Science.gov

Sample records for fiber-optic nonlinear endomicroscopy

  1. Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues

    PubMed Central

    Wu, Yicong; Leng, Yuxin; Xi, Jiefeng; Li, Xingde

    2009-01-01

    An extremely compact all-fiber-optic scanning endomicroscopy system was developed for two-photon fluorescence (TPF) and second harmonic generation (SHG) imaging of biological samples. A conventional double-clad fiber (DCF) was employed in the endomicroscope for single-mode femtosecond pulse delivery, multimode nonlinear optical signals collection and fast two-dimensional scanning. A single photonic bandgap fiber (PBF) with negative group velocity dispersion at two-photon excitation wavelength (i.e. ~810 nm) was used for pulse prechirping in replacement of a bulky grating/lens-based pulse stretcher. The combined use of DCF and PBF in the endomicroscopy system made the endomicroscope basically a plug-and-play unit. The excellent imaging ability of the extremely compact all-fiber-optic nonlinear optical endomicroscopy system was demonstrated by SHG imaging of rat tail tendon and depth-resolved TPF imaging of epithelial tissues stained with acridine orange. The preliminary results suggested the promising potential of this extremely compact all-fiber-optic endomicroscopy system for real-time assessment of both epithelial and stromal structures in luminal organs. PMID:19434122

  2. Emerging fiber optic endomicroscopy technologies towards noninvasive real-time visualization of histology in situ

    NASA Astrophysics Data System (ADS)

    Xi, Jiefeng; Zhang, Yuying; Huo, Li; Chen, Yongping; Jabbour, Toufic; Li, Ming-Jun; Li, Xingde

    2010-09-01

    This paper reviews our recent developments of ultrathin fiber-optic endomicroscopy technologies for transforming high-resolution noninvasive optical imaging techniques to in vivo and clinical applications such as early disease detection and guidance of interventions. Specifically we describe an all-fiber-optic scanning endomicroscopy technology, which miniaturizes a conventional bench-top scanning laser microscope down to a flexible fiber-optic probe of a small footprint (i.e. ~2-2.5 mm in diameter), capable of performing two-photon fluorescence and second harmonic generation microscopy in real time. This technology aims to enable realtime visualization of histology in situ without the need for tissue removal. We will also present a balloon OCT endoscopy technology which permits high-resolution 3D imaging of the entire esophagus for detection of neoplasia, guidance of biopsy and assessment of therapeutic outcome. In addition we will discuss the development of functional polymeric fluorescent nanocapsules, which use only FAD approved materials and potentially enable fast track clinical translation of optical molecular imaging and targeted therapy.

  3. Development of a nonlinear fiber-optic spectrometer for human lung tissue exploration.

    PubMed

    Peyrot, Donald A; Lefort, Claire; Steffenhagen, Marie; Mansuryan, Tigran; Ducourthial, Guillaume; Abi-Haidar, Darine; Sandeau, Nicolas; Vever-Bizet, Christine; Kruglik, Sergei G; Thiberville, Luc; Louradour, Frédéric; Bourg-Heckly, Geneviève

    2012-05-01

    Several major lung pathologies are characterized by early modifications of the extracellular matrix (ECM) fibrillar collagen and elastin network. We report here the development of a nonlinear fiber-optic spectrometer, compatible with an endoscopic use, primarily intended for the recording of second-harmonic generation (SHG) signal of collagen and two-photon excited fluorescence (2PEF) of both collagen and elastin. Fiber dispersion is accurately compensated by the use of a specific grism-pair stretcher, allowing laser pulse temporal width around 70 fs and excitation wavelength tunability from 790 to 900 nm. This spectrometer was used to investigate the excitation wavelength dependence (from 800 to 870 nm) of SHG and 2PEF spectra originating from ex vivo human lung tissue samples. The results were compared with spectral responses of collagen gel and elastin powder reference samples and also with data obtained using standard nonlinear microspectroscopy. The excitation-wavelength-tunable nonlinear fiber-optic spectrometer presented in this study allows performing nonlinear spectroscopy of human lung tissue ECM through the elastin 2PEF and the collagen SHG signals. This work opens the way to tunable excitation nonlinear endomicroscopy based on both distal scanning of a single optical fiber and proximal scanning of a fiber-optic bundle.

  4. Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy.

    PubMed

    Liang, Wenxuan; Murari, Kartikeya; Zhang, Yuying; Chen, Yongping; Li, Ming-Jun; Li, Xingde

    2012-02-01

    We compare the illumination uniformity and the associated effects of the spiral and Lissajous scanning patterns that are commonly used in an endomicroscope. Theoretical analyses and numerical simulations were first performed to quantitatively investigate the area illumination density in the spiral scanning pattern. The results revealed the potential problem of manifest photodamage due to the very high illumination density in the center of the spiral scan. Similar analyses of the Lissajous scanning pattern, which can be conveniently implemented on the same endomicroscope with no hardware modifications, showed a more uniform illumination density with about an 80-fold reduction in the peak illumination density. To underscore the benefit offered by the improved illumination uniformity, we conducted in vitro two-photon fluorescence imaging of cultured cells stained with a LIVE/DEAD viability assay using our home-built, fiber-optic, two-channel endomicroscopy system. Both the spiral and the Lissajous scans were implemented. Our experimental results showed that cells near the spiral scan center experienced obvious photodamage, whereas cells remained alive over the entire region under the Lissajous beam scanning, confirming the predicted advantage offered by the Lissajous scan over this spiral scan in an endomicroscopy setting.

  5. Generalized dispersive wave emission in nonlinear fiber optics.

    PubMed

    Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G

    2013-01-15

    We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.

  6. Pulse Shepherding in Nonlinear Fiber Optics

    NASA Technical Reports Server (NTRS)

    Yeh, C.; Bergman, L.

    1996-01-01

    In a wavelength division multiplexed fiber system, where pulses on different wavelength beams may co-propagate in a single mode fiber, the cross-phase-modulation (CPM) effects caused by the nonlinearity of the optical fiber are unavoidable. In other words, pulses on different wavelength beams can interact with and affect each other through the intensity dependence of the refractive index of the fiber. Although CPM will not cause energy to be exchanged among the beams, the pulse shapes and locations on these beams can be altered significantly. This phenomenon makes possible the manipulation and control of pulses co-propagating on different wavelength beams through the introduction of a shepherd pulse at a separate wavelength. How this can be accomplished is demonstrated in this paper.

  7. Characterization of fiber ultrashort pulse delivery for nonlinear endomicroscopy.

    PubMed

    Ibrahim, A; Poulon, F; Habert, R; Lefort, C; Kudlinski, A; Haidar, D Abi

    2016-06-13

    In this work, we present a detailed characterization of a small-core double-clad photonic crystal fiber, dedicated and approved for in vivo nonlinear imaging endomicroscopy. A numerical and experimental study has been performed to characterize the excitation and collection efficiencies through a 5 m-long optical fiber, including the pulse duration and spectral shape. This was first done without any distal optics, and then the performances of the system were studied by using two kinds of GRIN lenses at the fiber output. These results are compared to published data using commercial double clad fibers and GRIN lenses.

  8. Femtosecond nonlinear fiber optics in the ionization regime.

    PubMed

    Hölzer, P; Chang, W; Travers, J C; Nazarkin, A; Nold, J; Joly, N Y; Saleh, M F; Biancalana, F; Russell, P St J

    2011-11-11

    By using a gas-filled kagome-style photonic crystal fiber, nonlinear fiber optics is studied in the regime of optically induced ionization. The fiber offers low anomalous dispersion over a broad bandwidth and low loss. Sequences of blueshifted pulses are emitted when 65 fs, few-microjoule pulses, corresponding to high-order solitons, are launched into the fiber and undergo self-compression. The experimental results are confirmed by numerical simulations which suggest that free-electron densities of ∼10(17) cm(-3) are achieved at peak intensities of 10(14) W/cm(2) over length scales of several centimeters.

  9. Self-similar rogue waves and nonlinear tunneling effects in inhomogeneous nonlinear fiber optics

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhu, Yu-Jie; Jiang, Dong-Yang

    2016-04-01

    Analytical first- and second-order rogue wave solutions of the inhomogeneous modified nonlinear Schrödinger equation are presented by using similarity transformation. Then, by the proper choices of the inhomogeneous coefficients and free parameters, the controllable behaviors of the optical rogue waves are graphically discussed in the nonlinear fiber optics context. It is found that the width of the rogue wave can be tuned by adjusting the parameter ? and the locations of the rogue waves are linearly controlled by the parameter ?. The intensities of the rogue waves are influenced by the inhomogeneous linear gain/loss coefficient ? and parameter ?. The dispersion management function ? has effects on the periods and trajectories of the rogue waves and can induce maintenance (or annihilation) along ? direction. Interestingly, the composite rogue waves are revealed, the location of which is manipulated through changing the dispersion management function ?. Additionally, the nonlinear tunneling of those rogue waves is investigated as they propagate through a dispersion barrier (or well) and nonlinear barrier (or well).

  10. Higher-order modulation instability in nonlinear fiber optics.

    PubMed

    Erkintalo, Miro; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Akhmediev, Nail; Dudley, John M; Genty, Goëry

    2011-12-16

    We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution related by a simple scaling relationship. We anticipate that similar processes are likely to be observed in many other systems including plasmas, Bose-Einstein condensates, and deep water waves.

  11. Multimodal nonlinear endo-microscopy probe design for high resolution, label-free intraoperative imaging

    PubMed Central

    Chen, Xu; Xu, Xiaoyun; McCormick, Daniel T.; Wong, Kelvin; Wong, Stephen T.C.

    2015-01-01

    We present a portable, multimodal, nonlinear endo-microscopy probe designed for intraoperative oncological imaging. Application of a four-wave mixing noise suppression scheme using dual wavelength wave plates (DWW) and a polarization-maintaining fiber improves tissue signal collection efficiency, allowing for miniaturization. The probe, with a small 14 mm transversal diameter, includes a customized miniaturized two-axis MEMS (micro-electromechanical system) raster scanning mirror and micro-optics with an illumination laser delivered by a polarization-maintaining fiber. The probe can potentially be integrated into the arms of a surgical robot, such as da Vinci robotic surgery system, due to its minimal cross sectional area. It has the ability to incorporate multiple imaging modalities including CARS (coherent anti-Stokes Raman scattering), SHG (second harmonic generation), and TPEF (two-photon excited fluorescence) in order to allow the surgeon to locate tumor cells within the context of normal stromal tissue. The resolution of the endo-microscope is experimentally determined to be 0.78 µm, a high level of accuracy for such a compact probe setup. The expected resolution of the as-built multimodal, nonlinear, endo-microscopy probe is 1 µm based on the calculation tolerance allocation using Monte-Carlo simulation. The reported probe is intended for use in laparoscopic or radical prostatectomy, including detection of tumor margins and avoidance of nerve impairment during surgery. PMID:26203361

  12. Piecewise compensation for the nonlinear error of fiber-optic gyroscope scale factor

    NASA Astrophysics Data System (ADS)

    Zhang, Yonggang; Wu, Xunfeng; Yuan, Shun; Wu, Lei

    2013-08-01

    Fiber-Optic Gyroscope (FOG) scale factor nonlinear error will result in errors in Strapdown Inertial Navigation System (SINS). In order to reduce nonlinear error of FOG scale factor in SINS, a compensation method is proposed in this paper based on curve piecewise fitting of FOG output. Firstly, reasons which can result in FOG scale factor error are introduced and the definition of nonlinear degree is provided. Then we introduce the method to divide the output range of FOG into several small pieces, and curve fitting is performed in each output range of FOG to obtain scale factor parameter. Different scale factor parameters of FOG are used in different pieces to improve FOG output precision. These parameters are identified by using three-axis turntable, and nonlinear error of FOG scale factor can be reduced. Finally, three-axis swing experiment of SINS verifies that the proposed method can reduce attitude output errors of SINS by compensating the nonlinear error of FOG scale factor and improve the precision of navigation. The results of experiments also demonstrate that the compensation scheme is easy to implement. It can effectively compensate the nonlinear error of FOG scale factor with slightly increased computation complexity. This method can be used in inertial technology based on FOG to improve precision.

  13. Precluding nonlinear ISI in direct detection long-haul fiber optic systems

    NASA Technical Reports Server (NTRS)

    Swenson, Norman L.; Shoop, Barry L.; Cioffi, John M.

    1991-01-01

    Long-distance, high-rate fiber optic systems employing directly modulated 1.55-micron single-mode lasers and conventional single-mode fiber suffer severe intersymbol interference (ISI) with a large nonlinear component. A method of reducing the nonlinearity of the ISI, thereby making linear equalization more viable, is investigated. It is shown that the degree of nonlinearity is highly dependent on the choice of laser bias current, and that in some cases the ISI nonlinearity can be significantly reduced by biasing the laser substantially above threshold. Simulation results predict that an increase in signal-to-nonlinear-distortion ratio as high as 25 dB can be achieved for synchronously spaced samples at an optimal sampling phase by increasing the bias current from 1.2 times threshold to 3.5 times threshold. The high SDR indicates that a linear tapped delay line equalizer could be used to mitigate ISI. Furthermore, the shape of the pulse response suggests that partial response precoding and digital feedback equalization would be particularly effective for this channel.

  14. High-resolution fiber optic temperature sensors using nonlinear spectral curve fitting technique.

    PubMed

    Su, Z H; Gan, J; Yu, Q K; Zhang, Q H; Liu, Z H; Bao, J M

    2013-04-01

    A generic new data processing method is developed to accurately calculate the absolute optical path difference of a low-finesse Fabry-Perot cavity from its broadband interference fringes. The method combines Fast Fourier Transformation with nonlinear curve fitting of the entire spectrum. Modular functions of LabVIEW are employed for fast implementation of the data processing algorithm. The advantages of this technique are demonstrated through high performance fiber optic temperature sensors consisting of an infrared superluminescent diode and an infrared spectrometer. A high resolution of 0.01 °C is achieved over a large dynamic range from room temperature to 800 °C, limited only by the silica fiber used for the sensor.

  15. Integration of nonlinearity-management and dispersion-management for pulses in fiber-optic links

    NASA Astrophysics Data System (ADS)

    Driben, Rodislav; Malomed, Boris A.; Mahlab, Uri

    2004-03-01

    We introduce a model of a long-haul fiber-optic link that uses a combination of the nonlinearity- and dispersion-compensation (management) to stabilize nonsoliton pulses. The compensation of the accumulated fiber nonlinearity, and simultaneously pulse reshaping, which helps to suppress the inter-symbol interference (ISI, i.e., blurring of blank spaces between adjacent pulses), are performed by second-harmonic-generating modules, which are periodically inserted together with amplifiers. We demonstrate that the dispersion-management (DM), which was not included in an earlier considered model, drastically improves stability of the pulses. The stable-transmission length for an isolated pulse, which was less than 10 fiber spans with the use of the nonlinearity-management only, becomes indefinitely long. It is demonstrated too that the pulse is quite robust against fluctuations of its initial parameters, and the scheme operates efficiently in a very broad parameter range. The interaction between pulses can be safely suppressed for the transmission distance exceeding 16 spans (≃1000 km). The smallest temporal separation between adjacent pulses, which is necessary to prevent the ISI, attains a minimum in the case of moderate DM, similar to known results for the DM solitons. The mutually-induced distortion of co-propagating pulses being accounted for by the emission of radiation, a plausible way to further increase the stable-transmission limit is to introduce bandpass filters.

  16. Management of dispersion, nonlinearity and polarization-dependent effects in high-speed reconfigurable WDM fiber optic communication systems

    NASA Astrophysics Data System (ADS)

    Luo, Ting

    As optical communications approach more data bandwidth, longer transmission distance, and more reconfigurability, dispersion, nonlinearity and polarization-dependent effects are becoming key issues for future all-optical fiber optic systems and networks. For ≥10 Gbit/s optical fiber transmission systems, it is critical that chromatic dispersion and polarization-mode-dispersion be well monitored and compensated using some type of dispersion monitoring and compensation. On the other hand, dispersive and nonlinear effects in optical fiber systems can also be beneficial and have applications on pulse management, all-optical signal processing and network function, which will be essential for high bite-rate optical networks and replacing the expensive optical-electrical-optical (O/E/O) conversion. In this Ph.D. dissertation, we present a detailed research on dispersion, nonlinearity, and polarization-dependent effects in high-speed optical communication systems. We have demonstrated: (i) A dynamic channel-spacing tunable multi-wavelength Erbium-doped fiber laser; (ii) Chromatic-dispersion-insensitive PMD monitoring by tracking the radio-frequency extracted from the vestigial-sideband; (iii) A method for simultaneous chromatic and polarization-mode dispersions monitoring by adding a frequency-shifted carrier; (iv) Polarization-insensitive optical parametric amplification by depolarizing the pump; (v) All optical chromatic dispersion monitoring potential for ultra-high speed (>40 Gbit/s) optical systems using cross-phase modulation in a highly nonlinear fiber; (vi) A novel fiber-based autocorrelator using polarimetric four-wave mixing effect and a tunable differential-group-delay element; (vii) A simple all-fiber-based autocorrelator by measuring the degree-of-polarization; and (viii) Reduction of pattern dependent data distortion in a stimulated Brillouin scattering based slow light element. These techniques will play key roles in future high-speed dynamic WDM optical

  17. Analytical modeling of a single channel nonlinear fiber optic system based on QPSK.

    PubMed

    Kumar, Shiva; Shahi, Sina Naderi; Yang, Dong

    2012-12-03

    A first order perturbation theory is used to develop analytical expressions for the power spectral density (PSD) of the nonlinear distortions due to intra-channel four-wave mixing (IFWM). For non-Gaussian pulses, the PSD can not be calculated analytically. However, using the stationary phase approximations, we found that convolutions become simple multiplications and a simple analytical expression for the PSD of the nonlinear distortion is found. The PSD of the nonlinear distortion is combined with the amplified spontaneous emission (ASE) PSD to obtain the total variance and bit error ratio (BER). The analytically estimated BER is found to be in good agreement with numerical simulations.

  18. Periodic nonlinear Fourier transform for fiber-optic communications, Part I: theory and numerical methods.

    PubMed

    Kamalian, Morteza; Prilepsky, Jaroslaw E; Le, Son Thai; Turitsyn, Sergei K

    2016-08-08

    In this work, we introduce the periodic nonlinear Fourier transform (PNFT) method as an alternative and efficacious tool for compensation of the nonlinear transmission effects in optical fiber links. In the Part I, we introduce the algorithmic platform of the technique, describing in details the direct and inverse PNFT operations, also known as the inverse scattering transform for periodic (in time variable) nonlinear Schrödinger equation (NLSE). We pay a special attention to explaining the potential advantages of the PNFT-based processing over the previously studied nonlinear Fourier transform (NFT) based methods. Further, we elucidate the issue of the numerical PNFT computation: we compare the performance of four known numerical methods applicable for the calculation of nonlinear spectral data (the direct PNFT), in particular, taking the main spectrum (utilized further in Part II for the modulation and transmission) associated with some simple example waveforms as the quality indicator for each method. We show that the Ablowitz-Ladik discretization approach for the direct PNFT provides the best performance in terms of the accuracy and computational time consumption.

  19. Blind post processed nonlinearity mitigation in multiband OFDM radio over fiber optical transmission

    NASA Astrophysics Data System (ADS)

    Park, Hyoung-Joon; Jung, Sun-Young; Han, Sang-Kook

    2016-02-01

    We propose a blind adaptive post-processing method to reduce nonlinear distortion in multiband radio over fiber (RoF) transmission. Mitigating nonlinear distortion has been a critical challenge to enhance signal quality in RoF system due to analog optical transmission. To keep up with explosive increase in number of mobiles and their data capacity demands, remote antenna unit (RAU) has to be widely and densely distributed with RoF system. Consequently, RAU should be simple and compensation should be fully processed in central office (CO). In optical uplink transmission of RoF system, post-processing of distortion mitigation will be effective. In this paper, we propose post compensation structure constructed by means of Hammerstein equalizer without inserting preamble. Specifically, Hammerstein equalizer, which is separated into linear and nonlinear parts, was used to compensate both linear and nonlinear distortion of RoF system. The filter coefficients were updated adaptively by using LMS algorithm to adjust variable channel environments. In our experiment, multiband OFDM signal, which is LTE standard according to 3GPP, was optically transmitted through RoF channel. Experimental demonstration for the improvement of EVM performance with proposed post-processing was verified.

  20. Passive Fiber Optic Gyro Study.

    DTIC Science & Technology

    1979-10-01

    34. FORWORD The report summarizes the principles of operation of the passive fiber optic gyro. It starts with a discussion of the Sagnac effect and...polarization and the angle of the " fast " axis varied nonlinearly and that the two effects are partially independent. Based on tests with a 200 meter length of

  1. Fiber Optics Instrumentation Development

    NASA Technical Reports Server (NTRS)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  2. Fiber Optics Technology.

    ERIC Educational Resources Information Center

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  3. Confocal Endomicroscopy: Instrumentation and Medical Applications

    PubMed Central

    Jabbour, Joey M.; Saldua, Meagan A.; Bixler, Joel N.; Maitland, Kristen C.

    2013-01-01

    Advances in fiber optic technology and miniaturized optics and mechanics have propelled confocal endomicroscopy into the clinical realm. This high resolution, non-invasive imaging technology provides the ability to microscopically evaluate cellular and sub-cellular features in tissue in vivo by optical sectioning. Because many cancers originate in epithelial tissues accessible by endoscopes, confocal endomicroscopy has been explored to detect regions of possible neoplasia at an earlier stage by imaging morphological features in vivo that are significant in histopathologic evaluation. This technique allows real-time assessment of tissue which may improve diagnostic yield by guiding biopsy. Research and development continues to reduce the overall size of the imaging probe, increase the image acquisition speed, and improve resolution and field of view of confocal endomicroscopes. Technical advances will continue to enable application to less accessible organs and more complex systems in the body. Lateral and axial resolutions down to 0.5 μm and 3 μm, respectively, field of view as large as 800×450 μm, and objective lens and total probe outer diameters down to 350 μm and 1.25 mm, respectively, have been achieved. We provide a review of the historical developments of confocal imaging in vivo, the evolution of endomicroscope instrumentation, and the medical applications of confocal endomicroscopy. PMID:21994069

  4. Fiber Optic Feed

    DTIC Science & Technology

    1990-11-06

    Naval Research Laboratory IIK Washington, DC,20375 5000 NRL Memorandum Report 6741 0 N Fiber Optic Feed DENZIL STILWELL, MARK PARENT AND LEw GOLDBERG...SUBTITLE S. FUNDING NUMBERS Fiber Optic Feed 53-0611-A0 6. AUTHOR(S) P. D. Stilwell, M. G. Parent, L. Goldberg 7. PERFORMING ORGANIZATION NAME(S) AND...DISTRIBUTION CODE Approved for public release; distribution unlimited. 13. ABSTRACT (Maximum 200 words) This report details a Fiber Optic Feeding

  5. Impulse response of nonlinear Schrödinger equation and its implications for pre-dispersed fiber-optic communication systems.

    PubMed

    Kumar, Shiva; Shao, Jing; Liang, Xiaojun

    2014-12-29

    In the presence of pre-dispersion, an exact solution of nonlinear Schrödinger equation (NLSE) is derived for impulse input. The phase factor of the exact solution is obtained in a closed form using the exponential integral. The nonlinear interaction among periodically placed impulses launched at the input is investigated, and the condition under which these pulses do not exchange energy is examined. It is found that if the complex weights of the impulses at the input have a secant-hyperbolic envelope and a proper chirp factor, they will propagate over long distances without exchanging energy. To describe their interaction, a discrete version of NLSE is derived. The derived equation is a form of discrete self-trapping (DST) equation, which is found to admit fundamental and higher order soliton solutions in the presence of high pre-dispersion. Nonlinear eigenmodes derived here may be useful for description of signal propagation and nonlinear interaction in highly pre-dispersion fiber-optic systems.

  6. The Fiber Optic Connection.

    ERIC Educational Resources Information Center

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…

  7. Python fiber optic seal

    SciTech Connect

    Ystesund, K.; Bartberger, J.; Brusseau, C.; Fleming, P.; Insch, K.; Tolk, K.

    1993-08-01

    Sandia National Laboratories has developed a high security fiber optic seal that incorporates tamper resistance features that are not available in commercial fiber optic seals. The Python Seal is a passive fiber optic loop seal designed to give indication of unauthorized entry. The seal includes a fingerprint feature that provides seal identity information in addition to the unique fiber optic pattern created when the seal is installed. The fiber optic cable used for the seal loop is produced with tamper resistant features that increase the difficulty of attacking that component of a seal. A Seal Reader has been developed that will record the seal signature and the fingerprint feature of the seal. A Correlator software program then compares seal images to establish a match or mismatch. SNL is also developing a Polaroid reader to permit hard copies of the seal patterns to be obtained directly from the seal.

  8. Fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Hesse, J.; Sohler, W.

    1984-01-01

    A survey of the developments in the field of fiber optics sensor technology is presented along with a discussion of the advantages of optical measuring instruments as compared with electronic sensors. The two primary types of fiber optics sensors, specifically those with multiwave fibers and those with monowave fibers, are described. Examples of each major sensor type are presented and discussed. Multiwave detectors include external and internal fiber optics sensors. Among the monowave detectors are Mach-Zender interferometers, Michelson interferometers, Sagnac interferometers (optical gyroscopes), waveguide resonators, and polarimeter sensors. Integrated optical sensors and their application in spectroscopy are briefly discussed.

  9. Fiber Optics: No Illusion.

    ERIC Educational Resources Information Center

    American School and University, 1983

    1983-01-01

    A campus computer center at Hofstra University (New York) that holds 70 terminals for student use was first a gymnasium, then a language laboratory. Strands of fiber optics are used for the necessary wiring. (MLF)

  10. Fiber optic monitoring device

    DOEpatents

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  11. Infrared fiber optic materials

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1987-01-01

    The development of IR fiber optics for use in astronomical and other space applications is summarized. Candidate materials were sought for use in the 1 to 200 micron and the 200 to 1000 micron wavelength range. Synthesis and optical characterization were carried out on several of these materials in bulk form. And the fabrication of a few materials in single crystal fiber optic form were studied.

  12. Endomicroscopy of Barrett's Esophagus.

    PubMed

    Canto, Marcia Irene

    2010-12-01

    Endomicroscopy is a remarkable technical advance in gastrointestinal mucosa imaging. In 2003, Kiesslich and colleagues described the first human use of contrast-aided confocal laser endomicroscopy (CLE) as a novel technique for in vivo microscopic imaging of the gastrointestinal mucosa. Both probe-based and endoscope-based systems have been applied to many gastrointestinal disorders, including Barrett's esophagus (BE) and associated neoplasia. Probe-based confocal laser endomicroscopy can be used in conjunction with highresolution white light endoscopy and other contrast enhancement techniques. It has proven high accuracy for prediction of high-grade neoplasia and cancer. In vivo imaging of both flat BE and mucosal lesions can influence diagnosis and thereby impact upon decision making regarding tissue sampling and endoscopic therapy. This article discusses the scientific literature related to clinical use of CLE for BE, the techniques for performing CLE in the esophagus, and the potential future directions for CLE in BE and esophageal cancer diagnosis and treatment.

  13. Fiber optics for controls

    NASA Technical Reports Server (NTRS)

    Seng, Gary T.

    1987-01-01

    The challenge of those involved in control-system hardware development is to accommodate an ever-increasing complexity in aircraft control, while limiting the size and weight of the components and improving system reliability. A technology that displays promise towards this end is the area of fiber optics for controls. The primary advantages of employing optical fibers, passive optical sensors, and optically controlled actuators are weight and volume reduction, immunity from electromagnetic effects, superior bandwidth capabilities, and freedom from short circuits and sparking contacts. Since 1975, NASA Lewis has performed in-house, contract, and grant research in fiber optic sensors, high-temperature electro-optic switches, and fly-by-light control-system architecture. Passive optical sensor development is an essential yet challenging area of work and has therefore received much attention during this period. A major effort to develop fly-by-light control-system technology, known as the Fiber-Optic Control System Integration (FOCSI) program, was initiated in 1985 as a cooperative effort between NASA and DOD. Phase 1 of FOCSI, completed in 1986, was aimed at the design of a fiber-optic integrated propulsion/flight control system. Phase 2, yet to be initiated, will provide subcomponent and system development, and a system engine test. In addition to a summary of the benefits of fiber optics, the FOCSI program, sensor advances, and future directions in the NASA Lewis program will be discussed.

  14. Woven fiber optics.

    PubMed

    Schmidt, A C; Courtney-Pratt, J S; Ross, E A

    1975-02-01

    In this paper we describe how the art of weaving can be applied to fiber optics in order to produce precisely controlled reproducible image guides and image dissectors. As examples of the types of device for which woven fiber optics are applicable, we describe a 3:1 interleaver for use with a cathode-ray tube to produce color images, and a high speed alpha numeric output device. The techniques of weaving fiber optics are discussed in sufficient detail in order to allow for further work. Although, in principle, one might be able to weave glass optical fibers, all the work described here made use of plastic optical fibers 0.25 mm in diameter.

  15. Nonlinear distortion evaluation in a directly modulated distributed feedback laser diode-based fiber-optic cable television transport system

    NASA Astrophysics Data System (ADS)

    Li, Chung-Yi; Ying, Cheng-Ling; Lin, Chun-Yu; Chu, Chien-An

    2015-12-01

    This study evaluated a directly modulated distributed feedback (DFB) laser diode (LD) for cable TV systems with respect to carrier-to-nonlinear distortion of LDs. The second-order distortion-to-carrier ratio is found to be proportional to that of the second-order coefficient-to-first-order coefficient of the DFB laser diode driving current and to the optical modulation index (OMI). Furthermore, the third-order distortion-to-carrier ratio is proportional to that of the third-order coefficient-to-first-order coefficient of the DFB laser diode driving current, and to the OMI2.

  16. Fiber optic connector

    DOEpatents

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  17. Fiber optic monitoring device

    DOEpatents

    Samborsky, J.K.

    1993-10-05

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information. 4 figures.

  18. Fiber optic connector

    DOEpatents

    Rajic, S.; Muhs, J.D.

    1996-10-22

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded are disclosed. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled. 3 figs.

  19. Fiber optics that fly

    NASA Astrophysics Data System (ADS)

    Wilcox, Michael J.; Thelen, Donald C., Jr.

    1996-11-01

    analog integrated circuit using photodiodes and fiber optic waveguides as the nonlinear light sensing devices, current mirrors and opamp circuits for the processing. The outputs of this circuit will go to other artificial neural networks for further processing.

  20. FIBER-OPTIC AND OTHER WAVEGUIDES: Characteristics of nonlinear optical excitation of modes in planar waveguide structures

    NASA Astrophysics Data System (ADS)

    Yashkir, O. V.; Yashkir, Yu N.

    1987-06-01

    A theoretical investigation is made of nonlinear excitation of planar waveguide modes at frequencies ω when external plane optical waves of frequency ω1 are incident on the waveguide surface. The general formulas for the efficiency of the excitation of modes by a monochromatic wave are obtained and analyzed for the case of self-interaction of the ω = ω1 + ω1 - ω1 type and by a biharmonic wave in the case of generation of the difference frequency ω = ω1 - ω1'. The efficiency of parametric conversion of waveguide modes ω accompanied by an increase of the frequency to the range ω' is considered for the case when the sum frequency ω + ω1 = ω1' is generated. The numerical method developed by the authors is used to analyze the characteristic features of these processes in some specific cases.

  1. Fiber-Optic Sensing Technology

    SciTech Connect

    Milnes, M.; Baylor, L.C.; Bave, S.

    1996-10-24

    This article offers a basic review of fiber-optic sensing technology, or more specifically, fiber-optic sensing technology as applied to the qualitative or quantitative identification of a chemical sample, and how it works,

  2. Fiber optics for controls

    NASA Technical Reports Server (NTRS)

    Seng, Gary T.

    1990-01-01

    The design, development, and testing of a fiber optic integrated propulsion/flight control system for an advanced supersonic dash aircraft (flies at supersonic speeds for short periods of time) is the goal of the joint NASA/DOD Fiber Optic Control System Integration (FOCSI) program. Phase 1 provided a comparison of electronic and optical control systems, identified the status of current optical sensor technology, defined the aircraft sensor/actuator environment, proposed architectures for fully optical control systems, and provided schedules for development. Overall, it was determined that there are sufficient continued efforts to develop such a system. It was also determined that it is feasible to build a fiber optic control system for the development of a data base for this technology, but that further work is necessary in sensors, actuators, and components to develop an optimum design, fully fiber optic integrated control system compatible with advanced aircraft environments. Phase 2 is to design, construct, and ground test a fly by light control system. Its first task is to provide a detailed design of the electro-optic architecture.

  3. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Quick, William H. (Inventor); August, Rudolf R. (Inventor); James, Kenneth A. (Inventor); Strahan, Jr., Virgil H. (Inventor); Nichols, Donald K. (Inventor)

    1980-01-01

    An inexpensive, lightweight fiber optic micro-sensor that is suitable for applications which may require remote temperature sensing. The disclosed temperature sensor includes a phosphor material that, after receiving incident light stimulation, is adapted to emit phosphorescent radiation output signals, the amplitude decay rate and wavelength of which are functions of the sensed temperature.

  4. Fiber Optic Microphone

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.; George, Thomas; Norvig, Peter (Technical Monitor)

    1999-01-01

    Research into advanced pressure sensors using fiber-optic technology is aimed at developing compact size microphones. Fiber optic sensors are inherently immune to electromagnetic noise, and are very sensitive, light weight, and highly flexible. In FY 98, NASA researchers successfully designed and assembled a prototype fiber-optic microphone. The sensing technique employed was fiber optic Fabry-Perot interferometry. The sensing head is composed of an optical fiber terminated in a miniature ferrule with a thin, silicon-microfabricated diaphragm mounted on it. The optical fiber is a single mode fiber with a core diameter of 8 micron, with the cleaved end positioned 50 micron from the diaphragm surface. The diaphragm is made up of a 0.2 micron thick silicon nitride membrane whose inner surface is metallized with layers of 30 nm titanium, 30 nm platinum, and 0.2 micron gold for efficient reflection. The active sensing area is approximately 1.5 mm in diameter. The measured differential pressure tolerance of this diaphragm is more than 1 bar, yielding a dynamic range of more than 100 dB.

  5. Buying Fiber-Optic Networks.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2003-01-01

    Describes consortia formed by college and university administrators to buy, manage, and maintain their own fiber-optic networks with the goals of cutting costs of leasing fiber-optic cable and planning for the future. Growth capacity is the real advantage of owning fiber-optic systems. (SLD)

  6. Fiber Optics and Library Technology.

    ERIC Educational Resources Information Center

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  7. Fiber optics: A research paper

    NASA Technical Reports Server (NTRS)

    Drone, Melinda M.

    1987-01-01

    Some basic aspects concerning fiber optics are examined. Some history leading up to the development of optical fibers which are now used in the transmission of data in many areas of the world is discussed. Basic theory of the operation of fiber optics is discussed along with methods for improving performance of the optical fiber through much research and design. Splices and connectors are compared and short haul and long haul fiber optic networks are discussed. Fiber optics plays many roles in the commercial world. The use of fiber optics for communication applications is emphasized.

  8. Fiber optics: A research paper

    NASA Astrophysics Data System (ADS)

    Drone, Melinda M.

    1987-08-01

    Some basic aspects concerning fiber optics are examined. Some history leading up to the development of optical fibers which are now used in the transmission of data in many areas of the world is discussed. Basic theory of the operation of fiber optics is discussed along with methods for improving performance of the optical fiber through much research and design. Splices and connectors are compared and short haul and long haul fiber optic networks are discussed. Fiber optics plays many roles in the commercial world. The use of fiber optics for communication applications is emphasized.

  9. Fiber optic hydrophone

    DOEpatents

    Kuzmenko, P.J.; Davis, D.T.

    1994-05-10

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.

  10. Fiber optic hydrophone

    DOEpatents

    Kuzmenko, Paul J.; Davis, Donald T.

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  11. Fiber optic fluid detector

    DOEpatents

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  12. Fiber optic fluid detector

    DOEpatents

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  13. Fiber optics welder

    DOEpatents

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  14. Fiber optic geophysical sensors

    DOEpatents

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  15. Fiber optic detector

    NASA Astrophysics Data System (ADS)

    Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.

    1990-04-01

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  16. Fiber optic detector

    SciTech Connect

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  17. Infrared Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Successive years of Small Business Innovation Research (SBIR) contracts from Langley Research Center to Sensiv Inc., a joint venture between Foster-Miller Inc. and Isorad, Ltd., assisted in the creation of remote fiber optic sensing systems. NASA's SBIR interest in infrared, fiber optic sensor technology was geared to monitoring the curing cycles of advanced composite materials. These funds helped in the fabrication of an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. Foster-Miller ingenuity allowed infrared transmitting optical fibers to combine with Fourier Transform Infrared spectroscopy to enable remote sensing. Sensiv probes operate in the mid-infrared range of the spectrum, although modifications to the instrument also permits its use in the near-infrared region. The Sensiv needle-probe is built to be placed in a liquid or powder and analyze the chemicals in the mixture. Other applications of the probe system include food processing control; combustion control in furnaces; and maintenance problem solving.

  18. Fresnel drag effect in fiber optic gyroscope

    NASA Technical Reports Server (NTRS)

    Vali, V.; Berg, M. F.; Shorthill, R. W.

    1978-01-01

    Consideration is given to the development of a low-noise fiber-optic ring interferometer gyroscope. A technique for measuring the Fresnel drag coefficient of optical fibers is described, and the accuracy of the technique is considered. An experiment is performed which allows verification of the Einstein velocity addition theorem to the first nonlinear term. An experimental setup for measuring Fresnel drag is described: it consists of a Sagnac interferometer and a Fresnel drag measurement configuration.

  19. Infrared Fiber Optics.

    DTIC Science & Technology

    1979-12-01

    This unit is thca placed in a larger plastic tube which mates with the fiber connectors. Commercial AMP connectors are used that allow the fiber cable...AD-A082 450 HUSHES RESEARCH LABS MALIBU CA pie 20/6 INFRARED FIBER OPTICS.(U) DEC 79 J A HARRINSTON, R TURK, M HENDERSON F1962-R78-C-0109...Laboratories AE.WR r z7 3011 Malibu Canyon Road t 2 Hanscom AFB MA 01731 E I NUBROPAS I5s. OECLASSIFI ATION/DOWNGRADING SN/ A SCHEDULE 16. DISTRI13UTION

  20. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  1. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor); Mattes, Brenton L. (Inventor); Charnetski, Clark J. (Inventor)

    1999-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  2. Fiber optic geophysical sensors

    DOEpatents

    Homuth, E.F.

    1991-03-19

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  3. Electrospun Amplified Fiber Optics

    PubMed Central

    2015-01-01

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm–1). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics. PMID:25710188

  4. Electrospun amplified fiber optics.

    PubMed

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  5. Fiber optic systems for mobile platforms II

    SciTech Connect

    Lewis, N.E.; Moore, E.L.

    1988-01-01

    This book contains papers presented at the symposium of International Society for Optical Engineering. Topics covered/include: Fiber optic pressure sensor for internal combustion engine; Automotive fiber optic technology: application issues; and Fiber optic guided missile.

  6. Shedding Light on Fiber Optics.

    ERIC Educational Resources Information Center

    Bunch, Robert M.

    1994-01-01

    Explains the principles of fiber optics as a medium for light-wave communication. Current uses of fiber systems on college campuses include voice, video, and local area network applications. A group of seven school districts in Minnesota are linked via fiber-optic cables. Other uses are discussed. (MLF)

  7. Fiber optic vibration sensor

    DOEpatents

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  8. Fiber optic vibration sensor

    DOEpatents

    Dooley, Joseph B.; Muhs, Jeffrey D.; Tobin, Kenneth W.

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  9. Fiber optic TV direct

    NASA Technical Reports Server (NTRS)

    Kassak, John E.

    1991-01-01

    The objective of the operational television (OTV) technology was to develop a multiple camera system (up to 256 cameras) for NASA Kennedy installations where camera video, synchronization, control, and status data are transmitted bidirectionally via a single fiber cable at distances in excess of five miles. It is shown that the benefits (such as improved video performance, immunity from electromagnetic interference and radio frequency interference, elimination of repeater stations, and more system configuration flexibility) can be realized if application of the proven fiber optic transmission concept is used. The control system will marry the lens, pan and tilt, and camera control functions into a modular based Local Area Network (LAN) control network. Such a system does not exist commercially at present since the Television Broadcast Industry's current practice is to divorce the positional controls from the camera control system. The application software developed for this system will have direct applicability to similar systems in industry using LAN based control systems.

  10. Fiber optic control system integration

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.; Russell, J. C.

    1987-01-01

    A total fiber optic, integrated propulsion/flight control system concept for advanced fighter aircraft is presented. Fiber optic technology pertaining to this system is identified and evaluated for application readiness. A fiber optic sensor vendor survey was completed, and the results are reported. The advantages of centralized/direct architecture are reviewed, and the concept of the protocol branch is explained. Preliminary protocol branch selections are made based on the F-18/F404 application. Concepts for new optical tools are described. Development plans for the optical technology and the described system are included.

  11. Scintillator fiber optic long counter

    DOEpatents

    McCollum, T.; Spector, G.B.

    1994-03-29

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.

  12. Fiber Optics: A Bright Future.

    ERIC Educational Resources Information Center

    Rice, James, Jr.

    1980-01-01

    Presents an overview of the impact of fiber optics on telecommunications and its application to information processing and library services, including information retrieval, news services, remote transmission of library services, and library networking. (RAA)

  13. Scintillator fiber optic long counter

    DOEpatents

    McCollum, Tom; Spector, Garry B.

    1994-01-01

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected.

  14. Application of Fiber Optic Instrumentation

    NASA Technical Reports Server (NTRS)

    Richards, William Lance; Parker, Allen R., Jr.; Ko, William L.; Piazza, Anthony; Chan, Patrick

    2012-01-01

    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented.

  15. Interferometric Fiber Optic Sensors

    PubMed Central

    Lee, Byeong Ha; Kim, Young Ho; Park, Kwan Seob; Eom, Joo Beom; Kim, Myoung Jin; Rho, Byung Sup; Choi, Hae Young

    2012-01-01

    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair. PMID:22736961

  16. Interferometric fiber optic sensors.

    PubMed

    Lee, Byeong Ha; Kim, Young Ho; Park, Kwan Seob; Eom, Joo Beom; Kim, Myoung Jin; Rho, Byung Sup; Choi, Hae Young

    2012-01-01

    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

  17. Small Business Innovations (Fiber Optics)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Foster-Miller, Inc. Waltham, MA developed the In-Situ Fiber Optic Polymer Reaction Monitor which could lead to higher yields and lower costs in complex composite manufacturing. The monitor, developed under a Small Business Innovation Research (SBIR) contract with Langley Research Center, uses an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. It is the first analytical system capable of directly measuring the chemistry of advanced composite materials.

  18. Fiber optic frequency transfer link

    NASA Technical Reports Server (NTRS)

    Primas, Lori E. (Inventor); Sydnor, Richard L. (Inventor); Lutes, George F. (Inventor)

    1991-01-01

    A reference frequency distribution system is disclosed for transmitting a reference frequency from a reference unit to a remote unit while keeping the reference frequency at the reference unit and the remote unit in phase. A fiber optic cable connects the reference unit to the remote unit. A frequency source at the reference unit produces a reference frequency having an adjustable phase. A fiber optic transmitter at the reference unit modulates a light beam with the reference frequency and transmits the light beam into the fiber optic cable. A 50/50 reflector at the remote unit reflects a first portion of the light beam from the reference unit back into the fiber optic cable to the reference unit. A first fiber optic receiver disposed at the remote unit receives a second portion of the light beam and demodulates the reference frequency to be used at the remote unit. A second fiber optic receiver disposed at the reference unit receives the first portion of the light beam and demodulates a reference frequency component. A phase conjugator is connected to the frequency source for comparing the phase of the reference frequency component to the phase of the reference frequency modulating the light beam being transmitted from the reference unit to maintain a conjugate (anti-symmetric) relationship between the reference frequency component and the reference frequency modulating the light beam where virtually no phase difference exists between the phase of the reference frequency component and the phase of the reference frequency modulating the light beam.

  19. Fiber optic-based biosensor

    NASA Technical Reports Server (NTRS)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  20. Fiber optic diffraction grating maker

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1991-05-21

    A compact and portable diffraction grating maker is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate. 4 figures.

  1. Fiber optic diffraction grating maker

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1991-01-01

    A compact and portable diffraction grating maker comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate.

  2. Fiber Optics - An Aegis Experience

    NASA Astrophysics Data System (ADS)

    Saige, Vance

    1990-02-01

    The Navy has been involved in the exploitation of fiber optics over the decade for which many of the developmental efforts have represented a significant breakthrough in technology and also for applications. Significant among the Navy initiatives has been the effort of the AEGIS Program Office of the Naval Sea Systems Command located in Washington D.C. This paper presents some of these developmental efforts coming out of initiatives. The efforts lead to the implementation of some demonstrations aboard the AEGIS Cruisers for shipboard evaluation purposes. The program objectives were met and the efforts were considered successful demonstrations of the performance of fiber optics aboard a Navy ship.

  3. Fiber-Optic Differential Displacement Sensor

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping

    1996-01-01

    Dual fiber-optic sensor measures small relative displacements of two proximate objects along common surface. Dual sensor comprises two fiber-optic sensors in differential configuration increasing sensitivity to displacement while decreasing sensitivity to thermal expansion and contraction.

  4. High pressure fiber optic sensor system

    DOEpatents

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  5. Applications of fiber optics in physical protection

    SciTech Connect

    Buckle, T.H.

    1994-03-01

    The purpose of this NUREG is to provide technical information useful for the development of fiber-optic communications and intrusion detection subsystems relevant to physical protection. There are major sections on fiber-optic technology and applications. Other topics include fiber-optic system components and systems engineering. This document also contains a glossary, a list of standards and specifications, and a list of fiber-optic equipment vendors.

  6. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1988-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  7. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1989-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  8. Fiber Optics: Deregulate and Deploy.

    ERIC Educational Resources Information Center

    Suwinski, Jan H.

    1993-01-01

    Describes fiber optic technology, explains its use in education and commercial settings, and recommends regulations and legislation that will speed its use to create broadband information networks. Topics discussed include distance learning; interactive video; costs; and the roles of policy makers, lawmakers, public advocacy groups, and consumers.…

  9. Monolithic fiber optic sensor assembly

    SciTech Connect

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  10. Fiber optic refractive index monitor

    SciTech Connect

    Weiss, Jonathan David

    2002-01-01

    A sensor for measuring the change in refractive index of a liquid uses the lowest critical angle of a normal fiber optic to achieve sensitivity when the index of the liquid is significantly less than the index of the fiber core. Another embodiment uses a liquid filled core to ensure that its index is approximately the same as the liquid being measured.

  11. Overview of Fiber-Optical Sensors

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P.; Moore, Emery L.

    1987-01-01

    Design, development, and sensitivity of sensors using fiber optics reviewed. State-of-the-art and probable future developments of sensors using fiber optics described in report including references to work in field. Serves to update previously published surveys. Systems incorporating fiber-optic sensors used in medical diagnosis, navigation, robotics, sonar, power industry, and industrial controls.

  12. Fiber optic sensor and method for making

    DOEpatents

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  13. Integrated optics for fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Minford, W. J.; Depaula, R. P.

    1991-01-01

    Recent progress achieved in the field of fiber-optic sensor applications is discussed with emphasis placed on LiNbO3-based integrated optics (IO). Particular consideration is given to advanced electromagnetic-field sensors, an integrated laser vibrometer system, and a fiber-optic gyroscope system. It is shown that the multifunction IO chips have enabled high perforamance fiber-optic sensors (e.g., fiber-optic gyros), provided advanced and unique signal processing capabilities and advanced architectures, and have a potential of making fiber-optic sensors at low cost.

  14. Enhanced optical nonlinearity and fiber-optical frequency comb controlled by a single atom in a whispering-gallery-mode microtoroid resonator

    NASA Astrophysics Data System (ADS)

    Li, Jiahua; Zhang, Suzhen; Yu, Rong; Zhang, Duo; Wu, Ying

    2014-11-01

    Based on a single atom coupled to a fiber-coupled, chip-based microresonator [B. Dayan et al., Science 319, 1062 (2008), 10.1126/science.1152261], we put forward a scheme to generate optical frequency combs at driving laser powers as low as a few nanowatts. Using state-of-the-art experimental parameters, we investigate in detail the influences of different atomic positions and taper-resonator coupling regimes on optical-frequency-comb generation. In addition to numerical simulations demonstrating this effect, a physical explanation of the underlying mechanism is presented. We find that the combination of the atom and the resonator can induce a large third-order nonlinearity which is significantly stronger than Kerr nonlinearity in Kerr frequency combs. Such enhanced nonlinearity can be used to generate optical frequency combs if driven with two continuous-wave control and probe lasers and significantly reduce the threshold of nonlinear optical processes. The comb spacing can be well tuned by changing the frequency beating between the driving control and probe lasers. The proposed method is versatile and can be adopted to different types of resonators, such as microdisks, microspheres, microtoroids or microrings.

  15. LDEF fiber optic exposure experiment

    NASA Technical Reports Server (NTRS)

    Johnston, Alan R.; Bergman, Larry A.; Hartmayer, Ron

    1991-01-01

    Ten fiber optic cable samples of different types were exposed in low Earth orbit for over 5.5 years on the Long Duration Exposure Facility (LDEF). Four of the samples were mounted externally, and the remaining six were internal, under approximately .5 gc/sq m of aluminum. The experiment was recovered in January of 1990, and laboratory evaluation of the effects of the exposure has continued since. An increase in loss, presumed to be from radiation darkening, aging effects on polymer materials used in cabling, unique contamination effects on connector terminations, and micrometeoroid impacts were observed on some of the samples. In addition, the dependence of sample loss was measured as a function of temperature before and after the flight. All cable samples were functional, and the best exhibited no measurable change in performance, indicating that conventional fiber optic cables can perform satisfactorily in spacecraft. Experimental results obtained to date will be presented and discussed.

  16. Fiber optic Adaline neural networks

    NASA Astrophysics Data System (ADS)

    Ghosh, Anjan K.; Trepka, Jim; Paparao, Palacharla

    1993-02-01

    Optoelectronic realization of adaptive filters and equalizers using fiber optic tapped delay lines and spatial light modulators has been discussed recently. We describe the design of a single layer fiber optic Adaline neural network which can be used as a bit pattern classifier. In our realization we employ as few electronic devices as possible and use optical computation to utilize the advantages of optics in processing speed, parallelism, and interconnection. The new optical neural network described in this paper is designed for optical processing of guided lightwave signals, not electronic signals. We analyzed the convergence or learning characteristics of the optically implemented Adaline in the presence of errors in the hardware, and we studied methods for improving the convergence rate of the Adaline.

  17. Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective

    PubMed Central

    Kyrish, Matthew; Dobbs, Jessica; Jain, Shalini; Wang, Xiao; Yu, Dihua; Richards-Kortum, Rebecca

    2013-01-01

    Abstract. In order to diagnose cancer, a sample must be removed, prepared, and examined under a microscope, which is expensive, invasive, and time consuming. Fiber optic fluorescence endomicroscopy, where an image guide is used to obtain high-resolution images of tissue in vivo, has shown promise as an alternative to conventional biopsies. However, the resolution of standard endomicroscopy is limited by the fiber bundle sampling frequency and out-of-focus light. A system is presented which incorporates a plastic, achromatic objective to increase the sampling and which provides optical sectioning via structured illumination to reject background light. An image is relayed from the sample by a fiber bundle with the custom 2.1-mm outer diameter objective lens integrated to the distal tip. The objective is corrected for the excitation and the emission wavelengths of proflavine (452 and 515 nm). It magnifies the object onto the fiber bundle to improve the system’s lateral resolution by increasing the sampling. The plastic lenses were fabricated via single-point diamond turning and assembled using a zero alignment technique. Ex vivo images of normal and neoplastic murine mammary tissues stained with proflavine are captured. The system achieves higher contrast and resolves smaller features than standard fluorescence endomicroscopy. PMID:24002190

  18. A chip of fiber optical trap

    NASA Astrophysics Data System (ADS)

    Su, Heming; Hu, Huizhu; Zhang, Lei; Ge, Xiaojia; Shen, Yu

    2016-10-01

    A chip of fiber optical trap paves the way to realize the miniaturization and portability of devices based on dual beam optical trap, without loss of stability. We have designed two types of chip of fiber optical trap according to our theoretical simulation. The first one integrates dual beam optical trap with microfluidic chip, called a chip of semi-sealing fiber optical trap. It is generally used in chemical, biological, medical and other high-throughput experiments. The second one is a chip of full-sealing fiber optical trap. It is used to measure precisely the coefficient of viscosity or the Brownian movement of micro-object's in liquid. This paper focuses on the chip of fiber optical trap. We present two types of chips of fiber optical trap and detail their designs, fabrication and validation. The chip of semi-sealing fiber optical trap is integrated with optical fiber and microfluidic chip made of polydimethylsiloxane (PDMS). We have achieved the micro-sized alignment of optical paths and the trapping of micro-sized particles in the chip of semi-sealing fiber optical trap. In addition, it is easy to fabrication and clean. The chip of full-sealing fiber optical trap was based on a cubic micro-cavity made by a rectangular capillary tube and sealed by PDMS. We have achieved micro-sized alignment accuracy, high trapping efficiency and better trapping stability in the chip of full-sealing fiber optical trap as well.

  19. Fiber-optic technology review

    SciTech Connect

    Lyons, P.B.

    1980-01-01

    A history of fiber technology is presented. The advantages of fiber optics are discussed (bandwidth, cost, weight and size, nonmetallic construction and isolation). Some aspects of the disadvantages of fiber systems briefly discussed are fiber and cable availability, fiber components, radiation effects, receivers and transmitters, and material dispersion. Particular emphasis over the next several years will involve development of fibers and systems optimized for use at wavelengths near 1.3 ..mu..m and development of wavelengths multiplexers for simultaneous system operation at several wavelengths.

  20. Fiber Optic Sensing: Prototype Results

    NASA Astrophysics Data System (ADS)

    Ortiz Martin, Jesus; Gonzalez Torres, Jose

    2015-09-01

    Airbus DS Crisa has been developing an interrogator of Fiber Bragg Grating sensors [1], aimed at measuring, mainly, temperature and strain by means of fiber optic links. This activity, funded by Airbus DS Crisa, ESA and HBM Fibersensing, finalizes with the manufacturing of a prototype. The present paper describes in detail the main outcomes of the testing activities of this prototype. At the moment of writing the paper all the functional tests have been concluded. The environmental tests, thermal and mechanical, will be conducted with the FOS interrogator forming part of the RTU2015, described in [2].

  1. Campus fiber optic enterprise networks

    NASA Astrophysics Data System (ADS)

    Weeks, Richard A.

    1991-02-01

    The proliferation of departmental LANs in campus environments has driven network technology to the point where construction of token ring fiber-optic backbone systems is now a cost-effective alternative. This article will discuss several successful real life case history applications of token ring fiber in a campus setting each with unique distance and load factor requirements. It is hoped that these examples will aid in the understanding planning and implementation of similar installations. It will also attempt to provide important information on the emerging Fiber Distributed Data Interface (FDDI) standard.

  2. Online fiber-optic spectrophotometry

    SciTech Connect

    Van Hare, D.R.; O'Rourke, P.E.; Prather, W.S.

    1989-01-01

    The Savannah River Plant operates two radio-chemical separations areas to recover uranium and plutonium from nuclear reactor fuel and target assemblies. Chemical processes in these areas are controlled based on laboratory analysis of samples extracted from the process. While analytical results from the laboratory are reliable, the process of pulling samples, transporting them to the laboratory, analyzing them, and then reporting results is time consuming and potentially exposes many workers to highly radioactive solutions. To improve the timeliness of chemical information and reduce personnel radiation exposure, the Savannah River Laboratory has developed an online fiber optic spectrophotometer which combines three new technologies, fiber optics, diode array spectrophotometers, and multivariate data analysis. The analyzer monitors the uranium and nitrate concentration of seven aqueous process streams in a uranium purification process. The analyzer remotely controls the sampling of each process stream and monitors the relative flow rate through each sampler. Spectrophotometric data from the analyzer is processed by multivariate data analysis to give both uranium and nitrate concentrations as well as an indication of the quality of the data.

  3. Assessment of fiber optic pressure sensors

    SciTech Connect

    Hashemian, H.M.; Black, C.L.; Farmer, J.P.

    1995-04-01

    This report presents the results of a six-month Phase 1 study to establish the state-of-the-art in fiber optic pressure sensing and describes the design and principle of operation of various fiber optic pressure sensors. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. In addition, current requirements for environmental and seismic qualification of sensors for nuclear power plants were reviewed to determine the extent of the qualification tests that fiber optic pressure sensors may have to meet before they can be used in nuclear power plants. This project has concluded that fiber optic pressure sensors are still in the research and development stage and only a few manufacturers exist in the US and abroad which supply suitable fiber optic pressure sensors for industrial applications. Presently, fiber optic pressure sensors are mostly used in special applications for which conventional sensors are not able to meet the requirements.

  4. Fiber-optic liquid level sensor

    DOEpatents

    Weiss, Jonathan D.

    1991-01-01

    A fiber-optic liquid level sensor measures the height of a column of liquid through the hydrostatic pressure it produces. The sensor employs a fiber-optic displacement sensor to detect the pressure-induced displacement of the center of a corrugated diaphragm.

  5. Fiber-Optic Applications For Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Curran, Mark E.; Clark, Timothy E.

    Conventional data buses, telemetry links, and sensors using wire harnesses as the transmission media suffer from numerous shortcomings, especially when utilized in spacecraft. This paper describes fiber optic networks which could be implemented in launch vehicles in the near-term. Special emphasis will be placed on the increase in reliability which fiber optics affords over conventional cable/wire approaches.

  6. Fiber optic sensors for corrosion detection

    NASA Technical Reports Server (NTRS)

    Smith, Alphonso C.

    1993-01-01

    The development of fiber optic sensors for the detection of a variety of material parameters has grown tremendously over the past several years. Additionally, the potential for analytical applications of fiber optic sensors have become more widely used. New pH sensors have also been developed using fiber optic techniques to detect fluorescence characteristics from immobilized fluorogenic reagent chemicals. The primary purpose of this research was to investigate the feasibility of using fiber optic sensors to detect the presence of Al(sup 3+) ions made in the process of environmental corrosion of aluminum materials. The Al(sup 3+) ions plus a variety of other type of metal ions can be detected using analytical techniques along with fiber optic sensors.

  7. Sensitive fiber-optic immunoassay

    NASA Astrophysics Data System (ADS)

    Walczak, Irene M.; Love, Walter F.; Slovacek, Rudolf E.

    1991-07-01

    The principles of evanescent wave theory were applied to an immunological sensor for detecting the cardiac-specific isoenzyme creatine kinase-MB (CK-MB). The detection of the CK-MB isoenzyme is used in conjunction with the total CK measurement in the diagnosis of acute myocardial infarction. The clinical range for CK-MB is from 2-100 ng/ml. Previous work which utilized the fluorophor, Fluorescein isothiocyanate (FITC), was able to discriminate between 0 and 3 ng/ml CK-MB. Use of the fluorophor B-phycoerythrin (BPE) increased the assay sensitivity to 0.1 ng/ml CK-MB. The data was collected for 15 minutes using an optical launch and collection angle of 25 degree(s). This fiber optic based system is homogeneous and requires no subsequent washing, handling, or processing steps after exposure to the sample.

  8. Fiber optic D dimer biosensor

    DOEpatents

    Glass, R.S.; Grant, S.A.

    1999-08-17

    A fiber optic sensor for D dimer (a fibrinolytic product) can be used in vivo (e.g., in catheter-based procedures) for the diagnosis and treatment of stroke-related conditions in humans. Stroke is the third leading cause of death in the United States. It has been estimated that strokes and stroke-related disorders cost Americans between $15-30 billion annually. Relatively recently, new medical procedures have been developed for the treatment of stroke. These endovascular procedures rely upon the use of microcatheters. These procedures could be facilitated with this sensor for D dimer integrated with a microcatheter for the diagnosis of clot type, and as an indicator of the effectiveness, or end-point of thrombolytic therapy. 4 figs.

  9. Fiber optic D dimer biosensor

    DOEpatents

    Glass, Robert S.; Grant, Sheila A.

    1999-01-01

    A fiber optic sensor for D dimer (a fibrinolytic product) can be used in vivo (e.g., in catheter-based procedures) for the diagnosis and treatment of stroke-related conditions in humans. Stroke is the third leading cause of death in the United States. It has been estimated that strokes and stroke-related disorders cost Americans between $15-30 billion annually. Relatively recently, new medical procedures have been developed for the treatment of stroke. These endovascular procedures rely upon the use of microcatheters. These procedures could be facilitated with this sensor for D dimer integrated with a microcatheter for the diagnosis of clot type, and as an indicator of the effectiveness, or end-point of thrombolytic therapy.

  10. Fiber-optic voltage sensor

    NASA Astrophysics Data System (ADS)

    Wood, C. B.

    1990-07-01

    A fiber-optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, and a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities.

  11. Precision Fiber Optic Sensor Market Forecast

    NASA Astrophysics Data System (ADS)

    Montgomery, Jeff D.; Glasco, Jon; Dixon, Frank W.

    1986-01-01

    The worldwide market for precision fiber optic sensors is forecasted, 1984-1994. The forecast is based upon o Analysis of fiber optic sensor and related component current technology, and a forecast of technology advancement o Review and projection of demand for precision sensing, and the penetration which fiber optics will make into this market The analysis and projections are based mainly on interviews conducted worldwide with research teams, government agencies, systems contractors, medical and industrial laboratories, component suppliers and others. The worldwide market for precision (interferometric) fiber optic sensing systems is forecasted to exceed $0.8 billion by 1994. The forecast is segmented by geographical region (Europe, Japan and North America) and by function; o Gyroscope o Sonar o Gradiometer/Magnetometer o Other - Chemical Composition - Atmospheric Acoustic - Temperature - Position - Pressure Requirements for components are reviewed. These include special fiber, emitters and detectors, modulators, couplers, switches, integrated optical circuits and integrated optoelectronics. The advancement in component performance is forecasted. The major driving forces creating fiber optic sensor markets are reviewed. These include fiber optic sensor technical and economic advantages, increasingly stringent operational requirements, and technology evolution. The leading fiber optic sensor and related component development programs are reviewed. Component sources are listed. Funding sources for sensor and component development are outlined, and trends forecasted.

  12. Harsh environment fiber optic connectors/testing

    NASA Astrophysics Data System (ADS)

    Parker, Douglas A.

    2014-09-01

    Fiber optic systems are used frequently in military, aerospace and commercial aviation programs. There is a long history of implementing fiber optic data transfer for aircraft control, for harsh environment use in local area networks and more recently for in-flight entertainment systems. The advantages of fiber optics include high data rate capacity, low weight, immunity to EMI/RFI, and security from signal tapping. Technicians must be trained particularly to install and maintain fiber systems, but it is not necessarily more difficult than wire systems. However, the testing of the fiber optic interconnection system must be conducted in a standardized manner to assure proper performance. Testing can be conducted with slight differences in the set-up and procedure that produce significantly different test results. This paper reviews various options of interconnect configurations and discusses how these options can affect the performance, maintenance required and longevity of a fiber optic system, depending on the environment. Proper test methods are discussed. There is a review of the essentials of proper fiber optic testing and impact of changing such test parameters as input launch conditions, wavelength considerations, power meter options and the basic methods of testing. This becomes important right from the start when the supplier test data differs from the user's data check upon receiving the product. It also is important in periodic testing. Properly conducting the fiber optic testing will eliminate confusion and produce meaningful test results for a given harsh environment application.

  13. Industrial applications of fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Desforges, Francois X.; Blocksidge, Robert

    1996-08-01

    Thanks to the growth of the fiber optics telecommunication industry, fiber optic components have become less expensive, more reliable and well known by potential fiber optic sensor users. LEDs, optical fibers, couplers and connectors are now widely distributed and are the building blocks for the fiber optic sensor manufacturer. Additionally, the huge demand in consumer electronics of the past 10 years has provided the manufacturer with cheap and powerful programmable logic components which reduce the development time as well as the cost of the associated instrumentation. This market trend has allowed Photonetics to develop, manufacture and sell fiber optic sensors for the last 10 years. The company contribution in the fields of fiber optic gyros (4 licenses sold world wide), white light interferometry and fiber optic sensor networks is widely recognized. Moreover, its 1992 acquisition of some of the assets of Metricor Inc., greatly reinforced its position and allowed it to pursue new markets. Over the past four years, Photonetics has done an important marketing effort to better understand the need of its customers. The result of this research has fed R&D efforts towards a new generation instrument, the Metricor 2000, better adapted to the expectations of fiber optic sensors users, thanks to its unique features: (1) universality -- the system can accept more than 20 different sensors (T, P, RI, . . .). (2) scalability -- depending on the customer needs, the system can be used with 1 to 64 sensors. (3) performance -- because of its improved design, overall accuracies of 0.01% FS can be reached. (4) versatility -- its modular design enables a fast and easy custom design for specific applications. This paper presents briefly the Metricor 2000 and its family of FO probes. Then, it describes two fiber optic sensing (FOS) applications/markets where FOS have proven to be very useful.

  14. Fiber optic sensors for smart taxiways

    NASA Astrophysics Data System (ADS)

    Janzen, Douglas D.; Fuerstenau, Norbert; Goetze, Wolfgang

    1995-09-01

    Fiber-optic sensors could offer advantages in the field of airport ground traffic monitoring: immunity to electromagnetic interference, installation without costly and time consuming airfield closures, and low loss, low noise optical connection between sensors and signal processing equipment. This paper describes fiber-optic sensors developed for airport taxiway monitoring and the first steps toward their installation in an experimental surface movement guidance and control system at the Braunschweig airport. Initial results obtained with fiber- optic light barriers and vibration sensors are reported. The feasibility of employing interferometric strain gauges for this application will be discussed based on sensor characteristics obtained through measurements of strain in an aircraft structure in flight.

  15. Great prospects for fiber optics sensors

    NASA Technical Reports Server (NTRS)

    Hansen, T. E.

    1983-01-01

    Fiber optic sensors provide noise immunity and galvanic insulation at the measurement point. Interest in such sensors is increasing for these reasons. In the United States sales are expected to increase from 12 million dollars in 1981 to 180 million in 1991. Interferometric sensors based on single modus fibers deliver extremely high sensitivity, while sensors based on multi-modus fibers are more easily manufactured. The fiber optic sensors which are available today are based on point measurements. Development of fiber optic sensors in Norway is being carried out at the Central institute and has resulted in the development of medical manometers which are now undergoing clinical testing.

  16. Fiber optic communication in borehole applications

    SciTech Connect

    Franco, R.J.; Morgan, J.R.

    1997-04-01

    The Telemetry Technology Development Department have, in support of the Advanced Geophysical Technology Department and the Oil Recovery Technology Partnership, developed a fiber optic communication capability for use in borehole applications. This environment requires the use of packaging and component technologies to operate at high temperature (up to 175{degrees}C) and survive rugged handling. Fiber optic wireline technology has been developed by The Rochester Corporation under contract to Sandia National Labs and produced a very rugged, versatile wireline cable. This development has utilized commercial fiber optic component technologies and demonstrated their utility in extreme operating environments.

  17. Intelsat and fiber optics - Challenge and opportunity

    NASA Astrophysics Data System (ADS)

    Hampton, John D.

    Fiber optic technology is both a challenge and an opportunity for Intelsat in developing competitive strategies. Intelsat compares favorably with fiber-optic undersea cables in terms of cost and capacity and can serve a greater variety of service and network requirements. Domestic fiber optic local and long distance networks present opportunities for Intelsat to expand access to its network. Intelsat also has a broad-based strategy designed to: (1) capitalize on Intelsat's strengths; (2) use existing and planned resources more efficiently and in new and innovative ways; (3) introduce new operational and planning initiatives; and (4) emphasize digital service capability and ISDN compatibility.

  18. Electromagnetic enviromental effects on shipboard fiber optic installations

    NASA Astrophysics Data System (ADS)

    Bucholz, Roger C.

    1991-02-01

    The inherent immunity of fiber optic materials to electromagnetic environmental effects provides numerous opportunities for wide-spread use of fiber optics aboard ship. Federal budget constraints may reduce the development of new fiber optic systems to address military applications. However there are sufficient similarities between industrial and military sensor needs to warrant use of off-the-shelf fiber optic sensor systems.

  19. Spaceborne Fiber Optic Data Bus (SFODB)

    NASA Technical Reports Server (NTRS)

    Bretthauer, Joy W.; Chalfant, Chuck H.; Orlando, Fred J.; Rezek, Ed; Sawyer, Marc

    1998-01-01

    The SFODB is a standardized, gigabit per second, highly reliable, fault tolerant fiber optic network. SFODB was designed to the harsh space environments and real-time, on-board data handling applications of high speed, remote sensing spacecraft.

  20. Fiber optic links for antenna remoting

    NASA Astrophysics Data System (ADS)

    Glomb, Walter L., Jr.

    1992-12-01

    A high linearity, high dynamic range analog fiber optic link is described which allows high fidelity distortion-free communications transmission from 2 to 500 MHz and provides an alternative to conventional coaxial cables used to remote RF receivers from their antennas. All signals within four frequency bands (2-30, 30-90, 90-180, and 180-500 MHz) and within specified voltage ranges are detected and transmitted via fiber optics. This function is performed by a system of four separate analog fiber-optic links, one for each of the four bands. The discussion covers the electro-optic, mechanical, and thermal design of the fiber optic link, the performance model, reliability analysis, and performance tests.

  1. Remotely readable fiber optic compass

    DOEpatents

    Migliori, Albert; Swift, Gregory W.; Garrett, Steven L.

    1986-01-01

    A remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts.

  2. Remotely readable fiber optic compass

    DOEpatents

    Migliori, A.; Swift, G.W.; Garrett, S.L.

    1985-04-30

    A remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts.

  3. Fiber-Optic Ammonia Sensors

    NASA Technical Reports Server (NTRS)

    Carter, Michael T.

    2003-01-01

    Reversible, colorimetric fiber-optic sensors are undergoing development for use in measuring concentrations of ammonia in air at levels relevant to human health [0 to 50 parts per million (ppm)]. A sensor of this type includes an optical fiber that has been modified by replacing a portion of its cladding with a polymer coat that contains a dye that reacts reversibly with ammonia and changes color when it does so. The change in color is measured as a change in the amount of light transmitted from one end of the fiber to the other. Responses are reversible and proportional to the concentration of ammonia over the range from 9 to 175 ppm and in some cases the range of reversibility extends up to 270 ppm. The characteristic time for the response of a sensor to rise from 10 to 90 percent of full scale is about 25 seconds. These sensors are fully operational in pure carbon dioxide and are not adversely affected by humidity. This work was done by Michael T. Carter

  4. Sealed fiber-optic bundle feedthrough

    DOEpatents

    Tanner, Carol E.

    2002-01-01

    A sealed fiber-optic bundle feedthrough by which a multitude of fiber-optic elements may be passed through an opening or port in a wall or structure separating two environments at different pressures or temperatures while maintaining the desired pressure or temperature in each environment. The feedthrough comprises a rigid sleeve of suitable material, a bundle of individual optical fibers, and a resin-based sealing material that bonds the individual optical fibers to each other and to the rigid sleeve.

  5. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)

    2003-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  6. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Petrucco, Louis Jacob (Inventor); Daum, Wolfgang (Inventor)

    2005-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  7. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)

    1999-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  8. Research for Electronic Fiber Optics Technologists

    NASA Technical Reports Server (NTRS)

    Lawrence, Ellis E.

    1999-01-01

    The intent of this project was to provide research experiences for socially and economically disadvantaged students in networking via fiber optics. The objectives of this project were: 1) To provide knowledge and skills needed by students to use the tools and equipment essential to networking NASA's and the university's topologies; 2) To provide the student researchers with needed mathematical skills and concepts to progress in fiber optic technology; 3) To afford the principal investigator an opportunity to become certified in fiber optics; 4) To build a transmitter and receiver circuit that will be linked by fiber-optic cable to demonstrate mastery of concepts; and 5) To conduct research for NASA and the University in the fiber-optic system. The research will attempt to develop applications for THUNDER (Thin-layer Composite Unimorph Ferroelectric Driver and Sensor) and LARC-SI (Langley Research Center- Soluble Polyimide), (inventions at NASA/LaRC) and fiber-optic technology that will be beneficial to NASA, the university and the consumer. This research has the potential of improving the nation's manpower in the area of fiberoptic technology. It will allow students the opportunity to participate in visible research at NASA and in industry.

  9. Honeywell FLASH fiber optic motherboard evaluations

    NASA Astrophysics Data System (ADS)

    Stange, Kent

    1996-10-01

    The use of fiber optic data transmission media can make significant contributions in achieving increasing performance and reduced life cycle cost requirements placed on commercial and military transport aircraft. For complete end-to-end fiber optic transmission, photonics technologies and techniques need to be understood and applied internally to the aircraft line replaceable units as well as externally on the interconnecting aircraft cable plant. During a portion of the Honeywell contribution to Task 2A on the Fly- by-Light Advanced System Hardware program, evaluations were done on a fiber optic transmission media implementation internal to a Primary Flight Control Computer (PFCC). The PFCC internal fiber optic transmission media implementation included a fiber optic backplane, an optical card-edge connector, and an optical source/detector coupler/installation. The performance of these optical media components were evaluated over typical aircraft environmental stresses of temperature, vibration, and humidity. These optical media components represent key technologies to the computer end-to-end fiber optic transmission capability on commercial and military transport aircraft. The evaluations and technical readiness assessments of these technologies will enable better perspectives on productization of fly-by-light systems requiring their utilizations.

  10. An all-fiber-optic endoscopy platform for simultaneous OCT and fluorescence imaging.

    PubMed

    Mavadia, Jessica; Xi, Jiefeng; Chen, Yongping; Li, Xingde

    2012-11-01

    We present an all-fiber-optically based endoscope platform for simultaneous optical coherence tomography (OCT) and fluorescence imaging. This design entails the use of double-clad fiber (DCF) in the endoscope for delivery of OCT source and fluorescence excitation light while collecting the backscattered OCT signal through the single-mode core and fluorescence emission through the large inner cladding of the DCF. Circumferential beam scanning was performed by rotating a 45° reflector using a miniature DC motor at the distal end of the endoscope. Additionally, a custom DCF coupler and a wavelength division multiplexer (WDM) were utilized to seamlessly integrate both imaging modalities to achieve an entirely fiber-optically based dual-modality imaging system. We demonstrated simultaneous intraluminal 3D OCT and 2D (surface) fluorescence imaging in ex vivo rabbit esophagus using the dual-modal endomicroscopy system. Structural morphologies (provided by OCT) and fluorophore distribution (provided by the fluorescence module) could be clearly visualized, suggesting the potential of the dual-modality system for future in vivo and clinical applications.

  11. Accurate numerical simulation of short fiber optical parametric amplifiers.

    PubMed

    Marhic, M E; Rieznik, A A; Kalogerakis, G; Braimiotis, C; Fragnito, H L; Kazovsky, L G

    2008-03-17

    We improve the accuracy of numerical simulations for short fiber optical parametric amplifiers (OPAs). Instead of using the usual coarse-step method, we adopt a model for birefringence and dispersion which uses fine-step variations of the parameters. We also improve the split-step Fourier method by exactly treating the nonlinear ellipse rotation terms. We find that results obtained this way for two-pump OPAs can be significantly different from those obtained by using the usual coarse-step fiber model, and/or neglecting ellipse rotation terms.

  12. Fiber optic multimode displacement sensor

    NASA Astrophysics Data System (ADS)

    Fisher, Karl A.; Jarzynski, Jacek

    1996-04-01

    An underwater Optical Motion Sensor (OMS) based on a design first presented by W. B. Spillman, Schlieren multimode fiber-optic hydrophone, Applied Physics Letters 37(2), 15 July 1980, p. 145-146 is described. The displacement sensor uses the same acoustooptical intensity modulation mechanism as Spillman, however the sensing mechanism is isolated from the ambient fluid environment by a small cylindrical aluminum enclosure (1″ OD×3/4″). The enclosure contains an inertial mass and the fiber collimators. The inertial mass is suspended in the center of the enclosure by three small wires rigidly mounted to the walls. The mass and wires act as a cantilever beam system with a mechanical resonance near 100 Hz. The transduction mechanism consists of two opposed optical gratings aligned and positioned between the fiber collimators. One grating is mounted on the inertial mass while the other is mounted on the lower end cap of the enclosure. Relative motion between the gratings causes a modulation of the light transmitted through the gratings. The modulated beam is focused onto a photodetector and converted to electric current. The frequency response is flat from 200 Hz-9 kHz with a minimum detectable displacement of 0.002 A and the dynamic range is 136 dB. The small size and light weight give the sensor an effective density of 1.08 g/cm3 making it almost neutrally buoyant in water. This in conjunction with the performance characteristics make this sensor suitable for use in acoustical sensing applications.

  13. Fiber-optic currents measurements

    NASA Astrophysics Data System (ADS)

    Forman, P. R.; Looney, L. D.; Tabaka, L. J.

    Polarization maintaining pigtailed laser diodes have greatly increased the ease with which fiber-optic sensors for Faraday current measurements on large pulsed experiments can be deployed. 670, 830, and 1300 nm units are readily available. Such diode lasers can easily be mounted in an RF shielded box along with the simple electronics and batteries to power them. Our units measure 16.5 x 8 x 6 cm. and have a single external control; an on off switch. They use two 1.5 volt C cell batteries. By using an LT1073 chip in the electronics, the batteries are an energy source rather than a voltage source. These units can provide 100 mA drive to a LT015MD laser diode so that 1 mW of 830 nm light exits the fiber pigtail for up to 23 hours with no detectable droop in power. For the sensor element, twisted single mode low birefringence fibers are wrapped around the region of interest. The fiber pigtail is fused to the sensor section so changes in alignment are avoided. The light exiting the fiber sensor section is immediately analyzed by a compact, 3 x 3.5 x 5 cm, bulk optical unit which outputs quadrature optical signals into two multimode fibers leading to detectors in a screen room. The system is thus completely free of ground loops and is as immune to noise as the screen room. These sensors have the usual advantages claimed for them and the all dielectric feature was the original reason for their use on our experiments. The ease of deployment however is not usually cited. On our Pegasus 2 experiment, the need arose for a total current measurement at the main header of the capacitor banks. A single turn of optical fiber was easily strung in a 6.4 m diameter circle and attached to laser and analyzer in a few hours.

  14. Fiber-optic currents measurements

    SciTech Connect

    Forman, P.R.; Looney, L.D.; Tabaka, L.J.

    1993-03-01

    Polarization maintaining pigtailed laser diodes have greatly increased the ease with which fiber-optic sensors for Faraday current measurements on large pulsed experiments can be deployed. 670, 830, and 1300 nm units are readily available. Such diode lasers can easily be mounted in an RF shielded box along with the simple electronics and batteries to power them. Our units measure 16.5 {times} 8 {times} 6 cm. and have a single external control; an on off switch. They use two 1.5 volt ``C`` cell batteries. By using an LT1073 chip in the electronics the batteries are an energy source rather than a voltage source. These units can provide 100 mA drive to a LT015MD laser diode so that 1 mW of 830 nm fight exits the fiber pigtail for up to 23 hours with no detectable droop in power. For the sensor element twisted single mode low birefringence fibers are wrapped around the region of interest. The fiber pigtail is fused to the sensor section so changes in alignment are avoided. The light exiting the fiber sensor section is immediately analyzed by a compact, 3 {times} 3.5 {times} 5 cm, bulk optical unit which outputs quadrature optical signals into two multimode fibers leading to detectors in a screen room. The system is thus completely free of ground loops and is as immune to noise as the screen room. These sensors have the usual advantages claimed for them and the all dielectric feature was the original reason for their use on our experiments. The ease of deployment however is not usually cited. On our Pegasus II experiment the need arose for a total current measurement at the main header of the capacitor banks. A single turn of optical fiber was easily strung in a 6.4 m diameter circle and attached to laser and analyzer in a few hours.

  15. Fiber optic microbend phase shifter and modulator

    NASA Astrophysics Data System (ADS)

    Taylor, H. F.

    1985-09-01

    The present invention relates generally to a fiber optic phase shifter and intensity modulator and more particularly to fiber optic phase shifters and modulators that utilize a microbend transducer. The ability to shift the phase of light propagating in a single mode fiber is quite useful in fiber optic sensors and may also be used in fiber-optic communications. A conventional way to shift the phase of light propagating in a single mode fiber is by stretching the fiber. This is done by wrapping and gluing the fiber around a cylinder of piezoelectric material. When a voltage is applied to the material, the cylinder expands thereby stretching the fiber. Long lengths on the order of 10 meters of fiber and large voltages are needed to drive the piezoelectric cylinder. The ability to modulate the intensity of light propagating in a optic fiber is also useful in fiber optic communication and sensing systems. Such modulation can be performed by a device external to the fiber such as an electrooptic modulator formed in a lithium niobate crystal.

  16. Endomicroscopy and electromyography of neuromuscular junctions in situ

    PubMed Central

    Brown, Rosalind; Dissanayake, Kosala N; Skehel, Paul A; Ribchester, Richard R

    2014-01-01

    Objective Electromyography (EMG) is used routinely to diagnose neuromuscular dysfunction in a wide range of peripheral neuropathies, myopathies, and neuromuscular degenerative diseases including motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Definitive neurological diagnosis may also be indicated by the analysis of pathological neuromuscular innervation in motor-point biopsies. Our objective in this study was to preempt motor-point biopsy by combining live imaging with electrophysiological analysis of slow degeneration of neuromuscular junctions (NMJs) in vivo. Methods We combined conventional needle electromyography with fiber-optic confocal endomicroscopy (CEM), using an integrated hand-held, 1.5-mm-diameter probe. We utilized as a test bed, various axotomized muscles in the hind limbs of anaesthetized, double-homozygous thy1.2YFP16: WldS mice, which coexpress the Wallerian-degeneration Slow (WldS) protein and yellow fluorescent protein (YFP) in motor neurons. We also tested exogenous vital stains, including Alexa488-α-bungarotoxin; the styryl pyridinium dye 4-Di-2-Asp; and a GFP conjugate of botulinum toxin Type A heavy chain (GFP-HcBoNT/A). Results We show that an integrated EMG/CEM probe is effective in longitudinal evaluation of functional and morphological changes that take place over a 7-day period during axotomy-induced, slow neuromuscular synaptic degeneration. EMG amplitude declined in parallel with overt degeneration of motor nerve terminals. EMG/CEM was safe and effective when nerve terminals and motor endplates were selectively stained with vital dyes. Interpretation Our findings constitute proof-of-concept, based on live imaging in an animal model, that combining EMG/CEM may be useful as a minimally invasive precursor or alternative to motor-point biopsy in neurological diagnosis and for monitoring local administration of potential therapeutics. PMID:25540801

  17. Hot Springs-Garrison Fiber Optic Project

    SciTech Connect

    Not Available

    1994-10-01

    Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA`s substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA.

  18. Fiber optic wide region temperature sensing system

    NASA Astrophysics Data System (ADS)

    Xu, Xunjian; Nonaka, Koji; Song, Hongbin

    2008-12-01

    A fiber optic wide region temperature sensing system based on optical pulse correlation measurement and SHG differential detection technique is proposed and demonstrated. In order to establish the reliability of this fiber optic temperature sensing system, a long-term wide region outside temperature monitoring experiment with a new designed 20ps time-bias optical pulse correlation unit for wide measurement rang was carried out. The temperature measured by means of a correlation sensor had the same variation as and higher sensitivity and quick measurement response than the digital thermometer. The resolution of the correlation sensor is approximately +/-0.01 oC . This fiber optic temperature sensor can measure even in very tough environment and low and high temperature range. Not only point temperature but also a field area average temperature can monitor by this system.

  19. Lightning vulnerability of fiber-optic cables.

    SciTech Connect

    Martinez, Leonard E.; Caldwell, Michele

    2008-06-01

    One reason to use optical fibers to transmit data is for isolation from unintended electrical energy. Using fiber optics in an application where the fiber cable/system penetrates the aperture of a grounded enclosure serves two purposes: first, it allows for control signals to be transmitted where they are required, and second, the insulating properties of the fiber system help to electrically isolate the fiber terminations on the inside of the grounded enclosure. A fundamental question is whether fiber optic cables can allow electrical energy to pass through a grounded enclosure, with a lightning strike representing an extreme but very important case. A DC test bed capable of producing voltages up to 200 kV was used to characterize electrical properties of a variety of fiber optic cable samples. Leakage current in the samples were measured with a micro-Ammeter. In addition to the leakage current measurements, samples were also tested to DC voltage breakdown. After the fiber optic cables samples were tested with DC methods, they were tested under representative lightning conditions at the Sandia Lightning Simulator (SLS). Simulated lightning currents of 30 kA and 200 kA were selected for this test series. This paper documents measurement methods and test results for DC high voltage and simulated lightning tests performed at the Sandia Lightning Simulator on fiber optic cables. The tests performed at the SLS evaluated whether electrical energy can be conducted inside or along the surface of a fiber optic cable into a grounded enclosure under representative lightning conditions.

  20. Spaceborne Fiber Optic Data Bus (SFODB)

    NASA Technical Reports Server (NTRS)

    Bretthauer, Joy W.; Chalfant, Chuck H.; Orlando, Fred J.; Parkerson, P.; Rezek, Ed; Sawyer, Marc

    1999-01-01

    Spaceborne Fiber Optic Data Bus (SFODB) is an IEEE 1393 compliant, gigabit per second, fiber optic network specifically designed to support the real-time, on-board data handling requirements of remote sensing spacecraft. The network is fault tolerant highly reliable, and capable of withstanding the rigors of launch and the harsh space environment. SFODB achieves this operational and environmental performance while maintaining the small size, light weight, and low power necessary for spaceborne applications. On December 9, 1998, SFODB was successfully demonstrated at NASA's Goddard Space Flight Center (GSFC).

  1. Mobile fiber-optic laser Doppler anemometer.

    PubMed

    Stieglmeier, M; Tropea, C

    1992-07-20

    A laser Doppler anemometer (LDA) has been developed that combines the compactness and low power consumption of laser diodes and avalanche photodiodes with the flexibility and possibility of miniaturization by using fiber-optic probes. The system has been named DFLDA for laser diode fiber LDA and is especially suited for mobile applications, for example, in trains, airplanes, or automobiles. Optimization considerations of fiber-optic probes are put forward and several probe examples are described in detail. Measurement results from three typical applications are given to illustrate the use of the DFLDA. Finally, a number of future configurations of the DFLDA concept are discussed.

  2. Characterization of Fiber Optic CMM Probe System

    SciTech Connect

    K.W.Swallow

    2007-05-15

    This report documents a study completed on the fiber optic probe system that is a part of the Werth optical CMM. This study was necessary due to a lack of documentation from the vendor for the proper use and calibration of the fiber probe, and was performed in support of the Lithographie Galvanoformung Abformung (LIGA) development program at the FM&T. As a result of this study, a better understanding of the fiber optic probe has been developed, including guidelines for its proper use and calibration.

  3. [The recent development of fiber-optic chemical sensor].

    PubMed

    Wang, Jian; Wei, Jian-ping; Yang, Bo; Gao, Zhi-yang; Zhang, Li-wei; Yang, Xue-feng

    2014-08-01

    The present article provides a brief review of recent research on fiber-optic chemical sensor technology and the future development trends. Especially, fiber-optic pH chemical sensor, fiber-optic ion chemicl sensor, and fiber-optic gas chemical sensor are introduced respectively. Sensing film preparation methods such as chemical bonding method and sol-gel method were briefly reviewed. The emergence of new type fiber-microstructured optical fiber opened up a new development direction for fiber-optic chemical sensor. Because of its large inner surface area, flexible design of structure, having internal sensing places in fibers, it has rapidly become an important development direction and research focus of the fiber-optic chemical sensors. The fiber-optic chemical sensor derived from microstructured optical fiber is also discussed in detail. Finally, we look to the future of the fiber-optic chemical sensor.

  4. Fiber Optics: A New World of Possibilities in Light.

    ERIC Educational Resources Information Center

    Hutchinson, John

    1990-01-01

    The background and history of light and fiber optics are discussed. Applications for light passed either directly or indirectly through optical fibers are described. Suggestions for science activities that use fiber optics are provided. (KR)

  5. Study of fiber optics standardization, reliability, and applications

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The use of fiber optics in space applications is investigated. Manufacturers and users detailed the problems they were having with the use or manufacture of fiber optic components. The general consensus of all the companies/agencies interviewed is that fiber optics is a maturing technology and will definitely have a place in future NASA system designs. The use of fiber optics was found to have two main advantages - weight savings and increased bandwidth.

  6. Laser peening with fiber optic delivery

    DOEpatents

    Friedman, Herbert W.; Ault, Earl R.; Scheibner, Karl F.

    2004-11-16

    A system for processing a workpiece using a laser. The laser produces at least one laser pulse. A laser processing unit is used to process the workpiece using the at least one laser pulse. A fiber optic cable is used for transmitting the at least one laser pulse from the laser to the laser processing unit.

  7. Fiber optic gyros from research to production

    NASA Astrophysics Data System (ADS)

    Pavlath, George A.

    2016-05-01

    Fiber optic gyros are a great success story for a new inertial measurement technology that successfully transitioned from the laboratory in 1975 to production in 1992. This paper will review their research, advanced development, product development, and production transfer. The focus of the paper will be this cycle from Stanford University to Northrop Grumman.

  8. Career Directions--Fiber Optic Installer

    ERIC Educational Resources Information Center

    Tech Directions, 2012

    2012-01-01

    Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber that is roughly the diameter of a human hair. The light forms an electromagnetic carrier wave that is modulated to carry information. Each optical fiber is capable of carrying an enormous amount of…

  9. Fiber optic strain measurement for machine monitoring

    NASA Astrophysics Data System (ADS)

    Hoffmann, L.; Mueller, M. S.; Koch, A. W.

    2007-06-01

    Monitoring machines during operation is an important issue in measurement engineering. The usual approach to monitoring specific machine components is using strain gauges. Strain gauges, however, may sometimes not be used if conditions are harsh or installation space is limited. Fiber optic sensors seem to be an alternative here, but dynamic health monitoring has been dificult so far. The focus of this field study is to measure vibration characteristics of machine parts during operation using fiber optic sensors with the objective of early damage detection. If that was possible, downtime and maintenance costs could be minimized. Therefore a field test for dynamic fiber optic strain measurement on a roller bearing was carried out. The test setup consisted of the bearing built into a gear test stand and equipped with an array of fiber Bragg grating sensors. Fifteen fiber sensors were interrogated with a sample rate of 1 kHz and the vibration pattern was extracted. The radial load distribution was measured with high spatial resolution and a high degree of compliance with simulation data was found. The findings suggest that fiber optic health monitoring for machine components is feasible and reasonable. Especially with the help of distributed sensing on various components extensive health monitoring on complex technical systems is possible.

  10. Fiber-Optic Lateral-Displacement Sensor

    NASA Technical Reports Server (NTRS)

    Roschak, Edmund J.

    1987-01-01

    Proposed fiber-optic sensor monitors axial position of shaft or bearing in turbomachine. Device senses position of non-magnetic as well as magnetic material and calibrates before assembly in machine. More compact. Concept extends to measure rotational speed of shaft.

  11. Multipurpose fiber-optic access network

    NASA Astrophysics Data System (ADS)

    Han, Kwan H.; Kim, Hoon; Chung, Yun C.

    2002-10-01

    We propose and demonstrate a multipurpose fiber-optic access network (MFAN). This network uses the same fiber infrastructure for a variety of services including baseband, cable television (CATV), personal communication service (PCS), wireless local loop (WLL), and local multipoint communication service (LMCS). The experimental results show that the proposed network could support the independent operation of these services.

  12. Triboluminescent Fiber-Optic Sensors Measure Stresses

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.

    1994-01-01

    Triboluminescence exploited in fiber-optic sensor system for measuring changes in pressures, strains, vibrations, and acoustic emissions, in structural members. Sensors embedded in members for in situ monitoring of condition of structure. System passive in sense no source of radiation required to interrogate optical fiber. Technique has potential for wide range of applications in which detection and measurement of structural stress required.

  13. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    EPA Science Inventory

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  14. Fiber Optic Communications Technology. A Status Report.

    ERIC Educational Resources Information Center

    Hull, Joseph A.

    Fiber optic communications (communications over very pure glass transmission channels of diameter comparable to a human hair) is an emerging technology which promises most improvements in communications capacity at reasonable cost. The fiber transmission system offers many desirable characteristics representing improvements over conventional…

  15. Fiber optic interferometric sensors for aerospace applications

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.

    1994-01-01

    This paper addresses two fiber optic sensor development programs in the Photonics Laboratory, NASA Ames Research Center, one in progress and the other being initiated. The ongoing program involves development of advanced acoustic sensors for wind tunnel applications. The new undertaking involves development of a novel sensor technique for studies of aerodynamic transition from laminar to turbulent flow.

  16. Fiber optics wavelength division multiplexing(components)

    NASA Technical Reports Server (NTRS)

    Hendricks, Herbert D.

    1985-01-01

    The long term objectives are to develop optical multiplexers/demultiplexers, different wavelength and modulation stable semiconductor lasers and high data rate transceivers, as well as to test and evaluate fiber optic networks applicable to the Space Station. Progress in each of the above areas is briefly discussed.

  17. Fiber optic applications for laser polarized targets

    SciTech Connect

    Cummings, W.J.; Kowalczyk, R.S.

    1997-10-01

    For the past two years, the laser polarized target group at Argonne has been used multi-mode fiber optic patch cords for a variety of applications. In this paper, the authors describe the design for transporting high power laser beams with optical fibers currently in use at IUCF.

  18. Stabilizing Fiber-Optic Transmission Lines

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.; Lau, K. Y.

    1984-01-01

    Voltage-controlled optical phase shifter is key. Optical phase shifter stabilizes propagation delay of fiber-optic transmission line by compensating for temperature and pressure effects. Applicable to phased array antenna systems and very-long-baseline interferometer distribution systems.

  19. Multiplexed fiber-optic transmission system

    NASA Technical Reports Server (NTRS)

    Bell, C. H.

    1977-01-01

    Digital, audio, and video data channels spanning 100 megahertz bandwidth are transmitted via single fiber-optical link. System is flexible by virtue of its plug-in modularity and optical patchboard that allows it to adjust to data and bandwidth changes.

  20. In Situ Fiber-Optic Reflectance Monitor

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Gray, Perry A.

    1996-01-01

    In situ fiber-optic reflectance monitor serves as simple means of monitoring changes in reflectance of specimen exposed to simulated outerspace or other environments in vacuum chamber. Eliminates need to remove specimen from vacuum chamber, eliminating optical changes and bleaching such removal causes in coatings.

  1. Cascaded Bragg scattering in fiber optics.

    PubMed

    Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G

    2013-01-15

    We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.

  2. 46 CFR 111.60-6 - Fiber optic cable.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fiber optic cable. 111.60-6 Section 111.60-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-6 Fiber optic cable. Each fiber optic cable must— (a)...

  3. 46 CFR 111.60-6 - Fiber optic cable.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fiber optic cable. 111.60-6 Section 111.60-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-6 Fiber optic cable. Each fiber optic cable must— (a)...

  4. 21 CFR 872.4620 - Fiber optic dental light.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fiber optic dental light. 872.4620 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4620 Fiber optic dental light. (a) Identification. A fiber optic dental light is a device that is a light, usually AC-powered, that consists of glass...

  5. 21 CFR 872.4620 - Fiber optic dental light.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fiber optic dental light. 872.4620 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4620 Fiber optic dental light. (a) Identification. A fiber optic dental light is a device that is a light, usually AC-powered, that consists of glass...

  6. 46 CFR 111.60-6 - Fiber optic cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fiber optic cable. 111.60-6 Section 111.60-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-6 Fiber optic cable. Each fiber optic cable must— (a)...

  7. 21 CFR 872.4620 - Fiber optic dental light.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fiber optic dental light. 872.4620 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4620 Fiber optic dental light. (a) Identification. A fiber optic dental light is a device that is a light, usually AC-powered, that consists of glass...

  8. 46 CFR 111.60-6 - Fiber optic cable.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fiber optic cable. 111.60-6 Section 111.60-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-6 Fiber optic cable. Each fiber optic cable must— (a)...

  9. 46 CFR 111.60-6 - Fiber optic cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fiber optic cable. 111.60-6 Section 111.60-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-6 Fiber optic cable. Each fiber optic cable must— (a)...

  10. 21 CFR 872.4620 - Fiber optic dental light.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fiber optic dental light. 872.4620 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4620 Fiber optic dental light. (a) Identification. A fiber optic dental light is a device that is a light, usually AC-powered, that consists of glass...

  11. 21 CFR 872.4620 - Fiber optic dental light.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fiber optic dental light. 872.4620 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4620 Fiber optic dental light. (a) Identification. A fiber optic dental light is a device that is a light, usually AC-powered, that consists of glass...

  12. Method for the continuous processing of hermetic fiber optic components and the resultant fiber optic-to-metal components

    DOEpatents

    Kramer, Daniel P.

    1994-08-09

    Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements.

  13. Fiber-optic shock position sensor

    SciTech Connect

    Weiss, J.D.

    1993-03-01

    This report describes work performed for the development of a fiber-optic shock position sensor used to measure the location of a shock front in the neighborhood of a nuclear explosion. Such a measurement would provide a hydrodynamic determination of nuclear yield. The original proposal was prompted by the Defense Nuclear Agency's interest in replacing as many electrical sensors as possible with their optical counterparts for the verification of a treaty limiting the yield of a nuclear device used in underground testing. Immunity to electromagnetic pulse is the reason for the agency's interest; unlike electrical sensors and their associated cabling, fiber-optic systems do not transmit to the outside world noise pulses from the device containing secret information.

  14. Immunoassay procedures for fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Ligler, Frances S.

    1988-04-01

    There is an increasing need for the development of an ultrasensitive immunoassay for use with fiber optic sensors. These detection systems can be used for such applications as disease diagnosis, detection of chemical and biological warfare agents or drugs of abuse, pollution control, therapeutic monitoring, and explosive detection. This specific program is designed to produce generic chemistries for use with existing fiber optic-based sensors to detect pathogens of particular threat to Army personnel as determined by USAMRIID. The detection system under development involves the attachment of antibodies to an optical fiber at high density. In addition, the immobilization must be achieved in a way which retains the antibody's ability to bind antigen. The functionality of the antibody will be tested through the binding of a labelled antigen. In the future, this assay could incorporate the antibodies developed by the Army for pathogens of particularly military concern.

  15. Fiber optic multiplex optical transmission system

    NASA Technical Reports Server (NTRS)

    Bell, C. H. (Inventor)

    1977-01-01

    A multiplex optical transmission system which minimizes external interference while simultaneously receiving and transmitting video, digital data, and audio signals is described. Signals are received into subgroup mixers for blocking into respective frequency ranges. The outputs of these mixers are in turn fed to a master mixer which produces a composite electrical signal. An optical transmitter connected to the master mixer converts the composite signal into an optical signal and transmits it over a fiber optic cable to an optical receiver which receives the signal and converts it back to a composite electrical signal. A de-multiplexer is coupled to the output of the receiver for separating the composite signal back into composite video, digital data, and audio signals. A programmable optic patch board is interposed in the fiber optic cables for selectively connecting the optical signals to various receivers and transmitters.

  16. Fiber optic configurations for local area networks

    NASA Technical Reports Server (NTRS)

    Nassehi, M. M.; Tobagi, F. A.; Marhic, M. E.

    1985-01-01

    A number of fiber optic configurations for a new class of demand assignment multiple-access local area networks requiring a physical ordering among stations are proposed. In such networks, the data transmission and linear-ordering functions may be distinguished and be provided by separate data and control subnetworks. The configurations proposed for the data subnetwork are based on the linear, star, and tree topologies. To provide the linear-ordering function, the control subnetwork must always have a linear unidirectional bus structure. Due to the reciprocity and excess loss of optical couplers, the number of stations that can be accommodated on a linear fiber optic bus is severely limited. Two techniques are proposed to overcome this limitation. For each of the data and control subnetwork configurations, the maximum number of stations as a function of the power margin, for both reciprocal and nonreciprocal couplers, is computed.

  17. Standing waves in fiber-optic interferometers.

    PubMed

    de Haan, V; Santbergen, R; Tijssen, M; Zeman, M

    2011-10-10

    A study is presented giving the response of three types of fiber-optic interferometers by which a standing wave through an object is investigated. The three types are a Sagnac, Mach-Zehnder and Michelson-Morley interferometer. The response of the Mach-Zehnder interferometer is similar to the Sagnac interferometer. However, the Sagnac interferometer is much harder to study because of the fact that one input port and output port coincide. Further, the Mach-Zehnder interferometer has the advantage that the output ports are symmetric, reducing the systematic effects. Examples of standing wave light absorption in several simple objects are given. Attention is drawn to the influence of standing waves in fiber-optic interferometers with weak-absorbing layers incorporated. A method is described for how these can be theoretically analyzed and experimentally measured. Further experiments are needed for a thorough comparison between theory and experiment.

  18. Fiber optic sensing of cyanides in solutions

    SciTech Connect

    Park, S.S.; Mackenzie, J.D.; Li, C.Y.; Guerreiro, P.; Peyghambarian, N.

    1996-12-31

    A novel sol-gel technique was used to immobilize malachite green ions (MG{sup +}) in stable, optically transparent, porous silica gel films. A simple and sensitive method was developed for the detection of cyanides in solutions using spectrophotometry to measure changes caused by cyanide ions (CN{sup {minus}}) in the absorption spectra of the green-colored silica gel films. After reaction with cyanide ions, the absorption spectra of the films changed with a typical decrease in absorbance at 620 nm. On the basis of the absorption spectra of the films, a portable and easy to use fiber optic cyanide film sensor was fabricated. Decolorization undergone by the green-colored gel films, as they were exposed to cyanide ions, was detected through a fiber. Preliminary results indicate concentrations on the order of a few ppm are detected using the fiber optic sensor.

  19. Robust incoherent fiber optic bundle decoder

    NASA Technical Reports Server (NTRS)

    Roberts, Hilary E. (Inventor); DePlachett, Charles P. (Inventor); Deason, Brent E. (Inventor); Pilgrim, Robert A. (Inventor); Sanford, Harold S. (Inventor)

    2003-01-01

    Apparatus and method for calibrating an incoherent fiber optic bundle for use in transmitting visual or infrared coherent images. The apparatus includes a computer, a computer video monitor, an objective lens adjacent to the input end of the bundle, a second lens adjacent the output end of the bundle, and a CCD camera. The camera transmits video data to the monitor to produce an illuminated fiber optic image. The coordinates for the center of each fiber is found through an imaging process and the output fibers coordinates are related to the input fiber coordinates and processed in the computer to produce a mapping lookup-table (LUT) unique to the specific fiber bundle. Remapping of the LUT due to changes in the lens focus, CCD camera, or the addition of an infrared filter is accomplished by a software utility in the computer.

  20. High-sensitivity fiber optic acoustic sensors

    NASA Astrophysics Data System (ADS)

    Lu, Ping; Liu, Deming; Liao, Hao

    2016-11-01

    Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.

  1. Fiber optic electric field sensor technology

    NASA Technical Reports Server (NTRS)

    Jarzynski, J.; De Paula, R. P.

    1987-01-01

    The properties of piezoactive plastics are reviewed as well as the fiber-optic electric field sensors studied so far. A particular configuration consisting of a concentric piezoactive jacket on the glass fiber is discussed in detail and the frequency response of this sensor is projected over a wide range of frequencies. The present design has the practical advantages of leading to a compact lightweight sensor; longer fiber lengths may be used to increase sensitivity. It is predicted that, at low frequencies, a fiber-optic antenna using a 1-km length of fiber would be capable of detecting a minimum electric field of 43 microV/m assuming a minimum phase sensitivity of 10 to the -6th radians for the optical Mach-Zehnder interferometer.

  2. Miniature fiber optic surface plasmon resonance biosensors

    NASA Astrophysics Data System (ADS)

    Slavik, Radan; Brynda, Eduard; Homola, Jiri; Ctyroky, Jiri

    1999-01-01

    A novel design of surface plasmon resonance fiber optic sensor is reported which leads to a compact, highly miniaturized sensing element with excellent sensitivity. The sensing device is based on a side-polished single-mode optical fiber with a thin metal overlayer supporting surface plasmon waves. The strength of interaction between a fiber mode and a surface plasmon wave depends strongly on the refractive index near the sensing surface. Therefore, refractive index changes associated with biospecific interaction between antibodies immobilized on the sensor and antigen molecules can be monitored by measuring light intensity variations. Detection of horse radish peroxidase (HRP) of the concentration of 100 ng/ml has been accomplished using the fiber optic sensor with a matrix of monoclonal antibodies against HRP immobilized on the sensor surface.

  3. Design of fiber optic adaline neural networks

    NASA Astrophysics Data System (ADS)

    Ghosh, Anjan K.; Trepka, Jim

    1997-03-01

    Based on possible optoelectronic realization of adaptive filters and equalizers using fiber optic tapped delay lines and spatial light modulators we describe the design of a single-layer fiber optic Adaline neural network that can be used as a bit pattern classifier. In our design, we employ as few electronic devices as possible and use optical computation to utilize the advantages of optics in processing speed, parallelism, and interconnection. The described new optical neural network design is for optical processing of guided light wave signals, not electronic signals. We analyze the convergence or learning characteristics of the optoelectronic Adaline in the presence of errors in the hardware. We show that with such an optoelectronic Adaline it is possible to detect a desired code word/token/header with good accuracy.

  4. Fiber-optic interconnection networks for spacecraft

    NASA Technical Reports Server (NTRS)

    Powers, Robert S.

    1992-01-01

    The overall goal of this effort was to perform the detailed design, development, and construction of a prototype 8x8 all-optical fiber optic crossbar switch using low power liquid crystal shutters capable of operation in a network with suitable fiber optic transmitters and receivers at a data rate of 1 Gb/s. During the earlier Phase 1 feasibility study, it was determined that the all-optical crossbar system had significant advantages compared to electronic crossbars in terms of power consumption, weight, size, and reliability. The result is primarily due to the fact that no optical transmitters and receivers are required for electro-optic conversion within the crossbar switch itself.

  5. Fiber optical sensors for aircraft applications

    NASA Astrophysics Data System (ADS)

    Pechstedt, Ralf D.

    2014-09-01

    In this paper selected fiber optical point sensors that are of potential interest for deployment in aircraft are discussed. The operating principles together with recent measurement results are described. Examples include a high-temperature combined pressure and temperature sensor for engine health, hydraulics and landing gear monitoring, an ultra-high sensitive pressure sensor for oil, pneumatic and fluid aero systems applications and a combined acceleration and temperature sensor for condition monitoring of rotating components.

  6. Fiber optics welder having movable aligning mirror

    DOEpatents

    Higgins, Robert W.; Robichaud, Roger E.

    1981-01-01

    A system for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45.degree. angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  7. Laser fiber optics ordnance initiation system

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1976-01-01

    Recent progress on system development in the laser initiation of explosive devices is summarized. The topics included are: development of compact free-running mode and Q-switched lasers, development of low-loss fiber optic bundles and connectors, study of nuclear radiation effects on the system, characterization of laser initiation sensitivities of insensitive high explosives, and the design methods used to achieve attractive system weight and cost savings. Direction for future work is discussed.

  8. Fiber-optic ground-truth thermometer

    SciTech Connect

    Ekdahl, C.A. Jr.; Forman, P.; Veeser, L.

    1993-07-01

    By making a high accuracy measurement of the optical length of a long fiber optic cable, the authors can determine the absolute temperature averaged over its length and the temperature of a material in contact with it. They describe how to set up such a measurement and use it to determine the average temperature of the surface of the earth over a large enough area to be useful as a ground truth calibration for a satellite imaging system.

  9. Fiber optic linear smoke fire detector

    NASA Astrophysics Data System (ADS)

    Kulakov, Sergei V.; Moskaletz, Oleg D.; Preslenev, Leonid N.; Shabardin, Alexander N.

    2001-11-01

    A global and versatile problem of fire and environmental safety is formulated. It is pointed out that one of the main ways to solve this problem is the development of equipment for early fire detection. The results of the development and study of a smoke fiber optic fire detector are presented. Such detector is absolutely explosion-safe and immune to increased radiation level and aggressive chemical environment.

  10. Fiber Optic Detector For Liquid Chemical Leaks

    NASA Astrophysics Data System (ADS)

    Luukkala, Mauri; Raatikainen, Pekka; Salo, Olli

    1989-10-01

    This paper describes a simple and economical sensor which employs fiber optics to detect the presence of hazardous liquid chemicals, particularly undiluted hydrocarbons. The device is best suited to monitor the interstitial space of double walled underground storage tanks. Because the sensor is plastic and is situated at the end of a passive and insulating optical fiber the sensor can be considered inherently safe. The optical fiber used for this device can be up to several hundred meters long.

  11. Fiber optic detector for immuno-testing

    DOEpatents

    Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.

    1992-01-01

    A portable fiber optic detector that senses the presence of specific target chemicals in air or a gas by exchanging the target chemical for a fluoroescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  12. Low-Cost Fiber Optic Pressure Sensor

    DOEpatents

    Sheem, Sang K.

    2003-07-22

    The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

  13. Low-Cost Fiber Optic Pressure Sensor

    DOEpatents

    Sheem, Sang K.

    2004-05-18

    The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

  14. Fiber Optic Tactical Local Network (FOTLAN)

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Hartmayer, R.; Wu, W. H.; Cassell, P.; Edgar, G.; Lambert, J.; Mancini, R.; Jeng, J.; Pardo, C.

    1991-01-01

    A 100 Mbit/s FDDI (fiber distributed data interface) network interface unit is described that supports real-time data, voice and video. Its high-speed interrupt-driven hardware architecture efficiently manages stream and packet data transfer to the FDDI network. Other enhancements include modular single-mode laser-diode fiber optic links to maximize node spacing, optic bypass switches for increased fault tolerance, and a hardware performance monitor to gather real-time network diagnostics.

  15. Renewable Reagent Fiber Optic Based Ammonia Sensor

    NASA Astrophysics Data System (ADS)

    Berman, Richard J.; Burgess, Lloyd W.

    1990-02-01

    Many fiber optic based chemical sensors have been described which rely on a reagent chemistry fixed at the fiber endface to provide analyte specificity. In such systems, problems involving probe-to-probe reproducibility, reagent photolability and reagent leaching are frequently encountered. As a result, calibration and standardization of these sensors becomes difficult or impossible and thus inhibits their application for long term in situ chemical monitoring. Many of these problems can be addressed and several additional advantages gained by continuously renewing the reagent chemistry. To illustrate this concept, a fiber optic ammonia sensor is described in which the reagent is delivered under direct control to a sensing volume of approximately 400 nanoliters located at the probe tip. Using an acid-base indicator (bromothymol blue) as the reagent, the sample ammonia concentrations are related to modulations in light intensity with a lower limit of detection of 10 ppb. The sensor performance was studied with respect to reagent pH, concentration and reagent delivery rate. Compared with previous fiber optic ammonia sensors, the ability to reproducibly renew the reagent has resulted in improvements with respect to response and return times, probe-to-probe reproducibility, probe lifetime and flexibility of use.

  16. Hybrid Piezoelectric/Fiber-Optic Sensor Sheets

    NASA Technical Reports Server (NTRS)

    Lin, Mark; Qing, Xinlin

    2004-01-01

    Hybrid piezoelectric/fiber-optic (HyPFO) sensor sheets are undergoing development. They are intended for use in nondestructive evaluation and long-term monitoring of the integrity of diverse structures, including aerospace, aeronautical, automotive, and large stationary ones. It is anticipated that the further development and subsequent commercialization of the HyPFO sensor systems will lead to economic benefits in the form of increased safety, reduction of life-cycle costs through real-time structural monitoring, increased structural reliability, reduction of maintenance costs, and increased readiness for service. The concept of a HyPFO sensor sheet is a generalization of the concept of a SMART Layer(TradeMark), which is a patented device that comprises a thin dielectric film containing an embedded network of distributed piezoelectric actuator/sensors. Such a device can be mounted on the surface of a metallic structure or embedded inside a composite-material structure during fabrication of the structure. There is has been substantial interest in incorporating sensors other than piezoelectric ones into SMART Layer(TradeMark) networks: in particular, because of the popularity of the use of fiber-optic sensors for monitoring the "health" of structures in recent years, it was decided to incorporate fiber-optic sensors, giving rise to the concept of HyPFO devices.

  17. Aircraft fiber optic structural health monitoring

    NASA Astrophysics Data System (ADS)

    Mrad, Nezih

    2012-06-01

    Structural Health Monitoring (SHM) is a sought after concept that is expected to advance military maintenance programs, increase platform operational safety and reduce its life cycle cost. Such concept is further considered to constitute a major building block of any Integrated Health Management (IHM) capability. Since 65% to 80% of military assets' Life Cycle Cost (LCC) is devoted to operations and support (O&S), the aerospace industry and military sectors continue to look for opportunities to exploit SHM systems, capability and tools. Over the past several years, countless SHM concepts and technologies have emerged. Among those, fiber optic based systems were identified of significant potential. This paper introduces the elements of an SHM system and investigates key issues impeding the commercial implementation of fiber optic based SHM capability. In particular, this paper presents an experimental study of short gauge, intrinsic, spectrometric-based in-fiber Bragg grating sensors, for potential use as a component of an SHM system. Fiber optic Bragg grating sensors are evaluated against resistance strain gauges for strain monitoring, sensitivity, accuracy, reliability, and fatigue durability. Strain field disturbance is also investigated by "embedding" the sensors under a photoelastic coating in order to illustrate sensor intrusiveness in an embedded configuration.

  18. Power system applications of fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.; Jackson, S. P.; Kirkham, H.; Yeh, C.

    1986-01-01

    This document is a progress report of work done in 1985 on the Communications and Control for Electric Power Systems Project at the Jet Propulsion Laboratory. These topics are covered: Electric Field Measurement, Fiber Optic Temperature Sensing, and Optical Power transfer. Work was done on the measurement of ac and dc electric fields. A prototype sensor for measuring alternating fields was made using a very simple electroscope approach. An electronic field mill sensor for dc fields was made using a fiber optic readout, so that the entire probe could be operated isolated from ground. There are several instances in which more precise knowledge of the temperature of electrical power apparatus would be useful. This report describes a number of methods whereby the distributed temperature profile can be obtained using a fiber optic sensor. The ability to energize electronics by means of an optical fiber has the advantage that electrical isolation is maintained at low cost. In order to accomplish this, it is necessary to convert the light energy into electrical form by means of photovoltaic cells. JPL has developed an array of PV cells in gallium arsenide specifically for this purpose. This work is described.

  19. Stabilized fiber-optic frequency distribution system

    NASA Technical Reports Server (NTRS)

    Primas, L. E.; Lutes, G. F.; Sydnor, R. L.

    1989-01-01

    A technique for stabilizing reference frequencies transmitted over fiber-optic cable in a frequency distribution system is discussed. The distribution system utilizes fiber-optic cable as the transmission medium to distribute precise reference signals from a frequency standard to remote users. The stability goal of the distribution system is to transmit a 100-MHz signal over a 22-km fiber-optic cable and maintain a stability of 1 part in 10(17) for 1000-second averaging times. Active stabilization of the link is required to reduce phase variations produced by environmental effects, and is achieved by transmitting the reference signal from the frequency standard to the remote unit and then reflecting back to the reference unit over the same optical fiber. By comparing the phase of the transmitted and reflected signals at the reference unit, phase variations of the remote signal can be measured. An error voltage derived from the phase difference between the two signals is used to add correction phase.

  20. Fiber optic, Faraday rotation current sensor

    SciTech Connect

    Veeser, L.R.; Day, G.W.

    1986-01-01

    At the Second Megagauss Conference in 1979, there were reports of experiments that used the Faraday magneto-optic effect in a glass rod to measure large electric current pulses or magnetic fields. Since then we have seen the development of single-mode optical fibers that can carry polarized light in a closed loop around a current load. A fiber optic Faraday rotation sensor will integrate the flux, instead of sampling it at a discrete point, to get a measurement independent of the current distribution. Early Faraday rotation experiments using optical fibers to measure currents dealt with problems such as fiber birefringence and difficulties in launching light into the tiny fiber cores. We have built on those experiments, working to reduce the effects of shocks and obtaining higher bandwidths, absolute calibration, and computerized recording and data analysis, to develop the Faraday rotation sensors into a routine current diagnostic. For large current pulses we find reduced sensitivity to electromagnetic interference and other backgrounds than for Rogowski loops; often the fiber optic sensors are useful where conductive probes cannot be used at all. In this paper we describe the fiber optic sensors and some practical matters involved in fielding them.

  1. Power system applications of fiber optic sensors

    SciTech Connect

    Johnston, A.R.; Jackson, S.P.; Kirkham, H.; Yeh, C.

    1986-06-01

    Three topics are covered: Electric Field Measurement, Fiber Optic Temperature Sensing, and Optical Power Transfer. Work was done on the measurement of ac and dc electric fields. A prototype sensor for measuring alternating fields was made using a very simple electroscope approach. An electronic field mill sensor for dc fields was made using a fiber optic readout, so that the entire probe could be operated isolated from ground. There are several instances in which more precise knowledge of the temperature of electrical power apparatus would be useful. This report describes a number of methods whereby the distributed temperature profile can be obtained using a fiber optic sensor. The ability to energize electronics by means of an optical fiber has the advantage that electrical isolation is maintained at low cost. In order to accomplish this, it is necessary to convert the light energy into electrical form by means of photovoltaic cells. JPL has developed an array of PV cells in gallium arsenide specifically for this purpose. This work is described.

  2. Power system applications of fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Johnston, A. R.; Jackson, S. P.; Kirkham, H.; Yeh, C.

    1986-06-01

    This document is a progress report of work done in 1985 on the Communications and Control for Electric Power Systems Project at the Jet Propulsion Laboratory. These topics are covered: Electric Field Measurement, Fiber Optic Temperature Sensing, and Optical Power transfer. Work was done on the measurement of ac and dc electric fields. A prototype sensor for measuring alternating fields was made using a very simple electroscope approach. An electronic field mill sensor for dc fields was made using a fiber optic readout, so that the entire probe could be operated isolated from ground. There are several instances in which more precise knowledge of the temperature of electrical power apparatus would be useful. This report describes a number of methods whereby the distributed temperature profile can be obtained using a fiber optic sensor. The ability to energize electronics by means of an optical fiber has the advantage that electrical isolation is maintained at low cost. In order to accomplish this, it is necessary to convert the light energy into electrical form by means of photovoltaic cells. JPL has developed an array of PV cells in gallium arsenide specifically for this purpose. This work is described.

  3. Information parameters of DWDM fiber optic dynamic loop memory

    NASA Astrophysics Data System (ADS)

    Polyakov, Alexandre V.

    2012-10-01

    The structure of a fiber-optical dynamic memory (FODM) with series-parallel channels of input-output of the digital information and optical regeneration is developed. Influence nonlinear phenomena in optical fiber on information characteristics of such systems at spectral multiplexing of information channels is investigated. On the basis of the developed mathematical model the multiparametric analysis of recirculating process of the information stream in closed optical contour in view of noise sources, ASE-induced timing jitter, and also effect of intersymbol interference is lead. For an estimation of opportunities of use considered FODM as buffer memory are carried out joint researches of a storage time and information capacity at the desired error probability. Laws of influence of contour elements operating modes on extremely achievable information parameters are revealed.

  4. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    PubMed Central

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-01-01

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 µm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors. PMID:26437407

  5. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors.

    PubMed

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-09-30

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 μm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  6. Optical-resolution photoacoustic endomicroscopy in vivo

    PubMed Central

    Yang, Joon-Mo; Li, Chiye; Chen, Ruimin; Rao, Bin; Yao, Junjie; Yeh, Cheng-Hung; Danielli, Amos; Maslov, Konstantin; Zhou, Qifa; Shung, K. Kirk; Wang, Lihong V.

    2015-01-01

    Optical-resolution photoacoustic microscopy (OR-PAM) has become a major experimental tool of photoacoustic tomography, with unique imaging capabilities for various biological applications. However, conventional imaging systems are all table-top embodiments, which preclude their use in internal organs. In this study, by applying the OR-PAM concept to our recently developed endoscopic technique, called photoacoustic endoscopy (PAE), we created an optical-resolution photoacoustic endomicroscopy (OR-PAEM) system, which enables internal organ imaging with a much finer resolution than conventional acoustic-resolution PAE systems. OR-PAEM has potential preclinical and clinical applications using either endogenous or exogenous contrast agents. PMID:25798315

  7. Design of high-capacity fiber-optic transport systems

    NASA Astrophysics Data System (ADS)

    Liao, Zhi Ming

    2001-08-01

    We study the design of fiber-optic transport systems and the behavior of fiber amplifiers/lasers with the aim of achieving higher capacities with larger amplifier spacing. Solitons are natural candidates for transmitting short pulses for high-capacity fiber-optic networks because of its innate ability to use two of fiber's main defects, fiber dispersion and fiber nonlinearity to balance each other. In order for solitons to retain its dynamic nature, amplifiers must be placed periodically to restore powers to compensate for fiber loss. Variational analysis is used to study the long-term stability of a periodical- amplifier system. A new regime of operation is identified which allows the use of a much longer amplifier spacing. If optical fibers are the blood vessels of an optical communication system, then the optical amplifier based on erbium-doped fiber is the heart. Optical communication systems can avoid the use of costly electrical regenerators to maintain system performance by being able to optically amplify the weakened signals. The length of amplifier spacing is largely determined by the gain excursion experienced by the solitons. We propose, model, and demonstrate a distributed erbium-doped fiber amplifier which can drastically reduce the amount of gain excursion experienced by the solitons, therefore allowing a much longer amplifier spacing and superior stability. Dispersion management techniques have become extremely valuable tools in the design of fiber-optic communication systems. We have studied in depth the advantage of different arnplification schemes (lumped and distributed) for various dispersion compensation techniques. We measure the system performance through the Q factor to evaluate the added advantage of effective noise figure and smaller gain excursion. An erbium-doped fiber laser has been constructed and characterized in an effort to develop a test bed to study transmission systems. The presence of mode-partition noise in an erbium

  8. Fiber-optic push-pull sensor systems

    NASA Technical Reports Server (NTRS)

    Gardner, David L.; Brown, David A.; Garrett, Steven L.

    1991-01-01

    Fiber-optic push-pull sensors are those which exploit the intrinsically differential nature of an interferometer with concommitant benefits in common-mode rejection of undesired effects. Several fiber-optic accelerometer and hydrophone designs are described. Additionally, the recent development at the Naval Postgraduate School of a passive low-cost interferometric signal demodulator permits the development of economical fiber-optic sensor systems.

  9. High-density fiber optic biosensor arrays

    NASA Astrophysics Data System (ADS)

    Epstein, Jason R.; Walt, David R.

    2002-02-01

    Novel approaches are required to coordinate the immense amounts of information derived from diverse genomes. This concept has influenced the expanded role of high-throughput DNA detection and analysis in the biological sciences. A high-density fiber optic DNA biosensor was developed consisting of oligonucleotide-functionalized, 3.1 mm diameter microspheres deposited into the etched wells on the distal face of a 500 micrometers imaging fiber bundle. Imaging fiber bundles containing thousands of optical fibers, each associated with a unique oligonucleotide probe sequence, were the foundation for an optically connected, individually addressable DNA detection platform. Different oligonucleotide-functionalized microspheres were combined in a stock solution, and randomly dispersed into the etched wells. Microsphere positions were registered from optical dyes incorporated onto the microspheres. The distribution process provided an inherent redundancy that increases the signal-to-noise ratio as the square root of the number of sensors examined. The representative amount of each probe-type in the array was dependent on their initial stock solution concentration, and as other sequences of interest arise, new microsphere elements can be added to arrays without altering the existing detection capabilities. The oligonucleotide probe sequences hybridize to fluorescently-labeled, complementary DNA target solutions. Fiber optic DNA microarray research has included DNA-protein interaction profiles, microbial strain differentiation, non-labeled target interrogation with molecular beacons, and single cell-based assays. This biosensor array is proficient in DNA detection linked to specific disease states, single nucleotide polymorphism (SNP's) discrimination, and gene expression analysis. This array platform permits multiple detection formats, provides smaller feature sizes, and enables sensor design flexibility. High-density fiber optic microarray biosensors provide a fast

  10. Fiber optic temperature sensors for medical applications

    NASA Astrophysics Data System (ADS)

    Schaafsma, David T.; Palmer, Gail; Bechtel, James H.

    2003-07-01

    Recent developments in fiber-optic sensor technology have demonstrated the utility of fiber-optic sensors for both medical and industrial applications. Fiber sensors based on fluorescent decay of rare earth doped materials allow rapid and accurate temperature measurement in challenging environments. Here we review the principles of operation of these sensors with a rare earth doped probe material and demonstrate why this material is an excellent choice for these types of sensors. The decay time technique allows accurate temperature determination from two measurements of the fluorescence intensity at a well-defined time interval. With this method, all instrumental and extraneous environmental effect will cancel, thus providing an accurate temperature measurement. Stability data will be presented for the fiber-optic probes. For medical applications, new breakthroughs in RF ablation technology and electro-surgical procedures are being introduced as alternative, less invasive treatment for removal of small tumors and for removal of plaque within arteries as a preventive treatment that avoids open heart surgery. The availability of small diameter temperature probes (230 microns or 450 microns in diameter) offers a whole new scope to temperature measurement. Accurate and reliable temperature monitoring during any laser treatment procedure or RF ablation at the surgical site is critical. Precise, NIST traceable reliable results are needed to prevent overheating or underheating during treatment. In addition, how interventional catheters are used in hyperthermia studies and the advantages to having flexible cables and multiple sensors are discussed. Preliminary data is given from an animal study where temperature was monitored in a pig during an RF study.

  11. Microbend fiber-optic chemical sensor

    DOEpatents

    Weiss, Jonathan D.

    2002-01-01

    A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.

  12. Fiber optic gyroscopes for vehicle navigation systems

    NASA Astrophysics Data System (ADS)

    Kumagai, Tatsuya; Soekawa, Hirokazu; Yuhara, Toshiya; Kajioka, Hiroshi; Oho, Shigeru; Sonobe, Hisao

    1994-03-01

    Fiber optic gyroscopes (FOGs) have been developed for vehicle navigation systems and are used in Toyota Motor Corporation models Mark II, Chaser and Cresta in Japan. Use of FOGs in these systems requires high reliability under a wide range of conditions, especially in a temperature range between -40 and 85 degree(s)C. In addition, a high cost-performance ratio is needed. We have developed optical and electrical systems that are inexpensive and can perform well. They are ready to be mass-produced. FOGs have already been installed in luxury automobiles, and will soon be included in more basic vehicles. We have developed more inexpensive FOGs for this purpose.

  13. Fiber optic phase stepping system for interferometry

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1991-01-01

    A closed loop phase control system using an all-fiber optical configuration has been developed for use in phase-stepping interferometry. This system drives the relative phase of two interfering beams through a sequence of pi/2 rad increments so that the initial relative phase of these beams can be determined. This phase-stepping system uses optical fibers to provide spatially uniform phase steps from a flexible, easily aligned optical configuration. In addition, this system uses phase feedback to eliminate phase modulator errors and to compensate for phase drifts caused by environmental disturbances.

  14. New glass developments for fiber optics

    NASA Astrophysics Data System (ADS)

    Higby, Paige L.; Holst, Karen; Tabor, Kevin; James, William; Chase, Elizabeth; Pucilowski, Sally; Gober-Mangan, Elizabeth; Klimek, Ronald; Karetta, Frank; Schreder, Bianca

    2014-02-01

    Fiber optic components for lighting and imaging applications have been in use for decades. Recent requirements such as a need for RoHS compliance, attractive market pricing, or particular optical properties, such as numerical aperture (NA) or transmission, have required SCHOTT to develop and implement new glasses for these applications. From Puravis™ lead-free fibers for lighting applications, to new glasses for digital X-ray imaging and sensor applications, the challenges for SCHOTT scientists are considerable. Pertinent properties of these glasses and methods of determination for suitability will be discussed.

  15. Fiber optical ranging sensor for proximity fuse

    NASA Astrophysics Data System (ADS)

    Du, Fang; Chi, Zeying; You, Mingjun; Chen, Wenjian

    1996-09-01

    A fiber optical ranging sensor used in laser proximity fuze is described in this paper. In the fuze, pulse laser diode (LD) is used as light source and trigger signal is generated by comparing the reflected light pulses with the reference pulses by a correlator after they were converted into electric signals by PIN photodiodes. Multi-mode fibers and integrated optical devices are used in the system so that the structure can be more compact. Optical fiber delay line is used to offer precise delay time for reference channel.

  16. Fiber Optic Codec Link (FOCOL). Volume 1.

    DTIC Science & Technology

    1981-01-26

    34 DNA0OI?9-C-OB21 UNCLASSIFIED ETI-CRO-865-VOL-1 DNA-57?-l NLEhElE EE III I 1.0 ~ II~II 1)O8 1111jIL125 11. A .~..Jl .6 MICROCOPY RESOLUTION TEST CHART...NATIONAL BUL All Of ITN A ,> ’i O DNA 5747F-1 FIBER OPTIC CODEC LINK (FOCOL) O Volume 1-Final Report (Technical) Walter Naumann ~’?~ilKZ SElizabeth Liles R...Explosive Tests at a substantial cost saving over current transmission methods including other multiplexing systems. The link is capable of transmitting

  17. Fiber optic dosimeter with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Moutinho, L. M.; Castro, I. F.; Peralta, L.; Abreu, M. C.; Veloso, J. F. C. A.

    2014-08-01

    A small dimension, real-time readout dosimeter is desirable for specific applications in medical physics as for example, dose measurement in prostate brachytherapy. This particular radiotherapy procedure consists in the permanent deposition of low energy, low-dose and low-dose rate small sized radioactive seeds. We developed a scintillating fiber optic based dosimeter suitable for in-vivo, real-time low dose and low dose rate measurements. Due to the low scintillation light produced in the scintillating fiber, a high sensitive and high gain light detector is required. The Silicon Photomultipliers are an interesting option that allowed us to obtain good results in our studies.

  18. Method for the continuous processing of hermetic fiber optic components and the resultant fiber optic-to-metal components

    DOEpatents

    Kramer, D.P.

    1994-08-09

    Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process is disclosed. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements. 3 figs.

  19. Collagenous colitis: new diagnostic possibilities with endomicroscopy

    NASA Astrophysics Data System (ADS)

    Hoffman, A.; Goetz, M.; Biesterfeld, S.; Galle, P. R.; Neurath, M. F.; Kiesslich, R.

    2006-02-01

    Collagenous colitis is a kind of microscopic colitis. It is characterized by chronic watery diarrhea and abdominal pain. The etiology is still unknown. So far, for the diagnose a histological evaluation was necessary with the presence of thickened subepithelial collagneous bands in the lamina propria. A new developed endoscope with a confocal laser allows analysing cellular and subcellular details of the mucosal layer at high resolution in vivo. In this case report we describe for the first time to diagnose collagenous colitis during ongoing colonoscopy by using this confocal endomicroscopy. In a 67 year old female patient with typical symptoms the characteristic histological changes could be identified in the endomicroscopic view. Biopsies could be targeted to affected areas and endomicroscopic prediction of the presence of collagenous bands could be confirmed in all targeted biopsies. First endomicroscopic experience in microscopic colitis could be confirmed in four additional patients. Future prospective studies are warranted to further evaluate these initial findings. However, collagenous colitis is frequently missed and endomicroscopy seems to be the ideal tool for accurate diagnosing collagenous colitis during ongoing endoscopy.

  20. Fiber optic gyro development at Fibernetics

    NASA Astrophysics Data System (ADS)

    Bergh, Ralph A.; Arnesen, Leif; Herdman, Craig

    2016-05-01

    Fiber optic gyroscope based inertial sensors are being used within increasingly severe environments, enabling unmanned systems to sense and navigate in areas where GPS satellite navigation is unavailable or jammed. A need exists for smaller, lighter, lower power inertial sensors for the most demanding land, sea, air, and space applications. Fibernetics is developing a family of inertial sensor systems based on our closed-loop navigation-grade fiber optic gyroscope (FOG). We are making use of the packaging flexibility of the fiber to create a navigation grade inertial measurement unit (IMU) (3 gyroscopes and 3 accelerometers) that has a volume of 102 cubic inches. We are also planning a gyrocompass and an inertial navigation system (INS) having roughly the same size. In this paper we provide an update on our development progress and describe our modulation scheme for the Sagnac interferometers. We also present a novel multiplexed design that efficiently delivers source light to each of the three detectors. In our future development section we discuss our work to improve FOG performance per unit volume, specifically detailing our focus in utilizing a multicore optical fiber.

  1. Fiber-optically sensorized composite wing

    NASA Astrophysics Data System (ADS)

    Costa, Joannes M.; Black, Richard J.; Moslehi, Behzad; Oblea, Levy; Patel, Rona; Sotoudeh, Vahid; Abouzeida, Essam; Quinones, Vladimir; Gowayed, Yasser; Soobramaney, Paul; Flowers, George

    2014-04-01

    Electromagnetic interference (EMI) immune and light-weight, fiber-optic sensor based Structural Health Monitoring (SHM) will find increasing application in aerospace structures ranging from aircraft wings to jet engine vanes. Intelligent Fiber Optic Systems Corporation (IFOS) has been developing multi-functional fiber Bragg grating (FBG) sensor systems including parallel processing FBG interrogators combined with advanced signal processing for SHM, structural state sensing and load monitoring applications. This paper reports work with Auburn University on embedding and testing FBG sensor arrays in a quarter scale model of a T38 composite wing. The wing was designed and manufactured using fabric reinforced polymer matrix composites. FBG sensors were embedded under the top layer of the composite. Their positions were chosen based on strain maps determined by finite element analysis. Static and dynamic testing confirmed expected response from the FBGs. The demonstrated technology has the potential to be further developed into an autonomous onboard system to perform load monitoring, SHM and Non-Destructive Evaluation (NDE) of composite aerospace structures (wings and rotorcraft blades). This platform technology could also be applied to flight testing of morphing and aero-elastic control surfaces.

  2. Grizzly Substation Fiber Optics : Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1998-02-01

    This notice announces BPA`s decision to construct, operate, and maintain the Grizzly Substation Fiber Optic Project (Project). This Project is part of a continuing effort by BPA to complete a regionwide upgrade of its existing telecommunications system. The US Forest Service and BPA jointly prepared the Grizzly Substation Fiber Optic Project Environmental Assessment (EA) (DOE/EA-1241) evaluating the potential environmental impacts of the Proposed Action, the Underground Installation Alternative, and the No Action Alternative. Based on the analysis in the EA, the US Forest Service and BPA have determined that the Proposed Action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI. The US Forest Service has separately issued a FONSI and Decision Notice authorizing BPA to construct, operate, and maintain the Project within the Crooked River National Grassland (Grassland).

  3. Side-emitting fiber optic position sensor

    SciTech Connect

    Weiss, Jonathan D.

    2008-02-12

    A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

  4. Distribution automation applications of fiber optics

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold; Johnston, A.; Friend, H.

    1989-01-01

    Motivations for interest and research in distribution automation are discussed. The communication requirements of distribution automation are examined and shown to exceed the capabilities of power line carrier, radio, and telephone systems. A fiber optic based communication system is described that is co-located with the distribution system and that could satisfy the data rate and reliability requirements. A cost comparison shows that it could be constructed at a cost that is similar to that of a power line carrier system. The requirements for fiber optic sensors for distribution automation are discussed. The design of a data link suitable for optically-powered electronic sensing is presented. Empirical results are given. A modeling technique that was used to understand the reflections of guided light from a variety of surfaces is described. An optical position-indicator design is discussed. Systems aspects of distribution automation are discussed, in particular, the lack of interface, communications, and data standards. The economics of distribution automation are examined.

  5. 77 FR 65713 - Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... COMMISSION Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products... the United States after importation of certain optoelectronic devices for fiber optic communications... importation of certain optoelectronic devices for fiber optic communications, components thereof, and...

  6. Lamb wave detection with a fiber optic angular displacement sensor

    NASA Astrophysics Data System (ADS)

    Garcia, Marlon R.; Sakamoto, João. M. S.; Higuti, Ricardo T.; Kitano, Cláudio

    2015-09-01

    In this work we show that the fiber optic angular displacement sensor is capable of Lamb wave detection, with results comparable to a piezoelectric transducer. Therefore, the fiber optic sensor has a great potential to be used as the Lamb wave ultrasonic receiver and to perform non-destructive and non-contact testing.

  7. Fiber optic yield monitor for a sugarcane chopper harvester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A fiber optic yield monitoring system was developed for a sugarcane chopper harvester that utilizes a duty-cycle type approach with three fiber optic sensors mounted in the elevator floor to estimate cane yield. Field testing of the monitor demonstrated that there was a linear relationship between t...

  8. Fiber Optics Deliver Real-Time Structural Monitoring

    NASA Technical Reports Server (NTRS)

    2013-01-01

    To alter the shape of aircraft wings during flight, researchers at Dryden Flight Research Center worked on a fiber optic sensor system with Austin-based 4DSP LLC. The company has since commercialized a new fiber optic system for monitoring applications in health and medicine, oil and gas, and transportation, increasing company revenues by 60 percent.

  9. Fiber Optics Technician. Curriculum Research Project. Final Report.

    ERIC Educational Resources Information Center

    Whittington, Herschel K.

    A study examined the role of technicians in the fiber optics industry and determined those elements that should be included in a comprehensive curriculum to prepare fiber optics technicians for employment in the Texas labor market. First the current literature, including the ERIC database and equipment manufacturers' journals were reviewed. After…

  10. Combined electromechanical impedance and fiber optic diagnosis of aerospace structures

    NASA Astrophysics Data System (ADS)

    Schlavin, Jon; Zagrai, Andrei; Clemens, Rebecca; Black, Richard J.; Costa, Joey; Moslehi, Behzad; Patel, Ronak; Sotoudeh, Vahid; Faridian, Fereydoun

    2014-03-01

    Electromechanical impedance is a popular diagnostic method for assessing structural conditions at high frequencies. It has been utilized, and shown utility, in aeronautic, space, naval, civil, mechanical, and other types of structures. By contrast, fiber optic sensing initially found its niche in static strain measurement and low frequency structural dynamic testing. Any low frequency limitations of the fiber optic sensing, however, are mainly governed by its hardware elements. As hardware improves, so does the bandwidth (frequency range * number of sensors) provided by the appropriate enabling fiber optic sensor interrogation system. In this contribution we demonstrate simultaneous high frequency measurements using fiber optic and electromechanical impedance structural health monitoring technologies. A laboratory specimen imitating an aircraft wing structure, incorporating surfaces with adjustable boundary conditions, was instrumented with piezoelectric and fiber optic sensors. Experiments were conducted at different structural boundary conditions associated with deterioration of structural health. High frequency dynamic responses were collected at multiple locations on a laboratory wing specimen and conclusions were drawn about correspondence between structural damage and dynamic signatures as well as correlation between electromechanical impedance and fiber optic sensors spectra. Theoretical investigation of the effect of boundary conditions on electromechanical impedance spectra is presented and connection to low frequency structural dynamics is suggested. It is envisioned that acquisition of high frequency structural dynamic responses with multiple fiber optic sensors may open new diagnostic capabilities for fiber optic sensing technologies.

  11. Fiber-optic Michelson interferometer using an optical power divider.

    PubMed

    Imai, M; Ohashi, T; Ohtsuka, Y

    1980-10-01

    A fiber-optic interferometer consisting of a multimode fiber-optical power divider was constructed in the Michelson arrangement and applied to measure a micrometer-order displacement of the vibrating object based on an optical homodyne technique. Improvement in the sensitivity of the apparatus is discussed from the viewpoint of increasing the minimum detectable beat signal.

  12. Fiber-optic interferometric acoustic sensors for wind tunnel applications

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.

    1993-01-01

    Progress in developing fiber-optic interferometric sensors for aeroacoustic measurements in wind tunnels, performed under the NASA program, is reported. Preliminary results show that the fiber-optic interferometer sensor array is a powerful instrument for solving complex acoustic measurement problems in wind tunnels, which cannot be resolved with the conventional transducer technique.

  13. Fiber optic pressure sensors for nuclear power plants

    SciTech Connect

    Hashemian, H.M.; Black, C.L.

    1995-04-01

    In the last few years, the nuclear industry has experienced some problems with the performance of pressure transmitters and has been interested in new sensors based on new technologies. Fiber optic pressure sensors offer the potential to improve on or overcome some of the limitations of existing pressure sensors. Up to now, research has been motivated towards development and refinement of fiber optic sensing technology. In most applications, reliability studies and failure mode analyses remain to be exhaustively conducted. Fiber optic sensors have currently penetrated certain cutting edge markets where they possess necessary inherent advantages over other existing technologies. In these markets (e.g. biomedical, aerospace, automotive, and petrochemical), fiber optic sensors are able to perform measurements for which no alternate sensor previously existed. Fiber optic sensing technology has not yet been fully adopted into the mainstream sensing market. This may be due to not only the current premium price of fiber optic sensors, but also the lack of characterization of their possible performance disadvantages. In other words, in conservative industries, the known disadvantages of conventional sensors are sometimes preferable to unknown or not fully characterized (but potentially fewer and less critical) disadvantages of fiber optic sensors. A six-month feasibility study has been initiated under the auspices of the US Nuclear Regulatory Commission (NRC) to assess the performance and reliability of existing fiber optic pressure sensors for use in nuclear power plants. This assessment will include establishment of the state of the art in fiber optic pressure sensing, characterization of the reliability of fiber optic pressure sensors, and determination of the strengths and limitations of these sensors for nuclear safety-related services.

  14. Enzyme-based fiber optic sensors

    SciTech Connect

    Kulp, T.J.; Camins, I.; Angel, S.M.

    1987-12-01

    Fiber optic chemical sensors capable of detecting glucose and penicillin were developed. Each consists of a polymer membrane that is covalently attached to the tip of a glass optical fiber. The membrane contains the enzyme and a pH-sensitive fluorescent dye (fluorescein). A signal is produced when the enzyme catalyzes the conversion of the analyte (glucose or penicillin) into a product (gluconic or penicilloic acid, respectively) that lowers the microenvironmental pH of the membrane and consequently, lowers the fluorescence intensity of the dye. Each sensor is capable of responding to analyte concentrations in the range of approx.0.1 to 100 mM. The penicillin optrode response time is 40 to 60 s while that for glucose is approx.5 to 12 min. 7 figs.

  15. Fiber optic plantar pressure/shear sensor

    NASA Astrophysics Data System (ADS)

    Soetanto, William; Nguyen, Ngoc T.; Wang, Wei-Chih

    2011-04-01

    A full-scale foot pressure/shear sensor that has been developed to help diagnose the cause of ulcer formation in diabetic patients is presented. The design involves a tactile sensor array using intersecting optical fibers embedded in soft elastomer. The basic configuration incorporates a mesh that is comprised of two sets of parallel optical fiber plane; the planes are configured so the parallel rows of fiber of the top and bottom planes are perpendicular to each other. Threedimensional information is determined by measuring the loss of light from each of the waveguide to map the overall pressure distribution and the shifting of the layers relative to each other. In this paper we will present the latest development on the fiber optic plantar pressure/shear sensor which can measure normal force up from 19.09 kPa to 1000 kPa.

  16. Hydrazine/nitrogen dioxide fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Andrawis, Alfred A.; Santiago, Josephine; Young, Rebecca C.; Baum, J. Clayton

    2004-06-01

    This paper outlines the development of a dual hydrazine/nitrogen dioxide (HZ/NO2) prototype fiber optic sensor utilizing an acid-base indicator that undergoes color changes depending on which gas is present. Bromothymol blue bromocresol green mixture (1/1) in hydrogel (1/1), produces a blue-green indicator for HZ and/or NO2. The sensor was tested several times over a period of eight weeks and the response was cconsistent and proved the feasibility of dual HZ/NO2 leak detection. Prototype sensor construction, the hardware, and the software of the electronic interrogator circuitry are briefly explained. The paper presents a summary of sensor response when exposed to 52 ppm and 18 ppm hydrazine and 400 ppm and 200 ppm nitrogen dioxide.

  17. Outlook of fiber-optic gyroscope

    NASA Astrophysics Data System (ADS)

    Hayakawa, Yoshiaki; Kurokawa, Akihiro

    1991-08-01

    Over the last decade, the research and development of a fiber optic gyroscope (FOG) has made remarkable progress, and it is now recognized that this new technology will take the place of a traditional gyroscope during the 1990s. In fact, the flight test of this FOG was performed on February 22, 1990, aboard an S-520-11 rocket at ISAS's test facilities in Uchinoura, Japan. The flight test was successfully demonstrated. During the mission, the FOG rate sensor worked well and the expected performance of the FOG rate sensor was confirmed. This was the first experience for a rocket use of the FOG. This paper reviews the outlook of FOG during the 1990s based on the present status of FOG R&D.

  18. Signal processing for fiber optic gyroscope (FOG)

    NASA Astrophysics Data System (ADS)

    Tanaka, Ryuichi; Kurokawa, Akihiro; Sato, Yoshiyuki; Magome, Tsutomu; Hayakawa, Yoshiaki; Nakatani, Ichiro; Kawaguchi, Junichiro

    1994-11-01

    A fiber-optic gyroscope (FOG) is expected to be the next generation gyroscope for guidance and control, because of various advantages. We have been developing the FOG-Inertial Navigation and Guidance (ING) for M-V satellite launching rocket of the Institute of Space and Astronautical Science (ISAS) since 1990. The FOG-ING consists of an Inertial Measurement Unit (IMU) and an Central Processing Unit Assembly. At current status, the proto-flight model FOG-IMU is being actively developed. And the flight test of the FOG-ING was performed on February 20, 1993, aboard M-3SII-7 satellite launching rocket at the ISAS test facilities in Uchinoura, Japan. This paper presents the signal processing technologies of our FOG which are used for the above FOG-ING.

  19. Fiber-optic sensor detects nonaqueous compounds

    SciTech Connect

    1992-11-01

    Scientists have used a fiber-optic sensor that detects scattered light to locate and identify nonaqueous liquids such as gasoline, that have seeped below the ground`s surface. The technique, called Raman spectroscopy, can be used to find both non-aqueous phase liquids - such as gasoline, that float on water, and dense nonaqueous phase liquids - such as the chemical perchloroethylene, or PCE - that sink below water. The in situ Raman spectra of the gasoline clearly showed the relative amounts of different chemical compounds, thus indicating the type of gasoline. The amount of fluorescence in the spectrum seems to be related to the degradation products in the gasoline and, thus, might be some measure of the history of the fuel.

  20. Fiber Optic Thermal Detection of Composite Delaminations

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.

    2011-01-01

    A recently developed technique is presented for thermographic detection of delaminations in composites by performing temperature measurements with fiber optic Bragg gratings. A single optical fiber with multiple Bragg gratings employed as surface temperature sensors was bonded to the surface of a composite with subsurface defects. The investigated structure was a 10-ply composite specimen with prefabricated delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared and found to be consistent with the calculations using numerical simulation techniques. Also discussed are methods including various heating sources and patterns, and their limitations for performing in-situ structural health monitoring.

  1. Fiber Optic Thermal Health Monitoring of Composites

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.

    2010-01-01

    A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.

  2. Normal dispersion femtosecond fiber optical parametric oscillator.

    PubMed

    Nguyen, T N; Kieu, K; Maslov, A V; Miyawaki, M; Peyghambarian, N

    2013-09-15

    We propose and demonstrate a synchronously pumped fiber optical parametric oscillator (FOPO) operating in the normal dispersion regime. The FOPO generates chirped pulses at the output, allowing significant pulse energy scaling potential without pulse breaking. The output average power of the FOPO at 1600 nm was ∼60  mW (corresponding to 1.45 nJ pulse energy and ∼55% slope power conversion efficiency). The output pulses directly from the FOPO were highly chirped (∼3  ps duration), and they could be compressed outside of the cavity to 180 fs by using a standard optical fiber compressor. Detailed numerical simulation was also performed to understand the pulse evolution dynamics around the laser cavity. We believe that the proposed design concept is useful for scaling up the pulse energy in the FOPO using different pumping wavelengths.

  3. Fiber optic liquid refractive index sensor

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Vanita; Gangwar, Rahul Kumar; Singh, Vinod Kumar

    2015-08-01

    In this present work we report fabrication of fiber optic liquid refractive index (RI) measurement sensor based on Michelson Interferometer method. This sensor was assembled by using graded index multimode (MM) fiber with core diameter 50 µm and the cladding of fiber was removed by simple chemical method. To perform this experiment a 2×2 3dB coupler is used. The fiber ends are then immersed in solvent and solution to provide reference and refractive index measurements, respectively. This method was successfully used to measure refractive index of Sodium Chloride (NaCl)-Water solution at different concentrations. The fringe contrast sensitivity of device is 92.90 dB/RIU measured in the RI range from 1.34 to 1.42 which is better than Mach-Zehnder Interferometer sensor [1] and Fabry perot based sensor [2]. The fabrication of sensor is simple, low cost and highly sensitive.

  4. Power system applications of fiber optics

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Johnston, A.; Lutes, G.; Daud, T.; Hyland, S.

    1984-01-01

    Power system applications of optical systems, primarily using fiber optics, are reviewed. The first section reviews fibers as components of communication systems. The second section deals with fiber sensors for power systems, reviewing the many ways light sources and fibers can be combined to make measurements. Methods of measuring electric field gradient are discussed. Optical data processing is the subject of the third section, which begins by reviewing some widely different examples and concludes by outlining some potential applications in power systems: fault location in transformers, optical switching for light fired thyristors and fault detection based on the inherent symmetry of most power apparatus. The fourth and final section is concerned with using optical fibers to transmit power to electric equipment in a high voltage situation, potentially replacing expensive high voltage low power transformers. JPL has designed small photodiodes specifically for this purpose, and fabricated and tested several samples. This work is described.

  5. Fiber optic hydrophones for acoustic neutrino detection

    NASA Astrophysics Data System (ADS)

    Buis, E. J.; Doppenberg, E. J. J.; Lahmann, R.; Toet, P. M.; de Vreugd, J.

    2016-04-01

    Cosmic neutrinos with ultra high energies can be detected acoustically using hydrophones. The detection of these neutrinos may provide crucial information about then GZK mechanism. The flux of these neutrinos, however, is expected to be low, so that a detection volume is required more than a order of magnitude larger than what has presently been realized. With a large detection volume and a large number of hydrophones, there is a need for technology that is cheap and easy to deploy. Fiber optics provide a natural way for distributed sensing. In addition, a sensor has been designed and manufactured that can be produced cost-effectively on an industrial scale. Sensitivity measurements show that the sensor is able to reach the required sea-state zero level. For a proper interpretation of the expected bipolar signals, filtering techniques should be applied to remove the effects of the unwanted resonance peaks.

  6. Fiber-Optic pH Sensor

    NASA Astrophysics Data System (ADS)

    Ganesh, A. Balaji; Radhakrishnan, T. K.

    The new enhancement in the determination of pH using optical fiber system is described here. This work uses the membrane made of cellulose acetate membrane for reagent immobilization and congo red (pKa 3.7) and neutral red (pKa 7.2) as pH indicators. An effective covalent chemical binding procedure is used to immobilize the indicatorsE The response time, reversibility, linear range, reproducibility, and long-term stability of fiber optic sensor with congo red as well as neutral red have been determined. The linear range measured for the sensor based on the congo red and neutral red is 4.2-6.3 and 4.1-9.0, respectively. The response time of sensor membrane is measured by varying the substance pH values between 11.0 and 2.0.

  7. Fiber Optic Development For Use On The Fiber Optic Helmet Mounted Display

    NASA Astrophysics Data System (ADS)

    Thomas, Melvin L.; Siegmund, Walter P.; Antos, Steven E.; Robinson, Richard M.

    1989-09-01

    The Fiber Optic Helmet Mounted Display (FOHMD) developed by CAE for the US Air Force Human Resources Laboratory (AFHRL), requires very large format, coherant fiber optic cables. These cables must support the FOHMD's demanding modulation transfer function (MTF) requirements in full color and be flexible, durable, lightweight, and up to six feet long. These requirements have so constrained glass technology that conventional approaches are not capable of delivering the requisite performance. The cables currently used on FOHMD systems have alternating layers of inactive material to buffer linear arrays of multifibers so that a lighter weight 25 by 19 mm end size is achieved with 5 micron core size individual fibers. This skip-layer, multifiber approach delivers reasonable performance when using spectral multiplexing across the inactive layers. However, residual fixed pattern noise, broken multifibers, and inadequate resolution have reduced system performance. Because of the critical influence of the fiber optic cables on overall system performance, an alternative, but riskier process, is being explored. Several smaller experimental cables have been assembled using leachable, fused, multifibers arrayed in a hexagonal pattern. The inconspicuous mating of hexagonal elements should be possible now because of an order of magnitude improvement in cable drawing technology. Fused/leached fiber optic cables have the potential to provide image transmission capability equal to ten channels of the best available computer image generators. When coupled with chromatic enhancement to mask fixed pattern and broken fiber noise, the resulting MTF of the FOHMD optics would deliver a resolution equal to 1.5 arc minutes per pixel.

  8. Development Of Porous Glass Fiber Optic Sensors

    NASA Astrophysics Data System (ADS)

    Macedo, P. B.; Barkatt, Aa.; Feng, X.; Finger, S. M.; Hojaji, H.; Laberge, N.; Mohr, R.; Penafiel, M.; Saad, E.

    A method for producing rugged, continuous porous glass fiber optic sensors was developed. pH and temperature sensors based on this technology have been successfully produced. The sensor portion of the fiber is made porous by selective leaching of a specially formulated borosilicate glass fiber. This results in a strong, monolithic structure where the sensor portion of the fiber remains integrally attached to the rest of the fiber (which acts as a light pipe), essentially eliminating losses at the sensor-light pipe interface. Pore size in the sensor can be controllably varied by modifying heat treatment conditions, making these sensors suitable for chemical concentration measurements in liquids and gases. Appropriate dyes were chemically bonded by silanization to the large interior surface area of the porous sensors to produce the pH and temperature sensors. Cresol red and phenol red were used for pH and pinacyanol chloride was used for temperature sensing. The sensitivity of these devices can be controlled by varying the concentration of the chemically bonded dye and the length of the porous region. Optical absorbance measurements were made in the visible range. The tip of the sensors was coated with a thin, porous layer of gold to reflect the incident light, resulting in a double pass across the porous sensor. Experimental measurements were made over a pH range of 3 to 8 and a temperature range of 28-70 C. These porous glass fiber optic sensors were found to be rugged and reliable due to their monolithic structure and large interior surface area for attachment of active species. A broad range of sensors based on this technology could be developed by using different active species, such as enzymes and other biochemicals, which could be bonded to the interior surface of the porous glass sensor.

  9. Rural telemedicine: satellites and fiber optics.

    PubMed

    Tyrer, H W; Wiedemeier, P D; Cattlet, R W

    2001-01-01

    Rural America Telemedicine requires very high bandwidth to provide timely transmission of large data sets. These resources may take decades to appear because of the economics of low population densities and costly installation, and the historically low rate of bandwidth improvement available from the common communication providers. Satellites provide the natural choice for communication between the rural primary care centers and the tertiary care hospital. Furthermore recent improvements in technologies have substantially reduced the costs of ground stations. A network of satellite ground stations with symmetric bandwidth connected by satellite is the architecture of choice. Analysis of multi-station satellite access clearly argues for distributed non-random methods and hence for appropriate handling of TCP data streams. However the overhead in delay of Satellite based TCP, as required for Internet access, substantially increases the transmission time and hence cost. Simulations of TCP/IP data over satellite links show a substantial reduction in transmission times. Initial business models show that the transmission cost per second is 60 times that of telephone lines while the increase in speed is nearly 3000 fold, effecting a 50 fold cost savings. But over decades, the infrastructure can be expected to improve. In particular speculative fiber optic installations in power lines and along major highways are betting on future traffic. These so-called dark fibers take advantage of synergistic installations. Their small size, ease of manipulation and gigantic bandwidths (in terabytes) allows for economic installation in anticipation of future use. Thus for rural America a strategy can evolve in which satellites provide an intermediate solution to high speed data communication while the terrestrial fiber-optic infrastructure catches up.

  10. Fluorescence confocal endomicroscopy in biological imaging

    NASA Astrophysics Data System (ADS)

    Delaney, Peter; Thomas, Steven; Allen, John; McLaren, Wendy; Murr, Elise; Harris, Martin

    2007-02-01

    sub-cellular details could be readily visualised in vivo at high resolution. In rodent disease models, in vivo endomicroscopy with appropriate fluorescent agents allowed examination of thrombosis formation, tumour microvasculature and liver metastases, diagnosis and staging of ulcerative colitis, liver necrosis and glomerulonephritis. Miniaturised confocal endomicroscopy allows rapid in vivo molecular and subsurface microscopy of normal and pathologic tissue at high resolution in small and large whole animal models. Fluorescein endomicroscopy has recently been introduced into the medical device market as a clinical imaging tool in GI endoscopy and is undergoing clinical evaluation in laparoscopic surgery. This medical usage is encouraging in-situ endomicroscopy as an important pre-clinical research tool to observe microscopic and molecular system biologic events in vivo in animal models for various human diseases.

  11. Performance evaluation of fiber optic components in nuclear plant environments

    SciTech Connect

    Hastings, M.C.; Miller, D.W.; James, R.W.

    1996-03-01

    Over the past several years, the Electric Power Research Institute (EPRI) has funded several projects to evaluate the performance of commercially available fiber optic cables, connective devices, light sources, and light detectors under environmental conditions representative of normal and abnormal nuclear power plant operating conditions. Future projects are planned to evaluate commercially available fiber optic sensors and to install and evaluate performance of instrument loops comprised of fiber optic components in operating nuclear power plant applications. The objective of this research is to assess the viability of fiber optic components for replacement and upgrade of nuclear power plant instrument systems. Fiber optic instrument channels offer many potential advantages: commercial availability of parts and technical support, small physical size and weight, immunity to electromagnetic interference, relatively low power requirements, and high bandwidth capabilities. As existing nuclear power plants continue to replace and upgrade I&C systems, fiber optics will offer a low-cost alternative technology which also provides additional information processing capabilities. Results to date indicate that fiber optics are a viable technology for many nuclear applications, both inside and outside of containments. This work is funded and manage& under the Operations & Maintenance Cost Control research target of EPRI`s Nuclear Power Group. The work is being performed by faculty and students in the Mechanical and Nuclear Engineering Departments and the staff of the Nuclear Reactor Laboratory of the Ohio State University.

  12. Evaluations of fiber optic sensors for interior applications

    SciTech Connect

    Sandoval, M.W.; Malone, T.P.

    1996-02-01

    This report addresses the testing and evaluation of commercial fiber optic intrusion detection systems in interior applications. The applications include laying optical fiber cable above suspended ceilings to detect removal of ceiling tiles, embedding optical fibers inside a tamper or item monitoring blanket that could be placed over an asset, and installing optical fibers on a door to detect movement or penetration. Detection capability of the fiber optic sensors as well as nuisance and false alarm information were focused on during the evaluation. Fiber optic sensor processing, system components, and system setup are described.

  13. Characterization of commercial fiber optic connectors - Preliminary report

    SciTech Connect

    Andrews, Larry A.; Williams, Randy J.

    1998-09-01

    Several types of commercial fiber optic connectors were characterized for potential use in a Sandia designed Laser Diode Ignition (LDI) system. The characterization included optical performance while the connectors were subjected to the more dynamic environmental conditions experienced in weapons applications. The environmental testing included temperature cycling, random vibration, and mechanical shock. This report presents a performance assessment of the fiber optic connectors and fiber included in the characterization. The desirable design features are described for a fiber optic connector that must survive the dynamic environment of weapon systems. The more detailed performance of each connector type will be included as resources permit.

  14. Vibration Performance Comparison Study on Current Fiber Optic Connector Technologies

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Thomes Jr., William J.; LaRocca, Frank V.; Switzer, Robert C.; Chuska, Rick F.; Macmurphy, Shawn L.

    2008-01-01

    Fiber optic cables are increasingly being used in harsh environments where they are subjected to vibration. Understanding the degradation in performance under these conditions is essential for integration of the fibers into the given application. System constraints oftentimes require fiber optic connectors so subsystems can be removed or assembled as needed. In the present work, various types of fiber optic connectors were monitored in-situ during vibration testing to examine the transient change in optical transmission and the steady-state variation following the event. Inspection of the fiber endfaces and connectors was performed at chosen intervals throughout the testing.

  15. Modulated-splitting-ratio fiber-optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Anthan, Donald J.; Rys, John R.; Fritsch, Klaus; Ruppe, Walter A.

    1988-01-01

    A fiber-optic temperature sensor is described, which uses a small silicon beamsplitter whose splitting ratio varies as a function of temperature. A four-beam technique is used to measure the sensor's temperature-indicating splitting ratio. This referencing method provides a measurement that is largely independent of the transmission properties of the sensor's optical fiber link. A significant advantage of this sensor, relative to other fiber-optic sensors, is its high stability, which permits the fiber-optic components to be readily substituted, thereby simplifying the sensor's installation and maintenance.

  16. Online technique for detecting state of onboard fiber optic gyroscope.

    PubMed

    Miao, Zhiyong; Xu, Dingjie; He, Kunpeng; Pang, Shuwan; Tian, Chunmiao

    2015-02-01

    Although angle random walk (ARW) of fiber optic gyroscope (FOG) has been well modeled and identified before being integrated into the high-accuracy attitude control system of satellite, aging and unexpected failures can affect the performance of FOG after launch, resulting in the variation of ARW coefficient. Therefore, the ARW coefficient can be regarded as an indicator of "state of health" for FOG diagnosis in some sense. The Allan variance method can be used to estimate ARW coefficient of FOG, however, it requires a large amount of data to be stored. Moreover, the procedure of drawing slope lines for estimation is painful. To overcome the barriers, a weighted state-space model that directly models the ARW to obtain a nonlinear state-space model was established for FOG. Then, a neural extended-Kalman filter algorithm was implemented to estimate and track the variation of ARW in real time. The results of experiment show that the proposed approach is valid to detect the state of FOG. Moreover, the proposed technique effectively avoids the storage of data.

  17. A Fiber-Optic Aircraft Lightning Current Measurement Sensor

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2013-01-01

    A fiber-optic current sensor based on the Faraday Effect is developed for aircraft installations. It can measure total lightning current amplitudes and waveforms, including continuing current. Additional benefits include being small, lightweight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate in presence of magnetic field in the direction of light propagation. Measuring the total induced light polarization change yields the total current enclosed. The system operates at 1310nm laser wavelength and can measure approximately 300 A - 300 kA, a 60 dB range. A reflective polarimetric scheme is used, where the light polarization change is measured after a round-trip propagation through the fiber. A two-detector setup measures the two orthogonal polarizations for noise subtraction and improved dynamic range. The current response curve is non-linear and requires a simple spline-fit correction. Effects of high current were achieved in laboratory using combinations of multiple fiber and wire loops. Good result comparisons against reference sensors were achieved up to 300 kA. Accurate measurements on a simulated aircraft fuselage and an internal structure illustrate capabilities that maybe difficult with traditional sensors. Also tested at a commercial lightning test facility from 20 kA to 200 kA, accuracy within 3-10% was achieved even with non-optimum setups.

  18. Online technique for detecting state of onboard fiber optic gyroscope

    SciTech Connect

    Miao, Zhiyong; He, Kunpeng Pang, Shuwan; Xu, Dingjie; Tian, Chunmiao

    2015-02-15

    Although angle random walk (ARW) of fiber optic gyroscope (FOG) has been well modeled and identified before being integrated into the high-accuracy attitude control system of satellite, aging and unexpected failures can affect the performance of FOG after launch, resulting in the variation of ARW coefficient. Therefore, the ARW coefficient can be regarded as an indicator of “state of health” for FOG diagnosis in some sense. The Allan variance method can be used to estimate ARW coefficient of FOG, however, it requires a large amount of data to be stored. Moreover, the procedure of drawing slope lines for estimation is painful. To overcome the barriers, a weighted state-space model that directly models the ARW to obtain a nonlinear state-space model was established for FOG. Then, a neural extended-Kalman filter algorithm was implemented to estimate and track the variation of ARW in real time. The results of experiment show that the proposed approach is valid to detect the state of FOG. Moreover, the proposed technique effectively avoids the storage of data.

  19. Controlling formation and suppression of fiber-optical rogue waves.

    PubMed

    Brée, Carsten; Steinmeyer, Günter; Babushkin, Ihar; Morgner, Uwe; Demircan, Ayhan

    2016-08-01

    Fiber-optical rogue waves appear as rare but extreme events during optical supercontinuum generation in photonic crystal fibers. This process is typically initiated by the decay of a high-order fundamental soliton into fundamental solitons. Collisions between these solitons as well as with dispersive radiation affect the soliton trajectory in frequency and time upon further propagation. Launching an additional dispersive wave at carefully chosen delay and wavelength enables statistical manipulation of the soliton trajectory in such a way that the probability of rogue wave formation is either enhanced or reduced. To enable efficient control, parameters of the dispersive wave have to be chosen to allow trapping of dispersive radiation in the nonlinear index depression created by the soliton. Under certain conditions, direct manipulation of soliton properties is possible by the dispersive wave. In other more complex scenarios, control is possible via increasing or decreasing the number of intersoliton collisions. The control mechanism reaches a remarkable efficiency, enabling control of relatively large soliton energies. This scenario appears promising for highly dynamic all-optical control of supercontinua.

  20. Detecting eavesdropping activity in fiber optic networks

    NASA Astrophysics Data System (ADS)

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  1. Fiber Optic Wing Shape Sensing on NASA's Ikhana UAV

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This document discusses the development of fiber optic wing shape sensing on NASA's Ikhana vehicle. The Dryden Flight Research Center's Aerostructures Branch initiated fiber-optic instrumentation development efforts in the mid-1990s. Motivated by a failure to control wing dihedral resulting in a mishap with the Helios aircraft, new wing displacement techniques were developed. Research objectives for Ikhana included validating fiber optic sensor measurements and real-time wing shape sensing predictions; the validation of fiber optic mathematical models and design tools; assessing technical viability and, if applicable, developing methodology and approaches to incorporate wing shape measurements within the vehicle flight control system; and, developing and flight validating approaches to perform active wing shape control using conventional control surfaces and active material concepts.

  2. Fiber-Optic Sensing for In-Space Inspection

    NASA Technical Reports Server (NTRS)

    Pena, Francisco; Richards, W. Lance; Piazza, Anthony; Parker, Allen R.; Hudson, Larry D.

    2014-01-01

    This presentation provides examples of fiber optic sensing technology development activities performed at NASA Armstrong. Examples of current and previous work that support in-space inspection techniques and methodologies are highlighted.

  3. Recent progresses in scintillating doped silica fiber optics

    NASA Astrophysics Data System (ADS)

    De Mattia, Cristina; Mones, Eleonora; Veronese, Ivan; Fasoli, Mauro; Chiodini, Norberto; Cantone, Marie Claire; Vedda, Anna

    2014-09-01

    The recent progresses in the development and characterization of doped silica fiber optics for dosimetry applications in the modern radiation therapy, and for high energy physics experiments, are presented and discussed. In particular, the main purpose was the production of scintillating fiber optics with an emission spectrum which can be easily and efficiently distinguished from that of other spurious luminescent signals originated in the fiber optic material as consequence of the exposition to ionizing radiations (e.g. Cerenkov light and intrinsic fluorescence phenomena). In addition to the previously investigated dopant (Ce), other rare earth elements (Eu and Yb) were considered for the scintillating fiber optic development. The study of the luminescent and dosimetric properties of these new systems was carried out by using X and gamma rays of different energies and field sizes.

  4. Fiber Optic Repair and Maintainability (FORM) Program Progresses

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Advanced aircraft will employ fiber-optic interconnection components to transmit information from airframe and propulsion sensors to the flight control computers. Although these optical interconnects have been rigorously tested under laboratory conditions to determine their operating and environmental limits, there is concern as to their repairability and maintainability when placed in actual service. The Fiber Optic Repair and Maintainability (FORM) flight test program will provide data to enable designers to improve these fiber-optic interconnection systems for the next generation of aircraft. FORM is identifying critical problems in installing, maintaining, testing, and repairing fiber-optic interconnection systems in an operational avionics environment. This program is a cooperative Government/industry effort to evaluate optical component acceptability and installation techniques for aircraft.

  5. Toxin detection using a fiber-optic-based biosensor

    NASA Astrophysics Data System (ADS)

    Ogert, Robert A.; Shriver-Lake, Lisa C.; Ligler, Frances S.

    1993-05-01

    Using an evanescent wave fiber optic-based biosensor developed at Naval Research Laboratory, ricin toxin can be detected in the low ng/ml range. Sensitivity was established at 1 - 5 ng/ml using a two-step assay. The two-step assay showed enhanced signal levels in comparison to a one-step assay. A two-step assay utilizes a 10 minute incubation of an immobilized affinity purified anti-ricin antibody fiber optic probe in the ricin sample before placement in a solution of fluorophore-labeled goat anti-ricin antibodies. The specific fluorescent signal is obtained by the binding of the fluorophore-labeled antibodies to ricin which is bound by the immobilized antibodies on the fiber optic probe. The toxin can be detected directly from urine and river water using this fiber optic assay.

  6. Enabling technologies for fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Ibrahim, Selwan K.; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.

    2016-04-01

    In order for fiber optic sensors to compete with electrical sensors, several critical parameters need to be addressed such as performance, cost, size, reliability, etc. Relying on technologies developed in different industrial sectors helps to achieve this goal in a more efficient and cost effective way. FAZ Technology has developed a tunable laser based optical interrogator based on technologies developed in the telecommunication sector and optical transducer/sensors based on components sourced from the automotive market. Combining Fiber Bragg Grating (FBG) sensing technology with the above, high speed, high precision, reliable quasi distributed optical sensing systems for temperature, pressure, acoustics, acceleration, etc. has been developed. Careful design needs to be considered to filter out any sources of measurement drifts/errors due to different effects e.g. polarization and birefringence, coating imperfections, sensor packaging etc. Also to achieve high speed and high performance optical sensing systems, combining and synchronizing multiple optical interrogators similar to what has been used with computer/processors to deliver super computing power is an attractive solution. This path can be achieved by using photonic integrated circuit (PIC) technology which opens the doors to scaling up and delivering powerful optical sensing systems in an efficient and cost effective way.

  7. Fiber optic probe for light scattering measurements

    DOEpatents

    Nave, S.E.; Livingston, R.R.; Prather, W.S.

    1993-01-01

    This invention is comprised of a fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman- scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  8. Fiber optic probe for light scattering measurements

    DOEpatents

    Nave, Stanley E.; Livingston, Ronald R.; Prather, William S.

    1995-01-01

    A fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman-scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  9. Microbend fiber-optic temperature sensor

    DOEpatents

    Weiss, J.D.

    1995-05-30

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber`s transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature. 5 figs.

  10. Microbend fiber-optic temperature sensor

    DOEpatents

    Weiss, Jonathan D.

    1995-01-01

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber's transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature.

  11. Emerging technology in fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Dyott, Richard B.

    1991-03-01

    Some recent innovations in interferoinetric fiber optic sensors include special fibers new components and sensor systems. Many of the concepts have precedents in microwaves. 1. GENERAL PRINCIPLES The application of optical fibers to sensors is diffuse compared with their application to optical communications which is essentially focused on the single problem of how to get information from A to B. A fiber sensor is viable when it can do something not possible with better than more cheaply than any existing method. The probability of the emergence of a new sensor depends on the length of time that a need for the sensor and the possibility of meeting that need have co-existed regardless of whether the need or the possibility has appeared first. 2. TYPES OF SENSOR Fiber sensors can be divided into: a) Multimode fiber sensors which depend on amplitude effects b) Single mode (single path) fiber sensors which depend on phase effects. Since multimode fiber has existed for many decades the emergence of a new multimode sensor depends mostly on the discovery of a new need for such a sensor. On the other hand single mode/single path (i. e. polarization maintaining) fiber is relatively new and so is still being applied to existing needs. This is particularly so of recent innovations in fibers and components. SPIE Vol. 1396 Applications of Optical Engineering Proceedings of OE/Midwest ''90 / 709

  12. Fiber optic voice/data network

    NASA Technical Reports Server (NTRS)

    Bergman, Larry A. (Inventor)

    1989-01-01

    An asynchronous, high-speed, fiber optic local area network originally developed for tactical environments with additional benefits for other environments such as spacecraft, and the like. The network supports ordinary data packet traffic simultaneously with synchronous T1 voice traffic over a common token ring channel; however, the techniques and apparatus of this invention can be applied to any deterministic class of packet data networks, including multitier backbones, that must transport stream data (e.g., video, SAR, sensors) as well as data. A voice interface module parses, buffers, and resynchronizes the voice data to the packet network employing elastic buffers on both the sending and receiving ends. Voice call setup and switching functions are performed external to the network with ordinary PABX equipment. Clock information is passed across network boundaries in a token passing ring by preceeding the token with an idle period of non-transmission which allows the token to be used to re-establish a clock synchronized to the data. Provision is made to monitor and compensate the elastic receiving buffers so as to prevent them from overflowing or going empty.

  13. A proposed fiber-optic neutron monitor

    NASA Astrophysics Data System (ADS)

    Weiss, Jonathan D.

    2013-02-01

    An interferometric fiber-optic sensor is proposed as a neutron detector. The basic mechanism is the absorption of neutrons by the constituent atoms of the fiber: silicon, germanium, and oxygen. As a result, the isotopic mass of these elements increases and thereby decreases certain infrared vibrational frequencies. These changes impact the refractive index of the core and cladding of the fiber and therefore the propagation constant of the fundamental mode of the singlemode fibers constitutes the interferometer. This neutron-induced shift in the propagation constant produces a corresponding shift in the phase of the light emerging from one fiber of a Mach-Zehnder interferometer. A review of the basics of singlemode fibers is presented, and the changes in indexes and the propagation constant are calculated under varying shifts in isotopic mass. Reference is made to the computational tool available for a simulated sensor response. Some neutron absorption cross-sections as functions of neutron kinetic energy are presented, along with a possible design of the sensor.

  14. Fiber optic-based regenerable biosensor

    DOEpatents

    Sepaniak, Michael J.; Vo-Dinh, Tuan

    1993-01-01

    A fiber optic-based regenerable biosensor. The biosensor is particularly suitable for use in microscale work in situ. In one embodiment, the biosensor comprises a reaction chamber disposed adjacent the distal end of a waveguide and adapted to receive therein a quantity of a sample containing an analyte. Leading into the chamber is a plurality of capillary conduits suitable for introducing into the chamber antibodies or other reagents suitable for selective interaction with a predetermined analyte. Following such interaction, the contents of the chamber may be subjected to an incident energy signal for developing fluorescence within the chamber that is detectable via the optical fiber and which is representative of the presence, i.e. concentration, of the selected analyte. Regeneration of the biosensor is accomplished by replacement of the reagents and/or the analyte, or a combination of these, at least in part via one or more of the capillary conduits. The capillary conduits extend from their respective terminal ends that are in fluid communication with the chamber, away from the chamber to respective location(s) remote from the chamber thereby permitting in situ location of the chamber and remote manipulation and/or analysis of the activity with the chamber.

  15. A compact fiber optic eye diagnostic system

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.; Suh, Kwang I.; Dubin, Stephen; Dellavecchia, Michael A.

    1995-11-01

    A new fiber optic probe developed for determining transport properties of sub-micron particles in fluid experiments in a microgravity environment has been applied to study different parts of an eye. The probe positioned in front of an eye, delivers a low power (approximately few microW) light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like materials in the vitreous humor. In a clinical setting, the probe can be mounted on a standard slit-lamp apparatus simply using a Hruby lens holder. The capability of detecting cataracts, both nuclear and cortical, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before the surgery becomes necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber and their complications, e.g., posterior vitreous detachment and diabetic retinopathy.

  16. Glucose determination with fiber optic spectrometers

    NASA Astrophysics Data System (ADS)

    Starke, Eva; Kemper, Ulf; Barschdorff, Dieter

    1999-05-01

    Noninvasive blood glucose monitoring is the aim of research activities concerning the detection of small glucose concentrations dissolved in water and blood plasma. One approach for these measurements is the exploitation of absorption bands in the near infrared. However, the strong absorption of water represents a major difficulty. Transmission measurements of glucose dissolved in water and in blood plasma in the spectral region around 1600 nm with one- beam spectrometers and a FT-IR spectrometer are discussed. The evaluation of the data is carried out using a two-layer Lambert-Beer model and neural networks. In order to reduce the dimensions of a potential measuring device, an integrated acousto-optic tunable filter (AOTF) with an Erbium doped fiber amplifier as a radiation source is used. The fiber optic components are examined concerning their suitability. The smallest concentrations of glucose dissolved in water that can be separated are approximately 50 mg/dl. In the range of 50 mg/dl to 1000 mg/dl a correlation coefficient of 0.98 between real and estimated glucose concentrations is achieved using neural networks. In blood plasma so far glucose concentrations of about 100 mg/dl can be distinguished with good accuracy.

  17. The design of scanning fiber optical system

    NASA Astrophysics Data System (ADS)

    Bai, Yangbo; Xiang, Wanghua; Zu, Peng; Li, Xu; Ren, Fang; Shi, Xiaozhou; Xu, Xiaoyan

    2009-11-01

    A novel scanning fiber optical system for multi-channel optical switch has been demonstrated. This scanning fiber system consists of motor, photoelectric encoder, EPOS position controller, Field Programmable Gate Array (FPGA), fiber laser, transmitting energy fiber bundle, reflector, five-dimensional optical adjustable mounts, etc. In this device, the control system is composed of EPOS position controller and FPGA. Furthermore, the photoelectric encoder is directly connected to the central shaft of the motor to read its position information. The reflector is slantways fixed on the other end of the motor central shaft. Also, the fiber bundle is fixed by optical adjustable mounts to achieve slight position adjustment, which is used as launching system of this configuration. In the operation process, the motor in uniform rotation state drives the photoelectric encoder and the reflector at the same angle velocity. The photoelectric encoder reads the incremental signal and absolute position signal of motor, and then sends them to EPOS position controller and FPGA respectively. FPGA sends square wave signal to the fiber laser under the control of EPOS position controller and FPGA. Triggered by the square wave signal, the fiber laser emits a laser pulse to the center point of the reflector. At the same time, the reflector makes the laser pulse transmitting into a certain transmitting energy fiber according to the angle of the reflector at that moment. Therefore, with the motor rotates at uniform speed, the laser pulse is sent to different fibers, by which multi-channel optical switch is completed.

  18. Plasmonic fiber-optic vector magnetometer

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaochuan; Guo, Tuan; Zhang, Xuejun; Xu, Jian; Xie, Wenping; Nie, Ming; Wu, Qiang; Guan, Bai-Ou; Albert, Jacques

    2016-03-01

    A compact fiber-optic vector magnetometer based on directional scattering between polarized plasmon waves and ferro-magnetic nanoparticles is demonstrated. The sensor configuration reported in this work uses a short section of tilted fiber Bragg grating (TFBG) coated with a nanometer scale gold film and packaged with a magnetic fluid (Fe3O4) inside a capillary. The transmission spectrum of the sensor provides a fine comb of narrowband resonances that overlap with a broader absorption of the surface plasmon resonance (SPR). The wavelength of the SPR attenuation in transmission shows high sensitivity to slight perturbations by magnetic fields, due to the strong directional scattering between the SPR attenuated cladding modes and the magnetic fluid near the fiber surface. Both the orientation (2 nm/deg) and the intensity (1.8 nm/mT) of magnetic fields can be determined unambiguously from the TFBG spectrum. Temperature cross sensitivity can be referenced out by monitoring the wavelength of the core mode resonance simultaneously.

  19. A Compact Fiber Optic Eye Diagnostics System

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.; DellaVecchia, Michael A.; Dubin, Stephen; Zigler, J. Samuel, Jr.

    1995-01-01

    A new fiber optic probe development for determining transport properties of sub-micron particles in fluids experiments in a microgravity environment has been applied to study different parts of the eye. The probe positioned in front of an eye, delivers a low power (approximately a few mu W) light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like material in the vitreous humor. For a clinical use, the probe is mounted on a standard slit-lamp apparatus simply using Hruby lens holder. The capability of detecting cataracts, both nuclear and cortical, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before the surgery becomes necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber and their complications, e.g., posterior vitreous detachment and diabetic retinopathy.

  20. A Compact Fiber Optic Eye Diagnostic System

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.; Dubin, Stephen; Dellavecchia, Michael A.

    1995-01-01

    A new fiber optic probe developed for determining transport properties of sub-micron particles in fluid experiments in a microgravity environment has been applied to study different parts of an eye. The probe positioned in front of an eye, delivers a low power (approximately few microW) light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like materials in the vitreous humor. In a clinical setting, the probe can be mounted on a standard slit-lamp apparatus simply using a Hruby lens holder. The capability of detecting cataracts, both nuclear and cortical, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before the surgery becomes necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber and their complications, e.g., posterior vitreous detachment and diabetic retinopathy.

  1. Optical isolator system for fiber-optic uses

    NASA Technical Reports Server (NTRS)

    Lutes, George

    1988-01-01

    A low loss optical isolator suitable for fiber-optic uses has been assembled from commercial components. The isolator exhibits reverse isolation of greater than 70 dB, with a forward loss of less than 1.3dB. This system provides an effective approach for reducing instabilities encountered in the output signal of semiconductor lasers in certain applications of fiber-optic systems. The paper presents a phenomenological explanation for the superior performance of the isolator system.

  2. Optical isolator system for fiber-optic uses.

    PubMed

    Lutes, G

    1988-04-01

    A low loss optical isolator suitable for fiber-optic uses has been assembled from commercial components. The isolator exhibits reverse isolation of >70 dB, with a forward loss of <1.3 dB. This system provides an effective approach for reducing instabilities encountered in the output signal of semiconductor lasers in certain applications of fiber-optic systems. The paper presents a phenomenological explanation for the superior performance of the isolator system.

  3. Alternative Controller for a Fiber-Optic Switch

    NASA Technical Reports Server (NTRS)

    Peters, Robert

    2007-01-01

    A simplified diagram of a relatively inexpensive controller for a DiCon VX (or equivalent) fiber-optic switch -- an electromechanically actuated switch for optically connecting one or two input optical fibers to any of a number of output optical fibers is shown. DiCon VX fiber-optic switches are used primarily in research and development in the telecommunication industry. This controller can control any such switch having up to 32 output channels.

  4. Waveguide Studies for Fiber Optics and Optical Signal Processing Applications.

    DTIC Science & Technology

    1980-04-01

    beam expander is shown in Fig. 2 -i. The beam, which is expanded to approximately 100 Wm, can be deflected acousto - optically to make a spectrum analyzer...3 2 . DBR Lasers for Fiber Optics and Optical Signal Processing Sources ......... ................. 4 4. Studies of LiNbO 3...6 Chapter 1. Wave Beam Expansion ....... ............. 9 Chapter 2 . DBR Lasers for Fiber Optics and Optical Signal Processing Sources

  5. Advances in fiber optic sensors for in-vivo monitoring

    NASA Astrophysics Data System (ADS)

    Baldini, Francesco; Mignani, Anna G.

    1995-09-01

    Biomedical fiber-optic sensors are attractive for the measurement of both physical and chemical parameters as well as for spectral measurements directly performed on the patient. An overview of fiber-optic sensors for in vivo monitoring is given, with particular attention to the advantages that these sensors are able to offer in different fields of application such as cardiovascular and intensive care, angiology, gastroenterology, ophthalmology, oncology, neurology, dermatology, and dentistry.

  6. Applications of Fiber Optical Sensors in Petroleum Industry

    NASA Astrophysics Data System (ADS)

    Dehghani, Maryam

    2011-12-01

    Fiber optic sensor systems have been in the oilfield for a number of years now, however, they have had many shortcomings, including high price points, which have prevented widespread adoption. We can integrate fiber optic sensors into oil and gas companies products and processes and take advantage both technically and economically of the ever more rapid advances in technology. We can design all sorts of fiber optic sensors that cover various sections of petroleum industry operations. Most of researches have been in this part of technology since that is where most of the applications are. However, the other types of sensors have also developed as well. Most of fiber optical sensors have just one or perhaps a few detectors, but some high resolution imaging systems with large detector element arrays have also developed. Some fiber optical sensors are frequently incorporated as components in larger products. They are also used independently in process control and other types of applications in petroleum industry. This paper describes various aspects of fiber optic sensors and their applications, and addresses their role in petroleum industry.

  7. Raman fiber optic probe assembly for use in hostile environments

    DOEpatents

    Schmucker, John E.; Falk, Jon C.; Archer, William B.; Blasi, Raymond J.

    2000-01-01

    This invention provides a device for Raman spectroscopic measurement of composition and concentrations in a hostile environment by the use of a first fiber optic as a means of directing high intensity monochromatic light from a laser to the hostile environment and a second fiber optic to receive the lower intensity scattered light for transmittal to a monochromator for analysis. To avoid damage to the fiber optics, they are protected from the hostile environment. A preferred embodiment of the Raman fiber optic probe is able to obtain Raman spectra of corrosive gases and solutions at temperatures up to 600.degree. F. and pressures up to 2000 psi. The incident exciting fiber optic cable makes an angle of substantially 90.degree. with the collecting fiber optic cable. This 90.degree. geometry minimizes the Rayleigh scattering signal picked up by the collecting fiber, because the intensity of Rayleigh scattering is lowest in the direction perpendicular to the beam path of the exciting light and therefore a 90.degree. scattering geometry optimizes the signal to noise ratio.

  8. Robust Mapping of Incoherent Fiber-Optic Bundles

    NASA Technical Reports Server (NTRS)

    Roberts, Harry E.; Deason, Brent E.; DePlachett, Charles P.; Pilgrim, Robert A.; Sanford, Harold S.

    2007-01-01

    A method and apparatus for mapping between the positions of fibers at opposite ends of incoherent fiber-optic bundles have been invented to enable the use of such bundles to transmit images in visible or infrared light. The method is robust in the sense that it provides useful mapping even for a bundle that contains thousands of narrow, irregularly packed fibers, some of which may be defective. In a coherent fiber-optic bundle, the input and output ends of each fiber lie at identical positions in the input and output planes; therefore, the bundle can be used to transmit images without further modification. Unfortunately, the fabrication of coherent fiber-optic bundles is too labor-intensive and expensive for many applications. An incoherent fiber-optic bundle can be fabricated more easily and at lower cost, but it produces a scrambled image because the position of the end of each fiber in the input plane is generally different from the end of the same fiber in the output plane. However, the image transmitted by an incoherent fiber-optic bundle can be unscrambled (or, from a different perspective, decoded) by digital processing of the output image if the mapping between the input and output fiber-end positions is known. Thus, the present invention enables the use of relatively inexpensive fiber-optic bundles to transmit images.

  9. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 2: Fiber optic technology and long distance networks

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  10. Demonstration of a Fiber Optic Regression Probe

    NASA Technical Reports Server (NTRS)

    Korman, Valentin; Polzin, Kurt A.

    2010-01-01

    The capability to provide localized, real-time monitoring of material regression rates in various applications has the potential to provide a new stream of data for development testing of various components and systems, as well as serving as a monitoring tool in flight applications. These applications include, but are not limited to, the regression of a combusting solid fuel surface, the ablation of the throat in a chemical rocket or the heat shield of an aeroshell, and the monitoring of erosion in long-life plasma thrusters. The rate of regression in the first application is very fast, while the second and third are increasingly slower. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor is optical, using two different, co-located fiber-optics to perform the regression measurement. The disparate optical transmission properties of the two fiber-optics makes it possible to measure the regression rate by monitoring the relative light attenuation through the fibers. As the fibers regress along with the parent material in which they are embedded, the relative light intensities through the two fibers changes, providing a measure of the regression rate. The optical nature of the system makes it relatively easy to use in a variety of harsh, high temperature environments, and it is also unaffected by the presence of electric and magnetic fields. In addition, the sensor could be used to perform optical spectroscopy on the light emitted by a process and collected by fibers, giving localized measurements of various properties. The capability to perform an in-situ measurement of material regression rates is useful in addressing a variety of physical issues in various applications. An in-situ measurement allows for real-time data regarding the erosion rates, providing a quick method for

  11. Fiber-Optic Propagation Effects in Long-Haul HF/VHF/UHF Analog Photonic Links

    DTIC Science & Technology

    2014-04-17

    S., “Nonlinear index measurements of various fibre types over C+L bands using four-wave mixing,” in Proc. 27th European Conf. on Optical ...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5650--14-9537 Fiber- Optic Propagation Effects in Long-Haul HF/VHF/UHF Analog Photonic... Optical Sciences Division i REPORT DOCUMENTATION PAGE Form ApprovedOMB No. 0704-0188 3. DATES COVERED (From - To) Standard Form 298 (Rev. 8-98) Prescribed

  12. The Application of Fiber Optic Wavelength Division Multiplexing in RF Avionics

    NASA Technical Reports Server (NTRS)

    Ngo, Duc; Nguyen, Hung; Atiquzzaman, Mohammed; Sluss, James J., Jr.; Refai, Hakki H.

    2004-01-01

    This paper demonstrates a successful application of wavelength division multiplexing (WDM) to the avionics environment to support analog RF signal transmission. We investigate the simultaneous transmission of four RF signals (channels) over a single optical fiber. These four analog channels are sequentially multiplexed and demultiplexed at different points along a fiber optic backbone to more closely emulate the conditions found onboard aircraft. We present data from measurements of signal-to-noise ratio (SNR), transmission response (loss and gain), group delay that defines phase distortion, and dynamic range that defines nonlinear distortion. The data indicate that WDM is well-suited for avionics applications.

  13. Development of fiber-optic CDMA systems

    NASA Astrophysics Data System (ADS)

    Hassan, Kamel M.

    2005-09-01

    Fiber-Optic code division multiple access communication systems (FO-CDMA) have been given an intensifying interest in the last decade. This is due to several advantages may be offered by this technology, where it offers a promising solution for efficient truly asynchronous multiple access network as well as it has the ability to support variable bit rate and bursty traffic. FO-CDMA system permits an extra high optical signal processing speed compared to electronic signal processing, and there is no need to use wavelength sensitive components which are required in WDMA networks. FO-CDMA may be performed in time domain "t" or in wavelength domain "λ"(spectral amplitude encoding), this strategy is called one dimensional (1-D) optical coding. One of the most serious problems for CDMA is the multiple access interference (MAI), where it produces an asymptotic floor to the error probability, and limits the number of simultaneous users. Developing of FO-CDMA system to increase the number of users as well as to improve the system performance may be done through developing the system structure, choice of the appropriate detection scheme and the proper signature codes, developing the encoders and decoders hardware, use of adequate error correcting codes, incorporating optical amplifiers, use of multidimensional FO-CDMA techniques, and use of MAI cancellation and dispersion compensation techniques. This paper highlights the main directions of system development. The main technological challenges that have to be overcome before a wide spread of this technology have been also investigated. Finally, potential applications of this technology have been discussed.

  14. Overview of NASA research in fiber optics for aircraft controls

    NASA Technical Reports Server (NTRS)

    Seng, Gary T.

    1988-01-01

    The challenge of those involved in aircraft control system hardware development is to accommodate an ever-increasing complexity in aircraft control, while limiting the size and weight of the components and improving system reliability. A technology that displays promise towards this end is fiber optics. The primary advantages of employing optical fibers, passive optical sensors and optically controlled actuators are weight/volume reduction, immunity from electromagnetic effects, high bandwidth capabilities and freedom from short circuits/sparking contacts. Since 1975, NASA Lewis has been performing in-house, contract and grant research in fiber optic sensors, high temperature electro-optic switches and fly-by-light control system architecture. Passive optical sensor development is an essential yet challenging area of work and has therefore received much attention during this period. A major effort to develop fly-by-light control system technology, known as the Fiber Optic Control System Integration (FOCSI) program, was initiated in 1985 as a cooperative effort between NASA and DOD. Phase 1 of FOCSI, completed in 1986, was aimed at the design of a fiber optic integrated propulsion/flight control system. Phase 2 will provide subcomponent and system development and system testing. In addition to a summary of the benefits of fiber optics, the FOCSI program, sensor advances, and future directions in the NASA Lewis program are discussed.

  15. Adhesive Bubble Removal Method and Apparatus for Fiber Optic Applications

    NASA Technical Reports Server (NTRS)

    Kolasinski, John R. (Inventor)

    2001-01-01

    An assembly for supporting a fiber optic termination or connector in a centrifuge and comprising a cylindrical body member having a top portion adapted to receive the ferrule body portion of a fiber optic termination or connector and a bottom portion for receiving a cylindrical piston/sealing unit is presented. The piston portion of the piston/sealing unit includes a compressible tip which is adapted to a butt up against the outer end of the ferrule body portion of the fiber optic termination or connector. A cylindrical end cap fits over the upper end of the body member for holding the fiber optic termination in place on the body member and causing a seal to be formed between the termination or connector and the upper portion of the body member adjacent the compressible tip of the plunger. The parts, when fitted together, are placed in a centrifuge which is operated for a predetermined spin cycle, so as to cause any bubbles in the uncured liquid adhesive to be vented outwardly from the termination through the end cap. Subsequent removal of the fiber optic termination or connector from the centrifuge and assembly is "bubble free" and ready to be joined with an optical fiber which is inserted in the ferrule end of the termination or connector.

  16. Surface-bonded fiber optic Sagnac sensors for ultrasound detection.

    PubMed

    Jang, Tae Seong; Lee, Seung Seok; Kim, Young Gil

    2004-04-01

    This paper describes a fiber optic sensor suitable for remote sensing and multi-point detection of ultrasound. This ultrasound sensor is based on the surface-bonded fiber optic Sagnac interferometer with the output fringe visibility of 1; it consists of a laser source, an ordinary single mode fiber delay line, a fiber coupler, a phase modulator and polarization controllers. For the validation of the sensor, surface acoustic waves and Lamb waves are excited by illuminating a steel specimen with an array of Q-switched Nd:YAG laser-generated line sources and the measurement of laser-generated ultrasonic waves are performed on the specimen surface using the surface-mounting fiber optic Sagnac sensor. The surface-bonded fiber optic sensor developed in this study has a simple configuration for detection of ultrasonic waves. Effectiveness of surface-bonded fiber optic Sagnac sensors for remote sensing of ultrasound and in situ monitoring of structures is investigated. The capability of multi-point detection of ultrasound by this Sagnac sensor is also discussed.

  17. Qualification of Fiber Optic Cables for Martian Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Lindensmith, Christian A.; Roberts, William T.; Rainen, Richard A.

    2011-01-01

    Means have been developed for enabling fiber optic cables of the Laser Induced Breakdown Spectrometer instrument to survive ground operations plus the nominal 670 Martian conditions that include Martian summer and winter seasons. The purpose of this development was to validate the use of the rover external fiber optic cabling of ChemCam for space applications under the extreme thermal environments to be encountered during the Mars Science Laboratory (MSL) mission. Flight-representative fiber optic cables were subjected to extreme temperature thermal cycling of the same diurnal depth (or delta T) as expected in flight, but for three times the expected number of in-flight thermal cycles. The survivability of fiber optic cables was tested for 600 cumulative thermal cycles from -130 to +15 C to cover the winter season, and another 1,410 cumulative cycles from -105 to +40 C to cover the summer season. This test satisfies the required 3 times the design margin that is a total of 2,010 thermal cycles (670 x 3). This development test included functional optical transmission tests during the course of the test. Transmission of the fiber optic cables was performed prior to and after 1,288 thermal cycles and 2,010 thermal cycles. No significant changes in transmission were observed on either of the two representative fiber cables subject through the 3X MSL mission life that is 2,010 thermal cycles.

  18. Needle-based confocal laser endomicroscopy

    PubMed Central

    Giovannini, Marc

    2015-01-01

    New applications of confocal laser endomicroscopy were developed as pCLE in the bile duct and nCLE for pancreatic cystic tumors, pancreatic masses and lymph nodes. The aim of this paper would be to give you an update in this new technology and to try to define its place in the diagnosis of cystic and solid pancreatic masses. The material used was a 19G EUS-needle in which the stylet was replaced by the Confocal mini-probe. The mini-probe (0.632 mm of diameter) is pre-loaded and screwed by a locking device in the EUS-Needle and guided endosonographically in the target. Regarding pancreatic cystic lesion, the presence of epithelial villous structures based on nCLE was associated with pancreatic cystic neoplasm (IPMN) (P = 0.004) and provided a sensitivity of 59%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 50%. A superficial vascular network pattern visualized on nCLE was identified in serous cystadenomas. It corresponded on pathological specimen to a dense and subepithelial capillary vascularization. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of this sign for the diagnosis of SCA were 87%, 69%, 100%, 100%, and 82%, respectively. In pancreatic adenocarcinomas, nCLE found vascular leakage with irregular vessels with leakage of fluorescein into the tumor, large dark clumps which correspond to humps of malignant cells. These criteria correlate with the histological structure of those tumors which are characterized by tumoral glands, surrounded by fibrosis in case of fibrous stroma tumor. Neuroendocrine tumors showed a dense network of small vessels on a dark background, which fits with the histological structure based on cord of cells surrounded by vessels and by fibrosis. nCLE is feasible during a EUS examination; these preliminary results are very encouraging and may be used in the future in case of inconclusive EUS-FNA. PMID:26643694

  19. Fiber optic in vivo imaging in the mammalian nervous system

    PubMed Central

    Mehta, Amit D; Jung, Juergen C; Flusberg, Benjamin A; Schnitzer, Mark J

    2010-01-01

    The compact size, mechanical flexibility, and growing functionality of optical fiber and fiber optic devices are enabling several new modalities for imaging the mammalian nervous system in vivo. Fluorescence microendoscopy is a minimally invasive fiber modality that provides cellular resolution in deep brain areas. Diffuse optical tomography is a non-invasive modality that uses assemblies of fiber optic emitters and detectors on the cranium for volumetric imaging of brain activation. Optical coherence tomography is a sensitive interferometric imaging technique that can be implemented in a variety of fiber based formats and that might allow intrinsic optical detection of brain activity at a high resolution. Miniaturized fiber optic microscopy permits cellular level imaging in the brains of behaving animals. Together, these modalities will enable new uses of imaging in the intact nervous system for both research and clinical applications. PMID:15464896

  20. Fundamental concepts of integrated and fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.

    1995-01-01

    This chapter discusses fiber optic and integrated optic sensor concepts. Unfortunately, there is no standard method to categorize these sensor concepts. Here, fiber optic and integrated optic sensor concepts will be categorized by the primary modulation technique. These modulation techniques have been classified as: intensity, phase, wavelength, polarization, and time/frequency modulation. All modulate the output light with respect to changes in the physical or chemical property to be measured. Each primary modulation technique is then divided into fiber optic and integrated optic sections which are treated independently. For each sensor concept, possible sensor applications are discussed. The sensors and references discussed are not exhaustive, but sufficient to give the reader an overview of sensor concepts developed to date. Sensor multiplexing techniques such as wavelength division, time division, and frequency division will not be discussed as they are beyond the scope of this report.

  1. PARROT A fiber optic link for particle detectors

    NASA Astrophysics Data System (ADS)

    Leone, Maurizio; Trasatti, Luciano; Stefani, Giovanni; Avaldi, Lorenzo

    1993-09-01

    The fiber optic technology has been used to build a transmitter-receiver system capable of delivering channeltron or PM tube signals through a few hundred meter span. The intrinsic immunity of optical fibers to e.m. noise has been used to reduce noise problems in an experimental apparatus equipped with two electrostatic analyzers for coincidence (e, 2e) spectroscopy. A coincidence energy separation spectrum of He, used for calibration of the apparatus energy scale, has been measured using fiber optic links instead of coaxial cables. The system was completely built using cheap and easily available commercial components. The results show that fiber optic links could become a viable technique for noise reduction, high voltage decoupling and low temperature calorimeters signal transfer.

  2. Ship Effect Measurements With Fiber Optic Neutron Detector

    SciTech Connect

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

    2010-08-10

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

  3. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, S.A.; Seppala, L.G.

    1984-06-13

    A dye laser oscillator in which one light beam is used to pump a continuous stream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  4. Heterodyne interrogation system for TDM interferometric fiber optic sensors array

    NASA Astrophysics Data System (ADS)

    Fang, Gaosheng; Xu, Tuanwei; Li, Fang

    2015-04-01

    We proposed an interrogation system for time sequenced fiber optic sensors array based on the heterodyne detection and orthogonal demodulation techniques, where the sensors array is a kind of interferometric fiber optic sensors. The techniques are theoretically analyzed and experimentally demonstrated with recovering the sinusoid wave and triangle wave applied to the sensors. The system has a phase resolution about 1×10-4 rad/√Hz, the amplitude consistency and linearity of the demodulated results are 95.275% and 98.379%, respectively with single frequency event applied to the sensors.

  5. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, Steve A.; Seppala, Lynn G.

    1986-01-01

    A dye laser oscillator in which one light beam is used to pump a continuous tream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  6. Fiber optic coherent laser radar 3d vision system

    SciTech Connect

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-12-31

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  7. Fiber Optic Cable Thermal Preparation to Ensure Stable Operation

    NASA Technical Reports Server (NTRS)

    Thoames Jr, William J.; Chuska, Rick F.; LaRocca, Frank V.; Switzer, Robert C.; Macmurphy, Shawn L.; Ott, Melanie N.

    2008-01-01

    Fiber optic cables are widely used in modern systems that must provide stable operation during exposure to changing environmental conditions. For example, a fiber optic cable on a satellite may have to reliably function over a temperature range of -50 C up to 125 C. While the system requirements for a particular application will dictate the exact method by which the fibers should be prepared, this work will examine multiple ruggedized fibers prepared in different fashions and subjected to thermal qualification testing. The data show that if properly conditioned the fiber cables can provide stable operation, but if done incorrectly, they will have large fluctuations in transmission.

  8. Modulated Fourier Transform Raman Fiber-Optic Spectroscopy

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Cooper, John B. (Inventor); Wise, Kent L. (Inventor)

    2000-01-01

    A modification to a commercial Fourier Transform (FT) Raman spectrometer is presented for the elimination of thermal backgrounds in the FT Raman spectra. The modification involves the use of a mechanical optical chopper to modulate the continuous wave laser, remote collection of the signal via fiber optics, and connection of a dual-phase digital-signal-processor (DSP) lock-in amplifier between the detector and the spectrometer's collection electronics to demodulate and filter the optical signals. The resulting Modulated Fourier Transform Raman Fiber-Optic Spectrometer is capable of completely eliminating thermal backgrounds at temperatures exceeding 300 C.

  9. Fiber Optic Biosensing Probes For Biomedically Important Compounds

    NASA Astrophysics Data System (ADS)

    Arnold, Mark A.

    1988-06-01

    Fiber optic biosensing probes for several bioanalytes of clinical and biomedical importance are described. The development of biosensors based on immobilization of a deaminating enzyme at the tip of a fiber optic ammonia sensor is illustrated with a biosensing probe for urea. In addition, biosensors based on the direct fluorometric detection of reduced nicotinamide adenine dinucleotide (NADH) at the tip of an optical fiber device are presented. Probes for lactate and pyruvate illustrate this concept. Finally, preliminary results from an investigation to prepare NADH sensing probes based on immobilized bacterial luciferase are given.

  10. Nanomechanical displacement detection using fiber-optic interferometry

    SciTech Connect

    Azak, N. O.; Shagam, M. Y.; Karabacak, D. M.; Ekinci, K. L.; Kim, D. H.; Jang, D. Y.

    2007-08-27

    We describe a fiber-optic interferometer to detect the motion of nanomechanical resonators. In this system, the primary technical challenge of aligning the fiber-optic probe to nanometer-scale resonators is overcome by simply monitoring the scattered light from the devices. The system includes no free-space optical components, and is thus simple, stable, and compact with an estimated displacement sensitivity of {approx}0.3 pm/{radical}(Hz) at optical power levels of {approx}0.75 mW.

  11. Optical fiber networks for remote fiber optic sensors.

    PubMed

    Fernandez-Vallejo, Montserrat; Lopez-Amo, Manuel

    2012-01-01

    This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered.

  12. Human psychophysiological activity monitoring methods using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Uzieblo-Zyczkowska, B.

    2010-10-01

    The paper presents the concept of fiber optic sensor system for human psycho-physical activity detection. A fiber optic sensor that utilizes optical phase interferometry or intensity in modalmetric to monitor a patient's vital signs such as respiration cardiac activity, blood pressure and body's physical movements. The sensor, which is non-invasive, comprises an optical fiber interferometer that includes an optical fiber proximately situated to the patient so that time varying acusto-mechanical signals from the patient are coupled into the optical fiber. The system can be implemented in embodiments ranging form a low cost in-home to a high end product for in hospital use.

  13. Demodulation System for Fiber Optic Bragg Grating Dynamic Pressure Sensing

    NASA Technical Reports Server (NTRS)

    Lekki, John D.; Adamovsky, Grigory; Floyd, Bertram

    2001-01-01

    Fiber optic Bragg gratings have been used for years to measure quasi-static phenomena. In aircraft engine applications there is a need to measure dynamic signals such as variable pressures. In order to monitor these pressures a detection system with broad dynamic range is needed. This paper describes an interferometric demodulator that was developed and optimized for this particular application. The signal to noise ratio was maximized through temporal coherence analysis. The demodulator was incorporated in a laboratory system that simulates conditions to be measured. Several pressure sensor configurations incorporating a fiber optic Bragg grating were also explored. The results of the experiments are reported in this paper.

  14. Fiber-Optic Terahertz Data-Communication Networks

    NASA Technical Reports Server (NTRS)

    Chua, Peter L.; Lambert, James L.; Morookian, John M.; Bergman, Larry A.

    1994-01-01

    Network protocols implemented in optical domain. Fiber-optic data-communication networks utilize fully available bandwidth of single-mode optical fibers. Two key features of method: use of subpicosecond laser pulses as carrier signals and spectral phase modulation of pulses for optical implementation of code-division multiple access as multiplexing network protocol. Local-area network designed according to concept offers full crossbar functionality, security of data in transit through network, and capacity about 100 times that of typical fiber-optic local-area network in current use.

  15. RF modulated fiber optic sensing systems and their applications

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Eustace, John G.

    1992-01-01

    A fiber optic sensing system with an intensity sensor and a Radio Frequency (RF) modulated source was shown to have sensitivity and resolution much higher than a comparable system employing low modulating frequencies or DC mode of operation. Also the RF modulation with an appropriate configuration of the sensing system provides compensation for the unwanted intensity losses. The basic principles and applications of a fiber optic sensing system employing an RF modulated source are described. In addition the paper discusses various configurations of the system itself, its components, and modulation and detection schemes. Experimental data are also presented.

  16. A fiber optic sensor for ophthalmic refractive diagnostics

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Dhadwal, Harbans S.; Campbell, Melanie C. W.; Dellavecchia, Michael A.

    1992-01-01

    This paper demonstrates the application of a lensless fiber optic spectrometer (sensor) to study the onset of cataracts. This new miniaturized and rugged fiber optic probe is based upon dynamic light scattering (DLS) principles. It has no moving parts, no apertures, and requires no optical alignment. It is flexible and easy to use. Results are presented for cold-induced cataract in excised bovine eye lenses, and aging effects in excised human eye lenses. The device can be easily incorporated into a slit-lamp apparatus (ophthalmoscope) for complete eye diagnostics.

  17. Zero Length Intrastation Fiber Optics Links Test and Evaluation Program.

    DTIC Science & Technology

    1981-05-01

    WOirCS (Continue on, ev- icb. it r .~53r’Od Idern~f b’ lock r-urmher) Fiber Optics Digital Transmissic-, Analoo Transmission 20. AtiSTRACT (Cowfou. am...typified Defcnse Communications Systems (DCS) transmission node between DCS digital multir!exers and radios. The intent being to evaluate fiber optics...1920 under the technical dircction of the US Army Comunication Electronics Engi’-Vring In*’allation h\\keN)J (USACJEIA). Supplei.,ental testing ’.ws

  18. Development of a fiber optic high temperature strain sensor

    NASA Technical Reports Server (NTRS)

    Rausch, E. O.; Murphy, K. E.; Brookshire, S. P.

    1992-01-01

    From 1 Apr. 1991 to 31 Aug. 1992, the Georgia Tech Research Institute conducted a research program to develop a high temperature fiber optic strain sensor as part of a measurement program for the space shuttle booster rocket motor. The major objectives of this program were divided into four tasks. Under Task 1, the literature on high-temperature fiber optic strain sensors was reviewed. Task 2 addressed the design and fabrication of the strain sensor. Tests and calibration were conducted under Task 3, and Task 4 was to generate recommendations for a follow-on study of a distributed strain sensor. Task 4 was submitted to NASA as a separate proposal.

  19. Optical Fiber Networks for Remote Fiber Optic Sensors

    PubMed Central

    Fernandez-Vallejo, Montserrat; Lopez-Amo, Manuel

    2012-01-01

    This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered. PMID:22666011

  20. Fiber-Optic Circuits For Aircraft Engine Controls

    NASA Astrophysics Data System (ADS)

    Glomb, Walter L.

    1987-12-01

    This paper describes environmental effects which impact the design of interfaces to fiber-optic sensors and data buses in aircraft engine controls. Emphasis is placed on selection of components and designs which maintain their performance and reliability in the harsh environment of an electronics enclosure mounted on a modern aircraft turbine engine. Particular attention is given to the effects of temperature on electro-optical component and system performance. The main conclusion is that electro-optical interfaces to a variety of fiber-optic systems can be installed in an engine-mounted control if the designs and components are selected after careful analysis of the effects of the engine environment.

  1. Fiber optic sensors for environmental applications: A brief review

    SciTech Connect

    Rossabi, J.

    1992-04-01

    Understanding the flow a groundwater quality. This understanding is achieved by measurement of the appropriate chemical and physical subsurface parameters. The ideal measurement would accurately assess a parameter without affecting the parameter or its environment. Fiber optic spectroscopy offers some of the most promising techniques for accurate, non-invasive measurements of environmental parameters. Fiber optic sensors for subsurface applications are currently being developed by several Department of Energy laboratories. Some of these sensors have been successfully deployed in the field and are attaining the goals of accurate, noninvasive, real time measurements in the subsurface.

  2. Fiber optic and laser sensors VIII; Proceedings of the Meeting, San Jose, CA, Sept. 17-19, 1990

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P. (Editor); Udd, Eric (Editor)

    1991-01-01

    This issue presents topics on the advances in fiber-optic sensor technology, fiber-optic gyroscope, fiber-optic position and pressure sensors, fiber-optic magnetic and temperature sensors, and generic fiber-optic sensors. Papers included are on a novel analog phase tracker for interferometric fiber-optic sensor applications, recent development status of fiber-optic sensors in China, the magnetic-field sensitivity of depolarized fiber-optic gyros, a depolarized fiber-optic gyro for future tactical applications, fiber-optic position transducers for aircraft controls, and a metal embedded optical-fiber pressure sensor. Attention is also given to a fiber-optic magnetic field sensor using spectral modulation encoding, a bare-fiber temperature sensor, an interferometric fiber-optic accelerometer, improvement of specular reflection pyrometer, a theoretical analysis of two-mode elliptical-core optical fiber sensors, and a fiber probe for ring pattern.

  3. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays

    NASA Astrophysics Data System (ADS)

    Ferguson, Jane A.

    2001-06-01

    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2

  4. Analytical (mathematical) predictive modeling in fiber optics structural analysis (FOSA): review and extension

    NASA Astrophysics Data System (ADS)

    Suhir, Ephraim

    2015-03-01

    An updated version of the paper with revised references has been published The review part of the paper addresses analytical (mathematical) modeling in structural analysis in fiber optics engineering, mostly fiber optics interconnects, and deals with optical fibers subjected to thermal and/or mechanical loading (stresses) in bending, tension, compression, or to the combinations of such loadings. Attributes and significance of predictive modeling are indicated and discussed. The review is based mostly on the author's research conducted at Bell Laboratories, Physical Sciences and Engineering Research Division, Murray Hill, NJ, USA, during his tenure with this company, and, to a lesser extent, on his recent work in the field. The addressed structures include, but are not limited to, optical fibers of finite length: bare fibers; jacketed and dual-coated fibers; fibers experiencing thermal loading; fibers soldered into ferrules or adhesively bonded into capillaries; as well as the roles of geometric and material non-linearity; dynamic response to shocks and vibrations; and possible applications of nano-materials in new generations of coating and cladding systems. The extension part is concerned with a novel, fruitful and challenging directionprobabilistic design for reliability (PDfR) of opto-electronic and photonic products, including optical fibers and interconnects. The rationale behind the PDfR concept is that there is no such thing as zero probability of failure, that the difference between a highly reliable product and an insufficiently reliable product is "merely" in the level of the never zero probability of its failure and that when the operational performance of the product is imperative, the ability to predict, quantify, assure and, if possible and appropriate, even specify its reliability is highly desirable. Accordingly, the objective of the PDfR effort is to quantify the likelihood of an operational failure of a material, device or a system, including the

  5. Fiber-optic interferometric sensors for measurements of pressure fluctuations: Experimental evaluation

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.; Soderman, P. T.

    1993-01-01

    This paper addresses an anechoic chamber evaluation of a fiber-optic interferometric sensor (fiber-optic microphone), which is being developed at NASA Ames Research Center for measurements of pressure fluctuations in wind tunnels.

  6. One-dimensional single-mode fiber-optic displacement sensors for submillimeter measurements.

    PubMed

    Trudel, Vincent; St-Amant, Yves

    2009-09-10

    We demonstrate the working principle of a one-dimensional intensity-based fiber-optic displacement sensor. The sensor consists of one receiving fiber, which is moved laterally in the optical field emitted by an emitting fiber. It is shown numerically that the sensor response is highly linear (nonlinearity error of 0.1 to 2%) for a wide range of travel (2.24 to 860 microm). The sensor response is also simulated experimentally using a highly precise robot, the results of which correspond very closely to numerical ones. Linearity, travel, and sensitivity are experimentally determined for different gaps between the emitting and the receiving fibers (10 microm to 10 mm). A design chart that includes the nonlinearity error (0.5% to 2%), the travel (2.78 to 860 microm), the sensitivity (0.032 to 0.37 dB/microm), and the gap distance (1 to 10 mm) is finally proposed.

  7. One- and two-dimensional single-mode differential fiber-optic displacement sensor for submillimeter measurements.

    PubMed

    Trudel, Vincent; St-Amant, Yves

    2008-03-10

    Using the overlap integral method and the Gaussian approximation for the single-mode fiber-optic field, the working principle of one- and two-dimensional differential fiber-optic displacement sensors for submillimeter measurements is demonstrated. The sensors consist of one emitting fiber and two or three receiving fibers, respectively, for the one- and two-dimensional sensors. Sensor responses are intrinsically linear over a wide range of travels. Moreover, for the two-dimensional sensor, each axis of displacement can be measured independently. Sensor responses are simulated experimentally using a highly precise robot. Linearity, travel, and sensitivity are characterized for the different gap distance between the emitting and receiving fibers. A design chart that includes nonlinearity error, travel, sensitivity, and gap is finally proposed.

  8. High-Temperature Microphone With Fiber-Optic Output

    NASA Technical Reports Server (NTRS)

    Hellbaum, Richard F.; Gunther, Michael F.; Clause, Richard O.; Murphy, Kent A.

    1994-01-01

    Acoustic-pressure transducer (microphone) with fiber-optic output designed to withstand hot, loud, structurally vibrating environment like that of jet engine. Features flat frequency response out to frequencies well beyond several-kilohertz range needed to test for acoustic-pressure loads on engine structures.

  9. Fiber Optic Wink-around Speed of Light Experiment.

    ERIC Educational Resources Information Center

    Blackburn, James A.

    1980-01-01

    Describes an experiment in which a recycling oscillator has been designed having a fiber optic data link that closes the loop. Outlines the use of this wink-around system to determine the speed of light and suggests additional application for measuring integrated circuit propagation delays to subnanosecond resolution. (GS)

  10. Theoretical Analysis Of A Sagnac Fiber Optic Interferometer

    NASA Astrophysics Data System (ADS)

    Szustakowski, Mieczyslaw; Jaroszewicz, Leszek R.

    1990-04-01

    The analytical description of a closed optical fiber interferometer system based on Jones calculus is presented. This calculus adapation for the optical fiber elements analysis allows for a uniform description of system built on the basis of a single-mode optical fiber. The analysis of a Sagnac fiber optic interferometer is an example of this method application.

  11. Fiber Optic Laser Delivery For Endarterectomy Of Experimental Atheromas

    NASA Astrophysics Data System (ADS)

    Eugene, John; Pollock, Marc E.; McColgan, Stephen J.; Hammer-Wilson, Marie; Berns, Michael W.

    1986-08-01

    Fiber optic delivery of argon ion laser energy and Nd-YAG laser energy were compared by the performance of open laser endarterectomy in the rabbit arteriosclerosis model. In Group I, 6 open laser endarterectomies were performed with an argon ion laser (488 nm and 514.5 nm) with the laser beam directed through a 400 pm quartz fiber optic. In Group II, 6 open laser endarterectomies were performed with a Nd-YAG laser (1.06 pm) with the laser beam directed through a 600 pm quartz fiber optic. Gross and light microscopic examination revealed smooth endarterectomy surfaces with tapered end points in Group I. In Group II, the endarterectomy surfaces were uneven and perforation occurred at 5/6 end points. Although energy could be precisely delivered with each laser by fiber optics, satisfactory results could only be achieved with the argon ion laser because argon ion energy was well absorbed by atheromas. Successful intravascular laser use requires a strong interaction between wavelength and atheroma as well as a precise delivery system.

  12. Variable configuration fiber optic laser doppler vibrometer system

    NASA Astrophysics Data System (ADS)

    Posada-Roman, Julio E.; Jackson, David A.; Garcia-Souto, Jose A.

    2016-06-01

    A multichannel heterodyne fiber optic vibrometer is demonstrated which can be operated at ranges in excess of 50 m. The system is designed to measure periodic signals, impacts, rotation, 3D strain, and vibration mapping. The displacement resolution of each channel exceeds 1 nm. The outputs from all channels are simultaneous, and the number of channels can be increased by using optical switches.

  13. Fiber Optics for Strain Measurements and Robust Communications

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Bergman, L.

    1998-01-01

    Until recently, fiber optics tended to be regarded only as a medium for the transmission of large quantities of data. Work done in our laboratory has exteded the application of fibers into a little-known area, the delivery of power.

  14. Design of Fiber Optic Sensors for Measuring Hydrodynamic Parameters

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Quiett, Carramah; Griffin, DeVon (Technical Monitor)

    2001-01-01

    The science of optical hydrodynamics involves relating the optical properties to the fluid dynamic properties of a hydrodynamic system. Fiber-optic sensors are being designed for measuring the hydrodynamic parameters of various systems. As a flowing fluid makes an encounter with a flat surface, it forms a boundary layer near this surface. The region between the boundary layer and the flat plate contains information about parameters such as viscosity, compressibility, pressure, density, and velocity. An analytical model has been developed for examining the hydrodynamic parameters near the surface of a fiber-optic sensor. An analysis of the conservation of momentum, the continuity equation and the Navier-Stokes equation for compressible flow were used to develop expressions for the velocity and the density as a function of the distance along the flow and above the surface. When examining the flow near the surface, these expressions are used to estimate the sensitivity required to perform direct optical measurements and to derive the shear force for indirect optical measurements. The derivation of this result permits the incorporation of better design parameters for other fiber-based sensors. Future work includes analyzing the optical parametric designs of fiber-optic sensors, modeling sensors to utilize the parameters for hydrodynamics and applying different mixtures of hydrodynamic flow. Finally, the fabrication of fiber-optic sensors for hydrodynamic flow applications of the type described in this presentation could enhance aerospace, submarine, and medical technology.

  15. Fiber-optic Raman Spectroscopy of Joint Tissues

    PubMed Central

    Esmonde-White, Karen A.; Esmonde-White, Francis W.L.; Morris, Michael D.

    2011-01-01

    In this study, we report adaptation of Raman spectroscopy for arthroscopy of joint tissues using a custom-built fiber optic probe. Differentiation of healthy and damaged tissue or examination of subsurface tissue, such as subchondral bone, is a challenge in arthroscopy because visual inspection may not provide sufficient contrast. Discrimination of healthy versus damaged tissue may be improved by incorporating point spectroscopy or hyperspectral imaging into arthroscopy where contrast is based on molecular structure or chemical composition. Articular joint surfaces of knee cadaveric human tissue and tissue phantoms were examined using a custom-designed Raman fiber optic probe. Fiber-optic Raman spectra were compared against reference spectra of cartilage, subchondral bone and cancellous bone collected using Raman microspectroscopy. In fiber-optic Raman spectra of the articular surface, there was an effect of cartilage thickness on recovery of signal from subchondral bone. At sites with intact cartilage, the bone mineralization ratio decreased but there was a minimal effect in the bone mineral chemistry ratios. Tissue phantoms were prepared as experimental models of the osteochondral interface. Raman spectra of tissue phantoms suggested that optical scattering of cartilage has a large effect on the relative cartilage and bone signal. Finite element analysis modeling of light fluence in the osteochondral interface confirmed experimental findings in human cadaveric tissue and tissue phantoms. These first studies demonstrate proof of principle for Raman arthroscopic measurement of joint tissues and provide a basis for future clinical or animal model studies. PMID:21359366

  16. Distributed Fiber-Optic Sensors for Vibration Detection.

    PubMed

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  17. Simple fiber optic sensor for applications in security systems

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Karol, M.; Markowski, P.; Napierala, M. S.

    2014-10-01

    In this paper we demonstrate measurement results of the modalmetric fiber optic sensor used for the monitoring of the fiber optic link integrity to protect it against unauthorized access to classified information. The presented construction is based on the detection of changes of the modes distribution in a multimode fiber. Any mechanical stress on the multimode fiber causes changes of polarization and distribution of propagating modes, hence it changes the distribution of modes at the end of the multimode fiber. Observation of these changes using a narrow core single-mode fiber allows to use the structure as an optical fiber sensor. We used several kilometers long optical links to conduct field tests of laboratory sensor. On this basis the prototype module of modalmetric fiber optic sensor wasbuilt. The modification of optoelectronic part, the variation of sensor length and the change of the method of light reflection at the end of the fiber enable the use of the modalmetric fiber optic sensor in many applications. The sensor finds wide range of applications in security systems. It can be applied to protect the museum's collection, transmission lines and to protect objects of critical infrastructure.

  18. Miniature Incandescent Lamps as Fiber-Optic Light Sources

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret; Collura, Joe; Helvajian, Henry; Pocha, Michael; Meyer, Glenn; McConaghy, Charles F.; Olsen, Barry L.

    2008-01-01

    Miniature incandescent lamps of a special type have been invented to satisfy a need for compact, rapid-response, rugged, broadband, power-efficient, fiber-optic-coupled light sources for diverse purposes that could include calibrating spectrometers, interrogating optical sensors, spot illumination, and spot heating.

  19. Achieving Standards in a Fiber Optic Mathematics Classroom.

    ERIC Educational Resources Information Center

    Zbiek, Rose Mary; Foletta, Gina M.

    1995-01-01

    In response to standards set by the National Council of Teachers of Mathematics, K-12 teachers were interviewed to investigate issues related to implementing standards in K-12 fiber optic mathematics classes. Issues include: achieving student-centered classrooms; incorporating technology into distance education; and structuring assessment so more…

  20. Kansas Communication and Instruction System through Fiber-Optic Transmission.

    ERIC Educational Resources Information Center

    Kansas State Dept. of Education, Topeka.

    Schools and communities will restructure as they move into the next decade. The success of this restructuring will be dependent upon access to and sharing of quality teaching and information through an expanded communication system. One of the major two-way interactive technologies is the fiber-optic cable: a delivery system that will provide…

  1. A Method of Assembling Compact Coherent Fiber-Optic Bundles

    NASA Technical Reports Server (NTRS)

    Martin, Stefan; Liu, Duncan; Levine, Bruce Martin; Shao, Michael; Wallace, James

    2007-01-01

    A method of assembling coherent fiber-optic bundles in which all the fibers are packed together as closely as possible is undergoing development. The method is based, straightforwardly, on the established concept of hexagonal close packing; hence, the development efforts are focused on fixtures and techniques for practical implementation of hexagonal close packing of parallel optical fibers.

  2. Fiber Optic Based Thermometry System for Superconducting RF Cavities

    SciTech Connect

    Kochergin, Vladimir

    2013-05-06

    Thermometry is recognized as the best technique to identify and characterize losses in SRF cavities. The most widely used and reliable apparatus for temperature mapping at cryogenic temperatures is based on carbon resistors (RTDs). The use of this technology on multi-cell cavities is inconvenient due to the very large number of sensors required to obtain sufficient spatial resolution. Recent developments make feasible the use of multiplexible fiber optic sensors for highly distributed temperature measurements. However, sensitivity of multiplexible cryogenic temperature sensors was found extending only to 12K at best and thus was not sufficient for SRF cavity thermometry. During the course of the project the team of MicroXact, JLab and Virginia Tech developed and demonstrated the multiplexible fiber optic sensor with adequate response below 20K. The demonstrated temperature resolution is by at least a factor of 60 better than that of the best multiplexible fiber optic temperature sensors reported to date. The clear path toward at least 10times better temperature resolution is shown. The first to date temperature distribution measurements with ~2.5mm spatial resolution was done with fiber optic sensors at 2K to4K temperatures. The repeatability and accuracy of the sensors were verified only at 183K, but at this temperature both parameters significantly exceeded the state of the art. The results of this work are expected to find a wide range of applications, since the results are enabling the whole new testing capabilities, not accessible before.

  3. Fiber optical magnetic field sensor for power generator monitoring

    NASA Astrophysics Data System (ADS)

    Willsch, Michael; Bosselmann, Thomas; Villnow, Michael

    2014-05-01

    Inside of large electrical engines such as power generators and large drives, extreme electric and magnetic fields can occur which cannot be measured electrically. Novel fiber optical magnetic field sensors are being used to characterize the fields and recognize inner faults of large power generators.

  4. Fiber optic demonstration of MIL-STD-1760 stores interconnect

    NASA Astrophysics Data System (ADS)

    Nelson, Gary L.; Cosimini, Gregory J.; Bartnik, Daniel J.

    The authors describe a laser-diode-based, fiber-optic stores management interconnect demonstration system. System test results for MIL-STD-1760 compliance are presented. These tests include bandwidth, latency, step input response, transient (T-pulse) response, and signal to noise ratio.

  5. Utilization of Infrared Fiber Optic in the Automotive Industry

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Fiber optics are finding a place in the automotive industry. Illumination is the primary application today. Soon, however, fiber optics will be used for data communications and sensing applications. Silica fiber optics and plastic fibers are sufficient for illumination and communication applications however, sensing applications involving high temperature measurement and remote gas analysis would benefit from the use of infrared fiber optics. Chalcogonide and heavy metal fluoride glass optical fibers are two good candidates for these applications. Heavy metal fluoride optical fibers are being investigated by NASA for applications requiring transmission in the infrared portion of the electromagnetic spectrum. Zirconium-Barium-Lanthanum-Aluminum-Sodium-Fluoride (ZBLAN) is one such material which has been investigated. This material has a theoretical attenuation coefficient 100 times lower than that of silica and transmits into the mid-IR. However, the measured attenuation coefficient is higher than silica due to impurities and crystallization. Impurities can be taken care of by utilizing cleaner experimental protocol. It has been found that crystallization can be suppressed by processing in reduced gravity. Fibers processed in reduced gravity on the KC135 reduced gravity aircraft were found to be free of crystals while those processed on the ground were found to have crystals. These results will be presented along with plans for producing continuous lengths of ZBLAN optical fiber on board the International Space Station.

  6. And They're Off! The Race to Fiber Optics.

    ERIC Educational Resources Information Center

    Lewis, Joan E.

    1993-01-01

    Describes fiber optic technology and discusses its use in distance learning and educational reform. Highlights include the quality of communications transmission systems; costs; Federal Communications Commission rules and regulations; cable television; networks, including the National Research and Education Network (NREN); government versus…

  7. Fiber-Optical Sensors: Basics and Applications in Multiphase Reactors

    PubMed Central

    Li, Xiangyang; Yang, Chao; Yang, Shifang; Li, Guozheng

    2012-01-01

    This work presents a brief introduction on the basics of fiber-optical sensors and an overview focused on the applications to measurements in multiphase reactors. The most commonly principle utilized is laser back scattering, which is also the foundation for almost all current probes used in multiphase reactors. The fiber-optical probe techniques in two-phase reactors are more developed than those in three-phase reactors. There are many studies on the measurement of gas holdup using fiber-optical probes in three-phase fluidized beds, but negative interference of particles on probe function was less studied. The interactions between solids and probe tips were less studied because glass beads etc. were always used as the solid phase. The vision probes may be the most promising for simultaneous measurements of gas dispersion and solids suspension in three-phase reactors. Thus, the following techniques of the fiber-optical probes in multiphase reactors should be developed further: (1) online measuring techniques under nearly industrial operating conditions; (2) corresponding signal data processing techniques; (3) joint application with other measuring techniques.

  8. Qualification and Lessons Learned with Space Flight Fiber Optic Components

    NASA Technical Reports Server (NTRS)

    Ott, Melanie

    2007-01-01

    This presentation covers lessons learned during the design, development, manufacturing and qualification of space flight fiber optic components. Changes at NASA, including short-term projects and decreased budgets have brought about changes to vendors and parts. Most photonics for NASA needs are now commercial off the shelf (COTS) products. The COTS Tecnology Assurance approach for space flight and qualification plans are outlined.

  9. New liquid scintillators for fiber-optic applications

    SciTech Connect

    Lutz, S.S.; Franks, L.A.; Flournoy, J.M.; Lyons, P.B.

    1981-01-01

    New long-wavelength-emitting, high-speed, liquid scintillators have been developed and tailored specifically for plasma diagnostic experiments employing fiber optics. These scintillators offer significant advantages over commercially available plastic scintillators in terms of sensitivity and bandwidth. FWHM response times as fast as 350 ps have been measured. Emission spectra, time response data, and relative sensitivity information are presented.

  10. Distributed Fiber-Optic Sensors for Vibration Detection

    PubMed Central

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-01-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach–Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications. PMID:27472334

  11. Packaging considerations of fiber-optic laser sources

    NASA Astrophysics Data System (ADS)

    Heikkinen, Veli; Tukkiniemi, Kari; Vaehaekangas, Jouko; Hannula, Tapio

    1991-12-01

    The continuous progress in material and component technology has generated new laser-based applications that require special packaging techniques. Hybrid integration offers a flexible method to accomplish custom design needs. This paper discusses several aspects in fiber optic packaging including optical, thermal, and mechanical issues. Special emphasis is on optical coupling between a laser diode and a single-mode fiber.

  12. A fiber optics textile composite sensor for geotechnical applications

    NASA Astrophysics Data System (ADS)

    Artières, Olivier; Dortland, Gerrit

    2010-09-01

    The fiber optics in structural health monitoring systems for civil engineering applications have been widely used. By integrating fiber optic sensing into a geotextile fabric, the TenCate GeoDetect® system is the first designed specifically for geotechnical applications. This monitoring solution embodies fiber optics on a geotextile fabric, e.g. a textile used into the soil, and combines the benefits of geotextile materials, such as high interface friction in contact with the soil, with the latest fiber optics sensing technologies. It aims to monitor geotechnical structure and to generate early warnings if it detects and localizes the early signs of malfunctioning, such as leaks or instability. This is a customizable solution: Fiber Bragg gratings, Brillouin and Raman scattering can be built into this system. These technologies measure both strain and temperature changes in soil structures. It can provide a leak and deformation location within accuracies resp. 1 l/min/m and 0.02%. The TenCate GeoDetect® solution provides objective, highly precise, and timely in-situ performance information, allowing the design professional and owner to understand system performance in addition to providing alerts for negative "geo-events" (subsidence) and other potentially deleterious events.

  13. A fiber-optic hydrophone with a cylindrical Helmholtz resonator

    NASA Astrophysics Data System (ADS)

    Wang, Zefeng; Hu, Yongming; Ni, Ming; Meng, Zhou; Luo, Hong

    2007-11-01

    A passive homodyne Michelson interferometric fiber-optic hydrophone with a single-hole cylindrical Helmholtz resonator has been manufactured. To validate the theoretical results that the fluid coefficient of viscosity has great influence on the maximum sensitivity at the resonant frequency, the acoustic sensitivity frequency response of the fiber-optic hydrophone has been measured in a standing-wave tank filled with castor oil. The viscosity coefficient of castor oil will change with the variation of the temperature. Experimental Results show that the fiber-optic hydrophone frequency responses of different temperature have identical form except that the maximum sensitivities are different. The acoustic sensitivities of low frequency are about -159dB re 1rad/μPa. While the maximum sensitivities near the measured resonant frequency of 800Hz go down with the fall of the temperature, i.e. with the increase of the viscosity coefficient, which is agree with the theoretical conclusions. This fiber-optic hydrophone is a prototype device for a class of sensors that used to eliminate aliasing in the future sonar systems.

  14. Characterization of fiber optic Cerenkov radiation sensor for detecting neutrons

    NASA Astrophysics Data System (ADS)

    Jang, K. W.; Yagi, T.; Pyeon, C. H.; Shin, S. H.; Yoo, W. J.; Misawa, T.; Lee, B.

    2013-09-01

    Cerenkov radiation can be observed easily as a shimmer of blue light from the water in boiling- and pressurized-water reactors, or spent fuel storage pools. In this research, we fabricated the fiber-optic Cerenkov radiation sensor using a Gdfoil, rutile crystal and optical fiber for detecting neutrons. Also, the reference sensor for measuring background gammarays was fabricated with the rutile crystal and optical fiber. The neutron fluxes could be obtained by measuring the signal difference between two sensors. To characterize the fiber-optic Cerenkov radiation sensor, we measured neutron fluxes using a Cf-252 neutron source according to depths of polyethylene. As the results, the counts of fiber-optic Cerenkov radiation sensor were higher than those of reference sensor due to additional interactions between Gd-foil and neutrons. Also, the counts of Cerenkov radiation decreased with increasing polyethylene thickness. It is anticipated that the novel and simple fiber-optic Cerenkov radiation sensor using the Cerenkov effect can be widely used to detect the neutrons in hazardous nuclear facilities.

  15. Diaphragm size and sensitivity for fiber optic pressure sensors

    NASA Technical Reports Server (NTRS)

    He, Gang; Cuomo, Frank W.; Zuckerwar, Allan J.

    1991-01-01

    A mechanism which leads to a significant increase in sensitivity and linear operating range in reflective type fiber optic pressure transducers with minute active dimensions is studied. A general theoretical formalism is presented which is in good agreement with the experimental data. These results are found useful in the development of small pressure sensors used in turbulent boundary layer studies and other applications.

  16. The Over-Selling of Fiber Optics? Cable Planning for Educational Technology.

    ERIC Educational Resources Information Center

    Kovacs, Robert E.

    1993-01-01

    Describes fiber optic cables and coaxial cables and considers when each would be appropriate for educational technology. Single mode versus multimode fiber optics are explained, advantages and disadvantages of each type of cable are discussed, and guidelines for choosing fiber optic cables and coaxial cables are offered. (LRW)

  17. MFOX-Technology, transceiver design and performance. [Multipurpose Fiber Optic Transceiver

    NASA Technical Reports Server (NTRS)

    Channin, Donald J.

    1987-01-01

    The multipurpose fiber optic transceiver (MFOX) family of fiber-optic transceivers will provide standard, military-qualified off-the-shelf transmitters and receivers for ground-based tactical fiber-optic communications. The author describes these units and their capabilities for diverse military applications.

  18. 78 FR 17187 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... to grant to Fiber Optic Sensor Systems Technology Corporation, a revocable, nonassignable, exclusive... its intent to grant to Fiber Optic Sensor Systems Technology Corporation a revocable,...

  19. Micromachined fiber optic Fabry-Perot underwater acoustic probe

    NASA Astrophysics Data System (ADS)

    Wang, Fuyin; Shao, Zhengzheng; Hu, Zhengliang; Luo, Hong; Xie, Jiehui; Hu, Yongming

    2014-08-01

    One of the most important branches in the development trend of the traditional fiber optic physical sensor is the miniaturization of sensor structure. Miniature fiber optic sensor can realize point measurement, and then to develop sensor networks to achieve quasi-distributed or distributed sensing as well as line measurement to area monitoring, which will greatly extend the application area of fiber optic sensors. The development of MEMS technology brings a light path to address the problems brought by the procedure of sensor miniaturization. Sensors manufactured by MEMS technology possess the advantages of small volume, light weight, easy fabricated and low cost. In this paper, a fiber optic extrinsic Fabry-Perot interferometric underwater acoustic probe utilizing micromachined diaphragm collaborated with fiber optic technology and MEMS technology has been designed and implemented to actualize underwater acoustic sensing. Diaphragm with central embossment, where the embossment is used to anti-hydrostatic pressure which would largely deflect the diaphragm that induce interferometric fringe fading, has been made by double-sided etching of silicon on insulator. By bonding the acoustic-sensitive diaphragm as well as a cleaved fiber end in ferrule with an outer sleeve, an extrinsic Fabry-Perot interferometer has been constructed. The sensor has been interrogated by quadrature-point control method and tested in field-stable acoustic standing wave tube. Results have been shown that the recovered signal detected by the sensor coincided well with the corresponding transmitted signal and the sensitivity response was flat in frequency range from 10 Hz to 2kHz with the value about -154.6 dB re. 1/μPa. It has been manifest that the designed sensor could be used as an underwater acoustic probe.

  20. Optical design of a high power fiber optic coupler

    SciTech Connect

    English, R.E. Jr.; Halpin, J.M.; House, F.A.; Paris, R.D.

    1991-06-19

    Fiber optic beam delivery systems are replacing conventional mirror delivery systems for many reasons (e.g., system flexibility and redundancy, stability, and ease of alignment). Commercial products are available that use of fiber optic delivery for laser surgery and materials processing. Also, pump light of dye lasers can be delivered by optical fibers. Many laser wavelengths have been transported via optical fibers; high power delivery has been reported for argon, Nd:YAG, and excimer. We have been developing fiber optic beam delivery systems for copper vapor laser light; many of the fundamental properties of these systems are applicable to other high power delivery applications. A key element of fiber optic beam delivery systems is the coupling of laser light into the optical fiber. For our application this optical coupler must be robust to a range of operating parameters and laser characteristics. We have access to a high power copper vapor laser beam that is generated by a master oscillator/power amplifier (MOPA) chain comprised of three amplifiers. The light has a pulse width of 40--50 nsec with a repetition rate of about 4 kHz. The average power (nominal) to be injected into a fiber is 200 W. (We will refer to average power in this paper.) In practice, the laser beam's direction and collimation change with time. These characteristics plus other mechanical and operational constraints make it difficult for our coupler to be opto-mechanically referenced to the laser beam. We describe specifications, design, and operation of an optical system that couples a high-power copper vapor laser beam into a large core, multimode fiber. The approach used and observations reported are applicable to fiber optic delivery applications. 6 refs., 6 figs.

  1. Research in Fiber Optics: Implications for Fiber Optics in Vocational-Technical Education. Final Report 1984-85.

    ERIC Educational Resources Information Center

    Bergen County Vocational-Technical High School, Hackensack, NJ.

    This project was conducted to determine the vocational, technical, and scientific skills and knowledge needed to work with the fiber optics applications that are in all areas of technology. A research assistant was hired by the project director to collect data and develop a research base for the project. Information was gathered through a…

  2. Comparative study of the performance of analog fiber optic links versus free-space optical links

    NASA Astrophysics Data System (ADS)

    Refai, Hakki H.; Sluss, James J., Jr.; Refai, Hazem H.; Atiquzzaman, Mohammed

    2006-02-01

    Optical fiber offers many advantages over coaxial cable for the transmission of radio frequency (rf) signals in antenna-remoting applications, as well as cellular networks and cable television (CATV) signal distribution networks. Optical fiber shows significantly less loss, can support signals demanding much higher bandwidth, is immune to electromagnetic interference (EMI), and enables considerable size and weight savings when compared to coaxial cable. Free-space optics (FSO) communications is a technology that uses modulated optical beams to transmit information line of sight through the atmosphere. FSO can be deployed faster and cheaper when compared with optical fiber. Recently, FSO has been investigated by the telecommunications industry and research centers to transport digital signals for civilian "last mile" applications and military applications. We demonstrate the successful transport of modulated rf analog signals over an FSO link and compare key performance measures against a fiber optic link configured in an identical manner. Results of measurements of optical power, transmission response, reflection response, group delay that defines phase distortion, carrier-to-noise ratio (CNR), and dynamic range that defines nonlinear distortion are presented. Results from this comparative study indicate that FSO for rf applications is a suitable replacement for fiber optic transmission links over short distances.

  3. Application and the key technology on high power fiber-optic laser in laser weapon

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  4. Kilohertz scanning all-fiber optical delay line using piezoelectric actuation

    NASA Astrophysics Data System (ADS)

    Henderson, David A.; Hoffman, Conrad; Culhane, Robert; Viggiano, Dan, III

    2004-12-01

    Commercial applications for fiber sensing and low-coherence interferometry are rapidly growing in medical, industrial and aerospace markets. These new instruments must be smaller, more robust and less expensive. An all-fiber optical delay line or "fiber stretcher", using piezoelectric (PZT) actuation, offers a simple solid-state solution that eliminates free space optics. The challenges for PZT fiber stretchers include: reducing non-linearity and hysteresis, achieving sufficient scan range with minimum fiber length, maximizing scan frequency and reducing losses in the drive electronics. PZT actuators are essentially large ceramic capacitors that must be rapidly charged and discharged to achieve fast scanning. The mechanical response of the PZT ceramic is greater than 10 kHz which makes it practical to scan at four kilohertz. A thin-walled piezoelectric disk or cylinder achieves 4.5 millimeters of fiber stretch using 20 meters of coiled fiber. Digitally controlled series resonant electronics produce a 1200 volt sinusoidal drive signal at a fixed frequency of four kilohertz while dissipating only 16 Watts. An all-fiber optical delay line module, using piezoelectric actuators and a series resonant drive, is a miniature, robust and efficient alternative to free-space optics with dithering mirrors or spinning polygons.

  5. Confocal endomicroscopy: Is it time to move on?

    PubMed

    Robles-Medranda, Carlos

    2016-01-10

    Confocal laser endomicroscopy permits in-vivo microscopy evaluation during endoscopy procedures. It can be used in all the parts of the gastrointestinal tract and includes: Esophagus, stomach, small bowel, colon, biliary tract through and endoscopic retrograde cholangiopancreatography and pancreas through needles during endoscopic ultrasound procedures. Many researches demonstrated a high correlation of results between confocal laser endomicroscopy and histopathology in the diagnosis of gastrointestinal lesions; with accuracy in about 86% to 96%. Moreover, in spite that histopathology remains the gold-standard technique for final diagnosis of any diseases; a considerable number of misdiagnosis rate could be present due to many factors such as interpretation mistakes, biopsy site inaccuracy, or number of biopsies. Theoretically; with the diagnostic accuracy rates of confocal laser endomicroscopy could help in a daily practice to improve diagnosis and treatment management of the patients. However, it is still not routinely used in the clinical practice due to many factors such as cost of the procedure, lack of codification and reimbursement in some countries, absence of standard of care indications, availability, physician image-interpretation training, medico-legal problems, and the role of the pathologist. These limitations are relative, and solutions could be found based on new researches focused to solve these barriers.

  6. Confocal endomicroscopy: Is it time to move on?

    PubMed Central

    Robles-Medranda, Carlos

    2016-01-01

    Confocal laser endomicroscopy permits in-vivo microscopy evaluation during endoscopy procedures. It can be used in all the parts of the gastrointestinal tract and includes: Esophagus, stomach, small bowel, colon, biliary tract through and endoscopic retrograde cholangiopancreatography and pancreas through needles during endoscopic ultrasound procedures. Many researches demonstrated a high correlation of results between confocal laser endomicroscopy and histopathology in the diagnosis of gastrointestinal lesions; with accuracy in about 86% to 96%. Moreover, in spite that histopathology remains the gold-standard technique for final diagnosis of any diseases; a considerable number of misdiagnosis rate could be present due to many factors such as interpretation mistakes, biopsy site inaccuracy, or number of biopsies. Theoretically; with the diagnostic accuracy rates of confocal laser endomicroscopy could help in a daily practice to improve diagnosis and treatment management of the patients. However, it is still not routinely used in the clinical practice due to many factors such as cost of the procedure, lack of codification and reimbursement in some countries, absence of standard of care indications, availability, physician image-interpretation training, medico-legal problems, and the role of the pathologist. These limitations are relative, and solutions could be found based on new researches focused to solve these barriers. PMID:26788257

  7. Fiber Optic Solutions for Short Pulse Lasers

    SciTech Connect

    Beach, R; Dawson, J; Liao, Z; Jovanovic, I; Wattellier, B; Payne, S; Barty, C P

    2003-01-29

    For applications requiring high beam quality radiation from efficient, compact and rugged sources, diffraction limited fiber lasers are ideal, and to date have been demonstrated at average CW power levels exceeding 100 W with near diffraction limited: output. For conventional single-core step-index single-mode fibers, this power level represents the sealing limit because of nonlinear and laser damage considerations. Higher average powers would exceed nonlinear process thresholds such as the Raman and stimulated Brillouin scattering limit, or else damage the fiber due to the high intensity level in the fiber's core. The obvious way to increase the average power capability of fibers is to increase the area of their core. Simply expanding the core dimensions of the fiber allows a straightforward power sealing due to enhanced nonlinear and power handling characteristics that scale directly with the core area. Femtosecond, chirped-pulse, fiber lasers with pulse energies greater than 1mJ have been demonstrated in the literature [2] using this technique. This output energy was still limited by the onset of stimulated Raman scattering. We have pursued an alternative and complimentary approach which is to reduce the intensity of light propagating in the core by distributing it more evenly across the core area via careful design of the refractive index profile [3]. We have also sought to address the primary issue that results from scaling the core. The enhanced power handling capability comes at the expense of beam quality, as increasing the core diameter in standard step index fibers permits multiple transverse modes to lase simultaneously. Although this problem of multimode operation can be mitigated to some extent by appropriately designing the fiber's waveguide structure, limitations such as bend radius loss, sensitivity to thermally induced perturbations of the waveguide structure, and refractive index control, all become more stringent as the core diameter grows

  8. In-line fiber optic interferometric sensors in single-mode fibers.

    PubMed

    Zhu, Tao; Wu, Di; Liu, Min; Duan, De-Wen

    2012-01-01

    In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It's known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, we review two kinds of typical in-line fiber optic interferometers formed in single-mode fibers fabricated with different post-processing techniques. Also, some recently reported specific technologies for fabricating such fiber optic interferometers are presented.

  9. Fiber Optic Experience with the Smart Actuation System on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Zavala, Eddie

    1997-01-01

    High bandwidth, immunity to electromagnetic interference, and potential weight savings have led to the development of fiber optic technology for future aerospace vehicle systems. This technology has been incorporated in a new smart actuator as the primary communication interface. The use of fiber optics simplified system integration and significantly reduced wire count. Flight test results showed that fiber optics could be used in aircraft systems and identified critical areas of development of fly-by-light technology. This paper documents the fiber optic experience gained as a result of this program, and identifies general design considerations that could be used in a variety of specific applications of fiber optic technology. Environmental sensitivities of fiber optic system components that significantly contribute to optical power variation are discussed. Although a calibration procedure successfully minimized the effect of fiber optic sensitivities, more standardized calibration methods are needed to ensure system operation and reliability in future aerospace vehicle systems.

  10. Solar Power Satellite (SPS) fiber optic link assessment

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A feasibility demonstration of a 980 MHz fiber optic link for the Solar Power Satellite (SPS) phase reference distribution system was accomplished. A dual fiber-optic link suitable for a phase distribution frequency of 980 MHz was built and tested. The major link components include single mode injection laser diodes, avalanche photodiodes, and multimode high bandwidth fibers. Signal throughput was demonstrated to be stable and of high quality in all cases. For a typical SPS link length of 200 meters, the transmitted phase at 980 MHz varies approximately 2.5 degrees for every deg C of fiber temperature change. This rate is acceptable because of the link length compensation feature of the phase control design.

  11. High speed demodulation systems for fiber optic grating sensors

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Inventor); Weisshaar, Andreas (Inventor)

    2002-01-01

    Fiber optic grating sensor demodulation systems are described that offer high speed and multiplexing options for both single and multiple parameter fiber optic grating sensors. To attain very high speeds for single parameter fiber grating sensors ratio techniques are used that allow a series of sensors to be placed in a single fiber while retaining high speed capability. These methods can be extended to multiparameter fiber grating sensors. Optimization of speeds can be obtained by minimizing the number of spectral peaks that must be processed and it is shown that two or three spectral peak measurements may in specific multiparameter applications offer comparable or better performance than processing four spectral peaks. Combining the ratio methods with minimization of peak measurements allows very high speed measurement of such important environmental effects as transverse strain and pressure.

  12. Fiber optic sensors for structural health monitoring of air platforms.

    PubMed

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided.

  13. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    PubMed Central

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816

  14. Neural Network-Based Multimode Fiber-Optic Information Transmission

    NASA Astrophysics Data System (ADS)

    Marusarz, Ronald K.; Sayeh, Mohammad R.

    2001-01-01

    A new technique for transmitting information through multimode fiber-optic cables is presented. This technique sends parallel channels through the fiber-optic cable, thereby greatly improving the data transmission rate compared with that of the current technology, which uses serial data transmission through single-mode fiber. An artificial neural network is employed to decipher the transmitted information from the received speckle pattern. Several different preprocessing algorithms are developed, tested, and evaluated. These algorithms employ average region intensity, distributed individual pixel intensity, and maximum mean-square-difference optimal group selection methods. The effect of modal dispersion on the data rate is analyzed. An increased data transmission rate by a factor of 37 over that of single-mode fibers is realized. When implementing our technique, we can increase the channel capacity of a typical multimode fiber by a factor of 6.

  15. LDEF fiber optic exposure experiment No. S-0109

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.; Bergman, L. A.; Hartmayer, R.

    1992-01-01

    Ten fiber optic cable samples of different types were exposed in low-earth orbit for over 5.5 years on the Long-Duration Exposure Facility (LDEF). Four of the samples were mounted externally, and the remaining six were internal, under approximately 0.5 g cm(exp -2) of aluminum. The experiment was recovered in Jan. 1990, and laboratory evaluation of the effects of the exposure has continued since. An increase in fiber loss, presumed to be from radiation darkening, aging effects on polymer materials used in cabling, unique contamination effects on connector terminations, and micrometeoroid impacts were observed. In addition, the sample loss was measured for each sample as a function of temperature before and after the flight. All cable samples were functional, and the best exhibited no measurable change in performance, indicating that conventional fiber optic cables can perform satisfactorily in spacecraft. Experimental results obtained to date are presented and discussed.

  16. Fiber optic coherent laser radar 3D vision system

    SciTech Connect

    Clark, R.B.; Gallman, P.G.; Slotwinski, A.R.; Wagner, K.; Weaver, S.; Xu, Jieping

    1996-12-31

    This CLVS will provide a substantial advance in high speed computer vision performance to support robotic Environmental Management (EM) operations. This 3D system employs a compact fiber optic based scanner and operator at a 128 x 128 pixel frame at one frame per second with a range resolution of 1 mm over its 1.5 meter working range. Using acousto-optic deflectors, the scanner is completely randomly addressable. This can provide live 3D monitoring for situations where it is necessary to update once per second. This can be used for decontamination and decommissioning operations in which robotic systems are altering the scene such as in waste removal, surface scarafacing, or equipment disassembly and removal. The fiber- optic coherent laser radar based system is immune to variations in lighting, color, or surface shading, which have plagued the reliability of existing 3D vision systems, while providing substantially superior range resolution.

  17. Reflection-contrast limit of fiber-optic image guides

    PubMed Central

    Lane, Pierre M.; MacAulay, Calum E.

    2009-01-01

    Fiber-optic image guides in confocal reflectance endomicroscopes introduce background backscatter that limits the achievable contrast in these devices. We show the dominant source of backscatter from the image guide is due to Rayleigh scattering at short wavelengths and terminal reflections of the fibers at long wavelengths. The effective Rayleigh scattering coefficient and the wavelength-independent reflectivity due terminal reflections are measured experimentally in a commercial image guide. The Rayleigh scattering component of backscatter can be accurately predicted using the fractional refractive-index difference and length of the fibers in the image guide. We also presented a simple model that can be used to predict signal-to-background ratio in a fiber-optic confocal reflectance endomicroscope for biologically relevant tissues and contrast agents that cover a wide range of reflectivity. PMID:20059266

  18. Performance capabilities of fiber optic components and photonic devices

    NASA Astrophysics Data System (ADS)

    Jha, Asu R.

    2001-09-01

    This paper reveals performance capabilities of critical fiber optic components and photonic devices, which have potential applications in industrial, commercial and military systems and equipment. These devices are widely used in battlefield, space surveillance, medical diagnosis, crime fighting, and detection of terrorist activities. Performance capabilities of fiber optic components for possible applications in WDM and DWDM systems are summarized. Photonic devices and sensor for forward battlefield applications are identified with emphasis on performance and reliability. Performance parameters of Erbium-doped fiber amplifiers, Erbium doped waveguide amplifiers, and optical hybrid amplifiers comprising of EDFAs and Raman amplifiers are discussed withe emphasis on bandwidth, gain-flatness, data handling capability, channel capacity and cost-effectiveness.

  19. Fiber optical Bragg grating sensors embedded in CFRP wires

    NASA Astrophysics Data System (ADS)

    Nellen, Philipp M.; Frank, Andreas; Broennimann, Rolf; Meier, Urs; Sennhauser, Urs J.

    1999-05-01

    Based on the example application of Emmenbridge, a newly built steel-concrete-composite bridge in Switzerland with 47 m long built-in carbon fiber reinforced polymer (CFRP) prestressing cables, we will present and analyze the process chain leading to a reliable surveillance of modern civil engineering structures with embedded fiber optical Bragg gratings. This consists first in the embedding of optical fibers and in-fiber Bragg gratings in long CFRP wires in an industrial environment, including fiber optical monitoring of the curing process. Then, various qualifying tests were done: annealing experiments for determining optical lifetime of the Bragg gratings used, dynamic and static tensile tests for estimating their mechanical lifetime under operation, push-out experiments to check adhesion of fiber/coating/matrix interfaces, and performance tests to determine strain and temperature sensitivity of the embedded Bragg gratings. Finally, the prestressing cables were equipped with the CFRP sensor wires and built into the bridge.

  20. A fiber-optic current sensor for aerospace applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.

    1990-01-01

    A robust, accurate, broad-band, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low and high voltage 60 Hz terrestrial power systems and in 400 Hz aircraft systems. It is intrinsically electromagnetic interference (EMI) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a novel fiber-optic temperature sensor embedded in the sensing head. The technology contained in the sensor is examined and the results of precision tests conducted at various temperatures within the wide operating range are given. The results of early EMI tests are also given.

  1. A fiber-optic current sensor for aerospace applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.

    1990-01-01

    A robust, accurate, broadband, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low- and high-voltage 60-Hz terrestrial power systems and in 400-Hz aircraft systems. It is intrinsically EMI (electromagnetic interference) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a fiber-optic temperature sensor embedded in the sensing head. The authors report on the technology contained in the sensor and also relate the results of precision tests conducted at various temperatures within the wide operating range. The results of early EMI tests are shown.

  2. A fiber-optic current sensor for aerospace applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.

    1990-01-01

    A robust, accurate, broadband, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low and high voltage 60-Hz terrestrial power systems and in 400-Hz aircraft systems. It is intrinsically electromagnetic interference (EMI) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a novel fiber-optic temperature sensor embedded in the sensing head. The technology used in the sensor is examined and the results of precision tests conducted at various temperatures within the wide operating range are given. The results of early EMI tests are also given.

  3. On the passive probing of fiber optic quantum communication channels

    SciTech Connect

    Korol'kov, A. V.; Katamadze, K. G.; Kulik, S. P.; Molotkov, S. N.

    2010-04-15

    Avalanche photodetectors based on InGaAs:P are the most sensitive and only detectors operating in the telecommunication wavelength range 1.30-1.55 {mu}m in the fiber optic quantum cryptography systems that can operate in the single photon count mode. In contrast to the widely used silicon photodetectors for wavelengths up to 1 {mu}m operating in a waiting mode, these detectors always operate in a gated mode. The production of an electron-hole pair in the process of the absorption of a photon and the subsequent appearance of an avalanche of carriers can be accompanied by the inverse processes of the recombination and emission of photons. Such a backward emission can present a potential serious problem for the stability of fiber optic quantum cryptography systems against passive probing. The results of analyzing the detection of backscattered radiation are reported. The probability of such an emission has been estimated.

  4. Low-loss, high-isolation, fiber-optic isolator

    NASA Technical Reports Server (NTRS)

    Lutes, George F. (Inventor)

    1988-01-01

    A low-loss, high-isolation, fiber-optic isolator for use in single-mode fiber systems utilizes a Faraday rotator and two polarizers, one at each end angularly oriented from each other at the angle of rotation for isolation, and two aspheric lens connectors to couple optical fibers to the Faraday isolator to reduce forward loss to about 2.5 dB and improve isolation to greater than 70 dB.

  5. Fiber-Optic Pressure Sensor With Dynamic Demodulation Developed

    NASA Technical Reports Server (NTRS)

    Lekki, John D.

    2002-01-01

    Researchers at the NASA Glenn Research Center developed in-house a method to detect pressure fluctuations using a fiber-optic sensor and dynamic signal processing. This work was in support of the Intelligent Systems Controls and Operations project under NASA's Information Technology Base Research Program. We constructed an optical pressure sensor by attaching a fiber-optic Bragg grating to a flexible membrane and then adhering the membrane to one end of a small cylinder. The other end of the cylinder was left open and exposed to pressure variations from a pulsed air jet. These pressure variations flexed the membrane, inducing a strain in the fiber-optic grating. This strain was read out optically with a dynamic spectrometer to record changes in the wavelength of light reflected from the grating. The dynamic spectrometer was built in-house to detect very small wavelength shifts induced by the pressure fluctuations. The spectrometer is an unbalanced interferometer specifically designed for maximum sensitivity to wavelength shifts. An optimum pathlength difference, which was determined empirically, resulted in a 14-percent sensitivity improvement over theoretically predicted path-length differences. This difference is suspected to be from uncertainty about the spectral power difference of the signal reflected from the Bragg grating. The figure shows the output of the dynamic spectrometer as the sensor was exposed to a nominally 2-kPa peak-to-peak square-wave pressure fluctuation. Good tracking, sensitivity, and signal-to-noise ratios are evident even though the sensor was constructed as a proof-of-concept and was not optimized in any way. Therefore the fiber-optic Bragg grating, which is normally considered a good candidate as a strain or temperature sensor, also has been shown to be a good candidate for a dynamic pressure sensor.

  6. Photoacoustic wave detection on water using a fiber optic transducer

    NASA Astrophysics Data System (ADS)

    Montoya, Jose P.; Munera, Natalia; Acuna-Herrera, Rodrigo

    2016-09-01

    In this work, a fiber optic microphone system was built and tested. The purpose of the fiber microphone is to sense photoacoustic waves produced by water molecules excited by an ultrafast laser. The use of a fiber sensor allows for ease of three-dimension measurement implementation for a 3-D imaging based on water amounts of different materials, this sensor can be directly submerged in water or a phantom gel without electromagnetic interference nor corrosion.

  7. Reflective fiber optic probe for surface finish survey

    NASA Astrophysics Data System (ADS)

    Wawrzyniuk, Leszek

    1995-06-01

    The Report relates to verification of the design of refractive fiber optic probes designed for checking surface finish condition and provides a description of tests on the models of such probes. Presented in the paper are the results of performance tests of a bifurcated probe to the concept of application of a non-random bundle of light guides for identification of surfaces representing different CLA values (0.32, 0.63, 1.25, 2.50 micrometers).

  8. Fiber optically isolated and remotely stabilized data transmission system

    DOEpatents

    Nelson, M.A.

    1992-11-10

    A fiber optically isolated and remotely stabilized data transmission systems described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber. 3 figs.

  9. Even Illumination from Fiber-Optic-Coupled Laser Diodes

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.

    2006-01-01

    A method of equipping fiber-optic-coupled laser diodes to evenly illuminate specified fields of view has been proposed. The essence of the method is to shape the tips of the optical fibers into suitably designed diffractive optical elements. One of the main benefits afforded by the method would be more nearly complete utilization of the available light. Diffractive optics is a relatively new field of optics in which laser beams are shaped by use of diffraction instead of refraction.

  10. All-PM CW fiber optical parametric oscillator.

    PubMed

    Zlobina, Ekaterina A; Kablukov, Sergey I; Babin, Sergey A

    2016-10-31

    We demonstrate for the first time a CW all-polarization maintaining (PM) all-fiber optical parametric oscillator (FOPO) based on a birefringent photonic crystal fiber pumped by a tunable linearly polarized ytterbium-doped fiber laser. The all-PM FOPO features polarization-adjustment-free tunable operation in wavelength range from 920 to 1000 nm for both the slow and the fast fiber axes with output power reaching 1.3 W.

  11. Gateway design specification for fiber optic local area networks

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This is a Design Specification for a gateway to interconnect fiber optic local area networks (LAN's). The internetworking protocols for a gateway device that will interconnect multiple local area networks are defined. This specification serves as input for preparation of detailed design specifications for the hardware and software of a gateway device. General characteristics to be incorporated in the gateway such as node address mapping, packet fragmentation, and gateway routing features are described.

  12. Digital signal processing for fiber-optic thermometers

    SciTech Connect

    Fernicola, V.; Crovini, L.

    1994-12-31

    A digital signal processing scheme for measurement of exponentially-decaying signals, such as those found in fluorescence, lifetime-based, fiber-optic sensors, is proposed. The instrument uses a modified digital phase-sensitive-detection technique with the phase locked to a fixed value and the modulation period tracking the measured lifetime. Typical resolution of the system is 0.05% for slow decay (>500 {mu}s) and 0.1% for fast decay.

  13. Fiber-optic sensor applications in civil and geotechnical engineering

    NASA Astrophysics Data System (ADS)

    Habel, Wolfgang R.; Krebber, Katerina

    2011-09-01

    Different types of fiber-optic sensors based on glass or polymeric fibers are used to evaluate material behavior or to monitor the integrity and long-term stability of load-bearing structure components. Fiber-optic sensors have been established as a new and innovative measurement technology in very different fields, such as material science, civil engineering, light-weight structures, geotechnical areas as well as chemical and high-voltage substations. Very often, mechanical quantities such as deformation, strain or vibration are requested. However, measurement of chemical quantities in materials and structure components, such as pH value in steel reinforced concrete members also provides information about the integrity of concrete structures. A special fiber-optic chemical sensor for monitoring the alkaline state (pH value) of the cementitious matrix in steel-reinforced concrete structures with the purpose of early detection of corrosion-initiating factors is described. The paper presents the use of several fiber-optic sensor technologies in engineering. One example concerns the use of highly resolving concrete-embeddable fiber Fabry-Perot acoustic emission (AE) sensors for the assessment of the bearing behaviour of large concrete piles in existing foundations or during and after its installation. Another example concerns fiber Bragg grating (FBG) sensors attached to anchor steels (micro piles) to measure the strain distribution in loaded soil anchors. Polymer optical fibers (POF) can be — because of their high elasticity and high ultimate strain — well integrated into textiles to monitor their deformation behaviour. Such "intelligent" textiles are capable of monitoring displacement of soil or slopes, critical mechanical deformation in geotechnical structures (dikes, dams, and embankments) as well as in masonry structures during and after earthquakes.

  14. A multichannel fiber optic photometer present performance and future developments

    NASA Technical Reports Server (NTRS)

    Barwig, H.; Schoembs, R.; Huber, G.

    1988-01-01

    A three channel photometer for simultaneous multicolor observations was designed with the aim of making possible highly efficient photometry of fast variable objects like cataclysmic variables. Experiences with this instrument over a period of three years are presented. Aspects of the special techniques applied are discussed with respect to high precision photometry. In particular, the use of fiber optics is critically analyzed. Finally, the development of a new photometer concept is discussed.

  15. Fiber Optically Coupled Eyesafe Laser Threat Warning System

    DTIC Science & Technology

    2000-05-11

    WARNING SYSTEM 11 MAY 2000 MSS SPECIALTY GROUP ON INFRARED COUNTERMEASURES NAVAL POSTGRADUATE SCHOOL, MONTEREY, CA PRESENTED BY: DR. AL TORRES...A Dates Covered (from... to) - Title and Subtitle Fiber Optically Coupled Eyesafe Laser Threat Warning System Contract Number Grant Number... WARNING SYSTEM (ESLTWS) PHASE II SBIR PROGRAM • CONCEPT: - TO DEVELOP A UNIQUE AND NOVEL EYE SAFE LASER THREAT WARNING RECEIVER SYSTEM. MUST BE

  16. Fiber optically isolated and remotely stabilized data transmission system

    DOEpatents

    Nelson, Melvin A.

    1992-01-01

    A fiber optically isolated and remotely stabilized data transmission system s described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber.

  17. Fiber optic reference frequency distribution to remote beam waveguide antennas

    NASA Technical Reports Server (NTRS)

    Calhoun, Malcolm; Kuhnle, Paul; Law, Julius

    1995-01-01

    In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.

  18. Time domain referencing in intensity modulation fiber optic sensing systems

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory

    1986-01-01

    Intensity modulation sensors are classified by the way in which the reference and signal channels are separated: in space, wavelength, or time domains. To implement the time-domain referencing, different types of fiber-optic loops have been used. A pulse of short duration sent into the loop results in a series of pulses of different amplitudes. The information about the measured parameter is retrieved from the relative amplitudes of pulses in the same train.

  19. Time domain referencing in intensity modulation fiber optic sensing systems

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.

    1986-01-01

    Intensity modulation sensors are classified depending on the way in which the reference and signal channels are separated: in space, wavelength (frequency), or time domains. To implement the time domain referencing different types of fiber optic (FO) loops have been used. A pulse of short duration sent into the loop results in a series of pulses of different amplitudes. The information about the measured parameter is retrieved from the relative amplitudes of pulses in the same train.

  20. Universal fiber-optic C.I.E. colorimeter

    DOEpatents

    Kronberg, James W.

    1992-01-01

    Apparatus for color measurements according to the C.I.E. system comprises a first fiber optic cable for receiving and linearizing light from a light source, a lens system for spectrally displaying the linearized light and focusing the light on one end of a trifurcated fiber optic assembly that integrates and separates the light according to the three C.I.E. tristimulus functions. The separated light is received by three photodiodes and electronically evaluated to determine the magnitude of the light corresponding to the tristimulus functions. The fiber optic assembly is made by forming, at one end, a bundle of optic fibers to match the contours of one of the tristimulus functions, encapsulating that bundle, adding a second bundle that, together with the first bundle, will match the contours of the first plus one other tristimulus function, encapsulating that second bundle, then adding a third bundle which together with the first and second bundles, has contours matching the sum of all three tristimulus functions. At the other end of the assembly the three bundles are separated and aligned with their respective photodiodes.

  1. Fiber Optic Strain Sensor for Planetary Gear Diagnostics

    NASA Technical Reports Server (NTRS)

    Kiddy, Jason S.; Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    This paper presents a new sensing approach for helicopter damage detection in the planetary stage of a helicopter transmission based on a fiber optic strain sensor array. Complete helicopter transmission damage detection has proven itself a difficult task due to the complex geometry of the planetary reduction stage. The crowded and complex nature of the gearbox interior does not allow for attachment of sensors within the rotating frame. Hence, traditional vibration-based diagnostics are instead based on measurements from externally mounted sensors, typically accelerometers, fixed to the gearbox exterior. However, this type of sensor is susceptible to a number of external disturbances that can corrupt the data, leading to false positives or missed detection of potentially catastrophic faults. Fiber optic strain sensors represent an appealing alternative to the accelerometer. Their small size and multiplexibility allows for potentially greater sensing resolution and accuracy, as well as redundancy, when employed as an array of sensors. The work presented in this paper is focused on the detection of gear damage in the planetary stage of a helicopter transmission using a fiber optic strain sensor band. The sensor band includes an array of 13 strain sensors, and is mounted on the ring gear of a Bell Helicopter OH-58C transmission. Data collected from the sensor array is compared to accelerometer data, and the damage detection results are presented

  2. Extrinsic fiber optic displacement sensors and displacement sensing systems

    DOEpatents

    Murphy, Kent A.; Gunther, Michael F.; Vengsarkar, Ashish M.; Claus, Richard O.

    1994-01-01

    An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer.

  3. Extrinsic fiber optic displacement sensors and displacement sensing systems

    DOEpatents

    Murphy, K.A.; Gunther, M.F.; Vengsarkar, A.M.; Claus, R.O.

    1994-04-05

    An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer. 14 figures.

  4. Rapid miniature fiber optic pressure sensors for blast wave measurements

    NASA Astrophysics Data System (ADS)

    Zou, Xiaotian; Wu, Nan; Tian, Ye; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2013-02-01

    Traumatic brain injury (TBI) is a serious potential threat to soldiers who are exposed to explosions. Since the pathophysiology of TBI associated with a blast wave is not clearly defined, it is crucial to have a sensing system to accurately quantify the blast wave dynamics. This paper presents an ultra-fast fiber optic pressure sensor based on Fabry-Perot (FP) interferometric principle that is capable of measuring the rapid pressure changes in a blast event. The blast event in the experiment was generated by a starter pistol blank firing at close range, which produced a more realistic wave profile compared to using compressed air driven shock tubes. To the authors' knowledge, it is also the first study to utilize fiber optic pressure sensors to measure the ballistics shock wave of a pistol firing. The results illustrated that the fiber optic pressure sensor has a rise time of 200 ns which demonstrated that the sensor has ability to capture the dynamic pressure transient during a blast event. Moreover, the resonant frequency of the sensor was determined to be 4.11 MHz, which agrees well with the specific designed value.

  5. Process, product, and waste-stream monitoring with fiber optics

    SciTech Connect

    Milanovich, F.P.; Hirschfeld, T.

    1983-10-10

    Fiber optic technology, motivated by communications and defense applications, has advanced significantly the past ten years. In particular, advances have been made in visible radiation transmission efficiency with concurrent reductions in fiber size, weight, and cost. Researchers at the Lawrence Livermore National Laboratory (LLNL) coupled these advances in fiber optic technology with analytical fluorescence analysis to establish a new technology - remote fiber fluorimetry (RFF). Laser-based RFF offers the potential to measure and monitor from one central and remote laboratory, on-line, and in near real time, trace (ppM) to substantial (g/L) concentrations of selected chemical species in typical process, product, and waste streams. The fluorimeter consists of a fluorescence or Raman spectrometer; unique coupling optics that separates input excitation (laser) radiation from return (fluorescence) radiation; a fiber optic cable; and an optrode - a terminal that interfaces the fiber to the measurement point, which is designed to respond quantitatively to a particular chemical species. At LLNL, research is underway into optrodes that measure pressure, temperature, and pH and those that detect and quantify various actinides, sulfates, inorganic chloride, hydrogen sulfide, aldehydes, and alcohols.

  6. Fourier transform optical profilometry using fiber optic Lloyd's mirrors.

    PubMed

    Kart, Türkay; Kösoğlu, Gülşen; Yüksel, Heba; İnci, Mehmet Naci

    2014-12-10

    A fiber optic Lloyd's mirror assembly is used to obtain various optical interference patterns for the detection of 3D rigid body shapes. Two types of fiber optic Lloyd's systems are used in this work. The first consists of a single-mode optical fiber and a highly reflecting flat mirror to produce bright and dark strips. The second is constructed by locating a single-mode optical fiber in a v-groove, which is formed by two orthogonal flat mirrors to allow the generation of square-type interference patterns for the desired applications. The structured light patterns formed by these two fiber Lloyd's techniques are projected onto 3D objects. Fringe patterns are deformed due to the object's surface topography, which are captured by a digital CCD camera and processed with a Fourier transform technique to accomplish 3D surface topography of the object. It is demonstrated that the fiber-optic Lloyd's technique proposed in this work is more compact, more stable, and easier to configure than other existing surface profilometry systems, since it does not include any high-cost optical tools such as aligners, couplers, or 3D stages. The fringe patterns are observed to be more robust against environmental disturbances such as ambient temperature and vibrations.

  7. Fiber optic oxygen sensor leak detection system for space applications

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Goswami, Kish; Mendoza, Edgar A.; Kempen, Lothar U.

    2007-09-01

    This paper describes the successful test of a multi-point fiber optic oxygen sensor system during the static firing of an Evolved Expandable Launch Vehicle (EELV)/Delta IV common booster core (CBC) rocket engine at NASA's Stennis Flight Center. The system consisted of microsensors (optrodes) using an oxygen gas sensitive indicator incorporated onto an optically transparent porous substrate. The modular optoelectronics and multiplexing network system was designed and assembled utilizing a multi-channel opto-electronic sensor readout unit that monitored the oxygen and temperature response of the individual optrodes in real-time and communicated this information via a serial communication port to a remote laptop computer. The sensor packaging for oxygen consisted of two optrodes - one doped with an indicator sensitive to oxygen, and the other doped with an indicator sensitive to temperature. The multichannel oxygen sensor system is fully reversible. It has demonstrated a dynamic response to oxygen gas in the range of 0% to 100% with 0.1% resolution and a response time of <=10 seconds. The sensor package was attached to a custom fiber optic ribbon cable, which was then connected to a fiber optic trunk communications cable (standard telecommunications-grade fiber) that connected to the optoelectronics module. Each board in the expandable module included light sources, photo-detectors, and associated electronics required for detecting oxygen and temperature. The paper illustrates the sensor design and performance data under field deployment conditions.

  8. Fiber optics for aircraft engine/inlet control

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1981-01-01

    NASA programs that focus on the use of fiber optics for aircraft engine/inlet control are reviewed. Fiber optics for aircraft control is attractive because of its inherent immunity to EMI and RFI noise. Optical signals can be safely transmitted through areas that contain flammable or explosive materials. The use of optics also makes remote sensing feasible by eliminating the need for electrical wires to be connected between sensors and computers. Using low-level optical signals to control actuators is also feasible when power is generated at the actuator. Each application of fiber optics for aircraft control has different requirements for both the optical cables and the optical connectors. Sensors that measure position and speed by using slotted plates can use lossy cables and bundle connectors if data transfer is in the parallel mode. If position and speed signals are multiplexed, cable and connector requirements change. Other sensors that depend on changes in transmission through materials require dependable characteristics of both the optical cables and the optical connectors. A variety of sensor types are reviewed, including rotary position encoders, tachometers, temperature sensors, and blade tip clearance sensors for compressors and turbines. Research on a gallium arsenide photoswitch for optically switched actuators that operate at 250 C is also described.

  9. Testing of a Fiber Optic Wear, Erosion and Regression Sensor

    NASA Technical Reports Server (NTRS)

    Korman, Valentin; Polzin, Kurt A.

    2011-01-01

    The nature of the physical processes and harsh environments associated with erosion and wear in propulsion environments makes their measurement and real-time rate quantification difficult. A fiber optic sensor capable of determining the wear (regression, erosion, ablation) associated with these environments has been developed and tested in a number of different applications to validate the technique. The sensor consists of two fiber optics that have differing attenuation coefficients and transmit light to detectors. The ratio of the two measured intensities can be correlated to the lengths of the fiber optic lines, and if the fibers and the host parent material in which they are embedded wear at the same rate the remaining length of fiber provides a real-time measure of the wear process. Testing in several disparate situations has been performed, with the data exhibiting excellent qualitative agreement with the theoretical description of the process and when a separate calibrated regression measurement is available good quantitative agreement is obtained as well. The light collected by the fibers can also be used to optically obtain the spectra and measure the internal temperature of the wear layer.

  10. Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer.

    PubMed

    Jang, Tae Seong; Lee, Seung Seok; Kwon, Il Bum; Lee, Wang Joo; Lee, Jung Ju

    2002-06-01

    This paper describes a fiber optic sensor suitable for noncontact detection of ultrasonic waves. This sensor is based on the fiber optic Sagnac interferometer, which has a path-matched configuration and does not require active stabilization. Quadrature phase bias between two interfering laser beams in the Sagnac loop is applied by controlling the birefringence using a fiber polarization controller. A stable quadrature phase bias can be confirmed by observing the interferometer output according to the change of phase bias. Additional signal processing is not needed for the detection of ultrasonic waves using the Sagnac interferometer. Ultrasonic oscillations produced by conventional ultrasonic piezoelectric transducers were successfully detected, and the performance of this interferometer was investigated by a power spectrum analysis of the output signal. Based on the validation of the fiber optic Sagnac interferometer, noncontact detection of laser-generated surface waves was performed. The configured Sagnac interferometer is very effective for the detection of small displacement with high frequency, such as ultrasonic waves used in conventional nondestructive testing (NDT).

  11. Solids Fraction Measurement with a Reflective Fiber Optic Probe

    SciTech Connect

    Seachman, S.M.; Yue, P.C.; Ludlow, J.C.; Shadle, L.J.

    2006-11-01

    A method has been developed to extract solids fraction information from a reflective fiber optic probe. The commercially available reflective fiber optic probe was designed to measure axial particle velocity (both up and down directions). However, the reflected light intensity measured is related to particle size and particle concentration. A light reflection model is used to relate the reflected light intensity to solids fraction. In this model we assume that the reflected light intensity is a fixed fraction, K1, of the total light intensity lost in penetration of a solid layer. Also, the solids fraction is related to particle concentration, N, in the light path, by N = K2 (1- ε), where (1-ε) is the solids fraction. The parameters K1 and K2 are determined through a calibration and curve fitting procedure. This paper describes this procedure and the steps taken to derive the values of K1 and K2. It is proposed that the reflective fiber optic can be used for real time measurement of solids fraction in a circulating fluid bed.

  12. Fiber-Optic Micrometeoroid/Orbital Debris Impact Detector System

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Tennyson, R. C.; Morison, W. D.

    2012-01-01

    A document describes a reliable, lightweight micrometeoroid/orbital debris (MMOD) detection system that can be located at strategic positions of "high consequence" to provide real-time warning of a penetration, its location, and the extent of the damage to a spacecraft. The concept is to employ fiber-optic sensors to detect impact damage and penetration of spacecraft structures. The fibers are non-electrical, employ light waves, and are immune to electromagnetic interference. The fiber-optic sensor array can be made as a stand-alone product, being bonded to a flexible membrane material or a structure that is employed as a MMOD shield material. The optical sensors can also be woven into hybrid MMOD shielding fabrics. The glass fibers of the fiber-optic sensor provide a dual purpose in contributing to the breakup of MMOD projectiles. The grid arrays can be made in a modular configuration to provide coverage over any area desired. Each module can be connected to a central scanner instrument and be interrogated in a continuous or periodic mode.

  13. Smoke and mirrors: a fiber optic smoke sensor

    NASA Astrophysics Data System (ADS)

    Whitesel, Henry K.; Overby, John K.; Ransford, Michael J.; Tatem, Patricia A.

    1994-11-01

    Smoke detectors in general, are usually threshold devices that frequently experience false alarms. Optical smoke detectors usually depend on the measurement of optical power absorption and scattering across an air gap and are usually threshold devices. Fiber optic sensor technology offers potential improvements for existing smoke detector technology. We have developed a new smoke sensor design based on wavelength selective absorption and scattering that generates a continuous measurement of smoke density. This technique provides first order compensation for water and dirt coatings on the optical surfaces and for optical power and ambient light changes. The sensor has a 2 inch sensing region and utilizes multimode technology with an 850 nanometer LED source. Experimental models of the fiber optic smoke sensors were tested successfully in our laboratory and on the ex-USS SHADWELL. Operational performance advantages of the fiber optic smoke sensor are expected in the areas of monitoring visibility, reducing false alarms, improving reliability, and continuous measurement of smoke density; this will improve fire detection capability and will assist in developing fire fighting strategy. Application of the sensors are planned for the shipboard environment to provide sensor input to new damage control management systems.

  14. Optoacoustic fiber optic interferometric sensors for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gallego, Daniel; Lamela, Horacio

    2011-06-01

    A non-metallic interferometric optical fiber ultrasonic wideband sensor is presented for optoacoustic imaging applications. The ultrasonic sensitivity of intrinsic fiber optic interferometric sensors depends strongly of the material which is composed of. We compare experimentally the acoustic sensitivity of two fiber optic sensors based on singlemode silica optical fiber and multimode graded-index perfluorinated polymer optical fiber, respectively. Both sensors are designed for detection of optoacoustic wave sources with frequencies in the range from 100 kHz to 5 MHz. These results are also compared with a PVDF ultra wideband sensor. We evaluated detection of real world optoacoustic signals, generated from an optically absorbing object embedded in a tissue mimicking phantom, between our silica optical fiber sensor and an array of piezoelectric transducers. Reconstructed two dimensional acoustic images of the phantom are presented and compared with images obtained with the Laser Optoacoustic Imaging System, LOIS-64B, demonstrating the feasibility of our fiber optic sensor as a wideband ultrasonic sensor.

  15. Root planing with interdental papilla reflection and fiber optic illumination.

    PubMed

    Reinhardt, R A; Johnson, G K; Tussing, G J

    1985-12-01

    The complete removal of accretions during closed scaling and root planing in moderate-deep pockets is difficult, presumably due to inadequate mechanical and visual access. The purpose of this study was to evaluate the effect of minimal papilla reflection and illumination with a prototype fiber optic unit on root planing efficiency. Nonmolar teeth with moderate-deep interproximal pockets (greater than 3 mm) in four patients scheduled to receive immediate complete dentures were randomly divided into groups for treatment: Group I--interproximal root planing augmented by papilla reflection and fiber optic illumination (n = 26 surfaces); Group II--interproximal root planing with papilla reflection only (n = 24); Group III--untreated controls (n = 23). Immediately after treatment, the experimental teeth were extracted, stained with toluidine blue and interproximal areas were evaluated for remaining accretions with a microscope-digitizing pad-computer system. Significantly less (P less than 0.01) root surface was covered by deposits in Group I than Group II (0.57 +/- 0.29% vs. 2.42 +/- 0.63%), and both treatment groups had fewer (P less than 0.0005) accretions than untreated controls (57.72 +/- 3.40%). These results suggest that root planing with papilla reflection produces an interproximal surface with few remaining deposits, and fiber optic illumination and transillumination further enhance this effect.

  16. High-speed digital fiber optic links for satellite traffic

    NASA Technical Reports Server (NTRS)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-01-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  17. High-speed digital fiber optic links for satellite traffic

    NASA Astrophysics Data System (ADS)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-09-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  18. Coherent Fiber Optic Coupling Techniques For Downhole Imaging Camerasl

    NASA Astrophysics Data System (ADS)

    Cameron, George R.

    1987-10-01

    Cameras used to monitor underground nuclear testing experiments are subjected to a variety of harsh conditions which must be accounted for during the design phase. Since experiments are buried several thousand feet below ground, reliability is of foremost concern. Many of the cameras designed at Lawrence Livermore Laboratory contain coherent fiber optic components such as microchannel plate image intensifiers, fiber optic reducers, and diode or CCD imaging arrays. Coupling of these components calls for hardware which will maintain precise contact and alignment in conditions of high vibration, large thermal transition, and high humidity. In addition, the hardware must be easily assembled by untrained technical personnel under less than ideal conditions (windy, dusty, rainy, etc.). A high speed imaging camera based upon a Fairchild CCD array chip was designed at Livermore in 1984. Problems in coupling the array window to a fiber optic reducer were aggravated by mounting of the array chip rigidly to the main video circuit board. A new array chip daughter board, attached by flat ribbon cable and supported by a spring loaded lever combination was designed to overcome the problem. The hardware did not increase the overall size of the existing camera and increased the unit cost by less than 1 K$. The design of this hardware will be discussed along with useful techniques for designers of cameras used in harsh environments.

  19. Fiber Optic Sensors for Health Monitoring of Morphing Aircraft

    NASA Technical Reports Server (NTRS)

    Brown, Timothy; Wood, Karen; Childers, Brooks; Cano, Roberto; Jensen, Brian; Rogowski, Robert

    2001-01-01

    Fiber optic sensors are being developed for health monitoring of future aircraft. Aircraft health monitoring involves the use of strain, temperature, vibration and chemical sensors. These sensors will measure load and vibration signatures that will be used to infer structural integrity. Sine the aircraft morphing program assumes that future aircraft will be aerodynamically reconfigurable there is also a requirement for pressure, flow and shape sensors. In some cases a single fiber may be used for measuring several different parameters. The objective of the current program is to develop techniques for using optical fibers to monitor composite cure in real time during manufacture and to monitor in-service structural integrity of the composite structure. Graphite-epoxy panels were fabricated with integrated optical fibers of various types. The panels were mechanically and thermally tested to evaluate composite strength and sensor durability. Finally the performance of the fiber optic sensors was determined. Experimental results are presented evaluating the performance of embedded and surface mounted optical fibers for measuring strain, temperature and chemical composition. The performance of the fiber optic sensors was determined by direct comparison with results from more conventional instrumentation. The facilities for fabricating optical fiber and associated sensors and methods of demodulating Bragg gratings for strain measurement will be described.

  20. Realization and characterization of fiber optic reflective sensor

    NASA Astrophysics Data System (ADS)

    Guzowski, B.; Łakomski, M.; Słapek, B.

    2016-11-01

    In almost all of non-invasive techniques, fiber optic sensors may be the most promising ones because of their inherent advantages such as very small size and hard environment tolerance. Proximity sensors based on optical fiber are highly required especially in the impact area of electromagnetic fields. In this paper three different types of fiber optic reflective sensors are presented. In all three types of the sensor four multimode optical fibers (MMF) illuminate the movable surface. The difference is in the number of collecting the reflected light MMF. In the first one, 12 MMF collect the light, in the second one 20 MMF, while in the third one the number of MMF collecting reflected light is 32. Moreover, all three types of fiber optic reflective sensors were realized in two configurations. In the first one, the cleaved MMF were used to collect reflected light, while in the second configuration - the ball-lensed optical fibers were chosen. In this paper an analysis of each type of realized sensor is presented. In the last part of this paper the obtained results and the detailed discussion are given.

  1. Visual stimulus presentation using fiber optics in the MRI scanner.

    PubMed

    Huang, Ruey-Song; Sereno, Martin I

    2008-03-30

    Imaging the neural basis of visuomotor actions using fMRI is a topic of increasing interest in the field of cognitive neuroscience. One challenge is to present realistic three-dimensional (3-D) stimuli in the subject's peripersonal space inside the MRI scanner. The stimulus generating apparatus must be compatible with strong magnetic fields and must not interfere with image acquisition. Virtual 3-D stimuli can be generated with a stereo image pair projected onto screens or via binocular goggles. Here, we describe designs and implementations for automatically presenting physical 3-D stimuli (point-light targets) in peripersonal and near-face space using fiber optics in the MRI scanner. The feasibility of fiber-optic based displays was demonstrated in two experiments. The first presented a point-light array along a slanted surface near the body, and the second presented multiple point-light targets around the face. Stimuli were presented using phase-encoded paradigms in both experiments. The results suggest that fiber-optic based displays can be a complementary approach for visual stimulus presentation in the MRI scanner.

  2. Raman and loss induced quantum noise in depleted fiber optical parametric amplifiers.

    PubMed

    Friis, S M M; Rottwitt, K; McKinstrie, C J

    2013-12-02

    We present a semi-classical approach for predicting the quantum noise properties of fiber optical parametric amplifiers. The unavoidable contributors of noise, vacuum fluctuations, loss-induced noise, and spontaneous Raman scattering, are included in the analysis of both phase-insensitive and phase-sensitive amplifiers. We show that the model agrees with earlier fully quantum approaches in the linear gain regime, whereas in the saturated gain regime, in which the classical equations are valid, we predict that the amplifier increases the signal-to-noise ratio by generating an amplitude-squeezed state of light. Also, in the same process, we analyze the quantum noise properties of the pump, which is difficult using standard quantum approaches, and we discover that the pump displays complicated dynamics in both the linear and the nonlinear gain regimes.

  3. Analysis and modeling for fiber-optic gyroscope scale factor based on environment temperature.

    PubMed

    Shen, Chong; Chen, Xiyuan

    2012-05-10

    To explore and reduce the nonlinear error and temperature dependency of fiber-optic gyroscope (FOG) scale factor, a scale factor modeling method based on temperature is presented in this paper. A hyperbolic curve fitting is proposed according to the characteristic of scale factor under stable temperature at first. Compared to traditional modeling methods, it shows that a higher precision model of scale factor can be obtained. Then the influence of temperature on scale factor is analyzed and then the hyperbolic curve fitting method is extended based on temperature, making it possible to work over the whole potential temperature range of the FOG without degrading the performance. This paper also provides the experimental and verification results. It can be seen that a high precision model of scale factor has been established, the temperature dependency of scale factor has been reduced effectively, and the error due to environment temperature is reduced by one order at least.

  4. [Research on key technologies of all fiber optic Fourier transform spectrometer].

    PubMed

    Wang, An; Zhu, Ling; Zhang, Long; Liu, Yong; Zhu, Zhen; Li, Zhi-Gang; Wu, Jian-Dong; Fan, Yan-Ping

    2009-07-01

    A noval all fiber optic Fourier transform spectrometer based on single mode fiber Mach-Zehnder interferometer is reported. The authors designed a piezoelectric optical phase modulator with two centimeter scan scale, which was used to replace the moving mirror of traditonal Fourier transform spectrometer. The 1 310 nm DFB laser was used as reference light source to make equal interval sampling of test light source's interferogram, and to eliminate errors of nonlinear modulation. Through making the inverse Fourier transform to test light source's interferogram, the authors obtained the spectrum of test source. The spectrum of ASE broadband light source was measured by FFTS system, and the experiment result agrees with that tested by grating spectrometer. Finally, the authors utilized fiber grating as sample to measure the resolution of FFTS system, and the spectral resolution is 0.78 cm(-1).

  5. Realization of the scale of high fiber optic power at three national standards laboratories

    SciTech Connect

    Envall, Jouni; Andersson, Anne; Petersen, Jan C.; Kaerhae, Petri

    2005-08-20

    Nowadays the transmission powers in optical telecommunication networks are often hundreds of milliwatts. Such high power levels are known to cause several nonlinear effects, thus affecting data transfer. Therefore, accurate measurements of such high power levels are required. The general issues that are to be considered when one is realizing a scale for high fiber optic power are discussed. The scales of the national standards laboratories in Finland, Sweden, and Denmark are described, and the results of a trilateral comparison of these scales are presented. The power range of the comparison was 1-200 mW. The results show that the stated measurement uncertainties of the three laboratories (1.3%-2.9%,k=2) are applicable over this power range.

  6. Fiber optic systems for mobile platforms III; Proceedings of the Meeting, Boston, MA, Sept. 7, 8, 1989

    NASA Technical Reports Server (NTRS)

    Lewis, Norris E. (Editor); Moore, Emery L. (Editor)

    1990-01-01

    Various papers on fiber optic systems for mobile platforms are presented. Individual topics addressed include: architecture for fiber optic sensors and actuators in aircraft propulsion systems, fiber optic sensor system readiness for aircraft, microphone headset compatible with power by light, wavelength-division-multiplexed fiber optic sensors for aircraft applications, development of fly-by-light systems, fiber-optic-based inertial measurement unit, fault-tolerant architecture for a fly-by-light flight control computer, optically powered sensors for EMI-immune aviation sensing systems, infrared fiber optic fire sensors for space station applications. Papers on shipboard and automotive applications of fiber optic systems are also included.

  7. Fiber optic sensor having dual simultaneous sensitivities employing mode ring technique

    NASA Astrophysics Data System (ADS)

    Dekate, Sachin Narahari

    Fiber optic interferometric sensors have an extremely high maximum sensitivity when compared to fiber optic intensity based sensors. Their disadvantage is the complex and expensive signal demodulation techniques that are employed due to their multi-valued output signal in addition to zero-sensitivity at some measurand values. Employing two interferometric sensors of different sensitivity allows an extended range of operation with relatively high sensitivity, however; the two sensors can never be placed at the same exact spatial location. This dissertation documents the dual-sensitivity fiber optic strain sensor which provides two simultaneous outputs of different sensitivity enabling the unambiguous use of interferometric sensors over an extended range. The dual-sensitivity fiber optic strain sensor has one sensing region and therefore the measurand is sensed at one location. The dual-sensitivity fiber optic strain sensor combines two fiber optic sensor architectures: Two-Mode fiber optic interferometric strain sensor (low sensitivity) and the Mach-Zehnder fiber optic interferometric strain sensor (high sensitivity). The dual-sensitivity fiber optic strain sensor also employs the end-etched fiber technique that enables the separation of modes. This technique allows the separated modes to be recombined in inter-mode (different mode order interference yielding low sensitivity output) and intra-mode (same mode order interference yielding high sensitivity output) interference configurations. One sensing region, dual simultaneous sensitivities and the use of end-etched fiber for sensing applications are some of the unique features of the dual-sensitivity fiber optic strain sensor.

  8. Fiber optic probes for laser light scattering: Ground based evaluation for micgrogravity flight experimentation. Integrated coherent imaging fiber optic systems for laser light scattering and other applications

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans Singh

    1994-01-01

    The research work presented in this report has established a new class of backscatter fiber optics probes for remote dynamic light scattering capability over a range of scattering angles from 94 degrees to 175 degrees. The fiber optic probes provide remote access to scattering systems, and can be utilized in either a noninvasive or invasive configuration. The fiber optics create an interference free data channel to inaccessible and harsh environments. Results from several studies of concentrated suspension, microemulsions, and protein systems are presented. The second part of the report describes the development of a new technology of wavefront processing within the optical fiber, that is, integrated fiber optics. Results have been very encouraging and the technology promises to have significant impact on the development of fiber optic sensors in a variety of fields ranging from environmental monitoring to optical recording, from biomedical sensing to photolithography.

  9. Probe based confocal laser endomicroscopy of the pancreatobiliary system

    PubMed Central

    Almadi, Majid A; Neumann, Helmut

    2015-01-01

    AIM: To review applications of confocal laser endomicroscopy (CLE) in pancreatobiliary lesions and studies that assessed training and interpretation of images. METHODS: A computerized literature search was performed using OVID MEDLINE, EMBASE, Cochrane library, and the ISI Web of Knowledge from 1980 to October 2014. We also searched abstracts from major meetings that included the Digestive Disease Week, Canadian Digestive Disease Week and the United European Gastroenterology Week using a combination of controlled vocabulary and text words related to pCLE, confocal, endomicroscopy, probe-based confocal laser endomicroscopy, and bile duct to identify reports of trials. In addition, recursive searches and cross-referencing was performed, and manual searches of articles identified after the initial search was also completed. We included fully published articles and those in abstract form. Given the relatively recent introduction of CLE we included randomized trials and cohort studies. RESULTS: In the evaluation of indeterminate pancreatobiliary strictures CLE with ERCP compared to ERCP alone can increase the detection of cancerous strictures with a sensitivity of (98% vs 45%) and has a negative predictive value (97% vs 69%), but decreased the specificity (67% vs 100%) and the positive predictive value (71% vs 100%) when compared to index pathology. Modifications in the classification systems in indeterminate biliary strictures have increased the specificity of pCLE from 67% to 73%. In pancreatic cystic lesions there is a need to develop similar systems to interpret and characterize lesions based on CLE images obtained. The presence of superficial vascular network predicts serous cystadenomas accurately. Also training in acquiring and interpretation of images is feasible in those without any prior knowledge in CLE in a relatively simple manner and computer-aided diagnosis software is a promising innovation. CONCLUSION: The role of pCLE in the evaluation of

  10. Endomicroscopy imaging of epithelial structures using tissue autofluorescence

    NASA Astrophysics Data System (ADS)

    Lin, Bevin; Urayama, Shiro; Saroufeem, Ramez M. G.; Matthews, Dennis L.; Demos, Stavros G.

    2011-04-01

    We explore autofluorescence endomicroscopy as a potential tool for real-time visualization of epithelial tissue microstructure and organization in a clinical setting. The design parameters are explored using two experimental systems--an Olympus Medical Systems Corp. stand-alone clinical prototype probe, and a custom built bench-top rigid fiber conduit prototype. Both systems entail ultraviolet excitation at 266 nm and/or 325 nm using compact laser sources. Preliminary results using ex vivo animal and human tissue specimens suggest that this technology can be translated toward in vivo application to address the need for real-time histology.

  11. [The design and application of domestic mid-IR fiber optics].

    PubMed

    Weng, Shi-fu; Gao, Jian-ping; Xu, Yi-zhuang; Yang, Li-min; Bian, Bei-ya; Xiang, Hai-bo; Wu, Jin-guang

    2004-05-01

    The combination of mid-IR fiber optics and FTIR has made the non-invasive determination of samples in situ, with long distances, and in vivo possible. In this paper domestic mid-IR fiber optics was improved to investigate the transmission ability of fiber optics and its application to the sample determination. New design was applied to obtaining one bare fiber optics, which has a minor energy loss and higher signal-to-noise ratio. The spectra of H2O/EtOH and tissue samples were measured using the new designed fiber optics and the results show that home-made mid-IR fiber optics can be applied to the field of determination of general and biological samples.

  12. Repair and maintenance of fiber optic data links on Navy aircraft

    NASA Astrophysics Data System (ADS)

    Fryland, Eric

    1992-02-01

    This paper will examine the problems and concerns of repairing fiber optic data links on carrier based Navy aircraft and will present the results of fiber optic splice testing that was performed aboard the USS Abraham Lincoln (CVN-72) in January 1991. Mechanical splicing of 50/125 micrometer fiber was performed at the various Navy maintenance levels in order to quantify the effects of the aircraft carrier environment on fiber optic splicing. Results, conclusions and recommendations will be given.

  13. Application of Fiber-Optical Techniques in the Access Transmission and Backbone Transport of Mobile Networks

    NASA Astrophysics Data System (ADS)

    Hilt, Attila; Pozsonyi, László

    2012-09-01

    Fixed access networks widely employ fiber-optical techniques due to the extremely wide bandwidth offered to subscribers. In the last decade, there has also been an enormous increase of user data visible in mobile systems. The importance of fiber-optical techniques within the fixed transmission/transport networks of mobile systems is therefore inevitably increasing. This article summarizes a few reasons and gives examples why and how fiber-optic techniques are employed efficiently in second-generation networks.

  14. Fiber Optic Sensors for Detection of Toxic and Biological Threats

    PubMed Central

    El-Sherif, Mahmoud; Bansal, Lalitkumar; Yuan, Jianming

    2007-01-01

    Protection of public and military personnel from chemical and biological warfare agents is an urgent and growing national security need. Along with this idea, we have developed a novel class of fiber optic chemical sensors, for detection of toxic and biological materials. The design of these fiber optic sensors is based on a cladding modification approach. The original passive cladding of the fiber, in a small section, was removed and the fiber core was coated with a chemical sensitive material. Any change in the optical properties of the modified cladding material, due to the presence of a specific chemical vapor, changes the transmission properties of the fiber and result in modal power redistribution in multimode fibers. Both total intensity and modal power distribution (MPD) measurements were used to detect the output power change through the sensing fibers. The MPD technique measures the power changes in the far field pattern, i.e. spatial intensity modulation in two dimensions. Conducting polymers, such as polyaniline and polypyrrole, have been reported to undergo a reversible change in conductivity upon exposure to chemical vapors. It is found that the conductivity change is accompanied by optical property change in the material. Therefore, polyaniline and polypyrrole were selected as the modified cladding material for the detection of hydrochloride (HCl), ammonia (NH3), hydrazine (H4N2), and dimethyl-methl-phosphonate (DMMP) {a nerve agent, sarin stimulant}, respectively. Several sensors were prepared and successfully tested. The results showed dramatic improvement in the sensor sensitivity, when the MPD method was applied. In this paper, an overview on the developed class of fiber optic sensors is presented and supported with successful achieved results.

  15. Fiber-Optic Network Architectures for Onboard Avionics Applications Investigated

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Ngo, Duc H.

    2003-01-01

    This project is part of a study within the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Center. The main focus of the program is the improvement of air transportation, with particular emphasis on air transportation safety. Current and future advances in digital data communications between an aircraft and the outside world will require high-bandwidth onboard communication networks. Radiofrequency (RF) systems, with their interconnection network based on coaxial cables and waveguides, increase the complexity of communication systems onboard modern civil and military aircraft with respect to weight, power consumption, and safety. In addition, safety and reliability concerns from electromagnetic interference between the RF components embedded in these communication systems exist. A simple, reliable, and lightweight network that is free from the effects of electromagnetic interference and capable of supporting the broadband communications needs of future onboard digital avionics systems cannot be easily implemented using existing coaxial cable-based systems. Fiber-optical communication systems can meet all these challenges of modern avionics applications in an efficient, cost-effective manner. The objective of this project is to present a number of optical network architectures for onboard RF signal distribution. Because of the emergence of a number of digital avionics devices requiring high-bandwidth connectivity, fiber-optic RF networks onboard modern aircraft will play a vital role in ensuring a low-noise, highly reliable RF communication system. Two approaches are being used for network architectures for aircraft onboard fiber-optic distribution systems: a hybrid RF-optical network and an all-optical wavelength division multiplexing (WDM) network.

  16. Re-inventing the fiber-optic textbook: a proposal

    NASA Astrophysics Data System (ADS)

    Hecht, Jeff; Hecht, Deborah; Chowdary, Ahsan; Massa, Nicholas

    2016-09-01

    It's time to reinvent the textbook to meet the needs of today's students, educators, and self-study readers. Students aren't buying them, and authors and publishers have slowed or stopped revising them keep up with new technology and new pedagogy. We want to demonstrate new possibilities by completely overhauling Understanding Fiber Optics, an introduction to fiber optics originally written by J.H. for self-study and later republished as a textbook for technician training. After five editions that sold over 100,000 copies, its page count nearly doubled and its price soared more than tenfold from its original $16.95. We envision a modular structure to meet the needs of students and instructors. Basic concepts will be covered at an introductory level in a "core book" of some 200-250 pages, suitable for self-study, STEM programs at the high school level, and technician training. Additional separate modules primarily intended for instructors will cover details, such as how to install connectors. All materials will be distributed electronically at low cost, and will include interactive demonstrations, animations, simulations, and audio and video supplements explaining key concepts. Our goal is to keep the best aspects of a well-written and well-illustrated textbook, take advantage of new tools for presenting material to students, and make the whole package readily accessible and affordable to students, instructors, and anyone else wanting a working knowledge of fiber optics. We are developing a proposal to achieve these goals, and looking for partners to help us develop, test and evaluate instructional materials.

  17. Double-Tubing Encapsulated Fiber Optic Temperature Sensor

    NASA Astrophysics Data System (ADS)

    Xu, Juncheng; Pickrell, Gary; Huang, Zhengyu; Qi, Bing; Zhang, Po; Duan, Yuhong; Wang, Anbo

    2003-09-01

    Increasing the efficiency of oil production operations requires improved sensors to supply critical information such as mixed-phase fluid flow, pressure and temperature measurements within the down-hole oil environment. In order to provide robust and reliable fiber optic temperature sensors capable of operating in the harsh down-hole oil environment, where temperatures might exceed 250 °C and pressures might reach 20,000 psi (140 Mpa), a novel type of fiber optic temperature sensor has been developed. This temperature sensor functions as an EFPI (extrinsic Fabry-Perot interferometric) sensor. One unique contribution of this work is that the glass tubing used is a borosilicate glass with a relatively high coefficient of thermal expansion (CTE) and long gauge length, allowing a much higher sensitivity to be achieved, without hysteresis. The sensor structure utilizes a dual tubing design (tubing within a tubing) to allow pressure isolation. An LED light beam is used as the signal interrogation source to remotely interrogate the sensor which may be located tens of thousands of meters away, connected by an optical fiber. A white-light interferometer measurement system is utilized to process the returned interference signal and to precisely determine the length of the Fabry-Perot interferometric cavity. Another unique feature of this work is that the sensor has been packaged with a specially developed hermetic protection process to prevent water penetration and to improve the mechanical integrity of the sensor. This protection process has allowed the successful hydraulic deployment of fiber optic sensors through 3 mm ID stainless steel tubing into a functioning oil well. Data on the resolution, repeatability and pressure sensitivity are presented.

  18. Gamma radiation resistant Fabry-Perot fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Liu, Hanying; Miller, Don W.; Talnagi, Joseph

    2002-08-01

    The Nuclear Regulatory Commission (NRC) in 1998 completed a study of emerging technologies that could be applicable to measurement systems in nuclear power plants [H. M. Hashemian [et al.], "Advanced Instrumentation and Maintenance Technologies for Nuclear Power Plants," NUREG/CR-5501 (1998)]. This study concluded that advanced fiber optic sensing technology is an emerging technology that should be investigated. It also indicated that there had been very little research related to performance evaluation of fiber optic sensors in nuclear plant harsh environments, although substantial research has been performed on nuclear radiation effects on optical fibers in the last two decades. A type of Fabry-Perot fiber optic temperature sensor, which is manufactured by Fiso Technologies in Canada, is qualified to be a candidate for potential applications in nuclear radiation environment due to its unique signal processing technique and its resistance to power loss. The gamma irradiation effects on this type of sensors are investigated in this article. Two sensors were irradiated in a gamma irradiation field and one of them was irradiated up to a total gamma dose of 133 Mrad. The sensor on-line performance was monitored during each gamma irradiation test. Furthermore, the sensor static and dynamic performance before and after each irradiation test were evaluated according to the Standard ISA-dS67.06.01 ("Performance Monitoring for Nuclear Safety-Related Instrument Channels in Nuclear Power Plants", Standard ISA-dS67.06.01, Draft 7, Instrument Society of America, 1999). Although several abnormal phenomena were observed, analysis shows that gamma irradiation is not accredited to the abnormal behavior, which implies that this type of sensor is suitable to a gamma irradiation environment with a high gamma dose.

  19. Real-time In-Flight Strain and Deflection Monitoring with Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This viewgraph presentation reviews Dryden's efforts to develop in-flight monitoring based on Fiber Optics. One of the motivating factors for this development was the breakup of the Helios aircraft. On Ikhana the use of fiber optics for wing shape sensing is being developed. They are being used to flight validate fiber optic sensor measurements and real-time wing shape sensing predictions on NASA's Ikhana vehicle; validate fiber optic mathematical models and design tools; Assess technical viability and, if applicable, develop methodology and approach to incorporate wing shape measurements within the vehicle flight control system, and develop and flight validate advanced approaches to perform active wing shape control.

  20. Fiber optic strain measurements in filament-wound graphite-epoxy tubes containing embedded fibers

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Heyman, J. S.; Holben, M. S., Jr.; Egalon, C.; Dehart, D. W.

    1989-01-01

    Filament-wound graphite-epoxy tubes fabricated with embedded fiber optic sensors were tested at NASA Langley Research Center to evaluate the feasibility of monitoring stress with a fiber optic technique. Resistance strain gauges were attached to the tubes to measure strain at four locations along the tubes. Both static and dynamic strain measurements were made with an excellent agreement between the embedded fiber optic strain sensor and the strain gauges. The results indicate that fiber optic sensors embedded in composites may be useful as the sensing component of smart structures.

  1. Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring

    SciTech Connect

    Zelepouga, Serguei A; Rue, David M; Saveliev, Alexei V

    2011-03-15

    A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.

  2. Embedded Bragg grating fiber optic sensor for composite flexbeams

    NASA Astrophysics Data System (ADS)

    Bullock, Daniel; Dunphy, James; Hufstetler, Gerard

    1993-03-01

    An embedded fiber-optic (F-O) sensor has been developed for translaminar monitoring of the structural integrity of composites, with a view to application in composite helicopter flexbeams for bearingless main rotor hubs. This through-thickness strain sensor is much more sensitive than conventional in-plane embedded F-O sensors to ply delamination, on the basis of a novel insertion technique and innovative Bragg grating sensor. Experimental trials have demonstrated the detection by this means of potential failures in advance of the edge-delamination or crack-propagation effect.

  3. Field test of fiber optic ocean bottom seismograph

    NASA Astrophysics Data System (ADS)

    Zhang, Wentao; Wang, Zhaogang; Huang, Wenzhu; Li, Li; Liu, Wenyi; Luo, Yingbo; Li, Fang

    2016-05-01

    In this paper we report the field test of fiber optic ocean bottom seismograph (OOBS) which can be used in the active source seismic research. There are three fiber laser accelerometers (FLAs) and one fiber laser hydrophone (FLH), which is wavelength division multiplexed, in the OOBS. The interrogation system is put on shore and is connected with the OOBS with optical fiber cable. The field test of using an air gun is carried out under water with a depth of 30 m. The results show that the OOBS has similar performance as conventional electric OBS.

  4. Multiple-Fiber-Optic Probe For Light-Scattering Measurements

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans Singh; Ansari, Rafat R.

    1996-01-01

    Multiple-fiber-optical probe developed for use in measuring light scattered at various angles from specimens of materials. Designed for both static and dynamic light-scattering measurements of colloidal dispersions. Probe compact, rugged unit containing no moving parts and remains stationary during operation. Not restricted to operation in controlled, research-laboratory environment. Positioned inside or outside light-scattering chamber. Provides simultaneous measurements at small angular intervals over range of angles, made to include small scattering angles by orienting probe in appropriate direction.

  5. Wavelength meter having single mode fiber optics multiplexed inputs

    DOEpatents

    Hackel, Richard P.; Paris, Robert D.; Feldman, Mark

    1993-01-01

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  6. Wavelength meter having single mode fiber optics multiplexed inputs

    DOEpatents

    Hackel, R.P.; Paris, R.D.; Feldman, M.

    1993-02-23

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  7. Planar Rowland spectrometer for fiber-optic wavelength demultiplexing

    NASA Technical Reports Server (NTRS)

    Yen, H. W.; Friedrich, H. R.; Morrison, R. J.; Tangonan, G. L.

    1981-01-01

    A planar Rowland spectrometer was fabricated and characterized as a wavelength demultiplexer for multimode fiber-optic applications. The spectrometer consisted of a planar multimode glass waveguide with two curved end faces and a cylindrical concave attached to one of the end faces. Semiconductor lasers with wavelengths between 0.825 and 0.845 micron were used for the measurements. Cross-talk isolation between two adjacent fibers with center-to-center separation of 175 microns (100 A in wavelength difference) was measured to be 18 dB. The device's performance was limited by grating diffraction efficiency, optical aberration, waveguide dispersion, and waveguide losses.

  8. Fiber optic displacement measurement model based on finite reflective surface

    NASA Astrophysics Data System (ADS)

    Li, Yuhe; Guan, Kaisen; Hu, Zhaohui

    2016-10-01

    We present a fiber optic displacement measurement model based on finite reflective plate. The theoretical model was derived, and simulation analysis of light intensity distribution, reflective plate width, and the distance between fiber probe and reflective plate were conducted in details. The three dimensional received light intensity distribution and the characteristic curve of light intensity were studied as functions of displacement of finite reflective plate. Experiments were carried out to verify the established model. The physical fundamentals and the effect of operating parameters on measuring system performance were revealed in the end.

  9. Intraoral fiber-optic-based diagnostic for periodontal disease

    NASA Astrophysics Data System (ADS)

    Colston, Bill W., Jr.; Gutierrez, Dora M.; Everett, Matthew J.; Brown, Steve B.; Langry, Kevin C.; Cox, Weldon R.; Johnson, Paul W.; Roe, Jeffrey N.

    2000-05-01

    The purpose of this initial study was to begin development of a new, objective diagnostic instrument that will allow simultaneous quantitation of multiple proteases within a single periodontal pocket using a chemical fiber optic senor. This approach could potentially be adapted to use specific antibodies and chemiluminescence to detect and quantitate virtually any compound and compare concentrations of different compounds within the same periodontal pocket. The device could also be used to assay secretions in salivary ducts or from a variety of wounds. The applicability is, therefore, not solely limited to dentistry and the device would be important both for clinical diagnostics and as a research too.

  10. Fiber optic based optical coherence tomography (OCT) for dental applications

    SciTech Connect

    Everett, M. J., LLNL

    1998-06-02

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity We have produced, using this scanning device, in viva cross-sectional images of hard and soft dental tissues in human volunteers Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento-enamel junction, were visible in all the images The dento-enamel junction and the alveolar bone were identifiable in approximately two thirds of the images These images represent, to our knowledge, the first in viva OCT images of human dental tissue.

  11. Fiber-optic sensors for aerospace electrical measurements: An update

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.

    1991-01-01

    Fiber-optic sensors are being developed for electrical current, voltage, and power measurements in aerospace applications. These sensors are presently designed to cover ac frequencies from 60 Hz to 20 kHz. The current sensor, based on the Faraday effect in optical fiber, is in advanced development after some initial testing. Concentration is on packaging methods and ways to maintain consistent sensitivity with changes in temperature. The voltage sensor, utilizing the Pockels effect in a crystal, has excelled in temperature tests. This paper reports on the development of these sensors, the results of evaluation, improvements now in progress, and the future direction of the work.

  12. Systems Issues In Terrestrial Fiber Optic Link Reliability

    NASA Astrophysics Data System (ADS)

    Spencer, James L.; Lewin, Barry R.; Lee, T. Frank S.

    1990-01-01

    This paper reviews fiber optic system reliability issues from three different viewpoints - availability, operating environment, and evolving technologies. Present availability objectives for interoffice links and for the distribution loop must be re-examined for applications such as the Synchronous Optical Network (SONET), Fiber-to-the-Home (FTTH), and analog services. The hostile operating environments of emerging applications (such as FTTH) must be carefully considered in system design as well as reliability assessments. Finally, evolving technologies might require the development of new reliability testing strategies.

  13. Fiber optic pressure sensors in skin-friction measurements

    NASA Technical Reports Server (NTRS)

    Kidwell, R.

    1985-01-01

    Fiber optic lever pressure sensors intended for use in a low speed wind tunnel environment were designed, constructed and tested for the measurement of normal and shear displacements associated with the pressures acting on a flat aluminum plate. On-site tests performed along with several static and dynamic measurements made have established that, with proper modifications and improvements, the design concepts are acceptable and can be utilized for their intended use. Several elastomers were investigated for use in sensors and for their incorporation into these sensors. Design and assembly techniques for probes and complete sensors were developed.

  14. Microalgal fiber-optic biosensors for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Orellana, Guillermo; Villén, Laura; Haigh, David; Maneiro, Emilia; Marvá, Fernando; Costas, Eduardo

    2007-07-01

    Novel fiber-optic biosensors have been developed for the analysis of pesticides in water based on Chlorophyceae microalgae immobilized into a porous silicone layer as recognition element, and on measurements of the photogenerated O II as chemical transducer. The inhibition of O II production by the photosynthetic green algae in the presence of the pesticide (simazine) was used as the biological signal. Luminescent thin films and a dedicated optoelectronic unit based on emission phase-shift measurements provide the tools for the sensitive O II measurements. Fluctuation analysis allows selection of sensitive and resistant microalgae mutants without genetic manipulation for maximum biosensing selectivity.

  15. Development of a fiber optic compressor blade sensor

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans Singh

    1995-01-01

    A complete working prototype of the fiber optic blade tip sensor was first tested in the laboratory, followed by a thorough evaluation at NASA W8 Single Compressor Stage Facility in Lewis Research Center. Subsequently, a complete system with three parallel channels was fabricated and delivered to Dr. Kurkov. The final system was tested in the Subsonic Wind Tunnel Facility, in parallel with The General Electric Company's light probe system. The results at all operating speeds were comparable. This report provides a brief description of the system and presents a summary of the experimental results.

  16. Development of plasma bolometers using fiber-optic temperature sensors.

    PubMed

    Reinke, M L; Han, M; Liu, G; van Eden, G G; Evenblij, R; Haverdings, M; Stratton, B C

    2016-11-01

    Measurements of radiated power in magnetically confined plasmas are important for exhaust studies in present experiments and expected to be a critical diagnostic for future fusion reactors. Resistive bolometer sensors have long been utilized in tokamaks and helical devices but suffer from electromagnetic interference (EMI). Results are shown from initial testing of a new bolometer concept based on fiber-optic temperature sensor technology. A small, 80 μm diameter, 200 μm long silicon pillar attached to the end of a single mode fiber-optic cable acts as a Fabry-Pérot cavity when broadband light, λo ∼ 1550 nm, is transmitted along the fiber. Changes in temperature alter the optical path length of the cavity primarily through the thermo-optic effect, resulting in a shift of fringes reflected from the pillar detected using an I-MON 512 OEM spectrometer. While initially designed for use in liquids, this sensor has ideal properties for use as a plasma bolometer: a time constant, in air, of ∼150 ms, strong absorption in the spectral range of plasma emission, immunity to local EMI, and the ability to measure changes in temperature remotely. Its compact design offers unique opportunities for integration into the vacuum environment in places unsuitable for a resistive bolometer. Using a variable focus 5 mW, 405 nm, modulating laser, the signal to noise ratio versus power density of various bolometer technologies are directly compared, estimating the noise equivalent power density (NEPD). Present tests show the fiber-optic bolometer to have NEPD of 5-10 W/m(2) when compared to those of the resistive bolometer which can achieve <0.5 W/m(2) in the laboratory, but this can degrade to 1-2 W/m(2) or worse when installed on a tokamak. Concepts are discussed to improve the signal to noise ratio of this new fiber-optic bolometer by reducing the pillar height and adding thin metallic coatings, along with improving the spectral resolution of the interrogator.

  17. Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging.

    PubMed

    Lamela, Horacio; Gallego, Daniel; Gutierrez, Rebeca; Oraevsky, Alexander

    2011-03-01

    We present a non-metallic interferometric silica optical fiber ultrasonic wideband sensor for optoacoustic imaging applications. The ultrasonic sensitivity of this sensor has been characterized over the frequency range from 1 to 10 MHz. A comparative analysis has been carried out between this sensor and an array of piezoelectric transducers using optoacoustic signals generated from an optical absorbent embedded in a tissue mimicking phantom. Also, a two dimensional reconstructed image of the phantom using the fiber interferometric sensor is presented and compared to the image obtained using the Laser Optoacoustic Imaging System, LOIS-64B. The feasibility of our fiber optic based sensor for wideband ultrasonic detection is demonstrated.

  18. Compact collimated fiber optic array diagnostic for railgun plasma experiments

    SciTech Connect

    Tang, V; Solberg, J; Ferriera, T; Tully, L; Stephan, P

    2008-10-02

    We have developed and tested a compact collimated sixteen channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with {approx}mm spatial and sub-{micro}s temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore Fixed Hybrid Armature experiment are presented and compared with 1-D simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  19. A fiber optic temperature sensor for aerospace applications

    NASA Astrophysics Data System (ADS)

    Jensen, Stephen C.; Tilstra, Shelle D.; Barnabo, Geoffrey A.; Thomas, David C.; Phillips, Richard W.

    1991-02-01

    A fiber-optic temperature sensor has been developed for aerospace applications on the basis of the time rate of decay (TRD) principle, with a view to an operational temperature range of -60 to 350 C. This TRD system has completed qualification testing and will then undergo flight tests. Attention is presently given to the design and performance of four low temperature sensors that are subelements of the larger sensor system; in order to convert analog signals into over/under temperature indications, simple comparators are implemented in software.

  20. Industrial applications of fiber optics in infrared thermal monitoring

    NASA Astrophysics Data System (ADS)

    Bedrossian, John, Jr.

    1987-01-01

    The fundamental principles and practical implementation of IR temperature sensors employing fiber-optic indirect viewing are reviewed. The IR absorption and emission characteristics of different materials are discussed; the transmission of IR radiation through typical optical fibers is examined; and specific applications to turbine-blade monitoring in jet engines, injection molding and extrusion, and printed-circuit-board drilling are described in detail and illustrated with drawings. Also considered are the advantages offered by state-of-the-art two-color IR thermometry systems with bifurcated fiber links. Such devices provide accurate measurements independent of target emissivity changes, contaminants in the field of view, and target size.

  1. Fiber optic liquid mass flow sensor and method

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Gregory, Don Allen (Inventor); Wiley, John T. (Inventor); Pedersen, Kevin W. (Inventor)

    2010-01-01

    A method and apparatus are provided for sensing the mass flow rate of a fluid flowing through a pipe. A light beam containing plural individual wavelengths is projected from one side of the pipe across the width of the pipe so as to pass through the fluid under test. Fiber optic couplers located at least two positions on the opposite side of the pipe are used to detect the light beam. A determination is then made of the relative strengths of the light beam for each wavelength at the at least two positions and based at least in part on these relative strengths, the mass flow rate of the fluid is determined.

  2. Study on a fiber optic gradient hydrophone based on interferometer

    NASA Astrophysics Data System (ADS)

    Lv, Wenlei; Pang, Meng; Shi, Qingping; Zhang, Min; Liao, Yanbiao; Yuan, Libo; Kang, Chong

    2008-12-01

    We proposed a kind of fiber-optic gradient hydrophone based on interferometer. Two arms of the interferometer are sensing fibers, each of which can be regard as a scalar pressure sensing element, and then the phase gradient between the two elements is transformed into the light intensity modulated output by the coupler. In this paper, a suit of analytical models for researching the sensor performance are developed. The theoretical and experimental research was carried out to demonstrate this kind of gradient hydrophone's phase sensitivity as the function of the measure frequency and the "8" directivity response.

  3. Development of plasma bolometers using fiber-optic temperature sensors

    NASA Astrophysics Data System (ADS)

    Reinke, M. L.; Han, M.; Liu, G.; van Eden, G. G.; Evenblij, R.; Haverdings, M.; Stratton, B. C.

    2016-11-01

    Measurements of radiated power in magnetically confined plasmas are important for exhaust studies in present experiments and expected to be a critical diagnostic for future fusion reactors. Resistive bolometer sensors have long been utilized in tokamaks and helical devices but suffer from electromagnetic interference (EMI). Results are shown from initial testing of a new bolometer concept based on fiber-optic temperature sensor technology. A small, 80 μm diameter, 200 μm long silicon pillar attached to the end of a single mode fiber-optic cable acts as a Fabry-Pérot cavity when broadband light, λo ˜ 1550 nm, is transmitted along the fiber. Changes in temperature alter the optical path length of the cavity primarily through the thermo-optic effect, resulting in a shift of fringes reflected from the pillar detected using an I-MON 512 OEM spectrometer. While initially designed for use in liquids, this sensor has ideal properties for use as a plasma bolometer: a time constant, in air, of ˜150 ms, strong absorption in the spectral range of plasma emission, immunity to local EMI, and the ability to measure changes in temperature remotely. Its compact design offers unique opportunities for integration into the vacuum environment in places unsuitable for a resistive bolometer. Using a variable focus 5 mW, 405 nm, modulating laser, the signal to noise ratio versus power density of various bolometer technologies are directly compared, estimating the noise equivalent power density (NEPD). Present tests show the fiber-optic bolometer to have NEPD of 5-10 W/m2 when compared to those of the resistive bolometer which can achieve <0.5 W/m2 in the laboratory, but this can degrade to 1-2 W/m2 or worse when installed on a tokamak. Concepts are discussed to improve the signal to noise ratio of this new fiber-optic bolometer by reducing the pillar height and adding thin metallic coatings, along with improving the spectral resolution of the interrogator.

  4. Microbubble generation using fiber optic tips coated with nanoparticles.

    PubMed

    Pimentel-Domínguez, Reinher; Hernández-Cordero, Juan; Zenit, Roberto

    2012-04-09

    We show that fiber optic tips can be used as microbubble generators in liquid media. Using standard single-mode silica fibers incorporating nanoparticles (carbon nanoparticles and metallic powders), bubbles can be generated with low optical powers owing to the enhanced photothermal effects of the coating materials. We provide details about the hydrodynamic effects generated in the vicinity of the fiber tip during the coating process, bubble generation and growth. Flow visualization techniques show that thermal effects lead to bubble formation on the tip of the fibers, and coating optimization is crucial for optimal performance of the probes.

  5. Tactical Fiber Optic LAN For Voice And Data

    NASA Astrophysics Data System (ADS)

    Bergman, L. A.; Halloran, F.; Martinez, J.

    1988-12-01

    An asynchronous high-speed fiber optic local area network is described that simultaneously supports packet data traffic with synchronous T1 voice traffic over a standard asynchronous FDDI token ring channel. A voice interface module (VIM) was developed that parses, buffers, and resynchronizes the voice data to the packet network. The technique is general, however, and can be applied to any deterministic class of networks, including multi-tier backbones. In addition, the higher layer packet data protocols may operate independently of those for the voice thereby permitting great flexibility in reconfiguring the network. Voice call setup and switching functions are performed external to the network with PABX equipment.

  6. Possible power source found for fiber optic lasers

    SciTech Connect

    Krupa, Tyler J.

    2000-05-01

    Scientists at the US Department of Energy's Sandia National Laboratory are researching ways to use a new semiconductor alloy, indium gallium arsenide nitride (InGaAsN), as as photovoltaic power source for lasers in fiber optics and space communication satellites. The efficiency of electricity-generating solar cells utilizing InGaAsN is predicted to be 40%-nearly twice the efficiency rate of a standard silicon solar cell. The use of InGaAsN in solar cells is a potential power source for satellites and other space systems. (AIP) (c)

  7. Fiber optic sensor: Feedback control design and implementation

    SciTech Connect

    Tung, D.; Bertram, L.; Hillaire, R.; Anderson, S.; Leonard, S.; Marburger, S.

    1997-07-01

    Digital feedback control of Gas Tungsten Arc Welding (GTAW) has been demonstrated on a tube sample of stainless steel and titanium alloy. A fiber optic sensor returns a signal proportional to backside radiance from the workpiece; that signal is used by the controller to compute a compensation weld current. The controller executes 10 times a second on an Intel 486 chip. For travel speeds of 3 to 6 inches per minute and thicknesses between 0.025 and 0.10 inches, constant backside bead width was maintained within 0.02 inches, from startup to tie-in.

  8. Using Bit Errors To Diagnose Fiber-Optic Links

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Hartmayer, R.; Marelid, S.

    1989-01-01

    Technique for diagnosis of fiber-optic digital communication link in local-area network of computers based on measurement of bit-error rates. Variable optical attenuator inserted in optical fiber to vary power of received signal. Bit-error rate depends on ratio of peak signal power to root-mean-square noise in receiver. For optimum measurements, one selects bit-error rate between 10 to negative 8th power and 10 to negative 4th power. Greater rates result in low accuracy in determination of signal-to-noise ratios, while lesser rates require impractically long measurement times.

  9. Overview of fiber optics in the natural space environment

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Dorsky, L.; Johnston, A.; Bergman, L.; Stassinopoulos, E.

    1991-01-01

    The potential applications of fiber-optic (FO) systems in spacecraft which will be exposed to the space radiation environment are discussed in view of tests conducted aboard the Long-Duration Exposure Facility and the Comet Rendezvous and Asteroid Flyby spacecraft. Attention is given to anticipated trends in the use of FO in spacecraft communications systems. The natural space radiation environment is noted to be far more benign than the military space environment, which encompasses displacement-damage effects due to significant neutron influences.

  10. Fiber-Optic Photoelastic Device Senses Pressure Of Hot Gas

    NASA Technical Reports Server (NTRS)

    Redner, Alex S.; Wesson, L. N.

    1995-01-01

    Fiber-optic/photoelastic device measures gas pressures up to 600 psi at operating temperatures as high as 1,100 degrees C. Pressure on fused-silica sensing element gives rise to birefringence via photoelastic effect. Polarization of light changed by birefringence; change in polarization measured and used to infer pressure causing it. Device prototype of gas-pressure sensor for aircraft engine. Mounted in engine at or near desired measurement point, where it responds to both time-varying and steady components of pressure.

  11. STS-113 Endeavour processing with fiber-optic camera

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- With the engines removed from Endeavour, the inside of Endeavour is exposed. At left center, Scott Minnick, with United Space Alliance, operates a fiber-optic camera inside the flow line. Other USA team members, right, watching the progress on a screen in front, are Gerry Kathka (with controls), Mike Fore and Peggy Ritchie. The inspection is the result of small cracks being discovered on the LH2 Main Propulsion System (MPS) flow liners in other orbiters. Endeavour is next scheduled to fly on mission STS-113.

  12. Current Status And Trends In Long Haul Fiber Optics Networks

    NASA Astrophysics Data System (ADS)

    Pyykkonen, Martin

    1986-01-01

    There have been many similar opinions expressed in recent months about there being an imminent bandwidth glut in the nation's long haul fiber optics network. These feelings are based largely on the vast magnitude of construction projects which are either in progress or completed by the major carriers, i.e., AT&T-Communications, MCI, NTN and US Sprint. Coupled with this advanced stage of construction and subsequent network operation, is the slowly developing demand for those applications which consume large amounts of bandwidth, namely those which are video-based.

  13. Characterization of a space orbited incoherent fiber optic bundle

    NASA Technical Reports Server (NTRS)

    Dewalt, Stephen A.; Taylor, Edward W.

    1993-01-01

    The results of a study performed to determine the effects of adverse space environments on a bundle of over 1800 optical fibers orbited for 69 months are reported. Experimental results are presented on an incoherent fiber optic bundle oriented in low Earth orbit aboard the Long Duration Exposure Facility (LDEF) satellite as part of the Space Environment Effects Experiment (M0006). Measurements were performed to determine if space induced radiation effects changed the fiber bundle characteristics. Data demonstrating the success of light transmitting fibers to withstand the adverse space environment are presented.

  14. Fiber-optic applications for space-based rocket engines

    NASA Astrophysics Data System (ADS)

    Sovie, Amy L.; Bewley, Douglas P.; Millis, Marc G.

    1991-09-01

    The use of fiber-optic technology is discussed with respect to the instrumentation systems for space-based rocket engines. Optical fiber technologies are reviewed with specific attention given to the reliability, light weight, small fiber diameter, and operating life of the components in the space environment. An optical system can facilitate the incorporation of an optical health-monitoring system, increase the space available for necessary redundancy, and safe high-bandwidth communications that are immune to the effects of electromagnetic radiation.

  15. Use of a fiber optic probe for organic species determination

    DOEpatents

    Ekechukwu, Amy A.

    1996-01-01

    A fiber optic probe for remotely detecting the presence and concentration organic species in aqueous solutions. The probe includes a cylindrical housing with an organic species indicator, preferably diaminonaphthyl sulfonic acid adsorbed in a silica gel (DANS-modified gel), contained in the probe's distal end. The probe admits aqueous solutions to the probe interior for mixing within the DANS-modified gel. An optical fiber transmits light through the DANS-modified gel while the indicator reacts with organic species present in the solution, thereby shifting the location of the fluorescent peak. The altered light is reflected to a receiving fiber that carries the light to a spectrophotometer or other analysis device.

  16. Starnet, a fiber optic metropolitan area network with centralized control

    NASA Astrophysics Data System (ADS)

    Bacilieri, P.; Caccia, B.; Cardarelli, R.; Carlucci, G. P.; Ciaffoni, O.; Coli, M.; Di Pirro, G.; Ferrer, M. L.; Ghiselli, A.; Martini, A.; Medici, G.; Mirabelli, G.; Pace, E.; Santonico, R.; Trasatti, L.; Valente, E.; Valentini, S.

    1989-12-01

    We present here a project involving a new long distance, high speed, fiber optic network with a passive star topology. The medium access mechanism is based on a centralized controller allowing channel reservation. This controller is connected to each station through an independent pair of optical fibers. It grants access using a deterministic scheme (DAMA/ICCC, demand assignment multiple access by independent centrally controlled channel) by means of a Round Robin algorithm allowing a simple implementation of priority levels and very high data channel efficiency. An overview of the first implementation design is given and some experimental results are presented.

  17. Intraoral fiber optic-based diagnostic for periodontal disease

    SciTech Connect

    Johnson, P W; Gutierrez, D M; Everett, M J; Brown, S B; Langry, K C; Colston, B W; Roe, J N

    2000-01-21

    The purpose of this initial study was to begin development of a new, objective diagnostic instrument that will allow simultaneous quantitation of multiple proteases within a single periodontal pocket using a chemical fiber optic sensor. This approach could potentially be adapted to use specific antibodies and chemiluminescence to detect and quantitate virtually any compound and compare concentrations of different compounds within the same periodontal pocket. The device could also be used to assay secretions in salivary ducts or from a variety of wounds. The applicability is, therefore, not solely limited to dentistry and the device would be important both for clinical diagnostics and as a research tool.

  18. Fiber-Optic Gratings for Lidar Measurements of Water Vapor

    NASA Technical Reports Server (NTRS)

    Vann, Leila B.; DeYoung, Russell J.

    2006-01-01

    Narrow-band filters in the form of phase-shifted Fabry-Perot Bragg gratings incorporated into optical fibers are being developed for differential-absorption lidar (DIAL) instruments used to measure concentrations of atmospheric water vapor. The basic idea is to measure the relative amounts of pulsed laser light scattered from the atmosphere at two nearly equal wavelengths, one of which coincides with an absorption spectral peak of water molecules and the other corresponding to no water vapor absorption. As part of the DIAL measurement process, the scattered light is made to pass through a filter on the way to a photodetector. Omitting other details of DIAL for the sake of brevity, what is required of the filter is to provide a stop band that: Surrounds the water-vapor spectral absorption peaks at a wavelength of 946 nm, Has a spectral width of at least a couple of nanometers, Contains a pass band preferably no wider than necessary to accommodate the 946.0003-nm-wavelength water vapor absorption peak [which has 8.47 pm full width at half maximum (FWHM)], and Contains another pass band at the slightly shorter wavelength of 945.9 nm, where there is scattering of light from aerosol particles but no absorption by water molecules. Whereas filters used heretofore in DIAL have had bandwidths of =300 pm, recent progress in the art of fiber-optic Bragg-grating filters has made it feasible to reduce bandwidths to less than or equal to 20 pm and thereby to reduce background noise. Another benefit of substituting fiber-optic Bragg-grating filters for those now in use would be significant reductions in the weights of DIAL instruments. Yet another advantage of fiber-optic Bragg-grating filters is that their transmission spectra can be shifted to longer wavelengths by heating or stretching: hence, it is envisioned that future DIAL instruments would contain devices for fine adjustment of transmission wavelengths through stretching or heating of fiber-optic Bragg-grating filters

  19. Physical layer secret key generation for fiber-optical networks.

    PubMed

    Kravtsov, Konstantin; Wang, Zhenxing; Trappe, Wade; Prucnal, Paul R

    2013-10-07

    We propose and experimentally demonstrate a method for generating and sharing a secret key using phase fluctuations in fiber optical links. The obtained key can be readily used to support secure communication between the parties. The security of our approach is based on a fundamental asymmetry associated with the optical physical layer: the sophistication of tools needed by an eavesdropping adversary to subvert the key establishment is significantly greater and more costly than the complexity needed by the legitimate parties to implement the scheme. In this sense, the method is similar to the classical asymmetric algorithms (Diffie-Hellman, RSA, etc.).

  20. Introduction to fiber optics: Sensors for biomedical applications.

    PubMed

    Shah, R Y; Agrawal, Y K

    2011-01-01

    The paper focuses on the introduction of fiber optics, a fusion of science and engineering and describes the materials generally used for its construction along with the procedure used to design the fibers. It gives an idea of the materials used for the construction along with the pros and cons associated with them and various factors governing the emission of ultraviolet, infrared or visible radiations. The central core revolves around the applications of optical fibers in the medical and biomedical field and extending the use of the same in pharmaceutical industry as probes in quality control and dosage form analysis.

  1. Fiber optic crossbar switch for automatically patching optical signals

    NASA Technical Reports Server (NTRS)

    Bell, C. H. (Inventor)

    1983-01-01

    A system for automatically optically switching fiber optic data signals between a plurality of input optical fibers and selective ones of a plurality of output fibers is described. The system includes optical detectors which are connected to each of the input fibers for converting the optic data signals appearing at the respective input fibers to an RF signal. A plurality of RF to optical signal converters are arranged in rows and columns. The output of each of the optical detectors are each applied to a respective row of optical signal converted for being converters back to an optical signal when the particular optical signal converter is selectively activated by a dc voltage.

  2. Fiber Optic Codec Link (FOCOL). Volume 2 - Manual.

    DTIC Science & Technology

    1981-01-26

    BUREAU O) , ’.ANt Al)S lAA A 112112 ADA10948 1 0Ef DNA 5747F-2 FIBER OPTIC CODEC LINK (FOCOL) Volume 2-Manual JDT1C Walter Naumann T Elizabeth Liles R...1978-26 January 1981 CONTRACT No. DNA OO1-79-C-0021 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. a - LTHIS WORK SPONSORED BY THE DEFENSE...Washington, D.C. 20305 154 14. MONITORING AGENCY NAME & AOOD ESS(aI ditteren Irom COM1r*altn8 Off...) IS. SECURITY CLASS. (of t A , report

  3. Ultra-wideband fiber optical parametric amplifier for spectrally-encoded microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wei, Xiaoming; Tan, Sisi; Mussot, Arnaud; Kudlinski, Alexandre; Tsia, Kevin K.; Wong, Kenneth

    2016-03-01

    Fiber optical parametric amplifier (FOPA) has gained its popularity in the telecommunication systems at the 1.5-um window for its gain, bandwidth etc. Unfortunately, its practical application at the bio-favorable window, i.e. 1.0 um, still requires substantial efforts. Thus, here we report a versatile all-fiber optical parametric amplifier for life-science (OPALS) at 1.0 um as an add-on module for optical imaging system. The parametric gain fiber (photonic-crystal fiber (PCF), 110 m in length) is specially designed to reduce the longitudinal dispersion fluctuation, which yields a superior figure of merit, i.e. a total insertion loss of ~2.5 dB and a nonlinear coefficient of 34 /(W•km). Our OPALS delivers a superior performance in terms of gain (~158,000), bandwidth (>100 nm) and gain flatness (< 3-dB ripple). Experimentally, we show that: 1) a wavelength-varying quasi-monochrome pump achieves a 52-dB gain and 160-nm bandwidth, but at the expense of a larger gain-spectrum ripple, i.e. a bell-shaped; 2) the birefringence of the parametric gain medium, i.e. PCF in this case, can be utilized to improve the gain-spectrum flatness of OPALS by 10.5 dB, meanwhile a 100-nm bandwidth can be guaranteed; 3) the gain-spectrum flatness of OPALS can be further flattened by using a high-speed wavelength-sweeping pump, which exhibits a 110-nm flat gain spectrum with ripple less than 3 dB. Finally, we employ this versatile all-fiber OPALS as an add-on module to enhance the sensitivity of a spectrally-encoded microscope by 47 dB over an ultra-wide spectral range.

  4. Composite cavity based fiber optic Fabry Perot strain sensors demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Yang, Jun; Sun, Weimin; Jin, Wencai; Yuan, Libo; Peng, G. D.

    2008-08-01

    A composite cavity based fiber optic Fabry-Perot strain sensor system, interrogated by a white light source and demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror, is proposed and demonstrated. Comparing with the traditional extrinsic fiber optic Fabry-Perot strain sensor, the potential multiplexing capability and the dynamic measurement range are improved simultaneously. At the same time, the measurement stability of the electrical scanning mirror system is improved by the self-referenced signal of the sensor structure.

  5. Fiber optic biofluorometer for physiological research on muscle slices

    NASA Astrophysics Data System (ADS)

    Belz, Mathias; Dendorfer, Andreas; Werner, Jan; Lambertz, Daniel; Klein, Karl-Friedrich

    2016-03-01

    A focus of research in cell physiology is the detection of Ca2+, NADH, FAD, ATPase activity or membrane potential, only to name a few, in muscle tissues. In this work, we report on a biofluorometer using ultraviolet light emitting diodes (UV-LEDs), optical fibers and two photomultipliers (PMTs) using synchronized fluorescence detection with integrated background correction to detect free calcium, Ca2+, in cardiac muscle tissue placed in a horizontal tissue bath and a microscope setup. Fiber optic probes with imaging optics have been designed to transport excitation light from the biofluorometer's light output to a horizontal tissue bath and to collect emission light from a tissue sample of interest to two PMTs allowing either single excitation / single emission or ratiometric, dual excitation / single emission or single excitation / dual emission fluorescence detection of indicator dyes or natural fluorophores. The efficient transport of light from the excitation LEDs to the tissue sample, bleaching effects of the excitation light in both, polymer and fused silica-based fibers will be discussed. Furthermore, a new approach to maximize light collection of the emission light using high NA fibers and high NA coupling optics will be shown. Finally, first results on Ca2+ measurements in cardiac muscle slices in a traditional microscope setup and a horizontal tissue bath using fiber optic probes will be introduced and discussed.

  6. A Fiber Optic Probe for the Detection of Cataracts

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Dhadwal, Harbans S.

    1993-01-01

    A compact fiber optic probe developed for on-orbit science experiments was used to detect the onset of cataracts, a capability that could eliminate physicians' guesswork and result in new drugs to 'dissolve' or slow down the cataract formation before surgery is necessary. The probe is based upon dynamic light scattering (DLS) principles. It has no moving parts, no apertures, and requires no optical alignment. It is flexible and easy to use. Results are presented for excised but intact human eye lenses. In a clinical setting, the device can be easily incorporated into a slit-lamp apparatus (ophthalmoscope) for complete eye diagnostics. In this set-up, the integrated fiber optic probe, the size of a pencil, delivers a low power cone of laser light into the eye of a patient and guides the light which is backscattered by the protein molecules of the lens through a receiving optical fiber to a photo detector. The non-invasive DLS measurements provide rapid determination of protein crystalline size and its size distribution in the eye lens.

  7. Low-cost fiber-optic chemochromic hydrogen detector

    SciTech Connect

    Benson, D.K.; Tracy, C.E.; Hishmeh, G.; Ciszek, P.; Lee, S.H.

    1998-08-01

    The ability to detect hydrogen gas leaks economically and with inherent safety is an important technology that could facilitate commercial acceptance of hydrogen fuel in various applications. In particular, hydrogen fueled passenger vehicles will require hydrogen leak detectors to signal the activation of safety devices such as shutoff valves, ventilating fans, alarms, etc. Such detectors may be required in several locations within a vehicle--wherever a leak could pose a safety hazard. It is therefore important that the detectors be very economical. This paper reports progress on the development of low-cost fiber-optic hydrogen detectors intended to meet the needs of a hydrogen-fueled passenger vehicle. In the design, the presence of hydrogen in air is sensed by a thin-film coating at the end of a polymer optical fiber. When the coating reacts reversibly with the hydrogen, its optical properties are changed. Light from a central electro-optic control unit is projected down the optical fiber where it is reflected from the sensor coating back to central optical detectors. A change in the reflected intensity indicates the presence of hydrogen. The fiber-optic detector offers inherent safety by removing all electrical power from the leak sites and offers reduced signal processing problems by minimizing electromagnetic interference. Critical detector performance requirements include high selectivity, response speed and durability as well as potential for low-cost production.

  8. Use of Fiber Optic Interconnects for Signal Integrity

    NASA Astrophysics Data System (ADS)

    Phal, Yamuna D.; Phal, Deovrat D.

    2016-05-01

    Signal integrity (SI) is always a concern when it comes to high-speed data transmission. Even in space, there is a need for high-speed data transmission such as in the communication systems, monitoring various sub- systems and for other on-board experiments and applications.From Electromagneticperspective, using fiber-optic interconnect is highly recommended to avoid interference issues. This field has been explored for quite some time now, but mostly limited to applications that are on earth. Using these interconnects for harsh and extreme environments i.e. in space, requires reliability and ruggedness of interconnects and the system.This study suggests methods for optical fiber based communication systems for internal unit communication, communication within various instruments, as well as inter-board communication. A conclusion in terms of what areas need to be explored for enabling high-speed data transmission for space applications would be discussed in details. This study also explores and compares the existing technologies in the fiber-optic interconnects for space applications.

  9. Characterization of integrated fiber optic sensors in smart textiles

    NASA Astrophysics Data System (ADS)

    Yuan, Jianming; El-Sherif, Mahmoud A.; Khalil, Saif; Fairneny, James

    2004-03-01

    Smart textiles with integrated fiber optic sensors have been studied for various applications including in-situ measurement of load/deformation on the textiles. Two types of silica multimode optical fibers were successfully integrated into 4/4 Twill-woven and Plain-woven textiles along the warp direction of the textile structures for sensing of applied load conditions. The sensing mechanism is based on the MPD (Modal Power Distribution) technique, which employs the principle of intensity modulation based on modal power redistribution of the propagating light within multimode fibers caused by external perturbations. In the presence of transverse load applied to an integrated optical fiber, the redistribution of the modal power is an indication of the applied load. The spatial modal power redistribution was clearly recorded as a function of the optical intensity profile. Based on the uni-axial tensile test results, the relationship between the mechanical behavior of the textile and the output of the embedded fiber-optic sensor was established and understood. It is clearly demonstrated that the sensitivity and dynamic range of this type of intensity-based sensor is determined by the interaction between the fabric yarns and optical fibers, which are closely related with the textile structure and the type of optical fiber.

  10. Medical smart textiles based on fiber optic technology: an overview.

    PubMed

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-04-13

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.

  11. Fiber-Optic Current Sensor Validation with Triggered Lightning Measurements

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2013-01-01

    A fiber optic current sensor based on the Faraday Effect is developed that is highly suitable for aircraft installation and can measure total current enclosed in a fiber loop down to DC. Other attributes include being small, light-weight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate when exposed to a magnetic field in the direction of light propagation. Measuring the induced light polarization rotation in fiber loops yields the total current enclosed. Two sensor systems were constructed and installed at Camp Blanding, Florida, measuring rocket-triggered lightning. The systems were similar in design but with different laser wavelengths, sensitivities and ranges. Results are compared to a shunt resistor as reference. The 850nm wavelength system tested in summer 2011 showed good result comparison early. However, later results showed gradual amplitude increase with time, attributed to corroded connections affecting the 50-ohm output termination. The 1550nm system also yielded good results in the summer 2012. The successful measurements demonstrate the fiber optic sensor's accuracies in capturing real lightning currents, and represent an important step toward future aircraft installation.

  12. Yeast metabolic state identification using micro-fiber optics spectroscopy

    NASA Astrophysics Data System (ADS)

    Silva, J. S.; Castro, C. C.; Vicente, A. A.; Tafulo, P.; Jorge, P. A. S.; Martins, R. C.

    2011-05-01

    Saccharomyces cerevisiae morphology is known to be dependent on the cell physiological state and environmental conditions. On their environment, wild yeasts tend to form complex colonies architectures, such as stress response and pseudohyphal filaments morphologies, far away from the ones found inside bioreactors, where the regular cell cycle is observed under controlled conditions (e.g. budding and flocculating colonies). In this work we explore the feasibility of using micro-fiber optics spectroscopy to classify Saccharomyces cerevisiae S288C colony structures in YPD media, under different growth conditions, such as: i) no alcohol; ii) 1 % (v/v) Ethanol; iii) 1 % (v/v) 1-butanol; iv) 1 % (v/v) Isopropanol; v) 1 % (v/v) Tert-Amyl alcohol (2 Methyl-2-butanol); vi) 0,2 % (v/v) 2-Furaldehyde; vii) 5 % (w/v) 5 (Hydroxymethyl)-furfural; and viii) 1 % (w/v) (-)-Adenosine3', 5'cyclic monophosphate. The microscopy system includes a hyperspectral camera apparatus and a micro fiber (sustained by micro manipulator) optics system for spectroscopy. Results show that micro fiber optics system spectroscopy has the potential for yeasts metabolic state identification once the spectral signatures of colonies differs from each others. This technique associated with others physico-chemical information can benefit the creation of an information system capable of providing extremely detailed information about yeast metabolic state that will aid both scientists and engineers to study and develop new biotechnological products.

  13. Magnetic sensing with ferrofluid and fiber optic connectors.

    PubMed

    Homa, Daniel; Pickrell, Gary

    2014-02-25

    A simple, cost effective and sensitive fiber optic magnetic sensor fabricated with ferrofluid and commercially available fiber optic components is described in this paper. The system uses a ferrofluid infiltrated extrinsic Fabry-Perot interferometer (EFPI) interrogated with an infrared wavelength spectrometer to measure magnetic flux density. The entire sensing system was developed with commercially available components so it can be easily and economically reproduced in large quantities. The device was tested with two different ferrofluid types over a range of magnetic flux densities to verify performance. The sensors readily detected magnetic flux densities in the range of 0.5 mT to 12.0 mT with measurement sensitivities in the range of 0.3 to 2.3 nm/mT depending on ferrofluid type. Assuming a conservative wavelength resolution of 0.1 nm for state of the art EFPI detection abilities, the estimated achievable measurement resolution is on the order 0.04 mT. The inherent small size and basic structure complimented with the fabrication ease make it well-suited for a wide array of research, industrial, educational and military applications.

  14. Liquid seal for temperature sensing with fiber-optic refractometers.

    PubMed

    Xu, Ben; Li, Jianqing; Li, Yi; Xie, Jianglei; Dong, Xinyong

    2014-08-13

    Liquid sealing is an effective method to convert a fiber-optic refractometer into a simple and highly sensitive temperature sensor. A refractometer based on the thin-core fiber modal interferometer is sealed in a capillary tube filled with Cargille oil. Due to the thermo-optic effect of the sealing liquid, the high refractive-index sensitivity refractometer is subsequently sensitive to the ambient temperature. It is found that the liquid-sealed sensor produces a highest sensitivity of -2.30 nm/°C, which is over 250 times higher than its intrinsic sensitivity before sealing and significantly higher than that of a grating-based fiber sensors. The sensing mechanisms, including the incidental temperature-induced strain effect, are analyzed in detail both theoretically and experimentally. The liquid sealing technique is easy and low cost, and makes the sensor robust and insensitive to the surrounding refractive index. It can be applied to other fiber-optic refractometers for temperature sensing.

  15. Field test of fiber optic hydrazine dosimeters at Cape Canaveral

    NASA Astrophysics Data System (ADS)

    Klimcak, Charles M.; Chan, Y.; Jaduszliwer, B.

    1999-02-01

    We tested seventy-two hydrazine fuel fiber optic dosimeters for periods up to three months or Cape Canaveral in order to determine the effect of the local environment on its lifetime and sensitivity. The dosimeters were deployed at a diverse group of sites including fuel, oxidizer, and hydrocarbon fuel storage and transfer locations, a salt spray corrosion test facility, a satellite processing area, an estuarine marsh, a paint storage locker, and several indoor locations including chemical laboratory fume hoods and bathrooms. In addition, a group were set aside in a sealed enclosure for control purposes. The dosimeters were retrieved at monthly intervals and exposed to measured doses of hydrazine vapor to determine the effects of the field exposure on their hydrazine response. Our analysis indicated that 90% of the exposed dosimeters were able to sense hydrazine at a dose detectivity of less than 15 ppb-hr, a value that meets the current hydrazine sensing requirement. Consequently, we are planning to deploy a full scale, continuously operating fiber optic system for detecting potential hydrazine leaks during launch operations at Cape Canaveral.

  16. Optimization of output power in a fiber optical parametric oscillator.

    PubMed

    Jin, Lei; Martinez, Amos; Yamashita, Shinji

    2013-09-23

    Fiber optical parametric oscillators (FOPOs) are coherent sources that can provide ultra-broadband tunability and high output power levels and are been considered for applications such as medical imaging and sensing. While most recent literature has focused on advancing the performance of these devices experimentally, theoretical studies are still scarce. In contrast, ordinary laser theory is very mature, has been thoroughly studied and is now well understood from the point of view of fundamental physics. In this work, we present a theoretical study of OPOs and in particular we theoretically discuss the process of gain saturation in optical parametric amplifiers. In order to emphasize the significant difference between the two coherent sources, we compare the optimized coupling ratios for maximum output powers of the ordinary laser and the optical parametric oscillator and demonstrate that in contrast to ordinary lasers, highest output powers in optical parametric oscillators are achieved with output coupling ratios close to 1. We confirm experimentally our theoretical studies by building a narrowband fiber optical parametric oscillator at 1450nm with multi-watt output power. We show that the device is robust to intracavity losses and achieve peak power as high as 2.4W.

  17. Multifunctional sensing film used for fiber optic cholesterol sensor

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Huang, Jun; Li, Mingtian; Zhou, Xuan

    2008-12-01

    In this paper, by using ethyl silicate, ethanol and fluorescence indicator as the precursors, the multifunctional optic biosensing (MOBS) film containing cholesterol oxidase and the fluorescence indicator was prepared by sol-gel method. This biosensing film has both the function of biocatalyst and oxygen biosensing and can be used as the effective biosensing materials for fiber optic cholesterol sensor. The fiber optical cholesterol sensor based on fluorescence quenching was designed and fabricated using lock-in amplifying technology to realize the detection of cholesterol concentration. The experimental results showed that the best precursor proportion in volume ratio is: ethyl silicate: ethanol: 0.01 M HCl = 5: 8: 1.6. The drying rate of the sol could be controlled by using formamide as the controlling drier. When 16% of formamide were added in the mixing system, the cracks of the film could be reduced greatly and the immobilization of cholesterol oxidase and the fluorescence indicator could be improved effectively. A linear relationship between phase delay φ and the cholesterol concentration was observed in the range of 100 to 500 mg/dL. Since the cholesterol concentration is in the range of 140 to 200 mg/dL in the blood of healthy people, it will be possible for the sensor to be used in clinical detection. The biosensor with MOBS film has the response time of about 30 s, which is rather fast for a biosensor, and the relative deviation of +/-5.03%. This biosensor also has good stability.

  18. Medical Smart Textiles Based on Fiber Optic Technology: An Overview

    PubMed Central

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-01-01

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest. PMID:25871010

  19. Fiber-optic analog-to-NRZ binary conversion

    NASA Astrophysics Data System (ADS)

    Siahmakoun, A.; Reeves, E.

    2015-03-01

    A novel photonic analog-to-binary converter based on the first-order asynchronous delta-sigma modulation (ADSM) has been theoretically investigated and experimentally demonstrated. A fiber-optic prototype ADSM system is constructed and characterized. Delta-sigma modulation is a straightforward approach to A/D conversion because in this case an external clocking is not required and demodulation can be simply performed via a low-pass filtering process. To improve signal-to-noise ratio and thus system ENOB, a non-interferometric optical implementation has been constructed. The ADSM is comprised of three photonic devices: an inverted output photonic leaky integrator, bistable quantizer, and positive corrective feedback. The photonic integrator which is a recirculating loop performs the oversampling of an analog input using the cross-gain modulation in an SOA. We will show that the photonic ADSM produces an inverted non-return-to-zero (NRZ) pulse-density modulated output describing an input analog signal. This fiber-optic ADSM converts up to 7.6 MHz analog input at about 30 MS/s and effective ENOB of 6.

  20. Compact fiber optic immunosensor using tapered fibers and acoustic enhancement

    NASA Astrophysics Data System (ADS)

    Zhou, Chonghua; Pivarnik, Philip E.; Auger, Steven; Rand, Arthur G.; Letcher, Stephen V.

    1997-06-01

    A compact fiber-optic sensing system that features all-fiber optical design and semiconductor-laser excitation has been developed and tested. A 2X2 fiber coupler directs the input light to the SMA connected sensing fiber tip and the fluorescent signal back to a CCD fiber spectrophotometer. In this system, the fluorescent signal is confined in the fiber system so the signal-to-noise ratio is greatly improved and the system can be operate in ambient light conditions. The utilization of a red laser diode has reduced the background signal of non-essential biomolecules. The fluorescent dye used is Cy5, which has an excitation wavelength of 650 nm and a fluorescent center wavelength of 680 nm. To illustrate the biosensor's diagnostic capabilities, a sandwich immunoassay to detect Salmonella is presented. Tapered fiber tips with different shapes and treatments were studied and optimized. An enhancement system employing ultrasonic concentration of target particles has also been developed and applied to the detection of Salmonella. The immunoassay was conducted in a test chamber that also serves as an ultrasonic standing-wave cell and allows microspheres to be concentrated in a column along the fiber probe. The system demonstrates broad promise in future biomedical application.