Fiber-optic fluorescence imaging
Flusberg, Benjamin A; Cocker, Eric D; Piyawattanametha, Wibool; Jung, Juergen C; Cheung, Eunice L M; Schnitzer, Mark J
2010-01-01
Optical fibers guide light between separate locations and enable new types of fluorescence imaging. Fiber-optic fluorescence imaging systems include portable handheld microscopes, flexible endoscopes well suited for imaging within hollow tissue cavities and microendoscopes that allow minimally invasive high-resolution imaging deep within tissue. A challenge in the creation of such devices is the design and integration of miniaturized optical and mechanical components. Until recently, fiber-based fluorescence imaging was mainly limited to epifluorescence and scanning confocal modalities. Two new classes of photonic crystal fiber facilitate ultrashort pulse delivery for fiber-optic two-photon fluorescence imaging. An upcoming generation of fluorescence imaging devices will be based on microfabricated device components. PMID:16299479
Ozbay, Baris N.; Losacco, Justin T.; Cormack, Robert; Weir, Richard; Bright, Victor M.; Gopinath, Juliet T.; Restrepo, Diego; Gibson, Emily A.
2015-01-01
We report a miniature, lightweight fiber-coupled confocal fluorescence microscope that incorporates an electrowetting variable focus lens to provide axial scanning for full three-dimensional (3D) imaging. Lateral scanning is accomplished by coupling our device to a laser-scanning confocal microscope through a coherent imaging fiber-bundle. The optical components of the device are combined in a custom 3D-printed adapter with an assembled weight of <2 g that can be mounted onto the head of a mouse. Confocal sectioning provides an axial resolution of ~12 µm and an axial scan range of ~80 µm. The lateral field-of-view is 300 µm, and the lateral resolution is 1.8 µm. We determined these parameters by imaging fixed sections of mouse neuronal tissue labeled with green fluorescent protein (GFP) and fluorescent bead samples in agarose gel. To demonstrate viability for imaging intact tissue, we resolved multiple optical sections of ex vivo mouse olfactory nerve fibers expressing yellow fluorescent protein (YFP). PMID:26030555
Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo.
Engelbrecht, Christoph J; Johnston, Richard S; Seibel, Eric J; Helmchen, Fritjof
2008-04-14
We present a small, lightweight two-photon fiberscope and demonstrate its suitability for functional imaging in the intact brain. Our device consists of a hollow-core photonic crystal fiber for efficient delivery of near-IR femtosecond laser pulses, a spiral fiber-scanner for resonant beam steering, and a gradient-index lens system for fluorescence excitation, dichroic beam splitting, and signal collection. Fluorescence light is remotely detected using a standard photomultiplier tube. All optical components have 1 mm dimensions and the microscope's headpiece weighs only 0.6 grams. The instrument achieves micrometer resolution at frame rates of typically 25 Hz with a field-of-view of up to 200 microns. We demonstrate functional imaging of calcium signals in Purkinje cell dendrites in the cerebellum of anesthetized rats. The microscope will be easily portable by a rat or mouse and thus should enable functional imaging in freely behaving animals.
Shin, Dongsuk; Pierce, Mark C; Gillenwater, Ann M; Williams, Michelle D; Richards-Kortum, Rebecca R
2010-06-23
Early detection is an essential component of cancer management. Unfortunately, visual examination can often be unreliable, and many settings lack the financial capital and infrastructure to operate PET, CT, and MRI systems. Moreover, the infrastructure and expense associated with surgical biopsy and microscopy are a challenge to establishing cancer screening/early detection programs in low-resource settings. Improvements in performance and declining costs have led to the availability of optoelectronic components, which can be used to develop low-cost diagnostic imaging devices for use at the point-of-care. Here, we demonstrate a fiber-optic fluorescence microscope using a consumer-grade camera for in vivo cellular imaging. The fiber-optic fluorescence microscope includes an LED light, an objective lens, a fiber-optic bundle, and a consumer-grade digital camera. The system was used to image an oral cancer cell line labeled with 0.01% proflavine. A human tissue specimen was imaged following surgical resection, enabling dysplastic and cancerous regions to be evaluated. The oral mucosa of a healthy human subject was imaged in vivo, following topical application of 0.01% proflavine. The fiber-optic microscope resolved individual nuclei in all specimens and tissues imaged. This capability allowed qualitative and quantitative differences between normal and precancerous or cancerous tissues to be identified. The optical efficiency of the system permitted imaging of the human oral mucosa in real time. Our results indicate this device as a useful tool to assist in the identification of early neoplastic changes in epithelial tissues. This portable, inexpensive unit may be particularly appropriate for use at the point-of-care in low-resource settings.
Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays.
Steemers, F J; Ferguson, J A; Walt, D R
2000-01-01
We have developed a randomly ordered fiber-optic gene array for rapid, parallel detection of unlabeled DNA targets with surface immobilized molecular beacons (MB) that undergo a conformational change accompanied by a fluorescence change in the presence of a complementary DNA target. Microarrays are prepared by randomly distributing MB-functionalized 3-microm diameter microspheres in an array of wells etched in a 500-microm diameter optical imaging fiber. Using several MBs, each designed to recognize a different target, we demonstrate the selective detection of genomic cystic fibrosis related targets. Positional registration and fluorescence response monitoring of the microspheres was performed using an optical encoding scheme and an imaging fluorescence microscope system.
Chai, Liuying; Zhang, Jianwei; Zhang, Lili; Chen, Tongsheng
2015-03-01
Spectral measurement of fluorescence resonance energy transfer (FRET), spFRET, is a widely used FRET quantification method in living cells today. We set up a spectrometer-microscope platform that consists of a miniature fiber optic spectrometer and a widefield fluorescence microscope for the spectral measurement of absolute FRET efficiency (E) and acceptor-to-donor concentration ratio (R(C)) in single living cells. The microscope was used for guiding cells and the spectra were simultaneously detected by the miniature fiber optic spectrometer. Moreover, our platform has independent excitation and emission controllers, so different excitations can share the same emission channel. In addition, we developed a modified spectral FRET quantification method (mlux-FRET) for the multiple donors and multiple acceptors FRET construct (mD∼nA) sample, and we also developed a spectra-based 2-channel acceptor-sensitized FRET quantification method (spE-FRET). We implemented these modified FRET quantification methods on our platform to measure the absolute E and R(C) values of tandem constructs with different acceptor/donor stoichiometries in single living Huh-7 cells.
NASA Astrophysics Data System (ADS)
Durand, Yannig; Woehl, Jörg C.; Viellerobe, Bertrand; Göhde, Wolfgang; Orrit, Michel
1999-02-01
Due to the weakness of the fluorescence signal from a single fluorophore, a scanning near-field optical microscope for single molecule spectroscopy requires a very efficient setup for the collection and detection of emitted photons. We have developed a home-built microscope for operation in a l-He cryostat which uses a solid parabolic mirror in order to optimize the fluorescence collection efficiency. This microscope works with Al-coated, tapered optical fibers in illumination mode. The tip-sample separation is probed by an optical shear-force detection. First results demonstrate the capability of the microscope to image single molecules and achieve a topographical resolution of a few nanometers vertically and better than 50 nm laterally.
Neural imaging in songbirds using fiber optic fluorescence microscopy
NASA Astrophysics Data System (ADS)
Nooshabadi, Fatemeh; Hearn, Gentry; Lints, Thierry; Maitland, Kristen C.
2012-02-01
The song control system of juvenile songbirds is an important model for studying the developmental acquisition and generation of complex learned vocal motor sequences, two processes that are fundamental to human speech and language. To understand the neural mechanisms underlying song production, it is critical to characterize the activity of identified neurons in the song control system when the bird is singing. Neural imaging in unrestrained singing birds, although technically challenging, will advance our understanding of neural ensemble coding mechanisms in this system. We are exploring the use of a fiber optic microscope for functional imaging in the brain of behaving and singing birds in order to better understand the contribution of a key brain nucleus (high vocal center nucleus; HVC) to temporal aspects of song motor control. We have constructed a fluorescence microscope with LED illumination, a fiber bundle for transmission of fluorescence excitation and emission light, a ~2x GRIN lens, and a CCD for image acquisition. The system has 2 μm resolution, 375 μm field of view, 200 μm working distance, and 1 mm outer diameter. As an initial characterization of this setup, neurons in HVC were imaged using the fiber optic microscope after injection of quantum dots or fluorescent retrograde tracers into different song nuclei. A Lucid Vivascope confocal microscope was used to confirm the imaging results. Long-term imaging of the activity of these neurons in juvenile birds during singing may lead us to a better understanding of the central motor codes for song and the central mechanism by which auditory experience modifies song motor commands to enable vocal learning and imitation.
NASA Astrophysics Data System (ADS)
Padmanabhan, Saraswathi; Shinoj, Vengalathunadakal K.; Murukeshan, Vadakke M.; Padmanabhan, Parasuraman
2010-01-01
A simple optical method using hollow-core photonic crystal fiber for protein detection has been described. In this study, estrogen receptor (ER) from a MCF-7 breast carcinoma cell lysates immobilized inside a hollow-core photonic crystal fiber was detected using anti-ER primary antibody with either Alexa™ Fluor 488 (green fluorescent dye) or 555 (red Fluorescent dye) labeled Goat anti-rabbit IgG as the secondary antibody. The fluorescence fingerprints of the ERα protein were observed under fluorescence microscope, and its optical characteristics were analyzed. The ERα protein detection by this proposed method is based on immuno binding from sample volume as low as 50 nL. This method is expected to offer great potential as a biosensor for medical diagnostics and therapeutics applications.
Confocal Microscopy Imaging with an Optical Transition Edge Sensor
NASA Astrophysics Data System (ADS)
Fukuda, D.; Niwa, K.; Hattori, K.; Inoue, S.; Kobayashi, R.; Numata, T.
2018-05-01
Fluorescence color imaging at an extremely low excitation intensity was performed using an optical transition edge sensor (TES) embedded in a confocal microscope for the first time. Optical TES has the ability to resolve incident single photon energy; therefore, the wavelength of each photon can be measured without spectroscopic elements such as diffraction gratings. As target objects, animal cells labeled with two fluorescent dyes were irradiated with an excitation laser at an intensity below 1 μW. In our confocal system, an optical fiber-coupled TES device is used to detect photons instead of the pinhole and photomultiplier tube used in typical confocal microscopes. Photons emitted from the dyes were collected by the objective lens, and sent to the optical TES via the fiber. The TES measures the wavelength of each photon arriving in an exposure time of 70 ms, and a fluorescent photon spectrum is constructed. This measurement is repeated by scanning the target sample, and finally a two-dimensional RGB-color image is obtained. The obtained image showed that the photons emitted from the dyes of mitochondria and cytoskeletons were clearly resolved at a detection intensity level of tens of photons. TES exhibits ideal performance as a photon detector with a low dark count rate (< 1 Hz) and wavelength resolving power. In the single-mode fiber-coupled system, the confocal microscope can be operated in the super-resolution mode. These features are very promising to realize high-sensitivity and high-resolution photon spectral imaging, and would help avoid cell damage and photobleaching of fluorescence dyes.
Fiber optic biofluorometer for physiological research on muscle slices
NASA Astrophysics Data System (ADS)
Belz, Mathias; Dendorfer, Andreas; Werner, Jan; Lambertz, Daniel; Klein, Karl-Friedrich
2016-03-01
A focus of research in cell physiology is the detection of Ca2+, NADH, FAD, ATPase activity or membrane potential, only to name a few, in muscle tissues. In this work, we report on a biofluorometer using ultraviolet light emitting diodes (UV-LEDs), optical fibers and two photomultipliers (PMTs) using synchronized fluorescence detection with integrated background correction to detect free calcium, Ca2+, in cardiac muscle tissue placed in a horizontal tissue bath and a microscope setup. Fiber optic probes with imaging optics have been designed to transport excitation light from the biofluorometer's light output to a horizontal tissue bath and to collect emission light from a tissue sample of interest to two PMTs allowing either single excitation / single emission or ratiometric, dual excitation / single emission or single excitation / dual emission fluorescence detection of indicator dyes or natural fluorophores. The efficient transport of light from the excitation LEDs to the tissue sample, bleaching effects of the excitation light in both, polymer and fused silica-based fibers will be discussed. Furthermore, a new approach to maximize light collection of the emission light using high NA fibers and high NA coupling optics will be shown. Finally, first results on Ca2+ measurements in cardiac muscle slices in a traditional microscope setup and a horizontal tissue bath using fiber optic probes will be introduced and discussed.
NASA Astrophysics Data System (ADS)
Staier, Florian; Eipel, Heinz; Matula, Petr; Evsikov, Alexei V.; Kozubek, Michal; Cremer, Christoph; Hausmann, Michael
2011-09-01
With the development of novel fluorescence techniques, high resolution light microscopy has become a challenging technique for investigations of the three-dimensional (3D) micro-cosmos in cells and sub-cellular components. So far, all fluorescence microscopes applied for 3D imaging in biosciences show a spatially anisotropic point spread function resulting in an anisotropic optical resolution or point localization precision. To overcome this shortcoming, micro axial tomography was suggested which allows object tilting on the microscopic stage and leads to an improvement in localization precision and spatial resolution. Here, we present a miniaturized device which can be implemented in a motor driven microscope stage. The footprint of this device corresponds to a standard microscope slide. A special glass fiber can manually be adjusted in the object space of the microscope lens. A stepwise fiber rotation can be controlled by a miniaturized stepping motor incorporated into the device. By means of a special mounting device, test particles were fixed onto glass fibers, optically localized with high precision, and automatically rotated to obtain views from different perspective angles under which distances of corresponding pairs of objects were determined. From these angle dependent distance values, the real 3D distance was calculated with a precision in the ten nanometer range (corresponding here to an optical resolution of 10-30 nm) using standard microscopic equipment. As a proof of concept, the spindle apparatus of a mature mouse oocyte was imaged during metaphase II meiotic arrest under different perspectives. Only very few images registered under different rotation angles are sufficient for full 3D reconstruction. The results indicate the principal advantage of the micro axial tomography approach for many microscopic setups therein and also those of improved resolutions as obtained by high precision localization determination.
Sung, Kung-Bin; Liang, Chen; Descour, Michael; Collier, Tom; Follen, Michele; Richards-Kortum, Rebecca
2002-10-01
We have built a fiber-optic confocal reflectance microscope capable of imaging human tissues in near real time. Miniaturization of the objective lens and the mechanical components for positioning and axially scanning the objective enables the device to be used in inner organs of the human body. The lateral resolution is 2 micrometers and axial resolution is 10 micrometers. Confocal images of fixed tissue biopsies and the human lip in vivo have been obtained at 15 frames/s without any fluorescent stains. Both cell morphology and tissue architecture can be appreciated from images obtained with this microscope.
Fernández, A.; Grüner-Nielsen, L.; Andreana, M.; Stadler, M.; Kirchberger, S.; Sturtzel, C.; Distel, M.; Zhu, L.; Kautek, W.; Leitgeb, R.; Baltuska, A.; Jespersen, K.; Verhoef, A.
2017-01-01
A simple and completely all-fiber Yb chirped pulse amplifier that uses a dispersion matched fiber stretcher and a spliced-on hollow core photonic bandgap fiber compressor is applied in nonlinear optical microscopy. This stretching-compression approach improves compressibility and helps to maximize the fluorescence signal in two-photon laser scanning microscopy as compared with approaches that use standard single mode fibers as stretcher. We also show that in femtosecond all-fiber systems, compensation of higher order dispersion terms is relevant even for pulses with relatively narrow bandwidths for applications relying on nonlinear optical effects. The completely all-fiber system was applied to image green fluorescent beads, a stained lily-of-the-valley root and rat-tail tendon. We also demonstrated in vivo imaging in zebrafish larvae, where we simultaneously measure second harmonic and fluorescence from two-photon excited red-fluorescent protein. Since the pulses are compressed in a fiber, this source is especially suited for upgrading existing laser scanning (confocal) microscopes with multiphoton imaging capabilities in space restricted settings or for incorporation in endoscope-based microscopy. PMID:28856032
Fernández, A; Grüner-Nielsen, L; Andreana, M; Stadler, M; Kirchberger, S; Sturtzel, C; Distel, M; Zhu, L; Kautek, W; Leitgeb, R; Baltuska, A; Jespersen, K; Verhoef, A
2017-08-01
A simple and completely all-fiber Yb chirped pulse amplifier that uses a dispersion matched fiber stretcher and a spliced-on hollow core photonic bandgap fiber compressor is applied in nonlinear optical microscopy. This stretching-compression approach improves compressibility and helps to maximize the fluorescence signal in two-photon laser scanning microscopy as compared with approaches that use standard single mode fibers as stretcher. We also show that in femtosecond all-fiber systems, compensation of higher order dispersion terms is relevant even for pulses with relatively narrow bandwidths for applications relying on nonlinear optical effects. The completely all-fiber system was applied to image green fluorescent beads, a stained lily-of-the-valley root and rat-tail tendon. We also demonstrated in vivo imaging in zebrafish larvae, where we simultaneously measure second harmonic and fluorescence from two-photon excited red-fluorescent protein. Since the pulses are compressed in a fiber, this source is especially suited for upgrading existing laser scanning (confocal) microscopes with multiphoton imaging capabilities in space restricted settings or for incorporation in endoscope-based microscopy.
NASA Astrophysics Data System (ADS)
Xi, Jiefeng; Zhang, Yuying; Huo, Li; Chen, Yongping; Jabbour, Toufic; Li, Ming-Jun; Li, Xingde
2010-09-01
This paper reviews our recent developments of ultrathin fiber-optic endomicroscopy technologies for transforming high-resolution noninvasive optical imaging techniques to in vivo and clinical applications such as early disease detection and guidance of interventions. Specifically we describe an all-fiber-optic scanning endomicroscopy technology, which miniaturizes a conventional bench-top scanning laser microscope down to a flexible fiber-optic probe of a small footprint (i.e. ~2-2.5 mm in diameter), capable of performing two-photon fluorescence and second harmonic generation microscopy in real time. This technology aims to enable realtime visualization of histology in situ without the need for tissue removal. We will also present a balloon OCT endoscopy technology which permits high-resolution 3D imaging of the entire esophagus for detection of neoplasia, guidance of biopsy and assessment of therapeutic outcome. In addition we will discuss the development of functional polymeric fluorescent nanocapsules, which use only FAD approved materials and potentially enable fast track clinical translation of optical molecular imaging and targeted therapy.
Multicolor Fluorescence Detection for Droplet Microfluidics Using Optical Fibers
Cole, Russell H.; Gartner, Zev J.; Abate, Adam R.
2016-01-01
Fluorescence assays are the most common readouts used in droplet microfluidics due to their bright signals and fast time response. Applications such as multiplex assays, enzyme evolution, and molecular biology enhanced cell sorting require the detection of two or more colors of fluorescence. Standard multicolor detection systems that couple free space lasers to epifluorescence microscopes are bulky, expensive, and difficult to maintain. In this paper, we describe a scheme to perform multicolor detection by exciting discrete regions of a microfluidic channel with lasers coupled to optical fibers. Emitted light is collected by an optical fiber coupled to a single photodetector. Because the excitation occurs at different spatial locations, the identity of emitted light can be encoded as a temporal shift, eliminating the need for more complicated light filtering schemes. The system has been used to detect droplet populations containing four unique combinations of dyes and to detect sub-nanomolar concentrations of fluorescein. PMID:27214249
Iijima, Norio; Miyamoto, Shinji; Matsumoto, Keisuke; Takumi, Ken; Ueta, Yoichi; Ozawa, Hitoshi
2017-09-01
We have newly developed a system that allows monitoring of the intensity of fluorescent signals from deep brains of rats transgenically modified to express enhanced green fluorescent protein (eGFP) via an optical fiber. One terminal of the optical fiber was connected to a blue semiconductor laser oscillator/green fluorescence detector. The other terminal was inserted into the vicinity of the eGFP-expressing neurons. Since the optical fiber was vulnerable to twisting stresses caused by animal movement, we also developed a cage in which the floor automatically turns, in response to the turning of the rat's head. This relieved the twisting stress on the optical fiber. The system then enabled real-time monitoring of fluorescence in awake and unrestrained rats over many hours. Using this system, we could continuously monitor eGFP-expression in arginine vasopressin-eGFP transgenic rats. Moreover, we observed an increase of eGFP-expression in the paraventricular nucleus under salt-loading conditions. We then performed in vivo imaging of eGFP-expressing GnRH neurons in the hypothalamus, via a bundle consisting of 3000 thin optical fibers. With the combination of the optical fiber bundle connection to the fluorescence microscope, and the special cage system, we were able to capture and retain images of eGFP-expressing neurons from free-moving rats. We believe that our newly developed method for monitoring and imaging eGFP-expression in deep brain neurons will be useful for analysis of neuronal functions in awake and unrestrained animals for long durations.
NASA Astrophysics Data System (ADS)
Lavan, David; Valdivia-Silva, Julio E.; Sanabria, Gabriela; Orihuela, Diego; Suarez, Juan; Quispe, Marco; Chuchon, Mariano; Martin, David; Maroto, Marcos; Egea, Javier
2016-07-01
This project consist in the implementation of a fluorescence microscope for the in real time monitoring of biological labeled samples by several fluorophores in microgravity conditions keeping the temperature, humidity, and (CO)2 controlled by an electronic platform. The system (fluorescence microscope and incubator) is integrated to a microgravity simulator machine which was presented on the "30th Annual American Society for Gravitation and Space Research Meeting" October 2014 in Pasadena, CA, USA. Currently, we have the microgravity machine biologically validated by genetic expression studies in pupal stage of Drosophila melanogaster. The fluorescence microscope has a platform designed to hold a culture flask, and a fluorescence camera (Leica DFC3000 G) connected to an optical system (Fluorescence Light source Leica EL6000, optic fiber, fiber adapter, and fluorescence filter) in order to take images in real time. The mechanical system of the fluorescence microsc ope is designed to allow the displacement of the fluorescence camera through a parallel plane to the culture flask's plane and also the movement of the platform through a perpendicular axis to the culture flask in order to focus the samples to the optical system. The mechanical system is propelled by four DC moto-reductors with encoder (A-max 26 Maxon motor, GP 32S screw and MR encoder) that generate displacements in the order of micrometers. The angular position control of the DC motoreductor's shaft of all the DC moto-reductors is done by PWM signals based on the interpretation of the signals provided by the encoders during the movement. The system is remotely operated by a graphic interface installed on a personal computer or any mobile device (smartphone, laptop or tablet) by using the internet. Acknowledgments: Grant of INNOVATE PERU (Formerly FINCYT)
NIR fluorescence lifetime sensing through a multimode fiber for intravascular molecular probing
NASA Astrophysics Data System (ADS)
Ingelberts, H.; Hernot, S.; Debie, P.; Lahoutte, T.; Kuijk, M.
2016-04-01
Coronary artery disease (CAD) contributes to millions of deaths each year. The identification of vulnerable plaques is essential to the diagnosis of CAD but is challenging. Molecular probes can improve the detection of these plaques using intravascular imaging methods. Fluorescence lifetime sensing is a safe and robust method to image these molecular probes. We present two variations of an optical system for intravascular near-infrared (NIR) fluorescence lifetime sensing through a multimode fiber. Both systems are built around a recently developed fast and efficient CMOS detector, the current-assisted photonic sampler (CAPS) that is optimized for sub-nanosecond NIR fluorescence lifetime sensing. One system mimics the optical setup of an epifluorescence microscope while the other uses a practical fiber optic coupler to separate fluorescence excitation and emission. We test both systems by measuring the lifetime of several NIR dyes in DMSO solutions and we show that these systems are capable of detecting lifetimes of solutions with concentrations down to 370 nM and this with short acquisition times. These results are compared with time-correlated single photon counting (TCSPC) measurements for reference.
Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus
2013-09-09
Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.
Kim, Jeongyong; Song, Hugeun; Park, Inho; Carlisle, Christine R; Bonin, Keith; Guthold, Martin
2011-03-01
Deep ultraviolet (DUV) microscopy is a fluorescence microscopy technique to image unlabeled proteins via the native fluorescence of some of their amino acids. We constructed a DUV fluorescence microscope, capable of 280 nm wavelength excitation by modifying an inverted optical microscope. Moreover, we integrated a nanomanipulator-controlled micropipette into this instrument for precise delivery of picoliter amounts of fluid to selected regions of the sample. In proof-of-principle experiments, we used this instrument to study, in situ, the effect of a denaturing agent on the autofluorescence intensity of single, unlabeled, electrospun fibrinogen nanofibers. Autofluorescence emission from the nanofibers was excited at 280 nm and detected at ∼350 nm. A denaturant solution was discretely applied to small, select sections of the nanofibers and a clear local reduction in autofluorescence intensity was observed. This reduction is attributed to the dissolution of the fibers and the unfolding of proteins in the fibers. Copyright © 2010 Wiley-Liss, Inc.
Multimodal nonlinear microscope based on a compact fiber-format laser source
NASA Astrophysics Data System (ADS)
Crisafi, Francesco; Kumar, Vikas; Perri, Antonio; Marangoni, Marco; Cerullo, Giulio; Polli, Dario
2018-01-01
We present a multimodal non-linear optical (NLO) laser-scanning microscope, based on a compact fiber-format excitation laser and integrating coherent anti-Stokes Raman scattering (CARS), stimulated Raman scattering (SRS) and two-photon-excitation fluorescence (TPEF) on a single platform. We demonstrate its capabilities in simultaneously acquiring CARS and SRS images of a blend of 6-μm poly(methyl methacrylate) beads and 3-μm polystyrene beads. We then apply it to visualize cell walls and chloroplast of an unprocessed fresh leaf of Elodea aquatic plant via SRS and TPEF modalities, respectively. The presented NLO microscope, developed in house using off-the-shelf components, offers full accessibility to the optical path and ensures its easy re-configurability and flexibility.
Plastic fiber optics for micro-imaging of fluorescence signals in living cells
NASA Astrophysics Data System (ADS)
Sakurai, Takashi; Natsume, Mitsuo; Koida, Kowa
2015-03-01
The fiber-coupled microscope (FCM) enables in vivo imaging at deep sites in the tissues or organs that other optical techniques are unable to reach. To develop FCM-based intravital imaging, we employed a plastic optical fiber (POF) bundle that included more than 10,000-units of polystyrene core and polymethyl methacrylate cladding. Each POF had a diameter of less than 5 μm the tip of the bundle was less than 0.5 mm wide, and the flexible wire had a length of 1,000 mm. The optical performance of the plastic FCM was sufficient for detection of significant signal changes in an acinus of rat pancreas labeled with a calcium ion-sensitive fluorescent dye. In the future, the potential power of plastic FCM is expected to increase, enabling analysis of structure and organization of specific functions in live cells within vulnerable organs.
Multiplexed fluorescence detector system for capillary electrophoresis
Yeung, E.S.; Taylor, J.A.
1996-03-12
A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figs.
Multiplexed fluorescence detector system for capillary electrophoresis
Yeung, E.S.; Taylor, J.A.
1994-06-28
A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figures.
Multiplexed fluorescence detector system for capillary electrophoresis
Yeung, Edward S.; Taylor, John A.
1996-03-12
A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.
Multiplexed fluorescence detector system for capillary electrophoresis
Yeung, Edward S.; Taylor, John A.
1994-06-28
A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.
Irawan, Rudi; Chuan, Tjin Swee; Meng, Tay Chia; Ming, Tan Khay
2008-06-27
Exposing an optical fiber core to the measurand surrounding the fiber is often used to enhance the sensitivity of an optical fiber sensor. This paper reports on the rapid fabrication of microstructures in an optical fiber using a CO₂ laser system which help exposing the optical fiber core to the measurand. The direct-write CO₂ laser system used is originally designed for engraving the polymeric material. Fabrications of microstructures such as in-fiber microhole, D-shaped fiber, in-fiber microchannel, side-sliced fiber and tapered fiber were attempted. The microstructures in the fibers were examined using a SEM and an optical microscope. Quality of microstructures shown by the SEM images and promising results from fluorescence sensor tests using in-fiber microchannels of 100μm width, 210μm depth and 10mm length show the prospect of this method for use in optical fiber sensor development. The direct-write CO₂ laser system is a flexible and fast machining tool for fabricating microstructures in an optical fiber, and can possibly be a replacement of the time consuming chemical etching and polishing methods used for microstructure fabrications of optical the fiber sensors reported in other literatures.
Rapid Constructions of Microstructures for Optical Fiber Sensors Using a Commercial CO2 Laser System
Irawan, Rudi; Chuan, Tjin Swee; Meng, Tay Chia; Ming, Tan Khay
2008-01-01
Exposing an optical fiber core to the measurand surrounding the fiber is often used to enhance the sensitivity of an optical fiber sensor. This paper reports on the rapid fabrication of microstructures in an optical fiber using a CO2 laser system which help exposing the optical fiber core to the measurand. The direct-write CO2 laser system used is originally designed for engraving the polymeric material. Fabrications of microstructures such as in-fiber microhole, D-shaped fiber, in-fiber microchannel, side-sliced fiber and tapered fiber were attempted. The microstructures in the fibers were examined using a SEM and an optical microscope. Quality of microstructures shown by the SEM images and promising results from fluorescence sensor tests using in-fiber microchannels of 100μm width, 210μm depth and 10mm length show the prospect of this method for use in optical fiber sensor development. The direct-write CO2 laser system is a flexible and fast machining tool for fabricating microstructures in an optical fiber, and can possibly be a replacement of the time consuming chemical etching and polishing methods used for microstructure fabrications of optical the fiber sensors reported in other literatures. PMID:19662114
Upconversion fiber-optic confocal microscopy under near-infrared pumping.
Kim, Do-Hyun; Kang, Jin U; Ilev, Ilko K
2008-03-01
We present a simple upconversion fiber-optic confocal microscope design using a near-infrared laser for pumping of a rare-earth-doped glass powder. The nonlinear optical frequency conversion process is highly efficient with more than 2% upconversion fluorescence efficiency at a near-infrared pumping wavelength of 1.55 microm. The upconversion confocal design allows the use of conventional Si detectors and 1.55 microm near-infrared pump light. The lateral and axial resolutions of the system were equal to or better than 1.10 and 13.11 microm, respectively.
Two-photon microscopy and spectroscopy based on a compact confocal scanning head
NASA Astrophysics Data System (ADS)
Diaspro, Alberto; Chirico, Giberto; Federici, Federico; Cannone, Fabio; Beretta, Sabrina; Robello, Mauro; Olivini, Francesca; Ramoino, Paola
2001-07-01
We have combined a confocal laser scanning head modified for TPE (two-photon excitation) microscopy with some spectroscopic modules to study single molecules and molecular aggregates. The behavior of the TPE microscope unit has been characterized by means of point spread function measurements and of the demonstration of its micropatterning abilities. One-photon and two-photon mode can be simply accomplished by switching from a mono-mode optical fiber (one-photon) coupled to conventional laser sources to an optical module that allows IR laser beam (two- photon/TPE) delivery to the confocal laser scanning head. We have then described the characterization of the two-photon microscope for spectroscopic applications: fluorescence correlation, lifetime and fluorescence polarization anisotropy measurements. We describe the measurement of the response of the two-photon microscope to the light polarization and discuss fluorescence polarization anisotropy measurements on Rhodamine 6G as a function of the viscosity and on a globular protein, the Beta-lactoglobulin B labeled with Alexa 532 at very high dilutions. The average rotational and translational diffusion coefficients measured with fluorescence polarization anisotropy and fluorescence correlation methods are in good agreement with the protein size, therefore validating the use of the microscope for two-photon spectroscopy on biomolecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liebermeister, Lars, E-mail: lars.liebermeister@physik.uni-muenchen.de; Petersen, Fabian; Münchow, Asmus v.
2014-01-20
A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency ofmore » (9.5 ± 0.6)% and (10.4 ± 0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.« less
Double-clad photonic crystal fiber coupler for compact nonlinear optical microscopy imaging.
Fu, Ling; Gu, Min
2006-05-15
A 1 x 2 double-clad photonic crystal fiber coupler is fabricated by the fused tapered method, showing a low excess loss of 1.1 dB and a splitting ratio of 97/3 over the entire visible and near-infrared wavelength range. In addition to the property of splitting the laser power, the double-clad feature of the coupler facilitates the separation of a near-infrared single-mode beam from a visible multimode beam, which is ideal for nonlinear optical microscopy imaging. In conjunction with a gradient-index lens, this coupler is used to construct a miniaturized microscope based on two-photon fluorescence and second-harmonic generation. Three-dimensional nonlinear optical images demonstrate potential applications of the coupler to compact all-fiber and nonlinear optical microscopy and endoscopy.
Towards two-photon excited endogenous fluorescence lifetime imaging microendoscopy
Hage, C. H.; Leclerc, P.; Brevier, J.; Fabert, M.; Le Nézet, C.; Kudlinski, A.; Héliot, L.; Louradour, F.
2017-01-01
In situ fluorescence lifetime imaging microscopy (FLIM) in an endoscopic configuration of the endogenous biomarker nicotinamide adenine dinucleotide (NADH) has a great potential for malignant tissue diagnosis. Moreover, two-photon nonlinear excitation provides intrinsic optical sectioning along with enhanced imaging depth. We demonstrate, for the first time to our knowledge, nonlinear endogenous FLIM in a fibered microscope with proximal detection, applied to NADH in cultured cells, as a first step to a nonlinear endomicroscope, using a double-clad microstructured fiber with convenient fiber length (> 3 m) and excitation pulse duration (≈50 fs). Fluorescence photons are collected by the fiber inner cladding and we show that its contribution to the impulse response function (IRF), which originates from its intermodal and chromatic dispersions, is small (< 600 ps) and stable for lengths up to 8 m and allows for short lifetime measurements. We use the phasor representation as a quick visualization tool adapted to the endoscopy speed requirements. PMID:29359093
Hofmann, Matthias C; Whited, Bryce M; Criswell, Tracy; Rylander, Marissa Nichole; Rylander, Christopher G; Soker, Shay; Wang, Ge; Xu, Yong
2012-09-01
A major limitation in tissue engineering is the lack of nondestructive methods that assess the development of tissue scaffolds undergoing preconditioning in bioreactors. Due to significant optical scattering in most scaffolding materials, current microscope-based imaging methods cannot "see" through thick and optically opaque tissue constructs. To address this deficiency, we developed a fiber-optic-based imaging method that is capable of nondestructive imaging of fluorescently labeled cells through a thick and optically opaque scaffold, contained in a bioreactor. This imaging modality is based on the local excitation of fluorescent cells, the acquisition of fluorescence through the scaffold, and fluorescence mapping based on the position of the excitation light. To evaluate the capability and accuracy of the imaging system, human endothelial cells (ECs), stably expressing green fluorescent protein (GFP), were imaged through a fibrous scaffold. Without sacrificing the scaffolds, we nondestructively visualized the distribution of GFP-labeled cells through a ~500 μm thick scaffold with cell-level resolution and distinct localization. These results were similar to control images obtained using an optical microscope with direct line-of-sight access. Through a detailed quantitative analysis, we demonstrated that this method achieved a resolution on the order of 20-30 μm, with 10% or less deviation from standard optical microscopy. Furthermore, we demonstrated that the penetration depth of the imaging method exceeded that of confocal laser scanning microscopy by more than a factor of 2. Our imaging method also possesses a working distance (up to 8 cm) much longer than that of a standard confocal microscopy system, which can significantly facilitate bioreactor integration. This method will enable the nondestructive monitoring of ECs seeded on the lumen of a tissue-engineered vascular graft during preconditioning in vitro, as well as for other tissue-engineered constructs in the future.
Structured illumination 3D microscopy using adaptive lenses and multimode fibers
NASA Astrophysics Data System (ADS)
Czarske, Jürgen; Philipp, Katrin; Koukourakis, Nektarios
2017-06-01
Microscopic techniques with high spatial and temporal resolution are required for in vivo studying biological cells and tissues. Adaptive lenses exhibit strong potential for fast motion-free axial scanning. However, they also lead to a degradation of the achievable resolution because of aberrations. This hurdle can be overcome by digital optical technologies. We present a novel High-and-Low-frequency (HiLo) 3D-microscope using structured illumination and an adaptive lens. Uniform illumination is used to obtain optical sectioning for the high-frequency (Hi) components of the image, and nonuniform illumination is needed to obtain optical sectioning for the low-frequency (Lo) components of the image. Nonuniform illumination is provided by a multimode fiber. It ensures robustness against optical aberrations of the adaptive lens. The depth-of-field of our microscope can be adjusted a-posteriori by computational optics. It enables to create flexible scans, which compensate for irregular axial measurement positions. The adaptive HiLo 3D-microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 microns and sub-micron lateral resolution over the full scanning range. In result, volumetric measurements with high temporal and spatial resolution are provided. Demonstration measurements of zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are presented.
Confocal fluorescence microscope with dual-axis architecture and biaxial postobjective scanning
Wang, Thomas D.; Contag, Christopher H.; Mandella, Michael J.; Chan, Ning Y.; Kino, Gordon S.
2007-01-01
We present a novel confocal microscope that has dual-axis architecture and biaxial postobjective scanning for the collection of fluorescence images from biological specimens. This design uses two low-numerical-aperture lenses to achieve high axial resolution and long working distance, and the scanning mirror located distal to the lenses rotates along the orthogonal axes to produce arc-surface images over a large field of view (FOV). With fiber optic coupling, this microscope can potentially be scaled down to millimeter dimensions via microelectromechanical systems (MEMS) technology. We demonstrate a benchtop prototype with a spatial resolution ≤4.4 μm that collects fluorescence images with a high SNR and a good contrast ratio from specimens expressing GFP. Furthermore, the scanning mechanism produces only small differences in aberrations over the image FOV. These results demonstrate proof of concept of the dual-axis confocal architecture for in vivo molecular and cellular imaging. PMID:15250760
Design of small confocal endo-microscopic probe working under multiwavelength environment
NASA Astrophysics Data System (ADS)
Kim, Young-Duk; Ahn, MyoungKi; Gweon, Dae-Gab
2010-02-01
Recently, optical imaging system is widely used in medical purpose. By using optical imaging system specific diseases can be easily diagnosed at early stage because optical imaging system has high resolution performance and various imaging method. These methods are used to get high resolution image of human body and can be used to verify whether the cell is infected by virus. Confocal microscope is one of the famous imaging systems which is used for in-vivo imaging. Because most of diseases are accompanied with cellular level changes, doctors can diagnosis at early stage by observing the cellular image of human organ. Current research is focused in the development of endo-microscope that has great advantage in accessibility to human body. In this research, I designed small probe that is connected to confocal microscope through optical fiber bundle and work as endo-microscope. And this small probe is mainly designed to correct chromatic aberration to use various laser sources for both fluorescence type and reflection type confocal images. By using two kinds of laser sources at the same time we demonstrated multi-modality confocal endo-microscope.
Fast widefield techniques for fluorescence and phase endomicroscopy
NASA Astrophysics Data System (ADS)
Ford, Tim N.
Endomicroscopy is a recent development in biomedical optics which gives researchers and physicians microscope-resolution views of intact tissue to complement macroscopic visualization during endoscopy screening. This thesis presents HiLo endomicroscopy and oblique back-illumination endomicroscopy, fast wide-field imaging techniques with fluorescence and phase contrast, respectively. Fluorescence imaging in thick tissue is often hampered by strong out-of-focus background signal. Laser scanning confocal endomicroscopy has been developed for optically-sectioned imaging free from background, but reliance on mechanical scanning fundamentally limits the frame rate and represents significant complexity and expense. HiLo is a fast, simple, widefield fluorescence imaging technique which rejects out-of-focus background signal without the need for scanning. It works by acquiring two images of the sample under uniform and structured illumination and synthesizing an optically sectioned result with real-time image processing. Oblique back-illumination microscopy (OBM) is a label-free technique which allows, for the first time, phase gradient imaging of sub-surface morphology in thick scattering tissue with a reflection geometry. OBM works by back-illuminating the sample with the oblique diffuse reflectance from light delivered via off-axis optical fibers. The use of two diametrically opposed illumination fibers allows simultaneous and independent measurement of phase gradients and absorption contrast. Video-rate single-exposure operation using wavelength multiplexing is demonstrated.
Single-photon counting multicolor multiphoton fluorescence microscope.
Buehler, Christof; Kim, Ki H; Greuter, Urs; Schlumpf, Nick; So, Peter T C
2005-01-01
We present a multicolor multiphoton fluorescence microscope with single-photon counting sensitivity. The system integrates a standard multiphoton fluorescence microscope, an optical grating spectrograph operating in the UV-Vis wavelength region, and a 16-anode photomultiplier tube (PMT). The major technical innovation is in the development of a multichannel photon counting card (mC-PhCC) for direct signal collection from multi-anode PMTs. The electronic design of the mC-PhCC employs a high-throughput, fully-parallel, single-photon counting scheme along with a high-speed electrical or fiber-optical link interface to the data acquisition computer. There is no electronic crosstalk among the detection channels of the mC-PhCC. The collected signal remains linear up to an incident photon rate of 10(8) counts per second. The high-speed data interface offers ample bandwidth for real-time readout: 2 MByte lambda-stacks composed of 16 spectral channels, 256 x 256 pixel image with 12-bit dynamic range can be transferred at 30 frames per second. The modular design of the mC-PhCC can be readily extended to accommodate PMTs of more anodes. Data acquisition from a 64-anode PMT has been verified. As a demonstration of system performance, spectrally resolved images of fluorescent latex spheres and ex-vivo human skin are reported. The multicolor multiphoton microscope is suitable for highly sensitive, real-time, spectrally-resolved three-dimensional imaging in biomedical applications.
Biological applications of near-field scanning optical microscopy
NASA Astrophysics Data System (ADS)
Moers, Marco H. P.; Ruiter, A. G. T.; Jalocha, Alain; van Hulst, Niko F.; Kalle, W. H. J.; Wiegant, J. C. A. G.; Raap, A. K.
1995-09-01
Near-field Scanning Optical Microscopy (NSOM) is a true optical microscopic technique allowing fluorescence, absorption, reflection and polarization contrast with the additional advantage of nanometer lateral resolution, unlimited by diffraction and operation at ambient conditions. NSOM based on metal coated adiabatically tapered fibers, combined with shear force feedback and operated in illumination mode, has proven to be the most powerful NSOM arrangement, because of its true localization of the optical interaction, its various optical contrast possibilities and its sensitivity down to the single molecular level. In this paper applications of `aperture' NSOM to Fluorescence In Situ Hybridization of human metaphase chromosomes are presented, where the localized fluorescence allows to identify specific DNA sequences. All images are accompanied by the simultaneously acquired force image, enabling direct comparison of the optical contrast with the sample topography on nanometer scale, far beyond the diffraction limit. Thus the unique combination of high resolution, specific optical contrast and ambient operation offers many new direction possibilities in biological studies.
Improved Optical-Fiber Temperature Sensors
NASA Technical Reports Server (NTRS)
Rogowski, Robert S.; Egalon, Claudio O.
1993-01-01
In optical-fiber temperature sensors of proposed type, phosphorescence and/or fluorescence in temperature-dependent coating layers coupled to photodetectors. Phosphorescent and/or fluorescent behavior(s) of coating material(s) depend on temperature; coating material or mixture of materials selected so one can deduce temperature from known temperature dependence of phosphorescence and/or fluorescence spectrum, and/or characteristic decay of fluorescence. Basic optical configuration same as that of optical-fiber chemical detectors described in "Making Optical-Fiber Chemical Detectors More Sensitive" (LAR-14525).
Domingue, Scott R.; Bartels, Randy A.
2014-12-04
Here, we demonstrate 1250 nm pulses generated in dual-zero dispersion photonic crystal fiber capable of three-photon excitation fluorescence microscopy. The total power conversion efficiency from the 28 fs seed pulse centered at 1075 nm to pulses at 1250 nm, including coupling losses from the nonlinear fiber, is 35%, with up to 67% power conversion efficiency of the fiber coupled light. Frequency-resolved optical gating measurements characterize 1250 nm pulses at 0.6 nJ and 2 nJ, illustrating the change in nonlinear spectral phase accumulation with pulse energy even for nonlinear fiber lengths < 50 mm. The 0.6 nJ pulse has a 26more » fs duration and is the shortest nonlinear fiber derived 1250 nm pulse yet reported (to the best of our knowledge). The short pulse durations and energies make these pulses a viable route to producing light at 1250 nm for multiphoton microscopy, which we we demonstrate here, via a three-photon excitation fluorescence microscope.« less
Confined detection volume of fluorescence correlation spectroscopy by bare fiber probes.
Lu, Guowei; Lei, Franck H; Angiboust, Jean-François; Manfait, Michel
2010-04-01
A fiber-tip-based near-field fluorescence correlation spectroscopy (FCS) has been developed for confining the detection volume to sub-diffraction-limited dimensions. This near-field FCS is based on near-field illumination by coupling a scanning near-field optical microscope (SNOM) to a conventional confocal FCS. Single-molecule FCS analysis at 100 nM Rhodamine 6G has been achieved by using bare chemically etched, tapered fiber tips. The detection volume under control of the SNOM system has been reduced over one order of magnitude compared to that of the conventional confocal FCS. Related factors influencing the near-field FCS performance are investigated and discussed in detail. In this proof-of-principle study, the preliminary experimental results suggest that the fiber-tip-based near-field FCS might be a good alternative to realize localized analysis at the single-molecule level.
Fujii, Takuro; Taguchi, Yoshihiro; Saiki, Toshiharu; Nagasaka, Yuji
2011-01-01
We have developed a novel nanoscale temperature-measurement method using fluorescence in the near-field called fluorescence near-field optics thermal nanoscopy (Fluor-NOTN). Fluor-NOTN enables the temperature distributions of nanoscale materials to be measured in vivo/in situ. The proposed method measures temperature by detecting the temperature dependent fluorescence lifetimes of Cd/Se quantum dots (QDs). For a high-sensitivity temperature measurement, the auto-fluorescence generated from a fiber probe should be reduced. In order to decrease the noise, we have fabricated a novel near-field optical-fiber probe by fusion-splicing a photonic crystal fiber (PCF) and a conventional single-mode fiber (SMF). The validity of the novel fiber probe was assessed experimentally by evaluating the auto-fluorescence spectra of the PCF. Due to the decrease of auto-fluorescence, a six- to ten-fold increase of S/N in the near-field fluorescence lifetime detection was achieved with the newly fabricated fusion-spliced near-field optical fiber probe. Additionally, the near-field fluorescence lifetime of the quantum dots was successfully measured by the fabricated fusion-spliced near-field optical fiber probe at room temperature, and was estimated to be 10.0 ns.
Optical-Fiber Fluorosensors With Polarized Light Sources
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1995-01-01
Chemiluminescent and/or fluorescent molecules in optical-fiber fluorosensors oriented with light-emitting dipoles along transverse axis. Sensor of proposed type captures greater fraction of chemiluminescence or fluorescence and transmits it to photodetector. Transverse polarization increases sensitivity. Basic principles of optical-fiber fluorosensors described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525), "Improved Optical-Fiber Chemical Sensors" (LAR-14607), and "Improved Optical-Fiber Temperature Sensors" (LAR-14647).
Multi-scale fluorescence imaging of bacterial infections in animal models
NASA Astrophysics Data System (ADS)
Bixler, Joel N.; Kong, Ying; Cirillo, Jeffrey D.; Maitland, Kristen C.
2013-03-01
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), currently affects roughly one-third of the world's population. Drug resistant strains of Mtb decrease the effectiveness of current therapeutics and demand the development of new antimicrobial therapies. In addition, the current vaccine, Bacille Calmette Guérin (BCG), has variable efficacy for disease prevention in different populations. Animal studies are often limited by the need to sacrifice at discrete time points for pathology and tissue homogenization, which greatly reduces spatial and temporal resolution. Optical imaging offers the potential for a minimally-invasive solution to imaging on a macroscopic and microscopic scale, allowing for high resolution study of infection. We have integrated a fluorescence microendoscope into a whole-animal optical imaging system, allowing for simultaneous microscopic and macroscopic imaging of tdTomato expressing BCG in vivo. A 535 nm LED was collimated and launched into a 10,000 element fiber bundle with an outer diameter of 0.66 mm. The fiber bundle can be inserted through an intra-tracheal catheter into the lung of a mouse. Fluorescence emission can either be (1) collected by the bundle and imaged onto the surface of a CCD camera for localized detection or (2) the fluorescence can be imaged by the whole animal imaging system providing macroscopic information. Results from internal localized excitation and external whole body detection indicate the potential for imaging bacterial infections down to 100 colony forming units. This novel imaging technique has the potential to allow for functional studies, enhancing the ability to assess new therapeutic agents.
Microscopy with multimode fibers
NASA Astrophysics Data System (ADS)
Moser, Christophe; Papadopoulos, Ioannis; Farahi, Salma; Psaltis, Demetri
2013-04-01
Microscopes are usually thought of comprising imaging elements such as objectives and eye-piece lenses. A different type of microscope, used for endoscopy, consists of waveguiding elements such as fiber bundles, where each fiber in the bundle transports the light corresponding to one pixel in the image. Recently a new type of microscope has emerged that exploits the large number of propagating modes in a single multimode fiber. We have successfully produced fluorescence images of neural cells with sub-micrometer resolution via a 200 micrometer core multimode fiber. The method for achieving imaging consists of using digital phase conjugation to reproduce a focal spot at the tip of the multimode fiber. The image is formed by scanning the focal spot digitally and collecting the fluorescence point by point.
Apparatus and method for determining the optical power passing through an optical fiber
Toeppen, John S.
1995-01-01
An apparatus and method for determining the optical power transmitted through an optical fiber. The invention is based on measuring the intensity of the fluorescence produced by a doped segment of an optical fiber. The dopant is selected so that it emits light at a different wavelength than that responsible for producing the fluorescence. The doped segment is of sufficient length and dopant concentration to provide a detectable signal, but short enough to prevent the doped segment from serving as a gain medium, resulting in amplified spontaneous emission and excess fluorescence traveling along the optical fiber. The dopant material is excited by the optical signal carried by the fiber, causing a fluorescence. In the preferred embodiment the intensity of the fluorescence is proportional to the intensity of the propagating light. The signal power is then determined from the intensity of the fluorescence. The intensity of the fluorescent signal is measured by a photodetector placed so as to detect the light emitted through the side of the doped segment. The detector may wrap around the circumference of the fiber, or be placed to one side and used in conjunction with a reflector placed on the opposing side of the fiber. Filters may be used to shield the detector from other light sources and assist with accurately determining the optical power of the signal propagating within the fiber.
Apparatus and method for determining the optical power passing through an optical fiber
Toeppen, John S.
1995-04-04
An apparatus and method for determining the optical power transmitted through an optical fiber. The invention is based on measuring the intensity of the fluorescence produced by a doped segment of an optical fiber. The dopant is selected so that it emits light at a different wavelength than that responsible for producing the fluorescence. The doped segment is of sufficient length and dopant concentration to provide a detectable signal, but short enough to prevent the doped segment from serving as a gain medium, resulting in amplified spontaneous emission and excess fluorescence traveling along the optical fiber. The dopant material is excited by the optical signal carried by the fiber, causing a fluorescence. In the preferred embodiment the intensity of the fluorescence is proportional to the intensity of the propagating light. The signal power is then determined from the intensity of the fluorescence. The intensity of the fluorescent signal is measured by a photodetector placed so as to detect the light emitted through the side of the doped segment. The detector may wrap around the circumference of the fiber, or be placed to one side and used in conjunction with a reflector placed on the opposing side of the fiber. Filters may be used to shield the detector from other light sources and assist with accurately determining the optical power of the signal propagating within the fiber.
Krolopp, Ádám; Csákányi, Attila; Haluszka, Dóra; Csáti, Dániel; Vass, Lajos; Kolonics, Attila; Wikonkál, Norbert; Szipőcs, Róbert
2016-01-01
A novel, Yb-fiber laser based, handheld 2PEF/SHG microscope imaging system is introduced. It is suitable for in vivo imaging of murine skin at an average power level as low as 5 mW at 200 kHz sampling rate. Amplified and compressed laser pulses having a spectral bandwidth of 8 to 12 nm at around 1030 nm excite the biological samples at a ~1.89 MHz repetition rate, which explains how the high quality two-photon excitation fluorescence (2PEF) and second harmonic generation (SHG) images are obtained at the average power level of a laser pointer. The scanning, imaging and detection head, which comprises a conventional microscope objective for beam focusing, has a physical length of ~180 mm owing to the custom designed imaging telescope system between the laser scanner mirrors and the entrance aperture of the microscope objective. Operation of the all-fiber, all-normal dispersion Yb-fiber ring laser oscillator is electronically controlled by a two-channel polarization controller for Q-switching free mode-locked operation. The whole nonlinear microscope imaging system has the main advantages of the low price of the fs laser applied, fiber optics flexibility, a relatively small, light-weight scanning and detection head, and a very low risk of thermal or photochemical damage of the skin samples. PMID:27699118
Krolopp, Ádám; Csákányi, Attila; Haluszka, Dóra; Csáti, Dániel; Vass, Lajos; Kolonics, Attila; Wikonkál, Norbert; Szipőcs, Róbert
2016-09-01
A novel, Yb-fiber laser based, handheld 2PEF/SHG microscope imaging system is introduced. It is suitable for in vivo imaging of murine skin at an average power level as low as 5 mW at 200 kHz sampling rate. Amplified and compressed laser pulses having a spectral bandwidth of 8 to 12 nm at around 1030 nm excite the biological samples at a ~1.89 MHz repetition rate, which explains how the high quality two-photon excitation fluorescence (2PEF) and second harmonic generation (SHG) images are obtained at the average power level of a laser pointer. The scanning, imaging and detection head, which comprises a conventional microscope objective for beam focusing, has a physical length of ~180 mm owing to the custom designed imaging telescope system between the laser scanner mirrors and the entrance aperture of the microscope objective. Operation of the all-fiber, all-normal dispersion Yb-fiber ring laser oscillator is electronically controlled by a two-channel polarization controller for Q-switching free mode-locked operation. The whole nonlinear microscope imaging system has the main advantages of the low price of the fs laser applied, fiber optics flexibility, a relatively small, light-weight scanning and detection head, and a very low risk of thermal or photochemical damage of the skin samples.
NASA Astrophysics Data System (ADS)
Li, Jingwei; Cai, Fuhong; Dong, Yongjiang; Zhu, Zhenfeng; Sun, Xianhe; Zhang, Hequn; He, Sailing
2017-06-01
In this study, a portable confocal hyperspectral microscope is developed. In traditional confocal laser scanning microscopes, scan lens and tube lens are utilized to achieve a conjugate relationship between the galvanometer and the back focal plane of the objective, in order to achieve a better resolution. However, these lenses make it difficult to scale down the volume of the system. In our portable confocal hyperspectral microscope (PCHM), the objective is placed directly next to the galvomirror. Thus, scan lens and tube lens are not included in our system and the size of this system is greatly reduced. Furthermore, the resolution is also acceptable in many biomedical and food-safety applications. Through reducing the optical length of the system, the signal detection efficiency is enhanced. This is conducive to realizing both the fluorescence and Raman hyperspectral imaging. With a multimode fiber as a pinhole, an improved image contrast is also achieved. Fluorescent spectral images for HeLa cells/fingers and Raman spectral images of kumquat pericarp are present. The spectral resolution and spatial resolutions are about 0.4 nm and 2.19 μm, respectively. These results demonstrate that this portable hyperspectral microscope can be used in in-vivo fluorescence imaging and in situ Raman spectral imaging.
Making Optical-Fiber Chemical Detectors More Sensitive
NASA Technical Reports Server (NTRS)
Rogowski, Robert S.; Egalon, Claudio O.
1993-01-01
Calculations based on exact theory of optical fiber shown how to increase optical efficiency and sensitivity of active-cladding step-index-profile optical-fiber fluorosensor using evanescent wave coupling. Optical-fiber fluorosensor contains molecules fluorescing when illuminated by suitable light in presence of analyte. Fluorescence coupled into and launched along core by evanescent-wave interaction. Efficiency increases with difference in refractive indices.
NASA Astrophysics Data System (ADS)
Wang, Hong; Cao, Xiaojian; Jia, Ke; Chai, Xueting; Lu, Hua; Lu, Zuhong
2001-10-01
A fiber optic fluorescence biosensor for choline is introduced in this paper. Choline is an important neurotransmitter in mammals. Due to the growing needs for on-site clinical monitoring of the choline, much effect has been devoted to develop choline biosensors. Fiber-optic fluorescence biosensors have many advantages, including miniaturization, flexibility, and lack of electrical contact and interference. The choline fiber-optic biosensor we designed implemented a bifurcated fiber to perform fluorescence measurements. The light of the blue LED is coupled into one end of the fiber as excitation and the emission spectrum from sensing film is monitored by fiber-spectrometer (S2000, Ocean Optics) through the other end of the fiber. The sensing end of the fiber is coated with Nafion film dispersed with choline oxidase and oxygen sensitive luminescent Ru(II) complex (Tris(2,2'-bipyridyl)dichlororuthenium(II), hexahydrate). Choline oxidase catalyzes the oxidation of choline to betaine and hydrogen peroxide while consuming oxygen. The fluorescence intensity of oxygen- sensitive Ru(II) are related to the choline concentration. The response of the fiber-optic sensor in choline solution is represented and discussed. The result indicates a low-cost, high-performance, portable choline biosensor.
In vivo optical detection of pH in microscopic tissue samples of Arabidopsis thaliana.
Kašík, Ivan; Podrazký, Ondřej; Mrázek, Jan; Martan, Tomáš; Matějec, Vlastimil; Hoyerová, Klára; Kamínek, Miroslav
2013-12-01
Minimally invasive in vivo measurement of pH in microscopic biological samples of μm or μl size, e.g. plant cells, tissues and saps, may help to explain complex biological processes. Consequently, techniques to achieve such measurements are a focus of interest for botanists. This paper describes a technique for the in vivo measurement of pH in the range pH5.0 to pH7.8 in microscopic plant tissue samples of Arabidopsis thaliana based on a ratiometric fluorescence method using low-loss robust tapered fiber probes. For this purpose tapered fiber probes were prepared and coated with a detection layer containing ion-paired fluorescent pH-transducer 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (c-HPTS). A fluorescence ratiometric approach was employed based on excitation at 415 nm and 450 nm and on the comparison of the fluorescence response at 515 nm. The suitability of tapered fiber probes for local detection of pH between 5.0 and 7.8 was demonstrated. A pH sensitivity of 0.15 pH units was achieved within the pH ranges 5.0-5.9 and 7.1-7.8, and this was improved to 0.04 pH units within the pH range 5.9-7.1. Spatial resolution of the probes was better than 20 μm and a time response within 15-20s was achieved. Despite the minute dimensions of the tapered fiber probes the setup developed was relatively robust and compact in construction and performed reliably. It has been successfully employed for the in vivo local determination of pH of mechanically resistant plant tissues of A. thaliana of microscopic scale. The detection of momentary pH gradients across the intact plant seems to be a good tool for the determination of changes in pH in response to experimental treatments affecting for example enzyme activities, availability of mineral nutrients, hormonal control of plant development and plant responses to environmental cues. © 2013.
In vivo monitoring of nanosphere onsite delivery using fiber optic microprobe
NASA Astrophysics Data System (ADS)
Lo, Leu-Wei; Yang, Chung-Shi
2005-02-01
To recognize the information of ischemia-induced blood vessel permeability would be valuable to formulate the drugs for optimal local delivery, we constructed an implantable needle type fiber-optic microprobe for the monitoring of in vivo fluorescent substances in anesthetized rats. This fiber-optic microprobe was composed of coaxial optical fibers and catheterized using a thin wall tubing of stainless steel (~400 um O.D. and ~300 um I.D.). The central fiber, with 100 um core diameter and 20 um cladding, coated with a 30 um layer of gold, was surrounded by 10 fibers with 50 um cores. The central fiber carried the light from the 488 nm Argon laser to the tissue while the surrounding fibers collected the emitted fluorescence to the detector. When the fiber-optic microprobe was placed in the solutions containing various concentrations of fluorescent nanospheres (20 nm), either with or without 10% lipofundin as optical phantom, nanosphere concentration-dependent responses of the fluorescence intensity were observed. The microprobe was then implanted into the liver and the brain of anesthetized rats to monitor the in situ extravasation of pre-administered fluorescent nanospheres from vasculature following the ischemic insults. Both the hepatic and cerebral ischemic insults showed immediate increases of the extracellular 20 nm fluorescent nanospheres. The implantable fiber-optic microprobe constructed in present study provides itself as a minimally-invasive technique capable of investigating the vascular permeability for in vivo nanosphere delivery in both ischemic liver and brain.
Epifluorescence light collection for multiphoton microscopic endoscopy
NASA Astrophysics Data System (ADS)
Brown, Christopher M.; Rivera, David R.; Xu, Chris; Webb, Watt W.
2011-03-01
Multiphoton microscopic endoscopy (MPM-E) is a promising medical in vivo diagnostic imaging technique because it captures intrinsic fluorescence and second harmonic generation signals to reveal anatomical and histological information about disease states in tissue. However, maximizing light collection from multiphoton endoscopes remains a challenge: weak nonlinear emissions from endogenous structures, miniature optics, large imaging depths, and light scattering in tissue all hamper light collection. The quantity of light that may be collected using a dual-clad fiber system from scattering phantoms that mimic the properties of the in vivo environment is measured. In this experiment, 800nm excitation light from a Ti:Sapphire laser is dispersion compensated and focused through a SM800 optical fiber and lens system into the tissue phantom. Emission light from the phantom passes through the lens system, reflects off the dichroic and is then collected by a second optical fiber actuated by a micromanipulator. The lateral position of the collection fiber varies, measuring the distribution of emitted light 2000μm on either side of the focal point reimaged to the object plane. This spatial collection measurement is performed at depths up to 200μm from the phantom surface. The tissue phantoms are composed of a 15.8 μM fluorescein solution mixed with microspheres, approximating the scattering properties of human bladder and dermis tissue. Results show that commercially available dual-clad optical fibers collect more than 47% of the total emission returning to the object plane from both phantoms. Based on these results, initial MPM-E devices will image the surface of epithelial tissues.
Two-photon microscopy using fiber-based nanosecond excitation.
Karpf, Sebastian; Eibl, Matthias; Sauer, Benjamin; Reinholz, Fred; Hüttmann, Gereon; Huber, Robert
2016-07-01
Two-photon excitation fluorescence (TPEF) microscopy is a powerful technique for sensitive tissue imaging at depths of up to 1000 micrometers. However, due to the shallow penetration, for in vivo imaging of internal organs in patients beam delivery by an endoscope is crucial. Until today, this is hindered by linear and non-linear pulse broadening of the femtosecond pulses in the optical fibers of the endoscopes. Here we present an endoscope-ready, fiber-based TPEF microscope, using nanosecond pulses at low repetition rates instead of femtosecond pulses. These nanosecond pulses lack most of the problems connected with femtosecond pulses but are equally suited for TPEF imaging. We derive and demonstrate that at given cw-power the TPEF signal only depends on the duty cycle of the laser source. Due to the higher pulse energy at the same peak power we can also demonstrate single shot two-photon fluorescence lifetime measurements.
Microscopic fluorescence spectral analysis of basal cell carcinomas
NASA Astrophysics Data System (ADS)
He, Qingli; Lui, Harvey; Zloty, David; Cowan, Bryce; Warshawski, Larry; McLean, David I.; Zeng, Haishan
2007-05-01
Background and Objectives. Laser-induced autofluorescence (LIAF) is a promising tool for cancer diagnosis. This method is based on the differences in autofluorescence spectra between normal and cancerous tissues, but the underlined mechanisms are not well understood. The objective of this research is to study the microscopic origins and intrinsic fluorescence properties of basal cell carcinoma (BCC) for better understanding of the mechanism of in vivo fluorescence detection and margin delineation of BCCs on skin patients. A home-made micro- spectrophotometer (MSP) system was used to image the fluorophore distribution and to measure the fluorescence spectra of various microscopic structures and regions on frozen tissue sections. Materials and Methods. BCC tissue samples were obtained from 14 patients undergoing surgical resections. After surgical removal, each tissue sample was immediately embedded in OCT medium and snap-frozen in liquid nitrogen. The frozen tissue block was then cut into 16-μm thickness sections using a cryostat microtome and placed on microscopic glass slides. The sections for fluorescence study were kept unstained and unfixed, and then analyzed by the MSP system. The adjacent tissue sections were H&E stained for histopathological examination and also served to help identify various microstructures on the adjacent unstained sections. The MSP system has all the functions of a conventional microscope, plus the ability of performing spectral analysis on selected micro-areas of a microscopic sample. For tissue fluorescence analysis, 442nm He-Cd laser light is used to illuminate and excite the unstained tissue sections. A 473-nm long pass filter was inserted behind the microscope objective to block the transmitted laser light while passing longer wavelength fluorescence signal. The fluorescence image of the sample can be viewed through the eyepieces and also recorded by a CCD camera. An optical fiber is mounted onto the image plane of the photograph port of the microscope to collect light from a specific micro area of the sample. The collected light is transmitted via the fiber to a disperserve type CCD spectrometer for spectral analysis. Results. The measurement results showed significant spectral differences between normal and cancerous tissues. For normal tissue regions, the spectral results agreed with our previous findings on autofluorescence of normal skin sections. For the cancerous regions, the epidermis showed very weak fluorescence signal, while the stratum corneum exhibited fluorescence emissions peaking at about 510 nm. In the dermis, the basal cell island and a band of surrounding areas showed very weak fluorescence signal, while distal dermis above and below the basal cell island showed greater fluorescence signal but with different spectral shapes. The very weak autofluorescence from the basal cell island and its surrounding area may be attributed to their degenerative properties that limited the production of collagens. Conclusions. The obtained microscopic results very well explain the in vivo fluorescence properties of BCC lesions in that they have decreased fluorescence intensity compared to the surrounding normal skin. The intrinsic spectra of various microstructures and the microscopic fluorescence images (corresponding fluorophore distribution in tissue) obtained in this study will be used for further theoretical modeling of in vivo fluorescence spectroscopy and imaging of skin cancers.
Distributed fluorescent optical fiber proximity sensor: Towards a proof of concept
NASA Astrophysics Data System (ADS)
Gălătuș, Ramona; Faragó, Paul; Miluski, Piotr; Valles, Juan-Antonio
2018-06-01
Fluorescent fibers are optical fibers which emit light as a response to an incident phenomenon, usually an incident light. Operation depends on the doping dyes, which determine specific fluorescence and optical characteristics useful in the development of optical sensors. In this work we propose a low-cost distributed proximity sensor implemented using a red fluorescent fiber, to provide a security option for a surface plasmon resonance system. Operation of the proposed sensor relies on having the incident illumination intensity varied by the presence or absence of an obstacle in the vicinity of the sensing element. This will influence the radiated fluorescence accordingly. The proposed setup for the implementation of the optical proximity sensor assumes having a high brightness LED deployed for axial fiber illumination and a blue LED for side illumination. Electronic processing then accounts for gain and digitization. Measurement results of the prototype validate the proposed concept.
Improved resolution in practical light microscopy by means of a glass-fiber 2 π-tilting device
NASA Astrophysics Data System (ADS)
Bradl, Joachim; Rinke, Bernd; Schneider, Bernhard; Hausmann, Michael; Cremer, Christoph G.
1996-01-01
The spatial resolution of a conventional light microscope or a confocal laser scanning microscope can be determined by calculating the point spread function for the objective used. Normally, ideal conditions are assumed for these calculations. Such conditions, however, are often not fulfilled in biological applications especially in those cases where biochemical requirements (e.g. buffer conditions) influence the specimen preparation on the microscope slide (i.e. 'practical' light microscopy). It has been shown that the problem of a reduced z- resolution in 3D-microscopy (optical sectioning) can be overcome by a capillary in a 2(pi) - tilting device that allows object rotation into an optimal perspective. The application of the glass capillary instead of a standard slide has an additional influence on the imaging properties of the microscope. Therefore, another 2(pi) -tilting device was developed, using a glass fiber for object fixation and rotation. Such a fiber could be covered by standard cover glasses. To estimate the resolution of this setup, point spread functions were measured under different conditions using fluorescent microspheres of subwavelength dimensions. Results obtained from standard slide setups were compared to the glass fiber setup. These results showed that in practice rotation leads to an overall 3D-resolution improvement.
Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application
NASA Astrophysics Data System (ADS)
Liu, Zhihai; Guo, Chengkai; Yang, Jun; Yuan, Libo
2006-12-01
A novel single tapered fiber optical tweezers is proposed and fabricated by heating and drawing technology. The microscopic particle tapping performance of this special designed tapered fiber probe is demonstrated and investigated. The distribution of the optical field emerging from the tapered fiber tip is numerically calculated based on the beam propagation method. The trapping force FDTD analysis results, both axial and transverse, are also given.
Hirschfeld, T.B.
1985-09-24
Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime. 10 figs.
Hirschfeld, Tomas B.
1985-01-01
Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partin, J.K.; Ward, T.E.; Grey, A.E.
1990-12-31
This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.
NASA Astrophysics Data System (ADS)
Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.
1990-04-01
This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.
Gu, Min; Bird, Damian
2003-05-01
The three-dimensional optical transfer function is derived for analyzing the imaging performance in fiber-optical two-photon fluorescence microscopy. Two types of fiber-optical geometry are considered: The first involves a single-mode fiber for delivering a laser beam for illumination, and the second is based on the use of a single-mode fiber coupler for both illumination delivery and signal collection. It is found that in the former case the transverse and axial cutoff spatial frequencies of the three-dimensional optical transfer function are the same as those in conventional two-photon fluorescence microscopy without the use of a pinhole.However, the transverse and axial cutoff spatial frequencies in the latter case are 1.7 times as large as those in the former case. Accordingly, this feature leads to an enhanced optical sectioning effect when a fiber coupler is used, which is consistent with our recent experimental observation.
Distributed fluorescent optical fiber proximity sensor: Towards a proof of concept.
Gălătuș, Ramona; Faragó, Paul; Miluski, Piotr; Valles, Juan-Antonio
2018-06-05
Fluorescent fibers are optical fibers which emit light as a response to an incident phenomenon, usually an incident light. Operation depends on the doping dyes, which determine specific fluorescence and optical characteristics useful in the development of optical sensors. In this work we propose a low-cost distributed proximity sensor implemented using a red fluorescent fiber, to provide a security option for a surface plasmon resonance system. Operation of the proposed sensor relies on having the incident illumination intensity varied by the presence or absence of an obstacle in the vicinity of the sensing element. This will influence the radiated fluorescence accordingly. The proposed setup for the implementation of the optical proximity sensor assumes having a high brightness LED deployed for axial fiber illumination and a blue LED for side illumination. Electronic processing then accounts for gain and digitization. Measurement results of the prototype validate the proposed concept. Copyright © 2018 Elsevier B.V. All rights reserved.
Wide spectral range confocal microscope based on endlessly single-mode fiber.
Hubbard, R; Ovchinnikov, Yu B; Hayes, J; Richardson, D J; Fu, Y J; Lin, S D; See, P; Sinclair, A G
2010-08-30
We report an endlessly single mode, fiber-optic confocal microscope, based on a large mode area photonic crystal fiber. The microscope confines a very broad spectral range of excitation and emission wavelengths to a single spatial mode in the fiber. Single-mode operation over an optical octave is feasible. At a magnification of 10 and λ = 900 nm, its resolution was measured to be 1.0 μm (lateral) and 2.5 μm (axial). The microscope's use is demonstrated by imaging single photons emitted by individual InAs quantum dots in a pillar microcavity.
Microbend fiber-optic chemical sensor
Weiss, Jonathan D.
2002-01-01
A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.
Highly phosphorescent hollow fibers inner-coated with tungstate nanocrystals
NASA Astrophysics Data System (ADS)
Ng, Pui Fai; Bai, Gongxun; Si, Liping; Lee, Ka I.; Hao, Jianhua; Xin, John H.; Fei, Bin
2017-12-01
In order to develop luminescent microtubes from natural fibers, a facile biomimetic mineralization method was designed to introduce the CaWO4-based nanocrystals into kapok lumens. The structure, composition, and luminescence properties of resultant fibers were investigated with microscopes, x-ray diffraction, thermogravimetric analysis, and fluorescence spectrometry. The yield of tungstate crystals inside kapok was significantly promoted with a process at high temperature and pressure—the hydrothermal treatment. The tungstate crystals grown on the inner wall of kapok fibers showed the same crystal structure with those naked powders, but smaller in crystal size. The resultant fiber assemblies demonstrated reduced phosphorescence intensity in comparison to the naked tungstate powders. However, the fibers gave more stable luminescence than the naked powders in wet condition. This approach explored the possibility of decorating natural fibers with high load of nanocrystals, hinting potential applications in anti-counterfeit labels, security textiles, and even flexible and soft optical devices.
Experimental stress–strain analysis of tapered silica optical fibers with nanofiber waist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holleis, S.; Hoinkes, T.; Wuttke, C.
2014-04-21
We experimentally determine tensile force–elongation diagrams of tapered optical fibers with a nanofiber waist. The tapered optical fibers are produced from standard silica optical fibers using a heat and pull process. Both, the force–elongation data and scanning electron microscope images of the rupture points indicate a brittle material. Despite the small waist radii of only a few hundred nanometers, our experimental data can be fully explained by a nonlinear stress–strain model that relies on material properties of macroscopic silica optical fibers. This is an important asset when it comes to designing miniaturized optical elements as one can rely on themore » well-founded material characteristics of standard optical fibers. Based on this understanding, we demonstrate a simple and non-destructive technique that allows us to determine the waist radius of the tapered optical fiber. We find excellent agreement with independent scanning electron microscope measurements of the waist radius.« less
Analysis of the chicken retina with an adaptive optics multiphoton microscope.
Bueno, Juan M; Giakoumaki, Anastasia; Gualda, Emilio J; Schaeffel, Frank; Artal, Pablo
2011-06-01
The structure and organization of the chicken retina has been investigated with an adaptive optics multiphoton imaging microscope in a backward configuration. Non-stained flat-mounted retinal tissues were imaged at different depths, from the retinal nerve fiber layer to the outer segment, by detecting the intrinsic nonlinear fluorescent signal. From the stacks of images corresponding to the different retinal layers, volume renderings of the entire retina were reconstructed. The density of photoreceptors and ganglion cells layer were directly estimated from the images as a function of the retinal eccentricity. The maximum anatomical resolving power at different retinal eccentricities was also calculated. This technique could be used for a better characterization of retinal alterations during myopia development, and may be useful for visualization of retinal pathologies and intoxication during pharmacological studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiquan Tao
2006-12-31
The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fibermore » optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of fiber optic sensors uses sol-gel derived porous silica materials doped with nanometer particles of noble metals in the form of fiber or coating for sensing trace H{sub 2}, NH{sub 3} and HCl in gas samples at for applications ambient temperature. The third classes of fiber optic sensors use sol-gel derived semiconductor metal oxide coating on the surface of silica optical fiber as transducers for selectively sensing H{sub 2}, CH{sub 4} and CO at high temperature. In addition, optical fiber temperature sensors use the fluorescence signal of rare-earth metal ions doped porous silica optical fiber or the optical absorption signal of thermochromic metal oxide materials coated on the surface of silica optical fibers have also been developed for monitoring gas temperature of corrosive gas. Based on the results obtained from this project, the principle of fiber optic sensor techniques for monitoring matrix gas components as well as trace components of coal gasification derived syngas has been established. Prototype sensors for sensing trace ammonia and hydrogen sulfide in gasification derived syngas have been built up in our laboratory and have been tested using gas samples with matrix gas composition similar to that of gasification derived fuel gas. Test results illustrated the feasibility of these sensors for applications in IGCC processes.« less
Three-dimensional image formation in fiber-optical second-harmonic-generation microscopy.
Gu, Min; Fu, Ling
2006-02-06
Three-dimensional (3-D) image formation in fiber-optical second-harmonic-generation microscopy is revealed to be purely coherent and therefore can be described by a 3-D coherent transfer function (CTF) that exhibits the same spatial frequency passband as that of fiber-optical reflection-mode non-fluorescence microscopy. When the numerical aperture of the fiber is much larger than the angle of convergence of the illumination on the fiber aperture, the performance of fiber-optical second-harmonic-generation microscopy behaves as confocal second-harmonic-generation microscopy. The dependence of axial resolution on fiber coupling parameters shows an improvement of approximately 7%, compared with that in fiber-optical two-photon fluorescence microscopy.
Yuan, Yinquan; Ding, Liyun
2011-10-24
For fiber optical sensor made of tapered fiber tip, the effects of the geometrical parameters of tapered tip on two important factors have been investigated. One factor is the intensity of the evanescent wave into fluorescent layer through core-medium interface; the other is the intensity of fluorescence signal transmitted from fluorescent layer to measurement end. A dependence relation of the intensity of fluorescence signal transmitted from fluorescent layer to measurement end upon the geometrical parameters of tapered tip has been obtained. Theoretical results show that the intensity of the evanescent wave into fluorescent layer rises with the decrease of the end diameter of tapered tip, and the increase of the tip length; and the transmitted power of fluorescence signal increases linearly with the increase of the tip length due to the contribution of the side area of tapered tip. © 2011 Optical Society of America
Ilev, Ilko; Waynant, Ronald; Gannot, Israel; Gandjbakhche, Amir
2007-09-01
A novel fiber-optic confocal approach for ultrahigh depth-resolution (
Optical position sensor for determining the interface between a clear and an opaque fluid
Weiss, Jonathan D [Albuquerque, NM
2006-05-23
An inexpensive, optical position sensor for measuring a position or length, x, along a one-dimensional curvilinear, coordinate system. The sensor can be used, for example, to determine the position of an interface between a clear and an opaque fluid (such as crude oil and water). In one embodiment, the sensor utilizes the principle of dual-fluorescence, where a primary fiber emits primary fluorescent light and a parallel secondary fiber collects a portion of the primary fluorescent light that is not blocked by the opaque fluid. This, in turn, excites secondary fluorescence in the secondary fiber at a longer wavelength. A light detector measures the intensity of secondary fluorescence emitted from an end of the secondary fiber, which is used to calculate the unknown position or length, x. Side-emitting fibers can be used in place of, or in addition to, fluorescent fibers. The all-optical sensor is attractive for applications involving flammable liquids.
Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator.
MacDonald, A J R; Popowich, G G; Hauer, B D; Kim, P H; Fredrick, A; Rojas, X; Doolin, P; Davis, J P
2015-01-01
We have developed a system for tapered fiber measurements of optomechanical resonators inside a dilution refrigerator, which is compatible with both on- and off-chip devices. Our apparatus features full three-dimensional control of the taper-resonator coupling conditions enabling critical coupling, with an overall fiber transmission efficiency of up to 70%. Notably, our design incorporates an optical microscope system consisting of a coherent bundle of 37,000 optical fibers for real-time imaging of the experiment at a resolution of ∼1 μm. We present cryogenic optical and optomechanical measurements of resonators coupled to tapered fibers at temperatures as low as 9 mK.
Site-specific multipoint fluorescence measurement system with end-capped optical fibers.
Song, Woosub; Moon, Sucbei; Lee, Byoung-Cheol; Park, Chul-Seung; Kim, Dug Young; Kwon, Hyuk Sang
2011-07-10
We present the development and implementation of a spatially and spectrally resolved multipoint fluorescence correlation spectroscopy (FCS) system utilizing multiple end-capped optical fibers and an inexpensive laser source. Specially prepared end-capped optical fibers placed in an image plane were used to both collect fluorescence signals from the sample and to deliver signals to the detectors. The placement of independently selected optical fibers on the image plane was done by monitoring the end-capped fiber tips at the focus using a CCD, and fluorescence from specific positions of a sample were collected by an end-capped fiber, which could accurately represent light intensities or spectral data without incurring any disturbance. A fast multipoint spectroscopy system with a time resolution of ∼1.5 ms was then implemented using a prism and an electron multiplying charge coupled device with a pixel binning for the region of interest. The accuracy of our proposed system was subsequently confirmed by experimental results, based on an FCS analysis of microspheres in distilled water. We expect that the proposed multipoint site-specific fluorescence measurement system can be used as an inexpensive fluorescence measurement tool to study many intracellular and molecular dynamics in cell biology. © 2011 Optical Society of America
Compound parabolic concentrator optical fiber tip for FRET-based fluorescent sensors
NASA Astrophysics Data System (ADS)
Ul Hassan, Hafeez; Nielsen, Kristian; Aasmul, Soren; Bang, Ole
2015-09-01
The Compound Parabolic Concentrator (CPC) optical fiber tip shape has been proposed for intensity based fluorescent sensors working on the principle of FRET (Förster Resonance Energy Transfer). A simple numerical Zemax model has been used to optimize the CPC tip geometry for a step-index multimode polymer optical fiber for an excitation and emission wavelength of 550 nm and 650nm, respectively. The model suggests an increase of a factor of 1.6 to 4 in the collected fluorescent power for an ideal CPC tip, as compared to the plane-cut fiber tip for fiber lengths between 5 and 45mm.
Optrode for sensing hydrocarbons
Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.
1987-01-01
A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.
Optrode for sensing hydrocarbons
Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.
1987-05-19
A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 6 figs.
Optrode for sensing hydrocarbons
Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.
1988-09-13
A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 5 figs.
Optrode for sensing hydrocarbons
Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.
1988-01-01
A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.
Wide-field and high-resolution optical imaging for early detection of oral neoplasia
NASA Astrophysics Data System (ADS)
Pierce, Mark C.; Schwarz, Richard A.; Rosbach, Kelsey; Roblyer, Darren; Muldoon, Tim; Williams, Michelle D.; El-Naggar, Adel K.; Gillenwater, Ann M.; Richards-Kortum, Rebecca
2010-02-01
Current procedures for oral cancer screening typically involve visual inspection of the entire tissue surface at risk under white light illumination. However, pre-cancerous lesions can be difficult to distinguish from many benign conditions when viewed under these conditions. We have developed wide-field (macroscopic) imaging system which additionally images in cross-polarized white light, narrowband reflectance, and fluorescence imaging modes to reduce specular glare, enhance vascular contrast, and detect disease-related alterations in tissue autofluorescence. We have also developed a portable system to enable high-resolution (microscopic) evaluation of cellular features within the oral mucosa in situ. This system is a wide-field epi-fluorescence microscope coupled to a 1 mm diameter, flexible fiber-optic imaging bundle. Proflavine solution was used to specifically label cell nuclei, enabling the characteristic differences in N/C ratio and nuclear distribution between normal, dysplastic, and cancerous oral mucosa to be quantified. This paper discusses the technical design and performance characteristics of these complementary imaging systems. We will also present data from ongoing clinical studies aimed at evaluating diagnostic performance of these systems for detection of oral neoplasia.
Fiber-optic array using molecularly imprinted microspheres for antibiotic analysis.
Carrasco, Sergio; Benito-Peña, Elena; Walt, David R; Moreno-Bondi, María C
2015-05-01
In this article we describe a new class of high-density optical microarrays based on molecularly imprinted microsphere sensors that directly incorporate specific recognition capabilities to detect enrofloxacin (ENRO), an antibiotic widely used for both human and veterinary applications. This approach involves the preparation of highly cross-linked polymer microspheres by thermal precipitation-polymerization in the presence and absence of the target analyte ENRO to generate either molecularly imprinted (MIP) or non-imprinted polymer (NIP) microspheres, respectively. Each polymer type of tailor-made microsphere is fluorescently encoded with either coumarin-30 or tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(ii) dichloride [Ru(dip) 3 ]Cl 2 to enable the microspheres to be distinguished. The new MIP-based sensing platform utilizes an optical fiber bundle containing approximately 50 000 individual 3.1 μm diameter fibers that are chemically etched to create microwells in which MIP and NIP microspheres can be deposited and imaged using an epi-fluorescence microscope. The method enables multiplexed detection by independently addressing both types of beads through their separate light channels. The unique response to the presence of ENRO is manifested on the basis of a competitive immunoassay. A red-fluorescent dye-tagged ENRO, labeled with BODIPY® TR Cadaverine, competes with ENRO for specific binding sites. The developed immuno-like assay displayed a limit of detection (LOD) of 0.04 μM (10% binding inhibition) and a dynamic range of 0.29-21.54 μM (20-80% binding inhibition). The selectivity of the assay was evaluated by measuring the cross-reactivity of other fluoroquinolones (ciprofloxacin, norfloxacin, danofloxacin, and flumequine) and non-related antibiotics (penicillin G and doxycycline). This work demonstrates, for the first time, the applicability of MIPs, as an alternative to biomolecule receptors, for the development of multiplexed detection fiber-optic microarrays paving the way for a new generation of biomimetic sensors.
Analysis of the chicken retina with an adaptive optics multiphoton microscope
Bueno, Juan M.; Giakoumaki, Anastasia; Gualda, Emilio J.; Schaeffel, Frank; Artal, Pablo
2011-01-01
The structure and organization of the chicken retina has been investigated with an adaptive optics multiphoton imaging microscope in a backward configuration. Non-stained flat-mounted retinal tissues were imaged at different depths, from the retinal nerve fiber layer to the outer segment, by detecting the intrinsic nonlinear fluorescent signal. From the stacks of images corresponding to the different retinal layers, volume renderings of the entire retina were reconstructed. The density of photoreceptors and ganglion cells layer were directly estimated from the images as a function of the retinal eccentricity. The maximum anatomical resolving power at different retinal eccentricities was also calculated. This technique could be used for a better characterization of retinal alterations during myopia development, and may be useful for visualization of retinal pathologies and intoxication during pharmacological studies. PMID:21698025
Dual-channel (green and red) fluorescence microendoscope with subcellular resolution
NASA Astrophysics Data System (ADS)
de Paula D'Almeida, Camila; Fortunato, Thereza Cury; Teixeira Rosa, Ramon Gabriel; Romano, Renan Arnon; Moriyama, Lilian Tan; Pratavieira, Sebastião.
2018-02-01
Usually, tissue images at cellular level need biopsies to be done. Considering this, diagnostic devices, such as microendoscopes, have been developed with the purpose of do not be invasive. This study goal is the development of a dual-channel microendoscope, using two fluorescent labels: proflavine and protoporphyrin IX (PpIX), both approved by Food and Drug Administration. This system, with the potential to perform a microscopic diagnosis and to monitor a photodynamic therapy (PDT) session, uses a halogen lamp and an image fiber bundle to perform subcellular image. Proflavine fluorescence indicates the nuclei of the cell, which is the reference for PpIX localization on image tissue. Preliminary results indicate the efficacy of this optical technique to detect abnormal tissues and to improve the PDT dosimetry. This was the first time, up to our knowledge, that PpIX fluorescence was microscopically observed in vivo, in real time, combined to other fluorescent marker (Proflavine), which allowed to simultaneously observe the spatial localization of the PpIX in the mucosal tissue. We believe this system is very promising tool to monitor PDT in mucosa as it happens. Further experiments have to be performed in order to validate the system for PDT monitoring.
NASA Astrophysics Data System (ADS)
Dutta, Debjit; Dhar, Anirban; Das, Shyamal; Bysakh, Sandip; Kir'yanov, Alexandar; Paul, Mukul Chandra
2015-06-01
Transition metal (TM) doping in silica core optical fiber is one of the research area which has been studied for long time and Chromium (Cr) doping specially attracts a lot of research interest due to their broad emission band covering U, C and L band with many potential application such as saturable absorber or broadband amplifier etc. This paper present fabrication of Cr doped nano-phase separated silica fiber within yttria-alumina-silica core glass through conventional Modified Chemical Vapor Deposition (MCVD) process coupled with solution doping technique along with different material and optical characterization. For the first time scanning electron microscope (SEM) / energy dispersive X-ray (EDX) analysis of porous soot sample and final preform has been utilized to investigate incorporation mechanism of Crions with special emphasis on Cr-species evaporation at different stages of fabrication. We also report that optimized annealing condition of our fabricated preform exhibited enhanced fluorescence emission and a broad band within 550- 800 nm wavelength region under pumping at 532 nm wavelength due to nano-phase restructuration.
Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov, I. V.; Doronina-Amitonova, L. V.; Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125
2014-02-24
Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.
Fujii, T; Taguchi, Y; Saiki, T; Nagasaka, Y
2012-12-01
A novel local temperature measurement method using fluorescence near-field optics thermal nanoscopy (Fluor-NOTN) has been developed. Fluor-NOTN enables nanoscale temperature measurement in situ by detecting the temperature-dependent fluorescence lifetime of CdSe quantum dots (QDs). In this paper, we report a novel triple-tapered near-field optical fiber probe that can increase the temperature measurement sensitivity of Fluor-NOTN. The performance of the proposed probe was numerically evaluated by the finite difference time domain method. Due to improvements in both the throughput and collection efficiency of near-field light, the sensitivity of the proposed probe was 1.9 times greater than that of typical double-tapered probe. The proposed shape of the triple-tapered core was successfully fabricated utilizing a geometrical model. The detected signal intensity of dried layers of QDs was greater by more than two orders than that of auto-fluorescence from the fiber core. In addition, the near-field fluorescence lifetime of the QDs and its temperature dependence were successfully measured by the fabricated triple-tapered near-field optical fiber probe. These measurement results verified the capability of the proposed triple-tapered near-field optical fiber probe to improve the collection efficiency of near-field fluorescence.
Amatore, Christian; Chovin, Arnaud; Garrigue, Patrick; Servant, Laurent; Sojic, Neso; Szunerits, Sabine; Thouin, Laurent
2004-12-15
Dynamic concentration profiles within the diffusion layer of an electrode were imaged in situ using fluorescence detection through a multichannel imaging fiber. In this work, a coherent optical fiber bundle is positioned orthogonal to the surface of an electrode and is used to report spatial and temporal micrometric changes in the fluorescence intensity of an initial fluorescent species. The fluorescence signal is directly related to the local concentration of a redox fluorescent reagent, which is electrochemically modulated by the electrode. Fluorescence images are collected through the optical fiber bundle during the oxidation of tris(2,2'-bipyridine)ruthenium(II) to ruthenium(III) at a diffusion-limited rate and allow the concentration profiles of Ru(II) reagent to be monitored in situ as a function of time. Tris(2,2'-bipyridine)ruthenium(II) is excited at 485 nm and emits fluorescence at 605 nm, whereas the Ru(III) oxidation state is not fluorescent. Our experiments emphasize the influence of two parameters on the micrometer spatial resolution: the numerical aperture of optical fibers within the bundle and the Ru(II) bulk concentration. The extent of the volume probed by each individual fiber of the bundle is discussed qualitatively in terms of a primary inner-filter effect and refractive index gradient. Experimentally measured fluorescence intensity profiles were found to be in very good agreement with concentration profiles predicted upon considering planar diffusion and thus validate the concept of this new application of imaging fibers. The originality of this remote approach is to provide a global view of the entire diffusion layer at a given time through one single image and to allow the time expansion of the diffusion layer to be followed quantitatively in real time.
Fiber optic detector for immuno-testing
Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.
1992-01-01
A portable fiber optic detector that senses the presence of specific target chemicals in air or a gas by exchanging the target chemical for a fluoroescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.
Yang, Xiupei; Huo, Feng; Yuan, Hongyan; Zhang, Bo; Xiao, Dan; Choi, Martin M F
2011-01-01
This paper reports the enhancement of sensitivity of detection for in-column fiber optic-induced fluorescence detection system in CE by tapered optical fiber (TOF). Two types of optical fiber, TOF and conventional cylindrical optical fiber (COF), were employed to construct the CE (TOF-CE and COF-CE) and were compared for sensitivity to riboflavin (RF). The fluorescence intensities from a RF sample with excitation light sources and fibers at various coupling angles were investigated. The fluorescence signal from TOF-CE was ca. ten times that of COF-CE. In addition, the detection performance of four excitation light source-fiber configurations including Laser-TOF, Laser-COF, LED-TOF, and LED-COF were compared. The LODs for RF were 0.21, 0.82, 0.80, and 7.5 nM, respectively, for the four excitation light source-fiber configurations. The results demonstrate that the sensitivity obtained by LED-TOF is close to that of Laser-COF. Both Laser-TOF and LED-TOF can greatly improve the sensitivity of detection in CE. TOF has the major attribute of collecting and focusing the excitation light intensity. Thus, the sensitivity obtained by LED-TOF without focusing lens is just same as that of LED-COF with a focusing lens. This demonstrates that the CE system can be further simplified by eliminating the focusing lens for excitation light. LED-TOF-CE and LED-COF-CE system were applied to the separation and determination of RF in real sample (green tea), respectively. The tapered fiber optic-induced fluorescence detection system in CE is an ideal tool for trace analysis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Xu, He N.; Tchou, Julia; Li, Yusheng; Feng, Min; Zhang, Paul; Quinn, William J.; Baur, Joseph A.; Li, Lin Z.
2018-02-01
We previously showed that optical redox imaging (ORI) of snap-frozen breast biopsies by the Chance redox scanner readily discriminates cancer from normal tissue. Moreover, indices of redox heterogeneity differentiate among tumor xenografts with different metastatic potential. These observations suggest that ORI of fluorescence of NADH and oxidized flavoproteins (Fp) may provide diagnostic/prognostic value for clinical applications. In this work, we investigate whether ORI of formalin-fixed-paraffin-embedded (FFPE) unstained clinical tissue slides of breast tumors is feasible and comparable to ORI of snap-frozen tumors. If ORI of FFPE is validated, it will enhance the versatility of ORI as a novel diagnostic/prognostic assay as FFPE samples are readily available. ORI of fixed tissue slides was performed using a fluorescence microscope equipped with a precision automated stage and appropriate optical filters. We developed a vignette correction algorithm to remove the tiling effect of stitched-images. The preliminary data from imaging fixed slides of breast tumor xenografts showed intratumor redox heterogeneity patterns similar to that of the frozen tissues imaged by the Chance redox scanner. From ORI of human breast tissue slides we identified certain redox differences among normal, ductal carcinoma in situ, and invasive carcinoma. We found paraformaldehyde fixation causes no change in NADH signals but enhances Fp signals of fresh muscle fibers. We also investigated the stability of the fluorescence microscope and reproducibility of tissue slide fluorescence signals. We plan to validate the diagnostic/prognostic value of ORI using clinically annotated breast cancer sample set from patients with long-term follow-up data.
Biomedical and sensing applications of a multi-mode biodegradable phosphate-based optical fiber
NASA Astrophysics Data System (ADS)
Podrazky, Ondřej; Peterka, Pavel; Vytykáčová, SoÅa.; Proboštová, Jana; Kuneš, Martin; Lyutakov, Oleksiy; Ceci-Ginistrelli, Edoardo; Pugliese, Diego; Boetti, Nadia G.; Janner, Davide; Milanese, Daniel
2018-02-01
We report on the employment of a biodegradable phosphate-based optical fiber as a pH sensing probe in physiological environment. The phosphate-based optical fiber preform was fabricated by the rod-in-tube technique. The fiber biodegradability was first tested in-vitro and then its biodegradability and toxicity were tested in-vivo. Optical probes for pH sensing were prepared by the immobilization of a fluorescent dye on the fiber tip by a sol-gel method. The fluorescence response of the pH-sensor was measured as a ratio of the emission intensities at the excitation wavelengths of 405 and 450 nm.
MEH-PPV film thickness influenced fluorescent quenching of tip-coated plastic optical fiber sensors
NASA Astrophysics Data System (ADS)
Yusufu, A. M.; Noor, A. S. M.; Tamchek, N.; Abidin, Z. Z.
2017-12-01
The performance of plastic optical fiber sensors in detecting nitro aromatic explosives 1,4-dinitrobenzene (DNB) have been investigated by fluorescence spectroscopy and analyzed by using fluorescence quenching technique. The plastic optical fiber utilized is 90 degrees cut tip and dip-coated with conjugated polymer MEH-PPV poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] thin films for detection conjugants. The thicknesses of the MEH-PPV coating were varied to improvise the sensitivity whilst slowly reducing the fluorescence intensity. It was shown that fluorescence intensity from thinner film decreased by (82% in 40 s) in the presence of DNB signifying an improvement of 28% reduction with time 13 s less than that of the thicker film.
NASA Astrophysics Data System (ADS)
Kuhlmann, Andreas V.; Houel, Julien; Brunner, Daniel; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.; Warburton, Richard J.
2013-07-01
Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 107 and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920-980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.
A trifurcated fiber-optic-probe-based optical system designed for AGEs measurement
NASA Astrophysics Data System (ADS)
Wang, Yikun; Zhang, Long; Zhu, Ling; Liu, Yong; Zhang, Gong; Wang, An
2012-03-01
Advanced Glycation End-products (AGEs) are biochemical end-products of non-enzymatic glycation and are formed irreversibly in human serum and skin tissue. AGEs are thought to play an important role in the pathogenesis of diabetes and corresponding complications. All conventional methods for measuring AGEs must take sampling and measure in vitro. These methods are invasive and have the problem of relatively time-consuming. AGEs have fluorescent characteristics. Skin AGEs can be assessed noninvasively by collecting the fluorescence emitted from skin tissue when excited with proper light. However, skin tissue has absorption and scattering effects on fluorescence of AGEs, it is not reliable to evaluate the accumulation of AGEs according the emitted fluorescence but not considering optical properties of skin tissue. In this study, a portable system for detecting AGEs fluorescence and skin reflectance spectrum simultaneously has been developed. The system mainly consists of an ultraviolet light source, a broadband light source, a trifurcated fiber-optic probe, and a compact charge coupled device (CCD) spectrometer. The fiber-optic probe consists of 36 optical fibers which are connected to the ultraviolet light source, 6 optical fibers connected to the broadband light source, and a core fiber connected to the CCD spectrometer. Demonstrative test measurements with the system on skin tissue of 40 healthy subjects have been performed. Using parameters that are calculated from skin reflectance spectrum, the distortion effects caused by skin absorption and scattering can be eliminated, and the integral intensity of corrected fluorescence has a strong correlation with the accumulation of AGEs. The system looks very promising for both laboratory and clinical applications to monitor AGEs related diseases, especially for chronic diabetes and complications.
Stawska, Hanna Izabela; Mazur, Leszek Mateusz; Kosolapov, Alexey; Kolyadin, Anton; Bereś-Pawlik, Elżbieta
2017-01-01
In this paper, an application of negative curvature hollow core fiber (NCHCF) in an all-fiber, multiphoton fluorescence sensor setup is presented. The dispersion parameter (D) of this fiber does not exceed the value of 5 ps/nm × km across the optical spectrum of (680–750) nm, making it well suited for the purpose of multiphoton excitation of biological fluorophores. Employing 1.5 m of this fiber in a simple, all-fiber sensor setup allows us to perform multiphoton experiments without any dispersion compensation methods. Multiphoton excitation of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) with this fiber shows a 6- and 9-fold increase, respectively, in the total fluorescence signal collected when compared with the commercial solution in the form of a hollow-core photonic band gap fiber (HCPBF). To the author’s best knowledge, this is the first time an NCHCF was used in an optical-fiber sensor setup for multiphoton fluorescence experiments. PMID:28984838
Popenda, Maciej Andrzej; Stawska, Hanna Izabela; Mazur, Leszek Mateusz; Jakubowski, Konrad; Kosolapov, Alexey; Kolyadin, Anton; Bereś-Pawlik, Elżbieta
2017-10-06
In this paper, an application of negative curvature hollow core fiber (NCHCF) in an all-fiber, multiphoton fluorescence sensor setup is presented. The dispersion parameter (D) of this fiber does not exceed the value of 5 ps/nm × km across the optical spectrum of (680-750) nm, making it well suited for the purpose of multiphoton excitation of biological fluorophores. Employing 1.5 m of this fiber in a simple, all-fiber sensor setup allows us to perform multiphoton experiments without any dispersion compensation methods. Multiphoton excitation of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) with this fiber shows a 6- and 9-fold increase, respectively, in the total fluorescence signal collected when compared with the commercial solution in the form of a hollow-core photonic band gap fiber (HCPBF). To the author's best knowledge, this is the first time an NCHCF was used in an optical-fiber sensor setup for multiphoton fluorescence experiments.
Truxal, Steven C; Huang, Nien-Tsu; Kurabayashi, Katsuo
2009-01-01
We report a microelectromechanical (MEMS) tunable optical filter and its integration in a fluorescence microscope for high speed on-chip spectral measurements. This integration allows for measurements of any fluorescence sample placed onto the microscope stage. We demonstrate the system capabilities by taking spectral measurements of multicolor fluorescent beads and fluorescently labeled cells passing through a microfluidic cytometer. The system has applications in biological studies where the measurement of multiple fluorescent peaks is restricted by the detection method's speed and sensitivity.
NASA Astrophysics Data System (ADS)
Shinde, Anant; Perinchery, Sandeep Menon; Murukeshan, Vadakke Matham
2017-04-01
An optical imaging probe with targeted multispectral and spatiotemporal illumination features has applications in many diagnostic biomedical studies. However, these systems are mostly adapted in conventional microscopes, limiting their use for in vitro applications. We present a variable resolution imaging probe using a digital micromirror device (DMD) with an achievable maximum lateral resolution of 2.7 μm and an axial resolution of 5.5 μm, along with precise shape selective targeted illumination ability. We have demonstrated switching of different wavelengths to image multiple regions in the field of view. Moreover, the targeted illumination feature allows enhanced image contrast by time averaged imaging of selected regions with different optical exposure. The region specific multidirectional scanning feature of this probe has facilitated high speed targeted confocal imaging.
NASA Astrophysics Data System (ADS)
Banerjee, Debangshu
The brittleness of monolithic ceramic materials can be overcome by reinforcing them with high strength, high modulus ceramic fibers. These ceramic matrix composites exhibit improved strength, toughness, and work of fracture. Successful design of a ceramic matrix composite (CMC) depends on two factors: proper choice of fiber, matrix, and interface material, and understanding the mechanics of fracture. The conventional techniques for measuring stress and strain at a local level in CMCs are based on indirect experiments and analytical models. In recent years a couple of optical techniques have been explored for non- contact and direct evaluation of the stress and strain in materials, such as laser Raman spectroscopy and fluorescence spectroscopy. In order to employ spectroscopy to study stress in a composite, a transparent matrix was needed. In this study a SiC fiber reinforced transparent glass matrix composite was developed. A tape casting, binder burnout, and sintering route was adopted to achieve the optimum transparency with proper fiber alignment and interfacial properties. Sapphire fibers were used to act as probe to generate fluorescence signals for measuring stress. A fugitive carbon coating was developed to act as a weak interface for the sapphire fiber, which otherwise, forms a strong bond with the matrix. A fixture was designed to apply stress on the composite specimen, in situ, under the microscope of the spectrometer. Using fluorescence spectroscopy, the micromechanics of load transfer from matrix to fibers were studied. Studies were conducted on both strongly and weakly bonded fibers, as well as on single fiber, and multi fiber situations. Residual stresses arising from thermal expansion mismatch have been mapped along the fiber length with resolution in microns. Residual axial stress was found to follow a shear lag profile along the fiber length. A finite residual axial stress was detected at the fiber ends. Correction of the measured stress for sample probe interaction could not eliminate this finite stress completely. Residual axial stress was also found to vary across the fiber cross section. Analytical models predicting the stress variation along the fiber length and across fiber cross section were developed. (Abstract shortened by UMI.)
Optical fiber-based fluorescent viscosity sensor
NASA Astrophysics Data System (ADS)
Haidekker, Mark A.; Akers, Walter J.; Fischer, Derek; Theodorakis, Emmanuel A.
2006-09-01
Molecular rotors are a unique group of viscosity-sensitive fluorescent probes. Several recent studies have shown their applicability as nonmechanical fluid viscosity sensors, particularly in biofluids containing proteins. To date, molecular rotors have had to be dissolved in the fluid for the measurement to be taken. We now show that molecular rotors may be covalently bound to a fiber-optic tip without loss of viscosity sensitivity. The optical fiber itself may be used as a light guide for emission light (external illumination of the tip) as well as for both emission and excitation light. Covalently bound molecular rotors exhibit a viscosity-dependent intensity increase similar to molecular rotors in solution. An optical fiber-based fluorescent viscosity sensor may be used in real-time measurement applications ranging from biomedical applications to the food industry.
Optical fiber-based fluorescent viscosity sensor.
Haidekker, Mark A; Akers, Walter J; Fischer, Derek; Theodorakis, Emmanuel A
2006-09-01
Molecular rotors are a unique group of viscosity-sensitive fluorescent probes. Several recent studies have shown their applicability as nonmechanical fluid viscosity sensors, particularly in biofluids containing proteins. To date, molecular rotors have had to be dissolved in the fluid for the measurement to be taken. We now show that molecular rotors may be covalently bound to a fiber-optic tip without loss of viscosity sensitivity. The optical fiber itself may be used as a light guide for emission light (external illumination of the tip) as well as for both emission and excitation light. Covalently bound molecular rotors exhibit a viscosity-dependent intensity increase similar to molecular rotors in solution. An optical fiber-based fluorescent viscosity sensor may be used in real-time measurement applications ranging from biomedical applications to the food industry.
Fiber optical assembly for fluorescence spectrometry
Carpenter, II, Robert W.; Rubenstein, Richard; Piltch, Martin; Gray, Perry
2010-12-07
A system for analyzing a sample for the presence of an analyte in a sample. The system includes a sample holder for containing the sample; an excitation source, such as a laser, and at least one linear array radially disposed about the sample holder. Radiation from the excitation source is directed to the sample, and the radiation induces fluorescent light in the sample. Each linear array includes a plurality of fused silica optical fibers that receive the fluorescent light and transmits a fluorescent light signal from the first end to an optical end port of the linear array. An end port assembly having a photo-detector is optically coupled to the optical end port. The photo-detector detects the fluorescent light signal and converts the fluorescent light signal into an electrical signal.
NASA Astrophysics Data System (ADS)
Lieberman, Robert A.
Various paper on chemical, biochemical, and environmental fiber sensors are presented. Some of the individual topics addressed include: evanescent-wave fiber optic (FO) biosensor, refractive-index sensors based on coupling to high-index multimode overlays, advanced technique in FO sensors, design of luminescence-based temperature sensors, NIR fluorescence in FO applications, FO sensor based on microencapsulated reagents, emitters and detectors for optical gas and chemical sensing, tunable fiber laser source for methane detection at 1.68 micron, FO fluorometer based on a dual-wavelength laser excitation source, thin polymer films as active components of FO chemical sensors, submicron optical sources for single macromolecule detection, nanometer optical fiber pH sensor. Also discussed are: microfabrication of optical sensor array, luminescent FO sensor for the measurement of pH, time-domain fluorescence methods as applied to pH sensing, characterization of a sol-gel-entrapped artificial receptor, FO technology for nuclear waste cleanup, spectroscopic gas sensing with IR hollow waveguides, dissolved-oxygen quenching of in situ fluorescence measurements.
Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation.
Werley, Christopher A; Chien, Miao-Ping; Cohen, Adam E
2017-12-01
The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our 'Firefly' microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology ('Optopatch') in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes.
Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation
Werley, Christopher A.; Chien, Miao-Ping; Cohen, Adam E.
2017-01-01
The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our ‘Firefly’ microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology (‘Optopatch’) in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes. PMID:29296505
Colomb, Tristan; Dürr, Florian; Cuche, Etienne; Marquet, Pierre; Limberger, Hans G; Salathé, René-Paul; Depeursinge, Christian
2005-07-20
We present a digital holographic microscope that permits one to image polarization state. This technique results from the coupling of digital holographic microscopy and polarization digital holography. The interference between two orthogonally polarized reference waves and the wave transmitted by a microscopic sample, magnified by a microscope objective, is recorded on a CCD camera. The off-axis geometry permits one to reconstruct separately from this single hologram two wavefronts that are used to image the object-wave Jones vector. We applied this technique to image the birefringence of a bent fiber. To evaluate the precision of the phase-difference measurement, the birefringence induced by internal stress in an optical fiber is measured and compared to the birefringence profile captured by a standard method, which had been developed to obtain high-resolution birefringence profiles of optical fibers.
Detection of Biomass in New York City Aerosols: Light Scattering and Optical Fluorescence Techniques
NASA Astrophysics Data System (ADS)
Niebauer, M.; Alimova, A.; Katz, A.; Xu, M.; Rudolph, E.; Steiner, J.; Alfano, R. R.
2005-12-01
Optical spectroscopy is an ideal method for detecting bacteria and spores in real time. Optical fluorescence spectroscopy examination of New York City aerosols is used to quantify the mass of bacteria spores present in air masses collected at 14 liters/minute onto silica fiber filters, and on silica fiber ribbons using an Environmental Beta Attenuation Monitor manufactured by MetOne Instruments configured for the PM2.5 fraction. Dipicolinic acid (DPA), a molecule found primarily in bacterial spores, is the most characteristic component of spores in trial experiments on over 200 collected aerosol samples. DPA is extracted from the spores using a heat bath and chelated with Terbium. The DPA:Tb is detected by measuring its characteristic fluorescence with emission bands at 490, 545 and 585 nm for 270 nm excitation. Light scattering also measures the size distribution for a number of a variety of bacteria - Bacillus subtilis (rod shaped), Staphylococcus aureus (spherical) and Pseudomonas aeruginosa (short rods) establishing that optical techniques satisfactorily distinguish populations based on their variable morphology. Size and morphology are obtained by applying a variation of the Gaussian Ray Approximation theory of anomalous diffraction theory to an analysis of the transmission spectra in the range of 0.4 to 1.0 microns. In test experiments, the refractive index of the inner spore core of Bacillus subtilis decreases from 1.51 to 1.39 while the spore radius enlarges from 0.38 to 0.6 micrometers. Optical determinations are verified by oil-immersion techniques and by scanning electron microscope measurements. Characterization of spores, germinating spore materials, and bacteria is considered vital to tracing bacteria in the environment, for the development of life-detection systems for planetary exploration, monitoring pathogens in environmental systems, and for the preparation of anti-terrorism strategies.
Improved Optical Fiber Chemical Sensors
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1994-01-01
Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.
NASA Technical Reports Server (NTRS)
Ligler, Frances S.
1991-01-01
The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.
Huang, Jie; Shi, Tielin; Tang, Zirong; Zhu, Wei; Liao, Guanglan; Li, Xiaoping; Gong, Bo; Zhou, Tengyuan
2017-08-01
We propose a bi-objective optimization model for extracting optical fiber background from the measured surface-enhanced Raman spectroscopy (SERS) spectrum of the target sample in the application of fiber optic SERS. The model is built using curve fitting to resolve the SERS spectrum into several individual bands, and simultaneously matching some resolved bands with the measured background spectrum. The Pearson correlation coefficient is selected as the similarity index and its maximum value is pursued during the spectral matching process. An algorithm is proposed, programmed, and demonstrated successfully in extracting optical fiber background or fluorescence background from the measured SERS spectra of rhodamine 6G (R6G) and crystal violet (CV). The proposed model not only can be applied to remove optical fiber background or fluorescence background for SERS spectra, but also can be transferred to conventional Raman spectra recorded using fiber optic instrumentation.
Carlson, Kristen; Chidley, Matthew; Sung, Kung-Bin; Descour, Michael; Gillenwater, Ann; Follen, Michele; Richards-Kortum, Rebecca
2005-04-01
For in vivo optical diagnostic technologies to be distributed to the developed and developing worlds, optical imaging systems must be constructed of inexpensive components. We present a fiber-optic confocal reflectance microscope with a cost-effective injection-molded plastic miniature objective lens for in vivo imaging of human tissues in near real time. The measured lateral resolution is less than 2.2 microm, and the measured axial resolution is 10 microm. Confocal images of ex vivo cervical tissue biopsies and in vivo human lip taken at 15 frames/s demonstrate the microscope's capability of imaging cell morphology and tissue architecture.
Microstructure analysis in the coupling region of fiber coupler with a novel electrical micro-heater
NASA Astrophysics Data System (ADS)
Shuai, Cijun; Gao, Chengde; Nie, Yi; Hu, Huanlong; Peng, Shuping
2011-12-01
Fused-tapered fiber coupler is widely used in optical-fiber communication, optical-fiber sensor and optical signal processing. Its optical performance is mainly determined by the glass properties in the coupling region. In this study, the effect of fused biconical taper (FBT) process on glass microstructure of fiber coupler was investigated by testing the microstructure of the cross-section of coupling region. The fiber coupler is fabricated with a novel home-designed electrical heater. Our experimental results show that the boundary between fiber core and fiber cladding become vague or indistinct after FBT under transmission electron microscopy (TEM) and Ge 2+ in fiber core diffuses into fiber cladding. Crystallizations are observed in coupling region under scanning electron microscope (SEM) and microscopic infrared (IR), and the micro crystallizations become smaller with the drawing speed increasing. The wave number of fiberglass increases after FBT and it is in proportion to the drawing speed. The analysis of the microstructure in the coupling region explored the mechanism of the improvement in the performance of fiber couplers which can be used for the guidance of fabrication process.
Yang, Xinghua; Guo, Xiaohui; Li, Song; Kong, Depeng; Liu, Zhihai; Yang, Jun; Yuan, Libo
2016-04-15
We report an in-fiber integrated electrophoretic trace mixture separating and detecting an optofluidic optical fiber sensor based on a specially designed optical fiber. In this design, rapid in situ separation and simultaneous detection of mixed analytes can be realized under electro-osmotic flow in the microstructured optical fiber. To visually display the in-fiber separating and detecting process, two common fluorescent indicators are adopted as the optofluidic analytes in the optical fiber. Results show that a trace amount of the mixture (0.15 μL) can be completely separated within 3.5 min under a high voltage of 5 kV. Simultaneously, the distributed information of the separated analytes in the optical fiber can be clearly obtained by scanning along the optical fiber using a 355 nm laser. The emission from the analytes can be efficiently coupled into the inner core and guides to the remote end of the optical fiber. In addition, the thin cladding around the inner core in the optical fiber can prevent the fluorescent cross talk between the analytes in this design. Compared to previous optical fiber optofluidic devices, this device first realizes simultaneously separating treatment and the detection of the mixed samples in an optical fiber. Significantly, such an in-fiber integrated separating and detecting optofluidic device can find wide applications in various analysis fields involves mixed samples, such as biology, chemistry, and environment.
Polarization anisotropy in fiber-optic second harmonic generation microscopy.
Fu, Ling; Gu, Min
2008-03-31
We report the investigation and implementation of a compact second harmonic generation microscope that uses a single-mode fiber coupler and a double-clad photonic crystal fiber. Second harmonic polarization anisotropy through the fiber-optic microscope systems is quantitatively measured with KTP microcrystals, fish scale and rat tail tendon. It is demonstrated that the polarized second harmonic signals can be excited and collected through the single-mode fiber coupler to analyze the molecular orientations of structural proteins. It has been discovered that a double-clad photonic crystal fiber can preserve the linear polarization in the core, although a depolarization effect is observed in the inner cladding region. The feasibility of polarization anisotropy measurements in fiber-optic second harmonic generation microscopy will benefit the in vivo study of collagen-related diseases with a compact imaging probe.
Cortesi, Marilisa; Bandiera, Lucia; Pasini, Alice; Bevilacqua, Alessandro; Gherardi, Alessandro; Furini, Simone; Giordano, Emanuele
2017-01-01
Quantifying gene expression at single cell level is fundamental for the complete characterization of synthetic gene circuits, due to the significant impact of noise and inter-cellular variability on the system's functionality. Commercial set-ups that allow the acquisition of fluorescent signal at single cell level (flow cytometers or quantitative microscopes) are expensive apparatuses that are hardly affordable by small laboratories. A protocol that makes a standard optical microscope able to acquire quantitative, single cell, fluorescent data from a bacterial population transformed with synthetic gene circuitry is presented. Single cell fluorescence values, acquired with a microscope set-up and processed with custom-made software, are compared with results that were obtained with a flow cytometer in a bacterial population transformed with the same gene circuitry. The high correlation between data from the two experimental set-ups, with a correlation coefficient computed over the tested dynamic range > 0.99, proves that a standard optical microscope- when coupled with appropriate software for image processing- might be used for quantitative single-cell fluorescence measurements. The calibration of the set-up, together with its validation, is described. The experimental protocol described in this paper makes quantitative measurement of single cell fluorescence accessible to laboratories equipped with standard optical microscope set-ups. Our method allows for an affordable measurement/quantification of intercellular variability, whose better understanding of this phenomenon will improve our comprehension of cellular behaviors and the design of synthetic gene circuits. All the required software is freely available to the synthetic biology community (MUSIQ Microscope flUorescence SIngle cell Quantification).
Guthoff, Rudolf F; Wienss, Holger; Hahnel, Christian; Wree, Andreas
2005-07-01
Evaluation of a new method to visualize distribution and morphology of human corneal nerves (Adelta- and C-fibers) by means of fluorescence staining, confocal laser scanning microscopy, and 3-dimensional (3D) reconstruction. Trephinates of corneas with a diagnosis of Fuchs corneal dystrophy were sliced into layers of 200 microm thickness using a Draeger microkeratome (Storz, Germany). The anterior lamella was stained with the Life/Dead-Kit (Molecular Probes Inc.), examined by the confocal laser scanning microscope "Odyssey XL," step size between 0.5 and 1 microm, and optical sections were digitally 3D-reconstructed. Immediate staining of explanted corneas by the Life/Dead-Kit gave a complete picture of the nerves in the central human cornea. Thin nerves running parallel to the Bowman layer in the subepithelial plexus perforate the Bowman layer orthogonally through tube-like structures. Passing the Bowman layer, Adelta- and C-fibers can be clearly distinguished by fiber diameter, and, while running in the basal epithelial plexus, by their spatial arrangement. Adelta-fibers run straight and parallel to the Bowman layer underneath the basal cell layer. C-fibers, after a short run parallel to the Bowman layer, send off multiple branches penetrating epithelial cell layers orthogonally, ending blindly in invaginations of the superficial cells. In contrast to C-fibers, Adelta-fibers show characteristic bulbous formations when kinking into the basal epithelial plexus. Ex-vivo fluorescence staining of the cornea and 3D reconstructions of confocal scans provide a fast and easily reproducible tool to visualize nerves of the anterior living cornea at high resolution. This may help to clarify gross variations of nerve fiber patterns under various clinical and experimental conditions.
Augmented microscopy with near-infrared fluorescence detection
NASA Astrophysics Data System (ADS)
Watson, Jeffrey R.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael; Anton, Rein; Romanowski, Marek
2015-03-01
Near-infrared (NIR) fluorescence has become a frequently used intraoperative technique for image-guided surgical interventions. In procedures such as cerebral angiography, surgeons use the optical surgical microscope for the color view of the surgical field, and then switch to an electronic display for the NIR fluorescence images. However, the lack of stereoscopic, real-time, and on-site coregistration adds time and uncertainty to image-guided surgical procedures. To address these limitations, we developed the augmented microscope, whereby the electronically processed NIR fluorescence image is overlaid with the anatomical optical image in real-time within the optical path of the microscope. In vitro, the augmented microscope can detect and display indocyanine green (ICG) concentrations down to 94.5 nM, overlaid with the anatomical color image. We prepared polyacrylamide tissue phantoms with embedded polystyrene beads, yielding scattering properties similar to brain matter. In this model, 194 μM solution of ICG was detectable up to depths of 5 mm. ICG angiography was then performed in anesthetized rats. A dynamic process of ICG distribution in the vascular system overlaid with anatomical color images was observed and recorded. In summary, the augmented microscope demonstrates NIR fluorescence detection with superior real-time coregistration displayed within the ocular of the stereomicroscope. In comparison to other techniques, the augmented microscope retains full stereoscopic vision and optical controls including magnification and focus, camera capture, and multiuser access. Augmented microscopy may find application in surgeries where the use of traditional microscopes can be enhanced by contrast agents and image guided delivery of therapeutics, including oncology, neurosurgery, and ophthalmology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhlmann, Andreas V.; Houel, Julien; Warburton, Richard J.
Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 10{sup 7} and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dotmore » emission range (920–980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.« less
Brain plasticity and functionality explored by nonlinear optical microscopy
NASA Astrophysics Data System (ADS)
Sacconi, L.; Allegra, L.; Buffelli, M.; Cesare, P.; D'Angelo, E.; Gandolfi, D.; Grasselli, G.; Lotti, J.; Mapelli, J.; Strata, P.; Pavone, F. S.
2010-02-01
In combination with fluorescent protein (XFP) expression techniques, two-photon microscopy has become an indispensable tool to image cortical plasticity in living mice. In parallel to its application in imaging, multi-photon absorption has also been used as a tool for the dissection of single neurites with submicrometric precision without causing any visible collateral damage to the surrounding neuronal structures. In this work, multi-photon nanosurgery is applied to dissect single climbing fibers expressing GFP in the cerebellar cortex. The morphological consequences are then characterized with time lapse 3-dimensional two-photon imaging over a period of minutes to days after the procedure. Preliminary investigations show that the laser induced fiber dissection recalls a regenerative process in the fiber itself over a period of days. These results show the possibility of this innovative technique to investigate regenerative processes in adult brain. In parallel with imaging and manipulation technique, non-linear microscopy offers the opportunity to optically record electrical activity in intact neuronal networks. In this work, we combined the advantages of second-harmonic generation (SHG) with a random access (RA) excitation scheme to realize a new microscope (RASH) capable of optically recording fast membrane potential events occurring in a wide-field of view. The RASH microscope, in combination with bulk loading of tissue with FM4-64 dye, was used to simultaneously record electrical activity from clusters of Purkinje cells in acute cerebellar slices. Complex spikes, both synchronous and asynchronous, were optically recorded simultaneously across a given population of neurons. Spontaneous electrical activity was also monitored simultaneously in pairs of neurons, where action potentials were recorded without averaging across trials. These results show the strength of this technique in describing the temporal dynamics of neuronal assemblies, opening promising perspectives in understanding the computations of neuronal networks.
Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy
Brooker, Gary; Siegel, Nisan; Wang, Victor; Rosen, Joseph
2011-01-01
Fresnel Incoherent Correlation Holography (FINCH) enables holograms and 3D images to be created from incoherent light with just a camera and spatial light modulator (SLM). We previously described its application to microscopic incoherent fluorescence wherein one complex hologram contains all the 3D information in the microscope field, obviating the need for scanning or serial sectioning. We now report experiments which have led to the optimal optical, electro-optic, and computational conditions necessary to produce holograms which yield high quality 3D images from fluorescent microscopic specimens. An important improvement from our previous FINCH configurations capitalizes on the polarization sensitivity of the SLM so that the same SLM pixels which create the spherical wave simulating the microscope tube lens, also pass the plane waves from the infinity corrected microscope objective, so that interference between the two wave types at the camera creates a hologram. This advance dramatically improves the resolution of the FINCH system. Results from imaging a fluorescent USAF pattern and a pollen grain slide reveal resolution which approaches the Rayleigh limit by this simple method for 3D fluorescent microscopic imaging. PMID:21445140
A time-domain fluorescence diffusion optical tomography system for breast tumor diagnosis
NASA Astrophysics Data System (ADS)
Zhang, Wei; Gao, Feng; Wu, LinHui; Ma, Wenjuan; Yang, Fang; Zhou, Zhongxing; Zhang, Limin; Zhao, Huijuan
2011-02-01
A prototype time-domain fluorescence diffusion optical tomography (FDOT) system using near-infrared light is presented. The system employs two pulsed light sources, 32 source fibers and 32 detection channels, working separately for acquiring the temporal distribution of the photon flux on the tissue surface. The light sources are provided by low power picosecond pulsed diode lasers at wavelengths of 780 nm and 830 nm, and a 1×32-fiber-optic-switch sequentially directs light sources to the object surface through 32 source fibers. The light signals re-emitted from the object are collected by 32 detection fibers connected to four 8×1 fiber-optic-switch and then routed to four time-resolved measuring channels, each of which consists of a collimator, a filter wheel, a photomultiplier tube (PMT) photon-counting head and a time-correlated single photon counting (TCSPC) channel. The performance and efficacy of the designed multi-channel PMT-TCSPC system are assessed by reconstructing the fluorescent yield and lifetime images of a solid phantom.
ERIC Educational Resources Information Center
LaFratta, Christopher N.; Huh, Sun Phill; Mallillin, Allistair C.; Riviello, Peter J.; Walt, David R.
2010-01-01
We describe an inexpensive hand-held fluorescence imager (low-magnification microscope), constructed from poly(vinyl chloride) pipe and other inexpensive components for use as a teaching tool to understand the principles of fluorescence detection. Optical filters are used to select the excitation and emission wavelengths and can be easily…
Tu, Haohua; Zhao, Youbo; Liu, Yuan; Liu, Yuan-Zhi; Boppart, Stephen
2014-08-25
Optical sources in the visible region immediately adjacent to the near-infrared biological optical window are preferred in imaging techniques such as spectroscopic optical coherence tomography of endogenous absorptive molecules and two-photon fluorescence microscopy of intrinsic fluorophores. However, existing sources based on fiber supercontinuum generation are known to have high relative intensity noise and low spectral coherence, which may degrade imaging performance. Here we compare the optical noise and pulse compressibility of three high-power fiber Cherenkov radiation sources developed recently, and evaluate their potential to replace the existing supercontinuum sources in these imaging techniques.
Aligning Arrays of Lenses and Single-Mode Optical Fibers
NASA Technical Reports Server (NTRS)
Liu, Duncan
2004-01-01
A procedure now under development is intended to enable the precise alignment of sheet arrays of microscopic lenses with the end faces of a coherent bundle of as many as 1,000 single-mode optical fibers packed closely in a regular array (see Figure 1). In the original application that prompted this development, the precise assembly of lenses and optical fibers serves as a single-mode spatial filter for a visible-light nulling interferometer. The precision of alignment must be sufficient to limit any remaining wavefront error to a root-mean-square value of less than 1/10 of a wavelength of light. This wavefront-error limit translates to requirements to (1) ensure uniformity of both the lens and fiber arrays, (2) ensure that the lateral distance from the central axis of each lens and the corresponding optical fiber is no more than a fraction of a micron, (3) angularly align the lens-sheet planes and the fiber-bundle end faces to within a few arc seconds, and (4) axially align the lenses and the fiber-bundle end faces to within tens of microns of the focal distance. Figure 2 depicts the apparatus used in the alignment procedure. The beam of light from a Zygo (or equivalent) interferometer is first compressed by a ratio of 20:1 so that upon its return to the interferometer, the beam will be magnified enough to enable measurement of wavefront quality. The apparatus includes relay lenses that enable imaging of the arrays of microscopic lenses in a charge-coupled-device (CCD) camera that is part of the interferometer. One of the arrays of microscopic lenses is mounted on a 6-axis stage, in proximity to the front face of the bundle of optical fibers. The bundle is mounted on a separate stage. A mirror is attached to the back face of the bundle of optical fibers for retroreflection of light. When a microscopic lens and a fiber are aligned with each other, the affected portion of the light is reflected back by the mirror, recollimated by the microscopic lens, transmitted through the relay lenses and the beam compressor/expander, then split so that half goes to a detector and half to the interferometer. The output of the detector is used as a feedback control signal for the six-axis stage to effect alignment.
NASA Astrophysics Data System (ADS)
Miao, Qin; Rahn, J. Richard; Tourovskaia, Anna; Meyer, Michael G.; Neumann, Thomas; Nelson, Alan C.; Seibel, Eric J.
2009-11-01
The practice of clinical cytology relies on bright-field microscopy using absorption dyes like hematoxylin and eosin in the transmission mode, while the practice of research microscopy relies on fluorescence microscopy in the epi-illumination mode. The optical projection tomography microscope is an optical microscope that can generate 3-D images of single cells with isometric high resolution both in absorption and fluorescence mode. Although the depth of field of the microscope objective is in the submicron range, it can be extended by scanning the objective's focal plane. The extended depth of field image is similar to a projection in a conventional x-ray computed tomography. Cells suspended in optical gel flow through a custom-designed microcapillary. Multiple pseudoprojection images are taken by rotating the microcapillary. After these pseudoprojection images are further aligned, computed tomography methods are applied to create 3-D reconstruction. 3-D reconstructed images of single cells are shown in both absorption and fluorescence mode. Fluorescence spatial resolution is measured at 0.35 μm in both axial and lateral dimensions. Since fluorescence and absorption images are taken in two different rotations, mechanical error may cause misalignment of 3-D images. This mechanical error is estimated to be within the resolution of the system.
Chidley, Matthew D; Carlson, Kristen D; Richards-Kortum, Rebecca R; Descour, Michael R
2006-04-10
The design, analysis, assembly methods, and optical-bench test results for a miniature injection-molded plastic objective lens used in a fiber-optic confocal reflectance microscope are presented. The five-lens plastic objective was tested as a stand-alone optical system before its integration into a confocal microscope for in vivo imaging of cells and tissue. Changing the spacing and rotation of the individual optical elements can compensate for fabrication inaccuracies and improve performance. The system performance of the miniature objective lens is measured by use of an industry-accepted slanted-edge modulation transfer function (MTF) metric. An estimated Strehl ratio of 0.61 and a MTF value of 0.66 at the fiber-optic bundle Nyquist frequency have been obtained. The optical bench testing system is configured to permit interactive optical alignment during testing to optimize performance. These results are part of an effort to demonstrate the manufacturability of low-cost, high-performance biomedical optics for high-resolution in vivo imaging. Disposable endoscopic microscope objectives could help in vivo confocal microscopy technology mature to permit wide-scale clinical screening and detection of early cancers and precancerous lesions.
NASA Astrophysics Data System (ADS)
Cosci, Alessandro; Cicchi, Riccardo; Rossari, Susanna; De Giorgi, Vincenzo; Massi, Daniela; Pavone, Francesco S.
2012-02-01
We have designed and developed an optical fiber-probe for spectroscopic measurements on human tissues. The experimental setup combines fluorescence spectroscopy and Raman spectroscopy in a multidimensional approach. Concerning fluorescence spectroscopy, the excitation is provided by two laser diodes, one emitting in the UV (378 nm) and the other emitting in the visible (445 nm). These two lasers are used to selectively excite fluorescence from NADH and FAD, which are among the brightest endogenous fluorophores in human tissues. For Raman and NIR spectroscopy, the excitation is provided by a third laser diode with 785 nm excitation wavelength. Laser light is delivered to the tissue through the central optical fiber of a fiber bundle. The surrounding 48 fibers of the bundle are used for collecting fluorescence and Raman and for delivering light to the spectrograph. Fluorescence and Raman spectra are acquired on a cooled CCD camera. The instrument has been tested on fresh human skin biopsies clinically diagnosed as malignant melanoma, melanocytic nevus, or healthy skin, finding an optimal correlation with the subsequent histological exam. In some cases our examination was not in agreement with the clinical observation, but it was with the histological exam, demonstrating that the system can potentially contribute to improve clinical diagnostic capabilities and hence reduce the number of unnecessary biopsies.
Preliminary Results on Luminaire Designs for Hybrid Solar Lighting Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Earl, D.D.
2001-06-15
We report on the design of two hybrid lighting luminaires that blend light from a fiber optic end-emitted solar source with electric T8 fluorescent lamps. Both designs involve the retrofit of a commercially-available recessed fluorescent luminaire with minimal reductions in the original luminaire's optical efficiency. Two methods for high-angle dispersion of fiber optic end-emitted solar light are described and the resulting spatial intensity distributions, simulated using ZEMAX, are compared with standard cylindrical fluorescent tubes. Differences in spatial intensity distribution are qualitatively characterized and potential design improvements discussed.
Nicolini, Ariana M; Fronczek, Christopher F; Yoon, Jeong-Yeol
2015-05-15
We have developed a rapid, sensitive, and specific droplet-based immunoassay for the detection of Escherichia coli and Salmonella within a single-pipetted sample. Polycaprolactone (PCL) electrospun fibers on indium-tin-oxide (ITO) glass provide a sufficient surface to render a non-slip droplet condition, and while the PCL fibers lend a local hydrophilicity (contact angle θ=74°) for sufficient sub-micron particle adhesion, air pockets within the fibers lend an apparent hydrophobicity. Overall, the contact angle of water on this electrospun surface is 119°, and the air pockets cause the droplet to be completely immobile and resistant to movement, protecting it from external vibration. By using both anti-E. coli conjugated, 510 nm diameter green fluorescent particles (480 nm excitation and 520 nm emission) and anti-Salmonella conjugated, 400 nm diameter red fluorescent particles (640 nm excitation and 690 nm emission), we can detect multiple targets in a single droplet. Using appropriate light sources guided by fiber optics, we determined a detection limit of 10(2) CFU mL(-1). Immunoagglutination can be observed under a fluorescence microscope. Fluorescence detection (at the emission wavelength) of immunoagglutination was maximum at 90° from the incident light, while light scattering (at the excitation wavelength) was still present and behaved similarly, indicating the ability of double detection, greatly improving credibility and reproducibility of the assay. A power function (light intensity) simulation of elastic Mie scatter confirmed that both fluorescence and light scattering were present. Due to the size of the fluorescent particles relative to their incident excitation wavelengths, Mie scatter conditions were observed, and fluorescence signals show a similar trend to light scattering signals. Smartphone detection was included for true portable detection, in which the high contact angle pinning of the droplet makes this format re-usable and re-configurable. Copyright © 2014 Elsevier B.V. All rights reserved.
A fiber optic biosensor for fluorimetric detection of triple-helical DNA.
Uddin, A H; Piunno, P A; Hudson, R H; Damha, M J; Krull, U J
1997-10-15
A fiber optic biosensor was used for the fluorimetric detection of T/AT triple-helical DNA formation. The surfaces of two sets of fused silica optical fibers were functionalized with hexaethylene oxide linkers from which decaadenylic acid oligonucleotides were grown in the 3'to 5'and 5'to 3'direction, respectively, using a DNA synthesizer. Fluorescence studies of hybridization showed unequivocal hybridization between oligomers immobilized on the fibers and complementary oligonucleotides from the solution phase, as detected by fluorescence from intercalated ethidium bromide. The complementary oligonucleotide, dT10, which was expected to Watson-Crick hybridize upon cooling the system below the duplex melting temperature ( T m), provided a fluorescence intensity with a negative temperature coefficient. Upon further cooling, to the point where the pyrimidine motif T*AT triple-helix formation occurred, a fluorescence intensity change with a positive temperature coefficient was observed. The reverse-Hoogsteen T.AT triplex, which is known to form with branched nucleic acids, provided a corresponding decrease in fluorescence intensity with decreasing temperature. Full analytical signal evolution was attainable in minutes.
Toeppen, John S.
1994-10-04
A fluorescent fiber (13) having a doped core (16) is pumped (11) by light (18) of a relatively short wavelength to produce fluorescence at a longer wavelength that is detected by detector (24). The level of fluorescence is monitored (26) and evaluated to provide information as to the excitation of the fiber (13) or the environment thereof. In particular, the level of intensity of the detected fluorescence may be used to measure the intensity of a light beam (18) passing axially through an optical fiber system (12) (FIG. 1 ), or the intensity of a light beam (46) passing radially through a fluorescent fiber (13) (FIG. 2 ), or the level of a fluid (32) in a tank (31) (FIG. 3 ), or a scintillation event (37) in a fluorescent fiber (13) pumped to produce amplification of the scintillation event (FIG. 4 ).
Toeppen, John S.
1994-01-01
A fluorescent fiber (13) having a doped core (16) is pumped (11) by light (18) of a relatively short wavelength to produce fluorescence at a longer wavelength that is detected by detector (24). The level of fluorescence is monitored (26) and evaluated to provide information as to the excitation of the fiber (13) or the environment thereof. In particular, the level of intensity of the detected fluorescence may be used to measure the intensity of a light beam (18) passing axially through an optical fiber system (12) (FIG. 1 ), or the intensity of a light beam (46) passing radially through a fluorescent fiber (13) (FIG. 2 ), or the level of a fluid (32) in a tank (31) (FIG. 3 ), or a scintillation event (37) in a fluorescent fiber (13) pumped to produce amplification of the scintillation event (FIG. 4 ).
NASA Astrophysics Data System (ADS)
Olson, Jonathan D.; Kanick, Stephen C.; Bravo, Jaime J.; Roberts, David W.; Paulsen, Keith D.
2016-03-01
Aminolevulinc-acid induced protoporphyrin IX (ALA-PpIX) is being investigated as a biomarker to guide neurosurgical resection of brain tumors. ALA-PpIX fluorescence can be observed visually in the surgical field; however, raw fluorescence emissions can be distorted by factors other than the fluorophore concentration. Specifically, fluorescence emissions are mixed with autofluorescence and attenuated by background absorption and scattering properties of the tissue. Recent work at Dartmouth has developed advanced fluorescence detection approaches that return quantitative assessments of PpIX concentration, which are independent of background optical properties. The quantitative fluorescence imaging (qFI) approach has increased sensitivity to residual disease within the resection cavity at the end of surgery that was not visible to the naked eye through the operating microscope. This presentation outlines clinical observations made during an ongoing investigation of ALA-PpIX based guidance of tumor resection. PpIX fluorescence measurements made in a wide-field hyperspectral imaging approach are co-registered with point-assessment using a fiber optic probe. Data show variations in the measured PpIX accumulation among different clinical tumor grades (i.e. high grade glioma, low grade glioma), types (i.e. primary tumors. metastases) and normal structures of interest (e.g. normal cortex, hippocampus). These results highlight the contrast enhancement and underscore the potential clinical benefit offered from quantitative measurements of PpIX concentration during resection of intracranial tumors.
In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope.
Maitland, Kristen C; Gillenwater, Ann M; Williams, Michelle D; El-Naggar, Adel K; Descour, Michael R; Richards-Kortum, Rebecca R
2008-11-01
The purpose of this study was to determine whether in vivo images of oral mucosa obtained with a fiber optic confocal reflectance microscope could be used to differentiate normal and neoplastic tissues. We imaged 20 oral sites in eight patients undergoing surgery for squamous cell carcinoma. Normal and abnormal areas within the oral cavity were identified clinically, and real-time videos of each site were obtained in vivo using a fiber optic confocal reflectance microscope. Following imaging, each site was biopsied and submitted for histopathologic examination. We identified distinct features, such as nuclear irregularity and spacing, which can be used to qualitatively differentiate between normal and abnormal tissue. Representative confocal images of normal, pre-neoplastic, and neoplastic oral tissue are presented. Previous work using much larger microscopes has demonstrated the ability of confocal reflectance microscopy to image cellular and tissue architecture in situ. New advances in technology have enabled miniaturization of imaging systems for in vivo use.
Kao, Hung Pin; Schoeniger, Joseph; Yang, Nancy
2001-01-01
A technique for increasing the excitation and collection of evanescent fluorescence radiation emanating from a fiber optic sensor having a high refractive index (n.sub.r), dielectric thin film coating has been disclosed and described. The invention comprises a clad optical fiber core whose cladding is removed on a distal end, the distal end coated with a thin, non-porous, titanium dioxide sol-gel coating. It has been shown that such a fiber will exhibit increased fluorescence coupling due in part by 1) increasing the intensity of the evanescent field at the fiber core surface by a constructive interference effect on the propagating light, and 2) increasing the depth of penetration of the field in the sample. The interference effect created by the thin film imposes a wavelength dependence on the collection of the fluorescence and also suggests a novel application of thin films for color filtering as well as increasing collected fluorescence in fiber sensors. Collected fluorescence radiation increased by up to 6-fold over that of a bare fused silica fiber having a numerical aperture (N.A.) of O.6.
Chen, Xiaodong; Ren, Liqiang; Zheng, Bin; Liu, Hong
2013-01-01
The conventional optical microscopes have been used widely in scientific research and in clinical practice. The modern digital microscopic devices combine the power of optical imaging and computerized analysis, archiving and communication techniques. It has a great potential in pathological examinations for improving the efficiency and accuracy of clinical diagnosis. This chapter reviews the basic optical principles of conventional microscopes, fluorescence microscopes and electron microscopes. The recent developments and future clinical applications of advanced digital microscopic imaging methods and computer assisted diagnosis schemes are also discussed.
Coupling fiber optics to a permeation liquid membrane for heavy metal sensor development.
Ueberfeld, Jörn; Parthasarathy, Nalini; Zbinden, Hugo; Gisin, Nicolas; Buffle, Jacques
2002-02-01
We present the first sensing system for metal ions based on the combination of separation/preconcentration by a permeation liquid membrane (PLM) and fluorescence detection with an optical fiber. As a model, a system for the detection of Cu(II) ions was developed. The wall of a polypropylene hollow fiber serves as support for the permeable liquid membrane. The lumen of the fiber contains the strip solution in which Cu(II) is accumulated. Calcein, a fluorochromic dye, acts as stripping agent and at the same time as metal indicator. The quenching of the calcein fluorescence upon metal accumulation in the strip phase is detected with a multimode optical fiber, which is incorporated into the lumen. Fluorescence is excited with a blue LED and detected with a photon counter. Taking advantage of the high selectivity and sensitivity of PLM preconcentration, a detection limit for Cu(II) of approximately 50 nM was achieved. Among five tested heavy metal ions, Pb(II) was the only major interfering species. The incorporation of small silica optical fibers into the polypropylene capillary allows for real-time monitoring of the Cu(II) accumulation process.
Fiber optic light collection system for scanning-tunneling-microscope-induced light emission.
Watkins, Neil J; Long, James P; Kafafi, Zakya H; Mäkinen, Antti J
2007-05-01
We report a compact light collection scheme suitable for retrofitting a scanning tunneling microscope (STM) for STM-induced light emission experiments. The approach uses a pair of optical fibers with large core diameters and high numerical apertures to maximize light collection efficiency and to moderate the mechanical precision required for alignment. Bench tests indicate that efficiency reduction is almost entirely due to reflective losses at the fiber ends, while losses due to fiber misalignment have virtually been eliminated. Photon-map imaging with nanometer features is demonstrated on a stepped Au(111) surface with signal rates exceeding 10(4) counts/s.
Manipulation of mammalian cells using a single-fiber optical microbeam
Mohanty, Samarendra K.; Mohanty, Khyati S.; Berns, Michael W.
2014-01-01
The short working distance of microscope objectives has severely restricted the application of optical micromanipulation techniques at larger depths. We show the first use of fiber-optic tweezers toward controlled guidance of neuronal growth cones and stretching of neurons. Further, by mode locking, the fiber-optic tweezers beam was converted to fiber-optic scissors, enabling dissection of neuronal processes and thus allowing study of the subsequent response of neurons to localized injury. At high average powers, lysis of a three-dimensionally trapped cell was accomplished. PMID:19021429
Nie, Shuai; Benito-Peña, Elena; Zhang, Huaibin; Wu, Yue; Walt, David R
2013-10-10
Herein, we describe a protocol for simultaneously measuring six proteins in saliva using a fiber-optic microsphere-based antibody array. The immuno-array technology employed combines the advantages of microsphere-based suspension array fabrication with the use of fluorescence microscopy. As described in the video protocol, commercially available 4.5 μm polymer microspheres were encoded into seven different types, differentiated by the concentration of two fluorescent dyes physically trapped inside the microspheres. The encoded microspheres containing surface carboxyl groups were modified with monoclonal capture antibodies through EDC/NHS coupling chemistry. To assemble the protein microarray, the different types of encoded and functionalized microspheres were mixed and randomly deposited in 4.5 μm microwells, which were chemically etched at the proximal end of a fiber-optic bundle. The fiber-optic bundle was used as both a carrier and for imaging the microspheres. Once assembled, the microarray was used to capture proteins in the saliva supernatant collected from the clinic. The detection was based on a sandwich immunoassay using a mixture of biotinylated detection antibodies for different analytes with a streptavidin-conjugated fluorescent probe, R-phycoerythrin. The microarray was imaged by fluorescence microscopy in three different channels, two for microsphere registration and one for the assay signal. The fluorescence micrographs were then decoded and analyzed using a homemade algorithm in MATLAB.
Wang, Ya-Qiong; Liang, Zhi-Tao; Li, Qin; Yang, Hua; Chen, Hu-Biao; Zhao, Zhong-Zhen; Li, Ping
2011-03-01
The light microscope has been successfully used in identification of Chinese herbal medicines (CHMs) for more than a century. However, positive identification is not always possible. Given the popularity of fluorescence microscopy in bioanalysis, researchers dedicated to finding new ways to identify CHMs more effectively are now turning to fluorescence microscopy for authentication purposes. Some studies on distinguishing confused species from the same genus and on exploring distributions of chemicals in tissues of CHMs by fluorescence microscopy have been reported; however, no systematic investigations on fluorescent characteristics of powdered CHMs have been reported. Here, 46 samples of 16 CHMs were investigated. Specifically, the mechanical tissues including stone cells and fibers, the conducting tissues including three types of vessels, and ergastic substances including crystals of calcium oxalate and secretions, in various powdered CHMs were investigated by both light microscope and fluorescence microscope. The results showed many microscopic features emit fluorescence that makes them easily observed, even against complex backgrounds. Under the fluorescence microscope, different microscopic features from the same powdered CHM or some same features from different powdered CHMs emitted the different fluorescence, making this information very helpful for the authentication of CHMs in powder form. Moreover, secretions with unique chemical profiles from different powdered CHMs showed different fluorescent characteristics. Hence, fluorescence microscopy could be a useful additional method for the authentication of powdered CHMs if the fluorescent characteristics of specific CHMs are known. Copyright © 2010 Wiley-Liss, Inc.
Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays
NASA Astrophysics Data System (ADS)
Ferguson, Jane A.
2001-06-01
Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2 and O2. This sensor is useful for monitoring bioprocesses such as (beer) fermentation and for clinical situations such as blood gas analysis. DNA sensors were created by attaching short single strands of DNA (probes) to the fiber tip. A matching single strand (target) forms a strong interacting pair with the probe upon contact. The target strands in a sample are labeled with a fluorescent dye. When a probe-target pair is formed and excitation light is sent down the fiber, the fiber bearing the pair emits light that is captured and detected. A high density DNA array was created by isolating thousands of discrete DNA sensors on the tip of an imaging optical fiber. This array was made possible by the formation of microwells on the imaging fiber tip. Microspheres functionalized with DNA were placed in the wells of the fiber and each microsphere was independently and simultaneously monitored. (Abstract shortened by UMI.)
Zheng, Shouguo; Zeng, Xinhua; Luo, Wei; Jradi, Safi; Plain, Jérôme; Li, Miao; Renaud-Goud, Philippe; Deturche, Régis; Wang, Zengfu; Kou, Jieting; Bachelot, Renaud; Royer, Pascal
2013-01-14
In numerous applications of optical scanning microscopy, a reference tapered fiber lens with high symmetry at sub-wavelength scale remains a challenge. Here, we demonstrate the ability to manufacture it with a wide range of geometry control, either for the length from several hundred nanometers to several hundred microns, or for the curvature radius from several tens of nanometers to several microns on the endface of a single mode fiber. On this basis, a scanning optical microscope has been developed, which allows for fast characterization of various sub-wavelength tapered fiber lenses. Focal position and depth of microlenses with different geometries have been determined to be ranged from several hundreds of nanometers to several microns. FDTD calculations are consistent with experimental results.
The Effect of Temperature on Photoluminescence Enhancement of Quantum Dots in Brain Slices.
Zhao, Fei; Kim, Jongsung
2017-04-01
In this paper, we investigated the effect of temperature on photoluminescence of quantum dots immobilized on the surface of an optical fiber in a rat brain slice. The optical fiber was silanized with 3-aminopropyl trimethoxysilane (APTMS), following which quantum dots with carboxyl functional group were immobilized on the optical fiber via amide bond formation. The effect of temperature on the fluorescence intensity of the quantum dots in rat brain slices was studied. This report shows that the fluorescence intensity of quantum dots increases with the increase of temperature of the brain slice. The fluorescence enhancement phenomenon appears to take place via electron transfer related to pH increase. With the gradual increase of temperature, the fluorescence intensity of quantum dots in solution decreased, while that in the brain slice increased. This enhanced thermal performance of QDs in brain slice makes suggestion for the study of QDs-based brain temperature sensors.
In situ fluorescence imaging of localized corrosion with a pH-sensitive imaging fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panova, A.A.; Pantano, P.; Walt, D.R.
1997-12-01
A fiber optic pH-sensor capable of both visualizing corrosion sites and measuring local chemical concentrations is applied to real-time corrosion monitoring. The imaging fiber`s distal face containing an immobilized pH-sensitive fluorescent dye is brought into contact with metal surfaces submerged in aqueous buffers and fluorescence images are acquired as a function of time. The observed changes in fluorescence due to increases in pH at cathodic sites and decreases in pH at anodic sites are indicative of localized corrosion rates.
Study of probe-sample distance for biomedical spectra measurement.
Wang, Bowen; Fan, Shuzhen; Li, Lei; Wang, Cong
2011-11-02
Fiber-based optical spectroscopy has been widely used for biomedical applications. However, the effect of probe-sample distance on the collection efficiency has not been well investigated. In this paper, we presented a theoretical model to maximize the illumination and collection efficiency in designing fiber optic probes for biomedical spectra measurement. This model was in general applicable to probes with single or multiple fibers at an arbitrary incident angle. In order to demonstrate the theory, a fluorescence spectrometer was used to measure the fluorescence of human finger skin at various probe-sample distances. The fluorescence spectrum and the total fluorescence intensity were recorded. The theoretical results show that for single fiber probes, contact measurement always provides the best results. While for multi-fiber probes, there is an optimal probe distance. When a 400- μm excitation fiber is used to deliver the light to the skin and another six 400- μm fibers surrounding the excitation fiber are used to collect the fluorescence signal, the experimental results show that human finger skin has very strong fluorescence between 475 nm and 700 nm under 450 nm excitation. The fluorescence intensity is heavily dependent on the probe-sample distance and there is an optimal probe distance. We investigated a number of probe-sample configurations and found that contact measurement could be the primary choice for single-fiber probes, but was very inefficient for multi-fiber probes. There was an optimal probe-sample distance for multi-fiber probes. By carefully choosing the probe-sample distance, the collection efficiency could be enhanced by 5-10 times. Our experiments demonstrated that the experimental results of the probe-sample distance dependence of collection efficiency in multi-fiber probes were in general agreement with our theory.
SIL-STED microscopy technique enhancing super-resolution of fluorescence microscopy
NASA Astrophysics Data System (ADS)
Park, No-Cheol; Lim, Geon; Lee, Won-sup; Moon, Hyungbae; Choi, Guk-Jong; Park, Young-Pil
2017-08-01
We have characterized a new type STED microscope which combines a high numerical aperture (NA) optical head with a solid immersion lens (SIL), and we call it as SIL-STED microscope. The advantage of a SIL-STED microscope is that its high NA of the SIL makes it superior to a general STED microscope in lateral resolution, thus overcoming the optical diffraction limit at the macromolecular level and enabling advanced super-resolution imaging of cell surface or cell membrane structure and function Do. This study presents the first implementation of higher NA illumination in a STED microscope limiting the fluorescence lateral resolution to about 40 nm. The refractive index of the SIL which is made of material KTaO3 is about 2.23 and 2.20 at a wavelength of 633 nm and 780 nm which are used for excitation and depletion in STED imaging, respectively. Based on the vector diffraction theory, the electric field focused by the SILSTED microscope is numerically calculated so that the numerical results of the point dispersion function of the microscope and the expected resolution could be analyzed. For further investigation, fluorescence imaging of nano size fluorescent beads is fulfilled to show improved performance of the technique.
Fiber optic immunosensor for cross-linked fibrin concentration
NASA Astrophysics Data System (ADS)
Moskowitz, Samuel E.
2000-08-01
Working with calcium ions in the blood, platelets produce thromboplastin which transforms prothrombin into thrombin. Removing peptides, thrombin changes fibrinogen into fibrin. Cross-linked insoluble fibrin polymers are solubilized by enzyme plasmin found in blood plasma. Resulting D-dimers are elevated in patients with intravascular coagulation, deep venous thrombosis, pulmonary embolism, myocardial infarction, multiple trauma, cancer, impaired renal and liver functions, and sepsis. Consisting principally of a NIR 780 nm GaAlAs laser diode and a 800 nm avalanche photodiode (APD), the fiber-optic immunosensor can determined D-dimer concentration to levels <0.1 ng/ml. A capture monoclonal antibody to the antigen soluble cross-linked fibrin is employed. Immobilized at the tip of an optical fiber by avidin-biotin, the captured antigen is detected by a second antibody which is labeled with NN 382 fluorescent dye. An evanescent wave traveling on an excitation optical fiber excites the antibody-antigen fluorophore complex. Concentration of cross-linked fibrin is directly proportional to the APD measured intensity of fluorescence. NIR fluorescence has advantages of low background interference, short fluorescence lifetime, and large difference between excitation and emission peaks. Competitive ELISA test for D-dimer concentration requires trained personnel performing a time consuming operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chattopadhyay, Rik; Haldar, Arindam; Paul, Mukul C.
2015-12-07
We report a process for enhancing fluorescence emission from conventional rare earth ions in optical fiber by metal nanocluster (MNC) in nonresonant indirect pumping. The process is completely different from formal metal enhanced fluorescence phenomenon as the MNCs are too small in size to support localized surface plasmon and the excitation wavelength is far from plasmon resonance frequency. We used an established theory of two coupled oscillators to explain the simultaneous enhancement of Ytterbium (Yb{sup 3+}) and Thulium (Tm{sup 3+}) emission by silver (Ag) NCs under nonresonant pumping in optical fiber. The fiber is pumped with a 980 nm fiber pigtailedmore » laser diode with input power of 20–100 mW to excite the Yb{sup 3+}. Four times enhancement of Yb{sup 3+} emission of 900–1100 nm and Tm{sup 3+} upconversion emission around 474 nm, 650 nm, and 790 nm is observed in the fiber with Ag NCs.« less
Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.
Hayashi, Shinichi; Okada, Yasushi
2015-05-01
Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Stack-and-Draw Manufacture Process of a Seven-Core Optical Fiber for Fluorescence Measurements
NASA Astrophysics Data System (ADS)
Samir, Ahmed; Batagelj, Bostjan
2018-01-01
Multi-core, optical-fiber technology is expected to be used in telecommunications and sensory systems in a relatively short amount of time. However, a successful transition from research laboratories to industry applications will only be possible with an optimized design and manufacturing process. The fabrication process is an important aspect in designing and developing new multi-applicable, multi-core fibers, where the best candidate is a seven-core fiber. Here, the basics for designing and manufacturing a single-mode, seven-core fiber using the stack-and-draw process is described for the example of a fluorescence sensory system.
Enzyme-enhanced fluorescence detection of DNA on etched optical fibers.
Niu, Shu-yan; Li, Quan-yi; Ren, Rui; Zhang, Shu-sheng
2009-05-15
A novel DNA biosensor based on enzyme-enhanced fluorescence detection on etched optical fibers was developed. The hybridization complex of DNA probe and biotinylated target was formed on the etched optical fiber, and was then bound with streptavidin labeled horseradish peroxidase (streptavidin-HRP). The target DNA was quantified through the fluorescent detection of bi-p,p'-4-hydroxyphenylacetic acid (DBDA) generated from the substrate 4-hydroxyphenylacetic acid (p-HPA) under the catalysis of HRP, with a detection limit of 1 pM and a linear range from 1.69 pM to 169 pM. It is facile to regenerate this sensor through surface treatment with concentrated urea solution. It was discovered that the sensor can retain 70% of its original activity after three detection-regeneration cycles.
Controlled core removal from a D-shaped optical fiber.
Markos, Douglas J; Ipson, Benjamin L; Smith, Kevin H; Schultz, Stephen M; Selfridge, Richard H; Monte, Thomas D; Dyott, Richard B; Miller, Gregory
2003-12-20
The partial removal of a section of the core from a continuous D-shaped optical fiber is presented. In the core removal process, selective chemical etching is used with hydrofluoric (HF) acid. A 25% HF acid solution removes the cladding material above the core, and a 5% HF acid solution removes the core. A red laser with a wavelength of 670 nm is transmitted through the optical fiber during the etching. The power transmitted through the optical fiber is correlated to the etch depth by scanning electron microscope imaging. The developed process provides a repeatable method to produce an optical fiber with a specific etch depth.
NASA Astrophysics Data System (ADS)
Liu, Fukun; Cui, Minxin; Ma, Jiajun; Zou, Gang; Zhang, Qijin
2017-07-01
In this work, we report a novel optical fiber taper fluorescent probe for detection of nitro-explosives. The probe was fabricated by an in-situ photo-plating through evanescent wave and transmitted light initiated thiol-ene ;click; reaction, from which a cross-linked fluorescence porous polymer film was covalently bonded on the surface of the fiber taper. The film exhibits well-organized porous structure due to the presence of polyhedral oligomeric vinylsilsesquioxane moieties, and simultaneously displays strong fluorescence from tetraphenylethylene with aggregation-induced emission property. These two characters make the probe show a remarkable sensitivity, anti-photo-bleaching and a repeatability in detection of TNT and DNT vapors by fluorescence quenching. In addition, the detection is not interfered in the presence of other volatile organic gases.
Descamps, Emeline; Duroure, Nathalie; Deiss, Frédérique; Leichlé, Thierry; Adam, Catherine; Mailley, Pascal; Aït-Ikhlef, Ali; Livache, Thierry; Nicu, Liviu; Sojic, Neso
2013-08-07
Optical nanotip arrays fabricated on etched fiber bundles were functionalized with DNA spots. Such unconventional substrates (3D and non-planar) are difficult to pattern with standard microfabrication techniques but, using an electrochemical cantilever, up to 400 spots were electrodeposited on the nanostructured optical surface in 5 min. This approach allows each spot to be addressed individually and multiplexed fluorescence detection is demonstrated. Finally, remote fluorescence detection was performed by imaging through the optical fiber bundle itself after hybridisation with the complementary sequence.
NASA Astrophysics Data System (ADS)
Wei, Linpeng; Chen, Ye; Yin, Chengbo; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T. C.
2017-04-01
Systemic delivery of 5-aminolevulinic acid leads to enhanced fluorescence image contrast in many tumors due to the increased accumulation of protoporphyrin IX (PpIX), a fluorescent porphyrin that is associated with tumor burden and proliferation. The value of PpIX-guided resection of malignant gliomas has been demonstrated in prospective randomized clinical studies in which a twofold greater extent of resection and improved progression-free survival have been observed. In low-grade gliomas and at the diffuse infiltrative margins of all gliomas, PpIX fluorescence is often too weak to be detected with current low-resolution surgical microscopes that are used in operating rooms. However, it has been demonstrated that high-resolution optical-sectioning microscopes are capable of detecting the sparse and punctate accumulations of PpIX that are undetectable via conventional low-power surgical fluorescence microscopes. To standardize the performance of high-resolution optical-sectioning devices for future clinical use, we have developed an imaging phantom and methods to ensure that the imaging of PpIX-expressing brain tissues can be performed reproducibly. Ex vivo imaging studies with a dual-axis confocal microscope demonstrate that these methods enable the acquisition of images from unsectioned human brain tissues that quantitatively and consistently correlate with images of histologically processed tissue sections.
Kumemura, Momoko; Odake, Tamao; Korenaga, Takashi
2005-06-01
A laser-induced fluorescence microscopic system based on optical parametric oscillation has been constructed as a tunable detector for microchip analysis. The detection limit of sulforhodamine B (Ex. 520 nm, Em. 570 nm) was 0.2 mumol, which was approximately eight orders of magnitude better than with a conventional fluorophotometer. The system was applied to the determination of fluorescence-labeled DNA (Ex. 494 nm, Em. 519 nm) in a microchannel and the detection limit reached a single molecule. These results showed the feasibility of this system as a highly sensitive and tunable fluorescence detector for microchip analysis.
NASA Astrophysics Data System (ADS)
Liang, Shanshan; Saidi, Arya; Jing, Joe; Liu, Gangjun; Li, Jiawen; Zhang, Jun; Sun, Changsen; Narula, Jagat; Chen, Zhongping
2012-07-01
We developed a multimodality fluorescence and optical coherence tomography probe based on a double-clad fiber (DCF) combiner. The probe is composed of a DCF combiner, grin lens, and micromotor in the distal end. An integrated swept-source optical coherence tomography and fluorescence intensity imaging system was developed based on the combined probe for the early diagnoses of atherosclerosis. This system is capable of real-time data acquisition and processing as well as image display. For fluorescence imaging, the inflammation of atherosclerosis and necrotic core formed with the annexin V-conjugated Cy5.5 were imaged. Ex vivo imaging of New Zealand white rabbit arteries demonstrated the capability of the combined system.
Optical filters for wavelength selection in fluorescence instrumentation.
Erdogan, Turan
2011-04-01
Fluorescence imaging and analysis techniques have become ubiquitous in life science research, and they are poised to play an equally vital role in in vitro diagnostics (IVD) in the future. Optical filters are crucial for nearly all fluorescence microscopes and instruments, not only to provide the obvious function of spectral control, but also to ensure the highest possible detection sensitivity and imaging resolution. Filters make it possible for the sample to "see" light within only the absorption band, and the detector to "see" light within only the emission band. Without filters, the detector would not be able to distinguish the desired fluorescence from scattered excitation light and autofluorescence from the sample, substrate, and other optics in the system. Today the vast majority of fluorescence instruments, including the widely popular fluorescence microscope, use thin-film interference filters to control the spectra of the excitation and emission light. Hence, this unit emphasizes thin-film filters. After briefly introducing different types of thin-film filters and how they are made, the unit describes in detail different optical filter configurations in fluorescence instruments, including both single-color and multicolor imaging systems. Several key properties of thin-film filters, which can significantly affect optical system performance, are then described. In the final section, tunable optical filters are also addressed in a relative comparison.
Shao, Peng; Shi, Wei; Hajireza, Parsin; Zemp, Roger J
2012-07-01
We present a new integrated micro-endoscopy system combining label-free, fiber-based, real-time C-scan optical-resolution photoacoustic microscopy (F-OR-PAM) and a high-resolution fluorescence micro-endoscopy system for visualizing fluorescently labeled cellular components and optically absorbing microvasculature simultaneously. With a diode-pumped 532-nm fiber laser, the F-OR-PAM sub-system is able to reach a resolution of ∼7 μm. The fluorescence subsystem, which does not require any mechanical scanning, consists of a 447.5-nm-centered diode laser as the light source, an objective lens, and a CCD camera. Proflavine is used as the fluorescent contrast agent by topical application. The scanning laser and the diode laser light source share the same light path within an optical fiber bundle containing 30,000 individual single-mode fibers. The absorption of proflavine at 532 nm is low, which mitigates absorption bleaching of the contrast agent by the photoacoustic excitation source. We demonstrate imaging in live murine models. The system is able to provide cellular morphology with cellular resolution co-registered with the structural information given by F-OR-PAM. Therefore, the system has the potential to serve as a virtual biopsy technique, helping visualize angiogenesis and the effects of anti-cancer drugs on both cells and the microcirculation, as well as aid in the study of other diseases.
NASA Astrophysics Data System (ADS)
Shao, Peng; Shi, Wei; Hajireza, Parsin; Zemp, Roger J.
2012-07-01
We present a new integrated micro-endoscopy system combining label-free, fiber-based, real-time C-scan optical-resolution photoacoustic microscopy (F-OR-PAM) and a high-resolution fluorescence micro-endoscopy system for visualizing fluorescently labeled cellular components and optically absorbing microvasculature simultaneously. With a diode-pumped 532-nm fiber laser, the F-OR-PAM sub-system is able to reach a resolution of ~7 μm. The fluorescence subsystem, which does not require any mechanical scanning, consists of a 447.5-nm-centered diode laser as the light source, an objective lens, and a CCD camera. Proflavine is used as the fluorescent contrast agent by topical application. The scanning laser and the diode laser light source share the same light path within an optical fiber bundle containing 30,000 individual single-mode fibers. The absorption of proflavine at 532 nm is low, which mitigates absorption bleaching of the contrast agent by the photoacoustic excitation source. We demonstrate imaging in live murine models. The system is able to provide cellular morphology with cellular resolution co-registered with the structural information given by F-OR-PAM. Therefore, the system has the potential to serve as a virtual biopsy technique, helping visualize angiogenesis and the effects of anti-cancer drugs on both cells and the microcirculation, as well as aid in the study of other diseases.
Scolaro, Loretta; Lorenser, Dirk; Madore, Wendy-Julie; Kirk, Rodney W.; Kramer, Anne S.; Yeoh, George C.; Godbout, Nicolas; Sampson, David D.; Boudoux, Caroline; McLaughlin, Robert A.
2015-01-01
Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue. PMID:26137379
Fiber optic sensors for corrosion detection
NASA Technical Reports Server (NTRS)
Smith, Alphonso C.
1993-01-01
The development of fiber optic sensors for the detection of a variety of material parameters has grown tremendously over the past several years. Additionally, the potential for analytical applications of fiber optic sensors have become more widely used. New pH sensors have also been developed using fiber optic techniques to detect fluorescence characteristics from immobilized fluorogenic reagent chemicals. The primary purpose of this research was to investigate the feasibility of using fiber optic sensors to detect the presence of Al(sup 3+) ions made in the process of environmental corrosion of aluminum materials. The Al(sup 3+) ions plus a variety of other type of metal ions can be detected using analytical techniques along with fiber optic sensors.
Quantitative high dynamic range beam profiling for fluorescence microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, T. J., E-mail: t.j.mitchell@dur.ac.uk; Saunter, C. D.; O’Nions, W.
2014-10-15
Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly withinmore » the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.« less
Mahieu-Williame, L; Falgayrettes, P; Nativel, L; Gall-Borrut, P; Costa, L; Salehzada, T; Bisbal, C
2010-04-01
We have coupled a spectrophotometer with a scanning near-field optical microscope to obtain, with a single scan, simultaneously scanning near-field optical microscope fluorescence images at different wavelengths as well as topography and transmission images. Extraction of the fluorescence spectra enabled us to decompose the different wavelengths of the fluorescence signals which normally overlap. We thus obtained images of the different fluorescence emissions of acridine orange bound to single or double stranded nucleic acids in human metaphase chromosomes before and after DNAse I or RNAse A treatment. The analysis of these images allowed us to visualize some specific chromatin areas where RNA is associated with DNA showing that such a technique could be used to identify multiple components within a cell.
Fiber-based time-resolved fluorescence and phosphorescence spectroscopy of tumors
NASA Astrophysics Data System (ADS)
Shirmanova, M.; Lukina, M.; Orlova, A.; Studier, H.; Zagaynova, E.; Becker, W.; Shcheslavskiy, V.
2017-07-01
The study of metabolic and oxygen states of cells in a tumor in vivo is crucial for understanding of the mechanisms responsible for the tumor development and provides background for the relevant tumor's treatment. Here, we show that a specially designed implantable fiber-optical probe provides a promising tool for optical interrogation of metabolic and oxygen states of a tumor in vivo. In our experiments, the excitation light from a ps diode laser source is delivered to the sample through an exchangeable tip via a multimode fiber, and the emission light is transferred to the detector by another multimode fiber. Fluorescence lifetime of nicotinamid adenine dinucleotide (NAD(P)H) and phosphorescence lifetime of an oxygen sensor based on iridium (III) complex of enzothienylpyridine (BTPDM1) are explored both in model experiment in solutions, and in living mice. The luminescence spectroscopy data is substantiated with immunohistochemistry experiments. To the best of our knowledge, the measurements of both metabolic status and oxygenation of tumor in vivo by fluorescence/phosphorescence lifetime spectroscopy with a fiber-optic probe are done for the first time.
Sinchenko, Elena; Gibbs, W E Keith; Davis, Claire E; Stoddart, Paul R
2010-11-20
A distributed optical-fiber sensing system based on pulsed excitation and time-gated photon counting has been used to locate a fluorescent region along the fiber. The complex Alq3 and the infrared dye IR-125 were examined with 405 and 780 nm excitation, respectively. A model to characterize the response of the distributed fluorescence sensor to a Gaussian input pulse was developed and tested. Analysis of the Alq3 fluorescent response confirmed the validity of the model and enabled the fluorescence lifetime to be determined. The intrinsic lifetime obtained (18.2±0.9 ns) is in good agreement with published data. The decay rate was found to be proportional to concentration, which is indicative of collisional deactivation. The model allows the spatial resolution of a distributed sensing system to be improved for fluorophores with lifetimes that are longer than the resolution of the sensing system.
Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain
Kim, Christina K; Yang, Samuel J; Pichamoorthy, Nandini; Young, Noah P; Kauvar, Isaac; Jennings, Joshua H; Lerner, Talia N; Berndt, Andre; Lee, Soo Yeun; Ramakrishnan, Charu; Davidson, Thomas J; Inoue, Masatoshi; Bito, Haruhiko; Deisseroth, Karl
2017-01-01
Real-time activity measurements from multiple specific cell populations and projections are likely to be important for understanding the brain as a dynamical system. Here we developed frame-projected independent-fiber photometry (FIP), which we used to record fluorescence activity signals from many brain regions simultaneously in freely behaving mice. We explored the versatility of the FIP microscope by quantifying real-time activity relationships among many brain regions during social behavior, simultaneously recording activity along multiple axonal pathways during sensory experience, performing simultaneous two-color activity recording, and applying optical perturbation tuned to elicit dynamics that match naturally occurring patterns observed during behavior. PMID:26878381
NASA Astrophysics Data System (ADS)
Piffaretti, Filippo M.; Santhakumar, Kanappan; Forte, Eddy; van den Bergh, Hubert E.; Wagnières, Georges A.
2011-03-01
A new optical-fiber-based spectrofluorometer for in vivo or in vitro detection of delayed fluorescence is presented and characterized. This compact setup is designed so that it can be readily adapted for future clinical use. Optical excitation is done with a nitrogen laser-pumped, tunable dye laser, emitting in the UV-vis part of the spectrum. Excitation and luminescence signals are carried to and from the biological tissues under investigation, located out of the setup enclosure, by a single optical fiber. These measurements, as well as measurements performed without a fiber on in vitro samples in a thermostable quartz cell, in a controlled-atmosphere enclosure, are possible due to the efficient collection of the laser-induced luminescence light which is collected and focused on the detector with a high aperture parabolic mirror. The detection is based on a gated photomultiplier which allows for time-resolved measurements of the delayed fluorescence intensity. Thus, relevant luminescence lifetimes, typically in the sub-microsecond-to-millisecond range, can be measured with near total rejection of the sample's prompt fluorescence. The instrument spectral and temporal resolution, as well as its sensitivity, is characterized and measurement examples are presented. The primary application foreseen for this setup is the monitoring and adjustment of the light dose delivered during photodynamic therapy.
NASA Astrophysics Data System (ADS)
Brown, Christopher M.; Maggio-Price, Lillian; Seibel, Eric J.
2007-02-01
Scanning fiber endoscope (SFE) technology has shown promise as a minimally invasive optical imaging tool. To date, it is capable of capturing full-color 500-line images, at 15 Hz frame rate in vivo, as a 1.6 mm diameter endoscope. The SFE uses a singlemode optical fiber actuated at mechanical resonance to scan a light spot over tissue while backscattered or fluorescent light at each pixel is detected in time series using several multimode optical fibers. We are extending the capability of the SFE from a RGB reflectance imaging device to a diagnostic tool by imaging laser induced fluorescence (LIF) in tissue, allowing for correlation of endogenous fluorescence to tissue state. Design of the SFE for diagnostic imaging is guided by a comparison of single point spectra acquired from an inflammatory bowel disease (IBD) model to tissue histology evaluated by a pathologist. LIF spectra were acquired by illuminating tissue with a 405 nm light source and detecting intrinsic fluorescence with a multimode optical fiber. The IBD model used in this study was mdr1a-/- mice, where IBD was modulated by infection with Helicobacter bilis. IBD lesions in the mouse model ranged from mild to marked hyperplasia and dysplasia, from the distal colon to the cecum. A principle components analysis (PCA) was conducted on single point spectra of control and IBD tissue. PCA allowed for differentiation between healthy and dysplastic tissue, indicating that emission wavelengths from 620 - 650 nm were best able to differentiate diseased tissue and inflammation from normal healthy tissue.
NASA Astrophysics Data System (ADS)
Quintavalla, M.; Pozzi, P.; Verhaegen, Michelle; Bijlsma, Hielke; Verstraete, Hans; Bonora, S.
2018-02-01
Adaptive Optics (AO) has revealed as a very promising technique for high-resolution microscopy, where the presence of optical aberrations can easily compromise the image quality. Typical AO systems however, are almost impossible to implement on commercial microscopes. We propose a simple approach by using a Multi-actuator Adaptive Lens (MAL) that can be inserted right after the objective and works in conjunction with an image optimization software allowing for a wavefront sensorless correction. We presented the results obtained on several commercial microscopes among which a confocal microscope, a fluorescence microscope, a light sheet microscope and a multiphoton microscope.
Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection
NASA Astrophysics Data System (ADS)
Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Fu, F.; Chen, Y. F.; Li, Y. R.
2016-03-01
Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel ‘FRET on Fiber’ concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based ‘FRET on fiber’ configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated ‘FRET on Fiber’ sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response
Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection
Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Fu, F.; Chen, Y. F.; Li, Y. R.
2016-01-01
Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel ‘FRET on Fiber’ concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based ‘FRET on fiber’ configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated ‘FRET on Fiber’ sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response PMID:27010752
NASA Astrophysics Data System (ADS)
Cicchi, Riccardo; Anand, Suresh; Rossari, Susanna; Sturiale, Alessandro; Giordano, Flavio; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Tonelli, Francesco; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.
2015-03-01
Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.
NASA Astrophysics Data System (ADS)
Cicchi, Riccardo; Anand, Suresh; Crisci, Alfonso; Giordano, Flavio; Rossari, Susanna; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.
2015-07-01
Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.
Fiber optic in vivo imaging in the mammalian nervous system
Mehta, Amit D; Jung, Juergen C; Flusberg, Benjamin A; Schnitzer, Mark J
2010-01-01
The compact size, mechanical flexibility, and growing functionality of optical fiber and fiber optic devices are enabling several new modalities for imaging the mammalian nervous system in vivo. Fluorescence microendoscopy is a minimally invasive fiber modality that provides cellular resolution in deep brain areas. Diffuse optical tomography is a non-invasive modality that uses assemblies of fiber optic emitters and detectors on the cranium for volumetric imaging of brain activation. Optical coherence tomography is a sensitive interferometric imaging technique that can be implemented in a variety of fiber based formats and that might allow intrinsic optical detection of brain activity at a high resolution. Miniaturized fiber optic microscopy permits cellular level imaging in the brains of behaving animals. Together, these modalities will enable new uses of imaging in the intact nervous system for both research and clinical applications. PMID:15464896
Double optical fibre-probe device for the diagnosis of melanocytic lesions
NASA Astrophysics Data System (ADS)
Cicchi, Riccardo; Cosci, Alessandro; Rossari, Susanna; De Giorgi, Vincenzo; Kapsokalyvas, Dimitrios; Massi, Daniela; Pavone, Francesco S.
2012-06-01
We have designed and developed an optical fiber-probe for spectroscopic measurements on human tissues. The experimental setup combines fluorescence spectroscopy and Raman spectroscopy in a multidimensional approach. Concerning fluorescence spectroscopy, the excitation is provided by two laser diodes, one emitting in the UV (378 nm) and the other emitting in the visible (445 nm). These two lasers are used to selectively excite fluorescence from NADH and FAD, which are among the brightest endogenous fluorophores in human tissues. For Raman and NIR spectroscopy, the excitation is provided by a third laser diode with 785 nm excitation wavelength. Laser light is delivered to the tissue through the central optical fiber of a fiber bundle. The surrounding 48 fibers of the bundle are used for collecting fluorescence and Raman and for delivering light to the spectrograph. Fluorescence and Raman spectra are acquired on a cooled CCD camera. The instrument has been tested on fresh human skin biopsies clinically diagnosed as malignant melanoma, melanocytic nevus, or healthy skin, finding an optimal correlation with the subsequent histological exam. In some cases our examination was not in agreement with the clinical observation, but it was with the histological exam, demonstrating that the system can potentially contribute to improve clinical diagnostic capabilities and hence reduce the number of unnecessary biopsies.
Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio
2013-01-01
A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events. PMID:23823461
Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio
2013-01-01
A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.
Single-Shot Optical Sectioning Using Two-Color Probes in HiLo Fluorescence Microscopy
Muro, Eleonora; Vermeulen, Pierre; Ioannou, Andriani; Skourides, Paris; Dubertret, Benoit; Fragola, Alexandra; Loriette, Vincent
2011-01-01
We describe a wide-field fluorescence microscope setup which combines HiLo microscopy technique with the use of a two-color fluorescent probe. It allows one-shot fluorescence optical sectioning of thick biological moving sample which is illuminated simultaneously with a flat and a structured pattern at two different wavelengths. Both homogenous and structured fluorescence images are spectrally separated at detection and combined similarly with the HiLo microscopy technique. We present optically sectioned full-field images of Xenopus laevis embryos acquired at 25 images/s frame rate. PMID:21641327
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Adelaide; De Beule, Pieter A. A., E-mail: pieter.de-beule@inl.int; Martins, Marco
Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discussmore » sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.« less
Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole
2015-01-01
We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization. PMID:26713213
Optical fiber sensor for low dose gamma irradiation monitoring
NASA Astrophysics Data System (ADS)
de Andrés, Ana I.; Esteban, Ã.`scar; Embid, Miguel
2016-05-01
An optical fiber gamma ray detector is presented in this work. It is based on a Terbium doped Gadolinium Oxysulfide (Gd2O2S:Tb) scintillating powder which cover a chemically etched polymer fiber tip. This etching improves the fluorescence gathering by the optical fiber. The final diameter has been selected to fulfill the trade-off between light gathering and mechanical strength. Powder has been encapsulated inside a microtube where the fiber tip is immersed. The sensor has been irradiated with different air Kerma doses up to 2 Gy/h with a 137Cs source, and the spectral distribution of the fluorescence intensity has been recorded in a commercial grade CCD spectrometer. The obtained signal-to-noise ratio is good enough even for low doses, which has allowed to reduce the integration time in the spectrometer. The presented results show the feasibility for using low cost equipment to detect/measure ionizing radiation as gamma rays are.
Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole
2015-12-01
We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization.
Optical fiber sensors for materials and structures characterization
NASA Technical Reports Server (NTRS)
Lindner, D. K.; Claus, R. O.
1991-01-01
The final technical report on Optical Fiber Sensors for Materials and Structures Characterization, covering the period August 1990 through August 1991 is presented. Research programs in the following technical areas are described; sapphire optical fiber sensors; vibration analysis using two-mode elliptical core fibers and sensors; extrinsic Fabry-Perot interferometer development; and coatings for fluorescent-based sensor. Research progress in each of these areas was substantial, as evidenced by the technical publications which are included as appendices.
Xiong, Yan; Ye, Zhongbin; Xu, Jing; Zhu, Yuanqiang; Chen, Chen; Guan, Yafeng
2013-03-21
A novel integrated fiber-optic sensor with micro detection volume is developed and evaluated for O(2) determination on a breath-by-breath basis in human health monitoring applications. The sensing element was fabricated by dip-coating an uncladded optical fiber with [Ir(piq)(2)(acac)]-doped hybrid fluorinated ORMOSIL (organically modified silicate) film, which was prepared from 3,3,3-trifluoropropyltrimethoxysilane (TFP-TriMOS) and n-propyltrimethoxysilane (n-propyl-TriMOS). The sensor was then constructed by inserting the prepared optical fiber into a transparent capillary. A microchannel formed between the optical fiber and the capillary inner wall acted as a flow cell for the sample flowing through. The evanescent wave (EW) field produced on the fiber core surface can excite the O(2)-sensitive fluorophores of [Ir(piq)(2)(acac)] to produce emission fluorescence. O(2) can be sensed by its quenching effect on the emission fluorescence intensity. Spectroscopic properties have been characterized by FTIR and fluorescence measurements. Stern-Volmer and Demas models were both employed to analyse the sensor sensitivity, which is 13.0 with the LOD = 0.009% (3σ) and the response time is about 1 s. By integrating the sensing and detection elements on the optical fiber, the novel configuration showed advantages of easy fabrication and low cost. Parameters of sensitivity, response time, repeatability, humidity effect and temperature effect were discussed in detail. The proposed sensor showed potential for practical in-breath O(2) analysis application due to its advantages of easy fabrication, low cost, fast response, excellent hydrophobicity, negligible temperature interference and suitable sensitivity.
Method for optical and mechanically coupling optical fibers
Toeppen, J.S.
1996-10-01
A method and apparatus are disclosed for splicing optical fibers. A fluorescing solder glass frit having a melting point lower than the melting point of first and second optical fibers is prepared. The solder glass frit is then attached to the end of the first optical fiber and/or the end of the second optical fiber. The ends of the optical fibers are aligned and placed in close proximity to each other. The solder glass frit is then heated to a temperature which is lower than the melting temperature of the first and second optical fibers, but which is high enough to melt the solder glass frit. A force is applied to the first and second optical fibers pushing the ends of the fibers towards each other. As the solder glass flit becomes molten, the layer of molten solder glass is compressed into a thin layer between the first and second optical fibers. The thin compressed layer of molten solder glass is allowed to cool such that the first and second optical fibers are bonded to each other by the hardened layer of solder glass. 6 figs.
Method for optical and mechanically coupling optical fibers
Toeppen, John S.
1996-01-01
A method and apparatus for splicing optical fibers. A fluorescing solder glass frit having a melting point lower than the melting point of first and second optical fibers is prepared. The solder glass frit is then attached to the end of the first optical fiber and/or the end of the second optical fiber. The ends of the optical fibers are aligned and placed in close proximity to each other. The solder glass frit is then heated to a temperature which is lower than the melting temperature of the first and second optical fibers, but which is high enough to melt the solder glass frit. A force is applied to the first and second optical fibers pushing the ends of the fibers towards each other. As the solder glass flit becomes molten, the layer of molten solder glass is compressed into a thin layer between the first and second optical fibers. The thin compressed layer of molten solder glass is allowed to cool such that the first and second optical fibers are bonded to each other by the hardened layer of solder glass.
Ji, Hongyun; Li, Meng; Guo, Lihong; Yuan, Hongyan; Wang, Chunling; Xiao, Dan
2013-09-01
A new detector, capillary coupled with optical fiber LED-induced fluorescence detector (CCOF-LED-IFD, using CCOF for short), is introduced for CE. The strategy of the present work was that the optical fiber and separation capillary were, in the parallel direction, fastened in a fixation capillary with larger inner diameter. By employing larger inner diameter, the fixation capillary allowed the large diameter of the optical fiber to be inserted into it. By transmitting an enhanced excitation light through the optical fiber, the detection sensitivity was improved. The advantages of the CCOF-CE system were validated by the detection of riboflavin, and the results were compared to those obtained by the in-capillary common optical fiber LED-induced fluorescence detector (IC-COF-LED-IFD, using COF for short). The LODs of CCOF-CE and COF-CE were 0.29 nM and 11.0 nM (S/N = 3), respectively. The intraday (n = 6) repeatability and interday (n = 6) reproducibility of migration time and corresponding peak area for both types of CE were all less than 1.10 and 3.30%, respectively. The accuracy of the proposed method was judged by employing standard addition method, and recoveries obtained were in the range of 98.0-102.4%. The results indicated that the sensitivity of the proposed system was largely improved, and that its reproducibility and accuracy were satisfactory. The proposed system was successfully applied to separate and determine riboflavin in real sample. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Detection device for high explosives
Grey, Alan E.; Partin, Judy K.; Stone, Mark L.; Von Wandruszka, Ray M.; Reagen, William K.; Ingram, Jani C.; Lancaster, Gregory D.
1992-01-01
A portable fiber optic detector that senses the presence of specific target chemicals by electrostatically attracting the target chemical to an aromatic compound coating on an optical fiber. Attaching the target chemical to the coated fiber reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.
Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip.
Coskun, Ahmet F; Sencan, Ikbal; Su, Ting-Wei; Ozcan, Aydogan
2011-09-07
We demonstrate lensless fluorescent microscopy over a large field-of-view of ~60 mm(2) with a spatial resolution of <4 µm. In this on-chip fluorescent imaging modality, the samples are placed on a fiber-optic faceplate that is tapered such that the density of the fiber-optic waveguides on the top facet is >5 fold larger than the bottom one. Placed on this tapered faceplate, the fluorescent samples are pumped from the side through a glass hemisphere interface. After excitation of the samples, the pump light is rejected through total internal reflection that occurs at the bottom facet of the sample substrate. The fluorescent emission from the sample is then collected by the smaller end of the tapered faceplate and is delivered to an opto-electronic sensor-array to be digitally sampled. Using a compressive sampling algorithm, we decode these raw lensfree images to validate the resolution (<4 µm) of this on-chip fluorescent imaging platform using microparticles as well as labeled Giardia muris cysts. This wide-field lensfree fluorescent microscopy platform, being compact and high-throughput, might provide a valuable tool especially for cytometry, rare cell analysis (involving large area microfluidic systems) as well as for microarray imaging applications.
(Gene sequencing by scanning molecular exciton microscopy)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
This report details progress made in setting up a laboratory for optical microscopy of genes. The apparatus including a fluorescence microscope, a scanning optical microscope, various spectrometers, and supporting computers is described. Results in developing photon and exciton tips, and in preparing samples are presented. (GHH)
Atmospheric scanning electron microscope for correlative microscopy.
Morrison, Ian E G; Dennison, Clare L; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara; Yarwood, Andrew; O'Toole, Peter J
2012-01-01
The JEOL ClairScope is the first truly correlative scanning electron and optical microscope. An inverted scanning electron microscope (SEM) column allows electron images of wet samples to be obtained in ambient conditions in a biological culture dish, via a silicon nitride film window in the base. A standard inverted optical microscope positioned above the dish holder can be used to take reflected light and epifluorescence images of the same sample, under atmospheric conditions that permit biochemical modifications. For SEM, the open dish allows successive staining operations to be performed without moving the holder. The standard optical color camera used for fluorescence imaging can be exchanged for a high-sensitivity monochrome camera to detect low-intensity fluorescence signals, and also cathodoluminescence emission from nanophosphor particles. If these particles are applied to the sample at a suitable density, they can greatly assist the task of perfecting the correlation between the optical and electron images. Copyright © 2012 Elsevier Inc. All rights reserved.
Portable fiber-optic taper coupled optical microscopy platform
NASA Astrophysics Data System (ADS)
Wang, Weiming; Yu, Yan; Huang, Hui; Ou, Jinping
2017-04-01
The optical fiber taper coupled with CMOS has advantages of high sensitivity, compact structure and low distortion in the imaging platform. So it is widely used in low light, high speed and X-ray imaging systems. In the meanwhile, the peculiarity of the coupled structure can meet the needs of the demand in microscopy imaging. Toward this end, we developed a microscopic imaging platform based on the coupling of cellphone camera module and fiber optic taper for the measurement of the human blood samples and ascaris lumbricoides. The platform, weighing 70 grams, is based on the existing camera module of the smartphone and a fiber-optic array which providing a magnification factor of 6x.The top facet of the taper, on which samples are placed, serves as an irregular sampling grid for contact imaging. The magnified images of the sample, located on the bottom facet of the fiber, are then projected onto the CMOS sensor. This paper introduces the portable medical imaging system based on the optical fiber coupling with CMOS, and theoretically analyzes the feasibility of the system. The image data and process results either can be stored on the memory or transmitted to the remote medical institutions for the telemedicine. We validate the performance of this cell-phone based microscopy platform using human blood samples and test target, achieving comparable results to a standard bench-top microscope.
Investigation of cladding and coating stripping methods for specialty optical fibers
NASA Astrophysics Data System (ADS)
Lee, Jung-Ryul; Dhital, Dipesh; Yoon, Dong-Jin
2011-03-01
Fiber optic sensing technology is used extensively in several engineering fields, including smart structures, health and usage monitoring, non-destructive testing, minimum invasive sensing, safety monitoring, and other advanced measurement fields. A general optical fiber consists of a core, cladding, and coating layers. Many sensing principles require that the cladding or coating layer should be removed or modified. In addition, since different sensing systems are needed for different types of optical fibers, it is very important to find and sort out the suitable cladding or coating removal method for a particular fiber. This study focuses on finding the cladding and coating stripping methods for four recent specialty optical fibers, namely: hard polymer-clad fiber, graded-index plastic optical fiber, copper/carbon-coated optical fiber, and aluminum-coated optical fiber. Several methods, including novel laser stripping and conventional chemical and mechanical stripping, were tried to determine the most suitable and efficient technique. Microscopic investigation of the fiber surfaces was used to visually evaluate the mechanical reliability. Optical time domain reflectometric signals of the successful removal cases were investigated to further examine the optical reliability. Based on our results, we describe and summarize the successful and unsuccessful methods.
Optical design of endoscopic shape-tracker using quantum dots embedded in fiber bundles
NASA Astrophysics Data System (ADS)
Eisenstein, Jessica; Gavalis, Robb; Wong, Peter Y.; Cao, Caroline G. L.
2009-08-01
Colonoscopy is the current gold standard for colon cancer screening and diagnosis. However, the near-blind navigation process employed during colonoscopy results in endoscopist disorientation and scope looping, leading to missed detection of tumors, incorrect localization, and pain for the patient. A fiber optic bend sensor, which would fit into the working channel of a colonoscope, is developed to aid navigation through the colon during colonoscopy. The bend sensor is comprised of a bundle of seven fibers doped with quantum dots (QDs). Each fiber within the bundle contains a unique region made up of three zones with differently-colored QDs, spaced 120° apart circumferentially on the fiber. During bending at the QD region, light lost from the fiber's core is coupled into one of the QD zones, inducing fluorescence of the corresponding color whose intensity is proportional to the degree of bending. A complementary metal oxide semiconductor camera is used to obtain an image of the fluorescing end faces of the fiber bundle. The location of the fiber within the bundle, the color of fluorescence, and the fluorescence intensity are used to determine the bundle's bending location, direction, and degree of curvature, respectively. Preliminary results obtained using a single fiber with three QD zones and a seven-fiber bundle containing one active fiber with two QDs (180° apart) demonstrate the feasibility of the concept. Further developments on fiber orientation during bundling and the design of a graphical user interface to communicate bending information are also discussed.
Portable fluorescence microendoscope system for smartphones and its applications
NASA Astrophysics Data System (ADS)
Gómez García, Pablo Aurelio; Teixeira Rosa, Ramon Gabriel; Pratavieira, Sebastião.; Kurachi, Cristina
2015-06-01
A portable microscope/microendoscope will be presented in this article. The system was specially designed for Smartphones and taking into account its simplicity, will be able to bring this technology to almost every doctor's office. It is worth mentioning its flexibility of use, that allows several modes since all the components are interchangeable (the illumination LED, the lens, the optic filters, etc) resulting in different applications, from medical applications until other areas (for example, the inspection of non-accessible pieces of plane engines). In addition, the system has a double platform, working as a conventional microscope or as a fiberoptic microendoscope. In situ and cell smear interrogation of oral mucosa, using a proflavine as dye will be presented. The price of the system does not exceed US 350, plus the price of the fiber bundle (around US 500) turning it onto a high resolution affordable system.
Combined optical resolution photoacoustic and fluorescence micro-endoscopy
NASA Astrophysics Data System (ADS)
Shao, Peng; Shi, Wei; Hajireza, Parsin; Zemp, Roger J.
2012-02-01
We present a new micro-endoscopy system combining real-time C-scan optical-resolution photoacoustic micro-endoscopy (OR-PAME), and a high-resolution fluorescence micro-endoscopy system for visualizing fluorescently labeled cellular components and optically absorbing microvasculature simultaneously. With a diode-pumped 532-nm fiber laser, the OR-PAM sub-system is capable of imaging with a resolution of ~ 7μm. The fluorescence sub-system consists of a diode laser with 445 nm-centered emissions as the light source, an objective lens and a CCD camera. Proflavine, a FDA approved drug for human use, is used as the fluorescent contrast agent by topical application. The fluorescence system does not require any mechanical scanning. The scanning laser and the diode laser light source share the same light path within an optical fiber bundle containing 30,000 individual single mode fibers. The absorption of Proflavine at 532 nm is low, which mitigates absorption bleaching of the contrast agent by the photoacoustic excitation source. We demonstrate imaging in live murine models. The system is able to provide cellular morphology with cellular resolution co-registered with the structural and functional information given by OR-PAM. Therefore, the system has the potential to serve as a virtual biopsy technique, helping researchers and clinicians visualize angiogenesis, effects of anti-cancer drugs on both cells and the microcirculation, as well as aid in the study of other diseases.
Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue
NASA Astrophysics Data System (ADS)
Davis, Scott C.; Pogue, Brian W.; Springett, Roger; Leussler, Christoph; Mazurkewitz, Peter; Tuttle, Stephen B.; Gibbs-Strauss, Summer L.; Jiang, Shudong S.; Dehghani, Hamid; Paulsen, Keith D.
2008-06-01
A multichannel spectrally resolved optical tomography system to image molecular targets in small animals from within a clinical MRI is described. Long source/detector fibers operate in contact mode and couple light from the tissue surface in the magnet bore to 16 spectrometers, each containing two optical gratings optimized for the near infrared wavelength range. High sensitivity, cooled charge coupled devices connected to each spectrograph provide detection of the spectrally resolved signal, with exposure times that are automated for acquisition at each fiber. The design allows spectral fitting of the remission light, thereby separating the fluorescence signal from the nonspecific background, which improves the accuracy and sensitivity when imaging low fluorophore concentrations. Images of fluorescence yield are recovered using a nonlinear reconstruction approach based on the diffusion approximation of photon propagation in tissue. The tissue morphology derived from the MR images serves as an imaging template to guide the optical reconstruction algorithm. Sensitivity studies show that recovered values of indocyanine green fluorescence yield are linear to concentrations of 1nM in a 70mm diameter homogeneous phantom, and detection is feasible to near 10pM. Phantom data also demonstrate imaging capabilities of imperfect fluorophore uptake in tissue volumes of clinically relevant sizes. A unique rodent MR coil provides optical fiber access for simultaneous optical and MR data acquisition of small animals. A pilot murine study using an orthotopic glioma tumor model demonstrates optical-MRI imaging of an epidermal growth factor receptor targeted fluorescent probe in vivo.
Jiang, Lu; Greenwood, Tiffany R.; Amstalden van Hove, Erika R.; Chughtai, Kamila; Raman, Venu; Winnard, Paul T.; Heeren, Ron; Artemov, Dmitri; Glunde, Kristine
2014-01-01
Applications of molecular imaging in cancer and other diseases frequently require combining in vivo imaging modalities, such as magnetic resonance and optical imaging, with ex vivo optical, fluorescence, histology, and immunohistochemical (IHC) imaging, to investigate and relate molecular and biological processes to imaging parameters within the same region of interest. We have developed a multimodal image reconstruction and fusion framework that accurately combines in vivo magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI), ex vivo brightfield and fluorescence microscopic imaging, and ex vivo histology imaging. Ex vivo brightfield microscopic imaging was used as an intermediate modality to facilitate the ultimate link between ex vivo histology and in vivo MRI/MRSI. Tissue sectioning necessary for optical and histology imaging required generation of a three-dimensional (3D) reconstruction module for 2D ex vivo optical and histology imaging data. We developed an external fiducial marker based 3D reconstruction method, which was able to fuse optical brightfield and fluorescence with histology imaging data. Registration of 3D tumor shape was pursued to combine in vivo MRI/MRSI and ex vivo optical brightfield and fluorescence imaging data. This registration strategy was applied to in vivo MRI/MRSI, ex vivo optical brightfield/fluorescence, as well as histology imaging data sets obtained from human breast tumor models. 3D human breast tumor data sets were successfully reconstructed and fused with this platform. PMID:22945331
Müller, Achim Josef; Knuth, Monika; Nikolaus, Katharina Sibylle; Krivánek, Roland; Küster, Frank; Hasslacher, Christoph
2013-01-01
This article describes a new fiber-coupled, percutaneous fluorescent continuous glucose monitoring (CGM) system that has shown 14 days of functionality in a human clinical trial. The new optical CGM system (FiberSense) consists of a transdermal polymer optical fiber containing a biochemical glucose sensor and a small fluorescence photometer optically coupled to the fiber. The glucose-sensitive optical fiber was implanted in abdominal and upper-arm subcutaneous tissue of six diabetes patients and remained there for up to 14 days. The performance of the system was monitored during six visits to the study center during the trial. Blood glucose changes were induced by oral carbohydrate intake and insulin injections, and capillary blood glucose samples were obtained from the finger tip. The data were analyzed using linear regression and the consensus error grid analysis. The FiberSense worn at the upper arm exhibited excellent results during 14 wearing days, with an overall mean absolute relative difference (MARD) of 8.3% and 94.6% of the data in zone A of the consensus error grid. At the abdominal application site, FiberSense resulted in a MARD of 11.4 %, with 93.8% of the data in zone A. The FiberSense CGM system provided consistent, reliable measurements of subcutaneous glucose levels in human clinical trial patients with diabetes for up to 14 days. © 2013 Diabetes Technology Society.
Siddiqi, M A; Kilduff, G M; Gearhart, J D
2003-11-01
We describe the design, construction and testing of a prototype device that allows the direct visualization by eye of far-red and near-infrared (NIR) fluorescence through an optical microscope. The device incorporates a gallium arsenide (GaAs) image intensifier, typically utilized in low-light or 'night vision' applications. The intensifier converts far-red and NIR light into electrons and then into green light, which is visible to the human eye. The prototype makes possible the direct, real-time viewing by eye of normally invisible far-red and NIR fluorescence from a wide variety of fluorophores, using the full field of view of the microscope to which it is applied. The high sensitivity of the image intensifier facilitates the viewing of a wide variety of photosensitive specimens, including live cells and embryos, at vastly reduced illumination levels in both fluorescence and bright-field microscopy. Modifications to the microscope are not required in order to use the prototype, which is fully compatible with all current fluorescence techniques. Refined versions of the prototype device will have broad research and clinical applications.
Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina
Hausselt, Susanne E.; Breuninger, Tobias; Castell, Xavier; Denk, Winfried; Margolis, David J.; Detwiler, Peter B.
2009-01-01
Dendritic signals play an essential role in processing visual information in the retina. To study them in neurites too small for electrical recording, we developed an instrument that combines a multi-photon (MP) microscope with a through-the-objective high-resolution visual stimulator. An upright microscope was designed that uses the objective lens for both MP imaging and delivery of visual stimuli to functionally intact retinal explants or eyecup preparations. The stimulator consists of a miniature liquid-crystal-on-silicon display coupled into the optical path of an infrared-excitation laser-scanning microscope. A pair of custom-made dichroic filters allows light from the excitation laser and three spectral bands (‘colors’) from the stimulator to reach the retina, leaving two intermediate bands for fluorescence imaging. Special optics allow displacement of the stimulator focus relative to the imaging focus. Spatially resolved changes in calcium-indicator fluorescence in response to visual stimuli were recorded in dendrites of different types of mammalian retinal neurons. PMID:19023590
Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul
2012-01-01
There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (<33 fps), and superior fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0–85 μm from the surface of a coverglass. PMID:23083712
Beltran-Parrazal, Luis; Morgado-Valle, Consuelo; Serrano, Raul E; Manzo, Jorge; Vergara, Julio L
2014-03-30
One of the limitations when establishing an electrophysiology setup, particularly in low resource settings, is the high cost of microscopes. The average cost for a microscope equipped with the optics for infrared (IR) contrast or microfluorometry is $40,000. We hypothesized that optical elements and features included in commercial microscopes are not necessary to IR video-visualize neurons or for microfluorometry. We present instructions for building a low-cost epifluorescence upright microscope suitable for visualized patch-clamp recording and fluorescence detection using mostly catalog-available parts. This microscope supports applications such as visualized whole-cell recording using IR oblique illumination (IR-OI), or more complex applications such as microfluorometry using a photodiode. In both IR-OI and fluorescence, actual resolution measured with 2-μm latex beads is close to theoretical resolution. The lack of movable parts to switch configurations ensures stability when doing intracellular recording. The low cost is a significant advantage of this microscope compared to existent custom-built microscopes. The cost of the simplest configuration with IR-OI is ∼$2000, whereas the cost of the configuration with epifluorescence is ∼$5000. Since this design does not use pieces discarded from commercial microscopes, it is completely reproducible. We suggest that this microscope is a viable alternative for doing in vitro electrophysiology and microfluorometry in low-resource settings. Characteristics such as an open box design, easy assembly, and low-cost make this microscope a useful instrument for science education and teaching for topics such as optics, biology, neuroscience, and for scientific "hands-on" workshops. Copyright © 2014 Elsevier B.V. All rights reserved.
Detection device for high explosives
Grey, A.E.; Partin, J.K.; Stone, M.L.; Von Wandruszka, R.M.; Reagen, W.K.; Ingram, J.C.; Lancaster, G.D.
1992-10-20
A portable fiber optic detector is described that senses the presence of specific target chemicals by electrostatically attracting the target chemical to an aromatic compound coating on an optical fiber. Attaching the target chemical to the coated fiber reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator. 5 figs.
Fast optically sectioned fluorescence HiLo endomicroscopy.
Ford, Tim N; Lim, Daryl; Mertz, Jerome
2012-02-01
We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.
Fast optically sectioned fluorescence HiLo endomicroscopy
NASA Astrophysics Data System (ADS)
Ford, Tim N.; Lim, Daryl; Mertz, Jerome
2012-02-01
We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.
Model of a thin film optical fiber fluorosensor
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1991-01-01
The efficiency of core-light injection from sources in the cladding of an optical fiber is modeled analytically by means of the exact field solution of a step-profile fiber. The analysis is based on the techniques by Marcuse (1988) in which the sources are treated as infinitesimal electric currents with random phase and orientation that excite radiation fields and bound modes. Expressions are developed based on an infinite cladding approximation which yield the power efficiency for a fiber coated with fluorescent sources in the core/cladding interface. Marcuse's results are confirmed for the case of a weakly guiding cylindrical fiber with fluorescent sources uniformly distributed in the cladding, and the power efficiency is shown to be practically constant for variable wavelengths and core radii. The most efficient fibers have the thin film located at the core/cladding boundary, and fibers with larger differences in the indices of refraction are shown to be the most efficient.
Detection system of capillary array electrophoresis microchip based on optical fiber
NASA Astrophysics Data System (ADS)
Yang, Xiaobo; Bai, Haiming; Yan, Weiping
2009-11-01
To meet the demands of the post-genomic era study and the large parallel detections of epidemic diseases and drug screening, the high throughput micro-fluidic detection system is needed urgently. A scanning laser induced fluorescence detection system based on optical fiber has been established by using a green laser diode double-pumped solid-state laser as excitation source. It includes laser induced fluorescence detection subsystem, capillary array electrophoresis micro-chip, channel identification unit and fluorescent signal processing subsystem. V-shaped detecting probe composed with two optical fibers for transmitting the excitation light and detecting induced fluorescence were constructed. Parallel four-channel signal analysis of capillary electrophoresis was performed on this system by using Rhodamine B as the sample. The distinction of different samples and separation of samples were achieved with the constructed detection system. The lowest detected concentration is 1×10-5 mol/L for Rhodamine B. The results show that the detection system possesses some advantages, such as compact structure, better stability and higher sensitivity, which are beneficial to the development of microminiaturization and integration of capillary array electrophoresis chip.
An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications.
Chabinyc, M L; Chiu, D T; McDonald, J C; Stroock, A D; Christian, J F; Karger, A M; Whitesides, G M
2001-09-15
This paper describes a prototype of an integrated fluorescence detection system that uses a microavalanche photodiode (microAPD) as the photodetector for microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS). The prototype device consisted of a reusable detection system and a disposable microfluidic system that was fabricated using rapid prototyping. The first step of the procedure was the fabrication of microfluidic channels in PDMS and the encapsulation of a multimode optical fiber (100-microm core diameter) in the PDMS; the tip of the fiber was placed next to the side wall of one of the channels. The optical fiber was used to couple light into the microchannel for the excitation of fluorescent analytes. The photodetector, a prototype solid-state microAPD array, was embedded in a thick slab (1 cm) of PDMS. A thin (80 microm) colored polycarbonate filter was placed on the top of the embedded microAPD to absorb scattered excitation light before it reached the detector. The microAPD was placed below the microchannel and orthogonal to the axis of the optical fiber. The close proximity (approximately 200 microm) of the microAPD to the microchannel made it unnecessary to incorporate transfer optics; the pixel size of the microAPD (30 microm) matched the dimensions of the channels (50 microm). A blue light-emitting diode was used for fluorescence excitation. The microAPD was operated in Geiger mode to detect the fluorescence. The detection limit of the prototype (approximately 25 nM) was determined by finding the minimum detectable concentration of a solution of fluorescein. The device was used to detect the separation of a mixture of proteins and small molecules by capillary electrophoresis; the separation illustrated the suitability of this integrated fluorescence detection system for bioanalytical applications.
Neutron-induced defects in optical fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzolo, S., E-mail: serena.rizzolo@univ-st-etienne.fr; Dipartimento di Fisica e Chimica, Università di Palermo, Palermo; and Areva Centre Technique, Le Creusot
2014-10-21
We present a study on 0.8 MeV neutron-induced defects up to fluences of 10{sup 17} n/cm{sup 2} in fluorine doped optical fibers by using electron paramagnetic resonance, optical absorption and confocal micro-luminescence techniques. Our results allow to address the microscopic mechanisms leading to the generation of Silica-related point-defects such as E', H(I), POR and NBOH Centers.
Santos, Silvia; Chu, Kengyeh K; Lim, Daryl; Bozinovic, Nenad; Ford, Tim N; Hourtoule, Claire; Bartoo, Aaron C; Singh, Satish K; Mertz, Jerome
2009-01-01
We present an endomicroscope apparatus that exhibits out-of-focus background rejection based on wide-field illumination through a flexible imaging fiber bundle. Our technique, called HiLo microscopy, involves acquiring two images, one with grid-pattern illumination and another with standard uniform illumination. An evaluation of the image contrast with grid-pattern illumination provides an optically sectioned image with low resolution. This is complemented with high-resolution information from the uniform illumination image, leading to a full-resolution image that is optically sectioned. HiLo endomicroscope movies are presented of fluorescently labeled rat colonic mucosa.
NASA Astrophysics Data System (ADS)
Santos, Silvia; Chu, Kengyeh K.; Lim, Daryl; Bozinovic, Nenad; Ford, Tim N.; Hourtoule, Claire; Bartoo, Aaron C.; Singh, Satish K.; Mertz, Jerome
2009-05-01
We present an endomicroscope apparatus that exhibits out-of-focus background rejection based on wide-field illumination through a flexible imaging fiber bundle. Our technique, called HiLo microscopy, involves acquiring two images, one with grid-pattern illumination and another with standard uniform illumination. An evaluation of the image contrast with grid-pattern illumination provides an optically sectioned image with low resolution. This is complemented with high-resolution information from the uniform illumination image, leading to a full-resolution image that is optically sectioned. HiLo endomicroscope movies are presented of fluorescently labeled rat colonic mucosa.
Photoinduced Electron Transfer Based Ion Sensing within an Optical Fiber
Englich, Florian V.; Foo, Tze Cheung; Richardson, Andrew C.; Ebendorff-Heidepriem, Heike; Sumby, Christopher J.; Monro, Tanya M.
2011-01-01
We combine suspended-core microstructured optical fibers with the photoinduced electron transfer (PET) effect to demonstrate a new type of fluorescent optical fiber-dip sensing platform for small volume ion detection. A sensor design based on a simple model PET-fluoroionophore system and small core microstructured optical fiber capable of detecting sodium ions is demonstrated. The performance of the dip sensor operating in a high sodium concentration regime (925 ppm Na+) and for lower sodium concentration environments (18.4 ppm Na+) is explored and future approaches to improving the sensor’s signal stability, sensitivity and selectivity are discussed. PMID:22163712
In-vivo fluorescence detection of breast cancer growth factor receptors by fiber-optic probe
NASA Astrophysics Data System (ADS)
Bustamante, Gilbert; Wang, Bingzhi; DeLuna, Frank; Sun, LuZhe; Ye, Jing Yong
2018-02-01
Breast cancer treatment options often include medications that target the overexpression of growth factor receptors, such as the proto-oncogene human epidermal growth factor receptor 2 (HER2/neu) and epidermal growth factor receptor (EGFR) to suppress the abnormal growth of cancerous cells and induce cancer regression. Although effective, certain treatments are toxic to vital organs, and demand assurance that the pursued receptor is present at the tumor before administration of the drug. This requires diagnostic tools to provide tumor molecular signatures, as well as locational information. In this study, we utilized a fiber-optic probe to characterize in vivo HER2 and EGFR overexpressed tumors through the fluorescence of targeted dyes. HER2 and EGFR antibodies were conjugated with ICG-Sulfo-OSu and Alexa Fluor 680, respectively, to tag BT474 (HER2+) and MDA-MB-468 (EGFR+) tumors. The fiber was inserted into the samples via a 30-gauge needle. Different wavelengths of a supercontinuum laser were selected to couple into the fiber and excite the corresponding fluorophores in the samples. The fluorescence from the dyes was collected through the same fiber and quantified by a time-correlated single photon counter. Fluorescence at different antibody-dye concentrations was measured for calibration. Mice with subcutaneous HER2+ and/or EGFR+ tumors received intravenous injections of the conjugates and were later probed at the tumor sites. The measured fluorescence was used to distinguish between tumor types and to calculate the concentration of the antibody-dye conjugates, which were detectable at levels as low as 40 nM. The fiber-optic probe presents a minimally invasive instrument to characterize the molecular signatures of breast cancer in vivo.
Correction of cell-induced optical aberrations in a fluorescence fluctuation microscope
Leroux, Charles-Edouard; Grichine, Alexei; Wang, Irène; Delon, Antoine
2013-01-01
We describe the effect of optical aberrations on fluorescence fluctuations microscopy (FFM), when focusing through a single living cell. FFM measurements are performed in an aqueous fluorescent solution, and prove to be a highly sensitive tool to assess the optical aberrations introduced by the cell. We demonstrate an adaptive optics (AO) system to remove the aberration-related bias in the FFM measurements. Our data show that AO is not only useful when imaging deep in tissues, but also when performing FFM measurements through a single cellular layer. PMID:23939061
NASA Astrophysics Data System (ADS)
Vercauteren, Tom; Doussoux, François; Cazaux, Matthieu; Schmid, Guillaume; Linard, Nicolas; Durin, Marie-Amélie; Gharbi, Hédi; Lacombe, François
2013-03-01
Since its inception in the field of in vivo imaging, endomicroscopy through optical fiber bundles, or probe-based Confocal Laser Endomicroscopy (pCLE), has extensively proven the benefit of in situ and real-time examination of living tissues at the microscopic scale. By continuously increasing image quality, reducing invasiveness and improving system ergonomics, Mauna Kea Technologies has turned pCLE not only into an irreplaceable research instrument for small animal imaging, but also into an accurate clinical decision making tool with applications as diverse as gastrointestinal endoscopy, pulmonology and urology. The current implementation of pCLE relies on a single fluorescence spectral band making different sources of in vivo information challenging to distinguish. Extending the pCLE approach to multi-color endomicroscopy therefore appears as a natural plan. Coupling simultaneous multi-laser excitation with minimally invasive, microscopic resolution, thin and flexible optics, allows the fusion of complementary and valuable biological information, thus paving the way to a combination of morphological and functional imaging. This paper will detail the architecture of a new system, Cellvizio Dual Band, capable of video rate in vivo and in situ multi-spectral fluorescence imaging with a microscopic resolution. In its standard configuration, the system simultaneously operates at 488 and 660 nm, where it automatically performs the necessary spectral, photometric and geometric calibrations to provide unambiguously co-registered images in real-time. The main hardware and software features, including calibration procedures and sub-micron registration algorithms, will be presented as well as a panorama of its current applications, illustrated with recent results in the field of pre-clinical imaging.
Bianchi, S; Rajamanickam, V P; Ferrara, L; Di Fabrizio, E; Liberale, C; Di Leonardo, R
2013-12-01
The use of individual multimode optical fibers in endoscopy applications has the potential to provide highly miniaturized and noninvasive probes for microscopy and optical micromanipulation. A few different strategies have been proposed recently, but they all suffer from intrinsically low resolution related to the low numerical aperture of multimode fibers. Here, we show that two-photon polymerization allows for direct fabrication of micro-optics components on the fiber end, resulting in an increase of the numerical aperture to a value that is close to 1. Coupling light into the fiber through a spatial light modulator, we were able to optically scan a submicrometer spot (300 nm FWHM) over an extended region, facing the opposite fiber end. Fluorescence imaging with improved resolution is also demonstrated.
Real-Time Nanoscopy by Using Blinking Enhanced Quantum Dots
Watanabe, Tomonobu M.; Fukui, Shingo; Jin, Takashi; Fujii, Fumihiko; Yanagida, Toshio
2010-01-01
Superresolution optical microscopy (nanoscopy) is of current interest in many biological fields. Superresolution optical fluctuation imaging, which utilizes higher-order cumulant of fluorescence temporal fluctuations, is an excellent method for nanoscopy, as it requires neither complicated optics nor illuminations. However, it does need an impractical number of images for real-time observation. Here, we achieved real-time nanoscopy by modifying superresolution optical fluctuation imaging and enhancing the fluctuation of quantum dots. Our developed quantum dots have higher blinking than commercially available ones. The fluctuation of the blinking improved the resolution when using a variance calculation for each pixel instead of a cumulant calculation. This enabled us to obtain microscopic images with 90-nm and 80-ms spatial-temporal resolution by using a conventional fluorescence microscope without any optics or devices. PMID:20923631
NASA Astrophysics Data System (ADS)
Haj-Hosseini, Neda; Lowndes, Shannely; Salerud, Göran; Wårdell, Karin
2011-03-01
Fluorescence guidance in brain tumor resection is performed intra-operatively where bleeding is included. When using fiber-optical probes, the transmission of light to and from the tissue is totally or partially blocked if a small amount of blood appears in front of the probe. Sometimes even after rinsing with saline, the remnant blood cells on the optical probe head, disturb the measurements. In such a case, the corresponding spectrum cannot be reliably quantified and is therefore discarded. The optimal case would be to calculate and take out the blood effect systematically from the collected signals. However, the first step is to study the pattern of blood interference in the fluorescence spectrum. In this study, a fiber-optical based fluorescence spectroscopy system with a laser excitation light of 405 nm (1.4 J/cm2) was used during fluorescence guided brain tumor resection using 5-aminolevulinic acid (5-ALA). The blood interference pattern in the fluorescence spectrum collected from the brain was studied in two patients. The operation situation was modeled in the laboratory by placing blood drops from the finger tip on the skin of forearm and the data was compared to the brain in vivo measurements. Additionally, a theoretical model was developed to simulate the blood interference pattern on the skin autofluorescence. The blood affects the collected fluorescence intensity and leaves traces of oxy and deoxy-hemoglobin absorption peaks. According to the developed theoretical model, the autofluorescence signal is considered to be totally blocked by an approximately 500 μm thick blood layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-31
This report details progress made in setting up a laboratory for optical microscopy of genes. The apparatus including a fluorescence microscope, a scanning optical microscope, various spectrometers, and supporting computers is described. Results in developing photon and exciton tips, and in preparing samples are presented. (GHH)
Anderson, G P; Golden, J P; Ligler, F S
1994-06-01
A fiber-optic biosensor capable of remote continuous monitoring has recently been designed. To permit sensing at locations separate from the optoelectronic instrumentation, long optical fibers are utilized. An evanescent wave immuno-probe is prepared by removing the cladding near the distal end of the fiber and covalently attaching antibodies to the core. Probes with a radius unaltered from that of the original core inefficiently returned the signal produced upon binding the fluorescent-labelled antigen. To elucidate the limiting factors in signal acquisition, a series of fibers with increasingly reduced probe core radius was examined. The results were consistent with the V-number mismatch, the difference in mode carrying capacity between the clad and unclad fiber, being a critical factor in limiting signal coupling from the fiber probe. However, it was also delineated that conditions which conserve excitation power, such that power in the evanescent wave is optimized, must also be met to obtain a maximal signal. The threshold sensitivity for the optimal step-etched fiber probe was improved by over 20-fold in an immunoassay, although, it was demonstrated that signal acquisition decreased along the probe length, suggesting that a sensor region of uniform radius is not ideal.
NASA Astrophysics Data System (ADS)
Liew, Oi Wah; Asundi, Anand K.; Chen, Jun-Wei; Chew, Yiwen; Yu, Shangjuan; Yeo, Gare H.
2001-05-01
In this paper, fiber optic spectroscopy is developed to detect and quantify recombinant green (EGFP) and red (DsRED) fluorescent proteins in vitro and in vivo. The bacterial expression vectors carrying the coding regions of EGFP and DsRED were introduced into Escherichia coli host cells and fluorescent proteins were produced following induction with IPTG. Soluble EGFP and DsRED proteins were isolated from lysed bacterial cells and serially diluted for quantitative analysis by fiber optic spectroscopy. Fluorescence at the appropriate emission wavelengths could be detected up to 64X dilution for EGFP and 40X dilution for DsRED. To determine the capability of spectroscopy detection in vivo, transgenic potato hairy roots expressing EGFP and DsRED were regenerated. This was achieved by cloning the EGFP and DsRED genes into the plant binary vector, pTMV35S, to create the recombinant vectors pGLOWGreen and pGLOWRed. These latter binary vectors were introduced into Agrobacterium rhizogenes strain A4T. Infection of potato cells with transformed agrobacteria was used to insert the fluorescent protein genes into the potato genome. Genetically modified potato cells were then regenerated into hairy roots. A panel of transformed hairy roots expressing varying levels of fluorescent proteins was selected by fluorescence microscopy. We are now assessing the capability of spectroscopic detection system for in vivo quantification of green and red fluorescence levels in transformed roots.
Enzyme-based fiber optic sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulp, T.J.; Camins, I.; Angel, S.M.
Fiber optic chemical sensors capable of detecting glucose and penicillin were developed. Each consists of a polymer membrane that is covalently attached to the tip of a glass optical fiber. The membrane contains the enzyme and a pH-sensitive fluorescent dye (fluorescein). A signal is produced when the enzyme catalyzes the conversion of the analyte (glucose or penicillin) into a product (gluconic or penicilloic acid, respectively) that lowers the microenvironmental pH of the membrane and consequently, lowers the fluorescence intensity of the dye. Each sensor is capable of responding to analyte concentrations in the range of approx.0.1 to 100 mM. Themore » penicillin optrode response time is 40 to 60 s while that for glucose is approx.5 to 12 min. 7 figs.« less
Optical biopsy fiber-based fluorescence spectroscopy instrumentation
NASA Astrophysics Data System (ADS)
Katz, Alvin; Ganesan, Singaravelu; Yang, Yuanlong; Tang, Gui C.; Budansky, Yury; Celmer, Edward J.; Savage, Howard E.; Schantz, Stimson P.; Alfano, Robert R.
1996-04-01
Native fluorescence spectroscopy of biomolecules has emerged as a new modality to the medical community in characterizing the various physiological conditions of tissues. In the past several years, many groups have been working to introduce the spectroscopic methods to diagnose cancer. Researchers have successfully used native fluorescence to distinguish cancerous from normal tissue samples in rat and human tissue. We have developed three generations of instruments, called the CD-scan, CD-ratiometer and CD-map, to allow the medical community to use optics for diagnosing tissue. Using ultraviolet excitation and emission spectral measurements on both normal and cancerous tissue of the breast, gynecology, colon, and aerodigestive tract can be separated. For example, from emission intensities at 340 nm to 440 nm (300 nm excitation), a statistically consistent difference between malignant tissue and normal or benign tissue is observed. In order to utilize optical biopsy techniques in a clinical setting, the CD-scan instrument was developed, which allows for rapid and reliable in-vitro and in-vivo florescence measurements of the aerodigestive tract with high accuracy. The instrumentation employs high sensitivity detection techniques which allows for lamp excitation, small diameter optical fiber probes; the higher spatial resolution afforded by the small diameter probes can increase the ability to detect smaller tumors. The fiber optic probes allow for usage in the aerodigestive tract, cervix and colon. Needle based fiber probes have been developed for in-vivo detection of breast cancer.
Praveen, Bavishna B; Ashok, Praveen C; Mazilu, Michael; Riches, Andrew; Herrington, Simon; Dholakia, Kishan
2012-07-01
In the field of biomedical optics, Raman spectroscopy is a powerful tool for probing the chemical composition of biological samples. In particular, fiber Raman probes play a crucial role for in vivo and ex vivo tissue analysis. However, the high-fluorescence background typically contributed by the auto fluorescence from both a tissue sample and the fiber-probe interferes strongly with the relatively weak Raman signal. Here we demonstrate the implementation of wavelength-modulated Raman spectroscopy (WMRS) to suppress the fluorescence background while analyzing tissues using fiber Raman probes. We have observed a significant signal-to-noise ratio enhancement in the Raman bands of bone tissue, which have a relatively high fluorescence background. Implementation of WMRS in fiber-probe-based bone tissue study yielded usable Raman spectra in a relatively short acquisition time (∼30 s), notably without any special sample preparation stage. Finally, we have validated its capability to suppress fluorescence on other tissue samples such as adipose tissue derived from four different species.
3D refractive index measurements of special optical fibers
NASA Astrophysics Data System (ADS)
Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun
2016-09-01
A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.
Gessei, Tomoko; Arakawa, Takahiro; Kudo, Hiroyuki; Mitsubayashi, Kohji
2015-09-21
Accumulation of sorbitol in the tissue is known to cause microvascular diabetic complications. In this paper, a fiber-optic biosensor for sorbitol which is used as a biomarker of diabetic complications was developed and tested. The biosensor used a sorbitol dehydrogenase from microorganisms of the genus Flavimonas with high substrate specificity and detected the fluorescence of reduced nicotinamide adenine dinucleotide (NADH) by the enzymatic reaction. An ultraviolet light emitting diode (UV-LED) was used as the excitation light source of NADH. The fluorescence of NADH was detected using a spectrometer or a photomultiplier tube (PMT). The UV-LED and the photodetector were coupled using a Y-shaped optical fiber. In the experiment, an optical fiber probe with a sorbitol dehydrogenase immobilized membrane was placed in a cuvette filled with a phosphate buffer containing the oxidized form of nicotinamide adenine dinucleotide (NAD(+)). The changes in NADH fluorescence intensity were measured after adding a standard sorbitol solution. According to the experimental assessment, the calibration range of the sorbitol biosensor systems using a spectrometer and a PMT was 5.0-1000 μmol L(-1) and 1.0-1000 μmol L(-1), respectively. The sorbitol biosensor system using the sorbitol dehydrogenase from microorganisms of the genus Flavimonas has high selectivity and sensitivity compared with that from sheep liver. The sorbitol biosensor allows for point-of-care testing applications or daily health care tests for diabetes patients.
Damin, Craig A; Sommer, André J
2013-11-01
Advances in fiber optic materials have allowed for the construction of fibers and waveguides capable of transmitting infrared radiation. An investigation of the transmission characteristics associated with two commonly used types of infrared-transmitting fibers/waveguides for prospective use in a fiber/waveguide-coupled attenuated total internal reflection (ATR) probe was performed. Characterization of silver halide polycrystalline fiber optics and hollow silica waveguides was done on the basis of the transmission of infrared light using a conventional fiber optic coupling accessory and an infrared microscope. Using the fiber optic coupling accessory, the average percent transmission for three silver halide fibers was 18.1 ± 6.1% relative to a benchtop reflection accessory. The average transmission for two hollow waveguides (HWGs) using the coupling accessory was 8.0 ± 0.3%. (Uncertainties in the relative percent transmission represent the standard deviations.) Reduced transmission observed for the HWGs was attributed to the high numerical aperture of the coupling accessory. Characterization of the fibers/waveguides using a zinc selenide lens objective on an infrared microscope indicated 24.1 ± 7.2% of the initial light input into the silver halide fibers was transmitted. Percent transmission obtained for the HWGs was 98.7 ± 0.1%. Increased transmission using the HWGs resulted from the absence or minimization of insertion and scattering losses due to the hollow air core and a better-matched numerical aperture. The effect of bending on the transmission characteristics of the fibers/waveguides was also investigated. Significant deviations in the transmission of infrared light by the solid-core silver halide fibers were observed for various bending angles. Percent transmission greater than 98% was consistently observed for the HWGs at the bending angles. The combined benefits of high percent transmission, reproducible instrument responses, and increased bending tolerance indicated HWGs should be preferred in the construction of a fiber/waveguide-coupled ATR probe.
Single-shot optical sectioning using two-color probes in HiLo fluorescence microscopy.
Muro, Eleonora; Vermeulen, Pierre; Ioannou, Andriani; Skourides, Paris; Dubertret, Benoit; Fragola, Alexandra; Loriette, Vincent
2011-06-08
We describe a wide-field fluorescence microscope setup which combines HiLo microscopy technique with the use of a two-color fluorescent probe. It allows one-shot fluorescence optical sectioning of thick biological moving sample which is illuminated simultaneously with a flat and a structured pattern at two different wavelengths. Both homogenous and structured fluorescence images are spectrally separated at detection and combined similarly with the HiLo microscopy technique. We present optically sectioned full-field images of Xenopus laevis embryos acquired at 25 images/s frame rate. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Multifunction Imaging and Spectroscopic Instrument
NASA Technical Reports Server (NTRS)
Mouroulis, Pantazis
2004-01-01
A proposed optoelectronic instrument would perform several different spectroscopic and imaging functions that, heretofore, have been performed by separate instruments. The functions would be reflectance, fluorescence, and Raman spectroscopies; variable-color confocal imaging at two different resolutions; and wide-field color imaging. The instrument was conceived for use in examination of minerals on remote planets. It could also be used on Earth to characterize material specimens. The conceptual design of the instrument emphasizes compactness and economy, to be achieved largely through sharing of components among subsystems that perform different imaging and spectrometric functions. The input optics for the various functions would be mounted in a single optical head. With the exception of a targeting lens, the input optics would all be aimed at the same spot on a specimen, thereby both (1) eliminating the need to reposition the specimen to perform different imaging and/or spectroscopic observations and (2) ensuring that data from such observations can be correlated with respect to known positions on the specimen. The figure schematically depicts the principal components and subsystems of the instrument. The targeting lens would collect light into a multimode optical fiber, which would guide the light through a fiber-selection switch to a reflection/ fluorescence spectrometer. The switch would have four positions, enabling selection of spectrometer input from the targeting lens, from either of one or two multimode optical fibers coming from a reflectance/fluorescence- microspectrometer optical head, or from a dark calibration position (no fiber). The switch would be the only moving part within the instrument.
High-density fiber-optic DNA random microsphere array.
Ferguson, J A; Steemers, F J; Walt, D R
2000-11-15
A high-density fiber-optic DNA microarray sensor was developed to monitor multiple DNA sequences in parallel. Microarrays were prepared by randomly distributing DNA probe-functionalized 3.1-microm-diameter microspheres in an array of wells etched in a 500-microm-diameter optical imaging fiber. Registration of the microspheres was performed using an optical encoding scheme and a custom-built imaging system. Hybridization was visualized using fluorescent-labeled DNA targets with a detection limit of 10 fM. Hybridization times of seconds are required for nanomolar target concentrations, and analysis is performed in minutes.
Preparation Of Small Diameter Sensors For Continuous Clinical Monitoring
NASA Astrophysics Data System (ADS)
Walt, David R.; Munkholm, Christiane; Jordan, David; Milanovich, Fred P.; Daley, Paul F.
1987-04-01
We have prepared fluorescence-based fiber optic sensors which give rapid and reversible responses. Other investigators have previously prepared sensors in which a membrane, tubing, or a hollow fiber is used to contain a specific reagent near the distal end of the fiber. Such an approach produces fibers with limited signal magnitudes and slow response times. Furthermore, these sensors are cumbersome to assemble, and are difficult to miniaturize and calibrate. We have developed a technique for the covalent chemical modification of the fiber's distal surface which is easily adapted to the smallest diameter glass optical fiber (100 μm). The sensing layer is attached directly to the fiber surface. The layer is extremely thin and highly porous and provides high fluorescence intensity with nearly instantaneous response times. The fibers are moderately stable against bleaching and have long shelf-lives. Our initial efforts have concentrated on the preparation of pH-sensitive optical sensors that are useful in the pH range 4.0 to 8.0. These sensors are reversible in response to pH variation and possess signal-to-noise ratios over 250/1. The fibers are prepared using a glass surface modification followed by a polymerization step for dye immobilization. Both fluorescence and absorbance-based sensors have been prepared using this technique. The absorbance-based pH sensors have 100% response times of less than 3 seconds, are sensitive in the region of pH 6.0 to 8.0, and provide reliable measurement of pH with precision of better than 0.03 pH units.
Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul
2012-10-17
There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (<33 fps), and superior fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0-85 μm from the surface of a coverglass. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array.
Navruz, Isa; Coskun, Ahmet F; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan
2013-10-21
We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ~9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ~3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also removes spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears.
Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array
Navruz, Isa; Coskun, Ahmet F.; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan
2013-01-01
We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ∼9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ∼3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also gets rid of spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears. PMID:23939637
Correlative super-resolution fluorescence microscopy combined with optical coherence microscopy
NASA Astrophysics Data System (ADS)
Kim, Sungho; Kim, Gyeong Tae; Jang, Soohyun; Shim, Sang-Hee; Bae, Sung Chul
2015-03-01
Recent development of super-resolution fluorescence imaging technique such as stochastic optical reconstruction microscopy (STORM) and photoactived localization microscope (PALM) has brought us beyond the diffraction limits. It allows numerous opportunities in biology because vast amount of formerly obscured molecular structures, due to lack of spatial resolution, now can be directly observed. A drawback of fluorescence imaging, however, is that it lacks complete structural information. For this reason, we have developed a super-resolution multimodal imaging system based on STORM and full-field optical coherence microscopy (FF-OCM). FF-OCM is a type of interferometry systems based on a broadband light source and a bulk Michelson interferometer, which provides label-free and non-invasive visualization of biological samples. The integration between the two systems is simple because both systems use a wide-field illumination scheme and a conventional microscope. This combined imaging system gives us both functional information at a molecular level (~20nm) and structural information at the sub-cellular level (~1μm). For thick samples such as tissue slices, while FF-OCM is readily capable of imaging the 3D architecture, STORM suffer from aberrations and high background fluorescence that substantially degrade the resolution. In order to correct the aberrations in thick tissues, we employed an adaptive optics system in the detection path of the STORM microscope. We used our multimodal system to obtain images on brain tissue samples with structural and functional information.
Microscopic Optical Projection Tomography In Vivo
Meyer, Heiko; Ripoll, Jorge; Tavernarakis, Nektarios
2011-01-01
We describe a versatile optical projection tomography system for rapid three-dimensional imaging of microscopic specimens in vivo. Our tomographic setup eliminates the in xy and z strongly asymmetric resolution, resulting from optical sectioning in conventional confocal microscopy. It allows for robust, high resolution fluorescence as well as absorption imaging of live transparent invertebrate animals such as C. elegans. This system offers considerable advantages over currently available methods when imaging dynamic developmental processes and animal ageing; it permits monitoring of spatio-temporal gene expression and anatomical alterations with single-cell resolution, it utilizes both fluorescence and absorption as a source of contrast, and is easily adaptable for a range of small model organisms. PMID:21559481
Chang, Win-Jin; Fang, Te-Hua; Lee, Haw-Long; Yang, Yu-Ching
2005-01-01
In this paper the Rayleigh-Ritz method was used to study the scanning near-field optical microscope (SNOM) with a tapered optical fiber probe's flexural and axial sensitivity to vibration. Not only the contact stiffness but also the geometric parameters of the probe can influence the flexural and axial sensitivity to vibration. According to the analysis, the lateral and axial contact stiffness had a significant effect on the sensitivity of vibration of the SNOM's probe, each mode had a different level of sensitivity and in the first mode the tapered optical fiber probe was the most acceptive to higher levels of flexural and axial vibration. Generally, when the contact stiffness was lower, the tapered probe was more sensitive to higher levels of both axial and flexural vibration than the uniform probe. However, the situation was reversed when the contact stiffness was larger. Furthermore, the effect that the probe's length and its tapered angle had on the SNOM's probe axial and flexural vibration were significant and these two conditions should be incorporated into the design of new SNOM probes.
Uniformly thinned optical fibers produced via HF etching with spectral and microscopic verification.
Bal, Harpreet K; Brodzeli, Zourab; Dragomir, Nicoleta M; Collins, Stephen F; Sidiroglou, Fotios
2012-05-01
A method for producing uniformly thinned (etched) optical fibers is described, which can also be employed to etch optical fibers containing a Bragg grating (FBG) uniformly for evanescent-field-based sensing and other applications. Through a simple modification of this method, the fabrication of phase-shifted FBGs based on uneven etching is also shown. The critical role of how a fiber is secured is shown, and the success of the method is illustrated, by differential interference contrast microscopy images of uniformly etched FBGs. An etched FBG sensor for the monitoring of the refractive index of different glycerin solutions is demonstrated.
NASA Astrophysics Data System (ADS)
Descloux, A.; Grußmayer, K. S.; Bostan, E.; Lukes, T.; Bouwens, A.; Sharipov, A.; Geissbuehler, S.; Mahul-Mellier, A.-L.; Lashuel, H. A.; Leutenegger, M.; Lasser, T.
2018-03-01
Super-resolution fluorescence microscopy provides unprecedented insight into cellular and subcellular structures. However, going `beyond the diffraction barrier' comes at a price, since most far-field super-resolution imaging techniques trade temporal for spatial super-resolution. We propose the combination of a novel label-free white light quantitative phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution. The non-iterative phase retrieval relies on the acquisition of single images at each z-location and thus enables straightforward 3D phase imaging using a classical microscope. We realized multi-plane imaging using a customized prism for the simultaneous acquisition of eight planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate fluorescence super-resolution optical fluctuation imaging within the same optical instrument. The 4D microscope platform unifies the sensitivity and high temporal resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy.
Szunerits, Sabine; Walt, David R
2002-02-15
The localized corrosion behavior of a galvanic aluminum copper couple was investigated by in situ fluorescence imaging with a fiber-optic imaging sensor. Three different, but complementary methods were used for visualizing remote corrosion sites, mapping the topography of the metal surface, and measuring local chemical concentrations of H+, OH-, and Al3+. The first method is based on a pH-sensitive imaging fiber, where the fluorescent dye SNAFL was covalently attached to the fiber's distal end. Fluorescence images were acquired as a function of time at different areas of the galvanic couple. In a second method, the fluorescent dye morin was immobilized on the fiber-optic imaging sensor, which allowed the in situ localization of corrosion processes on pure aluminum to be visualized over time by monitoring the release of Al3+. The development of fluorescence on the aluminum surface defined the areas associated with the anodic dissolution of aluminum. We also investigated the inhibition of corrosion of pure aluminum by CeCl3 and 8-hydroxyquinoline. The decrease in current, the decrease in the number of active sites on the aluminum surface, and the faster surface passivation are all consistent indications that cerium chloride and 8-hydroxyquinoline inhibit corrosion effectively. From the number and extent of corrosion sites and the release of aluminum ions monitored with the fiber, it was shown that 8-hydroxyquinoline is a more effective inhibitor than cerium chloride.
Ma, Jiajun; Lv, Ling; Zou, Gang; Zhang, Qijin
2015-01-14
In this paper, we report a facile strategy to fabricate fluorescent porous thin film on the surface of U-bent poly(methyl methacrylate) optical fiber (U-bent POF) in situ via "click" polymerization for vapor phase sensing of explosives. Upon irradiation of evanescent UV light transmitting within the fiber under ambient condition, a porous film (POSS-thiol cross-linking film, PTCF) is synthesized on the side surface of the fiber by a thiol-ene "click" reaction of vinyl-functionalized polyhedral oligomeric silsesquioxanes (POSS-V8) and alkane dithiols. When vinyl-functionalized porphyrin, containing four allyl substituents at the periphery, is added into precursors for the polymerization, fluorescence porphyrin can be covalently bonded into the cross-linked network of PTCF. This "fastened" way reduces the aggregation-induced fluorescence self-quenching of porphyrin and enhances the physicochemical stability of the porous film on the surface of U-bent POF. Fluorescent signals of the PTCF/U-bent POF probe made by this method exhibit high fluorescence quenching toward trace TNT and DNT vapor and the highest fluorescence quenching efficiency is observed for 1, 6-hexanedimercaptan-based film. In addition, because of the presence of POSS-V8 with multi cross-linkable groups, PTCF exhibits well-organized pore network and stable dye dispersion, which not only causes fast and sensitive fluorescence quenching against vapors of nitroaromatic compounds, but also provides a repeatability of the probing performance.
NASA Astrophysics Data System (ADS)
Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.
2014-06-01
Two-photon (2P) excitation of the second singlet (S) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.
Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R
2014-06-01
Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.
A versatile fiber-optic coupled system for sensitive optical spectroscopy in strong ambient light
NASA Astrophysics Data System (ADS)
Sinha, Sudarson Sekhar; Verma, Pramod Kumar; Makhal, Abhinandan; Pal, Samir Kumar
2009-05-01
In this work we describe design and use of a fiber-optic based optical system for the spectroscopic studies on the samples under the presence of strong ambient light. The system is tested to monitor absorption, emission, and picosecond-resolved fluorescence transients simultaneously with a time interval of 500 ms for several hours on a biologically important sample (vitamin B2) under strong UV light. An efficient stray-light rejection ratio of the setup is achieved by the confocal geometry of the excitation and detection channels. It is demonstrated using this setup that even low optical signal from a liquid sample under strong UV-exposure for the picosecond-resolved fluorescence transient measurement can reliably be detected by ultrasensitive microchannel plate photomultiplier tube solid state detector. The kinetics of photodeterioration of vitamin B2 measured using our setup is consistent with that reported in the literature. Our present studies also justify the usage of tungsten light than the fluorescent light for the healthy preservation of food with vitamin B2.
Fast optically sectioned fluorescence HiLo endomicroscopy
Lim, Daryl; Mertz, Jerome
2012-01-01
Abstract. We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies. PMID:22463023
Intensity calibration of a laser scanning confocal microscope based on concentrated dyes.
Model, Michael A; Blank, James L
2006-10-01
To find water-soluble fluorescent dyes with absorption in various regions of the spectrum and investigate their utility as standards for laser scanning confocal microscopy. Several dyes were found to have characteristics required for fluorescence microscopy standards. The intensity of biological fluorescent specimens was measured against the emission of concentrated dyes. Results using different optics and different microscopes were compared. Slides based on concentrated dyes can be prepared in a highly reproducible manner and are stable under laser scanning. Normalized fluorescence of biological specimens remains consistent with different objective lenses and is tolerant to some mismatch in optical filters or imperfect pinhole alignment. Careful choice of scanning parameters is necessary to ensure linearity of intensity measurements. Concentrated dyes provide a robust and inexpensive intensity standard that can be used in basic research or clinical studies.
Toxin detection using a fiber-optic-based biosensor
NASA Astrophysics Data System (ADS)
Ogert, Robert A.; Shriver-Lake, Lisa C.; Ligler, Frances S.
1993-05-01
Using an evanescent wave fiber optic-based biosensor developed at Naval Research Laboratory, ricin toxin can be detected in the low ng/ml range. Sensitivity was established at 1 - 5 ng/ml using a two-step assay. The two-step assay showed enhanced signal levels in comparison to a one-step assay. A two-step assay utilizes a 10 minute incubation of an immobilized affinity purified anti-ricin antibody fiber optic probe in the ricin sample before placement in a solution of fluorophore-labeled goat anti-ricin antibodies. The specific fluorescent signal is obtained by the binding of the fluorophore-labeled antibodies to ricin which is bound by the immobilized antibodies on the fiber optic probe. The toxin can be detected directly from urine and river water using this fiber optic assay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazaretski, E.; Yan, H.; Lauer, K.
2016-08-30
The Hard X-ray Nanoprobe (HXN) beamline at NSLS-II has been designed and constructed to enable imaging experiments with unprecedented spatial resolution and detection sensitivity. The HXN X-ray Microscope is a key instrument for the beamline, providing a suite of experimental capabilities which includes scanning fluorescence, diffraction, differential phase contrast and ptychography utilizing Multilayer Laue Lenses (MLL) and zoneplate (ZP) as nanofocusing optics. In this paper, we present technical requirements for the MLL-based scanning microscope, outline the development concept and present first ~15 x 15 nm 2 spatial resolution x-ray fluorescence images.
Optimal model-based sensorless adaptive optics for epifluorescence microscopy.
Pozzi, Paolo; Soloviev, Oleg; Wilding, Dean; Vdovin, Gleb; Verhaegen, Michel
2018-01-01
We report on a universal sample-independent sensorless adaptive optics method, based on modal optimization of the second moment of the fluorescence emission from a point-like excitation. Our method employs a sample-independent precalibration, performed only once for the particular system, to establish the direct relation between the image quality and the aberration. The method is potentially applicable to any form of microscopy with epifluorescence detection, including the practically important case of incoherent fluorescence emission from a three dimensional object, through minor hardware modifications. We have applied the technique successfully to a widefield epifluorescence microscope and to a multiaperture confocal microscope.
All Fiber-Coupled OH Planar Laser-Induced-Fluorescence (OH-PLIF)-Based Two-Dimensional Thermometry.
Hsu, Paul S; Jiang, Naibo; Patnaik, Anil K; Katta, Vish; Roy, Sukesh; Gord, James R
2018-04-01
Two-color, planar laser-induced fluorescence (PLIF)-based two-dimensional (2D) thermometry techniques for reacting flows, which are typically developed in the laboratory conditions, face a stiff challenge in their practical implementation in harsh environments such as combustion rigs. In addition to limited optical access, the critical experimental conditions (i.e., uncontrolled humidity, vibration, and large thermal gradients) often restrict sensitive laser system operation and cause difficulties maintaining beam-overlap. Thus, an all fiber-coupled, two-color OH-PLIF system has been developed, employing two long optical fibers allowing isolation of the laser and signal-collection systems. Two OH-excitation laser beams (∼283 nm and ∼286 nm) are delivered through a common 6 m long, 400 µm core, deep ultraviolet (UV)-enhanced multimode fiber. The fluorescence signal (∼310 nm) is collected by a 3 m long, UV-grade imaging fiber. Proof-of-principle temperature measurements are demonstrated in atmospheric pressure, near adiabatic, CH 4 /O 2 /N 2 jet flames. The effects of the excitation pulse interval on fiber transmission are investigated. The proof-of-principle measurements show significant promise for thermometry in harsh environments such as gas turbine engine tests.
In-vitro bacterial identification using fluorescence spectroscopy with an optical fiber system
NASA Astrophysics Data System (ADS)
Spector, Brian C.; Werkhaven, Jay A.; Smith, Dana; Reinisch, Lou
2000-05-01
Acute otitis media (AOM) remains a source of significant morbidity in children. With the emergence of antibiotic resistant strains of bacteria, tympanocentesis has become an important method of bacterial identification in the setting of treatment failures. Previous studies described a prototype system for the non-invasive fluorescence identification of bacteria in vitro. We demonstrate the addition of an optical fiber to allow for the identification of a specimen distant to the spectrofluorometer. Emission spectra from three bacteria, Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus were successfully obtained in vitro. This represents a necessary step prior to the study of in vivo identification of bacteria in AOM using fluorescence spectroscopy.
NASA Astrophysics Data System (ADS)
Jukl, Jennifer Marie
Although biosensor technology is a broad and well-studied field, the progress of many novel sensor technologies faces challenges. These challenges range from simple design considerations to fundamental issues with the concept or approach. One of the most active fields of sensor research integrates fiber optics with specially engineered fluorescent molecules. This type of sensor typically utilizes a porous polymer or porous glass substrate to entrap the fluorescent (or fluorescently-tagged) molecule. Porous polymer hydrogels are generally favored due to their ease of fabrication, low cost, adaptability, and biocompatibility. While hydrogels are ideal for both functional molecule suspension and fluid diffusion, their porosity and hydrophilicity are not always advantageous. The largest drawback of these properties is the hydrogel swelling they produce and the resulting geometric changes. This project investigated the limitations of fluorescent hydrogel-based sensors and the effects of unpredictable structural changes hydrogels undergo during typical, unrestrained swelling. The significance of covalent incorporation of the sensing fluorophore into the hydrogel matrix is also explored. Leaching tests were conducted using polyacrylamide (PAm) hydrogels which were impregnated with one of two pH sensitive fluorophores, one which bonded covalently with the hydrogel matrix during polymerization (fluorescein o-acrylate), and one which did not (fluorescein sodium). Once determined to be effective, the covalently bonding fluorophore was used to create constrained-dimension fluorescent pH sensors. These sensors were tested for effectiveness and reproducibility. All data was collected using a laboratory grade optical fibers, a USB spectrometer, and SpectraSuite software (Ocean Optics, 2010) unless otherwise specified.
Fiber-optic multiphoton flow cytometry in whole blood and in vivo
NASA Astrophysics Data System (ADS)
Chang, Yu-Chung; Ye, Jing Yong; Thomas, Thommey P.; Cao, Zhengyi; Kotlyar, Alina; Tkaczyk, Eric R.; Baker, James R.; Norris, Theodore B.
2010-07-01
Circulating tumor cells in the bloodstream are sensitive indicators for metastasis and disease prognosis. Circulating cells have usually been monitored via extraction from blood, and more recently in vivo using free-space optics; however, long-term intravital monitoring of rare circulating cells remains a major challenge. We demonstrate the application of a two-photon-fluorescence optical fiber probe for the detection of cells in whole blood and in vivo. A double-clad fiber was used to enhance the detection sensitivity. Two-channel detection was employed to enable simultaneous measurement of multiple fluorescent markers. Because the fiber probe circumvents scattering and absorption from whole blood, the detected signal strength from fluorescent cells was found to be similar in phosphate-buffered saline (PBS) and in whole blood. The detection efficiency of cells labeled with the membrane-binding dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindoldicarbocyanine, 4-chlorobenzenesulfonate (DiD) was demonstrated to be the same in PBS and in whole blood. A high detection efficiency of green fluorescent protein (GFP)-expressing cells in whole blood was also demonstrated. To characterize in vivo detection, DiD-labeled untransfected and GFP-transfected cells were injected into live mice, and the cell circulation dynamics was monitored in real time. The detection efficiency of GFP-expressing cells in vivo was consistent with that observed ex vivo in whole blood.
NASA Astrophysics Data System (ADS)
Boutet, J.; Debourdeau, M.; Laidevant, A.; Hervé, L.; Dinten, J.-M.
2010-02-01
Finding a way to combine ultrasound and fluorescence optical imaging on an endorectal probe may improve early detection of prostate cancer. A trans-rectal probe adapted to fluorescence diffuse optical tomography measurements was developed by our team. This probe is based on a pulsed NIR laser source, an optical fiber network and a time-resolved detection system. A reconstruction algorithm was used to help locate and quantify fluorescent prostate tumors. In this study, two different kinds of time-resolved detectors are compared: High Rate Imaging system (HRI) and a photon counting system. The HRI is based on an intensified multichannel plate and a CCD Camera. The temporal resolution is obtained through a gating of the HRI. Despite a low temporal resolution (300ps), this system allows a simultaneous acquisition of the signal from a large number of detection fibers. In the photon counting setup, 4 photomultipliers are connected to a Time Correlated Single Photon Counting (TCSPC) board, providing a better temporal resolution (0.1 ps) at the expense of a limited number of detection fibers (4). At last, we show that the limited number of detection fibers of the photon counting setup is enough for a good localization and dramatically improves the overall acquisition time. The photon counting approach is then validated through the localization of fluorescent inclusions in a prostate-mimicking phantom.
Hollow fiber-optic Raman probes for small experimental animals
NASA Astrophysics Data System (ADS)
Katagiri, Takashi; Hattori, Yusuke; Suzuki, Toshiaki; Matsuura, Yuji; Sato, Hidetoshi
2007-02-01
Two types of hollow fiber-optic probes are developed to measure the in vivo Raman spectra of small animals. One is the minimized probe which is end-sealed with the micro-ball lens. The measured spectra reflect the information of the sample's sub-surface. This probe is used for the measurement of the esophagus and the stomach via an endoscope. The other probe is a confocal Raman probe which consists of a single fiber and a lens system. It is integrated into the handheld microscope. A simple and small multimodal probe is realized because the hollow optical fiber requires no optical filters. The performance of each probe is examined and the effectiveness of these probes for in vivo Raman spectroscopy is shown by animal tests.
NASA Astrophysics Data System (ADS)
Wang, Peng; Ebeling, Carl G.; Gerton, Jordan; Menon, Rajesh
In this paper, we demonstrate hyper-spectral imaging of fluorescent microspheres in a scanning-confocal-fluorescence microscope by spatially dispersing the spectra using a novel broadband diffractive optic, and applying a nonlinear optimization technique to extract the full-incident spectra. This broadband diffractive optic has a designed optical efficiency of over 90% across the entire visible spectrum. We used this technique to create two-color images of two fluorophores and also extracted their emission spectra with good fidelity. This method can be extended to image both spatially and spectrally overlapping fluorescent samples. Full control in the number of emission spectra and the feasibility of enhanced imaging speed are demonstrated as well.
Perov, Alexander; Belgovskiy, Alexander I.; Mirzabekov, Andrei D.
2001-01-01
A biochip scanner device used to detect and acquire fluorescence signal data from biological microchips or biochips and method of use are provided. The biochip scanner device includes a laser for emitting a laser beam. A modulator, such as an optical chopper modulates the laser beam. A scanning head receives the modulated laser beam and a scanning mechanics coupled to the scanning head moves the scanning head relative to the biochip. An optical fiber delivers the modulated laser beam to the scanning head. The scanning head collects the fluorescence light from the biochip, launches it into the same optical fiber, which delivers the fluorescence into a photodetector, such as a photodiode. The biochip scanner device is used in a row scanning method to scan selected rows of the biochip with the laser beam size matching the size of the immobilization site.
Elucidation of the mechanisms of optical clearing in collagen tissue with multiphoton imaging
NASA Astrophysics Data System (ADS)
Hovhannisyan, Vladimir; Hu, Po-Sheng; Chen, Shean-Jen; Kim, Chang-Seok; Dong, Chen-Yuan
2013-04-01
Optical clearing (OC) is a promising method to overcome limitations in biomedical depth-resolved optical studies. Mechanisms of OC in purified bovine Achilles tendon, chicken skin, and chicken tendon were studied using time-lapsed, three-dimensional second harmonic generation (SHG) and two-photon fluorescence microscopic imaging. Quantified nonlinear optical measurements allowed temporal separation of two processes in collagen OC with glycerol. The first one is a fast process of tissue dehydration accompanied with collagen shrinkage and the second relatively slow process is glycerol penetration into the interfibrillar space of collagen alongside with CF swelling. The use of 50% glycerol induced less-expressed OC via partial substitution of water molecules with glycerol molecules. We also found that phosphate-buffered saline- and glycerol-treatments were reversible, and fiber morphology and SHG signal intensity were recovered after the removal of immersion agents. It was shown that tissue OC was a dynamic process and elucidation of its physical mechanisms may help choose optimal diagnostic, treatment, and modification regimes for collagen-based as well as other types of biomaterials.
Fiber-based confocal microscope for cryogenic spectroscopy.
Högele, Alexander; Seidl, Stefan; Kroner, Martin; Karrai, Khaled; Schulhauser, Christian; Sqalli, Omar; Scrimgeour, Jan; Warburton, Richard J
2008-02-01
We describe the design and performance of a fiber-based confocal microscope for cryogenic operation. The microscope combines positioning at low temperatures along three space coordinates of millimeter translation and nanometer precision with high stability and optical performance at the diffraction limit. It was successfully tested under ambient conditions as well as at liquid nitrogen (77 K) and liquid helium (4 K) temperatures. The compact nonmagnetic design provides for long term position stability against helium refilling transfers, temperature sweeps, as well as magnetic field variation between -9 and 9 T. As a demonstration of the microscope performance, applications in the spectroscopy of single semiconductor quantum dots are presented.
NASA Astrophysics Data System (ADS)
Breunig, Hans Georg; Weinigel, Martin; Bückle, Rainer; Kellner-Höfer, Marcel; Lademann, Jürgen; Darvin, Maxim E.; Sterry, Wolfram; König, Karsten
2013-02-01
We report on in vivo coherent anti-Stokes Raman scattering spectroscopy (CARS), two-photon fluorescence and second-harmonic-generation imaging on human skin with a novel multimodal clinical CARS/multiphoton tomograph. CARS imaging is realized by a combination of femtosecond pulses with broadband continuum pulses generated by a photonic crystal fiber. The images reveal the microscopic distribution of (i) non-fluorescent lipids, (ii) endogenous fluorophores and (iii) the collagen network inside the human skin in vivo with subcellular resolution. Examples of healthy as well as cancer-affected skin are presented.
Microscopy imaging device with advanced imaging properties
Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei
2015-11-24
Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.
Microscopy imaging device with advanced imaging properties
Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei
2016-10-25
Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.
Microscopy imaging device with advanced imaging properties
Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei
2016-11-22
Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.
Microscopy imaging device with advanced imaging properties
Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei
2017-04-25
Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.
Ultrahigh resolution multicolor colocalization of single fluorescent probes
Weiss, Shimon; Michalet, Xavier; Lacoste, Thilo D.
2005-01-18
A novel optical ruler based on ultrahigh-resolution colocalization of single fluorescent probes is described. Two unique families of fluorophores are used, namely energy-transfer fluorescent beads and semiconductor nanocrystal (NC) quantum dots, that can be excited by a single laser wavelength but emit at different wavelengths. A novel multicolor sample-scanning confocal microscope was constructed which allows one to image each fluorescent light emitter, free of chromatic aberrations, by scanning the sample with nanometer scale steps using a piezo-scanner. The resulting spots are accurately localized by fitting them to the known shape of the excitation point-spread-function of the microscope.
Ultrafast optical pulse delivery with fibers for nonlinear microscopy
Kim, Daekeun; Choi, Heejin; Yazdanfar, Siavash; So, Peter T. C.
2008-01-01
Nonlinear microscopies including multiphoton excitation fluorescence microscopy and multiple-harmonic generation microscopy have recently gained popularity for cellular and tissue imaging. The optimization of these imaging methods for minimally invasive use will require optical fibers to conduct light into tight space where free space delivery is difficult. The delivery of high peak power laser pulses with optical fibers is limited by dispersion resulting from nonlinear refractive index responses. In this paper, we characterize a variety of commonly used optical fibers in terms of how they affect pulse profile and imaging performance of nonlinear microscopy; the following parameters are quantified: spectral bandwidth and temporal pulse width, two-photon excitation efficiency, and optical resolution. A theoretical explanation for the measured performance of these is also provided. PMID:18816597
NASA Astrophysics Data System (ADS)
Butte, Pramod V.; Vishwanath, Karthik; Pikul, Brian K.; Mycek, Mary-Ann; Marcu, Laura
2003-07-01
Time-Resolved Laser-Induced Fluorescence Spectroscopy (tr-LIFS) offers the potential for intra-operative diagnosis of primary brain tumors. However, both the intrinsic properties of endogenous fluorophores and the optical properties of brain tissue could affect the fluorescence measurements from brain. Scattering has been demonstrated to increase, for instance, detected lifetimes by 10-20% in media less scattering than the brain. The overall goal of this study is to investigate experimentally and computationally how optical properties of distinct types of brain tissue (normal porcine white and gray matter) affect the propagation of the excitation pulse and fluorescent transients and the detected fluorescence lifetime. A time-domain tr-LIFS apparatus (fast digitizer and gated detection) was employed to measure the propagation of ultra-short pulsed light through brain specimens (1-2.5-mm source-detector separation; 0.100-mm increment). A Monte Carlo model for semi-infinite turbid media was used to simulate time-resolved light propagation for arbitrary source-detector fiber geometries and optical fiber specifications; and to record spatially- and temporally resolved information. We determined a good correlation between experimental and computational results. Our findings provide means for quantification of time-resolved fluorescence spectra from healthy and diseased brain tissue.
Pace, P; Huntington, Shane; Lyytikäinen, K; Roberts, A; Love, J
2004-04-05
We show a quantitative connection between Refractive Index Profiles (RIP) and measurements made by an Atomic Force Microscope (AFM). Germanium doped fibers were chemically etched in hydrofluoric acid solution (HF) and the wet etching characteristics of germanium were studied using an AFM. The AFM profiles were compared to both a concentration profile of the preform determined using a Scanning Electron Microscope (SEM) and a RIP of the fiber measured using a commercial profiling instrument, and were found to be in excellent agreement. It is now possible to calculate the RIP of a germanium doped fiber directly from an AFM profile.
Schneider, Gerd; Guttmann, Peter; Rehbein, Stefan; Werner, Stephan; Follath, Rolf
2012-02-01
X-ray imaging offers a new 3-D view into cells. With its ability to penetrate whole hydrated cells it is ideally suited for pairing fluorescence light microscopy and nanoscale X-ray tomography. In this paper, we describe the X-ray optical set-up and the design of the cryo full-field transmission X-ray microscope (TXM) at the electron storage ring BESSY II. Compared to previous TXM set-ups with zone plate condenser monochromator, the new X-ray optical layout employs an undulator source, a spherical grating monochromator and an elliptically shaped glass capillary mirror as condenser. This set-up improves the spectral resolution by an order of magnitude. Furthermore, the partially coherent object illumination improves the contrast transfer of the microscope compared to incoherent conditions. With the new TXM, cells grown on flat support grids can be tilted perpendicular to the optical axis without any geometrical restrictions by the previously required pinhole for the zone plate monochromator close to the sample plane. We also developed an incorporated fluorescence light microscope which permits to record fluorescence, bright field and DIC images of cryogenic cells inside the TXM. For TXM tomography, imaging with multi-keV X-rays is a straightforward approach to increase the depth of focus. Under these conditions phase contrast imaging is necessary. For soft X-rays with shrinking depth of focus towards 10nm spatial resolution, thin optical sections through a thick specimen might be obtained by deconvolution X-ray microscopy. As alternative 3-D X-ray imaging techniques, the confocal cryo-STXM and the dual beam cryo-FIB/STXM with photoelectron detection are proposed. Copyright © 2012 Elsevier Inc. All rights reserved.
Fiber optical tweezers for microscale and nanoscale particle manipulation and force sensing
NASA Astrophysics Data System (ADS)
Liu, Yuxiang
2011-12-01
Optical tweezers have been an important tool in biology and physics for studying single molecules and colloidal systems. Most of current optical tweezers are built with microscope objectives, which are: i) expensive, ii) bulky and hard to integrate, iii) sensitive to environmental fluctuations, iv) limited in terms of working distances from the substrate, and v) rigid with the requirements on the substrate (transparent substrate made with glass and with a fixed thickness). These limitations of objective-based optical tweezers prevent them from being miniaturized. Fiber optical tweezers can provide a solution for cost reduction and miniaturization, and these optical tweezers can be potentially used in microfluidic systems. However, the existing fiber optical tweezers have the following limitations: i) low trapping efficiency due to weakly focused beams, ii) lack of the ability to control the positions of multiple particles simultaneously, and iii) limited functionalities. The overall objective of this dissertation work is to further the fundamental understanding of fiber optical tweezers through experimental study and modeling, and to develop novel fiber optical tweezers systems to enhance the capability and functionalities of fiber optical tweezers as microscale and nanoscale manipulators/sensors. The contributions of this dissertation work are summarized as follows. i) An enhanced understanding of the inclined dual-fiber optical tweezers (DFOTs) system has been achieved. Stable three dimensional (3D) optical trapping of a single micron-sized particle has been experimentally demonstrated. This is the first time that the trapping efficiency has been calibrated and the stiffness of the trap has been obtained in the experiments, which has been carried out by using two methods: the drag force method and power spectrum analysis. Such calibration enables the system to be used as a picoNewton-level force sensor in addition to a particle manipulator. The influence of system parameters on the trapping performance has been carefully investigated through both experimental and numerical studies. ii) Multiple traps have been created and carefully studied with the inclined DFOTs for the first time. Three traps, one 3D trap and two 2D traps, have been experimentally created at different vertical levels with adjustable separations and positions. iii) Multiple functionalities have been achieved and studied for the first time with the inclined DFOTs. Particle separation, grouping, stacking, rod alignment, rod rotation, and optical binding have been experimentally demonstrated. The multiple functionalities allow the inclined DFOTs to find applications in the study of interaction forces in colloidal systems as well as parallel particle manipulation in drug delivery systems. iv) Far-field superfocusing effect has been investigated and successfully demonstrated with a fiber-based surface plasmonic (SP) lens for the first time. A planar SP lens with a set of concentric nanoscale rings on a fiber endface has been developed. For the first time, a focus size that is comparable to the smallest achievable focus size of high NA objective lenses has been achieved with the fiber-based SP lens. The fiber-based SP lens can bridge the nanoscale particles/systems and the macroscale power sources/detectors, which has been a long standing challenge for nanophotonics. In addition to optical trapping, the fiber-based SP lens will impact many applications including high-resolution lithography, high-resolution fluorescence detection, and sub-wavelength imaging. v) Trapping ability enhanced with the fiber-based SP lens has been successfully demonstrated. With the help of the fiber-based SP lens, the trapping efficiency of fiber optical tweezers has been significantly enhanced, which is comparable with that of objective-based optical tweezers. A submicron-sized bacterium has been successfully trapped in three dimensions for the first time with optical tweezers based on single fibers.
Label-free imaging of rat spinal cords based on multiphoton microscopy
NASA Astrophysics Data System (ADS)
Liao, Chenxi; Wang, Zhenyu; Zhou, Linquan; Zhu, Xiaoqin; Liu, Wenge; Chen, Jianxin
2016-10-01
As an integral part of the central nervous system, the spinal cord is a communication cable between the body and the brain. It mainly contains neurons, glial cells, nerve fibers and fiber tracts. The recent development of the optical imaging technique allows high-resolution imaging of biological tissues with the great potential for non-invasively looking inside the body. In this work, we evaluate the imaging capacity of multiphoton microscopy (MPM) based on second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) for the cells and extracellular matrix in the spinal cord at molecular level. Rat spinal cord tissues were sectioned and imaged by MPM to demonstrate that MPM is able to show the microstructure including white matter, gray matter, ventral horns, dorsal horns, and axons based on the distinct intrinsic sources in each region of spinal cord. In the high-resolution and high-contrast MPM images, the cell profile can be clearly identified as dark shadows caused by nuclei and encircled by cytoplasm. The nerve fibers in white matter region emitted both SHG and TPEF signals. The multiphoton microscopic imaging technique proves to be a fast and effective tool for label-free imaging spinal cord tissues, based on endogenous signals in biological tissue. It has the potential to extend this optical technique to clinical study, where the rapid and damage-free imaging is needed.
Multifocal Fluorescence Microscope for Fast Optical Recordings of Neuronal Action Potentials
Shtrahman, Matthew; Aharoni, Daniel B.; Hardy, Nicholas F.; Buonomano, Dean V.; Arisaka, Katsushi; Otis, Thomas S.
2015-01-01
In recent years, optical sensors for tracking neural activity have been developed and offer great utility. However, developing microscopy techniques that have several kHz bandwidth necessary to reliably capture optically reported action potentials (APs) at multiple locations in parallel remains a significant challenge. To our knowledge, we describe a novel microscope optimized to measure spatially distributed optical signals with submillisecond and near diffraction-limit resolution. Our design uses a spatial light modulator to generate patterned illumination to simultaneously excite multiple user-defined targets. A galvanometer driven mirror in the emission path streaks the fluorescence emanating from each excitation point during the camera exposure, using unused camera pixels to capture time varying fluorescence at rates that are ∼1000 times faster than the camera’s native frame rate. We demonstrate that this approach is capable of recording Ca2+ transients resulting from APs in neurons labeled with the Ca2+ sensor Oregon Green Bapta-1 (OGB-1), and can localize the timing of these events with millisecond resolution. Furthermore, optically reported APs can be detected with the voltage sensitive dye DiO-DPA in multiple locations within a neuron with a signal/noise ratio up to ∼40, resolving delays in arrival time along dendrites. Thus, the microscope provides a powerful tool for photometric measurements of dynamics requiring submillisecond sampling at multiple locations. PMID:25650920
2017-05-05
results of this project there are: (1) the investigation of the effect of phonons on the optical properties of solid state emitters. A microscopic ...In what follows we list the main results and undergoing research. 2. Results 2.1 Microscopic modeling...fluorescent markers for biological measurements. Here, we present a first-‐principles microscopic description
Development of HiLo Microscope and its use in In-Vivo Applications
NASA Astrophysics Data System (ADS)
Patel, Shreyas J.
The functionality of achieving optical sectioning in biomedical research is invaluable as it allows for visualization of a biological sample at different depths while being free of background scattering. Most current microscopy techniques that offer optical sectioning, unfortunately, require complex instrumentation and thus are generally costly. HiLo microscopy, on the other hand, offers the same functionality and advantage at a relatively low cost. Hence, the work described in this thesis involves the design, build, and application of a HiLo microscope. More specifically, a standalone HiLo microscope was built in addition to implementing HiLo microscopy on a standard fluorescence microscope. In HiLo microscopy, optical sectioning is achieved by acquiring two different types of images per focal plane. One image is acquired under uniform illumination and the other is acquired under speckle illumination. These images are processed using an algorithm that extracts in-focus information and removes features and glare that occur as a result of background fluorescence. To show the benefits of the HiLo microscopy, several imaging experiments on various samples were performed under a HiLo microscope and compared against a traditional fluorescence microscope and a confocal microscope, which is considered the gold standard in optical imaging. In-vitro and ex-vivo imaging was performed on a set of pollen grains, and optically cleared mouse brain and heart slices. Each of these experiments showed great reduction in background scattering at different depths under HiLo microscopy. More importantly, HiLo imaging of optically cleared heart slice demonstrated emergence of different vasculature at different depths. Reduction of out-of-focus light increased the spatial resolution and allowed better visualization of capillary vessels. Furthermore, HiLo imaging was tested in an in-vivo model of a rodent dorsal window chamber model. When imaging the same sample under confocal microscope, the results were comparable between the two modalities. Additionally, a method of achieving blood flow maps at different depth using a combination of HiLo and LSI imaging is also discussed. The significance of this combined technique could help categorize blood flow to particular depths; this can help improve outcomes of medical treatments such pulse dye laser and photodynamic therapy treatments.
Braaf, Boy; de Boer, Johannes F
2017-03-20
Three-dimensional confocal fluorescence imaging of in vivo tissues is challenging due to sample motion and limited imaging speeds. In this paper a novel method is therefore presented for scanning confocal epi-fluorescence microscopy with instantaneous depth-sensing based on self-interference fluorescence microscopy (SIFM). A tabletop epi-fluorescence SIFM setup was constructed with an annular phase plate in the emission path to create a spectral self-interference signal that is phase-dependent on the axial position of a fluorescent sample. A Mach-Zehnder interferometer based on a 3 × 3 fiber-coupler was developed for a sensitive phase analysis of the SIFM signal with three photon-counter detectors instead of a spectrometer. The Mach-Zehnder interferometer created three intensity signals that alternately oscillated as a function of the SIFM spectral phase and therefore encoded directly for the axial sample position. Controlled axial translation of fluorescent microsphere layers showed a linear dependence of the SIFM spectral phase with sample depth over axial image ranges of 500 µm and 80 µm (3.9 × Rayleigh range) for 4 × and 10 × microscope objectives respectively. In addition, SIFM was in good agreement with optical coherence tomography depth measurements on a sample with indocyanine green dye filled capillaries placed at multiple depths. High-resolution SIFM imaging applications are demonstrated for fluorescence angiography on a dye-filled capillary blood vessel phantom and for autofluorescence imaging on an ex vivo fly eye.
NASA Astrophysics Data System (ADS)
Chang, Ying-Feng; Chen, Ran-Chou; Li, Ying-Chang; Yu, Chih-Jen; Hsieh, Bao-Yu; Chou, Chien
2007-11-01
Alpha-fetoprotein (AFP) detection by using a localized surface plasmon coupled fluorescence (LSPCF) fiber-optic biosensor is setup and experimentally demonstrated. It is based on gold nanoparticle (GNP) and coupled with localized surface plasmon wave on the surface of GNP. In this experiment, the fluorophores are labeled on anti-AFP which are bound to protein A conjugated GNP. Thus, LSPCF is excited with high efficiency in the near field of localized surface plasmon wave. Therefore, not only the sensitivity of LSPCF biosensor is enhanced but also the specific selectivity of AFP is improved. Experimentally, the ability of real time measurement in the range of AFP concentration from 0.1ng/ml to 100ng/ml was detected. To compare with conventional methods such as enzyme-linked immunosorbent assay (ELISA) or radioimmunoassay (RIA), the LSPCF fiber-optic biosensor performs higher or comparable detection sensitivity, respectively.
Scalable ion-photon quantum interface based on integrated diffractive mirrors
NASA Astrophysics Data System (ADS)
Ghadimi, Moji; Blūms, Valdis; Norton, Benjamin G.; Fisher, Paul M.; Connell, Steven C.; Amini, Jason M.; Volin, Curtis; Hayden, Harley; Pai, Chien-Shing; Kielpinski, David; Lobino, Mirko; Streed, Erik W.
2017-12-01
Quantum networking links quantum processors through remote entanglement for distributed quantum information processing and secure long-range communication. Trapped ions are a leading quantum information processing platform, having demonstrated universal small-scale processors and roadmaps for large-scale implementation. Overall rates of ion-photon entanglement generation, essential for remote trapped ion entanglement, are limited by coupling efficiency into single mode fibers and scaling to many ions. Here, we show a microfabricated trap with integrated diffractive mirrors that couples 4.1(6)% of the fluorescence from a 174Yb+ ion into a single mode fiber, nearly triple the demonstrated bulk optics efficiency. The integrated optic collects 5.8(8)% of the π transition fluorescence, images the ion with sub-wavelength resolution, and couples 71(5)% of the collected light into the fiber. Our technology is suitable for entangling multiple ions in parallel and overcomes mode quality limitations of existing integrated optical interconnects.
Small Angle X-Ray Scattering Detector
Hessler, Jan P.
2004-06-15
A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.
NASA Astrophysics Data System (ADS)
Suen, Ricky Wai
The work described in this thesis covers the conversion of HiLo image processing into MATLAB architecture and the use of speckle-illumination HiLo microscopy for use of ex-vivo and in-vivo imaging of thick tissue models. HiLo microscopy is a wide-field fluorescence imaging technique and has been demonstrated to produce optically sectioned images comparable to confocal in thin samples. The imaging technique was developed by Jerome Mertz and the Boston University Biomicroscopy Lab and has been implemented in our lab as a stand-alone optical setup and a modification to a conventional fluorescence microscope. Speckle-illumination HiLo microscopy combines two images taken under speckle-illumination and standard uniform-illumination to generate an optically sectioned image that reject out-of-focus fluorescence. The evaluated speckle contrast in the images is used as a weighting function where elements that move out-of-focus have a speckle contrast that decays to zero. The experiments shown here demonstrate the capability of our HiLo microscopes to produce optically-sectioned images of the microvasculature of ex-vivo and in-vivo thick tissue models. The HiLo microscope were used to image the microvasculature of ex-vivo mouse heart sections prepared for optical histology and the microvasculature of in-vivo rodent dorsal window chamber models. Studies in label-free surface profiling with HiLo microscopy is also presented.
Xiong, Yan; Ye, Zhongbin; Xu, Jing; Liu, Yucheng; Zhang, Hanyin
2014-04-01
A fiber-optic evanescent wave sensor for bisphenol A (BPA) determination based on a molecularly imprinted polymer (MIP)-modified fiber column was developed. MIP film immobilized with BPA was synthesized on the fiber column, and the sensor was then constructed by inserting the optical fiber prepared into a transparent capillary. A microchannel (about 2.0 μL) formed between the fiber and the capillary acted as a flow cell. BPA can be selectively adsorbed online by the MIP film and excited to produce fluorescence by the evanescent wave produced on the fiber core surface. The conditions for BPA enrichment, elution, and fluorescence detection are discussed in detail. The analytical measurements were made at 276 nm/306 nm (λ(ex)/λ(em)), and linearity of 3 × 10(-9)-5 × 10(-6) g mL(-1) BPA, a limit of detection of 1.7 × 10(-9) g mL(-1) BPA (3σ), and a relative standard deviation of 2.4% (n = 5) were obtained. The sensor selectivity and MIP binding measurement were also evaluated. The results indicated that the selectivity and sensitivity of the proposed fiber-optic sensor could be greatly improved by using MIP as a recognition and enrichment element. Further, by modification of the sensing and detection elements on the optical fiber, the proposed sensor showed the advantages of easy fabrication and low cost. The novel sensor configuration provided a platform for monitoring other species by simply changing the light source and sensing elements. The sensor presented has been successfully applied to determine BPA released from plastic products treated at different temperatures.
Venkataraman, Sowmyalakshmi; Narayan, Shoba; Chadha, Anju
2016-10-14
Confocal microscopic studies with the resting cells of yeast, Candida parapsilosis ATCC 7330, a reportedly versatile biocatalyst for redox enzyme mediated preparation of optically pure secondary alcohols in high optical purities [enantiomeric excess (ee) up to >99%] and yields, revealed that the yeast cells had large vacuoles under the experimental conditions studied where the redox reaction takes place. A novel fluorescence method was developed using 1-(6-methoxynaphthalen-2-yl)ethanol to track the site of biotransformation within the cells. This alcohol, itself non-fluorescent, gets oxidized to produce a fluorescent ketone, 1-(6-methoxynaphthalen-2-yl)ethanone. Kinetic studies showed that the reaction occurs spontaneously and the products get released out of the cells in less time [5 mins]. The biotransformation was validated using HPLC.
In situ TEM Raman spectroscopy and laser-based materials modification.
Allen, F I; Kim, E; Andresen, N C; Grigoropoulos, C P; Minor, A M
2017-07-01
We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS 2 combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.
Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D
2014-10-01
Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.
Sanderson, Michael J.; Smith, Ian; Parker, Ian; Bootman, Martin D.
2016-01-01
Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. PMID:25275114
Miniaturized video-rate epi-third-harmonic-generation fiber-microscope.
Chia, Shih-Hsuan; Yu, Che-Hang; Lin, Chih-Han; Cheng, Nai-Chia; Liu, Tzu-Ming; Chan, Ming-Che; Chen, I-Hsiu; Sun, Chi-Kuang
2010-08-02
With a micro-electro-mechanical system (MEMS) mirror, we successfully developed a miniaturized epi-third-harmonic-generation (epi-THG) fiber-microscope with a video frame rate (31 Hz), which was designed for in vivo optical biopsy of human skin. With a large-mode-area (LMA) photonic crystal fiber (PCF) and a regular microscopic objective, the nonlinear distortion of the ultrafast pulses delivery could be much reduced while still achieving a 0.4 microm lateral resolution for epi-THG signals. In vivo real time virtual biopsy of the Asian skin with a video rate (31 Hz) and a sub-micron resolution was obtained. The result indicates that this miniaturized system was compact enough for the least invasive hand-held clinical use.
Detection of chlorinated aromatic compounds
Ekechukwu, A.A.
1996-02-06
A method for making a composition for measuring the concentration of chlorinated aromatic compounds in aqueous fluids, and an optical probe for use with the method are disclosed. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis. 5 figs.
Detection of chlorinated aromatic compounds
Ekechukwu, Amy A.
1996-01-01
A method for making a composition for measuring the concentration of chloated aromatic compounds in aqueous fluids, and an optical probe for use with the method. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis.
NASA Astrophysics Data System (ADS)
Vizet, Jérémy; Manhas, Sandeep; Tran, Jacqueline; Validire, Pierre; Benali, Abdelali; Garcia-Caurel, Enric; Pierangelo, Angelo; Martino, Antonello De; Pagnoux, Dominique
2016-07-01
This paper reports a technique based on spectrally differential measurement for determining the full Mueller matrix of a biological sample through an optical fiber. In this technique, two close wavelengths were used simultaneously, one for characterizing the fiber and the other for characterizing the assembly of fiber and sample. The characteristics of the fiber measured at one wavelength were used to decouple its contribution from the measurement on the assembly of fiber and sample and then to extract sample Mueller matrix at the second wavelength. The proof of concept was experimentally validated by measuring polarimetric parameters of various calibrated optical components through the optical fiber. Then, polarimetric images of histological cuts of human colon tissues were measured, and retardance, diattenuation, and orientation of the main axes of fibrillar regions were displayed. Finally, these images were successfully compared with images obtained by a free space Mueller microscope. As the reported method does not use any moving component, it offers attractive integration possibilities with an endoscopic probe.
Vizet, Jérémy; Manhas, Sandeep; Tran, Jacqueline; Validire, Pierre; Benali, Abdelali; Garcia-Caurel, Enric; Pierangelo, Angelo; De Martino, Antonello; Pagnoux, Dominique
2016-07-01
This paper reports a technique based on spectrally differential measurement for determining the full Mueller matrix of a biological sample through an optical fiber. In this technique, two close wavelengths were used simultaneously, one for characterizing the fiber and the other for characterizing the assembly of fiber and sample. The characteristics of the fiber measured at one wavelength were used to decouple its contribution from the measurement on the assembly of fiber and sample and then to extract sample Mueller matrix at the second wavelength. The proof of concept was experimentally validated by measuring polarimetric parameters of various calibrated optical components through the optical fiber. Then, polarimetric images of histological cuts of human colon tissues were measured, and retardance, diattenuation, and orientation of the main axes of fibrillar regions were displayed. Finally, these images were successfully compared with images obtained by a free space Mueller microscope. As the reported method does not use any moving component, it offers attractive integration possibilities with an endoscopic probe.
NASA Astrophysics Data System (ADS)
Angulo-Rodríguez, Leticia M.; Laurence, Audrey; Jermyn, Michael; Sheehy, Guillaume; Sibai, Mira; Petrecca, Kevin; Roberts, David W.; Paulsen, Keith D.; Wilson, Brian C.; Leblond, Frédéric
2016-03-01
Cancer tissue often remains after brain tumor resection due to the inability to detect the full extent of cancer during surgery, particularly near tumor boundaries. Commercial systems are available for intra-operative real-time aminolevulenic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence imaging. These are standard white-light neurosurgical microscopes adapted with optical components for fluorescence excitation and detection. However, these instruments lack sensitivity and specificity, which limits the ability to detect low levels of PpIX and distinguish it from tissue auto-fluorescence. Current systems also cannot provide repeatable and un-biased quantitative fluorophore concentration values because of the unknown and highly variable light attenuation by tissue. We present a highly sensitive spectroscopic fluorescence imaging system that is seamlessly integrated onto a neurosurgical microscope. Hardware and software were developed to achieve through-microscope spatially-modulated illumination for 3D profilometry and to use this information to extract tissue optical properties to correct for the effects of tissue light attenuation. This gives pixel-by-pixel quantified fluorescence values and improves detection of low PpIX concentrations. This is achieved using a high-sensitivity Electron Multiplying Charge Coupled Device (EMCCD) with a Liquid Crystal Tunable Filter (LCTF) whereby spectral bands are acquired sequentially; and a snapshot camera system with simultaneous acquisition of all bands is used for profilometry and optical property recovery. Sensitivity and specificity to PpIX is demonstrated using brain tissue phantoms and intraoperative human data acquired in an on-going clinical study using PpIX fluorescence to guide glioma resection.
Evanescent wave assisted nanomaterial coating.
Mondal, Samir K; Pal, Sudipta Sarkar; Kumbhakar, Dharmadas; Tiwari, Umesh; Bhatnagar, Randhir
2013-08-01
In this work we present a novel nanomaterial coating technique using evanescent wave (EW). The gradient force in the EW is used as an optical tweezer for tweezing and self-assembling nanoparticles on the source of EW. As a proof of the concept, we have used a laser coupled etched multimode optical fiber, which generates EW for the EW assisted coating. The section-wise etched multimode optical fiber is horizontally and superficially dipped into a silver/gold nanoparticles solution while the laser is switched on. The fiber is left until the solution recedes due to evaporation leaving the fiber in air. The coating time usually takes 40-50 min at room temperature. The scanning electron microscope image shows uniform and thin coating of self-assembled nanoparticles due to EW around the etched section. A coating thickness <200 nm is achieved. The technique could be useful for making surface-plasmon-resonance-based optical fiber probes and other plasmonic circuits.
Enzyme activity assays within microstructured optical fibers enabled by automated alignment.
Warren-Smith, Stephen C; Nie, Guiying; Schartner, Erik P; Salamonsen, Lois A; Monro, Tanya M
2012-12-01
A fluorescence-based enzyme activity assay has been demonstrated within a small-core microstructured optical fiber (MOF) for the first time. To achieve this, a reflection-based automated alignment system has been developed, which uses feedback and piezoelectric actuators to maintain optical alignment. The auto-alignment system provides optical stability for the time required to perform an activity assay. The chosen assay is based on the enzyme proprotein convertase 5/6 (PC6) and has important applications in women's health.
Safely splicing glass optical fibers
NASA Technical Reports Server (NTRS)
Korbelak, K.
1980-01-01
Field-repair technique fuses glass fibers in flammable environment. Apparatus consists of v-groove vacuum chucks on manipulators, high-voltage dc power supply and tungsten electrodes, microscope to observe joint alignment and fusion, means of test transmission through joint. Apparatus is enclosed in gas tight bos filled with inert gas during fusion. About 2 feet of fiber end are necessary for splicing.
Biological applications of confocal fluorescence polarization microscopy
NASA Astrophysics Data System (ADS)
Bigelow, Chad E.
Fluorescence polarization microscopy is a powerful modality capable of sensing changes in the physical properties and local environment of fluorophores. In this thesis we present new applications for the technique in cancer diagnosis and treatment and explore the limits of the modality in scattering media. We describe modifications to our custom-built confocal fluorescence microscope that enable dual-color imaging, optical fiber-based confocal spectroscopy and fluorescence polarization imaging. Experiments are presented that indicate the performance of the instrument for all three modalities. The limits of confocal fluorescence polarization imaging in scattering media are explored and the microscope parameters necessary for accurate polarization images in this regime are determined. A Monte Carlo routine is developed to model the effect of scattering on images. Included in it are routines to track the polarization state of light using the Mueller-Stokes formalism and a model for fluorescence generation that includes sampling the excitation light polarization ellipse, Brownian motion of excited-state fluorophores in solution, and dipole fluorophore emission. Results from this model are compared to experiments performed on a fluorophore-embedded polymer rod in a turbid medium consisting of polystyrene microspheres in aqueous suspension. We demonstrate the utility of the fluorescence polarization imaging technique for removal of contaminating autofluorescence and for imaging photodynamic therapy drugs in cell monolayers. Images of cells expressing green fluorescent protein are extracted from contaminating fluorescein emission. The distribution of meta-tetrahydroxypheny1chlorin in an EMT6 cell monolayer is also presented. A new technique for imaging enzyme activity is presented that is based on observing changes in the anisotropy of fluorescently-labeled substrates. Proof-of-principle studies are performed in a model system consisting of fluorescently labeled bovine serum albumin attached to sepharose beads. The action of trypsin and proteinase K on the albumin is monitored to demonstrate validity of the technique. Images of the processing of the albumin in J774 murine macrophages are also presented indicating large intercellular differences in enzyme activity. Future directions for the technique are also presented, including the design of enzyme probes specific for prostate specific antigen based on fluorescently-labeled dendrimers. A technique for enzyme imaging based on extracellular autofluorescence is also proposed.
Asbestos Testing: Is the EPA Misleading You?
ERIC Educational Resources Information Center
Levins, Hoag
1983-01-01
Experts warn that only electron microscopes can see the smaller fibers of asbestos that are known to cause the most cancers, though the Environmental Protection Agency still endorses optical microscopes for asbestos removal verification. Asbestos testing methods are explained and sources of information are provided. (MLF)
Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeltner, R.; Russell, P. St.J.; Department of Physics, University of Erlangen-Nuremberg, Guenther-Scharowsky-Str. 1, 91058 Erlangen
2016-06-06
We report an irradiation sensor based on a fluorescent “flying particle” that is optically trapped and propelled inside the core of a water-filled hollow-core photonic crystal fiber. When the moving particle passes through an irradiated region, its emitted fluorescence is captured by guided modes of the fiber core and so can be monitored using a filtered photodiode placed at the fiber end. The particle speed and position can be precisely monitored using in-fiber Doppler velocimetry, allowing the irradiation profile to be measured to a spatial resolution of ∼10 μm. The spectral response can be readily adjusted by appropriate choice of particlemore » material. Using dye-doped polystyrene particles, we demonstrate detection of green (532 nm) and ultraviolet (340 nm) light.« less
Highly Stretchable, Strain Sensing Hydrogel Optical Fibers.
Guo, Jingjing; Liu, Xinyue; Jiang, Nan; Yetisen, Ali K; Yuk, Hyunwoo; Yang, Changxi; Khademhosseini, Ali; Zhao, Xuanhe; Yun, Seok-Hyun
2016-12-01
A core-clad fiber made of elastic, tough hydrogels is highly stretchable while guiding light. Fluorescent dyes are easily doped into the hydrogel fiber by diffusion. When stretched, the transmission spectrum of the fiber is altered, enabling the strain to be measured and also its location. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diffraction Pattern Analysis as an Optical Inspection Technique
1991-08-01
BACKGROUND Diameters of fiber samples have commonly been measured manually with an optical microscope. Marcuse and Presby developed an automatic...by analyzing the back-scattered light when a beam of laser light impinged upon the fiber [2]. Presby and Marcuse extended this back-scattering tech...be im- proved further in order to become a feasible method for detecting a small number of blocked openings in CRT screens. 20 REFERENCES 1. Marcuse
Bishara, Waheb; Sikora, Uzair; Mudanyali, Onur; Su, Ting-Wei; Yaglidere, Oguzhan; Luckhart, Shirley; Ozcan, Aydogan
2011-04-07
We report a portable lensless on-chip microscope that can achieve <1 µm resolution over a wide field-of-view of ∼ 24 mm(2) without the use of any mechanical scanning. This compact on-chip microscope weighs ∼ 95 g and is based on partially coherent digital in-line holography. Multiple fiber-optic waveguides are butt-coupled to light emitting diodes, which are controlled by a low-cost micro-controller to sequentially illuminate the sample. The resulting lensfree holograms are then captured by a digital sensor-array and are rapidly processed using a pixel super-resolution algorithm to generate much higher resolution holographic images (both phase and amplitude) of the objects. This wide-field and high-resolution on-chip microscope, being compact and light-weight, would be important for global health problems such as diagnosis of infectious diseases in remote locations. Toward this end, we validate the performance of this field-portable microscope by imaging human malaria parasites (Plasmodium falciparum) in thin blood smears. Our results constitute the first-time that a lensfree on-chip microscope has successfully imaged malaria parasites.
Axial contraction in etched optical fiber due to internal stress reduction.
Lim, Kok-Sing; Yang, Hang-Zhou; Chong, Wu-Yi; Cheong, Yew-Ken; Lim, Chin-Hong; Ali, Norfizah M; Ahmad, Harith
2013-02-11
When an optical fiber is dipped in an etching solution, the internal stress profile in the fiber varies with the fiber diameter. We observed a physical contraction as much as 0.2% in the fiber axial dimension when the fiber was reduced from its original diameter to ~6 µm through analysis using high resolution microscope images of the grating period of an etched FBG at different fiber diameters. This axial contraction is related to the varying axial stress profile in the fiber when the fiber diameter is reduced. On top of that, the refractive index of fiber core increases with reducing fiber diameter due to stress-optic effect. The calculated index increment is as much as 1.8 × 10(-3) at the center of fiber core after the diameter is reduced down to ~6 µm. In comparison with the conventional model that assumes constant grating period and neglects the variation in stress-induced index change in fiber core, our proposed model indicates a discrepancy as much as 3nm in Bragg wavelength at a fiber diameter of ~6 µm.
Compact whole-body fluorescent imaging of nude mice bearing EGFP expressing tumor
NASA Astrophysics Data System (ADS)
Chen, Yanping; Xiong, Tao; Chu, Jun; Yu, Li; Zeng, Shaoqun; Luo, Qingming
2005-01-01
Issue of tumor has been a hotspot of current medicine. It is important for tumor research to detect tumors bearing in animal models easily, fast, repetitively and noninvasivly. Many researchers have paid their increasing interests on the detecting. Some contrast agents, such as green fluorescent protein (GFP) and Discosoma red fluorescent protein (Dsred) were applied to enhance image quality. Three main kinds of imaging scheme were adopted to visualize fluorescent protein expressing tumors in vivo. These schemes based on fluorescence stereo microscope, cooled charge-coupled-device (CCD) or camera as imaging set, and laser or mercury lamp as excitation light source. Fluorescence stereo microscope, laser and cooled CCD are expensive to many institutes. The authors set up an inexpensive compact whole-body fluorescent imaging tool, which consisted of a Kodak digital camera (model DC290), fluorescence filters(B and G2;HB Optical, Shenyang, Liaoning, P.R. China) and a mercury 50-W lamp power supply (U-LH50HG;Olympus Optical, Japan) as excitation light source. The EGFP was excited directly by mercury lamp with D455/70 nm band-pass filter and fluorescence was recorded by digital camera with 520nm long-pass filter. By this easy operation tool, the authors imaged, in real time, fluorescent tumors growing in live mice. The imaging system is external and noninvasive. For half a year our experiments suggested the imaging scheme was feasible. Whole-body fluorescence optical imaging for fluorescent expressing tumors in nude mouse is an ideal tool for antitumor, antimetastatic, and antiangiogenesis drug screening.
Solution-mediated cladding doping of commercial polymer optical fibers
NASA Astrophysics Data System (ADS)
Stajanca, Pavol; Topolniak, Ievgeniia; Pötschke, Samuel; Krebber, Katerina
2018-03-01
Solution doping of commercial polymethyl methacrylate (PMMA) polymer optical fibers (POFs) is presented as a novel approach for preparation of custom cladding-doped POFs (CD-POFs). The presented method is based on a solution-mediated diffusion of dopant molecules into the fiber cladding upon soaking of POFs in a methanol-dopant solution. The method was tested on three different commercial POFs using Rhodamine B as a fluorescent dopant. The dynamics of the diffusion process was studied in order to optimize the doping procedure in terms of selection of the most suitable POF, doping time and conditions. Using the optimized procedure, longer segment of fluorescent CD-POF was prepared and its performance was characterized. Fiber's potential for sensing and illumination applications was demonstrated and discussed. The proposed method represents a simple and cheap way for fabrication of custom, short to medium length CD-POFs with various dopants.
NASA Astrophysics Data System (ADS)
Arregui, Francisco J.; Matías, Ignacio R.; Claus, Richard O.
2007-07-01
The Layer-by-Layer Electrostatic Self-Assembly (ESA) method has been successfully used for the design and fabrication of nanostructured materials. More specifically, this technique has been applied for the deposition of thin films on optical fibers with the purpose of fabricating different types of optical fiber sensors. In fact, optical fiber sensors for measuring humidity, temperature, pH, hydrogen peroxide, glucose, volatile organic compounds or even gluten have been already experimentally demonstrated. The versatility of this technique allows the deposition of these sensing coatings on flat substrates and complex geometries as well. For instance, nanoFabry-Perots and microgratings have been formed on cleaved ends of optical fibers (flat surfaces) and also sensing coatings have been built onto long period gratings (cylindrical shape), tapered fiber ends (conical shape), biconically tapered fibers or even the internal side of hollow core fibers. Among the different materials used for the construction of these sensing nanostructured coatings, diverse types such as polymers, inorganic semiconductors, colorimetric indicators, fluorescent dyes, quantum dots or even biological elements as enzymes can be found. This technique opens the door to the fabrication of new types of optical fiber sensors.
Flow cytometry without alignment of collection optics.
Sitton, Greg; Srienc, Friedrich
2009-12-01
This study describes the performance of a new waveguide flow cell constructed from Teflon AF (TFC) and the potential use of fiber optic splitters to replace collection objectives and dichroic mirrors. The TFC has the unique optical property that the refractive index of the polymer is lower than water and therefore, water filled TFC behaves and functions as a liquid core waveguide. Thus, as cells flow through the TFC and are illuminated by a laser orthogonal to the flow direction, scattered and fluorescent light is directed down the axis of the TFC to a fiber optic. The total signal in the fiber optic is then split into multiple fibers by fiber optic splitters to enable measurement of signal intensities at different wavelengths. Optical filters are placed at the terminus of each fiber before measurement of specific wavelengths by a PMT. The constructed system was used to measure DNA content of CHO and yeast cells. Polystyrene beads were used for alignment and to assess the performance of the system. Polystyrene beads were observed to produce light scattering signals with unique bimodal characteristics dependent on the direction of flow relative to the collecting fiber optic.
Modular separation-based fiber-optic sensors for remote in situ monitoring.
Dickens, J; Sepaniak, M
2000-02-01
A modular separation-based fiber-optic sensor (SBFOS) with an integrated electronically controlled injection device is described for potential use in remote environmental monitoring. An SBFOS is a chemical monitor that integrates the separation selectivity and versatility afforded by capillary electrophoresis with the remote and high sensitivity capabilities of fiber-optic-based laser-induced fluorescence sensing. The detection module of the SBFOS accommodates all essential sensing components for dual-optical fiber, on-capillary fluorescence detection. An injection module, similar to injection platforms on micro-analysis chips, is also integrated to the SBFOS. The injection module allows for electronically controlled injection of the sample onto the separation capillary. The design and operational characteristics of the modular SBFOS are discussed in this paper. A micellar electrokinetic capillary chromatography mode of separation is employed to evaluate the potential of the sensor for in situ monitoring of neutral toxins (aflatoxins). The analytical figures of merit for the modular SBFOS include analysis times of between 5 and 10 min, separation efficiencies of approximately 10(4) theoretical plates, detection limits for aflatoxins in the mid-to-low nanomolar range, and controllable operation that results in sensor performance that is largely immune to sample matrix effects.
AOTF microscope for imaging with increased speed and spectral versatility.
Wachman, E S; Niu, W; Farkas, D L
1997-01-01
We have developed a new fluorescence microscope that addresses the spectral and speed limitations of current light microscopy instrumentation. In the present device, interference and neutral density filters normally used for fluorescence excitation and detection are replaced by acousto-optic tunable filters (AOTFs). Improvements are described, including the use of a dispersing prism in conjunction with the imaging AOTF and an oblique-illumination excitation scheme, which together enable the AOTF microscope to produce images comparable to those obtained with conventional fluorescence instruments. The superior speed and spectral versatility of the AOTF microscope are demonstrated by a ratio image pair acquired in 3.5 ms and a micro-spectral absorbance measurement of hemoglobin through a cranial window in a living mouse. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:9284289
Epstein, Richard I.; Edwards, Bradley C.; Buchwald, Melvin I.; Gosnell, Timothy R.
1995-01-01
Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement.
Epstein, R.I.; Edwards, B.C.; Buchwald, M.I.; Gosnell, T.R.
1995-09-05
Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement. 6 figs.
Photothermal camera port accessory for microscopic thermal diffusivity imaging
NASA Astrophysics Data System (ADS)
Escola, Facundo Zaldívar; Kunik, Darío; Mingolo, Nelly; Martínez, Oscar Eduardo
2016-06-01
The design of a scanning photothermal accessory is presented, which can be attached to the camera port of commercial microscopes to measure thermal diffusivity maps with micrometer resolution. The device is based on the thermal expansion recovery technique, which measures the defocusing of a probe beam due to the curvature induced by the local heat delivered by a focused pump beam. The beam delivery and collecting optics are built using optical fiber technology, resulting in a robust optical system that provides collinear pump and probe beams without any alignment adjustment necessary. The quasiconfocal configuration for the signal collection using the same optical fiber sets very restrictive conditions on the positioning and alignment of the optical components of the scanning unit, and a detailed discussion of the design equations is presented. The alignment procedure is carefully described, resulting in a system so robust and stable that no further alignment is necessary for the day-to-day use, becoming a tool that can be used for routine quality control, operated by a trained technician.
1998-02-05
Scarning electron microscope images of the surface of ZBLAN fibers pulled in microgravity (ug) and on Earth (1g) show the crystallization that normally occurs in ground-based processing. The face of each crystal will reflect or refract a portion of the optical signal, thus degrading its quality. NASA is conducting research on pulling ZBLAN fibers in the low-g environment of space to prevent crystallization that limits ZBLAN's usefulness in optical fiber-based communications. ZBLAN is a heavy-metal fluoride glass that shows exdeptional promise for high-throughput communications with infrared lasers. Photo credit: NASA/Marshall Space Flight Center
Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images.
Watson, Jeffrey R; Gainer, Christian F; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G Michael; Anton, Rein; Romanowski, Marek
2015-10-01
Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures.
Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images
NASA Astrophysics Data System (ADS)
Watson, Jeffrey R.; Gainer, Christian F.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael, Jr.; Anton, Rein; Romanowski, Marek
2015-10-01
Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures.
Laser-induced fluorescence in the detection of esophageal carcinoma
NASA Astrophysics Data System (ADS)
Wang, Kenneth K.; Gutta, Kumar; Laukka, Mark A.; Densmore, John
1995-01-01
Laser induced fluorescence (LIF) is a technique which can perform an 'optical biopsy' of gastrointestinal mucosa. LIF was performed in resected specimens using a pulsed N2-laser coupled fiberoptically to a probe. Fluorescence was measured using a 0.2 meter spectroscope with an intensified photodiode array. Measurements were made on fresh (<30 minutes after resection) esophageal specimens containing normal mucosa, Barrett's esophagus, and adenocarcinoma. Each tissue section was examined using an optical probe consisting of a central fiber for delivering the excitation energy and a 6 fiber bundle surrounding the central fiber for detection of the fluorescence. An excitation wavelength of 337 nm was used which generated 3-ns pulses while fluorescence intensities were acquired from 300-800 nm. Spectra were obtained from each section in a standardized fashion and background spectra subtracted. Fluorescence readings were taken from 54 normal esophageal sections and 32 sections of adenocarcinoma. A fluorescence index obtained from the tumor sections was 0.68+/- 0.01 compared with 0.51+/- 0.01 for the normal sections (p<0.001). Using a discriminant value of 0.65, this technique had a sensitivity of 81% and a specificity of 100% for detection of malignant tissue. The positive predictive value was 100% and the negative predictive value was 90% for an overall accuracy of 93%. LIF is a promising technique which has the capability of distinguishing normal versus malignant tissue in the esophagus with good accuracy.
Combined imaging and chemical sensing using a single optical imaging fiber.
Bronk, K S; Michael, K L; Pantano, P; Walt, D R
1995-09-01
Despite many innovations and developments in the field of fiber-optic chemical sensors, optical fibers have not been employed to both view a sample and concurrently detect an analyte of interest. While chemical sensors employing a single optical fiber or a noncoherent fiberoptic bundle have been applied to a wide variety of analytical determinations, they cannot be used for imaging. Similarly, coherent imaging fibers have been employed only for their originally intended purpose, image transmission. We herein report a new technique for viewing a sample and measuring surface chemical concentrations that employs a coherent imaging fiber. The method is based on the deposition of a thin, analyte-sensitive polymer layer on the distal surface of a 350-microns-diameter imaging fiber. We present results from a pH sensor array and an acetylcholine biosensor array, each of which contains approximately 6000 optical sensors. The acetylcholine biosensor has a detection limit of 35 microM and a fast (< 1 s) response time. In association with an epifluorescence microscope and a charge-coupled device, these modified imaging fibers can display visual information of a remote sample with 4-microns spatial resolution, allowing for alternating acquisition of both chemical analysis and visual histology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, M; Finlay, J; Zhu, T
Purpose: Photosensitizer concentration during photodynamic therapy (PDT) is an important parameter for accurate dosimetry. Fluorescence signal can be used as a measure of photosensitizer concentration. Two methods of data acquisition were compared to an ex vivo study both for in vivo and phantom models. Methods: Fluorescence signal of commonly used photosensitizer benzoporphyrin derivative monoacid ring A (BPD) was obtained in phantoms and mouse tumors using an excitation light of 405 nm. Interstitial fluorescence signal was obtained using a side-cut fiber inserted into the tumor tissue of interest. Using a previously developed multi-fiber probe, tumor surface fluorescence measurements were also collected.more » Signals were calibrated according to optical phantoms with known sensitizer fluorescence. Optical properties for each sample were determined and the influence of different absorption and scattering properties on the fluorescence signals was investigated. Using single value decomposition of the spectra, the sensitizer concentration was determined using the two different measurement geometries. An ex vivo analysis was also performed for tumor samples to determine the sensitizer concentration. Results: The two fluorescence signals obtained from the surface multi-fiber probe and the interstitial measurements were compared and were corresponding for both phantoms and mouse models. The values obtained were comparable to the ex vivo measurements as well. Despite the difference in geometry, the surface probe measurements can still be used as a metric for determining the presence of sensitizer in small volume tumors. Conclusion: The multi-fiber contact probe can be used as a tool to measure fluorescence at the surface of the treatment area for PDT and predict sensitizer concentration throughout the tumor. This is advantageous in that the measurement does not damage any tissue. Future work will include investigating the dependence of these results on intratumor sensitizer distribution.« less
Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons.
Fan, G Y; Fujisaki, H; Miyawaki, A; Tsay, R K; Tsien, R Y; Ellisman, M H
1999-01-01
A video-rate (30 frames/s) scanning two-photon excitation microscope has been successfully tested. The microscope, based on a Nikon RCM 8000, incorporates a femtosecond pulsed laser with wavelength tunable from 690 to 1050 nm, prechirper optics for laser pulse-width compression, resonant galvanometer for video-rate point scanning, and a pair of nonconfocal detectors for fast emission ratioing. An increase in fluorescent emission of 1.75-fold is consistently obtained with the use of the prechirper optics. The nonconfocal detectors provide another 2.25-fold increase in detection efficiency. Ratio imaging and optical sectioning can therefore be performed more efficiently without confocal optics. Faster frame rates, at 60, 120, and 240 frames/s, can be achieved with proportionally reduced scan lines per frame. Useful two-photon images can be acquired at video rate with a laser power as low as 2.7 mW at specimen with the genetically modified green fluorescent proteins. Preliminary results obtained using this system confirm that the yellow "cameleons" exhibit similar optical properties as under one-photon excitation conditions. Dynamic two-photon images of cardiac myocytes and ratio images of yellow cameleon-2.1, -3.1, and -3.1nu are also presented. PMID:10233058
Fluorescence spectroscopy using indocyanine green for lymph node mapping
NASA Astrophysics Data System (ADS)
Haj-Hosseini, Neda; Behm, Pascal; Shabo, Ivan; Wârdell, Karin
2014-02-01
The principles of cancer treatment has for years been radical resection of the primary tumor. In the oncologic surgeries where the affected cancer site is close to the lymphatic system, it is as important to detect the draining lymph nodes for metastasis (lymph node mapping). As a replacement for conventional radioactive labeling, indocyanine green (ICG) has shown successful results in lymph node mapping; however, most of the ICG fluorescence detection techniques developed are based on camera imaging. In this work, fluorescence spectroscopy using a fiber-optical probe was evaluated on a tissue-like ICG phantom with ICG concentrations of 6-64 μM and on breast tissue from five patients. Fiber-optical based spectroscopy was able to detect ICG fluorescence at low intensities; therefore, it is expected to increase the detection threshold of the conventional imaging systems when used intraoperatively. The probe allows spectral characterization of the fluorescence and navigation in the tissue as opposed to camera imaging which is limited to the view on the surface of the tissue.
Doerr, Daniel; Stark, Martin; Ehrhart, Friederike; Zimmermann, Heiko; Stracke, Frank
2009-08-01
In this study we demonstrate a new noninvasive imaging method to monitor freezing processes in biological samples and to investigate life in the frozen state. It combines a laser scanning microscope with a computer-controlled cryostage. Nearinfrared (NIR) femtosecond laser pulses evoke the fluorescence of endogenous fluorophores and fluorescent labels due to multiphoton absorption.The inherent optical nonlinearity of multiphoton absorption allows 3D fluorescence imaging for optical tomography of frozen biological material in-situ. As an example for functional imaging we use fluorescence lifetime imaging (FLIM) to create images with chemical and physical contrast.
Use of a fiber optic probe for organic species determination
Ekechukwu, A.A.
1996-12-10
A fiber optic probe is described for remotely detecting the presence and concentration organic species in aqueous solutions. The probe includes a cylindrical housing with an organic species indicator, preferably diaminonaphthyl sulfonic acid adsorbed in a silica gel (DANS-modified gel), contained in the probe`s distal end. The probe admits aqueous solutions to the probe interior for mixing within the DANS-modified gel. An optical fiber transmits light through the DANS-modified gel while the indicator reacts with organic species present in the solution, thereby shifting the location of the fluorescent peak. The altered light is reflected to a receiving fiber that carries the light to a spectrophotometer or other analysis device. 5 figs.
Use of a fiber optic probe for organic species determination
Ekechukwu, Amy A.
1996-01-01
A fiber optic probe for remotely detecting the presence and concentration organic species in aqueous solutions. The probe includes a cylindrical housing with an organic species indicator, preferably diaminonaphthyl sulfonic acid adsorbed in a silica gel (DANS-modified gel), contained in the probe's distal end. The probe admits aqueous solutions to the probe interior for mixing within the DANS-modified gel. An optical fiber transmits light through the DANS-modified gel while the indicator reacts with organic species present in the solution, thereby shifting the location of the fluorescent peak. The altered light is reflected to a receiving fiber that carries the light to a spectrophotometer or other analysis device.
Larson, Joshua; Kirk, Matt; Drier, Eric A.; O’Brien, William; MacKay, James F.; Friedman, Larry; Hoskins, Aaron
2015-01-01
Colocalization Single Molecule Spectroscopy (CoSMoS) has proven to be a useful method for studying the composition, kinetics, and mechanisms of complex cellular machines. Key to the technique is the ability to simultaneously monitor multiple proteins and/or nucleic acids as they interact with one another. Here we describe a protocol for constructing a CoSMoS micromirror Total Internal Reflection Fluorescence Microscope (mmTIRFM). Design and construction of a scientific microscope often requires a number of custom components and a significant time commitment. In our protocol, we have streamlined this process by implementation of a commercially available microscopy platform designed to accommodate the optical components necessary for a mmTIRFM. The mmTIRF system eliminates the need for machining custom parts by the end-user and facilitates optical alignment. Depending on the experience-level of the microscope builder, these time-savings and the following protocol can enable mmTIRF construction to be completed within two months. PMID:25188633
Larson, Joshua; Kirk, Matt; Drier, Eric A; O'Brien, William; MacKay, James F; Friedman, Larry J; Hoskins, Aaron A
2014-10-01
Colocalization single-molecule spectroscopy (CoSMoS) has proven to be a useful method for studying the composition, kinetics and mechanisms of complex cellular machines. Key to the technique is the ability to simultaneously monitor multiple proteins and/or nucleic acids as they interact with one another. Here we describe a protocol for constructing a CoSMoS micromirror total internal reflection fluorescence microscope (mmTIRFM). Design and construction of a scientific microscope often requires a number of custom components and a substantial time commitment. In our protocol, we have streamlined this process by implementation of a commercially available microscopy platform designed to accommodate the optical components necessary for an mmTIRFM. The mmTIRF system eliminates the need for machining custom parts by the end user and facilitates optical alignment. Depending on the experience level of the microscope builder, these time savings and the following protocol can enable mmTIRF construction to be completed within 2 months.
Park, Kyoung-Duck; Park, Doo Jae; Lee, Seung Gol; Choi, Geunchang; Kim, Dai-Sik; Byeon, Clare Chisu; Choi, Soo Bong; Jeong, Mun Seok
2014-02-21
A resonant shift and a decrease of resonance quality of a tuning fork attached to a conventional fiber optic probe in the vicinity of liquid is monitored systematically while varying the protrusion length and immersion depth of the probe. Stable zones where the resonance modification as a function of immersion depth is minimized are observed. A wet near-field scanning optical microscope (wet-NSOM) is operated for a sample within water by using such a stable zone.
Maximizing fluorescence collection efficiency in multiphoton microscopy
Zinter, Joseph P.; Levene, Michael J.
2011-01-01
Understanding fluorescence propagation through a multiphoton microscope is of critical importance in designing high performance systems capable of deep tissue imaging. Optical models of a scattering tissue sample and the Olympus 20X 0.95NA microscope objective were used to simulate fluorescence propagation as a function of imaging depth for physiologically relevant scattering parameters. The spatio-angular distribution of fluorescence at the objective back aperture derived from these simulations was used to design a simple, maximally efficient post-objective fluorescence collection system. Monte Carlo simulations corroborated by data from experimental tissue phantoms demonstrate collection efficiency improvements of 50% – 90% over conventional, non-optimized fluorescence collection geometries at large imaging depths. Imaging performance was verified by imaging layer V neurons in mouse cortex to a depth of 850 μm. PMID:21934897
Enhanced optical fiber fluorometer using a periodic perturbation in the fiber core
NASA Astrophysics Data System (ADS)
Chiniforooshan, Yasser; Bock, Wojtek J.; Ma, Jianjun
2013-10-01
Tracing of the specific chemicals and biological agents in a solution is becoming a vital interest in health, security and safety industries. Although a number of standard laboratory-based testing systems exists for detecting such targets, but the fast, real-time and on-site methods could be more efficient and cost-effective. One of the most common ways to detect a target in the solution is to use the fluorophore molecules which will be selectively attached to the targets and will emit or quench the fluorescence in presence of the target. The fiber-optic fluorometers are developed for inexpensive and portable detection. In this paper, we explain a novel multi-segment fiber structure which uses the periodic perturbation on the side-wall of a highly multi-mode fiber to enhance collecting the fluorescent light. This periodic perturbation is fabricated and optimized on the core of the fiber using a CO2 laser. The theoretical explanation to show the physical principle of the structure is followed by the experimental evidence of its functioning.
NASA Astrophysics Data System (ADS)
DeArmond, Fredrick Michael
As optical microscopy techniques continue to improve, most notably the development of super-resolution optical microscopy which garnered the Nobel Prize in Chemistry in 2014, renewed emphasis has been placed on the development and use of fluorescence microscopy techniques. Of particular note is a renewed interest in multiphoton excitation due to a number of inherent properties of the technique including simplified optical filtering, increased sample penetration, and inherently confocal operation. With this renewed interest in multiphoton fluorescence microscopy, comes an increased demand for robust non-linear fluorescent markers, and characterization of the associated tool set. These factors have led to an experimental setup to allow a systematized approach for identifying and characterizing properties of fluorescent probes in the hopes that the tool set will provide researchers with additional information to guide their efforts in developing novel fluorophores suitable for use in advanced optical microscopy techniques as well as identifying trends for their synthesis. Hardware was setup around a software control system previously developed. Three experimental tool sets were set up, characterized, and applied over the course of this work. These tools include scanning multiphoton fluorescence microscope with single molecule sensitivity, an interferometric autocorrelator for precise determination of the bandwidth and pulse width of the ultrafast Titanium Sapphire excitation source, and a simplified fluorescence microscope for the measurement of two-photon absorption cross sections. Resulting values for two-photon absorption cross sections and two-photon absorption action cross sections for two standardized fluorophores, four commercially available fluorophores, and ten novel fluorophores are presented as well as absorption and emission spectra.
Whitley, Kevin D.; Comstock, Matthew J.; Chemla, Yann R.
2017-01-01
Recent advances in optical tweezers have greatly expanded their measurement capabilities. A new generation of hybrid instrument that combines nanomechanical manipulation with fluorescence detection—fluorescence optical tweezers, or “fleezers”—is providing a powerful approach to study complex macromolecular dynamics. Here, we describe a combined high-resolution optical trap/confocal fluorescence microscope that can simultaneously detect sub-nanometer displacements, sub-piconewton forces, and single-molecule fluorescence signals. The primary technical challenge to these hybrid instruments is how to combine both measurement modalities without sacrificing the sensitivity of either one. We present general design principles to overcome this challenge and provide detailed, step-by-step instructions to implement them in the construction and alignment of the instrument. Lastly, we present a set of protocols to perform a simple, proof-of-principle experiment that highlights the instrument capabilities. PMID:27844430
Computational imaging through a fiber-optic bundle
NASA Astrophysics Data System (ADS)
Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.
2017-05-01
Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.
Digital holographic microtomography of fusion spliced optical fibers
NASA Astrophysics Data System (ADS)
Deng, Yating; Xiao, Wen; Ma, Xichao; Pan, Feng
2017-03-01
In this paper, we report three-dimensional(3D) measurement results of structural parameters of fusion spliced optical fibers using digital holographic microtomography. A holographic setup in microscopy configuration with the sample-fixed and setup-rotating scheme is established. A series of holograms is recorded from various incident angles. Then the filtered backprojection algorithm is applied to reconstruct the 3D refractive index (RI) distributions of the fusion spliced optical fibers inserted in the index-matching liquid. Experimental results exhibit the internal and external shapes of three kinds of fusion splices between different fibers, including a single-mode fiber(SMF) and a multimode fiber, an SMF and a panda polarization maintaining fiber (Panda PMF), and an SMF and a bow-tie polarization maintaining fiber (Bow-Tie PMF). With 3D maps of RI, it is intuitive to observe internal structural details of fused fibers and evaluate the splicing quality. This paper describes a powerful method for non-invasive microscopic measurement of fiber splicing. Furthermore, it provides the possibility of detecting fiber splicing loss by 3D structures.
NASA Astrophysics Data System (ADS)
Briere, Emily
2012-10-01
For decades, scientists have struggled to understand the chromo-electromagnetic field which confines quarks and gluons within the hadron. GlueX is a QCD experiment centered at Jefferson Lab, Virginia, seeking to better understand this gluonic field by exciting it and mapping the spectrum of exotic hybrid mesons that it generates. The experiment uses coherent bremsstrahlung radiation to produce a beam of photons, which due to their polarity act as virtual vector mesons. When incident on a liquid hydrogen target, these mesons are expected to form exotic hybrid mesons. Such particles quickly decay into new particles which are captured in a solenoid detector. The decays can then be reconstructed to examine the properties of the original exotic hybrid meson, although the initial energy of the photon is required to draw meaningful conclusions. The post-bremsstrahlung degraded electrons are bent from the main beam into the tagger microscope where they strike an array of scintillating optical fibers. Given the correlation between momentum and radial bend, the Silicon Photmultiplier sensors attached to the optical fibers are able to ``tag'' the electrons', and thus the photons', initial energies based on which fibers were hit. Providing central data for GlueX, the tagger microscope must be accurate. This paper details the design and fabrication of a scintillating fiber calibration device that moves horizontally above fiber bundles, using a green laser diode to direct light pulses into the fibers. This calibration method has been tested mechanically and via a Monte Carlo Matlab simulation, and has proven to be effective.
Vision and the dimensions of nerve fibers.
Wade, Nicholas J
2005-12-01
Vision provided the obvious source of determining the dimensions of nerve fibers when suitable achromatic microscopes were directed at neural tissue in the 1830s. The earlier microscopes of Hooke and Leeuwenhoek were unable to resolve such small structures adequately. However, it was not Hooke's microscope that led to an estimate of the dimensions of nerve fibers, but his experiments on the limits of visual resolution; he determined that a separation of one minute of arc was the minimum that could normally be seen. Descartes had earlier speculated that the retina consisted of the ends of fibers of the optic nerve, and that their size defined the limits of what could be seen. Estimates of the diameters of nerve fibers were made on the basis of human visual acuity by Porterfield in 1738; he calculated the diameters of nerve fibers in the retina as one 7,200th part of an inch (0.0035 mm), based on the resolution of one minute as the minimum visible. In the same year, Jurin questioned the reliability of such estimates because of variations in visual resolution with different stimuli.
Polymer optical fiber tapering using hot water
NASA Astrophysics Data System (ADS)
Mizuno, Yosuke; Ujihara, Hiroki; Lee, Heeyoung; Hayashi, Neisei; Nakamura, Kentaro
2017-06-01
We perform a pilot trial of highly convenient taper fabrication for polymer optical fibers (POFs) using hot water. A ∼380-mm-long POF taper is successfully fabricated, and its ∼150-mm-long waist has a uniform outer diameter of ∼230 µm. The shape is in good agreement with the theoretical prediction. The optical loss dependence on the strain applied to the waist shows an interesting behavior exhibiting three regimes, the origins of which are inferred by microscopic observations. We then discuss the controllability of the taper length.
Noninvasive Assessment of Collagen Gel Microstructure and Mechanics Using Multiphoton Microscopy
Raub, Christopher B.; Suresh, Vinod; Krasieva, Tatiana; Lyubovitsky, Julia; Mih, Justin D.; Putnam, Andrew J.; Tromberg, Bruce J.; George, Steven C.
2007-01-01
Multiphoton microscopy of collagen hydrogels produces second harmonic generation (SHG) and two-photon fluorescence (TPF) images, which can be used to noninvasively study gel microstructure at depth (∼1 mm). The microstructure is also a primary determinate of the mechanical properties of the gel; thus, we hypothesized that bulk optical properties (i.e., SHG and TPF) could be used to predict bulk mechanical properties of collagen hydrogels. We utilized polymerization temperature (4–37°C) and glutaraldehyde to manipulate collagen hydrogel fiber diameter, space-filling properties, and cross-link density. Multiphoton microscopy and scanning electron microscopy reveal that as polymerization temperature decreases (37–4°C) fiber diameter and pore size increase, whereas hydrogel storage modulus (G′, from 23 ± 3 Pa to 0.28 ± 0.16 Pa, respectively, mean ± SE) and mean SHG decrease (minimal change in TPF). In contrast, glutaraldehyde significantly increases the mean TPF signal (without impacting the SHG signal) and the storage modulus (16 ± 3.5 Pa before to 138 ± 40 Pa after cross-linking, mean ± SD). We conclude that SHG and TPF can characterize differential microscopic features of the collagen hydrogel that are strongly correlated with bulk mechanical properties. Thus, optical imaging may be a useful noninvasive tool to assess tissue mechanics. PMID:17172303
Photon theory hypothesis about photon tunneling microscope's subwavelength resolution
NASA Astrophysics Data System (ADS)
Zhu, Yanbin; Ma, Junfu
1995-09-01
The foundation for the invention of the photon scanning tunneling microscope (PSTM) are the near field scanning optical microscope, the optical fiber technique, the total internal reflection, high sensitive opto-electronic detecting technique and computer technique etc. Recent research results show the subwavelength resolution of 1 - 3 nm is obtained. How to explain the PSTM has got such high subwavelength resolution? What value is the PSTM's limiting of subwavelength resolution? For resolving these problems this paper presented a photon theory hypothesis about PSTM that is based on the following two basic laws: (1) Photon is not only a carrier bringing energy and optical information, but also is a particle occupied fixed space size. (2) When a photon happened reflection, refraction, scattering, etc., only changed its energy and optical information carried, its particle size doesn't change. g (DOT) pphoton equals constant. Using these two basic laws to PSTM, the `evanescent field' is practically a weak photon distribution field and the detecting fiber tip diameter is practically a `gate' which size controlled the photon numbers into fiber tip. Passing through some calculation and inference, the following three conclusions can be given: (1) Under the PSTM's detection system sensitivity is high enough, the diameter D of detecting fiber tip and the near field detecting distance Z are the two most important factors to decide the subwavelength resolution of PSTM. (2) The limiting of PSTM's resolution will be given upon the conditions of D equals pphoton and Z equals pphoton, where pphoton is one photon size. (2) The final resolution limit R of PSTM will be lim R equals pphoton, D yields pphoton, Z yields pphoton.
Madden, Jeremy T.; Toth, Scott J.; Dettmar, Christopher M.; Newman, Justin A.; Oglesbee, Robert A.; Hedderich, Hartmut G.; Everly, R. Michael; Becker, Michael; Ronau, Judith A.; Buchanan, Susan K.; Cherezov, Vadim; Morrow, Marie E.; Xu, Shenglan; Ferguson, Dale; Makarov, Oleg; Das, Chittaranjan; Fischetti, Robert; Simpson, Garth J.
2013-01-01
Nonlinear optical (NLO) instrumentation has been integrated with synchrotron X-ray diffraction (XRD) for combined single-platform analysis, initially targeting applications for automated crystal centering. Second-harmonic-generation microscopy and two-photon-excited ultraviolet fluorescence microscopy were evaluated for crystal detection and assessed by X-ray raster scanning. Two optical designs were constructed and characterized; one positioned downstream of the sample and one integrated into the upstream optical path of the diffractometer. Both instruments enabled protein crystal identification with integration times between 80 and 150 µs per pixel, representing a ∼103–104-fold reduction in the per-pixel exposure time relative to X-ray raster scanning. Quantitative centering and analysis of phenylalanine hydroxylase from Chromobacterium violaceum cPAH, Trichinella spiralis deubiquitinating enzyme TsUCH37, human κ-opioid receptor complex kOR-T4L produced in lipidic cubic phase (LCP), intimin prepared in LCP, and α-cellulose samples were performed by collecting multiple NLO images. The crystalline samples were characterized by single-crystal diffraction patterns, while α-cellulose was characterized by fiber diffraction. Good agreement was observed between the sample positions identified by NLO and XRD raster measurements for all samples studied. PMID:23765294
NASA Astrophysics Data System (ADS)
Li, Linghui; Gruzdev, Vitaly; Yu, Ping; Chen, J. K.
2009-02-01
High pulse energy continuum generation in conventional multimode optical fibers has been studied for potential applications to a holographic optical coherence imaging system. As a new imaging modality for the biological tissue imaging, high-resolution holographic optical coherence imaging requires a broadband light source with a high brightness, a relatively low spatial coherence and a high stability. A broadband femtosecond laser can not be used as the light source of holographic imaging system since the laser creates a lot of speckle patterns. By coupling high peak power femtosecond laser pulses into a multimode optical fiber, nonlinear optical effects cause a continuum generation that can be served as a super-bright and broadband light source. In our experiment, an amplified femtosecond laser was coupled into the fiber through a microscopic objective. We measured the FWHM of the continuum generation as a function of incident pulse energy from 80 nJ to 800 μJ. The maximum FWHM is about 8 times higher than that of the input pulses. The stability was analyzed at different pump energies, integration times and fiber lengths. The spectral broadening and peak position show that more than two processes compete in the fiber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavez, Marcus Alexander; Willis, Michael David; Covert, Timothy Todd
2014-09-01
The miniaturization of explosive components has driven the need for a corresponding miniaturization of the current diagnostic techniques available to measure the explosive phenomena. Laser interferometry and the use of spectrally coated optical windows have proven to be an essential interrogation technique to acquire particle velocity time history data in one- dimensional gas gun and relatively large-scale explosive experiments. A new diagnostic technique described herein allows for experimental measurement of apparent particle velocity time histories in microscale explosive configurations and can be applied to shocks/non-shocks in inert materials. The diagnostic, Embedded Fiber Optic Sensors (EFOS), has been tested in challengingmore » microscopic experimental configurations that give confidence in the technique's ability to measure the apparent particle velocity time histories of an explosive with pressure outputs in the tenths of kilobars to several kilobars. Embedded Fiber Optic Sensors also allow for several measurements to be acquired in a single experiment because they are microscopic, thus reducing the number of experiments necessary. The future of EFOS technology will focus on further miniaturization, material selection appropriate for the operating pressure regime, and extensive hydrocode and optical analysis to transform apparent particle velocity time histories into true particle velocity time histories as well as the more meaningful pressure time histories.« less
Applications of fiber-optics-based nanosensors to drug discovery.
Vo-Dinh, Tuan; Scaffidi, Jonathan; Gregas, Molly; Zhang, Yan; Seewaldt, Victoria
2009-08-01
Fiber-optic nanosensors are fabricated by heating and pulling optical fibers to yield sub-micron diameter tips and have been used for in vitro analysis of individual living mammalian cells. Immobilization of bioreceptors (e.g., antibodies, peptides, DNA) selective to targeting analyte molecules of interest provides molecular specificity. Excitation light can be launched into the fiber, and the resulting evanescent field at the tip of the nanofiber can be used to excite target molecules bound to the bioreceptor molecules. The fluorescence or surface-enhanced Raman scattering produced by the analyte molecules is detected using an ultra-sensitive photodetector. This article provides an overview of the development and application of fiber-optic nanosensors for drug discovery. The nanosensors provide minimally invasive tools to probe subcellular compartments inside single living cells for health effect studies (e.g., detection of benzopyrene adducts) and medical applications (e.g., monitoring of apoptosis in cells treated with anticancer drugs).
Toward two-photon excited fluorescence lifetime endomicroscopy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hage, Charles-Henri; Leclerc, Pierre; Fabert, Marc; Brevier, Julien; Habert, Rémi; Braud, Flavie; Kudlinski, Alexandre; Louradour, Frédéric
2017-02-01
Fluorescence lifetime imaging microscopy (FLIM) represents a powerful tool for biological studies. Endoscopic FLIM applied to the intracellular native biomarker NADH and FAD represents a promising mean for in vivo in situ malignant tissue diagnosis in the medical field. Else, 2-photon-excited fluorescence (2PEF) provides increased 3D resolution and imaging depth. But very few demonstrations about 2PEF lifetime measurement through a fiber have been reported and none about endoscopic 2P-FLIM through a practical fiber length (< 3m). Our group has recently demonstrated the possibility to efficiently deliver through a very long optical fiber the short and intense excitation pulses required for 2P-FLIM. Our goal is now to check that collecting fluorescence through the same endoscopic fiber does not deteriorate the lifetime measurement. Relying on the basis previously published in case of 1PEF by P. French and co-workers (J. Biophotonics, 2015), we have experimentally quantitatively evaluated the influence on the lifetime measurement of the fiber chromatic and intermodal dispersions. The main result is that the fiber contribution to the system impulse response function, even in the case of a 3-meter long double-clad optical fiber, does not hinder the separation between free and bound NADH states using FLIM. Related calibrations and measurements will be detailed. Ongoing experiments about the development of a 2P-FLIM endomicroscope on the basis of an previously reported 2P-endomicroscope (Ducourthial et al., Sc. Reports, 2015), used under various configurations (i.e. point measurement in the center of the 2P-endomicroscope image, averaged lifetime, binned endoscopic 2P-FLIM image), will be also presented.
Photonic engineering for biological study
NASA Astrophysics Data System (ADS)
Wu, Fei
My dissertation focuses on designing and developing prototypes of optical tools in the laboratory that can facilitate practical medical therapies. More specifically, this dissertation examines two novel biophotonic techniques: (1) a frequency multiplexed confocal microscope with the potential to provide rational therapy of congestive heart failure (CHF), and (2) the "optical comb" with the potential to improve results of retina reattachment surgery and accelerate post surgical recovery. Next, I will discuss the background, design and initial experimental results of each study individually. Part I: The Frequency Multiplexed Confocal Microscope. To overcome the limitations of existing confocal microscope technology, this dissertation proposes a non-scanning, real-time, high resolution technique (a multi-point frequency multiplexed confocal microscope) to measure 3-D intracellular calcium ion concentration in a living cardiac myocyte. This method can be also applied to measure the intracellular sodium ion concentration, or other ions in which high quantum-yield fluorescent probes are available. The novelty of the proposed research lies in the introduction of carrier frequency multiplexing techniques which can differentiate fluorescence emitted at different spatial locations in cardiac myocyte by their modulated frequency. It therefore opens the possibility to visualize the transient dynamics of intracellular dynamics at multiple locations in cells simultaneously, which will shine a new light on our understanding of CHF. The procedure for frequency multiplexing proposed is described below. Multiple incident laser beams are focused onto different locations in an isolated rat cardiac myocyte with each beam modulated at a different carrier frequency. The fluorescence emission at each location therefore bears the same modulated frequency as the stimulation laser beam. Each fluorescence signal is sent to the photo multiplier tube (PMT) after being spatially filtered by a single mode fiber (functioning as a pinhole). Since each signal has a different carrier frequency, only one signal detector is required to collect multiple signal streams which eliminates the errors introduced by difference of multiple detectors. After taking the Fourier Transform of the collected data, multiple peaks can be found in the frequency domain. Each peak refers to a corresponding location in the sample. The temporal information of the fluorescence signal variation at each location can be obtained by demodulating the low frequency information from the carrier frequency, followed by an inverse Fourier transform. Part II: The "Optical Comb". Retinal detachment refers to separation of the inner layers of the retina from the underlying retinal pigment epithelium. It can cause degeneration of the retina and may lead to permanent vision loss if not promptly treated and hence is considered an ocular emergency. Currently, the only treatment available for retinal detachment is surgical reattachment. The idea of an "optical comb" is developed from the general working principle of the well known "optical tweezers" in the optical literature, which can pull micro-objects through the trapping force produced by a focused laser beam. If we can manage to incident the focused laser beam onto the misaligned photoreceptors and further scan it back and forth, trapping forces that produced may be able to "comb" the photoreceptors to be aligned, and thereby help with post surgery recovery. A series of experiments have been carried out to demonstrate the plausibility of this idea. First, several micro glass rods with size similar to human's photoreceptors (6 microns in diameter and 30 microns in length) were used. We observed that when the laser beam is focused close to one end of the micro rod originally laid on a glass coverslip, the rod is pulled to stand upright successfully, and we can manipulate the direction it faces by controlling its relative position to the laser beam. We are now experimenting with this combing technique with detached bovine retina samples to further verify its feasibility over live animal cells. (Abstract shortened by UMI.)
Shi, C; Cassell, M D
1993-04-01
This report describes a combined retrograde tracing, intracellular injection and anterograde fluorescence labeling method using the application of confocal laser scanning microscopy. By simultaneously viewing the morphology of identified projection neurons and the distribution of anterogradely labeled fibers and terminals, this approach allows accurate characterization of the anatomical relationships between these two elements. To demonstrate this approach, the retrograde tracer Fast Blue was injected into the bed nucleus of stria terminalis (BNST) and the anterograde tracer tetramethylrhodamine-conjugated dextran was injected into the insular cortex in adult rats. After one week survival time, the brains were fixed and sectioned on a vibratome. Individual BNST projecting neurons identified in the amygdaloid complex on 120 microns thick sections were intracellularly injected with Lucifer Yellow under visual control and analyzed with confocal laser scanning microscopy. The results demonstrate that images from very thin optical sections can clearly show potential synaptic contacts between anterograde labeling and intracellularly labeled projecting neurons. Stacked images from optical sections show, in very great detail, the morphology of projection neurons in three-dimensions. Compared to other methodological combinations, the present method provides a more simple and efficient means to trace three successive components of a putative neuron chain.
NASA Astrophysics Data System (ADS)
Yankelevich, Diego R.; Ma, Dinglong; Liu, Jing; Sun, Yang; Sun, Yinghua; Bec, Julien; Elson, Daniel S.; Marcu, Laura
2014-03-01
The application of time-resolved fluorescence spectroscopy (TRFS) to in vivo tissue diagnosis requires a method for fast acquisition of fluorescence decay profiles in multiple spectral bands. This study focusses on development of a clinically compatible fiber-optic based multispectral TRFS (ms-TRFS) system together with validation of its accuracy and precision for fluorescence lifetime measurements. It also presents the expansion of this technique into an imaging spectroscopy method. A tandem array of dichroic beamsplitters and filters was used to record TRFS decay profiles at four distinct spectral bands where biological tissue typically presents fluorescence emission maxima, namely, 390, 452, 542, and 629 nm. Each emission channel was temporally separated by using transmission delays through 200 μm diameter multimode optical fibers of 1, 10, 19, and 28 m lengths. A Laguerre-expansion deconvolution algorithm was used to compensate for modal dispersion inherent to large diameter optical fibers and the finite bandwidth of detectors and digitizers. The system was found to be highly efficient and fast requiring a few nano-Joule of laser pulse energy and <1 ms per point measurement, respectively, for the detection of tissue autofluorescent components. Organic and biological chromophores with lifetimes that spanned a 0.8-7 ns range were used for system validation, and the measured lifetimes from the organic fluorophores deviated by less than 10% from values reported in the literature. Multi-spectral lifetime images of organic dye solutions contained in glass capillary tubes were recorded by raster scanning the single fiber probe in a 2D plane to validate the system as an imaging tool. The lifetime measurement variability was measured indicating that the system provides reproducible results with a standard deviation smaller than 50 ps. The ms-TRFS is a compact apparatus that makes possible the fast, accurate, and precise multispectral time-resolved fluorescence lifetime measurements of low quantum efficiency sub-nanosecond fluorophores.
Closed loop adaptive optics for microscopy without a wavefront sensor.
Kner, Peter; Winoto, Lukman; Agard, David A; Sedat, John W
2010-02-24
A three-dimensional wide-field image of a small fluorescent bead contains more than enough information to accurately calculate the wavefront in the microscope objective back pupil plane using the phase retrieval technique. The phase-retrieved wavefront can then be used to set a deformable mirror to correct the point-spread function (PSF) of the microscope without the use of a wavefront sensor. This technique will be useful for aligning the deformable mirror in a widefield microscope with adaptive optics and could potentially be used to correct aberrations in samples where small fluorescent beads or other point sources are used as reference beacons. Another advantage is the high resolution of the retrieved wavefont as compared with current Shack-Hartmann wavefront sensors. Here we demonstrate effective correction of the PSF in 3 iterations. Starting from a severely aberrated system, we achieve a Strehl ratio of 0.78 and a greater than 10-fold increase in maximum intensity.
Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images
Watson, Jeffrey R.; Gainer, Christian F.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael; Anton, Rein; Romanowski, Marek
2015-01-01
Abstract. Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures. PMID:26440760
Study on micro-bend light transmission performance of novel liquid-core optical fiber
NASA Astrophysics Data System (ADS)
Ma, Junyan; Zhao, Zhimin; Wang, Kaisheng; Guo, Linfeng
2007-01-01
With the increasing development of material technology and electronic integration technology, optical fiber and its using in smart structure have become hot in the field of material research. And liquid-core optical fiber is a special kind of optical fiber, which is made using liquid material as core and polymer material as optical layer and protective covering, and it has the characteristics of large core diameter, high numerical aperture, large-scope and efficient spectrum transmission and long life for using. So the liquid-core optical fiber is very suitable for spectrum cure, ultraviolet solidification, fluorescence detection, criminal investigation and evidence obtainment, etc, and especially as light transfer element in some new structures for the measurement of some signals, such as concentration, voltage, temperature, light intensity and so on. In this paper, the novel liquid-core optical fiber is self-made, and then through the test of its light transmission performance in free state, the relation between axial micro-bend and light-intensity loss are presented. When the liquid-core optical fiber is micro-bent axially, along with the axial displacement's increase, output power of light is reducing increasingly, and approximately has linear relation to micro-displacement in a range. According to the results liquid-core fiber-optic micro-bend sensor can be designed to measure micro-displacement of the tested objects. Experimental data and analysis provide experimental basis for further application of liquid-core optical fiber.
A multimodal spectroscopy system for real-time disease diagnosis
NASA Astrophysics Data System (ADS)
Šćepanović, Obrad R.; Volynskaya, Zoya; Kong, Chae-Ryon; Galindo, Luis H.; Dasari, Ramachandra R.; Feld, Michael S.
2009-04-01
The combination of reflectance, fluorescence, and Raman spectroscopy—termed multimodal spectroscopy (MMS)—provides complementary and depth-sensitive information about tissue composition. As such, MMS is a promising tool for disease diagnosis, particularly in atherosclerosis and breast cancer. We have developed an integrated MMS instrument and optical fiber spectral probe for simultaneous collection of all three modalities in a clinical setting. The MMS instrument multiplexes three excitation sources, a xenon flash lamp (370-740 nm), a nitrogen laser (337 nm), and a diode laser (830 nm), through the MMS probe to excite tissue and collect the spectra. The spectra are recorded on two spectrograph/charge-coupled device modules, one optimized for visible wavelengths (reflectance and fluorescence) and the other for the near-infrared (Raman), and processed to provide diagnostic parameters. We also describe the design and calibration of a unitary MMS optical fiber probe 2 mm in outer diameter, containing a single appropriately filtered excitation fiber and a ring of 15 collection fibers, with separate groups of appropriately filtered fibers for efficiently collecting reflectance, fluorescence, and Raman spectra from the same tissue location. A probe with this excitation/collection geometry has not been used previously to collect reflectance and fluorescence spectra, and thus physical tissue models ("phantoms") are used to characterize the probe's spectroscopic response. This calibration provides probe-specific modeling parameters that enable accurate extraction of spectral parameters. This clinical MMS system has been used recently to analyze artery and breast tissue in vivo and ex vivo.
Veselov, Alexey A; Abraham, Bobin George; Lemmetyinen, Helge; Karp, Matti T; Tkachenko, Nikolai V
2012-01-01
Fluorescent proteins have the inherent ability to act as sensing components which function both in vitro and inside living cells. We describe here a novel study on a covalent site-specific bonding of fluorescent proteins to form self-assembled monolayers (SAMs) on the surface of etched optical fibers (EOFs). Deposition of fluorescent proteins on EOFs gives the opportunity to increase the interaction of guided light with deposited molecules relative to plane glass surfaces. The EOF modification is carried out by surface activation using 3-aminopropylthrimethoxysilane (APTMS) and bifunctional crosslinker sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (sulfo-SMCC) which exposes sulfhydryl-reactive maleimide groups followed by covalent site-specific coupling of modified yellow fluorescent protein (YFP). Steady-state and fluorescence lifetime measurements confirm the formation of SAM. The sensor applications of YPF SAMs on EOF are demonstrated by the gradual increase of emission intensity upon addition of Ca(2+) ions in the concentration range from a few tens of micromolars up to a few tens of millimolars. The studies on the effect of pH, divalent cations, denaturing agents, and proteases reveal the stability of YFP on EOFs at normal physiological conditions. However, treatments with 0.5% SDS at pH 8.5 and protease trypsin are found to denaturate or cleave the YFP from fiber surfaces.
Belykh, Evgenii; Miller, Eric J; Hu, Danying; Martirosyan, Nikolay L; Woolf, Eric C; Scheck, Adrienne C; Byvaltsev, Vadim A; Nakaji, Peter; Nelson, Leonard Y; Seibel, Eric J; Preul, Mark C
2018-05-01
Fluorescence-guided surgery with protoporphyrin IX (PpIX) as a photodiagnostic marker is gaining acceptance for resection of malignant gliomas. Current wide-field imaging technologies do not have sufficient sensitivity to detect low PpIX concentrations. We evaluated a scanning fiber endoscope (SFE) for detection of PpIX fluorescence in gliomas and compared it to an operating microscope (OPMI) equipped with a fluorescence module and to a benchtop confocal laser scanning microscope (CLSM). 5-Aminolevulinic acid-induced PpIX fluorescence was assessed in GL261-Luc2 cells in vitro and in vivo after implantation in mouse brains, at an invading glioma growth stage, simulating residual tumor. Intraoperative fluorescence of high and low PpIX concentrations in normal brain and tumor regions with SFE, OPMI, CLSM, and histopathology were compared. SFE imaging of PpIX correlated to CLSM at the cellular level. PpIX accumulated in normal brain cells but significantly less than in glioma cells. SFE was more sensitive to accumulated PpIX in fluorescent brain areas than OPMI (P < 0.01) and dramatically increased imaging time (>6×) before tumor-to-background contrast was diminished because of photobleaching. SFE provides new endoscopic capabilities to view PpIX-fluorescing tumor regions at cellular resolution. SFE may allow accurate imaging of 5-aminolevulinic acid labeling of gliomas and other tumor types when current detection techniques have failed to provide reliable visualization. SFE was significantly more sensitive than OPMI to low PpIX concentrations, which is relevant to identifying the leading edge or metastasizing cells of malignant glioma or to treating low-grade gliomas. This new application has the potential to benefit surgical outcomes. Copyright © 2018 Elsevier Inc. All rights reserved.
Liu, Zhongyao; Dong, Xiaoman; Chen, Qianghua; Yin, Chunyong; Xu, Yuxian; Zheng, Yingjun
2004-03-01
A novel transmitted-light differential interference contrast (DIC) system is used for nondestructive measurement of the refractive-index profile (RIP) of an optical fiber. By means of this system the phase of a measured light beam can be modulated with an analyzer, and the phase distribution of a fiber is obtained by calculation of the various interference patterns. The measurement theory and structure and some typical applications of this system are demonstrated. The results of measuring RIPs in graded-index fiber are presented. Both the experimental results and theoretical analysis show that the system takes the advantage of high index resolution and of sufficient measurement accuracy for measuring the refractive index of the optical fiber. The system has strong ability to overcome environmental disturbance because of its common-path design. Moreover, one can use the system to measure the RIP along the fiber axis and acquire an image of the three-dimensional RIP of the fiber.
Dong, Biqin; Li, Hao; Zhang, Zhen; Zhang, Kevin; Chen, Siyu; Sun, Cheng; Zhang, Hao F
2015-01-01
Photoacoustic microscopy (PAM) is an attractive imaging tool complementary to established optical microscopic modalities by providing additional molecular specificities through imaging optical absorption contrast. While the development of optical resolution photoacoustic microscopy (ORPAM) offers high lateral resolution, the acoustically-determined axial resolution is limited due to the constraint in ultrasonic detection bandwidth. ORPAM with isometric spatial resolution along both axial and lateral direction is yet to be developed. Although recently developed sophisticated optical illumination and reconstruction methods offer improved axial resolution in ORPAM, the image acquisition procedures are rather complicated, limiting their capabilities for high-speed imaging and being easily integrated with established optical microscopic modalities. Here we report an isometric ORPAM based on an optically transparent micro-ring resonator ultrasonic detector and a commercial inverted microscope platform. Owing to the superior spatial resolution and the ease of integrating our ORPAM with established microscopic modalities, single cell imaging with extrinsic fluorescence staining, intrinsic autofluorescence, and optical absorption can be achieved simultaneously. This technique holds promise to greatly improve the accessibility of PAM to the broader biomedical researchers.
Portable and cost-effective pixel super-resolution on-chip microscope for telemedicine applications.
Bishara, Waheb; Sikora, Uzair; Mudanyali, Onur; Su, Ting-Wei; Yaglidere, Oguzhan; Luckhart, Shirley; Ozcan, Aydogan
2011-01-01
We report a field-portable lensless on-chip microscope with a lateral resolution of <1 μm and a large field-of-view of ~24 mm(2). This microscope is based on digital in-line holography and a pixel super-resolution algorithm to process multiple lensfree holograms and obtain a single high-resolution hologram. In its compact and cost-effective design, we utilize 23 light emitting diodes butt-coupled to 23 multi-mode optical fibers, and a simple optical filter, with no moving parts. Weighing only ~95 grams, we demonstrate the performance of this field-portable microscope by imaging various objects including human malaria parasites in thin blood smears.
Lee, Dennis; Barnes, Stephen
2010-01-01
The need for new pharmacological agents is unending. Yet the drug discovery process has changed substantially over the past decade and continues to evolve in response to new technologies. There is presently a high demand to reduce discovery time by improving specific lab disciplines and developing new technology platforms in the area of cell-based assay screening. Here we present the developmental concept and early stage testing of the Ab-Sniffer, a novel fiber optic fluorescence device for high-throughput cytotoxicity screening using an immobilized whole cell approach. The fused silica fibers are chemically functionalized with biotin to provide interaction with fluorescently labeled, streptavidin functionalized alginate-chitosan microspheres. The microspheres are also functionalized with Concanavalin A to facilitate binding to living cells. By using lymphoma cells and rituximab in an adaptation of a well-known cytotoxicity protocol we demonstrate the utility of the Ab-Sniffer for functional screening of potential drug compounds rather than indirect, non-functional screening via binding assay. The platform can be extended to any assay capable of being tied to a fluorescence response including multiple target cells in each well of a multi-well plate for high-throughput screening.
Schmidt, Roman; Engelhardt, Johann; Lang, Marion
2013-01-01
Optical microscopy has become a key technology in the life sciences today. Its noninvasive nature provides access to the interior of intact and even living cells, where specific molecules can be precisely localized by fluorescent tagging. However, the attainable 3D resolution of an optical microscope has long been hampered by a comparatively poor resolution along the optic axis. By coherent focusing through two objective lenses, 4Pi microscopy improves the axial resolution by three- to fivefold. This primer is intended as a starting point for the design and operation of a 4Pi microscope of type A.
Aberration correction in wide-field fluorescence microscopy by segmented-pupil image interferometry.
Scrimgeour, Jan; Curtis, Jennifer E
2012-06-18
We present a new technique for the correction of optical aberrations in wide-field fluorescence microscopy. Segmented-Pupil Image Interferometry (SPII) uses a liquid crystal spatial light modulator placed in the microscope's pupil plane to split the wavefront originating from a fluorescent object into an array of individual beams. Distortion of the wavefront arising from either system or sample aberrations results in displacement of the images formed from the individual pupil segments. Analysis of image registration allows for the local tilt in the wavefront at each segment to be corrected with respect to a central reference. A second correction step optimizes the image intensity by adjusting the relative phase of each pupil segment through image interferometry. This ensures that constructive interference between all segments is achieved at the image plane. Improvements in image quality are observed when Segmented-Pupil Image Interferometry is applied to correct aberrations arising from the microscope's optical path.
Design of a multimodal fibers optic system for small animal optical imaging.
Spinelli, Antonello E; Pagliazzi, Marco; Boschi, Federico
2015-02-01
Small animals optical imaging systems are widely used in pre-clinical research to image in vivo the bio-distribution of light emitting probes using fluorescence or bioluminescence modalities. In this work we presented a set of simulated results of a novel small animal optical imaging module based on a fibers optics matrix, coupled with a position sensitive detector, devoted to acquire bioluminescence and Cerenkov images. Simulations were performed using GEANT 4 code with the GAMOS architecture using the tissue optics plugin. Results showed that it is possible to image a 30 × 30 mm region of interest using a fiber optics array containing 100 optical fibers without compromising the quality of the reconstruction. The number of fibers necessary to cover an adequate portion of a small animal is thus quite modest. This design allows integrating the module with magnetic resonance (MR) in order to acquire optical and MR images at the same time. A detailed model of the mouse anatomy, obtained by segmentation of 3D MRI images, will improve the quality of optical 3D reconstruction. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Spectroscopic identification of individual fluorophores using photoluminescence excitation spectra.
Czerski, J; Colomb, W; Cannataro, F; Sarkar, S K
2018-01-25
The identity of a fluorophore can be ambiguous if other fluorophores or nonspecific fluorescent impurities have overlapping emission spectra. The presence of overlapping spectra makes it difficult to differentiate fluorescent species using discrete detection channels and unmixing of spectra. The unique absorption and emission signatures of fluorophores provide an opportunity for spectroscopic identification. However, absorption spectroscopy may be affected by scattering, whereas fluorescence emission spectroscopy suffers from signal loss by gratings or other dispersive optics. Photoluminescence excitation spectra, where excitation is varied and emission is detected at a fixed wavelength, allows hyperspectral imaging with a single emission filter for high signal-to-background ratio without any moving optics on the emission side. We report a high throughput method for measuring the photoluminescence excitation spectra of individual fluorophores using a tunable supercontinuum laser and prism-type total internal reflection fluorescence microscope. We used the system to measure and sort the photoluminescence excitation spectra of individual Alexa dyes, fluorescent nanodiamonds (FNDs), and fluorescent polystyrene beads. We used a Gaussian mixture model with maximum likelihood estimation to objectively separate the spectra. Finally, we spectroscopically identified different species of fluorescent nanodiamonds with overlapping spectra and characterized the heterogeneity of fluorescent nanodiamonds of varying size. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Hsu, Paul S; Kulatilaka, Waruna D; Jiang, Naibo; Gord, James R; Roy, Sukesh
2012-06-20
We investigate the feasibility of transmitting high-power, ultraviolet (UV) laser pulses through long optical fibers for laser-induced-fluorescence (LIF) spectroscopy of the hydroxyl radical (OH) and nitric oxide (NO) in reacting and non-reacting flows. The fundamental transmission characteristics of nanosecond (ns)-duration laser pulses are studied at wavelengths of 283 nm (OH excitation) and 226 nm (NO excitation) for state-of-the-art, commercial UV-grade fibers. It is verified experimentally that selected fibers are capable of transmitting sufficient UV pulse energy for single-laser-shot LIF measurements. The homogeneous output-beam profile resulting from propagation through a long multimode fiber is ideal for two-dimensional planar-LIF (PLIF) imaging. A fiber-coupled UV-LIF system employing a 6 m long launch fiber is developed for probing OH and NO. Single-laser-shot OH- and NO-PLIF images are obtained in a premixed flame and in a room-temperature NO-seeded N(2) jet, respectively. Effects on LIF excitation lineshapes resulting from delivering intense UV laser pulses through long fibers are also investigated. Proof-of-concept measurements demonstrated in the current work show significant promise for fiber-coupled UV-LIF spectroscopy in harsh diagnostic environments such as gas-turbine test beds.
Zero-gravity growth of a sodium chloride-lithium fluoride eutectic mixture
NASA Technical Reports Server (NTRS)
Yue, A. S.; Yeh, C. W.; Yue, B. K.
1982-01-01
Continuous and discontinuous lithium fluoride fibers embedded in a sodium chloride matrix were produced in space and on Earth, respectively. The production of continuous fibers in a eutectic mixture was attributed to the absence of convective current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and Earth-grown ingots were made with a light microscope and a spectrometer. It was found that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of lithium fluoride fibers along the growth direction.
Fiber optical asssembly for fluorescence spectrometry
Piltch, Martin S.; Gray, Perry Clayton; Rubenstein, Richard
2015-08-18
System is provided for detecting the presence of an analyte of interest in a sample, said system comprising an elongated, transparent container for a sample; an excitation source in optical communication with the sample, wherein radiation from the excitation source is directed along the length of the sample, and wherein the radiation induces a signal which is emitted from the sample; and, at least two linear arrays disposed about the sample holder, each linear array comprising a plurality of optical fibers having a first end and a second end, wherein the first ends of the fibers are disposed along the length of the container and in proximity thereto; the second ends of the fibers of each array are bundled together to form a single end port.
Optical fiber sensor having an active core
NASA Technical Reports Server (NTRS)
Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)
1993-01-01
An optical fiber is provided. The fiber is comprised of an active fiber core which produces waves of light upon excitation. A factor ka is identified and increased until a desired improvement in power efficiency is obtained. The variable a is the radius of the active fiber core and k is defined as 2 pi/lambda wherein lambda is the wavelength of the light produced by the active fiber core. In one embodiment, the factor ka is increased until the power efficiency stabilizes. In addition to a bare fiber core embodiment, a two-stage fluorescent fiber is provided wherein an active cladding surrounds a portion of the active fiber core having an improved ka factor. The power efficiency of the embodiment is further improved by increasing a difference between the respective indices of refraction of the active cladding and the active fiber core.
LASER FLUORESCENCE EEM PROBE FOR CONE PENETROMETER POLLUTION ANALYSIS
A fiber optic LIF (Laser induced fluorescence) EEM (Excitation emission matrix) instrument for CPT deployment has been successfully developed and field tested. The system employs a Nd: YAG laser and Raman shifter as a rugged field portable excitation source. This excitation sou...
A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability.
Hasan, Md Mehedi; Alam, Mohammad Wajih; Wahid, Khan A; Miah, Sayem; Lukong, Kiven Erique
2016-01-01
This paper describes the development of a prototype of a low-cost digital fluorescent microscope built from commercial off-the-shelf (COTS) components. The prototype was tested to detect malignant tumor cells taken from a living organism in a preclinical setting. This experiment was accomplished by using Alexa Fluor 488 conjugate dye attached to the cancer cells. Our prototype utilizes a torch along with an excitation filter as a light source for fluorophore excitation, a dichroic mirror to reflect the excitation and pass the emitted green light from the sample under test and a barrier filter to permit only appropriate wavelength. The system is designed out of a microscope using its optical zooming property and an assembly of exciter filter, dichroic mirror and transmitter filter. The microscope is connected to a computer or laptop through universal serial bus (USB) that allows real-time transmission of captured florescence images; this also offers real-time control of the microscope. The designed system has comparable features of high-end commercial fluorescent microscopes while reducing cost, power, weight and size.
A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability
Hasan, Md. Mehedi; Wahid, Khan A.; Miah, Sayem; Lukong, Kiven Erique
2016-01-01
This paper describes the development of a prototype of a low-cost digital fluorescent microscope built from commercial off-the-shelf (COTS) components. The prototype was tested to detect malignant tumor cells taken from a living organism in a preclinical setting. This experiment was accomplished by using Alexa Fluor 488 conjugate dye attached to the cancer cells. Our prototype utilizes a torch along with an excitation filter as a light source for fluorophore excitation, a dichroic mirror to reflect the excitation and pass the emitted green light from the sample under test and a barrier filter to permit only appropriate wavelength. The system is designed out of a microscope using its optical zooming property and an assembly of exciter filter, dichroic mirror and transmitter filter. The microscope is connected to a computer or laptop through universal serial bus (USB) that allows real-time transmission of captured florescence images; this also offers real-time control of the microscope. The designed system has comparable features of high-end commercial fluorescent microscopes while reducing cost, power, weight and size. PMID:27977709
Fiber Optic Immunochemical Sensors For Continuous Monitoring Of Hapten Concentrations
NASA Astrophysics Data System (ADS)
Miller, W. Greg; Anderson, F. Philip
1989-06-01
We describe a fiber optic sensor based on a homogeneous fluorescence energy transfer immunoassay which operates in a continuous, reversible manner to quantitate the anticonvulsant drug phenytoin. B-phycoerythrin-phenytoin and Texas Red labeled anti-phenytoin antibody were sealed inside a short length of cellulose dialysis tubing which was cemented to the distal end of an optical fiber. When the sensor was placed into a solution of phenytoin, the drug crossed the dialysis membrane, displaced a fraction of the B-phycoerythrin-phenytoin from the antibody, and produced a change in fluorescence signal which was measured with a fiber optic fluorometer. The sensor had a concentration response of 5 to 500μmo1/L phenytoin with a response time of 5 to 15 min and precision of <2.5% CV. The chemical kinetics of the antibody-hapten indicator reaction were modeled mathematically and simulation showed that response time in the minutes range can be achieved when the dissociation rate constant is greater than approximately 10-3 sec-1. The dissociation rate constant influences the time to reach equilibrium and the unbound P* concentration range available for instrumental measurement. The ratio of the labeled and unlabeled hapten dissociation rate constants influences the analyte concentration range to which the sensor will respond.
Aqueous carrier waveguide in a flow cytometer
Mariella, Jr., Raymond P.; van den Engh, Gerrit; Northrup, M. Allen
1995-01-01
The liquid of a flow cytometer itself acts as an optical waveguide, thus transmitting the light to an optical filter/detector combination. This alternative apparatus and method for detecting scattered light in a flow cytometer is provided by a device which views and detects the light trapped within the optical waveguide formed by the flow stream. A fiber optic or other light collecting device is positioned within the flow stream. This provides enormous advantages over the standard light collection technique which uses a microscope objective. The signal-to-noise ratio is greatly increased over that for right-angle-scattered light collected by a microscope objective, and the alignment requirements are simplified.
Solid state laser media driven by remote nuclear powered fluorescence
Prelas, Mark A.
1992-01-01
An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.
A compact multi-channel fluorescence sensor with ambient light suppression
NASA Astrophysics Data System (ADS)
Egly, Dominik; Geörg, Daniel; Rädle, Matthias; Beuermann, Thomas
2012-03-01
A multi-channel fluorescence sensor has been developed for process monitoring and fluorescence diagnostics. It comprises a fiber-optic set-up with an immersion probe and an intensity-modulated high power ultraviolet light-emitting diode as a light source for fluorescence excitation. By applying an electronic lock-in procedure, fluorescence signals are selectively detectable at ambient light levels of 1000 000 times higher intensity. The sensor was designed to be compact, low cost and easily adaptable to a wide field of application. The set-up was used to simultaneously monitor three important metabolic fluorophores: NAD(P)H, flavins and porphyrins during the cultivation of a baker's yeast. Moreover, the accumulation and degradation kinetics of protoporphyrin IX induced by 5-aminolevulinic acid on the skin could be recorded by the sensor. The detection limit for protoporphyrin IX was determined to be 4 × 10-11 mol L-1. The linear signal amplification of the sensor and time courses of fluorescence signals monitored during yeast fermentations were validated using a commercial CCD spectrometer. The robust and flexible set-up of the fiber-optic measurement system promises easy implementation of this non-invasive analytical tool to fluorescence monitoring and diagnostics in R&D and production.
NASA Astrophysics Data System (ADS)
Feizi, Alborz; Zhang, Yibo; Greenbaum, Alon; Guziak, Alex; Luong, Michelle; Chan, Raymond Yan Lok; Berg, Brandon; Ozkan, Haydar; Luo, Wei; Wu, Michael; Wu, Yichen; Ozcan, Aydogan
2017-03-01
Research laboratories and the industry rely on yeast viability and concentration measurements to adjust fermentation parameters such as pH, temperature, and pressure. Beer-brewing processes as well as biofuel production can especially utilize a cost-effective and portable way of obtaining data on cell viability and concentration. However, current methods of analysis are relatively costly and tedious. Here, we demonstrate a rapid, portable, and cost-effective platform for imaging and measuring viability and concentration of yeast cells. Our platform features a lens-free microscope that weighs 70 g and has dimensions of 12 × 4 × 4 cm. A partially-coherent illumination source (a light-emitting-diode), a band-pass optical filter, and a multimode optical fiber are used to illuminate the sample. The yeast sample is directly placed on a complementary metal-oxide semiconductor (CMOS) image sensor chip, which captures an in-line hologram of the sample over a large field-of-view of >20 mm2. The hologram is transferred to a touch-screen interface, where a trained Support Vector Machine model classifies yeast cells stained with methylene blue as live or dead and measures cell viability as well as concentration. We tested the accuracy of our platform against manual counting of live and dead cells using fluorescent exclusion staining and a bench-top fluorescence microscope. Our regression analysis showed no significant difference between the two methods within a concentration range of 1.4 × 105 to 1.4 × 106 cells/mL. This compact and cost-effective yeast analysis platform will enable automatic quantification of yeast viability and concentration in field settings and resource-limited environments.
The Scanning Optical Microscope: An Overview
NASA Astrophysics Data System (ADS)
Kino, G. S.; Corte, T. R.; Xiao, G. Q.
1988-07-01
In the last few years there has been a resurgence in research on optical microscopes. One reason stems from the invention of the acoustic microscope by Quate and Lemons,1 and the realization that some of the same principles could be applied to the optical microscope. The acoustic microscope has better transverse definition for the same wavelength than the standard optical microscope and at the same time has far better range definition. Consequently, Kompfner, who was involved with the work on the early acoustic microscope, decided to try out similar scanning microscope principles with optics, and started a group with Wilson and Sheppard to carry out such research at Oxford.2 Sometime earlier, Petran et a13 had invented the tandem scanning microscope which used many of the same principles. Now, in our laboratory at Stanford, these ideas on the tandem scanning microscope and the scanning optical microscope are converging. Another aspect of this work, which stems from the earlier experience with the acoustic microscope, involves measurement of both phase and amplitude of the optical beam. It is also possible to use scanned optical microscopy for other purposes. For instance, an optical beam can be used to excite electrons and holes in semiconductors, and the generated current can be measured. By scanning the optical beam over the semiconductor, an image can be obtained of the regions where there is strong or weak electron hole generation. This type of microscope is called OBIC (Optical Beam Induced Current). A second application involves fluorescent imaging of biological materials. Here we have the excellent range definition of a scanning optical microscope which eliminates unwanted glare from regions of the material where the beam is unfocused.3 A third application is focused on the heating effect of the light beam. With such a system, images can be obtained which are associated with changes in the thermal properties of a material, changes in recombination rates in semiconductors, and differences in material properties associated with either acoustic or thermal effects.4,5 Thus, the range of scanning optical microscopy applications is very large. In the main, the most important applications have been to semiconductors and to biology.
Middelburg, T A; Hoy, C L; Neumann, H A M; Amelink, A; Robinson, D J
2015-07-01
Fluorescence measurements in the skin are very much affected by absorption and scattering but existing methods to correct for this are not applicable to superficial skin measurements. The first use of multiple-diameter single fiber reflectance (MDSFR) and single fiber fluorescence (SFF) spectroscopy in human skin was investigated. MDSFR spectroscopy allows a quantification of the full optical properties in superficial skin (μa, μs' and γ), which can next be used to retrieve the corrected - intrinsic - fluorescence of a fluorophore Qμa,x(f). Our goal was to investigate the importance of such correction for individual patients. We studied this in 22 patients undergoing photodynamic therapy (PDT) for actinic keratosis. The magnitude of correction of fluorescence was around 4 (for both autofluorescence and protoporphyrin IX). Moreover, it was variable between patients, but also within patients over the course of fractionated aminolevulinic acid PDT (range 2.7-7.5). Patients also varied in the amount of protoporphyrin IX synthesis, photobleaching percentages and resynthesis (>100× difference between the lowest and highest PpIX synthesis). The autofluorescence was lower in actinic keratosis than contralateral normal skin (0.0032 versus 0.0052; P<0.0005). Our results clearly demonstrate the importance of correcting the measured fluorescence for optical properties, because these vary considerably between individual patients and also during PDT. Protoporphyrin IX synthesis and photobleaching kinetics allow monitoring clinical PDT which facilitates individual-based PDT dosing and improvement of clinical treatment protocols. Furthermore, the skin autofluorescence can be relevant for diagnostic use in the skin, but it may also be interesting because of its association with several internal diseases. Copyright © 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
van Leeuwen-van Zaane, Floor; Gamm, Ute A.; van Driel, Pieter B. A. A.; Snoeks, Thomas J.; de Bruijn, Henriette S.; van der Ploeg-van den Heuvel, Angelique; Sterenborg, Henricus J. C. M.; Löwik, Clemens W.; Amelink, Arjen; Robinson, Dominic J.
2014-01-01
Quantification of fluorescence in vivo is complicated by the influence of tissue optical properties on the collected fluorescence signal. When tissue optical properties in the measurement volume are quantified, one can obtain the intrinsic fluorescence, which equals the product of fluorophore absorption coefficient and quantum yield. We applied this method to in vivo single-fiber fluorescence spectroscopy measurements on mouse tongue, skin, liver, and oral squamous cell carcinoma, where we detected intrinsic fluorescence spectra of the photosensitizers chlorin e6 and Bremachlorin at t=[3,4.5,6,24,48] h incubation time. We observed a tissue-dependent maximum of 35% variation in the total correction factor over the visible wavelength range. Significant differences in spectral shape over time between sensitizers were observed. Although the wavelength position of the fluorescence intensity maximum for ce6 shifted to the red, Bremachlorin showed a blue shift. Furthermore, the Bremachlorin peak appeared to be broader than the ce6 fluorescence peak. Intrinsic fluorescence intensity, which can be related to photosensitizer concentration, was decreasing for all time points but showed significantly more Bremachlorin present compared to ce6 at long incubation times. Results from this study can be used to define an optimal treatment protocol for Bremachlorin-based photodynamic therapy.
Two-Photon Fluorescence Microscope for Microgravity Research
NASA Technical Reports Server (NTRS)
Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius
2005-01-01
A two-photon fluorescence microscope has been developed for the study of biophysical phenomena. Two-photon microscopy is a novel form of laser-based scanning microscopy that enables three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon optical microscopy, two-photon microscopy utilizes the simultaneous nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption, so an ultra-fast pulsed laser source is typically employed. On the other hand, the critical energy threshold for two-photon absorption leads to fluorophore excitation that is intrinsically localized to the focal volume. Consequently, two-photon microscopy enables optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction (relative to one-photon optical microscopy) in photon-induced damage because of the longer excitation wavelength. This reduction is especially advantageous for in vivo studies. Relative to confocal microscopy, there is also a reduction in background fluorescence, and, because of a reduction in Rayleigh scattering, there is a 4 increase of penetration depth. The prohibitive cost of a commercial two-photon fluorescence-microscope system, as well as a need for modularity, has led to the construction of a custom-built system (see Figure 1). This system includes a coherent mode-locked titanium: sapphire laser emitting 120-fs-duration pulses at a repetition rate of 80 MHz. The pulsed laser has an average output power of 800 mW and a wavelength tuning range of 700 to 980 nm, enabling the excitation of a variety of targeted fluorophores. The output from the laser is attenuated, spatially filtered, and then directed into a confocal scanning head that has been modified to provide for side entry of the laser beam. The laser output coupler has been replaced with a dichroic filter that reflects the longer-wavelength excitation light and passes the shorter-wavelength fluorescence light. Also, the confocal pinhole has been removed to increase the signal strength. The laser beam is scanned by a twoperpendicular- axis pair of galvanometer mirrors through a pupil transfer lens into the side port of an inverted microscope. Finally, the beam is focused by a 63-magnification, 1.3-numerical- aperture oil-immersion objective lens onto a specimen. The pupil transfer lens serves to match the intermediate image planes of the scanning head and the microscope, and its location is critical. In order to maximize the quality of the image, (that is, the point spread function of the objective lens for all scan positions), the entire system was modeled in optical-design software, and the various free design parameters (the parameters of the spatial-filter components as well as the separations of all of the system components) were determined through an iterative optimization process. A modular design was chosen to facilitate access to the optical train for future fluorescence correlation spectroscopy and fluorescence-lifetime experiments.
Virtual k -Space Modulation Optical Microscopy
NASA Astrophysics Data System (ADS)
Kuang, Cuifang; Ma, Ye; Zhou, Renjie; Zheng, Guoan; Fang, Yue; Xu, Yingke; Liu, Xu; So, Peter T. C.
2016-07-01
We report a novel superresolution microscopy approach for imaging fluorescence samples. The reported approach, termed virtual k -space modulation optical microscopy (VIKMOM), is able to improve the lateral resolution by a factor of 2, reduce the background level, improve the optical sectioning effect and correct for unknown optical aberrations. In the acquisition process of VIKMOM, we used a scanning confocal microscope setup with a 2D detector array to capture sample information at each scanned x -y position. In the recovery process of VIKMOM, we first modulated the captured data by virtual k -space coding and then employed a ptychography-inspired procedure to recover the sample information and correct for unknown optical aberrations. We demonstrated the performance of the reported approach by imaging fluorescent beads, fixed bovine pulmonary artery endothelial (BPAE) cells, and living human astrocytes (HA). As the VIKMOM approach is fully compatible with conventional confocal microscope setups, it may provide a turn-key solution for imaging biological samples with ˜100 nm lateral resolution, in two or three dimensions, with improved optical sectioning capabilities and aberration correcting.
Chu, Liliang; Wang, Shaowei; Li, Kanghui; Xi, Wang; Zhao, Xinyuan; Qian, Jun
2014-01-01
Near-infrared (NIR) imaging technology has been widely used for biomedical research and applications, since it can achieve deep penetration in biological tissues due to less absorption and scattering of NIR light. In our research, polymer nanoparticles with NIR fluorophores doped were synthesized. The morphology, absorption/emission features and chemical stability of the fluorescent nanoparticles were characterized, separately. NIR fluorescent nanoparticles were then utilized as bright optical probes for macro in vivo imaging of mice, including sentinel lymph node (SLN) mapping, as well as distribution and excretion monitoring of nanoparticles in animal body. Furthermore, we applied the NIR fluorescent nanoparticles in in vivo microscopic bioimaging via a confocal microscope. Under the 635 nm-CW excitation, the blood vessel architecture in the ear and the brain of mice, which were administered with nanoparticles, was visualized very clearly. The imaging depth of our one-photon microscopy, which was assisted with NIR fluorescent nanoprobes, can reach as deep as 500 μm. Our experiments show that NIR fluorescent nanoparticles have great potentials in various deep-tissue imaging applications. PMID:25426331
Fluorescence fibre-optic confocal microscopy of skin in vivo: microscope and fluorophores.
Suihko, Christian; Swindle, Lucinda D; Thomas, Steven G; Serup, Jørgen
2005-11-01
Fibre-optic confocal imaging in vivo is a new approach in the assessment of human skin. The objective is to describe a novel instrument and its operation and use in combination with fluorophores. The Stratum is a fibre-optic fluorescence confocal microscope especially developed for the study of skin and mucous membranes. The system is flexible and any body site can be studied with a hand-held scanner. The light source is a 488 nm argon ion laser. Horizontal (en face) images of the epidermis and outer dermis are produced with cellular resolution. Magnification is approximately 1000 x . Fluorescein sodium is routinely used as fluorophore (intradermal injection or application to the skin surface). This fluorophore is safe for human use in vivo, but other substances (rhodamine B, Acridine Orange, green fluorescent protein, curcumin) have also been studied. The instrument produces sharp images of epidermal cell layers from the epidermal surface to the sub-papillary dermis, with sub-cellular resolution. The scanner is flexible in use. The technique of intradermal fluorophore injection requires some skill. We consider this fibre-optic instrument a potentially important tool in skin research for non-invasive optical biopsy of primarily the epidermis. Present use is focussed on research applications, where the fluorophore distribution in the skin may illustrate morphological changes in the epidermis.
Unravelling the secret of seed-based gels in water: the nanoscale 3D network formation.
Samateh, Malick; Pottackal, Neethu; Manafirasi, Setareh; Vidyasagar, Adiyala; Maldarelli, Charles; John, George
2018-05-09
Chia (Salvia hispanica) and basil (Ocimum basilicum) seeds have the intrinsic ability to form a hydrogel concomitant with moisture-retention, slow releasing capability and proposed health benefits such as curbing diabetes and obesity by delaying digestion process. However, the underlying mode of gelation at nanoscopic level is not clearly explained or explored. The present study elucidates and corroborates the hypothesis that the gelling behavior of such seeds is due to their nanoscale 3D-network formation. The preliminary study revealed the influence of several conditions like polarity, pH and hydrophilicity/hydrophobicity on fiber extrusion from the seeds which leads to gelation. Optical microscopic analysis clearly demonstrated bundles of fibers emanating from the seed coat while in contact with water, and live growth of fibers to form 3D network. Scanning electron microscope (SEM) and transmission electron microscope (TEM) studies confirmed 3D network formation with fiber diameters ranging from 20 to 50 nm.
A novel fiber optic sensor for the measurement of pH of blood based on colorimetry
NASA Astrophysics Data System (ADS)
Chaudhari, A. L.; Patil, D. D.; Shaligram, Arvind D.
2005-04-01
Fiber optic sensors designed to the date are largely based on monitoring the absorption change of several immobilized indicators or change in fluorescence of fluorometric indicators. The present paper reports a new type of fiber optic sensor for the measurement of blood pH based on Colorimetric principle. The sensor consists of two multimode step index fibers, mirror as reflector and blood serum with universal indicator as medium. LED is used as source and photodiode as detector. The intensity of color produced due to addition of indicator to blood serum depends upon hydrogen ion concentration. The output intensity from receiving fiber is measured as a function of pH of blood. The developed sensor is calibrated against the standard pH meter. The design, construction and calibration details are presented in paper.
Sun, Yinghua; Sun, Yang; Stephens, Douglas; Xie, Hongtao; Phipps, Jennifer; Saroufeem, Ramez; Southard, Jeffrey; Elson, Daniel S.; Marcu, Laura
2011-01-01
Simultaneous time- and wavelength-resolved fluorescence spectroscopy (STWRFS) was developed and tested for the dynamic characterization of atherosclerotic tissue ex vivo and arterial vessels in vivo. Autofluorescence, induced by a 337 nm, 700 ps pulsed laser, was split to three wavelength sub-bands using dichroic filters, with each sub-band coupled into a different length of optical fiber for temporal separation. STWRFS allows for fast recording/analysis (few microseconds) of time-resolved fluorescence emission in these sub-bands and rapid scanning. Distinct compositions of excised human atherosclerotic aorta were clearly discriminated over scanning lengths of several centimeters based on fluorescence lifetime and the intensity ratio between 390 and 452 nm. Operation of STWRFS blood flow was further validated in pig femoral arteries in vivo using a single-fiber probe integrated with an ultrasound imaging catheter. Current results demonstrate the potential of STWRFS as a tool for real-time optical characterization of arterial tissue composition and for atherosclerosis research and diagnosis. PMID:21369214
NASA Astrophysics Data System (ADS)
Doiron, Daniel R.; Dunn, J. B.; Mitchell, W. L.; Dalton, Brian K.; Garbo, Greta M.; Warner, Jon A.
1995-05-01
The detection and quantification of the concentration of exogenous chromophores in-vivo by their fluorescence is complicated by many physical and geometrical parameters. Measurement of such signals is advantageous in determining the pharmacokinetics of photosensitizers such as those used in photodynamic therapy (PDT) or to assist in the diagnosis of tissue histological state. To overcome these difficulties a ratio based fiber optic contact fluorometer has been developed. This fluorescence detection system (FDS) uses the ratio of the fluorescence emission peak of the exogenous chromophore to that of endogenous chromophores, i.e. autofluorescence, to correct for a variety of parameters affecting the magnitude of the measured signals. By doing so it also minimizes the range of baseline measurements prior to exogenous drug injection, for various tissue types. Design of the FDS and results of its testing in animals and patients using the second generation photosensitizer Tin ethyletiopurpurin (SnET2) are presented. These results support the feasibility and usefulness of the Ratio FDS system.
NASA Astrophysics Data System (ADS)
Richards-Kortum, Rebecca
2016-03-01
Esophageal squamous cell neoplasia (ESCN) is the sixth leading cause of cancer death worldwide. Most deaths due to ESCN occur in developing countries, with highest risk areas in northern China. Lugol's chromoendoscopy (LCE) is the gold-standard for ESCN screening; while the sensitivity of LCE for ESCN is >95%, LCE suffers poor specificity (< 65%) due to false positive findings from inflammatory lesions. High resolution microendoscopy (HRME) uses a low-cost, fiber-optic fluorescence microscope to image morphology of the surface epithelium without need for biopsy. We developed a tablet-interfaced HRME with automated, real-time image analysis. In an in vivo study of 177 patients referred for endoscopy in China, use of the algorithm identified neoplasia with a sensitivity and specificity of 95% and 91% compared to the gold standard of histology.
Homing peptide guiding optical molecular imaging for the diagnosis of bladder cancer
NASA Astrophysics Data System (ADS)
Yang, Xiao-feng; Pang, Jian-zhi; Liu, Jie-hao; Zhao, Yang; Jia, Xing-you; Li, Jun; Liu, Reng-xin; Wang, Wei; Fan, Zhen-wei; Zhang, Zi-qiang; Yan, San-hua; Luo, Jun-qian; Zhang, Xiao-lei
2014-11-01
Background: The limitations of primary transurethral resection of bladder tumor (TURBt) have led the residual tumors rates as high as 75%. The intraoperative fluorescence imaging offers a great potential for improving TURBt have been confirmed. So we aim to distinguish the residual tumors and normal mucosa using fluorescence molecular imaging formed by conjugated molecule of the CSNRDARRC bladder cancer homing peptide with fluorescent dye. The conjugated molecule was abbreviated FIuo-ACP. In our study, we will research the image features of FIuo-ACP probe targeted bladder cancer for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo. Methods: After the FIuo-ACP probe was synthetized, the binding sites, factors affecting binding rates, the specificity and the targeting of Fluo-ACP labeled with bladder cancer cells were studied respectively by laser scanning confocal microscope (LSCM), immunofluorescence and multispectral fluorescence ex vivo optical molecular imaging system. Results: The binding sites were located in nucleus and the binding rates were correlated linearly with the dose of probe and the grade of pathology. Moreover, the probe has a binding specificity with bladder cancer in vivo and ex vivo. Tumor cells being labeled by the Fluo-ACP, bright green spots were observed under LSCM. The tissue samples and tumor cells can be labeled and identified by fluorescence microscope. Optical molecular imaging of xenograft tumor tissues was exhibited as fluorescent spots under EMCCD. Conclusion: The CSNRDARRC peptides might be a useful bladder cancer targeting vector. The FIuo-ACP molecular probe was suitable for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo.
Fiber-Laser-Based Ultrasound Sensor for Photoacoustic Imaging
Liang, Yizhi; Jin, Long; Wang, Lidai; Bai, Xue; Cheng, Linghao; Guan, Bai-Ou
2017-01-01
Photoacoustic imaging, especially for intravascular and endoscopic applications, requires ultrasound probes with miniature size and high sensitivity. In this paper, we present a new photoacoustic sensor based on a small-sized fiber laser. Incident ultrasound waves exert pressures on the optical fiber laser and induce harmonic vibrations of the fiber, which is detected by the frequency shift of the beating signal between the two orthogonal polarization modes in the fiber laser. This ultrasound sensor presents a noise-equivalent pressure of 40 Pa over a 50-MHz bandwidth. We demonstrate this new ultrasound sensor on an optical-resolution photoacoustic microscope. The axial and lateral resolutions are 48 μm and 3.3 μm. The field of view is up to 1.57 mm2. The sensor exhibits strong resistance to environmental perturbations, such as temperature changes, due to common-mode cancellation between the two orthogonal modes. The present fiber laser ultrasound sensor offers a new tool for all-optical photoacoustic imaging. PMID:28098201
Gold nanoparticle-based plasmonic random fiber laser
NASA Astrophysics Data System (ADS)
Hu, Zhijia; Liang, Yunyun; Xie, Kang; Gao, Pengfei; Zhang, Douguo; Jiang, Haiming; Shi, Fan; Yin, Leicheng; Gao, Jiangang; Ming, Hai; Zhang, Qijin
2015-03-01
We have reported the realization of a plasmonic random fiber laser based on the localized surface plasmonic resonance of gold nanoparticles (NPs) in the liquid core optical fiber. The liquid core material contains a dispersive solution of gold NPs and laser dye pyrromethene 597 in toluene. It was experimentally proved that the fluorescence quenching of the dye is restrained in the optical fiber, which is considered one of the main sources of loss in the traditional laser system. Meanwhile, the random lasing can be more easily obtained in the random laser system with more overlap between the plasmonic resonance of the gold NPs and the photoluminescence spectrum of the dye molecules.
Measurement of the photon statistics and the noise figure of a fiber-optic parametric amplifier.
Voss, Paul L; Tang, Renyong; Kumar, Prem
2003-04-01
We report measurement of the noise statistics of spontaneous parametric fluorescence in a fiber parametric amplifier with single-mode, single-photon resolution. We employ optical homodyne tomography for this purpose, which also provides a self-calibrating measurement of the noise figure of the amplifier. The measured photon statistics agree with quantum-mechanical predictions, and the amplifier's noise figure is found to be almost quantum limited.
Hsu, Paul S; Kulatilaka, Waruna D; Roy, Sukesh; Gord, James R
2013-05-01
We investigate the fundamental transmission characteristics of nanosecond-duration, 10 kHz repetition rate, ultraviolet (UV) laser pulses through state-of-the-art, UV-grade fused-silica fibers being used for hydroxyl radical (OH) planar laser-induced fluorescence (PLIF) imaging. Studied in particular are laser-induced damage thresholds (LIDTs), nonlinear absorption, and optical transmission stability during long-term UV irradiation. Solarization (photodegradation) effects are significantly enhanced when the fiber is exposed to high-repetition-rate, 283 nm UV irradiation. For 10 kHz laser pulses, two-photon absorption is strong and LIDTs are low, as compared to those of laser pulses propagating at 10 Hz. The fiber characterization results are utilized to perform single-laser-shot, OH-PLIF imaging in pulsating turbulent flames with a laser that operates at 10 kHz. The nearly spatially uniform output beam that exits a long multimode fiber becomes ideal for PLIF measurements. The proof-of-concept measurements show significant promise for extending the application of a fiber-coupled, high-speed OH-PLIF system to harsh environments such as combustor test beds, and potential system improvements are suggested.
Warren, Sean C; Kim, Youngchan; Stone, James M; Mitchell, Claire; Knight, Jonathan C; Neil, Mark A A; Paterson, Carl; French, Paul M W; Dunsby, Chris
2016-09-19
This paper demonstrates multiphoton excited fluorescence imaging through a polarisation maintaining multicore fiber (PM-MCF) while the fiber is dynamically deformed using all-proximal detection. Single-shot proximal measurement of the relative optical path lengths of all the cores of the PM-MCF in double pass is achieved using a Mach-Zehnder interferometer read out by a scientific CMOS camera operating at 416 Hz. A non-linear least squares fitting procedure is then employed to determine the deformation-induced lateral shift of the excitation spot at the distal tip of the PM-MCF. An experimental validation of this approach is presented that compares the proximally measured deformation-induced lateral shift in focal spot position to an independent distally measured ground truth. The proximal measurement of deformation-induced shift in focal spot position is applied to correct for deformation-induced shifts in focal spot position during raster-scanning multiphoton excited fluorescence imaging.
75 FR 13486 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... nanostructures. This instrument combines an optical microscope with a scanning probe imaging system. Specifically... soft materials than other instruments, as it detects the probe coming close to the sample surface by... conventional AFM type silicon cantilevers as well as cantilevered optical fiber probes with exposed probe...
Development of an automated asbestos counting software based on fluorescence microscopy.
Alexandrov, Maxym; Ichida, Etsuko; Nishimura, Tomoki; Aoki, Kousuke; Ishida, Takenori; Hirota, Ryuichi; Ikeda, Takeshi; Kawasaki, Tetsuo; Kuroda, Akio
2015-01-01
An emerging alternative to the commonly used analytical methods for asbestos analysis is fluorescence microscopy (FM), which relies on highly specific asbestos-binding probes to distinguish asbestos from interfering non-asbestos fibers. However, all types of microscopic asbestos analysis require laborious examination of large number of fields of view and are prone to subjective errors and large variability between asbestos counts by different analysts and laboratories. A possible solution to these problems is automated counting of asbestos fibers by image analysis software, which would lower the cost and increase the reliability of asbestos testing. This study seeks to develop a fiber recognition and counting software for FM-based asbestos analysis. We discuss the main features of the developed software and the results of its testing. Software testing showed good correlation between automated and manual counts for the samples with medium and high fiber concentrations. At low fiber concentrations, the automated counts were less accurate, leading us to implement correction mode for automated counts. While the full automation of asbestos analysis would require further improvements in accuracy of fiber identification, the developed software could already assist professional asbestos analysts and record detailed fiber dimensions for the use in epidemiological research.
The use of optical fiber bundles combined with electrochemistry for chemical imaging.
Szunerits, Sabine; Walt, David R
2003-02-17
The present Review describes the progress made in using imaging optical fiber bundles for fluorescence and electrochemical-initiated chemiluminescence imaging. A novel optoelectrochemical micro-ring array has been fabricated and demonstrated for concurrent electrochemical and optical measurements. The device comprises optical fibers coated with gold via electroless gold deposition and assembled in a random array format. The design yielded an array of approximately 200 micro-ring electrodes, where interdiffusional problems were minimized. The inner diameter of the ring electrode is fixed by the diameter of the individual optical fibers (25 microns), while the outer radius is determined by the thickness of the deposited gold. While all the fibers are optically addressable, they are not all electrochemically addressable. The resolution of this device is in the tens of micrometers range, determined by the diameter of the optical fiber (25 microns) and by the spacing between each electrically connected fiber. For the purpose of having well-behaved microelectrode characteristics, this spacing was designed to be larger than 60 microns. The array was characterized using ferrocyanide in aqueous solution as a model electroactive species to demonstrate that this microelectrode array format exhibits steady-state currents at short response times. This device has potential application to be used as an optoelectronic sensor, especially for the electrolytic generation and transmission of electrochemiluminescence, and was used to demonstrate that electrochemically generated luminescent products can be detected with the fiber assembly.
Nygate, Yoav N; Singh, Gyanendra; Barnea, Itay; Shaked, Natan T
2018-06-01
We present a new technique for obtaining simultaneous multimodal quantitative phase and fluorescence microscopy of biological cells, providing both quantitative phase imaging and molecular specificity using a single camera. Our system is based on an interferometric multiplexing module, externally positioned at the exit of an optical microscope. In contrast to previous approaches, the presented technique allows conventional fluorescence imaging, rather than interferometric off-axis fluorescence imaging. We demonstrate the presented technique for imaging fluorescent beads and live biological cells.
Real-time spectral imaging in three spatial dimensions
NASA Astrophysics Data System (ADS)
Liu, Wenhai; Psaltis, Demetri; Barbastathis, George
2002-05-01
We report what is to our knowledge the first volume-holographic optical imaging instrument with the capability to return three-dimensional spatial as well as spectral information about semitranslucent microscopic objects in a single measurement. The four-dimensional volume-holographic microscope is characterized theoretically and experimentally by use of fluorescent microspheres as objects.
Photonic-crystal fiber as a multifunctional optical sensor and sample collector.
Konorov, Stanislav; Zheltikov, Aleksei; Scalora, Michael
2005-05-02
Two protocols of optical sensing realized with the same photonic-crystal fiber are compared. In the first protocol, diode-laser radiation is delivered to a sample through the central core of a dual-cladding photonic-crystal fiber with a diameter of a few micrometers, while the large-diameter fiber cladding serves to collect the fluorescent response from the sample and to guide it to a detector in the backward direction. In the second scheme, liquid sample is collected by a microcapillary array in the fiber cladding and is interrogated by laser radiation guided in the fiber modes. For sample fluids with refractive indices exceeding the refractive index of the fiber material, fluid channels in photonic-crystal fibers can guide laser light by total internal reflection, providing an 80% overlap of interrogating radiation with sample fluid.
Magnetic focusing immunosensor for the detection of Salmonella typhimurium in foods
NASA Astrophysics Data System (ADS)
Pivarnik, Philip E.; Cao, He; Letcher, Stephen V.; Pierson, Arthur H.; Rand, Arthur G.
1999-01-01
From 1988 through 1992 Salmonellosis accounted for 27% of the total reported foodborne disease outbreaks and 57% of the outbreaks in which the pathogen was identified. The prevalence of Salmonellosis and the new requirements to monitor the organism as a marker in pathogen reduction programs will drive the need for rapid, on-site testing. A compact fiber optic fluorometer using a red diode laser as an excitation source and fiber probes for analyte detection has been constructed and used to measure Salmonella. The organisms were isolated with anti-Salmonella magnetic beads and were labeled with a secondary antibody conjugated to a red fluorescent dye. The response of the system was proportional to the concentration of Salmonella typhimurium from 3.2 X 105 colony forming units (CFU)/ml to 1.6 X 107 CFU/ml. The system was developed to utilize a fiber-optic magnetic focusing problem that attracted the magnetic microspheres to the surface of a sample chamber directly in front of the excitation and emission fibers. The signal obtained from a homogenous suspension of fluorescent magnetic microspheres was 9 to 10 picowatts. After focusing, the signal from the fluorescent labeled magnetic microspheres increased to 200 picowatts, approximately 20 times greater than the homogeneous suspension. The magnetic focusing assay detected 1.59 X 105 colony forming units/ml of Salmonella typhimurium cultured in growth media. The process of magnetic focusing in front of the fibers has the potential to reduce the background fluorescence from unbound secondary antibodies, eliminating several rinsing steps, resulting in a simple rapid assay.
Fiber laser-microscope system for femtosecond photodisruption of biological samples
Yavaş, Seydi; Erdogan, Mutlu; Gürel, Kutan; Ilday, F. Ömer; Eldeniz, Y. Burak; Tazebay, Uygar H.
2012-01-01
We report on the development of a ultrafast fiber laser-microscope system for femtosecond photodisruption of biological targets. A mode-locked Yb-fiber laser oscillator generates few-nJ pulses at 32.7 MHz repetition rate, amplified up to ∼125 nJ at 1030 nm. Following dechirping in a grating compressor, ∼240 fs-long pulses are delivered to the sample through a diffraction-limited microscope, which allows real-time imaging and control. The laser can generate arbitrary pulse patterns, formed by two acousto-optic modulators (AOM) controlled by a custom-developed field-programmable gate array (FPGA) controller. This capability opens the route to fine optimization of the ablation processes and management of thermal effects. Sample position, exposure time and imaging are all computerized. The capability of the system to perform femtosecond photodisruption is demonstrated through experiments on tissue and individual cells. PMID:22435105
Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara
2010-03-01
Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. (c) 2010 Elsevier Inc. All rights reserved.
Spirally-patterned pinhole arrays for long-term fluorescence cell imaging.
Koo, Bon Ung; Kang, YooNa; Moon, SangJun; Lee, Won Gu
2015-11-07
Fluorescence cell imaging using a fluorescence microscope is an extensively used technique to examine the cell nucleus, internal structures, and other cellular molecules with fluorescence response time and intensity. However, it is difficult to perform high resolution cell imaging for a long period of time with this technique due to necrosis and apoptosis depending on the type and subcellular location of the damage caused by phototoxicity. A large number of studies have been performed to resolve this problem, but researchers have struggled to meet the challenge between cellular viability and image resolution. In this study, we employ a specially designed disc to reduce cell damage by controlling total fluorescence exposure time without deterioration of the image resolution. This approach has many advantages such as, the apparatus is simple, cost-effective, and easily integrated into the optical pathway through a conventional fluorescence microscope.
Scanning fluorescence detector for high-throughput DNA genotyping
NASA Astrophysics Data System (ADS)
Rusch, Terry L.; Petsinger, Jeremy; Christensen, Carl; Vaske, David A.; Brumley, Robert L., Jr.; Luckey, John A.; Weber, James L.
1996-04-01
A new scanning fluorescence detector (SCAFUD) was developed for high-throughput genotyping of short tandem repeat polymorphisms (STRPs). Fluorescent dyes are incorporated into relatively short DNA fragments via polymerase chain reaction (PCR) and are separated by electrophoresis in short, wide polyacrylamide gels (144 lanes with well to read distances of 14 cm). Excitation light from an argon laser with primary lines at 488 and 514 nm is introduced into the gel through a fiber optic cable, dichroic mirror, and 40X microscope objective. Emitted fluorescent light is collected confocally through a second fiber. The confocal head is translated across the bottom of the gel at 0.5 Hz. The detection unit utilizes dichroic mirrors and band pass filters to direct light with 10 - 20 nm bandwidths to four photomultiplier tubes (PMTs). PMT signals are independently amplified with variable gain and then sampled at a rate of 2500 points per scan using a computer based A/D board. LabView software (National Instruments) is used for instrument operation. Currently, three fluorescent dyes (Fam, Hex and Rox) are simultaneously detected with peak detection wavelengths of 543, 567, and 613 nm, respectively. The detection limit for fluorescein-labeled primers is about 100 attomoles. Planned SCAFUD upgrades include rearrangement of laser head geometry, use of additional excitation lasers for simultaneous detection of more dyes, and the use of detector arrays instead of individual PMTs. Extensive software has been written for automatic analysis of SCAFUD images. The software enables background subtraction, band identification, multiple- dye signal resolution, lane finding, band sizing and allele calling. Whole genome screens are currently underway to search for loci influencing such complex diseases as diabetes, asthma, and hypertension. Seven production SCAFUDs are currently in operation. Genotyping output for the coming year is projected to be about one million total genotypes (DNA samples X polymorphic markers) at a total cost of
Generation-3 programmable array microscope (PAM) with digital micro-mirror device (DMD)
NASA Astrophysics Data System (ADS)
De Beule, Pieter A. A.; de Vries, Anthony H. B.; Arndt-Jovin, Donna J.; Jovin, Thomas M.
2011-03-01
We report progress on the construction of an optical sectioning programmable array microscope (PAM) implemented with a digital micro-mirror device (DMD) spatial light modulator (SLM) utilized for both fluorescence illumination and detection. The introduction of binary intensity modulation at the focal plane of a microscope objective in a computer controlled pixilated mode allows the recovery of an optically sectioned image. Illumination patterns can be changed very quickly, in contrast to static Nipkow disk or aperture correlation implementations, thereby creating an optical system that can be optimized to the optical specimen in a convenient manner, e.g. for patterned photobleaching, photobleaching reduction, or spatial superresolution. We present a third generation (Gen-3) dual path PAM module incorporating the 25 kHz binary frame rate TI 1080p DMD and a newly developed optical system that offers diffraction limited imaging with compensation of tilt angle distortion.
Advances in combined endoscopic fluorescence confocal microscopy and optical coherence tomography
NASA Astrophysics Data System (ADS)
Risi, Matthew D.
Confocal microendoscopy provides real-time high resolution cellular level images via a minimally invasive procedure. Results from an ongoing clinical study to detect ovarian cancer with a novel confocal fluorescent microendoscope are presented. As an imaging modality, confocal fluorescence microendoscopy typically requires exogenous fluorophores, has a relatively limited penetration depth (100 μm), and often employs specialized aperture configurations to achieve real-time imaging in vivo. Two primary research directions designed to overcome these limitations and improve diagnostic capability are presented. Ideal confocal imaging performance is obtained with a scanning point illumination and confocal aperture, but this approach is often unsuitable for real-time, in vivo biomedical imaging. By scanning a slit aperture in one direction, image acquisition speeds are greatly increased, but at the cost of a reduction in image quality. The design, implementation, and experimental verification of a custom multi-point-scanning modification to a slit-scanning multi-spectral confocal microendoscope is presented. This new design improves the axial resolution while maintaining real-time imaging rates. In addition, the multi-point aperture geometry greatly reduces the effects of tissue scatter on imaging performance. Optical coherence tomography (OCT) has seen wide acceptance and FDA approval as a technique for ophthalmic retinal imaging, and has been adapted for endoscopic use. As a minimally invasive imaging technique, it provides morphological characteristics of tissues at a cellular level without requiring the use of exogenous fluorophores. OCT is capable of imaging deeper into biological tissue (˜1-2 mm) than confocal fluorescence microscopy. A theoretical analysis of the use of a fiber-bundle in spectral-domain OCT systems is presented. The fiber-bundle enables a flexible endoscopic design and provides fast, parallelized acquisition of the optical coherence tomography data. However, the multi-mode characteristic of the fibers in the fiber-bundle affects the depth sensitivity of the imaging system. A description of light interference in a multi-mode fiber is presented along with numerical simulations and experimental studies to illustrate the theoretical analysis.
Katoh, K; Hammar, K; Smith, P J; Oldenbourg, R
1999-01-01
We have investigated the dynamic behavior of cytoskeletal fine structure in the lamellipodium of nerve growth cones using a new type of polarized light microscope (the Pol-Scope). Pol-Scope images display with exquisite resolution and definition birefringent fine structures, such as filaments and membranes, without having to treat the cell with exogenous dyes or fluorescent labels. Furthermore, the measured birefringence of protein fibers in the thin lamellipodial region can be interpreted in terms of the number of filaments in the bundles. We confirmed that birefringent fibers are actin-based using conventional fluorescence-labeling methods. By recording movies of time-lapsed Pol-Scope images, we analyzed the creation and dynamic composition of radial fibers, filopodia, and intrapodia in advancing growth cones. The strictly quantitative information available in time-lapsed Pol-Scope images confirms previously deduced behavior and provides new insight into the architectural dynamics of filamentous actin.
NASA Astrophysics Data System (ADS)
Ilias, Michail A.; Richter, Johan; Westermark, Frida; Brantmark, Martin; Andersson-Engels, Stefan; Wårdell, Karin
2007-07-01
The highly malignant brain tumor, glioblastoma multiforme, is difficult to totally resect without aid due to its infiltrative way of growing and its morphological similarities to surrounding functioning brain under direct vision in the operating field. The need for an inexpensive and robust real-time visualizing system for resection guiding in neurosurgery has been formulated by research groups all over the world. The main goal is to develop a system that helps the neurosurgeon to make decisions during the surgical procedure. A compact fiber optic system using fluorescence spectroscopy has been developed for guiding neurosurgical resections. The system is based on a high power light emitting diode at 395 nm and a spectrometer. A fiber bundle arrangement is used to guide the excitation light and fluorescence light between the instrument and the tissue target. The system is controlled through a computer interface and software package especially developed for the application. This robust and simple instrument has been evaluated in vivo both on healthy skin but also during a neurosurgical resection procedure. Before surgery the patient received orally a low dose of 5-aminolevulinic acid, converted to the fluorescence tumor marker protoporphyrin IX in the malignant cells. Preliminary results indicate that PpIX fluorescence and brain tissue autofluorescence can be recorded with the help of the developed system intraoperatively during resection of glioblastoma multiforme.
Simultaneous dual-color fluorescence microscope: a characterization study.
Li, Zheng; Chen, Xiaodong; Ren, Liqiang; Song, Jie; Li, Yuhua; Zheng, Bin; Liu, Hong
2013-01-01
High spatial resolution and geometric accuracy is crucial for chromosomal analysis of clinical cytogenetic applications. High resolution and rapid simultaneous acquisition of multiple fluorescent wavelengths can be achieved by utilizing concurrent imaging with multiple detectors. However, such class of microscopic systems functions differently from traditional fluorescence microscopes. To develop a practical characterization framework to assess and optimize the performance of a high resolution and dual-color fluorescence microscope designed for clinical chromosomal analysis. A dual-band microscopic imaging system utilizes a dichroic mirror, two sets of specially selected optical filters, and two detectors to simultaneously acquire two fluorescent wavelengths. The system's geometric distortion, linearity, the modulation transfer function, and the dual detectors' alignment were characterized. Experiment results show that the geometric distortion at lens periphery is less than 1%. Both fluorescent channels show linear signal responses, but there exists discrepancy between the two due to the detectors' non-uniform response ratio to different wavelengths. In terms of the spatial resolution, the two contrast transfer function curves trend agreeably with the spatial frequency. The alignment measurement allows quantitatively assessing the cameras' alignment. A result image of adjusted alignment is demonstrated to show the reduced discrepancy by using the alignment measurement method. In this paper, we present a system characterization study and its methods for a specially designed imaging system for clinical cytogenetic applications. The presented characterization methods are not only unique to this dual-color imaging system but also applicable to evaluation and optimization of other similar multi-color microscopic image systems for improving their clinical utilities for future cytogenetic applications.
Fiber-optic two-photon optogenetic stimulation.
Dhakal, K; Gu, L; Black, B; Mohanty, S K
2013-06-01
Optogenetic stimulation of genetically targeted cells is proving to be a powerful tool in the study of cellular systems, both in vitro and in vivo. However, most opsins are activated in the visible spectrum, where significant absorption and scattering of stimulating light occurs, leading to low penetration depth and less precise stimulation. Since we first (to the best of our knowledge) demonstrated two-photon optogenetic stimulation (TPOS), it has gained considerable interest in the probing of cellular circuitry by precise spatial modulation. However, all existing methods use microscope objectives and complex scanning beam geometries. Here, we report a nonscanning method based on multimode fiber to accomplish fiber-optic TPOS of cells.
Frequency Domain Fluorescent Molecular Tomography and Molecular Probes for Small Animal Imaging
NASA Astrophysics Data System (ADS)
Kujala, Naresh Gandhi
Fluorescent molecular tomography (FMT) is a noninvasive biomedical optical imaging that enables 3-dimensional quantitative determination of fluorochromes distributed in biological tissues. There are three methods for imaging large volume tissues based on different light sources: (a) using a light source of constant intensity, through a continuous or constant wave, (b) using a light source that is intensity modulated with a radio frequency (RF), and (c) using ultrafast pulses in the femtosecond range. In this study, we have developed a frequency domain fluorescent molecular tomographic system based on the heterodyne technique, using a single source and detector pair that can be used for small animal imaging. In our system, the intensity of the laser source is modulated with a RF frequency to produce a diffuse photon density wave in the tissue. The phase of the diffuse photon density wave is measured by comparing the reference signal with the signal from the tissue using a phasemeter. The data acquisition was performed by using a Labview program. The results suggest that we can measure the phase change from the heterogeneous inside tissue. Combined with fiber optics and filter sets, the system can be used to sensitively image the targeted fluorescent molecular probes, allowing the detection of cancer at an early stage. We used the system to detect the tumor-targeting molecular probe Alexa Fluor 680 and Alexa Fluor 750 bombesin peptide conjugates in phantoms as well as mouse tissues. We also developed and evaluated fluorescent Bombesin (BBN) probes to target gastrin-releasing peptide (GRP) receptors for optical molecular imaging. GRP receptors are over-expressed in several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. BBN is a 14 amino acid peptide that is an analogue to human gastrin-releasing peptide that binds specifically to GRPr receptors. BBN conjugates are significant in cancer detection and therapy. The optical molecular probe AF750 BBN peptide exhibits optimal pharmacokinetic properties for targeting GRPr in mice. Fluorescent microscopic imaging of the molecular probe in PC-3 prostate and T-47D breast cancer cell lines indicated specific uptake, internalization, and receptor blocking of these probes. In vivo investigations in severely compromised immunodeficient (SCID) mice bearing xenografted PC-3 prostate and T47-D breast cancer lesions demonstrated the ability of this new molecular probe to specifically target tumor tissue with high selectively and affinity.
Aqueous carrier waveguide in a flow cytometer
Mariella, R.P. Jr.; Engh, G. van den; Northrup, M.A.
1995-12-12
The liquid of a flow cytometer itself acts as an optical waveguide, thus transmitting the light to an optical filter/detector combination. This alternative apparatus and method for detecting scattered light in a flow cytometer is provided by a device which views and detects the light trapped within the optical waveguide formed by the flow stream. A fiber optic or other light collecting device is positioned within the flow stream. This provides enormous advantages over the standard light collection technique which uses a microscope objective. The signal-to-noise ratio is greatly increased over that for right-angle-scattered light collected by a microscope objective, and the alignment requirements are simplified. 6 figs.
Compact and high-efficiency device for Raman scattering measurement using optical fibers.
Mitsui, Tadashi
2014-11-01
We describe the design and development of a high-efficiency optical measurement device for operation within the small bore of a high-power magnet at low temperature. For the high-efficiency measurement of light emitted from this small region, we designed a compact confocal optics with lens focusing and tilting systems, and used a piezodriven translation stage that allows micron-scale focus control of the sample position. We designed a measurement device that uses 10 m-long optical fibers in order to avoid the influence of mechanical vibration and magnetic field leakage of high-power magnets, and we also describe a technique for minimizing the fluorescence signal of optical fibers. The operation of the device was confirmed by Raman scattering measurements of monolayer graphene on quartz glass with a high signal-to-noise ratio.
Europium containing red light-emitting fibers made by electrohydrodynamic casting
NASA Astrophysics Data System (ADS)
Gan, Yong X.; Panahi, Niousha; Yu, Christina; Gan, Jeremy B.; Cheng, Wanli
2018-05-01
Red light-emitting polymeric micro- and nanofibers were made by electrohydrodynamic co-casting of two fluids. One fluid contains a 10 wt% concentration europium (III) complex dissolved in a dimethylformamide (DMF) solvent. The europium complex, an Eu3+ compound with the nominal formula of Eu(BA)3phen/PAN, consists of polyacrylonitrile (PAN), 1,10-phenanthroline (phen), and benzoic acid (BA). The other fluid consists of iron metal oxide nanoparticles dispersed in a solution containing 10 wt% polyacrylonitrile polymer in DMF solvent. The two fluids were electrohydrodynamically co-cast onto a soft tissue paper using a stainless steel coaxial nozzle. The intensity of the electric field used for the co-casting was 1.5 kV/cm. Scanning electron microscopic observation on the fibers obtained from the co-casting was made. The size of the fibers ranges from several hundreds of nanometers to several microns. Energy dispersive X-ray spectroscopic analysis of the fibers confirmed that the major elements included C, O, Fe, and Eu. The fluorescence of the two types of fibers was tested under the excitation of a UV light source. It was found that when the europium complex-containing solution was the sheath fluid and the iron-containing solution was the core, the prepared fibers showed red light-emitting behavior under ultraviolet light. Time-dependent fluorescence shows the two-stage decaying behavior. The first stage lasts about 2000 s and the intensity of fluorescence decreases linearly. The second stage reveals the slow decaying behavior and it lasts longer than 3 h. Based on the bi-exponential data fitting using a processing MATLAB code, the fluorescence-related constants were extracted. A bi-exponential formula was proposed to describe the time-dependent fluorescence behavior of the fiber made by the europium complex-containing solution as the sheath fluid. The decaying in the fluorescence shows two different stages. The first stage lasts about 2000 s and it is characterized by a fast decaying model. The intensity of fluorescence decreases linearly. The second stage has a slow decaying feature. It takes over 3 h for the fluorescence to die out completely. Bi-exponential data fitting shows that the time constant for the decay of fluorescence is about 10,000 s.
Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence
Sinefeld, David; Paudel, Hari P.; Ouzounov, Dimitre G.; Bifano, Thomas G.; Xu, Chris
2015-01-01
We demonstrate adaptive optics system based on nonlinear feedback from 3- and 4-photon fluorescence. The system is based on femtosecond pulses created by soliton self-frequency shift of a 1550-nm fiber-based femtosecond laser together with micro-electro-mechanical system (MEMS) phase spatial light modulator (SLM). We perturb the 1020-segment SLM using an orthogonal Walsh sequence basis set with a modified version of three-point phase shifting interferometry. We show the improvement after aberrations correction in 3-photon signal from fluorescent beads. In addition, we compare the improvement obtained in the same adaptive optical system for 2-, 3- and 4-photon fluorescence using dye pool. We show that signal improvement resulting from aberration correction grows exponentially as a function of the order of nonlinearity. PMID:26698772
Optical spectroscopy for stereotactic biopsy of brain tumors
NASA Astrophysics Data System (ADS)
Markwardt, Niklas; von Berg, Anna; Fiedler, Sebastian; Goetz, Marcus; Haj-Hosseini, Neda; Polzer, Christoph; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian
2015-07-01
Stereotactic biopsy procedure is performed to obtain a tissue sample for diagnosis purposes. Currently, a fiber-based mechano-optical device for stereotactic biopsies of brain tumors is developed. Two different fluorophores are employed to improve the safety and reliability of this procedure: The fluorescence of intravenously applied indocyanine green (ICG) facilitates the recognition of blood vessels and thus helps minimize the risk of cerebral hemorrhages. 5- aminolevulinic-acid-induced protoporphyrin IX (PpIX) fluorescence is used to localize vital tumor tissue. ICG fluorescence detection using a 2-fiber probe turned out to be an applicable method to recognize blood vessels about 1.5 mm ahead of the fiber tip during a brain tumor biopsy. Moreover, the suitability of two different PpIX excitation wavelengths regarding practical aspects was investigated: While PpIX excitation in the violet region (at 405 nm) allows for higher sensitivity, red excitation (at 633 nm) is noticeably superior with regard to blood layers obscuring the fluorescence signal. Contact measurements on brain simulating agar phantoms demonstrated that a typical blood coverage of the tumor reduces the PpIX signal to about 75% and nearly 0% for 633 nm and 405 nm excitation, respectively. As a result, 633 nm seems to be the wavelength of choice for PpIX-assisted detection of high-grade gliomas in stereotactic biopsy.
Analysis of suspended solids by single-particle scattering. [for Lake Superior pollution monitoring
NASA Technical Reports Server (NTRS)
Diehl, S. R.; Smith, D. T.; Sydor, M.
1979-01-01
Light scattering by individual particulates is used in a multiple-detector system to categorize the composition of suspended solids in terms of broad particulate categories. The scattering signatures of red clay and taconite tailings, the two primary particulate contaminants in western Lake Superior, along with two types of asbestiform fibers, amphibole and chrysolite, were studied in detail. A method was developed to predict the concentration of asbestiform fibers in filtration plant samples for which electron microscope analysis was done concurrently. Fiber levels as low as 50,000 fibers/liter were optically detectable. The method has application in optical categorization of samples for remote sensing purposes and offers a fast, inexpensive means for analyzing water samples from filtration plants for specific particulate contaminants.
Sharma, Manu; Marple, Eric; Reichenberg, Jason; Tunnell, James W.
2014-01-01
The design and characterization of an instrument combining Raman, fluorescence, and reflectance spectroscopic modalities is presented. Instrument development has targeted skin cancer applications as a novel fiber-optic probe has been specially designed to interrogate cutaneous lesions. The instrument is modular and both its software and hardware components are described in depth. Characterization of the fiber-optic probe is also presented, which details the probe's ability to measure diagnostically important parameters such as intrinsic fluorescence and absorption and reduced scattering coefficients along with critical performance metrics such as high Raman signal-to-noise ratios at clinically practical exposure times. Validation results using liquid phantoms show that the probe and system can extract absorption and scattering coefficients with less than 10% error. As the goal is to use the instrument for the clinical early detection of skin cancer, preliminary clinical data are also presented, which indicates our system's ability to measure physiological quantities such as relative collagen and nicotinamide adenine dinucleotide concentration, oxygen saturation, blood volume fraction, and mean vessel diameter. PMID:25173240
Two-photon imaging in living brain slices.
Mainen, Z F; Maletic-Savatic, M; Shi, S H; Hayashi, Y; Malinow, R; Svoboda, K
1999-06-01
Two-photon excitation laser scanning microscopy (TPLSM) has become the tool of choice for high-resolution fluorescence imaging in intact neural tissues. Compared with other optical techniques, TPLSM allows high-resolution imaging and efficient detection of fluorescence signal with minimal photobleaching and phototoxicity. The advantages of TPLSM are especially pronounced in highly scattering environments such as the brain slice. Here we describe our approaches to imaging various aspects of synaptic function in living brain slices. To combine several imaging modes together with patch-clamp electrophysiological recordings we found it advantageous to custom-build an upright microscope. Our design goals were primarily experimental convenience and efficient collection of fluorescence. We describe our TPLSM imaging system and its performance in detail. We present dynamic measurements of neuronal morphology of neurons expressing green fluorescent protein (GFP) and GFP fusion proteins as well as functional imaging of calcium dynamics in individual dendritic spines. Although our microscope is a custom instrument, its key advantages can be easily implemented as a modification of commercial laser scanning microscopes. Copyright 1999 Academic Press.
Impurity-doped optical shock, detonation and damage location sensor
Weiss, J.D.
1995-02-07
A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack. 8 figs.
Impurity-doped optical shock, detonation and damage location sensor
Weiss, Jonathan D.
1995-01-01
A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack.
In-Situ Cure Monitoring of the Immidization Reaction of PMR-15
NASA Technical Reports Server (NTRS)
Cossins, Sheryl; Kellar, Jon J.; Winter, Robb M.
1997-01-01
Glass fiber reinforced polymer composites are becoming widely used in industry. With this increase in production, an in-situ method of quality control for the curing of the polymer is desirable. This would allow for the production of high-quality parts having more uniform properties.' Recently, in-situ fiber optic monitoring of polymer curing has primarily focused on epoxy resins and has been performed by Raman or fluorescence methods. In addition, some infrared (IR) investigations have been performed using transmission or ATR cells. An alternate IR approach involves using optical fibers as a sensor by utilizing evanescent wave spectroscopy.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Fan, Yifeng; Zhang, Yongguang; Chou, Shuren; Ju, Weimin; Chen, Jing M.
2016-09-01
An automated spectroscopy system, which is divided into fix-angle and multi-angle subsystems, for collecting simultaneous, continuous and long-term measurements of canopy hyper-spectra in a crop ecosystem is developed. The fix-angle subsystem equips two spectrometers: one is HR2000+ (OceanOptics) covering the spectral range 200-1100 nm with 1.0 nm spectral resolution, and another one is QE65PRO (OceanOptics) providing 0.1 nm spectral resolution within the 730-780 nm spectral range. Both spectrometers connect a cosine-corrected fiber-optic fixed up-looking to collect the down-welling irradiance and a bare fiber-optic to measure the up-welling radiance from the vegetation. An inline fiber-optic shutter FOS-2x2-TTL (OceanOptics) is used to switch between input fibers to collect the signal from either the canopy or sky at one time. QE65PRO is used to permit estimation of vegetation Sun-Induced Fluorescence (SIF) in the O2-A band. The data collection scheme includes optimization of spectrometer integration time to maximize the signal to noise ratio and measurement of instrument dark currency. The multi-angle subsystem, which can help understanding bidirectional reflectance effects, alternatively use HR4000 (OceanOptics) providing 0.1 nm spectral resolution within the 680-800 nm spectral range to measure multi-angle SIF. This subsystem additionally includes a spectrometer Unispec-DC (PPSystems) featuring both up-welling and down-welling channels with 3 nm spectral resolution covering the 300-1100 nm spectral range. Two down-looking fiber-optics are mounted on a rotating device PTU-D46 (FLIR Systems), which can rotate horizontally and vertically at 10° angular step widths. Observations can be used to calculate canopy reflectance, vegetation indices and SIF for monitoring plant physiological processes.
Breathing Monitor Using Dye-Doped Optical Fiber
NASA Astrophysics Data System (ADS)
Muto, Shinzo; Fukasawa, Akihiko; Ogawa, Takayuki; Morisawa, Masayuki; Ito, Hiroshi
1990-08-01
A new monitoring system of human breathing using umbelliferon dye-doped plastic fiber has been studied. Under UV light pumping, the fiber which was used as a sensor head generates blue fluorescence depending on human expiration. By converting the light signal to electronic pulses, the counting of breathing and real-time monitoring of abnormal breathing such as a heavy cough or a cloggy sputum have easily been obtained.
A 15 W 1152 nm Raman fiber laser with 6 nm spectral width for Ho3+-doped crystal's pumping source
NASA Astrophysics Data System (ADS)
Chen, Xiuyan; Jiang, Huawei
2016-12-01
A 11.5 W 1152 nm Raman fiber laser with 6 nm spectral width was demonstrated based on the resonator constructed with one fiber loop mirror and one fiber Bragg grating. By mans of experimental measurement and theoretical calculation, the reflectivity of the fiber loop mirror was confirmed as 0.93. The Yb3+-doped 1090 nm fiber length was about 5 m. When the maximum pumping power of 976 nm laser was 54.8 W, 32.2 W 1090 nm laser was obtained and the optical to optical conversion efficiency from 1090 nm to 1152 nm light was 48%. Finally, the 1152 nm Raman fiber laser was used for pumping Ho3+:LLF crystal, and the 1194 nm fluorescence emission peak was detected for the first time.
NASA Astrophysics Data System (ADS)
Harms, F.; Dalimier, E.; Vermeulen, P.; Fragola, A.; Boccara, A. C.
2012-03-01
Optical Coherence Tomography (OCT) is an efficient technique for in-depth optical biopsy of biological tissues, relying on interferometric selection of ballistic photons. Full-Field Optical Coherence Tomography (FF-OCT) is an alternative approach to Fourier-domain OCT (spectral or swept-source), allowing parallel acquisition of en-face optical sections. Using medium numerical aperture objective, it is possible to reach an isotropic resolution of about 1x1x1 ìm. After stitching a grid of acquired images, FF-OCT gives access to the architecture of the tissue, for both macroscopic and microscopic structures, in a non-invasive process, which makes the technique particularly suitable for applications in pathology. Here we report a multimodal approach to FF-OCT, combining two Full-Field techniques for collecting a backscattered endogeneous OCT image and a fluorescence exogeneous image in parallel. Considering pathological diagnosis of cancer, visualization of cell nuclei is of paramount importance. OCT images, even for the highest resolution, usually fail to identify individual nuclei due to the nature of the optical contrast used. We have built a multimodal optical microscope based on the combination of FF-OCT and Structured Illumination Microscopy (SIM). We used x30 immersion objectives, with a numerical aperture of 1.05, allowing for sub-micron transverse resolution. Fluorescent staining of nuclei was obtained using specific fluorescent dyes such as acridine orange. We present multimodal images of healthy and pathological skin tissue at various scales. This instrumental development paves the way for improvements of standard pathology procedures, as a faster, non sacrificial, operator independent digital optical method compared to frozen sections.
Closed loop adaptive optics for microscopy without a wavefront sensor
Kner, Peter; Winoto, Lukman; Agard, David A.; Sedat, John W.
2013-01-01
A three-dimensional wide-field image of a small fluorescent bead contains more than enough information to accurately calculate the wavefront in the microscope objective back pupil plane using the phase retrieval technique. The phase-retrieved wavefront can then be used to set a deformable mirror to correct the point-spread function (PSF) of the microscope without the use of a wavefront sensor. This technique will be useful for aligning the deformable mirror in a widefield microscope with adaptive optics and could potentially be used to correct aberrations in samples where small fluorescent beads or other point sources are used as reference beacons. Another advantage is the high resolution of the retrieved wavefont as compared with current Shack-Hartmann wavefront sensors. Here we demonstrate effective correction of the PSF in 3 iterations. Starting from a severely aberrated system, we achieve a Strehl ratio of 0.78 and a greater than 10-fold increase in maximum intensity. PMID:24392198
Device for aqueous detection of nitro-aromatic compounds
Reagen, W.K.; Schulz, A.L.; Ingram, J.C.; Lancaster, G.D.; Grey, A.E.
1994-04-26
This invention relates to a compact and portable detection apparatus for nitro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound. 4 figures.
Device for aqueous detection of nitro-aromatic compounds
Reagen, William K.; Schulz, Amber L.; Ingram, Jani C.; Lancaster, Gregory D.; Grey, Alan E.
1994-01-01
This invention relates to a compact and portable detection apparatus for ro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound.
Borosilicate Glass Fiber-Optic Biosensor for the Detection of Escherichia coli.
Maas, Michael B; Maybery, Giles H C; Perold, Willem J; Neveling, Deon P; Dicks, Leon M T
2018-02-01
Polyclonal antibodies against Escherichia coli and fluorescent, secondary, antibodies were immobilized on borosilicate glass fibers pre-treated with 3-glycidyloxypropyl trimethoxysilane (GPS). Light with an average wavelength of 627 nm, emitted by a diode placed at one end of the glass fiber, was detected by an ultrasensitive photodiode with peak sensitivity at 640 nm. Changes in fluorescence, caused by binding of E. coli to the antibodies, changed the net refractive index of the glass fiber and thus the internal reflection of light. These evanescent changes in photon energy were recorded by an ultrasensitive photodiode. Signals were amplified and changes in voltage recorded with a digital multimeter. A linear increase in voltage readings was recorded over 2 h when 3.0 × 10 7 CFU/ml and 2.77 × 10 9 CFU/ml E. coli were adhered to the antibodies. Voltage readings were recorded with E. coli cell numbers from 2 × 10 3 CFU/ml to 2 × 10 6 CFU/ml, but readings remained unchanged for 2 h, indicating that the limit of detection is 3.0 × 10 7 CFU/ml. This simple technology may be used to develop a low-cost, portable, fiber-optic biosensor to detect E. coli in infections and may have applications in the medical field. Research is in progress to optimize the sensitivity of the fiber-optic biosensor and determine its specificity.
Chip-based wide field-of-view nanoscopy
NASA Astrophysics Data System (ADS)
Diekmann, Robin; Helle, Øystein I.; Øie, Cristina I.; McCourt, Peter; Huser, Thomas R.; Schüttpelz, Mark; Ahluwalia, Balpreet S.
2017-04-01
Present optical nanoscopy techniques use a complex microscope for imaging and a simple glass slide to hold the sample. Here, we demonstrate the inverse: the use of a complex, but mass-producible optical chip, which hosts the sample and provides a waveguide for the illumination source, and a standard low-cost microscope to acquire super-resolved images via two different approaches. Waveguides composed of a material with high refractive-index contrast provide a strong evanescent field that is used for single-molecule switching and fluorescence excitation, thus enabling chip-based single-molecule localization microscopy. Additionally, multimode interference patterns induce spatial fluorescence intensity variations that enable fluctuation-based super-resolution imaging. As chip-based nanoscopy separates the illumination and detection light paths, total-internal-reflection fluorescence excitation is possible over a large field of view, with up to 0.5 mm × 0.5 mm being demonstrated. Using multicolour chip-based nanoscopy, we visualize fenestrations in liver sinusoidal endothelial cells.
Fiber optic evanescent wave biosensor
NASA Astrophysics Data System (ADS)
Duveneck, Gert L.; Ehrat, Markus; Widmer, H. M.
1991-09-01
The role of modern analytical chemistry is not restricted to quality control and environmental surveillance, but has been extended to process control using on-line analytical techniques. Besides industrial applications, highly specific, ultra-sensitive biochemical analysis becomes increasingly important as a diagnostic tool, both in central clinical laboratories and in the doctor's office. Fiber optic sensor technology can fulfill many of the requirements for both types of applications. As an example, the experimental arrangement of a fiber optic sensor for biochemical affinity assays is presented. The evanescent electromagnetic field, associated with a light ray guided in an optical fiber, is used for the excitation of luminescence labels attached to the biomolecules in solution to be analyzed. Due to the small penetration depth of the evanescent field into the medium, the generation of luminescence is restricted to the close proximity of the fiber, where, e.g., the luminescent analyte molecules combine with their affinity partners, which are immobilized on the fiber. Both cw- and pulsed light excitation can be used in evanescent wave sensor technology, enabling the on-line observation of an affinity assay on a macroscopic time scale (seconds and minutes), as well as on a microscopic, molecular time scale (nanoseconds or microseconds).
Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei
2016-08-16
The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.
Tanaka, Yuji; Hase, Eiji; Fukushima, Shuichiro; Ogura, Yuki; Yamashita, Toyonobu; Hirao, Tetsuji; Araki, Tsutomu; Yasui, Takeshi
2014-01-01
Polarization-resolved second-harmonic-generation (PR-SHG) microscopy is a powerful tool for investigating collagen fiber orientation quantitatively with low invasiveness. However, the waiting time for the mechanical polarization rotation makes it too sensitive to motion artifacts and hence has hampered its use in various applications in vivo. In the work described in this article, we constructed a motion-artifact-robust, PR-SHG microscope based on rapid polarization switching at every pixel with an electro-optic Pockells cell (PC) in synchronization with step-wise raster scanning of the focus spot and alternate data acquisition of a vertical-polarization-resolved SHG signal and a horizontal-polarization-resolved one. The constructed PC-based PR-SHG microscope enabled us to visualize orientation mapping of dermal collagen fiber in human facial skin in vivo without the influence of motion artifacts. Furthermore, it implied the location and/or age dependence of the collagen fiber orientation in human facial skin. The robustness to motion artifacts in the collagen orientation measurement will expand the application scope of SHG microscopy in dermatology and collagen-related fields. PMID:24761292
Ye, Jian; Liu, Guanghui; Liu, Peng; Zhang, Shiwu; Shao, Pengfei; Smith, Zachary J; Liu, Chenhai; Xu, Ronald X
2018-02-01
We propose a portable fluorescence microscopic imaging system (PFMS) for intraoperative display of biliary structure and prevention of iatrogenic injuries during cholecystectomy. The system consists of a light source module, a camera module, and a Raspberry Pi computer with an LCD. Indocyanine green (ICG) is used as a fluorescent contrast agent for experimental validation of the system. Fluorescence intensities of the ICG aqueous solution at different concentration levels are acquired by our PFMS and compared with those of a commercial Xenogen IVIS system. We study the fluorescence detection depth by superposing different thicknesses of chicken breast on an ICG-loaded agar phantom. We verify the technical feasibility for identifying potential iatrogenic injury in cholecystectomy using a rat model in vivo. The proposed PFMS system is portable, inexpensive, and suitable for deployment in resource-limited settings. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Tunable thin-film optical filters for hyperspectral microscopy
NASA Astrophysics Data System (ADS)
Favreau, Peter F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.
2013-02-01
Hyperspectral imaging was originally developed for use in remote sensing applications. More recently, it has been applied to biological imaging systems, such as fluorescence microscopes. The ability to distinguish molecules based on spectral differences has been especially advantageous for identifying fluorophores in highly autofluorescent tissues. A key component of hyperspectral imaging systems is wavelength filtering. Each filtering technology used for hyperspectral imaging has corresponding advantages and disadvantages. Recently, a new optical filtering technology has been developed that uses multi-layered thin-film optical filters that can be rotated, with respect to incident light, to control the center wavelength of the pass-band. Compared to the majority of tunable filter technologies, these filters have superior optical performance including greater than 90% transmission, steep spectral edges and high out-of-band blocking. Hence, tunable thin-film optical filters present optical characteristics that may make them well-suited for many biological spectral imaging applications. An array of tunable thin-film filters was implemented on an inverted fluorescence microscope (TE 2000, Nikon Instruments) to cover the full visible wavelength range. Images of a previously published model, GFP-expressing endothelial cells in the lung, were acquired using a charge-coupled device camera (Rolera EM-C2, Q-Imaging). This model sample presents fluorescently-labeled cells in a highly autofluorescent environment. Linear unmixing of hyperspectral images indicates that thin-film tunable filters provide equivalent spectral discrimination to our previous acousto-optic tunable filter-based approach, with increased signal-to-noise characteristics. Hence, tunable multi-layered thin film optical filters may provide greatly improved spectral filtering characteristics and therefore enable wider acceptance of hyperspectral widefield microscopy.
Spectral staining of tumor tissue by fiber optic FTIR spectroscopy
NASA Astrophysics Data System (ADS)
Salzer, Reiner; Steiner, Gerald; Kano, Angelique; Richter, Tom; Bergmann, Ralf; Rodig, Heike; Johannsen, Bernd; Kobelke, Jens
2003-07-01
Infrared (IR) optical fiber have aroused great interest in recent years because of their potential in in-vivo spectroscopy. This potential includes the ability to be flexible, small and to guide IR light in a very large range of wavelengths. Two types - silver halide and chalcogenide - infrared transmitting fibers are investigated in the detection of a malignant tumor. As a test sample for all types of fibers we used a thin section of an entire rat brain with glioblastoma. The fibers were connected with a common infrared microscope. Maps across the whole tissue section with more than 200 spectra were recorded by moving the sample with an XY stage. Data evaluation was performed using fuzzy c-means cluster analysis (FCM). The silver halide fibers provided excellent results. The tumor was clearly discernible from healthy tissue. Chalcogenide fibers are not suitable to distinguish tumor from normal tissue because the fiber has a very low transmittance in the important fingerprint region.
Recent Progress In Optical Oxygen Sensing
NASA Astrophysics Data System (ADS)
Wolfbeis, Otto S.; Leiner, Marc J. P.
1988-06-01
Following a brief review on the history of optical oxygen sensing (which shows that a variety of ideas exists in the literature that awaits the extension to fiber optic sensing schemes), the present state of probing oxygen by optical methods is discussed in terms of new methods and materials for sensor construction. Promising sensing schemes include simultaneous measurement of parameters such as oxygen and carbon dioxide with one fiber, measurement of fluorescence lifetimes and radiative energy transfer efficiency as well as phosphorescence quenching. New longwave-excitable fluorophores have been introduced recently, two-band emit-ting indicators can help to eliminate drift problems, and new methods have been found by which both indicators and enzymes may be entrapped in silicone rubber, which opens the way for the design of new biosensors. In a final chapter, the application of fiber optic oxygen sensors for blood gas measurement and as transducers in biosensors are presented.
Diffraction-Unlimited Fluorescence Imaging with an EasySTED Retrofitted Confocal Microscope.
Klauss, André; Hille, Carsten
2017-01-01
The easySTED technology provides the means to retrofit a confocal microscope to a diffraction-unlimited stimulated emission depletion (STED) microscope.Although commercial STED systems are available today, for many users of confocal laser scanning microscopes the option of retrofitting their confocal system to a STED system ready for diffraction-unlimited imaging may present an attractive option. The easySTED principle allowing for a joint beam path of excitation and depletion light promises some advantages concerning technical complexity and alignment effort for such an STED upgrade. In the one beam path design of easySTED the use of a common laser source, either a supercontinuum source or two separate lasers coupled into the same single-mode fiber, becomes feasible. The alignment of the focal light distribution of the STED beam relative to that of the excitation beam in all three spatial dimensions is therefore omitted respectively reduced to coupling the STED laser into the common single-mode fiber. Thus, only minor modifications need to be applied to the beam path in the confocal microscope to be upgraded. Those comprise adding polarization control elements and the easySTED waveplate, and adapting the beamsplitter to the excitation/STED wavelength combination.
NASA Astrophysics Data System (ADS)
Sun, Yang; Liao, Kuo-Chih; Sun, Yinghua; Park, Jesung; Marcu, Laura
2008-02-01
A unique tissue phantom is reported here that mimics the optical and acoustical properties of biological tissue and enables testing and validation of a dual-modality clinical diagnostic system combining time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasound backscatter microscopy (UBM). The phantom consisted of contrast agents including silicon dioxide particles with a range of diameters from 0.5 to 10 μm acting as optical and acoustical scatterers, and FITC-conjugated dextran mimicking the endogenous fluorophore in tissue. The agents were encapsulated in a polymer bead attached to the end of an optical fiber with a 200 μm diameter using a UV-induced polymerization technique. A set of beads with fibers were then implanted into a gel-based matrix with controlled patterns including a design with lateral distribution and a design with successively changing depth. The configuration presented here allowed the validation of the hybrid fluorescence spectroscopic and ultrasonic system by detecting the lateral and depth distribution of the contrast agents, as well as for coregistration of the ultrasonic image with spectroscopic data. In addition, the depth of the beads in the gel matrix was changed to explore the effect of different concentration ratio of the mixture on the fluorescence signal emitted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nave, S.E.
Recent advances in fiber optics, diode lasers, CCD detectors, dielectric and holographic optical filters, grating spectrometers, and chemometric data analysis have greatly simplified Raman spectroscopy. In order to make a rugged fiber optic Raman probe for solids/slurries like these at Savannah River, we have designed a probe that eliminates as many optical elements and surfaces as possible. The diffuse reflectance probe tip is modified for Raman scattering by installing thin dielectric in-line filters. Effects of each filter are shown for the NaNO{sub 3} Raman spectrum. By using a diode laser excitation at 780 nm, fluorescence is greatly reduced, and excellentmore » spectra may be obtained from organic solids. At SRS, fiber optic Raman probes are being developed for in situ chemical mapping of radioactive waste storage tanks. Radiation darkening of silica fiber optics is negligible beyond 700 nm. Corrosion resistance is being evaluated. Analysis of process gas (off-gas from SRS processes) is investigated in some detail: hydrogen in nitrogen with NO{sub 2} interference. Other applications and the advantages of the method are pointed out briefly.« less
Time-resolved wide-field optically sectioned fluorescence microscopy
NASA Astrophysics Data System (ADS)
Dupuis, Guillaume; Benabdallah, Nadia; Chopinaud, Aurélien; Mayet, Céline; Lévêque-Fort, Sandrine
2013-02-01
We present the implementation of a fast wide-field optical sectioning technique called HiLo microscopy on a fluorescence lifetime imaging microscope. HiLo microscopy is based on the fusion of two images, one with structured illumination and another with uniform illumination. Optically sectioned images are then digitally generated thanks to a fusion algorithm. HiLo images are comparable in quality with confocal images but they can be acquired faster over larger fields of view. We obtain 4D imaging by combining HiLo optical sectioning, time-gated detection, and z-displacement. We characterize the performances of this set-up in terms of 3D spatial resolution and time-resolved capabilities in both fixed- and live-cell imaging modes.
Proof of Concept of Impact Detection in Composites Using Fiber Bragg Grating Arrays
Gomez, Javier; Jorge, Iagoba; Durana, Gaizka; Arrue, Jon; Zubia, Joseba; Aranguren, Gerardo; Montero, Ander; López, Ion
2013-01-01
Impact detection in aeronautical structures allows predicting their future reliability and performance. An impact can produce microscopic fissures that could evolve into fractures or even the total collapse of the structure, so it is important to know the location and severity of each impact. For this purpose, optical fibers with Bragg gratings are used to analyze each impact and the vibrations generated by them. In this paper it is proven that optical fibers with Bragg gratings can be used to detect impacts, and also that a high-frequency interrogator is necessary to collect valuable information about the impacts. The use of two interrogators constitutes the main novelty of this paper. PMID:24021969
Taniguchi, Midori; Saito, Hirokazu; Mitsubayashi, Kohji
2017-01-01
A rapid and reproducible fiber-optic immunosensor for Escherichia coli O157:H7 (E. coli O157:H7) was described. The biosensor consisted of a flow cell, an optical fiber with a thin Ni layer, and a PC linked fluorometer. First, the samples with E. coli O157:H7 were incubated with magnetic beads coated with anti-E. coli O157:H7 antibodies and anti-E. coli O157:H7 antibodies labeled cyanine 5 (Cy5) to make sandwich complexes. Then the Cy5-(E. coli O157:H7)-beads were injected into a flow cell and pulled to the magnetized Ni layer on the optical fiber set in the flow cell. An excitation light (λ = 635 nm) was used to illuminate the optical fiber, and the Cy5 florescent molecules facing the optical fiber were exposed to an evanescent wave from the optical fiber. The 670 nm fluorescent light was measured using a photodiode. Finally, the magnetic intensity of the Ni layer was removed and the Cy5-E. coli O157:H7-beads were washed out for the next immunoassay. E. coli O157:H7, diluted with phosphate buffer (PB), was measured from 1 × 105 to 1 × 107 cells/mL. The total time required for an assay was less than 15 min (except for the pretreatment process) and repeating immunoassay on one optical fiber was made possible. PMID:28925937
Taniguchi, Midori; Saito, Hirokazu; Mitsubayashi, Kohji
2017-09-19
A rapid and reproducible fiber-optic immunosensor for Escherichia coli O157:H7 ( E. coli O157:H7) was described. The biosensor consisted of a flow cell, an optical fiber with a thin Ni layer, and a PC linked fluorometer. First, the samples with E. coli O157:H7 were incubated with magnetic beads coated with anti- E. coli O157:H7 antibodies and anti- E. coli O157:H7 antibodies labeled cyanine 5 (Cy5) to make sandwich complexes. Then the Cy5-( E. coli O157:H7)-beads were injected into a flow cell and pulled to the magnetized Ni layer on the optical fiber set in the flow cell. An excitation light (λ = 635 nm) was used to illuminate the optical fiber, and the Cy5 florescent molecules facing the optical fiber were exposed to an evanescent wave from the optical fiber. The 670 nm fluorescent light was measured using a photodiode. Finally, the magnetic intensity of the Ni layer was removed and the Cy5- E. coli O157:H7-beads were washed out for the next immunoassay. E. coli O157:H7, diluted with phosphate buffer (PB), was measured from 1 × 10⁵ to 1 × 10⁷ cells/mL. The total time required for an assay was less than 15 min (except for the pretreatment process) and repeating immunoassay on one optical fiber was made possible.
Tomato seeds maturity detection system based on chlorophyll fluorescence
NASA Astrophysics Data System (ADS)
Li, Cuiling; Wang, Xiu; Meng, Zhijun
2016-10-01
Chlorophyll fluorescence intensity can be used as seed maturity and quality evaluation indicator. Chlorophyll fluorescence intensity of seed coats is tested to judge the level of chlorophyll content in seeds, and further to judge the maturity and quality of seeds. This research developed a detection system of tomato seeds maturity based on chlorophyll fluorescence spectrum technology, the system included an excitation light source unit, a fluorescent signal acquisition unit and a data processing unit. The excitation light source unit consisted of two high power LEDs, two radiators and two constant current power supplies, and it was designed to excite chlorophyll fluorescence of tomato seeds. The fluorescent signal acquisition unit was made up of a fluorescence spectrometer, an optical fiber, an optical fiber scaffolds and a narrowband filter. The data processing unit mainly included a computer. Tomato fruits of green ripe stage, discoloration stage, firm ripe stage and full ripe stage were harvested, and their seeds were collected directly. In this research, the developed tomato seeds maturity testing system was used to collect fluorescence spectrums of tomato seeds of different maturities. Principal component analysis (PCA) method was utilized to reduce the dimension of spectral data and extract principal components, and PCA was combined with linear discriminant analysis (LDA) to establish discriminant model of tomato seeds maturity, the discriminant accuracy was greater than 90%. Research results show that using chlorophyll fluorescence spectrum technology is feasible for seeds maturity detection, and the developed tomato seeds maturity testing system has high detection accuracy.
NASA Technical Reports Server (NTRS)
Malak, H.; Mahtani, H.; Herman, P.; Vecer, J.; Lu, X.; Chang, T. Y.; Richmond, Robert C.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
A high-performance hyperspectral imaging module with high throughput of light suitable for low-intensity fluorescence microscopic imaging and subsequent analysis, including single-pixel-defined emission spectroscopy, was tested on Sf21 insect cells expressing green fluorescence associated with recombinant green fluorescent protein linked or not with the membrane protein acyl-CoA:cholesterol acyltransferase. The imager utilized the phenomenon of optical activity as a new technique providing information over a spectral range of 220-1400 nm, and was inserted between the microscope and an 8-bit CCD video-rate camera. The resulting fluorescence image did not introduce observable image aberrations. The images provided parallel acquisition of well resolved concurrent spatial and spectral information such that fluorescence associated with green fluorescent protein alone was demonstrated to be diffuse within the Sf21 insect cell, and that green fluorescence associated with the membrane protein was shown to be specifically concentrated within regions of the cell cytoplasm. Emission spectra analyzed from different regions of the fluorescence image showed blue shift specific for the regions of concentration associated with the membrane protein.
Artificial testing targets with controllable blur for adaptive optics microscopes
NASA Astrophysics Data System (ADS)
Hattori, Masayuki; Tamada, Yosuke; Murata, Takashi; Oya, Shin; Hasebe, Mitsuyasu; Hayano, Yutaka; Kamei, Yasuhiro
2017-08-01
This letter proposes a method of configuring a testing target to evaluate the performance of adaptive optics microscopes. In this method, a testing slide with fluorescent beads is used to simultaneously determine the point spread function and the field of view. The point spread function is reproduced to simulate actual biological samples by etching a microstructure on the cover glass. The fabrication process is simplified to facilitate an onsite preparation. The artificial tissue consists of solid materials and silicone oil and is stable for use in repetitive experiments.
Yang, X; Liu, H; Li, D; Zhou, X; Jung, W C; Deans, A E; Cui, Y; Cheng, L
2001-04-01
To investigate the feasibility of using a sensitive digital optical imaging technique to detect green fluorescent protein (GFP) expressed in rabbit vasculature and human arterial smooth muscle cells. A GFP plasmid was transfected into human arterial smooth muscle cells to obtain a GFP-smooth muscle cell solution. This solution was imaged in cell phantoms by using a prototype digital optical imaging system. For in vivo validation, a GFP-lentivirus vector was transfected during surgery into the carotid arteries of two rabbits, and GFP-targeted vessels were harvested for digital optical imaging ex vivo. Optical imaging of cell phantoms resulted in a spatial resolution of 25 microm/pixel. Fluorescent signals were detected as diffusely distributed bright spots. At ex vivo optical imaging of arterial tissues, the average fluorescent signal was significantly higher (P <.05) in GFP-targeted tissues (mean +/- SD, 9,357.3 absolute units of density +/- 1,001.3) than in control tissues (5,633.7 absolute units of density +/- 985.2). Both fluorescence microscopic and immunohistochemical findings confirmed these differences between GFP-targeted and control vessels. The digital optical imaging system was sensitive to GFPs and may potentially provide an in vivo imaging tool to monitor and track vascular gene transfer and expression in experimental investigations.
Marcu, Laura; Jo, Javier A; Fang, Qiyin; Papaioannou, Thanassis; Reil, Todd; Qiao, Jian-Hua; Baker, J Dennis; Freischlag, Julie A; Fishbein, Michael C
2009-05-01
Plaque with dense inflammatory cells, including macrophages, thin fibrous cap and superficial necrotic/lipid core is thought to be prone-to-rupture. We report a time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) technique for detection of such markers of plaque vulnerability in human plaques. The autofluorescence of carotid plaques (65 endarterectomy patients) induced by a pulsed laser (337 nm, 0.7 ns) was measured from 831 distinct areas. The emission was resolved spectrally (360-550 nm range) and temporally (0.3 ns resolution) using a prototype fiber-optic TR-LIFS apparatus. Lesions were evaluated microscopically and quantified as to the % of different components (fibrous cap, necrotic core, inflammatory cells, foam cells, mature and degraded collagen, elastic fibers, calcification, and smooth muscle cell of the vessel wall). We determined that the spectral intensities and time-dependent parameters at discrete emission wavelengths (1) allow for discrimination (sensitivity >81%, specificity >94%) of various compositional and pathological features associated with plaque vulnerability including infiltration of macrophages into intima and necrotic/lipid core under a thin fibrous cap, and (2) show a linear correlation with plaque biochemical content: elastin (P<0.008), collagen (P<0.02), inflammatory cells (P<0.003), necrosis (P<0.004). Our results demonstrate the feasibility of TR-LIFS as a method for the identification of markers of plaque vulnerability. Current findings enable future development of TR-LIFS-based clinical devices for rapid investigation of atherosclerotic plaques and detection of those at high-risk.
Liquid crystal optics for communications, signal processing and 3-D microscopic imaging
NASA Astrophysics Data System (ADS)
Khan, Sajjad Ali
This dissertation proposes, studies and experimentally demonstrates novel liquid crystal (LC) optics to solve challenging problems in RF and photonic signal processing, freespace and fiber optic communications and microscopic imaging. These include free-space optical scanners for military and optical wireless applications, variable fiber-optic attenuators for optical communications, photonic control techniques for phased array antennas and radar, and 3-D microscopic imaging. At the heart of the applications demonstrated in this thesis are LC devices that are non-pixelated and can be controlled either electrically or optically. Instead of the typical pixel-by-pixel control as is custom in LC devices, the phase profile across the aperture of these novel LC devices is varied through the use of high impedance layers. Due to the presence of the high impedance layer, there forms a voltage gradient across the aperture of such a device which results in a phase gradient across the LC layer which in turn is accumulated by the optical beam traversing through this LC device. The geometry of the electrical contacts that are used to apply the external voltage will define the nature of the phase gradient present across the optical beam. In order to steer a laser beam in one angular dimension, straight line electrical contacts are used to form a one dimensional phase gradient while an annular electrical contact results in a circularly symmetric phase profile across the optical beam making it suitable for focusing the optical beam. The geometry of the electrical contacts alone is not sufficient to form the linear and the quadratic phase profiles that are required to either deflect or focus an optical beam. Clever use of the phase response of a typical nematic liquid crystal (NLC) is made such that the linear response region is used for the angular beam deflection while the high voltage quadratic response region is used for focusing the beam. Employing an NLC deflector, a device that uses the linear angular deflection, laser beam steering is demonstrated in two orthogonal dimensions whereas an NLC lens is used to address the third dimension to complete a three dimensional (3-D) scanner. Such an NLC deflector was then used in a variable optical attenuator (VOA), whereby a laser beam coupled between two identical single mode fibers (SMF) was mis-aligned away from the output fiber causing the intensity of the output coupled light to decrease as a function of the angular deflection. Since the angular deflection is electrically controlled, hence the VOA operation is fairly simple and repeatable. An extension of this VOA for wavelength tunable operation is also shown in this dissertation. (Abstract shortened by UMI.)
Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara
2010-11-01
Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. Copyright © 2010 Elsevier Inc. All rights reserved.
In vivo time-serial multi-modality optical imaging in a mouse model of ovarian tumorigenesis
Watson, Jennifer M; Marion, Samuel L; Rice, Photini F; Bentley, David L; Besselsen, David G; Utzinger, Urs; Hoyer, Patricia B; Barton, Jennifer K
2014-01-01
Identification of the early microscopic changes associated with ovarian cancer may lead to development of a diagnostic test for high-risk women. In this study we use optical coherence tomography (OCT) and multiphoton microscopy (MPM) (collecting both two photon excited fluorescence [TPEF] and second harmonic generation [SHG]) to image mouse ovaries in vivo at multiple time points. We demonstrate the feasibility of imaging mouse ovaries in vivo during a long-term survival study and identify microscopic changes associated with early tumor development. These changes include alterations in tissue microstructure, as seen by OCT, alterations in cellular fluorescence and morphology, as seen by TPEF, and remodeling of collagen structure, as seen by SHG. These results suggest that a combined OCT-MPM system may be useful for early detection of ovarian cancer. PMID:24145178
MRI-guided fiber-based fluorescence molecular tomography for preclinical atherosclerosis imaging
NASA Astrophysics Data System (ADS)
Li, Baoqiang; Pouliot, Philippe; Lesage, Frederic
2014-09-01
Multi-modal imaging combining fluorescent molecular tomography (FMT) with MRI could provide information in these two modalities as well as optimize the recovery of functional information with MR-guidance. Here, we present a MRI-guided FMT system. An optical probe was designed consisting of a fiber plate on the top and bottom sides of the animal bed, respectively. In experiment, animal was installed between the two plates. Mounting fibers on each plate, transmission measuring could be conducted from both sides of the animal. Moreover, an accurate fluorescence reconstruction was achieved with MRI-derived anatomical guidance. The sensitivity of the FMT system was evaluated with a phantom showing that with long fibers, it was sufficient to detect 10nM Cy5.5 solution with ~28.5 dB in the phantom. The system was eventually used to image MMP activity involved in atherosclerosis with two ATX mice and two control mice. The reconstruction results were in agreement with ex vivo measurement.
To boldly glow ... applications of laser scanning confocal microscopy in developmental biology.
Paddock, S W
1994-05-01
The laser scanning confocal microscope (LSCM) is now established as an invaluable tool in developmental biology for improved light microscope imaging of fluorescently labelled eggs, embryos and developing tissues. The universal application of the LSCM in biomedical research has stimulated improvements to the microscopes themselves and the synthesis of novel probes for imaging biological structures and physiological processes. Moreover the ability of the LSCM to produce an optical series in perfect register has made computer 3-D reconstruction and analysis of light microscope images a practical option.
2010-01-01
measuring the intensity of fluorescence at 517 nm using an Ocean Optics USB-2000TM spectrometer and an Ocean OpticsTM custom six-around-one fiber ...Umatilla Army Depot, OR Demilitarization (washout) Basalt Deep (>50 feet) NRC (2005) Installation Action Plan for UAAP March 2001 Hawthorne
Wang, Ying; Li, Zhi; Liang, Xiaobao; Fu, Ling
2016-08-22
In nonlinear optical microendoscope (NOME), a fiber with excellent optical characteristics and a miniature scanning mechanism at the distal end are two key components. Double-clad fibers (DCFs) and double-clad photonic crystal fibers (DCPCFs) have shown great optical characteristics but limited vibration amplitude due to large diameter. Besides reducing the damping of fiber cantilever, optimizing the structural of the actuator for lower energy dissipation also contributes to better driving capability. This paper presented an optimized actuator for driving a particular fiber cantilever in the view point of energy. Firstly, deformation energy of a bending fiber cantilever operating in resonant mode is investigated. Secondly, strain and stress analyses revealed that the four-plate actuator achieved lower energy dissipation. Then, finite-element simulations showed that the large-diameter fiber yielded an adequate vibration amplitude driven by a four-plate actuator, which was confirmed by experiments of our home-made four-plate actuator prototypes. Additionally, a NOME based on a DCPCF with a diameter of 350 μm driven by four-plate piezoelectric actuator has been developed. The NOME can excite and collect intrinsic second-harmonic and two-photon fluorescence signals with the excitation power of 10-30 mW and an adequate field of view of 200 μm, which suggest great potential applications in neuroscience and clinical diagnoses.
Flexible biodegradable citrate-based polymeric step-index optical fiber.
Shan, Dingying; Zhang, Chenji; Kalaba, Surge; Mehta, Nikhil; Kim, Gloria B; Liu, Zhiwen; Yang, Jian
2017-10-01
Implanting fiber optical waveguides into tissue or organs for light delivery and collection is among the most effective ways to overcome the issue of tissue turbidity, a long-standing obstacle for biomedical optical technologies. Here, we report a citrate-based material platform with engineerable opto-mechano-biological properties and demonstrate a new type of biodegradable, biocompatible, and low-loss step-index optical fiber for organ-scale light delivery and collection. By leveraging the rich designability and processibility of citrate-based biodegradable polymers, two exemplary biodegradable elastomers with a fine refractive index difference and yet matched mechanical properties and biodegradation profiles were developed. Furthermore, we developed a two-step fabrication method to fabricate flexible and low-loss (0.4 db/cm) optical fibers, and performed systematic characterizations to study optical, spectroscopic, mechanical, and biodegradable properties. In addition, we demonstrated the proof of concept of image transmission through the citrate-based polymeric optical fibers and conducted in vivo deep tissue light delivery and fluorescence sensing in a Sprague-Dawley (SD) rat, laying the groundwork for realizing future implantable devices for long-term implantation where deep-tissue light delivery, sensing and imaging are desired, such as cell, tissue, and scaffold imaging in regenerative medicine and in vivo optogenetic stimulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Micro sized implantable ball lens-based fiber optic probe design
NASA Astrophysics Data System (ADS)
Cha, Jaepyeong; Kang, Jin U.
2014-02-01
A micro sized implantable ball lens-based fiber optic probe design is described for continuous monitoring of brain activity in freely behaving mice. A prototype uses a 500-micron ball lens and a highly flexible 350-micron-diameter fiber bundle, which are enclosed by a 21G stainless steel sheath. Several types and thickness of brain tissue, consisting of fluorescent probes such as GFP, GCaMP3 calcium indicator, are used to evaluate the performance of the imaging probe. Measured working distance is approximately 400-μm, but is long enough to detect neural activities from cortical and cerebellar tissues of mice brain.
Tsiminis, Georgios; Klarić, Thomas S; Schartner, Erik P; Warren-Smith, Stephen C; Lewis, Martin D; Koblar, Simon A; Monro, Tanya M
2014-11-01
We report here on the development of a method for inducing a stroke in a specific location within a mouse brain through the use of an optical fiber. By capturing the emitted fluorescence signal generated using the same fiber it is possible to monitor photochemical changes within the brain in real-time, and directly measure the concentration of the stroke-inducing dye, Rose Bengal, at the infarct site. This technique reduces the requirement for post-operative histology to determine if a stroke has successfully been induced within the animal, and therefore opens up the opportunity to explore the recovery of the brain after the stroke event.
Inter-comparison of unrelated fiber evidence.
Houck, Max M
2003-08-12
The foreign textile fibers recovered from one item of evidence from each of 20 unrelated crimes in three categories (bank robbery, kidnapping, and homicide) were cross-compared. The items of evidence were scraped to remove the trace evidence and a sample of the collected fibers was examined using a standard scheme of analysis. The fibers were examined with light microscopy (including polarized light microscopy), fluorescence microscopy, and microspectrophotometry. The fibers were divided into natural and manufactured groups and then categorized by color and generic (polymer) class. Cross-comparing all 2083 fibers resulted in 2,168,403 comparisons, after removing duplicate (same fiber) comparisons. Colorless and denim fibers were excluded from this study. No two fibers were found to exhibit the same microscopic characteristics and analytical properties. Therefore, it is rare to find two unrelated items that have foreign fibers that are analytically indistinguishable. These results corroborate other population studies conducted in Europe and target fiber studies conducted both in the US and in Europe.
Simultaneous photoacoustic and optically mediated ultrasound microscopy: an in vivo study
Orlova, Anna; Shirmanova, Marina; Postnikova, Anna; Turchin, Ilya
2015-01-01
We propose the use of thermoelastic (TE) excitation of an ultrasonic (US) detector by backscattered laser radiation as a means of upgrading a single-modality photoacoustic (PA) microscope to dual-modality PA/US imaging at minimal cost. The upgraded scanning head of our dual-modality microscope consists of a fiber bundle with 14 output arms and a 32MHz polyvinylidene difluoride (PVDF) detector with a 34 MHz bandwidth (−6 dB level), 12.7 mm focal length, and a 0.25 numerical aperture. A single optical pulse delivered through the fiber bundle to the biotissue being investigated, in combination with a metalized surface on the PVDF detector allows us to obtain both PA and US A-scans. To demonstrate the in vivo capabilities of the proposed method we present the results of bimodal imaging of the brain of a newborn rat, a mouse tail and a mouse tumor. PMID:25780752
Benítez, Alfredo; Santiago, Ulises; Sanchez, John E; Ponce, Arturo
2018-01-01
In this work, an innovative cathodoluminescence (CL) system is coupled to a scanning electron microscope and synchronized with a Raspberry Pi computer integrated with an innovative processing signal. The post-processing signal is based on a Python algorithm that correlates the CL and secondary electron (SE) images with a precise dwell time correction. For CL imaging, the emission signal is collected through an optical fiber and transduced to an electrical signal via a photomultiplier tube (PMT). CL Images are registered in a panchromatic mode and can be filtered using a monochromator connected between the optical fiber and the PMT to produce monochromatic CL images. The designed system has been employed to study ZnO samples prepared by electrical arc discharge and microwave methods. CL images are compared with SE images and chemical elemental mapping images to correlate the emission regions of the sample.
NASA Astrophysics Data System (ADS)
Benítez, Alfredo; Santiago, Ulises; Sanchez, John E.; Ponce, Arturo
2018-01-01
In this work, an innovative cathodoluminescence (CL) system is coupled to a scanning electron microscope and synchronized with a Raspberry Pi computer integrated with an innovative processing signal. The post-processing signal is based on a Python algorithm that correlates the CL and secondary electron (SE) images with a precise dwell time correction. For CL imaging, the emission signal is collected through an optical fiber and transduced to an electrical signal via a photomultiplier tube (PMT). CL Images are registered in a panchromatic mode and can be filtered using a monochromator connected between the optical fiber and the PMT to produce monochromatic CL images. The designed system has been employed to study ZnO samples prepared by electrical arc discharge and microwave methods. CL images are compared with SE images and chemical elemental mapping images to correlate the emission regions of the sample.
Experimental verification of a theoretical model of an active cladding optical fiber fluorosensor
NASA Technical Reports Server (NTRS)
Albin, Sacharia; Briant, Alvin L.; Egalon, Claudio O.; Rogowski, Robert S.; Nankung, Juock S.
1993-01-01
Experiments were conducted to verify a theoretical model on the injection efficiency of sources in the cladding of an optical fiber. The theoretical results predicted an increase in the injection efficiency for higher differences in refractive indices between the core and cladding. The experimental apparatus used consisted of a glass rod 50 cm long, coated at one end with a thin film of fluorescent substance. The fluorescent substance was excited with side illumination, perpendicular to the rod axis, using a 476 nm Argon-ion laser. Part of the excited fluorescence was injected into the core and guided to a detector. The signal was measured for several different cladding refractive indices. The cladding consisted of sugar dissolved in water and the refractive index was changed by varying the sugar concentration in the solution. The results indicate that the power injected into the rod, due to evanescent wave injection, increases with the difference in refractive index which is in qualitative agreement with theory.
1,4-Bis(2-methylstyryl)benzene doped PMMA fibre for blue range fluorescent applications
NASA Astrophysics Data System (ADS)
Miluski, Piotr; Kochanowicz, Marcin; Zmojda, Jacek; Dorosz, Dominik
2018-03-01
The fluorescent dyes allow new optical applications in polymer-based optical fibre technology. The article presents highly fluorescent 1,4-Bis(2-methylstyryl)benzene doped poly(methyl methacrylate) (PMMA) fibre. The multi-peak (422, 450, 488 nm) fluorescence spectrum of the bulk specimen under 355 nm excitation is presented. The polymerization and fibre drawing process is also shown. The fluorescent properties vs. fibre length at excitation 405 nm are investigated. Significant spectrum shape changes and red shift phenomena of individual peaks are presented using one end excitation and fibre cutting method measurements for fibre length 2-90 cm. Obtained attenuation level 0.69 dB/m limits useful fibre length but obtained results can be useful in new polymeric fibers applications (e.g. sensors, light sources).
NASA Astrophysics Data System (ADS)
Zhang, Xiaolin; Tang, Jianguo; Li, Haidong; Wang, Yao; Wang, Xinzhi; Wang, Yanxin; Huang, Linjun; Belfiore, Laurence A.
2018-04-01
This work demonstrated red light emitting nano-PVP fibers that incorporated with novel three-layer nanostructure of Ag@SiO2@Eu(tta)3phen nanoparticles (Ag@SiO2@Eu(tta)3phen-NPs), and the hybrid nano-PVP fibers were fabricated via a remarkably simple electrostatic spinning method. For Ag@SiO2@Eu(tta)3phen-NPs, the thickness of SiO2 is optimized to obtain the maximum luminescent intensity, as results, the optimized thickness of SiO2 is 20 nm. And the corresponding luminescent intensity (612 nm) of the Ag@SiO2@Eu(tta)3phen-NPs is enhanced up to 10 times compared with the pure Eu(tta)3phen complex, which indicates that with 20 nm SiO2 thickness, the localized surface plasmon resonance (LSPR) effect of Ag@SiO2 exhibits highest performance for enhancing luminescence. Moreover, the luminescent PVP fibers emit bright red light under the fluorescence microscope, which definitely confirms that the microenvironment provided by PVP polymer is absolutely suitable for the fluorescent composites.
Steinbach, Gábor; Pomozi, István; Zsiros, Ottó; Páy, Anikó; Horváth, Gábor V; Garab, Gyozo
2008-03-01
Anisotropy carries important information on the molecular organization of biological samples. Its determination requires a combination of microscopy and polarization spectroscopy tools. The authors constructed differential polarization (DP) attachments to a laser scanning microscope in order to determine physical quantities related to the anisotropic distribution of molecules in microscopic samples; here the authors focus on fluorescence-detected linear dichroism (FDLD). By modulating the linear polarization of the laser beam between two orthogonally polarized states and by using a demodulation circuit, the authors determine the associated transmitted and fluorescence intensity-difference signals, which serve the basis for LD (linear dichroism) and FDLD, respectively. The authors demonstrate on sections of Convallaria majalis root tissue stained with Acridin Orange that while (nonconfocal) LD images remain smeared and weak, FDLD images recorded in confocal mode reveal strong anisotropy of the cell wall. FDLD imaging is suitable for mapping the anisotropic distribution of transition dipoles in 3 dimensions. A mathematical model is proposed to account for the fiber-laminate ultrastructure of the cell wall and for the intercalation of the dye molecules in complex, highly anisotropic architecture. Copyright 2007 International Society for Analytical Cytology.
Fluorescence intensity- and lifetime-based glucose sensing using glucose/galactose-binding protein.
Pickup, John C; Khan, Faaizah; Zhi, Zheng-Liang; Coulter, Jonathan; Birch, David J S
2013-01-01
We review progress in our laboratories toward developing in vivo glucose sensors for diabetes that are based on fluorescence labeling of glucose/galactose-binding protein. Measurement strategies have included both monitoring glucose-induced changes in fluorescence resonance energy transfer and labeling with the environmentally sensitive fluorophore, badan. Measuring fluorescence lifetime rather than intensity has particular potential advantages for in vivo sensing. A prototype fiber-optic-based glucose sensor using this technology is being tested. © 2013 Diabetes Technology Society.
Begum, Mahfuza; Rahman, A K M Mizanur; Abdul-Rashid, H A; Yusoff, Z; Begum, Mahbuba; Mat-Sharif, K A; Amin, Y M; Bradley, D A
2015-06-01
Important thermoluminescence (TL) properties of five (5) different core sizes Ge-doped optical fibers have been studied to develop new TL material with better response. These are drawn from same preform applying different speed and tension during drawing phase to produce Ge-doped optical fibers with five (5) different core sizes. The results of the investigations are also compared with most commonly used standard TLD-100 chips (LiF:Mg,Ti) and commercial multimode Ge-doped optical fiber (Yangtze Optical Fiber, China). Scanning Electron Microscope (SEM) and EDX analysis of the fibers are also performed to map Ge distribution across the deposited region. Standard Gamma radiation source in Secondary Standard Dosimetry Lab (SSDL) was used for irradiation covering dose range from 1Gy to 10Gy. The essential dosimetric parameters that have been studied are TL linearity, reproducibility and fading. Prior to irradiation all samples ∼0.5cm length are annealed at temperature of 400°C for 1h period to standardize their sensitivities and background. Standard TLD-100 chips are also annealed for 1h at 400°C and subsequently 2h at 100°C to yield the highest sensitivity. TL responses of these fibers show linearity over a wide gamma radiation dose that is an important property for radiation dosimetry. Among all fibers used in this study, 100μm core diameter fiber provides highest response that is 2.6 times than that of smallest core (20μm core) optical fiber. These fiber-samples demonstrate better response than commercial multi-mode optical fiber and also provide low degree of fading about 20% over a period of fifteen days for gamma radiation. Effective atomic number (Zeff) is found in the range (13.25-13.69) which is higher than soft tissue (7.5) however within the range of human-bone (11.6-13.8). All the fibers can also be re-used several times as a detector after annealing. TL properties of the Ge-doped optical fibers indicate promising applications in ionizing radiation dosimetry. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dansby-Sparks, Royce N.; Jin, Jun; Mechery, Shelly J
2009-01-01
Optical fluorescence sol-gel sensors have been developed for the detection of carbon dioxide gas in the 0.03?30% range with a detection limit of 0.008% (or 80 ppm) and a quantitation limit of 0.02% (or 200 ppm) CO{sub 2}. Sol?gels were spin-coated on glass slides to create an organically modified silica-doped matrix with the 1-hydroxypyrene-3,6,8-trisulfonate (HPTS) fluorescent indicator. The luminescence intensity of the HPTS indicator (513 nm) is quenched by CO{sub 2}, which protonates the anionic form of HPTS. An ion pair technique was used to incorporate the lipophilic dye into the hydrophilic sol?gel matrix. TiO{sub 2} particles (<5 {mu}m diameter)more » were added to induce Mie scattering and increase the incident light interaction with the sensing film, thus increasing the signal-to-noise ratio. Moisture-proof overcoatings have been used to maintain a constant level of water inside the sensor films. The optical sensors are inexpensive to prepare and can be easily coupled to fiber optics for remote sensing capabilities. A fiber-optic bundle was used for the gas detection and shown to work as part of a multianalyte platform for simultaneous detection of multiple analytes. The studies reported here resulted in the development of sol?gel optical fluorescent sensors for CO{sub 2} gas with sensitivity below that in the atmosphere (ca. 387 ppm). These sensors are a complementary approach to current FT-IR measurements for real-time carbon dioxide detection in environmental applications.« less
NASA Astrophysics Data System (ADS)
Zuo, Chao; Sun, Jiasong; Feng, Shijie; Hu, Yan; Chen, Qian
2016-03-01
Programmable colored illumination microscopy (PCIM) has been proposed as a flexible optical staining technique for microscopic contrast enhancement. In this method, we replace the condenser diaphragm of a conventional microscope with a programmable thin film transistor-liquid crystal display (TFT-LCD). By displaying different patterns on the LCD, numerous established imaging modalities can be realized, such as bright field, dark field, phase contrast, oblique illumination, and Rheinberg illuminations, which conventionally rely on intricate alterations in the respective microscope setups. Furthermore, the ease of modulating both the color and the intensity distribution at the aperture of the condenser opens the possibility to combine multiple microscopic techniques, or even realize completely new methods for optical color contrast staining, such as iridescent dark-field and iridescent phase-contrast imaging. The versatility and effectiveness of PCIM is demonstrated by imaging of several transparent colorless specimens, such as unstained lung cancer cells, diatom, textile fibers, and a cryosection of mouse kidney. Finally, the potentialities of PCIM for RGB-splitting imaging with stained samples are also explored by imaging stained red blood cells and a histological section.
Photodynamic detection and treatment of squamous cell carcinoma
NASA Astrophysics Data System (ADS)
Vari, Sandor G.; Pergadia, Vani R.; Papaioannou, Thanassis; Snyder, Wendy J.; Marcus, J.; Glassberg, Edward; Dimino-Emme, L.; Fishbein, Michael C.; Thomas, Reem; Dhondt, M. D.; Lask, Gary P.; Grundfest, Warren S.
1994-02-01
In this study the fluorescence intensity of photosensitizer in squamous cell tumors were quantified in terms of the tumor resolution rate. A He-Cd laser (442 nm - 17 mW) with a 600 micrometers core silica fiber was used for excitation. The same fiber was used for fluorescence acquisition and an optical multichannel analyzer (EG&G, OMA III) was used to analyze the fluorescence. Twelve days after carcinoma inoculation fluorescence signal from the tumor and skin (1 cm radius from the tumor) at the 12, 3, 6, and 9 o'clock positions were recorded. Benzoporphyrin Derivative (QLT, Canada -- 2 mg/kg of body weight) was then injected into the tail vein. The drug was photoactivated with a 690 nm modified argon pump cw-dye laser (Medtech) operating at 140 mW/cm2 for 15 mins. LIFS is capable of localizing in situ malignancy and evaluating photosensitizers for photodynamic fluorescence detection and therapy of tumors.
Henning, Paul E.; Rigo, M. Veronica; Geissinger, Peter
2012-01-01
A highly porous optical-fiber cladding was developed for evanescent-wave fiber sensors, which contains sensor molecules, maintains guiding conditions in the optical fiber, and is suitable for sensing in aqueous environments. To make the cladding material (a poly(ethylene) glycol diacrylate (PEGDA) polymer) highly porous, a microsphere templating strategy was employed. The resulting pore network increases transport of the target analyte to the sensor molecules located in the cladding, which improves the sensor response time. This was demonstrated using fluorescein-based pH sensor molecules, which were covalently attached to the cladding material. Scanning electron microscopy was used to examine the structure of the templated polymer and the large network of interconnected pores. Fluorescence measurements showed a tenfold improvement in the response time for the templated polymer and a reliable pH response over a pH range of five to nine with an estimated accuracy of 0.08 pH units. PMID:22654644
Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella
NASA Astrophysics Data System (ADS)
Xiao, Rui; Rong, Zhen; Long, Feng; Liu, Qiqi
2014-11-01
A portable evanescent wave fiber biosensor was developed to achieve the rapid and highly sensitive detection of Shigella. In this study, a DNA probe was covalently immobilized onto fiber-optic biosensors that can hybridize with a fluorescently labeled complementary DNA. The sensitivity of detection for synthesized oligonucleotides can reach 10-10 M. The surface of the sensor can be regenerated with 0.5% sodium dodecyl sulfate solution (pH 1.9) for over 30 times without significant deterioration of performance. The total analysis time for a single sample, including the time for measurement and surface regeneration, was less than 6 min. We employed real-time polymerase chain reaction (PCR) and compared the results of both methods to investigate the actual Shigella DNA detection capability of the fiber-optic biosensor. The fiber-optic biosensor could detect as low as 102 colony-forming unit/mL Shigella. This finding was comparable with that by real-time PCR, which suggests that this method is a potential alternative to existing detection methods.
Development of a nonlinear fiber-optic spectrometer for human lung tissue exploration
Peyrot, Donald A.; Lefort, Claire; Steffenhagen, Marie; Mansuryan, Tigran; Ducourthial, Guillaume; Abi-Haidar, Darine; Sandeau, Nicolas; Vever-Bizet, Christine; Kruglik, Sergei G.; Thiberville, Luc; Louradour, Frédéric; Bourg-Heckly, Geneviève
2012-01-01
Several major lung pathologies are characterized by early modifications of the extracellular matrix (ECM) fibrillar collagen and elastin network. We report here the development of a nonlinear fiber-optic spectrometer, compatible with an endoscopic use, primarily intended for the recording of second-harmonic generation (SHG) signal of collagen and two-photon excited fluorescence (2PEF) of both collagen and elastin. Fiber dispersion is accurately compensated by the use of a specific grism-pair stretcher, allowing laser pulse temporal width around 70 fs and excitation wavelength tunability from 790 to 900 nm. This spectrometer was used to investigate the excitation wavelength dependence (from 800 to 870 nm) of SHG and 2PEF spectra originating from ex vivo human lung tissue samples. The results were compared with spectral responses of collagen gel and elastin powder reference samples and also with data obtained using standard nonlinear microspectroscopy. The excitation-wavelength-tunable nonlinear fiber-optic spectrometer presented in this study allows performing nonlinear spectroscopy of human lung tissue ECM through the elastin 2PEF and the collagen SHG signals. This work opens the way to tunable excitation nonlinear endomicroscopy based on both distal scanning of a single optical fiber and proximal scanning of a fiber-optic bundle. PMID:22567579
A compactly integrated laser-induced fluorescence detector for microchip electrophoresis.
Li, Hai-Fang; Lin, Jin-Ming; Su, Rong-Guo; Uchiyama, Katsumi; Hobo, Toshiyuki
2004-06-01
A simple and easy-to-use integrated laser-induced fluorescence detector for microchip electrophoresis was constructed and evaluated. The fluid channels and optical fiber channels in the glass microchip were fabricated using standard photolithographic techniques and wet chemical etching. A 473 nm diode-pumped laser was used as the excitation source, and the collimation and collection optics and mirrors were discarded by using a multimode optical fiber to couple the excitation light straight into the microchannel and placing the microchip directly on the top of the photomultiplier tube. A combination of filter systems was incorporated into a poly(dimethylsiloxane) layer, which was reversibly sealed to the bottom of the microchip to eliminate the scattering excitation light reaching to the photomultiplier tube. Fluorescein/calcein samples were taken as model analytes to evaluate the performance with respect to design factors. The detection limits were 0.05 microM for fluorescein and 0.18 microM for calcein, respectively. The suitability of this simple detector for fluorescence detection was demonstrated by baseline separation of fluorescein isothiocyanate (FITC)-labeled arginine, phenylalanine, and glycine and FITC within 30 s at separation length of 3.8 cm and electrical field strength of 600 V/cm.
Design and application of fiber optic evanescent wave biosensor
NASA Astrophysics Data System (ADS)
Huang, Huijie; Zhai, Junhui; Zhao, Yongkai; Yang, Ruifu; Ren, Bingqiang; Cheng, Zhaogu; Du, Longlong; Lu, Dunwu
2003-12-01
A fiber-optic biosensor is developed based on the principle of evanescent wave while light propagates in optical fiber. The biosensor uses a red laser diode at 636.85 nm for exciting Cy5 fluorescent dye. Sensitivity limit of 0.01 nnmol/l is obtained from the detection of serial Cy5 solutions with various concentrations. In log-to-log plot, excellent linear response characteristic is seen in the Cy5 concentrations ranging from 0.01 nmlo/l to 100 nmol/l. And a good result of signal-to-noise ratio of 4.61 is obtained when the biosensor is used to measure Legionella pneumophila solution of 0.01 μmol/l. All the results are comparable with those that are obtained by a commercial biochip scanner GeneTAC 1000.
Photothermal imaging of skeletal muscle mitochondria.
Tomimatsu, Toru; Miyazaki, Jun; Kano, Yutaka; Kobayashi, Takayoshi
2017-06-01
The morphology and topology of mitochondria provide useful information about the physiological function of skeletal muscle. Previous studies of skeletal muscle mitochondria are based on observation with transmission, scanning electron microscopy or fluorescence microscopy. In contrast, photothermal (PT) microscopy has advantages over the above commonly used microscopic techniques because of no requirement for complex sample preparation by fixation or fluorescent-dye staining. Here, we employed the PT technique using a simple diode laser to visualize skeletal muscle mitochondria in unstained and stained tissues. The fine mitochondrial network structures in muscle fibers could be imaged with the PT imaging system, even in unstained tissues. PT imaging of tissues stained with toluidine blue revealed the structures of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria and the swelling behavior of mitochondria in damaged muscle fibers with sufficient image quality. PT image analyses based on fast Fourier transform (FFT) and Grey-level co-occurrence matrix (GLCM) were performed to derive the characteristic size of mitochondria and to discriminate the image patterns of normal and damaged fibers.
NASA Astrophysics Data System (ADS)
Zanello, Marc; Poulon, Fanny; Pallud, Johan; Varlet, Pascale; Hamzeh, H.; Abi Lahoud, Georges; Andreiuolo, Felipe; Ibrahim, Ali; Pages, Mélanie; Chretien, Fabrice; di Rocco, Federico; Dezamis, Edouard; Nataf, François; Turak, Baris; Devaux, Bertrand; Abi Haidar, Darine
2017-02-01
Delineating tumor margins as accurately as possible is of primordial importance in surgical oncology: extent of resection is associated with survival but respect of healthy surrounding tissue is necessary for preserved quality of life. The real-time analysis of the endogeneous fluorescence signal of brain tissues is a promising tool for defining margins of brain tumors. The present study aims to demonstrate the feasibility of multimodal optical analysis to discriminate fresh samples of gliomas, metastases and meningiomas from their appropriate controls. Tumor samples were studied on an optical fibered endoscope using spectral and fluorescence lifetime analysis and then on a multimodal set-up for acquiring spectral, one and two-photon fluorescence images, second harmonic generation signals and two-photon fluorescence lifetime datasets. The obtained data allowed us to differentiate healthy samples from tumor samples. These results confirmed the possible clinical relevance of this real-time multimodal optical analysis. This technique can be easily applied to neurosurgical procedures for a better delineation of surgical margins.
Fiber-Optic Sensor-Based Remote Acoustic Emission Measurement in a 1000 °C Environment.
Yu, Fengming; Okabe, Yoji
2017-12-14
Recently, the authors have proposed a remote acoustic emission (AE) measurement configuration using a sensitive fiber-optic Bragg grating (FBG) sensor. In the configuration, the FBG sensor was remotely bonded on a plate, and an optical fiber was used as the waveguide to propagate AE waves from the adhesive point to the sensor. The previous work (Yu et al., Smart Materials and Structures 25 (10), 105,033 (2016)) has clarified the sensing principle behind the special remote measurement system that enables accurate remote sensing of AE signals. Since the silica-glass optical fibers have a high heat-resistance exceeding 1000 °C, this work presents a preliminary high-temperature AE detection method by using the optical fiber-based ultrasonic waveguide to propagate the AE from a high-temperature environment to a room-temperature environment, in which the FBG sensor could function as the receiver of the guided wave. As a result, the novel measurement configuration successfully achieved highly sensitive and stable AE detection in an alumina plate at elevated temperatures in the 100 °C to 1000 °C range. Due to its good performance, this detection method will be potentially useful for the non-destructive testing that can be performed in high-temperature environments to evaluate the microscopic damage in heat-resistant materials.
Multiplexed neural recording along a single optical fiber via optical reflectometry
Rodriques, Samuel G.; Marblestone, Adam H.; Scholvin, Jorg; Dapello, Joel; Sarkar, Deblina; Mankin, Max; Gao, Ruixuan; Wood, Lowell; Boyden, Edward S.
2016-01-01
Abstract. We introduce the design and theoretical analysis of a fiber-optic architecture for neural recording without contrast agents, which transduces neural electrical signals into a multiplexed optical readout. Our sensor design is inspired by electro-optic modulators, which modulate the refractive index of a waveguide by applying a voltage across an electro-optic core material. We estimate that this design would allow recording of the activities of individual neurons located at points along a 10-cm length of optical fiber with 40-μm axial resolution and sensitivity down to 100 μV using commercially available optical reflectometers as readout devices. Neural recording sites detect a potential difference against a reference and apply this potential to a capacitor. The waveguide serves as one of the plates of the capacitor, so charge accumulation across the capacitor results in an optical effect. A key concept of the design is that the sensitivity can be improved by increasing the capacitance. To maximize the capacitance, we utilize a microscopic layer of material with high relative permittivity. If suitable materials can be found—possessing high capacitance per unit area as well as favorable properties with respect to toxicity, optical attenuation, ohmic junctions, and surface capacitance—then such sensing fibers could, in principle, be scaled down to few-micron cross-sections for minimally invasive neural interfacing. We study these material requirements and propose potential material choices. Custom-designed multimaterial optical fibers, probed using a reflectometric readout, may, therefore, provide a powerful platform for neural sensing. PMID:27194640
Early diagnosis of gastric cancer with laser-induced fluorescence
NASA Astrophysics Data System (ADS)
Joffe, Alexander Y.; Sayenko, Valeriy F.; Denisov, Nikolay A.; Dets, Sergiy M.; Buryi, Alexander N.
1999-02-01
Optical biopsy of stomach mucosa was performed afterwards oral administration of encapsulated hyperflav (single dose was chosen to provide 0.1 - 0.15 mg/kg b.w.) A sufficient fluorescence contrast of suspicions versus normal tissue was obtained after incubation time from 4 to 10 hours. Fluorescence was induced by He - Cd laser coupled to fiber optic probe inserted into a biopsy channel of the endoscope. Fluorescent spectra were recorded in the range from 500 nm up to 700 nm with 2 nm resolution. We took two groups of patients with benign and malignant ulcer of the stomach and erosive gastritis. The first group consisted of 59 patients (male/female 36/23) was carried out with optical biopsy of stomach mucosa. The second group consisted of 60 patients (male/female 39/21) was carried out by routine method: gastroscopy and biopsy from 5 - 7 places of macroscopically changed mucosa.
Akkus, Anna; Yang, Shan; Roperto, Renato; Mustafa, Hathem; Teich, Sorin; Akkus, Ozan
2017-02-01
Measurement of tooth enamel mineralization using a clinically viable method is essential since variation of mineralization may be used to monitor caries risk or in assessing the effectiveness of remineralization therapy. Fiber optic Raman systems are becoming more affordable and popular in context of biomedical applications. However, the applicability of fiber optic Raman systems for measurement of mineral content within enamel tissue has not been elucidated significantly in the prior literature. Human teeth with varying degrees of enamel mineralization were selected. In addition alligator, boar and buffalo teeth which have increasing amount of mineral content, respectively, were also included as another set of samples. Reference Raman measurements of mineralization were performed using a high-fidelity confocal Raman microscope. Analysis of human teeth by research grade Raman system indicated a 2-fold difference in the Raman intensities of v1 symmetric-stretch bands of mineral-related phosphate bonds and 7-fold increase in mineral related Raman intensities of animal teeth. However, fiber optic system failed to resolve the differences in the mineralization of human teeth. These results indicate that the sampling volume of fiber optic systems extends to the underlying dentin and that confocal aperture modification is essential to limit the sampling volume to within the enamel. Further research efforts will focus on putting together portable Raman systems integrated with confocal fiber probe. Key words: Enamel, mineral content, raman spectroscopy.
Oshima, Yusuke; Horiuch, Hideki; Honkura, Naoki; Hikita, Atsuhiko; Ogata, Tadanori; Miura, Hiromasa; Imamura, Takeshi
2014-09-01
Near-infrared ultrafast lasers are widely used for multiphoton excited fluorescence microscopy in living animals. Ti:Sapphire lasers are typically used for multiphoton excitation, but their emission wavelength is restricted below 1,000 nm. The aim of this study is to evaluate the performance of a compact Ytterbium-(Yb-) fiber laser at 1,045 nm for multiphoton excited fluorescence microscopy in spinal cord injury. In this study, we employed a custom-designed microscopy system with a compact Yb-fiber laser and evaluated the performance of this system in in vivo imaging of brain cortex and spinal cord in YFP-H transgenic mice. For in vivo imaging of brain cortex, sharp images of basal dendrites, and pyramidal cells expressing EYFP were successfully captured using the Yb-fiber laser in our microscopy system. We also performed in vivo imaging of axon fibers of spinal cord in the transgenic mice. The obtained images were almost as sharp as those obtained using a conventional ultrafast laser system. In addition, laser ablation and multi-color imaging could be performed simultaneously using the Yb-fiber laser. The high-peak pulse Yb-fiber laser is potentially useful for multimodal bioimaging methods based on a multiphoton excited fluorescence microscopy system that incorporates laser ablation techniques. Our results suggest that microscopy systems of this type could be utilized in studies of neuroscience and clinical use in diagnostics and therapeutic tool for spinal cord injury in the future. © 2014 Wiley Periodicals, Inc.
Darafsheh, Arash; Taleei, Reza; Kassaee, Alireza; Finlay, Jarod C
2016-11-01
Proton beam dosimetry using bare plastic optical fibers has emerged as a simple approach to proton beam dosimetry. The source of the signal in this method has been attributed to Čerenkov radiation. The aim of this work was a phenomenological study of the nature of the visible light responsible for the signal in bare fiber optic dosimetry of proton therapy beams. Plastic fiber optic probes embedded in solid water phantoms were irradiated with proton beams of energies 100, 180, and 225 MeV produced by a proton therapy cyclotron. Luminescence spectroscopy was performed by a CCD-coupled spectrometer. The spectra were acquired at various depths in phantom to measure the percentage depth dose (PDD) for each beam energy. For comparison, the PDD curves were acquired using a standard multilayer ion chamber device. In order to further analyze the contribution of the Čerenkov radiation in the spectra, Monte Carlo simulation was performed using fluka Monte Carlo code to stochastically simulate radiation transport, ionizing radiation dose deposition, and optical emission of Čerenkov radiation. The measured depth doses using the bare fiber are in agreement with measurements performed by the multilayer ion chamber device, indicating the feasibility of using bare fiber probes for proton beam dosimetry. The spectroscopic study of proton-irradiated fibers showed a continuous spectrum with a shape different from that of Čerenkov radiation. The Monte Carlo simulations confirmed that the amount of the generated Čerenkov light does not follow the radiation absorbed dose in a medium. The source of the optical signal responsible for the proton dose measurement using bare optical fibers is not Čerenkov radiation. It is fluorescence of the plastic material of the fiber.
Visualization of DNA Replication in the Vertebrate Model System DT40 using the DNA Fiber Technique
Schwab, Rebekka A.V.; Niedzwiedz, Wojciech
2011-01-01
Maintenance of replication fork stability is of utmost importance for dividing cells to preserve viability and prevent disease. The processes involved not only ensure faithful genome duplication in the face of endogenous and exogenous DNA damage but also prevent genomic instability, a recognized causative factor in tumor development. Here, we describe a simple and cost-effective fluorescence microscopy-based method to visualize DNA replication in the avian B-cell line DT40. This cell line provides a powerful tool to investigate protein function in vivo by reverse genetics in vertebrate cells1. DNA fiber fluorography in DT40 cells lacking a specific gene allows one to elucidate the function of this gene product in DNA replication and genome stability. Traditional methods to analyze replication fork dynamics in vertebrate cells rely on measuring the overall rate of DNA synthesis in a population of pulse-labeled cells. This is a quantitative approach and does not allow for qualitative analysis of parameters that influence DNA synthesis. In contrast, the rate of movement of active forks can be followed directly when using the DNA fiber technique2-4. In this approach, nascent DNA is labeled in vivo by incorporation of halogenated nucleotides (Fig 1A). Subsequently, individual fibers are stretched onto a microscope slide, and the labeled DNA replication tracts are stained with specific antibodies and visualized by fluorescence microscopy (Fig 1B). Initiation of replication as well as fork directionality is determined by the consecutive use of two differently modified analogues. Furthermore, the dual-labeling approach allows for quantitative analysis of parameters that influence DNA synthesis during the S-phase, i.e. replication structures such as ongoing and stalled forks, replication origin density as well as fork terminations. Finally, the experimental procedure can be accomplished within a day, and requires only general laboratory equipment and a fluorescence microscope. PMID:22064662
Visualizing substructure of Ca2+ waves by total internal reflection fluorescence microscopy
NASA Astrophysics Data System (ADS)
Bai, Yongqiang; Tang, Aihui; Wang, Shiqiang; Zhu, Xing
2005-02-01
Total internal reflection fluorescence microscope is a new optical microscopic system based on near-field optical theory. Its character of illumination by evanescent wave, together with the great signal-to-noise ratio and temporal resolution achieved by high quality CCD, allows us to analyze the spatiotemporal details of local Ca2+ dynamics within the nanoscale microdomain surrounding different Ca2+ channels. We have recently constructed a versatile objective TIRFM equipped with a high numerical aperture (NA=1.45) objective. Using fluo-4 as the Ca2+ indicator, we visualized the near-membrane profiles of Ca2+ waves and elementary Ca2+ sparks generated by Ca2+ release channels in rat ventricular myocytes. Different from those detected using conventional and confocal microscopy, Ca2+ waves observed with TIRFM exhibited fine inhomogenous substructures composed of fluctuating Ca2+ sparks. The anfractuous routes of spark recruitment suggested that the propagation of Ca2+ waves is much more complicated than previously imagined. We believe that TIRFM will provide a unique tool for dissecting the microscopic mechanisms of intracellular Ca2+ signaling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henn, T.; Kiessling, T., E-mail: tobias.kiessling@physik.uni-wuerzburg.de; Ossau, W.
We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast “white light” supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables themore » investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.« less
NASA Astrophysics Data System (ADS)
Liao, Joseph C.
2017-02-01
Emerging optical imaging technologies can be integrated in the operating room environment during minimally invasive and open urologic surgery, including oncologic surgery of the bladder, prostate, and kidney. These technologies include macroscopic fluorescence imaging that provides contrast enhancement between normal and diseased tissue and microscopic imaging that provides tissue characterization. Optical imaging technologies that have reached the clinical arena in urologic surgery are reviewed, including photodynamic diagnosis, near infrared fluorescence imaging, optical coherence tomography, and confocal laser endomicroscopy. Molecular imaging represents an exciting future arena in conjugating cancer-specific contrast agents to fluorophores to improve the specificity of disease detection. Ongoing efforts are underway to translate optimal targeting agents and imaging modalities, with the goal to improve cancer-specific and functional outcomes.
Shane, Janelle C; Mazilu, Michael; Lee, Woei Ming; Dholakia, Kishan
2010-03-29
We investigate the effects of pulse duration on optical trapping with high repetition rate ultrashort pulsed lasers, through Lorentz-Mie theory, numerical simulation, and experiment. Optical trapping experiments use a 12 femtosecond duration infrared pulsed laser, with the trapping microscope's temporal dispersive effects measured and corrected using the Multiphoton Intrapulse Interference Phase Scan method. We apply pulse shaping to reproducibly stretch pulse duration by 1.5 orders of magnitude and find no material-independent effects of pulse temporal profile on optical trapping of 780nm silica particles, in agreement with our theory and simulation. Using pulse shaping, we control two-photon fluorescence in trapped fluorescent particles, opening the door to other coherent control applications with trapped particles.
Failure analysis on optical fiber on swarm flight payload
NASA Astrophysics Data System (ADS)
Bourcier, Frédéric; Fratter, Isabelle; Teyssandier, Florent; Barenes, Magali; Dhenin, Jérémie; Peyriguer, Marie; Petre-Bordenave, Romain
2017-11-01
Failure analysis on optical components is usually carried-out, on standard testing devices such as optical/electronic microscopes and spectrometers, on isolated but representative samples. Such analyses are not contactless and not totally non-invasive, so they cannot be used easily on flight models. Furthermore, for late payload or satellite integration/validation phases with tight schedule issues, it could be necessary to carry out a failure analysis directly on the flight hardware, in cleanroom.
Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics
NASA Astrophysics Data System (ADS)
Fang, Qiyin; Papaioannou, Thanassis; Jo, Javier A.; Vaitha, Russel; Shastry, Kumar; Marcu, Laura
2004-01-01
We report the design and development of a compact optical fiber-based apparatus for in situ time-resolved laser-induced fluorescence spectroscopy (tr-LIFS) of biological systems. The apparatus is modular, optically robust, and compatible with the clinical environment. It incorporates a dual output imaging spectrograph, a gated multichannel plate photomultiplier (MCP-PMT), an intensified charge-coupled-device (ICCD) camera, and a fast digitizer. It can accommodate various types of light sources and optical fiber probes for selective excitation and remote light delivery/collection as required by different applications. The apparatus allows direct recording of the entire fluorescence decay with high sensitivity (nM range fluorescein dye concentration with signal-to-noise ratio of 46) and with four decades dynamic range. It is capable of resolving a broad range of fluorescence lifetimes from hundreds of picoseconds (as low as 300 ps) using the MCP-PMT coupled to the digitizer to milliseconds using the ICCD. The data acquisition and analysis process is fully automated, enabling fast recording of fluorescence intensity decay across the entire emission spectrum (0.8 s per wavelength or ˜40 s for a 200 nm wavelength range at 5 nm increments). The spectral and temporal responses of the apparatus were calibrated and its performance was validated using fluorescence lifetime standard dyes (Rhodamin B, 9-cyanoanthracene, and rose Bengal) and tissue endogenous fluorophores (elastin, collagen, nicotinamide adenine dinucleotide, and flavin adenine dinucleotide). Fluorescence decay lifetimes and emission spectra of all tested compounds measured with the current tr-LIFS apparatus were found in good agreement with the values reported in the literature. The design and performance of tr-LIFS apparatus have enabled in vivo studies of atherosclerotic plaques and brain tumors.
Fiber-optic laser-induced fluorescence probe for the detection of environmental pollutants
NASA Astrophysics Data System (ADS)
Bublitz, J.; Dickenhausen, M.; Grätz, M.; Todt, S.; Schade, W.
1995-06-01
Laser-induced fluorescence (LIF) spectroscopy in combination with fiber optics is shown to be a powerful tool for qualitative and quantitative diagnostics of environmental pollutants in water and soil. Time-integrated data accumulation of the LIF signals in early and late time windows with respect to the excitation pulse simplifies the method so that it becomes attractive for practical applications. Results from field measurements are reported, as oil contaminations under a gas station and in an industrial sewer system are investigated. A KrF-excimer laser and a hydrogen Raman shifter can be applied for multiwavelength excitation. This allows a discrimination between benzene, toluene, xylene, and ethylbenzene aromatics and polycyclic aromatic hydrocarbon molecules in the samples under investigation. For a rough theoretical approach, a computer simulation is developed to describe the experimental results.
Li, Dongdong; Wang, Lili
2010-05-01
A highly sensitive microstructured polymer optical fiber (MPOF) probe for hydrogen peroxide was made by forming a rhodamine 6G-doped titanium dioxide film on the side walls of array holes in an MPOF. It was found that hydrogen peroxide only has a response to the MPOF probe in a certain concentration of potassium iodide in sulfuric acid solution. The calibration graph of fluorescence intensity versus hydrogen peroxide concentration is linear in the range of 1.6 x 10(-7) mol/L to 9.6 x 10(-5) mol/L. The method, with high sensitivity and a wide linear range, has been applied to the determination of trace amounts of hydrogen peroxide in a few real samples, such as rain water and contact lens disinfectant, with satisfactory results.
Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope
NASA Astrophysics Data System (ADS)
Wall, R. Andrew; Barton, Jennifer K.
2012-02-01
A side-viewing, 2 mm diameter, surface magnifying chromoendoscopy (SMC)-optical coherence tomography (OCT) endoscope has been designed for simultaneous, non-destructive surface fluorescence visualization and cross-sectional imaging. We apply this endoscope to in vivo examination of mouse colon. A 30,000 element fiber bundle is combined with single mode fibers. The distal optics consist of a gradient-index lens and spacer to provide a magnification of 1 at a working distance of 1.58 mm in air, necessary to image the sample through a 0.23 mm thick outer glass envelope, and an aluminized right-angle prism fixed to the distal end of the GRIN lens assembly. The resulting 1:1 imaging system is capable of 3.9 μm lateral and 2.3 μm axial resolution in the OCT channel, and 125 lp/mm resolution across a 0.70 mm field of view in the SMC channel. The endoscope can perform high contrast crypt visualization, molecular imaging, and cross-sectional imaging of colon microstructure.