Accuracy of Shack-Hartmann wavefront sensor using a coherent wound fibre image bundle
NASA Astrophysics Data System (ADS)
Zheng, Jessica R.; Goodwin, Michael; Lawrence, Jon
2018-03-01
Shack-Hartmannwavefront sensors using wound fibre image bundles are desired for multi-object adaptive optical systems to provide large multiplex positioned by Starbugs. The use of a large-sized wound fibre image bundle provides the flexibility to use more sub-apertures wavefront sensor for ELTs. These compact wavefront sensors take advantage of large focal surfaces such as the Giant Magellan Telescope. The focus of this paper is to study the wound fibre image bundle structure defects effect on the centroid measurement accuracy of a Shack-Hartmann wavefront sensor. We use the first moment centroid method to estimate the centroid of a focused Gaussian beam sampled by a simulated bundle. Spot estimation accuracy with wound fibre image bundle and its structure impact on wavefront measurement accuracy statistics are addressed. Our results show that when the measurement signal-to-noise ratio is high, the centroid measurement accuracy is dominated by the wound fibre image bundle structure, e.g. tile angle and gap spacing. For the measurement with low signal-to-noise ratio, its accuracy is influenced by the read noise of the detector instead of the wound fibre image bundle structure defects. We demonstrate this both with simulation and experimentally. We provide a statistical model of the centroid and wavefront error of a wound fibre image bundle found through experiment.
A collagen and elastic network in the wing of the bat.
Holbrook, K A; Odland, G F
1978-05-01
Bundles of collagen fibrils, elastic fibres and fibroblasts are organized into a network that lies in the plane of a large portion of the bat wing. By ultrastructural (TEM and SEM) and biochemical analyses it was found that individual bundles of the net are similar to elastic ligaments. Although elastic fibres predominate, they are integrated and aligned in parallel with small bundles of collagen. A reticulum of fibroblasts, joined by focal junctions, forms a cellular framework throughout each bundle. Because of the unique features of the fibre bundles of the bat's wing, in particular their accessibility, and the parallel alignment of the collagen fibrils and elastic fibres in each easily isolatable fibre bundle, they should prove a most valuable model for connective tissue studies, particularly for the study of collagen-elastin interactions.
NASA Astrophysics Data System (ADS)
Aitomäki, Yvonne; Westin, Mikael; Korpimäki, Jani; Oksman, Kristiina
2016-07-01
In this study a model based on simple scattering is developed and used to predict the distribution of nanofibrillated cellulose in composites manufactured by resin transfer moulding (RTM) where the resin contains nanofibres. The model is a Monte Carlo based simulation where nanofibres are randomly chosen from probability density functions for length, diameter and orientation. Their movements are then tracked as they advance through a random arrangement of fibres in defined fibre bundles. The results of the model show that the fabric filters the nanofibres within the first 20 µm unless clear inter-bundle channels are available. The volume fraction of the fabric fibres, flow velocity and size of nanofibre influence this to some extent. To verify the model, an epoxy with 0.5 wt.% Kraft Birch nanofibres was made through a solvent exchange route and stained with a colouring agent. This was infused into a glass fibre fabric using an RTM process. The experimental results confirmed the filtering of the nanofibres by the fibre bundles and their penetration in the fabric via the inter-bundle channels. Hence, the model is a useful tool for visualising the distribution of the nanofibres in composites in this manufacturing process.
Electro-mechanical response of a 3D nerve bundle model to mechanical loads leading to axonal injury.
Cinelli, I; Destrade, M; Duffy, M; McHugh, P
2017-07-01
Axonal damage is one of the most common pathological features of traumatic brain injury, leading to abnormalities in signal propagation for nervous systems. We present a 3D fully coupled electro-mechanical model of a nerve bundle, made with the finite element software Abaqus 6.13-3. The model includes a real-time coupling, modulated threshold for spiking activation and independent alteration of the electrical properties for each 3-layer fibre within the bundle. Compression and tension are simulated to induce damage at the nerve membrane. Changes in strain, stress distribution and neural activity are investigated for myelinated and unmyelinated nerve fibres, by considering the cases of an intact and of a traumatized nerve membrane. Results show greater changes in transmitting action potential in the myelinated fibre.
Electro-mechanical response of a 3D nerve bundle model to mechanical loads leading to axonal injury.
Cinelli, I; Destrade, M; Duffy, M; McHugh, P
2018-03-01
Traumatic brain injuries and damage are major causes of death and disability. We propose a 3D fully coupled electro-mechanical model of a nerve bundle to investigate the electrophysiological impairments due to trauma at the cellular level. The coupling is based on a thermal analogy of the neural electrical activity by using the finite element software Abaqus CAE 6.13-3. The model includes a real-time coupling, modulated threshold for spiking activation, and independent alteration of the electrical properties for each 3-layer fibre within a nerve bundle as a function of strain. Results of the coupled electro-mechanical model are validated with previously published experimental results of damaged axons. Here, the cases of compression and tension are simulated to induce (mild, moderate, and severe) damage at the nerve membrane of a nerve bundle, made of 4 fibres. Changes in strain, stress distribution, and neural activity are investigated for myelinated and unmyelinated nerve fibres, by considering the cases of an intact and of a traumatised nerve membrane. A fully coupled electro-mechanical modelling approach is established to provide insights into crucial aspects of neural activity at the cellular level due to traumatic brain injury. One of the key findings is the 3D distribution of residual stresses and strains at the membrane of each fibre due to mechanically induced electrophysiological impairments, and its impact on signal transmission. Copyright © 2017 John Wiley & Sons, Ltd.
Overlap microtubules link sister k-fibres and balance the forces on bi-oriented kinetochores
Kajtez, Janko; Solomatina, Anastasia; Novak, Maja; Polak, Bruno; Vukušić, Kruno; Rüdiger, Jonas; Cojoc, Gheorghe; Milas, Ana; Šumanovac Šestak, Ivana; Risteski, Patrik; Tavano, Federica; Klemm, Anna H.; Roscioli, Emanuele; Welburn, Julie; Cimini, Daniela; Glunčić, Matko; Pavin, Nenad; Tolić, Iva M.
2016-01-01
During metaphase, forces on kinetochores are exerted by k-fibres, bundles of microtubules that end at the kinetochore. Interestingly, non-kinetochore microtubules have been observed between sister kinetochores, but their function is unknown. Here we show by laser-cutting of a k-fibre in HeLa and PtK1 cells that a bundle of non-kinetochore microtubules, which we term ‘bridging fibre', bridges sister k-fibres and balances the interkinetochore tension. We found PRC1 and EB3 in the bridging fibre, suggesting that it consists of antiparallel dynamic microtubules. By using a theoretical model that includes a bridging fibre, we show that the forces at the pole and at the kinetochore depend on the bridging fibre thickness. Moreover, our theory and experiments show larger relaxation of the interkinetochore distance for cuts closer to kinetochores. We conclude that the bridging fibre, by linking sister k-fibres, withstands the tension between sister kinetochores and enables the spindle to obtain a curved shape. PMID:26728792
Self-Sensing Composites: In-Situ Detection of Fibre Fracture
Malik, Shoaib A.; Wang, Liwei; Curtis, Paul T.; Fernando, Gerard F.
2016-01-01
The primary load-bearing component in a composite material is the reinforcing fibres. This paper reports on a technique to study the fracture of individual reinforcing fibres or filaments in real-time. Custom-made small-diameter optical fibres with a diameter of 12 (±2) micrometres were used to detect the fracture of individual filaments during tensile loading of unreinforced bundles and composites. The unimpregnated bundles were end-tabbed and tensile tested to failure. A simple technique based on resin-infusion was developed to manufacture composites with a negligible void content. In both cases, optical fibre connectors were attached to the ends of the small-diameter optical fibre bundles to enable light to be coupled into the bundle via one end whilst the opposite end was photographed using a high-speed camera. The feasibility of detecting the fracture of each of the filaments in the bundle and composite was demonstrated. The in-situ damage detection technique was also applied to E-glass bundles and composites; this will be reported in a subsequent publication. PMID:27136555
Development of deployable fibre integral-field-units for the E-ELT
NASA Astrophysics Data System (ADS)
Kelz, Andreas; Jahn, Thomas; Neumann, Justus; Roth, Martin M.; Rutowska, Monika; Sandin, Christer; Nicklas, Harald; Anwand, Heiko; Schmidt, C.
2014-07-01
The use of deployable fibre-bundles plays an increasing role in the design of future Multi-Object-Spectrographs (MOS). Within a research and development project for "Enabling Technologies for the E-ELT", various miniaturized, fibrebundles were designed, built and tested for their suitability for a proposed ELT-MOS instrument. The paper describes the opto-mechanical designs of the bundles and the different manufacture approaches, using glued, stacked and fused optical fibre bundles. The fibre bundles are characterized for performance, using dedicated testbenches in the laboratory and at a telescope simulator. Their performance is measured with respect to geometric accuracy, throughput, FRD behavior and cross-talk between channels.
Collagen fibre arrangement in the skin of the pig.
Meyer, W; Neurand, K; Radke, B
1982-01-01
The arrangement and proportion of collagen fibres and fibre bundles in the dermis of the pig have been investigated with light microscopical (Nomarski's interference contrast, polarization optics) and scanning electron microscopical methods. Skin samples were obtained from different body regions of wild boars, domestic pigs and miniature pigs. All the methods used have demonstrated that the bulk of the dermis is dominated by a massive three dimensional network of collagen fibres and fibre bundles, which cross each other in two main directions. Several smaller fibre bundles pass through the network in various other directions, constructing a densely interwoven fibre pattern. Differences were obvious between the body regions and the animals investigated. Images Fig. 1 Figs. 2-5 Fig. 6 Figs. 7, 8 Figs. 9-11 PMID:7076540
Square-core bundles for astronomical imaging
NASA Astrophysics Data System (ADS)
Bryant, Julia J.; Bland-Hawthorn, Joss
2012-09-01
Optical fibre imaging bundles (hexabundles) are proving to be the next logical step for large galaxy surveys as they offer spatially-resolved spectroscopy of galaxies and can be used with conventional fibre positioners. Hexabundles have been effectively demonstrated in the Sydney-AAO Multi-object IFS (SAMI) instrument at the Anglo- Australian Telescope[5]. Based on the success of hexabundles that have circular cores, we have characterised a bundle made instead from square-core fibres. Square cores naturally pack more evenly, which reduces the interstitial holes and can increase the covering, or filling fraction. Furthermore the regular packing simplifies the process of combining and dithering the final images. We discuss the relative issues of filling fraction, focal ratio degradation (FRD), and cross-talk, and find that square-core bundles perform well enough to warrant further development as a format for imaging fibre bundles.
Distributions of nerve and muscle fibre types in locust jumping muscle.
Hoyle, G
1978-04-01
Muscle fibres of the locust extensor tibiae (jumping muscle) were examined by interference microscopy and by electron microscopy. The electrical responses of single fibres and the mechanical responses of bundles or selected regions to the nerve fibres were examined. Four axons innervate the muscle: fast (FETi), slow (SETi), common inhibitor (CI) and dorsal unpaired median (DUMETi). Their distributions were examined by combined electrophysiological tracing and EM sectioning. The mean diameter of muscle fibres in different regions varies from 40 to 140 micrometer and is related to the local leg thickness rather than muscle fibre type. The fine structure of a fibre is related to its innervation. Fibres innervated by FETi but not SETi are of fast type ultrastructurally. Fibres innervated by SETi but not by FETi are of slow type ultrastructurally. Fibres innervated by both axons are generally intermediate between the extremes though more nearly of fast type than slow. Distal slow muscle fibres have much slower relaxation rates than do proximal ones. The most proximal bundles are of mixed muscle fibre type. There is an abrupt transition from a mixed population to homogeneous fast type, in the muscle units immediately distal to the most proximal bundles. This transition is associated with the presence of DUMETi terminals on some of the fibres distal to the transition point. There are no SETi endings on these same fibres. Fibres innervated by both SETi and FETi are scattered throughout the leg, but are commonest in the dorsal bundles. The percentage of these increases progressively passing distally. The most distal muscle fibres are innervated by SETi but not by FETi. It is concluded that different regions of the muscle will play different roles functionally since they are differentially sensitive to the pattern of SETi discharge.
Lamellar and fibre bundle mechanics of the annulus fibrosus in bovine intervertebral disc.
Vergari, Claudio; Mansfield, Jessica; Meakin, Judith R; Winlove, Peter C
2016-06-01
The intervertebral disc is a multicomposite structure, with an outer fibrous ring, the annulus fibrosus, retaining a gel-like core, the nucleus pulposus. The disc presents complex mechanical behaviour, and it is of high importance for spine biomechanics. Advances in multiscale modelling and disc repair raised a need for new quantitative data on the finest details of annulus fibrosus mechanics. In this work we explored inter-lamella and inter-bundle behaviour of the outer annulus using micromechanical testing and second harmonic generation microscopy. Twenty-one intervertebral discs were dissected from cow tails; the nucleus and inner annulus were excised to leave a ring of outer annulus, which was tested in circumferential loading while imaging the tissue's collagen fibres network with sub-micron resolution. Custom software was developed to determine local tissue strains through image analysis. Inter-bundle linear and shear strains were 5.5 and 2.8 times higher than intra-bundle strains. Bundles tended to remain parallel while rotating under loading, with large slipping between them. Inter-lamella linear strain was almost 3 times the intra-lamella one, but no slipping was observed at the junction between lamellae. This study confirms that outer annulus straining is mainly due to bundles slipping and rotating. Further development of disc multiscale modelling and repair techniques should take into account this modular behaviour of the lamella, rather than considering it as a homogeneous fibre-reinforced matrix. The intervertebral disc is an organ tucked between each couple of vertebrae in the spine. It is composed by an outer fibrous layer retaining a gel-like core. This organ undergoes severe and repeated loading during everyday life activities, since it is the compliant component that gives the spine its flexibility. Its properties are affected by pathologies such as disc degeneration, a major cause of back pain. In this article we explored the micromechanical behaviour of the disc's outer layer using second harmonic generation, a technique which allowed us to visualize, with unprecedented detail, how bundles of collagen fibres slide relative to each other when loaded. Our results will help further the development of new multiscale numerical models and repairing techniques. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Modelling of wicking and moisture interactions of flax and viscose fibres.
Stuart, T; McCall, R D; Sharma, H S S; Lyons, G
2015-06-05
Methods for assessing the wicking properties of individual fibre bundles have been developed from models based on the original Washburn equation (WE) and the modified Washburn equation (MWE), which also accounts for swelling. Both models gave indication of differences in wicking properties of flax and the viscose fibres, though MWE gave additional information that could be interpreted in terms of the physical model. Wicking of the viscose fibres is mainly via inter-fibre capillaries while that of flax is a combination of inter-fibre capillaries and lumen present in some elementary fibres. The degree of swelling and associated rotation of flax fibre in a vapour pressure range of 1-6torr were monitored using an environmental scanning electron microscope (ESEM). Viscose fibre exhibited swelling under the same conditions but did not rotate. The two techniques highlighted different mechanisms of wicking which can be used for monitoring moisture uptake/swelling of treated fibres for fabrication of composites. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Valdrè, G.; Moro, D.; Ulian, G.
2018-01-01
Asbestos is a generic term used for six types of silicate minerals that are found in fibres or bundles of fibres, which can be easily cleaved into thinner ones. Scanning electron microscopy energy-dispersive X-ray spectrometry (SEM-EDS) quantitative microanalysis of asbestos mineral fibres still represents a complex analytical issue because of the variable fibre shape and small thickness (< 5 μm) compared with the penetration depth of the incident electron beam. Following previous work on chrysotile, crocidolite and amosite, here we present a study by means of Monte Carlo simulations of the thickness and shape effect on SEM-EDS microanalysis of anthophyllite, tremolite and actinolite asbestos. Realistic experimental conditions, such as sample geometry, SEM set-up and detector physics were taken into account. We report the results obtained on 100 μm long fibres and bundles of circular and square section and thicknesses from to 0.1 μm to 10 μm, for electron beam energies of 5, 15 and 25 keV. A strong influence of the asbestos mineral fibres and bundles shape and thickness on the detected EDS X-ray intensity was observed. In general, the X-ray intensities as a function of fibre thickness showed a considerable reduction below about 0.5 μm at 5 keV, 2 μm at 15 keV, and 5 μm at 25 keV for all the elements and minerals, with a non-linear dependence. Correction parameters, k-ratio, for the thickness effect were calculated and proposed.
Nanostructured optical fibre arrays for high-density biochemical sensing and remote imaging.
Deiss, F; Sojic, N; White, D J; Stoddart, P R
2010-01-01
Optical fibre bundles usually comprise a few thousand to tens of thousands of individually clad glass optical fibres. The ordered arrangement of the fibres enables coherent transmission of an image through the bundle and therefore enables analysis and viewing in remote locations. In fused bundles, this architecture has also been used to fabricate arrays of various micro to nano-scale surface structures (micro/nanowells, nanotips, triangles, etc.) over relatively large areas. These surface structures have been used to obtain new optical and analytical capabilities. Indeed, the imaging bundle can be thought of as a "starting material" that can be sculpted by a combination of fibre drawing and selective wet-chemical etching processes. A large variety of bioanalytical applications have thus been developed, ranging from nano-optics to DNA nanoarrays. For instance, nanostructured optical surfaces with intrinsic light-guiding properties have been exploited as surface-enhanced Raman scattering (SERS) platforms and as near-field probe arrays. They have also been productively associated with electrochemistry to fabricate arrays of transparent nanoelectrodes with electrochemiluminescent imaging properties. The confined geometry of the wells has been loaded with biosensing materials and used as femtolitre-sized vessels to detect single molecules. This review describes the fabrication of high-density nanostructured optical fibre arrays and summarizes the large range of optical and bioanalytical applications that have been developed, reflecting the versatility of this ordered light-guiding platform.
NASA Astrophysics Data System (ADS)
Moro, D.; Valdre, G.
2016-02-01
Quantitative microanalysis of tiny asbestos mineral fibres by scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDS) still represents a complex analytical issue. This complexity arises from the variable fibre shape and small thickness (< 5 μm) compared with the penetration of the incident electron beam. Here, we present the results of Monte Carlo simulations of chrysotile, crocidolite and amosite fibres (and bundles of fibres) of circular and square section and thicknesses from 0.1 μm to 10 μm, to investigate the effect of shape and thickness on SEM-EDS microanalysis. The influence of shape and thickness on the simulated spectrum was investigated for electron beam energies of 5, 15 and 25 keV, respectively. A strong influence of the asbestos bundles and fibres shape and thickness on the detected EDS X-ray intensity was observed. The X-ray intensity trends as a function of fibre thickness showed a non-linear dependence for all the elements and minerals. In general, the X-ray intensities showed a considerable reduction for thicknesses below about 5 μm at 5 keV, 2 μm at 15 keV, and 5 μm at 25 keV. Correction parameters, k-ratios, for the asbestos fibre thickness effect, are reported.
Iriuchishima, Takanori; Ryu, Keinosuke; Aizawa, Shin; Fu, Freddie H
2016-01-01
The purpose of this study was to compare the centre position of each anterior cruciate ligament bundle in its femoral footprint in measurements including and excluding the fan-like extension fibres. Fourteen non-paired human cadaver knees were used. All soft tissues around the knee were resected except the ligaments. The ACL was divided into antero-medial (AM) and postero-lateral (PL) bundles according to the difference in tension patterns. The ACL was carefully dissected, and two outlines were made of the periphery of each bundle insertion site: those which included and those which excluded the fan-like extension fibres. An accurate lateral view of the femoral condyle was photographed with a digital camera, and the images were downloaded to a personal computer. The centre position of each bundle, including and excluding the fan-like extension fibres, was measured with ImageJ software (National Institution of Health). Evaluation of the centre position was performed using the modified quadrant method. The centre of the femoral AM bundle including the fan-like extension was located at 28.8% in a shallow-deep direction and 37.2% in a high-low direction. When the AM bundle was evaluated without the fan-like extension, the centre was significantly different at 34.6% in a shallow-deep direction (p = 0.000) and 36% in a high-low direction. The centre of the PL bundle including the fan-like extension was found at 37.1% in a shallow-deep direction and 73.4% in a high-low direction. When the PL bundle was evaluated without the fan-like extension, the centre was significantly different at 42.7% in a shallow-deep direction (p = 0.000) and 69.3% in a high-low direction (p = 0.000). The centre position of the AM and PL bundles in the femoral ACL footprint was significantly different depending on the inclusion or exclusion of the fan-like extension fibres. For the clinical relevance, to reproduce the direct femoral insertion in the anatomical ACL reconstruction, tunnels should be placed relatively shallow and high in the femoral ACL footprint.
Collective Behavior of Hair, and Ponytail Shape and Dynamics
NASA Astrophysics Data System (ADS)
Ball, Robin
I will discuss how we can build a mathematical model of the behaviour of a bundle of hair, comparing the results with experimental studies of the shape and dynamics of human ponytails. We treat the individual fibers as elastic filaments with random intrinsic curvature, in which the balance of bending elasticity, gravity, orientational disorder and inertia is recast as a differential equation for the envelope of the fibre bundle. The static elements of this work were first reported in R.E. Goldstein, P.B. Warren and R.C. Ball, Physical Review Letters 108, 078101 (2012). The compressibility of the bundle enters through an ``equation of state'' whose empirical form is shown to arise from a Confined Helix Model, in which the constraint of the surrounding hair is on a given fibre is represented as a confining cylinder. Using this model we find the ponytail shape is well fit with only one adjustable parameter, which is the degree to which the confining cylinders over fill space. The dynamics of driven vertical ponytail motion is well reproduced provided we introduce some damping, and we find the level of damping required is consistent with that arising from viscous drag of the lateral motion of the hair fibres through the interstitial air. Most of our match with experiment is achieved by approximating the fibre density of the ponytail to to be uniform across its cross-section, and to vary only length-wise. However we show that detail near the exit from a confining clamp (aka hairband) is only captured by computing the full cross-sectional variation. The work reported is joint with RE Goldstein (Cambridge UK) and PB Warren (Unilever Research).
NASA Astrophysics Data System (ADS)
Bryant, Julia J.; O'Byrne, John W.; Bland-Hawthorn, Joss; Leon-Saval, Sergio G.
2010-07-01
New multi-core imaging fibre bundles - hexabundles - being developed at the University of Sydney will provide simultaneous integral field spectroscopy for hundreds of celestial sources across a wide angular field. These are a natural progression from the use of single fibres in existing galaxy surveys. Hexabundles will allow us to address fundamental questions in astronomy without the biases introduced by a fixed entrance aperture. We have begun to consider instrument concepts that exploit hundreds of hexabundles over the widest possible field of view. To this end, we have characterised the performance of a 61-core fully fused hexabundle and 5 unfused bundles with 7 cores each. All fibres in bundles have 100 micron cores. In the fused bundle, the cores are distorted from a circular shape in order to achieve a higher fill fraction. The unfused bundles have circular cores and five different cladding thicknesses which affect the fill fraction. We compare the optical performance of all 6 bundles and find that the advantage of smaller interstitial holes (higher fill fraction) is outweighed by the increase in FRD, crosstalk and the poor optical performance caused by the deformation of the fibre cores. Uniformly high throughput and low cross-talk are essential for imaging faint astronomical targets with sufficient resolution to disentangle the dynamical structure. Devices already under development will have 100-200 unfused cores, although larger formats are feasible. The light-weight packaging of hexabundles is sufficiently flexible to allow existing robotic positioners to make use of them.
Transparent photocatalytic coatings on the surface of the tips of medical fibre-optic bundles
NASA Astrophysics Data System (ADS)
Evstropiev, S. K.; Volynkin, V. M.; Kiselev, V. M.; Dukelskii, K. V.; Evstropyev, K. S.; Demidov, V. V.; Gatchin, Yu. A.
2017-12-01
We report the results of the development of the sol - gel method for obtaining thin, transparent (in the visible part of the spectrum) TiO2/MgO coatings on the surfaces of the tips of medical fibre-optic bundles. Such coatings are capable of generating singlet oxygen under the action of UV radiation and are characterised by high antibacterial activity.
A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue.
Menzel, M; Michielsen, K; De Raedt, H; Reckfort, J; Amunts, K; Axer, M
2015-10-06
The neuroimaging technique three-dimensional polarized light imaging (3D-PLI) provides a high-resolution reconstruction of nerve fibres in human post-mortem brains. The orientations of the fibres are derived from birefringence measurements of histological brain sections assuming that the nerve fibres—consisting of an axon and a surrounding myelin sheath—are uniaxial birefringent and that the measured optic axis is oriented in the direction of the nerve fibres (macroscopic model). Although experimental studies support this assumption, the molecular structure of the myelin sheath suggests that the birefringence of a nerve fibre can be described more precisely by multiple optic axes oriented radially around the fibre axis (microscopic model). In this paper, we compare the use of the macroscopic and the microscopic model for simulating 3D-PLI by means of the Jones matrix formalism. The simulations show that the macroscopic model ensures a reliable estimation of the fibre orientations as long as the polarimeter does not resolve structures smaller than the diameter of single fibres. In the case of fibre bundles, polarimeters with even higher resolutions can be used without losing reliability. When taking the myelin density into account, the derived fibre orientations are considerably improved. © 2015 The Author(s).
Pérez, María Hernández-Alcalá; Cormack, Jonathan; Mallinson, David; Mutungi, Gabriel
2013-01-01
Glucocorticoids (GCs) are steroid hormones released from the adrenal gland in response to stress. They are also some of the most potent anti-inflammatory and immunosuppressive drugs currently in clinical use. They exert most of their physiological and pharmacological actions through the classical/genomic pathway. However, they also have rapid/non-genomic actions whose physiological and pharmacological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the rapid/non-genomic effects of two widely prescribed glucocorticoids, beclomethasone dipropionate (BDP) and prednisolone acetate (PDNA), on force production in isolated, intact, mouse skeletal muscle fibre bundles. The results show that the effects of both GCs on maximum isometric force (Po) were fibre-type dependent. Thus, they increased Po in the slow-twitch fibre bundles without significantly affecting that of the fast-twitch fibre bundles. The increase in Po occurred within 10 min and was insensitive to the transcriptional inhibitor actinomycin D. Also, it was maximal at ∼250 nm and was blocked by the glucocorticoid receptor (GCR) inhibitor RU486 and a monoclonal anti-GCR, suggesting that it was mediated by a membrane (m) GCR. Both muscle fibre types expressed a cytosolic GCR. However, a mGCR was present only in the slow-twitch fibres. The receptor was more abundant in oxidative than in glycolytic fibres and was confined mainly to the periphery of the fibres where it co-localised with laminin. From these findings we conclude that the rapid/non-genomic actions of GCs are mediated by a mGCR and that they are physiologically/therapeutically beneficial, especially in slow-twitch muscle fibres. PMID:23878367
Pérez, María Hernández-Alcalá; Cormack, Jonathan; Mallinson, David; Mutungi, Gabriel
2013-10-15
Glucocorticoids (GCs) are steroid hormones released from the adrenal gland in response to stress. They are also some of the most potent anti-inflammatory and immunosuppressive drugs currently in clinical use. They exert most of their physiological and pharmacological actions through the classical/genomic pathway. However, they also have rapid/non-genomic actions whose physiological and pharmacological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the rapid/non-genomic effects of two widely prescribed glucocorticoids, beclomethasone dipropionate (BDP) and prednisolone acetate (PDNA), on force production in isolated, intact, mouse skeletal muscle fibre bundles. The results show that the effects of both GCs on maximum isometric force (Po) were fibre-type dependent. Thus, they increased Po in the slow-twitch fibre bundles without significantly affecting that of the fast-twitch fibre bundles. The increase in Po occurred within 10 min and was insensitive to the transcriptional inhibitor actinomycin D. Also, it was maximal at ∼250 nM and was blocked by the glucocorticoid receptor (GCR) inhibitor RU486 and a monoclonal anti-GCR, suggesting that it was mediated by a membrane (m) GCR. Both muscle fibre types expressed a cytosolic GCR. However, a mGCR was present only in the slow-twitch fibres. The receptor was more abundant in oxidative than in glycolytic fibres and was confined mainly to the periphery of the fibres where it co-localised with laminin. From these findings we conclude that the rapid/non-genomic actions of GCs are mediated by a mGCR and that they are physiologically/therapeutically beneficial, especially in slow-twitch muscle fibres.
Nowak, E
2014-08-01
Using histochemical, histological and immunocytochemical methods, organisation of the autonomic nerve structures in small intestine of chinchilla was investigated. Myenteric plexus was localised between circular and longitudinal layers of the smooth muscles. Forming network nodes, the small autonomic, cholinergic ganglia were linked with the bundles of nerve fibres. Adrenergic structures were visible as specific varicose, rosary-like fibres forming bundles of parallel fibres connecting network nodes. Structures of the submucosal plexus formed a finer network than those of the myenteric plexus. Moreover, in 'whole-mount' specimens, fibres forming thick perivascular plexuses were also observed. Immunocytochemical studies confirmed the cholinergic and adrenergic character of the investigated structures. VAChT-positive neurones were found only in myenteric plexus, and numerous VAChT-positive and DBH-positive fibres were found in both plexuses. © 2013 Blackwell Verlag GmbH.
Measurement of Rotating Blade Tip Clearance with Fibre-Optic Probe
NASA Astrophysics Data System (ADS)
Cao, S. Z.; Duan, F. J.; Zhang, Y. G.
2006-10-01
This paper described a tip clearance measuring system with fibre-optic probe. The system is based on a novel tip clearance sensor of optical fibre-bundle mounted on the casing, rotating speed synchronization sensor mounted on the rotating shaft, the tip clearance preamplification processing circuit followed by high speed data-acquisition unit. A novel tip clearance sensor of trifurcated optical fibre bundle was proposed and demonstrated. It is independent of material of measured surface but capacitive probe demands target conductive. Measurements can be taken under severe conditions such as ionization. Sensor circuitry and data acquisition circuit were successfully designed. With the help of Rotation synchronized sensor, all the blades can be detected in real-time. Because of fibre-optic sensor, the measuring system has commendably frequency response, which can work well in high rotating speed from 0-15000rpm.The measurement range of tip clearance is 0-3mm with 25um precision.
NASA Astrophysics Data System (ADS)
Ansari, Rehman; Beard, Paul C.; Zhang, Edward Z.; Desjardins, Adrien E.
2016-03-01
There is considerable interest in the development of photoacoustic endoscopy (PAE) probes for the clinical assessment of pathologies in the gastrointestinal (GI) tract, guiding minimally invasive laparoscopic surgeries and applications in foetal medicine. However, most previous PAE probes integrate mechanical scanners and piezoelectric transducers at the distal end which can be technically complex, expensive and pose challenges in achieving the necessary level of miniaturisation. We present two novel all-optical forward-viewing endoscopic probes operating in widefield tomography mode that have the potential to overcome these limitations. In one configuration, the probe comprises a transparent 40 MHz Fabry-Pérot ultrasound sensor deposited at the tip of a rigid, 3 mm diameter coherent fibre-optic bundle. In this way, the distal end of coherent fibre bundle acts as a 2D array of wideband ultrasound detectors. In another configuration, an optical relay is used between the distal end face of flexible fibre bundle and the Fabry-Pérot sensor to enlarge the lateral field of view to 6 mm x 6 mm. In both configurations, the pulsed excitation laser beam is full-field coupled into the fibre bundle at the proximal end for uniform backward-mode illumination of the tissue at the probe tip. In order to record the photoacoustic waves arriving at the probe tip, the proximal end of the fibre bundle is optically scanned in 2D with a CW wavelength-tunable interrogation laser beam thereby interrogating different spatial points on the sensor. A time-reversal image reconstruction algorithm was used to reconstruct a 3D image from the detected signals. The 3D field of view of the flexible PAE probe is 6 mm x 6 mm x 6 mm and the axial and lateral spatial resolution is 30 µm and 90 µm, respectively. 3D imaging capability is demonstrated using tissue phantoms, ex vivo tissues and in vivo. To the best of our knowledge, this is the first forward-viewing implementation of a photoacoustic endoscopy probe, and it offers several advantages over previous distal-end scanning probes. These include a high degree of miniaturisation, no moving parts at the distal end and simple and inexpensive fabrication with the potential to realise disposable probes for clinical imaging of the GI tract and other minimally invasive applications.
Magnetic resonance imaging reveals functional anatomy and biomechanics of a living dragon tree
Hesse, Linnea; Masselter, Tom; Leupold, Jochen; Spengler, Nils; Speck, Thomas; Korvink, Jan Gerrit
2016-01-01
Magnetic resonance imaging (MRI) was used to gain in vivo insight into load-induced displacements of inner plant tissues making a non-invasive and non-destructive stress and strain analysis possible. The central aim of this study was the identification of a possible load-adapted orientation of the vascular bundles and their fibre caps as the mechanically relevant tissue in branch-stem-attachments of Dracaena marginata. The complex three-dimensional deformations that occur during mechanical loading can be analysed on the basis of quasi-three-dimensional data representations of the outer surface, the inner tissue arrangement (meristem and vascular system), and the course of single vascular bundles within the branch-stem-attachment region. In addition, deformations of vascular bundles could be quantified manually and by using digital image correlation software. This combination of qualitative and quantitative stress and strain analysis leads to an improved understanding of the functional morphology and biomechanics of D. marginata, a plant that is used as a model organism for optimizing branched technical fibre-reinforced lightweight trusses in order to increase their load bearing capacity. PMID:27604526
Measurement and simulation of myoplasmic calcium transients in mouse slow-twitch muscle fibres.
Hollingworth, Stephen; Kim, Michele M; Baylor, Stephen M
2012-02-01
Bundles of intact fibres from soleus muscles of adult mice were isolated by dissection and one fibre within a bundle was micro-injected with either furaptra or mag-fluo-4, two low-affinity rapidly responding Ca(2+) indicators. Fibres were activated by action potentials to elicit changes in indicator fluorescence (ΔF), a monitor of the myoplasmic free Ca(2+) transient ([Ca(2+)]), and changes in fibre tension. All injected fibres appeared to be slow-twitch (type I) fibres as inferred from the time course of their tension responses. The full-duration at half-maximum (FDHM) of ΔF was found to be essentially identical with the two indicators; the mean value was 8.4 ± 0.3 ms (±SEM) at 16°C and 5.1 ± 0.3 ms at 22°C. The value at 22°C is about one-third that reported previously in enzyme-dissociated slow-twitch fibres that had been AM-loaded with mag-fluo-4: 12.4 ± 0.8 ms and 17.2 ± 1.7 ms. We attribute the larger FDHM in enzyme-dissociated fibres either to an alteration of fibre properties due to the enzyme treatment or to some error in the measurement of ΔF associated with AM loading. ΔF in intact fibres was simulated with a multi-compartment reaction-diffusion model that permitted estimation of the amount and time course of Ca(2+) release from the sarcoplasmic reticulum (SR), the binding and diffusion of Ca(2+) in the myoplasm, the re-uptake of Ca(2+) by the SR Ca(2+) pump, and Δ[Ca(2+)] itself. In response to one action potential at 16°C, the following estimates were obtained: 107 μm for the amount of Ca(2+) release; 1.7 ms for the FDHM of the release flux; 7.6 μm and 4.9 ms for the peak and FDHM of spatially averaged Δ[Ca(2+)]. With five action potentials at 67 Hz, the estimated amount of Ca(2+) release is 186 μm. Two important unknown model parameters are the on- and off-rate constants of the reaction between Ca(2+) and the regulatory sites on troponin; values of 0.4 × 10(8) m(-1) s(-1) and 26 s(-1), respectively, were found to be consistent with the ΔF measurements.
Actin-binding proteins sensitively mediate F-actin bundle stiffness
NASA Astrophysics Data System (ADS)
Claessens, Mireille M. A. E.; Bathe, Mark; Frey, Erwin; Bausch, Andreas R.
2006-09-01
Bundles of filamentous actin (F-actin) form primary structural components of a broad range of cytoskeletal processes including filopodia, sensory hair cell bristles and microvilli. Actin-binding proteins (ABPs) allow the cell to tailor the dimensions and mechanical properties of the bundles to suit specific biological functions. Therefore, it is important to obtain quantitative knowledge on the effect of ABPs on the mechanical properties of F-actin bundles. Here we measure the bending stiffness of F-actin bundles crosslinked by three ABPs that are ubiquitous in eukaryotes. We observe distinct regimes of bundle bending stiffness that differ by orders of magnitude depending on ABP type, concentration and bundle size. The behaviour observed experimentally is reproduced quantitatively by a molecular-based mechanical model in which ABP shearing competes with F-actin extension/compression. Our results shed new light on the biomechanical function of ABPs and demonstrate how single-molecule properties determine mesoscopic behaviour. The bending mechanics of F-actin fibre bundles are general and have implications for cytoskeletal mechanics and for the rational design of functional materials.
The best features of diamond nanothread for nanofibre applications
NASA Astrophysics Data System (ADS)
Zhan, Haifei; Zhang, Gang; Tan, Vincent B. C.; Gu, Yuantong
2017-03-01
Carbon fibres have attracted interest from both the scientific and engineering communities due to their outstanding physical properties. Here we report that recently synthesized ultrathin diamond nanothread not only possesses excellent torsional deformation capability, but also excellent interfacial load-transfer efficiency. Compared with (10,10) carbon nanotube bundles, the flattening of nanotubes is not observed in diamond nanothread bundles, which leads to a high-torsional elastic limit that is almost three times higher. Pull-out tests reveal that the diamond nanothread bundle has an interface transfer load of more than twice that of the carbon nanotube bundle, corresponding to an order of magnitude higher in terms of the interfacial shear strength. Such high load-transfer efficiency is attributed to the strong mechanical interlocking effect at the interface. These intriguing features suggest that diamond nanothread could be an excellent candidate for constructing next-generation carbon fibres.
Focal ratio degradation in lightly fused hexabundles
NASA Astrophysics Data System (ADS)
Bryant, J. J.; Bland-Hawthorn, J.; Fogarty, L. M. R.; Lawrence, J. S.; Croom, S. M.
2014-02-01
We are now moving into an era where multi-object wide-field surveys, which traditionally use single fibres to observe many targets simultaneously, can exploit compact integral field units (IFUs) in place of single fibres. Current multi-object integral field instruments such as Sydney-AAO Multi-object Integral field spectrograph have driven the development of new imaging fibre bundles (hexabundles) for multi-object spectrographs. We have characterized the performance of hexabundles with different cladding thicknesses and compared them to that of the same type of bare fibre, across the range of fill fractions and input f-ratios likely in an IFU instrument. Hexabundles with 7-cores and 61-cores were tested for focal ratio degradation (FRD), throughput and cross-talk when fed with inputs from F/3.4 to >F/8. The five 7-core bundles have cladding thickness ranging from 1 to 8 μm, and the 61-core bundles have 5 μm cladding. As expected, the FRD improves as the input focal ratio decreases. We find that the FRD and throughput of the cores in the hexabundles match the performance of single fibres of the same material at low input f-ratios. The performance results presented can be used to set a limit on the f-ratio of a system based on the maximum loss allowable for a planned instrument. Our results confirm that hexabundles are a successful alternative for fibre imaging devices for multi-object spectroscopy on wide-field telescopes and have prompted further development of hexabundle designs with hexagonal packing and square cores.
In vitro determination of the mechanical and chemical properties of a fibre orthodontic retainer.
Silvestrini-Biavati, Armando; Angiero, Francesca; Gibelli, Francesca; Signore, Antonio; Benedicenti, Stefano
2012-12-01
The aim of this study was to analyse, in vitro, the chemical and mechanical properties of a new fibre retainer, Everstick, comparing its characteristics with the requirements for an orthodontic retainer. Chemical analysis was used to examine seven fibre bundles exposed to a photocuring lamp and then to different acids and resistance to corrosion by artificial saliva fortified with plaque acids. The mechanical properties examined were tensile strength and resistance to flexural force. Ten fibre samples were tested for each mechanical analysis and the mean value and standard deviation were calculated. Wilcoxon signed rank test was used to evaluate change in weight after treatment in each group. To determine changes over time between the groups for each acid considered separately, both repeated measures analysis of variance (ANOVA) on original data and on rank transformed data were used. If the results were different, ANOVA on rank-transformed data was considered. Acetic acid was found to be the most corrosive and caused the most substance loss: both pure and at the salivary pH value. Hydrofluoric acid was the most damaging. For all acids analysed in both groups (lactic, formic, acetic, propionic), changes after treatment were statistically different between two groups (P < 0.001 for lactic, acetic, propionic; P = 0.004 for formic acid).The mean Young's modulus value was 68 510 MPa. Deformation before the fibre separated into its constituent elements (glass fibre and composite) was 3.9 per cent, stress to rupture was 1546 MPa, and resistance to bending was 534 MPa. The deflection produced over a length of 12 mm was 1.4 mm. The fibre bundle was attacked by acids potentially present in the oral cavity; the degree of aggressiveness depending on the acid concentration. To preserve fibre bundles long term, careful plaque control is necessary, especially in the interproximal spaces, to avoid acid formation. The tested product was found to be sufficiently strong to oppose flexural and occlusal forces.
Hamdi, M M; Mutungi, G
2011-01-01
Abstract Dihydrotestosterone (DHT) has acute/non-genomic actions in adult mammalian skeletal muscles whose physiological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the acute/non-genomic effects of DHT on amino acid uptake as well as the cellular signal transduction events underlying these actions in mouse fast- and slow-twitch skeletal muscle fibre bundles. 14C-Labelled amino acids were used to investigate the effects of DHT and testosterone (T) on amino acid uptake and pharmacological interventions were used to determine the cellular signal transduction events mediating these actions. While T had no effect on the uptake of isoleucine (Ile) and α-methylaminoisobutyric acid (MeAIB) in both fibre types, DHT increased their uptake in the fast-twitch fibre bundles. This effect was reversed by inhibitors of protein translation, the epidermal growth factor receptor (EGFR), system A, system L, mTOR and MEK. However, it was relatively insensitive to inhibitors of transcription, androgen receptors and PI3K/Akt. Additionally, DHT treatment increased the expression of LAT2 and the phosphorylation of the EGFR in the fast-twitch fibre bundles and that of ERK1/2, RSK1/2 and ATF2 in both fibre types. Also, it decreased the phosphorylation of eEF2 and increased the incorporation of Ile into proteins in both fibre types. Most of these effects were reversed by EGFR and MEK inhibitors. From these findings we suggest that another physiological function of the acute/non-genomic actions of DHT in isolated mammalian skeletal muscle fibres is to stimulate amino acid uptake. This effect is mediated through the EGFR and involves the activation of the MAPK pathway and an increase in LAT2 expression. PMID:21606113
A materials perspective of Martyniaceae fruits: Exploring structural and micromechanical properties.
Horbens, Melanie; Eder, Michaela; Neinhuis, Christoph
2015-12-01
Several species of the plant family Martyniaceae are characterised by unique lignified capsules with hook-shaped extensions that interlock with hooves and ankles of large mammals to disperse the seeds. The arrangement of fruit endocarp fibre tissues is exceptional and intriguing among plants. Structure-function-relationships of these slender, curved, but mechanically highly stressed fruit extensions are of particular interest that may inspire advanced biomimetic composite materials. In the present study, we analyse mechanical properties and fracture behaviour of the hook-shaped fruit extensions under different load conditions. The results are correlated with calculated stress distributions, the specific cell wall structure, and chemical composition, providing a detailed interpretation of the complex fruit tissue microstructure. At the cell wall level, both a large microfibril angle and greater strain rates resulted in Young's moduli of 4-9 GPa, leading to structural plasticity. Longitudinally arranged fibre bundles contribute to a great tensile strength. At the tissue level, transversely oriented fibres absorb radial stresses upon bending, whereas cells encompass and pervade longitudinal fibre bundles, thus, stabilise them against buckling. During bending and torsion, microcracks between axial fibre bundles are probably spanned analogous to a circular anchor. Our study fathoms a highly specialized plant structure, substantiating former assumptions about epizoochory as dispersal mode. While the increased flexibility allows for proper attachment of fruits during dynamical locomotion, the high strength and stability prevent a premature failure due to heavy loads exerted by the animal. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
First results of tests on the WEAVE fibres
NASA Astrophysics Data System (ADS)
Sayède, Frédéric; Younes, Youssef; Fasola, Gilles; Dorent, Stéphane; Abrams, Don Carlos; Aguerri, J. Alphonso L.; Bonifacio, Piercarlo; Carrasco, Esperanza; Dalton, Gavin; Dee, Kevin; Laporte, Philippe; Lewis, Ian; Lhome, Emilie; Middleton, Kevin; Pragt, Johan H.; Rey, Juerg; Stuik, Remko; Trager, Scott C.; Vallenari, Antonella
2016-07-01
WEAVE is a new wide-field spectroscopy facility proposed for the prime focus of the 4.2m William Herschel Telescope. The facility comprises a new 2-degree field of view prime focus corrector with a 1000-multiplex fibre positioner, a small number of individually deployable integral field units, and a large single integral field unit. The IFUs (Integral Field Units) and the MOS (Multi Object Spectrograph) fibres can be used to feed a dual-beam spectrograph that will provide full coverage of the majority of the visible spectrum in a single exposure at a spectral resolution of 5000 or modest wavelength coverage in both arms at a resolution 20000. The instrument is expected to be on-sky by the first quarter of 2018 to provide spectroscopic sampling of the fainter end of the Gaia astrometric catalogue, chemical labeling of stars to V 17, and dedicated follow up of substantial numbers of sources from the medium deep LOFAR surveys. After a brief description of the Fibre System, we describe the fibre test bench, its calibration, and some test results. We have to verify 1920 fibres from the MOS bundles and 740 fibres from the mini-IFU bundles with the test bench. In particular, we present the Focal Ratio Degradation of a cable.
All-optical endoscopic probe for high resolution 3D photoacoustic tomography
NASA Astrophysics Data System (ADS)
Ansari, R.; Zhang, E.; Desjardins, A. E.; Beard, P. C.
2017-03-01
A novel all-optical forward-viewing photoacoustic probe using a flexible coherent fibre-optic bundle and a Fabry- Perot (FP) ultrasound sensor has been developed. The fibre bundle, along with the FP sensor at its distal end, synthesizes a high density 2D array of wideband ultrasound detectors. Photoacoustic waves arriving at the sensor are spatially mapped by optically scanning the proximal end face of the bundle in 2D with a CW wavelength-tunable interrogation laser. 3D images are formed from the detected signals using a time-reversal image reconstruction algorithm. The system has been characterized in terms of its PSF, noise-equivalent pressure and field of view. Finally, the high resolution 3D imaging capability has been demonstrated using arbitrary shaped phantoms and duck embryo.
Hamdi, M M; Mutungi, G
2010-02-01
It is generally believed that steroid hormones have both genomic and non-genomic (rapid) actions. Although the latter form an important component of the physiological response of these hormones, little is known about the cellular signalling pathway(s) mediating these effects and their physiological functions in adult mammalian skeletal muscle fibres. Therefore, the primary aim of this study was to investigate the non-genomic actions of dihydrotestosterone (DHT) and their physiological role in isolated intact mammalian skeletal muscle fibre bundles. Our results show that treating the fibre bundles with physiological concentrations of DHT increases both twitch and tetanic contractions in fast twitch fibres. However, it decreases them in slow twitch fibres. These changes in force are accompanied by an increase in the phosphorylation of MAPK/ERK1/2 in both fibre types and that of regulatory myosin light chains in fast twitch fibres. Both effects were insensitive to inhibitors of Src kinase, androgen receptor, insulin-like growth factor 1 receptor and platelet-derived growth factor receptor. However, they were abolished by the MAPK/ERK1/2 kinase inhibitor PD98059 and the epidermal growth factor (EGF) receptor inhibitor tyrphostin AG 1478. In contrast, testosterone had no effect on force and increased the phosphorylation of ERK1/2 in slow twitch fibres only. From these results we conclude that sex steroids have non-genomic actions in isolated intact mammalian skeletal muscle fibres. These are mediated through the EGF receptor and one of their main physiological functions is the enhancement of force production in fast twitch skeletal muscle fibres.
Reinforcement of single-walled carbon nanotube bundles by intertube bridging
NASA Astrophysics Data System (ADS)
Kis, A.; Csányi, G.; Salvetat, J.-P.; Lee, Thien-Nga; Couteau, E.; Kulik, A. J.; Benoit, W.; Brugger, J.; Forró, L.
2004-03-01
During their production, single-walled carbon nanotubes form bundles. Owing to the weak van der Waals interaction that holds them together in the bundle, the tubes can easily slide on each other, resulting in a shear modulus comparable to that of graphite. This low shear modulus is also a major obstacle in the fabrication of macroscopic fibres composed of carbon nanotubes. Here, we have introduced stable links between neighbouring carbon nanotubes within bundles, using moderate electron-beam irradiation inside a transmission electron microscope. Concurrent measurements of the mechanical properties using an atomic force microscope show a 30-fold increase of the bending modulus, due to the formation of stable crosslinks that effectively eliminate sliding between the nanotubes. Crosslinks were modelled using first-principles calculations, showing that interstitial carbon atoms formed during irradiation in addition to carboxyl groups, can independently lead to bridge formation between neighbouring nanotubes.
Sur le spectre du laplacien des fibrés en tores qui s'effondrent
NASA Astrophysics Data System (ADS)
Jammes, Pierre
2005-06-01
We study the small eigenvalues of the Hodge Laplacian on collaping torus bundles with bounded curvature. In the first part of this dissertation, we consider examples of bundles on S^1 and T^2 with homogeneous structure. In the second part, we give a lower bound of the first non-zero eigenvalue of the 1-form Laplacian on principal torus bundles.
Transverse tripolar stimulation of peripheral nerve: a modelling study of spatial selectivity.
Deurloo, K E; Holsheimer, J; Boom, H B
1998-01-01
Various anode-cathode configurations in a nerve cuff are modelled to predict their spatial selectivity characteristics for functional nerve stimulation. A 3D volume conductor model of a monofascicular nerve is used for the computation of stimulation-induced field potentials, whereas a cable model of myelinated nerve fibre is used for the calculation of the excitation thresholds of fibres. As well as the usual configurations (monopole, bipole, longitudinal tripole, 'steering' anode), a transverse tripolar configuration (central cathode) is examined. It is found that the transverse tripole is the only configuration giving convex recruitment contours and therefore maximises activation selectivity for a small (cylindrical) bundle of fibres in the periphery of a monofascicular nerve trunk. As the electrode configuration is changed to achieve greater selectivity, the threshold current increases. Therefore threshold currents for fibre excitation with a transverse tripole are relatively high. Inverse recruitment is less extreme than for the other configurations. The influences of several geometrical parameters and model conductivities of the transverse tripole on selectivity and threshold current are analysed. In chronic implantation, when electrodes are encapsulated by a layer of fibrous tissue, threshold currents are low, whereas the shape of the recruitment contours in transverse tripolar stimulation does not change.
Mutungi, Gabriel; Edman, K A P; Ranatunga, K W
2003-01-01
The effects of a stretch-release cycle (≈25 % of the resting muscle fibre length, Lo) on both tension and [Ca2+]i in small, unstimulated, intact muscle fibre bundles isolated from adult and neonatal rats were investigated at 20 °C. The results show that the effects of the length change depended on the age of the rats. Thus, the length change produced three effects in the neonatal rat muscle fibre bundles, but only a single effect in the adult ones. In the neonatal fibre bundles, the length change led to an increase in resting muscle tension and to a transient increase in [Ca2+]i. The stretch-release cycle was then followed by a twitch-like tension response. In the adult fibre bundles, only the increase in resting tension was seen and both the transient increase in [Ca2+]i and the stretch-induced twitch-like tension response were absent. The amplitude of the twitch-like tension response was affected by both 2,3-butanedione monoxime and sarcomere length in the same manner as active twitch tension, suggesting that it arose from actively cycling crossbridges. It was also reversibly abolished by 25 mM K+, 1 μM tetrodotoxin and 1.5 mM lidocaine (lignocaine), and was significantly depressed (P < 0.001) by lowering [Ca2+]o. These findings suggest that a rapid stretch in neonatal rats induces a propagated impulse that leads to an increase in [Ca2+]i, and that abolishing the action potential abolishes the stretch-induced twitch-like tension response. In 5- to 7-day-old rats, the twitch-like tension response was ≈50 % of the isometric twitch. It then decreased progressively with age and was virtually absent by the time the rats were 21 days old. Interestingly, this is the same period over which rat muscles differentiate from their neonatal to their adult types. PMID:12813148
Walton, H A; Byrne, J; Robinson, G B
1992-03-20
Cross-linking glomerular basement membrane (GBM) has been shown to render it more permeable to protein. Isolated pig GBM was cross-linked with dimethylmalonimidate which reacts selectively with lysine epsilon-NH2 groups or with glutaraldehyde, a less selective cross-linking agent. Studies of the ultrafiltration properties of these materials in vitro using cytochrome c, myoglobin, bovine serum albumin and immunoglobulin showed that cross-linking had markedly increased solvent and protein fluxes as compared with native membranes particularly at higher pressures. Filtration studies with serum demonstrated that the cross-linked membranes were more permeable to serum proteins. Thickness measurements under pressure indicated that cross-linked membrane was less compressed than native membrane as pressure was increased. Pore theory did not provide a suitable model for analysis of the results, but analysis of the results using the fibre-matrix hypothesis indicated that cross-linking had the effect of bundling together the fibres (type IV collagen) in the GBM matrix. The effect of cross-linking on filtration could be explained by a combination of contraction of the membrane, fibre bundling and increased rigidity compared with native membrane. Cross-linking of GBM might lead to long-term damage of the glomerular capillary wall in nephritis, so promoting proteinuria.
The electro-structural behaviour of yarn-like carbon nanotube fibres immersed in organic liquids
NASA Astrophysics Data System (ADS)
Terrones, Jeronimo; Windle, Alan H.; Elliott, James A.
2014-10-01
Yarn-like carbon nanotube (CNT) fibres are a hierarchically-structured material with a variety of promising applications such as high performance composites, sensors and actuators, smart textiles, and energy storage and transmission. However, in order to fully realize these possibilities, a more detailed understanding of their interactions with the environment is required. In this work, we describe a simplified representation of the hierarchical structure of the fibres from which several mathematical models are constructed to explain electro-structural interactions of fibres with organic liquids. A balance between the elastic and surface energies of the CNT bundle network in different media allows the determination of the maximum lengths that open junctions can sustain before collapsing to minimize the surface energy. This characteristic length correlates well with the increase of fibre resistance upon immersion in organic liquids. We also study the effect of charge accumulation in open interbundle junctions and derive expressions to describe experimental data on the non-ohmic electrical behaviour of fibres immersed in polar liquids. Our analyses suggest that the non-ohmic behaviour is caused by progressively shorter junctions collapsing as the voltage is increased. Since our models are not based on any property unique to carbon nanotubes, they should also be useful to describe other hierarchical structures.
Calcium activation of frog slow muscle fibres
Costantin, L. L.; Podolsky, R. J.; Tice, Lois W.
1967-01-01
1. Skinned muscle fibres were prepared from the tonus bundle of the frog iliofibularis muscle and the contractile response elicited by applied calcium ions was studied. The fibre type was determined by electron microscopy. 2. Fast fibres shortened many times more rapidly than slow fibres, indicating that the slow contraction of slow fibres is an inherent property of the contractile mechanism. 3. The extent of spread of contraction following local calcium application was much greater in slow than in fast fibres, a difference which is consistent with the relative sparsity of the sarcoplasmic reticulum in slow fibres. 4. The ability of the sarcoplasmic reticulum of slow fibres to accumulate calcium was demonstrated by the in situ immobilization of calcium when oxalate solutions were added to the skinned fibre. ImagesPlate 1Plate 2Plate 3Plate 4Plate 5AB PMID:6030519
Carbon nanotube bundles with tensile strength over 80 GPa.
Bai, Yunxiang; Zhang, Rufan; Ye, Xuan; Zhu, Zhenxing; Xie, Huanhuan; Shen, Boyuan; Cai, Dali; Liu, Bofei; Zhang, Chenxi; Jia, Zhao; Zhang, Shenli; Li, Xide; Wei, Fei
2018-05-14
Carbon nanotubes (CNTs) are one of the strongest known materials. When assembled into fibres, however, their strength becomes impaired by defects, impurities, random orientations and discontinuous lengths. Fabricating CNT fibres with strength reaching that of a single CNT has been an enduring challenge. Here, we demonstrate the fabrication of CNT bundles (CNTBs) that are centimetres long with tensile strength over 80 GPa using ultralong defect-free CNTs. The tensile strength of CNTBs is controlled by the Daniels effect owing to the non-uniformity of the initial strains in the components. We propose a synchronous tightening and relaxing strategy to release these non-uniform initial strains. The fabricated CNTBs, consisting of a large number of components with parallel alignment, defect-free structures, continuous lengths and uniform initial strains, exhibit a tensile strength of 80 GPa (corresponding to an engineering tensile strength of 43 GPa), which is far higher than that of any other strong fibre.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepherd, D. V., E-mail: dvs23@cam.ac.uk; Shepherd, J. H.; Cameron, R. E.
We describe the production of collagen fibre bundles through a multi-strand, semi-continuous extrusion process. Cross-linking using an EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), NHS (N-hydroxysuccinimide) combination was considered. Atomic Force Microscopy and Raman spectroscopy focused on how cross-linking affected the collagen fibrillar structure. In the cross-linked fibres, a clear fibrillar structure comparable to native collagen was observed which was not observed in the non-cross-linked fibre. The amide III doublet in the Raman spectra provided additional evidence of alignment in the cross-linked fibres. Raman spectroscopy also indicated no residual polyethylene glycol (from the fibre forming buffer) or water in any of the fibres.
Qayyum, M A; Shaad, F U
1976-01-01
Anatomy, histology and innervation of the heart of the rose ringed parakeet, Psittacula krameri have been studied in the present investigation. The sinuatrial node is found to be well-developed. It is located towards the right side of the cephalic end of the interatrial septum and composed of a few nucleated cells and a large fibrous mass. The atrioventricular node is poorly defined, present at the caudal end of the interatrial septum. The node is somewhat triangular in shape and is composed of elongated and multinucleated specialized fibres. The node is not covered by any connective tissue sheath. The poor development of the atrio ventricular node and the absence of any sheath around it may be correlated with the fast rate of the heart beat. The atrioventricular bundle is observed at the cephalic end of the interventricular septum. A branch from the right limb of the atrioventricular bundle is noted to pass directly into the right atrioventricular valve. The heart is richly innervated. Ganglion cells along with nerve fibres have been observed at the sulcus terminalis and the atrioventricular junction. A direct nervous connection could be observed between the sinuatrial and atrioventricular nodes. It is argued that the impulse which originates in the sinuatrial node would reach the atrioventricular node through the unspecialized muscle fibres and nerve fibres of the interatrial septum. Nerve cells could not be traced in the substance of the sinuatrial node, atrioventricular node and atrioventricular bundle.
Raffelt, David; Tournier, J-Donald; Rose, Stephen; Ridgway, Gerard R; Henderson, Robert; Crozier, Stuart; Salvado, Olivier; Connelly, Alan
2012-02-15
This article proposes a new measure called Apparent Fibre Density (AFD) for the analysis of high angular resolution diffusion-weighted images using higher-order information provided by fibre orientation distributions (FODs) computed using spherical deconvolution. AFD has the potential to provide specific information regarding differences between populations by identifying not only the location, but also the orientations along which differences exist. In this work, analytical and numerical Monte-Carlo simulations are used to support the use of the FOD amplitude as a quantitative measure (i.e. AFD) for population and longitudinal analysis. To perform robust voxel-based analysis of AFD, we present and evaluate a novel method to modulate the FOD to account for changes in fibre bundle cross-sectional area that occur during spatial normalisation. We then describe a novel approach for statistical analysis of AFD that uses cluster-based inference of differences extended throughout space and orientation. Finally, we demonstrate the capability of the proposed method by performing voxel-based AFD comparisons between a group of Motor Neurone Disease patients and healthy control subjects. A significant decrease in AFD was detected along voxels and orientations corresponding to both the corticospinal tract and corpus callosal fibres that connect the primary motor cortices. In addition to corroborating previous findings in MND, this study demonstrates the clear advantage of using this type of analysis by identifying differences along single fibre bundles in regions containing multiple fibre populations. Copyright © 2011 Elsevier Inc. All rights reserved.
Chen, Menghao; Parsons, Andrew J; Felfel, Reda M; Rudd, Christopher D; Irvine, Derek J; Ahmed, Ifty
2016-06-01
Fully bioresorbable composites have been investigated in order to replace metal implant plates used for hard tissue repair. Retention of the composite mechanical properties within a physiological environment has been shown to be significantly affected due to loss of the integrity of the fibre/matrix interface. This study investigated phosphate based glass fibre (PGF) reinforced polycaprolactone (PCL) composites with 20%, 35% and 50% fibre volume fractions (Vf) manufactured via an in-situ polymerisation (ISP) process and a conventional laminate stacking (LS) followed by compression moulding. Reinforcing efficiency between the LS and ISP manufacturing process was compared, and the ISP composites revealed significant improvements in mechanical properties when compared to LS composites. The degradation profiles and mechanical properties were monitored in phosphate buffered saline (PBS) at 37°C for 28 days. ISP composites revealed significantly less media uptake and mass loss (p<0.001) throughout the degradation period. The initial flexural properties of ISP composites were substantially higher (p<0.0001) than those of the LS composites, which showed that the ISP manufacturing process provided a significantly enhanced reinforcement effect than the LS process. During the degradation study, statistically higher flexural property retention profiles were also seen for the ISP composites compared to LS composites. SEM micrographs of fracture surfaces for the LS composites revealed dry fibre bundles and poor fibre dispersion with polymer rich zones, which indicated poor interfacial bonding, distribution and adhesion. In contrast, evenly distributed fibres without dry fibre bundles or polymer rich zones, were clearly observed for the ISP composite samples, which showed that a superior fibre/matrix interface was achieved with highly improved adhesion. Copyright © 2015 Elsevier Ltd. All rights reserved.
What holds paper together: Nanometre scale exploration of bonding between paper fibres
Schmied, Franz J.; Teichert, Christian; Kappel, Lisbeth; Hirn, Ulrich; Bauer, Wolfgang; Schennach, Robert
2013-01-01
Paper, a man-made material that has been used for hundreds of years, is a network of natural cellulosic fibres. To a large extent, it is the strength of bonding between these individual fibres that controls the strength of paper. Using atomic force microscopy, we explore here the mechanical properties of individual fibre-fibre bonds on the nanometre scale. A single fibre-fibre bond is loaded with a calibrated cantilever statically and dynamically until the bond breaks. Besides the calculation of the total energy input, time dependent processes such as creep and relaxation are studied. Through the nanometre scale investigation of the formerly bonded area, we show that fibrils or fibril bundles play a crucial role in fibre-fibre bonding because they act as bridging elements. With this knowledge, new fabrication routes can be deduced to increase the strength of an ancient product that is in fact an overlooked high-tech material. PMID:23969946
Loading Patterns of the Posterior Cruciate Ligament in the Healthy Knee: A Systematic Review
List, Renate; Oberhofer, Katja; Fucentese, Sandro F.; Snedeker, Jess G.; Taylor, William R.
2016-01-01
Background The posterior cruciate ligament (PCL) is the strongest ligament of the knee, serving as one of the major passive stabilizers of the tibio-femoral joint. However, despite a number of experimental and modelling approaches to understand the kinematics and kinetics of the ligament, the normal loading conditions of the PCL and its functional bundles are still controversially discussed. Objectives This study aimed to generate science-based evidence for understanding the functional loading of the PCL, including the anterolateral and posteromedial bundles, in the healthy knee joint through systematic review and statistical analysis of the literature. Data sources MEDLINE, EMBASE and CENTRAL Eligibility criteria for selecting studies Databases were searched for articles containing any numerical strain or force data on the healthy PCL and its functional bundles. Studied activities were as follows: passive flexion, flexion under 100N and 134N posterior tibial load, walking, stair ascent and descent, body-weight squatting and forward lunge. Method Statistical analysis was performed on the reported load data, which was weighted according to the number of knees tested to extract average strain and force trends of the PCL and identify deviations from the norms. Results From the 3577 articles retrieved by the initial electronic search, only 66 met all inclusion criteria. The results obtained by aggregating data reported in the eligible studies indicate that the loading patterns of the PCL vary with activity type, knee flexion angle, but importantly also the technique used for assessment. Moreover, different fibres of the PCL exhibit different strain patterns during knee flexion, with higher strain magnitudes reported in the anterolateral bundle. While during passive flexion the posteromedial bundle is either lax or very slightly elongated, it experiences higher strain levels during forward lunge and has a synergetic relationship with the anterolateral bundle. The strain patterns obtained for virtual fibres that connect the origin and insertion of the bundles in a straight line show similar trends to those of the real bundles but with different magnitudes. Conclusion This review represents what is now the best available understanding of the biomechanics of the PCL, and may help to improve programs for injury prevention, diagnosis methods as well as reconstruction and rehabilitation techniques. PMID:27880849
LASERS IN MEDICINE: Structure of matrices for the transformation of laser radiation by biofractals
NASA Astrophysics Data System (ADS)
Angel'skii, O. V.; Ushenko, A. G.; Arkhelyuk, A. D.; Ermolenko, S. B.; Burkovets, D. N.
1999-12-01
The changes in the state of polarisation of laser radiation transformed by biofractal objects are examined. The orientational angular structure of the matrix elements of the operator representing the optical properties of biofractals with different morphological structures (mineralised collagen fibres and myosin bundles) is investigated. An optical model for the description of fractal laser fields under the conditions of single light scattering is proposed.
Computational representation of the aponeuroses as NURBS surfaces in 3D musculoskeletal models.
Wu, Florence T H; Ng-Thow-Hing, Victor; Singh, Karan; Agur, Anne M; McKee, Nancy H
2007-11-01
Computational musculoskeletal (MSK) models - 3D graphics-based models that accurately simulate the anatomical architecture and/or the biomechanical behaviour of organ systems consisting of skeletal muscles, tendons, ligaments, cartilage and bones - are valued biomedical tools, with applications ranging from pathological diagnosis to surgical planning. However, current MSK models are often limited by their oversimplifications in anatomical geometries, sometimes lacking discrete representations of connective tissue components entirely, which ultimately affect their accuracy in biomechanical simulation. In particular, the aponeuroses - the flattened fibrous connective sheets connecting muscle fibres to tendons - have never been geometrically modeled. The initiative was thus to extend Anatomy3D - a previously developed software bundle for reconstructing muscle fibre architecture - to incorporate aponeurosis-modeling capacity. Two different algorithms for aponeurosis reconstruction were written in the MEL scripting language of the animation software Maya 6.0, using its NURBS (non-uniform rational B-splines) modeling functionality for aponeurosis surface representation. Both algorithms were validated qualitatively against anatomical and functional criteria.
Elastic fibres are broadly distributed in tendon and highly localized around tenocytes
Grant, Tyler M; Thompson, Mark S; Urban, Jill; Yu, Jing
2013-01-01
Elastic fibres have the unique ability to withstand large deformations and are found in numerous tissues, but their organization and structure have not been well defined in tendon. The objective of this study was to characterize the organization of elastic fibres in tendon to understand their function. Immunohistochemistry was used to visualize elastic fibres in bovine flexor tendon with fibrillin-1, fibrillin-2 and elastin antibodies. Elastic fibres were broadly distributed throughout tendon, and highly localized longitudinally around groups of cells and transversely between collagen fascicles. The close interaction of elastic fibres and cells suggests that elastic fibres are part of the pericellular matrix and therefore affect the mechanical environment of tenocytes. Fibres present between fascicles are likely part of the endotenon sheath, which enhances sliding between adjacent collagen bundles. These results demonstrate that elastic fibres are highly localized in tendon and may play an important role in cellular function and contribute to the tissue mechanics of the endotenon sheath. PMID:23587025
Vision, healing brush, and fiber bundles
NASA Astrophysics Data System (ADS)
Georgiev, Todor
2005-03-01
The Healing Brush is a tool introduced for the first time in Adobe Photoshop (2002) that removes defects in images by seamless cloning (gradient domain fusion). The Healing Brush algorithms are built on a new mathematical approach that uses Fibre Bundles and Connections to model the representation of images in the visual system. Our mathematical results are derived from first principles of human vision, related to adaptation transforms of von Kries type and Retinex theory. In this paper we present the new result of Healing in arbitrary color space. In addition to supporting image repair and seamless cloning, our approach also produces the exact solution to the problem of high dynamic range compression of17 and can be applied to other image processing algorithms.
Ravì, Daniele; Szczotka, Agnieszka Barbara; Shakir, Dzhoshkun Ismail; Pereira, Stephen P; Vercauteren, Tom
2018-06-01
Probe-based confocal laser endomicroscopy (pCLE) is a recent imaging modality that allows performing in vivo optical biopsies. The design of pCLE hardware, and its reliance on an optical fibre bundle, fundamentally limits the image quality with a few tens of thousands fibres, each acting as the equivalent of a single-pixel detector, assembled into a single fibre bundle. Video registration techniques can be used to estimate high-resolution (HR) images by exploiting the temporal information contained in a sequence of low-resolution (LR) images. However, the alignment of LR frames, required for the fusion, is computationally demanding and prone to artefacts. In this work, we propose a novel synthetic data generation approach to train exemplar-based Deep Neural Networks (DNNs). HR pCLE images with enhanced quality are recovered by the models trained on pairs of estimated HR images (generated by the video registration algorithm) and realistic synthetic LR images. Performance of three different state-of-the-art DNNs techniques were analysed on a Smart Atlas database of 8806 images from 238 pCLE video sequences. The results were validated through an extensive image quality assessment that takes into account different quality scores, including a Mean Opinion Score (MOS). Results indicate that the proposed solution produces an effective improvement in the quality of the obtained reconstructed image. The proposed training strategy and associated DNNs allows us to perform convincing super-resolution of pCLE images.
Interventional multi-spectral photoacoustic imaging in laparoscopic surgery
NASA Astrophysics Data System (ADS)
Hill, Emma R.; Xia, Wenfeng; Nikitichev, Daniil I.; Gurusamy, Kurinchi; Beard, Paul C.; Hawkes, David J.; Davidson, Brian R.; Desjardins, Adrien E.
2016-03-01
Laparoscopic procedures can be an attractive treatment option for liver resection, with a shortened hospital stay and reduced morbidity compared to open surgery. One of the central challenges of this technique is visualisation of concealed structures within the liver, particularly the vasculature and tumourous tissue. As photoacoustic (PA) imaging can provide contrast for haemoglobin in real time, it may be well suited to guiding laparoscopic procedures in order to avoid inadvertent trauma to vascular structures. In this study, a clinical laparoscopic ultrasound probe was used to receive ultrasound for PA imaging and to obtain co-registered B-mode ultrasound (US) images. Pulsed excitation light was delivered to the tissue via a fibre bundle in dark-field mode. Monte Carlo simulations were performed to optimise the light delivery geometry for imaging targets at depths of 1 cm, 2 cm and 3 cm, and 3D-printed mounts were used to position the fibre bundle relative to the transducer according to the simulation results. The performance of the photoacoustic laparoscope system was evaluated with phantoms and tissue models. The clinical potential of hybrid PA/US imaging to improve the guidance of laparoscopic surgery is discussed.
Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Dusséaux, Antoine; Hung, Clark T; Ateshian, Gerard A
2016-02-06
This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.
Nims, Robert J.; Durney, Krista M.; Cigan, Alexander D.; Hung, Clark T.; Ateshian, Gerard A.
2016-01-01
This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process. PMID:26855751
Biomechanics of selected arborescent and shrubby monocotyledons
Haushahn, Tobias; Fink, Samuel; Speck, Thomas
2016-01-01
Main aims of the study are a deepened understanding of the mechanically relevant (ultra-)structures and the mechanical behaviour of various arborescent and shrubby monocotyledons and obtaining the structure–function relationships of different structurally conspicuous parts in Dracaena marginata stems. The stems of five different “woody” monocotyledon species were dissected and the mechanical properties of the most noticeable tissues in the five monocotyledons and, additionally, of individual vascular bundles in D. marginata, were tested under tensile stress. Results for Young’s moduli and density of these tissues were assessed as well as the area, critical strain, Young’s modulus and tensile strength of the vascular bundles in Dracaena marginata. These analyses allowed for generating a model for the mechanical interaction of tissues and vascular bundles of the stem in D. marginata as well as filling major “white spots” in property charts for biological materials. Additionally we shortly discuss the potential significance of such studies for the development of branched and unbranched bio-inspired fibre-reinforced materials and structures with enhanced properties. PMID:28144511
Wendowski, Oskar; Redshaw, Zoe; Mutungi, Gabriel
2017-02-01
Sarcopenia, the progressive decline in skeletal muscle mass and function with age, is a debilitating condition. It leads to inactivity, falls, and loss of independence. Despite this, its cause(s) and the underlying mechanism(s) are still poorly understood. In this study, small skeletal muscle fibre bundles isolated from the extensor digitorum longus (a fast-twitch muscle) and the soleus (a slow-twitch muscle) of adult mice of different ages (range 100-900 days old) were used to investigate the effects of ageing and dihydrotestosterone (DHT) treatment on protein synthesis as well as the expression and function of two amino acid transporters; the sodium-coupled neutral amino acid transporter (SNAT) 2, and the sodium-independent L-type amino-acid transporter (LAT) 2. At all ages investigated, protein synthesis was always higher in the slow-twitch than in the fast-twitch muscle fibres and decreased with age in both fibre types. However, the decline was greater in the fast-twitch than in the slow-twitch fibres and was accompanied by a reduction in the expression of SNAT2 and LAT2 at the protein level. Again, the decrease in the expression of the amino acid transporters was greater in the fast-twitch than in the slow-twitch fibres. In contrast, ageing had no effect on SNAT2 and LAT2 expressions at the mRNA level. Treating the muscle fibre bundles with physiological concentrations (~2 nM) of DHT for 1 h completely reversed the effects of ageing on protein synthesis and the expression of SNAT2 and LAT2 protein in both fibre types. From the observations that ageing is accompanied by a reduction in protein synthesis and transporter expression and that these effects are reversed by DHT treatment, we conclude that sarcopenia arises from an age-dependent reduction in protein synthesis caused, in part, by the lack of or by the low bioavailability of the male sex steroid, DHT.
SENGUPTA, GARGI; PALIT, P.
2004-01-01
• Background and Aims High lignin content of lignocellulose jute fibre does not favour its utilization in making finer fabrics and other value‐added products. To aid the development of low‐lignin jute fibre, this study aimed to identify a phloem fibre mutant with reduced lignin. • Methods An x‐ray‐induced mutant line (CMU) of jute (Corchorus capsularis) was morphologically evaluated and the accession (CMU 013) with the most undulated phenotype was compared with its normal parent (JRC 212) for its growth, secondary fibre development and lignification of the fibre cell wall. • Key Results The normal and mutant plants showed similar leaf photosynthetic rates. The mutant grew more slowly, had shorter internodes and yielded much less fibre after retting. The fibre of the mutant contained 50 % less lignin but comparatively more cellulose than that of the normal type. Differentiation of primary and secondary vascular tissues throughout the CMU 013 stem was regular but it did not have secondary phloem fibre bundles as in JRC 212. Instead, a few thin‐walled, less lignified fibre cells formed uni‐ or biseriate radial rows within the phloem wedges of the middle stem. The lower and earliest developed part of the mutant stem had no lignified fibre cells. This developmental deficiency in lignification of fibre cells was correlated to a similar deficiency in phenylalanine ammonia lyase activity, but not peroxidase activity, in the bark tissue along the stem axis. In spite of severe reduction in lignin synthesis in the phloem cells this mutant functioned normally and bred true. • Conclusions In view of the observations made, the mutant is designated as deficient lignified phloem fibre (dlpf). This mutant may be utilized to engineer low‐lignin jute fibre strains and may also serve as a model to study the positional information that coordinates secondary wall thickening of fibre cells. PMID:14707004
Ultrastructure of the bovine nuchal ligament.
Morocutti, M; Raspanti, M; Ottani, V; Govoni, P; Ruggeri, A
1991-01-01
Nuchal ligament is composed almost exclusively of elastic fibres and collagen fibrils, interwoven very closely and lying parallel to the main ligament axis. Elastic fibres are very large, straight and roughly cylindrical; the collagenous matrix consists of septa of diminishing size forming a 3-dimensional matrix that envelops fibre bundles as well as individual elastic fibres. In all areas examined, collagen fibrils are of very uniform size and, on replicas, they reveal a spiral subfibrillar arrangement with an inclination angle of 17 degrees. Collagen fibrils appear to adhere to the elastic fibres very closely, conforming to their irregular shape. Sometimes they impinge directly upon the elastic fibres, while in other cases a space is visible between collagen fibrils and elastic fibres that contains a rich fabric of intermediate filaments. The collagen-elastin complex of the ligamentum nuchae may be considered a fibre-reinforced composite material comprising tough fibres immersed in an amorphous elastic matrix. Its mechanical behaviour is the result of the combined properties of its components and their interactions. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:1810923
Fahimian, Mahi; Kortschot, Mark; Sain, Mohini
2016-01-01
Natural fibers can be attractive reinforcing materials in thermosetting polymers due to their low density and high specific mechanical properties. Although the research effort in this area has grown substantially over the last 20 years, manufacturing technologies to make use of short natural fibers in high volume fraction composites; are still limited. Natural fibers, after retting and preprocessing, are discontinuous and easily form entangled bundles. Dispersion and mixing these short fibers with resin to manufacture high quality, high volume fraction composites presents a significant challenge. In this paper, a novel pneumatic design for dispersion of natural fibers in their original discontinuous form is described. In this design, compressed air is used to create vacuum to feed and convey fibres while breaking down fibre clumps and dispersing them in an aerosolized resin stream. Model composite materials, made using proof-of-concept prototype equipment, were imaged with both optical and X-ray tomography to evaluate fibre and resin dispersion. The images indicated that the system was capable of providing an intimate mixture of resin and detangled fibres for two different resin viscosities. The new pneumatic process could serve as the basis of a system to produce well-dispersed high-volume fraction composites containing discontinuous natural fibres drawn directly from a loosely packed source. PMID:28773670
Fattah, A Y; Ravichandiran, K; Zuker, R M; Agur, A M R
2013-09-01
Muscle transfer is used to restore function typically using a single vector of contraction. Although its use with two independently functional muscular units has been employed, in order to refine this concept we endeavoured to detail the intramuscular anatomy of gracilis, a muscle commonly used for transfer. A novel method to capture intramuscular fibre bundle and neurovascular arrangement was used to create a three-dimensional (3D) digital model that allowed for accurate representation of the relationships between all the intramuscular structures to facilitate flap planning. Twenty gracilis muscles were harvested from 15 cadavers. All components of the muscle were digitised using a Microscribe G2 Digitiser. The data were exported to the 3D animation software Autodesk(®) Maya(®) 2012 whereupon it was rendered into a 3D model that can be exported as static images or videos. Neurovascular anatomy and muscle architecture were analysed from these models, and fibre bundle length, pennation angle and physiological cross-sectional area were calculated from digitised data. The muscle is composed of a variable number of distinct longitudinal segments with muscle fibres spiralling onto the tendon. The main artery to the muscle has three main intramuscular patterns of distribution. The venae comitantes drain discrete zones without intramuscular macroscopic anastomoses. The minor pedicles form an anastomotic chain along the anterior border of the muscle and all vessels were biased to the deep surface. The nerve is related to the vessels in a variable manner and both run between longitudinal muscular compartments. The digitisation technique may be used to advance knowledge of intramuscular architecture and it demonstrated that the gracilis muscle is comprised of four to seven muscular compartments, each representing a functional unit that may theoretically be differentially activated and could be harnessed for more sophisticated muscle transfers. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Raffelt, David A.; Smith, Robert E.; Ridgway, Gerard R.; Tournier, J-Donald; Vaughan, David N.; Rose, Stephen; Henderson, Robert; Connelly, Alan
2015-01-01
In brain regions containing crossing fibre bundles, voxel-average diffusion MRI measures such as fractional anisotropy (FA) are difficult to interpret, and lack within-voxel single fibre population specificity. Recent work has focused on the development of more interpretable quantitative measures that can be associated with a specific fibre population within a voxel containing crossing fibres (herein we use fixel to refer to a specific fibre population within a single voxel). Unfortunately, traditional 3D methods for smoothing and cluster-based statistical inference cannot be used for voxel-based analysis of these measures, since the local neighbourhood for smoothing and cluster formation can be ambiguous when adjacent voxels may have different numbers of fixels, or ill-defined when they belong to different tracts. Here we introduce a novel statistical method to perform whole-brain fixel-based analysis called connectivity-based fixel enhancement (CFE). CFE uses probabilistic tractography to identify structurally connected fixels that are likely to share underlying anatomy and pathology. Probabilistic connectivity information is then used for tract-specific smoothing (prior to the statistical analysis) and enhancement of the statistical map (using a threshold-free cluster enhancement-like approach). To investigate the characteristics of the CFE method, we assessed sensitivity and specificity using a large number of combinations of CFE enhancement parameters and smoothing extents, using simulated pathology generated with a range of test-statistic signal-to-noise ratios in five different white matter regions (chosen to cover a broad range of fibre bundle features). The results suggest that CFE input parameters are relatively insensitive to the characteristics of the simulated pathology. We therefore recommend a single set of CFE parameters that should give near optimal results in future studies where the group effect is unknown. We then demonstrate the proposed method by comparing apparent fibre density between motor neurone disease (MND) patients with control subjects. The MND results illustrate the benefit of fixel-specific statistical inference in white matter regions that contain crossing fibres. PMID:26004503
Mutungi, G; Ranatunga, K W
1998-04-01
1. The tension and sarcomere length responses induced by ramp stretches (at amplitudes of 1-3 % fibre length (Lo) and speeds of 0.01-12 Lo s-1) were examined at different temperatures (range, 10-35 degrees C) in resting intact muscle fibre bundles isolated from the soleus (a slow-twitch muscle) and extensor digitorum longus (a fast-twitch muscle) of the rat. Some observations are also presented on the effects of chemical skinning on passive viscoelasticity at 10 degrees C. 2. As previously reported, the tension response to a ramp stretch, in different preparations and under various conditions, could be resolved into a viscous (P1), a viscoelastic (P2) and an elastic (P3) component and showed characteristic differences between slow and fast muscle fibres. 3. Chemical skinning of the muscle fibres led to a decrease in the amplitude of all three tension components. However, the fast-slow fibre differences remained after skinning. For example, the viscosity coefficient derived from P1 tension data decreased from 0.84 +/- 0.06 before skinning to 0.44 +/- 0.06 kN s m-2 after skinning in fast fibres; the corresponding values in slow fibres were 2.1 +/- 0.08 and 0.87 +/- 0.09 kN s m-2, respectively. 4. Increasing the experimental temperature from 10 to 35 degrees C led to a decrease in all the tension components in both fast and slow muscle fibre bundles. The decrease of P1 (viscous) tension was such that the viscosity coefficient calculated using P1 data was reduced from 0.84 +/- 0.1 to 0.43 +/- 0.05 kN s m-2 in fast fibres and from 2.0 +/- 0.1 to 1.0 +/- 0.1 kN s m-2 in slow fibres (Q10 of approximately 1.3 in both). 5. In both fast and slow muscle fibre preparations, the plateau tension of the viscoelastic component (P2) decreased by 60-80 % as the temperature was increased from 10 to 35 degrees C giving P2 tension a Q10 of approximately 1.4 in slow fibres and approximately 1.7 in the fast fibres. Additionally, the relaxation time of the viscoelasticity decreased from 11.9 +/- 1 ms (fast) and 43.1 +/- 1 ms (slow) at 10 degrees C to 3 +/- 0.5 ms (fast) at 25 C degrees and 8. 7 +/- 0.6 ms (slow) at 35 degrees C (Q10 of approximately 2.0 in slow and approximately 2.5 in fast fibres). 6. The fast-slow fibre differences in passive viscoelasticity remained at the high physiological temperatures. The physiological significance of such fibre-type differences and their possible underlying mechanisms are discussed.
Optical Fibre Sensor For Measuring pH In Physiological Range
NASA Astrophysics Data System (ADS)
Golunski, Witold; Hypszer, Ryszard; Plucinski, Jerzy
1990-01-01
The principle of fibre optic pH sensor operation is given in this paper. PH measurement in 7.0-7.5 range is based on changing of optical property of a indicator. The indicator is sensitive to the hydrogen ion concentration in the water solution. Microspheres of the polymer XAD-2 (a styrene-divinylbenzene copolymer) containing bound phenol red were used as a indicator. Such prepared indicator was inserted in optrode. The optrode was connected with transmitter and receiver by a bundle of glass fibres (multicomponent glass). Transmitter was done by using green LED while receiver construction was based on pin photodiode.
Liu, Alexander G; Matthews, Jack J; Menon, Latha R; McIlroy, Duncan; Brasier, Martin D
2014-10-22
Muscle tissue is a fundamentally eumetazoan attribute. The oldest evidence for fossilized muscular tissue before the Early Cambrian has hitherto remained moot, being reliant upon indirect evidence in the form of Late Ediacaran ichnofossils. We here report a candidate muscle-bearing organism, Haootia quadriformis n. gen., n. sp., from approximately 560 Ma strata in Newfoundland, Canada. This taxon exhibits sediment moulds of twisted, superimposed fibrous bundles arranged quadrilaterally, extending into four prominent bifurcating corner branches. Haootia is distinct from all previously published contemporaneous Ediacaran macrofossils in its symmetrically fibrous, rather than frondose, architecture. Its bundled fibres, morphology, and taphonomy compare well with the muscle fibres of fossil and extant Cnidaria, particularly the benthic Staurozoa. Haootia quadriformis thus potentially provides the earliest body fossil evidence for both metazoan musculature, and for Eumetazoa, in the geological record.
Liu, Alexander G.; Matthews, Jack J.; Menon, Latha R.; McIlroy, Duncan; Brasier, Martin D.
2014-01-01
Muscle tissue is a fundamentally eumetazoan attribute. The oldest evidence for fossilized muscular tissue before the Early Cambrian has hitherto remained moot, being reliant upon indirect evidence in the form of Late Ediacaran ichnofossils. We here report a candidate muscle-bearing organism, Haootia quadriformis n. gen., n. sp., from approximately 560 Ma strata in Newfoundland, Canada. This taxon exhibits sediment moulds of twisted, superimposed fibrous bundles arranged quadrilaterally, extending into four prominent bifurcating corner branches. Haootia is distinct from all previously published contemporaneous Ediacaran macrofossils in its symmetrically fibrous, rather than frondose, architecture. Its bundled fibres, morphology, and taphonomy compare well with the muscle fibres of fossil and extant Cnidaria, particularly the benthic Staurozoa. Haootia quadriformis thus potentially provides the earliest body fossil evidence for both metazoan musculature, and for Eumetazoa, in the geological record. PMID:25165764
Israel, Yonatan; Tenne, Ron; Oron, Dan; Silberberg, Yaron
2017-01-01
Despite advances in low-light-level detection, single-photon methods such as photon correlation have rarely been used in the context of imaging. The few demonstrations, for example of subdiffraction-limited imaging utilizing quantum statistics of photons, have remained in the realm of proof-of-principle demonstrations. This is primarily due to a combination of low values of fill factors, quantum efficiencies, frame rates and signal-to-noise characteristic of most available single-photon sensitive imaging detectors. Here we describe an imaging device based on a fibre bundle coupled to single-photon avalanche detectors that combines a large fill factor, a high quantum efficiency, a low noise and scalable architecture. Our device enables localization-based super-resolution microscopy in a non-sparse non-stationary scene, utilizing information on the number of active emitters, as gathered from non-classical photon statistics. PMID:28287167
He, Bo; Wu, Jian Ping; Xu, Jiake; Day, Robert E.; Kirk, Thomas Brett
2013-01-01
Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos. PMID:24058543
He, Bo; Wu, Jian Ping; Xu, Jiake; Day, Robert E; Kirk, Thomas Brett
2013-01-01
Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos.
Abdul Bashid, Hamra Assyaima; Lim, Hong Ngee; Kamaruzaman, Sazlinda; Abdul Rashid, Suraya; Yunus, Robiah; Huang, Nay Ming; Yin, Chun Yang; Rahman, Mohammad Mahbubur; Altarawneh, Mohammednoor; Jiang, Zhong Tao; Alagarsamy, Pandikumar
2017-12-01
A nanocomposite comprising of polypyrrole and reduced graphene oxide was electrodeposited onto a carbon bundle fibre (CBF) through a two-step approach (CBF/PPy-rGO-2). The CBF/PPy-rGO-2 had a highly porous structure compared to a nanocomposite of polypyrrole and reduced graphene oxide that was electrodeposited onto a CBF in a one-step approach (CBF/PPy-rGO), as observed through a field emission scanning electron microscope. An X-ray photoelectron spectroscopic analysis revealed the presence of hydrogen bond between the oxide functional groups of rGO and the amine groups of PPy in PPy-rGO-2 nanocomposite. The fabricated CBF/PPy-rGO-2 nanocomposite material was used as an electrode material in a symmetrical solid-state supercapacitor, and the device yielded a specific capacitance, energy density and power density of 96.16 F g - 1 , 13.35 Wh kg - 1 and of 322.85 W kg - 1 , respectively. Moreover, the CBF/PPy-rGO-2 showed the capacitance retention of 71% after 500 consecutive charge/discharge cycles at a current density of 1 A g - 1 . The existence of a high degree of porosity in CBF/PPy-rGO-2 significantly improved the conductivity and facilitated the ionic penetration. The CBF/PPy-rGO-2-based symmetrical solid-state supercapacitor device demonstrated outstanding pliability because the cyclic voltammetric curves remained the same upon bending at various angles. Carbon bundle fibre modified with porous polypyrrole/reduced graphene oxide nanocomposite for flexible miniature solid-state supercapacitor.
Mandal, Aninda; Datta, Animesh K
2014-01-01
A "thick stem" mutant of Corchorus olitorius L. was induced at M2 (0.50%, 4 h, EMS) and the true breeding mutant is assessed across generations (M5 to M7) considering morphometric traits as well as SEM analysis of pollen grains and raw jute fibres, stem anatomy, cytogenetical attributes, and lignin content in relation to control. Furthermore, single fibre diameter and tensile strength are also analysed. The objective is to assess the stability of mutant for its effective exploration for raising a new plant type in tossa jute for commercial exploitation and efficient breeding. The mutant trait is monogenic recessive to normal. Results indicate that "thick stem" mutant is stable across generations (2n = 14) with distinctive high seed and fibre yield and significantly low lignin content. Stem anatomy of the mutant shows significant enhancement in fibre zone, number of fibre pyramids and fibre bundles per pyramid, and diameter of fibre cell in relation to control. Moreover, tensile strength of mutant fibre is significantly higher than control fibre and the trait is inversely related to fibre diameter. However the mutant is associated with low germination frequency, poor seed viability, and high pollen sterility, which may be eliminated through mutational approach followed by rigorous selection and efficient breeding.
Wendowski, Oskar; Redshaw, Zoe
2016-01-01
Abstract Background Sarcopenia, the progressive decline in skeletal muscle mass and function with age, is a debilitating condition. It leads to inactivity, falls, and loss of independence. Despite this, its cause(s) and the underlying mechanism(s) are still poorly understood. Methods In this study, small skeletal muscle fibre bundles isolated from the extensor digitorum longus (a fast‐twitch muscle) and the soleus (a slow‐twitch muscle) of adult mice of different ages (range 100–900 days old) were used to investigate the effects of ageing and dihydrotestosterone (DHT) treatment on protein synthesis as well as the expression and function of two amino acid transporters; the sodium‐coupled neutral amino acid transporter (SNAT) 2, and the sodium‐independent L‐type amino‐acid transporter (LAT) 2. Results At all ages investigated, protein synthesis was always higher in the slow‐twitch than in the fast‐twitch muscle fibres and decreased with age in both fibre types. However, the decline was greater in the fast‐twitch than in the slow‐twitch fibres and was accompanied by a reduction in the expression of SNAT2 and LAT2 at the protein level. Again, the decrease in the expression of the amino acid transporters was greater in the fast‐twitch than in the slow‐twitch fibres. In contrast, ageing had no effect on SNAT2 and LAT2 expressions at the mRNA level. Treating the muscle fibre bundles with physiological concentrations (~2 nM) of DHT for 1 h completely reversed the effects of ageing on protein synthesis and the expression of SNAT2 and LAT2 protein in both fibre types. Conclusion From the observations that ageing is accompanied by a reduction in protein synthesis and transporter expression and that these effects are reversed by DHT treatment, we conclude that sarcopenia arises from an age‐dependent reduction in protein synthesis caused, in part, by the lack of or by the low bioavailability of the male sex steroid, DHT. PMID:27239418
van der List, J P; Zuiderbaan, H A; Nawabi, D H; Pearle, A D
2017-05-01
During anterior cruciate ligament (ACL) reconstruction, authors have suggested inserting the femoral tunnel at the biomechanically relevant direct fibres, but this higher position can cause more impingement. Therefore, we aimed to assess ACL graft impingement at the femoral notch for ACL reconstruction at both the direct and indirect tunnel positions. A virtual model was created for twelve cadaveric knees with computed tomography scanning in which a virtual graft was placed at direct and indirect tunnel positions of the anteromedial bundle (AM), posterolateral bundle (PL) or centre of the both bundles (C). In these six tunnel positions, the volume (mm 3 ) and mid-point location of impingement (°) were measured at different flexion angles. Generally, more impingement was seen with the indirect position compared with the direct position although this was only significant at 90° of flexion for the AM position (97 ± 28 vs. 76 ± 20 mm 3 , respectively; p = 0.046). The direct tunnel position impinged higher at the notch, whereas the indirect position impinged more towards the lateral wall, but this was only significant at 90° of flexion for the AM (24 ± 5° vs. 34 ± 4°, respectively; p < 0.001) and C position (34 ± 5° vs. 42 ± 5°, respectively; p = 0.003). In this cadaveric study, the direct tunnel position did not cause more impingement than the indirect tunnel position. Based on these results, graft impingement is not a limitation to reconstruct the femoral tunnel at the insertion of the biomechanically more relevant direct fibres.
Surface Treated Natural Fibres as Filler in Biocomposites
NASA Astrophysics Data System (ADS)
Schwarzova, I.; Stevulova, N.; Singovszka, E.; Terpakova, E.
2015-11-01
Biocomposites based on natural fibres as organic filler have been studied for several years because traditional building materials such as concrete are increasingly being replaced by advanced composite materials. Natural fibres are a potential replacement of glass fibres in composite materials. Inherent advantages such as low density, biodegradability and comparable specific mechanical properties make natural fibres an attractive option. However, limitations such as poor thermal stability, moisture absorption and poor compatibility with matrix are challenges that need to be resolved. The primary objective of this research was to study the effect of surface treatment on properties of hemp hurds like a natural lignocellulosic material and composites made thereof. Industrial hemp fibre is the one of the most suitable fibres for use in composite materials because of its good specific properties, as well as it being biologically degradable and CO2 neutral. Improving interfacial bonding between fibres and matrix is an important factor in using hemp fibres as reinforcement in composites. In order to improve interfacial bonding, modifications can be made to the hemp fibres to remove non- cellulosic compounds, separate hemp fibres from their bundles, and modify the fibre surface. This paper contains the comparison of FTIR spectra caused by combination of physical and chemical treatment of hemp material with unmodified sample. Modification of hemp hurds was carried out by NaOH solution and by ultrasonic treatment (deionized water and NaOH solution were used as the cleaning mediums).
Towards an ultra-thin medical endoscope: multimode fibre as a wide-field image transferring medium
NASA Astrophysics Data System (ADS)
Duriš, Miroslav; Bradu, Adrian; Podoleanu, Adrian; Hughes, Michael
2018-03-01
Multimode optical fibres are attractive for biomedical and industrial applications such as endoscopes because of the small cross section and imaging resolution they can provide in comparison to widely-used fibre bundles. However, the image is randomly scrambled by propagation through a multimode fibre. Even though the scrambling is unpredictable, it is deterministic, and therefore the scrambling can be reversed. To unscramble the image, we treat the multimode fibre as a linear, disordered scattering medium. To calibrate, we scan a focused beam of coherent light over thousands of different beam positions at the distal end and record complex fields at the proximal end of the fibre. This way, the inputoutput response of the system is determined, which then allows computational reconstruction of reflection-mode images. However, there remains the problem of illuminating the tissue via the fibre while avoiding back reflections from the proximal face. To avoid this drawback, we provide here the first preliminary confirmation that an image can be transferred through a 2x2 fibre coupler, with the sample at its distal port interrogated in reflection. Light is injected into one port for illumination and then collected from a second port for imaging.
Johnston, I A; Salamonski, J
1984-07-01
Single white fibres and small bundles (two to three) of red fibres were isolated from the trunk muscle of Pacific Blue Marlin (50-121 kg body weight). Fibres were chemically skinned with 1% Brij. Maximum Ca2+-activated force production (Po) was 57 kN m-2 for red fibres and 176 kN m-2 for white fibres at 25 degrees C. The force-velocity (P-V) characteristics of these fibres were determined at 15 and 25 degrees C. Points below 0.6 Po on the P-V curve could be fitted to a linear form of Hill's equation. The degree of curvature of the P-V curve was similar at 15 and 25 degrees C (Hill's constant a/Po = 0.24 and 0.12 for red and white fibres respectively). Extrapolated maximum contraction velocities (Vmax) were 2.5 muscle lengths s-1 (Lo S-1) (red fibres) and 5.3 Lo S-1 (white fibres) at 25 degrees C. Q10(15-25 degrees C) values for Vmax were 1.4 and 1.3 for red and white fibres respectively. Maximum power output had a similar low temperature dependence and amounted to 13 W kg-1 for red and 57 W kg-1 for white muscle at 25 degrees C. The results are briefly discussed in relation to the locomotion and ecology of marlin.
Mandal, Aninda; Datta, Animesh K.
2014-01-01
A “thick stem” mutant of Corchorus olitorius L. was induced at M2 (0.50%, 4 h, EMS) and the true breeding mutant is assessed across generations (M5 to M7) considering morphometric traits as well as SEM analysis of pollen grains and raw jute fibres, stem anatomy, cytogenetical attributes, and lignin content in relation to control. Furthermore, single fibre diameter and tensile strength are also analysed. The objective is to assess the stability of mutant for its effective exploration for raising a new plant type in tossa jute for commercial exploitation and efficient breeding. The mutant trait is monogenic recessive to normal. Results indicate that “thick stem” mutant is stable across generations (2n = 14) with distinctive high seed and fibre yield and significantly low lignin content. Stem anatomy of the mutant shows significant enhancement in fibre zone, number of fibre pyramids and fibre bundles per pyramid, and diameter of fibre cell in relation to control. Moreover, tensile strength of mutant fibre is significantly higher than control fibre and the trait is inversely related to fibre diameter. However the mutant is associated with low germination frequency, poor seed viability, and high pollen sterility, which may be eliminated through mutational approach followed by rigorous selection and efficient breeding. PMID:24860822
Chiang, Huey-Ling; Chen, Yu-Jen; Lo, Yu-Chun; Tseng, Wen-Yih Isaac; Gau, Susan Shur-Fen
2015-01-01
Background The neural substrate for clinical symptoms and neuropsychological performance in individuals with attention-deficit/hyperactivity disorder (ADHD) has rarely been studied and has yielded inconsistent results. We sought to compare the microstructural property of fibre tracts associated with the prefrontal cortex and its association with ADHD symptoms and a wide range of attention performance in youth with ADHD and healthy controls. Methods We assessed youths with ADHD and age-, sex-, handedness-, coil- and intelligence-matched controls using the Conners’ Continuous Performance Test (CCPT) for attention performance and MRI. The 10 target tracts, including the bilateral frontostriatal tracts (caudate to dorsolateral prefrontal cortex, ventrolateral prefrontal cortex and orbitofrontal cortex), superior longitudinal fasciculus (SLF) and cingulum bundle were reconstructed using diffusion spectrum imaging tractography. We computed generalized fractional anisotropy (GFA) values to indicate tract-specific microstructural property. Results We included 50 youths with ADHD and 50 healthy controls in our study. Youths with ADHD had lower GFA in the left frontostriatal tracts, bilateral SLF and right cingulum bundle and performed worse in the CCPT than controls. Furthermore, alteration of the right SLF GFA was most significantly associated with the clinical symptom of inattention in youths with ADHD. Finally, youths with ADHD had differential association patterns of the 10 fibre tract GFA values with attention performance compared with controls. Limitations Ten of the youths with ADHD were treated with methylphenidate, which may have long-term effects on microstructural property. Conclusion Our study highlights the importance of the SLF, cingulum bundle and frontostriatal tracts for clinical symptoms and attention performance in youths with ADHD and demonstrates the involvement of different fibre tracts in attention performance in these individuals. PMID:25871496
Chiang, Huey-Ling; Chen, Yu-Jen; Lo, Yu-Chun; Tseng, Wen-Yih I; Gau, Susan S
2015-09-01
The neural substrate for clinical symptoms and neuropsychological performance in individuals with attention-deficit/hyperactivity disorder (ADHD) has rarely been studied and has yielded inconsistent results. We sought to compare the microstructural property of fibre tracts associated with the prefrontal cortex and its association with ADHD symptoms and a wide range of attention performance in youth with ADHD and healthy controls. We assessed youths with ADHD and age-, sex-, handedness-, coil- and intelligence-matched controls using the Conners' Continuous Performance Test (CCPT) for attention performance and MRI. The 10 target tracts, including the bilateral frontostriatal tracts (caudate to dorsolateral prefrontal cortex, ventrolateral prefrontal cortex and orbitofrontal cortex), superior longitudinal fasciculus (SLF) and cingulum bundle were reconstructed using diffusion spectrum imaging tractography. We computed generalized fractional anisotropy (GFA) values to indicate tract-specific microstructural property. We included 50 youths with ADHD and 50 healthy controls in our study. Youths with ADHD had lower GFA in the left frontostriatal tracts, bilateral SLF and right cingulum bundle and performed worse in the CCPT than controls. Furthermore, alteration of the right SLF GFA was most significantly associated with the clinical symptom of inattention in youths with ADHD. Finally, youths with ADHD had differential association patterns of the 10 fibre tract GFA values with attention performance compared with controls. Ten of the youths with ADHD were treated with methylphenidate, which may have long-term effects on microstructural property. Our study highlights the importance of the SLF, cingulum bundle and frontostriatal tracts for clinical symptoms and attention performance in youths with ADHD and demonstrates the involvement of different fibre tracts in attention performance in these individuals.
Measurement and analysis of flow in 3D preforms for aerospace composites
NASA Astrophysics Data System (ADS)
Stewart, Andrew Lawrence
Composite materials have become viable alternatives to traditional engineering materials for many different product categories. Liquid transfer moulding (LTM) processes, specifically resin transfer moulding (RTM), is a cost-effective manufacturing technique for creating high performance composite parts. These parts can be tailor-made to their specific application by optimizing the properties of the textile preform. Preforms which require little or no further assembly work and are close to the shape of the final part are critical to obtaining high quality parts while simultaneously reducing labour and costs associated with other composite manufacturing techniques. One type of fabric which is well suited for near-net- shape preforms is stitched non-crimp fabrics. These fabrics offer very high in-plane strength and stiffness while also having increased resistance to delamination. Manufacturing parts from these dry preforms typically involves long-scale fluid flow through both open channels and porous fibre bundles. This thesis documents and analyzes the flow of fluid through preforms manufactured from non-crimp fabrics featuring through-thickness stitches. The objective of this research is to determine the effect of this type of stitch on the RTM injection process. All of the tests used preforms with fibre volume fractions representative of primary and secondary structural parts. A series of trials was conducted using different fibre materials, flow rates, fibre volumes fractions, and degrees of fibre consolidation. All of the trials were conducted for cases similar to RTM. Consolidation of the fibres showed improvements to both the thoroughness of the filling and to the fibre volume fraction. Experimentally determined permeability data was shown to trend well with simple models and precision of the permeability data was comparable to values presented by other authors who studied fabrics which did not feature the through-thickness stitches.
Nenadić, Igor; Hoof, Anna; Dietzek, Maren; Langbein, Kerstin; Reichenbach, Jürgen R; Sauer, Heinrich; Güllmar, Daniel
2017-08-30
Both schizophrenia and bipolar disorder show abnormalities of white matter, as seen in diffusion tensor imaging (DTI) analyses of major brain fibre bundles. While studies in each of the two conditions have indicated possible overlap in anatomical location, there are few direct comparisons between the disorders. Also, it is unclear whether phenotypically similar subgroups (e.g. patients with bipolar disorder and psychotic features) might share white matter pathologies or be rather similar. Using region-of-interest (ROI) analysis of white matter with diffusion tensor imaging (DTI) at 3 T, we analysed fractional anisotropy (FA), radial diffusivity (RD), and apparent diffusion coefficient (ADC) of the corpus callosum and cingulum bundle in 33 schizophrenia patients, 17 euthymic (previously psychotic) bipolar disorder patients, and 36 healthy controls. ANOVA analysis showed significant main effects of group for RD and ADC (both elevated in schizophrenia). Across the corpus callosum ROIs, there was not group effect on FA, but for RD (elevated in schizophrenia, lower in bipolar disorder) and ADC (higher in schizophrenia, intermediate in bipolar disorder). Our findings show similarities and difference (some gradual) across regions of the two major fibre tracts implicated in these disorders, which would be consistent with a neurobiological overlap of similar clinical phenotypes. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
The ulnar collateral ligament of the human elbow joint. Anatomy, function and biomechanics.
Fuss, F K
1991-01-01
The posterior portion of the ulnar collateral ligament, which arises from the posterior surface of the medial epicondyle, is taut in maximal flexion. The anterior portion, which takes its origin from the anterior and inferior surfaces of the epicondyle, contains three functional fibre bundles. One of these is taut in maximal extension, another in intermediate positions between middle position and full flexion while the third bundle is always taut and serves as a guiding bundle. Movements of the elbow joint are checked by the ligaments well before the bony processes forming the jaws of the trochlear notch lock into the corresponding fossae on the humerus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:2050566
The SAMI Galaxy Survey: cubism and covariance, putting round pegs into square holes
NASA Astrophysics Data System (ADS)
Sharp, R.; Allen, J. T.; Fogarty, L. M. R.; Croom, S. M.; Cortese, L.; Green, A. W.; Nielsen, J.; Richards, S. N.; Scott, N.; Taylor, E. N.; Barnes, L. A.; Bauer, A. E.; Birchall, M.; Bland-Hawthorn, J.; Bloom, J. V.; Brough, S.; Bryant, J. J.; Cecil, G. N.; Colless, M.; Couch, W. J.; Drinkwater, M. J.; Driver, S.; Foster, C.; Goodwin, M.; Gunawardhana, M. L. P.; Ho, I.-T.; Hampton, E. J.; Hopkins, A. M.; Jones, H.; Konstantopoulos, I. S.; Lawrence, J. S.; Leslie, S. K.; Lewis, G. F.; Liske, J.; López-Sánchez, Á. R.; Lorente, N. P. F.; McElroy, R.; Medling, A. M.; Mahajan, S.; Mould, J.; Parker, Q.; Pracy, M. B.; Obreschkow, D.; Owers, M. S.; Schaefer, A. L.; Sweet, S. M.; Thomas, A. D.; Tonini, C.; Walcher, C. J.
2015-01-01
We present a methodology for the regularization and combination of sparse sampled and irregularly gridded observations from fibre-optic multiobject integral field spectroscopy. The approach minimizes interpolation and retains image resolution on combining subpixel dithered data. We discuss the methodology in the context of the Sydney-AAO multiobject integral field spectrograph (SAMI) Galaxy Survey underway at the Anglo-Australian Telescope. The SAMI instrument uses 13 fibre bundles to perform high-multiplex integral field spectroscopy across a 1° diameter field of view. The SAMI Galaxy Survey is targeting ˜3000 galaxies drawn from the full range of galaxy environments. We demonstrate the subcritical sampling of the seeing and incomplete fill factor for the integral field bundles results in only a 10 per cent degradation in the final image resolution recovered. We also implement a new methodology for tracking covariance between elements of the resulting data cubes which retains 90 per cent of the covariance information while incurring only a modest increase in the survey data volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behr, Michael; Rix, James; Landes, Brian
2016-10-17
A new high-temperature fibre tensile cell is described, developed for use at the Advanced Photon Source at Argonne National Laboratory to enable the investigation of the carbonization and graphitization processes during carbon fibre production. This cell is used to heat precursor fibre bundles to temperatures up to ~2300°C in a controlled inert atmosphere, while applying tensile stress to facilitate formation of highly oriented graphitic microstructure; evolution of the microstructure as a function of temperature and time during the carbonization and higher-temperature graphitization processes can then be monitored by collecting real-time wide-angle X-ray diffraction (WAXD) patterns. As an example, the carbonizationmore » and graphitization behaviour of an oxidized polyacrylonitrile fibre was studied up to a temperature of ~1750°C. Real-time WAXD revealed the gradual increase in microstructure alignment with the fibre axis with increasing temperature over the temperature range 600–1100°C. Above 1100°C, no further changes in orientation were observed. The overall magnitude of change increased with increasing applied tensile stress during carbonization. As a second example, the high-temperature graphitizability of PAN- and pitch-derived commercial carbon fibres was studied. Here, the magnitude of graphitic microstructure evolution of the pitch-derived fibre far exceeded that of the PAN-derived fibres at temperatures up to ~2300°C, indicating its facile graphitizability.« less
NASA Astrophysics Data System (ADS)
George, Michael; Mussone, Paolo G.; Abboud, Zeinab; Bressler, David C.
2014-09-01
The mechanical and moisture resistance properties of natural fibre reinforced composites are dependent on the adhesion between the matrix of choice and the fibre. The main goal of this study was to investigate the effect of NaOH swelling of hemp fibres prior to enzymatic treatment and a novel chemical sulfonic acid method on the physical properties of hemp fibres. The colloidal properties of treated hemp fibres were studied exclusively using an atomic force microscope. AFM imaging in tapping mode revealed that each treatment rendered the surface topography of the hemp fibres clean and exposed the individual fibre bundles. Hemp fibres treated with laccase had no effect on the surface adhesion forces measured. Interestingly, mercerization prior to xylanase + cellulase and laccase treatments resulted in greater enzyme access evident in the increased adhesion force measurements. Hemp fibres treated with sulfonic acid showed an increase in surface de-fibrillation and smoothness. A decrease in adhesion forces for 4-aminotoulene-3-sulfonic acid (AT3S) treated fibres suggested a reduction in surface polarity. This work demonstrated that AFM can be used as a tool to estimate the surface forces and roughness for modified fibres and that enzymatic coupled with chemical methods can be used to improve the surface properties of natural fibres for composite applications. Further, this work is one of the first that offers some insight into the effect of mercerization prior to enzymes and the effect on the surface topography. AFM will be used to selectively screen treated fibres for composite applications based on the adhesion forces associated with the colloidal interface between the AFM tip and the fibre surfaces.
An optimal method for producing low-stress fibre optic cables for astronomy
NASA Astrophysics Data System (ADS)
Murray, Graham; Tamura, Naoyuki; Takato, Naruhisa; Ekpenyong, Paul; Jenkins, Daniel; Leeson, Kim; Trezise, Shaun; Butterley, Timothy; Gunn, James; Ferreira, Decio; Oliveira, Ligia; Sodre, Laerte
2017-09-01
An increasing number of astronomical spectrographs employ optical fibres to collect and deliver light. For integral-field and high multiplex multi-object survey instruments, fibres offer unique flexibility in instrument design by enabling spectrographs to be located remotely from the telescope focal plane where the fibre inputs are deployed. Photon-starved astronomical observations demand optimum efficiency from the fibre system. In addition to intrinsic absorption loss in optical fibres, another loss mechanism, so-called focal ratio degradation (FRD) must be considered. A fundamental cause of FRD is stress, therefore low stress fibre cables that impart minimum FRD are essential. The FMOS fibre instrument for Subaru Telescope employed a highly effective cable solution developed at Durham University. The method has been applied again for the PFS project, this time in collaboration with a company, PPC Broadband Ltd. The process, planetary stranding, is adapted from the manufacture of large fibre-count, large diameter marine telecommunications cables. Fibre bundles describe helical paths through the cable, incorporating additional fibre per unit length. As a consequence fibre stress from tension and bend-induced `race-tracking' is minimised. In this paper stranding principles are explained, covering the fundamentals of stranded cable design. The authors describe the evolution of the stranding production line and the numerous steps in the manufacture of the PFS prototype cable. The results of optical verification tests are presented for each stage of cable production, confirming that the PFS prototype performs exceptionally well. The paper concludes with an outline of future on-telescope test plans.
Spider wrapping silk fibre architecture arising from its modular soluble protein precursor
NASA Astrophysics Data System (ADS)
Tremblay, Marie-Laurence; Xu, Lingling; Lefèvre, Thierry; Sarker, Muzaddid; Orrell, Kathleen E.; Leclerc, Jérémie; Meng, Qing; Pézolet, Michel; Auger, Michèle; Liu, Xiang-Qin; Rainey, Jan K.
2015-06-01
Spiders store spidroins in their silk glands as high concentration aqueous solutions, spinning these dopes into fibres with outstanding mechanical properties. Aciniform (or wrapping) silk is the toughest spider silk and is devoid of the short amino acid sequence motifs characteristic of the other spidroins. Using solution-state NMR spectroscopy, we demonstrate that the 200 amino acid Argiope trifasciata AcSp1 repeat unit contrasts with previously characterized spidroins, adopting a globular 5-helix bundle flanked by intrinsically disordered N- and C-terminal tails. Split-intein-mediated segmental NMR-active isotope-enrichment allowed unambiguous demonstration of modular and malleable “beads-on-a-string” concatemeric behaviour. Concatemers form fibres upon manual drawing with silk-like morphology and mechanical properties, alongside secondary structuring and orientation consistent with native AcSp1 fibres. AcSp1 structural stability varies locally, with the fifth helix denaturing most readily. The structural transition of aciniform spidroin from a mostly α-helical dope to a mixed α-helix/β-sheet-containing fibre can be directly related to spidroin architecture and stability.
Development of a fibre size-specific job-exposure matrix for airborne asbestos fibres.
Dement, J M; Kuempel, E D; Zumwalde, R D; Smith, R J; Stayner, L T; Loomis, D
2008-09-01
To develop a method for estimating fibre size-specific exposures to airborne asbestos dust for use in epidemiological investigations of exposure-response relations. Archived membrane filter samples collected at a Charleston, South Carolina asbestos textile plant during 1964-8 were analysed by transmission electron microscopy (TEM) to determine the bivariate diameter/length distribution of airborne fibres by plant operation. The protocol used for these analyses was based on the direct transfer method published by the International Standards Organization (ISO), modified to enhance fibre size determinations, especially for long fibres. Procedures to adjust standard phase contrast microscopy (PCM) fibre concentration measures using the TEM data in a job-exposure matrix (JEM) were developed in order to estimate fibre size-specific exposures. A total of 84 airborne dust samples were used to measure diameter and length for over 18,000 fibres or fibre bundles. Consistent with previous studies, a small proportion of airborne fibres were longer than >5 microm in length, but the proportion varied considerably by plant operation (range 6.9% to 20.8%). The bivariate diameter/length distribution of airborne fibres was expressed as the proportion of fibres in 20 size-specific cells and this distribution demonstrated a relatively high degree of variability by plant operation. PCM adjustment factors also varied substantially across plant operations. These data provide new information concerning the airborne fibre characteristics for a previously studied textile facility. The TEM data demonstrate that the vast majority of airborne fibres inhaled by the workers were shorter than 5 mum in length, and thus not included in the PCM-based fibre counts. The TEM data were used to develop a new fibre size-specific JEM for use in an updated cohort mortality study to investigate the role of fibre dimension in the development of asbestos-related lung diseases.
Impregnation quality of shredded semipreg after compression moulding
NASA Astrophysics Data System (ADS)
Vincent, G.; Balakrishnan, V.; de Bruijn, T. A.; Wijskamp, S.; Abdul Rasheed, M. I.
2017-10-01
Manufacturing of thermoplastic composites (TPC) inherently generates scrap, mainly in the form of offcuts or rejected parts. The growth of TPC over recent decades has now reached a point where developing specific recycling solutions for TPC waste has become crucial. While looking at the various steps during which scrap is produced, the nesting of semipreg or prepreg appears to be critical. This work aims to develop a route for recycling semipreg offcuts, comprising shredding and compression moulding. This article focuses on an experimental study of the compression moulding step of carbon fibres reinforced PPS (C/PPS) to investigate the uniformity and impregnation quality of plates. These plates were realised in a picture frame while varying both the fibre volume content between 30% and 50% and the processing parameters. Visual inspection and cross-sectional microscopy were performed to assess the quality of each plate. As a first step, the influence of the type of added matrix (film, powder, pellets) and the type of pre-impregnation (film, powder) was studied. Stacking of polymer powder with shredded powder-coated semipreg gave the best impregnation quality. It was also shown that longer dwell time at melt leads to better consolidation quality. However, the difficulty in obtaining good impregnation comes from the disentangled shredded material, which is composed of three forms: semipreg flakes, dry bundles and pieces of matrix. When dry bundles reach the mould surfaces during the filling of the mould or when they are packed together, the consolidation cycle hardly impregnates them and they remain dry afterwards. Furthermore, large local variations of fibre fraction were noticed, resulting from a random mould filling. Therefore, the recycling solution for shredded semipreg is feasible when the fibre fraction is reduced but improvements on the part variability still have to be made.
Cook, R D; Vaillant, C; King, A S
1987-01-01
Microscopic studies have shown the saccopleural membrane in the respiratory system of the domestic fowl to consist of a sheet of three dense layers of collagen fibres covered dorsally and ventrally by mainly simple squamous epithelium. On the ventral surface, which faces into the caudal thoracic air sac, there are occasional ridges of pseudostratified ciliated epithelium. Many nerve bundles are present throughout the membrane, the larger bundles of myelinated and unmyelinated axons being confined to the lamina propria under the dorsal epithelium (parietal pleura). In addition to axonal profiles with the ultrastructural appearance of cholinergic or adrenergic axons, peptidergic-type axons were identified. Immunofluorescence studies demonstrated VIP-, substance P-, somatostatin- and enkephalin-immunoreactive fibres in the membrane. Although it has been suggested that receptors may be present in this region of the respiratory system, none of the axons have features suggestive of sensory terminals, although many axonal profiles are closely associated with the epithelia where no obvious effector cells are present. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:3654325
Liu, Yu-Xin; Zhou, Da-Yong; Liu, Zi-Qiang; Lu, Ting; Song, Liang; Li, Dong-Mei; Dong, Xiu-Ping; Qi, Hang; Zhu, Bei-Wei; Shahidi, Fereidoon
2018-02-01
The autolysis of sea cucumber body wall is caused by endogenous proteolysis of its structural elements. However, changes in collagen fibrils, collagen fibres and microfibrils, the major structural elements in sea cucumber body wall during autolysis are less clear. Autolysis of sea cucumber (S. japonicus) was induced by cutting the body wall, and the structural and biochemical changes in its dermis were investigated using electron microscopy, differential scanning calorimetry, infrared spectroscopy, electrophoresis, and chemical analysis. During autolysis, both collagen fibres and microfibrils gradually degraded. In contrast, damage to microfibrils was more pronounced. Upon massive autolysis, collagen fibres disaggregated into collagen fibril bundles and individual fibrils due to the fracture of interfibrillar bridges. Meanwhile, excessive unfolding of collagen fibrils occurred. However, there was only slight damage to collagen monomers. Therefore, structural damage in collagen fibres, collagen fibrils and microfibrils rather than monomeric collagen accounts for autolysis of S. japonicus dermis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cellular chirality arising from the self-organization of the actin cytoskeleton.
Tee, Yee Han; Shemesh, Tom; Thiagarajan, Visalatchi; Hariadi, Rizal Fajar; Anderson, Karen L; Page, Christopher; Volkmann, Niels; Hanein, Dorit; Sivaramakrishnan, Sivaraj; Kozlov, Michael M; Bershadsky, Alexander D
2015-04-01
Cellular mechanisms underlying the development of left-right asymmetry in tissues and embryos remain obscure. Here, the development of a chiral pattern of actomyosin was revealed by studying actin cytoskeleton self-organization in cells with isotropic circular shape. A radially symmetrical system of actin bundles consisting of α-actinin-enriched radial fibres (RFs) and myosin-IIA-enriched transverse fibres (TFs) evolved spontaneously into the chiral system as a result of the unidirectional tilting of all RFs, which was accompanied by a tangential shift in the retrograde movement of TFs. We showed that myosin-IIA-dependent contractile stresses within TFs drive their movement along RFs, which grow centripetally in a formin-dependent fashion. The handedness of the chiral pattern was shown to be regulated by α-actinin-1. Computational modelling demonstrated that the dynamics of the RF-TF system can explain the pattern transition from radial to chiral. Thus, actin cytoskeleton self-organization provides built-in machinery that potentially allows cells to develop left-right asymmetry.
Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres.
Osmond-McLeod, Megan J; Poland, Craig A; Murphy, Fiona; Waddington, Lynne; Morris, Howard; Hawkins, Stephen C; Clark, Steve; Aitken, Rob; McCall, Maxine J; Donaldson, Ken
2011-05-13
It has been suggested that carbon nanotubes might conform to the fibre pathogenicity paradigm that explains the toxicities of asbestos and other fibres on a continuum based on length, aspect ratio and biopersistence. Some types of carbon nanotubes satisfy the first two aspects of the fibre paradigm but only recently has their biopersistence begun to be investigated. Biopersistence is complex and requires in vivo testing and analysis. However durability, the chemical mimicking of the process of fibre dissolution using in vitro treatment, is closely related to biopersistence and more readily determined. Here, we describe an experimental process to determine the durability of four types of carbon nanotubes in simulated biological fluid (Gambles solution), and their subsequent pathogenicity in vivo using a mouse model sensitive to inflammogenic effects of fibres. The in vitro and in vivo results were compared with well-characterised glass wool and asbestos fibre controls. After incubation for up to 24 weeks in Gambles solution, our control fibres were recovered at percentages consistent with their known in vitro durabilities and/or in vivo persistence, and three out of the four types of carbon nanotubes tested (single-walled (CNTSW) and multi-walled (CNTTANG2, CNTSPIN)) showed no, or minimal, loss of mass or change in fibre length or morphology when examined by electron microscopy. However, the fourth type [multi-walled (CNTLONG1)] lost 30% of its original mass within the first three weeks of incubation, after which there was no further loss. Electron microscopy of CNTLONG1 samples incubated for 10 weeks confirmed that the proportion of long fibres had decreased compared to samples briefly exposed to the Gambles solution. This loss of mass and fibre shortening was accompanied by a loss of pathogenicity when injected into the peritoneal cavities of C57Bl/6 mice compared to fibres incubated briefly. CNTSW did not elicit an inflammogenic effect in the peritoneal cavity assay used here. These results support the view that carbon nanotubes are generally durable but may be subject to bio-modification in a sample-specific manner. They also suggest that pristine carbon nanotubes, either individually or in rope-like aggregates of sufficient length and aspect ratio, can induce asbestos-like responses in mice, but that the effect may be mitigated for certain types that are less durable in biological systems. Results indicate that durable carbon nanotubes that are either short or form tightly bundled aggregates with no isolated long fibres are less inflammogenic in fibre-specific assays. © 2011 Osmond-McLeod et al; licensee BioMed Central Ltd.
Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres
2011-01-01
Background It has been suggested that carbon nanotubes might conform to the fibre pathogenicity paradigm that explains the toxicities of asbestos and other fibres on a continuum based on length, aspect ratio and biopersistence. Some types of carbon nanotubes satisfy the first two aspects of the fibre paradigm but only recently has their biopersistence begun to be investigated. Biopersistence is complex and requires in vivo testing and analysis. However durability, the chemical mimicking of the process of fibre dissolution using in vitro treatment, is closely related to biopersistence and more readily determined. Here, we describe an experimental process to determine the durability of four types of carbon nanotubes in simulated biological fluid (Gambles solution), and their subsequent pathogenicity in vivo using a mouse model sensitive to inflammogenic effects of fibres. The in vitro and in vivo results were compared with well-characterised glass wool and asbestos fibre controls. Results After incubation for up to 24 weeks in Gambles solution, our control fibres were recovered at percentages consistent with their known in vitro durabilities and/or in vivo persistence, and three out of the four types of carbon nanotubes tested (single-walled (CNTSW) and multi-walled (CNTTANG2, CNTSPIN)) showed no, or minimal, loss of mass or change in fibre length or morphology when examined by electron microscopy. However, the fourth type [multi-walled (CNTLONG1)] lost 30% of its original mass within the first three weeks of incubation, after which there was no further loss. Electron microscopy of CNTLONG1 samples incubated for 10 weeks confirmed that the proportion of long fibres had decreased compared to samples briefly exposed to the Gambles solution. This loss of mass and fibre shortening was accompanied by a loss of pathogenicity when injected into the peritoneal cavities of C57Bl/6 mice compared to fibres incubated briefly. CNTSW did not elicit an inflammogenic effect in the peritoneal cavity assay used here. Conclusions These results support the view that carbon nanotubes are generally durable but may be subject to bio-modification in a sample-specific manner. They also suggest that pristine carbon nanotubes, either individually or in rope-like aggregates of sufficient length and aspect ratio, can induce asbestos-like responses in mice, but that the effect may be mitigated for certain types that are less durable in biological systems. Results indicate that durable carbon nanotubes that are either short or form tightly bundled aggregates with no isolated long fibres are less inflammogenic in fibre-specific assays. PMID:21569450
An assessment of models that predict soil reinforcement by plant roots
NASA Astrophysics Data System (ADS)
Hallett, P. D.; Loades, K. W.; Mickovski, S.; Bengough, A. G.; Bransby, M. F.; Davies, M. C. R.; Sonnenberg, R.
2009-04-01
Predicting soil reinforcement by plant roots is fraught with uncertainty because of spatio-temporal variability, the mechanical complexity of roots and soil, and the limitations of existing models. In this study, the validity of root-reinforcement models was tested with data from numerous controlled laboratory tests of both fibrous and woody root systems. By using pot experiments packed with homogeneous soil, each planted with one plant species and grown in glasshouses with controlled water and temperature regimes, spatio-temporal variability was reduced. After direct shear testing to compare the mechanical behaviour of planted versus unplanted samples, the size distribution of roots crossing the failure surface was measured accurately. Separate tensile tests on a wide range of root sizes for each test series provided information on the scaling of root strength and stiffness, which was fitted using power-law relationships. These data were used to assess four root-reinforcement models: (1) Wu et al.'s (1979) root-reinforcement model, (2) Rip-Root fibre bundle model (FBM) proposed by Pollen & Simon (2005), (3) a stress-based FBM and (4) a strain-based FBM. For both fibrous (barley) and woody (willow) root systems, all of the FBMs provided a better prediction of reinforcement than Wu's root-reinforcement model. As FBMs simulate progressive failure of roots, they reflect reality better than the Wu model which assumes all roots break (and contribute to increased shear strength) simultaneously. However, all of the FBMs contain assumptions about the distribution of the applied load within the bundle of roots and the failure criterion. The stress-based FBM assumes the same stiffness for different sized roots, resulting in progressive failure from the largest to smallest roots. This is not observed in testing where the smallest roots fail first. The Rip-Root FBM predicts failure from smallest to largest roots, but the distribution of load between different sized roots is based on unverified scaling rules (stiffness is inversely proportional to diameter). In the strain-based FBM, both stiffness and strength data are used to evaluate root breakage. As roots stretch across the shear surface, the stress mobilised in individual roots depends on both their individual stiffness and strain. Small roots being stiffer, mobilise more stress for the same strain (or shear displacement) and therefore fail first. The strain based FBM offers promise as a starting point to predict the reinforcement of soil by plant roots using sound mechanical principles. Compared to other models, it provided the best prediction of root reinforcement. Further developments are required to account particularly for the stochastic variability of the mechanical behaviour and spatial distribution of roots and this will be achieved by adapting advanced fibre bundle methods. Pollen, N., and A. Simon. 2005. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resour. Res. 41: W07025. Wu T. H., W. P. McKinnell, and D. N. Swanston. 1979. Strength of tree roots and landslides on Prince of Wales Island, Alaska. Can. Geotech. J. 16: 19-33.
Biomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering.
Surrao, Denver C; Waldman, Stephen D; Amsden, Brian G
2012-11-01
The aim of this study was to fabricate a fibrous scaffold that closely resembled the micro-structural architecture and mechanical properties of collagen fibres found in the anterior cruciate ligament (ACL). To achieve this aim, fibrous scaffolds were made by electrospinning L-lactide based polymers. L-Lactide was chosen primarily due to its demonstrated biocompatibility, biodegradability and high modulus. The electrospun fibres were collected in tension on a rotating wire mandrel. Upon treating these fibres in a heated aqueous environment, they possessed a crimp-like pattern having a wavelength and amplitude similar to that of native ACL collagen. Of the polymer fibre scaffolds studied, those made from poly(L-lactide-co-D,L-lactide) PLDLA exhibited the highest modulus and were also the most resilient to in vitro hydrolytic degradation, undergoing a slight decrease in modulus compared to the other polymeric fibres over a 6 month period. Bovine fibroblasts seeded on the wavy, crimp-like PLDLA fibres attached, proliferated and deposited extracellular matrix (ECM) molecules on the surface of the fibrous scaffold. In addition, the deposited ECM exhibited bundle formation that resembled the fascicles found in native ACL. These findings demonstrate the importance of replicating the geometric microenvironment in developing effective tissue engineering scaffolds. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Zeng, Qiao-yun; Mo, Ce-hui; Wen, Rong-lian; Cai, Quan-ying
2010-08-01
Two genotypes of Brassica parachinensis, DEHP high-accumulation of Youqing-60 and low-accumulation of Teqing-60, were grown in hydroponic systems contaminated with DEHP (20 and 50 mg x L(-1)). Anatomy of roots was measured, and their effects on uptake of DEHP in roots and shoots were discussed. The results showed that roots anatomy of two genotypes of Brassica parachinensis and their responds to DEHP pollution were significantly different. DEHP contents in roots and shoots of Youqing-60 were mainly affected by the thickness of cambium in taproot and the diameter of vascular bundle, the coefficients on DEHP of roots and shoots were 0.900 and 0.809, respectively. DEHP contents of Teqing-60 were mainly affected by the thickness of cambium in taproot and cortex in fibre root in roots, which the coefficient was 0.757, and were mainly affected by the thickness of cambium in taproot in shoots, which the coefficient was 0.856. The wood ray cells in roots of Youqing-60 were rectangular shape and arranged orderly. The thickness of cork layer in taproot and cortex in fibre root of Youqing-60 were lower and the quantity of trachea and diameter of vascular bundle and trachea in fibre root of Yonqing-60 were higher than that of Teqing-60, which indicated that DEHP in soil solution and adsorbed on root were easier penetrated into xylem and transported in Youqing-60 than in Teqing-60.
Al-Qtaitat, A; Shore, R C; Aaron, J E
2010-03-01
The periosteum and Sharpey's fibre extensions occupy the musculoskeletal interface and may be strategic in age-related deterioration. Because of its exceptionally powerful insertions the porcine mandible is an ideal model and its periosteal system was compared in 4 separate regions of adult young (1 year) and older (3 year) animals. These were examined by undecalcified histology, collagen immunohistochemistry and mineral histochemistry using polarization, epifluorescence and laser confocal microscopy; mineral ultrastructure was facilitated by chromium labelling with EDX microanalysis. Birefringent Sharpey's fibres were coarse (>8 microm) or fine and classified as horizontal (more common with age), oblique (most common in youth) or vertical (least common); in addition they were designated "superficial", "transcortical" and "intertrabecular" (the latter being deep, coarse and vertical). Their specific affinity for collagen type III FITC-labelled antibody demonstrated 3-dimensional arrays of bone-permeating fibres. With age at each region the cortical thickness rose (e.g. 4.9 mm to 9.3 mm), the periosteum thinned (e.g. 180-/+7 microm to 129-/+8 microm; p<0.001), and the periosteum: bone ratio diminished (e.g. 3.65-/+0.36 to 1.40-/+0.14; p<0.001) while Sharpey's fibres became fewer, fragmented, superficial and shortened (e.g. 226-/+27 microm to 55-/+6 microm; p<0.001). Accompanying was the sporadic encroachment of calcified particles, 1 microm diameter, in irregular periosteal aggregates or interlinked around Sharpey bundles (resembling calcifying turkey leg tendon). EDX microanalysis confirmed prominent chromium spectral peaks in the older periosteum only, coincident with chromium-labelled mineral "ghosts". It was concluded that the periosteum and Sharpey's fibres, deep-penetrating and complex in youth, partially hardens and regresses with age with implications for its functional properties.
Baylor, S M; Hollingworth, S
2003-08-15
Experiments were carried out to compare the amplitude and time course of Ca2+ release from the sarcoplasmic reticulum (SR) in intact slow-twitch and fast-twitch mouse fibres. Individual fibres within small bundles were injected with furaptra, a low-affinity, rapidly responding Ca2+ indicator. In response to a single action potential at 16 degrees C, the peak amplitude and half-duration of the change in myoplasmic free [Ca2+] (Delta[Ca2+]) differed significantly between fibre types (slow-twitch: peak amplitude, 9.4 +/- 1.0 microM (mean +/- S.E.M.); half-duration, 7.7 +/- 0.6 ms; fast-twitch: peak amplitude 18.5 +/- 0.5 microM; half-duration, 4.9 +/- 0.3 ms). SR Ca2+ release was estimated from Delta[Ca2+] with a computational model that calculated Ca2+ binding to the major myoplasmic Ca2+ buffers (troponin, ATP and parvalbumin); buffer concentrations and reaction rate constants were adjusted to reflect fibre-type differences. In response to an action potential, the total concentration of released Ca2+ (Delta[CaT]) and the peak rate of Ca2+ release ((d/dt)Delta[CaT]) differed about 3-fold between the fibre types (slow-twitch: Delta[CaT], 127 +/- 7 microM; (d/dt)Delta[CaT], 70 +/- 6 microM ms-1; fast-twitch: Delta[CaT], 346 +/- 6 microM; (d/dt)Delta[CaT], 212 +/- 4 microM ms-1). In contrast, the half-duration of (d/dt)Delta[CaT] was very similar in the two fibre types (slow-twitch, 1.8 +/- 0.1 ms; fast-twitch, 1.6 +/- 0.0 ms). When fibres were stimulated with a 5-shock train at 67 Hz, the peaks of (d/dt)Delta[CaT] in response to the second and subsequent shocks were much smaller than that due to the first shock; the later peaks, expressed as a fraction of the amplitude of the first peak, were similar in the two fibre types (slow-twitch, 0.2-0.3; fast-twitch, 0.1-0.3). The results support the conclusion that individual SR Ca2+ release units function similarly in slow-twitch and fast-twitch mammalian fibres.
Tie-fibre structure and organization in the knee menisci
Andrews, Stephen H J; Rattner, Jerome B; Abusara, Ziad; Adesida, Adetola; Shrive, Nigel G; Ronsky, Janet L
2014-01-01
The collagenous structure of the knee menisci is integral to the mechanical integrity of the tissue and the knee joint. The tie-fibre structure of the tissue has largely been neglected, despite previous studies demonstrating its correlation with radial stiffness. This study has evaluated the structure of the tie-fibres of bovine menisci using 2D and 3D microscopy techniques. Standard collagen and proteoglycan (PG) staining and 2D light microscopy techniques were conducted. For the first time, the collagenous structure of the menisci was evaluated using 3D, second harmonic generation (SHG) microscopy. This technique facilitated the imaging of collagen structure in thick sections (50–100 μm). Imaging identified that tie-fibres of the menisci arborize from the outer margin of the meniscus toward the inner tip. This arborization is associated with the structural arrangement of the circumferential fibres. SHG microscopy has definitively demonstrated the 3D organization of tie-fibres in both sheets and bundles. The hierarchy of the structure is related to the organization of circumferential fascicles. Large tie-fibre sheets bifurcate into smaller sheets to surround circumferential fascicles of decreasing size. The tie-fibres emanate from the lamellar layer that appears to surround the entire meniscus. At the tibial and femoral surfaces these tie-fibre sheets branch perpendicularly into the meniscal body. The relationship between tie-fibres and blood vessels in the menisci was also observed in this study. Tie-fibre sheets surround the blood vessels and an associated PG-rich region. This subunit of the menisci has not previously been described. The size of tie-fibre sheets surrounding the vessels appeared to be associated with the size of blood vessel. These structural findings have implications in understanding the mechanics of the menisci. Further, refinement of the complex structure of the tie-fibres is important in understanding the consequences of injury and disease in the menisci. The framework of meniscus architecture also defines benchmarks for the development of tissue-engineered replacements in the future. PMID:24617800
Structural and mechanical design of tissue interfaces in the giant reed Arundo donax.
Rüggeberg, Markus; Burgert, Ingo; Speck, Thomas
2010-03-06
The culms of the giant reed Arundo donax represent slender tube-like structures. Several nodes along the culm, a ring of sclerenchymatous fibres in the periphery of the culm wall and numerous isolated vascular bundles enclosed by fibre rings in the culm wall function as stiffening elements. The bundles are embedded in lignified parenchyma. Micromechanical analysis indicated differences in stiffness between the individual tissues of more than one order of magnitude. In case of abrupt transitions in stiffness at the interfaces, stress discontinuities arise under dynamic loads. This eventually leads to critical shear stresses at cell ends, and culm failure may be initiated at these points. Pronounced mechanical differences between individual tissues can be compromised by gradual transitions at their interfaces. Ultrastructural and spectroscopic investigations with high spatial resolution revealed a gradual transition of cell parameters (cell wall area fraction and cell length). However, cell wall parameters (cellulose microfibril angle and lignin content) showed abrupt transitions or remained almost constant across the interfaces between various tissues. The design principles found at the interfaces between tissues in the culm walls of A. donax are discussed as an adaptation strategy to mechanical loads at different levels of hierarchy.
Structural and mechanical design of tissue interfaces in the giant reed Arundo donax
Rüggeberg, Markus; Burgert, Ingo; Speck, Thomas
2010-01-01
The culms of the giant reed Arundo donax represent slender tube-like structures. Several nodes along the culm, a ring of sclerenchymatous fibres in the periphery of the culm wall and numerous isolated vascular bundles enclosed by fibre rings in the culm wall function as stiffening elements. The bundles are embedded in lignified parenchyma. Micromechanical analysis indicated differences in stiffness between the individual tissues of more than one order of magnitude. In case of abrupt transitions in stiffness at the interfaces, stress discontinuities arise under dynamic loads. This eventually leads to critical shear stresses at cell ends, and culm failure may be initiated at these points. Pronounced mechanical differences between individual tissues can be compromised by gradual transitions at their interfaces. Ultrastructural and spectroscopic investigations with high spatial resolution revealed a gradual transition of cell parameters (cell wall area fraction and cell length). However, cell wall parameters (cellulose microfibril angle and lignin content) showed abrupt transitions or remained almost constant across the interfaces between various tissues. The design principles found at the interfaces between tissues in the culm walls of A. donax are discussed as an adaptation strategy to mechanical loads at different levels of hierarchy. PMID:19726440
Shape analysis of the cingulum, uncinate and arcuate fasciculi in patients with bipolar disorder
Sun, Zhong Yi; Houenou, Josselin; Duclap, Delphine; Sarrazin, Samuel; Linke, Julia; Daban, Claire; Hamdani, Nora; d’Albis, Marc-Antoine; Le Corvoisier, Philippe; Guevara, Pamela; Delavest, Marine; Bellivier, Frank; Almeida, Jorge; Versace, Amelia; Poupon, Cyril; Leboyer, Marion; Phillips, Mary; Wessa, Michèle; Mangin, Jean-François
2017-01-01
Background Abnormal maturation of brain connectivity is supposed to underlie the dysfunctional emotion regulation in patients with bipolar disorder (BD). To test this hypothesis, white matter integrity is usually investigated using measures of water diffusivity provided by MRI. Here we consider a more intuitive aspect of the morphometry of the white matter tracts: the shape of the fibre bundles, which is associated with neurodevelopment. We analyzed the shape of 3 tracts involved in BD: the cingulum (CG), uncinate fasciculus (UF) and arcuate fasciculus (AF). Methods We analyzed diffusion MRI data in patients with BD and healthy controls. The fibre bundles were reconstructed using Q-ball–based tractography and automated segmentation. Using Isomap, a manifold learning method, the differences in the shape of the reconstructed bundles were visualized and quantified. Results We included 112 patients and 82 controls in our analysis. We found the left AF of patients to be further extended toward the temporal pole, forming a tighter hook than in controls. We found no significant difference in terms of shape for the left UF, the left CG or the 3 right fasciculi. However, in patients compared with controls, the ventrolateral branch of the left UF in the orbitofrontal region had a tendency to be larger, and the left CG of patients had a tendency to be smaller in the frontal lobe and larger in the parietal lobe. Limitations This was a cross-sectional study. Conclusion Our results suggest neurodevelopmental abnormalities in the left AF in patients with BD. The statistical tendencies observed for the left UF and left CG deserve further study. PMID:28234596
Shape analysis of the cingulum, uncinate and arcuate fasciculi in patients with bipolar disorder.
Sun, Zhong Yi; Houenou, Josselin; Duclap, Delphine; Sarrazin, Samuel; Linke, Julia; Daban, Claire; Hamdani, Nora; d'Albis, Marc-Antoine; Le Corvoisier, Philippe; Guevara, Pamela; Delavest, Marine; Bellivier, Frank; Bellivier, Frank; Almeida, Jorge; Versace, Amelia; Poupon, Cyril; Leboyer, Marion; Phillips, Mary; Wessa, Michèle; Mangin, Jean-François
2017-01-01
Abnormal maturation of brain connectivity is supposed to underlie the dysfunctional emotion regulation in patients with bipolar disorder (BD). To test this hypothesis, white matter integrity is usually investigated using measures of water diffusivity provided by MRI. Here we consider a more intuitive aspect of the morphometry of the white matter tracts: the shape of the fibre bundles, which is associated with neurodevelopment. We analyzed the shape of 3 tracts involved in BD: the cingulum (CG), uncinate fasciculus (UF) and arcuate fasciculus (AF). We analyzed diffusion MRI data in patients with BD and healthy controls. The fibre bundles were reconstructed using Q-ball-based tractography and automated segmentation. Using Isomap, a manifold learning method, the differences in the shape of the reconstructed bundles were visualized and quantified. We included 112 patients and 82 controls in our analysis. We found the left AF of patients to be further extended toward the temporal pole, forming a tighter hook than in controls. We found no significant difference in terms of shape for the left UF, the left CG or the 3 right fasciculi. However, in patients compared with controls, the ventrolateral branch of the left UF in the orbitofrontal region had a tendency to be larger, and the left CG of patients had a tendency to be smaller in the frontal lobe and larger in the parietal lobe. This was a cross-sectional study. Our results suggest neurodevelopmental abnormalities in the left AF in patients with BD. The statistical tendencies observed for the left UF and left CG deserve further study.
Embryonic development of connections in turtle pallium.
Cordery, P; Molnár, Z
1999-10-11
We are interested in similarities and conserved mechanisms in early development of the reptilian and mammalian thalamocortical connections. We set out to analyse connectivity in embryonic turtle brains (Pseudemys scripta elegans, between stages 17 and 25), by using carbocyanine dye tracing. From the earliest stages studied, labelling from dorsal and ventral thalamus revealed backlabelled cells among developing thalamic fibres within the lateral forebrain bundle and striatum, which had similar morphology to backlabelled internal capsule cells in embryonic rat (Molnár and Cordery, 1999). However, thalamic crystal placements did not label cells in the dorsal ventricular ridge (DVR) at any stage examined. Crystal placements into both dorsal and lateral cortex labelled cells in the DVR and, reciprocally, DVR crystal placements labelled cells in the dorsal and lateral cortices. Retrograde labelling revealed that thalamic fibres arrive in the DVR and dorsal cortex by stage 19. The DVR received projections from the nucleus rotundus and the dorsal cortex exclusively from the perirotundal complex (including lateral geniculate nucleus). Thalamic fibres show this remarkable degree of specificity from the earliest stage we could examine with selective retrograde labelling (stage 19). Our study demonstrates that axons of similar cells are among the first to reach dorsal and ventral thalamus in mammals and reptiles. Our connectional analysis in turtle suggests that some cells of the mammalian primitive internal capsule are homologous to a cell group within the reptilian lateral forebrain bundle and striatum and that diverse vertebrate brains might use a highly conserved pattern of early thalamocortical development. Copyright 1999 Wiley-Liss, Inc.
Schaumburg, Herbert H; Zotova, Elena; Cannella, Barbara; Raine, Cedric S; Arezzo, Joseph; Tar, Moses; Melman, Arnold
2007-04-01
To illustrate the ultrastructural fibre composition of the rat cavernosal nerve at serial levels, from its origin in the main pelvic ganglion to its termination in the corpus cavernosum of the distal penile shaft, and to develop a technique that permits repeated electrophysiological recording from the fibres that form the cavernosal nerve distinct from the axons of the dorsal nerve of the penis (DNP). For the light microscope and ultrastructural studies, Sprague-Dawley rats were anaesthetized and the pelvic organs and lower limbs were perfused with glutaraldehyde through the distal aorta. Tissue samples were embedded in epoxy resin and prepared for light and electron microscopy. Frozen tissue was used for the immunohistochemical studies and sections were stained with rabbit anti-nitric oxide synthetase 1 (NOS1). For the electrophysiology, anaesthetized rats were used in sterile conditions. Nerve conduction velocity for the cavernosal nerve was assessed from a point 2 mm below the main (major) pelvic ganglion after stimulating the nerve at the crus penis; multi-unit averaging techniques were used to enhance the recording of slow-conduction activity. Recordings from the DNP were obtained over the proximal shaft after stimulation at the base of the penis. Step-serial sections of the cavernosal nerve revealed numerous ganglion cells in the initial segments and gradually fewer myelinated fibres at distal levels. At the point of crural entry, the nerve contained almost exclusively unmyelinated axons. As it descended the penile shaft, the nerve separated into small fascicles containing only one to four axons at the level of the distal shaft. In the corpus cavernosum, vesicle-filled presynaptic axon preterminals were close to smooth muscle fibres, but did not seem to be in direct contact. Immunohistochemical evaluation of NOS1 activity showed intense staining of the fibres of the DNP and most of the neurones in the main pelvic ganglion. There was also scattered NOS1 activity in the nerve bundles of the corpus cavernosum. Electrophysiology identified activity in C fibres on the cavernosal nerve and in Aalpha-Adelta fibres in the DNP. These results show that it is possible to perform integrated cavernosal pressure monitoring and ultrastructural and electrophysiological studies in this model. These yielded accurate data about the erectile status of the penis, and the state of unmyelinated and myelinated fibres in the DNP and cavernosal nerves of the same animal. This study provides a useful template for future studies of experimental diabetic autonomic neuropathy.
Fibre cables in the lacunae of Typha leaves contribute to a tensegrity structure.
Witztum, Allan; Wayne, Randy
2014-04-01
Cables composed of long, non-lignified fibre cells enclosed in a cover of much shorter thin-walled, crystal-containing cells traverse the air chambers (lacunae) in leaves of the taller species of Typha. The non-lignified fibre cables are anchored in diaphragms composed of stellate cells of aerenchyma tissue that segment the long air chambers into smaller compartments. Although the fibre cables are easily observed and can be pulled free from the porous-to-air diaphragms, their structure and function have been ignored or misinterpreted. Leaves of various species of Typha were dissected and fibre cables were pulled free and observed with a microscope using bright-field and polarizing optics. Maximal tensile strength of freshly removed cables was measured by hanging weights from fibre cables, and Instron analysis was used to produce curves of load versus extension until cables broke. Polarized light microscopy revealed that the cellulose microfibrils that make up the walls of the cable fibres are oriented parallel to the long axis of the fibres. This orientation ensures that the fibre cables are mechanically stiff and strong under tension. Accordingly, the measured stiffness and tensile strength of the fibre cables were in the gigapascal range. In combination with the dorsal and ventral leaf surfaces and partitions that contain lignified fibre bundles and vascular strands that are strong in compression, the very fine fibre cables that are strong under tension form a tensegrity structure. The tensegrity structure creates multiple load paths through which stresses are redistributed throughout the 1-3 m tall upright leaves of Typha angustifolia, T. latifolia, T. × glauca, T. domingensis and T. shuttleworthii. The length of the fibre cables relative to the length of the leaf blades is reduced in the last-formed leaves of flowering individuals. Fibre cables are absent in the shorter leaves of Typha minima and, if present, only extend for a few centimetres from the sheath into the leaf blade of Typha laxmannii. The advantage of the structure of the Typha leaf blade, which enables stiffness to give way to flexibility under windy conditions, is discussed for both vegetative and flowering plants.
Fibre cables in the lacunae of Typha leaves contribute to a tensegrity structure
Witztum, Allan; Wayne, Randy
2014-01-01
Background and Aims Cables composed of long, non-lignified fibre cells enclosed in a cover of much shorter thin-walled, crystal-containing cells traverse the air chambers (lacunae) in leaves of the taller species of Typha. The non-lignified fibre cables are anchored in diaphragms composed of stellate cells of aerenchyma tissue that segment the long air chambers into smaller compartments. Although the fibre cables are easily observed and can be pulled free from the porous-to-air diaphragms, their structure and function have been ignored or misinterpreted. Methods Leaves of various species of Typha were dissected and fibre cables were pulled free and observed with a microscope using bright-field and polarizing optics. Maximal tensile strength of freshly removed cables was measured by hanging weights from fibre cables, and Instron analysis was used to produce curves of load versus extension until cables broke. Key Results and Conclusions Polarized light microscopy revealed that the cellulose microfibrils that make up the walls of the cable fibres are oriented parallel to the long axis of the fibres. This orientation ensures that the fibre cables are mechanically stiff and strong under tension. Accordingly, the measured stiffness and tensile strength of the fibre cables were in the gigapascal range. In combination with the dorsal and ventral leaf surfaces and partitions that contain lignified fibre bundles and vascular strands that are strong in compression, the very fine fibre cables that are strong under tension form a tensegrity structure. The tensegrity structure creates multiple load paths through which stresses are redistributed throughout the 1–3 m tall upright leaves of Typha angustifolia, T. latifolia, T. × glauca, T. domingensis and T. shuttleworthii. The length of the fibre cables relative to the length of the leaf blades is reduced in the last-formed leaves of flowering individuals. Fibre cables are absent in the shorter leaves of Typha minima and, if present, only extend for a few centimetres from the sheath into the leaf blade of Typha laxmannii. The advantage of the structure of the Typha leaf blade, which enables stiffness to give way to flexibility under windy conditions, is discussed for both vegetative and flowering plants. PMID:24532647
Electrothermal Equivalent Three-Dimensional Finite-Element Model of a Single Neuron.
Cinelli, Ilaria; Destrade, Michel; Duffy, Maeve; McHugh, Peter
2018-06-01
We propose a novel approach for modelling the interdependence of electrical and mechanical phenomena in nervous cells, by using electrothermal equivalences in finite element (FE) analysis so that existing thermomechanical tools can be applied. First, the equivalence between electrical and thermal properties of the nerve materials is established, and results of a pure heat conduction analysis performed in Abaqus CAE Software 6.13-3 are validated with analytical solutions for a range of steady and transient conditions. This validation includes the definition of equivalent active membrane properties that enable prediction of the action potential. Then, as a step toward fully coupled models, electromechanical coupling is implemented through the definition of equivalent piezoelectric properties of the nerve membrane using the thermal expansion coefficient, enabling prediction of the mechanical response of the nerve to the action potential. Results of the coupled electromechanical model are validated with previously published experimental results of deformation for squid giant axon, crab nerve fibre, and garfish olfactory nerve fibre. A simplified coupled electromechanical modelling approach is established through an electrothermal equivalent FE model of a nervous cell for biomedical applications. One of the key findings is the mechanical characterization of the neural activity in a coupled electromechanical domain, which provides insights into the electromechanical behaviour of nervous cells, such as thinning of the membrane. This is a first step toward modelling three-dimensional electromechanical alteration induced by trauma at nerve bundle, tissue, and organ levels.
Passive OCT probe head for 3D duct inspection
NASA Astrophysics Data System (ADS)
Ford, Helen D.; Tatam, Ralph P.
2013-09-01
A passive, endoscopic optical coherence tomography (OCT) probe has been demonstrated, incorporating an imaging fibre bundle and 45° conical mirror, and with no electromechanical components at the probe tip. Circular scanning, of the beam projected onto the proximal face of the imaging bundle, produces a corresponding circular scan at the distal end of the bundle. The beam is turned through 90° by the conical mirror and converted into a radially-scanned sample beam, permitting circumferential OCT scanning in quasi-cylindrical ducts. OCT images, displayed as polar plots and as 3D reconstructions, are presented, showing the internal profile of a metallic test sample containing a 660 µm step in the internal wall. Results have been acquired using two methods: one that makes use of multiple beam-circle diameters, and a mechanical ‘pull-back’ technique. The effects of the convex surface of the conical mirror on spatial resolution are discussed, with suggested working distances given for different application regimes.
Boncompagni, Simona; Arthurton, Lewis; Akujuru, Eugene; Pearson, Timothy; Steverding, Dietmar; Protasi, Feliciano; Mutungi, Gabriel
2015-01-01
A number of studies have previously proposed the existence of glucocorticoid receptors on the plasma membrane of many cell types, including skeletal muscle fibres. However, their exact localisation and the cellular signalling pathway(s) they utilise to communicate with the rest of the cell are still poorly understood. In this study, we investigated the localisation and the mechanism(s) underlying the non-genomic physiological functions of these receptors in mouse skeletal muscle cells. The results show that the receptors were localised in the cytoplasm in myoblasts, in the nucleus in myotubes, in the extracellular matrix, in satellite cells and in the proximity of mitochondria in adult muscle fibres. Also, they bound laminin in a glucocorticoid-dependent manner. Treating small skeletal muscle fibre bundles with the synthetic glucocorticoid beclomethasone dipropionate increased the phosphorylation (= activation) of extracellular signal-regulated kinases 1 and 2, c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. This occurred within 5 min and depended on the fibre type and the duration of the treatment. It was also abolished by the glucocorticoid receptor inhibitor, mifepristone, and a monoclonal antibody against the receptor. From these results we conclude that the non-genomic/non-canonical physiological functions of glucocorticoids, in adult skeletal muscle fibres, are mediated by a glucocorticoid receptor localised in the extracellular matrix, in satellite cells and close to mitochondria, and involve activation of the mitogen-activated protein kinase pathway. PMID:25846902
NASA Astrophysics Data System (ADS)
Zimnyakov, D. A.; Sinichkin, Yu P.; Ushakova, O. V.
2007-08-01
The results of theoretical analysis of the optical anisotropy of multiply scattering fibrillar biological tissues based on the model of an effective anisotropic medium are compared with the experimental in vivo birefringence data for the rat derma obtained earlier in spectral polarisation measurements of rat skin samples in the visible region. The disordered system of parallel dielectric cylinders embedded into an isotropic dielectric medium was considered as a model medium. Simulations were performed taking into account the influence of a partial mutual disordering of the bundles of collagen and elastin fibres in derma on birefringence in samples. The theoretical optical anisotropy averaged over the spectral interval 550-650 nm for the model medium with parameters corresponding to the structural parameters of derma is in good agreement with the results of spectral polarisation measurements of skin samples in the corresponding wavelength range.
Electrical properties associated with wide intercellular clefts in rabbit Purkinje fibres.
Colatsky, T J; Tsien, R W
1979-01-01
1. Rabbit Purkinje fibres were studied using micro-electrode recordings of electrical activity or a two-micro-electrode voltage clamp. Previous morphological work had suggested that these preparations offer structural advantages for the analysis of ionic permeability mechanisms. 2. Viable preparations could be obtained consistently by exposure to a K glutamate Tyrode solution during excision and recovery. In NaCl Tyrode solution, the action potential showed a large overshoot and fully developed plateau, but no pacemaker depolarization at negative potentials. 3. The passive electrical properties were consistent with morphological evidence for the accessibility of cleft membranes within the cell bundle. Electrotonic responses to intracellular current steps showed the behaviour expected for a simple leaky capacitative cable. Capacitative current transients under voltage clamp were changed very little by an eightfold reduction in the external solution conductivity. 4. Slow current changes attributable to K depletion were small compared to those found in other cardiac preparations. The amount of depletion was close to that predicted by a cleft model which assumed free K diffusion in 1 micron clefts. 5. Step depolarizations over the plateau range of potentials evoked a slow inward current which was resistant to tetrodotoxin but blocked by D600. 6. Strong depolarizations to potentials near 0 mV elicited a transient outward current and a slowly activating late outward current. Both components resembled currents found in sheep or calf Purkinje fibres. 7. These experiments support previous interpretations of slow plateau currents in terms of genuine permeability changes. The rabbit Purkinje fibre may allow various ionic channels to be studied with relatively little interference from radial non-uniformities in membrane potential or ion concentration. Images Fig. 7 PMID:469754
Fibre-specific white matter reductions in Alzheimer's disease and mild cognitive impairment.
Mito, Remika; Raffelt, David; Dhollander, Thijs; Vaughan, David N; Tournier, J-Donald; Salvado, Olivier; Brodtmann, Amy; Rowe, Christopher C; Villemagne, Victor L; Connelly, Alan
2018-01-04
Alzheimer's disease is increasingly considered a large-scale network disconnection syndrome, associated with progressive aggregation of pathological proteins, cortical atrophy, and functional disconnections between brain regions. These pathological changes are posited to arise in a stereotypical spatiotemporal manner, targeting intrinsic networks in the brain, most notably the default mode network. While this network-specific disruption has been thoroughly studied with functional neuroimaging, changes to specific white matter fibre pathways within the brain's structural networks have not been closely investigated, largely due to the challenges of modelling complex white matter structure. Here, we applied a novel technique known as 'fixel-based analysis' to comprehensively investigate fibre tract-specific differences at a within-voxel level (called 'fixels') to assess potential axonal loss in subjects with Alzheimer's disease and mild cognitive impairment. We hypothesized that patients with Alzheimer's disease would exhibit extensive degeneration across key fibre pathways connecting default network nodes, while patients with mild cognitive impairment would exhibit selective degeneration within fibre pathways connecting regions previously identified as functionally implicated early in Alzheimer's disease. Diffusion MRI data from Alzheimer's disease (n = 49), mild cognitive impairment (n = 33), and healthy elderly control subjects (n = 95) were obtained from the Australian Imaging, Biomarkers and Lifestyle study of ageing. We assessed microstructural differences in fibre density, and macrostructural differences in fibre bundle morphology using fixel-based analysis. Whole-brain analysis was performed to compare groups across all white matter fixels. Subsequently, we performed a tract of interest analysis comparing fibre density and cross-section across 11 selected white matter tracts, to investigate potentially subtle degeneration within fibre pathways in mild cognitive impairment, initially by clinical diagnosis alone, and then by including amyloid status (i.e. a positive or negative amyloid PET scan). Our whole-brain analysis revealed significant white matter loss manifesting both microstructurally and macrostructurally in Alzheimer's disease patients, evident in specific fibre pathways associated with default mode network nodes. Reductions in fibre density and cross-section in mild cognitive impairment patients were only exhibited within the posterior cingulum when statistical analyses were limited to tracts of interest. Interestingly, these degenerative changes did not appear to be associated with high amyloid accumulation, given that amyloid-negative, but not positive, mild cognitive impairment subjects exhibited subtle focal left posterior cingulum deficits. The findings of this study demonstrated a stereotypical distribution of white matter degeneration in patients with Alzheimer's disease, which was in line with canonical findings from other imaging modalities, and with a network-based conceptualization of the disease. © The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Savage, Rebecca C; Orgiu, Emanuele; Mativetsky, Jeffrey M; Pisula, Wojciech; Schnitzler, Tobias; Eversloh, Christian Lütke; Li, Chen; Müllen, Klaus; Samorì, Paolo
2012-04-07
We report a comparative study on the self-assembly from solution and electrical characterization of n-type semiconducting fibres obtained from five different perylenebis(dicarboximide) (PDI) derivatives. In particular we investigated the role of the nature of the alkyl chain covalently linked to the N,N' sites of the PDI in modulating the molecular solubility and aggregation capacity. We explored the morphologies of the self-assembled architectures physisorbed on dielectric surfaces and in particular how they can be modified by tuning the deposition and post-deposition procedures, i.e. by modulating the kinetics of the self-assembly process. To this end, alongside the conventional spin-coating, solvent vapour annealing (SVA) and solvent induced precipitation (SIP) have been employed. Both approaches led to fibres having widths of several hundred nanometres and lengths up to tens of micrometres. SVA formed isolated fibres which were tens of nanometres high, flat, and tapered at the ends. Conversely, SIP fibres exhibited nearly matching heights and widths, but organized into bundles. Despite these morphological differences, the same intermolecular packing is found by XRD in each type of structure, albeit with differing degrees of long-range order. The study of the electrical characteristics of the obtained low dimensional nano-assemblies has been accomplished by fabricating and characterizing organic field-effect transistors. This journal is © The Royal Society of Chemistry 2012
Development of rigor mortis is not affected by muscle volume.
Kobayashi, M; Ikegaya, H; Takase, I; Hatanaka, K; Sakurada, K; Iwase, H
2001-04-01
There is a hypothesis suggesting that rigor mortis progresses more rapidly in small muscles than in large muscles. We measured rigor mortis as tension determined isometrically in rat musculus erector spinae that had been cut into muscle bundles of various volumes. The muscle volume did not influence either the progress or the resolution of rigor mortis, which contradicts the hypothesis. Differences in pre-rigor load on the muscles influenced the onset and resolution of rigor mortis in a few pairs of samples, but did not influence the time taken for rigor mortis to reach its full extent after death. Moreover, the progress of rigor mortis in this muscle was biphasic; this may reflect the early rigor of red muscle fibres and the late rigor of white muscle fibres.
Some intrinsic neurons of the guinea-pig heart contain substance P.
Bałuk, P; Gabella, G
1989-10-09
Whole-mount preparations of the posterior wall of the atria of the guinea pig heart containing intrinsic ganglion cells and nerve plexuses were stained for substance P-like immunoreactivity by the peroxidase-antiperoxidase method. Substance P-like nerve fibres are present as pericellular baskets around most, but not all, of the neuronal cell bodies, and are also found in the connecting nerve bundles, as perivascular nerve plexuses and in the myocardium and pericardium. The majority of ganglion cell bodies are negative for substance P, as reported previously, but we describe for the first time, a small subpopulation of intrinsic neuronal cell bodies which show immunoreactivity for substance P. Therefore, not all cardiac substance P nerves are extrinsic afferent fibres. At present, the physiological role of intrinsic substance P neurones is not clear.
Mutungi, G; Ranatunga, K W
2001-01-01
The effects of a ramp stretch (amplitude <6% muscle fibre length (L0), speed < 13L0 s(-1)) on twitch tension and twitch tension re-development were examined in intact mammalian (rat) fast and slow muscle fibre bundles. The experiments were done in vitro at 20 degrees C and at an initial sarcomere length of 2.68 microm. In both fibre types, a stretch applied during the rising phase of the twitch response (including the time of stimulation) increased the re-developed twitch tension (15-35%). A stretch applied before the stimulus had little or no effect on the twitch myogram in fast muscle fibres, but it increased the twitch tension (approximately 5%) in slow muscle fibres. A similar stretch had little or no effect on tetanic tension in either muscle fibre type. In general, the results indicate that the contractile-activation mechanism may be stretch sensitive and this is particularly pronounced in slow muscle fibres. Recorded at a high sampling rate and examined at an appropriate time scale, the transitory tension response to a stretch rose in at least two phases; an initial rapid tension rise to a break (break point tension, P1a) followed by a slower tension rise (apparent P2a) to a peak reached at the end of the stretch. Plotted against stretch velocity, P1a tension increased in direct proportion to stretch velocity (viscous-like) whereas, P2a tension (calculated as peak tension minus P1a tension) increased with stretch velocity to a plateau (visco-elastic). Examined at the peak of a twitch, P1a tension had a slope (viscosity coefficient) of 1.8 kN m(-2) per L0 s(-1) in fast fibres and 4.7 kN m(-2) per L0 s(-1) in slow muscle fibres. In the same preparations, P2a tension had a relaxation time of 8 ms in the fast muscle fibres and 25 ms in the slow muscle fibres. The amplitudes of both tension components scaled with the instantaneous twitch tension in qualitatively the same way as the instantaneous fibre stiffness. These fast/slow fibre type differences probably reflect differences in their cross-bridge kinetics.
An ex vivo rat eye model to aid development of high-resolution retina imaging devices for rodents
NASA Astrophysics Data System (ADS)
van Oterendorp, Christian; Martin, Keith R.; Zhong, Jiang Jian; Diaz-Santana, Luis
2010-09-01
High resolution in vivo retinal imaging in rodents is becoming increasingly important in eye research. Development of suitable imaging devices currently requires many lengthy animal procedures. We present an ex vivo rat model eye with fluorescently labelled retinal ganglion cells (RGC) and nerve fibre bundles that reduces the need for animal procedures while preserving key properties of the living rat eye. Optical aberrations and scattering of four model eyes and eight live rat eyes were quantified using a Shack-Hartmann sensor. Fluorescent images from RGCs were obtained using a prototype scanning laser ophthalmoscope. The wavefront aberration root mean square value without defocus did not significantly differ between model and living eyes. Higher order aberrations were slightly higher but RGC image quality was comparable to published in vivo work. Overall, the model allows a large reduction in number and duration of animal procedures required to develop new in vivo retinal imaging devices.
Fedosov Deformation Quantization as a BRST Theory
NASA Astrophysics Data System (ADS)
Grigoriev, M. A.; Lyakhovich, S. L.
The relationship is established between the Fedosov deformation quantization of a general symplectic manifold and the BFV-BRST quantization of constrained dynamical systems. The original symplectic manifold M is presented as a second class constrained surface in the fibre bundle ?*ρM which is a certain modification of a usual cotangent bundle equipped with a natural symplectic structure. The second class system is converted into the first class one by continuation of the constraints into the extended manifold, being a direct sum of ?*ρM and the tangent bundle TM. This extended manifold is equipped with a nontrivial Poisson bracket which naturally involves two basic ingredients of Fedosov geometry: the symplectic structure and the symplectic connection. The constructed first class constrained theory, being equivalent to the original symplectic manifold, is quantized through the BFV-BRST procedure. The existence theorem is proven for the quantum BRST charge and the quantum BRST invariant observables. The adjoint action of the quantum BRST charge is identified with the Abelian Fedosov connection while any observable, being proven to be a unique BRST invariant continuation for the values defined in the original symplectic manifold, is identified with the Fedosov flat section of the Weyl bundle. The Fedosov fibrewise star multiplication is thus recognized as a conventional product of the quantum BRST invariant observables.
Paul-Victor, Cloé; Dalle Vacche, Sara; Sordo, Federica; Fink, Siegfried; Speck, Thomas; Michaud, Véronique; Speck, Olga
2017-01-01
As plant fibres are increasingly used in technical textiles and their composites, underlying principles of wound healing in living plant fibres are relevant to product quality, and provide inspiration for biomimetic healing in synthetic materials. In this work, two Linum usitatissimum cultivars differing in their stem mechanical properties, cv. Eden (stems resistant to lodging) and cv. Drakkar (with more flexible stems), were grown without wound or with stems previously wounded with a cut parallel or transversal to the stem. To investigate wound healing efficiency, growth traits, stem biomechanics with Dynamic Mechanical Analysis and anatomy were analysed after 25-day recovery. Longitudinal incisions formed open wounds while transversal incisions generated stem growth restoring the whole cross-section but not the original stem organisation. In the case of transversal wound healing, all the bast fibre bundles in the perturbed area became lignified and pulled apart by parenchyma cells growth. Both Linum cultivars showed a healing efficiency from 79% to 95% with higher scores for transversal healing. Morphological and anatomical modifications of Linum were related to mechanical properties and healing ability. Alongside with an increased understanding of wound healing in plants, our results highlight their possible impact on textile quality and fibre yield.
Paul-Victor, Cloé; Dalle Vacche, Sara; Sordo, Federica; Fink, Siegfried; Speck, Thomas; Michaud, Véronique
2017-01-01
As plant fibres are increasingly used in technical textiles and their composites, underlying principles of wound healing in living plant fibres are relevant to product quality, and provide inspiration for biomimetic healing in synthetic materials. In this work, two Linum usitatissimum cultivars differing in their stem mechanical properties, cv. Eden (stems resistant to lodging) and cv. Drakkar (with more flexible stems), were grown without wound or with stems previously wounded with a cut parallel or transversal to the stem. To investigate wound healing efficiency, growth traits, stem biomechanics with Dynamic Mechanical Analysis and anatomy were analysed after 25-day recovery. Longitudinal incisions formed open wounds while transversal incisions generated stem growth restoring the whole cross-section but not the original stem organisation. In the case of transversal wound healing, all the bast fibre bundles in the perturbed area became lignified and pulled apart by parenchyma cells growth. Both Linum cultivars showed a healing efficiency from 79% to 95% with higher scores for transversal healing. Morphological and anatomical modifications of Linum were related to mechanical properties and healing ability. Alongside with an increased understanding of wound healing in plants, our results highlight their possible impact on textile quality and fibre yield. PMID:28982196
First investigation of the collagen D-band ultrastructure in fossilized vertebrate integument.
Lingham-Soliar, Theagarten; Wesley-Smith, James
2008-10-07
The ultrastructure of dermal fibres of a 200Myr thunniform ichthyosaur, Ichthyosaurus, specifically the 67nm axial repeat D-banding of the fibrils, which characterizes collagen, is presented for the first time by means of scanning electron microscopy (SEM) analysis. The fragment of material investigated is part of previously described fossilized skin comprising an architecture of layers of oppositely oriented fibre bundles. The wider implication, as indicated by the extraordinary quality of preservation, is the robustness of the collagen molecule at the ultrastructural level, which presumably contributed to its survival during the initial processes of decomposition prior to mineralization. Investigation of the elemental composition of the sample by SEM-energy dispersive X-ray spectroscopy indicates that calcite and phosphate played important roles in the rapid mineralization and fine replication of the collagen fibres and fibrils. The exceedingly small sample used in the investigation and high level of information achieved indicate the potential for minimal damage to prized museum specimens; for example, ultrastructural investigations by SEM may be used to help resolve highly contentious questions, for example, 'protofeathers' in the Chinese dinosaurs.
First investigation of the collagen D-band ultrastructure in fossilized vertebrate integument
Lingham-Soliar, Theagarten; Wesley-Smith, James
2008-01-01
The ultrastructure of dermal fibres of a 200 Myr thunniform ichthyosaur, Ichthyosaurus, specifically the 67 nm axial repeat D-banding of the fibrils, which characterizes collagen, is presented for the first time by means of scanning electron microscopy (SEM) analysis. The fragment of material investigated is part of previously described fossilized skin comprising an architecture of layers of oppositely oriented fibre bundles. The wider implication, as indicated by the extraordinary quality of preservation, is the robustness of the collagen molecule at the ultrastructural level, which presumably contributed to its survival during the initial processes of decomposition prior to mineralization. Investigation of the elemental composition of the sample by SEM–energy dispersive X-ray spectroscopy indicates that calcite and phosphate played important roles in the rapid mineralization and fine replication of the collagen fibres and fibrils. The exceedingly small sample used in the investigation and high level of information achieved indicate the potential for minimal damage to prized museum specimens; for example, ultrastructural investigations by SEM may be used to help resolve highly contentious questions, for example, ‘protofeathers’ in the Chinese dinosaurs. PMID:18577504
Pinniger, G J; Bruton, J D; Westerblad, H; Ranatunga, K W
2005-01-01
We have examined the effects of N-benzyl-p-toluene sulphonamide (BTS), a potent and specific inhibitor of fast muscle myosin-II, using small bundles of intact fibres or single fibres from rat foot muscle. BTS decreased tetanic tension reversibly in a concentration-dependent manner with half-maximal inhibition at approximately approximately 2 microM at 20 degrees C. The inhibition of tension with 10 microM BTS was marked at the three temperatures examined (10, 20 and 30 degrees C), but greatest at 10 degrees C. BTS decreased active muscle stiffness to a lesser extent than tetanic tension indicating that not all of the tension inhibition was due to a reduced number of attached cross-bridges. BTS-induced inhibition of active tension was not accompanied by any change in the free myoplasmic Ca2+ transients. The potency and specificity of BTS make it a very suitable myosin inhibitor for intact mammalian fast muscle and should be a useful tool for the examination of outstanding questions in muscle contraction.
Concepts for multi-IFU robotic positioning systems
NASA Astrophysics Data System (ADS)
Miziarski, Stan; Brzeski, Jurek; Bland Hawthorn, Joss; Gilbert, James; Goodwin, Michael; Heijmans, Jeroen; Horton, Anthony; Lawrence, Jon; Saunders, Will; Smith, Greg A.; Staszak, Nicholas
2012-09-01
Following the successful commissioning of SAMI (Sydney-AAO Multi-object IFU) the AAO has undertaken concept studies leading to a design of a new instrument for the AAT (Hector). It will use an automated robotic system for the deployment of fibre hexabundles to the focal plane. We have analysed several concepts, which could be applied in the design of new instruments or as a retrofit to existing positioning systems. We look at derivatives of Starbugs that could handle a large fibre bundle as well as modifications to pick and place robots like 2dF or OzPoz. One concept uses large magnetic buttons that adhere to a steel field plate with substantial force. To move them we replace the gripper with a pneumatic device, which engages with the button and injects it with compressed air, thus forming a magnet preloaded air bearing allowing virtually friction-less repositioning of the button by a gantry or an R-Theta robot. New fibre protection, guiding and retraction systems are also described. These developments could open a practical avenue for the upgrade to a number of instruments.
NASA Astrophysics Data System (ADS)
Humpage, Neil; Bösch, Hartmut; Palmer, Paul I.; Parr-Burman, Phil M.; Vick, Andrew J. A.; Bezawada, Naidu N.; Black, Martin; Born, Andrew J.; Pearson, David; Strachan, Jonathan; Wells, Martyn
2014-10-01
The tropospheric distribution of greenhouse gases (GHGs) depends on surface flux variations, atmospheric chemistry and transport processes over a range of spatial and temporal scales. Accurate and precise atmospheric concentration observations of GHGs can be used to infer surface flux estimates, though their interpretation relies on unbiased atmospheric transport models. GHOST is a novel, compact shortwave infrared spectrometer which will observe tropospheric columns of CO2, CO, CH4 and H2O (along with the HDO/H2O ratio) during deployment on board the NASA Global Hawk unmanned aerial vehicle. The primary science objectives of GHOST are to: 1) test atmospheric transport models; 2) evaluate satellite observations of GHG column observations over oceans; and 3) complement in-situ tropopause transition layer observations from other Global Hawk instruments. GHOST comprises a target acquisition module (TAM), a fibre slicer and feed system, and a multiple order spectrograph. The TAM is programmed to direct solar radiation reflected by the ocean surface into a fibre optic bundle. Incoming light is then split into four spectral bands, selected to optimise remote observations of GHGs. The design uses a single grating and detector for all four spectral bands. We summarise the GHOST concept and its objectives, and describe the instrument design and proposed deployment aboard the Global Hawk platform.
NASA Astrophysics Data System (ADS)
Dhurandhar, Sanjeev; Gupta, Anuradha; Gadre, Bhooshan; Bose, Sukanta
2017-11-01
We describe a general mathematical framework for χ2 discriminators in the context of the compact binary coalescence (CBC) search. We show that with any χ2 is associated a vector bundle over the signal manifold, that is, the manifold traced out by the signal waveforms in the function space of data segments. The χ2 is then defined as the square of the L2 norm of the data vector projected onto a finite-dimensional subspace (the fibre) of the Hilbert space of data trains and orthogonal to the signal waveform. Any such fibre leads to a χ2 discriminator, and the full vector bundle comprising the subspaces and the base manifold constitute the χ2 discriminator. We show that the χ2 discriminators used so far in the CBC searches correspond to different fibre structures constituting different vector bundles on the same base manifold, namely, the parameter space. Several benefits accrue from this general formulation. It most importantly shows that there are a plethora of χ2's available and further gives useful insights into the vetoing procedure. It indicates procedures to formulate new χ2's that could be more effective in discriminating against commonly occurring glitches in the data. It also shows that no χ2 with a reasonable number of degrees of freedom is foolproof. It could also shed light on understanding why the traditional χ2 works so well. We show how to construct a generic χ2 given an arbitrary set of vectors in the function space of data segments. These vectors could be chosen such that glitches have maximum projection on them. Further, for glitches that can be modeled, we are able to quantify the efficiency of a given χ2 discriminator by a probability. Second, we propose a family of ambiguity χ2 discriminators that is an alternative to the traditional one [B. Allen, Phys. Rev. D 71, 062001 (2005), 10.1103/PhysRevD.71.062001, B. Allen et al., Phys. Rev. D 85, 122006 (2012)., 10.1103/PhysRevD.85.122006]. Any such ambiguity χ2 makes use of the filtered output of the template bank, thus adding negligible cost to the overall search. It is termed so because it makes significant use of the ambiguity function. We first describe the formulation with the help of the Newtonian waveform, apply the ambiguity χ2 to the spinless TaylorF2 waveforms, and test it on simulated data. We show that the ambiguity χ2 essentially gives a clean separation between glitches and signals. We indicate how the ambiguity χ2 can be generalized to detector networks for coherent observations. The effects of mismatch between signal and templates on a χ2 discriminator using general arguments and the geometrical framework are also investigated.
NASA Astrophysics Data System (ADS)
Stone, Michael; Goldbart, Paul
2009-07-01
Preface; 1. Calculus of variations; 2. Function spaces; 3. Linear ordinary differential equations; 4. Linear differential operators; 5. Green functions; 6. Partial differential equations; 7. The mathematics of real waves; 8. Special functions; 9. Integral equations; 10. Vectors and tensors; 11. Differential calculus on manifolds; 12. Integration on manifolds; 13. An introduction to differential topology; 14. Group and group representations; 15. Lie groups; 16. The geometry of fibre bundles; 17. Complex analysis I; 18. Applications of complex variables; 19. Special functions and complex variables; Appendixes; Reference; Index.
Histological assessment of the triangular fibrocartilage complex.
Semisch, M; Hagert, E; Garcia-Elias, M; Lluch, A; Rein, S
2016-06-01
The morphological structure of the seven components of triangular fibrocartilage complexes of 11 cadaver wrists of elderly people was assessed microscopically, after staining with Hematoxylin-Eosin and Elastica van Gieson. The articular disc consisted of tight interlaced fibrocartilage without blood vessels except in its ulnar part. Volar and dorsal radioulnar ligaments showed densely parallel collagen bundles. The subsheath of the extensor carpi ulnaris muscle, the ulnotriquetral and ulnolunate ligament showed mainly mixed tight and loose parallel tissue. The ulnolunate ligament contained tighter parallel collagen bundles and clearly less elastic fibres than the ulnotriquetral ligament. The ulnocarpal meniscoid had an irregular morphological composition and loose connective tissue predominated. The structure of the articular disc indicates a buffering function. The tight structure of radioulnar and ulnolunate ligaments reflects a central stabilizing role, whereas the ulnotriquetral ligament and ulnocarpal meniscoid have less stabilizing functions. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Humpage, Neil; Boesch, Hartmut; Palmer, Paul; Parr-Burman, Phil; Vick, Andy; Bezawada, Naidu; Black, Martin; Born, Andy; Pearson, David; Strachan, Jonathan; Wells, Martyn
2014-05-01
The tropospheric distribution of greenhouse gases (GHGs) is dependent on surface flux variations, atmospheric chemistry and transport processes over a wide range of spatial and temporal scales. Errors in assumed atmospheric transport can adversely affect surface flux estimates inferred from surface, aircraft or satellite observations of greenhouse gas concentrations using inverse models. We present a novel, compact shortwave infrared spectrometer (GHOST) for installation on the NASA Global Hawk unmanned aerial vehicle to provide tropospheric column observations of CO2, CO, CH4, H2O and HDO over the ocean to address the need for large-scale, simultaneous, finely resolved measurements of key GHGs. These species cover a range of lifetimes and source processes, and measurements of their tropospheric columns will reflect the vertically integrated signal of their vertical and horizontal transport within the troposphere. The primary science objectives of GHOST are to: 1) provide observations which can be used to test atmospheric transport models; 2) validate satellite observations of GHG column observations over oceans, thus filling a critical gap in current validation capabilities; and 3) complement in-situ tropopause transition layer tracer observations from other instrumentation on board the Global Hawk to provide a link between upper and lower troposphere concentration measurements. The GHOST spectrometer system comprises a target acquisition module (TAM), a fibre slicer and feed system, and a multiple order spectrograph. The TAM design utilises a gimbal behind an optical dome, which is programmed to direct solar radiation reflected by the ocean surface into a fibre optic bundle. The fibre slicer and feed system then splits the light into the four spectral bands using order sorting filters. The fibres corresponding to each band are arranged with a small sideways offset to correctly centre each spectrum on the detector array. The spectrograph design is unique in that a single grating and detector is used for all four spectral bands. The whole instrument is housed within a liquid nitrogen cooled cryostat to ensure thermal stability. We summarise the GHOST project and its objectives, and will provide a detailed overview of the instrument concept, development, and proposed deployment on board the Global Hawk.
The development and evaluation of head probes for optical imaging of the infant head
NASA Astrophysics Data System (ADS)
Branco, Gilberto
The objective of this thesis was to develop and evaluate optical imaging probes for mapping oxygenation and haemodynamic changes in the newborn infant brain. Two imaging approaches are being developed at University College London (UCL): optical topography (surface mapping of the cortex) and optical tomography (volume imaging). Both have the potential to provide information about the function of the normal brain and about a variety of neurophysiologies! abnormalities. Both techniques require an array of optical fibres/fibre bundles to be held in contact with the head, for periods of time from tens of seconds to an hour or more. The design of suitable probes must ensure the comfort and safety of the subject, and provide measurements minimally sensitive to external sources of light and patient motion. A series of prototype adaptable helmets were developed for optical tomography of the premature infant brain using the UCL 32-channel time-resolved system. They were required to attach 32 optical fibre bundles over the infant scalp, and were designed to accommodate infants with a variety of head shapes and sizes, aged between 24-weeks gestational age and term. Continual improvements to the helmet design were introduced following the evaluation of each prototype on infants in the hospital. Data were acquired to generate images revealing the concentration and oxygenation of blood in the brain, and the response of the brain to sensory stimulation. This part of the project also involved designing and testing new methods of acquiring calibration data using reference phantoms. The second focus of the project was the development of probes for use with the UCL frequency-multiplexed near-infrared topography system. This is being used to image functional activation in the infant cortex. A series of probes were developed and experiments were conducted to evaluate their sensitivity to patient motion and to compression of the probe. The probes have been used for a variety of functional activation studies.
Horn, Folkert K; Kaltwasser, Christoph; Jünemann, Anselm G; Kremers, Jan; Tornow, Ralf P
2012-04-01
There is evidence that multifocal visual evoked potentials (VEPs) can be used as an objective tool to detect visual field loss. The aim of this study was to correlate multifocal VEP amplitudes with standard perimetry data and retinal nerve fibre layer (RNFL) thickness. Multifocal VEP recordings were performed with a four-channel electrode array using 58 stimulus fields (pattern reversal dartboard). For each field, the recording from the channel with maximal signal-to-noise ratio (SNR) was retained, resulting in an SNR optimised virtual recording. Correlation with RNFL thickness, measured with spectral domain optical coherence tomography and with standard perimetry, was performed for nerve fibre bundle related areas. The mean amplitudes in nerve fibre related areas were smaller in glaucoma patients than in normal subjects. The differences between both groups were most significant in mid-peripheral areas. Amplitudes in these areas were significantly correlated with corresponding RNFL thickness (Spearman R=0.76) and with standard perimetry (R=0.71). The multifocal VEP amplitude was correlated with perimetric visual field data and the RNFL thickness of the corresponding regions. This method of SNR optimisation is useful for extracting data from recordings and may be appropriate for objective assessment of visual function at different locations. This study has been registered at http://www.clinicaltrials.gov (NCT00494923).
Correlations between axial stiffness and microstructure of a species of bamboo
Mannan, Sayyad; Paul Knox, J.
2017-01-01
Bamboo is a ubiquitous monocotyledonous flowering plant and is a member of the true grass family Poaceae. In many parts of the world, it is widely used as a structural material especially in scaffolding and buildings. In spite of its wide use, there is no accepted methodology for standardizing a species of bamboo for a particular structural purpose. The task of developing structure–property correlations is complicated by the fact that bamboo is a hierarchical material whose structure at the nanoscopic level is not very well explored. However, we show that as far as stiffness is concerned, it is possible to obtain reliable estimates of important structural properties like the axial modulus from the knowledge of certain key elements of the microstructure. Stiffness of bamboo depends most sensitively on the size and arrangement of the fibre sheaths surrounding the vascular bundles and the arrangement of crystalline cellulose microfibrils in their secondary cell walls. For the species of bamboo studied in this work, we have quantitatively determined the radial gradation that the arrangement of fibres renders to the structure. The arrangement of the fibres gives bamboo a radially graded property variation across its cross section. PMID:28280545
Keller, Simon S; Glenn, G Russell; Weber, Bernd; Kreilkamp, Barbara A K; Jensen, Jens H; Helpern, Joseph A; Wagner, Jan; Barker, Gareth J; Richardson, Mark P; Bonilha, Leonardo
2017-01-01
Approximately one in every two patients with pharmacoresistant temporal lobe epilepsy will not be rendered completely seizure-free after temporal lobe surgery. The reasons for this are unknown and are likely to be multifactorial. Quantitative volumetric magnetic resonance imaging techniques have provided limited insight into the causes of persistent postoperative seizures in patients with temporal lobe epilepsy. The relationship between postoperative outcome and preoperative pathology of white matter tracts, which constitute crucial components of epileptogenic networks, is unknown. We investigated regional tissue characteristics of preoperative temporal lobe white matter tracts known to be important in the generation and propagation of temporal lobe seizures in temporal lobe epilepsy, using diffusion tensor imaging and automated fibre quantification. We studied 43 patients with mesial temporal lobe epilepsy associated with hippocampal sclerosis and 44 healthy controls. Patients underwent preoperative imaging, amygdalohippocampectomy and postoperative assessment using the International League Against Epilepsy seizure outcome scale. From preoperative imaging, the fimbria-fornix, parahippocampal white matter bundle and uncinate fasciculus were reconstructed, and scalar diffusion metrics were calculated along the length of each tract. Altogether, 51.2% of patients were rendered completely seizure-free and 48.8% continued to experience postoperative seizure symptoms. Relative to controls, both patient groups exhibited strong and significant diffusion abnormalities along the length of the uncinate bilaterally, the ipsilateral parahippocampal white matter bundle, and the ipsilateral fimbria-fornix in regions located within the medial temporal lobe. However, only patients with persistent postoperative seizures showed evidence of significant pathology of tract sections located in the ipsilateral dorsal fornix and in the contralateral parahippocampal white matter bundle. Using receiver operating characteristic curves, diffusion characteristics of these regions could classify individual patients according to outcome with 84% sensitivity and 89% specificity. Pathological changes in the dorsal fornix were beyond the margins of resection, and contralateral parahippocampal changes may suggest a bitemporal disorder in some patients. Furthermore, diffusion characteristics of the ipsilateral uncinate could classify patients from controls with a sensitivity of 98%; importantly, by co-registering the preoperative fibre maps to postoperative surgical lacuna maps, we observed that the extent of uncinate resection was significantly greater in patients who were rendered seizure-free, suggesting that a smaller resection of the uncinate may represent insufficient disconnection of an anterior temporal epileptogenic network. These results may have the potential to be developed into imaging prognostic markers of postoperative outcome and provide new insights for why some patients with temporal lobe epilepsy continue to experience postoperative seizures. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
Keller, Simon S; Glenn, G Russell; Weber, Bernd; Kreilkamp, Barbara A K; Jensen, Jens H; Helpern, Joseph A; Wagner, Jan; Barker, Gareth J; Richardson, Mark P; Bonilha, Leonardo
2017-01-01
Abstract Approximately one in every two patients with pharmacoresistant temporal lobe epilepsy will not be rendered completely seizure-free after temporal lobe surgery. The reasons for this are unknown and are likely to be multifactorial. Quantitative volumetric magnetic resonance imaging techniques have provided limited insight into the causes of persistent postoperative seizures in patients with temporal lobe epilepsy. The relationship between postoperative outcome and preoperative pathology of white matter tracts, which constitute crucial components of epileptogenic networks, is unknown. We investigated regional tissue characteristics of preoperative temporal lobe white matter tracts known to be important in the generation and propagation of temporal lobe seizures in temporal lobe epilepsy, using diffusion tensor imaging and automated fibre quantification. We studied 43 patients with mesial temporal lobe epilepsy associated with hippocampal sclerosis and 44 healthy controls. Patients underwent preoperative imaging, amygdalohippocampectomy and postoperative assessment using the International League Against Epilepsy seizure outcome scale. From preoperative imaging, the fimbria-fornix, parahippocampal white matter bundle and uncinate fasciculus were reconstructed, and scalar diffusion metrics were calculated along the length of each tract. Altogether, 51.2% of patients were rendered completely seizure-free and 48.8% continued to experience postoperative seizure symptoms. Relative to controls, both patient groups exhibited strong and significant diffusion abnormalities along the length of the uncinate bilaterally, the ipsilateral parahippocampal white matter bundle, and the ipsilateral fimbria-fornix in regions located within the medial temporal lobe. However, only patients with persistent postoperative seizures showed evidence of significant pathology of tract sections located in the ipsilateral dorsal fornix and in the contralateral parahippocampal white matter bundle. Using receiver operating characteristic curves, diffusion characteristics of these regions could classify individual patients according to outcome with 84% sensitivity and 89% specificity. Pathological changes in the dorsal fornix were beyond the margins of resection, and contralateral parahippocampal changes may suggest a bitemporal disorder in some patients. Furthermore, diffusion characteristics of the ipsilateral uncinate could classify patients from controls with a sensitivity of 98%; importantly, by co-registering the preoperative fibre maps to postoperative surgical lacuna maps, we observed that the extent of uncinate resection was significantly greater in patients who were rendered seizure-free, suggesting that a smaller resection of the uncinate may represent insufficient disconnection of an anterior temporal epileptogenic network. These results may have the potential to be developed into imaging prognostic markers of postoperative outcome and provide new insights for why some patients with temporal lobe epilepsy continue to experience postoperative seizures. PMID:28031219
Improving retting of fibre through genetic modification of flax to express pectinases.
Musialak, Magdalena; Wróbel-Kwiatkowska, Magdalena; Kulma, Anna; Starzycka, Eligia; Szopa, Jan
2008-02-01
Flax (Linum usitatissimum L.) is a raw material used for important industrial products. Linen has very high quality textile properties, such as its strength, water absorption, comfort and feel. However, it occupies less than 1% of the total textile market. The major reason for this is the long and difficult retting process by which linen fibres are obtained. In retting, bast fibre bundles are separated from the core, the epidermis and the cuticle. This is accomplished by the cleavage of pectins and hemicellulose in the flax cell wall, a process mainly carried out by plant pathogens like filamentous fungi. The remaining bast fibres are mainly composed of cellulose and lignin. The aim of this study was to generate plants that could be retted more efficiently. To accomplish this, we employed the novel approach of transgenic flax plant generation with increased polygalacturonase (PGI ) and rhamnogalacturonase (RHA) activities. The constitutive expression of Aspergillus aculeatus genes resulted in a significant reduction in the pectin content in tissue-cultured and field-grown plants. This pectin content reduction was accompanied by a significantly higher (more than 2-fold) retting efficiency of the transgenic plant fibres as measured by a modified Fried's test. No alteration in the lignin or cellulose content was observed in the transgenic plants relative to the control. This indicates that the over-expression of the two enzymes does not affect flax fibre composition. The growth rate and soluble sugar and starch contents were in the range of the control levels. It is interesting to note that the RHA and PGI plants showed higher resistance to Fusarium culmorum and F. oxysporum attack, which correlates with the increased phenolic acid level. In this report, we demonstrate for the first time that over-expression of the A. aculeatus genes results in flax plants more readily usable for fibre production. The biochemical parameters of the cell wall components indicated that the fibre quality remains similar to that of wild-type plants, which is an important pre-requisite for industrial applications.
Histological analysis of the tibial anterior cruciate ligament insertion.
Oka, Shinya; Schuhmacher, Peter; Brehmer, Axel; Traut, Ulrike; Kirsch, Joachim; Siebold, Rainer
2016-03-01
This study was performed to investigate the morphology of the tibial anterior cruciate ligament (ACL) by histological assessment. The native (undissected) tibial ACL insertion of six fresh-frozen cadaveric knees was cut into four sagittal sections parallel to the long axis of the medial tibial spine. For histological evaluation, the slices were stained with haematoxylin and eosin, Safranin O and Russell-Movat pentachrome. All slices were digitalized and analysed at a magnification of 20×. The anterior tibial ACL insertion was bordered by a bony anterior ridge. The most medial ACL fibres inserted from the medial tibial spine and were adjacent to the articular cartilage of the medial tibial plateau. Parts of the bony insertions of the anterior and posterior horns of the lateral meniscus were in close contact with the lateral part of the tibial ACL insertion. A small fat pad was located just posterior to the functional ACL fibres. The anterior-posterior length of the medial ACL insertion was an average of 10.8 ± 1.1 mm compared with the lateral, which was only 6.2 ± 1.1 mm (p < 0.001). There were no central or posterolateral inserting ACL fibres. The shape of the bony tibial ACL insertion was 'duck-foot-like'. In contrast to previous findings, the functional mid-substance fibres arose from the most posterior part of the 'duck-foot' in a flat and 'c-shaped' way. The most anterior part of the tibial ACL insertion was bordered by a bony anterior ridge and the most medial by the medial tibial spine. No posterolateral fibres nor ACL bundles have been found histologically. This histological investigation may improve our understanding of the tibial ACL insertion and may provide important information for anatomical ACL reconstruction.
Gutiérrez-Venegas, Gloria; Contreras-Marmolejo, Luis Arturo; Román-Alvárez, Patricia; Barajas-Torres, Carolina
2008-04-01
The cytoskeleton is a dynamic structure that plays a key role in maintaining cell morphology and function. This study investigates the effect of bacterial wall lipopolysaccharide (LPS), a strong inflammatory agent, on the dynamics and organization of actin, tubulin, vimentin, and vinculin proteins in human gingival fibroblasts (HGF). A time-dependent study showed a noticeable change in actin architecture after 1.5 h of incubation with LPS (1 microg/ml) with the formation of orthogonal fibers and further accumulation of actin filament at the cell periphery by 24 h. When 0.01-10 microg/ml of LPS was added to human gingival fibroblast cultures, cells acquired a round, flat shape and gradually developed cytoplasmic ruffling. Lipopolysaccharides extracted from Aggregatibacter actinomycetemcomitans periodontopathogenic bacteria promoted alterations in F-actin stress fibres of human gingival cells. Normally, human gingival cells have F-actin fibres that are organized in linear distribution throughout the cells, extending along the cell's length. LPS-treated cells exhibited changes in cytoskeletal protein organization, and F-actin was reorganized by the formation of bundles underneath and parallel to the cell membrane. We also found the reorganization of the vimentin network into vimentin bundling after 1.5 h of treatment. HGF cells exhibited diffuse and granular gamma-tubulin stain. There was no change in LPS-treated HGF. However, vinculin plaques distributed in the cell body diminished after LPS treatment. We conclude that the dynamic and structured organization of cytoskeletal filaments and actin assembly in human gingival fibroblasts is altered by LPS treatment and is accompanied by a decrease in F-actin pools.
Kang, Y-X; Wang, Y-J; Zhang, Q; Pang, X-H; Gu, W
2017-10-01
Kearns-Sayre syndrome (KSS) is a disorder caused by mutations in mitochondrial DNA. Here, we report an unusual case of Kearns-Sayre syndrome accompanied by hypopituitarism (deficiencies in reproductive and growth hormones). A 20-year-old male presented with growth retardation for the last 8 years, as well as the following findings: short stature, delayed puberty, myasthenia, an extraocular movement deficit, drooping eyelids, pectus carinatum and scoliosis. Cerebral enhanced magnetic resonance imaging revealed dysplasias of the pituitary, white matter and cerebellum. Laboratory work-up showed subnormal testosterone and growth hormone levels, a subnormal testicular volume, sensorineural deafness, pigmentary retinopathy, complete right bundle branch block and left anterior bundle branch block. Pathological examination revealed ragged red muscle fibres. Thus, this rare case involved the coexistence of Kearns-Sayre syndrome and hypopituitarism in a patient. Administration of coenzyme Q10 for the KSS and hormone replacement therapy for the endocrinopathies were performed for treatment of this patient. © 2016 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Haynes, D. M.; Withford, M. J.; Dawes, J. M.; Lawrence, J. S.; Haynes, R.
2011-06-01
Focal ratio degradation (FRD) is a major contributor to light loss in astronomical instruments employing multimode optical fibres. We present a powerful diagnostic model that uniquely quantifies the various sources of FRD in multimode fibres. There are three main phenomena that can contribute to FRD: scattering, diffraction and modal diffusion. We propose a Voigt FRD model where the diffraction and modal diffusion are modelled by the Gaussian component and the end-face scattering is modelled by the Lorentzian component. The Voigt FRD model can be deconvolved into its Gaussian and Lorentzian components and used to analyse the contribution of each of the three major components. We used the Voigt FRD model to analyse the FRD of modern astronomical grade fibre for variations in (i) end-face surface roughness, (ii) wavelength, (iii) fibre length and (iv) external fibre stress. The elevated FRD we observed was mostly due to external factors, i.e. fibre end effects such as surface roughness, subsurface damage and environmentally induced microbending caused by the epoxy, ferrules and fibre cable design. The Voigt FRD model has numerous applications such as a diagnostic tool for current fibre instrumentation that show elevated FRD, as a quality control method for fibre manufacture and fibre cable assembly and as a research and development tool for the characterization of new fibre technologies.
Chrysotile: its occurrence and properties as variables controlling biological effects.
Langer, A M; Nolan, R P
1994-08-01
Chrysotile formation arises through serpentinization of ultramafics and silicified dolomitic limestones. Rock types tend to control the trace metal content and both the nature and amounts of admixed minerals in the ore, such as fibrous brucite (nemalite) and tremolite. Some associated minerals and trace metals are thought to play a role in biological potential. Tremolite, one of the important associated minerals, may occur with different morphological forms, called habits. These habits range from asbestiform (tremolite asbestos) to common blocky or non-fibrous form (tremolite cleavage fragments). The latter is most common in nature. Tremolite in chrysotile ore varies in habit and concentration, both factors determining the degree of risk following inhalation. Tremolite fibre is thought to be important in relation to the occurrence of mesothelioma. Chrysotile fibrils may vary in diameter. Dust clouds generated following manipulation vary in fibre number and surface area. Chrysotile fibres exhibit a range of physical characteristics. The fibre may be non-flexible ('stiff') and low in tensile strength ('brittle'), and may lack an ability to curl. This fibre, referred to as 'harsh', sheds water more quickly than its curly, flexible 'soft' variety. The behaviour of the harsh fibres is more amphibole-like and their splintery nature suggests an enhanced inhalation potential. Slip fibre ore from Canada tends to contain more fibrous brucite (nemalite) than cross-fibre ore in the same mine. Industrial manipulation, which includes chemical treatment, heating and milling, may impart new surface properties to chrysotile dusts. Biological potential may be enhanced (opening of fibre bundles) or reduced (disruption of surface bonds and lessened ability to interact with organic moieties). Leaching of magnesium from chrysotile occurs at a pH less than about 10. Chrysotile has been demonstrated to lose magnesium in vivo and undergo clearance from the lung. The biological potential of magnesium-depleted chrysotile is much reduced, or even eliminated. Reduction of mesothelioma-inducing and cytotoxic potential has been observed and quantified experimentally. Use of chrysotile products in high-temperature environments may heat the mineral to the point where it undergoes alteration of properties, especially by dehydroxylation. Chrysotile ore may vary in properties and associated minerals: it may form aerosols with different size distributions, especially fibre/fibril diameters and surface areas; it may be associated with varying quantities of tremolite (with differing habits); it may be manipulated both industrially and environmentally to yield surfaces with different properties and, hence, differing biological potentials. Chrysotile's properties may vary from place to place and among different user industries.
Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers.
Chen, He; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing
2016-05-19
Pulsed fibre lasers operating in the eye-safe 2 μm spectral region have numerous potential applications in areas such as remote sensing, medicine, mid-infrared frequency conversion, and free-space communication. Here, for the first time, we demonstrate versatile 2 μm ps-ns pulses generation from Tm-based fibre lasers based on frequency shifted feedback and provide a comprehensive report of their special behaviors. The lasers are featured with elegant construction and the unparalleled capacity of generating versatile pulses. The self-starting mode-locking is initiated by an intra-cavity acousto-optical frequency shifter. Diversified mode-locked pulse dynamics were observed by altering the pump power, intra-cavity polarization state and cavity structure, including as short as 8 ps single pulse sequence, pulse bundle state and up to 12 nJ, 3 ns nanosecond rectangular pulse. A reflective nonlinear optical loop mirror was introduced to successfully shorten the pulses from 24 ps to 8 ps. Beside the mode-locking operation, flexible Q-switching and Q-switched mode-locking operation can also be readily achieved in the same cavity. Up to 78 μJ high energy nanosecond pulse can be generated in this regime. Several intriguing pulse dynamics are characterized and discussed.
Three dimensional microstructural network of elastin, collagen, and cells in Achilles tendons.
Pang, Xin; Wu, Jian-Ping; Allison, Garry T; Xu, Jiake; Rubenson, Jonas; Zheng, Ming-Hao; Lloyd, David G; Gardiner, Bruce; Wang, Allan; Kirk, Thomas Brett
2017-06-01
Similar to most biological tissues, the biomechanical, and functional characteristics of the Achilles tendon are closely related to its composition and microstructure. It is commonly reported that type I collagen is the predominant component of tendons and is mainly responsible for the tissue's function. Although elastin has been found in varying proportions in other connective tissues, previous studies report that tendons contain very small quantities of elastin. However, the morphology and the microstructural relationship among the elastic fibres, collagen, and cells in tendon tissue have not been well examined. We hypothesize the elastic fibres, as another fibrillar component in the extracellular matrix, have a unique role in mechanical function and microstructural arrangement in Achilles tendons. It has been shown that elastic fibres present a close connection with the tenocytes. The close relationship of the three components has been revealed as a distinct, integrated and complex microstructural network. Notably, a "spiral" structure within fibril bundles in Achilles tendons was observed in some samples in specialized regions. This study substantiates the hierarchical system of the spatial microstructure of tendon, including the mapping of collagen, elastin and tenocytes, with 3-dimensional confocal images. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1203-1214, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Jannello, Juan Marcos; Cerda, Ignacio A.; de la Fuente, Marcelo S.
2016-04-01
Yaminuechelys is a long-necked chelid turtle whose remains have been recovered from outcrops of the Santonian-Maastrichtian and Danian of South America. With the purpose of providing data about shell sculpturing origin and palaeoecology, the bone histology of several shell elements (including neural, costal, peripheral and plastral plates) of Yaminuechelys is described herein. Histological analysis reveals that Yaminuechelys shares with Chelidae the presence of interwoven structural fibre bundles in the external cortex, and parallel-fibred bone of the internal cortex. The presence of resorption lines in several samples indicates that the particular ornamentation of the external surfaces originated, at least in part, by focalized resorption and new bone deposition. This mechanism for ornamentation origin and maintenance is here described for the first time in a turtle. Compactness of the shell bones is consistent with an aquatic habitat, which supports previous hypothesis based on palaeoenvironmental and morphological data.
Li, Kewei; Ogden, Ray W; Holzapfel, Gerhard A
2018-01-01
Recently, micro-sphere-based methods derived from the angular integration approach have been used for excluding fibres under compression in the modelling of soft biological tissues. However, recent studies have revealed that many of the widely used numerical integration schemes over the unit sphere are inaccurate for large deformation problems even without excluding fibres under compression. Thus, in this study, we propose a discrete fibre dispersion model based on a systematic method for discretizing a unit hemisphere into a finite number of elementary areas, such as spherical triangles. Over each elementary area, we define a representative fibre direction and a discrete fibre density. Then, the strain energy of all the fibres distributed over each elementary area is approximated based on the deformation of the representative fibre direction weighted by the corresponding discrete fibre density. A summation of fibre contributions over all elementary areas then yields the resultant fibre strain energy. This treatment allows us to exclude fibres under compression in a discrete manner by evaluating the tension-compression status of the representative fibre directions only. We have implemented this model in a finite-element programme and illustrate it with three representative examples, including simple tension and simple shear of a unit cube, and non-homogeneous uniaxial extension of a rectangular strip. The results of all three examples are consistent and accurate compared with the previously developed continuous fibre dispersion model, and that is achieved with a substantial reduction of computational cost. © 2018 The Author(s).
Stress strain modelling and analysis of a piezo-coated optical fibre sensor
NASA Astrophysics Data System (ADS)
Al-Raweshidy, H.; Ali, H.; Obayya, S. S. A.; Langley, R.; Batchelor, J.
2005-02-01
A finite element model, using commercially available software, is presented to simulate the piezoelectrically induced stresses and strains in an optical fibre to be used as antenna. These stresses and strains are generated by a layer of piezoelectric polymer deposited on the cladding of a short fibre sample. The theoretical basis for the work is briefly explained and the modelling process is emphasised. Two types of fibre are investigated - circular fibre and D-fibre, and the results compared, analysed and discussed. It is shown that in the D-fibre, the stress and displacement increased by 1.46 and 115 times, respectively, in comparison with the circular fibre.
Local load-sharing fiber bundle model in higher dimensions.
Sinha, Santanu; Kjellstadli, Jonas T; Hansen, Alex
2015-08-01
We consider the local load-sharing fiber bundle model in one to five dimensions. Depending on the breaking threshold distribution of the fibers, there is a transition where the fracture process becomes localized. In the localized phase, the model behaves as the invasion percolation model. The difference between the local load-sharing fiber bundle model and the equal load-sharing fiber bundle model vanishes with increasing dimensionality with the characteristics of a power law.
Launikonis, Bradley S; Stephenson, D George
2001-01-01
Single mechanically skinned fibres and intact bundles of fibres from the twitch region of the iliofibularis muscle of cane toads were used to investigate the effects of membrane cholesterol manipulation on excitation-contraction (E-C) coupling. The cholesterol content of membranes was manipulated with methyl-β-cyclodextrin (MβCD). In mechanically skinned fibres, depletion of membrane cholesterol with MβCD caused a dose- and time-dependent decrease in transverse tubular (t)-system depolarization-induced force responses (TSDIFRs). TSDIFRs were completely abolished within 2 min in the presence of 10 mm MβCD but were not affected after 2 min in the presence of a 10 mm MβCD-1 mm cholesterol complex. There was a very steep dependence between the change in TSDIFRs and the MβCD : cholesterol ratio at 10 mm MβCD, indicating that the inhibitory effect of MβCD was due to membrane cholesterol depletion and not to a pharmacological effect of the agent. Tetanic responses in bundles of intact fibres were abolished after 3-4 h in the presence of 10 mm MβCD. The duration of TSDIFRs increased markedly soon (< 2 min) after application of 10 mm MβCD and 10 mm MβCD-cholesterol complexes, but the Ca2+ activation properties of the contractile apparatus were minimally affected by 10 mm MβCD. The Ca2+ handling abilities of the sarcoplasmic reticulum appeared to be modified after 10 min exposure to 10 mm MβCD. Confocal laser scanning microscopy revealed that the integrity of the t-system was not compromised by either intra- or extracellular application of 10 mm MβCD and that a large [Ca2+] gradient was maintained across the t-system. Membrane cholesterol depletion caused rapid depolarization of the polarized t-system as shown independently by spontaneous TSDIFRs induced by MβCD and by changes in the fluorescence intensity of an anionic potentiometric dye (DiBAC4(3)) in the presence of MβCD. This rapid depolarization of the t-system by cholesterol depletion was not prevented by blocking the Na+ channels with TTX (10 μm) or the L-type Ca2+ channels with Co2+ (5 mm). The results demonstrate that cholesterol is important for maintaining the functional integrity of the t-system and sarcoplasmic reticulum, probably by having specific effects on different membrane proteins that may be directly or indirectly involved in E-C coupling. PMID:11432993
Tayyib, Nahla; Coyer, Fiona
This article reports on the development and implementation process used to integrate a care bundle approach (a pressure ulcer [PU] prevention bundle to improve patients' skin integrity in intensive care) and the Ottawa Model of Research Use (OMRU). The PU prevention care bundle demonstrated significant reduction in PU incidence, with the OMRU model providing a consolidated framework for the implementation of bundled evidence in an effective and consistent manner into daily clinical nursing practice.
The relationship of nerve fibre pathology to sensory function in entrapment neuropathy
Schmid, Annina B.; Bland, Jeremy D. P.; Bhat, Manzoor A.
2014-01-01
Surprisingly little is known about the impact of entrapment neuropathy on target innervation and the relationship of nerve fibre pathology to sensory symptoms and signs. Carpal tunnel syndrome is the most common entrapment neuropathy; the aim of this study was to investigate its effect on the morphology of small unmyelinated as well as myelinated sensory axons and relate such changes to somatosensory function and clinical symptoms. Thirty patients with a clinical and electrophysiological diagnosis of carpal tunnel syndrome [17 females, mean age (standard deviation) 56.4 (15.3)] and 26 age and gender matched healthy volunteers [18 females, mean age (standard deviation) 51.0 (17.3)] participated in the study. Small and large fibre function was examined with quantitative sensory testing in the median nerve territory of the hand. Vibration and mechanical detection thresholds were significantly elevated in patients with carpal tunnel syndrome (P < 0.007) confirming large fibre dysfunction and patients also presented with increased thermal detection thresholds (P < 0.0001) indicative of C and Aδ-fibre dysfunction. Mechanical and thermal pain thresholds were comparable between groups (P > 0.13). A skin biopsy was taken from a median nerve innervated area of the proximal phalanx of the index finger. Immunohistochemical staining for protein gene product 9.5 and myelin basic protein was used to evaluate morphological features of unmyelinated and myelinated axons. Evaluation of intraepidermal nerve fibre density showed a striking loss in patients (P < 0.0001) confirming a significant compromise of small fibres. The extent of Meissner corpuscles and dermal nerve bundles were comparable between groups (P > 0.07). However, patients displayed a significant increase in the percentage of elongated nodes (P < 0.0001), with altered architecture of voltage-gated sodium channel distribution. Whereas neither neurophysiology nor quantitative sensory testing correlated with patients’ symptoms or function deficits, the presence of elongated nodes was inversely correlated with a number of functional and symptom related scores (P < 0.023). Our findings suggest that carpal tunnel syndrome does not exclusively affect large fibres but is associated with loss of function in modalities mediated by both unmyelinated and myelinated sensory axons. We also document for the first time that entrapment neuropathies lead to a clear reduction in intraepidermal nerve fibre density, which was independent of electrodiagnostic test severity. The presence of elongated nodes in the target tissue further suggests that entrapment neuropathies affect nodal structure/myelin well beyond the focal compression site. Interestingly, nodal lengthening may be an adaptive phenomenon as it inversely correlates with symptom severity. PMID:25348629
Applications of optical fibers and miniature photonic elements in medical diagnostics
NASA Astrophysics Data System (ADS)
Blaszczak, Urszula; Gilewski, Marian; Gryko, Lukasz; Zajac, Andrzej; Kukwa, Andrzej; Kukwa, Wojciech
2014-05-01
Construction of endoscopes which are known for decades, in particular in small devices with the diameter of few millimetres, are based on the application of fibre optic imaging bundles or bundles of fibers in the illumination systems (usually with a halogen source). Cameras - CCD and CMOS - with the sensor size of less than 5 mm emerging commercially and high power LED solutions allow to design and construct modern endoscopes characterized by many innovative properties. These constructions offer higher resolution. They are also relatively cheaper especially in the context of the integration of the majority of the functions on a single chip. Mentioned features of the CMOS sensors reduce the cycle of introducing the newly developed instruments to the market. The paper includes a description of the concept of the endoscope with a miniature camera built on the basis of CMOS detector manufactured by Omni Vision. The set of LEDs located at the operator side works as the illuminating system. Fibre optic system and the lens of the camera are used in shaping the beam illuminating the observed tissue. Furthermore, to broaden the range of applications of the endoscope, the illuminator allows to control the spectral characteristics of emitted light. The paper presents the analysis of the basic parameters of the light-and-optical system of the endoscope. The possibility of adjusting the magnifications of the lens, the field of view of the camera and its spatial resolution is discussed. Special attention was drawn to the issues related to the selection of the light sources used for the illumination in terms of energy efficiency and the possibility of providing adjusting the colour of the emitted light in order to improve the quality of the image obtained by the camera.
Flat midsubstance of the anterior cruciate ligament with tibial "C"-shaped insertion site.
Siebold, Rainer; Schuhmacher, Peter; Fernandez, Francis; Śmigielski, Robert; Fink, Christian; Brehmer, Axel; Kirsch, Joachim
2015-11-01
This anatomical cadaver study was performed to investigate the flat appearance of the midsubstance shape of the anterior cruciate ligament (ACL) and its tibial "C"-shaped insertion site. The ACL midsubstance and the tibial ACL insertion were dissected in 20 cadaveric knees (n = 6 fresh frozen and n = 14 paraffined). Magnifying spectacles were used for all dissections. Morphometric measurements were performed using callipers and on digital photographs. In all specimens, the midsubstance of the ACL was flat with a mean width of 9.9 mm, thickness of 3.9 mm and cross-sectional area of 38.7 mm(2). The "direct" "C"-shaped tibial insertion runs from along the medial tibial spine to the anterior aspect of the lateral meniscus. The mean width (length) of the "C" was 12.6 mm, its thickness 3.3 mm and area 31.4 mm(2). The centre of the "C" was the bony insertion of the anterior root of the lateral meniscus overlayed by fat and crossed by the ACL. No posterolateral (PL) inserting ACL fibres were found. Together with the larger "indirect" part (area 79.6 mm(2)), the "direct" one formed a "duck-foot"-shaped footprint. The tibial ACL midsubstance and tibial "C"-shaped insertion are flat and are resembling a "ribbon". The centre of the "C" is the bony insertion of the anterior root of the lateral meniscus. There are no central or PL inserting ACL fibres. Anatomical ACL reconstruction may therefore require a flat graft and a "C"-shaped tibial footprint reconstruction with an anteromedial bone tunnel for single bundle and an additional posteromedial bone tunnel for double bundle.
NASA Astrophysics Data System (ADS)
Myllylä, Teemu S.; Sorvoja, Hannu S. S.; Nikkinen, Juha; Tervonen, Osmo; Kiviniemi, Vesa; Myllylä, Risto A.
2011-07-01
Our goal is to provide a cost-effective method for examining human tissue, particularly the brain, by the simultaneous use of functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). Due to its compatibility requirements, MRI poses a demanding challenge for NIRS measurements. This paper focuses particularly on presenting the instrumentation and a method for the non-invasive measurement of NIR light absorbed in human tissue during MR imaging. One practical method to avoid disturbances in MR imaging involves using long fibre bundles to enable conducting the measurements at some distance from the MRI scanner. This setup serves in fact a dual purpose, since also the NIRS device will be less disturbed by the MRI scanner. However, measurements based on long fibre bundles suffer from light attenuation. Furthermore, because one of our primary goals was to make the measuring method as cost-effective as possible, we used high-power light emitting diodes instead of more expensive lasers. The use of LEDs, however, limits the maximum output power which can be extracted to illuminate the tissue. To meet these requirements, we improved methods of emitting light sufficiently deep into tissue. We also show how to measure NIR light of a very small power level that scatters from the tissue in the MRI environment, which is characterized by strong electromagnetic interference. In this paper, we present the implemented instrumentation and measuring method and report on test measurements conducted during MRI scanning. These measurements were performed in MRI operating rooms housing 1.5 Tesla-strength closed MRI scanners (manufactured by GE) in the Dept. of Diagnostic Radiology at the Oulu University Hospital.
NASA Astrophysics Data System (ADS)
Dingal, P. C. Dave P.; Bradshaw, Andrew M.; Cho, Sangkyun; Raab, Matthew; Buxboim, Amnon; Swift, Joe; Discher, Dennis E.
2015-09-01
Scarring is a long-lasting problem in higher animals, and reductionist approaches could aid in developing treatments. Here, we show that copolymerization of collagen I with polyacrylamide produces minimal matrix models of scars (MMMS), in which fractal-fibre bundles segregate heterogeneously to the hydrogel subsurface. Matrix stiffens locally--as in scars--while allowing separate control over adhesive-ligand density. The MMMS elicits scar-like phenotypes from mesenchymal stem cells (MSCs): cells spread and polarize quickly, increasing nucleoskeletal lamin-A yet expressing the `scar marker' smooth muscle actin (SMA) more slowly. Surprisingly, expression responses to MMMS exhibit less cell-to-cell noise than homogeneously stiff gels. Such differences from bulk-average responses arise because a strong SMA repressor, NKX2.5, slowly exits the nucleus on rigid matrices. NKX2.5 overexpression overrides rigid phenotypes, inhibiting SMA and cell spreading, whereas cytoplasm-localized NKX2.5 mutants degrade in well-spread cells. MSCs thus form a `mechanical memory' of rigidity by progressively suppressing NKX2.5, thereby elevating SMA in a scar-like state.
Signal detection by active, noisy hair bundles
NASA Astrophysics Data System (ADS)
O'Maoiléidigh, Dáibhid; Salvi, Joshua D.; Hudspeth, A. J.
2018-05-01
Vertebrate ears employ hair bundles to transduce mechanical movements into electrical signals, but their performance is limited by noise. Hair bundles are substantially more sensitive to periodic stimulation when they are mechanically active, however, than when they are passive. We developed a model of active hair-bundle mechanics that predicts the conditions under which a bundle is most sensitive to periodic stimulation. The model relies only on the existence of mechanotransduction channels and an active adaptation mechanism that recloses the channels. For a frequency-detuned stimulus, a noisy hair bundle's phase-locked response and degree of entrainment as well as its detection bandwidth are maximized when the bundle exhibits low-amplitude spontaneous oscillations. The phase-locked response and entrainment of a bundle are predicted to peak as functions of the noise level. We confirmed several of these predictions experimentally by periodically forcing hair bundles held near the onset of self-oscillation. A hair bundle's active process amplifies the stimulus preferentially over the noise, allowing the bundle to detect periodic forces less than 1 pN in amplitude. Moreover, the addition of noise can improve a bundle's ability to detect the stimulus. Although, mechanical activity has not yet been observed in mammalian hair bundles, a related model predicts that active but quiescent bundles can oscillate spontaneously when they are loaded by a sufficiently massive object such as the tectorial membrane. Overall, this work indicates that auditory systems rely on active elements, composed of hair cells and their mechanical environment, that operate on the brink of self-oscillation.
NASA Astrophysics Data System (ADS)
Pawlik, Marzena; Lu, Yiling
2018-05-01
Computational micromechanics is a useful tool to predict properties of carbon fibre reinforced polymers. In this paper, a representative volume element (RVE) is used to investigate a fuzzy fibre reinforced polymer. The fuzzy fibre results from the introduction of nanofillers in the fibre surface. The composite being studied contains three phases, namely: the T650 carbon fibre, the carbon nanotubes (CNTs) reinforced interphase and the epoxy resin EPIKOTE 862. CNTs are radially grown on the surface of the carbon fibre, and thus resultant interphase composed of nanotubes and matrix is transversely isotropic. Transversely isotropic properties of the interphase are numerically implemented in the ANSYS FEM software using element orientation command. Obtained numerical predictions are compared with the available analytical models. It is found that the CNTs interphase significantly increased the transverse mechanical properties of the fuzzy fibre reinforced polymer. This extent of enhancement changes monotonically with the carbon fibre volume fraction. This RVE model enables to investigate different orientation of CNTs in the fuzzy fibre model.
The dependence of the properties of optical fibres on length
NASA Astrophysics Data System (ADS)
Poppett, C. L.; Allington-Smith, J. R.
2010-05-01
We investigate the dependence on length of optical fibres used in astronomy, especially the focal ratio degradation (FRD) which places constraints on the performance of fibre-fed spectrographs used for multiplexed spectroscopy. To this end, we present a modified version of the FRD model proposed by Carrasco & Parry to quantify the number of scattering defects within an optical fibre using a single parameter. The model predicts many trends which are seen experimentally, for example, a decrease in FRD as core diameter increases, and also as wavelength increases. However, the model also predicts a strong dependence on FRD with length that is not seen experimentally. By adapting the single fibre model to include a second fibre, we can quantify the amount of FRD due to stress caused by the method of termination. By fitting the model to experimental data, we find that polishing the fibre causes more stress to be induced in the end of the fibre compared to a simple cleave technique. We estimate that the number of scattering defects caused by polishing is approximately double that produced by cleaving. By placing limits on the end effect, the model can be used to estimate the residual-length dependence in very long fibres, such as those required for Extremely Large Telescopes, without having to carry out costly experiments. We also use our data to compare different methods of fibre termination.
NASA Astrophysics Data System (ADS)
Hussain, Sadakat
Soy-based polyurethane foams (PUFs) were reinforced with fibres of different aspect ratios to improve the compressive modulus. Each of the three fibre types reinforced PUF differently. Shorter micro-crystalline cellulose fibres were found embedded inside the cell struts of PUF and reinforced them. The reinforcement was attributed to be stress transfer from the matrix to the fibre by comparing the experimental results to those predicted by micro-mechanical models for short fibre reinforced composites. The reinforced cell struts increased the overall compressive modulus of the foam. Longer glass fibres (470 microns, length) provided the best reinforcement. These fibres were found to be larger than the cell diameters. The micro-mechanical models could not predict the reinforcement provided by the longer glass fibres. The models predicted negligible reinforcement because the very low modulus PUF should not transfer load to the higher modulus fibres. However, using a finite element model, it was determined that the fibres were providing reinforcement through direct fibre interaction with each other. Intermediate length glass fibres (260 microns, length) were found to poorly reinforce the PUF and should be avoided. These fibres were too short to interact with each other and were on average too large to embed and reinforce cell struts. In order to produce natural fibre reinforced PUFs in the future, a novel device was invented. The purpose of the device is to deliver natural fibres at a constant mass flow rate. The device was found to consistently meter individual loose natural fibre tufts at a mass flow rate of 2 grams per second. However, the device is not robust and requires further development to deliver a fine stream of natural fibre that can mix and interact with the curing polymeric components of PUF. A design plan was proposed to address the remaining issues with the device.
Tamasloukht, Barek; Wong Quai Lam, Mary Sarah-Jane; Martinez, Yves; Tozo, Koffi; Barbier, Odile; Jourda, Cyril; Jauneau, Alain; Borderies, Gisèle; Balzergue, Sandrine; Renou, Jean-Pierre; Huguet, Stéphanie; Martinant, Jean Pierre; Tatout, Christophe; Lapierre, Catherine; Barrière, Yves; Goffner, Deborah; Pichon, Magalie
2011-01-01
Cinnamoyl-CoA reductase (CCR), which catalyses the first committed step of the lignin-specific branch of monolignol biosynthesis, has been extensively characterized in dicot species, but few data are available in monocots. By screening a Mu insertional mutant collection in maize, a mutant in the CCR1 gene was isolated named Zmccr1–. In this mutant, CCR1 gene expression is reduced to 31% of the residual wild-type level. Zmccr1– exhibited enhanced digestibility without compromising plant growth and development. Lignin analysis revealed a slight decrease in lignin content and significant changes in lignin structure. p-Hydroxyphenyl units were strongly decreased and the syringyl/guaiacyl ratio was slightly increased. At the cellular level, alterations in lignin deposition were mainly observed in the walls of the sclerenchymatic fibre cells surrounding the vascular bundles. These cell walls showed little to no staining with phloroglucinol. These histochemical changes were accompanied by an increase in sclerenchyma surface area and an alteration in cell shape. In keeping with this cell type-specific phenotype, transcriptomics performed at an early stage of plant development revealed the down-regulation of genes specifically associated with fibre wall formation. To the present authors’ knowledge, this is the first functional characterization of CCR1 in a grass species. PMID:21493812
Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Rickman, S. L.; Iamello, C. J.
2016-01-01
Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.
A basis for customising perimetric locations within the macula in glaucoma.
Alluwimi, Muhammed S; Swanson, William H; Malinovsky, Victor E; King, Brett J
2018-03-01
It has been recognised that the 24-2 grid used for perimetry may poorly sample the macula, which has been recently identified as a critical region for diagnosing and managing patients with glaucoma. We compared data derived from patients and controls to investigate the efficacy of a basis for customising perimetric locations within the macula, guided by en face images of retinal nerve fibre layer (RNFL) bundles. We used SD-OCT en face montages (www.heidelbergengineering.com) of the RNFL in 10 patients with glaucoma (ages 56-80 years, median 67.5 years) and 30 age-similar controls (ages 47-77, median 58). These patients were selected because of either the absence of perimetric defect while glaucomatous damage to the RNFL bundles was observed, or because of perimetric defect that did not reflect the extent and locations of the glaucomatous damage that appeared in the RNFL images. We used a customised blob stimulus for perimetric testing (a Gaussian blob with 0.25° standard deviation) at 10-2 grid locations, to assess the correspondence between perimetric defects and damaged RNFL bundles observed on en face images and perimetric defects. Data from the age-similar controls were used to compute total deviation (TD) and pattern deviation (PD) values at each location; a perimetric defect for a location was defined as a TD or PD value of -0.5 log unit or deeper. A McNemar's test was used to compare the proportions of locations with perimetric defects that fell outside the damaged RNFL bundles, with and without accounting for displacement of ganglion cell bodies. All patients but one had perimetric defects that were consistent with the patterns of damaged RNFL bundles observed on the en face images. We found six abnormal perimetric locations of 2040 tested in controls and 132 abnormal perimetric locations of 680 tested in patients. The proportions of abnormal locations that fell outside the damaged RNFL bundles, with and without accounting for displacement of the ganglion cell bodies were 0.08 and 0.07, respectively. The difference between the two proportions did not reach statistical significance (p = 0.5 for a one-tailed test). We demonstrated that it is effective to customise perimetric locations within the macula, guided by en face images of the RNFL bundles. The perimetric losses found with a 10-2 grid demonstrated similar patterns as the damaged RNFL bundles observed on the en face images. © 2018 The Authors. Ophthalmic and Physiological Optics published by John Wiley & Sons Ltd on behalf of College of Optometrists.
Automated fibre optic instrumentation for the William Herschel Telescope
NASA Astrophysics Data System (ADS)
Parry, Ian R.; Lewis, Ian J.
1990-07-01
The design and operation of the automated optical-fiber positioning system used for spectroscopic observations at the Cassegrain focus of the 4.2-m William Herschel Telescope (WHT) at Observatorio del Roque de los Muchachos are described. The system is a modified version of the Autofib positioner for the AAT and employs 64 spectroscopic fibers and 8 guide fiber bundles arranged to form a 17-arcmin-diameter field. The fibers are 1-m-long polyimide-coated high-OH silica, with core diameter 260 microns and outer diameter 315 microns, and a 1.2-mm side-length microprism is cemented to the end of each fiber or (7-fiber) guide bundle. The fibers are positioned one at a time by a pick-and-place robot assembly, and a viewing head permitting simultaneous observation of the back-illuminated fiber and the object it is trying to acquire is provided. This prototype Cassegrain-focus system is being studied to aid in the development of a more accurate fiber positioner for use at the prime focus of the WHT.
Adiabatic transport of qubits around a black hole
NASA Astrophysics Data System (ADS)
Viennot, David; Moro, Olivia
2017-03-01
We consider localized qubits evolving around a black hole following a quantum adiabatic dynamics. We develop a geometric structure (based on fibre bundles) permitting to describe the quantum states of a qubit and the spacetime geometry in a single framework. The quantum decoherence induced by the black hole on the qubit is analysed in this framework (the role of the dynamical and geometric phases in this decoherence is treated), especially for the quantum teleportation protocol when one qubit falls to the event horizon. A simple formula to compute the fidelity of the teleportation is derived. The case of a Schwarzschild black hole is analysed.
Neuronal morphology in the lateral geniculate nucleus of the porpoise (Phocoena phocoena).
Revishchin, A V; Garey, L J
1993-01-01
The Golgi and Nissl methods and cytochrome oxidase (CO) histochemistry were used to study the overall structure and neuronal morphology of the lateral geniculate nucleus (LGN) of the Black Sea porpoise (Phocoena phocoena). Differences were observed between dorsal and ventral portions of the nucleus in terms of cell size and CO staining. In addition to prominent fibre bundles crossing the LGN horizontally, vertically oriented variations of CO staining were apparent. Neuronal types in the LGN corresponded broadly to those observed in land mammals. The commonest were variants of multipolar cells, and may represent thalamocortical relay cells. Various other types were probably interneuronal.
Characterization of active hair-bundle motility by a mechanical-load clamp
NASA Astrophysics Data System (ADS)
Salvi, Joshua D.; Maoiléidigh, Dáibhid Ó.; Fabella, Brian A.; Tobin, Mélanie; Hudspeth, A. J.
2015-12-01
Active hair-bundle motility endows hair cells with several traits that augment auditory stimuli. The activity of a hair bundle might be controlled by adjusting its mechanical properties. Indeed, the mechanical properties of bundles vary between different organisms and along the tonotopic axis of a single auditory organ. Motivated by these biological differences and a dynamical model of hair-bundle motility, we explore how adjusting the mass, drag, stiffness, and offset force applied to a bundle control its dynamics and response to external perturbations. Utilizing a mechanical-load clamp, we systematically mapped the two-dimensional state diagram of a hair bundle. The clamp system used a real-time processor to tightly control each of the virtual mechanical elements. Increasing the stiffness of a hair bundle advances its operating point from a spontaneously oscillating regime into a quiescent regime. As predicted by a dynamical model of hair-bundle mechanics, this boundary constitutes a Hopf bifurcation.
Oechslin, Mathias S.; Imfeld, Adrian; Loenneker, Thomas; Meyer, Martin; Jäncke, Lutz
2009-01-01
Previous neuroimaging studies have demonstrated that musical expertise leads to functional alterations in language processing. We utilized diffusion tensor imaging (DTI) to investigate white matter plasticity in musicians with absolute pitch (AP), relative pitch and non-musicians. Using DTI, we analysed the fractional anisotropy (FA) of the superior longitudinal fasciculus (SLF), which is considered the most primary pathway for processing and production of speech and music. In association with different levels of musical expertise, we found that AP is characterized by a greater left than right asymmetry of FA in core fibres of the SLF. A voxel-based analysis revealed three clusters within the left hemisphere SLF that showed significant positive correlations with error rates only for AP-musicians in an AP-test, but not for musicians without AP. We therefore conclude that the SLF architecture in AP musicians is related to AP acuity. In order to reconcile our observations with general aspects of development of fibre bundles, we introduce the Pioneer Axon Thesis, a theoretical approach to formalize axonal arrangements of major white matter pathways. PMID:20161812
Garyfallidis, Eleftherios; Côté, Marc-Alexandre; Rheault, Francois; Sidhu, Jasmeen; Hau, Janice; Petit, Laurent; Fortin, David; Cunanne, Stephen; Descoteaux, Maxime
2018-04-15
Virtual dissection of diffusion MRI tractograms is cumbersome and needs extensive knowledge of white matter anatomy. This virtual dissection often requires several inclusion and exclusion regions-of-interest that make it a process that is very hard to reproduce across experts. Having automated tools that can extract white matter bundles for tract-based studies of large numbers of people is of great interest for neuroscience and neurosurgical planning. The purpose of our proposed method, named RecoBundles, is to segment white matter bundles and make virtual dissection easier to perform. This can help explore large tractograms from multiple persons directly in their native space. RecoBundles leverages latest state-of-the-art streamline-based registration and clustering to recognize and extract bundles using prior bundle models. RecoBundles uses bundle models as shape priors for detecting similar streamlines and bundles in tractograms. RecoBundles is 100% streamline-based, is efficient to work with millions of streamlines and, most importantly, is robust and adaptive to incomplete data and bundles with missing components. It is also robust to pathological brains with tumors and deformations. We evaluated our results using multiple bundles and showed that RecoBundles is in good agreement with the neuroanatomical experts and generally produced more dense bundles. Across all the different experiments reported in this paper, RecoBundles was able to identify the core parts of the bundles, independently from tractography type (deterministic or probabilistic) or size. Thus, RecoBundles can be a valuable method for exploring tractograms and facilitating tractometry studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Heterotic line bundle models on elliptically fibered Calabi-Yau three-folds
NASA Astrophysics Data System (ADS)
Braun, Andreas P.; Brodie, Callum R.; Lukas, Andre
2018-04-01
We analyze heterotic line bundle models on elliptically fibered Calabi-Yau three-folds over weak Fano bases. In order to facilitate Wilson line breaking to the standard model group, we focus on elliptically fibered three-folds with a second section and a freely-acting involution. Specifically, we consider toric weak Fano surfaces as base manifolds and identify six such manifolds with the required properties. The requisite mathematical tools for the construction of line bundle models on these spaces, including the calculation of line bundle cohomology, are developed. A computer scan leads to more than 400 line bundle models with the right number of families and an SU(5) GUT group which could descend to standard-like models after taking the ℤ2 quotient. A common and surprising feature of these models is the presence of a large number of vector-like states.
Morales-Orcajo, Enrique; Siebert, Tobias; Böl, Markus
2018-05-25
The mechanical properties of the urinary bladder wall are important to understand its filling-voiding cycle in health and disease. However, much remains unknown about its mechanical properties, especially regarding regional heterogeneities and wall microstructure. The present study aimed to assess the regional differences in the mechanical properties and microstructure of the urinary bladder wall. Ninety (n=90) samples of porcine urinary bladder wall (ten samples from nine different locations) were mechanically and histologically analysed. Half of the samples (n=45) were equibiaxially tested within physiological conditions, and the other half, matching the sample location of the mechanical tests, was frozen, cryosectioned, and stained with Picro-Sirius red to differentiate smooth muscle cells, extracellular matrix, and fat. The bladder wall shows a non-linear stress-stretch relationship with hysteresis and softening effects. Regional differences were found in the mechanical response and in the microstructure. The trigone region presents higher peak stresses and thinner muscularis layer compared to the rest of the bladder. Furthermore, the ventral side of the bladder presents anisotropic characteristics, whereas the dorsal side features perfect isotropic behaviour. This response matches the smooth muscle fibre bundle orientation within the tunica muscularis. This layer, comprising approximately 78% of the wall thickness, is composed of two fibre bundle arrangements that are cross-oriented, one with respect to the other, varying the angle between them across the organ. That is, the ventral side presents a 60°/120° cross-orientation structure, while the muscle bundles were oriented perpendicular in the dorsal side. In the present study, we demonstrate that the mechanical properties and the microstructure of the urinary bladder wall are heterogeneous across the organ. The mechanical properties and the microstructure of the urinary bladder wall within nine specific locations matching explicitly the mechanical and structural variations have been examined. On the one hand, the results of this study contribute to the understanding of bladder mechanics and thus to their functional understanding of bladder filling and voiding. On the other hand, they are relevant to the fields of constitutive formulation of bladder tissue, whole bladder mechanics, and bladder-derived scaffolds i.e., tissue-engineering grafts. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tai, Yuan-Chuan; Chatziioannou, Arion F.; Yang, Yongfeng; Silverman, Robert W.; Meadors, Ken; Siegel, Stefan; Newport, Danny F.; Stickel, Jennifer R.; Cherry, Simon R.
2003-06-01
MicroPET II is a second-generation animal PET scanner designed for high-resolution imaging of small laboratory rodents. The system consists of 90 scintillation detector modules arranged in three contiguous axial rings with a ring diameter of 16.0 cm and an axial length of 4.9 cm. Each detector module consists of a 14 × 14 array of lutetium oxyorthosilicate (LSO) crystals coupled to a multi-channel photomultiplier tube (MC-PMT) through a coherent optical fibre bundle. Each LSO crystal element measures 0.975 mm × 0.975 mm in cross section by 12.5 mm in length. A barium sulphate reflector material was used between LSO elements leading to a detector pitch of 1.15 mm in both axial and transverse directions. Fused optical fibre bundles were made from 90 µm diameter glass fibres with a numerical aperture of 0.56. Interstitial extramural absorber was added between the fibres to reduce optical cross talk. A charge-division readout circuit was implemented on printed circuit boards to decode the 196 crystals in each array from the outputs of the 64 anode signals of the MC-PMT. Electronics from Concorde Microsystems Inc. (Knoxville, TN) were used for signal amplification, digitization, event qualification, coincidence processing and data capture. Coincidence data were passed to a host PC that recorded events in list mode. Following acquisition, data were sorted into sinograms and reconstructed using Fourier rebinning and filtered backprojection algorithms. Basic evaluation of the system has been completed. The absolute sensitivity of the microPET II scanner was 2.26% at the centre of the field of view (CFOV) for an energy window of 250-750 keV and a timing window of 10 ns. The intrinsic spatial resolution of the detectors in the system averaged 1.21 mm full width at half maximum (FWHM) when measured with a 22Na point source 0.5 mm in diameter. Reconstructed image resolution ranged from 0.83 mm FWHM at the CFOV to 1.47 mm FWHM in the radial direction, 1.17 mm FWHM in the tangential direction and 1.42 mm FWHM in the axial direction at 1 cm offset from the CFOV. These values represent highly significant improvements over our earlier microPET scanner (approximately fourfold sensitivity increase and 25-35% improvement in linear spatial resolution under equivalent operating conditions) and are expected to be further improved when the system is fully optimized. This work was originally conducted at UCLA, Crump Institute for Molecular Imaging, and was continued and completed at UC Davis, Department of Biomedical Engineering.
Application of a transient heat transfer model for bundled, multiphase pipelines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, T.S.; Clapham, J.; Danielson, T.J.
1996-12-31
A computer model has been developed which accurately describes transient heat transfer in pipeline bundles. An arbitrary number of internal pipelines containing different fluids, flowing in either direction along with the input of heat to one or more of the fluids can be accommodated. The model is coupled to the transient, multiphase flow simulator OLGA. The lines containing the multiphase production fluids are modeled by OLGA, and the heat transfer between the internal lines, carrier pipe, and surroundings is handled by the bundle model. The model has been applied extensively to the design of a subsea, heated bundle system formore » the Britannia gas condensate field in the North Sea. The 15-km bundle system contains a 14{double_prime} production line, an 8{double_prime} test line, a 3{double_prime} methanol line, and a 12{double_prime} internal heating medium line within a 37.25{double_prime} carrier. The heating medium (water) flows in the internal heating medium line and in the annulus at 82,500 BPD. The primary purpose of the bundle system is to avoid the formation of hydrates. A secondary purpose is to avoid the deposition of paraffin. The bundle model was used to (1) compare the merits of two coaxial lines vs. a single bundle; (2) optimize the insulation levels on the carrier and internal lines; (3) determine the minimum time required to heat up the bundle; (4) determine heat input requirements to avoid hydrates throughout the field life, (5) determine temperature profiles along the lines for a range of production rates; (6) study ruptures of the production line into the bundle annulus; (7) determine minimum temperatures during depressurization; and (8) determine cool-down times. The results of these studies were used to size lines, select insulation levels, assess erosion potential, design for thermal expansion-induced stresses, and to select materials of construction.« less
Gilmartin, Heather M; Sousa, Karen H; Battaglia, Catherine
2016-01-01
The central line (CL) bundle interventions are important for preventing central line-associated bloodstream infections (CLABSIs), but a modeling method for testing the CL bundle interventions within a health systems framework is lacking. Guided by the Quality Health Outcomes Model (QHOM), this study tested the CL bundle interventions in reflective and composite, latent, variable measurement models to assess the impact of the modeling approaches on an investigation of the relationships between adherence to the CL bundle interventions, organizational context, and CLABSIs. A secondary data analysis study was conducted using data from 614 U.S. hospitals that participated in the Prevention of Nosocomial Infection and Cost-Effectiveness Refined study. The sample was randomly split into exploration and validation subsets. The two CL bundle modeling approaches resulted in adequate fitting structural models (RMSEA = .04; CFI = .94) and supported similar relationships within the QHOM. Adherence to the CL bundle had a direct effect on organizational context (reflective = .23; composite = .20; p = .01) and CLABSIs (reflective = -.28; composite = -.25; p = .01). The relationship between context and CLABSIs was not significant. Both modeling methods resulted in partial support of the QHOM. There were little statistical, but large, conceptual differences between the reflective and composite modeling approaches. The empirical impact of the modeling approaches was inconclusive, for both models resulted in a good fit to the data. Lessons learned are presented. The comparison of modeling approaches is recommended when initially modeling variables that have never been modeled or with directional ambiguity to increase transparency and bring confidence to study findings.
Gilmartin, Heather M.; Sousa, Karen H.; Battaglia, Catherine
2016-01-01
Background The central line (CL) bundle interventions are important for preventing central line-associated bloodstream infections (CLABSIs), but a modeling method for testing the CL bundle interventions within a health systems framework is lacking. Objectives Guided by the Quality Health Outcomes Model (QHOM), this study tested the CL bundle interventions in reflective and composite, latent, variable measurement models to assess the impact of the modeling approaches on an investigation of the relationships between adherence to the CL bundle interventions, organizational context, and CLABSIs. Methods A secondary data analysis study was conducted using data from 614 U.S. hospitals that participated in the Prevention of Nosocomial Infection and Cost-Effectiveness-Refined study. The sample was randomly split into exploration and validation subsets. Results The two CL bundle modeling approaches resulted in adequate fitting structural models (RMSEA = .04; CFI = .94) and supported similar relationships within the QHOM. Adherence to the CL bundle had a direct effect on organizational context (reflective = .23; composite = .20; p = .01), and CLABSIs (reflective = −.28; composite = −.25; p =.01). The relationship between context and CLABSIs was not significant. Both modeling methods resulted in partial support of the QHOM. Discussion There were little statistical, but large, conceptual differences between the reflective and composite modeling approaches. The empirical impact of the modeling approaches was inconclusive, for both models resulted in a good fit to the data. Lessons learned are presented. The comparison of modeling approaches is recommended when initially modeling variables that have never been modeled, or with directional ambiguity, to increase transparency and bring confidence to study findings. PMID:27579507
Bundled payments in orthopedic surgery.
Bushnell, Brandon D
2015-02-01
As a result of reading this article, physicians should be able to: 1. Describe the concept of bundled payments and the potential applications of bundled payments in orthopedic surgery. 2. For specific situations, outline a clinical episode of care, determine the participants in a bundling situation, and define care protocols and pathways. 3. Recognize the importance of resource utilization management, quality outcome measurement, and combined economic-clinical value in determining the value of bundled payment arrangements. 4. Identify the implications of bundled payments for practicing orthopedists, as well as the legal issues and potential future directions of this increasingly popular alternative payment method. Bundled payments, the idea of paying a single price for a bundle of goods and services, is a financial concept familiar to most American consumers because examples appear in many industries. The idea of bundled payments has recently gained significant momentum as a financial model with the potential to decrease the significant current costs of health care. Orthopedic surgery as a field of medicine is uniquely positioned for success in an environment of bundled payments. This article reviews the history, logistics, and implications of the bundled payment model relative to orthopedic surgery. Copyright 2015, SLACK Incorporated.
Framework for shape analysis of white matter fiber bundles.
Glozman, Tanya; Bruckert, Lisa; Pestilli, Franco; Yecies, Derek W; Guibas, Leonidas J; Yeom, Kristen W
2018-02-15
Diffusion imaging coupled with tractography algorithms allows researchers to image human white matter fiber bundles in-vivo. These bundles are three-dimensional structures with shapes that change over time during the course of development as well as in pathologic states. While most studies on white matter variability focus on analysis of tissue properties estimated from the diffusion data, e.g. fractional anisotropy, the shape variability of white matter fiber bundle is much less explored. In this paper, we present a set of tools for shape analysis of white matter fiber bundles, namely: (1) a concise geometric model of bundle shapes; (2) a method for bundle registration between subjects; (3) a method for deformation estimation. Our framework is useful for analysis of shape variability in white matter fiber bundles. We demonstrate our framework by applying our methods on two datasets: one consisting of data for 6 normal adults and another consisting of data for 38 normal children of age 11 days to 8.5 years. We suggest a robust and reproducible method to measure changes in the shape of white matter fiber bundles. We demonstrate how this method can be used to create a model to assess age-dependent changes in the shape of specific fiber bundles. We derive such models for an ensemble of white matter fiber bundles on our pediatric dataset and show that our results agree with normative human head and brain growth data. Creating these models for a large pediatric longitudinal dataset may improve understanding of both normal development and pathologic states and propose novel parameters for the examination of the pediatric brain. Copyright © 2017 Elsevier Inc. All rights reserved.
A strategy for improved computational efficiency of the method of anchored distributions
NASA Astrophysics Data System (ADS)
Over, Matthew William; Yang, Yarong; Chen, Xingyuan; Rubin, Yoram
2013-06-01
This paper proposes a strategy for improving the computational efficiency of model inversion using the method of anchored distributions (MAD) by "bundling" similar model parametrizations in the likelihood function. Inferring the likelihood function typically requires a large number of forward model (FM) simulations for each possible model parametrization; as a result, the process is quite expensive. To ease this prohibitive cost, we present an approximation for the likelihood function called bundling that relaxes the requirement for high quantities of FM simulations. This approximation redefines the conditional statement of the likelihood function as the probability of a set of similar model parametrizations "bundle" replicating field measurements, which we show is neither a model reduction nor a sampling approach to improving the computational efficiency of model inversion. To evaluate the effectiveness of these modifications, we compare the quality of predictions and computational cost of bundling relative to a baseline MAD inversion of 3-D flow and transport model parameters. Additionally, to aid understanding of the implementation we provide a tutorial for bundling in the form of a sample data set and script for the R statistical computing language. For our synthetic experiment, bundling achieved a 35% reduction in overall computational cost and had a limited negative impact on predicted probability distributions of the model parameters. Strategies for minimizing error in the bundling approximation, for enforcing similarity among the sets of model parametrizations, and for identifying convergence of the likelihood function are also presented.
Localized Statistics for DW-MRI Fiber Bundle Segmentation
Lankton, Shawn; Melonakos, John; Malcolm, James; Dambreville, Samuel; Tannenbaum, Allen
2013-01-01
We describe a method for segmenting neural fiber bundles in diffusion-weighted magnetic resonance images (DWMRI). As these bundles traverse the brain to connect regions, their local orientation of diffusion changes drastically, hence a constant global model is inaccurate. We propose a method to compute localized statistics on orientation information and use it to drive a variational active contour segmentation that accurately models the non-homogeneous orientation information present along the bundle. Initialized from a single fiber path, the proposed method proceeds to capture the entire bundle. We demonstrate results using the technique to segment the cingulum bundle and describe several extensions making the technique applicable to a wide range of tissues. PMID:23652079
Zhou, Qin; Ames, Peter; Parkinson, John S.
2009-01-01
SUMMARY To test the gearbox model of HAMP signaling in the E. coli serine receptor, Tsr, we generated a series of amino acid replacements at each residue of the AS1 and AS2 helices. The residues most critical for Tsr function defined hydrophobic packing faces consistent with a 4-helix bundle. Suppression patterns of helix lesions conformed to the the predicted packing layers in the bundle. Although the properties and patterns of most AS1 and AS2 lesions were consistent with both proposed gearbox structures, some mutational features specifically indicate the functional importance of an x-da bundle over an alternative a-d bundle. These genetic data suggest that HAMP signaling could simply involve changes in the stability of its x-da bundle. We propose that Tsr HAMP controls output signals by modulating destabilizing phase clashes between the AS2 helices and the adjoining kinase control helices. Our model further proposes that chemoeffectors regulate HAMP bundle stability through a control cable connection between the transmembrane segments and AS1 helices. Attractant stimuli, which cause inward piston displacements in chemoreceptors, should reduce cable tension, thereby stabilizing the HAMP bundle. This study shows how transmembrane signaling and HAMP input-output control could occur without the helix rotations central to the gearbox model. PMID:19656294
Bundling of elastic filaments induced by hydrodynamic interactions
NASA Astrophysics Data System (ADS)
Man, Yi; Page, William; Poole, Robert J.; Lauga, Eric
2017-12-01
Peritrichous bacteria swim in viscous fluids by rotating multiple helical flagellar filaments. As the bacterium swims forward, all its flagella rotate in synchrony behind the cell in a tight helical bundle. When the bacterium changes its direction, the flagellar filaments unbundle and randomly reorient the cell for a short period of time before returning to their bundled state and resuming swimming. This rapid bundling and unbundling is, at its heart, a mechanical process whereby hydrodynamic interactions balance with elasticity to determine the time-varying deformation of the filaments. Inspired by this biophysical problem, we present in this paper what is perhaps the simplest model of bundling whereby two or more straight elastic filaments immersed in a viscous fluid rotate about their centerline, inducing rotational flows which tend to bend the filaments around each other. We derive an integrodifferential equation governing the shape of the filaments resulting from mechanical balance in a viscous fluid at low Reynolds number. We show that such equation may be evaluated asymptotically analytically in the long-wavelength limit, leading to a local partial differential equation governed by a single dimensionless bundling number. A numerical study of the dynamics predicted by the model reveals the presence of two configuration instabilities with increasing bundling numbers: first to a crossing state where filaments touch at one point and then to a bundled state where filaments wrap along each other in a helical fashion. We also consider the case of multiple filaments and the unbundling dynamics. We next provide an intuitive physical model for the crossing instability and show that it may be used to predict analytically its threshold and adapted to address the transition to a bundling state. We then use a macroscale experimental implementation of the two-filament configuration in order to validate our theoretical predictions and obtain excellent agreement. This long-wavelength model of bundling will be applicable to other problems in biological physics and provides the groundwork for further, more realistic, models of flagellar bundling.
NASA Astrophysics Data System (ADS)
Hopmann, Ch.; Weber, M.; van Haag, J.; Schöngart, M.
2015-05-01
To improve the mechanical performance of polymeric parts, fibre reinforcement has established in industrial applications during the last decades. Next to the widely used Short Fibre-reinforced Thermoplastics (SFT) the use of Long Fibre-reinforced Thermoplastics (LFT) is increasingly growing. Especially for non-polar polymeric matrices like polypropylene (PP), longer fibres can significantly improve the mechanical performance. As with every kind of discontinuous fibre reinforcement the fibre orientations (FO) show a high impact on the mechanical properties. On the contrary to SFT where the local fibre length distribution (FLD) can be often neglected, for LFT the FLD show a high impact on the material's properties and has to be taken into account in equal measure to the FOD. Recently numerical models are available in commercial filling simulation software and allow predicting both the local FOD and FLD in LFT parts. The aim of this paper is to compare i.) the FOD results and ii) the FLD results from available orientation- and fibre length attrition-models to those obtained from experimental data. The investigations are conducted by the use of different injection moulded specimens made from long glass fibre reinforced PP. In order to determine the FOD, selected part sections are examined by means of Computed Tomographic (CT) analyses. The fully three dimensional measurement of the FOD is then performed by digital image processing using grey scale correlation. The FLD results are also obtained by using digital image processing after a thermal pyrolytic separation of the polymeric matrix from the fibres. Further the FOD and the FLD are predicted by using a reduced strain closure (RSC) as well as an anisotropic rotary diffusion - reduced strain closure model (ARD-RSC) and Phelps-Tucker fibre length attrition model implemented in the commercial filling software Moldflow, Autodesk Inc., San Rafael, CA, USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopmann, Ch.; Weber, M.; Haag, J. van
2015-05-22
To improve the mechanical performance of polymeric parts, fibre reinforcement has established in industrial applications during the last decades. Next to the widely used Short Fibre-reinforced Thermoplastics (SFT) the use of Long Fibre-reinforced Thermoplastics (LFT) is increasingly growing. Especially for non-polar polymeric matrices like polypropylene (PP), longer fibres can significantly improve the mechanical performance. As with every kind of discontinuous fibre reinforcement the fibre orientations (FO) show a high impact on the mechanical properties. On the contrary to SFT where the local fibre length distribution (FLD) can be often neglected, for LFT the FLD show a high impact on themore » material’s properties and has to be taken into account in equal measure to the FOD. Recently numerical models are available in commercial filling simulation software and allow predicting both the local FOD and FLD in LFT parts. The aim of this paper is to compare i.) the FOD results and ii) the FLD results from available orientation- and fibre length attrition-models to those obtained from experimental data. The investigations are conducted by the use of different injection moulded specimens made from long glass fibre reinforced PP. In order to determine the FOD, selected part sections are examined by means of Computed Tomographic (CT) analyses. The fully three dimensional measurement of the FOD is then performed by digital image processing using grey scale correlation. The FLD results are also obtained by using digital image processing after a thermal pyrolytic separation of the polymeric matrix from the fibres. Further the FOD and the FLD are predicted by using a reduced strain closure (RSC) as well as an anisotropic rotary diffusion - reduced strain closure model (ARD-RSC) and Phelps-Tucker fibre length attrition model implemented in the commercial filling software Moldflow, Autodesk Inc., San Rafael, CA, USA.« less
Improvements to Wire Bundle Thermal Modeling for Ampacity Determination
NASA Technical Reports Server (NTRS)
Rickman, Steve L.; Iannello, Christopher J.; Shariff, Khadijah
2017-01-01
Determining current carrying capacity (ampacity) of wire bundles in aerospace vehicles is critical not only to safety but also to efficient design. Published standards provide guidance on determining wire bundle ampacity but offer little flexibility for configurations where wire bundles of mixed gauges and currents are employed with varying external insulation jacket surface properties. Thermal modeling has been employed in an attempt to develop techniques to assist in ampacity determination for these complex configurations. Previous developments allowed analysis of wire bundle configurations but was constrained to configurations comprised of less than 50 elements. Additionally, for vacuum analyses, configurations with very low emittance external jackets suffered from numerical instability in the solution. A new thermal modeler is presented allowing for larger configurations and is not constrained for low bundle infrared emissivity calculations. Formulation of key internal radiation and interface conductance parameters is discussed including the effects of temperature and air pressure on wire to wire thermal conductance. Test cases comparing model-predicted ampacity and that calculated from standards documents are presented.
Boos, A
2000-01-01
Uterine biopsies were collected at cycle days 1 (oestrous), 8, 15 and 19 in six cows. Unfixed cryostat sections were used to immunolocalise collagen types I, III, IV and VI by an indirect FITC method. Collagen I was sparsely found in the endometrium where it formed a fine meshwork of thin fibres directly below the surface epithelium, clearly visible only at cycle days 8 and 15. Collagen III formed the bulk of connective tissue fibres and was arranged in fine aggregates within the superficial endometrial stroma, while in the deeper areas it consisted of many thick fibre bundles. Collagen IV was found in basement membranes underlying all endometrial epithelia. Furthermore, it surrounded smooth muscle cells of blood vessels. A few single fibrils also stained positively within the endometrial stroma, more numerous at cycle days 1 and 19 as compared to days 8 and 15. Collagen VI formed a mesh of fine and pericellularly situated fibrils within the endometrial stroma. The contribution of the collagen types studied to the connective tissue of caruncles, blood vessels, lymph follicles, and myometrium is also reported. The results of the present study indicate that the connective tissue of the bovine uterine wall is composed of different collagen types, which exhibit a characteristic distribution pattern each. The day of cycle may influence amounts and organisation of collagen types I and IV as demonstrated here at the light-microscopical level. Copyright 2000 S. Karger AG, Basel
NASA Astrophysics Data System (ADS)
Poppett, Claire; Allington-Smith, Jeremy
2010-07-01
We investigate the FRD performance of a 150 μm core fibre for its suitability to the SIDE project.1 This work builds on our previous work2 (Paper 1) where we examined the dependence of FRD on length in fibres with a core size of 100 μm and proposed a new multi-component model to explain the results. In order to predict the FRD characteristics of a fibre, the most commonly used model is an adaptation of the Gloge8model by Carrasco and Parry3 which quantifies the the number of scattering defects within an optical bre using a single parameter, d0. The model predicts many trends which are seen experimentally, for example, a decrease in FRD as core diameter increases, and also as wavelength increases. However the model also predicts a strong dependence on FRD with length that is not seen experimentally. By adapting the single fibre model to include a second fibre, we can quantify the amount of FRD due to stress caused by the method of termination. By fitting the model to experimental data we find that polishing the fibre causes a small increase in stress to be induced in the end of the fibre compared to a simple cleave technique.
Collagen fibril arrangement and size distribution in monkey oral mucosa
OTTANI, V.; FRANCHI, M.; DE PASQUALE, V.; LEONARDI, L.; MOROCUTTI, M.; RUGGERI, A.
1998-01-01
Collagen fibre organisation and fibril size were studied in the buccal gingival and hard palate mucosa of Macacus rhesus monkey. Light and electron microscopy analysis showed connective papillae exhibiting a similar inner structure in the different areas examined, but varying in distribution, shape and size. Moving from the deep to surface layers of the buccal gingival mucosa (free and attached portions), large collagen fibril bundles became smaller and progressively more wavy with decreasing collagen fibril diameter. This gradual diameter decrease did not occur in the hard palate mucosa (free portion, rugae and interrugal regions) where the fibril diameter remained constant. A link between collagen fibril diameter and mechanical function is discussed. PMID:9688498
The effect of aspect ratio on adhesion and stiffness for soft elastic fibres
Aksak, Burak; Hui, Chung-Yuen; Sitti, Metin
2011-01-01
The effect of aspect ratio on the pull-off stress and stiffness of soft elastic fibres is studied using elasticity and numerical analysis. The adhesive interface between a soft fibre and a smooth rigid surface is modelled using the Dugdale–Barenblatt model. Numerical simulations show that, while pull-off stress increases with decreasing aspect ratio, fibres get stiffer. Also, for sufficiently low aspect ratio fibres, failure occurs via the growth of internal cracks and pull-off stress approaches the intrinsic adhesive strength. Experiments carried out with various aspect ratio polyurethane elastomer fibres are consistent with the numerical simulations. PMID:21227962
Delay Tolerant Networking - Bundle Protocol Simulation
NASA Technical Reports Server (NTRS)
SeGui, John; Jenning, Esther
2006-01-01
In this paper, we report on the addition of MACHETE models needed to support DTN, namely: the Bundle Protocol (BP) model. To illustrate the useof MACHETE with the additional DTN model, we provide an example simulation to benchmark its performance. We demonstrate the use of the DTN protocol and discuss statistics gathered concerning the total time needed to simulate numerous bundle transmissions.
NASA Astrophysics Data System (ADS)
Chrusciel, P. T.
2006-06-01
Most of us sometimes have to face a student asking: 'What do I need to get started on this'. (In my case 'this' would typically be a topic in general relativity.) After thinking about it for quite a while, and consulting candidate texts again and again, a few days later I usually end up saying: read this chapter in book I (but without going too much detail), then that chapter in book II (but ignore all those comments), then the first few sections of this review paper (but do not try to work out equations NN to NNN), and then come back to see me. In the unlikely event that the student comes back without changing the topic, there follows quite a bit of explaining on a blackboard over the following weeks. From now on I will say: get acquainted with the material covered by this book. As far as Isham's book is concerned, 'this' in the student's question above can stand for any topic in theoretical physics which touches upon differential geometry (and I can only think of very few which do not). Said plainly: this book contains most of the introductory material necessary to get started in general relativity, or those branches of mathematical physics which require differential geometry. A student who has mastered the notions presented in the book will have a solid basis to continue into specialized topics. I am not aware of any other book which would be as useful as this one in terms of the spectrum of topics covered, stopping at the right place to get sufficient introductory insight. According to the publisher, these lecture notes are the content of an introductory course on differential geometry which is taken by first-year theoretical physics PhD students, or by students attending the one-year MSc course 'Quantum Fields and Fundamental Forces' at Imperial College, London. The volume is divided into six chapters: An Introduction to Topology Differential Manifolds Vector Fields and n-Forms Lie Groups Fibre Bundles Connections in a Bundle. It is a sad reflection on current academic curriculi that Chapter I is needed at all. This is in fact the chapter that I liked least in the book. The presentation has the right balance between formal definitions and introductory comments to make the book accessible for self-study. Most definitions are followed by excellent examples, though this is not uniform: more examples would have been helpful in several places, both in case of self-study and to make life easier for someone lecturing from this book. The most notable lacuna is (essentially) the lack of exercises: surely there would have been many worked out during the course at Imperial, and it is a pity that they have not been included in the book. I very much hope that there will be a further edition with lots of examples and exercises (note that the latter can also play the former role), making this work even more useful. The first chapter of the book is a crash course on topology, covering metric spaces, orders, lattices, convergence, compactness, as well as separation axioms. The introduction of filters might be seen as unnecessarily advanced, in view of a few notable gaps: the first of those concerns connectedness, which lies at the heart of many proofs, and which is only mentioned in a footnote on page 61; it deserves a small subsection of its own. The second gap is paracompactness, related to existence of partitions of unity, which is a key to several constructions on manifolds; again the notion only appears as a footnote on page 231. A short discussion of the Kuratowski Zorn lemma might have been useful. Fortunately, the students that are likely to come to my office will already be familiar with the material in this chapter (and more, as far as topology is concerned), so this is not really an issue from my point of view. On the other hand, it could be one for somebody lecturing from this book. In the two following chapters the notion of a manifold is introduced, with a careful discussion of tangent space, vector fields and their flows. Covectors, exterior differentiation, and tensors are introduced. This brings me again to the notion of paracompactness: some authors choose to add the requirement of paracompactness to the definition of a manifold, and I am very much in favour of such an approach, as then various pathologies are avoided. The fact that this has not been done cannot be seen as a criticism of this book, as several other textbooks do not make this assumption, but this would be my suggestion to anyone lecturing on the topic. I did not like the notation A for exterior algebra (why not use Λ like many authors?). Chapter 4 constitutes an excellent introduction to Lie groups, and algebras. This is my favourite chapter in the book. This subject is rarely presented at an elementary level, and I highly recommend the book to anyone looking for a concise introduction. (As a very minor point, I did not like the notation [AB] for the commutator (what's wrong with [A,B]?) Chapter 5 discusses fibre bundles. I did not like the definition of a fibre bundle which does not assume local triviality, with all fibres modelled on one single space. This extension of the notion might be useful in some applications, but it is certainly not standard. I am strongly against using non-standard definitions in introductory texts, as this leads to confusions and misunderstandings. Definitions are of course a matter of convention, but they provide a means of communication, and communication is broken if one starts changing those definitions arbitrarily. Apart from that, this is again a useful introduction to various bundles, including principal ones, and those associated to the latter. Chapter 6 is a logical continuation into the world of connections, and parallel transport. I hope to have made it clear that my critical remarks are secondary, and that this is a very useful and readable book overall, a copy of which (or more) should be on the shelves of the library of any institution with graduate students in mathematics or physics. I would be delighted to see a new, extended, edition with the definition of fibre bundles streamlined, and more examples included.
Palit, Arnab; Bhudia, Sunil K; Arvanitis, Theodoros N; Turley, Glen A; Williams, Mark A
2015-02-26
Majority of heart failure patients who suffer from diastolic dysfunction retain normal systolic pump action. The dysfunction remodels the myocardial fibre structure of left-ventricle (LV), changing its regular diastolic behaviour. Existing LV diastolic models ignored the effects of right-ventricular (RV) deformation, resulting in inaccurate strain analysis of LV wall during diastole. This paper, for the first time, proposes a numerical approach to investigate the effect of fibre-angle distribution and RV deformation on LV diastolic mechanics. A finite element modelling of LV passive inflation was carried out, using structure-based orthotropic constitutive law. Rule-based fibre architecture was assigned on a bi-ventricular (BV) geometry constructed from non-invasive imaging of human heart. The effect of RV deformation on LV diastolic mechanics was investigated by comparing the results predicted by BV and single LV model constructed from the same image data. Results indicated an important influence of RV deformation which led to additional LV passive inflation and increase of average fibre and sheet stress-strain in LV wall during diastole. Sensitivity of LV passive mechanics to the changes in the fibre distribution was also examined. The study revealed that LV diastolic volume increased when fibres were aligned more towards LV longitudinal axis. Changes in fibre angle distribution significantly altered fibre stress-strain distribution of LV wall. The simulation results strongly suggest that patient-specific fibre structure and RV deformation play very important roles in LV diastolic mechanics and should be accounted for in computational modelling for improved understanding of the LV mechanics under normal and pathological conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Structural and functional characteristics of the thoracolumbar multifidus muscle in horses.
García Liñeiro, J A; Graziotti, G H; Rodríguez Menéndez, J M; Ríos, C M; Affricano, N O; Victorica, C L
2017-03-01
The multifidus muscle fascicles of horses attach to vertebral spinous processes after crossing between one to six metameres. The fascicles within one or two metameres are difficult to distinguish in horses. A vertebral motion segment is anatomically formed by two adjacent vertebrae and the interposed soft tissue structures, and excessive mobility of a vertebral motion segment frequently causes osteoarthropathies in sport horses. The importance of the equine multifidus muscle as a vertebral motion segment stabilizer has been demonstrated; however, there is scant documentation of the structure and function of this muscle. By studying six sport horses postmortem, the normalized muscle fibre lengths of the the multifidus muscle attached to the thoracic (T)4, T9, T12, T17 and lumbar (L)3 vertebral motion segments were determined and the relative areas occupied by fibre types I, IIA and IIX were measured in the same muscles after immunohistochemical typying. The values for the normalized muscle fibre lengths and the relative areas were analysed as completely randomized blocks using an anova (P ≤ 0.05). The vertebral motion segments of the T4 vertebra include multifidus bundles extending between two and eight metameres; the vertebral motion segments of the T9, T12, T17 and L3 vertebrae contain fascicles extending between two and four metameres The muscle fibres with high normalized lengths that insert into the T4 (three and eight metameres) vertebral motion segment tend to have smaller physiological cross-sectional areas, indicating their diminished capacity to generate isometric force. In contrast, the significantly decreased normalized muscle fibre lengths and the increased physiological cross-sectional areas of the fascicles of three metameres with insertions on T9, T17, T12, L3 and the fascicles of four metameres with insertions on L3 increase their capacities to generate isometric muscle force and neutralize excessive movements of the vertebral segments with great mobility. There were no significant differences in the values of relative areas occupied by fibre types I, IIA and IIX. In considering the relative areas occupied by the fibre types in the multifidus muscle fascicles attached to each vertebral motion segment examined, the relative area occupied by the type I fibres was found to be significantly higher in the T4 vertebral motion segment than in the other segments. It can be concluded that the equine multifidus muscle in horses is an immunohistochemically homogeneous muscle with various architectural designs that have functional significance according to the vertebral motion segments considered. The results obtained in this study can serve as a basis for future research aimed at understanding the posture and dynamics of the equine spine. © 2016 Anatomical Society.
Calculation of Non-Bonded Forces Due to Sliding of Bundled Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Frankland, S. J. V.; Bandorawalla, T.; Gates, T. S.
2003-01-01
An important consideration for load transfer in bundles of single-walled carbon nanotubes is the nonbonded (van der Waals) forces between the nanotubes and their effect on axial sliding of the nanotubes relative to each other. In this research, the non-bonded forces in a bundle of seven hexagonally packed (10,10) single-walled carbon nanotubes are represented as an axial force applied to the central nanotube. A simple model, based on momentum balance, is developed to describe the velocity response of the central nanotube to the applied force. The model is verified by comparing its velocity predictions with molecular dynamics simulations that were performed on the bundle with different force histories applied to the central nanotube. The model was found to quantitatively predict the nanotube velocities obtained from the molecular dynamics simulations. Both the model and the simulations predict a threshold force at which the nanotube releases from the bundle. This force converts to a shear yield strength of 10.5-11.0 MPa for (10,10) nanotubes in a bundle.
Colour-producing β-keratin nanofibres in blue penguin (Eudyptula minor) feathers
D'Alba, Liliana; Saranathan, Vinodkumar; Clarke, Julia A.; Vinther, Jakob A.; Prum, Richard O.; Shawkey, Matthew D.
2011-01-01
The colours of living organisms are produced by the differential absorption of light by pigments (e.g. carotenoids, melanins) and/or by the physical interactions of light with biological nanostructures, referred to as structural colours. Only two fundamental morphologies of non-iridescent nanostructures are known in feathers, and recent work has proposed that they self-assemble by intracellular phase separation processes. Here, we report a new biophotonic nanostructure in the non-iridescent blue feather barbs of blue penguins (Eudyptula minor) composed of parallel β-keratin nanofibres organized into densely packed bundles. Synchrotron small angle X-ray scattering and two-dimensional Fourier analysis of electron micrographs of the barb nanostructure revealed short-range order in the organization of fibres at the appropriate size scale needed to produce the observed colour by coherent scattering. These two-dimensional quasi-ordered penguin nanostructures are convergent with similar arrays of parallel collagen fibres in avian and mammalian skin, but constitute a novel morphology for feathers. The identification of a new class of β-keratin nanostructures adds significantly to the known mechanisms of colour production in birds and suggests additional complexity in their self-assembly. PMID:21307042
Colour-producing [beta]-keratin nanofibres in blue penguin (Eudyptula minor) feathers
DOE Office of Scientific and Technical Information (OSTI.GOV)
D; Alba, Liliana; Saranathan, Vinodkumar
2012-03-26
The colours of living organisms are produced by the differential absorption of light by pigments (e.g. carotenoids, melanins) and/or by the physical interactions of light with biological nanostructures, referred to as structural colours. Only two fundamental morphologies of non-iridescent nanostructures are known in feathers, and recent work has proposed that they self-assemble by intracellular phase separation processes. Here, we report a new biophotonic nanostructure in the non-iridescent blue feather barbs of blue penguins (Eudyptula minor) composed of parallel {beta}-keratin nanofibres organized into densely packed bundles. Synchrotron small angle X-ray scattering and two-dimensional Fourier analysis of electron micrographs of the barbmore » nanostructure revealed short-range order in the organization of fibres at the appropriate size scale needed to produce the observed colour by coherent scattering. These two-dimensional quasi-ordered penguin nanostructures are convergent with similar arrays of parallel collagen fibres in avian and mammalian skin, but constitute a novel morphology for feathers. The identification of a new class of {beta}-keratin nanostructures adds significantly to the known mechanisms of colour production in birds and suggests additional complexity in their self-assembly.« less
Monitoring tissue formation and organization of engineered tendon by optical coherence tomography
NASA Astrophysics Data System (ADS)
Bagnaninchi, P. O.; Yang, Y.; Maffulli, N.; Wang, R. K.; El Haj, A.
2006-02-01
The uniaxial orientation and bundle formation of collagen fibres determine the mechanical properties of tendons. Thus the particular challenge of tendon tissue engineering is to build the tissue with a highly organized structure of collagen fibres. Ultimately the engineered construct will be used as autologous grafts in tendon surgery, withstanding physiological loading. We grew pig tenocytes in porous chitosan scaffolds with multiple microchannels of 250-500 μm. The cell proliferation and production of extra-cellular matrix (ECM) within the scaffolds have been successfully monitored by Optical Coherence Tomography (OCT), a bench-top OCT system equipped with a broadband light source centred at 1300 nm. Under sterile condition, the measurements were performed on-line and in a non-destructive manner. In addition, a novel method based on OCT imaging, which calculates the occupation ratio of the microchannel derived from the scattered intensity has been developed. It is confirmed that the occupation ratio is correlated to cell proliferation and ECM production in the scaffolds. Thus this method has been utilised to assess the effect of different culture conditions on the tissue formation. The use of a perfusion bioreactor has resulted in a significantly (p<1e -3) higher cell proliferation and matrix production.
3D finite element models of shoulder muscles for computing lines of actions and moment arms.
Webb, Joshua D; Blemker, Silvia S; Delp, Scott L
2014-01-01
Accurate representation of musculoskeletal geometry is needed to characterise the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account for the large attachment areas, muscle-muscle interactions and complex muscle fibre trajectories typical of shoulder muscles. To better represent shoulder muscle geometry, we developed 3D finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fibre paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fibre moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the 3D model of supraspinatus showed that the anterior fibres provide substantial internal rotation while the posterior fibres act as external rotators. Including the effects of large attachment regions and 3D mechanical interactions of muscle fibres constrains muscle motion, generates more realistic muscle paths and allows deeper analysis of shoulder muscle function.
NASA Astrophysics Data System (ADS)
Deeb, R.; Kulasegaram, S.; Karihaloo, B. L.
2014-12-01
In part I of this two-part paper, a three-dimensional Lagrangian smooth particle hydrodynamics method has been used to model the flow of self-compacting concrete (SCC) with or without short steel fibres in the slump cone test. The constitutive behaviour of this non-Newtonian viscous fluid is described by a Bingham-type model. The 3D simulation of SCC without fibres is focused on the distribution of large aggregates (larger than or equal to 8 mm) during the flow. The simulation of self-compacting high- and ultra-high- performance concrete containing short steel fibres is focused on the distribution of fibres and their orientation during the flow. The simulation results show that the fibres and/or heavier aggregates do not precipitate but remain homogeneously distributed in the mix throughout the flow.
Photothermal modeling of thulium fibre laser-tissue interactions
NASA Astrophysics Data System (ADS)
Warnaby, Catherine E.; Coleman, Daniel J.; King, Terence A.
2003-10-01
A one-dimensional finite difference model has been used to investigate the temperature distribution within thulium fibre laser-irradiated tissue. Temperature-time and temperature-depth profiles are presented for various laser stimulus parameters in the 2 micron region. These current calculations are aimed at determining theoretical temperature distributions in the application of relatively low power fibre lasers for thermal stimulation of cutaneous nerves in human pain processing. Theoretical skin surface temperatures are compared with those from thermal camera measurements during thulium fibre laser irradiation. The effectiveness of the thulium fibre laser for thermally stimulating cutaneous nerves is confirmed.
ERIC Educational Resources Information Center
Ong, Yoke Mooi; Williams, Julian; Lamprianou, Iasonas
2013-01-01
Researchers interested in exploring substantive group differences are increasingly attending to bundles of items (or testlets): the aim is to understand how gender differences, for instance, are explained by differential performances on different types or bundles of items, hence differential bundle functioning (DBF). Some previous work has…
NASA Astrophysics Data System (ADS)
Limbach, H. J.; Sayar, M.; Holm, C.
2004-06-01
Using extensive Molecular Dynamics simulations we study the behavior of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction, and the bundle size. We show that for the parameter range relevant for sulfonated poly-para-phenylenes (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting to the possibility that the size of DNA aggregates is under certain circumstances thermodynamically limited.
BÄSsler; BÜSchges; Meditz; BÄSsler
1996-01-01
In orthopteran insects, neural networks for joint control exhibit different characteristics due to behavioural specializations. We investigated whether these differences are generated purely by the neuronal networks, or whether characteristics of the muscles or joint architecture (musclejoint system) are also involved in these behavioural specializations. We compared the properties of the muscle system moving the femurtibia joint of the middle and hindleg of three species, Carausius morosus, Cuniculina impigra and Locusta migratoria. Four aspects were analysed for the tibial extensor muscle: (i) the frequency-dependence of motoneuronal activity in response to sinusoidal stimulation of the femoral chordotonal organ (fCO), (ii) the muscle structure, (iii) the innervation pattern of the muscle and (iv) the histochemical properties of the muscle fibres. These aspects were compared with the filter characteristics of the open-loop femurtibia control system and of the musclejoint system involved. Whereas in both phasmid species (Carausius morosus and Cuniculina impigra) the motoneuronal activity steadily increases with sinusoidal stimulation of the fCO in the frequency range 0.015 Hz, in Locusta migratoria there is a decrease in motoneuronal activity between 0.01 and 0.3 Hz. The muscle structure is basically similar in all three species, as the number of singly innervated muscle fibres (supplied by the fast extensor tibiae motor neurone, FETi) decreases from proximal to distal. The number of triply innervated fibres supplied by the FETi, the slow extensor tibiae (SETi) and the common inhibitor 1 (CI1) is maximal in the middle of the muscle, and the number of dually innervated fibres (supplied by SETi, CI1) increases from proximal to distal. Differences between the locust and the two phasmid species exist in the distal portion of the muscle. The phasmid extensor tibiae muscle contains a morphologically distinct bundle of muscle fibres, not present in the locust, which is mostly dually innervated and which is larger in Cuniculina impigra. Similar results were obtained for the histochemical characterisation of the muscle fibres as revealed from their staining for myofibrillar ATPase activity. The number of histochemically identified fast fibres decreased from proximal to distal, while the number of slow fibres increased. In Carausius morosus and Locusta migratoria, the percentage of slow fibres increased by up to 6070 % at the distal end, while this increase was to almost 100 % in Cuniculina impigra. Apparently, the larger this distal region and the higher the percentage of slow, dually innervated fibres in it, the lower is the upper corner frequency (the stimulus frequency at which the joint control system produces a movement with 70 % of its maximal response amplitude) of the musclejoint system. In summary, it appears that the upper corner frequency of the open-loop system in Locusta migratoria (<0.05 Hz) results at least in part from properties of the neuronal joint control network, but in Carausius morosus (0.51.0 Hz) and Cuniculina impigra (0.10.2 Hz) it results from the upper corner frequency of the musclejoint system.
NASA Astrophysics Data System (ADS)
Allington-Smith, Jeremy; Dunlop, Colin; Lemke, Ulrike; Murray, Graham
2013-12-01
The performance of highly multiplexed spectrographs is limited by focal ratio degradation (FRD) in the optical fibres. It has already been shown that this is caused mainly by processes concentrated around the mounting points at the ends of the fibres. We use the thickness of rings produced in the far-field when a fibre is illuminated by a collimated beam, to estimate the size of the region where the FRD is generated. This requires the development of a new model, using features of existing ray-tracing and wave-based models, which fits existing data very well. The results suggest that the amount of FRD is primarily determined by the length of fibre bonded into the supporting ferrule. We point out the implications for the production of future fibre systems.
A macroscopic scale model of bacterial flagellar bundling
NASA Astrophysics Data System (ADS)
Kim, Munju; Bird, James C.; van Parys, Annemarie J.; Breuer, Kenneth S.; Powers, Thomas R.
2003-12-01
Escherichia coli and other bacteria use rotating helical filaments to swim. Each cell typically has about four filaments, which bundle or disperse depending on the sense of motor rotation. To study the bundling process, we built a macroscopic scale model consisting of stepper motor-driven polymer helices in a tank filled with a high-viscosity silicone oil. The Reynolds number, the ratio of viscous to elastic stresses, and the helix geometry of our experimental model approximately match the corresponding quantities of the full-scale E. coli cells. We analyze digital video images of the rotating helices to show that the initial rate of bundling is proportional to the motor frequency and is independent of the characteristic relaxation time of the filament. We also determine which combinations of helix handedness and sense of motor rotation lead to bundling.
Yamato, H; Hori, H; Tanaka, I; Higashi, T; Morimoto, Y; Kido, M
1994-01-01
Male Wistar rats were exposed to aluminium silicate ceramic fibres by inhalation to study pulmonary deposition, clearance, and dissolution of the fibres. Rats were killed at one day, one month, three months, and six months after the termination of exposure. After exposure, fibres greater than 50 microns in length were seen with a scanning electron microscope in the alveolar region of the lung. Fibres were recovered from the lungs with a low temperature ashing technique and their number, diameter, and length were measured by scanning electron microscopy. The number of fibres remaining in the lungs declined exponentially with time after exposure and their silicon content also fell. The geometric median diameter of fibres decreased linearly with time. By six months after exposure, the surface of fibres recovered from the lungs had an eroded appearance. The results suggest that ceramic fibres are physically cleared from the lung and that they show signs of dissolution. Finally, the results were used to develop a theoretical model of fibre dissolution that gives a satisfactory fit to the experimental data. Images Figure 1 Figure 2 Figure 5 PMID:8199672
NASA Astrophysics Data System (ADS)
Zhang, Cheng-Cheng; Zhu, Hong-Hu; Shi, Bin
2016-11-01
Recently the distributed fibre optic strain sensing (DFOSS) technique has been applied to monitor deformations of various earth structures. However, the reliability of soil deformation measurements remains unclear. Here we present an integrated DFOSS- and photogrammetry-based test study on the deformation behaviour of a soil foundation model to highlight the role of strain sensing fibre-soil interface in DFOSS-based geotechnical monitoring. Then we investigate how the fibre-soil interfacial behaviour is influenced by environmental changes, and how the strain distribution along the fibre evolves during progressive interface failure. We observe that the fibre-soil interfacial bond is tightened and the measurement range of the fibre is extended under high densities or low water contents of soil. The plastic zone gradually occupies the whole fibre length when the soil deformation accumulates. Consequently, we derive a theoretical model to simulate the fibre-soil interfacial behaviour throughout the progressive failure process, which accords well with the experimental results. On this basis, we further propose that the reliability of measured strain can be determined by estimating the stress state of the fibre-soil interface. These findings may have important implications for interpreting and evaluating fibre optic strain measurements, and implementing reliable DFOSS-based geotechnical instrumentation.
Anssari-Benam, Afshin; Tseng, Yuan-Tsan; Bucchi, Andrea
2018-05-26
This paper presents a continuum-based transverse isotropic model incorporating rate-dependency and fibre dispersion, applied to the planar biaxial deformation of aortic valve (AV) specimens under various stretch rates. The rate dependency of the mechanical behaviour of the AV tissue under biaxial deformation, the (pseudo-) invariants of the right Cauchy-Green deformation-rate tensor Ċ associated with fibre dispersion, and a new fibre orientation density function motivated by fibre kinematics are presented for the first time. It is shown that the model captures the experimentally observed deformation of the specimens, and characterises a shear-thinning behaviour associated with the dissipative (viscous) kinematics of the matrix and the fibres. The application of the model for predicting the deformation behaviour of the AV under physiological rates is illustrated and an example of the predicted σ-λ curves is presented. While the development of the model was principally motivated by the AV biomechanics requisites, the comprehensive theoretical approach employed in the study renders the model suitable for application to other fibrous soft tissues that possess similar rate-dependent and structural attributes. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Geometric decompositions of collective motion
NASA Astrophysics Data System (ADS)
Mischiati, Matteo; Krishnaprasad, P. S.
2017-04-01
Collective motion in nature is a captivating phenomenon. Revealing the underlying mechanisms, which are of biological and theoretical interest, will require empirical data, modelling and analysis techniques. Here, we contribute a geometric viewpoint, yielding a novel method of analysing movement. Snapshots of collective motion are portrayed as tangent vectors on configuration space, with length determined by the total kinetic energy. Using the geometry of fibre bundles and connections, this portrait is split into orthogonal components each tangential to a lower dimensional manifold derived from configuration space. The resulting decomposition, when interleaved with classical shape space construction, is categorized into a family of kinematic modes-including rigid translations, rigid rotations, inertia tensor transformations, expansions and compressions. Snapshots of empirical data from natural collectives can be allocated to these modes and weighted by fractions of total kinetic energy. Such quantitative measures can provide insight into the variation of the driving goals of a collective, as illustrated by applying these methods to a publicly available dataset of pigeon flocking. The geometric framework may also be profitably employed in the control of artificial systems of interacting agents such as robots.
Geometric decompositions of collective motion
Krishnaprasad, P. S.
2017-01-01
Collective motion in nature is a captivating phenomenon. Revealing the underlying mechanisms, which are of biological and theoretical interest, will require empirical data, modelling and analysis techniques. Here, we contribute a geometric viewpoint, yielding a novel method of analysing movement. Snapshots of collective motion are portrayed as tangent vectors on configuration space, with length determined by the total kinetic energy. Using the geometry of fibre bundles and connections, this portrait is split into orthogonal components each tangential to a lower dimensional manifold derived from configuration space. The resulting decomposition, when interleaved with classical shape space construction, is categorized into a family of kinematic modes—including rigid translations, rigid rotations, inertia tensor transformations, expansions and compressions. Snapshots of empirical data from natural collectives can be allocated to these modes and weighted by fractions of total kinetic energy. Such quantitative measures can provide insight into the variation of the driving goals of a collective, as illustrated by applying these methods to a publicly available dataset of pigeon flocking. The geometric framework may also be profitably employed in the control of artificial systems of interacting agents such as robots. PMID:28484319
Morphology and innervation pattern of the feline urogenital junction.
Wrobel, K H; Gürtler, A
2004-12-01
The feline urogenital junction is situated between the extratesticular rete and the spacious initial segments of the efferent ductules. The rete epithelium is cuboidal to low columnar. The rete cells forming the junction rest on a wavy basal lamina, display deep mutual invaginations, possess central nuclei with several infoldings and form a distinct border with the columnar epithelial cells of the initial segments of the ductuli efferentes. The epithelium of the initial segments is composed of ciliated cells and non-ciliated principal cells. The latter are the dominating type and characterized by an apical brush-border and a supranuclear endocytotic apparatus. The stroma of the extratesticular rete contains an abundance of collagen whereas contractile cells are here generally absent. In contrast, the initial segments of the efferent ductules are surrounded by elastic fibres and a layer of contractile cells. All nerves for the feline urogenital junction come from the nervus spermaticus superior. In the epididymal head, small nerve bundles deviate into the septa between the ductules. Single fibres establish a dense network within the muscular coat of the ductuli. At the transition to the extratesticular rete, this network ends abruptly. Nerve fibres in the confines of the rete are associated with blood vessels or proceed to the testicular interior, but establish no relationships with the rete epithelium or the myofibroblasts of the mediastinum. The nervous network in the walls of the efferent ductules and their initial segments is not only composed of sympathetic but also parasympathetic, non-myelinated fibres. Particularly noteworthy is the abundance of calcitonin gene-related peptide (CGRP)- and substance P (SP)-containing axons around the initial segments. Both neuroproteins are consistent markers for sensory neurones. Taken together, it can be assumed that the entry of seminal fluid and spermatozoa into the efferent ductules is controlled by a regulatory nervous chain provided with afferent and efferent components.
The anatomy of the perineal body in relation to abdominoperineal excision for low rectal cancer.
Kraima, A C; West, N P; Treanor, D; Magee, D; Roberts, N; van de Velde, C J H; DeRuiter, M C; Quirke, P; Rutten, H J T
2016-07-01
Dissection of the perineal body (PB) during abdominoperineal excision (APE) for low rectal cancer is often difficult due to the lack of a natural plane of dissection. Understanding the PB and its relation to the anorectum is essential to permit safe dissection during the perineal phase of the operation and avoid damage to the anorectum and urogenital organs. This study describes the anatomy and histology of the PB relevant to APE. Six human adult cadaver pelvic exenteration specimens (three male, three female) from the Leeds GIFT Research Tissue Programme were studied. Paraffin-embedded mega-blocks were produced and serially sectioned at 50- and 250-μm intervals. Sections were stained by immunohistochemistry to show collagen, elastin and smooth muscle. The PB was cylindrically shaped in the male specimens and wedge-shaped in the female ones. Although centrally located between the anal and urogenital triangles, it was nearly completely formed by muscle fibres derived from the rectal muscularis propria. Thick bundles of smooth muscle, mostly arising from the longitudinal muscle, inserted into the PB and levator ani muscle (LAM). The recto-urethralis muscle originated from the PB and separated the anterolateral PB from the urogenital organs. Smooth muscle fibres derived from the rectal muscularis propria extend into the PB and LAM and appear to fix the anorectum. Dissection of the PB during APE is safe only when the smooth muscle fibres that extend into the PB are divided. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.
[Asbestos risk in the textile industry: braking systems on machinery used until the 1990's].
Chiappino, G; Pellissetti, D; Moretto, O; Picchi, Ornella
2005-01-01
We recently described asbestos risk in the non-asbestos textile industry as the result of fibre dispersion from ceilings, pipe insulation and machines. The widespread use of brakes with asbestos linings on the machines as well as other functional details were considered for a proper evaluation of their role in producing atmospheric pollution All the information was collected on the basis of the personal technical experience of two of the Authors and by direct observation of the machines. All the textile machines (ring spinning, twisting, warping, winding, looms) used until the 1990's were without exception equipped with asbestos-lined mechanical brakes. The heavy action required produced relatively rapid wear of the linings and the dust produced was spread into the atmosphere by the continuous action of the "travelling blowing cleaners" and by the daily cleaning of the machines using compressed air at the end of the shift: violent air blowing undoubtedly caused redispersion of the fine dust from the brakes and also acted as a mechanical grinder on the bundles that sedimented on the machines from the ceilings and pipes, producing more ultrathin respirable fibres. the contribution of textile machinery to atmospheric pollution by asbestos fibres was significant and due both to the widespread use of brakes with asbestos-containing materials and to the continuous action on the machines of compressed air blowers. Asbestos pollution was certainly high in all the factories so that in the near future still further mesothelioma cases among ex-workers are to be expected.
Hennecke, Kathleen; Redeker, Joern; Kuhbier, Joern W.; Strauss, Sarah; Allmeling, Christina; Kasper, Cornelia; Reimers, Kerstin; Vogt, Peter M.
2013-01-01
Repair success for injuries to the flexor tendon in the hand is often limited by the in vivo behaviour of the suture used for repair. Common problems associated with the choice of suture material include increased risk of infection, foreign body reactions, and inappropriate mechanical responses, particularly decreases in mechanical properties over time. Improved suture materials are therefore needed. As high-performance materials with excellent tensile strength, spider silk fibres are an extremely promising candidate for use in surgical sutures. However, the mechanical behaviour of sutures comprised of individual silk fibres braided together has not been thoroughly investigated. In the present study, we characterise the maximum tensile strength, stress, strain, elastic modulus, and fatigue response of silk sutures produced using different braiding methods to investigate the influence of braiding on the tensile properties of the sutures. The mechanical properties of conventional surgical sutures are also characterised to assess whether silk offers any advantages over conventional suture materials. The results demonstrate that braiding single spider silk fibres together produces strong sutures with excellent fatigue behaviour; the braided silk sutures exhibited tensile strengths comparable to those of conventional sutures and no loss of strength over 1000 fatigue cycles. In addition, the braiding technique had a significant influence on the tensile properties of the braided silk sutures. These results suggest that braided spider silk could be suitable for use as sutures in flexor tendon repair, providing similar tensile behaviour and improved fatigue properties compared with conventional suture materials. PMID:23613793
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-18
...: We propose to adopt a new airworthiness directive (AD) for certain Model 737-600, -700, -700C, -800... and any wire bundle damage between wire bundle W443 and the left forward rudder quadrant, followed by adjusting the minimum clearance between the wire bundle and the left forward rudder quadrant, and repairing...
Optic nerve lesion following neuroborreliosis: a case report.
Burkhard, C; Gleichmann, M; Wilhelm, H
2001-01-01
Neuroborreliosis may cause various neuro-ophthalmological complications. We describe a case with a bilateral optic neuropathy. A 58-year-old female developed facial paresis six weeks after an insect bite. One week later she developed bilateral optic disc swelling with haemorrhages and nerve fibre bundle defects in the lower visual field of the left eye. In CSF and serum, raised IgM and IgG titres to Borrelia burgdorferi were found. Systemic antibiotic treatment led to improvement of the vision and facial paresis, but not all visual field defects resolved, probably due to ischemic lesions of the optic disc. In optic nerve lesions due to neuroborreliosis it is difficult to distinguish between inflammatory and ischemic lesions. This patient demonstrated features of an ischemic optic nerve lesion.
Universal SU(2/1) and the Higgs and fermion masses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ne`eman, Y.
1992-12-31
We review the SU(2/1) internal supersymmetry suggested by D. Fairlie and the author in 1979. The initial apparent difficulties were resolved when, with J. Thierry-Mieg, we understood that the gauging of a supergroup implies taking the usual Yang-Mills-like Principal (Double) Fibre Bundle as a ``scaffold`` and using its Grassmann algebra as parameter manifold for the supergauge. SU(2/1) Universality fixes the masses of the Higgs scalar field and the ``top`` quark around 100--200 GeV, in the same region as the W and Z masses. A ``unified``` supergauge, enclosing SU(3)colour x SU(2) x U(l), predicts a fourth lepton generation in which themore » neutrino mass is of the same order.« less
Toth, Tibor Istvan; Schmidt, Joachim; Büschges, Ansgar; Daun-Gruhn, Silvia
2013-01-01
In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1) positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2) the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3) there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles.
Fibre inflation and α-attractors
NASA Astrophysics Data System (ADS)
Kallosh, Renata; Linde, Andrei; Roest, Diederik; Westphal, Alexander; Yamada, Yusuke
2018-02-01
Fibre inflation is a specific string theory construction based on the Large Volume Scenario that produces an inflationary plateau. We outline its relation to α-attractor models for inflation, with the cosmological sector originating from certain string theory corrections leading to α = 2 and α = 1/2. Above a certain field range, the steepening effect of higher-order corrections leads first to the breakdown of single-field slow-roll and after that to the onset of 2-field dynamics: the overall volume of the extra dimensions starts to participate in the effective dynamics. Finally, we propose effective supergravity models of fibre inflation based on an \\overline{D3} uplift term with a nilpotent superfield. Specific moduli dependent \\overline{D3} induced geometries lead to cosmological fibre models but have in addition a de Sitter minimum exit. These supergravity models motivated by fibre inflation are relatively simple, stabilize the axions and disentangle the Hubble parameter from supersymmetry breaking.
Bundled Payments in Total Joint Replacement: Keeping Our Care Affordable and High in Quality.
McLawhorn, Alexander S; Buller, Leonard T
2017-09-01
The purpose of this review was to evaluate the literature regarding bundle payment reimbursement models for total joint arthroplasty (TJA). From an economic standpoint, TJA are cost-effective, but they represent a substantial expense to the Centers for Medicare & Medicaid Services (CMS). Historically, fee-for-service payment models resulted in highly variable cost and quality. CMS introduced Bundled Payments for Care Improvement (BPCI) in 2012 and subsequently the Comprehensive Care for Joint Replacement (CJR) reimbursement model in 2016 to improve the value of TJA from the perspectives of both CMS and patients, by improving quality via cost control. Early results of bundled payments are promising, but preserving access to care for patients with high comorbidity burdens and those requiring more complex care is a lingering concern. Hospitals, regardless of current participation in bundled payments, should develop care pathways for TJA to maximize efficiency and patient safety.
A simple numerical model for membrane oxygenation of an artificial lung machine
NASA Astrophysics Data System (ADS)
Subraveti, Sai Nikhil; Sai, P. S. T.; Viswanathan Pillai, Vinod Kumar; Patnaik, B. S. V.
2015-11-01
Optimal design of membrane oxygenators will have far reaching ramification in the development of artificial heart-lung systems. In the present CFD study, we simulate the gas exchange between the venous blood and air that passes through the hollow fiber membranes on a benchmark device. The gas exchange between the tube side fluid and the shell side venous liquid is modeled by solving mass, momentum conservation equations. The fiber bundle was modelled as a porous block with a bundle porosity of 0.6. The resistance offered by the fiber bundle was estimated by the standard Ergun correlation. The present numerical simulations are validated against available benchmark data. The effect of bundle porosity, bundle size, Reynolds number, non-Newtonian constitutive relation, upstream velocity distribution etc. on the pressure drop, oxygen saturation levels etc. are investigated. To emulate the features of gas transfer past the alveoli, the effect of pulsatility on the membrane oxygenation is also investigated.
Study of the tensile properties of individual multicellular fibres generated by Bacillus subtilis
NASA Astrophysics Data System (ADS)
Ye, Xuan; Zhao, Liang; Liang, Jiecun; Li, Xide; Chen, Guo-Qiang
2017-04-01
Multicellular fibres formed by Bacillus subtilis (B. subtilis) are attracting interest because of their potential application as degradable biomaterials. However, mechanical properties of individual fibres remain unknown because of their small dimensions. Herein, a new approach is developed to investigate the tensile properties of individual fibres with an average diameter of 0.7 μm and a length range of 25.7-254.3 μm. Variations in the tensile strengths of fibres are found to be the result of variable interactions among pairs of microbial cells known as septa. Using Weibull weakest-link model to study this mechanical variability, we predict the length effect of the sample. Moreover, the mechanical properties of fibres are found to depend highly on relative humidity (RH), with a brittle-ductile transition occurring around RH = 45%. The elastic modulus is 5.8 GPa in the brittle state, while decreases to 62.2 MPa in the ductile state. The properties of fibres are investigated by using a spring model (RH < 45%) for its elastic behaviour, and the Kelvin-Voigt model (RH > 45%) for the time-dependent response. Loading-unloading experiments and numerical calculations demonstrate that necking instability comes from structural changes (septa) and viscoelasticity dominates the deformation of fibres at high RH.
Cations Modulate Actin Bundle Mechanics, Assembly Dynamics, and Structure.
Castaneda, Nicholas; Zheng, Tianyu; Rivera-Jacquez, Hector J; Lee, Hyun-Ju; Hyun, Jaekyung; Balaeff, Alexander; Huo, Qun; Kang, Hyeran
2018-04-12
Actin bundles are key factors in the mechanical support and dynamic reorganization of the cytoskeleton. High concentrations of multivalent counterions promote bundle formation through electrostatic attraction between actin filaments that are negatively charged polyelectrolytes. In this study, we evaluate how physiologically relevant divalent cations affect the mechanical, dynamic, and structural properties of actin bundles. Using a combination of total internal reflection fluorescence microscopy, transmission electron microscopy, and dynamic light scattering, we demonstrate that divalent cations modulate bundle stiffness, length distribution, and lateral growth. Molecular dynamics simulations of an all-atom model of the actin bundle reveal specific actin residues coordinate cation-binding sites that promote the bundle formation. Our work suggests that specific cation interactions may play a fundamental role in the assembly, structure, and mechanical properties of actin bundles.
Development of peptide-containing nerves in the human fetal prostate gland.
Jen, P Y; Dixon, J S
1995-08-01
Immunohistochemical methods were used to study the developing peptidergic innervation of the human fetal prostate gland in a series of specimens ranging in gestational age from 13 to 30 wk. The overall innervation of each specimen was visualised using protein gene product 9.5 (PGP), a general nerve marker. The onset and development of specific neuropeptide-containing subpopulations were investigated using antisera to neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), substance P (SP), calcitonin gene-related peptide (CGRP), bombesin (BOM), somatostatin (SOM), leu-enkephalin (l-ENK) and met-enkephalin (m-ENK). In addition the occurrence and distribution of presumptive noradrenergic nerves was studied using antisera to dopamine-beta-hydroxylase (D beta H) and tyrosine hydroxylase (TH). At 13 wk numerous branching PGP-immunoreactive (-IR) nerves were observed in the capsule of the developing prostate gland and surrounding the preprostatic urethra but the remainder of the gland was devoid of nerves. The majority of nerves in the capsule contained D beta H and TH and were presumed to be noradrenergic in type while other nerves (in decreasing numbers) contained NPY, l-ENK, SP and CGRP. Nerves associated with the preprostatic urethra did not contain any of the neuropeptides under investigation. At 17 wk the density of nerves in the capsule had increased and occasional m-ENK-, VIP- and BOM-IR nerve fibres were also observed. In addition PGP, D beta H-, TH-, NPY- and l-ENK-IR nerves occurred in association with smooth muscle bundles which at 17 wk were present in the outer part of the gland. Occasional PGP-IR nerves were also present at the base of the epithelium forming some of the prostatic glands. At 23 wk some of the subepithelial nerves showed immunoreactivity for NPY, VIP or l-ENK. At 26 wk smooth muscle bundles occurred throughout the gland and were richly innervated by PGP, D beta H and TH-IR nerves while a less dense plexus was formed by NPY- and l-ENK-IR nerves together with a few m-ENK-IR nerves. Occasional smooth muscle-associated varicose nerve fibres showed immunoreactivity for SP, CGRP, VIP or BOM although the majority of these types of nerve formed perivascular plexuses. Also at 26 wk numerous varicose nerve fibres were observed in association with the prostatic acini, the majority of such nerves containing NPY with a few showing immunoreactivity to VIP, l-ENK, SP or CGRP.(ABSTRACT TRUNCATED AT 400 WORDS)
Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution.
Sajab, Mohd Shaiful; Chia, Chin Hua; Zakaria, Sarani; Jani, Saad Mohd; Ayob, Mohd Khan; Chee, Kah Leong; Khiew, Poi Sim; Chiu, Wee Siong
2011-08-01
Chemically modified kenaf core fibres were prepared via esterification in the presence of citric acid (CA). The adsorption kinetics and isotherm studies were carried out under different conditions to examine the adsorption efficiency of CA-treated kenaf core fibres towards methylene blue (MB). The adsorption capacity of the kenaf core fibres increased significantly after the citric acid treatment. The values of the correlation coefficients indicated that the Langmuir isotherm fitted the experimental data better than the Freundlich isotherm. The maximum adsorption capacity of the CA-treated kenaf core fibres was found to be 131.6mg/g at 60°C. Kinetic models, pseudo-first-order, pseudo-second-order and intraparticle diffusion, were employed to describe the adsorption mechanism. The kinetic data were found to fit pseudo-second-order model equation as compared to pseudo-first-order model. The adsorption of MB onto the CA-treated kenaf core fibres was spontaneous and endothermic. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitriev, A K; Konovalov, A N; Ul'yanov, V A
2015-12-31
The autodyne signal arising in an Er fibre laser in the course of evaporating biological models of different types is studied and the possibility of recognising the biotissue type using the method of autodyne detection of the backscattered Doppler signal is assessed. In the experiments we modelled the process of surgical intervention using the contact (hole perforation with the Er laser fibre) and noncontact (surface evaporation with the focused radiation) regimes of impact on different biological models. The amplitude – frequency characteristic of the autodyne detection for the Er fibre laser is measured and the initial spectra of the backscatteredmore » Doppler signal arising under the action of laser radiation on the samples of biological models are obtained. The experiments have shown that the spectra of the backscattered Doppler signal, arising in the course of the contact and noncontact action of the Er fibre laser on different biological models, demonstrate clear-cut distinctions. (control of laser radiation parameters)« less
Effect of collagen fibre orientation on intervertebral disc torsion mechanics.
Yang, Bo; O'Connell, Grace D
2017-12-01
The intervertebral disc is a complex fibro-cartilaginous material, consisting of a pressurized nucleus pulposus surrounded by the annulus fibrosus, which has an angle-ply structure. Disc injury and degeneration are noted by significant changes in tissue structure and function, which significantly alters stress distribution and disc joint stiffness. Differences in fibre orientation are thought to contribute to changes in disc torsion mechanics. Therefore, the objective of this study was to evaluate the effect of collagen fibre orientation on internal disc mechanics under compression combined with axial rotation. We developed and validated a finite element model (FEM) to delineate changes in disc mechanics due to fibre orientation from differences in material properties. FEM simulations were performed with fibres oriented at [Formula: see text] throughout the disc (uniform by region and fibre layer). The initial model was validated by published experimental results for two load conditions, including [Formula: see text] axial compression and [Formula: see text] axial rotation. Once validated, fibre orientation was rotated by [Formula: see text] or [Formula: see text] towards the horizontal plane, resulting in a decrease in disc joint torsional stiffness. Furthermore, we observed that axial rotation caused a sinusoidal change in disc height and radial bulge, which may be beneficial for nutrient transport. In conclusion, including anatomically relevant fibre angles in disc joint FEMs is important for understanding stress distribution throughout the disc and will be important for understanding potential causes for disc injury. Future models will include regional differences in fibre orientation to better represent the fibre architecture of the native disc.
An analytical fiber bundle model for pullout mechanics of root bundles
NASA Astrophysics Data System (ADS)
Cohen, D.; Schwarz, M.; Or, D.
2011-09-01
Roots in soil contribute to the mechanical stability of slopes. Estimation of root reinforcement is challenging because roots form complex biological networks whose geometrical and mechanical characteristics are difficult to characterize. Here we describe an analytical model that builds on simple root descriptors to estimate root reinforcement. Root bundles are modeled as bundles of heterogeneous fibers pulled along their long axes neglecting root-soil friction. Analytical expressions for the pullout force as a function of displacement are derived. The maximum pullout force and corresponding critical displacement are either derived analytically or computed numerically. Key model inputs are a root diameter distribution (uniform, Weibull, or lognormal) and three empirical power law relations describing tensile strength, elastic modulus, and length of roots as functions of root diameter. When a root bundle with root tips anchored in the soil matrix is pulled by a rigid plate, a unique parameter, ?, that depends only on the exponents of the power law relations, dictates the order in which roots of different diameters break. If ? < 1, small roots break first; if ? > 1, large roots break first. When ? = 1, all fibers break simultaneously, and the maximum tensile force is simply the roots' mean force times the number of roots in the bundle. Based on measurements of root geometry and mechanical properties, the value of ? is less than 1, usually ranging between 0 and 0.7. Thus, small roots always fail first. The model shows how geometrical and mechanical characteristics of roots and root diameter distribution affect the pullout force, its maximum and corresponding displacement. Comparing bundles of roots that have similar mean diameters, a bundle with a narrow variance in root diameter will result in a larger maximum force and a smaller displacement at maximum force than a bundle with a wide diameter distribution. Increasing the mean root diameter of a bundle without changing the distribution's shape increases both the maximum force and corresponding displacement. Estimates of the maximum pullout forces for bundles of 100 roots with identical diameter distribution for different species range from less than 1 kN for barley (Hordeum vulgare) to almost 16 kN for pistachio (Pistacia lentiscus). The model explains why a commonly used assumption that all roots break simultaneously overpredicts the maximum pullout force by a factor of about 1.6-2. This ratio may exceed 3 for diameter distributions that have a large number of small roots like the exponential distribution.
NASA Astrophysics Data System (ADS)
Tyas, Luke Martin Graham
2012-05-01
SALT HRS (Southern African Large Telescope High Resolution Échelle Spectrograph) is a high-resolution, high-efficiency spectrograph for the 11m SALT telescope in Sutherland, South Africa. The initial optical design work was performed at the University of Canterbury, New Zealand. Revisions to the concept, the mechanical design, manufacture, assembly and testing have been handled by the Centre for Advanced Instrumentation, at Durham University in the United Kingdom. SALT HRS is a fibre-fed échelle grating spectrograph with four operational modes: low-, medium- and high-resolution and high-stability modes, having spectral resolutions of R≈16000, 37000, 67000 and 67000 respectively over a wavelength range of 370-890nm. The instrument is of a dual channel, 'white pupil' design, in which the primary mirror acts to collimate light onto a single R4 échelle grating, and also to focus dispersed light to an intermediate focus. A dichroic beam-splitter separates the dispersed light into two separate spectral channels. Spherical pupil mirrors transfer the separated beams via a fold mirror to two wavelength-specific volume-phase holographic gratings (VPHGs) used as cross-dispersers. Cross-dispersed spectra are then imaged by two fully dioptric camera systems onto optimized CCD detectors. This thesis presents the results of the laboratory testing and specification of several critical sub-systems of SALT HRS, as well as the development of key software tools for the design verification and operation at the telescope. In Chapter 1 we first review the technical development of high-resolution spectroscopy and its specific implementation in SALT HRS. In Chapter 2 we develop a comprehensive throughput model of the entire system based on a combination of as-built performance and specific throughput measurements in the laboratory. This is used to make some specific predictions for the on-sky performance of SALT HRS and the magnitude limits for science targets. We also present a graphical exposure time calculator based on these measurements which can be used by an astronomer to plan their observations with SALT HRS. Chapter 3 contains a detailed treatise on the optical fibre system of SALT HRS. Considerations for the use of optical fibres in astronomy are provided, as are details of an optional double scrambler, and the various instrument fibre modes. Extensive measurements of focal ratio degradation (FRD) are also presented, with testing of input beam speed; wavelength; fibre bending; variable pupil mirror illumination; and vacuum tank pressure dependency. The systems for fibre management are reviewed, as is the fibre bundle assembly process. Testing of two further sub-systems is described in Chapter 4. Firstly the long-term stability of the mirror mounting mechanisms is determined. The advantages of cross-dispersion of échelle spectra using volume-phase holographic gratings are then discussed, and the results of diffraction efficiency measurements are given for both red and blue channel gratings. Modern CCD technologies are examined in Chapter 5, and the blue detector is experimentally characterized using photon transfer and quantum efficiency curves. It is also used for an investigation into cosmic ray events in CCDs. Results from shielding the detector using lead are described, as is an attempt to distinguish the source of the events based on their morphology. Finally, Chapter 6 deals with the handling of data produced by SALT HRS. Methods of wavelength calibration of the spectra are discussed, including the use of Thorium-Argon lamps and an iodine absorption cell. The implementation of a Python based quick-look data reduction pipeline is reviewed, with a description of the processes performed. A summary of the thesis is given in Chapter 7.
A new model for impregnation mechanisms in different GF/PP commingled yarns
NASA Astrophysics Data System (ADS)
Klinkmüller, V.; Um, M.-K.; Steffens, M.; Friedrich, K.; Kim, B.-S.
1994-09-01
Impregnation mechanisms of different kinds of GF/PP commingled yarns have been studied. As the reinforcing fibres were always the same, a global description has been worked out. Two different mathematical approaches for fibre bed permeability (Kozeny-Carman and Gutowski) were compared. The constants of the applied mathematical models have to stay the same if the fibre reeinforcement and the fibre arrangement is the same. Neither the kind of matrix, nor the fibre volume content may change these constants. Differences in the degree of impregnation after the same process conditions can be only due to different sizes of fibre agglomerations, thus the initial distribution of reinforcing fibres and matrix. For an exact determination of impregnation times and conditions the exact distribution of fibres in the intermediate material and after processing has to be known. This distribution is determined by SEM microscopy and data given from the material supplier. The importance of different process parameters, such as temperature, pressure, processing time is weighted by determining the density and mechanical properties of the specimens.
Bundled payment and enhanced recovery after surgery.
Huang, Jeffrey
2015-01-01
Medicare's fee-for-service (FFS) payment model may contribute to unsustainable spending growth. Payers are turning to alternative payment methods. The leading alternative payment model to the FFS problem is bundled payment. The Centers for Medicare & Medicaid Services (CMS) is taking another step to improve healthcare quality at lower cost. The CMS's Center for Medicare and Medicaid Innovation developed four models of bundled payments and 48 discrete clinical condition episodes. Many surgical care procedures are included in the 48 different clinical condition episodes.
Picky eating in preschool children: Associations with dietary fibre intakes and stool hardness
Taylor, Caroline M.; Northstone, Kate; Wernimont, Susan M.; Emmett, Pauline M.
2018-01-01
It has been suggested that constipation may be associated with picky eating. Constipation is a common condition in childhood and a low intake of dietary fibre may be a risk factor. Differences in fibre intake between picky and non-picky children and its relation to stool consistency is currently not well-understood. Children enrolled in the Avon Longitudinal Study of Parents and Children identified as picky eaters (PE) were compared with non-picky eaters (NPE): (1) to determine dietary fibre intake at 38 months; (2) to investigate whether any difference in dietary fibre intake was predictive of usual stool hardness at 42 months. PE was identified from questionnaires at 24 and 38 months. Usual stool hardness was identified from a questionnaire at 42 months. Dietary intake was assessed at 38 months with a food frequency questionnaire. Dietary fibre intake was lower in PE than NPE (mean difference −1.4 (95% CI −1.6, −1.2) g/day, p < 0.001). PE was strongly associated with dietary fibre intake (adjusted regression model; unstandardised B −1.44 (95% CI −1.62, −1.24) g/day, p < 0.001). PE had a lower percentage of fibre from vegetables compared with NPE (8.9% vs 15.7%, respectively, p < 0.001). There was an association between PE and usually having hard stools (adjusted multinomial model; OR 1.31, 95% CI 1.07, 1.61; p = 0.010). This was attenuated when dietary fibre was included in the model, suggesting that fibre intake mediated the association (OR 1.16, 95% CI 0.94, 1.43, p = 0.180). Picky eating in 3-year-old children was associated with an increased prevalence of usually having hard stools. This association was mediated by low dietary fibre intake, particularly from vegetables, in PE. For children with PE, dietary advice aimed at increasing fibre intake may help avoid hard stools. PMID:26879221
Wicaksana, F; Fan, A G; Chen, V
2005-01-01
Bubbling has been used to enhance various processes. In this paper we deal with the effect of bubbling on submerged hollow fibre membranes, where bubbling is applied to prevent severe membrane fouling. Previous work with submerged hollow fibres has observed that significant fibre movement can be induced by bubbling and that there is a qualitative relationship between fibre movement and filtration performance. Therefore, the aim of the present research has been to analyse the link between bubbling, fibre movement and critical flux, identified as the flux at which the transmembrane pressure (TMP) starts to rise. Tests were performed on vertical isolated fibres with a model feed of yeast suspension. The fibres were subject to steady bubbling from below. The parameters of interest were the fibre characteristics, such as tightness, diameter and length, as well as feed concentration. The results confirmed that the critical fluxes are affected by the fibre characteristics and feed concentration. Higher critical flux values can be achieved by using loose fibres, smaller diameters and longer fibres. The enhancement is partially linked to fibre movement and this is confirmed by improved performance when fibres are subject to mechanical movement in the absence of bubbling.
Computational imaging through a fiber-optic bundle
NASA Astrophysics Data System (ADS)
Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.
2017-05-01
Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.
Marcucci, Lorenzo; Reggiani, Carlo; Natali, Arturo N; Pavan, Piero G
2017-12-01
Muscles exhibit highly complex, multi-scale architecture with thousands of muscle fibers, each with different properties, interacting with each other and surrounding connective structures. Consequently, the results of single-fiber experiments are scarcely linked to the macroscopic or whole muscle behavior. This is especially true for human muscles where it would be important to understand of how skeletal muscles disorders affect patients' life. In this work, we developed a mathematical model to study how fast and slow muscle fibers, well characterized in single-fiber experiments, work and generate together force and displacement in muscle bundles. We characterized the parameters of a Hill-type model, using experimental data on fast and slow single human muscle fibers, and comparing experimental data with numerical simulations obtained from finite element (FE) models of single fibers. Then, we developed a FE model of a bundle of 19 fibers, based on an immunohistochemically stained cross section of human diaphragm and including the corresponding properties of each slow or fast fiber. Simulations of isotonic contractions of the bundle model allowed the generation of its apparent force-velocity relationship. Although close to the average of the force-velocity curves of fast and slow fibers, the bundle curve deviates substantially toward the fast fibers at low loads. We believe that the present model and the characterization of the force-velocity curve of a fiber bundle represents the starting point to link the single-fiber properties to those of whole muscle with FE application in phenomenological models of human muscles.
Properties of bright solitons in averaged and unaveraged models for SDG fibres
NASA Astrophysics Data System (ADS)
Kumar, Ajit; Kumar, Atul
1996-04-01
Using the slowly varying envelope approximation and averaging over the fibre cross-section the evolution equation for optical pulses in semiconductor-doped glass (SDG) fibres is derived from the nonlinear wave equation. Bright soliton solutions of this equation are obtained numerically and their properties are studied and compared with those of the bright solitons in the unaveraged model.
2016-01-01
The subject of this work is the investigation of the influence of voids on the mechanical properties of fibre-reinforced polymers (FRPs) under compression loading. To specify the damage accumulation of FRPs in the presence of voids, the complex three-dimensional structure of the composite including voids was analysed and a reduced mechanical model composite was derived. The hierarchical analysis of the model composite on a micro-scale level implies the description of the stress and strain behaviour of the matrix using the photoelasticity technique and digital image correlation technology. These studies are presented along with an analytical examination of the stability of a single fibre. As a result of the experimental and analytical studies, the stiffness of the matrix and fibre as well as their bonding, the initial fibre orientation and the fibre diameter have the highest impact on the failure initiation. All these facts lead to a premature fibre–matrix debonding with ongoing loss of stability of the fibre and followed by kink-band formation. Additional studies on the meso-scale of transparent glass FRPs including a unique void showed that the experiments carried out on the model composites could be transferred to real composites. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242296
Episodic payments (bundling): PART I.
Jacofsky, D J
2017-10-01
Episodic, or bundled payments, is a concept now familiar to most in the healthcare arena, but the models are often misunderstood. Under a traditional fee-for-service model, each provider bills separately for their services which creates financial incentives to maximise volumes. Under a bundled payment, a single entity, often referred to as a convener (maybe the hospital, the physician group, or a third party) assumes the risk through a payer contract for all services provided within a defined episode of care, and receives a single (bundled) payment for all services provided for that episode. The time frame around the intervention is variable, but defined in advance, as are included and excluded costs. Timing of the actual payment in a bundle may either be before the episode occurs (prospective payment model), or after the end of the episode through a reconciliation (retrospective payment model). In either case, the defined costs over the defined time frame are borne by the convener. Cite this article: Bone Joint J 2017;99-B:1280-5. ©2017 The British Editorial Society of Bone & Joint Surgery.
Double optical fibre-probe device for the diagnosis of melanocytic lesions
NASA Astrophysics Data System (ADS)
Cicchi, Riccardo; Cosci, Alessandro; Rossari, Susanna; De Giorgi, Vincenzo; Kapsokalyvas, Dimitrios; Massi, Daniela; Pavone, Francesco S.
2012-06-01
We have designed and developed an optical fiber-probe for spectroscopic measurements on human tissues. The experimental setup combines fluorescence spectroscopy and Raman spectroscopy in a multidimensional approach. Concerning fluorescence spectroscopy, the excitation is provided by two laser diodes, one emitting in the UV (378 nm) and the other emitting in the visible (445 nm). These two lasers are used to selectively excite fluorescence from NADH and FAD, which are among the brightest endogenous fluorophores in human tissues. For Raman and NIR spectroscopy, the excitation is provided by a third laser diode with 785 nm excitation wavelength. Laser light is delivered to the tissue through the central optical fiber of a fiber bundle. The surrounding 48 fibers of the bundle are used for collecting fluorescence and Raman and for delivering light to the spectrograph. Fluorescence and Raman spectra are acquired on a cooled CCD camera. The instrument has been tested on fresh human skin biopsies clinically diagnosed as malignant melanoma, melanocytic nevus, or healthy skin, finding an optimal correlation with the subsequent histological exam. In some cases our examination was not in agreement with the clinical observation, but it was with the histological exam, demonstrating that the system can potentially contribute to improve clinical diagnostic capabilities and hence reduce the number of unnecessary biopsies.
Time-dependent fiber bundles with local load sharing.
Newman, W I; Phoenix, S L
2001-02-01
Fiber bundle models, where fibers have random lifetimes depending on their load histories, are useful tools in explaining time-dependent failure in heterogeneous materials. Such models shed light on diverse phenomena such as fatigue in structural materials and earthquakes in geophysical settings. Various asymptotic and approximate theories have been developed for bundles with various geometries and fiber load-sharing mechanisms, but numerical verification has been hampered by severe computational demands in larger bundles. To gain insight at large size scales, interest has returned to idealized fiber bundle models in 1D. Such simplified models typically assume either equal load sharing (ELS) among survivors, or local load sharing (LLS) where a failed fiber redistributes its load onto its two nearest flanking survivors. Such models can often be solved exactly or asymptotically in increasing bundle size, N, yet still capture the essence of failure in real materials. The present work focuses on 1D bundles under LLS. As in previous works, a fiber has failure rate following a power law in its load level with breakdown exponent rho. Surviving fibers under fixed loads have remaining lifetimes that are independent and exponentially distributed. We develop both new asymptotic theories and new computational algorithms that greatly increase the bundle sizes that can be treated in large replications (e.g., one million fibers in thousands of realizations). In particular we develop an algorithm that adapts several concepts and methods that are well-known among computer scientists, but relatively unknown among physicists, to dramatically increase the computational speed with no attendant loss of accuracy. We consider various regimes of rho that yield drastically different behavior as N increases. For 1/2< or =rho< or =1, ELS and LLS have remarkably similar behavior (they have identical lifetime distributions at rho=1) with approximate Gaussian bundle lifetime statistics and a finite limiting mean. For rho>1 this Gaussian behavior also applies to ELS, whereas LLS behavior diverges sharply showing brittle, weakest volume behavior in terms of characteristic elements derived from critical cluster formation. For 0
Pereira, G. F.; Mikkelsen, L. P.; McGugan, M.
2015-01-01
In a fibre-reinforced polymer (FRP) structure designed using the emerging damage tolerance and structural health monitoring philosophy, sensors and models that describe crack propagation will enable a structure to operate despite the presence of damage by fully exploiting the material’s mechanical properties. When applying this concept to different structures, sensor systems and damage types, a combination of damage mechanics, monitoring technology, and modelling is required. The primary objective of this article is to demonstrate such a combination. This article is divided in three main topics: the damage mechanism (delamination of FRP), the structural health monitoring technology (fibre Bragg gratings to detect delamination), and the finite element method model of the structure that incorporates these concepts into a final and integrated damage-monitoring concept. A novel method for assessing a crack growth/damage event in fibre-reinforced polymer or structural adhesive-bonded structures using embedded fibre Bragg grating (FBG) sensors is presented by combining conventional measured parameters, such as wavelength shift, with parameters associated with measurement errors, typically ignored by the end-user. Conjointly, a novel model for sensor output prediction (virtual sensor) was developed using this FBG sensor crack monitoring concept and implemented in a finite element method code. The monitoring method was demonstrated and validated using glass fibre double cantilever beam specimens instrumented with an array of FBG sensors embedded in the material and tested using an experimental fracture procedure. The digital image correlation technique was used to validate the model prediction by correlating the specific sensor response caused by the crack with the developed model. PMID:26513653
Ridgely, M Susan; de Vries, David; Bozic, Kevin J; Hussey, Peter S
2014-08-01
To determine whether bundled payment could be an effective payment model for California, the Integrated Healthcare Association convened a group of stakeholders (health plans, hospitals, ambulatory surgery centers, physician organizations, and vendors) to develop, through a consensus process, the methods and means of implementing bundled payment. In spite of a high level of enthusiasm and effort, the pilot did not succeed in its goal to implement bundled payment for orthopedic procedures across multiple payers and hospital-physician partners. An evaluation of the pilot documented a number of barriers, such as administrative burden, state regulatory uncertainty, and disagreements about bundle definition and assumption of risk. Ultimately, few contracts were signed, which resulted in insufficient volume to test hypotheses about the impact of bundled payment on quality and costs. Although bundled payment failed to gain a foothold in California, the evaluation provides lessons for future bundled payment initiatives. Project HOPE—The People-to-People Health Foundation, Inc.
Finite Element Simulation of Aluminium/GFRP Fibre Metal Laminate under Tensile Loading
NASA Astrophysics Data System (ADS)
Merzuki, M. N. M.; Rejab, M. R. M.; Romli, N. K.; Bachtiar, D.; Siregar, J.; Rani, M. F.; Salleh, Salwani Mohd
2018-03-01
The response of a fibre metal laminate (FML) model to the tensile loading is predicted through a computational approach. The FML consisted with layers of aluminum alloy and embedded with one layer of composite material, Glass fibre Reinforced Plastic (GFRP). The glass fibre and aluminium alloy 2024-0 was laminated by using thermoset epoxy. A compression moulding technique was used in the process of a FML fabrication. The aluminium has been roughen by a metal sanding method which to improve the bonding between the fibre and metal layer. The main objective of this paper is to determine the failure behaviour of the FML under the tensile loading. The responses on the FML under the tensile loading were numerically performed. The FML was modelled and analysed by using Abaqus/CAE 6.13 version. Based on the experimental and FE data of the tensile, the ultimate tensile stress is 120 MPa where delamination and fibre breakage happened. A numerical model was developed and agreed well with the experimental results. The laminate has an inelastic respond to increase the tensile loads which due to the plasticity of the aluminium layers.
Collagenous microstructure of the glenoid labrum and biceps anchor
Hill, A M; Hoerning, E J; Brook, K; Smith, C D; Moss, J; Ryder, T; Wallace, A L; Bull, A M J
2008-01-01
The glenoid labrum is a significant passive stabilizer of the shoulder joint. However, its microstructural form remains largely unappreciated, particularly in the context of its variety of functions. The focus of labral microscopy has often been histology and, as such, there is very little appreciation of collagen composition and arrangement of the labrum, and hence the micromechanics of the structure. On transmission electron microscopy, significant differences in diameter, area and perimeter were noted in the two gross histological groups of collagen fibril visualized; this suggests a heterogeneous collagenous composition with potentially distinct mechanical function. Scanning electron microscopy demonstrated three distinct zones of interest: a superficial mesh, a dense circumferential braided core potentially able to accommodate hoop stresses, and a loosely packed peri-core zone. Confocal microscopy revealed an articular surface fine fibrillar mesh potentially able to reduce surface friction, bundles of circumferential encapsulated fibres in the bulk of the tissue, and bone anchoring fibres at the osseous interface. Varying microstructure throughout the depth of the labrum suggests a role in accommodating different types of loading. An understanding of the labral microstructure can lead to development of hypotheses based upon an appreciation of this component of material property. This may aid an educated approach to surgical timing and repair. PMID:18429974
Levin, M J; Pfeiffer, C J
2002-10-01
The tongue of the Florida manatee (Trichechus manatus latirostris) was studied macroscopically, light and electron microscopically. The tongue was slender, muscular and firmly fixed in the oral cavity; only the cranial tip was free and mobile. Numerous filiform papillae were distributed over the dorsal surface of the rostral tongue. Multiple raised, round fungiform-like papillae were distributed over most of the dorsum. Typical fungiform papillae were restricted to the lateral margins of the tongue. Foliate papillae, presenting as multi-fossulate openings, were noted on the caudolateral margins. Open pits were located on the dorsocaudal surface and lateral walls. Microscopic examination showed that most of the lingual dorsum was covered with a thick stratified squamous epithelium. Open pits led to well-developed mucous salivary glands. Glands within the foliate papillae were mostly mucous, although some seromucous glands were present. Taste buds were restricted to the epithelium of the foliate papillae. Throughout the tongue, striated muscle was abundant below the epithelium. Blood vessels, lymph channels and nerve fibres were freely distributed throughout the intermuscular stroma. Nerve fibres reacted positively with neurone specific enolase (NSE) antibody throughout the tongue, including nerve bundles, glands and taste buds. Clear to translucent vacuoles were found juxtaposed to nuclei in the stratum spinosum in the foliate papillae epithelium.
On the origin and removal of interference patterns in coated multimode fibres
NASA Astrophysics Data System (ADS)
Padilla Michel, Yazmin; Pulwer, Silvio; Saffari, Pouneh; Ksianzou, Viachaslau; Schrader, Sigurd
2016-07-01
In this study, we present the experimental investigations on interference patterns, such as those already reported in VIMOS-IFU, and up to now no appropriate explanation has been presented. These interference patterns are produced in multimode fibres coated with acrylate or polyimide, which is the preferred coating material for the fibres used in IFUs. Our experiments show that, under specific conditions, cladding modes interact with the coating and produce interference. Our results show that the conditions at which the fibre is held during data acquisition has an impact in the output spectrum. Altering the positioning conditions of the fibre leads to the changes into the interference pattern, therefore, fibres should be carefully manipulated in order to minimise this potential problem and improve the performance of these instruments. Finally we present a simple way of predicting and modelling this interference produced from the visible to the near infrared spectra. This model can be included in the data reduction pipeline in order to remove the interference patterns. These results should be of interest for the optimisation of the data reduction pipelines of instruments using optical fibres. Considering these results will benefit innovations and developments of high performance fibre systems.
Experience with Designing and Implementing a Bundled Payment Program for Total Hip Replacement
Whitcomb, Winthrop F.; Lagu, Tara; Krushell, Robert J.; Lehman, Andrew P.; Greenbaum, Jordan; McGirr, Joan; Pekow, Penelope S.; Calcasola, Stephanie; Benjamin, Evan; Mayforth, Janice; Lindenauer, Peter K.
2015-01-01
Background Bundled payments, also known as episode-based payments, are intended to contain health care costs and promote quality. In 2011 a bundled payment pilot program for total hip replacement was implemented by an integrated health care delivery system in conjunction with a commercial health plan subsidiary. In July 2015 the Centers for Medicare & Medicaid Services (CMS) proposed the Comprehensive Care for Joint Replacement Model to test bundled payment for hip and knee replacement. Methods Stakeholders were identified and a structure for program development and implementation was created. An Oversight Committee provided governance over a Clinical Model Subgroup and a Financial Model Subgroup. Results The pilot program included (1) a clinical model of care encompassing the period from the preoperative evaluation through the third postoperative visit, (2) a pricing model, (3) a program to share savings, and (4) a patient engagement and expectation strategy. Compared to 32 historical controls— patients treated before bundle implementation—45 post-bundle-implementation patients with total hip replacement had a similar length of hospital stay (3.0 versus 3.4 days, p = .24), higher rates of discharge to home or home with services than to a rehabilitation facility (87% versus 63%), similar adjusted median total payments ($22,272 versus $22,567, p = .43), and lower median posthospital payments ($704 versus $1,121, p = .002), and were more likely to receive guideline-consistent care (99% versus 95%, p = .05). Discussion The bundled payment pilot program was associated with similar total costs, decreased posthospital costs, fewer discharges to rehabilitation facilities, and improved quality. Successful implementation of the program hinged on buy-in from stakeholders and close collaboration between stakeholders and the clinical and financial teams. PMID:26289235
Experience with Designing and Implementing a Bundled Payment Program for Total Hip Replacement.
Whitcomb, Winthrop F; Lagu, Tara; Krushell, Robert J; Lehman, Andrew P; Greenbaum, Jordan; McGirr, Joan; Pekow, Penelope S; Calcasola, Stephanie; Benjamin, Evan; Mayforth, Janice; Lindenauer, Peter K
2015-09-01
Bundled payments, also known as episode-based payments, are intended to contain health care costs and promote quality. In 2011 a bundled payment pilot program for total hip replacement was implemented by an integrated health care delivery system in conjunction with a commercial health plan subsidiary. In July 2015 the Centers for Medicare & Medicaid Services (CMS) proposed the Comprehensive Care for Joint Replacement Model to test bundled payment for hip and knee replacement. Stakeholders were identified and a structure for program development and implementation was created. An Oversight Committee provided governance over a Clinical Model Subgroup and a Financial Model Subgroup. The pilot program included (1) a clinical model of care encompassing the period from the preoperative evaluation through the third postoperative visit, (2) a pricing model, (3) a program to share savings, and (4) a patient engagement and expectation strategy. Compared to 32 historical controls-patients treated before bundle implementation-45 post-bundle-implementation patients with total hip replacement had a similar length of hospital stay (3.0 versus 3.4 days, p=.24), higher rates of discharge to home or home with services than to a rehabilitation facility (87% versus 63%), similar adjusted median total payments ($22,272 versus $22,567, p=.43), and lower median posthospital payments ($704 versus $1,121, p=.002), and were more likely to receive guideline-consistent care (99% versus 95%, p=.05). The bundled payment pilot program was associated with similar total costs, decreased posthospital costs, fewer discharges to rehabilitation facilities, and improved quality. Successful implementation of the program hinged on buy-in from stakeholders and close collaboration between stakeholders and the clinical and financial teams.
NASA Astrophysics Data System (ADS)
Bayaskhalanov, M. V.; Vlasov, M. N.; Korsun, A. S.; Merinov, I. G.; Philippov, M. Ph
2017-11-01
Research results of “k-ε” turbulence integral model (TIM) parameters dependence on the angle of a coolant flow in regular smooth cylindrical rod-bundle are presented. TIM is intended for the definition of efficient impulse and heat transport coefficients in the averaged equations of a heat and mass transfer in the regular rod structures in an anisotropic porous media approximation. The TIM equations are received by volume-averaging of the “k-ε” turbulence model equations on periodic cell of rod-bundle. The water flow across rod-bundle under angles from 15 to 75 degrees was simulated by means of an ANSYS CFX code. Dependence of the TIM parameters on flow angle was as a result received.
An Integrated DEMATEL-VIKOR Method-Based Approach for Cotton Fibre Selection and Evaluation
NASA Astrophysics Data System (ADS)
Chakraborty, Shankar; Chatterjee, Prasenjit; Prasad, Kanika
2018-01-01
Selection of the most appropriate cotton fibre type for yarn manufacturing is often treated as a multi-criteria decision-making (MCDM) problem as the optimal selection decision needs to be taken in presence of several conflicting fibre properties. In this paper, two popular MCDM methods in the form of decision making trial and evaluation laboratory (DEMATEL) and VIse Kriterijumska Optimizacija kompromisno Resenje (VIKOR) are integrated to aid the cotton fibre selection decision. DEMATEL method addresses the interrelationships between various physical properties of cotton fibres while segregating them into cause and effect groups, whereas, VIKOR method helps in ranking all the considered 17 cotton fibres from the best to the worst. The derived ranking of cotton fibre alternatives closely matches with that obtained by the past researchers. This model can assist the spinning industry personnel in the blending process while making accurate fibre selection decision when cotton fibre properties are numerous and interrelated.
An Integrated DEMATEL-VIKOR Method-Based Approach for Cotton Fibre Selection and Evaluation
NASA Astrophysics Data System (ADS)
Chakraborty, Shankar; Chatterjee, Prasenjit; Prasad, Kanika
2018-06-01
Selection of the most appropriate cotton fibre type for yarn manufacturing is often treated as a multi-criteria decision-making (MCDM) problem as the optimal selection decision needs to be taken in presence of several conflicting fibre properties. In this paper, two popular MCDM methods in the form of decision making trial and evaluation laboratory (DEMATEL) and VIse Kriterijumska Optimizacija kompromisno Resenje (VIKOR) are integrated to aid the cotton fibre selection decision. DEMATEL method addresses the interrelationships between various physical properties of cotton fibres while segregating them into cause and effect groups, whereas, VIKOR method helps in ranking all the considered 17 cotton fibres from the best to the worst. The derived ranking of cotton fibre alternatives closely matches with that obtained by the past researchers. This model can assist the spinning industry personnel in the blending process while making accurate fibre selection decision when cotton fibre properties are numerous and interrelated.
Robust peptide bundles designed computationally
NASA Astrophysics Data System (ADS)
Haider, Michael; Zhang, Huixi Violet; Kiick, Kristi; Saven, Jeffery; Pochan, Darrin
Peptides are ideal candidates for the design and controlled assembly of nanoscale materials due to their potential to assemble with atomistic precision as in biological systems. Unlike other work utilizing natural proteins and structural motifs, this effort is completely de novo in order to build arbitrary structures with desired size for the specific placement and separation of functional groups. We have successfully computationally designed soluble, coiled coil, peptide, tetramer bundles which are robust and stable. Using circular dichroism we demonstrated the thermal stability of these bundles as well as confirmed their alpha helical and coiled coil nature. The stability of these bundles arises from the computational design of the coiled coil interior core residues. The coiled coil tetramer was confirmed to be the dominant species by analytical ultra-centrifugation sedimentation studies. We also established how these bundles behave in solution using small angle neutron scattering. The form factor of the bundles is well represented by a cylinder model and their behavior at high concentrations is modeled using a structure factor for aggregates of the cylinders. All of these experiments support our claim that the designed coiled coil bundles were achieved in solution. NSF DMREF 1234161.
Fractography of the interlaminar fracture of carbon-fibre epoxy composites
NASA Technical Reports Server (NTRS)
Bascom, W. D.; Boll, D. J.; Fuller, B.; Phillips, P. J.
1985-01-01
The failed surfaces of interlaminar fracture (mode I) specimens of AS4/3501-6 were examined using scanning electron microscopy. The principal fracture features were fiber pull-out (bundles and single fibers), hackle markings, and regions of smooth resin fracture. Considerable (30 to 50 percent) relaxation of the deformed resin occurred when the specimens were heated above the matrix glass transition temperature. This relaxation was taken as evidence of extensive shear yielding of the resin during the fracture process. Some of the fractography features are discussed in terms of transverse tensile stresses and peeling stresses acting on the fibers. In some instances these localized stresses focus failure close to the resin-fiber interface, which can be mistakenly interpreted as interfacial failure and low fiber-resin adhesion.
NASA Astrophysics Data System (ADS)
Torti, C.; Považay, B.; Hofer, B.; Unterhuber, A.; Hermann, B.; Drexler, W.
2008-09-01
Ultra-high speed optical coherence tomography employing an ultra-broadband light source has been combined with adaptive optics utilizing a single high stroke deformable mirror and chromatic aberration compensation. The reduction of motion artefacts, geometric and chromatic aberrations (pancorrection) permits to achieve an isotropic resolution of 2-3 μm in the human eye. The performance of this non-invasive imaging modality enables to resolve cellular structures including cone photoreceptors, nerve fibre bundles and collagenous plates of the lamina cribrosa, and retinal pigment epithelial (RPE) cells in the human retina in vivo with superior detail. Alterations of cellular morphology due to cone degeneration in a colour-blind subject are investigated in ultra-high resolution with selective depth sectioning for the first time.
Simulation of complex phenomena in optical fibres
NASA Astrophysics Data System (ADS)
Allington-Smith, Jeremy; Murray, Graham; Lemke, Ulrike
2012-12-01
Optical fibres are essential for many types of highly multiplexed and precision spectroscopy. The success of the new generation of multifibre instruments under construction to investigate fundamental problems in cosmology, such as the nature of dark energy, requires accurate modellization of the fibre system to achieve their signal-to-noise ratio (SNR) goals. Despite their simple construction, fibres exhibit unexpected behaviour including non-conservation of etendue (focal ratio degradation, FRD) and modal noise. Furthermore, new fibre geometries (non-circular or tapered) have become available to improve the scrambling properties that, together with modal noise, limit the achievable SNR in precision spectroscopy. These issues have often been addressed by extensive tests on candidate fibres and their terminations, but these are difficult and time-consuming. Modelling by ray tracing and wave analysis is possible with commercial software packages, but these do not address the more complex features, in particular FRD. We use a phase-tracking ray-tracing method to provide a practical description of FRD derived from our previous experimental work on circular fibres and apply it to non-standard fibres. This allows the relationship between scrambling and FRD to be quantified for the first time. We find that scrambling primarily affects the shape of the near-field pattern but has negligible effect on the barycentre. FRD helps to homogenize the near-field pattern but does not make it completely uniform. Fibres with polygonal cross-section improve scrambling without amplifying the FRD. Elliptical fibres, in conjunction with tapering, may offer an efficient means of image slicing to improve the product of resolving power and throughput, but the result is sensitive to the details of illumination. We also investigated the performance of fibres close to the limiting numerical aperture since this may affect the uniformity of the SNR for some prime focus fibre instrumentation.
The MIMIC Model as a Tool for Differential Bundle Functioning Detection
ERIC Educational Resources Information Center
Finch, W. Holmes
2012-01-01
Increasingly, researchers interested in identifying potentially biased test items are encouraged to use a confirmatory, rather than exploratory, approach. One such method for confirmatory testing is rooted in differential bundle functioning (DBF), where hypotheses regarding potential differential item functioning (DIF) for sets of items (bundles)…
Modelling complex phenomena in optical fibres
NASA Astrophysics Data System (ADS)
Allington-Smith, Jeremy; Murray, Graham; Lemke, Ulrike
2012-09-01
We present a new model for predicting the performance of fibre systems in the multimode limit. This is based on ray--tracing but includes a semi--empirical description of Focal Ratio Degradation (FRD). We show how FRD is simulated by the model. With this ability, it can be used to investigate a wide variety of phenomena including scrambling and the loss of light close to the limiting numerical aperture. It can also be used to predict the performance of non--round and asymmetric fibres.
Sarcomere-length dependence of myosin filament structure in skeletal muscle fibres of the frog.
Reconditi, Massimo; Brunello, Elisabetta; Fusi, Luca; Linari, Marco; Martinez, Manuel Fernandez; Lombardi, Vincenzo; Irving, Malcolm; Piazzesi, Gabriella
2014-03-01
X-ray diffraction patterns were recorded at beamline ID02 of the European Synchrotron Radiation Facility from small bundles of skeletal muscle fibres from Rana esculenta at sarcomere lengths between 2.1 and 3.5 μm at 4°C. The intensities of the X-ray reflections from resting fibres associated with the quasi-helical order of the myosin heads and myosin binding protein C (MyBP-C) decreased in the sarcomere length range 2.6-3.0 μm but were constant outside it, suggesting that an OFF conformation of the thick filament is maintained by an interaction between MyBP-C and the thin filaments. During active isometric contraction the intensity of the M3 reflection from the regular repeat of the myosin heads along the filaments decreased in proportion to the overlap between thick and thin filaments, with no change in its interference fine structure. Thus, myosin heads in the regions of the thick filaments that do not overlap with thin filaments are highly disordered during isometric contraction, in contrast to their quasi-helical order at rest. Heads in the overlap region that belong to two-headed myosin molecules that are fully detached from actin are also highly disordered, in contrast to the detached partners of actin-attached heads. These results provide strong support for the concept of a regulatory structural transition in the thick filament involving changes in both the organisation of the myosin heads on its surface and the axial periodicity of the myosin tails in its backbone, mediated by an interaction between MyBP-C and the thin filaments.
Budelmann, B U; Young, J Z
1993-04-29
Fourteen extraocular eye muscles are described in the decapods Loligo and Sepioteuthis, and thirteen in Sepia; they are supplied by four eye muscle nerves. The main action of most of the muscles is a linear movement of the eyeball, only three muscles produce strong rotations. The arrangement, innervation and action of the decapod eye muscles are compared with those of the seven eye muscles and seven eye muscle nerves in Octopus. The extra muscles in decapods are attached to the anterior and superior faces of the eyes. At least, the anterior muscles, and presumably also the superior muscles, are concerned with convergent eye movements for binocular vision during fixation and capture of prey by the tentacles. The remaining muscles are rather similar in the two cephalopod groups. In decapods, the anterior muscles include conjunctive muscles; these cross the midline and each presumably moves both eyes at the same time during fixation. In the squids Loligo and Sepioteuthis there is an additional superior conjunctive muscle of perhaps similar function. Some of the anterior muscles are associated with a narrow moveable plate, the trochlear cartilage; it is attached to the eyeball by trochlear membranes. Centripetal cobalt fillings showed that all four eye muscle nerves have fibres that originate from somata in the ipsilateral anterior lateral pedal lobe, which is the oculomotor centre. The somata of the individual nerves show different but overlapping distributions. Bundles of small presumably afferent fibres were seen in two of the four nerves. They do not enter the anterior lateral pedal lobe but run to the ventral magnocellular lobe; some afferent fibres enter the brachio-palliovisceral connective and run perhaps as far as the palliovisceral lobe.
Sarcomere-length dependence of myosin filament structure in skeletal muscle fibres of the frog
Reconditi, Massimo; Brunello, Elisabetta; Fusi, Luca; Linari, Marco; Martinez, Manuel Fernandez; Lombardi, Vincenzo; Irving, Malcolm; Piazzesi, Gabriella
2014-01-01
X-ray diffraction patterns were recorded at beamline ID02 of the European Synchrotron Radiation Facility from small bundles of skeletal muscle fibres from Rana esculenta at sarcomere lengths between 2.1 and 3.5 μm at 4°C. The intensities of the X-ray reflections from resting fibres associated with the quasi-helical order of the myosin heads and myosin binding protein C (MyBP-C) decreased in the sarcomere length range 2.6–3.0 μm but were constant outside it, suggesting that an OFF conformation of the thick filament is maintained by an interaction between MyBP-C and the thin filaments. During active isometric contraction the intensity of the M3 reflection from the regular repeat of the myosin heads along the filaments decreased in proportion to the overlap between thick and thin filaments, with no change in its interference fine structure. Thus, myosin heads in the regions of the thick filaments that do not overlap with thin filaments are highly disordered during isometric contraction, in contrast to their quasi-helical order at rest. Heads in the overlap region that belong to two-headed myosin molecules that are fully detached from actin are also highly disordered, in contrast to the detached partners of actin-attached heads. These results provide strong support for the concept of a regulatory structural transition in the thick filament involving changes in both the organisation of the myosin heads on its surface and the axial periodicity of the myosin tails in its backbone, mediated by an interaction between MyBP-C and the thin filaments. PMID:24344169
NASA Astrophysics Data System (ADS)
Kitsak, M. A.; Kitsak, A. I.
2007-08-01
The model scheme of the nonlinear mechanism of transformation (decreasing) of the spatial coherence of a pulsed laser field in an extended multimode optical fibre upon nonstationary interaction with the fibre core is theoretically analysed. The case is considered when the spatial statistics of input radiation is caused by phase fluctuations. The analytic expression is obtained which relates the number of spatially coherent radiation modes with the spatially energy parameters on the initial radiation and fibre parameters. The efficiency of decorrelation of radiation upon excitation of the thermal and electrostriction nonlinearities in the fibre is estimated. Experimental studies are performed which revealed the basic properties of the transformation of the spatial coherence of a laser beam in a multimode fibre. The experimental results are compared with the predictions of the model of radiation transfer proposed in the paper. It is found that the spatial decorrelation of a light beam in a silica multimode fibre is mainly restricted by stimulated Raman scattering.
Picky eating in preschool children: Associations with dietary fibre intakes and stool hardness.
Taylor, Caroline M; Northstone, Kate; Wernimont, Susan M; Emmett, Pauline M
2016-05-01
It has been suggested that constipation may be associated with picky eating. Constipation is a common condition in childhood and a low intake of dietary fibre may be a risk factor. Differences in fibre intake between picky and non-picky children and its relation to stool consistency is currently not well-understood. Children enrolled in the Avon Longitudinal Study of Parents and Children identified as picky eaters (PE) were compared with non-picky eaters (NPE): (1) to determine dietary fibre intake at 38 months; (2) to investigate whether any difference in dietary fibre intake was predictive of usual stool hardness at 42 months. PE was identified from questionnaires at 24 and 38 months. Usual stool hardness was identified from a questionnaire at 42 months. Dietary intake was assessed at 38 months with a food frequency questionnaire. Dietary fibre intake was lower in PE than NPE (mean difference -1.4 (95% CI -1.6, -1.2) g/day, p < 0.001). PE was strongly associated with dietary fibre intake (adjusted regression model; unstandardised B -1.44 (95% CI -1.62, -1.24) g/day, p < 0.001). PE had a lower percentage of fibre from vegetables compared with NPE (8.9% vs 15.7%, respectively, p < 0.001). There was an association between PE and usually having hard stools (adjusted multinomial model; OR 1.31, 95% CI 1.07, 1.61; p = 0.010). This was attenuated when dietary fibre was included in the model, suggesting that fibre intake mediated the association (OR 1.16, 95% CI 0.94, 1.43, p = 0.180). Picky eating in 3-year-old children was associated with an increased prevalence of usually having hard stools. This association was mediated by low dietary fibre intake, particularly from vegetables, in PE. For children with PE, dietary advice aimed at increasing fibre intake may help avoid hard stools. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Polarisation effects in twin-core fibre: Application for mode locking in a fibre laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobach, I A; Kablukov, S I; Podivilov, Evgenii V
2012-09-30
We report the first measurements of the longitudinal power distribution in a twin-core optical fibre at different input light polarisations. Experimental evidence is presented that, because of the difference in birefringence between the cores, the power in them depends on which core the beam is launched into. Experimental data are interpreted in terms of a modified polarisation model for mode coupling in twin-core fibres which takes into account the birefringence of the cores. In addition, we demonstrate for the first time the use of the polarisation properties of a twincore fibre for mode locking in a fibre laser. (optical fibres,more » lasers and amplifiers. properties and applications)« less
A bioinspired study on the compressive resistance of helicoidal fibre structures
NASA Astrophysics Data System (ADS)
Tan, Ting; Ribbans, Brian
2017-10-01
Helicoidal fibre structures are widely observed in natural materials. In this paper, an integrated experimental and analytical approach was used to investigate the compressive resistance of helicoidal fibre structures. First, helicoidal fibre-reinforced composites were created using three-dimensionally printed helicoids and polymeric matrices, including plain, ring-reinforced and helix-reinforced helicoids. Then, load-displacement curves under monotonic compression tests were collected to measure the compressive strengths of helicoidal fibre composites. Fractographic characterization was performed using an X-ray microtomographer and scanning electron microscope, through which crack propagations in helicoidal structures were illustrated. Finally, mathematical modelling was performed to reveal the essential fibre architectures in the compressive resistance of helicoidal fibre structures. This work reveals that fibre-matrix ratios, helix pitch angles and interlayer rotary angles are critical to the compressive resistance of helicoidal structures.
Shao, Qiang
2014-06-05
A comparative study on the folding of multiple three-α-helix bundle proteins including α3D, α3W, and the B domain of protein A (BdpA) is presented. The use of integrated-tempering-sampling molecular dynamics simulations achieves reversible folding and unfolding events in individual short trajectories, which thus provides an efficient approach to sufficiently sample the configuration space of protein and delineate the folding pathway of α-helix bundle. The detailed free energy landscape analyses indicate that the folding mechanism of α-helix bundle is not uniform but sequence dependent. A simple model is then proposed to predict folding mechanism of α-helix bundle on the basis of amino acid composition: α-helical proteins containing higher percentage of hydrophobic residues than charged ones fold via nucleation-condensation mechanism (e.g., α3D and BdpA) whereas proteins having opposite tendency in amino acid composition more likely fold via the framework mechanism (e.g., α3W). The model is tested on various α-helix bundle proteins, and the predicted mechanism is similar to the most approved one for each protein. In addition, the common features in the folding pathway of α-helix bundle protein are also deduced. In summary, the present study provides comprehensive, atomic-level picture of the folding of α-helix bundle proteins.
Ionic currents and charge movements in organ-cultured rat skeletal muscle.
Hollingworth, S; Marshall, M W; Robson, E
1984-12-01
The middle of the fibre voltage-clamp technique was used to measure ionic currents and non-linear charge movements in intact, organ-cultured (in vitro denervated) mammalian fast-twitch (rat extensor digitorum longus) muscle fibres. Muscle fibres organ cultured for 4 days can be used as electrophysiological and morphological models for muscles in vivo denervated for the same length of time. Sodium currents in organ-cultured muscle fibres are similar to innervated fibres except that in the temperature range 0-20 degrees C (a) in the steady state, the voltage distribution of inactivation in cultured fibres is shifted negatively some 20 mV; (b) at the same temperature and membrane potential, the time constant of inactivation in cultured fibres is about twice that of innervated fibres. Potassium currents in innervated and cultured fibres at 15 degrees C can be fitted with the Hodgkin-Huxley n variable raised to the second power. Despite the large range we would estimate that the maximum value of the steady-state potassium conductance of cultured fibres is about one-half that of innervated fibres. The estimated maximum amount of charge moved in cultured fibre is about one-third that in innervated fibres. Compared to innervated fibres, culturing doubles the kinetics of the decay phase of charge movement. The possibility of a negative shift of the voltage distribution of charge movements in cultured fibres is discussed.
NASA Astrophysics Data System (ADS)
Bao, Minle; Wang, Lu; Li, Wenyao; Gao, Tianze
2017-09-01
Fluid elastic excitation in shell side of heat exchanger was deduced theoretically in this paper. Model foundation was completed by using Pro / Engineer software. The finite element model was constructed and imported into the FLUENT module. The flow field simulation adopted the dynamic mesh model, RNG k-ε model and no-slip boundary conditions. Analysing different positions vibration of tube bundles by selecting three regions in shell side of heat exchanger. The results show that heat exchanger tube bundles at the inlet of the shell side are more likely to be failure due to fluid induced vibration.
76 FR 53137 - Bundled Payments for Care Improvement Initiative: Request for Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-25
... (RFA) will test episode-based payment for acute care and associated post-acute care, using both retrospective and prospective bundled payment methods. The RFA requests applications to test models centered around acute care; these models will inform the design of future models, including care improvement for...
78 FR 29139 - Medicare Program; Bundled Payments for Care Improvement Model 1 Open Period
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-17
... initiative. DATES: Model 1 of the Bundled Payments for Care Improvement Deadline: Interested organizations... initiative. For additional information on this initiative go to the CMS Center for Medicare and Medicaid Innovation Web site at http://innovation.cms.gov/initiatives/BPCI-Model-1/index.html . SUPPLEMENTARY...
An optical channel modeling of a single mode fiber
NASA Astrophysics Data System (ADS)
Nabavi, Neda; Liu, Peng; Hall, Trevor James
2018-05-01
The evaluation of the optical channel model that accurately describes the single mode fibre as a coherent transmission medium is reviewed through analytical, numerical and experimental analysis. We used the numerical modelling of the optical transmission medium and experimental measurements to determine the polarization drift as a function of time for a fixed length of fibre. The probability distribution of the birefringence vector was derived, which is associated to the 'Poole' equation. The theory and experimental evidence that has been disclosed in the literature in the context of polarization mode dispersion - Stokes & Jones formulations and solutions for key statistics by integration of stochastic differential equations has been investigated. Besides in-depth definition of the single-mode fibre-optic channel, the modelling which concerns an ensemble of fibres each with a different instance of environmental perturbation has been analysed.
Dual-model automatic detection of nerve-fibres in corneal confocal microscopy images.
Dabbah, M A; Graham, J; Petropoulos, I; Tavakoli, M; Malik, R A
2010-01-01
Corneal Confocal Microscopy (CCM) imaging is a non-invasive surrogate of detecting, quantifying and monitoring diabetic peripheral neuropathy. This paper presents an automated method for detecting nerve-fibres from CCM images using a dual-model detection algorithm and compares the performance to well-established texture and feature detection methods. The algorithm comprises two separate models, one for the background and another for the foreground (nerve-fibres), which work interactively. Our evaluation shows significant improvement (p approximately 0) in both error rate and signal-to-noise ratio of this model over the competitor methods. The automatic method is also evaluated in comparison with manual ground truth analysis in assessing diabetic neuropathy on the basis of nerve-fibre length, and shows a strong correlation (r = 0.92). Both analyses significantly separate diabetic patients from control subjects (p approximately 0).
Stability of the matrix model in operator interpretation
NASA Astrophysics Data System (ADS)
Sakai, Katsuta
2017-12-01
The IIB matrix model is one of the candidates for nonperturbative formulation of string theory, and it is believed that the model contains gravitational degrees of freedom in some manner. In some preceding works, it was proposed that the matrix model describes the curved space where the matrices represent differential operators that are defined on a principal bundle. In this paper, we study the dynamics of the model in this interpretation, and point out the necessity of the principal bundle from the viewpoint of the stability and diffeomorphism invariance. We also compute the one-loop correction which yields a mass term for each field due to the principal bundle. We find that the stability is not violated.
NASA Astrophysics Data System (ADS)
Chehura, E.; Skordos, A. A.; Ye, C.-C.; James, S. W.; Partridge, I. K.; Tatam, R. P.
2005-04-01
Fibre Bragg gratings (FBGs) fabricated in linearly birefringent fibres were embedded in glass fibre/epoxy composites and in the corresponding unreinforced resin to monitor the effective transverse strain development during the cure process. The optical fibres containing the FBG sensors were aligned either normal or parallel to the reinforcement fibres in unidirectional glass fibre/epoxy prepregs. The chemical cure kinetics of the epoxy resin system used were studied using differential scanning calorimetry, in order to investigate the correlation between the strain monitoring results and the evolution of the curing reaction. A non-parametric cure kinetics model was developed and validated for this purpose. The effective transverse strain measured by the FBGs demonstrated high sensitivity to the degree of cure as a result of the densification of the resin caused by the curing reaction. The effective compressive transverse strain developed during the reaction, and thus the corresponding sensitivity to chemical changes, was higher in the case of the sensing fibre aligned normal to the reinforcement fibres than in the case of the sensor fibre parallel to the reinforcement fibres. Small but measurable sensitivity to cure induced changes was observed in the case of the unreinforced resin.
75 FR 47734 - Airworthiness Directives; Piaggio Aero Industries S.p.A. Model PIAGGIO P-180 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-09
... stabilizer (carbon fibre); investigation identified the cause in galvanic corrosion between dissimilar... elevator hinges fittings (metallic) and the horizontal stabilizer (carbon fibre); investigation identified... (carbon fibre); investigation identified the cause in galvanic corrosion between dissimilar materials. If...
Modelling of anisotropic growth in biological tissues. A new approach and computational aspects.
Menzel, A
2005-03-01
In this contribution, we develop a theoretical and computational framework for anisotropic growth phenomena. As a key idea of the proposed phenomenological approach, a fibre or rather structural tensor is introduced, which allows the description of transversely isotropic material behaviour. Based on this additional argument, anisotropic growth is modelled via appropriate evolution equations for the fibre while volumetric remodelling is realised by an evolution of the referential density. Both the strength of the fibre as well as the density follow Wolff-type laws. We however elaborate on two different approaches for the evolution of the fibre direction, namely an alignment with respect to strain or with respect to stress. One of the main benefits of the developed framework is therefore the opportunity to address the evolutions of the fibre strength and the fibre direction separately. It is then straightforward to set up appropriate integration algorithms such that the developed framework fits nicely into common, finite element schemes. Finally, several numerical examples underline the applicability of the proposed formulation.
Rheology of Carbon Fibre Reinforced Cement-Based Mortar
NASA Astrophysics Data System (ADS)
Banfill, Phillip F. G.; Starrs, Gerry; McCarter, W. John
2008-07-01
Carbon fibre reinforced cement based materials (CFRCs) offer the possibility of fabricating "smart" electrically conductive materials. Rheology of the fresh mix is crucial to satisfactory moulding and fresh CFRC conforms to the Bingham model with slight structural breakdown. Both yield stress and plastic viscosity increase with increasing fibre length and volume concentration. Using a modified Viskomat NT, the concentration dependence of CFRC rheology up to 1.5% fibre volume is reported.
Numerical model describing optimization of fibres winding process on open and closed frame
NASA Astrophysics Data System (ADS)
Petrů, M.; Mlýnek, J.; Martinec, T.
2016-08-01
This article discusses a numerical model describing optimization of fibres winding process on open and closed frame. The quality production of said type of composite frame depends primarily on the correct winding of fibers on a polyurethane core. It is especially needed to ensure the correct angles of the fibers winding on the polyurethane core and the homogeneity of individual winding layers. The article describes mathematical model for use an industrial robot in filament winding and how to calculate the trajectory of the robot. When winding fibers on the polyurethane core which is fastened to the robot-end-effector so that during the winding process goes through a fibre-processing head on the basis of the suitably determined robot-end-effector trajectory. We use the described numerical model and matrix calculus to enumerate the trajectory of the robot-end-effector to determine the desired passage of the frame through the fibre-processing head. The calculation of the trajectory was programmed in the Delphi development environment. Relations of the numerical model are important for use a real solving of the passage of a polyurethane core through fibre-processing head.
Neo, Yun Ping; Swift, Simon; Ray, Sudip; Gizdavic-Nikolaidis, Marija; Jin, Jianyong; Perera, Conrad O
2013-12-01
The applicability of gallic acid loaded zein (Ze-GA) electrospun fibre mats towards potential active food packaging material was evaluated. The surface chemistry of the electrospun fibre mats was determined using X-ray photon spectroscopy (XPS). The electrospun fibre mats showed low water activity and whitish colour. Thermogravimetric analysis (TGA) and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy revealed the stability of the fibre mats over time. The Ze-GA fibre mats displayed similar rapid release profiles, with Ze-GA 20% exhibiting the fastest release rate in water as compared to the others. Gallic acid diffuses from the electrospun fibres in a Fickian diffusion manner and the data obtained exhibited a better fit to Higuchi model. L929 fibroblast cells were cultured on the electrospun fibres to demonstrate the absence of cytotoxicity. Overall, the Ze-GA fibre mats demonstrated antibacterial activity and properties consistent with those considered desirable for active packaging material in the food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cui, Yi; Yao, Yao; Zhao, Yannan; Xiao, Zhifeng; Cao, Zongfu; Han, Sufang; Li, Xing; Huan, Yong; Pan, Juli; Dai, Jianwu
2018-05-01
Numerous studies have focused on the development of novel and innovative approaches for the treatment of peripheral nerve injury using artificial nerve guide conduits. In this study, we attempted to bridge 3.5-cm defects of the sciatic nerve with a longitudinally oriented collagen conduit (LOCC) loaded with human umbilical cord mesenchymal stem cells (hUC-MSCs). The LOCC contains a bundle of longitudinally aligned collagenous fibres enclosed in a hollow collagen tube. Our previous studies showed that an LOCC combined with neurotrophic factors enhances peripheral nerve regeneration. However, it remained unknown whether an LOCC seeded with hUC-MSCs could also promote regeneration. In this study, using various histological and electrophysiological analyses, we found that an LOCC provides mechanical support to newly growing nerves and functions as a structural scaffold for cells, thereby stimulating sciatic nerve regeneration. The LOCC and hUC-MSCs synergistically promoted regeneration and improved the functional recovery in a dog model of sciatic nerve injury. Therefore, the combined use of an LOCC and hUC-MSCs might have therapeutic potential for the treatment of peripheral nerve injury. Copyright © 2018 John Wiley & Sons, Ltd.
Magneto-mechanical bone growth stimulation by actuation of highly porous ferromagnetic fiber arrays
NASA Astrophysics Data System (ADS)
Markaki, Athina E.; Clyne, Trevor W.
2005-02-01
This work relates to porous material made by bonding together fibres of a magnetic material. When subjected to a magnetic field, the array deforms, with individual fibres becoming magnetised along their length and then tending to line up locally with the direction of the field. An investigation is presented into the concept that this deformation could induce beneficial strains in bone tissue network in the early stages of growth as it grows into the porous fibre array. An analytical model has been developed, based on the deflection of individual fibre segments (between joints) experiencing bending moments as a result of the induced magnetic dipole. The model has been validated via measurements made on simple fibre assemblies and random fibre arrays. Work has also been done on the deformation characteristics of random fibre arrays with a matrix filling the inter-fibre space. This has the effect of reducing the fibre deflections. The extent of this reduction, and an estimate of the maximum strains induced in the space-filling material, can be obtained using a simple force balance approach. Predictions indicate that in-growing bone tissue, with a stiffness of around 0.01-0.1 GPa, could be strained to beneficial levels (~1 millistrain), using magnetic field strengths in current diagnostic use (~1 Tesla), provided the fibre segment aspect ratio is at least about 10. Such material has a low Young"s modulus, but the overall stiffness of a prosthesis could be matched to that of cortical bone by using an integrated design involving a porous magneto-active layer bonded to a dense non-magnetic core.
Microscopic anatomy of the visceral fasciae.
Stecco, Carla; Sfriso, Maria Martina; Porzionato, Andrea; Rambaldo, Anna; Albertin, Giovanna; Macchi, Veronica; De Caro, Raffaele
2017-07-01
The term 'visceral fascia' is a general term used to describe the fascia lying immediately beneath the mesothelium of the serosa, together with that immediately surrounding the viscera, but there are many types of visceral fasciae. The aim of this paper was to identify the features they have in common and their specialisations. The visceral fascia of the abdomen (corresponding to the connective tissue lying immediately beneath the mesothelium of the parietal peritoneum), thorax (corresponding to the connective tissue lying immediately beneath the mesothelium of the parietal pleura), lung (corresponding to the connective tissue under the mesothelium of the visceral pleura), liver (corresponding to the connective tissue under the mesothelium of the visceral peritoneum), kidney (corresponding to the Gerota fascia), the oesophagus (corresponding to its adventitia) and heart (corresponding to the fibrous layer of the pericardial sac) from eight fresh cadavers were sampled and analysed with histological and immunohistochemical stains to evaluate collagen and elastic components and innervation. Although the visceral fasciae make up a well-defined layer of connective tissue, the thickness, percentage of elastic fibres and innervation vary among the different viscera. In particular, the fascia of the lung has a mean thickness of 134 μm (± 21), that of heart 792 μm (± 132), oesophagus 105 μm (± 10), liver 131 μm (± 18), Gerota fascia 1009 μm (± 105) and the visceral fascia of the abdomen 987 μm (± 90). The greatest number of elastic fibres (9.79%) was found in the adventitia of the oesophagus. The connective layers lying immediately outside the mesothelium of the pleura and peritoneum also have many elastic fibres (4.98% and 4.52%, respectively), whereas the pericardium and Gerota fascia have few (0.27% and 1.38%). In the pleura, peritoneum and adventitia of the oesophagus, elastic fibres form a well-defined layer, corresponding to the elastic lamina, while in the other cases they are thinner and scattered in the connective tissue. Collagen fibres also show precise spatial organisation, being arranged in several layers. In each layer, all the fibrous bundles are parallel with each other, but change direction among layers. Loose connective tissue rich in elastic fibres is found between contiguous fibrous layers. Unmyelinated nerve fibres were found in all samples, but myelinated fibres were only found in some fasciae, such as those of the liver and heart, and the visceral fascia of the abdomen. According to these findings, we propose distinguishing the visceral fasciae into two large groups. The first group includes all the fasciae closely related to the individual organ and giving shape to it, supporting the parenchyma; these are thin, elastic and very well innervated. The second group comprises all the fibrous sheets forming the compartments for the organs and also connecting the internal organs to the musculoskeletal system. These fasciae are thick, less elastic and less innervated, but they contain larger and myelinated nerves. We propose to call the first type of fasciae 'investing fasciae', and the second type 'insertional fasciae'. © 2017 Anatomical Society.
Rheological characteristics of pulp-fibre-reinforced polyamide composite
NASA Astrophysics Data System (ADS)
Cherizol, Robenson
Recently, there has been increasing interest in utilizing pulp-fibre-reinforced, higher-melting-temperature engineering thermoplastics, such as polyamide 11 and polyamide 6 in the automotive, aerospace and construction industries. Moreover, the rheological characteristics of those composites were not fully investigated in relation to processing approaches and pulp-fibre aspect ratio. Two processing approaches were used in this thesis: the extrusion compounding process and the Brabender mixer technique using inorganic salt lithium chloride (LiCl). The fibre-length distribution and content, and the densities of the PA11 and modified bio-based PA11 after compounding, were investigated and found to coincide with the final properties of the resultant composites. The effects of fibre content, fibre aspect ratio, and fibre length on rheological properties were studied. The rheological properties of high-yield-pulp (HYP) -reinforced bio-based Polyamide 11 (PA11) composite (HYP/PA11) were experimentally investigated using a capillary rheometer. Experimental test results showed a steep decrease in shear viscosity with increasing shear rate; this melt-flow characteristic corresponds to shear-thinning behavior in HYP/PA11. The morphological properties of HYP/PA11 composite were examined using SEM: no fibre pullout was observed. This was due to the presence of the hydrogen bond, which created excellent compatibility between high-yield pulp fibre and bio-based Nylon 11. The viscoelastic characteristics of biocomposites derived from natural-fibre-reinforced thermoplastic polymers and of predictive models were reviewed to understand their rheological behavior. Novel predicted multiphase rheological-model-based polymer, fibre, and interphasial phases were developed. Rheological characteristics of the composite components influenced the development of resultant microstructures; this in turn affected the mechanical characteristics of a multiphase composite. Experimental and theoretical test results of HYP/PA11 showed a steep decrease in apparent viscosity with increasing shear rate; this melt-flow characteristic corresponds to shear-thinning behavior in HYP/PA11.The nonlinear mathematical model to predict the rheological behavior of HYP/PA11was validated experimentally at 200?C and 5000S-1 shear rate.
Ballistic and snake photon imaging for locating optical endomicroscopy fibres
Tanner, M. G.; Choudhary, T. R.; Craven, T. H.; Mills, B.; Bradley, M.; Henderson, R. K.; Dhaliwal, K.; Thomson, R. R.
2017-01-01
We demonstrate determination of the location of the distal-end of a fibre-optic device deep in tissue through the imaging of ballistic and snake photons using a time resolved single-photon detector array. The fibre was imaged with centimetre resolution, within clinically relevant settings and models. This technique can overcome the limitations imposed by tissue scattering in optically determining the in vivo location of fibre-optic medical instruments. PMID:28966848
Effect of 3D-scaffold formation on differentiation and survival in human neural progenitor cells.
Ortinau, Stefanie; Schmich, Jürgen; Block, Stephan; Liedmann, Andrea; Jonas, Ludwig; Weiss, Dieter G; Helm, Christiane A; Rolfs, Arndt; Frech, Moritz J
2010-11-11
3D-scaffolds have been shown to direct cell growth and differentiation in many different cell types, with the formation and functionalisation of the 3D-microenviroment being important in determining the fate of the embedded cells. Here we used a hydrogel-based scaffold to investigate the influences of matrix concentration and functionalisation with laminin on the formation of the scaffolds, and the effect of these scaffolds on human neural progenitor cells cultured within them. In this study we used different concentrations of the hydrogel-based matrix PuraMatrix. In some experiments we functionalised the matrix with laminin I. The impact of concentration and treatment with laminin on the formation of the scaffold was examined with atomic force microscopy. Cells from a human fetal neural progenitor cell line were cultured in the different matrices, as well as in a 2D culture system, and were subsequently analysed with antibody stainings against neuronal markers. In parallel, the survival rate of the cells was determined by a live/dead assay. Atomic force microscopy measurements demonstrated that the matrices are formed by networks of isolated PuraMatrix fibres and aggregates of fibres. An increase of the hydrogel concentration led to a decrease in the mesh size of the scaffolds and functionalisation with laminin promoted aggregation of the fibres (bundle formation), which further reduces the density of isolated fibres. We showed that laminin-functionalisation is essential for human neural progenitor cells to build up 3D-growth patterns, and that proliferation of the cells is also affected by the concentration of matrix. In addition we found that 3D-cultures enhanced neuronal differentiation and the survival rate of the cells compared to 2D-cultures. Taken together, we have demonstrated a direct influence of the 3D-scaffold formation on the survival and neuronal differentiation of human neural progenitor cells. These findings emphasize the importance of optimizing 3D-scaffolds protocols prior to in vivo engraftment of stem and progenitor cells in the context of regenerative medicine.
Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level
Guan, Kang; Wu, Jianqing; Cheng, Laifei
2016-01-01
The evolution of the thermal conductivities of the unidirectional, 2D woven and 3D braided composites during the CVI (chemical vapor infiltration) process have been numerically studied by the finite element method. The results show that the dual-scale pores play an important role in the thermal conduction of the CVI-densified composites. According to our results, two thermal conductivity models applicable for CVI process have been developed. The sensitivity analysis demonstrates the parameter with the most influence on the CVI-densified composites’ thermal conductivity is matrix cracking’s density, followed by volume fraction of the bundle and thermal conductance of the matrix cracks, finally by micro-porosity inside the bundles and macro-porosity between the bundles. The obtained results are well consistent with the reported data, thus our models could be useful for designing the processing and performance of the CVI-densified composites. PMID:28774130
A mathematical model for mesenchymal and chemosensitive cell dynamics.
Häcker, Anita
2012-01-01
The structure of an underlying tissue network has a strong impact on cell dynamics. If, in addition, cells alter the network by mechanical and chemical interactions, their movement is called mesenchymal. Important examples for mesenchymal movement include fibroblasts in wound healing and metastatic tumour cells. This paper is focused on the latter. Based on the anisotropic biphasic theory of Barocas and Tranquillo, which models a fibre network and interstitial solution as two-component fluid, a mathematical model for the interactions of cells with a fibre network is developed. A new description for fibre reorientation is given and orientation-dependent proteolysis is added to the model. With respect to cell dynamics, the equation, based on anisotropic diffusion, is extended by haptotaxis and chemotaxis. The chemoattractants are the solute network fragments, emerging from proteolysis, and the epidermal growth factor which may guide the cells to a blood vessel. Moreover the cell migration is impeded at either high or low network density. This new model enables us to study chemotactic cell migration in a complex fibre network and the consequential network deformation. Numerical simulations for the cell migration and network deformation are carried out in two space dimensions. Simulations of cell migration in underlying tissue networks visualise the impact of the network structure on cell dynamics. In a scenario for fibre reorientation between cell clusters good qualitative agreement with experimental results is achieved. The invasion speeds of cells in an aligned and an isotropic fibre network are compared. © Springer-Verlag 2011
75 FR 7931 - Airworthiness Directives; Airbus Model A380-841, -842, and -861 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
... addition, delamination has been observed within the monolithic Carbon Fibre Reinforced Plastic (CFRP... observed within the monolithic Carbon Fibre Reinforced Plastic (CFRP) structure around the pivot support... monolithic Carbon Fibre Reinforced Plastic (CFRP) structure around the pivot support-ring. This condition, if...
Development of peptide-containing nerves in the human fetal prostate gland.
Jen, P Y; Dixon, J S
1995-01-01
Immunohistochemical methods were used to study the developing peptidergic innervation of the human fetal prostate gland in a series of specimens ranging in gestational age from 13 to 30 wk. The overall innervation of each specimen was visualised using protein gene product 9.5 (PGP), a general nerve marker. The onset and development of specific neuropeptide-containing subpopulations were investigated using antisera to neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), substance P (SP), calcitonin gene-related peptide (CGRP), bombesin (BOM), somatostatin (SOM), leu-enkephalin (l-ENK) and met-enkephalin (m-ENK). In addition the occurrence and distribution of presumptive noradrenergic nerves was studied using antisera to dopamine-beta-hydroxylase (D beta H) and tyrosine hydroxylase (TH). At 13 wk numerous branching PGP-immunoreactive (-IR) nerves were observed in the capsule of the developing prostate gland and surrounding the preprostatic urethra but the remainder of the gland was devoid of nerves. The majority of nerves in the capsule contained D beta H and TH and were presumed to be noradrenergic in type while other nerves (in decreasing numbers) contained NPY, l-ENK, SP and CGRP. Nerves associated with the preprostatic urethra did not contain any of the neuropeptides under investigation. At 17 wk the density of nerves in the capsule had increased and occasional m-ENK-, VIP- and BOM-IR nerve fibres were also observed. In addition PGP, D beta H-, TH-, NPY- and l-ENK-IR nerves occurred in association with smooth muscle bundles which at 17 wk were present in the outer part of the gland. Occasional PGP-IR nerves were also present at the base of the epithelium forming some of the prostatic glands. At 23 wk some of the subepithelial nerves showed immunoreactivity for NPY, VIP or l-ENK. At 26 wk smooth muscle bundles occurred throughout the gland and were richly innervated by PGP, D beta H and TH-IR nerves while a less dense plexus was formed by NPY- and l-ENK-IR nerves together with a few m-ENK-IR nerves. Occasional smooth muscle-associated varicose nerve fibres showed immunoreactivity for SP, CGRP, VIP or BOM although the majority of these types of nerve formed perivascular plexuses. Also at 26 wk numerous varicose nerve fibres were observed in association with the prostatic acini, the majority of such nerves containing NPY with a few showing immunoreactivity to VIP, l-ENK, SP or CGRP.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 PMID:7591978
Gustafson, William Jr; Vogelmann, Andrew; Endo, Satoshi; Toto, Tami; Xiao, Heng; Li, Zhijin; Cheng, Xiaoping; Kim, Jinwon; Krishna, Bhargavi
2015-08-31
The Alpha 2 release is the second release from the LASSO Pilot Phase that builds upon the Alpha 1 release. Alpha 2 contains additional diagnostics in the data bundles and focuses on cases from spring-summer 2016. A data bundle is a unified package consisting of LASSO LES input and output, observations, evaluation diagnostics, and model skill scores. LES input include model configuration information and forcing data. LES output includes profile statistics and full domain fields of cloud and environmental variables. Model evaluation data consists of LES output and ARM observations co-registered on the same grid and sampling frequency. Model performance is quantified by skill scores and diagnostics in terms of cloud and environmental variables.
SO(32) heterotic line bundle models
NASA Astrophysics Data System (ADS)
Otsuka, Hajime
2018-05-01
We search for the three-generation standard-like and/or Pati-Salam models from the SO(32) heterotic string theory on smooth, quotient complete intersection Calabi-Yau threefolds with multiple line bundles, each with structure group U(1). These models are S- and T-dual to intersecting D-brane models in type IIA string theory. We find that the stable line bundles and Wilson lines lead to the standard model gauge group with an extra U(1) B-L via a Pati-Salam-like symmetry and the obtained spectrum consists of three chiral generations of quarks and leptons, and vector-like particles. Green-Schwarz anomalous U(1) symmetries control not only the Yukawa couplings of the quarks and leptons but also the higher-dimensional operators causing the proton decay.
Rinaldi, Antonio
2011-04-01
Traditional fiber bundles models (FBMs) have been an effective tool to understand brittle heterogeneous systems. However, fiber bundles in modern nano- and bioapplications demand a new generation of FBM capturing more complex deformation processes in addition to damage. In the context of loose bundle systems and with reference to time-independent plasticity and soft biomaterials, we formulate a generalized statistical model for ductile fracture and nonlinear elastic problems capable of handling more simultaneous deformation mechanisms by means of two order parameters (as opposed to one). As the first rational FBM for coupled damage problems, it may be the cornerstone for advanced statistical models of heterogeneous systems in nanoscience and materials design, especially to explore hierarchical and bio-inspired concepts in the arena of nanobiotechnology. Applicative examples are provided for illustrative purposes at last, discussing issues in inverse analysis (i.e., nonlinear elastic polymer fiber and ductile Cu submicron bars arrays) and direct design (i.e., strength prediction).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dearing, J.F.
The Subchannel Analysis of Blockages in Reactor Elements (SABRE) computer code, developed by the United Kingdom Atomic Energy Authority, is currently the only practical tool available for performing detailed analyses of velocity and temperature fields in the recirculating flow regions downstream of blockages in liquid-metal fast breeder reactor (LMFBR) pin bundles. SABRE is a subchannel analysis code; that is, it accurately represents the complex geometry of nuclear fuel pins arranged on a triangular lattice. The results of SABRE computational models are compared here with temperature data from two out-of-pile 19-pin test bundles from the Thermal-Hydraulic Out-of-Reactor Safety (THORS) Facility atmore » Oak Ridge National Laboratory. One of these bundles has a small central flow blockage (bundle 3A), while the other has a large edge blockage (bundle 5A). Values that give best agreement with experiment for the empirical thermal mixing correlation factor, FMIX, in SABRE are suggested. These values of FMIX are Reynolds-number dependent, however, indicating that the coded turbulent mixing correlation is not appropriate for wire-wrap pin bundles.« less
NASA Astrophysics Data System (ADS)
Bykovskii, Yurii A.; Markilov, A. A.; Rodin, V. G.; Starikov, S. N.
1995-10-01
A description is given of systems with spatially incoherent illumination, intended for spectral and correlation analysis, and for the recording of Fourier holograms. These systems make use of transformation of the degree of the spatial coherence of light. The results are given of the processing of images and signals, including those transmitted by a bundle of fibre-optic waveguides both as monochromatic light and as quasimonochromatic radiation from a cathode-ray tube. The feasibility of spatial frequency filtering and of correlation analysis of images with a bipolar impulse response is considered for systems with spatially incoherent illumination where these tasks are performed by double transformation of the spatial coherence of light. A description is given of experimental systems and the results of image processing are reported.
Computational high-resolution optical imaging of the living human retina
NASA Astrophysics Data System (ADS)
Shemonski, Nathan D.; South, Fredrick A.; Liu, Yuan-Zhi; Adie, Steven G.; Scott Carney, P.; Boppart, Stephen A.
2015-07-01
High-resolution in vivo imaging is of great importance for the fields of biology and medicine. The introduction of hardware-based adaptive optics (HAO) has pushed the limits of optical imaging, enabling high-resolution near diffraction-limited imaging of previously unresolvable structures. In ophthalmology, when combined with optical coherence tomography, HAO has enabled a detailed three-dimensional visualization of photoreceptor distributions and individual nerve fibre bundles in the living human retina. However, the introduction of HAO hardware and supporting software adds considerable complexity and cost to an imaging system, limiting the number of researchers and medical professionals who could benefit from the technology. Here we demonstrate a fully automated computational approach that enables high-resolution in vivo ophthalmic imaging without the need for HAO. The results demonstrate that computational methods in coherent microscopy are applicable in highly dynamic living systems.
NASA Astrophysics Data System (ADS)
Gubin, Vladimir P.; Isaev, Victor A.; Morshnev, Sergey K.; Sazonov, Aleksandr I.; Starostin, Nikolay I.; Chamorovsky, Yury K.; Oussov, Aleksey I.
2006-03-01
The polarisation properties of a Spun optical fibre are studied in connection with their applications in fibreoptic current sensors based on the Faraday effect. A model of this fibre is proposed which represents it as an anisotropic medium with the spiral structure of the fast and slow birefringence axes. A sensor is developed based on an all-fibre low-coherence linear interferometer with a threshold sensitivity of 70 mA Hz-1/2, a maximum measured current of 3000 A, and a scale-factor reproducibility of ±0.6%. It is found that for a given diameter of the fibre contour, the normalised sensitivity is independent of the fibre length. The experimental results confirm the theory.
NASA Astrophysics Data System (ADS)
Spearing, S. Mark; Sinclair, Ian
2016-07-01
Recent work, led by the authors, on impact damage resistance, particle toughening and tensile fibre failure is reviewed in order to illustrate the use of high-resolution X-ray tomography to observe and quantify damage mechanisms in carbon fibre composite laminates. Using synchrotron and micro-focus X-ray sources resolutions of less than 1 μm have been routinely achieved. This enables individual broken fibres and the micromechanisms of particle toughening to be observed and quantified. The data for fibre failure, cluster formation and overall tensile strength are compared with model predictions. This allows strategies for future model development to be identified. The overall implications for using such high-resolution 3-D measurements to inform a “data-rich mechanics” approach to materials evaluation and modeling is discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-05
... AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new... clearance and any wire bundle damage between wire bundle W443 and the left forward rudder quadrant, followed by adjusting the minimum clearance between the wire bundle and the left forward rudder quadrant, and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, J.D.; Joiner, W.C.H.
1979-10-01
Flux-flow noise power spectra taken on Pb/sub 80/In/sub 20/ foils as a function of the orientation of the magnetic field with respect to the sample surfaces are used to study changes in frequencies and bundle sizes as distances of fluxoid traversal and fluxoid lengths change. The results obtained for the frequency dependence of the noise spectra are entirely consistent with our model for flux motion interrupted by pinning centers, provided one makes the reasonable assumption that the distance between pinning centers which a fluxoid may encounter scales inversely with the fluxoid length. The importance of pinning centers in determining themore » noise characteristics is also demonstrated by the way in which subpulse distributions and generalized bundle sizes are altered by changes in the metallurgical structure of the sample. In unannealed samples the dependence of bundle size on magnetic field orientation is controlled by a structural anisotropy, and we find a correlation between large bundle size and the absence of short subpulse times. Annealing removes this anisotropy, and we find a stronger angular variation of bundle size than would be expected using present simplified models.« less
A momentum source model for wire-wrapped rod bundles—Concept, validation, and application
Hu, Rui; Fanning, Thomas H.
2013-06-19
Large uncertainties still exist in the treatment of wire-spacers and drag models for momentum transfer in current lumped parameter models. Here, to improve the hydraulic modeling of wire-wrap spacers in a rod bundle, a three-dimensional momentum source model (MSM) has been developed to model the anisotropic flow without the need to resolve the geometric details of the wire-wraps. The MSM is examined for 7-pin and 37-pin bundles steady-state simulations using the commercial CFD code STAR-CCM+. The calculated steady-state inter-subchannel cross flow velocities match very well in comparisons between bare bundles with the MSM applied and the wire-wrapped bundles with explicitmore » geometry. The validity of the model is further verified by mesh and parameter sensitivity studies. Furthermore, the MSM is applied to a 61-pin EBR-II experimental subassembly for both steady state and PLOF transient simulations. Reasonably accurate predictions of temperature, pressure, and fluid flow velocities have been achieved using the MSM for both steady-state and transient conditions. Significant computing resources are saved with the MSM since it can be used on a much coarser computational mesh.« less
Spinor Geometry and Signal Transmission in Three-Space
NASA Astrophysics Data System (ADS)
Binz, Ernst; Pods, Sonja; Schempp, Walter
2002-09-01
For a singularity free gradient field in an open set of an oriented Euclidean space of dimension three we define a natural principal bundle out of an immanent complex line bundle. The elements of both bundles are called internal variables. Several other natural bundles are associated with the principal bundle and, in turn, determine the vector field. Two examples are given and it is shown that for a constant vector field circular polarized waves travelling along a field line can be considered as waves of internal variables. Einstein's equation epsilon = m [middle dot] c2 is derived from the geometry of the principal bundle. On SU(2) a relation between spin representations and Schrodinger representations is established. The link between the spin 1/2-model and the Schrodinger representations yields a connection between a microscopic and a macroscopic viewpoint.
Heuijerjans, Ashley; Matikainen, Marko K.; Julkunen, Petro; Eliasson, Pernilla; Aspenberg, Per; Isaksson, Hanna
2015-01-01
Background Computational models of Achilles tendons can help understanding how healthy tendons are affected by repetitive loading and how the different tissue constituents contribute to the tendon’s biomechanical response. However, available models of Achilles tendon are limited in their description of the hierarchical multi-structural composition of the tissue. This study hypothesised that a poroviscoelastic fibre-reinforced model, previously successful in capturing cartilage biomechanical behaviour, can depict the biomechanical behaviour of the rat Achilles tendon found experimentally. Materials and Methods We developed a new material model of the Achilles tendon, which considers the tendon’s main constituents namely: water, proteoglycan matrix and collagen fibres. A hyperelastic formulation of the proteoglycan matrix enabled computations of large deformations of the tendon, and collagen fibres were modelled as viscoelastic. Specimen-specific finite element models were created of 9 rat Achilles tendons from an animal experiment and simulations were carried out following a repetitive tensile loading protocol. The material model parameters were calibrated against data from the rats by minimising the root mean squared error (RMS) between experimental force data and model output. Results and Conclusions All specimen models were successfully fitted to experimental data with high accuracy (RMS 0.42-1.02). Additional simulations predicted more compliant and soft tendon behaviour at reduced strain-rates compared to higher strain-rates that produce a stiff and brittle tendon response. Stress-relaxation simulations exhibited strain-dependent stress-relaxation behaviour where larger strains produced slower relaxation rates compared to smaller strain levels. Our simulations showed that the collagen fibres in the Achilles tendon are the main load-bearing component during tensile loading, where the orientation of the collagen fibres plays an important role for the tendon’s viscoelastic response. In conclusion, this model can capture the repetitive loading and unloading behaviour of intact and healthy Achilles tendons, which is a critical first step towards understanding tendon homeostasis and function as this biomechanical response changes in diseased tendons. PMID:26030436
NASA Astrophysics Data System (ADS)
Ji, S.; Yuan, X.
2016-06-01
A generic probabilistic model, under fundamental Bayes' rule and Markov assumption, is introduced to integrate the process of mobile platform localization with optical sensors. And based on it, three relative independent solutions, bundle adjustment, Kalman filtering and particle filtering are deduced under different and additional restrictions. We want to prove that first, Kalman filtering, may be a better initial-value supplier for bundle adjustment than traditional relative orientation in irregular strips and networks or failed tie-point extraction. Second, in high noisy conditions, particle filtering can act as a bridge for gap binding when a large number of gross errors fail a Kalman filtering or a bundle adjustment. Third, both filtering methods, which help reduce the error propagation and eliminate gross errors, guarantee a global and static bundle adjustment, who requires the strictest initial values and control conditions. The main innovation is about the integrated processing of stochastic errors and gross errors in sensor observations, and the integration of the three most used solutions, bundle adjustment, Kalman filtering and particle filtering into a generic probabilistic localization model. The tests in noisy and restricted situations are designed and examined to prove them.
Dolgobrodov, S G; Lukashkin, A N; Russell, I J
2000-12-01
This paper is based on our model [Dolgobrodov et al., 2000. Hear. Res., submitted for publication] in which we examine the significance of the polyanionic surface layers of stereocilia for electrostatic interaction between them. We analyse how electrostatic forces modify the mechanical properties of the sensory hair bundle. Different charge distribution profiles within the glycocalyx are considered. When modelling a typical experiment on bundle stiffness measurements, applying an external force to the tallest row of stereocilia shows that the asymptotic stiffness of the hair bundle for negative displacements is always larger than the asymptotic stiffness for positive displacements. This increase in stiffness is monotonic for even charge distribution and shows local minima when the negative charge is concentrated in a thinner layer within the cell coat. The minima can also originate from the co-operative effect of electrostatic repulsion and inter-ciliary links with non-linear mechanical properties. Existing experimental observations are compared with the predictions of the model. We conclude that the forces of electrostatic interaction between stereocilia may influence the mechanical properties of the hair bundle and, being strongly non-linear, contribute to the non-linear phenomena, which have been recorded from the auditory periphery.
A Grey Fuzzy Logic Approach for Cotton Fibre Selection
NASA Astrophysics Data System (ADS)
Chakraborty, Shankar; Das, Partha Protim; Kumar, Vidyapati
2017-06-01
It is a well known fact that the quality of ring spun yarn predominantly depends on various physical properties of cotton fibre. Any variation in these fibre properties may affect the strength and unevenness of the final yarn. Thus, so as to achieve the desired yarn quality and characteristics, it becomes imperative for the spinning industry personnel to identify the most suitable cotton fibre from a set of feasible alternatives in presence of several conflicting properties/attributes. This cotton fibre selection process can be modelled as a Multi-Criteria Decision Making (MCDM) problem. In this paper, a grey fuzzy logic-based approach is proposed for selection of the most apposite cotton fibre from 17 alternatives evaluated based on six important fibre properties. It is observed that the preference order of the top-ranked cotton fibres derived using the grey fuzzy logic approach closely matches with that attained by the past researchers which proves the application potentiality of this method in solving varying MCDM problems in textile industries.
Nanomechanics of Pectin-Linked β-Lactoglobulin Nanofibril Bundles.
Loveday, Simon M; Gunning, A Patrick
2018-06-14
Nanofibrils of β-lactoglobulin can be assembled into bundles by site-specific noncovalent cross-linking with high-methoxyl pectin (Hettiarachchi et al. Soft Matter 2016, 12, 756). Here we characterized the nanomechanical properties of bundles using atomic force microscopy and force spectroscopy. Bundles had Gaussian cross sections and a mean height of 17.4 ± 1.4 nm. Persistence lengths were calculated using image analysis with the mean-squared end-to-end model. The relationship between the persistence length and the thickness had exponents of 1.69-2.30, which is consistent with previous reports for other fibril types. In force spectroscopy experiments, the bundles stretched in a qualitatively different manner to fibrils, and some of the force curves were consistent with peeling fibrils away from bundles. The flexibility of pectin-linked nanofibril bundles is likely to be tunable by modulating the stiffness and length of fibrils and the ratio of pectin to fibrils, giving rise to a wide range of structures and functionalities.
Design and impact of bundled payment for detox and follow-up care.
Quinn, Amity E; Hodgkin, Dominic; Perloff, Jennifer N; Stewart, Maureen T; Brolin, Mary; Lane, Nancy; Horgan, Constance M
2017-11-01
Recent payment reforms promote movement from fee-for-service to alternative payment models that shift financial risk from payers to providers, incentivizing providers to manage patients' utilization. Bundled payment, an episode-based fixed payment that includes the prices of a group of services that would typically treat an episode of care, is expanding in the United States. Bundled payment has been recommended as a way to pay for comprehensive SUD treatment and has the potential to improve treatment engagement after detox, which could reduce detox readmissions, improve health outcomes, and reduce medical care costs. However, if moving to bundled payment creates large losses for some providers, it may not be sustainable. The objective of this study was to design the first bundled payment for detox and follow-up care and to estimate its impact on provider revenues. Massachusetts Medicaid beneficiaries' behavioral health, medical, and pharmacy claims from July 2010-April 2013 were used to build and test a detox bundled payment for continuously enrolled adults (N=5521). A risk adjustment model was developed using general linear modeling to predict beneficiaries' episode costs. The projected payments to each provider from the risk adjustment analysis were compared to the observed baseline costs to determine the potential impact of a detox bundled payment reform on organizational revenues. This was modeled in two ways: first assuming no change in behavior and then assuming a supply-side cost sharing behavioral response of a 10% reduction in detox readmissions and an increase of one individual counseling and one group counseling session. The mean total 90-day detox episode cost was $3743. Nearly 70% of the total mean cost consists of the index detox, psychiatric inpatient care, and short-term residential care. Risk mitigation, including risk adjustment, substantially reduced the variation of the mean episode cost. There are opportunities for organizations to gain revenue under this bundled payment design, but many providers will lose money under a bundled payment designed using historic payment and costs. Designing a bundled payment for detox and follow-up care is feasible, but low case volume and the adequacy of the payment are concerns. Thus, a detox episode-based payment will likely be more challenging for smaller, independent SUD treatment providers. These providers are experiencing many changes as financing shifts away from block grant funding toward Medicaid funding. A detox bundled payment in practice would need to consider different risk mitigation strategies, provider pooling, and costs based on episodes of care meeting quality standards, but could incentivize care coordination, which is important to reducing detox readmissions and engaging patients in care. Copyright © 2017 Elsevier Inc. All rights reserved.
The terminal crest: morphological features relevant to electrophysiology
Sánchez-Quintana, D; Anderson, R H; Cabrera, J A; Climent, V; Martin, R; Farré, J; Ho, S Y
2002-01-01
Objective: To investigate the detailed anatomy of the terminal crest (crista terminalis) and its junctional regions with the pectinate muscles and intercaval area to provide the yardstick for structural normality. Design: 97 human necropsy hearts were studied from patients who were not known to have medical histories of atrial arrhythmias. The dimensions of the terminal crest were measured in width and thickness from epicardium to endocardium, at the four points known to be chosen as sites of ablation. Results: The pectinate muscles originating from the crest and extending along the wall of the appendage towards the vestibule of the tricuspid valve had a non-uniform trabecular pattern in 80% of hearts. Fine structure of the terminal crest studied using light and scanning electron microscopy consisted of much thicker and more numerous fibrous sheaths of endomysium with increasing age of the patient. 36 specimens of 45 (80%) specimens studied by electron microscopy had a predominantly uniform longitudinal arrangement of myocardial fibres within the terminal crest. In contrast, in all specimens, the junctional areas of the terminal crest with the pectinate muscles and with the intercaval area had crossing and non-uniform architecture of myofibres. Conclusions: The normal anatomy of the muscle fibres and connective tissue in the junctional area of the terminal crest/pectinate muscles and terminal crest/intercaval bundle favours non-uniform anisotropic properties. PMID:12231604
NASA Astrophysics Data System (ADS)
Lashkari Zadeh, Ali; Shariati, Mahmoud; Torabi, Hamid
2012-11-01
A structural mechanics model is employed for the investigation of the buckling behavior of carbon nanotube bundles of three single-walled carbon nanotubes (SWCNTs) under axial compressive, bending and torsional loadings. The effects of van der Waals (vdW) forces are further modeled using a nonlinear spring element.The effects of different types of boundary conditions are studied for nanotubes with various aspect ratios. The results reveal that bundles comprising longer SWCNTs exhibit lower critical buckling load. Moreover, for the fixed-free boundary condition the rate of critical buckling load reduction is highest, while the lowest critical buckling load occurs. Simulations show good agreement between our model and molecular dynamics results.
Hippeli, S; Dornisch, K; Wiethege, T; Gillissen, A; Müller, K M; Elstner, E F
2001-01-01
In this study we investigated relationships between redox properties and biodurability of crocidolite asbestos fibres and three different man-made vitreous fibres (MMVF): traditional stone wool fibres (MMVF 21), glass fibres (MMVF 11) and refractory ceramic fibres (RCF). Each fibre type was incubated up to 22 weeks in four different incubation media: gamble solution (GS) pH 5.0 and pH 7.4, representing blood plasma without proteins, and surfactant-like solution (SLS) pH 5.0 and pH 7.4. During incubation time aliquots of incubation mixtures were removed and analysed in a biochemical model reaction, mimicking activated phagocytes. In addition, changes of fibre morphology and chemical composition were examined using SEM- and EDX-technology. In the presence of crocidolite asbestos fibres and MMVF 21 the formation of OH*-radicals according to the Haber-Weiss sequence could be demonstrated, whereas MMVF 11 and RCF showed no reactivity. Crocidolite asbestos fibres exhibited a significant higher activity compared with the stone wool fibres at the onset of incubation. The oxidative capacities of these fibre types were shown to depend on both specific surface area and iron content. The oxidative potentials of crocidolite asbestos fibres as well as MMVF 21 were not constant during incubation over several weeks in each incubation medium. The reactivities showed sinoidal curves including reactivities much higher than those at the onset of incubation time. These irregular changes of oxidative capacity may be explained by changes of the redox state of fibre surface-complexed iron. Furthermore our results showed clear differences between incubation of fibres in GS and SLS, respectively, indicating that phospholipids play an important part in fibre dissolution behaviour and oxidative reactivity. In conclusion we suggest, that biodurability testing procedures should not exclusively concentrate on dissolution rates of fibres. They should include fibre characteristics concerning known pathogenic mechanisms to evaluate the real toxic potential of the fibre type looking at. Secondly we suggest, that phospholipids should be constituents of incubation liquids used for standardised fibre biodurability test procedures thus representing more realistic incubation conditions.
A compressed sensing approach for resolution improvement in fiber-bundle based endomicroscopy
NASA Astrophysics Data System (ADS)
Dumas, John P.; Lodhi, Muhammad A.; Bajwa, Waheed U.; Pierce, Mark C.
2018-02-01
Endomicroscopy techniques such as confocal, multi-photon, and wide-field imaging have all been demonstrated using coherent fiber-optic imaging bundles. While the narrow diameter and flexibility of fiber bundles is clinically advantageous, the number of resolvable points in an image is conventionally limited to the number of individual fibers within the bundle. We are introducing concepts from the compressed sensing (CS) field to fiber bundle based endomicroscopy, to allow images to be recovered with more resolvable points than fibers in the bundle. The distal face of the fiber bundle is treated as a low-resolution sensor with circular pixels (fibers) arranged in a hexagonal lattice. A spatial light modulator is located conjugate to the object and distal face, applying multiple high resolution masks to the intermediate image prior to propagation through the bundle. We acquire images of the proximal end of the bundle for each (known) mask pattern and then apply CS inversion algorithms to recover a single high-resolution image. We first developed a theoretical forward model describing image formation through the mask and fiber bundle. We then imaged objects through a rigid fiber bundle and demonstrate that our CS endomicroscopy architecture can recover intra-fiber details while filling inter-fiber regions with interpolation. Finally, we examine the relationship between reconstruction quality and the ratio of the number of mask elements to the number of fiber cores, finding that images could be generated with approximately 28,900 resolvable points for a 1,000 fiber region in our platform.
Numerical modelling of multimode fibre-optic communication lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidelnikov, O S; Fedoruk, M P; Sygletos, S
The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong couplingmore » regime provides a lower EVM level than the weak coupling one. (fibre-optic communication lines)« less
Spinal surgery: variations in health care costs and implications for episode-based bundled payments.
Ugiliweneza, Beatrice; Kong, Maiying; Nosova, Kristin; Huang, Kevin T; Babu, Ranjith; Lad, Shivanand P; Boakye, Maxwell
2014-07-01
Retrospective, observational. To simulate what episodes of care in spinal surgery might look like in a bundled payment system and to evaluate the associated costs and characteristics. Episode-based payment bundling has received considerable attention as a potential method to help curb the rise in health care spending and is being investigated as a new payment model as part of the Affordable Care Act. Although earlier studies investigated bundled payments in a number of surgical settings, very few focused on spine surgery, specifically. We analyzed data from MarketScan. Patients were included in the study if they underwent cervical or lumbar spinal surgery during 2000-2009, had at least 2-year preoperative and 90-day postoperative follow-up data. Patients were grouped on the basis of their diagnosis-related group (DRG) and then tracked in simulated episodes-of-care/payment bundles that lasted for the duration of 30, 60, and 90 days after the discharge from the index-surgical hospitalization. The total cost associated with each episode-of-care duration was measured and characterized. A total of 196,918 patients met our inclusion criteria. Significant variation existed between DRGs, ranging from $11,180 (30-day bundle, DRG 491) to $107,642 (30-day bundle, DRG 456). There were significant cost variations within each individual DRG. Postdischarge care accounted for a relatively small portion of overall bundle costs (range, 4%-8% in 90-day bundles). Total bundle costs remained relatively flat as bundle-length increased (total average cost of 30-day bundle: $33,522 vs. $35,165 for 90-day bundle). Payments to hospitals accounted for the largest portion of bundle costs (76%). There exists significant variation in total health care costs for patients who undergo spinal surgery, even within a given DRG. Better characterization of impacts of a bundled payment system in spine surgery is important for understanding the costs of index procedure hospital, physician services, and postoperative care on potential future health care policy decision making. N/A.
What Financial Incentives Will Be Created by Medicare Bundled Payments for Total Hip Arthroplasty?
Clement, R Carter; Kheir, Michael M; Soo, Adrianne E; Derman, Peter B; Levin, L Scott; Fleisher, Lee A
2016-09-01
Bundled payments are gaining popularity in arthroplasty as a tactic for encouraging providers and hospitals to work together to reduce costs. However, this payment model could potentially motivate providers to avoid unprofitable patients, limiting their access to care. Rigorous risk adjustment can prevent this adverse effect, but most current bundling models use limited, if any, risk-adjustment techniques. This study aims to identify and quantify the financial incentives that are likely to develop with total hip arthroplasty (THA) bundled payments that are not accompanied by comprehensive risk stratification. Financial data were collected for all Medicare-eligible patients (age 65+) undergoing primary unilateral THA at an academic center over a 2-year period (n = 553). Bundles were considered to include operative hospitalizations and unplanned readmissions. Multivariate regression was performed to assess the impact of clinical and demographic factors on the variable cost of THA episodes, including unplanned readmissions. (Variable costs reflect the financial incentives that will emerge under bundled payments). Increased costs were associated with advanced age (P < .001), elevated body mass index (BMI; P = .005), surgery performed for hip fracture (P < .001), higher American Society of Anaesthesiologists (ASA) Physical Classification System grades (P < .001), and MCCs (Medicare modifier for major complications; P < .001). Regression coefficients were $155/y, $107/BMI point, $2775 for fracture cases, $2137/ASA grade, and $4892 for major complications. No association was found between costs and gender or race. If generalizable, our results suggest that Centers for Medicare and Medicaid Services bundled payments encompassing acute inpatient care should be adjusted upward by the aforementioned amounts (regression coefficients above) for advanced age, increasing BMI, cases performed for fractures, elevated ASA grade, and major complications (as defined by Medicare MCC modifiers). Furthermore, these figures likely underestimate costs in many bundling models which incorporate larger proportions of postdischarge care. Failure to adjust for factors affecting costs may create barriers to care for specific patient populations. Copyright © 2016 Elsevier Inc. All rights reserved.
Bundle Payment Program Initiative: Roles of a Nurse Navigator and Home Health Professionals.
Peiritsch, Heather
2017-06-01
With the passage of the Affordable Care Act, The Centers for Medicare and Medicaid (CMS) introduced a new value-based payment model, the Bundle Payment Care Initiative. The CMS Innovation (Innovation Center) authorized hospitals to participate in a pilot to test innovative payment and service delivery models that have a potential to reduce Medicare expenditures while maintaining or improving the quality of care for beneficiaries. A hospital-based home care agency, Abington Jefferson Health Home Care Department, led the initiative for the development and implementation of the Bundled Payment Program. This was a creative and innovative method to improve care along the continuum while testing a value-based care model.
Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell.
Martin, P; Mehta, A D; Hudspeth, A J
2000-10-24
Hearing and balance rely on the ability of hair cells in the inner ear to sense miniscule mechanical stimuli. In each cell, sound or acceleration deflects the mechanosensitive hair bundle, a tuft of rigid stereocilia protruding from the cell's apical surface. By altering the tension in gating springs linked to mechanically sensitive transduction channels, this deflection changes the channels' open probability and elicits an electrical response. To detect weak stimuli despite energy losses caused by viscous dissipation, a hair cell can use active hair-bundle movement to amplify its mechanical inputs. This amplificatory process also yields spontaneous bundle oscillations. Using a displacement-clamp system to measure the mechanical properties of individual hair bundles from the bullfrog's ear, we found that an oscillatory bundle displays negative slope stiffness at the heart of its region of mechanosensitivity. Offsetting the hair bundle's position activates an adaptation process that shifts the region of negative stiffness along the displacement axis. Modeling indicates that the interplay between negative bundle stiffness and the motor responsible for mechanical adaptation produces bundle oscillation similar to that observed. Just as the negative resistance of electrically excitable cells and of tunnel diodes can be embedded in a biasing circuit to amplify electrical signals, negative stiffness can be harnessed to amplify mechanical stimuli in the ear.
Influence of fiber packing structure on permeability
NASA Technical Reports Server (NTRS)
Cai, Zhong; Berdichevsky, Alexander L.
1993-01-01
The study on the permeability of an aligned fiber bundle is the key building block in modeling the permeability of advanced woven and braided preforms. Available results on the permeability of fiber bundles in the literature show that a substantial difference exists between numerical and analytical calculations on idealized fiber packing structures, such as square and hexagonal packing, and experimental measurements on practical fiber bundles. The present study focuses on the variation of the permeability of a fiber bundle under practical process conditions. Fiber bundles are considered as containing openings and fiber clusters within the bundle. Numerical simulations on the influence of various openings on the permeability were conducted. Idealized packing structures are used, but with introduced openings distributed in different patterns. Both longitudinal and transverse flow are considered. The results show that openings within the fiber bundle have substantial effect on the permeability. In the longitudinal flow case, the openings become the dominant flow path. In the transverse flow case, the fiber clusters reduce the gap sizes among fibers. Therefore the permeability is greatly influenced by these openings and clusters, respectively. In addition to the porosity or fiber volume fraction, which is commonly used in the permeability expression, another fiber bundle status parameter, the ultimate fiber volume fraction, is introduced to capture the disturbance within a fiber bundle.
Avoiding revenue loss due to 'lesser of' contract clauses.
Stodolak, Frederick; Gutierrez, Henry
2014-08-01
Finance managers seeking to avoid lost revenue attributable to lesser-of-charge-or-fixed-fee (lesser-of) clauses in their contracts should: Identify payer contracts that contain lesser-of clauses. Prepare lesser-of lost-revenue reports for non-bundled and bundled rates. For claims with covered charges below the bundled rate, identify service codes associated with the greatest proportion of total gross revenue and determine new, higher charge levels for those codes. Establish an approach for setting charges for non-bundled fee schedules to address lost-revenue-related issues. Incorporate changes into overall strategic or hospital zero-based pricing modeling and parameters.
NASA Astrophysics Data System (ADS)
Mohan, Vandana; Sundaramoorthi, Ganesh; Kubicki, Marek; Terry, Douglas; Tannenbaum, Allen
2010-03-01
We propose a novel framework for population analysis of DW-MRI data using the Tubular Surface Model. We focus on the Cingulum Bundle (CB) - a major tract for the Limbic System and the main connection of the Cingulate Gyrus, which has been associated with several aspects of Schizophrenia symptomatology. The Tubular Surface Model represents a tubular surface as a center-line with an associated radius function. It provides a natural way to sample statistics along the length of the fiber bundle and reduces the registration of fiber bundle surfaces to that of 4D curves. We apply our framework to a population of 20 subjects (10 normal, 10 schizophrenic) and obtain excellent results with neural network based classification (90% sensitivity, 95% specificity) as well as unsupervised clustering (k-means). Further, we apply statistical analysis to the feature data and characterize the discrimination ability of local regions of the CB, as a step towards localizing CB regions most relevant to Schizophrenia.
Delisle, Dennis R
2013-01-01
With passage of the Affordable Care Act, the ever-evolving landscape of health care braces for another shift in the reimbursement paradigm. As health care costs continue to rise, providers are pressed to deliver efficient, high-quality care at flat to minimally increasing rates. Inherent systemwide inefficiencies between payers and providers at various clinical settings pose a daunting task for enhancing collaboration and care coordination. A change from Medicare's fee-for-service reimbursement model to bundled payments offers one avenue for resolution. Pilots using such payment models have realized varying degrees of success, leading to the development and upcoming implementation of a bundled payment initiative led by the Center for Medicare and Medicaid Innovation. Delivery integration is critical to ensure high-quality care at affordable costs across the system. Providers and payers able to adapt to the newly proposed models of payment will benefit from achieving cost reductions and improved patient outcomes and realize a competitive advantage.
A mesoscopic approach for draping simulation of preforms manufactured by direct fibre placement
NASA Astrophysics Data System (ADS)
Engelfried, Mathias; Fial, Julian; Tartler, Manuel; Böhler, Patrick; Hägele, Dominik; Middendorf, Peter
2017-10-01
The draping of preforms made by automated fibre placement is a suitable way to generate complex, three-dimensional preforms. The absence of weaving or sewing yarns leads to a high tendency towards defects, such as gaps. To predict those defects a detailed simulation model of the material is necessary. This work deals with a method to describe the inter-ply friction of preforms that consists of carbon fibre yarns joined by a thermoplastic binder. Therefore, a friction model which is customised to the partial presence of molten binder is proposed. This model is used in a mesoscopic draping simulation and is validated by draping experiments.
Retta, Moges; Ho, Quang Tri; Yin, Xinyou; Verboven, Pieter; Berghuijs, Herman N C; Struik, Paul C; Nicolaï, Bart M
2016-05-01
CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model accounted for CO2 diffusion in a leaf tissue, CO2 hydration and assimilation in mesophyll cells, CO2 release from decarboxylation of C4 acids, CO2 fixation in bundle sheath cells and CO2 retro-diffusion from bundle sheath cells. The transport equations were solved over a realistic 2-D geometry of the Kranz anatomy obtained from light microscopy images. The predicted responses of photosynthesis rate to changes in ambient CO2 and irradiance compared well with those obtained from gas exchange measurements. A sensitivity analysis showed that the CO2 permeability of the mesophyll-bundle sheath and airspace-mesophyll interfaces strongly affected the rate of photosynthesis and bundle sheath conductance. Carbonic anhydrase influenced the rate of photosynthesis, especially at low intercellular CO2 levels. In addition, the suberin layer at the exposed surface of the bundle sheath cells was found beneficial in reducing the retro-diffusion. The model may serve as a tool to investigate CO2 diffusion further in relation to the Kranz anatomy in C4 plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Choe, Yong; Magnasco, Marcelo O.; Hudspeth, A. J.
1998-12-01
Amplification of auditory stimuli by hair cells augments the sensitivity of the vertebrate inner ear. Cell-body contractions of outer hair cells are thought to mediate amplification in the mammalian cochlea. In vertebrates that lack these cells, and perhaps in mammals as well, active movements of hair bundles may underlie amplification. We have evaluated a mathematical model in which amplification stems from the activity of mechanoelectrical-transduction channels. The intracellular binding of Ca2+ to channels is posited to promote their closure, which increases the tension in gating springs and exerts a negative force on the hair bundle. By enhancing bundle motion, this force partially compensates for viscous damping by cochlear fluids. Linear stability analysis of a six-state kinetic model reveals Hopf bifurcations for parameter values in the physiological range. These bifurcations signal conditions under which the system's behavior changes from a damped oscillatory response to spontaneous limit-cycle oscillation. By varying the number of stereocilia in a bundle and the rate constant for Ca2+ binding, we calculate bifurcation frequencies spanning the observed range of auditory sensitivity for a representative receptor organ, the chicken's cochlea. Simulations using prebifurcation parameter values demonstrate frequency-selective amplification with a striking compressive nonlinearity. Because transduction channels occur universally in hair cells, this active-channel model describes a mechanism of auditory amplification potentially applicable across species and hair-cell types.
A long term study of pulmonary function among US refractory ceramic fibre workers
LeMasters, Grace K; Hilbert, Timothy J; Levin, Linda S; Rice, Carol H; Borton, Eric K; Lockey, James E
2010-01-01
Background Cross-sectional studies have shown declines in lung function among refractory ceramic fibre (RCF) workers with increasing fibre exposure. This study followed current and former workers (n=1396) for up to 17 years and collected 5243 pulmonary function tests. Methods Cumulative fibre exposure and production years were categorised into exposure levels at five manufacturing locations. Conventional longitudinal models did not adequately partition age-related changes from other time-dependent variables. Therefore, a restricted cubic spline model was developed to account for the non-linear decline with age. Results Cumulative fibre >60 fibre-months/cc showed a significant loss in lung function at the first test. When results were examined longitudinally, cumulative exposure was confounded with age as workers with the highest cumulative exposure were generally older. A longitudinal model adjusted by age groups was implemented to control for this confounding. No consistent longitudinal loss in lung function was observed with RCF exposure. Smoking, initial weight and weight increase were significant factors. Conclusion No consistent decline was observed longitudinally with exposure to RCF, although cross-sectional and longitudinal findings were discordant. Confounding and accelerated lung function declines with ageing and the correlation of multiple time-dependent variables should be considered in order to minimise error and maximise precision. An innovative statistical methodology for these types of data is described. PMID:20798015
NASA Astrophysics Data System (ADS)
Deeb, R.; Kulasegaram, S.; Karihaloo, B. L.
2014-12-01
The three-dimensional Lagrangian particle-based smooth particle hydrodynamics method described in Part I of this two-part paper is used to simulate the flow of self-compacting concrete (SCC) with and without steel fibres in the L-box configuration. As in Part I, the simulation of the SCC mixes without fibres emphasises the distribution of large aggregate particles of different sizes throughout the flow, whereas the simulation of high strength SCC mixes which contain steel fibres is focused on the distribution of fibres and their orientation during the flow. The capabilities of this methodology are validated by comparing the simulation results with the L-box test carried out in the laboratory. A simple method is developed to assess the reorientation and distribution of short steel fibres in self-compacting concrete mixes during the flow. The reorientation of the fibres during the flow is used to estimate the fibre orientation factor (FOF) in a cross section perpendicular to the principal direction of flow. This estimation procedure involves the number of fibres cut by the section and their inclination to the cutting plane. This is useful to determine the FOF in practical image analysis on cut sections.
Modelling the behaviour of steel fibre reinforced precast beam-to-column connection
NASA Astrophysics Data System (ADS)
Chai, C. E.; Sarbini, NN; Ibrahim, I. S.; Ma, C. K.; Tajol Anuar, M. Z.
2017-11-01
The numerical behaviour of steel fibre reinforced concrete (SFRC) corbels reinforced with different fibre volume ratio subjected to vertical incremental load is presented in this paper. Precast concrete structures had become popular in the construction field, which offer a faster, neater, safer, easier and cheaper construction work. The construction components are prefabricated in controlled environment under strict supervision before being erected on site. However, precast beam-column connections are prone to failure due to the brittle properties of concrete. Finite element analysis (FEA) is adopted due to the nonlinear behaviour of concrete and SFRC. The key objective of this research is to develop a reliable nonlinear FEA model to represent the behaviour of reinforced concrete corbel. The developed model is validated with experimental data from previous researches. Then, the validated FEA model is used to predict the behaviour of SFRC corbel reinforced with different fibre volume ratio by changing the material parameters. The results show that the addition of steel fibre (SF) increases the load carrying capacity, ductility, stiffness, and changed the failure mode of corbel from brittle bending-shear to flexural ductile. On the other hand, the increasing of SF volume ratio also leads to increased load carrying capacity, ductility, and stiffness of corbel.
Cost-Effectiveness of a Central Venous Catheter Care Bundle
Halton, Kate A.; Cook, David; Paterson, David L.; Safdar, Nasia; Graves, Nicholas
2010-01-01
Background A bundled approach to central venous catheter care is currently being promoted as an effective way of preventing catheter-related bloodstream infection (CR-BSI). Consumables used in the bundled approach are relatively inexpensive which may lead to the conclusion that the bundle is cost-effective. However, this fails to consider the nontrivial costs of the monitoring and education activities required to implement the bundle, or that alternative strategies are available to prevent CR-BSI. We evaluated the cost-effectiveness of a bundle to prevent CR-BSI in Australian intensive care patients. Methods and Findings A Markov decision model was used to evaluate the cost-effectiveness of the bundle relative to remaining with current practice (a non-bundled approach to catheter care and uncoated catheters), or use of antimicrobial catheters. We assumed the bundle reduced relative risk of CR-BSI to 0.34. Given uncertainty about the cost of the bundle, threshold analyses were used to determine the maximum cost at which the bundle remained cost-effective relative to the other approaches to infection control. Sensitivity analyses explored how this threshold alters under different assumptions about the economic value placed on bed-days and health benefits gained by preventing infection. If clinicians are prepared to use antimicrobial catheters, the bundle is cost-effective if national 18-month implementation costs are below $1.1 million. If antimicrobial catheters are not an option the bundle must cost less than $4.3 million. If decision makers are only interested in obtaining cash-savings for the unit, and place no economic value on either the bed-days or the health benefits gained through preventing infection, these cost thresholds are reduced by two-thirds. Conclusions A catheter care bundle has the potential to be cost-effective in the Australian intensive care setting. Rather than anticipating cash-savings from this intervention, decision makers must be prepared to invest resources in infection control to see efficiency improvements. PMID:20862246
Cost-effectiveness of a central venous catheter care bundle.
Halton, Kate A; Cook, David; Paterson, David L; Safdar, Nasia; Graves, Nicholas
2010-09-17
A bundled approach to central venous catheter care is currently being promoted as an effective way of preventing catheter-related bloodstream infection (CR-BSI). Consumables used in the bundled approach are relatively inexpensive which may lead to the conclusion that the bundle is cost-effective. However, this fails to consider the nontrivial costs of the monitoring and education activities required to implement the bundle, or that alternative strategies are available to prevent CR-BSI. We evaluated the cost-effectiveness of a bundle to prevent CR-BSI in Australian intensive care patients. A Markov decision model was used to evaluate the cost-effectiveness of the bundle relative to remaining with current practice (a non-bundled approach to catheter care and uncoated catheters), or use of antimicrobial catheters. We assumed the bundle reduced relative risk of CR-BSI to 0.34. Given uncertainty about the cost of the bundle, threshold analyses were used to determine the maximum cost at which the bundle remained cost-effective relative to the other approaches to infection control. Sensitivity analyses explored how this threshold alters under different assumptions about the economic value placed on bed-days and health benefits gained by preventing infection. If clinicians are prepared to use antimicrobial catheters, the bundle is cost-effective if national 18-month implementation costs are below $1.1 million. If antimicrobial catheters are not an option the bundle must cost less than $4.3 million. If decision makers are only interested in obtaining cash-savings for the unit, and place no economic value on either the bed-days or the health benefits gained through preventing infection, these cost thresholds are reduced by two-thirds. A catheter care bundle has the potential to be cost-effective in the Australian intensive care setting. Rather than anticipating cash-savings from this intervention, decision makers must be prepared to invest resources in infection control to see efficiency improvements.
NASA Astrophysics Data System (ADS)
Thionnet, A.; Chou, H. Y.; Bunsell, A.
2015-04-01
The purpose of these three papers is not to just revisit the modelling of unidirectional composites. It is to provide a robust framework based on physical processes that can be used to optimise the design and long term reliability of internally pressurised filament wound structures. The model presented in Part 1 for the case of monotonically loaded unidirectional composites is further developed to consider the effects of the viscoelastic nature of the matrix in determining the kinetics of fibre breaks under slow or sustained loading. It is shown that the relaxation of the matrix around fibre breaks leads to locally increasing loads on neighbouring fibres and in some cases their delayed failure. Although ultimate failure is similar to the elastic case in that clusters of fibre breaks ultimately control composite failure the kinetics of their development varies significantly from the elastic case. Failure loads have been shown to reduce when loading rates are lowered.
Strength and toughness of structural fibres for composite material reinforcement.
Herráez, M; Fernández, A; Lopes, C S; González, C
2016-07-13
The characterization of the strength and fracture toughness of three common structural fibres, E-glass, AS4 carbon and Kevlar KM2, is presented in this work. The notched specimens were prepared by means of selective carving of individual fibres by means of the focused ion beam. A straight-fronted edge notch was introduced in a plane perpendicular to the fibre axis, with the relative notch depth being a0/D≈0.1 and the notch radius at the tip approximately 50 nm. The selection of the appropriate beam current during milling operations was performed to avoid to as much as possible any microstructural changes owing to ion impingement. Both notched and un-notched fibres were submitted to uniaxial tensile tests up to failure. The strength of the un-notched fibres was characterized in terms of the Weibull statistics, whereas the residual strength of the notched fibres was used to determine their apparent toughness. To this end, the stress intensity factor of a fronted edge crack was computed by means of the finite-element method for different crack lengths. The experimental results agreed with those reported in the literature for polyacrylonitrile-based carbon fibres obtained by using similar techniques. After mechanical testing, the fracture surface of the fibres was analysed to ascertain the failure mechanisms. It was found that AS4 carbon and E-glass fibres presented the lower toughness with fracture surfaces perpendicular to the fibre axis, emanating from the notch tip. The fractured region of Kevlar KM2 fibres extended along the fibre and showed large permanent deformation, which explains their higher degree of toughness when compared with carbon and glass fibres. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).
Strength and toughness of structural fibres for composite material reinforcement
Herráez, M.; Fernández, A.; Lopes, C. S.
2016-01-01
The characterization of the strength and fracture toughness of three common structural fibres, E-glass, AS4 carbon and Kevlar KM2, is presented in this work. The notched specimens were prepared by means of selective carving of individual fibres by means of the focused ion beam. A straight-fronted edge notch was introduced in a plane perpendicular to the fibre axis, with the relative notch depth being a0/D≈0.1 and the notch radius at the tip approximately 50 nm. The selection of the appropriate beam current during milling operations was performed to avoid to as much as possible any microstructural changes owing to ion impingement. Both notched and un-notched fibres were submitted to uniaxial tensile tests up to failure. The strength of the un-notched fibres was characterized in terms of the Weibull statistics, whereas the residual strength of the notched fibres was used to determine their apparent toughness. To this end, the stress intensity factor of a fronted edge crack was computed by means of the finite-element method for different crack lengths. The experimental results agreed with those reported in the literature for polyacrylonitrile-based carbon fibres obtained by using similar techniques. After mechanical testing, the fracture surface of the fibres was analysed to ascertain the failure mechanisms. It was found that AS4 carbon and E-glass fibres presented the lower toughness with fracture surfaces perpendicular to the fibre axis, emanating from the notch tip. The fractured region of Kevlar KM2 fibres extended along the fibre and showed large permanent deformation, which explains their higher degree of toughness when compared with carbon and glass fibres. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242306
Choi, Chong Hyuk; Kim, Sung-Jae; Chun, Yong-Min; Kim, Sung-Hwan; Lee, Su-Keon; Eom, Nam-Kyu; Jung, Min
2018-01-01
The purpose of this study was to find appropriate flexion angle and transverse drill angle for optimal femoral tunnels of anteromedial (AM) bundle and posterolateral (PL) bundle in double-bundle ACL reconstruction using transportal technique. Thirty three-dimensional knee models were reconstructed. Knee flexion angles were altered from 100° to 130° at intervals of 10°. Maximum transverse drill angle (MTA), MTA minus 10° and 20° were set up. Twelve different tunnels were determined by four flexion angles and three transverse drill angles for each bundle. Tunnel length, wall breakage, inter-tunnel communication and graft-bending angle were assessed. Mean tunnel length of AM bundle was >30mm at 120° and 130° of flexion in all transverse drill angles. Mean tunnel length of PL bundle was >30mm during every condition. There were ≥1 cases of wall breakage except at 120° and 130° of flexion with MTA for AM bundle. There was no case of wall breakage for PL bundle. Considering inter-tunnel gap of >2mm without communication and obtuse graft-bending angle, 120° of flexion and MTA could be recommended as optimal condition for femoral tunnels of AM and PL bundles. Flexion angle and transverse drill angle had combined effect on femoral tunnel in double-bundle ACL reconstruction using transportal technique. Achieving flexion angle of 120° and transverse drill angle close to the medial femoral condyle could be recommended as optimal condition for femoral tunnels of AM and PL bundles to avoid insufficient tunnel length, wall breakage, inter-tunnel communication and acute graft-bending angle. Copyright © 2017 Elsevier B.V. All rights reserved.
Mechanical factors direct mouse aortic remodelling during early maturation
Le, Victoria P.; Cheng, Jeffrey K.; Kim, Jungsil; Staiculescu, Marius C.; Ficker, Shawn W.; Sheth, Saahil C.; Bhayani, Siddharth A.; Mecham, Robert P.; Yanagisawa, Hiromi; Wagenseil, Jessica E.
2015-01-01
Numerous diseases have been linked to genetic mutations that lead to reduced amounts or disorganization of arterial elastic fibres. Previous work has shown that mice with reduced amounts of elastin (Eln+/−) are able to live a normal lifespan through cardiovascular adaptations, including changes in haemodynamic stresses, arterial geometry and arterial wall mechanics. It is not known if the timeline and presence of these adaptations are consistent in other mouse models of elastic fibre disease, such as those caused by the absence of fibulin-5 expression (Fbln5−/−). Adult Fbln5−/− mice have disorganized elastic fibres, decreased arterial compliance and high blood pressure. We examined mechanical behaviour of the aorta in Fbln5−/− mice through early maturation when the elastic fibres are being assembled. We found that the physiologic circumferential stretch, stress and modulus of Fbln5−/− aorta are maintained near wild-type levels. Constitutive modelling suggests that elastin contributions to the total stress are decreased, whereas collagen contributions are increased. Understanding how collagen fibre structure and mechanics compensate for defective elastic fibres to meet the mechanical requirements of the maturing aorta may help to better understand arterial remodelling in human elastinopathies. PMID:25652465
Fibre-reinforced hydrogels for tissue engineering
NASA Astrophysics Data System (ADS)
Waters, Sarah; Byrne, Helen; Chen, Mike; Dias Castilho, Miguel; Kimpton, Laura; Please, Colin; Whiteley, Jonathan
2017-11-01
Tissue engineers aim to grow replacement tissues in vitro to replace those in the body that have been damaged through age, trauma or disease. One approach is to seed cells within a scaffold consisting of an interconnected 3D-printed lattice of polymer fibres, cast in a hydrogel, and subject the construct (cell-seeded scaffold) to an applied load in a bioreactor. A key question is to understand how this applied load is distributed throughout the construct to the mechanosensitive cells. To address this, we exploit the disparate length scales (small inter-fibre spacing compared with construct dimensions). The fibres are treated as a linear elastic material and the hydrogel as a poroelastic material. We employ homogenisation theory to derive equations governing the material properties of a periodic, elastic-poroelastic composite. To validate the mobel, model solutions are compared to experimental data describing the unconfined compression of the fibre-reinforced hydrogels. The model is used to derive the bulk mechanical properties of a cylindrical construct of the composite material for a range of fibre spacings, and the local mechanical environment experienced by cells embedded within the construct is determined. Funded by the European Union Seventh Framework Programme (FP7/2007-2013).
Low Cost Carbon Fibre: Applications, Performance and Cost Models - Chapter 17
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Charles David; Wheatley, Dr. Alan; Das, Sujit
2014-01-01
Weight saving in automotive applications has a major bearing on fuel economy. It is generally accepted that, typically, a 10% weight reduction in an automobile will lead to a 6-8% improvement in fuel economy. In this respect, carbon fibre composites are extremely attractive in their ability to provide superlative mechanical performance per unit weight. That is why they are specified for high-end uses such as Formula 1 racing cars and the latest aircraft (e.g. Boeing 787, Airbus A350 and A380), where they comprise over 50% by weight of the structure However, carbon fibres are expensive and this renders their compositesmore » similarly expensive. Research has been carried out at Oak Ridge National Laboratories (ORNL), Tennessee, USA for over a decade with the aim of reducing the cost of carbon fibre such that it becomes a cost-effective option for the automotive industry. Aspects of this research relating to the development of low cost carbon fibre have been reported in Chapter 3 of this publication. In this chapter, the practical industrial applications of low-cost carbon fibre are presented, together with considerations of the performance and cost models which underpin the work.« less
Siddiqi, Ahmed; White, Peter B; Mistry, Jaydev B; Gwam, Chukwuweike U; Nace, James; Mont, Michael A; Delanois, Ronald E
2017-08-01
In an effort to control rising healthcare costs, healthcare reforms have developed initiatives to evaluate the efficacy of alternative payment models (APMs) for Medicare reimbursements. The Center for Medicare and Medicaid Services Innovation Center (CMMSIC) introduced the voluntary Bundled Payments for Care Improvement (BPCI) model experiment as a means to curtail Medicare cost by allotting a fixed payment for an episode of care. The purpose of this review is to (1) summarize the preliminary clinical results of the BPCI and (2) discuss how it has led to other healthcare reforms and alternative payment models. A literature search was performed using PubMed and the CMMSIC to explore different APMs and clinical results after implementation. All studies that were not in English or unrelated to the topic were excluded. Preliminary results of bundled payment models have shown reduced costs in total joint arthroplasty largely by reducing hospital length of stay, decreasing readmission rates, as well as reducing the number of patients sent to in-patient rehabilitation facilities. In order to refine episode of care bundles, CMMSIC has also developed other initiatives such as the Comprehensive Care for Joint Replacement (CJR) pathway and Surgical Hip and Femur Fracture (SHFFT). Despite the unknown future of the Affordable Care Act, BPCI, and CJR, preliminary results of alternative models have shown promise to reduce costs and improve quality of care. Moving into the future, surgeon control of the BPCI and CJR bundle should be investigated to further improve patient care and maximize financial compensation. Copyright © 2017 Elsevier Inc. All rights reserved.
Risk Adjustment for Medicare Total Knee Arthroplasty Bundled Payments.
Clement, R Carter; Derman, Peter B; Kheir, Michael M; Soo, Adrianne E; Flynn, David N; Levin, L Scott; Fleisher, Lee
2016-09-01
The use of bundled payments is growing because of their potential to align providers and hospitals on the goal of cost reduction. However, such gain sharing could incentivize providers to "cherry-pick" more profitable patients. Risk adjustment can prevent this unintended consequence, yet most bundling programs include minimal adjustment techniques. This study was conducted to determine how bundled payments for total knee arthroplasty (TKA) should be adjusted for risk. The authors collected financial data for all Medicare patients (age≥65 years) undergoing primary unilateral TKA at an academic center over a period of 2 years (n=941). Multivariate regression was performed to assess the effect of patient factors on the costs of acute inpatient care, including unplanned 30-day readmissions. This analysis mirrors a bundling model used in the Medicare Bundled Payments for Care Improvement initiative. Increased age, American Society of Anesthesiologists (ASA) class, and the presence of a Medicare Major Complications/Comorbid Conditions (MCC) modifier (typically representing major complications) were associated with increased costs (regression coefficients, $57 per year; $729 per ASA class beyond I; and $3122 for patients meeting MCC criteria; P=.003, P=.001, and P<.001, respectively). Differences in costs were not associated with body mass index, sex, or race. If the results are generalizable, Medicare bundled payments for TKA encompassing acute inpatient care should be adjusted upward by the stated amounts for older patients, those with elevated ASA class, and patients meeting MCC criteria. This is likely an underestimate for many bundling models, including the Comprehensive Care for Joint Replacement program, incorporating varying degrees of postacute care. Failure to adjust for factors that affect costs may create adverse incentives, creating barriers to care for certain patient populations. [Orthopedics. 2016; 39(5):e911-e916.]. Copyright 2016, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Hight Walker, A. R.; Simpson, J. R.; Roslyak, O.; Haroz, E.; Telg, H.; Duque, J. G.; Crochet, J. J.; Piryatinski, A.; Doorn, S. K.
Understanding the photophysics of exciton behavior in single wall carbon nanotube (SWCNT) bundles remains important for opto-electronic device applications. We report resonance Raman spectroscopy (RRS) measurements on (6 , 5) -enriched SWCNTs, dispersed in aqueous solutions and separated using density gradient ultracentrifugation into fractions of increasing bundling. Near-IR to UV absorption spectroscopy shows a redshift and broadening of the main excitonic transitions with increasing bundling. A continuously tunable dye laser coupled to a triple-grating spectrometer affords measurement of Raman resonance excitation profiles (REPs) over a range of wavelengths covering the (6 , 5) -E22 range (505 to 585) nm. REPs of both the radial breathing mode (RBM) and G-band reveal a redshifting and broadening of the (6 , 5) E22 transition energy with increasing bundling. Additionally, we observe an unexpected peak in the REP of bundled SWCNTs, which is shifted lower in energy than the main E22 and is anomalously narrow. We compare these observations to a theoretical model that examines the origin of this peak in relation to bundle polarization-enhanced exciton response.
BiSet: Semantic Edge Bundling with Biclusters for Sensemaking.
Sun, Maoyuan; Mi, Peng; North, Chris; Ramakrishnan, Naren
2016-01-01
Identifying coordinated relationships is an important task in data analytics. For example, an intelligence analyst might want to discover three suspicious people who all visited the same four cities. Existing techniques that display individual relationships, such as between lists of entities, require repetitious manual selection and significant mental aggregation in cluttered visualizations to find coordinated relationships. In this paper, we present BiSet, a visual analytics technique to support interactive exploration of coordinated relationships. In BiSet, we model coordinated relationships as biclusters and algorithmically mine them from a dataset. Then, we visualize the biclusters in context as bundled edges between sets of related entities. Thus, bundles enable analysts to infer task-oriented semantic insights about potentially coordinated activities. We make bundles as first class objects and add a new layer, "in-between", to contain these bundle objects. Based on this, bundles serve to organize entities represented in lists and visually reveal their membership. Users can interact with edge bundles to organize related entities, and vice versa, for sensemaking purposes. With a usage scenario, we demonstrate how BiSet supports the exploration of coordinated relationships in text analytics.
NASA Astrophysics Data System (ADS)
Erzar, Benjamin; Pontiroli, Christophe; Buzaud, Eric
2017-01-01
To evaluate the vulnerability of ultra-high performance fibre-reinforced concrete (UHPFRC) infrastructure to rigid projectile penetration, over the last few years CEA-Gramat has led an experimental and numerical research programme in collaboration with French universities. During the penetration process, concrete is subjected to extreme conditions of pressure and strain rate. Plasticity mechanisms as well as dynamic tensile and/or shear damage are activated during the tunnelling phase and the cratering of the concrete target. Each mechanism has been investigated independently at the laboratory scale and the role of steel fibres especially has been analysed to understand their influence on the macroscopic behaviour. To extend the experimental results to the structural scale, penetration tests on UHPFRC slabs have been conducted by CEA-Gramat. The analysis of this dataset combined with material characterization experiments allows the role of steel fibres to be identified in the different plasticity and damage mechanisms occurring during penetration. In parallel, some improvements have been introduced into the concrete model developed by Pontiroli, Rouquand and Mazars (PRM model), especially to take into account the contribution made by the fibres in the tensile fracture process. After a primary phase of validation, the capabilities of the PRM model are illustrated by performing numerical simulations of projectile penetration into UHPFRC concrete structures. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.
Erzar, Benjamin; Buzaud, Eric
2017-01-01
To evaluate the vulnerability of ultra-high performance fibre-reinforced concrete (UHPFRC) infrastructure to rigid projectile penetration, over the last few years CEA-Gramat has led an experimental and numerical research programme in collaboration with French universities. During the penetration process, concrete is subjected to extreme conditions of pressure and strain rate. Plasticity mechanisms as well as dynamic tensile and/or shear damage are activated during the tunnelling phase and the cratering of the concrete target. Each mechanism has been investigated independently at the laboratory scale and the role of steel fibres especially has been analysed to understand their influence on the macroscopic behaviour. To extend the experimental results to the structural scale, penetration tests on UHPFRC slabs have been conducted by CEA-Gramat. The analysis of this dataset combined with material characterization experiments allows the role of steel fibres to be identified in the different plasticity and damage mechanisms occurring during penetration. In parallel, some improvements have been introduced into the concrete model developed by Pontiroli, Rouquand and Mazars (PRM model), especially to take into account the contribution made by the fibres in the tensile fracture process. After a primary phase of validation, the capabilities of the PRM model are illustrated by performing numerical simulations of projectile penetration into UHPFRC concrete structures. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956509
Erzar, Benjamin; Pontiroli, Christophe; Buzaud, Eric
2017-01-28
To evaluate the vulnerability of ultra-high performance fibre-reinforced concrete (UHPFRC) infrastructure to rigid projectile penetration, over the last few years CEA-Gramat has led an experimental and numerical research programme in collaboration with French universities. During the penetration process, concrete is subjected to extreme conditions of pressure and strain rate. Plasticity mechanisms as well as dynamic tensile and/or shear damage are activated during the tunnelling phase and the cratering of the concrete target. Each mechanism has been investigated independently at the laboratory scale and the role of steel fibres especially has been analysed to understand their influence on the macroscopic behaviour. To extend the experimental results to the structural scale, penetration tests on UHPFRC slabs have been conducted by CEA-Gramat. The analysis of this dataset combined with material characterization experiments allows the role of steel fibres to be identified in the different plasticity and damage mechanisms occurring during penetration. In parallel, some improvements have been introduced into the concrete model developed by Pontiroli, Rouquand and Mazars (PRM model), especially to take into account the contribution made by the fibres in the tensile fracture process. After a primary phase of validation, the capabilities of the PRM model are illustrated by performing numerical simulations of projectile penetration into UHPFRC concrete structures.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).
Spatial confinement of active microtubule networks induces large-scale rotational cytoplasmic flow
Suzuki, Kazuya; Miyazaki, Makito; Takagi, Jun; Itabashi, Takeshi; Ishiwata, Shin’ichi
2017-01-01
Collective behaviors of motile units through hydrodynamic interactions induce directed fluid flow on a larger length scale than individual units. In cells, active cytoskeletal systems composed of polar filaments and molecular motors drive fluid flow, a process known as cytoplasmic streaming. The motor-driven elongation of microtubule bundles generates turbulent-like flow in purified systems; however, it remains unclear whether and how microtubule bundles induce large-scale directed flow like the cytoplasmic streaming observed in cells. Here, we adopted Xenopus egg extracts as a model system of the cytoplasm and found that microtubule bundle elongation induces directed flow for which the length scale and timescale depend on the existence of geometrical constraints. At the lower activity of dynein, kinesins bundle and slide microtubules, organizing extensile microtubule bundles. In bulk extracts, the extensile bundles connected with each other and formed a random network, and vortex flows with a length scale comparable to the bundle length continually emerged and persisted for 1 min at multiple places. When the extracts were encapsulated in droplets, the extensile bundles pushed the droplet boundary. This pushing force initiated symmetry breaking of the randomly oriented bundle network, leading to bundles aligning into a rotating vortex structure. This vortex induced rotational cytoplasmic flows on the length scale and timescale that were 10- to 100-fold longer than the vortex flows emerging in bulk extracts. Our results suggest that microtubule systems use not only hydrodynamic interactions but also mechanical interactions to induce large-scale temporally stable cytoplasmic flow. PMID:28265076
Mathematical modelling of cell layer growth in a hollow fibre bioreactor.
Chapman, Lloyd A C; Whiteley, Jonathan P; Byrne, Helen M; Waters, Sarah L; Shipley, Rebecca J
2017-04-07
Generating autologous tissue grafts of a clinically useful volume requires efficient and controlled expansion of cell populations harvested from patients. Hollow fibre bioreactors show promise as cell expansion devices, owing to their potential for scale-up. However, further research is required to establish how to specify appropriate hollow fibre bioreactor operating conditions for expanding different cell types. In this study we develop a simple model for the growth of a cell layer seeded on the outer surface of a single fibre in a perfused hollow fibre bioreactor. Nutrient-rich culture medium is pumped through the fibre lumen and leaves the bioreactor via the lumen outlet or passes through the porous fibre walls and cell layer, and out via ports on the outer wall of the extra-capillary space. Stokes and Darcy equations for fluid flow in the fibre lumen, fibre wall, cell layer and extra-capillary space are coupled to reaction-advection-diffusion equations for oxygen and lactate transport through the bioreactor, and to a simple growth law for the evolution of the free boundary of the cell layer. Cells at the free boundary are assumed to proliferate at a rate that increases with the local oxygen concentration, and to die and detach from the layer if the local fluid shear stress or lactate concentration exceed critical thresholds. We use the model to predict operating conditions that maximise the cell layer growth for different cell types. In particular, we predict the optimal flow rate of culture medium into the fibre lumen and fluid pressure imposed at the lumen outlet for cell types with different oxygen demands and fluid shear stress tolerances, and compare the growth of the cell layer when the exit ports on the outside of the bioreactor are open with that when they are closed. Model simulations reveal that increasing the inlet flow rate and outlet fluid pressure increases oxygen delivery to the cell layer and, therefore, the growth rate of cells that are tolerant to high shear stresses, but may be detrimental for shear-sensitive cells. The cell layer growth rate is predicted to increase, and be less sensitive to the lactate tolerance of the cells, when the exit ports are opened, as the radial flow through the bioreactor is enhanced and the lactate produced by the cells cleared more rapidly from the cell layer. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Properties of slow- and fast-twitch muscle fibres in a mouse model of amyotrophic lateral sclerosis.
Atkin, Julie D; Scott, Rachel L; West, Jan M; Lopes, Elizabeth; Quah, Alvin K J; Cheema, Surindar S
2005-05-01
This investigation was undertaken to determine if there are altered histological, pathological and contractile properties in presymptomatic or endstage diseased muscle fibres from representative slow-twitch and fast-twitch muscles of SOD1 G93A mice in comparison to wildtype mice. In presymptomatic SOD1 G93A mice, there was no detectable peripheral dysfunction, providing evidence that muscle pathology is secondary to motor neuronal dysfunction. At disease endstage however, single muscle fibre contractile analysis demonstrated that fast-twitch muscle fibres and neuromuscular junctions are preferentially affected by amyotrophic lateral sclerosis-induced denervation, being unable to produce the same levels of force when activated by calcium as muscle fibres from their age-matched controls. The levels of transgenic SOD1 expression, aggregation state and activity were also examined in these muscles but there no was no preference for muscle fibre type. Hence, there is no simple correlation between SOD1 protein expression/activity, and muscle fibre type vulnerability in SOD1 G93A mice.
NASA Astrophysics Data System (ADS)
Yan, Yunxiang; Wang, Gang; Sun, Weimin; Luo, A.-Li; Ma, Zhenyu; Li, Jian; Wang, Shuqing
2017-04-01
Focal ratio degradation (FRD) is a major contributor to throughput and light loss in a fibre spectroscopic telescope system. We combine the guided mode theory in geometric optics and a well-known model, the power distribution model (PDM), to predict and explain the FRD dependence properties. We present a robust method by modifying the energy distribution method with f-intercept to control the input condition. This method provides a way to determine the proper position of the fibre end on the focal plane to improve energy utilization and FRD performance, which lifts the relative throughput up to 95 per cent with variation of output focal ratio less than 2 per cent. This method can also help to optimize the arrangement of the position of focal-plane plate to enhance the coupling efficiency in a telescope. To investigate length properties, we modified the PDM by introducing a new parameter, the focal distance f, into the original model to make it available for a multiposition measurement system. The results show that the modified model is robust and feasible for measuring the key parameter d0 to simulate the transmission characteristics. The output focal ratio in the experiment does not follow the prediction trend but shows an interesting phenomenon: the output focal ratio increases first to the peak, then decreases and remains stable finally with increasing fibre length longer than 15 m. This provides a reference for choosing the appropriate length of fibre to improve the FRD performance for the design of the fibre system in a telescope.
Item Response Models for Local Dependence among Multiple Ratings
ERIC Educational Resources Information Center
Wang, Wen-Chung; Su, Chi-Ming; Qiu, Xue-Lan
2014-01-01
Ratings given to the same item response may have a stronger correlation than those given to different item responses, especially when raters interact with one another before giving ratings. The rater bundle model was developed to account for such local dependence by forming multiple ratings given to an item response as a bundle and assigning…
Mörl, Falk; Siebert, Tobias; Häufle, Daniel
2016-02-01
Experimental studies show different muscle-tendon complex (MTC) functions (e.g. motor or spring) depending on the muscle fibre-tendon length ratio. Comparing different MTC of different animals examined experimentally, the extracted MTC functions are biased by, for example, MTC-specific pennation angle and fibre-type distribution or divergent experimental protocols (e.g. influence of temperature or stimulation on MTC force). Thus, a thorough understanding of variation of these inner muscle fibre-tendon length ratios on MTC function is difficult. In this study, we used a hill-type muscle model to simulate MTC. The model consists of a contractile element (CE) simulating muscle fibres, a serial element (SE) as a model for tendon, and a parallel elastic element (PEE) modelling tissue in parallel to the muscle fibres. The simulation examines the impact of length variations of these components on contraction dynamics and MTC function. Ensuring a constant overall length of the MTC by L(MTC) = L(SE) + L(CE), the SE rest length was varied over a broad physiological range from 0.1 to 0.9 MTC length. Five different MTC functions were investigated by simulating typical physiological experiments: the stabilising function with isometric contractions, the motor function with contractions against a weight, the capability of acceleration with contractions against a small inertial mass, the braking function by decelerating a mass, and the spring function with stretch-shortening cycles. The ratio of SE and CE mainly determines the MTC function. MTC with comparably short tendon generates high force and maximal shortening velocity and is able to produce maximal work and power. MTC with long tendon is suitable to store and release a maximum amount of energy. Variation of muscle fibre-tendon ratio yielded two peaks for MTC's force response for short and long SE lengths. Further, maximum work storage capacity of the SE is at long relL(SE,0). Impact of fibre-tendon length ratio on MTC functions will be discussed. Considering a constant set of MTC parameters, quantitative changes in MTC performance (work, stiffness, force, energy storage, dissipation) depending on varying muscle fibre-tendon length ratio were provided, which enables classification and grading of different MTC designs.
Sarubbo, Silvio; De Benedictis, Alessandro; Milani, Paola; Paradiso, Beatrice; Barbareschi, Mattia; Rozzanigo, Umbero; Colarusso, Enzo; Tugnoli, Valeria; Farneti, Marco; Granieri, Enrico; Duffau, Hugues; Chioffi, Franco
2015-01-01
Even if different dissection, tractographic and connectivity studies provided pure anatomical evidences about the optic radiations (ORs), descriptions of both the anatomical structure and the anatomo-functional relationships of the ORs with the adjacent bundles were not reported. We propose a detailed anatomical and functional study with ‘post mortem’ dissections and ‘in vivo’ direct electrical stimulation (DES) of the OR, demonstrating also the relationships with the adjacent eloquent bundles in a neurosurgical ‘connectomic’ perspective. Six human hemispheres (three left, three right) were dissected after a modified Klingler's preparation. The anatomy of the white matter was analysed according to systematic and topographical surgical perspectives. The anatomical results were correlated to the functional responses collected during three resections of tumours guided by cortico-subcortical DES during awake procedures. We identified two groups of fibres forming the OR. The superior component runs along the lateral wall of the occipital horn, the trigone and the supero-medial wall of the temporal horn. The inferior component covers inferiorly the occipital horn and the trigone, the lateral wall of the temporal horn and arches antero-medially to form the Meyer's Loop. The inferior fronto-occipital fascicle (IFOF) covers completely the superior OR along its entire course, as confirmed by the subcortical DES. The inferior longitudinal fascicle runs in a postero-anterior and inferior direction, covering the superior OR posteriorly and the inferior OR anteriorly. The IFOF identification allows the preservation of the superior OR in the anterior temporal resection, avoiding post-operative complete hemianopia. The identification of the superior OR during the posterior temporal, inferior parietal and occipital resections leads to the preservation of the IFOF and of the eloquent functions it subserves. The accurate knowledge of the OR course and the relationships with the adjacent bundles is crucial to optimize quality of resection and functional outcome. PMID:25402811
Mechanical and Thermal Characterization of Alkali Treated Kenaf Fibers
NASA Astrophysics Data System (ADS)
Abdullah, S. A. S.; Zuhudi, N. Z. M.; Anuar, NIS; Isa, M. D.
2018-05-01
Research on bio composite for automotive and aerospace application has been extensive with the advancement of natural fiber yarn and woven technology. Malaysia has marked kenaf as its main crop commodity by 2020. Surface modification of natural fibers is one of the significant areas in current biocomposite research. Alkali treatment removes certain amount of lignin, hemicellulose, and wax on the surface of fiber, besides depolymerizing cellulose structure and increasing percentage of crystallinity. Surface modification with NaOH of 3%, 6% and 9% concentration with various lengths of immersion time was conducted. The effect of alkali treatment on the mechanical strength and thermal degradation of kenaf fibre were investigated by means of fiber bundle tensile test and thermogravimetric analyser (TGA). Alkali treatment strongly modifies the thermal behaviour of the fibers, being particularly effective in the removal of noncellulosic matter. In addition, the mechanical properties of kenaf fibers revealed higher tensile strength for NaOH treated fibers.
SAMI Automated Plug Plate Configuration
NASA Astrophysics Data System (ADS)
Lorente, N. P. F.; Farrell, T.; Goodwin, M.
2013-10-01
The Sydney-AAO Multi-object Integral field spectrograph (SAMI) is a prototype wide-field system at the Anglo-Australian Telescope (AAT) which uses a plug-plate to mount its 13×61-core imaging fibre bundles (hexabundles) in the optical path at the telescope's prime focus. In this paper we describe the process of determining the positions of the plug-plate holes, where plates contain three or more stacked observation configurations. The process, which up until now has involved several separate processes and has required significant manual configuration and checking, is now being automated to increase efficiency and reduce error. This is carried out by means of a thin Java controller layer which drives the configuration cycle. This layer controls the user interface and the C++ algorithm layer where the plate configuration and optimisation is carried out. Additionally, through the Aladin display package, it provides visualisation and facilitates user verification of the resulting plates.
Microscopic evaluation and physiochemical analysis of Dillenia indica leaf
Kumar, S; Kumar, V; Prakash, Om
2011-01-01
Objective To study detail microscopic evaluation and physiochemical analysis of Dillenia indica (D. indica) leaf. Methods Fresh leaf sample and dried power of the leaf were studied macroscopically and microscopically. Preliminary phytochemical investigation of plant material was done. Other WHO recommended parameters for standardizations were also performed. Results The detail microscopy revealed the presence of anomocytic stomata, unicellular trichome, xylem fibres, calcium oxalate crystals, vascular bundles, etc. Leaf constants such as stomatal number, stomatal index, vein-islet number and veinlet termination numbers were also measured. Physiochemical parameters such as ash values, loss on drying, extractive values, percentage of foreign matters, swelling index, etc. were also determined. Preliminary phytochemical screening showed the presence of steroids, terpenoids, glycosides, fatty acids, flavonoids, phenolic compounds and carbohydrates. Conclusions The microscopic and physiochemical analysis of the D. indica leaf is useful in standardization for quality, purity and sample identification. PMID:23569789
Patel, Deepak K; Waas, Anthony M
2016-07-13
This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391-1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre-matrix concentric cylinder model is extended to fibre and (N-1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1-48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1572). This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).
Gopal, Suhasini R; Chen, Daniel H-C; Chou, Shih-Wei; Zang, Jingjing; Neuhauss, Stephan C F; Stepanyan, Ruben; McDermott, Brian M; Alagramam, Kumar N
2015-07-15
Usher syndrome type III (USH3) is characterized by progressive loss of hearing and vision, and varying degrees of vestibular dysfunction. It is caused by mutations that affect the human clarin-1 protein (hCLRN1), a member of the tetraspanin protein family. The missense mutation CLRN1(N48K), which affects a conserved N-glycosylation site in hCLRN1, is a common causative USH3 mutation among Ashkenazi Jews. The affected individuals hear at birth but lose that function over time. Here, we developed an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype. Immunolabeling demonstrated that Clrn1 localized to the hair cell bundles (hair bundles). The clrn1 mutants generated by zinc finger nucleases displayed aberrant hair bundle morphology with diminished function. Two transgenic zebrafish that express either hCLRN1 or hCLRN1(N48K) in hair cells were produced to examine the subcellular localization patterns of wild-type and mutant human proteins. hCLRN1 localized to the hair bundles similarly to zebrafish Clrn1; in contrast, hCLRN1(N48K) largely mislocalized to the cell body with a small amount reaching the hair bundle. We propose that this small amount of hCLRN1(N48K) in the hair bundle provides clarin-1-mediated function during the early stages of life; however, the presence of hCLRN1(N48K) in the hair bundle diminishes over time because of intracellular degradation of the mutant protein, leading to progressive loss of hair bundle integrity and hair cell function. These findings and genetic tools provide an understanding and path forward to identify therapies to mitigate hearing loss linked to the CLRN1 mutation. Mutations in the clarin-1 gene affect eye and ear function in humans. Individuals with the CLRN1(N48K) mutation are born able to hear but lose that function over time. Here, we develop an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype. This approach illuminates the role of clarin-1 and the molecular mechanism linked to the CLRN1(N48K) mutation in sensory hair cells of the inner ear. Additionally, the investigation provided an in vivo model to guide future drug discovery to rescue the hCLRN1(N48K) in hair cells. Copyright © 2015 the authors 0270-6474/15/3510188-14$15.00/0.
Alpha1 LASSO data bundles Lamont, OK
Gustafson, William Jr; Vogelmann, Andrew; Endo, Satoshi; Toto, Tami; Xiao, Heng; Li, Zhijin; Cheng, Xiaoping; Krishna, Bhargavi (ORCID:000000018828528X)
2016-08-03
A data bundle is a unified package consisting of LASSO LES input and output, observations, evaluation diagnostics, and model skill scores. LES input includes model configuration information and forcing data. LES output includes profile statistics and full domain fields of cloud and environmental variables. Model evaluation data consists of LES output and ARM observations co-registered on the same grid and sampling frequency. Model performance is quantified by skill scores and diagnostics in terms of cloud and environmental variables.
Fiber Bundle Model Under Heterogeneous Loading
NASA Astrophysics Data System (ADS)
Roy, Subhadeep; Goswami, Sanchari
2018-03-01
The present work deals with the behavior of fiber bundle model under heterogeneous loading condition. The model is explored both in the mean-field limit as well as with local stress concentration. In the mean field limit, the failure abruptness decreases with increasing order k of heterogeneous loading. In this limit, a brittle to quasi-brittle transition is observed at a particular strength of disorder which changes with k. On the other hand, the model is hardly affected by such heterogeneity in the limit where local stress concentration plays a crucial role. The continuous limit of the heterogeneous loading is also studied and discussed in this paper. Some of the important results related to fiber bundle model are reviewed and their responses to our new scheme of heterogeneous loading are studied in details. Our findings are universal with respect to the nature of the threshold distribution adopted to assign strength to an individual fiber.
Geometrical frustration yields fibre formation in self-assembly
NASA Astrophysics Data System (ADS)
Lenz, Martin; Witten, Thomas A.
2017-11-01
Controlling the self-assembly of supramolecular structures is vital for living cells, and a central challenge for engineering at the nano- and microscales. Nevertheless, even particles without optimized shapes can robustly form well-defined morphologies. This is the case in numerous medical conditions where normally soluble proteins aggregate into fibres. Beyond the diversity of molecular mechanisms involved, we propose that fibres generically arise from the aggregation of irregular particles with short-range interactions. Using a minimal model of ill-fitting, sticky particles, we demonstrate robust fibre formation for a variety of particle shapes and aggregation conditions. Geometrical frustration plays a crucial role in this process, and accounts for the range of parameters in which fibres form as well as for their metastable character.
Slow and fast fatigable frog muscle fibres: electrophysiological and histochemical characteristics.
Vydevska-Chichova, M; Mileva, K; Todorova, R; Dimitrova, M; Radicheva, N
2005-12-01
Continuous activity of isolated frog gastrocnemius muscle fibres provoked by repetitive stimulation of 5 Hz was used as an experimental model for fatigue development in different fibre types. Parameter changes of the elicited intracellular action potentials and mechanical twitches during the period of uninterrupted activity were used as criteria for fatigue evaluation. Slow fatigable muscle fibre (SMF) and fast fatigable muscle fibre (FMF) types were distinguished depending on the duration of their uninterrupted activity, which was significantly longer in SMFs than in FMFs. The normalized changes of action potential amplitude and duration were significantly smaller in FMFs than in SMFs. The average twitch force and velocity of contraction and relaxation were significantly higher in FMFs than in SMFs. Myosin ATPase (mATPase) and succinate dehydrogenase activity were studied by histochemical assessment in order to validate the fibre type classification based on their electrophysiological characteristics. Based on the relative mATPase reactivity, the fibres of the studied muscle were classified as one of five different types (1-2, 2, 2-3, 3 and tonic). Smaller sized fibres (tonic and type 3) expressed higher succinate dehydrogenase activity than larger sized fibres (type 1-2, 2), which is related to the fatigue resistance. The differences between fatigue development in SMFs and FMFs during continuous activity were associated with fibre-type specific mATPase and succinate dehydrogenase activity.
Perspective for Fibre-Hybrid Composites in Wind Energy Applications
2017-01-01
Increasing the efficiency of wind turbines will be vital for the wind energy sector to continue growing. The drive for increased efficiency is pushing turbine manufacturers to shift from glass fibre composite blades towards carbon/glass fibre-hybrid composite blades. This shift brings significant challenges in terms of optimising the design and understanding the failure of these new blade materials. This review therefore surveys the literature on fibre-hybrid composites, with an emphasis on aspects that are relevant for turbine blade materials. The literature on tensile, flexural, compressive, and fatigue performance is critically assessed and areas for future research are identified. Numerical simulations of fibre-hybrid composites have reached a reasonable maturity for tensile failure, but significant progress is required for flexural, compressive, and fatigue failure. Fatigue failure of fibre-hybrid composites in particular, requires more careful attention from both a modelling and experimental point of view. PMID:29117126
Perspective for Fibre-Hybrid Composites in Wind Energy Applications.
Swolfs, Yentl
2017-11-08
Increasing the efficiency of wind turbines will be vital for the wind energy sector to continue growing. The drive for increased efficiency is pushing turbine manufacturers to shift from glass fibre composite blades towards carbon/glass fibre-hybrid composite blades. This shift brings significant challenges in terms of optimising the design and understanding the failure of these new blade materials. This review therefore surveys the literature on fibre-hybrid composites, with an emphasis on aspects that are relevant for turbine blade materials. The literature on tensile, flexural, compressive, and fatigue performance is critically assessed and areas for future research are identified. Numerical simulations of fibre-hybrid composites have reached a reasonable maturity for tensile failure, but significant progress is required for flexural, compressive, and fatigue failure. Fatigue failure of fibre-hybrid composites in particular, requires more careful attention from both a modelling and experimental point of view.
Madsen, Kathrine Skak; Jernigan, Terry L; Vestergaard, Martin; Mortensen, Erik Lykke; Baaré, William F C
2018-06-01
Neuroticism is a fundamental personality trait that reflects a tendency to experience heightened negative affect and susceptibility to stress. Negative emotionality has been associated with fronto-limbic brain structures and connecting fibre tracts. The major fibre tracts connecting the frontal and limbic brain regions are the cingulum bundle and uncinate fasciculus. We previously found that healthy adults with higher neuroticism scores had decreased left relative to right fractional anisotropy (FA) of the cingulum. Both cingulum and uncinate fasciculus FA increases throughout childhood and into early adulthood. Since adolescence is associated with an increased incidence of anxiety and mood disorders, for which neuroticism is a known risk factor, the question arises whether the association between neuroticism and fronto-limbic white matter microstructure asymmetry is already present in children and adolescents or whether such relationship emerges during this age period. To address this question, we assessed 72 typically-developing 10-to-15 year-olds with diffusion-weighted imaging on a 3 T magnetic resonance scanner. Neuroticism was assessed with the Junior Eysenck Personality Questionnaire. FA and parallel and perpendicular diffusivity measures were extracted for cingulum, uncinate fasciculus as well as the white matter underlying the ventromedial prefrontal cortex. Higher neuroticism scores were associated with decreased left relative to right cingulum FA in boys, while in girls, higher neuroticism scores were associated with increased left relative to right cingulum and ventromedial prefrontal white matter FA, indicating that there are sex differences in the neural correlates of neuroticism. Our findings suggest that the link between neuroticism and frontal-limbic white matter microstructure asymmetry likely predates early adolescence. Future studies need to elucidate the significance of the observed sex differences in the neural correlates of neuroticism. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
[Changes in the innervation of the taste buds in diabetic rats].
Hevér, Helén; Altdorfer, Károly; Zelles, Tivadar; Batbayar, Bayarchimeg; Fehér, Erzsébet
2013-03-24
Abnormal sensations such as pain and impairment of taste are symptoms of approximately 10% of patients having diabetes mellitus. The aim of the study was to investigate and quantify the different neuropeptide containing nerve fibres in the vallate papilla of the diabetic rat. Immunohistochemical methods were used to study the changes of the number of different neuropeptide containing nerve terminals located in the vallate papillae in diabetic rats. Diabetes was induced in the rats with streptozotocin. Two weeks after streptozotocin treatment the number of the substance P, galanin, vasoactive intestinal polypeptide and neuropeptide Y immunoreactive nerve terminals was significantly increased (p<0.05) in the tunica mucosa of the tongue. The number of the lymphocytes and mast cells was also increased significantly. Some of the immunoreactive nerve terminals were located in the lingual epithelium both intragemmally and extragemmally and were seen to comprise dense bundles in the lamina propria just beneath the epithelium. No taste cells were immunoreactive for any of the investigated peptides. Vasoactive intestinal polypeptide and neuropeptide Y immunoreactive nerve fibres were not detected in the taste buds. For weeks after streptozotocin administration the number of the substance P, calcitonin gene related peptide and galanin immunoreactive nerve terminals was decreased both intragemmally and intergemmally. In case of immediate insulin treatment, the number of the immunoreactive nerve terminals was similar to that of the controls, however, insulin treatment given 1 week later to diabetic rats produced a decreased number of nerve fibers. Morphometry revealed no significant difference in papilla size between the control and diabetic groups, but there were fewer taste buds (per papilla). Increased number of immunoreactive nerve terminals and mast cells 2 weeks after the development of diabetes was the consequence of neurogenic inflammation which might cause vasoconstriction and lesions of the oral mucosa. Taste impairment, which developed 4 weeks after streptozotocin treatment could be caused by neuropathic defects and degeneration or morphological changes in the taste buds and nerve fibres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terentyev, V S; Simonov, V A
2016-02-28
Numerical modelling demonstrates the possibility of fabricating an all-fibre multibeam two-mirror reflection interferometer based on a metal–dielectric diffraction structure in its front mirror. The calculations were performed using eigenmodes of a double-clad single-mode fibre. The calculation results indicate that, using a metallic layer in the structure of the front mirror of such an interferometer and a diffraction effect, one can reduce the Ohmic loss by a factor of several tens in comparison with a continuous thin metallic film. (laser crystals and braggg ratings)
Joel, Anna-Christin; Kappel, Peter; Adamova, Hana; Baumgartner, Werner; Scholz, Ingo
2015-11-01
Spider silk production has been studied intensively in the last years. However, capture threads of cribellate spiders employ an until now often unnoticed alternative of thread production. This thread in general is highly interesting, as it not only involves a controlled arrangement of three types of threads with one being nano-scale fibres (cribellate fibres), but also a special comb-like structure on the metatarsus of the fourth leg (calamistrum) for its production. We found the cribellate fibres organized as a mat, enclosing two parallel larger fibres (axial fibres) and forming the typical puffy structure of cribellate threads. Mat and axial fibres are punctiform connected to each other between two puffs, presumably by the action of the median spinnerets. However, this connection alone does not lead to the typical puffy shape of a cribellate thread. Removing the calamistrum, we found a functional capture thread still being produced, but the puffy shape of the thread was lost. Therefore, the calamistrum is not necessary for the extraction or combination of fibres, but for further processing of the nano-scale cribellate fibres. Using data from Uloborus plumipes we were able to develop a model of the cribellate thread production, probably universally valid for cribellate spiders. Copyright © 2015 Elsevier Ltd. All rights reserved.
Automatic reconstruction of the muscle architecture from the superficial layer fibres data.
Kohout, Josef; Cholt, David
2017-10-01
Physiological cross-sectional area (PCSA) of a muscle plays a significant role in determining the force contribution of muscle fascicles to skeletal movement. This parameter is typically calculated from the lengths of muscle fibres selectively sampled from the superficial layer of the muscle. However, recent studies have found that the length of fibres in the superficial layer often differs significantly (p < 0.5) from the length of fibres in the deep layer. As a result, PCSA estimation is inaccurate. In this paper, we propose a method to automatically reconstruct fibres in the whole volume of a muscle from those selectively sampled on the superficial layer. The method performs a centripetal Catmull-Rom interpolation of the input fibres within the volume of a muscle represented by its 3D surface model, automatically distributing the fibres among multiple heads of the muscle and shortening the deep fibres to support large attachment areas with extremely acute angles. Our C++ implementation runs in a couple of seconds on commodity hardware providing realistic results for both artificial and real data sets we tested. The fibres produced by the method can be used directly to determine the personalised mechanical muscle functioning. Our implementation is publicly available for the researchers at https://mi.kiv.zcu.cz/. Copyright © 2017 Elsevier B.V. All rights reserved.
A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste
Jo, Byung-Wan; Chakraborty, Sumit
2015-01-01
To reduce the antagonistic effect of jute fibre on the setting and hydration of jute reinforced cement, modified jute fibre reinforcement would be a unique approach. The present investigation deals with the effectiveness of mild alkali treated (0.5%) jute fibre on the setting and hydration behaviour of cement. Setting time measurement, hydration test and analytical characterizations of the hardened samples (viz., FTIR, XRD, DSC, TGA, and free lime estimation) were used to evaluate the effect of alkali treated jute fibre. From the hydration test, the time (t) required to reach maximum temperature for the hydration of control cement sample is estimated to be 860 min, whilst the time (t) is measured to be 1040 min for the hydration of a raw jute reinforced cement sample. However, the time (t) is estimated to be 1020 min for the hydration of an alkali treated jute reinforced cement sample. Additionally, from the analytical characterizations, it is determined that fibre-cement compatibility is increased and hydration delaying effect is minimized by using alkali treated jute fibre as fibre reinforcement. Based on the analyses, a model has been proposed to explain the setting and hydration behaviour of alkali treated jute fibre reinforced cement composite. PMID:25592665
Tan, J L Y; Deshpande, V S; Fleck, N A
2016-07-13
A damage-based finite-element model is used to predict the fracture behaviour of centre-notched quasi-isotropic carbon-fibre-reinforced-polymer laminates under multi-axial loading. Damage within each ply is associated with fibre tension, fibre compression, matrix tension and matrix compression. Inter-ply delamination is modelled by cohesive interfaces using a traction-separation law. Failure envelopes for a notch and a circular hole are predicted for in-plane multi-axial loading and are in good agreement with the observed failure envelopes from a parallel experimental study. The ply-by-ply (and inter-ply) damage evolution and the critical mechanisms of ultimate failure also agree with the observed damage evolution. It is demonstrated that accurate predictions of notched compressive strength are obtained upon employing the band broadening stress for microbuckling, highlighting the importance of this damage mode in compression. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).
Stability in a fiber bundle model: Existence of strong links and the effect of disorder
NASA Astrophysics Data System (ADS)
Roy, Subhadeep
2018-05-01
The present paper deals with a fiber bundle model which consists of a fraction α of infinitely strong fibers. The inclusion of such an unbreakable fraction has been proven to affect the failure process in early studies, especially around a critical value αc. The present work has a twofold purpose: (i) a study of failure abruptness, mainly the brittle to quasibrittle transition point with varying α and (ii) variation of αc as we change the strength of disorder introduced in the model. The brittle to quasibrittle transition is confirmed from the failure abruptness. On the other hand, the αc is obtained from the knowledge of failure abruptness as well as the statistics of avalanches. It is observed that the brittle to quasibrittle transition point scales to lower values, suggesting more quasi-brittle-like continuous failure when α is increased. At the same time, the bundle becomes stronger as there are larger numbers of strong links to support the external stress. High α in a highly disordered bundle leads to an ideal situation where the bundle strength, as well as the predictability in failure process is very high. Also, the critical fraction αc, required to make the model deviate from the conventional results, increases with decreasing strength of disorder. The analytical expression for αc shows good agreement with the numerical results. Finally, the findings in the paper are compared with previous results and real-life applications of composite materials.
Study on galloping behavior of iced eight bundle conductor transmission lines
NASA Astrophysics Data System (ADS)
Zhou, Linshu; Yan, Bo; Zhang, Liang; Zhou, Song
2016-02-01
Wind tunnel test was carried out to obtain the aerodynamic coefficients of an eight bundle conductor accreted with crescent-shaped ice. A user-defined cable element with torsional degree of freedom is developed in ABAQUS software to capture the torsional deformation of the iced conductors during galloping. By means of the user-defined cable element, different damping ratios in in-plane, out-of-plane and torsional directions of the conductors can be defined and the aerodynamic forces varying with their motion status can be exerted on the conductors conveniently when ABAQUS is used to simulate galloping of transmission lines. A wind tunnel test to model galloping of an iced eight bundle conductor segment was carried out, and the validity of the numerical simulation method is demonstrated by the agreement of the galloping orbit of the bundle conductor segment model recorded in the test and that by the numerical simulation. Furthermore, galloping behavior, including dynamic responses, galloping orbits, frequencies, vibration modes and amplitudes, of typical iced eight bundle conductor transmission lines in the cases of different span lengths, initial tensions in sub-conductors, wind velocities, angles of wind attack and damping ratios is studied, and the galloping behavior of the lines with internal resonance conditions is discussed. The obtained results may provide a fundamental tool for the development of anti-galloping techniques of eight bundle conductor transmission lines.
A novel optical fibre doped with the nano-material as InP
NASA Astrophysics Data System (ADS)
Chen, Xi; Lee, Ly Guat; Zhang, Ru
2007-11-01
As the key of these optical devices which are widely used in the communication system, high nonlinear optical fibre will play an important role in the future optical fibre communication. With recent growth of nano-technology, researchers are hoping to obtain some kinds of optical fibre by combining the optical fibre with the nanotechnology. According to this current situation, the optical fibre doped with nano-material as InP (indium phosphide) is manufactured by using the MCVD (modified chemical vapor deposition) technology after our comprehensive consideration of many relative factors. Proved by experiments, this novel optical fibre has an excellent waveguide characteristic. After a consideration of the model of this novel optical fibre, its propagation constant β has been simulated by using the FEM (finite element method), and the graphs of presentation of magnetic field of the core are also obtained. In accordance with the results, the effective refractive index n eff = 1.401 has be calculated. Both the calculated result and the simulated graphs are matching well with the test, and this result is a step-stone bridge for future research of nonlinear parameter on this novel optical fiber.
NASA Astrophysics Data System (ADS)
Zhang, Sheng; Gao, Xiguang; Song, Yingdong
2018-04-01
A new in situ strength model of carbon fibers was developed based on the distribution of defects to predict the stress-strain response and the strength of C/SiC composites. Different levels of defects in the fibers were considered in this model. The defects in the fibers were classified by their effects on the strength of the fiber. The strength of each defect and the probability that the defect appears were obtained from the tensile test of single fibers. The strength model of carbon fibers was combined with the shear-lag model to predict the stress-strain responses and the strengths of fiber bundles and C/SiC minicomposites. To verify the strength model, tensile tests were performed on fiber bundles and C/SiC minicomposites. The predicted and experimental results were in good agreement. Effects of the fiber length, the fiber number and the heat treatment on the final strengths of fiber bundles and C/SiC minicomposites were also discussed.
NASA Astrophysics Data System (ADS)
Tosi, Daniele; Saccomandi, Paola; Schena, Emiliano; Duraibabu, Dinesh B.; Poeggel, Sven; Adilzhan, Abzal; Aliakhmet, Kamilla; Silvestri, Sergio; Leen, Gabriel; Lewis, Elfed
2016-05-01
Optical fibre sensors have been applied to perform biophysical measurement in ex-vivo laser ablation (LA), on pancreas animal phantom. Experiments have been performed using Fibre Bragg Grating (FBG) arrays for spatially resolved temperature detection, and an all-glass Extrinsic Fabry-Perot Interferometer (EFPI) for pressure measurement. Results using a Nd:YAG laser source as ablation device, are presented and discussed.
Alix, S; Colasse, L; Morvan, C; Lebrun, L; Marais, S
2014-02-15
The tensile properties of flax fibres might permit them to be used in composites as reinforcement in organic resin, as long as their mechanical properties are reproducible and their water sorption are reduced. In this study, to minimise the variability of mechanical properties, several samples of flax fibres were blended as a non-woven fabric. In order to reduce the water absorption of this non-woven technical fibres, an autoclave treatment was performed which was expected to remove the pectins and then to reduce the water sorption on their negative charges. The impact of autoclave pressure (0.5, 1 and 2 bars) on water sorption was investigated by using a gravimetric static equilibrium method. The Park model based on the three sorption modes: Langmuir, Henry's law and clustering, was successfully used to simulate the experimental sorption data. The lowest pressure treatments impacted only the Langmuir contribution while the 2 bar autoclave-treatment positively impacted the water resistance in the core of fibres by reducing Henry's absorption rate. This was shown to be related to the chemical modifications at the surface and in the core of fibres. A schematic model is presented relating the water sorption and the pectic composition of the fabric. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chen, Tingting; Kim, Choon Young; Kaur, Amandeep; Lamothe, Lisa; Shaikh, Maliha; Keshavarzian, Ali; Hamaker, Bruce R
2017-03-22
Impaired gut barrier function plays an important role in the development of many diseases such as obesity, inflammatory bowel disease, and in HIV infection. Dietary fibres have been shown to improve intestinal barrier function through their fermentation products, short chain fatty acids (SCFAs), and the effects of individual SCFAs have been studied. Here, different SCFA mixtures representing possible compositions from fibre fermentation products were studied for protective and reparative effects on intestinal barrier function. The effect of fermentation products from four dietary fibres, i.e. resistant starch, fructooligosaccharides, and sorghum and corn arabinoxylan (varying in their branched structure) on barrier function was positively correlated with their SCFA concentration. Pure SCFA mixtures of various concentrations and compositions were tested using a Caco-2 cell model. SCFAs at a moderate concentration (40-80 mM) improved barrier function without causing damage to the monolayer. In a 40 mM SCFA mixture, the butyrate proportion at 20% and 50% showed both a protective and a reparative effect on the monolayer to disrupting agents (LPS/TNF-α) applied simultaneously or prior to the SCFA mixtures. Relating this result to dietary fibre selection, slow fermenting fibres that deliver appropriate concentrations of SCFAs to the epithelium with a high proportion of butyrate may improve barrier function.
Optical Coherence Tomographic Comparison of Cuban Epidemic and Leber’s Hereditary Optic Neuropathy
Santiesteban-Freixas, Rosaralis; Pola-Alvarado, Lester; Columbie-Garbey, Yannara; Gonzalez-Quevedo, Alina; Juvier-Riesgo, Tamara; Hernandez-Echevarria, Odelaisys; Hedges, Thomas R.; Mendoza-Santiesteban, Carlos
2015-01-01
Abstract Following the epidemic of optic and peripheral neuropathy, which occurred in Cuba between 1991 and 1993, a number of patients have been re-evaluated, including testing with optical coherence tomography (OCT) and electrophysiology. At the same time, a number of patients with Leber’s hereditary optic neuropathy have also been evaluated. The purpose of this study was to detect residual loss of retinal nerve fibre layer (RNFL) in patients who suffered Cuban epidemic optic neuropathy (CEON), and to compare these findings with those in patients with Leber’s hereditary optic neuropathy (LHON). Optical coherence tomography as well as clinical examinations were performed on 11 patients diagnosed with CEON 15 years following the epidemic and 14 patients with LHON. OCT in CEON patients showed thinning of the RNFL in the temporal sector and normal thickness in other quadrants. However, patients with chronic LHON had more diffuse RNFL loss throughout the retina. OCT findings corresponded with clinical findings in CEON and LHON. There was drop out of the papillomacular bundle in both diseases. Two patients in the acute stages of LHON and three LHON carriers showed thinning of the temporal RNFL only. This is the first report of OCT in CEON that shows residual damage in the papillomacular bundle compared with chronic LHON where there is more diffuse and progressive loss of the RNFL. The importance of OCT for the diagnosis and evaluation of similar optic neuropathies is emphasised. PMID:27928368
Time dependence of breakdown in a global fiber-bundle model with continuous damage.
Moral, L; Moreno, Y; Gómez, J B; Pacheco, A F
2001-06-01
A time-dependent global fiber-bundle model of fracture with continuous damage is formulated in terms of a set of coupled nonlinear differential equations. A first integral of this set is analytically obtained. The time evolution of the system is studied by applying a discrete probabilistic method. Several results are discussed emphasizing their differences with the standard time-dependent model. The results obtained show that with this simple model a variety of experimental observations can be qualitatively reproduced.
Dabbah, M A; Graham, J; Petropoulos, I N; Tavakoli, M; Malik, R A
2011-10-01
Diabetic peripheral neuropathy (DPN) is one of the most common long term complications of diabetes. Corneal confocal microscopy (CCM) image analysis is a novel non-invasive technique which quantifies corneal nerve fibre damage and enables diagnosis of DPN. This paper presents an automatic analysis and classification system for detecting nerve fibres in CCM images based on a multi-scale adaptive dual-model detection algorithm. The algorithm exploits the curvilinear structure of the nerve fibres and adapts itself to the local image information. Detected nerve fibres are then quantified and used as feature vectors for classification using random forest (RF) and neural networks (NNT) classifiers. We show, in a comparative study with other well known curvilinear detectors, that the best performance is achieved by the multi-scale dual model in conjunction with the NNT classifier. An evaluation of clinical effectiveness shows that the performance of the automated system matches that of ground-truth defined by expert manual annotation. Copyright © 2011 Elsevier B.V. All rights reserved.
Gandolfi, Nicola Bursi; Gualtieri, Alessandro F; Pollastri, Simone; Tibaldi, Eva; Belpoggi, Fiorella
2016-04-05
This work presents a comparative FEG-SEM study of the morphological and chemical characteristics of both asbestos bodies and fibres found in the tissues of Sprague-Dawley rats subjected to intraperitoneal or intrapleural injection of UICC chrysotile, UICC crocidolite and erionite from Jersey, Nevada (USA), with monitoring up to 3 years after exposure. Due to unequal dosing based on number of fibres per mass for chrysotile with respect to crocidolite and erionite, excessive fibre burden and fibre aggregation during injection that especially for chrysotile would likely not represent what humans would be exposed to, caution must be taken in extrapolating our results based on instillation in experimental animals to human inhalation. Notwithstanding, the results of this study may help to better understand the mechanism of formation of asbestos bodies. For chrysotile and crocidolite, asbestos bodies are systematically formed on long asbestos fibres. The number of coated fibres is only 3.3% in chrysotile inoculated tissues. In UICC crocidolite, Mg, Si, and Fe are associated with the fibres whereas Fe, P and Ca are associated with the coating. Even for crocidolite, most of the observed fibres are uncoated as coated fibres are about 5.7%. Asbestos bodies do not form on erionite fibres. The crystal habit, crystallinity and chemistry of all fibre species do not change with contact time, with the exception of chrysotile which shows signs of leaching of Mg. A model for the formation of asbestos bodies from mineral fibres is postulated. Because the three fibre species show limited signs of dissolution in the tissue, they cannot act as source of elements (primarily Fe, P and Ca) promoting nucleation and growth of asbestos bodies. Hence, the limited number of coated fibres should be due to the lack of nutrients or organic nature. Copyright © 2015 Elsevier B.V. All rights reserved.
The effect of intramuscular fat on skeletal muscle mechanics: implications for the elderly and obese
Rahemi, Hadi; Nigam, Nilima; Wakeling, James M.
2015-01-01
Skeletal muscle accumulates intramuscular fat through age and obesity. Muscle quality, a measure of muscle strength per unit size, decreases in these conditions. It is not clear how fat influences this loss in performance. Changes to structural parameters (e.g. fibre pennation and connective tissue properties) affect the muscle quality. This study investigated the mechanisms that lead to deterioration in muscle performance due to changes in intramuscular fat, pennation and aponeurosis stiffness. A finite-element model of the human gastrocnemius was developed as a fibre-reinforced composite biomaterial containing contractile fibres within the base material. The base-material properties were modified to include intramuscular fat in five different ways. All these models with fat generated lower fibre stress and muscle quality than their lean counterparts. This effect is due to the higher stiffness of the tissue in the fatty models. The fibre deformations influence their interactions with the aponeuroses, and these change with fatty inclusions. Muscles with more compliant aponeuroses generated lower forces. The muscle quality was further reduced for muscles with lower pennation. This study shows that whole-muscle force is dependent on its base-material properties and changes to the base material due to fatty inclusions result in reductions to force and muscle quality. PMID:26156300
Viscous propulsion in active transversely isotropic media
NASA Astrophysics Data System (ADS)
Cupples, Gemma; Dyson, Rosemary; Smith, David
2017-11-01
Taylor's swimming sheet is a classical model of microscale propulsion and pumping. Many biological fluids and substances are fibrous, having a preferred direction in their microstructure; for example cervical mucus. To understand how these effects modify viscous propulsion, we extend Taylor's classical model of small-amplitude viscous propulsion of a `swimming sheet' via the transversely-isotropic fluid model of Ericksen, which is linear in strain rate and possesses a distinguished direction. The energetic costs of swimming are significantly altered by all rheological parameters and the initial fibre angle. Propulsion in a passive transversely-isotropic fluid enhances mean rate of working, independent of the initial fibre orientation. In this regime the mean swimming velocity is unchanged from the Newtonian case. The effect of fibre tension, or alternatively a stresslet characterising an active fluid, is also considered. This stress introduces an angular dependence and dramatically changes the streamlines and flow field; fibres aligned with the swimming direction increase the energetic demands of the sheet. The constant fibre stress may result in a reversal of the mean swimming velocity and a negative mean rate of working if sufficiently large relative to the other parameters. Funding is provided by a Biotechnology and Biological Sciences Research Council (BBSRC) Industrial CASE Studentship (BB/L015587/1).
Darcy Permeability of Hollow Fiber Bundles Used in Blood Oxygenation Devices
Pacella, Heather E.; Eash, Heidi J.; Federspiel, William J.
2011-01-01
Many industrial and biomedical devices (e.g. blood oxygenators and artificial lungs) use bundles of hollow fiber membranes for separation processes. Analyses of flow and mass transport within the shell-side of the fiber bundles most often model the bundle for simplicity as a packed bed or porous media, using a Darcy permeability coefficient estimated from the Blake-Kozeny equation to account for viscous drag from the fibers. In this study, we developed a simple method for measuring the Darcy permeability of hollow fiber membrane bundles and evaluated how well the Blake-Kozeny (BK) equation predicted the Darcy permeability for these bundles. Fiber bundles were fabricated from commercially available Celgard® ×30-240 fiber fabric (300 μm outer diameter fibers @ 35 and 54 fibers/inch) and from a fiber fabric with 193 μm fibers (61 fibers/inch). The fiber bundles were mounted to the bottom of an acrylic tube and Darcy permeability was determined by measuring the elapsed time for a column of glycerol solution to flow through a fiber bundle. The ratio of the measured Darcy permeability to that predicted from the BK equation varied from 1.09 to 0.56. A comprehensive literature review suggested a modified BK equation with the “constant” correlated to porosity. This modification improved the predictions of the BK equation, with the ratio of measured to predicted permeability varying from 1.13 to 0.84. PMID:22927706
Orizio, Claudio; Cogliati, Marta; Bissolotti, Luciano; Diemont, Bertrand; Gobbo, Massimiliano; Celichowski, Jan
2016-01-01
This work aimed to verify if maximal electrically evoked single twitch (STmax) scan discloses the relative functional weight of fast and slow small bundles of fibres (SBF) in determining the contractile features of tibialis anterior (TA) with ageing. SBFs were recruited by TA main motor point stimulation through 60 increasing levels of stimulation (LS): 20 stimuli at 2Hz for each LS. The lowest and highest LS provided the least ST and STmax, respectively. The scanned STmax was decomposed into individual SBF STs. They were identified when twitches from adjacent LS were significantly different and then subtracted from each other. Nine young (Y) and eleven old (O) subjects were investigated. Contraction time (CT) and STarea/STpeak (A/PT) were calculated per each SBF ST. 143 and 155 SBF STs were obtained in Y and O, respectively. Y: CT and A/PT range: 45-105ms and 67-183mNs/mN, respectively. Literature data set TA fast fibres at 34% so, from the arrays of CT and A/PT, 65ms and 100mNs/mN were identified as the upper limit for SBF fast ST classification. O: no SBF ST could be classified as fast. STmax scan reveals age-related changes in the relative contribution of fast and slow SBFs to the overall muscle mechanics. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Anatomy of the collateral ligaments of the feline elbow joint: functional implications.
Engelke, E; Pfarrer, C; Waibl, H
2011-04-01
Cats show a higher capability to supinate their forearms than dogs. This suggests a special arrangement of the collateral ligaments of the feline elbow joint. Therefore, the course of the ligaments was examined in 13 adult cats. The size of the ligaments was measured, and effects of passive joint movements were studied. Ligaments of five additional cats were examined histologically. The lateral collateral ligament (LCL) had a superficial and deep part, both originating from the humerus. The free humeral portion of the LCL was short and contained fibrous cartilage. Fibre bundles of the deep part inserted into the annular ligament, while the remaining deep fibres and the superficial part inserted with a long antebrachial portion on the radius. The medial collateral ligament (MCL) originated from the humeral epicondyle and divided into cranial and caudal parts. The caudal part inserted medioproximally on the ulna, while the cranial part attached primarily with a long thin part to the caudal aspect of the radius. During supination, the MCL loosened thus allowing medial widening of the joint space, up to 2 mm. A specific feature of the feline elbow is the long thin part of the MCL. Its course through a special furrow distal to the medial coronoid causes the tightening of the feline MCL during pronation. Apart from that, the feline collateral ligaments combine the features of both human and canine cubital anatomy. This explains the range of supination in cats, which is intermediate between humans and dogs. © 2010 Blackwell Verlag GmbH.
Kiernan, J. A.
2012-01-01
Only primates have temporal lobes, which are largest in man, accommodating 17% of the cerebral cortex and including areas with auditory, olfactory, vestibular, visual and linguistic functions. The hippocampal formation, on the medial side of the lobe, includes the parahippocampal gyrus, subiculum, hippocampus, dentate gyrus, and associated white matter, notably the fimbria, whose fibres continue into the fornix. The hippocampus is an inrolled gyrus that bulges into the temporal horn of the lateral ventricle. Association fibres connect all parts of the cerebral cortex with the parahippocampal gyrus and subiculum, which in turn project to the dentate gyrus. The largest efferent projection of the subiculum and hippocampus is through the fornix to the hypothalamus. The choroid fissure, alongside the fimbria, separates the temporal lobe from the optic tract, hypothalamus and midbrain. The amygdala comprises several nuclei on the medial aspect of the temporal lobe, mostly anterior the hippocampus and indenting the tip of the temporal horn. The amygdala receives input from the olfactory bulb and from association cortex for other modalities of sensation. Its major projections are to the septal area and prefrontal cortex, mediating emotional responses to sensory stimuli. The temporal lobe contains much subcortical white matter, with such named bundles as the anterior commissure, arcuate fasciculus, inferior longitudinal fasciculus and uncinate fasciculus, and Meyer's loop of the geniculocalcarine tract. This article also reviews arterial supply, venous drainage, and anatomical relations of the temporal lobe to adjacent intracranial and tympanic structures. PMID:22934160
Fibre systems for future astronomy: anomalous wavelength-temperature effects
NASA Astrophysics Data System (ADS)
Poppett, C. L.; Allington-Smith, J. R.
2007-07-01
Focal ratio degradation is an important property of optical fibres that determines the design and cost of instruments using fibres. Motivated by the importance of fibres in feeding instruments on Extremely Large Telescopes, the need for cryogenic-cooling to reduce thermal background and the desire for broad-band performance, we have studied the dependency of focal ratio degradation (FRD) on both temperature and wavelength. This shows a small but significant reduction in performance when cooled as expected from previous work. We also find an increase in FRD with wavelength broadly consistent with theory at room temperature but this dependency reverses in sign when the fibres are cooled to 77K, contrary to existing theory. We parameterize the wavelength dependency by an ad hoc extension to an existing model but it is clear that existing theory does not provide a good description of the operation of fibres in astronomical systems. This unexpected behaviour, which may relate to frozen-in stress from the manufacturing process, will need to be taken into account when designing future fibre systems.
Effect of curvature on wetting and dewetting of proboscises of butterflies and moths
Zhang, Chengqi; Beard, Charles E.; Adler, Peter H.
2018-01-01
Proboscises of butterflies are modelled as elliptical hollow fibres that can be bent into coils. The behaviour of coating films on such complex fibres is investigated to explain the remarkable ability of these insects to control liquid collection after dipping the proboscis into a flower or pressing and mopping it over a food source. By using a thin-film approximation with the air–liquid interface positioned almost parallel to the fibre surface, capillary pressure was estimated from the profile of the fibre surfaces supporting the films. The film is always unstable and the proboscis shape and movements have adaptive value in collecting fluid: coiling and bending of proboscises of butterflies and moths facilitate fluid collection. Some practical applications of this effect are discussed with regard to fibre engineering. PMID:29410834
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serell, D.C.; Kaplan, S.
1980-09-01
Purpose of this evaluation is to estimate the magnitude and effects of irradiation and creep induced fuel bundle deformations in the developmental plant. This report focuses on the trends of the results and the ability of present models to evaluate the assembly temperatures in the presence of bundle deformation. Although this analysis focuses on the developmental plant, the conclusions are applicable to LMFBR fuel assemblies in general if they have wire spacers.
Thermal effects on an embedded grating sensor in an FRP structure
NASA Astrophysics Data System (ADS)
Lau, Kin-tak; Yuan, Libo; Zhou, Li-min
2001-08-01
Much research has been carried out in the field of using optical fibre sensors as internal strain and temperature measuring devices for advanced composite structures in recent years. The specific application is the use of embedded optical fibre sensors for smart composite reinforcement for strain monitoring in an innovative civil engineering structure, particularly for the structure after rehabilitation. Researchers have also paid attention to using the optical fibre sensor for monitoring the condition of composite materials during manufacturing and curing processes. However, heat induced in the curing process may influence the accuracy of measurement and eventuate in causing damage at the bond interface between the optical fibre and the surrounding matrix material because of the different thermal properties of silica fibre and composite materials. In this paper, a simple theoretical model is introduced to determine the interfacial properties of the embedded optical fibre system in composite laminates with different values of the coefficient of thermal expansion under different temperature environments. A finite-element method is used to compare the result from the theoretical prediction. The results show that the maximum shear stress in the coating layer decreases with increasing surrounding temperature when the optical fibre is embedded into carbon and Kevlar fibre composites. In contrast, increasing the temperature when the optical fibre is embedded into glass fibre composite results in the increase of maximum shear stress of the material. The compaction pressure distribution along the circumference of the coating layer also varies with temperature.
The Influence of Consumer Goals and Marketing Activities on Product Bundling
NASA Astrophysics Data System (ADS)
Haijun, Wang
Upon entering a store, consumers are faced with the questions of whether to buy, what to buy, and how much to buy. Consumers include products from different categories in their decision process. Product categories can be related in different ways. Product bundling is a process that involves the choice of at least two non-substitutable items. In this research, the consumers' explicit product bundling activity at the point of sale is focused. We focuses on the retailers' perspective and therefore leaves out consumers' brand choice decisions, concentrating on purchase incidence and quantity. At the base of the current model of the exist researches, we integrate behavioural choice analysis and predictive choice modelling through the underlying behavioural models, called random utility maximization (RUM) models. The methodological contribution of this research lies therein to combine a nested logit choice model with a latent variable factor model. We point out several limitations for both theory and practice at the end.
Invited Lectures from a Spatial Orientation Symposium in Honor of Frederick Guedry, Day 1
2014-01-01
111 Computational Fluid Dynamics Model of Endolymph Flow around Hair Cell Bundle ̶ Wallace Grant...Wallace Grant: Computational Fluid Dynamics Model of Endolymph Flow around Hair Cell Bundle Ian Curthoys: Update from Sydney Discussion Tactile...usefulness of preserving free- flowing scholarly discussion. It is in the spirit of those fascinating early discussions among vestibular researchers1
Biodegradable fibre scaffolds incorporating water-soluble drugs and proteins.
Ma, J; Meng, J; Simonet, M; Stingelin, N; Peijs, T; Sukhorukov, G B
2015-07-01
A new type of biodegradable drug-loaded fibre scaffold has been successfully produced for the benefit of water-soluble drugs and proteins. Model drug loaded calcium carbonate (CaCO3) microparticles incorporated into poly(lactic acid-co-glycolic acid) (PLGA) fibres were manufactured by co-precipitation of CaCO3 and the drug molecules, followed by electrospinning of a suspension of such drug-loaded microparticles in a PLGA solution. Rhodamine 6G and bovine serum albumin were used as model drugs for our release study, representing small bioactive molecules and protein, respectively. A bead and string structure of fibres was achieved. The drug release was investigated with different drug loadings and in different pH release mediums. Results showed that a slow and sustained drug release was achieved in 40 days and the CaCO3 microparticles used as the second barrier restrained the initial burst release.
Nanomechanics modeling of carbon nanotubes interacting with surfaces in various configurations
NASA Astrophysics Data System (ADS)
Wu, Yu-Chiao
Carbon nanotubes (CNTs) have been widely used as potential components in reported nanoelectromechanical (NEM) devices due to their excellent mechanical and electrical properties. This thesis models the experiments by the continuum mechanics in two distinct scenarios. In the first situation, measurements are made of CNT configurations after manipulations. Modeling is then used to determine the interfacial properties during the manipulation which led to the observed configuration. This technique is used to determine the shear stress between a SWNT bundle and other materials. During manipulation, a SWNT bundle slipped on two micro-cantilevers. According to the slack due to the slippage after testing and the device configuration, the shear stress between a SWNT bundle and other materials can be determined. In another model, the work of adhesion was determined on two accidentally fabricated devices. Through the configuration of two SWNT adhered bundles and the force-distance curves measured by an atomic force microscope (AFM), modeling was used to determine the work of adhesion between two bundles and the shear stress at the SWNT-substrate interface. In the second situation, modeling is used in a more traditional fashion to make theoretical predictions as to how a device will operate. Using this technique, the actuation mechanism of a single-trench SWNT-based switch was investigated. During the actuation, the deflection-induced tension causes the SWNT bundle to slip on both platforms and to be partially peeled from two side recessed electrodes. These effects produce a slack which reduces the threshold voltages subsequent to the first actuation. The result shows excellent agreement between the theory and the measurement. Furthermore, the operation of a double-trenched SWNT-based switch was investigated. A slack is produced in the 1st actuated trench region by the slip and peeling effects. This slack reduces the 2nd actuation voltage in the neighbor trench. Finally, the adhesive slip process at the SWNT-substrate interface was simulated. The result shows that the force for slip of a SWNT remains constant for lengths less than about 240 nm. Beyond that length, increasing the contact length causes increase the force for slippage. This phenomenon agrees well with reported experiments.
The Shape of a Ponytail and the Statistical Physics of Hair Fiber Bundles
NASA Astrophysics Data System (ADS)
Goldstein, Raymond E.; Warren, Patrick B.; Ball, Robin C.
2012-02-01
From Leonardo to the Brothers Grimm our fascination with hair has endured in art and science. Yet, a quantitative understanding of the shapes of a hair bundles has been lacking. Here we combine experiment and theory to propose an answer to the most basic question: What is the shape of a ponytail? A model for the shape of hair bundles is developed from the perspective of statistical physics, treating individual fibers as elastic filaments with random intrinsic curvatures. The combined effects of bending elasticity, gravity, and bundle compressibility are recast as a differential equation for the envelope of a bundle, in which the compressibility enters through an ``equation of state.'' From this, we identify the balance of forces in various regions of the ponytail, extract the equation of state from analysis of ponytail shapes, and relate the observed pressure to the measured random curvatures of individual hairs.
The Actions of Calcium on Hair Bundle Mechanics in Mammalian Cochlear Hair Cells
Beurg, Maryline; Nam, Jong-Hoon; Crawford, Andrew; Fettiplace, Robert
2008-01-01
Sound stimuli excite cochlear hair cells by vibration of each hair bundle, which opens mechanotransducer (MT) channels. We have measured hair-bundle mechanics in isolated rat cochleas by stimulation with flexible glass fibers and simultaneous recording of the MT current. Both inner and outer hair-cell bundles exhibited force-displacement relationships with a nonlinearity that reflects a time-dependent reduction in stiffness. The nonlinearity was abolished, and hair-bundle stiffness increased, by maneuvers that diminished calcium influx through the MT channels: lowering extracellular calcium, blocking the MT current with dihydrostreptomycin, or depolarizing to positive potentials. To simulate the effects of Ca2+, we constructed a finite-element model of the outer hair cell bundle that incorporates the gating-spring hypothesis for MT channel activation. Four calcium ions were assumed to bind to the MT channel, making it harder to open, and, in addition, Ca2+ was posited to cause either a channel release or a decrease in the gating-spring stiffness. Both mechanisms produced Ca2+ effects on adaptation and bundle mechanics comparable to those measured experimentally. We suggest that fast adaptation and force generation by the hair bundle may stem from the action of Ca2+ on the channel complex and do not necessarily require the direct involvement of a myosin motor. The significance of these results for cochlear transduction and amplification are discussed. PMID:18178649
Spontaneous Oscillation by Hair Bundles of the Bullfrog's Sacculus
Martin, Pascal; Bozovic, D.; Choe, Y.; Hudspeth, A. J.
2007-01-01
One prominent manifestation of mechanical activity in hair cells is spontaneous otoacoustic emission, the unprovoked emanation of sound by an internal ear. Because active hair-bundle motility probably constitutes the active process of non-mammalian hair cells, we investigated the ability of hair bundles in the bullfrog's sacculus to produce oscillations that might underlie spontaneous otoacoustic emissions. When maintained in the ear's normal ionic milieu, many bundles oscillated spontaneously through distances as great as 80 nm at frequencies of 5-50 Hz. Whole-cell recording disclosed that the positive phase of movement was associated with the opening of transduction channels. Gentamicin, which blocks transduction channels, reversibly arrested oscillation; drugs that affect the cAMP phosphorylation pathway and might influence myosin's activity altered the rate of oscillation. Increasing the Ca2+ concentration rendered oscillations faster and smaller until they were suppressed; lowering the Ca2+ concentration moderately with chelators had the opposite effect. When a bundle was offset with a stimulus fiber, oscillations were transiently suppressed but gradually resumed. Loading a bundle by partial displacement clamping, which simulated the presence of the accessory structures to which a bundle is ordinarily attached, increased the frequency and diminished the magnitude of oscillation. These observations accord with a model in which oscillations arise from the interplay of the hair bundle's negative stiffness with the activity of adaptation motors and with Ca2+-dependent relaxation of gating springs. PMID:12805294
Halnes, Isabel; Baines, Katherine J; Berthon, Bronwyn S; MacDonald-Wicks, Lesley K; Gibson, Peter G; Wood, Lisa G
2017-01-10
Short chain fatty acids (SCFAs) are produced following the fermentation of soluble fibre by gut bacteria. In animal models, both dietary fibre and SCFAs have demonstrated anti-inflammatory effects via the activation of free fatty acid receptors, such as G protein-coupled receptor 41 and 43 (GPR41 and GPR43). This pilot study examined the acute effect of a single dose of soluble fibre on airway inflammation-including changes in gene expression of free fatty acid receptors-in asthma. Adults with stable asthma consumed a soluble fibre meal ( n = 17) containing 3.5 g inulin and probiotics, or a control meal ( n = 12) of simple carbohydrates. Exhaled nitric oxide (eNO) was measured and induced sputum was collected at 0 and 4 h for differential cell counts, measurement of interleukin-8 (IL-8) protein concentration, and GPR41 and GPR43 gene expression. At 4 h after meal consumption, airway inflammation biomarkers, including sputum total cell count, neutrophils, macrophages, lymphocytes, sputum IL-8, and eNO significantly decreased compared to baseline in the soluble fibre group only. This corresponded with upregulated GPR41 and GPR43 sputum gene expression and improved lung function in the soluble fibre group alone. Soluble fibre has acute anti-inflammatory effects in asthmatic airways. Long-term effects of soluble fibre as an anti-inflammatory therapy in asthma warrants further investigation.
Fayet-Moore, Flavia; George, Alice; Cassettari, Tim; Yulin, Lev; Tuck, Kate; Pezzullo, Lynne
2018-01-02
An ageing population and growing prevalence of chronic diseases including cardiovascular disease (CVD) and type 2 diabetes (T2D) are putting increased pressure on healthcare expenditure in Australia. A cost of illness analysis was conducted to assess the potential savings in healthcare expenditure and productivity costs associated with lower prevalence of CVD and T2D resulting from increased intake of cereal fibre. Modelling was undertaken for three levels of increased dietary fibre intake using cereal fibre: a 10% increase in total dietary fibre; an increase to the Adequate Intake; and an increase to the Suggested Dietary Target. Total healthcare expenditure and productivity cost savings associated with reduced CVD and T2D were calculated by gender, socioeconomic status, baseline dietary fibre intake, and population uptake. Total combined annual healthcare expenditure and productivity cost savings of AUD$17.8 million-$1.6 billion for CVD and AUD$18.2 million-$1.7 billion for T2D were calculated. Total savings were generally larger among adults of lower socioeconomic status and those with lower dietary fibre intakes. Given the substantial healthcare expenditure and productivity cost savings that could be realised through increases in cereal fibre, there is cause for the development of interventions and policies that encourage an increase in cereal fibre intake in Australia.
Ingram, David; Engelhardt, Christoph; Farron, Alain; Terrier, Alexandre; Müllhaupt, Philippe
2016-01-01
Modelling the shoulder's musculature is challenging given its mechanical and geometric complexity. The use of the ideal fibre model to represent a muscle's line of action cannot always faithfully represent the mechanical effect of each muscle, leading to considerable differences between model-estimated and in vivo measured muscle activity. While the musculo-tendon force coordination problem has been extensively analysed in terms of the cost function, only few works have investigated the existence and sensitivity of solutions to fibre topology. The goal of this paper is to present an analysis of the solution set using the concepts of torque-feasible space (TFS) and wrench-feasible space (WFS) from cable-driven robotics. A shoulder model is presented and a simple musculo-tendon force coordination problem is defined. The ideal fibre model for representing muscles is reviewed and the TFS and WFS are defined, leading to the necessary and sufficient conditions for the existence of a solution. The shoulder model's TFS is analysed to explain the lack of anterior deltoid (DLTa) activity. Based on the analysis, a modification of the model's muscle fibre geometry is proposed. The performance with and without the modification is assessed by solving the musculo-tendon force coordination problem for quasi-static abduction in the scapular plane. After the proposed modification, the DLTa reaches 20% of activation.
Capillary droplet propulsion on a fibre.
Haefner, Sabrina; Bäumchen, Oliver; Jacobs, Karin
2015-09-21
A viscous liquid film coating a fibre becomes unstable and decays into droplets due to the Rayleigh-Plateau instability (RPI). Here, we report on the generation of uniform droplets on a hydrophobized fibre by taking advantage of this effect. In the late stages of liquid column breakup, a three-phase contact line can be formed at one side of the droplet by spontaneous rupture of the thinning film. The resulting capillary imbalance leads to droplet propulsion along the fibre. We study the dynamics and the dewetting speed of the droplet as a function of molecular weight as well as temperature and compare to a force balance model based on purely viscous dissipation.
A phenomenological intra-laminar plasticity model for FRP composite materials
NASA Astrophysics Data System (ADS)
Zhou, Yinhua; Hou, Chi; Wang, Wenzhi; Zhao, Meiying; Wan, Xiaopeng
2015-07-01
The nonlinearity of fibre-reinforced polymer (FRP) composites have significant effects on the analysis of composite structures. This article proposes a phenomenological intralaminar plasticity model to represent the nonlinearity of FRP composite materials. Based on the model presented by Ladeveze et al., the plastic potential and hardening functions are improved to give a more rational description of phenomenological nonlinearity behavior. A four-parameter hardening model is built to capture important features of the hardening curve and consequently gives the good matching of the experiments. Within the frame of plasticity theory, the detailed constitutive model, the numerical algorithm and the derivation of the tangent stiffness matrix are presented in this study to improve model robustness. This phenomenological model achieved excellent agreement between the experimental and simulation results in element scale respectively for glass fibre-reinforced polymer (GFRP) and carbon fibre-reinforced polymer (CFRP). Moreover, the model is capable of simulating the nonlinear phenomenon of laminates, and good agreement is achieved in nearly all cases.
Effectiveness of a Model Bundle Payment Initiative for Femur Fracture Patients.
Lott, Ariana; Belayneh, Rebekah; Haglin, Jack; Konda, Sanjit; Egol, Kenneth A
2018-05-28
Analyze the effectiveness of a BPCI (Bundle Payments for Care Improvement) initiative for patients who would be included in a future potential Surgical Hip and Femur Fracture Treatment (SHFFT) bundle. Retrospective cohort SETTING:: Single Academic Institution PATIENTS/PARTICIPANTS:: Patients discharged with operative fixation of a hip or femur fracture (DRG codes 480-482) between 1/2015-10/2016 were included. A BPCI initiative based upon an established program for BPCI Total Joint Arthroplasty (TJA) was initiated for patients with hip and femur fractures in January 2016. Patients were divided into non-bundle (care before initiative) and bundle (care with initiative) cohorts. Application of BPCI principles MAIN OUTCOME MEASURES:: Length of stay, location of discharge, readmissions RESULTS:: 116 patients participated in the "institutional bundle," and 126 received care prior to the initiative. There was a trend towards decreased mean length of stay, (7.3 ± 6.3 days vs. 6.8 ± 4.0 days, p=0.457) and decreased readmission within 90 days (22.2% vs. 18.1%, p=0.426). The number of patients discharged home doubled (30.2% vs. 14.3%, p=0.008). There was no difference in readmission rates in bundle vs. non-bundle patients based on discharged home status; however, bundle patients discharged to SNF trended towards less readmissions than non-bundle patients discharged to SNF (37.3% vs. 50.6%, p=0.402). Mean episode cost reduction due to initiative was estimated to be $6,450 using Medicare reimbursement data. This study demonstrates the potential success of a BPCI initiative at one institution in decreasing post-acute care facility utilization and cost of care when used for a hip and femur fracture population. Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.
NASA Technical Reports Server (NTRS)
Burleigh, Scott C.
2011-01-01
Contact Graph Routing (CGR) is a dynamic routing system that computes routes through a time-varying topology of scheduled communication contacts in a network based on the DTN (Delay-Tolerant Networking) architecture. It is designed to enable dynamic selection of data transmission routes in a space network based on DTN. This dynamic responsiveness in route computation should be significantly more effective and less expensive than static routing, increasing total data return while at the same time reducing mission operations cost and risk. The basic strategy of CGR is to take advantage of the fact that, since flight mission communication operations are planned in detail, the communication routes between any pair of bundle agents in a population of nodes that have all been informed of one another's plans can be inferred from those plans rather than discovered via dialogue (which is impractical over long one-way-light-time space links). Messages that convey this planning information are used to construct contact graphs (time-varying models of network connectivity) from which CGR automatically computes efficient routes for bundles. Automatic route selection increases the flexibility and resilience of the space network, simplifying cross-support and reducing mission management costs. Note that there are no routing tables in Contact Graph Routing. The best route for a bundle destined for a given node may routinely be different from the best route for a different bundle destined for the same node, depending on bundle priority, bundle expiration time, and changes in the current lengths of transmission queues for neighboring nodes; routes must be computed individually for each bundle, from the Bundle Protocol agent's current network connectivity model for the bundle s destination node (the contact graph). Clearly this places a premium on optimizing the implementation of the route computation algorithm. The scalability of CGR to very large networks remains a research topic. The information carried by CGR contact plan messages is useful not only for dynamic route computation, but also for the implementation of rate control, congestion forecasting, transmission episode initiation and termination, timeout interval computation, and retransmission timer suspension and resumption.
Higher groupoid bundles, higher spaces, and self-dual tensor field equations
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Sämann, Christian; Wolf, Martin
2016-08-01
We develop a description of higher gauge theory with higher groupoids as gauge structure from first principles. This approach captures ordinary gauge theories and gauged sigma models as well as their categorifications on a very general class of (higher) spaces comprising presentable differentiable stacks, as e.g. orbifolds. We start off with a self-contained review on simplicial sets as models of $(\\infty,1)$-categories. We then discuss principal bundles in terms of simplicial maps and their homotopies. We explain in detail a differentiation procedure, suggested by Severa, that maps higher groupoids to $L_\\infty$-algebroids. Generalising this procedure, we define connections for higher groupoid bundles. As an application, we obtain six-dimensional superconformal field theories via a Penrose-Ward transform of higher groupoid bundles over a twistor space. This construction reduces the search for non-Abelian self-dual tensor field equations in six dimensions to a search for the appropriate (higher) gauge structure. The treatment aims to be accessible to theoretical physicists.
Consensus Bundle on Maternal Mental Health: Perinatal Depression and Anxiety.
Kendig, Susan; Keats, John P; Hoffman, M Camille; Kay, Lisa B; Miller, Emily S; Moore Simas, Tiffany A; Frieder, Ariela; Hackley, Barbara; Indman, Pec; Raines, Christena; Semenuk, Kisha; Wisner, Katherine L; Lemieux, Lauren A
2017-03-01
Perinatal mood and anxiety disorders are among the most common mental health conditions encountered by women of reproductive age. When left untreated, perinatal mood and anxiety disorders can have profound adverse effects on women and their children, ranging from increased risk of poor adherence to medical care, exacerbation of medical conditions, loss of interpersonal and financial resources, smoking and substance use, suicide, and infanticide. Perinatal mood and anxiety disorders are associated with increased risks of maternal and infant mortality and morbidity and are recognized as a significant patient safety issue. In 2015, the Council on Patient Safety in Women's Health Care convened an interdisciplinary workgroup to develop an evidence-based patient safety bundle to address maternal mental health. The focus of this bundle is perinatal mood and anxiety disorders. The bundle is modeled after other bundles released by the Council on Patient Safety in Women's Health Care and provides broad direction for incorporating perinatal mood and anxiety disorder screening, intervention, referral, and follow-up into maternity care practice across health care settings. This commentary provides information to assist with bundle implementation.
NASA Astrophysics Data System (ADS)
Guenanou, A.; Houmat, A.
2018-05-01
The optimum stacking sequence design for the maximum fundamental frequency of symmetrically laminated composite circular plates with curvilinear fibres is investigated for the first time using a layer-wise optimization method. The design variables are two fibre orientation angles per layer. The fibre paths are constructed using the method of shifted paths. The first-order shear deformation plate theory and a curved square p-element are used to calculate the objective function. The blending function method is used to model accurately the geometry of the circular plate. The equations of motion are derived using Lagrange's method. The numerical results are validated by means of a convergence test and comparison with published values for symmetrically laminated composite circular plates with rectilinear fibres. The material parameters, boundary conditions, number of layers and thickness are shown to influence the optimum solutions to different extents. The results should serve as a benchmark for optimum stacking sequences of symmetrically laminated composite circular plates with curvilinear fibres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Li; He, YaLing; Tao, Wen -Quan
The electrode of a vanadium redox flow battery generally is a carbon fibre-based porous medium, in which important physicochemical processes occur. In this work, pore-scale simulations are performed to study complex multiphase flow and reactive transport in the electrode by using the lattice Boltzmann method (LBM). Four hundred fibrous electrodes with different fibre diameters and porosities are reconstructed. Both the permeability and diffusivity of the reconstructed electrodes are predicted and compared with empirical relationships in the literature. Reactive surface area of the electrodes is also evaluated and it is found that existing empirical relationship overestimates the reactive surface under lowermore » porosities. Further, a pore-scale electrochemical reaction model is developed to study the effects of fibre diameter and porosity on electrolyte flow, V II/V III transport, and electrochemical reaction at the electrolyte-fibre surface. Finally, evolution of bubble cluster generated by the side reaction is studied by adopting a LB multiphase flow model. Effects of porosity, fibre diameter, gas saturation and solid surface wettability on average bubble diameter and reduction of reactive surface area due to coverage of bubbles on solid surface are investigated in detail. It is found that gas coverage ratio is always lower than that adopted in the continuum model in the literature. Furthermore, the current pore-scale studies successfully reveal the complex multiphase flow and reactive transport processes in the electrode, and the simulation results can be further upscaled to improve the accuracy of the current continuum-scale models.« less
NASA Astrophysics Data System (ADS)
Riekel, C.; Craig, C. L.; Burghammer, M.; Müller, M.
2001-01-01
Scanning X-ray microdiffraction (SXD) permits the 'imaging' in-situ of crystalline phases, crystallinity and texture in whole biopolymer samples on the micrometre scale. SXD complements transmission electron microscopy (TEM) techniques, which reach sub-nanometre lateral resolution but require thin sections and a vacuum environment. This is demonstrated using a support thread from a web spun by the orb-weaving spider Eriophora fuliginea (C.L. Koch). Scanning electron microscopy (SEM) shows a central thread composed of two fibres to which thinner fibres are loosely attached. SXD of a piece of support thread approximately 60 µm long shows in addition the presence of nanometre-sized crystallites with the β-poly(L-alanine) structure in all fibres. The crystallinity of the thin fibres appears to be higher than that of the central thread, which probably reflects a higher polyalanine content of the fibroins. The molecular axis of the polymer chains in the central thread is orientated parallel to the macroscopic fibre axis, but in the thin fibres the molecular axis is tilted by about 71° to the macroscopic fibre axis. A helical model is tentatively proposed to describe this morphology. The central thread has a homogeneous distribution of crystallinity along the macroscopic fibre axis.
The Elastic Behaviour of Sintered Metallic Fibre Networks: A Finite Element Study by Beam Theory
Bosbach, Wolfram A.
2015-01-01
Background The finite element method has complimented research in the field of network mechanics in the past years in numerous studies about various materials. Numerical predictions and the planning efficiency of experimental procedures are two of the motivational aspects for these numerical studies. The widespread availability of high performance computing facilities has been the enabler for the simulation of sufficiently large systems. Objectives and Motivation In the present study, finite element models were built for sintered, metallic fibre networks and validated by previously published experimental stiffness measurements. The validated models were the basis for predictions about so far unknown properties. Materials and Methods The finite element models were built by transferring previously published skeletons of fibre networks into finite element models. Beam theory was applied as simplification method. Results and Conclusions The obtained material stiffness isn’t a constant but rather a function of variables such as sample size and boundary conditions. Beam theory offers an efficient finite element method for the simulated fibre networks. The experimental results can be approximated by the simulated systems. Two worthwhile aspects for future work will be the influence of size and shape and the mechanical interaction with matrix materials. PMID:26569603
Monchaux, G; Chameaud, J; Morlier, J P; Janson, X; Morin, M; Bignon, J
1989-01-01
Exposure to radon 222 and its daughters has been shown to induce lung cancer in rats. The cocarcinogenic effect of intrapleurally injected mineral fibres in rats which have previously inhaled radon has also been established. The aim of this work was to establish whether a similar process could be induced at a distance from the lungs by subcutaneous injection of chrysotile fibres. Three groups of animals were used: (1) 109 rats which inhaled radon only (dose: 1600 working-level months (WLM]; (2) 109 rats given a subcutaneous injection in the sacrococcygeal region of 20 mg of chrysotile fibres after inhalation of the same dose of radon; and (3) 105 rats injected with fibres only. No mesotheliomas occurred in any of the 3 groups. The incidence of lung cancer was 55% in group 2, 49% in group 1 and 1% in group 3. Statistical analysis using Pike's model showed that the carcinogenic insult was slightly higher in group 2 than in group 1. Electron microscopy analysis of fibre translocation from the injection site showed that less than 1% of injected fibres migrated to the regional lymph-nodes and only about 0.01% to the lungs. After injection, the mean length of the fibres recovered in lung parenchyma increased with time, suggesting that short fibres are cleared by pulmonary macrophages whereas long fibres are trapped in the alveolar walls. Although the high tumour incidence observed in group 1 might have masked the cocarcinogenic effect induced by the fibres, it is possible that this effect can occur only at short distances.(ABSTRACT TRUNCATED AT 250 WORDS)
Cutrì, Elena; Meoli, Alessio; Dubini, Gabriele; Migliavacca, Francesco; Hsia, Tain-Yen; Pennati, Giancarlo
2017-09-01
Hypoplastic left heart syndrome is a complex congenital heart disease characterised by the underdevelopment of the left ventricle normally treated with a three-stage surgical repair. In this study, a multiscale closed-loop cardio-circulatory model is created to reproduce the pre-operative condition of a patient suffering from such pathology and virtual surgery is performed. Firstly, cardio-circulatory parameters are estimated using a fully closed-loop cardio-circulatory lumped parameter model. Secondly, a 3D standalone FEA model is build up to obtain active and passive ventricular characteristics and unloaded reference state. Lastly, the 3D model of the single ventricle is coupled to the lumped parameter model of the circulation obtaining a multiscale closed-loop pre-operative model. Lacking any information on the fibre orientation, two cases were simulated: (i) fibre distributed as in the physiological right ventricle and (ii) fibre as in the physiological left ventricle. Once the pre-operative condition is satisfactorily simulated for the two cases, virtual surgery is performed. The post-operative results in the two cases highlighted similar hemodynamic behaviour but different local mechanics. This finding suggests that the knowledge of the patient-specific fibre arrangement is important to correctly estimate the single ventricle's working condition and consequently can be valuable to support clinical decision. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Finite Element Analysis of Drilling of Carbon Fibre Reinforced Composites
NASA Astrophysics Data System (ADS)
Isbilir, Ozden; Ghassemieh, Elaheh
2012-06-01
Despite the increased applications of the composite materials in aerospace due to their exceptional physical and mechanical properties, the machining of composites remains a challenge. Fibre reinforced laminated composites are prone to different damages during machining process such as delamination, fibre pull-out, microcracks, thermal damages. Optimization of the drilling process parameters can reduces the probability of these damages. In the current research, a 3D finite element (FE) model is developed of the process of drilling in the carbon fibre reinforced composite (CFC). The FE model is used to investigate the effects of cutting speed and feed rate on thrust force, torque and delamination in the drilling of carbon fiber reinforced laminated composite. A mesoscale FE model taking into account of the different oriented plies and interfaces has been proposed to predict different damage modes in the plies and delamination. For validation purposes, experimental drilling tests have been performed and compared to the results of the finite element analysis. Using Matlab a digital image analysis code has been developed to assess the delamination factor produced in CFC as a result of drilling.
The impact of Lean bundles on hospital performance: does size matter?
Al-Hyari, Khalil; Abu Hammour, Sewar; Abu Zaid, Mohammad Khair Saleem; Haffar, Mohamed
2016-10-10
Purpose The purpose of this paper is to study the effect of the implementation of Lean bundles on hospital performance in private hospitals in Jordan and evaluate how much the size of organization can affect the relationship between Lean bundles implementation and hospital performance. Design/methodology/approach The research is considered as quantitative method (descriptive and hypothesis testing). Three statistical techniques were adopted to analyse the data. Structural equation modeling techniques and multi-group analysis were used to examine the research's hypothesis, and to perform the required statistical analysis of the data from the survey. Reliability analysis and confirmatory factor analysis were used to test the construct validity, reliability and measurement loadings that were performed. Findings Lean bundles have been identified as an effective approach that can dramatically improve the organizational performance of private hospitals in Jordan. Main Lean bundles - just in time, human resource management, and total quality management are applicable to large, small and medium hospitals without significant differences in advantages that depend on size. Originality/value According to the researchers' best knowledge, this is the first research that studies the impact of Lean bundles implementation in healthcare sector in Jordan. This research also makes a significant contribution for decision makers in healthcare to increase their awareness of Lean bundles.
Bundling in Place: Translating the NGSS into Place-Based Earth-System Science Curricula
NASA Astrophysics Data System (ADS)
Semken, S. C.
2016-12-01
Bundling is the process of grouping Performance Expectations (PEs) from the Next Generation Science Standards (NGSS) into coherent units based on a defined topic, idea, question, or phenomenon. Bundling sorts the PEs for a given grade or grade band into a teachable narrative: a key stage in building curriculum, instruction, and assessment from the NGSS. To encourage and facilitate this, bundling guidelines have recently been released on the NGSS website (nextgenscience.org/glossary/bundlesbundling), and example bundles for different grade bands and disciplines are also being developed and posted there. According to these guidelines the iterative process of bundling begins with organization of PEs according to natural connections among them, and alignment of the three NGSS dimensions (Disciplinary Core Ideas, Cross-Cutting Concepts, and Science and Engineering Practices) that underpin each PE. Bundles are grouped by coherence and increasing complexity into courses, and courses into course sets that should encompass all PEs for a grade band. Bundling offers a natural way to translate the NGSS into highly contextualized curricula such as place-based (PB) teaching, which is situated in specific places or regions and focused on natural and cultural features, processes, phenomena, history, and challenges to sustainability therein. Attributes of place and our individual and collective connections to place (sense of place) directly inform PB curriculum, pedagogy, and assessment. PEs can be bundled by their relevance to these themes. Following the NGSS guidelines, I model the process for PB instruction by bundling PEs around the themes of Paleozoic geology and carbonate deposition and their relationships to mining and calcining of limestone in Anthropocene cement production for developing communities. The bundles integrate aspects of Earth history, the carbon cycle, mineral resources, climate change, and sustainability using specific local examples and narratives. They are designed for a hypothetical place-based high-school Earth-science course situated in the Greater American Southwest, but could be readily modified for another region with similar geology and resource use.
Global embedding of fibre inflation models
NASA Astrophysics Data System (ADS)
Cicoli, Michele; Muia, Francesco; Shukla, Pramod
2016-11-01
We present concrete embeddings of fibre inflation models in globally consistent type IIB Calabi-Yau orientifolds with closed string moduli stabilisation. After performing a systematic search through the existing list of toric Calabi-Yau manifolds, we find several examples that reproduce the minimal setup to embed fibre inflation models. This involves Calabi-Yau manifolds with h 1,1 = 3 which are K3 fibrations over a ℙ1 base with an additional shrinkable rigid divisor. We then provide different consistent choices of the underlying brane set-up which generate a non-perturbative superpotential suitable for moduli stabilisation and string loop corrections with the correct form to drive inflation. For each Calabi-Yau orientifold setting, we also compute the effect of higher derivative contributions and study their influence on the inflationary dynamics.
Hao, Juan; Tu, Lili; Hu, Haiyan; Tan, Jiafu; Deng, Fenglin; Tang, Wenxin; Nie, Yichun; Zhang, Xianlong
2012-10-01
As the most important natural raw material for textile industry, cotton fibres are an excellent model for studying single-cell development. Although expression profiling and functional genomics have provided some data, the mechanism of fibre development is still not well known. A class I TCP transcription factor (designated GbTCP), encoding 344 amino acids, was isolated from the normalized cDNA library of sea-island cotton fibre (from -2 to 25 days post anthesis). GbTCP was preferentially expressed in the elongating cotton fibre from 5 to 15 days post anthesis. Some expression was also observed in stems, apical buds, and petals. RNAi silencing of GbTCP produced shorter fibre, a reduced lint percentage, and a lower fibre quality than the wild-type plants. Overexpression of GbTCP enhanced root hair initiation and elongation in Arabidopsis and regulated branching. Solexa sequencing and Affymetrix GeneChip analysis indicated that GbTCP positively regulates the level of jasmonic acid (JA) and, as a result, activates downstream genes (reactive oxygen species, calcium signalling, ethylene biosynthesis and response, and several NAC and WRKY transcription factors) necessary for elongation of fibres and root hairs. JA content analysis in cotton also confirmed that GbTCP has a profound effect on JA biosynthesis. In vitro ovule culture showed that an appropriate concentration of JA promoted fibre elongation. The results suggest that GbTCP is an important transcription factor for fibre and root hair development by regulating JA biosynthesis and response and other pathways, including reactive oxygen species, calcium channel and ethylene signalling.
Zhang, Xianlong
2012-01-01
As the most important natural raw material for textile industry, cotton fibres are an excellent model for studying single-cell development. Although expression profiling and functional genomics have provided some data, the mechanism of fibre development is still not well known. A class I TCP transcription factor (designated GbTCP), encoding 344 amino acids, was isolated from the normalized cDNA library of sea-island cotton fibre (from –2 to 25 days post anthesis). GbTCP was preferentially expressed in the elongating cotton fibre from 5 to 15 days post anthesis. Some expression was also observed in stems, apical buds, and petals. RNAi silencing of GbTCP produced shorter fibre, a reduced lint percentage, and a lower fibre quality than the wild-type plants. Overexpression of GbTCP enhanced root hair initiation and elongation in Arabidopsis and regulated branching. Solexa sequencing and Affymetrix GeneChip analysis indicated that GbTCP positively regulates the level of jasmonic acid (JA) and, as a result, activates downstream genes (reactive oxygen species, calcium signalling, ethylene biosynthesis and response, and several NAC and WRKY transcription factors) necessary for elongation of fibres and root hairs. JA content analysis in cotton also confirmed that GbTCP has a profound effect on JA biosynthesis. In vitro ovule culture showed that an appropriate concentration of JA promoted fibre elongation. The results suggest that GbTCP is an important transcription factor for fibre and root hair development by regulating JA biosynthesis and response and other pathways, including reactive oxygen species, calcium channel and ethylene signalling. PMID:23105133
ECM remodeling and its plasticity
NASA Astrophysics Data System (ADS)
Feng, Jingchen; Jones, Christopher A. R.; Cibula, Matthew; Mao, Xiaoming; Sander, Leonard M.; Levine, Herbert; Sun, Bo
The mechanical interactions between cells and Extracellular Matrix (ECM) are of great importance in many cellular processes. These interactions are reciprocal, i.e. contracting cells pull and reorganize the surrounding matrix, while the remodeled matrix feeds back to regulate cell activities. Recent experiments show in collagen gels with densely distributed cells, aligned fiber bundles are formed in the direction between neighboring cells. Fibers flow into the center region between contracting cell pairs in this process, which causes the concentration of fibers in the fiber bundles to become significantly enhanced. Using an extended lattice-based model, we show that viscoelasticity plays an essential role in ECM remodeling and contributes to the enhanced concentration in fiber bundles. We further characterize ECM plasticity within our model and verify our results with rheometer experiments.
A simplified model predicting the weight of the load carrying beam in a wind turbine blade
NASA Astrophysics Data System (ADS)
Mikkelsen, Lars P.
2016-07-01
Based on a simplified beam model, the loads, stresses and deflections experienced by a wind turbine blade of a given length is estimated. Due to the simplicity of the model used, the model is well suited for work investigating scaling effects of wind turbine blades. Presently, the model is used to predict the weight of the load carrying beam when using glass fibre reinforced polymers, carbon fibre reinforced polymers or an aluminium alloy as the construction material. Thereby, it is found that the weight of a glass fibre wind turbine blade is increased from 0.5 to 33 tons when the blade length grows from 20 to 90 m. In addition, it can be seen that for a blade using glass fibre reinforced polymers, the design is controlled by the deflection and thereby the material stiffness in order to avoid the blade to hit the tower. On the other hand if using aluminium, the design will be controlled by the fatigue resistance in order to making the material survive the 100 to 500 million load cycles experience of the wind turbine blade throughout the lifetime. The aluminium blade is also found to be considerably heavier compared with the composite blades.
Calderón, Juan C; Bolaños, Pura; Caputo, Carlo
2011-01-01
Abstract We used enzymatically dissociated flexor digitorum brevis (FDB) and soleus fibres loaded with the fast Ca2+ dye Magfluo-4 AM, and adhered to Laminin, to test whether repetitive stimulation induces progressive changes in the kinetics of Ca2+ release and reuptake in a fibre-type-dependent fashion. We applied a protocol of tetani of 350 ms, 100 Hz, every 4 s to reach a mean amplitude reduction of 25% of the first peak. Morphology type I (MT-I) and morphology type II (MT-II) fibres underwent a total of 96 and 52.8 tetani (P < 0.01 between groups), respectively. The MT-II fibres (n = 18) showed significant reductions of the amplitude (19%), an increase in rise time (8.5%) and a further reduction of the amplitude/rise time ratio (25.5%) of the first peak of the tetanic transient after 40 tetani, while MT-I fibres (n = 5) did not show any of these changes. However, both fibre types showed significant reductions in the maximum rate of rise of the first peak after 40 tetani. Two subpopulations among the MT-II fibres could be distinguished according to Ca2+ reuptake changes. Fast-fatigable MT-II fibres (fMT-II) showed an increase of 32.2% in the half-width value of the first peak, while for fatigue-resistant MT-II fibres (rMT-II), the increase amounted to 6.9%, both after 40 tetani. Significant and non-significant increases of 36.4% and 11.9% in the first time constant of decay (t1) values were seen after 40 tetani in fMT-II and rMT-II fibres, respectively. MT-I fibres did not show kinetic changes in any of the Ca2+ reuptake variables. All changes were reversed after an average recovery of 7.5 and 15.4 min for MT-I and MT-II fibres, respectively. Further experiments ruled out the possibility that the differences in the kinetic changes of the first peak of the Ca2+ transients between fibres MT-I and MT-II could be related to the inactivation of Ca2+ release mechanism. In conclusion, we established a model of enzymatically dissociated fibres, loaded with Magfluo-4 and adhered to Laminin, to study muscle fatigue and demonstrated fibre-type-dependent, fatigue-induced kinetic changes in both Ca2+ release and reuptake. PMID:21878526
Creep rupture of fiber bundles: A molecular dynamics investigation
NASA Astrophysics Data System (ADS)
Linga, G.; Ballone, P.; Hansen, Alex
2015-08-01
The creep deformation and eventual breaking of polymeric samples under a constant tensile load F is investigated by molecular dynamics based on a particle representation of the fiber bundle model. The results of the virtual testing of fibrous samples consisting of 40 000 particles arranged on Nc=400 chains reproduce characteristic stages seen in the experimental investigations of creep in polymeric materials. A logarithmic plot of the bundle lifetime τ versus load F displays a marked curvature, ruling out a simple power-law dependence of τ on F . A power law τ ˜F-4 , however, is recovered at high load. We discuss the role of reversible bond breaking and formation on the eventual fate of the sample and simulate a different type of creep testing, imposing a constant stress rate on the sample up to its breaking point. Our simulations, relying on a coarse-grained representation of the polymer structure, introduce new features into the standard fiber bundle model, such as real-time dynamics, inertia, and entropy, and open the way to more detailed models, aiming at material science aspects of polymeric fibers, investigated within a sound statistical mechanics framework.
NASA Astrophysics Data System (ADS)
Li, Xuan; Liu, Zhiping; Jiang, Xiaoli; Lodewijks, Gabrol
2018-01-01
Eddy current pulsed thermography (ECPT) is well established for non-destructive testing of electrical conductive materials, featuring the advantages of contactless, intuitive detecting and efficient heating. The concept of divergence characterization of the damage rate of carbon fibre-reinforced plastic (CFRP)-steel structures can be extended to ECPT thermal pattern characterization. It was found in this study that the use of ECPT technology on CFRP-steel structures generated a sizeable amount of valuable information for comprehensive material diagnostics. The relationship between divergence and transient thermal patterns can be identified and analysed by deploying mathematical models to analyse the information about fibre texture-like orientations, gaps and undulations in these multi-layered materials. The developed algorithm enabled the removal of information about fibre texture and the extraction of damage features. The model of the CFRP-glue-steel structures with damage was established using COMSOL Multiphysics® software, and quantitative non-destructive damage evaluation from the ECPT image areas was derived. The results of this proposed method illustrate that damaged areas are highly affected by available information about fibre texture. This proposed work can be applied for detection of impact induced damage and quantitative evaluation of CFRP structures.
Patel, Deepak K.
2016-01-01
This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391–1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre–matrix concentric cylinder model is extended to fibre and (N−1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1–48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 April 2012. AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware. Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 April 2012. AIAA 2012-1572). This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242294
75 FR 51701 - Airworthiness Directives; Learjet Inc. Model 45 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-23
... configuration of the engine and alternator wire harnesses, and the starter/generator wire bundles. For certain... necessary. For certain airplanes, inspecting for clearance between the wire harnesses and the hydraulic and... wire harnesses and the starter/generator wire bundles. (2) Do a detailed inspection for chafing damage...
Fayet-Moore, Flavia; George, Alice; Cassettari, Tim; Yulin, Lev; Tuck, Kate; Pezzullo, Lynne
2018-01-01
An ageing population and growing prevalence of chronic diseases including cardiovascular disease (CVD) and type 2 diabetes (T2D) are putting increased pressure on healthcare expenditure in Australia. A cost of illness analysis was conducted to assess the potential savings in healthcare expenditure and productivity costs associated with lower prevalence of CVD and T2D resulting from increased intake of cereal fibre. Modelling was undertaken for three levels of increased dietary fibre intake using cereal fibre: a 10% increase in total dietary fibre; an increase to the Adequate Intake; and an increase to the Suggested Dietary Target. Total healthcare expenditure and productivity cost savings associated with reduced CVD and T2D were calculated by gender, socioeconomic status, baseline dietary fibre intake, and population uptake. Total combined annual healthcare expenditure and productivity cost savings of AUD$17.8 million–$1.6 billion for CVD and AUD$18.2 million–$1.7 billion for T2D were calculated. Total savings were generally larger among adults of lower socioeconomic status and those with lower dietary fibre intakes. Given the substantial healthcare expenditure and productivity cost savings that could be realised through increases in cereal fibre, there is cause for the development of interventions and policies that encourage an increase in cereal fibre intake in Australia. PMID:29301298
Fatigue in isometric contraction in a single muscle fibre: a compartmental calcium ion flow model.
Kothiyal, K P; Ibramsha, M
1986-01-01
Fatigue in muscle is a complex biological phenomenon which has so far eluded a definite explanation. Many biochemical and physiological models have been suggested in the literature to account for the decrement in the ability of muscle to sustain a given level of force for a long time. Some of these models have been critically analysed in this paper and are shown to be not able to explain all the experimental observations. A new compartmental model based on the intracellular calcium ion movement in muscle is proposed to study the mechanical responses of a muscle fibre. Computer simulation is performed to obtain model responses in isometric contraction to an impulse and a train of stimuli of long duration. The simulated curves have been compared with experimentally observed mechanical responses of the semitendinosus muscle fibre of Rana pipiens. The comparison of computed and observed responses indicates that the proposed calcium ion model indeed accounts very well for the muscle fatigue.
Modelling the side impact of carbon fibre tubes
NASA Astrophysics Data System (ADS)
Sudharsan, Ms R.; Rolfe, B. F., Dr; Hodgson, P. D., Prof
2010-06-01
Metallic tubes have been extensively studied for their crashworthiness as they closely resemble automotive crash rails. Recently, the demand to improve fuel economy and reduce vehicle emissions has led automobile manufacturers to explore the crash properties of light weight materials such as fibre reinforced polymer composites, metallic foams and sandwich structures in order to use them as crash barriers. This paper discusses the response of carbon fibre reinforced polymer (CFRP) tubes and their failure mechanisms during side impact. The energy absorption of CFRP tubes is compared to similar Aluminium tubes. The response of the CFRP tubes during impact was modelled using Abaqus finite element software with a composite fabric material model. The material inputs were given based on standard tension and compression test results and the in-plane damage was defined based on cyclic shear tests. The failure modes and energy absorption observed during the tests were well represented by the finite element model.
Janghra, Narinder; Morgan, Jennifer E; Sewry, Caroline A; Wilson, Francis X; Davies, Kay E; Muntoni, Francesco; Tinsley, Jonathon
2016-01-01
Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ -sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these tools to quantify sarcolemmal utrophin and muscle regeneration in muscle biopsies will be invaluable for assessing utrophin modulator activity in future clinical trials.
Rue, John-Paul H; Ghodadra, Neil; Bach, Bernard R
2008-01-01
There is controversy regarding the necessity of reconstructing both the posterolateral and anteromedial bundles of the anterior cruciate ligament. A laterally oriented transtibial drilled femoral tunnel replaces portions of the femoral footprints of the anteromedial and posterolateral bundles of the anterior cruciate ligament. Descriptive laboratory study. Footprints of the anteromedial and posterolateral bundles of the anterior cruciate ligament were preserved on 7 matched pairs (5 female, 2 male) of fresh-frozen human cadaveric femurs (14 femurs total). Each femur was anatomically oriented and secured in a custom size-appropriate, side-matched replica tibia model to simulate transtibial retrograde drilling of a 10-mm femoral tunnel in each specimen. The relationship of the tunnel relative to footprints of both bundles of the anterior cruciate ligament was recorded using a Microscribe MX digitizer. The angle of the femoral tunnel relative to the vertical 12-o'clock position was recorded for all 14 specimens; only 10 specimens were used for footprint measurements. On average, the 10-mm femoral tunnel overlapped 50% of the anteromedial bundle (range, 2%-83%) and 51% of the posterolateral bundle (range, 16%-97%). The footprint of the anteromedial bundle occupied 32% (range, 3%-49%) of the area of the tunnel; the footprint of the posterolateral bundle contributed 26% (range, 7%-41%). The remainder of the area of the 10-mm tunnel did not overlap with the anterior cruciate ligament footprint. The mean absolute angle of the femoral tunnel as measured directly on the specimen was 48 degrees (range, 42 degrees-53 degrees) from vertical, corresponding to approximately a 10:30 clock face position on a right knee. Anterior cruciate ligament reconstruction using a laterally oriented transtibial drilled femoral tunnel incorporates portions of the anteromedial and posterolateral bundle origins of the native anterior cruciate ligament. A laterally oriented transtibial drilled femoral tunnel placed at the 10:30 position (1:30 for left knees) reconstructs portions of the anteromedial and posterolateral bundles of the anterior cruciate ligament.
Pulsed optical fibre lasers: Self-pulsation, Q-switching and tissue interactions
NASA Astrophysics Data System (ADS)
El-Sherif, Ashraf Fathy
The experimental and theoretical aspects of self-pulsing and dynamics effects of a CW Tm3+-doped silica fibre laser operating near 2 mum are investigated and examined for the first time. Various self-pulsing regimes are observed for a range of pumping rates when the fibre is end-pumped with a high power Nd:YAG laser operating at 1.319 mum in a linear bidirectional cavity. A theoretical model based on pair induced quenching (PIQ) is considered. The quenching effect acts as a saturable absorber or an additional dynamical loss mechanism, this additional absorber then may make the laser system unstable depending on whether the obtained steady-state solution is stable or not. A comparison between measured self-pulsation frequency and calculated relaxation oscillation frequency as a function of pumping rate is presented and discussed. High performance operation of a mechanical shutter Q-switched Tm3+-doped silica fibre laser operating near 2 mum is observed and presented. A single Q-switched pulse with peak power of 18.5 W and pulse duration at full width half maximum (FWHM) of 300 ns at higher mechanical chopper frequencies of nearly 20 kHz is achieved. The pulse-to-pulse stability was measured and improved to be more less than 5 %. The development, optimisation of the performance and analysis of an acousto-optic modulator (AOM) Q-switched Tm3+-doped silica fibre laser operating near 2 mum are presented. The shortest pulse duration obtained was 150 ns, giving a highest peak power of 4.1 kW, and is the highest yet reported from any type of active Q-switched fibre laser operating in low order mode. The maximum peak power was obtained for an optimum cavity length of 1.15 meters made up of fibre length, Q-switch crystal and passive space. The pulse train with high pulse-to-pulse stability of 1 % occurred at a range of high repetition rates from 10 to 30 kHz. High energy, high brightness of an electro-optic modulator (EOM) Q-switched Tm3+-doped silica fibre laser operating near 2 mum is presented. Appropriate design precautions have been undertaken to ensure that prelasing does not occur. In this system, the main Q-switched pulse may be followed by one pulse of lower amplitude "postlasing" when an optimised quarter wave voltage of 750 V is applied. It was found that the laser produced 320 ns pulses with 2.5 mJ pulse energy and 3.3 kW peak power at low repetition rates of 50-70 Hz. This is the first time that such studies of electro-optic modulator (EOM) Q-switched Tm3+ fibre lasers have been reported. The maximum peak power was obtained for an optimum cavity length of 2.15 meters, made up of fibre length, broadband beamsplitter polarizer, Q-switch crystal and passive space. Computer simulation of Tm3+doped silica and Er2-doped fluorozirconate fibre lasers using general laser analysis and design (GLAD) software has been successfully investigated for the first time. Input files, which are very similar to language are created to model three designs of fibre lasers, two for Tm3+-doped silica fibre lasers, core pumped at 1.57 mum and cladding pumped at 790 nm, and one for a 2.7 mum Er3+-doped fluorozirconate fibre laser cladding pumped at 975 nm. Results are presented from a relatively comprehensive computer model, which simulates CW operation of the fibre lasers. The simulation suggests that to enhance the conversion energy we have to optimise between the absorption coefficient of the fibre and the diffraction algorithms. Comparison of soft and hard tissue ablation with high peak power Q-switched and CW Tm3+-silica fibre lasers are presented. The ablation of chicken breast and lamb liver tissues as a soft tissue and cartilage as a hard tissue have been investigated using a free running CW-Tm3+-doped fibre laser (wavelength 1.99 mum, with self-pulsation duration ranging over 1 to few tens of microseconds) and for Q-switched operation of the same laser (pulse duration ranging from 150 ns to 900 ns and pulse repetition rates from 100 Hz to 17 kHz). Residual damage and affected zones using the CW laser were nearly 6 times greater than using the Q-switched fibre laser for about 50 s of exposure time, and increased with pulse repetition rate. The energy required to ablate tissues with the CW-fibre laser ranged from 153 to 334 kJ/cm3 and was significantly smaller from 0.2 to 0.6 kJ/cm3 for the Q-switched fibre laser. This study is the first direct comparison of tissue interaction of CW and Q- switched Tm3+-doped silica fibre lasers on crater depth, heat of ablation and collateral damage. The Q-switched Tm3+-doped silica fibre laser effectively ablates tissue with little secondary damage.
The role of dietary fibre in inflammatory bowel disease.
Pituch-Zdanowska, Aleksandra; Banaszkiewicz, Aleksandra; Albrecht, Piotr
2015-01-01
The aetiology of inflammatory bowel diseases (IBD), which are primarily Crohn's disease and ulcerative colitis, still remains unclear, while the incidence of IBD is constantly increasing, especially in the industrialised countries. Among genetic, environmental, and immunological factors, changes in the composition of the intestinal microflora and diet are indicated as very important in initiating and sustaining inflammation in patients with IBD. Above all nutrients dietary fibre is an especially important component of diet in the context of IBD. A potentially protective effect of high-fibre diet on intestinal disorders was described as early as in 1973. Several trials performed in animal models of IBD and human studies have reported that supplementation of some types of dietary fibre can prolong remission and reduce lesions of the intestinal mucosa during the course of the disease. This paper presents the current state of knowledge on the effects of dietary fibre in IBD.
NASA Astrophysics Data System (ADS)
Sokkar, T. Z. N.; El-Farahaty, K. A.; El-Bakary, M. A.; Raslan, M. I.; Omar, E. Z.; Hamza, A. A.
2018-03-01
The optical setup of the transport intensity equation (TIE) technique is developed to be valid for measuring the optical properties of the highly-oriented anisotropic fibres. This development is based on the microstructure models of the highly-oriented anisotropic fibres and the principle of anisotropy. We provide the setup of TIE technique with polarizer which is controlled via stepper motor. This developed technique is used to investigate the refractive indices in the parallel and perpendicular polarization directions of light for the highly-oriented poly (ethylene terephthalate) (PET) fibres and hence its birefringence. The obtained results through the developed TIE technique for PET fibre are compared with that determined experimentally using the Mach-Zehnder interferometer under the same conditions. The comparison shows a good agreement between the obtained results from the developed technique and that obtained from the Mach-Zehnder interferometer technique.
Graphene chiral liquid crystals and macroscopic assembled fibres
Xu, Zhen; Gao, Chao
2011-01-01
Chirality and liquid crystals are both widely expressed in nature and biology. Helical assembly of mesophasic molecules and colloids may produce intriguing chiral liquid crystals. To date, chiral liquid crystals of 2D colloids have not been explored. As a typical 2D colloid, graphene is now receiving unprecedented attention. However, making macroscopic graphene fibres is hindered by the poor dispersibility of graphene and by the lack of an assembly method. Here we report that soluble, chemically oxidized graphene or graphene oxide sheets can form chiral liquid crystals in a twist-grain-boundary phase-like model with simultaneous lamellar ordering and long-range helical frustrations. Aqueous graphene oxide liquid crystals were continuously spun into metres of macroscopic graphene oxide fibres; subsequent chemical reduction gave the first macroscopic neat graphene fibres with high conductivity and good mechanical performance. The flexible, strong graphene fibres were knitted into designed patterns and into directionally conductive textiles. PMID:22146390
Distributed optical fibre sensing for early detection of shallow landslides triggering.
Schenato, Luca; Palmieri, Luca; Camporese, Matteo; Bersan, Silvia; Cola, Simonetta; Pasuto, Alessandro; Galtarossa, Andrea; Salandin, Paolo; Simonini, Paolo
2017-10-31
A distributed optical fibre sensing system is used to measure landslide-induced strains on an optical fibre buried in a large scale physical model of a slope. The fibre sensing cable is deployed at the predefined failure surface and interrogated by means of optical frequency domain reflectometry. The strain evolution is measured with centimetre spatial resolution until the occurrence of the slope failure. Standard legacy sensors measuring soil moisture and pore water pressure are installed at different depths and positions along the slope for comparison and validation. The evolution of the strain field is related to landslide dynamics with unprecedented resolution and insight. In fact, the results of the experiment clearly identify several phases within the evolution of the landslide and show that optical fibres can detect precursory signs of failure well before the collapse, paving the way for the development of more effective early warning systems.
Roy, Aparna; Chakraborty, Sumit; Kundu, Sarada Prasad; Majumder, Subhasish Basu; Adhikari, Basudam
2013-02-15
The present work is an endeavor to prepare lignocellulosic biomass based adsorbent, suitable for removal of organic and inorganic pollutants from industrial effluents. Lignocellulosic Corchorus olitorius fibre (jute fibre) surface was grafted with naturally available polyphenol, tannin, preceded by the epoxy-activation of fibre surface with epichlorohydrin under mild condition in an aqueous suspension. The reaction parameters for the modification, viz., concentration of epichlorohydrin and tannin, time, and temperature were optimized. The successful occurrence of surface modification of jute fibre (JF) was characterized and estimated from weight gain percent, elemental analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, scanning electron and atomic force microscopy, and thermogravimetric analysis. An extensive analysis of deconvoluted FTIR spectra using the Voigt model was utilized to ensure the surface grafting. The microbiological susceptibility study revealed high persistency of JF towards biodegradation after efficient grafting with tannin. Copyright © 2012 Elsevier Ltd. All rights reserved.
Teklemariam, A.; Hodson-Tole, E. F.; Reeves, N. D.; Costen, N. P.; Cooper, G.
2016-01-01
Introduction Surface electromyography (sEMG) is the measurement of the electrical activity of the skeletal muscle tissue detected at the skin’s surface. Typically, a bipolar electrode configuration is used. Most muscles have pennate and/or curved fibres, meaning it is not always feasible to align the bipolar electrodes along the fibres direction. Hence, there is a need to explore how different electrode designs can affect sEMG measurements. Method A three layer finite element (skin, fat, muscle) muscle model was used to explore different electrode designs. The implemented model used as source signal an experimentally recorded intramuscular EMG taken from the biceps brachii muscle of one healthy male. A wavelet based intensity analysis of the simulated sEMG signal was performed to analyze the power of the signal in the time and frequency domain. Results The model showed muscle tissue causing a bandwidth reduction (to 20-92- Hz). The inter-electrode distance (IED) and the electrode orientation relative to the fibres affected the total power but not the frequency filtering response. The effect of significant misalignment between the electrodes and the fibres (60°- 90°) could be reduced by increasing the IED (25–30 mm), which attenuates signal cancellation. When modelling pennated fibres, the muscle tissue started to act as a low pass filter. The effect of different IED seems to be enhanced in the pennated model, while the filtering response is changed considerably only when the electrodes are close to the signal termination within the model. For pennation angle greater than 20°, more than 50% of the source signal was attenuated, which can be compensated by increasing the IED to 25 mm. Conclusion Differences in tissue filtering properties, shown in our model, indicates that different electrode designs should be considered for muscle with different geometric properties (i.e. pennated muscles). PMID:26886908
Teklemariam, A; Hodson-Tole, E F; Reeves, N D; Costen, N P; Cooper, G
2016-01-01
Surface electromyography (sEMG) is the measurement of the electrical activity of the skeletal muscle tissue detected at the skin's surface. Typically, a bipolar electrode configuration is used. Most muscles have pennate and/or curved fibres, meaning it is not always feasible to align the bipolar electrodes along the fibres direction. Hence, there is a need to explore how different electrode designs can affect sEMG measurements. A three layer finite element (skin, fat, muscle) muscle model was used to explore different electrode designs. The implemented model used as source signal an experimentally recorded intramuscular EMG taken from the biceps brachii muscle of one healthy male. A wavelet based intensity analysis of the simulated sEMG signal was performed to analyze the power of the signal in the time and frequency domain. The model showed muscle tissue causing a bandwidth reduction (to 20-92- Hz). The inter-electrode distance (IED) and the electrode orientation relative to the fibres affected the total power but not the frequency filtering response. The effect of significant misalignment between the electrodes and the fibres (60°-90°) could be reduced by increasing the IED (25-30 mm), which attenuates signal cancellation. When modelling pennated fibres, the muscle tissue started to act as a low pass filter. The effect of different IED seems to be enhanced in the pennated model, while the filtering response is changed considerably only when the electrodes are close to the signal termination within the model. For pennation angle greater than 20°, more than 50% of the source signal was attenuated, which can be compensated by increasing the IED to 25 mm. Differences in tissue filtering properties, shown in our model, indicates that different electrode designs should be considered for muscle with different geometric properties (i.e. pennated muscles).
Slotkin, Jonathan R; Ross, Olivia A; Newman, Eric D; Comrey, Janet L; Watson, Victoria; Lee, Rachel V; Brosious, Megan M; Gerrity, Gloria; Davis, Scott M; Paul, Jacquelyn; Miller, E Lynn; Feinberg, David T; Toms, Steven A
2017-04-01
One significant driver of the disjointed healthcare often observed in the United States is the traditional fee-for-service payment model which financially incentivizes the volume of care delivered over the quality and coordination of care. This problem is compounded by the wide, often unwarranted variation in healthcare charges that purchasers of health services encounter for substantially similar episodes of care. The last 10 years have seen many stakeholder organizations begin to experiment with novel financial payment models that strive to obviate many of the challenges inherent in customary quantity-based cost paradigms. The Patient Protection and Affordable Care Act has allowed many care delivery systems to partner with Medicare in episode-based payment programs such as the Bundled Payments for Care Improvement (BPCI) initiative, and in patient-based models such as the Medicare Shared Savings Program. Several employer purchasers of healthcare services are experimenting with innovative payment models to include episode-based bundled rate destination centers of excellence programs and the direct purchasing of accountable care organization services. The Geisinger Health System has over 10 years of experience with episode-based payment bundling coupled with the care delivery reengineering which is integral to its ProvenCare® program. Recent experiences at Geisinger have included participation in BPCI and also partnership with employer-purchasers of healthcare through the Pacific Business Group on Health (representing Walmart, Lowe's, and JetBlue Airways). As the shift towards value-focused care delivery and patient experience progresses forward, bundled payment arrangements and direct purchasing of healthcare will be critical financial drivers in effecting change. Copyright © 2017 by the Congress of Neurological Surgeons.
Loosli, Y; Vianay, B; Luginbuehl, R; Snedeker, J G
2012-05-01
We present a novel approach to modeling cell spreading, and use it to reveal a potentially central mechanism regulating focal adhesion maturation in various cell phenotypes. Actin bundles that span neighboring focal complexes at the lamellipodium-lamellum interface were assumed to be loaded by intracellular forces in proportion to bundle length. We hypothesized that the length of an actin bundle (with the corresponding accumulated force at its adhesions) may thus regulate adhesion maturation to ensure cell mechanical stability and morphological integrity. We developed a model to test this hypothesis, implementing a "top-down" approach to simplify certain cellular processes while explicitly incorporating complexity of other key subcellular mechanisms. Filopodial and lamellipodial activities were treated as modular processes with functional spatiotemporal interactions coordinated by rules regarding focal adhesion turnover and actin bundle dynamics. This theoretical framework was able to robustly predict temporal evolution of cell area and cytoskeletal organization as reported from a wide range of cell spreading experiments using micropatterned substrates. We conclude that a geometric/temporal modeling framework can capture the key functional aspects of the rapid spreading phase and resultant cytoskeletal complexity. Hence the model is used to reveal mechanistic insight into basic cell behavior essential for spreading. It demonstrates that actin bundles spanning nascent focal adhesions such that they are aligned to the leading edge may accumulate centripetal endogenous forces along their length, and could thus trigger focal adhesion maturation in a force-length dependent fashion. We suggest that this mechanism could be a central "integrating" factor that effectively coordinates force-mediated adhesion maturation at the lamellipodium-lamellum interface.
Schwarzkopf, Ran; Laster, Scott K; Cross, Michael B; Lenz, Nathaniel M
2016-04-01
Proper ligament tension in flexion with posterior cruciate retaining (CR) total knee arthroplasty (TKA) has long been associated with clinical success. The purpose of this study was to determine the effect of varying levels of posterior cruciate ligament (PCL) release on the tibiofemoral kinematics and PCL strain. A computational analysis was performed and varying levels of PCL release were simulated. Tibiofemoral kinematics was evaluated. The maximum PCL strain was determined for each bundle to evaluate the risk of rupture based on the failure strain. The femoral AP position shifted anteriorly as the PCL stiffness was reduced. PCL strain in both bundles increased as stiffness was reduced. The model predicts that the AL bundle should not rupture for a 75% release. Risk of PM bundle rupture is greater than AL bundle. Our findings suggest that a partial PCL release impacts tibiofemoral kinematics and ligament tension and strain. The relationship is dynamic and care should be taken when seeking optimal balance intra-operatively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, Mamta; Nongthomba, Upendra, E-mail: upendra@mrdg.iisc.ernet.in
Mechanisms involved in establishing the organization and numbers of fibres in a muscle are not completely understood. During Drosophila indirect flight muscle (IFM) formation, muscle growth is achieved by both incorporating hundreds of nuclei, and hypertrophy. As a result, IFMs provide a good model with which to understand the mechanisms that govern overall muscle organization and growth. We present a detailed analysis of the organization of dorsal longitudinal muscles (DLMs), a subset of the IFMs. We show that each DLM is similar to a vertebrate fascicle and consists of multiple muscle fibres. However, increased fascicle size does not necessarily changemore » the number of constituent fibres, but does increase the number of myofibrils packed within the fibres. We also find that altering the number of myoblasts available for fusion changes DLM fascicle size and fibres are loosely packed with myofibrils. Additionally, we show that knock down of genes required for mitochondrial fusion causes a severe reduction in the size of DLM fascicles and fibres. Our results establish the organization levels of DLMs and highlight the importance of the appropriate number of nuclei and mitochondrial fusion in determining the overall organization, growth and size of DLMs. - Highlights: • Drosophila dorsal longitudinal muscles are similar to vertebrate skeletal muscles. • A threshold number of myoblasts governs the organization of a fibre and its size. • Mitochondrial fusion defect leads to abnormal fibre growth and organization.« less
Rodríguez, Javier; Navallas, Javier; Gila, Luis; Dimitrova, Nonna Alexandrovna; Malanda, Armando
2011-04-30
In situ recording of the intracellular action potential (IAP) of human muscle fibres is not yet possible, and consequently, knowledge concerning certain IAP characteristics is still limited. According to the core-conductor theory, close to a fibre, a single fibre action potential (SFAP) can be assumed to be proportional to the IAP second derivative. Thus, we might expect to be able to derive some characteristics of the IAP, such as the duration of its spike, from the SFAP waveform. However, SFAP properties not only depend on the IAP shape but also on the fibre-to-electrode (radial) distance and other physiological properties of the fibre. In this paper we, first, propose an SFAP parameter (the negative phase duration, NPD) appropriate for estimating the IAP spike duration and, second, show that this parameter is largely independent of changes in radial distance and muscle fibre propagation velocity. Estimation of the IAP spike duration from a direct measurement taken from the SFAP waveform provides a possible way to enhance the accuracy of SFAP models. Because IAP spike duration is known to be sensitive to the effects of fatigue and calcium accumulation, the proposed SFAP parameter, the NPD, has potential value in electrodiagnosis and as an indicator of IAP profile changes due to peripheral fatigue. Copyright © 2011 Elsevier B.V. All rights reserved.
Entezam, A.; Khandaker, M. U.; Amin, Y. M.; Ung, N. M.; Bradley, D. A.; Maah, J.; Safari, M. J.; Moradi, F.
2016-01-01
Study has been made of the thermoluminescence (TL) response of silica-based Ge-doped cylindrical, flat and photonic crystal fibres (referred to herein as PCF-collapsed) to electron (6, 12 and 20 MeV) and photon (6, 10 MV) irradiation and 1.25 MeV γ-rays, for doses from 0.1 Gy to 100 Gy. The electron and photon irradiations were delivered through use of a Varian Model 2100C linear accelerator located at the University of Malaya Medical Centre and γ-rays delivered from a 60Co irradiator located at the Secondary Standard Dosimetry Laboratory (SSDL), Malaysian Nuclear Agency. Tailor-made to be of various dimensions and dopant concentrations (6–10% Ge), the fibres were observed to provide TL yield linear with radiation dose, reproducibility being within 1–5%, with insensitivity to energy and angular variation. The sensitivity dependency of both detectors with respect to field size follows the dependency of the output factors. For flat fibres exposed to 6 MV X-rays, the 6% Ge-doped fibre provided the greatest TL yield while PCF-collapsed showed a response 2.4 times greater than that of the 6% Ge-doped flat fibres. The response of cylindrical fibres increased with core size. The fibres offer uniform response, high spatial resolution and sensitivity, providing the basis of promising TL systems for radiotherapy applications. PMID:27149115
Gualtieri, Alessandro F; Bursi Gandolfi, Nicola; Pollastri, Simone; Burghammer, Manfred; Tibaldi, Eva; Belpoggi, Fiorella; Pollok, Kilian; Langenhorst, Falko; Vigliaturo, Ruggero; Dražić, Goran
2017-05-15
Along the line of the recent research topic aimed at understanding the in vivo activity of mineral fibres and their mechanisms of toxicity, this work describes the morpho-chemical characteristics of the mineral fibres found in the tissues of Sprague-Dawley rats subjected to intraperitoneal/intrapleural injection of UICC chrysotile, UICC crocidolite and erionite-Na from Nevada (USA). The fibres are studied with in situ synchrotron powder diffraction and high resolution transmission electron microscopy to improve our understanding of the mechanisms of toxicity of these mineral fibres. In contact with the tissues of the rats, chrysotile fibres are prone to dissolve, with leaching of Mg and production of a silica rich relict. On the other hand, crocidolite and erionite-Na fibres are stable even for very long contact times within the tissues of the rats, showing just a thin dissolution amorphous halo. These findings support the model of a lower biopersistence of chrysotile with respect to crocidolite and erionite-Na but the formation of a silica-rich fibrous residue after the pseudo-amorphization of chrysotile may justify a higher cytotoxic potential and intense inflammatory activity of chrysotile in the short term in contact with the lung tissues. Copyright © 2017 Elsevier B.V. All rights reserved.
Christian, W J R; DiazDelaO, F A; Atherton, K; Patterson, E A
2018-05-01
A new method has been developed for creating localized in-plane fibre waviness in composite coupons and used to create a large batch of specimens. This method could be used by manufacturers to experimentally explore the effect of fibre waviness on composite structures both directly and indirectly to develop and validate computational models. The specimens were assessed using ultrasound, digital image correlation and a novel inspection technique capable of measuring residual strain fields. To explore how the defect affects the performance of composite structures, the specimens were then loaded to failure. Predictions of remnant strength were made using a simple ultrasound damage metric and a new residual strain-based damage metric. The predictions made using residual strain measurements were found to be substantially more effective at characterizing ultimate strength than ultrasound measurements. This suggests that residual strains have a significant effect on the failure of laminates containing fibre waviness and that these strains could be incorporated into computational models to improve their ability to simulate the defect.
Experimental and Numerical Study on the Tensile Behaviour of UACS/Al Fibre Metal Laminate
NASA Astrophysics Data System (ADS)
Xue, Jia; Wang, Wen-Xue; Zhang, Jia-Zhen; Wu, Su-Jun; Li, Hang
2015-10-01
A new fibre metal laminate fabricated with aluminium sheets and unidirectionally arrayed chopped strand (UACS) plies is proposed. The UACS ply is made by cutting parallel slits into a unidirectional carbon fibre prepreg. The UACS/Al laminate may be viewed as aluminium laminate reinforced by highly aligned, discontinuous carbon fibres. The tensile behaviour of UACS/Al laminate, including thermal residual stress and failure progression, is investigated through experiments and numerical simulation. Finite element analysis was used to simulate the onset and propagation of intra-laminar fractures occurring within slits of the UACS plies and delamination along the interfaces. The finite element models feature intra-laminar cohesive elements inserted into the slits and inter-laminar cohesive elements inserted at the interfaces. Good agreement are obtained between experimental results and finite element analysis, and certain limitations of the finite element models are observed and discussed. The combined experimental and numerical studies provide a detailed understanding of the tensile behaviour of UACS/Al laminates.
High thermodynamic stability of parametrically designed helical bundles
Huang, Po -Ssu; Oberdorfer, Gustav; Xu, Chunfu; ...
2014-10-24
Here we describe a procedure for designing proteins with backbones produced by varying the parameters in the Crick coiled coil–generating equations. Combinatorial design calculations identify low-energy sequences for alternative helix supercoil arrangements, and the helices in the lowest-energy arrangements are connected by loop building. We design an antiparallel monomeric untwisted three-helix bundle with 80-residue helices, an antiparallel monomeric right-handed four-helix bundle, and a pentameric parallel left-handed five-helix bundle. The designed proteins are extremely stable (extrapolated ΔG fold > 60 kilocalories per mole), and their crystal structures are close to those of the design models with nearly identical core packing betweenmore » the helices. The approach enables the custom design of hyperstable proteins with fine-tuned geometries for a wide range of applications.« less
Guiné, R P F; Duarte, J; Ferreira, M; Correia, P; Leal, M; Rumbak, I; Barić, I C; Komes, D; Satalić, Z; Sarić, M M; Tarcea, M; Fazakas, Z; Jovanoska, D; Vanevski, D; Vittadini, E; Pellegrini, N; Szűcs, V; Harangozó, J; El-Kenawy, A; El-Shenawy, O; Yalçın, E; Kösemeci, C; Klava, D; Straumite, E
2016-09-01
Because there is scientific evidence that an appropriate intake of dietary fibre should be part of a healthy diet, given its importance in promoting health, the present study aimed to develop and validate an instrument to evaluate the knowledge of the general population about dietary fibres. The present study was a cross sectional study. The methodological study of psychometric validation was conducted with 6010 participants, residing in 10 countries from three continents. The instrument is a questionnaire of self-response, aimed at collecting information on knowledge about food fibres. Exploratory factor analysis (EFA) was chosen as the analysis of the main components using varimax orthogonal rotation and eigenvalues greater than 1. In confirmatory factor analysis by structural equation modelling (SEM) was considered the covariance matrix and adopted the maximum likelihood estimation algorithm for parameter estimation. Exploratory factor analysis retained two factors. The first was called dietary fibre and promotion of health (DFPH) and included seven questions that explained 33.94% of total variance (α = 0.852). The second was named sources of dietary fibre (SDF) and included four questions that explained 22.46% of total variance (α = 0.786). The model was tested by SEM giving a final solution with four questions in each factor. This model showed a very good fit in practically all the indexes considered, except for the ratio χ(2)/df. The values of average variance extracted (0.458 and 0.483) demonstrate the existence of convergent validity; the results also prove the existence of discriminant validity of the factors (r(2) = 0.028) and finally good internal consistency was confirmed by the values of composite reliability (0.854 and 0.787). This study allowed validating the KADF scale, increasing the degree of confidence in the information obtained through this instrument in this and in future studies. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Chen, Li; He, YaLing; Tao, Wen -Quan; ...
2017-07-21
The electrode of a vanadium redox flow battery generally is a carbon fibre-based porous medium, in which important physicochemical processes occur. In this work, pore-scale simulations are performed to study complex multiphase flow and reactive transport in the electrode by using the lattice Boltzmann method (LBM). Four hundred fibrous electrodes with different fibre diameters and porosities are reconstructed. Both the permeability and diffusivity of the reconstructed electrodes are predicted and compared with empirical relationships in the literature. Reactive surface area of the electrodes is also evaluated and it is found that existing empirical relationship overestimates the reactive surface under lowermore » porosities. Further, a pore-scale electrochemical reaction model is developed to study the effects of fibre diameter and porosity on electrolyte flow, V II/V III transport, and electrochemical reaction at the electrolyte-fibre surface. Finally, evolution of bubble cluster generated by the side reaction is studied by adopting a LB multiphase flow model. Effects of porosity, fibre diameter, gas saturation and solid surface wettability on average bubble diameter and reduction of reactive surface area due to coverage of bubbles on solid surface are investigated in detail. It is found that gas coverage ratio is always lower than that adopted in the continuum model in the literature. Furthermore, the current pore-scale studies successfully reveal the complex multiphase flow and reactive transport processes in the electrode, and the simulation results can be further upscaled to improve the accuracy of the current continuum-scale models.« less
Aga, Cathrine; Kartus, Jüri-Tomas; Lind, Martin; Lygre, Stein Håkon Låstad; Granan, Lars-Petter; Engebretsen, Lars
2017-10-01
Double-bundle anterior cruciate ligament (ACL) reconstruction has demonstrated improved biomechanical properties and moderately better objective outcomes compared with single-bundle reconstructions. This could make an impact on the rerupture rate and reduce the risk of revisions in patients undergoing double-bundle ACL reconstruction compared with patients reconstructed with a traditional single-bundle technique. The National Knee Ligament Registers in Scandinavia provide information that can be used to evaluate the revision outcome after ACL reconstructions. The purposes of the study were (1) to compare the risk of revision between double-bundle and single-bundle reconstructions, reconstructed with autologous hamstring tendon grafts; (2) to compare the risk of revision between double-bundle hamstring tendon and single-bundle bone-patellar tendon-bone autografts; and (3) to compare the hazard ratios for the same two research questions after Cox regression analysis was performed. Data collection of primary ACL reconstructions from the National Knee Ligament Registers in Denmark, Norway, and Sweden from July 1, 2005, to December 31, 2014, was retrospectively analyzed. A total of 60,775 patients were included in the study; 994 patients were reconstructed with double-bundle hamstring tendon grafts, 51,991 with single-bundle hamstring tendon grafts, and 7790 with single-bundle bone-patellar tendon-bone grafts. The double-bundle ACL-reconstructed patients were compared with the two other groups. The risk of revision for each research question was detected by the risk ratio, hazard ratio, and the corresponding 95% confidence intervals. Kaplan-Meier analysis was used to estimate survival at 1, 2, and 5 years for the three different groups. Furthermore, a Cox proportional hazard regression model was applied and the hazard ratios were adjusted for country, age, sex, meniscal or chondral injury, and utilized fixation devices on the femoral and tibial sides. There were no differences in the crude risk of revision between the patients undergoing the double-bundle technique and the two other groups. A total of 3.7% patients were revised in the double-bundle group (37 of 994 patients) versus 3.8% in the single-bundle hamstring tendon group (1952 of 51,991; risk ratio, 1.01; 95% confidence interval (CI), 0.73-1.39; p = 0.96), and 2.8% of the patients were revised in the bone-patellar tendon-bone group (219 of the 7790 bone-patellar tendon-bone patients; risk ratio, 0.76; 95% CI, 0.54-1.06; p = 0.11). Cox regression analysis with adjustment for country, age, sex, menisci or cartilage injury, and utilized fixation device on the femoral and tibial sides, did not reveal any further difference in the risk of revision between the single-bundle hamstring tendon and double-bundle hamstring tendon groups (hazard ratio, 1.18; 95% CI, 0.85-1.62; p = 0.33), but the adjusted hazard ratio showed a lower risk of revision in the single-bundle bone-patellar tendon-bone group compared with the double-bundle group (hazard ratio, 0.62; 95% CI, 0.43-0.90; p = 0.01). Comparisons of the graft revision rates reported separately for each country revealed that double-bundle hamstring tendon reconstructions in Sweden had a lower hazard ratio compared with the single-bundle hamstring tendon reconstructions (hazard ratio, 1.00 versus 1.89; 95% CI, 1.09-3.29; p = 0.02). Survival at 5 years after index surgery was 96.0% for the double-bundle group, 95.4% for the single-bundle hamstring tendon group, and 97.0% for the single-bundle bone-patellar tendon-bone group. Based on the data from all three national registers, the risk of revision was not influenced by the reconstruction technique in terms of using single- or double-bundle hamstring tendons, although national differences in survival existed. Using bone-patellar tendon-bone grafts lowered the risk of revision compared with double-bundle hamstring tendon grafts. These findings should be considered when deciding what reconstruction technique to use in ACL-deficient knees. Future studies identifying the reasons for graft rerupture in single- and double-bundle reconstructions would be of interest to understand the findings of the present study. Level III, therapeutic study.
Wieser, L; Fischer, G; Nowak, C N; Tilg, B
2007-05-01
Increased local load in branching atrial tissue (muscle fibers and bundle insertions) influences wave propagation during atrial fibrillation (AF). This computer model study reveals two principal phenomena: if the branching is distant from the driving rotor (>19 mm), the load causes local slowing of conduction or wavebreaks. If the driving rotor is close to the branching, the increased load causes first a slow drift of the rotor towards the branching. Finally, the rotor anchors, and a stable, repeatable pattern of activation can be observed. Variation of the bundle geometry from a cylindrical, volumetric structure to a flat strip of a comparable load in a monolayer model changed the local activation sequence in the proximity of the bundle. However, the global behavior and the basic effects are similar in all models. Wavebreaks in branching tissue contribute to the chaotic nature of AF (fibrillatory conduction). The stabilization (anchoring) of driving rotors by branching tissue might contribute to maintain sustained AF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dearing, J F; Nelson, W R; Rose, S D
Computational thermal-hydraulic models of a 19-pin, electrically heated, wire-wrap liquid-metal fast breeder reactor test bundle were developed using two well-known subchannel analysis codes, COBRA III-C and SABRE-1 (wire-wrap version). These two codes use similar subchannel control volumes for the finite difference conservation equations but vary markedly in solution strategy and modeling capability. In particular, the empirical wire-wrap-forced diversion crossflow models are different. Surprisingly, however, crossflow velocity predictions of the two codes are very similar. Both codes show generally good agreement with experimental temperature data from a test in which a large radial temperature gradient was imposed. Differences between data andmore » code results are probably caused by experimental pin bowing, which is presently the limiting factor in validating coded empirical models.« less
Rinke, Michael L; Chen, Allen R; Bundy, David G; Colantuoni, Elizabeth; Fratino, Lisa; Drucis, Kim M; Panton, Stephanie Y; Kokoszka, Michelle; Budd, Alicia P; Milstone, Aaron M; Miller, Marlene R
2012-10-01
To investigate whether a multidisciplinary, best-practice central line maintenance care bundle reduces central line-associated blood stream infection (CLABSI) rates in hospitalized pediatric oncology patients and to further delineate the epidemiology of CLABSIs in this population. We performed a prospective, interrupted time series study of a best-practice bundle addressing all areas of central line care: reduction of entries, aseptic entries, and aseptic procedures when changing components. Based on a continuous quality improvement model, targeted interventions were instituted to improve compliance with each of the bundle elements. CLABSI rates and epidemiological data were collected for 10 months before and 24 months after implementation of the bundle and compared in a Poisson regression model. CLABSI rates decreased from 2.25 CLABSIs per 1000 central line days at baseline to 1.79 CLABSIs per 1000 central line days during the intervention period (incidence rate ratio [IRR]: 0.80, P = .58). Secondary analyses indicated CLABSI rates were reduced to 0.81 CLABSIs per 1000 central line days in the second 12 months of the intervention (IRR: 0.36, P = .091). Fifty-nine percent of infections resulted from Gram-positive pathogens, 37% of patients with a CLABSI required central line removal, and patients with Hickman catheters were more likely to have a CLABSI than patients with Infusaports (IRR: 4.62, P = .02). A best-practice central line maintenance care bundle can be implemented in hospitalized pediatric oncology patients, although long ramp-up times may be necessary to reap maximal benefits. Further research is needed to determine if this CLABSI rate reduction can be sustained and spread.
[Possible health risks from asbestos in drinking water].
Di Ciaula, Agostino; Gennaro, Valerio
2016-01-01
The recent finding of asbestos fibres in drinking water (up to 700.000 fibres/litres) in Tuscany (Central Italy) leads to concerns about health risks in exposed communities. Exposure to asbestos has been linked with cancer at several levels of the gastrointestinal tract, and it has been documented, in an animal model, a direct cytotoxic effect of asbestos fibres on the ileum. It has been recently described a possible link between asbestos and intrahepatic cholangiocarcinoma, and asbestos fibres have been detected in humans in histological samples from colon cancer and in gallbladder bile. Taken together, these findings suggest the possibility of an enterohepatic translocation of asbestos fibres, alternative to lymphatic translocation from lungs. In animal models, asbestos fibres ingested with drinking water act as a co-carcinogen in the presence of benzo(a) pyrene and, according to the International Agency for Research on Cancer (IARC ), there is evidence pointing to a causal effect of ingested asbestos on gastric and colorectal cancer. The risk seems to be proportional to the concentration of ingested fibres, to the extent of individual water consumption, to exposure timing, and to the possible exposure to other toxics (i.e., benzo(a)pyrene). Furthermore, the exposure to asbestos by ingestion could explain the epidemiological finding of mesothelioma in subjects certainly unexposed by inhalation. In conclusion, several findings suggest that health risks from asbestos could not exclusively derive from inhalation of fibres. Health hazards might also be present after ingestion, mainly after daily ingestion of drinking water for long periods. In Italy, a systemic assessment of the presence of asbestos fibres in drinking water is still lacking, although asbestos-coated pipelines are widely diffused and still operating. Despite the fact that the existence of a threshold level for health risks linked to the presence of asbestos in drinking water is still under debate, the precautionary principle should impose all possible efforts in order to revise health policies concerning this topic, and a systematic monitoring of drinking water to quantify the presence of asbestos is certainly needed in all regions. Further epidemiological studies aimed to the identification of exposed communities and to an adequate health risk assessment in their specific geographical areas are urgently needed.
Revascularization of diaphyseal bone segments by vascular bundle implantation.
Nagi, O N
2005-11-01
Vascularized bone transfer is an effective, established treatment for avascular necrosis and atrophic or infected nonunions. However, limited donor sites and technical difficulty limit its application. Vascular bundle transplantation may provide an alternative. However, even if vascular ingrowth is presumed to occur in such situations, its extent in aiding revascularization for ultimate graft incorporation is not well understood. A rabbit tibia model was used to study and compare vascularized, segmental, diaphyseal, nonvascularized conventional, and vascular bundle-implanted grafts with a combination of angiographic, radiographic, histopathologic, and bone scanning techniques. Complete graft incorporation in conventional grafts was observed at 6 months, whereas it was 8 to 12 weeks with either of the vascularized grafts. The pattern of radionuclide uptake and the duration of graft incorporation between vascular segmental bone grafts (with intact endosteal blood supply) and vascular bundle-implanted segmental grafts were similar. A vascular bundle implanted in the recipient bone was found to anastomose extensively with the intraosseous circulation at 6 weeks. Effective revascularization of bone could be seen when a simple vascular bundle was introduced into a segment of bone deprived of its normal blood supply. This simple technique offers promise for improvement of bone graft survival in clinical circumstances.
Surgical Management of Neurovascular Bundle in Uterine Fibroid Pseudocapsule
Malvasi, Antonio; Hurst, Brad S.; Tsin, Daniel A.; Davila, Fausto; Dominguez, Guillermo; Dell'edera, Domenico; Cavallotti, Carlo; Negro, Roberto; Gustapane, Sarah; Teigland, Chris M.; Mettler, Liselotte
2012-01-01
The uterine fibroid pseudocapsule is a fibro-neurovascular structure surrounding a leiomyoma, separating it from normal peripheral myometrium. The fibroid pseudocapsule is composed of a neurovascular network rich in neurofibers similar to the neurovascular bundle surrounding a prostate. The nerve-sparing radical prostatectomy has several intriguing parallels to myomectomy. It may serve either as a useful model in modern fibroid surgical removal, or it may accelerate our understanding of the role of the fibrovascular bundle and neurotransmitters in the healing and restoration of reproductive potential after intracapsular myomectomy. Surgical innovations, such as laparoscopic or robotic myomectomy applied to the intracapsular technique with magnification of the fibroid pseudocapsule surrounding a leiomyoma, originated from the radical prostatectomy method that highlighted a careful dissection of the neurovascular bundle to preserve sexual functioning after prostatectomy. Gentle uterine leiomyoma detachment from the pseudocapsule neurovascular bundle has allowed a reduction in uterine bleeding and uterine musculature trauma with sparing of the pseudocapsule neuropeptide fibers. This technique has had a favorable impact on functionality in reproduction and has improved fertility outcomes. Further research should determine the role of the myoma pseudocapsule neurovascular bundle in the formation, growth, and pathophysiological consequences of fibroids, including pain, infertility, and reproductive outcomes. PMID:22906340
Consensus Bundle on Maternal Mental Health: Perinatal Depression and Anxiety.
Kendig, Susan; Keats, John P; Hoffman, M Camille; Kay, Lisa B; Miller, Emily S; Simas, Tiffany A Moore; Frieder, Ariela; Hackley, Barbara; Indman, Pec; Raines, Christena; Semenuk, Kisha; Wisner, Katherine L; Lemieux, Lauren A
2017-03-01
Perinatal mood and anxiety disorders are among the most common mental health conditions encountered by women of reproductive age. When left untreated, perinatal mood and anxiety disorders can have profound adverse effects on women and their children, ranging from increased risk of poor adherence to medical care, exacerbation of medical conditions, loss of interpersonal and financial resources, smoking and substance use, suicide, and infanticide. Perinatal mood and anxiety disorders are associated with increased risks of maternal and infant mortality and morbidity and are recognized as a significant patient safety issue. In 2015, the Council on Patient Safety in Women's Health Care convened an interdisciplinary work group to develop an evidence-based patient safety bundle to address maternal mental health. The focus of this bundle is perinatal mood and anxiety disorders. The bundle is modeled after other bundles released by the Council on Patient Safety in Women's Health Care and provides broad direction for incorporating perinatal mood and anxiety disorder screening, intervention, referral, and follow-up into maternity care practice across health care settings. This commentary provides information to assist with bundle implementation. © 2017 by the American College of Nurse-Midwives.
Consensus Bundle on Maternal Mental Health: Perinatal Depression and Anxiety.
Kendig, Susan; Keats, John P; Hoffman, M Camille; Kay, Lisa B; Miller, Emily S; Moore Simas, Tiffany A; Frieder, Ariela; Hackley, Barbara; Indman, Pec; Raines, Christena; Semenuk, Kisha; Wisner, Katherine L; Lemieux, Lauren A
Perinatal mood and anxiety disorders are among the most common mental health conditions encountered by women of reproductive age. When left untreated, perinatal mood and anxiety disorders can have profound adverse effects on women and their children, ranging from increased risk of poor adherence to medical care, exacerbation of medical conditions, loss of interpersonal and financial resources, smoking and substance use, suicide, and infanticide. Perinatal mood and anxiety disorders are associated with increased risks of maternal and infant mortality and morbidity and are recognized as a significant patient safety issue. In 2015, the Council on Patient Safety in Women's Health Care convened an interdisciplinary workgroup to develop an evidence-based patient safety bundle to address maternal mental health. The focus of this bundle is perinatal mood and anxiety disorders. The bundle is modeled after other bundles released by the Council on Patient Safety in Women's Health Care and provides broad direction for incorporating perinatal mood and anxiety disorder screening, intervention, referral, and follow-up into maternity care practice across health care settings. This commentary provides information to assist with bundle implementation. Copyright © 2017 AWHONN, the Association of Women’s Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights reserved.
Thoresen, Todd; Lenz, Martin; Gardel, Margaret L.
2013-01-01
Diverse myosin II isoforms regulate contractility of actomyosin bundles in disparate physiological processes by variations in both motor mechanochemistry and the extent to which motors are clustered into thick filaments. Although the role of mechanochemistry is well appreciated, the extent to which thick filament length regulates actomyosin contractility is unknown. Here, we study the contractility of minimal actomyosin bundles formed in vitro by mixtures of F-actin and thick filaments of nonmuscle, smooth, and skeletal muscle myosin isoforms with varied length. Diverse myosin II isoforms guide the self-organization of distinct contractile units within in vitro bundles with shortening rates similar to those of in vivo myofibrils and stress fibers. The tendency to form contractile units increases with the thick filament length, resulting in a bundle shortening rate proportional to the length of constituent myosin thick filament. We develop a model that describes our data, providing a framework in which to understand how diverse myosin II isoforms regulate the contractile behaviors of disordered actomyosin bundles found in muscle and nonmuscle cells. These experiments provide insight into physiological processes that use dynamic regulation of thick filament length, such as smooth muscle contraction. PMID:23442916
Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres
Widrick, J J; Knuth, S T; Norenberg, K M; Romatowski, J G; Bain, J L W; Riley, D A; Karhanek, M; Trappe, S W; Trappe, T A; Costill, D L; Fitts, R H
1999-01-01
Soleus biopsies were obtained from four male astronauts 45 days before and within 2 h after a 17 day spaceflight. For all astronauts, single chemically skinned post-flight fibres expressing only type I myosin heavy chain (MHC) developed less average peak Ca2+ activated force (Po) during fixed-end contractions (0.78 ± 0.02 vs. 0.99 ± 0.03 mN) and shortened at a greater mean velocity during unloaded contractions (Vo) (0.83 ± 0.02 vs. 0.64 ± 0.02 fibre lengths s−1) than pre-flight type I fibres. The flight-induced decline in absolute Po was attributed to reductions in fibre diameter and/or Po per fibre cross-sectional area. Fibres from the astronaut who experienced the greatest relative loss of peak force also displayed a reduction in Ca2+ sensitivity. The elevated Vo of the post-flight slow type I fibres could not be explained by alterations in myosin heavy or light chain composition. One alternative possibility is that the elevated Vo resulted from an increased myofilament lattice spacing. This hypothesis was supported by electron micrographic analysis demonstrating a reduction in thin filament density post-flight. Post-flight fibres shortened at 30 % higher velocities than pre-flight fibres at external loads associated with peak power output. This increase in shortening velocity either reduced (2 astronauts) or prevented (2 astronauts) a post-flight loss in fibre absolute peak power (μN (fibre length) s−1). The changes in soleus fibre diameter and function following spaceflight were similar to those observed after 17 days of bed rest. Although in-flight exercise countermeasures probably reduced the effects of microgravity, the results support the idea that ground-based bed rest can serve as a model of human spaceflight. In conclusion, 17 days of spaceflight decreased force and increased shortening velocity of single Ca2+-activated muscle cells expressing type I MHC. The increase in shortening velocity greatly reduced the impact that impaired force production had on absolute peak power. PMID:10200437
Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres
NASA Technical Reports Server (NTRS)
Widrick, J. J.; Knuth, S. T.; Norenberg, K. M.; Romatowski, J. G.; Bain, J. L.; Riley, D. A.; Karhanek, M.; Trappe, S. W.; Trappe, T. A.; Costill, D. L.;
1999-01-01
1. Soleus biopsies were obtained from four male astronauts 45 days before and within 2 h after a 17 day spaceflight. 2. For all astronauts, single chemically skinned post-flight fibres expressing only type I myosin heavy chain (MHC) developed less average peak Ca2+ activated force (Po) during fixed-end contractions (0.78 +/- 0. 02 vs. 0.99 +/- 0.03 mN) and shortened at a greater mean velocity during unloaded contractions (Vo) (0.83 +/- 0.02 vs. 0.64 +/- 0.02 fibre lengths s-1) than pre-flight type I fibres. 3. The flight-induced decline in absolute Po was attributed to reductions in fibre diameter and/or Po per fibre cross-sectional area. Fibres from the astronaut who experienced the greatest relative loss of peak force also displayed a reduction in Ca2+ sensitivity. 4. The elevated Vo of the post-flight slow type I fibres could not be explained by alterations in myosin heavy or light chain composition. One alternative possibility is that the elevated Vo resulted from an increased myofilament lattice spacing. This hypothesis was supported by electron micrographic analysis demonstrating a reduction in thin filament density post-flight. 5. Post-flight fibres shortened at 30 % higher velocities than pre-flight fibres at external loads associated with peak power output. This increase in shortening velocity either reduced (2 astronauts) or prevented (2 astronauts) a post-flight loss in fibre absolute peak power (microN (fibre length) s-1). 6. The changes in soleus fibre diameter and function following spaceflight were similar to those observed after 17 days of bed rest. Although in-flight exercise countermeasures probably reduced the effects of microgravity, the results support the idea that ground-based bed rest can serve as a model of human spaceflight. 7. In conclusion, 17 days of spaceflight decreased force and increased shortening velocity of single Ca2+-activated muscle cells expressing type I MHC. The increase in shortening velocity greatly reduced the impact that impaired force production had on absolute peak power.
The fee-for-service shift to bundled payments: financial considerations for hospitals.
Scamperle, Keely
2013-01-01
Skyrocketing health care costs are forcing payers to demand delivery efficiencies that preserve and promote quality care while reducing costs. Hospitals are challenged to meet the pressure from payers to deliver value and outcome-based health care while preserving sufficient financial margins. The fee-for-service (FFS) model with its perverse incentives to incur high-volume services is no longer, if ever, sufficient to ensure quality, cost-efficient health care. In response, payers have sought to force the issue through accelerated efforts to bundle payments to providers. It is theorized that by tying together providers throughout the continuum or episode of care for a patient, efficiencies in delivery inclusive of cost reductions will be obtained. This article examines the bundled payment models and the financial considerations for hospital facility providers.
Durango delta: Complications on San Juan basin Cretaceous linear strandline theme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zech, R.S.; Wright, R.
1989-09-01
The Upper Cretaceous Point Lookout Sandstone generally conforms to a predictable cyclic shoreface model in which prograding linear strandline lithosomes dominate formation architecture. Multiple transgressive-regressive cycles results in systematic repetition of lithologies deposited in beach to inner shelf environments. Deposits of approximately five cycles are locally grouped into bundles. Such bundles extend at least 20 km along depositional strike and change from foreshore sandstone to offshore, time-equivalent Mancos mud rock in a downdip distance of 17 to 20 km. Excellent hydrocarbon reservoirs exist where well-sorted shoreface sandstone bundles stack and the formation thickens. This depositional model breaks down in themore » vicinity of Durango, Colorado, where a fluvial-dominated delta front and associated large distributary channels characterize the Point Lookout Sandstone and overlying Menefee Formation.« less
75 FR 7557 - Airworthiness Directives; The Boeing Company Model 767 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-22
... shorts in many systems, including the spar fuel shut off valve, oxygen mask deployment, and burned wires... and wire bundles, causing shorts in many systems, including the spar fuel shut off valve, oxygen mask... and wire bundles, causing shorts in many systems, including the spar fuel shut off valve, oxygen mask...
Porter, Michael E; Kaplan, Robert S
2016-01-01
The United States stands at a crossroads in how to pay for health care. Fee for service, the dominant payment model in the U.S. and many other countries, is now widely recognized as perhaps the single biggest obstacle to improving health care delivery. A battle is currently raging, outside of the public eye, between the advocates of two radically different payment approaches: capitation and bundled payments. The stakes are high, and the outcome will define the shape of the health care system for many years to come, for better or for worse. In this article, the authors argue that although capitation may deliver modest savings in the short run, it brings significant risks and will fail to fundamentally change the trajectory of a broken system. The bundled payment model, in contrast, triggers competition between providers to create value where it matters--at the individual patient level--and puts health care on the right path. The authors provide robust proof-of-concept examples of bundled payment initiatives in the U.S. and abroad, address the challenges of transitioning to bundled payments, and respond to critics' concerns about obstacles to implementation.
Erickson, Timothy; Morgan, Clive P; Olt, Jennifer; Hardy, Katherine; Busch-Nentwich, Elisabeth; Maeda, Reo; Clemens, Rachel; Krey, Jocelyn F; Nechiporuk, Alex; Barr-Gillespie, Peter G; Marcotti, Walter; Nicolson, Teresa
2017-01-01
Transmembrane O-methyltransferase (TOMT/LRTOMT) is responsible for non-syndromic deafness DFNB63. However, the specific defects that lead to hearing loss have not been described. Using a zebrafish model of DFNB63, we show that the auditory and vestibular phenotypes are due to a lack of mechanotransduction (MET) in Tomt-deficient hair cells. GFP-tagged Tomt is enriched in the Golgi of hair cells, suggesting that Tomt might regulate the trafficking of other MET components to the hair bundle. We found that Tmc1/2 proteins are specifically excluded from the hair bundle in tomt mutants, whereas other MET complex proteins can still localize to the bundle. Furthermore, mouse TOMT and TMC1 can directly interact in HEK 293 cells, and this interaction is modulated by His183 in TOMT. Thus, we propose a model of MET complex assembly where Tomt and the Tmcs interact within the secretory pathway to traffic Tmc proteins to the hair bundle. DOI: http://dx.doi.org/10.7554/eLife.28474.001 PMID:28534737
Peptidergic control in a fruit crop pest: The spotted-wing drosophila, Drosophila suzukii
Gough, Caroline S.; Fairlamb, Grace M.; Bell, Petra; Nachman, Ronald J.; Audsley, Neil
2017-01-01
Neuropeptides play an important role in the regulation of feeding in insects and offer potential targets for the development of new chemicals to control insect pests. A pest that has attracted much recent attention is the highly invasive Drosophila suzukii, a polyphagous pest that can cause serious economic damage to soft fruits. Previously we showed by mass spectrometry the presence of the neuropeptide myosuppressin (TDVDHVFLRFamide) in the nerve bundle suggesting that this peptide is involved in regulating the function of the crop, which in adult dipteran insects has important roles in the processing of food, the storage of carbohydrates and the movement of food into the midgut for digestion. In the present study antibodies that recognise the C-terminal RFamide epitope of myosuppressin stain axons in the crop nerve bundle and reveal peptidergic fibres covering the surface of the crop. We also show using an in vitro bioassay that the neuropeptide is a potent inhibitor (EC50 of 2.3 nM) of crop contractions and that this inhibition is mimicked by the non-peptide myosuppressin agonist, benzethonium chloride (Bztc). Myosuppressin also inhibited the peristaltic contractions of the adult midgut, but was a much weaker agonist (EC50 = 5.7 μM). The oral administration of Bztc (5 mM) in a sucrose diet to adult female D. suzukii over 4 hours resulted in less feeding and longer exposure to dietary Bztc led to early mortality. We therefore suggest that myosuppressin and its cognate receptors are potential targets for disrupting feeding behaviour of adult D. suzukii. PMID:29125862
Yanke, Eric; Moriarty, Helene; Carayon, Pascale; Safdar, Nasia
2018-03-01
Clostridium difficile infection (CDI) is increasingly prevalent, severe, and costly. Adherence to infection prevention practices remains suboptimal. More effective strategies to implement guidelines and evidence are needed. Interprofessional focus groups consisting of physicians, resident physicians, nurses, and health technicians were conducted for a quality improvement project evaluating adherence to the Department of Veterans Affairs' (VA) nationally mandated C difficile prevention bundle. Qualitative analysis with a visual matrix display identified barrier and facilitator themes guided by the Systems Engineering Initiative for Patient Safety model, a human factors engineering approach. Several themes, encompassing both barriers and facilitators to bundle adherence, emerged. Rapid turnaround time of C difficile polymerase chain reaction testing was a facilitator of timely diagnosis. Too few, poorly located, and cluttered sinks were barriers to appropriate hand hygiene. Patient care workload and the time-consuming process of contact isolation precautions were also barriers to adherence. Multiple work system components serve as barriers to and facilitators of adherence to the VA CDI prevention bundle among an interprofessional group of health care workers. Organizational factors appear to significantly influence bundle adherence. Interprofessional perspectives are needed to identify barriers to and facilitators of bundle implementation, which is a necessary first step to address adherence to bundled infection prevention practices. Published by Elsevier Inc.
Modelling of the Impact Response of Fibre-Reinforced Composites
1990-09-30
observed under tensile loading alone, the damage accumulation process following initial tensile fracture of a fibre tow somewhere within the test specimen...results to be obtained which are not inconsistent with those observed experimentally. Sim- ilarly the delamination process is modelled assuming an...publication either in journals or in conference proceedings. 1 . J. Harding and K. Saka, "The effect of strain rate on the tensile failure of woven reinforced
1983-03-01
both types of cellulose , the cell walls are still intact with the microfibrils showing little damage. The cellulose microfibrils consist of long chains...25 2. Model of Cellulose Microfibril ... S............. .............. .26 3. Model of Plant Cell Wall Bonding of Microfibril Bundles...molecules protrude above and below the plane of the cellulose ribbon.J’ (See Figures 2 and 3,) Bundles of these cellulose ribbons are called microfibrils
Hammond, Nathan A; Kamm, Roger D
2008-07-01
The synthetic peptide RAD16-II has shown promise in tissue engineering and drug delivery. It has been studied as a vehicle for cell delivery and controlled release of IGF-1 to repair infarcted cardiac tissue, and as a scaffold to promote capillary formation for an in vitro model of angiogenesis. The structure of RAD16-II is hierarchical, with monomers forming long beta-sheets that pair together to form filaments; filaments form bundles approximately 30-60 nm in diameter; branching networks of filament bundles form macroscopic gels. We investigate the mechanics of shearing between the two beta-sheets constituting one filament, and between cohered filaments of RAD16-II. This shear loading is found in filament bundle bending or in tensile loading of fibers composed of partial-length filaments. Molecular dynamics simulations show that time to failure is a stochastic function of applied shear stress, and that for a given loading time behavior is elastic for sufficiently small shear loads. We propose a coarse-grained model based on Langevin dynamics that matches molecular dynamics results and facilities extending simulations in space and time. The model treats a filament as an elastic string of particles, each having potential energy that is a periodic function of its position relative to the neighboring filament. With insight from these simulations, we discuss strategies for strengthening RAD16-II and similar materials.
Modular Bundle Adjustment for Photogrammetric Computations
NASA Astrophysics Data System (ADS)
Börlin, N.; Murtiyoso, A.; Grussenmeyer, P.; Menna, F.; Nocerino, E.
2018-05-01
In this paper we investigate how the residuals in bundle adjustment can be split into a composition of simple functions. According to the chain rule, the Jacobian (linearisation) of the residual can be formed as a product of the Jacobians of the individual steps. When implemented, this enables a modularisation of the computation of the bundle adjustment residuals and Jacobians where each component has limited responsibility. This enables simple replacement of components to e.g. implement different projection or rotation models by exchanging a module. The technique has previously been used to implement bundle adjustment in the open-source package DBAT (Börlin and Grussenmeyer, 2013) based on the Photogrammetric and Computer Vision interpretations of Brown (1971) lens distortion model. In this paper, we applied the technique to investigate how affine distortions can be used to model the projection of a tilt-shift lens. Two extended distortion models were implemented to test the hypothesis that the ordering of the affine and lens distortion steps can be changed to reduce the size of the residuals of a tilt-shift lens calibration. Results on synthetic data confirm that the ordering of the affine and lens distortion steps matter and is detectable by DBAT. However, when applied to a real camera calibration data set of a tilt-shift lens, no difference between the extended models was seen. This suggests that the tested hypothesis is false and that other effects need to be modelled to better explain the projection. The relatively low implementation effort that was needed to generate the models suggest that the technique can be used to investigate other novel projection models in photogrammetry, including modelling changes in the 3D geometry to better understand the tilt-shift lens.
Physical basics of endovenous laser treatment and potential of innovative developments
NASA Astrophysics Data System (ADS)
Sroka, R.; Esipova, A.; Schmedt, C. G.
2017-04-01
During the last decade, endoluminal laser treatment (ELT) has been rapidly developing. Protocols using radially emitting ELT fibres in combination with infrared laser light show clinical advantages over the bare-fibre technique and near infrared irradiation. Although the clinical response rate is high several side effects occurred. Innovative light application systems and feedback systems are therefore being under development to potentially improve the clinical situation. The irradiation patterns of bare fibres and radially emitting 1-ring and 2-ring fibres were measured using the goniometer technique. The device robustness, device handling and tissue effects were investigated using the established ox-foot-model. Furthermore, temperature measurements were performed either intraluminal within the irradiation field using a tiny temperature sensor and on the outer surface of the vessel wall by means of a thermocamera. All fibres showed sufficient mechanical and thermal robustness. The destruction threshold is far beyond the light powers employed during clinical application. The 1-ring fibre showed very high peak temperatures for a short time, while the 2-ring-fibre hold its somewhat lower maximum temperature for a longer time. Both forms of energy application resulted in the desired shrinkage and destruction effect. In this regard, the handling of the 2-ring fibre appears subjectively more convenient with reduced sticking-related problems. Acute tissue effects could be investigated to improve the understanding especially of the interaction between handling, maneuvers and tissue effects. The 2-ring radially emitting fibre in combination with IR laser light and specific application parameters showed improved handling and safety features.
Ballistic damage in hybrid composite laminates
NASA Astrophysics Data System (ADS)
Phadnis, Vaibhav A.; Pandya, Kedar S.; Naik, Niranjan K.; Roy, Anish; Silberschmidt, Vadim V.
2015-07-01
Ballistic damage of hybrid woven-fabric composites made of plain-weave E-glass- fabric/epoxy and 8H satin-weave T300 carbon-fabric/epoxy is studied using a combination of experimental tests, microstructural studies and finite-element (FE) analysis. Ballistic tests were conducted with a single-stage gas gun. Fibre damage and delamination were observed to be dominating failure modes. A ply-level FE model was developed, with a fabric-reinforced ply modelled as a homogeneous orthotropic material with capacity to sustain progressive stiffness degradation due to fibre/matrix cracking, fibre breaking and plastic deformation under shear loading. Simulated damage patterns on the front and back faces of fabric-reinforced composite plates provided an insight into their damage mechanisms under ballistic loading.
Badenhorst, Werner; Hanekom, Tania; Hanekom, Johan J
2016-12-01
This study presents the development of an alternative noise current term and novel voltage-dependent current noise algorithm for conductance-based stochastic auditory nerve fibre (ANF) models. ANFs are known to have significant variance in threshold stimulus which affects temporal characteristics such as latency. This variance is primarily caused by the stochastic behaviour or microscopic fluctuations of the node of Ranvier's voltage-dependent sodium channels of which the intensity is a function of membrane voltage. Though easy to implement and low in computational cost, existing current noise models have two deficiencies: it is independent of membrane voltage, and it is unable to inherently determine the noise intensity required to produce in vivo measured discharge probability functions. The proposed algorithm overcomes these deficiencies while maintaining its low computational cost and ease of implementation compared to other conductance and Markovian-based stochastic models. The algorithm is applied to a Hodgkin-Huxley-based compartmental cat ANF model and validated via comparison of the threshold probability and latency distributions to measured cat ANF data. Simulation results show the algorithm's adherence to in vivo stochastic fibre characteristics such as an exponential relationship between the membrane noise and transmembrane voltage, a negative linear relationship between the log of the relative spread of the discharge probability and the log of the fibre diameter and a decrease in latency with an increase in stimulus intensity.
Ruys, Andrew J.
2018-01-01
Electrospun fibres have gained broad interest in biomedical applications, including tissue engineering scaffolds, due to their potential in mimicking extracellular matrix and producing structures favourable for cell and tissue growth. The development of scaffolds often involves multivariate production parameters and multiple output characteristics to define product quality. In this study on electrospinning of polycaprolactone (PCL), response surface methodology (RSM) was applied to investigate the determining parameters and find optimal settings to achieve the desired properties of fibrous scaffold for acetabular labrum implant. The results showed that solution concentration influenced fibre diameter, while elastic modulus was determined by solution concentration, flow rate, temperature, collector rotation speed, and interaction between concentration and temperature. Relationships between these variables and outputs were modelled, followed by an optimization procedure. Using the optimized setting (solution concentration of 10% w/v, flow rate of 4.5 mL/h, temperature of 45 °C, and collector rotation speed of 1500 RPM), a target elastic modulus of 25 MPa could be achieved at a minimum possible fibre diameter (1.39 ± 0.20 µm). This work demonstrated that multivariate factors of production parameters and multiple responses can be investigated, modelled, and optimized using RSM. PMID:29562614
Nolan, Emily R; Feng, Meihua Rose; Koup, Jeffrey R; Liu, Jing; Turluck, Daniel; Zhang, Yiqun; Paulissen, Jerome B; Olivier, N Bari; Miller, Teresa; Bailie, Marc B
2006-01-01
Terfenadine, cisapride, and E-4031, three drugs that prolong ventricular repolarization, were selected to evaluate the sensitivity of the conscious chronic atrioventricular node--ablated, His bundle-paced Dog for defining drug induced cardiac repolarization prolongation. A novel predictive pharmacokinetic/pharmacodynamic model of repolarization prolongation was generated from these data. Three male beagle dogs underwent radiofrequency AV nodal ablation, and placement of a His bundle-pacing lead and programmable pacemaker under anesthesia. Each dog was restrained in a sling for a series of increasing dose infusions of each drug while maintained at a constant heart rate of 80 beats/min. RT interval, a surrogate for QT interval in His bundle-paced dogs, was recorded throughout the experiment. E-4031 induced a statistically significant RT prolongation at the highest three doses. Cisapride resulted in a dose-dependent increase in RT interval, which was statistically significant at the two highest doses. Terfenadine induced a dose-dependent RT interval prolongation with a statistically significant change occurring only at the highest dose. The relationship between drug concentration and RT interval change was described by a sigmoid E(max) model with an effect site. Maximum RT change (E(max)), free drug concentration at half of the maximum effect (EC(50)), and free drug concentration associated with a 10 ms RT prolongation (EC(10 ms)) were estimated. A linear correlation between EC(10 ms) and HERG IC(50) values was identified. The conscious dog with His bundle-pacing detects delayed cardiac repolarization related to I(Kr) inhibition, and detects repolarization change induced by drugs with activity at multiple ion channels. A clinically relevant sensitivity and a linear correlation with in vitro HERG data make the conscious His bundle-paced dog a valuable tool for detecting repolarization effect of new chemical entities.
Jbabdi, Saad; Sotiropoulos, Stamatios N; Savio, Alexander M; Graña, Manuel; Behrens, Timothy EJ
2012-01-01
In this article, we highlight an issue that arises when using multiple b-values in a model-based analysis of diffusion MR data for tractography. The non-mono-exponential decay, commonly observed in experimental data, is shown to induce over-fitting in the distribution of fibre orientations when not considered in the model. Extra fibre orientations perpendicular to the main orientation arise to compensate for the slower apparent signal decay at higher b-values. We propose a simple extension to the ball and stick model based on a continuous Gamma distribution of diffusivities, which significantly improves the fitting and reduces the over-fitting. Using in-vivo experimental data, we show that this model outperforms a simpler, noise floor model, especially at the interfaces between brain tissues, suggesting that partial volume effects are a major cause of the observed non-mono-exponential decay. This model may be helpful for future data acquisition strategies that may attempt to combine multiple shells to improve estimates of fibre orientations in white matter and near the cortex. PMID:22334356
Investigation of low-velocity impact damage in fibre-metal-laminates
NASA Astrophysics Data System (ADS)
Laliberte, Jeremy F.
2002-04-01
Fibre-metal-laminates (FMLs) represent a significant evolution in airframe material technology. This new family of materials combines low density, high strength and excellent damage tolerance through the use of metal layers strengthened with fibre-reinforced polymer layers. When subjected to low-velocity impact these laminates like traditional composites, develop internal delamination damage, matrix cracks and limited fibre fractures. Also, as in traditional composites, this damage is hidden within the laminate. A method for predicting the amount of internal damage would reduce the experimental testing requirements for the certification of new laminates. This thesis describes the development of a modelling methodology that makes use of a new material subroutine based on continuum damage mechanics in the explicit finite-element code LS-DYNA. This subroutine was verified using the experimental data from low-velocity impact tests of various types of GLARE (GLAss REinforced) aluminum laminates, a common type of commercially available fibre-metal-laminate. Static characterization tests were also conducted on GLARE coupons to provide basic property data for the development of the model. These included static tensile tests and double cantilever beam delamination tests. The modelling methodology was used to improve simulations of low-velocity impact on GLARE laminates. The simulations demonstrated that intralaminar damage has a greater effect on the impact response of the panels than interlaminar damage. Parts of this thesis were components of a multi-year collaborative FML Durability Project between Carleton University, Bombardier Aerospace and the National Research Council Canada.
Sharwood, Robert E; Ghannoum, Oula; Whitney, Spencer M
2016-06-01
By operating a CO2 concentrating mechanism, C4-photosynthesis offers highly successful solutions to remedy the inefficiency of the CO2-fixing enzyme Rubisco. C4-plant Rubisco has characteristically evolved faster carboxylation rates with low CO2 affinity. Owing to high CO2 concentrations in bundle sheath chloroplasts, faster Rubisco enhances resource use efficiency in C4 plants by reducing the energy and carbon costs associated with photorespiration and lowering the nitrogen investment in Rubisco. Here, we show that C4-Rubisco from some NADP-ME species, such as maize, are also of potential benefit to C3-photosynthesis under current and future atmospheric CO2 pressures. Realizing this bioengineering endeavour necessitates improved understanding of the biogenesis requirements and catalytic variability of C4-Rubisco, as well as the development of transformation capabilities to engineer Rubisco in a wider variety of food and fibre crops. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sentis, M. L.; Delaporte, Ph; Marine, W.; Uteza, O.
2000-06-01
The laser ablation performed with an automated excimer XeCl laser unit is used for large surface cleaning. The study focuses on metal surfaces that are oxidised and are representative of contaminated surfaces with radionuclides in a context of nuclear power plant maintenance. The unit contains an XeCl laser, the beam delivery system, the particle collection cell, and the system for real-time control of cleaning processes. The interaction of laser radiation with a surface is considered, in particular, the surface damage caused by cleaning radiation. The beam delivery system consists of an optical fibre bundle of 5 m long and allows delivering 150 W at 308 nm for laser surface cleaning. The cleaning process is controlled by analysing in real time the plasma electric field evolution. The system permits the cleaning of 2 to 6 m2 h-1 of oxides with only slight substrate modifications.
Action potential properties are gravity dependent
NASA Astrophysics Data System (ADS)
Meissner, Klaus; Hanke, Wolfgang
2005-06-01
The functional properties of neuronal tissue critically depend on cellular composition and intercellular comunication. A basic principle of such communication found in various types of neurons is the generation of action potentials (APs). These APs depend on the presence of voltage gated ion channels and propagate along cellular processes (e.g. axons) towards target neurons or other cells. It has already been shown that the properties of ion channels depend on gravity. To discover whether the properties of APs also depend on gravity, we examined the propagation of APs in earthworms (invertebrates) and isolated nerve fibres (i.e. bundles of axons) from earthworms under conditions of micro- and macro-gravity. In a second set of experiments we could verify our results on rat axons (vertebrates). Our experiments carried out during two parabolic flight campaigns revealed that microgravity slows AP propagation velocity and macrogravity accelerates the transmission of action potentials. The relevance for live-science related questions is considerable, taking into account that altered gravity conditions might affect AP velocity in man during space flight missions.
Torti, Cristiano; Považay, Boris; Hofer, Bernd; Unterhuber, Angelika; Carroll, Joseph; Ahnelt, Peter Kurt; Drexler, Wolfgang
2012-01-01
This paper presents a successful combination of ultra-high speed (120,000 depth scans/s), ultra-high resolution optical coherence tomography with adaptive optics and an achromatizing lens for compensation of monochromatic and longitudinal chromatic ocular aberrations, respectively, allowing for non-invasive volumetric imaging in normal and pathologic human retinas at cellular resolution. The capability of this imaging system is demonstrated here through preliminary studies by probing cellular intraretinal structures that have not been accessible so far with in vivo, non-invasive, label-free imaging techniques, including pigment epithelial cells, micro-vasculature of the choriocapillaris, single nerve fibre bundles and collagenous plates of the lamina cribrosa in the optic nerve head. In addition, the volumetric extent of cone loss in two colour-blinds could be quantified for the first time. This novel technique provides opportunities to enhance the understanding of retinal pathogenesis and early diagnosis of retinal diseases. PMID:19997159
NASA Astrophysics Data System (ADS)
Chen, Jiawen; Leung, Franco King-Chi; Stuart, Marc C. A.; Kajitani, Takashi; Fukushima, Takanori; van der Giessen, Erik; Feringa, Ben L.
2018-02-01
A striking feature of living systems is their ability to produce motility by amplification of collective molecular motion from the nanoscale up to macroscopic dimensions. Some of nature's protein motors, such as myosin in muscle tissue, consist of a hierarchical supramolecular assembly of very large proteins, in which mechanical stress induces a coordinated movement. However, artificial molecular muscles have often relied on covalent polymer-based actuators. Here, we describe the macroscopic contractile muscle-like motion of a supramolecular system (comprising 95% water) formed by the hierarchical self-assembly of a photoresponsive amphiphilic molecular motor. The molecular motor first assembles into nanofibres, which further assemble into aligned bundles that make up centimetre-long strings. Irradiation induces rotary motion of the molecular motors, and propagation and accumulation of this motion lead to contraction of the fibres towards the light source. This system supports large-amplitude motion, fast response, precise control over shape, as well as weight-lifting experiments in water and air.
Nurdin, Samsu U; Le Leu, Richard K; Young, Graeme P; Stangoulis, James C R; Christophersen, Claus T; Abbott, Catherine A
2017-04-03
Green cincau ( Premna oblongifolia Merr) is an Indonesian food plant with a high dietary fibre content. Research has shown that dietary fibre mixtures may be more beneficial for colorectal cancer prevention than a single dietary fibre type. The aim of this study was to investigate the effects of green cincau extract on short chain fatty acid (SCFA) production in anaerobic batch cultures inoculated with human faecal slurries and to compare these to results obtained using different dietary fibre types (pectin, inulin, and cellulose), singly and in combination. Furthermore, fermentation supernatants (FSs) were evaluated in Caco-2 cells for their effect on cell viability, differentiation, and apoptosis. Cincau increased total SCFA concentration by increasing acetate and propionate, but not butyrate concentration. FSs from all dietary fibre sources, including cincau, reduced Caco-2 cell viability. However, the effects of all FSs on cell viability, cell differentiation, and apoptosis were not simply explainable by their butyrate content. In conclusion, products of fermentation of cincau extracts induced cell death, but further work is required to understand the mechanism of action. This study demonstrates for the first time that this Indonesian traditional source of dietary fibre may be protective against colorectal cancer.
Kim, Yujeong; Kim, Yongwook; Bae, In Young; Lee, Hyeon Gyu; Lee, Suyong
2013-06-01
Preharvest dropped apples from a weather disaster are generally discarded or used in animal feed due to reduced market value. In this study, they were utilised to produce dietary fibre-enriched materials (DFEMs) and their baking performance in a food system was then evaluated as a high-fibre and low-calorie flour substitute. Hydrothermal treatment and fractionation of preharvest dropped apple powder produced fibre-rich fractions (856.2 g kg(-1)). The use of DFEMs increased the pasting properties of wheat flour and improved dough mixing stability. When DFEMs were incorporated in the cookie formulation (2, 4 and 6 g dietary fibre per serving), the cookie dough exhibited increased elongational viscosity and solid-like behaviour which became more pronounced with increasing levels of DEFMs. After baking, reduced spread was observed in DFEM cookies which could be readily attributed to their rheological characteristics. However, greater moisture retention by DFEMs produced cookie samples with softer texture. DFEMs prepared from preharvest dropped apples could be successfully evaluated in a cookie model system as a high-fibre and low-calorie substitute for wheat flour. This study suggests a new value-added application of preharvest dropped fruits, positively extending their use for better healthful diets. © 2012 Society of Chemical Industry.
Modeling of Electrical Cable Failure in a Dynamic Assessment of Fire Risk
NASA Astrophysics Data System (ADS)
Bucknor, Matthew D.
Fires at a nuclear power plant are a safety concern because of their potential to defeat the redundant safety features that provide a high level of assurance of the ability to safely shutdown the plant. One of the added complexities of providing protection against fires is the need to determine the likelihood of electrical cable failure which can lead to the loss of the ability to control or spurious actuation of equipment that is required for safe shutdown. A number of plants are now transitioning from their deterministic fire protection programs to a risk-informed, performance based fire protection program according to the requirements of National Fire Protection Association (NFPA) 805. Within a risk-informed framework, credit can be taken for the analysis of fire progression within a fire zone that was not permissible within the deterministic framework of a 10 CFR 50.48 Appendix R safe shutdown analysis. To perform the analyses required for the transition, plants need to be able to demonstrate with some level of assurance that cables related to safe shutdown equipment will not be compromised during postulated fire scenarios. This research contains the development of new cable failure models that have the potential to more accurately predict electrical cable failure in common cable bundle configurations. Methods to determine the thermal properties of the new models from empirical data are presented along with comparisons between the new models and existing techniques used in the nuclear industry today. A Dynamic Event Tree (DET) methodology is also presented which allows for the proper treatment of uncertainties associated with fire brigade intervention and its effects on cable failure analysis. Finally a shielding analysis is performed to determine the effects on the temperature response of a cable bundle that is shielded from a fire source by an intervening object such as another cable tray. The results from the analyses demonstrate that models of similar complexity to existing cable failure techniques and tuned to empirical data can better approximate the temperature response of a cables located in tightly packed cable bundles. The new models also provide a way to determine the conditions insides a cable bundle which allows for separate treatment of cables on the interior of the bundle from cables on the exterior of the bundle. The results from the DET analysis show that the overall assessed probability of cable failure can be significantly reduced by more realistically accounting for the influence that the fire brigade has on a fire progression scenario. The shielding analysis results demonstrate a significant reduction in the temperature response of a shielded versus a non-shielded cable bundle; however the computational cost of using a fire progression model that can capture these effects may be prohibitive for performing DET analyses with currently available computational fluid dynamics models and computational resources.
The 5 Clinical Pillars of Value for Total Joint Arthroplasty in a Bundled Payment Paradigm.
Kim, Kelvin; Iorio, Richard
2017-06-01
Our large, urban, tertiary, university-based institution reflects on its 4-year experience with Bundled Payments for Care Improvement. We will describe the importance of 5 clinical pillars that have contributed to the early success of our bundled payment initiative. We are convinced that value-based care delivered through bundled payment initiatives is the best method to optimize patient outcomes while rewarding surgeons and hospitals for adapting to the evolving healthcare reforms. We summarize a number of experiences and lessons learned since the implementation of Bundled Payments for Care Improvement at our institution. Our experience has led to the development of more refined clinical pathways and coordination of care through evidence-based approaches. We have established that the success of the bundled payment program rests on the following 5 main clinical pillars: (1) optimizing patient selection and comorbidities; (2) optimizing care coordination, patient education, shared decision making, and patient expectations; (3) using a multimodal pain management protocol and minimizing narcotic use to facilitate rapid rehabilitation; (4) optimizing blood management, and standardizing venous thromboembolic disease prophylaxis treatment by risk standardizing patients and minimizing the use of aggressive anticoagulation; and (5) minimizing post-acute facility and resource utilization, and maximizing home resources for patient recovery. From our extensive experience with bundled payment models, we have established 5 clinical pillars of value for bundled payments. Our hope is that these principles will help ease the transition to value-based care for less-experienced healthcare systems. Copyright © 2017 Elsevier Inc. All rights reserved.
Using the HELIOS facility for assessment of bundle-jacket thermal coupling in a CICC
NASA Astrophysics Data System (ADS)
Lacroix, B.; Rousset, B.; Cloez, H.; Decool, P.; Duchateau, J. L.; Hoa, C.; Luchier, N.; Nicollet, S.; Topin, F.
2016-12-01
In a Cable In Conduit Conductor (CICC) cooled by forced circulation of supercritical helium, the heat exchange in the bundle region can play a significant role for conductor safe operation, while remaining a quite uncertain parameter. Heat exchange between bundle and jacket depends on the relative contributions of convective heat transfer due to the helium flow inside the bundle and of thermal resistance due to the wrappings between the cable and the conduit. In order to qualify this thermal coupling at realistic operating conditions, a dedicated experiment on a 1.2 m sample of ITER Toroidal Field (TF) dummy conductor was designed and performed in the HELIOS test facility at CEA Grenoble. Several methods were envisaged, and the choice was made to assess bundle-jacket heat transfer coefficient by measuring the temperature of a solid copper cylinder inserted over the conductor jacket and submitted to heat deposition on its outer surface. The mock-up was manufactured and tested in spring 2015. Bundle-jacket heat transfer coefficient was found in the range 300-500 W m-2 K-1. Results analysis suggests that the order of magnitude of convective heat transfer coefficient inside bundle is closer to Colburn-Reynolds analogy than to Dittus-Boelter correlation, and that bundle-jacket thermal coupling is mainly limited by thermal resistance due to wrappings. A model based on an equivalent layer of stagnant helium between wraps and jacket was proposed and showed a good consistency with the experiment, with relevant values for the helium layer thickness.
CARMENES in SPIE 2014. Building a fibre link for CARMENES
NASA Astrophysics Data System (ADS)
Stürmer, J.; Stahl, O.; Schwab, C.; Seifert, W.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Caballero, J. A.
2014-07-01
Optical fibres have successfully been used to couple high-resolution spectrographs to telescopes for many years. As they allow the instrument to be placed in a stable and isolated location, they decouple the spectrograph from environmental influences. Fibres also provide a substantial increase in stability of the input illumination of the spectrograph, which makes them a key optical element of the two high-resolution spectrographs of CARMENES. The optical properties of appropriate fibres are investigated, especially their scrambling and focal ratio degradation (FRD) behaviour. In the laboratory the output illumination of various fibres is characterized and different methods to increase the scrambling of the fibre link are tested and compared. In particular, a combination of fibres with different core shapes shows a very good scrambling performance. The near-field (NF) shows an extremely low sensitivity to the exact coupling conditions of the fibre. However, small changes in the far-field (FF) can still be seen. Related optical simulations of the stability performance of the two spectrographs are presented. The simulations focus on the influence of the non-perfect illumination stabilization in the far-field of the fibre on the radial velocity stability of the spectrographs. We use ZEMAX models of the spectrographs to simulate how the barycentres of the spots move depending on the FF illumination pattern and therefore how the radial velocity is affected by a variation of the spectrograph illumination. This method allows to establish a quantitative link between the results of the measurements of the optical properties of fibres on the one hand and the radial velocity precision on the other. The results provide a strong indication that 1ms?1 precision can be reached using a circular-octagonal fibre link even without the use of an optical double scrambler, which has successfully been used in other high-resolution spectrographs. Given the typical throughput of an optical double scrambler of about 75% to 85 %, our solution allows for a substantially higher throughput of the system.
Yuen, Michaela; Cooper, Sandra T.; Marston, Steve B.; Nowak, Kristen J.; McNamara, Elyshia; Mokbel, Nancy; Ilkovski, Biljana; Ravenscroft, Gianina; Rendu, John; de Winter, Josine M.; Klinge, Lars; Beggs, Alan H.; North, Kathryn N.; Ottenheijm, Coen A.C.; Clarke, Nigel F.
2015-01-01
Dominant mutations in TPM3, encoding α-tropomyosinslow, cause a congenital myopathy characterized by generalized muscle weakness. Here, we used a multidisciplinary approach to investigate the mechanism of muscle dysfunction in 12 TPM3-myopathy patients. We confirm that slow myofibre hypotrophy is a diagnostic hallmark of TPM3-myopathy, and is commonly accompanied by skewing of fibre-type ratios (either slow or fast fibre predominance). Patient muscle contained normal ratios of the three tropomyosin isoforms and normal fibre-type expression of myosins and troponins. Using 2D-PAGE, we demonstrate that mutant α-tropomyosinslow was expressed, suggesting muscle dysfunction is due to a dominant-negative effect of mutant protein on muscle contraction. Molecular modelling suggested mutant α-tropomyosinslow likely impacts actin–tropomyosin interactions and, indeed, co-sedimentation assays showed reduced binding of mutant α-tropomyosinslow (R168C) to filamentous actin. Single fibre contractility studies of patient myofibres revealed marked slow myofibre specific abnormalities. At saturating [Ca2+] (pCa 4.5), patient slow fibres produced only 63% of the contractile force produced in control slow fibres and had reduced acto-myosin cross-bridge cycling kinetics. Importantly, due to reduced Ca2+-sensitivity, at sub-saturating [Ca2+] (pCa 6, levels typically released during in vivo contraction) patient slow fibres produced only 26% of the force generated by control slow fibres. Thus, weakness in TPM3-myopathy patients can be directly attributed to reduced slow fibre force at physiological [Ca2+], and impaired acto-myosin cross-bridge cycling kinetics. Fast myofibres are spared; however, they appear to be unable to compensate for slow fibre dysfunction. Abnormal Ca2+-sensitivity in TPM3-myopathy patients suggests Ca2+-sensitizing drugs may represent a useful treatment for this condition. PMID:26307083
Yuen, Michaela; Cooper, Sandra T; Marston, Steve B; Nowak, Kristen J; McNamara, Elyshia; Mokbel, Nancy; Ilkovski, Biljana; Ravenscroft, Gianina; Rendu, John; de Winter, Josine M; Klinge, Lars; Beggs, Alan H; North, Kathryn N; Ottenheijm, Coen A C; Clarke, Nigel F
2015-11-15
Dominant mutations in TPM3, encoding α-tropomyosinslow, cause a congenital myopathy characterized by generalized muscle weakness. Here, we used a multidisciplinary approach to investigate the mechanism of muscle dysfunction in 12 TPM3-myopathy patients. We confirm that slow myofibre hypotrophy is a diagnostic hallmark of TPM3-myopathy, and is commonly accompanied by skewing of fibre-type ratios (either slow or fast fibre predominance). Patient muscle contained normal ratios of the three tropomyosin isoforms and normal fibre-type expression of myosins and troponins. Using 2D-PAGE, we demonstrate that mutant α-tropomyosinslow was expressed, suggesting muscle dysfunction is due to a dominant-negative effect of mutant protein on muscle contraction. Molecular modelling suggested mutant α-tropomyosinslow likely impacts actin-tropomyosin interactions and, indeed, co-sedimentation assays showed reduced binding of mutant α-tropomyosinslow (R168C) to filamentous actin. Single fibre contractility studies of patient myofibres revealed marked slow myofibre specific abnormalities. At saturating [Ca(2+)] (pCa 4.5), patient slow fibres produced only 63% of the contractile force produced in control slow fibres and had reduced acto-myosin cross-bridge cycling kinetics. Importantly, due to reduced Ca(2+)-sensitivity, at sub-saturating [Ca(2+)] (pCa 6, levels typically released during in vivo contraction) patient slow fibres produced only 26% of the force generated by control slow fibres. Thus, weakness in TPM3-myopathy patients can be directly attributed to reduced slow fibre force at physiological [Ca(2+)], and impaired acto-myosin cross-bridge cycling kinetics. Fast myofibres are spared; however, they appear to be unable to compensate for slow fibre dysfunction. Abnormal Ca(2+)-sensitivity in TPM3-myopathy patients suggests Ca(2+)-sensitizing drugs may represent a useful treatment for this condition. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Song, Yuanli; Pipalia, Nina H; Fung, L W-M
2009-01-01
The bundling of the N-terminal, partial domain helix (Helix C′) of human erythroid α-spectrin (αI) with the C-terminal, partial domain helices (Helices A′ and B′) of erythroid β-spectrin (βI) to give a spectrin pseudo structural domain (triple helical bundle A′B′C′) has long been recognized as a crucial step in forming functional spectrin tetramers in erythrocytes. We have used apparent polarity and Stern–Volmer quenching constants of Helix C′ of αI bound to Helices A′ and B′ of βI, along with previous NMR and EPR results, to propose a model for the triple helical bundle. This model was used as the input structure for molecular dynamics simulations for both wild type (WT) and αI mutant L49F. The simulation output structures show a stable helical bundle for WT, but not for L49F. In WT, four critical interactions were identified: two hydrophobic clusters and two salt bridges. However, in L49F, the region downstream of Helix C′ was unable to assume a helical conformation and one critical hydrophobic cluster was disrupted. Other molecular interactions critical to the WT helical bundle were also weakened in L49F, possibly leading to the lower tetramer levels observed in patients with this mutation-induced blood disorder. PMID:19593814
Analysis and Evaluation of the Dynamic Performance of SMA Actuators for Prosthetic Hand Design
NASA Astrophysics Data System (ADS)
O'Toole, Kevin T.; McGrath, Mark M.; Coyle, Eugene
2009-08-01
It is widely acknowledged within the biomedical engineering community that shape memory alloys (SMAs) exhibit great potential for application in the actuation of upper limb prosthesis designs. These lightweight actuators are particularly suitable for prosthetic hand solutions. A four-fingered, 12 degree-of-freedom prosthetic hand has been developed featuring SMA bundle actuators embedded within the palmar structure. Joule heating of the SMA bundle actuators generates sufficient torque at the fingers to allow a wide range of everyday tasks to be carried out. Transient characterization of SMA bundles has shown that performance/response during heating and cooling differs substantially. Natural convection is insufficient to provide for adequate cooling during elongation of the actuators. An experimental test-bed has been developed to facilitate analysis of the heat transfer characteristics of the appropriately sized SMA bundle actuators for use within the prosthetic hand design. Various modes of heat sinking are evaluated so that the most effective wire-cooling solution can be ascertained. SMA bundles of varying size will be used so that a generalized model of the SMA displacement performance under natural and forced cooling conditions can be obtained. The optimum cooling solution will be implemented onto the mechanical hand framework in future work. These results, coupled with phenomenological models of SMA behavior, will be used in the development of an effective control strategy for this application in future work.
Intrinsic Decomposition of The Stretch Tensor for Fibrous Media
NASA Astrophysics Data System (ADS)
Kellermann, David C.
2010-05-01
This paper presents a novel mechanism for the description of fibre reorientation based on the decomposition of the stretch tensor according to a given material's intrinsic constitutive properties. This approach avoids the necessity for fibre directors, structural tensors or specialised model such as the ideal fibre reinforced model, which are commonly applied to the analysis of fibre kinematics in the finite deformation of fibrous media for biomechanical problems. The proposed approach uses Intrinsic-Field Tensors (IFTs) that build upon the linear orthotropic theory presented in a previous paper entitled Strongly orthotropic continuum mechanics and finite element treatment. The intrinsic decomposition of the stretch tensor therein provides superior capacity to represent the intermediary kinematics driven by finite orthotropic ratios, where the benefits are predominantly expressed in cases of large deformation as is typical in the biomechanical studies. Satisfaction of requirements such as Material Frame-Indifference (MFI) and Euclidean objectivity are demonstrated here—these factors being necessary for the proposed IFTs to be valid tensorial quantities. The resultant tensors, initially for the simplest case of linear elasticity, are able to describe the same fibre reorientation as would the contemporary approaches such as with use of structural tensors and the like, while additionally being capable of showing results intermediary to classical isotropy and the infinitely orthotropic representations. This intermediary case is previously unreported.
Kardel, Troels
2008-01-01
Muscular movement is the result of fibre shortening. How did this basic insight arise? Based on several of his observations, Nicolaus Steno in 1664 and 1667 proposed that muscles shorten when fibres shorten, and that skeletal muscles consist of uniform motor fibres layered as pennate structures. The basis for a new myology was provided in a geometrical model of the movement of the muscles. But fibre shortening was incompatible with the dominant ancient theory of contraction by inflation that was favoured by Descartes and by Steno's contemporaries William Croone, Thomas Willis, John Mayow, and Giovanni Borelli due to their adherence to the Aristotelian axiom: "Anything which moves is moved by something else". The inflation theory blindfolded researchers well into the eighteenth century for skeletal and heart muscles. When the shortening of motor fibres was eventually visualised by microscopy, this inflation theory was no longer tenable. Steno's structural claim on skeletal muscles was also rejected by Borelli and by later commentators. Pennate muscles were only rarely displayed until 1981 when macro-anatomical studies showed the morphology of most skeletal muscles to be similar to that described by Steno. Steno's proposals on muscles have since become a common-place in computer models applied in the study of human and animal motion.
Villemejane, C; Wahl, R; Aymard, P; Denis, S; Michon, C
2015-09-01
The effects of biscuit composition on the viscosity generated during digestion were investigated. A control biscuit, one with proteins, one with fibres, and one with both proteins and fibres were digested under the same conditions, using the TNO intestinal model (TIM-1). The TIM-1 is a multi-compartmental and dynamic in vitro system, simulating digestion in the upper tract (stomach and small intestine) of healthy adult humans. Digesta were collected at different times, in the different compartments of the TIM-1 (stomach, duodenum, jejunum and ileum) and viscosity was measured with a dynamic rheometer. Results showed a marked effect of biscuit composition on chyme viscosity. Highest viscosity was obtained with biscuits containing viscous soluble fibres, followed by those enriched in both proteins and fibres, then by protein-enriched and control biscuits. The viscosity was maintained throughout the gut up to the ileal compartment. A prediction of the evolution of the chyme viscosity in each compartment of the TIM-1 was built, based on model curves describing the evolution of the viscosity as a function of biscuit concentration, and on dilution factors measured by spectrophotometry on a blank digestion. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Farajpour, A.; Rastgoo, A.
Carbon nanotubes are a new class of microtubule-stabilizing agents since they interact with protein microtubules in living cells, interfering with cell division and inducing apoptosis. In the present work, a modified beam model is developed to investigate the effect of carbon nanotubes on the buckling of microtubule bundles in living cell. A realistic interaction model is employed using recent experimental data on the carbon nanotube-stabilized microtubules. Small scale and surface effects are taken into account applying the nonlocal strain gradient theory and surface elasticity theory. Pasternak model is used to describe the normal and shearing effects of enclosing filament matrix on the buckling behavior of the system. An exact solution is obtained for the buckling growth rates of the mixed bundle in viscoelastic surrounding cytoplasm. The present results are compared with those reported in the open literature for single microtubules and an excellent agreement is found. Finally, the effects of different parameters such as the size, chirality, position and surface energy of carbon nanotubes on the buckling growth rates of microtubule bundles are studied. It is found that the buckling growth rate may increase or decrease by adding carbon nanotubes, depending on the diameter and chirality of carbon nanotubes.
Elevated temperature triggers human respiratory syncytial virus F protein six-helix bundle formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunus, Abdul S.; Jackson, Trent P.; Crisafi, Katherine
2010-01-20
Human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infection in infants, immunocompromised patients, and the elderly. The RSV fusion (F) protein mediates fusion of the viral envelope with the target cell membrane during virus entry and is a primary target for antiviral drug and vaccine development. The F protein contains two heptad repeat regions, HR1 and HR2. Peptides corresponding to these regions form a six-helix bundle structure that is thought to play a critical role in membrane fusion. However, characterization of six-helix bundle formation in native RSV F protein has been hindered by themore » fact that a trigger for F protein conformational change has yet to be identified. Here we demonstrate that RSV F protein on the surface of infected cells undergoes a conformational change following exposure to elevated temperature, resulting in the formation of the six-helix bundle structure. We first generated and characterized six-helix bundle-specific antibodies raised against recombinant peptides modeling the RSV F protein six-helix bundle structure. We then used these antibodies as probes to monitor RSV F protein six-helix bundle formation in response to a diverse array of potential triggers of conformational changes. We found that exposure of 'membrane-anchored' RSV F protein to elevated temperature (45-55 deg. C) was sufficient to trigger six-helix bundle formation. Antibody binding to the six-helix bundle conformation was detected by both flow cytometry and cell-surface immunoprecipitation of the RSV F protein. None of the other treatments, including interaction with a number of potential receptors, resulted in significant binding by six-helix bundle-specific antibodies. We conclude that native, untriggered RSV F protein exists in a metastable state that can be converted in vitro to the more stable, fusogenic six-helix bundle conformation by an increase in thermal energy. These findings help to better define the mechanism of RSV F-mediated membrane fusion and have important implications for the identification of therapeutic strategies and vaccines targeting RSV F protein conformational changes.« less
Cracking the omega code: hydraulic architecture of the cycad leaf axis.
Tomlinson, P Barry; Ricciardi, Alison; Huggett, Brett A
2018-03-05
The leaf axis of members of the order Cycadales ('cycads') has long been recognized by its configuration of independent vascular bundles that, in transverse section, resemble the Greek letter omega (hence the 'omega pattern'). This provides a useful diagnostic character for the order, especially when applied to paleobotany. The function of this pattern has never been elucidated. Here we provide a three-dimensional analysis and explain the pattern in terms of the hydraulic architecture of the pinnately compound cycad leaf. The genus Cycas was used as a simple model, because each leaflet is supplied by a single vascular bundle. Sequential sectioning was conducted throughout the leaf axis and photographed with a digital camera. Photographs were registered and converted to a cinematic format, which provided an objective method of analysis. The omega pattern in the petiole can be sub-divided into three vascular components, an abaxial 'circle', a central 'column' and two adaxial 'wings', the last being the only direct source of vascular supply to the leaflets. Each leaflet is supplied by a vascular bundle that has divided or migrated directly from the closest wing bundle. There is neither multiplication nor anastomoses of vascular bundles in the other two components. Thus, as one proceeds from base to apex along the leaf axis, the number of vascular bundles in circle and column components is reduced distally by their uniform migration throughout all components. Consequently, the distal leaflets are irrigated by the more abaxial bundles, guaranteeing uniform water supply along the length of the axis. The omega pattern exemplifies one of the many solutions plants have achieved in supplying distal appendages of an axis with a uniform water supply. Our method presents a model that can be applied to other genera of cycads with more complex vascular organization. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.