-01

    All-optical microwave filter has been a topic of interest for over two decades because of the many advantageous features such as large time-bandwidth product, wide tunability, high Q-factor, low loss, light weight, and immunity to electromagnetic interference offered by photonic devices. All-optical microwave photonic filter is a system used to implement microwave filtering in the optical domain, which can provide a large tunability and a high Q factor which are usually difficult to realize through conventional electronic methods. In addition, since the microwave signal is processed directly in the optical domain without additional optical-electrical and electrical-optical conversions, the photonic microwave filters are particularly suitable for applications such as optically controlled phased-array antennas, radio-over-fiber (RoF) systems, and other microwave-photonic links (MPLs). For these reasons, photonic microwave filters have attracted considerable interest for a few years.

  3. Characteristics and stability of soliton crystals in optical fibres for the purpose of optical frequency comb generation

    NASA Astrophysics Data System (ADS)

    Zajnulina, M.; Böhm, M.; Bodenmüller, D.; Blow, K.; Boggio, J. M. Chavez; Rieznik, A. A.; Roth, M. M.

    2017-06-01

    We study the properties of a soliton crystal, a bound state of several optical pulses that propagate with a fixed temporal separation through the optical fibres of the proposed approach for generation of optical frequency combs (OFC) for astronomical spectrograph calibration. This approach - also being suitable for subpicosecond pulse generation for other applications - consists of a conventional single-mode fibre and a suitably pumped Erbium-doped fibre. Two continuous-wave lasers are used as light source. The soliton crystal arises out of the initial deeply modulated laser field at low input powers; for higher input powers, it dissolves into free solitons. We study the soliton crystal build-up in the first fibre stage with respect to different fibre parameters (group-velocity dispersion, nonlinearity, and optical losses) and to the light source characteristics (laser frequency separation and intensity difference). We show that the soliton crystal can be described by two quantities, its fundamental frequency and the laser power-threshold at which the crystal dissolves into free solitons. The soliton crystal exhibits features of a linear and nonlinear optical pattern at the same time and is insensitive to the initial laser power fluctuations. We perform our studies using the numerical technique called Soliton Radiation Beat Analysis.

  4. FROM STABLE LASERS TO OPTICAL-FREQUENCY CLOCKS:. Merging the UltraFast and the UltraStable, for a New Epoch of Optical Frequency Measurements, Standards, & Applications

    NASA Astrophysics Data System (ADS)

    Hall, J. L.; Ye, J.; Ma, L.-S.; Peng, J.-L.; Notcutt, M.; Jost, J. D.; Marian, A.

    2002-04-01

    This is a report on behalf of the World Team of Stable Laser and Optical Frequency Measurement Enthusiasts, even if most detailed illustrations draw mainly from our work at JILA. Specifically we trace some of the key ideas that have led from the first stabilized lasers, to frequency measurement up to 88 THz using frequency chains, revision of the Definition of the Metre, extension of coherent frequency chain technology into the visible, development of a vast array of stabilized lasers, and finally the recent explosive growth of direct frequency measurement capability in the visible using fs comb techniques. We present our recent work showing a Molecular Iodine-based Optical Clock which delivers, over a range of time scales, rf output at a stability level basically equivalent to the RF stability prototype, the Hydrogen Maser. We note the bifurcation between single-ion-based clocks - likely to be the stability/reproducibility ultimate winners in the next generation - and simpler systems based on gas cells, which can have impressive stabilities but may suffer from a variety of reproducibility-limiting processes. Active Phase-Lock synchronization of independent fs lasers allows sub-fs timing control. Copies of related works in our labs may be found/obtained at our website .

  5. High-resolution frequency domain second harmonic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Su, Jianping; Tomov, I. V.; Jiang, Yi; Chen, Zhongping

    2007-02-01

    We used continuum generated in an 8.5 cm long fiber by a femtosecond Yb fiber laser to improve threefold the axial resolution of frequency domain SH-OCT to 12μm. The acquisition time was shortened by more than two orders of magnitude compared to time domain SH-OCT. The system was applied to image biological tissue of fish scales, pig leg tendon and rabbit eye sclera. Highly organized collagen fibrils can be visualized in the recorded images. Polarization dependence on second harmonic has been used to obtain polarization resolved images.

  6. Frequency combs and platicons in optical microresonators with normal GVD.

    PubMed

    Lobanov, V E; Lihachev, G; Kippenberg, T J; Gorodetsky, M L

    2015-03-23

    We predict the existence of a novel type of the flat-top dissipative solitonic pulses, "platicons", in microresonators with normal group velocity dispersion (GVD). We propose methods to generate these platicons from cw pump. Their duration may be altered significantly by tuning the pump frequency. The transformation of a discrete energy spectrum of dark solitons of the Lugiato-Lefever equation into a quasicontinuous spectrum of platicons is demonstrated. Generation of similar structures is also possible with bi-harmonic, phase/amplitude modulated pump or via laser injection locking.

  7. Development of a frequency-tunable optical phase lock loop (OPLL) for high resolution fiber optic distributed sensing

    NASA Astrophysics Data System (ADS)

    Kuperschmidt, Vladimir; Stolpner, Lew; Mols, Peter; Alalusi, Mazin; Mehnert, Axel; Barsan, Radu; Ansari, Farhad

    2011-04-01

    We report on the development of a precision-tunable, dual wavelength, optical light source suitable for high performance fiber optic Brillouin scattering distributed sensing. The design is based on an Optical Phase Locked Loop (OPLL) system using novel narrow linewidth, low frequency noise and high stability PLANEX external cavity semiconductor. The inherent wavelength stability of PLANEX lasers (typically an order of magnitude better that any DFB laser on the market) enable the OPLL to operate continuously over a wide ambient temperature range without degradation in wavelength locking performance. The OPLL architecture is implemented with polarization maintaining (PM) components and has a very low beat frequency jitter on the order of few kHz. The OPLL frequency tuning range is between 8 and 14 GHz, with fast tuning of sweep steps on the order of 100 μsec. Such a frequency tuning range covers practically all corresponding temperature and strain sensing applications based on the measurement of the frequency shift produced by spontaneous or stimulated Brillouin scattering, and thus is a versatile and enabling technology for both BOTDA/BOTDR distributed sensing systems.

  8. Building a Pulse Detector using the Frequency Resolved Optical Gating Technique

    SciTech Connect

    Vallin, J

    2004-02-05

    We show how to construct a diagnostic optical layout known as Frequency Resolved Optical Gating (FROG) for an ir mode-locked laser by using the nonlinear effect known as second harmonic generation (SHG). In this paper, we explain the principle of operation and the theory upon which this diagnostic is based. Moreover, we described the procedure used to measure the duration and frequency components of a pulse. This process consists of calibrating the scales of a two-dimensional image, time delay vs. frequency, known as FROG spectrogram or FROG trace. This calibration of the time delay scale yields the correspondence between a pixel and time delay. Similarly, the calibration of the frequency scale yields the correspondence between a pixel, and frequency.

  9. Nonlinear modification of the laser noise power spectrum induced by frequency-shifted optical feedback

    NASA Astrophysics Data System (ADS)

    Lacot, Eric; Houchmandzadeh, Bahram; Girardeau, Vadim; Hugon, Olivier; Jacquin, Olivier

    2016-09-01

    In this article, we study the nonlinear coupling between the stationary (i.e., the beating modulation signal) and transient (i.e., the laser quantum noise) dynamics of a laser subjected to frequency-shifted optical feedback. We show how the noise power spectrum and more specifically the relaxation oscillation frequency of the laser are modified under different optical feedback conditions. Specifically we study the influence of (i) the amount of light returning to the laser cavity and (ii) the initial detuning between the frequency shift and intrinsic relaxation frequency. The present work shows how the relaxation frequency is related to the strength of the beating signal, and the shape of the noise power spectrum gives an image of the transfer modulation function (i.e., of the amplification gain) of the nonlinear-laser dynamics. The theoretical predictions, confirmed by numerical resolutions, are in good agreement with the experimental data.

  10. Optical frequency standard by using a 1560 nm diode laser locked to saturated absorption lines of rubidium vapor

    SciTech Connect

    Masuda, Shin; Seki, Atsushi; Niki, Shoji

    2007-07-20

    A robust, compact, highly accurate rubidium optical frequency standard module was developed to overcome the delicate performance of conventional frequency stabilized lasers. A frequency doubled1560 nm distributed feedback diode laser locked to a rubidium D2 saturated absorption line without using an optical amplifier was demonstrated, and dithering-free optical output was obtained. In addition, the sensitivity of the developed optical frequency standard to magnetic fields was investigated. We confirmed that the influence of the magnetic fields on the optical frequency standard can be almost negligible when using appropriate magnetic-shield films. As a result, the magnetic-field-insensitive optical frequency standard, which can be embedded in optical systems,exhibiting uncertainty less than at least 100 kHz, was successfully realized for the first time to the best of our knowledge.

  11. Multimode entanglement in reconfigurable graph states using optical frequency combs

    NASA Astrophysics Data System (ADS)

    Cai, Y.; Roslund, J.; Ferrini, G.; Arzani, F.; Xu, X.; Fabre, C.; Treps, N.

    2017-06-01

    Multimode entanglement is an essential resource for quantum information processing and quantum metrology. However, multimode entangled states are generally constructed by targeting a specific graph configuration. This yields to a fixed experimental setup that therefore exhibits reduced versatility and scalability. Here we demonstrate an optical on-demand, reconfigurable multimode entangled state, using an intrinsically multimode quantum resource and a homodyne detection apparatus. Without altering either the initial squeezing source or experimental architecture, we realize the construction of thirteen cluster states of various sizes and connectivities as well as the implementation of a secret sharing protocol. In particular, this system enables the interrogation of quantum correlations and fluctuations for any multimode Gaussian state. This initiates an avenue for implementing on-demand quantum information processing by only adapting the measurement process and not the experimental layout.

  12. Multimode entanglement in reconfigurable graph states using optical frequency combs

    PubMed Central

    Cai, Y.; Roslund, J.; Ferrini, G.; Arzani, F.; Xu, X.; Fabre, C.; Treps, N.

    2017-01-01

    Multimode entanglement is an essential resource for quantum information processing and quantum metrology. However, multimode entangled states are generally constructed by targeting a specific graph configuration. This yields to a fixed experimental setup that therefore exhibits reduced versatility and scalability. Here we demonstrate an optical on-demand, reconfigurable multimode entangled state, using an intrinsically multimode quantum resource and a homodyne detection apparatus. Without altering either the initial squeezing source or experimental architecture, we realize the construction of thirteen cluster states of various sizes and connectivities as well as the implementation of a secret sharing protocol. In particular, this system enables the interrogation of quantum correlations and fluctuations for any multimode Gaussian state. This initiates an avenue for implementing on-demand quantum information processing by only adapting the measurement process and not the experimental layout. PMID:28585530

  13. Optical Reflection Measurement System Using A Swept Modulation Frequency Technique

    NASA Astrophysics Data System (ADS)

    Braun, David M.; Leyde, Kent W.

    1989-03-01

    A measurement system has been developed capable of mea-suring reflected optical power as low as 0.0025% with a spot size diam-eter of 24 Am. One application for this system is the characterization of small-area photodetectors. The operation of the measurement system is simple, allowing the operator to quickly make multiple reflection measurements, and it does not require a darkroom. The measurement system merges a microscope, for visual alignment and focusing of the laser beam, with a lightwave component analyzer using modulation vec-tor error correction. A measurement comparison between the analyzer-based system and a power-meter-based system showed that each sys-tem can measure reflections as low as 0.0025%. However, the analyzer-based system offers the advantage of identifying the location and magnitude of system reflections. The system operates at a wavelength of 1310 nm.

  14. Development and test of the Ball Aerospace optical frequency comb: a versatile measurement tool for aerospace applications

    NASA Astrophysics Data System (ADS)

    Wachs, Jordan; Leitch, James; Knight, Scott; Pierce, Robert; Adkins, Michael

    2016-07-01

    The Ball Fiber Optical Comb Demo is a lab-based system which is used to develop space applications for optical frequency combs. These developments utilize the broadband optical coherence of the frequency comb to expand the capabilities of ground test and orbital systems used for optical wave-front measurement, control of adaptive optics, precision ranging, and reference frequency stabilization. The work expands upon a NIST-developed all-fiber frequency comb that exhibits high stability in a compact, enclosed package. Previously demonstrated applications for frequency combs include: Spectroscopy, distance and velocity measurement, frequency conversion, and timing transfer. Results from the Ball system show the characterization and performance of a frequency comb system with a technological path-to-space. Demonstrations in high precision metrology and long distance ranging are also presented for application in adaptive and multi-body optical systems.

  15. Frequency-based design of Adaptive Optics systems

    NASA Astrophysics Data System (ADS)

    Agapito, Guido; Battistelli, Giorgio; Mari, Daniele; Selvi, Daniela; Tesi, Alberto; Tesi, Pietro

    2013-12-01

    The problem of reducing the effects of wavefront distortion and structural vibrations inground-based telescopes is addressed within a modal-control framework. The proposed approach aimsat optimizing the parameters of a given modal stabilizing controller with respect to a performance criterionwhich reflects the residual phase variance and is defined on a sampled frequency domain. Thisframework makes it possible to account for turbulence and vibration profiles of arbitrary complexity(even empirical power spectral densities from data), while the controller order can be kept at a desiredvalue. Moreover it is possible to take into account additional requirements, as robustness in the presenceof disturbances whose intensity and frequency profile vary with time. The proposed design procedureresults in solving a minmax problem and can be converted into a linear programming problem withquadratic constraints, for which there exist several standard optimization techniques. The optimizationstarts from a given stabilizing controller which can be either a non-model-based controller (in this caseno identification effort is required), or a model-based controller synthesized by means of turbulence andvibration models of limited complexity. In this sense the approach can be viewed not only as alternative,but also as cooperative with other control design approaches. The results obtained by means of anEnd-to-End simulator are shown to emphasize the power of the proposed method.

  16. Frequency Comparison of [Formula: see text] Ion Optical Clocks at PTB and NPL via GPS PPP.

    PubMed

    Leute, J; Huntemann, N; Lipphardt, B; Tamm, Christian; Nisbet-Jones, P B R; King, S A; Godun, R M; Jones, J M; Margolis, H S; Whibberley, P B; Wallin, A; Merimaa, M; Gill, P; Peik, E

    2016-07-01

    We used precise point positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled [Formula: see text] ions operated at the National Physical Laboratory (NPL), U.K. and the Physikalisch-Technische Bundesanstalt (PTB), Germany. At both institutes, an active hydrogen maser serves as a flywheel oscillator which is connected to a GPS receiver as an external frequency reference and compared simultaneously to a realization of the unperturbed frequency of the (2)S1/2(F=0)-(2)D3/2(F=2) electric quadrupole transition in [Formula: see text] via an optical femtosecond frequency comb. To profit from long coherent GPS-link measurements, we extrapolate the fractional frequency difference over the various data gaps in the optical clock to maser comparisons which introduces maser noise to the frequency comparison but improves the uncertainty from the GPS-link instability. We determined the total statistical uncertainty consisting of the GPS-link uncertainty and the extrapolation uncertainties for several extrapolation schemes. Using the extrapolation scheme with the smallest combined uncertainty, we find a fractional frequency difference [Formula: see text] of -1.3×10(-15) with a combined uncertainty of 1.2×10(-15) for a total measurement time of 67 h. This result is consistent with an agreement of the frequencies realized by both optical clocks and with recent absolute frequency measurements against caesium fountain clocks within the corresponding uncertainties.

  17. Tailoring alphabetical metamaterials in optical frequency: plasmonic coupling, dispersion, and sensing.

    PubMed

    Zhang, Jun; Cao, Cuong; Xu, Xinlong; Liow, Chihao; Li, Shuzhou; Tan, Pingheng; Xiong, Qihua

    2014-04-22

    Tailoring optical properties of artificial metamaterials, whose optical properties go beyond the limitations of conventional and naturally occurring materials, is of importance in fundamental research and has led to many important applications such as security imaging, invisible cloak, negative refraction, ultrasensitive sensing, and transformable and switchable optics. Herein, by precisely controlling the size, symmetry, and topology of alphabetical metamaterials with U, S, Y, H, U-bar, and V shapes, we have obtained highly tunable optical response covering visible-to-infrared (vis-NIR) optical frequency. In addition, we show a detailed study on the physical origin of resonance modes, plasmonic coupling, the dispersion of resonance modes, and the possibility of negative refraction. We have found that all the electronic and magnetic modes follow the dispersion of surface plasmon polaritons; thus, essentially they are electronic- and magnetic-surface-plasmon-polaritons-like (ESPP-like and MSPP-like) modes resulted from diffraction coupling between localized surface plasmon and freely propagating light. On the basis of the fill factor and formula of magnetism permeability, we predict that the alphabetical metamaterials should show the negative refraction capability in visible optical frequency. Furthermore, we have demonstrated the specific ultrasensitive surface enhanced Raman spectroscopy (SERS) sensing of monolayer molecules and femtomolar food contaminants by tuning their resonance to match the laser wavelength, or by tuning the laser wavelength to match the plasmon resonance of metamaterials. Our tunable alphabetical metamaterials provide a generic platform to study the electromagnetic properties of metamaterials and explore the novel applications in optical frequency.

  18. All-optical binary logic unit (BLU) using frequency encoded data

    NASA Astrophysics Data System (ADS)

    Mandal, Dhoumendra; Garai, Sisir Kumar

    2015-03-01

    In frequency division multiplexing based communication network frequency encoded data is very important. In this communication, authors propose a new approach of developing an all-optical binary logic unit (BLU) by means of which sixteen different types of binary logic operations can be performed using frequency encoded data. The authors first develop all-optical NOT, AND, OR, XOR, etc. logic gates exploiting the polarization switching character of semiconductor optical amplifier which works based on the principle of nonlinear state of polarization rotation of the probe beam. Finally these logic gates are coupled by means of polarization switches, and activated to implement different logic operations as desired using control beams of different frequencies, after being proper routing the control beams by means of 16:1 MUX and 1:16 DMUX. Frequency conversion by polarization switching character of SOA is very efficient and faster with least optical power consumption, and therefore our proposed scheme of binary logic unit with frequency encoded data offers bit error free secure different binary logic operations with faster speed of processing. Simulation result reflects the feasibility of the proposed scheme.

  19. Variable pulse repetition frequency output from an optically injected solid state laser.

    PubMed

    Kane, D M; Toomey, J P

    2011-02-28

    An optically injected solid state laser (OISSL) system is known to generate complex nonlinear dynamics within the parameter space of varying the injection strength of the master laser and the frequency detuning between the master and slave lasers. Here we show that within these complex nonlinear dynamics, a system which can be operated as a source of laser pulses with a pulse repetition frequency (prf) that can be continuously varied by a single control, is embedded. Generation of pulse repetition frequencies ranging from 200 kHz up to 4 MHz is shown to be achievable for an optically injected Nd:YVO4 solid state laser system from analysis of prior experimental and simulation results. Generalizing this to other optically injected solid state laser systems, the upper bound on the repetition frequency is of order the relaxation oscillation frequency for the lasers. The system is discussed in the context of prf versatile laser systems more generally. Proposals are made for the next generation of OISSLs that will increase understanding of the variable pulse repetition frequency operation, and determine its practical limitations. Such variable prf laser systems; both low powered, and, higher powered systems achieved using one or more optical power amplifier stages; have many potential applications from interrogating resonance behaviors in microscale structures, through sensing and diagnostics, to laser processing.

  20. Phase Analysis for Frequency Standards in the Microwave and Optical Domains.

    PubMed

    Kazda, Michael; Gerginov, Vladislav; Huntemann, Nils; Lipphardt, Burghard; Weyers, Stefan

    2016-07-01

    Coherent manipulation of atomic states is a key concept in high-precision spectroscopy and used in atomic fountain clocks and a number of optical frequency standards. Operation of these standards can involve a number of cyclic switching processes, which may induce cycle-synchronous phase excursions of the interrogation signal and thus lead to shifts in the output of the frequency standard. We have built a field-programmable gate array (FPGA)-based phase analyzer to investigate these effects and conducted measurements on two kinds of frequency standards. For the caesium fountains PTB-CSF1 and PTB-CSF2, we were able to exclude phase variations of the microwave source at the level of a few microradians, corresponding to relative frequency shifts of less than [Formula: see text]. In the optical domain, we investigated phase variations in PTB's Yb (+) optical frequency standard and made detailed measurements of acousto-optic modulator (AOM) chirps and their scaling with duty cycle and driving power. We ascertained that cycle-synchronous as well as long-term phase excursion do not cause frequency shifts larger than [Formula: see text].

  1. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.

    PubMed

    Olmon, R L; Raschke, M B

    2012-11-09

    The goal of antenna design at optical frequencies is to deliver optical electromagnetic energy to loads in the form of, e.g., atoms, molecules or nanostructures, or to enhance the radiative emission from such structures, or both. A true optical antenna would, on a qualitatively new level, control the light-matter interaction on the nanoscale for controlled optical signal transduction, radiative decay engineering, quantum coherent control, and super-resolution microscopy, and provide unprecedented sensitivity in spectroscopy. Resonant metallic structures have successfully been designed to approach these goals. They are called optical antennas in analogy to radiofrequency (RF) antennas due to their capability to collect and control electromagnetic fields at optical frequencies. However, in contrast to the RF, where exact design rules for antennas, waveguides, and antenna-load matching in terms of their impedances are well established, substantial physical differences limit the simple extension of the RF concepts into the optical regime. Key distinctions include, for one, intrinsic material resonances including quantum state excitations (metals, metal oxides, semiconductor homo- and heterostructures) and extrinsic resonances (surface plasmon/phonon polaritons) at optical frequencies. Second, in the absence of discrete inductors, capacitors, and resistors, new design strategies must be developed to impedance match the antenna to the load, ultimately in the form of a vibrational, electronic, or spin excitation on the quantum level. Third, there is as yet a lack of standard performance metrics for characterizing, comparing and quantifying optical antenna performance. Therefore, optical antenna development is currently challenged at all the levels of design, fabrication, and characterization. Here we generalize the ideal antenna-load interaction at optical frequencies, characterized by three main steps: (i) far-field reception of a propagating mode exciting an antenna

  2. Antenna-load interactions at optical frequencies: impedance matching to quantum systems

    NASA Astrophysics Data System (ADS)

    Olmon, R. L.; Raschke, M. B.

    2012-11-01

    The goal of antenna design at optical frequencies is to deliver optical electromagnetic energy to loads in the form of, e.g., atoms, molecules or nanostructures, or to enhance the radiative emission from such structures, or both. A true optical antenna would, on a qualitatively new level, control the light-matter interaction on the nanoscale for controlled optical signal transduction, radiative decay engineering, quantum coherent control, and super-resolution microscopy, and provide unprecedented sensitivity in spectroscopy. Resonant metallic structures have successfully been designed to approach these goals. They are called optical antennas in analogy to radiofrequency (RF) antennas due to their capability to collect and control electromagnetic fields at optical frequencies. However, in contrast to the RF, where exact design rules for antennas, waveguides, and antenna-load matching in terms of their impedances are well established, substantial physical differences limit the simple extension of the RF concepts into the optical regime. Key distinctions include, for one, intrinsic material resonances including quantum state excitations (metals, metal oxides, semiconductor homo- and heterostructures) and extrinsic resonances (surface plasmon/phonon polaritons) at optical frequencies. Second, in the absence of discrete inductors, capacitors, and resistors, new design strategies must be developed to impedance match the antenna to the load, ultimately in the form of a vibrational, electronic, or spin excitation on the quantum level. Third, there is as yet a lack of standard performance metrics for characterizing, comparing and quantifying optical antenna performance. Therefore, optical antenna development is currently challenged at all the levels of design, fabrication, and characterization. Here we generalize the ideal antenna-load interaction at optical frequencies, characterized by three main steps: (i) far-field reception of a propagating mode exciting an antenna

  3. Optical frequency-domain chromatic dispersion measurement method for higher-order modes in an optical fiber.

    PubMed

    Ahn, Tae-Jung; Jung, Yongmin; Oh, Kyunghwan; Kim, Dug Young

    2005-12-12

    We propose a new chromatic dispersion measurement method for the higher-order modes of an optical fiber using optical frequency modulated continuous-wave (FMCW) interferometry. An optical fiber which supports few excited modes was prepared for our experiments. Three different guiding modes of the fiber were identified by using far-field spatial beam profile measurements and confirmed with numerical mode analysis. By using the principle of a conventional FMWC interferometry with a tunable external cavity laser, we have demonstrated that the chromatic dispersion of a few-mode optical fiber can be obtained directly and quantitatively as well as qualitatively. We have also compared our measurement results with those of conventional modulation phase-shift method.

  4. Application of Optical Frequency Comb in High-Capacity Long Distance Optical Communication for China-Pakistan Economic Corridor

    NASA Astrophysics Data System (ADS)

    Latif, Zahid; Jianqiu, Zeng; Ullah, Rahat; Pathan, Zulfiqar Hussain; Latif, Shahid

    2017-08-01

    The current study examines the fiber optic connectivity from Chinese boundary to Rawalpindi and proposes a novel technique for carrying large capacity triple play services across China Pakistan economic corridor (CPEC). With the help of this technique, various wavelength data services can be extended to Pakistan, which can decrease the low bandwidth, poor connectivity and low speed problems of data transfer in Pakistan. This study contributes toward the existing literature in a way that this novel technique of data transmission not only relaxes the laying of fiber optic cable but also reduces the total cost of the project. The proposed technique proposes the deployment of optical frequency comb technique for 820 km CPEC route which could support 4 Tbps data. From the perspective of time energy consumption, the assessment suggests that the laying of fiber optic cable in CPEC is feasible with the existing route at the lowest cost between the two sovereign countries.

  5. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    SciTech Connect

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  6. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing

    PubMed Central

    Wang, Weiqiang; Chu, Sai T.; Little, Brent E.; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-01-01

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness. PMID:27338250

  7. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing.

    PubMed

    Wang, Weiqiang; Chu, Sai T; Little, Brent E; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-06-24

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness.

  8. Modeling hemoglobin at optical frequency using the unconditionally stable fundamental ADI-FDTD method.

    PubMed

    Heh, Ding Yu; Tan, Eng Leong

    2011-04-12

    This paper presents the modeling of hemoglobin at optical frequency (250 nm - 1000 nm) using the unconditionally stable fundamental alternating-direction-implicit finite-difference time-domain (FADI-FDTD) method. An accurate model based on complex conjugate pole-residue pairs is proposed to model the complex permittivity of hemoglobin at optical frequency. Two hemoglobin concentrations at 15 g/dL and 33 g/dL are considered. The model is then incorporated into the FADI-FDTD method for solving electromagnetic problems involving interaction of light with hemoglobin. The computation of transmission and reflection coefficients of a half space hemoglobin medium using the FADI-FDTD validates the accuracy of our model and method. The specific absorption rate (SAR) distribution of human capillary at optical frequency is also shown. While maintaining accuracy, the unconditionally stable FADI-FDTD method exhibits high efficiency in modeling hemoglobin.

  9. Modeling hemoglobin at optical frequency using the unconditionally stable fundamental ADI-FDTD method

    PubMed Central

    Heh, Ding Yu; Tan, Eng Leong

    2011-01-01

    This paper presents the modeling of hemoglobin at optical frequency (250 nm – 1000 nm) using the unconditionally stable fundamental alternating-direction-implicit finite-difference time-domain (FADI-FDTD) method. An accurate model based on complex conjugate pole-residue pairs is proposed to model the complex permittivity of hemoglobin at optical frequency. Two hemoglobin concentrations at 15 g/dL and 33 g/dL are considered. The model is then incorporated into the FADI-FDTD method for solving electromagnetic problems involving interaction of light with hemoglobin. The computation of transmission and reflection coefficients of a half space hemoglobin medium using the FADI-FDTD validates the accuracy of our model and method. The specific absorption rate (SAR) distribution of human capillary at optical frequency is also shown. While maintaining accuracy, the unconditionally stable FADI-FDTD method exhibits high efficiency in modeling hemoglobin. PMID:21559129

  10. Optical frequency comb profilometry based on a single-pixel phase imaging

    NASA Astrophysics Data System (ADS)

    Makhtar, Nabila; Pham, Quang Duc; Mizutani, Yasuhiro; Hayasaki, Yoshio

    2016-08-01

    In this research, we introduce a new system based on the ghost imaging, for measuring the surface profile of an object using optical frequency comb laser and a single-pixel camera. The optical frequency comb laser was used to record the relative phase of the object precisely whilst the ghost imaging technique was applied to reconstruct the object's profile. The effect of using a mask on the parameters such as number of object point, number of measurements and sparse number related to the complexity of the object for reconstruction was studied by a simulation. The performance of the system strongly depends on the design of the mask. The random mask and the Hadamard mask were used to estimate the performances in the optical frequency comb profilometry.

  11. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing

    NASA Astrophysics Data System (ADS)

    Wang, Weiqiang; Chu, Sai T.; Little, Brent E.; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-06-01

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness.

  12. Gated frequency-resolved optical imaging with an optical parametric amplifier

    DOEpatents

    Cameron, Stewart M.; Bliss, David E.; Kimmel, Mark W.; Neal, Daniel R.

    1999-01-01

    A system for detecting objects in a turbid media utilizes an optical parametric amplifier as an amplifying gate for received light from the media. An optical gating pulse from a second parametric amplifier permits the system to respond to and amplify only ballistic photons from the object in the media.

  13. Gated frequency-resolved optical imaging with an optical parametric amplifier

    DOEpatents

    Cameron, S.M.; Bliss, D.E.; Kimmel, M.W.; Neal, D.R.

    1999-08-10

    A system for detecting objects in a turbid media utilizes an optical parametric amplifier as an amplifying gate for received light from the media. An optical gating pulse from a second parametric amplifier permits the system to respond to and amplify only ballistic photons from the object in the media. 13 figs.

  14. All-optical frequency downconversion technique utilizing a four-wave mixing effect in a single semiconductor optical amplifier for wavelength division multiplexing radio-over-fiber applications.

    PubMed

    Kim, Hyoung-Jun; Song, Jong-In

    2012-03-26

    An all-optical frequency downconversion utilizing a four-wave mixing effect in a single semiconductor optical amplifier (SOA) was experimentally demonstrated for wavelength division multiplexing (WDM) radio-over-fiber (RoF) applications. Two WDM optical radio frequency (RF) signals having 155 Mbps differential phase shift keying (DPSK) data at 28.5 GHz were simultaneously down-converted to two WDM optical intermediate frequency (IF) signals having an IF frequency of 4.5 GHz by mixing with an optical local oscillator (LO) signal having a LO frequency of 24 GHz in the SOA. The bit-error-rate (BER) performance of the RoF up-links with different optical fiber lengths employing all-optical frequency downconversion was investigated. The receiver sensitivity of the RoF up-link with a 6 km single mode fiber and an optical IF signal in an optical double-sideband format was approximately -8.5 dBm and the power penalty for simultaneous frequency downconversion was approximately 0.63 dB. The BER performance showed a strong dependence on the fiber length due to the fiber dispersion. The receiver sensitivity of the RoF up-link with the optical IF signal in the optical single-sideband format was reduced to approximately -17.4 dBm and showed negligible dependence on the fiber length.

  15. A wide-band fiber optic frequency distribution system employing thermally controlled phase compensation

    NASA Technical Reports Server (NTRS)

    Johnson, Dean; Calhoun, Malcolm; Sydnor, Richard; Lutes, George

    1993-01-01

    An active wide-band fiber optic frequency distribution system employing a thermally controlled phase compensator to stabilize phase variations induced by environmental temperature changes is described. The distribution system utilizes bidirectional dual wavelength transmission to provide optical feedback of induced phase variations of 100 MHz signals propagating along the distribution cable. The phase compensation considered differs from earlier narrow-band phase compensation designs in that it uses a thermally controlled fiber delay coil rather than a VCO or phase modulation to compensate for induced phase variations. Two advantages of the wide-band system over earlier designs are (1) that it provides phase compensation for all transmitted frequencies, and (2) the compensation is applied after the optical interface rather than electronically ahead of it as in earlier schemes. Experimental results on the first prototype shows that the thermal stabilizer reduces phase variations and Allan deviation by a factor of forty over an equivalent uncompensated fiber optic distribution system.

  16. Colloidal superlattices for unnaturally high-index metamaterials at broadband optical frequencies.

    PubMed

    Lee, Seungwoo

    2015-11-02

    The recent advance in the assembly of metallic nanoparticles (NPs) has enabled sophisticated engineering of unprecedented light-matter interaction at the optical domain. In this work, I expand the design flexibility of NP optical metamaterial to push the upper limit of accessible refractive index to the unnaturally high regime. The precise control over the geometrical parameters of NP superlattice monolayer conferred the dramatic increase in electric resonance and related effective permittivity far beyond the naturally accessible regime. Simultaneously, effective permeability change, another key factor to achieving high refractive index, was effectively suppressed by reducing the thickness of NPs. By establishing this design rule, I have achieved unnaturally high refractive index (15.7 at the electric resonance and 7.3 at the quasi-static limit) at broadband optical frequencies (100 THz ~300 THz). I also combined this NP metamaterial with graphene to electrically control the high refractive index over the broad optical frequencies.

  17. WDM-CAP-PON integration with VLLC system based on optical frequency comb

    NASA Astrophysics Data System (ADS)

    He, Jing; Dong, Huan; Deng, Rui; Shi, Jin; Chen, Lin

    2016-09-01

    In this paper, a wavelength division multiplexing carrier-less amplitude phase modulation passive optical network (WDM-CAP-PON) integration with visible laser light communication (VLLC) system is proposed and experimentally demonstrated. To reduce the cost of WDM system, the optical frequency comb scheme using one Mach-Zehnder modulator (MZM) is utilized and five flat optical combs can be generated. Meanwhile, a blue laser diode (LD) as a VLLC optical source can provide high data rate and long transmission distance. Utilizing overlap frequency domain equalization (OFDE) and negative chirp of MZM, the system performance in both Q-factor and receiver sensitivity can be improved. After 20 km standard single mode fiber (SSMF) and 4.5 m free space transmission, the experimental results show that 10 Gb/s CAP signal can be achieved under 7% forward error correction (FEC) limit of 3 . 8 × 10-3.

  18. Performance analysis on quality of optical frequency comb generated by the recirculating frequency shifter based on linear IQ modulator

    NASA Astrophysics Data System (ADS)

    Sun, Lu; Li, Jianping; Lin, Jiachuan; Xi, Lixia; Tang, Xianfeng; Zhang, Xiaoguang

    2015-11-01

    An optical frequency comb generator using a modified single-sideband recirculating frequency shifter scheme adopting a linear IQ modulator as the kernel device (SSB-RFS-LIQM) is proposed. The optical comb lines generated by the proposed scheme possess good features such as extreme flatness and high optical signal-to-noise ratio (OSNR), compared to the quality we can obtain when we use a conventional IQ modulator in the SSB-RFS structure (called SSB-RFS-CIQM scheme). The mechanism of how the SSB-RFS-LIQM works is carefully analyzed with analytical and numerical methods. With the capability of strong suppression of high-order crosstalk and less demand of the gain of erbium-doped fiber amplifiers (and hence less amplified spontaneous noise induced) in the loop, 5.5 dB OSNR improvement can be achieved when 100 extreme flat comb lines are generated using the SSB-RFS-LIQM scheme compared to using the SSB-RFS-CIQM scheme.

  19. Method of implementing frequency encoded multiplexer and demultiplexer systems using nonlinear semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Garai, Sisir Kumar; Mukhopadhyay, Sourangshu

    2009-11-01

    Multiplexing and demultiplexing are the essential parts of any communication network. In case of optical multiplexing and demultiplexing the coding of the data as well as the coding of control signals are most important issues. Many encoding/decoding mechanisms have already been developed in optical communication technology. Recently frequency encoding technique has drawn some special interest to the scientific communities. The advantage of frequency encoding technique over any other techniques is that as the frequency is fundamental character of any signal so it remains unaltered in reflection, refraction, absorption, etc. during transmission of the signal and therefore the system will execute the operation with reliability. On the other hand, the switching speed of semiconductor optical amplifiers (SOA) is sufficiently high with property of best on/off contrast ratio. In our present communication we propose a method of implementing a '4-to-1' multiplexer (MUX) and a '1-to-4' demultiplexer (DEMUX) exploiting the switching character of nonlinear SOA with the use of frequency encoded control signals. To implement the '4-to-1' MUX and '1-to-4' DEMUX system, the frequency selection by multiquantum well (MQW)-grating filter-based SOA has been used for frequency routing purpose. At the same time, the polarization rotation character of SOA has also been exploited to get the desired purpose. Here the fast switching action of SOA with reliable frequency encoded control input signals, it is possible to achieve a faithful MUX/DEMUX service at tera-Hz operational speed.

  20. Optical frequency locked loop for long-term stabilization of broad-line DFB laser frequency difference

    NASA Astrophysics Data System (ADS)

    Lipka, Michał; Parniak, Michał; Wasilewski, Wojciech

    2017-09-01

    We present an experimental realization of the optical frequency locked loop applied to long-term frequency difference stabilization of broad-line DFB lasers along with a new independent method to characterize relative phase fluctuations of two lasers. The presented design is based on a fast photodiode matched with an integrated phase-frequency detector chip. The locking setup is digitally tunable in real time, insensitive to environmental perturbations and compatible with commercially available laser current control modules. We present a simple model and a quick method to optimize the loop for a given hardware relying exclusively on simple measurements in time domain. Step response of the system as well as phase characteristics closely agree with the theoretical model. Finally, frequency stabilization for offsets within 4-15 GHz working range achieving <0.1 Hz long-term stability of the beat note frequency for 500 s averaging time period is demonstrated. For these measurements we employ an I/Q mixer that allows us to precisely and independently measure the full phase trace of the beat note signal.