Science.gov

Sample records for fibre optic spectroscopy

  1. Photon Correlation Spectroscopy and Electrophoretic Light Scattering Using Optical Fibres.

    NASA Astrophysics Data System (ADS)

    MacFadyen, Allan John

    Available from UMI in association with The British Library. In photon correlation spectroscopy, the fast local fluctuations in the intensity of the light scattered by submicron particles in suspension are recorded and analysed in terms of the particle motion. These may then be related to the particle size, or, when the particles are subjected to an electric field, the electrophoretic mobility. Light scattering apparatus traditionally incorporates a fixed goniometer arrangement. Recently, however, systems have been reported which incorporate optical fibres for use in remote or on-line situations. In this thesis, recent advances in the development of fibre-based photon correlation systems are reviewed and the design and construction of two novel optical fibre apparatus prototypes, incorporating "SELFOC" lenses, miniature prisms and single mode detection fibre, is discussed. The final outcome, an optical fibre sensor, which combines both photon correlation and electrophoretic light scattering measurements in a single, compact dip -in probe for the first time, is described. Results are presented for a variety of colloidal particles in suspension including polystyrene and "Microsilica" spheres, PTFE ellipsoids and kaolinite platelets, all of which demonstrate the viability of the apparatus.

  2. Dental caries detection by optical spectroscopy: a polarized Raman approach with fibre-optic coupling

    NASA Astrophysics Data System (ADS)

    Ko, A. C.-T.; Choo-Smith, L.-P.; Werner, J.; Hewko, M.; Sowa, M. G.; Dong, C.; Cleghorn, B.

    2006-09-01

    Incipient dental caries lesions appear as white spots on the tooth surface; however, accurate detection of early approximal lesions is difficult due to limited sensitivity of dental radiography and other traditional diagnostic tools. A new fibre-optic coupled spectroscopic method based on polarized Raman spectroscopy (P-RS) with near-IR laser excitation is introduced which provides contrast for detecting and characterizing incipient caries. Changes in polarized Raman spectra are observed in PO 4 3- vibrations arising from hydroxyapatite of mineralized tooth tissue. Demineralization-induced morphological/orientational alteration of enamel crystallites is believed to be responsible for the reduction of Raman polarization anisotropy observed in the polarized Raman spectra of caries lesions. Supporting evidence obtained by polarized Raman spectral imaging is presented. A specially designed fibre-optic coupled setup for simultaneous measurement of parallel- and cross-polarized tooth Raman spectra is demonstrated in this study.

  3. A guiding light: spectroscopy on digital microfluidic devices using in-plane optical fibre waveguides.

    PubMed

    Choi, Kihwan; Mudrik, Jared M; Wheeler, Aaron R

    2015-09-01

    We present a novel method for in-plane digital microfluidic spectroscopy. In this technique, a custom manifold (.stl file available online as ESM) aligns optical fibres with a digital microfluidic device, allowing optical measurements to be made in the plane of the device. Because of the greater width vs thickness of a droplet on-device, the in-plane alignment of this technique allows it to outperform the sensitivity of vertical absorbance measurements on digital microfluidic (DMF) devices by ∼14×. The new system also has greater calibration sensitivity for thymol blue measurements than the popular NanoDrop system by ∼2.5×. The improvements in absorbance sensitivity result from increased path length, as well as from additional effects likely caused by liquid lensing, in which the presence of a water droplet between optical fibres increases fibre-to-fibre transmission of light by ∼2× through refraction and internal reflection. For interrogation of dilute samples, stretching of droplets using digital microfluidic electrodes and adjustment of fibre-to-fibre gap width allows absorbance path length to be changed on-demand. We anticipate this new digital microfluidic optical fibre absorbance and fluorescence measurement system will be useful for a wide variety of analytical applications involving microvolume samples with digital microfluidics.

  4. Developing fibre optic Raman probes for applications in clinical spectroscopy.

    PubMed

    Stevens, Oliver; Iping Petterson, Ingeborg E; Day, John C C; Stone, Nick

    2016-04-07

    Raman spectroscopy has been shown by various groups over the last two decades to have significant capability in discriminating disease states in bodily fluids, cells and tissues. Recent development in instrumentation, optics and manufacturing approaches has facilitated the design and demonstration of various novel in vivo probes, which have applicability for myriad of applications. This review focusses on key considerations and recommendations for application specific clinical Raman probe design and construction. Raman probes can be utilised as clinical tools able to provide rapid, non-invasive, real-time molecular analysis of disease specific changes in tissues. Clearly the target tissue location, the significance of spectral changes with disease and the possible access routes to the region of interest will vary for each clinical application considered. This review provides insight into design and construction considerations, including suitable probe designs and manufacturing materials compatible with Raman spectroscopy.

  5. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre.

    PubMed

    Wan, Noel H; Meng, Fan; Schröder, Tim; Shiue, Ren-Jye; Chen, Edward H; Englund, Dirk

    2015-07-23

    Optical spectroscopy is a fundamental tool in numerous areas of science and technology. Much effort has focused on miniaturizing spectrometers, but thus far at the cost of spectral resolution and broad operating range. Here we describe a compact spectrometer that achieves both high spectral resolution and broad bandwidth. The device relies on imaging multimode interference from leaky modes along a multimode tapered optical fibre, resulting in spectrally distinguishable spatial patterns over a wide range of wavelengths from 500 to 1,600 nm. This tapered fibre multimode interference spectrometer achieves a spectral resolution down to 40 pm in the visible spectrum and 10 pm in the near-infrared spectrum (corresponding to resolving powers of 10(4)-10(5)). Multimode interference spectroscopy is suitable in a variety of device geometries, including planar waveguides in a broad range of transparent materials.

  6. Polysiloxane optical fibres and fibre structures

    NASA Astrophysics Data System (ADS)

    Martincek, Ivan; Pudis, Dusan

    2016-12-01

    The polysiloxane fibres made of polysiloxanes such as polydimethylsiloxane (PDMS) and poly(dimethyl)(diphenil)siloxane (PDMDPS) can be attractive for different fibre applications and fibre structures. In this paper we describe the fabrication technological process of polysiloxane fibres and fibre structures integrated with conventional single-mode optical fibres. We present two-modes interferometer prepared from PDMS biconical optical fibre taper, PDMDPS optical fibre microloop interferometer and liquid microdroplet optical fibre interferometer. We achieved interesting optical properties all these fibre structures as was confirmed from the transmission characteristics what may be attractive for utilisation in various types of optical fibre sensors.

  7. Preliminary research on monitoring the durability of concrete subjected to sulfate attack with optical fibre Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yue, Yanfei; Bai, Yun; Basheer, P. A. Muhammed; Boland, John J.; Wang, Jing Jing

    2013-04-01

    Formation of ettringite and gypsum from sulfate attack together with carbonation and chloride ingress have been considered as the most serious deterioration mechanisms of concrete structures. Although Electrical Resistance Sensors and Fibre Optic Chemical Sensors could be used to monitoring the latter two mechanisms in situ, currently there is no system for monitoring the deterioration mechanisms of sulfate attack and hence still needs to be developed. In this paper, a preliminary study was carried out to investigate the feasibility of monitoring the sulfate attack with optical fibre Raman spectroscopy through characterizing the ettringite and gypsum formed in deteriorated cementitious materials under an `optical fibre excitation + spectroscopy objective collection' configuration. Bench-mounted Raman spectroscopy analysis was also used to validate the spectrum obtained from the fibre-objective configuration. The results showed that the expected Raman bands of ettringite and gypsum in the sulfate attacked cement paste have been clearly identified by the optical fibre Raman spectroscopy and are in good agreement with those identified from bench-mounted Raman spectroscopy. Therefore, based on these preliminary results, there is a good potential of developing an optical fibre Raman spectroscopy-based system for monitoring the deterioration mechanisms of concrete subjected to the sulfate attack in the future.

  8. Optical fibre spectroscopy sensor for the quantitative determination of industrial textile dyes

    NASA Astrophysics Data System (ADS)

    Cubillas, Ana M.; Conde, Olga M.; Anuarbe, Pedro; Gutierrez, Monica; Martinez, Vicente; Lopez-Higuera, Jose M.

    2009-10-01

    In this paper, an extrinsic optical fibre sensor (OFS) for the quantitative determination of dyes used in the textile industry is presented. The system proposed is based on absorption spectroscopy and multivariate calibration methods to infer the concentration of different textile dyes. The performance of the sensor has been successfully assessed using calibrated dyes, with a very good correlation between the multivariate calibration models and the predicted values. The sensor system here demonstrated could be used to predict the colour of dye mixtures during the dyebath and, therefore, reduce the manufacturing costs.

  9. Fibre Optics In Automobiles

    NASA Astrophysics Data System (ADS)

    Harmer, A. L.

    1984-08-01

    Optical fibres are used in three application areas in automobiles. Illumination of the dashboard is done with a single lamp and monofilament fibres or woven tapes which illuminate the front panel. Fibre-optic multiplexing can replace the conventional wiring harness. Different trial systems (two-fibre links, bidirectional transmission, star-coupled architecture) are reviewed. Problems still exist in component performance, high costs and unknown reliability of optoelectronic systems. Fibre-optics are also used in sensors; for headlight monitoring, liquid-level sensing and other applications.

  10. Detection of premature browning in ground beef with an integrated optical-fibre based sensor using reflection spectroscopy and fibre Bragg grating technology

    NASA Astrophysics Data System (ADS)

    O'Farrell, M.; Sheridan, C.; Lewis, E.; Zhao, W. Z.; Sun, T.; Grattan, K. T. V.; Kerry, J.; Jackman, N.

    2007-07-01

    This paper reports on an optical fibre based sensor system to detect the occurrence of premature browning in ground beef. Premature browning (PMB) occurs when, at a temperature below the pasteurisation temperature of 71°C, there are no traces of pink meat left in the patty. PMB is more frequent if poorer quality beef or beef that has been stored under imperfect conditions. The experimental work pertaining to this paper involved cooking fresh meat and meat that has been stored in a freezer for, 1 week, 1 month and 3 months and recording the reflected spectra and temperature at the core of the product, during the cooking process, in order to develop a classifier based on the spectral response and using a Self-Organising Map (SOM) to classify the patties into one of four categories, based on their colour. Further tests were also carried out on developing an all-optical fibre sensor for measuring both the temperature and colour in a single integrated probe. The integrated probe contains two different sensor concepts, one to monitor temperature, based on Fibre Bragg Grating (FBG) technology and a second for meat quality, based on reflection spectroscopy in the visible wavelength range.

  11. New generation of optical fibres

    SciTech Connect

    Dianov, E M; Semjonov, S L; Bufetov, I A

    2016-01-31

    The growing need for information in contemporary society is the motivating force behind the development of fibre optics in general and optical fibre communications in particular. Intensive research effort has been concentrated on designing new types of optical fibres and extending their application field. This paper reviews results of research on new types of optical fibres: bismuthdoped active fibres, multicore fibres and hollow-core fibres, which can be used as key components of systems that ensure further increase in optical information transfer rate. (invited paper)

  12. Unsupervised grouping of industrial textile dyes using K-means algorithm and optical fibre spectroscopy

    NASA Astrophysics Data System (ADS)

    Cubillas, Ana M.; Conde, Olga M.; Anuarbe, Pedro; Quintela, Antonio; Lopez-Higuera, Jose M.

    2010-09-01

    A method for the unsupervised clustering of optically thick textile dyes based on their spectral properties is demonstrated in this paper. The system utilizes optical fibre sensor techniques in the Ultraviolet-Visible-Near Infrared (UV-Vis-NIR) to evaluate the absorption spectrum and thus the colour of textile dyes. A multivariate method is first applied to calculate the optimum dilution factor needed to reduce the high absorbance of the dye samples. Then, the grouping algorithm used combines Principal Component Analysis (PCA), for data compression, and K-means for unsupervised clustering of the different dyes. The feasibility of the proposed method for textile applications is also discussed in the paper.

  13. Detection and quantification of additives (urea, biuret and poultry litter) in alfalfas by NIR spectroscopy with fibre-optic probe.

    PubMed

    González-Martín, Inmaculada; Hernández-Hierro, José Miguel

    2008-09-15

    The additives (urea, biuret and poultry litter) present in alfalfa, which contribute non-proteic nitrogen, were analysed using near infrared spectroscopy (NIRS) technology together with a remote reflectance fibre-optic probe. We used 75 samples of known alfalfa without additives and 75 samples with each of the additives, urea (0.01-10%), biuret (0.01-10%) and poultry litter (1-25%). Using the discriminant partial least squares (DPLS) algorithm, the presence or absence of the additives urea, biuret and poultry litter is classified and predicted with a high prediction rate of 96.9%, 100% and 100%, obtaining the equations of discrimination for each additive. The regression method employed for the quantification was modified partial least squares (MPLS). The equations were developed using the fibre-optic probe to determine the content of urea, biuret and poultry litter with multiple correlation coefficients (RSQ) and prediction corrected standard errors (SEP (C)) of 0.990, 0.28% for urea, 0.991, 0.29% for biuret and 0.925, 2.08% for poultry litter. The work permits the instantaneous and simultaneous prediction and determination of urea, biuret and poultry litter in alfalfas, applying the fibre-optic directly on the ground samples of alfalfa.

  14. Hollow core optical fibres made by glass billet extrusion as sensors for Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsiminis, G.; Schartner, E. P.; Hutchinson, M. R.; Ebendorff-Heidepriem, H.

    2016-12-01

    Optical fiber sensors for Raman spectroscopy based on hollow core optical fibers have shown great promise due to their low glass background, and high signal collection efficiency. We have previously demonstrated how glass billet extrusion can be used to make simplified hollow core fibers based on a single suspended ring. In this work we investigate the performance of these optical fibers as sensors for Raman spectroscopy. These fibers are used to excite samples at a range of laser excitation wavelengths to scan across the transmission profile of the optical fibers, allowing comparison of the performance of these fibers against commercially-available alternatives.

  15. Detection of atmospheric nitrogen dioxide using a miniaturised fibre-optic spectroscopy system and the ambient sunlight.

    PubMed

    Morales, J A; Walsh, J E

    2005-07-01

    A miniaturised fibre-optic spectrometer based system is presented for direct detection of one of the major atmospheric pollutants, nitrogen dioxide, by absorption spectroscopy using the ambient sunlight as light source. The detection system consists of a 10 cm collimator assembly, a fibre-optic cable and a portable diode-array spectrometer. The absorbance spectrum of the open-path is calculated using a reference spectrum recorded when the nitrogen dioxide (NO2) concentration in the atmosphere is low. The relative concentration of the pollutant is calculated normalising the detected spectra and subtracting the background broadband spectrum from the specific NO2 absorbance features, since the broadband spectrum changes according to atmospheric conditions and solar intensity. Wavelengths between 400 and 500 nm are used in order to maximise sensitivity and to avoid interference from other species. Calibration is carried out using Tedlar sample bags of known concentration of the pollutant. A commercial differential optical absorption spectroscopy (DOAS) system is used as a reference standard detection system to compare the results with the new system. Results show that detection of NO2 at typical urban atmospheric levels has been achieved using an inexpensive field based fibre-optic spectrometer and a readily available, easy to align, light source. In addition the new system can be used to get a semi-quantitative estimation of the nitrogen dioxide concentration within errors of 20%. While keeping the typical benefits of open-path techniques, the new system has important advantages over them such as cost, simplicity and portability.

  16. Fibre-optical microendoscopy.

    PubMed

    Gu, M; Bao, H; Kang, H

    2014-04-01

    Microendoscopy has been an essential tool in exploring micro/nano mechanisms in vivo due to high-quality imaging performance, compact size and flexible movement. The investigations into optical fibres, micro-scanners and miniature lens have boosted efficiencies of remote light delivery to sample site and signal collection. Given the light interaction with materials in the fluorescence imaging regime, this paper reviews two classes of compact microendoscopy based on a single fibre: linear optical microendoscopy and nonlinear optical microendoscopy. Due to the fact that fluorescence occurs only in the focal volume, nonlinear optical microendoscopy can provide stronger optical sectioning ability than linear optical microendoscopy, and is a good candidate for deep tissue imaging. Moreover, one-photon excited fluorescence microendoscopy as the linear optical microendoscopy suffers from severe photobleaching owing to the linear dependence of photobleaching rate on excitation laser power. On the contrary, nonlinear optical microendoscopy, including two-photon excited fluorescence microendoscopy and second harmonic generation microendoscopy, has the capability to minimize or avoid the photobleaching effect at a high excitation power and generate high image contrast. The combination of various nonlinear signals gained by the nonlinear optical microendoscopy provides a comprehensive insight into biophenomena in internal organs. Fibre-optical microendoscopy overcomes physical limitations of traditional microscopy and opens up a new path to achieve early cancer diagnosis and microsurgery in a minimally invasive and localized manner.

  17. Monitoring blood volume and saturation using superficial fibre optic reflectance spectroscopy during PDT of actinic keratosis.

    PubMed

    Middelburg, Tom A; Kanick, Stephen C; de Haas, Ellen R M; Sterenborg, Henricus J C M; Amelink, Arjen; Neumann, Martino H A M; Robinson, Dominic J

    2011-10-01

    Optically monitoring the vascular physiology during photodynamic therapy (PDT) may help understand patient-specific treatment outcome. However, diffuse optical techniques have failed to observe changes herein, probably by optically sampling too deep. Therefore, we investigated using differential path-length spectroscopy (DPS) to obtain superficial measurements of vascular physiology in actinic keratosis (AK) skin. The AK-specific DPS interrogation depth was chosen up to 400 microns in depth, based on the thickness of AK histology samples. During light fractionated aminolevulinic acid-PDT, reflectance spectra were analyzed to yield quantitative estimates of blood volume and saturation. Blood volume showed significant lesion-specific changes during PDT without a general trend for all lesions and saturation remained high during PDT. This study shows that DPS allows optically monitoring the superficial blood volume and saturation during skin PDT. The patient-specific variability supports the need for dosimetric measurements. In DPS, the lesion-specific optimal interrogation depth can be varied based on lesion thickness.

  18. Simulation of complex phenomena in optical fibres

    NASA Astrophysics Data System (ADS)

    Allington-Smith, Jeremy; Murray, Graham; Lemke, Ulrike

    2012-12-01

    Optical fibres are essential for many types of highly multiplexed and precision spectroscopy. The success of the new generation of multifibre instruments under construction to investigate fundamental problems in cosmology, such as the nature of dark energy, requires accurate modellization of the fibre system to achieve their signal-to-noise ratio (SNR) goals. Despite their simple construction, fibres exhibit unexpected behaviour including non-conservation of etendue (focal ratio degradation, FRD) and modal noise. Furthermore, new fibre geometries (non-circular or tapered) have become available to improve the scrambling properties that, together with modal noise, limit the achievable SNR in precision spectroscopy. These issues have often been addressed by extensive tests on candidate fibres and their terminations, but these are difficult and time-consuming. Modelling by ray tracing and wave analysis is possible with commercial software packages, but these do not address the more complex features, in particular FRD. We use a phase-tracking ray-tracing method to provide a practical description of FRD derived from our previous experimental work on circular fibres and apply it to non-standard fibres. This allows the relationship between scrambling and FRD to be quantified for the first time. We find that scrambling primarily affects the shape of the near-field pattern but has negligible effect on the barycentre. FRD helps to homogenize the near-field pattern but does not make it completely uniform. Fibres with polygonal cross-section improve scrambling without amplifying the FRD. Elliptical fibres, in conjunction with tapering, may offer an efficient means of image slicing to improve the product of resolving power and throughput, but the result is sensitive to the details of illumination. We also investigated the performance of fibres close to the limiting numerical aperture since this may affect the uniformity of the SNR for some prime focus fibre instrumentation.

  19. Application of Raman spectroscopy to forensic fibre cases.

    PubMed

    Lepot, L; De Wael, K; Gason, F; Gilbert, B

    2008-09-01

    Five forensic fibre cases in which Raman spectroscopy proved to be a good complementary method for microspectrophotometry (MSP) are described. Absorption spectra in the visible range are indeed sometimes characteristic ofa certain dye but this one can be subsequently identified unambiguously by Raman spectroscopy using a spectral library. In other cases the comparison of Raman spectra of reference fibres and suspect fibres led to an improvement of the discrimination power. The Raman measurements have been performed directly on mounted fibres and the spectra showed only little interference from the mounting resin and glass. Raman spectroscopy is therefore a powerful method that can be applied in routine fibre analysis following optical microscopy and MSP measurements.

  20. Whispering-gallery waves in optical fibres

    SciTech Connect

    Sychugov, V A; Torchigin, V P; Tsvetkov, M Yu

    2002-08-31

    The process of excitation of whispering-gallery waves (WGWs) in optical fibres (microcavities) with the help of a bitapered fibre is analysed. It is shown that useful information on the WGW modes can be obtained from the spectrograms recorded by scanning the exciting-radiation frequency. Based on the geometrical-optic approximation, the longitudinal sizes of the WGW modes are estimated and it is shown that the ultimate diameter of the fibre exists for optical fibres (microcavities) where a mode can be still excited with the help of a bitapered fibre. (fibre optics. optical fibres)

  1. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy.

    PubMed

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-06-15

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.

  2. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy

    PubMed Central

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-01-01

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident. PMID:27301319

  3. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-06-01

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.

  4. Optical fibre gas detections systems

    NASA Astrophysics Data System (ADS)

    Culshaw, Brian

    2016-05-01

    This tutorial review covers the principles of and prospects for fibre optic sensor technology in gas detection. Many of the potential benefits common to fibre sensor technology also apply in the context of gas sensing - notably long distance - many km - access to multiple remote measurement points; invariably intrinsic safety; access to numerous important gas species and often uniquely high levels of selectivity and/or sensitivity. Furthermore, the range of fibre sensor network architectures - single point, multiple point and distributed - enable unprecedented flexibility in system implementation. Additionally, competitive technologies and regulatory issues contribute to final application potential.

  5. Multiplexing fibre optic near infrared (NIR) spectroscopy as an emerging technology to monitor industrial bioprocesses.

    PubMed

    Roychoudhury, Payal; O'Kennedy, Ronan; McNeil, Brian; Harvey, Linda M

    2007-05-02

    The application of near infrared spectroscopy in bioprocessing has been limited by its dependence on calibrations derived from single bioreactor at a given time. Here, we propose a multiplexed calibration technique which allows calibrations to be built from multiple bioreactors run in parallel. This gives the flexibility to monitor multiple vessels and facilitates calibration model transfer between bioreactors. Models have been developed for the two key analytes: glucose and lactate using Chinese hamster ovary (CHO) cell lines and using analyte specific information obtained from the feasibility studies. We observe slight model degradation for the multiplexed models in comparison to the conventional (single probe) models, decrease in r(2) values from 89.4% to 88% for glucose whereas for lactate from 92% to 91.8% and a simultaneous increase in the number of factors as the model incorporates the inter-probe variability, nevertheless the models were fit for purpose. The results of this particular application of implementing multiplexed-NIRS to monitor multiple bioreactor vessels are very encouraging, as successful models have been built on-line and validated externally, which proffers the prospect of reducing timelines in monitoring the vessels considerably, and in turn, providing improved control.

  6. Non-destructive analysis of museum objects by fibre-optic Raman spectroscopy

    PubMed Central

    Tate, Jim; Moens, Luc

    2006-01-01

    Raman spectroscopy is a versatile technique that has frequently been applied for the investigation of art objects. By using mobile Raman instrumentation it is possible to investigate the artworks without the need for sampling. This work evaluates the use of a dedicated mobile spectrometer for the investigation of a range of museum objects in museums in Scotland, including antique Egyptian sarcophagi, a panel painting, painted surfaces on paper and textile, and the painted lid and soundboard of an early keyboard instrument. The investigations of these artefacts illustrate some analytical challenges that arise when analysing museum objects, including fluorescing varnish layers, ambient sunlight, large dimensions of artefacts and the need to handle fragile objects with care. Analysis of the musical instrument (the Mar virginals) was undertaken in the exhibition gallery, while on display, which meant that interaction with the public and health and safety issues had to be taken into account. Experimental set-up for the non-destructive Raman spectroscopic investigation of a textile banner in the National Museums of Scotland PMID:16953310

  7. Non-destructive analysis of museum objects by fibre-optic Raman spectroscopy.

    PubMed

    Vandenabeele, Peter; Tate, Jim; Moens, Luc

    2007-02-01

    Raman spectroscopy is a versatile technique that has frequently been applied for the investigation of art objects. By using mobile Raman instrumentation it is possible to investigate the artworks without the need for sampling. This work evaluates the use of a dedicated mobile spectrometer for the investigation of a range of museum objects in museums in Scotland, including antique Egyptian sarcophagi, a panel painting, painted surfaces on paper and textile, and the painted lid and soundboard of an early keyboard instrument. The investigations of these artefacts illustrate some analytical challenges that arise when analysing museum objects, including fluorescing varnish layers, ambient sunlight, large dimensions of artefacts and the need to handle fragile objects with care. Analysis of the musical instrument (the Mar virginals) was undertaken in the exhibition gallery, while on display, which meant that interaction with the public and health and safety issues had to be taken into account. Experimental set-up for the non-destructive Raman spectroscopic investigation of a textile banner in the National Museums of Scotland.

  8. Tapered optical fibres for sensing

    NASA Astrophysics Data System (ADS)

    Martan, Tomas; Kanka, Jiri; Kasik, Ivan; Matejec, Vlastimil

    2008-11-01

    Recently, optical fibre tapers have intensively been investigated for many applications e.g. in telecommunications, medicine and (bio-) chemical sensing. The paper deals with enhancement of evanescent-field sensitivity of the solid-core microstructured fibre with steering-wheel air-cladding. Enhancement of a performance of the microstructured fibre is based on reduction of fibre core diameter down to narrow filament by tapering thereby defined part of light power is guided by an evanescent wave traveling in axial cladding air holes. The original fibre structure with outer diameter of 125 µm was reduced 2×, 2.5×, 3.33×, and 4× for increasing relatively small intensity overlap of guided core mode at wavelength of 1.55 μm with axial air holes. The inner structures of tapered microstructured fibre with steering-wheel aircladding were numerically analyzed and mode intensity distributions were calculated using the FDTD technique. Analyzed fiber tapers were prepared by constructed fibre puller employing 'flame brush technique'.

  9. Near-infrared spectroscopy (NIRS) with a fibre-optic probe for the prediction of the amino acid composition in animal feeds.

    PubMed

    González-Martín, Inmaculada; Alvarez-García, Noelia; González-Cabrera, José Miguel

    2006-05-15

    The amino acids alanine, aspartic acid, glutamic acid, glycine, phenylalanine, valine, lysine, proline, and tyrosine present in feeds with different textures (blocks, tablets, granules and flour (meal) and used in different stages of animal feeding regimes (lactation, growth, maintenance, etc.) were analysed using near-infrared reflectance spectroscopy (NIRS) technology together with a remote reflectance fibre-optic probe. The method allows immediate control of the animal feeds without prior sample treatment or destruction through direct application of the fibre-optic probe on the sample. The regression method used was Modified Partial Least Squares (MPLS). The equations developed to determine the amino acid contents of the feeds afforded high values for the RSQ coefficient (0.814-0.963) in all the amino acids with the exception of lysine (0.687). The statistical prediction descriptors SEP, SEP(C) (with values between 0.134 for valine and 0.015 for aspartic acid) and bias indicated that the amino acid values in feeds predicted with NIRS with a fibre optic probe are comparable to those obtained with the chemical ion-exchange HPLC method.

  10. Portable smartphone optical fibre spectrometer

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2015-09-01

    A low cost, optical fibre based spectrometer has been developed on a smartphone platform for field-portable spectral analysis. Light of visible wavelength is collected using a multimode optical fibre and diffracted by a low cost nanoimprinted diffraction grating. A measurement range over 300 nm span (λ = 400 to 700 nm) is obtained using the smartphone CMOS chip. The spectral resolution is Δλ ~ 0.42 nm/screen pixel. A customized Android application processed the spectra on the same platform and shares with other devices. The results compare well with commercially available spectrometer.

  11. Threshold temperature optical fibre sensors

    NASA Astrophysics Data System (ADS)

    Stasiewicz, K. A.; Musial, J. E.

    2016-12-01

    This paper presents a new approach to manufacture a threshold temperature sensor based on a biconical optical fibre taper. The presented sensor employs the influence of variable state of concentration of some isotropic materials like wax or paraffin. Application of the above- mentioned materials is an attempt to prove that there is a possibility to obtain a low-cost, repeatable and smart sensor working as an in-line element. Optical fibre taper was obtained from a standard single mode fibre (SMF28®) by using a low pressure gas burner technique. The diameter of the manufactured tapers was 6.0 ± 0.5 μm with the length of elongation equal to 30.50 ± 0.16 mm. The applied technology allowed to produce tapers with the losses of 0.183 ± 0.015 dB. Application of materials with different temperature transition points made it possible to obtain the threshold work at the temperatures connected directly with their conversion temperature. External materials at the temperatures above their melting points do not influence the propagation losses. For each of them two types of the protection area and position of the optical fibre taper were applied.

  12. Advanced materials and techniques for fibre-optic sensing

    NASA Astrophysics Data System (ADS)

    Henderson, Philip J.

    2014-06-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  13. The optical frequency comb fibre spectrometer.

    PubMed

    Coluccelli, Nicola; Cassinerio, Marco; Redding, Brandon; Cao, Hui; Laporta, Paolo; Galzerano, Gianluca

    2016-10-03

    Optical frequency comb sources provide thousands of precise and accurate optical lines in a single device enabling the broadband and high-speed detection required in many applications. A main challenge is to parallelize the detection over the widest possible band while bringing the resolution to the single comb-line level. Here we propose a solution based on the combination of a frequency comb source and a fibre spectrometer, exploiting all-fibre technology. Our system allows for simultaneous measurement of 500 isolated comb lines over a span of 0.12 THz in a single acquisition; arbitrarily larger span are demonstrated (3,500 comb lines over 0.85 THz) by doing sequential acquisitions. The potential for precision measurements is proved by spectroscopy of acetylene at 1.53 μm. Being based on all-fibre technology, our system is inherently low-cost, lightweight and may lead to the development of a new class of broadband high-resolution spectrometers.

  14. The optical frequency comb fibre spectrometer

    NASA Astrophysics Data System (ADS)

    Coluccelli, Nicola; Cassinerio, Marco; Redding, Brandon; Cao, Hui; Laporta, Paolo; Galzerano, Gianluca

    2016-10-01

    Optical frequency comb sources provide thousands of precise and accurate optical lines in a single device enabling the broadband and high-speed detection required in many applications. A main challenge is to parallelize the detection over the widest possible band while bringing the resolution to the single comb-line level. Here we propose a solution based on the combination of a frequency comb source and a fibre spectrometer, exploiting all-fibre technology. Our system allows for simultaneous measurement of 500 isolated comb lines over a span of 0.12 THz in a single acquisition; arbitrarily larger span are demonstrated (3,500 comb lines over 0.85 THz) by doing sequential acquisitions. The potential for precision measurements is proved by spectroscopy of acetylene at 1.53 μm. Being based on all-fibre technology, our system is inherently low-cost, lightweight and may lead to the development of a new class of broadband high-resolution spectrometers.

  15. The optical frequency comb fibre spectrometer

    PubMed Central

    Coluccelli, Nicola; Cassinerio, Marco; Redding, Brandon; Cao, Hui; Laporta, Paolo; Galzerano, Gianluca

    2016-01-01

    Optical frequency comb sources provide thousands of precise and accurate optical lines in a single device enabling the broadband and high-speed detection required in many applications. A main challenge is to parallelize the detection over the widest possible band while bringing the resolution to the single comb-line level. Here we propose a solution based on the combination of a frequency comb source and a fibre spectrometer, exploiting all-fibre technology. Our system allows for simultaneous measurement of 500 isolated comb lines over a span of 0.12 THz in a single acquisition; arbitrarily larger span are demonstrated (3,500 comb lines over 0.85 THz) by doing sequential acquisitions. The potential for precision measurements is proved by spectroscopy of acetylene at 1.53 μm. Being based on all-fibre technology, our system is inherently low-cost, lightweight and may lead to the development of a new class of broadband high-resolution spectrometers. PMID:27694981

  16. Colourimetric solid-phase extraction coupled with fibre optic reflectance spectroscopy for determination of ascorbic acid in pharmaceutical formulations.

    PubMed

    Filik, Hayati; Aksu, Duygu; Giray, Derya; Apak, Reşat

    2012-06-01

    A redox colourimetric solid-phase extraction (C-SPE) procedure for the determination of ascorbic acid (AA) in pharmaceutical formulations was proposed. Iron (III)-2,2'-dipyridyl (Fe(III)-Bpy) reagent solution was used as a colouring reagent for AA and the immobilization of the redox product onto Amberlite XAD-16 resin was achieved. The analyte in the sample reacted with a solid sorbent loaded with the colourimetric reagent (Fe(III)-Bpy) and then quantified directly on the sorbent surface by using a fibre optic reflectance spectrometer (FORS). The amount of AA was reflectometrically determined in a few seconds with a total sample workup and readout time of ∼10 min using only 10-ml sample volumes. The limit of detection (LOD) and quantification (LOQ) values were 0.18 and 0.6 mg L(-1), respectively, and the linear dynamic range for AA extended up to 8.8 mg L(-1). The C-SPE for different extractions (n = 5) gave a relative standard deviation (RSD) of 2.9% at 5.28 mg L(-1) AA level.

  17. Chemometric tool for identification of iron-gall inks by use of visible-near infrared fibre optic reflection spectroscopy.

    PubMed

    Gál, Lukáš; Čeppan, Michal; Reháková, Milena; Dvonka, Vladimír; Tarajčáková, Jarmila; Hanus, Jozef

    2013-11-01

    A method has been developed for identification of corrosive iron-gall inks in historical drawings and documents. The method is based on target-factor analysis of visible-near infrared fibre optic reflection spectra (VIS-NIR FORS). A set of reference spectra was obtained from model samples of laboratory-prepared inks covering a wide range of mixing ratios of basic ink components deposited on substrates and artificially aged. As criteria for correspondence of a studied spectrum with a reference spectrum, the apparent error in target (AET) and the empirical function SPOIL according to Malinowski were used. The capability of the proposed tool to distinguish corrosive iron-gall inks from bistre and sepia inks was evaluated by use of a set of control samples of bistre, sepia, and iron-gall inks. Examples are presented of analysis of historical drawings from the 15th and 16th centuries and written documents from the 19th century. The results of analysis based on the tool were confirmed by XRF analysis and colorimetric spot analysis.

  18. In-situ process and condition monitoring of advanced fibre-reinforced composite materials using optical fibre sensors

    NASA Astrophysics Data System (ADS)

    Doyle, C.; Martin, A.; Liu, T.; Wu, M.; Hayes, S.; Crosby, P. A.; Powell, G. R.; Brooks, D.; Fernando, G. F.

    1998-04-01

    This paper presents a general overview of a number of optical fibre sensor systems which have been developed and used in advanced fibre-reinforced composites for in-situ process and condition monitoring. The in-situ process monitoring techniques were optical-fibre-based evanescent wave spectroscopy, transmission near-infrared spectroscopy and refractive index monitoring. The optical fibre sensors were successful in tracking the cure reaction. The condition monitoring of advanced fibre-reinforced composites was carried out using two intensity-based optical fibre sensor systems: an extrinsic multi-mode Fabry-Pérot sensor and Bragg gratings. In addition to this, the feasibility of using the reinforcing fibre as a light guide was demonstrated. These sensor systems were evaluated under quasi-static, impact and fatigue loading. The test specimens consisted of prepreg-based carbon-fibre-reinforced epoxy and glass-fibre-reinforced epoxy filament-wound tubes. Excellent correlation was obtained between surface-mounted strain gauges and the embedded optical fibre sensors. The feasibility of using these sensor systems for the detection of impact damage and stiffness reduction in the composite due to fatigue damage was successfully demonstrated.

  19. The application of in situ mid-FTIR fibre-optic reflectance spectroscopy and GC-MS analysis to monitor and evaluate painting cleaning

    NASA Astrophysics Data System (ADS)

    Kahrim, Kenza; Daveri, Alessia; Rocchi, Paola; de Cesare, Grazia; Cartechini, Laura; Miliani, Costanza; Brunetti, B. G.; Sgamellotti, A.

    2009-12-01

    The development of non-invasive methodologies and portable instrumentation for in situ studies has been subject to great research and development in recent years in the field of conservation science. Despite such interest, very few reported studies employ these versatile techniques in the monitoring of cleaning treatments. This paper describes the application of mid-FTIR fibre-optic reflectance spectroscopy to monitor and evaluate the cleaning treatment of an oil painting using the chelating agent, triammonium citrate, a task undertaken in close collaboration with the painting conservator. Results obtained on site verify the removal of calcium oxalate and an organic component from the surface of the painting, later identified as a terpenic varnish. The subsequent, in laboratory FTIR and GC-MS analysis of the cotton swabs employed during the cleaning treatment acts as an additional non-invasive manner to support the results obtained in situ by mid-FTIR spectroscopy and to better understand the mechanism of the chosen cleaning agent.

  20. A compact polymer optical fibre ultrasound detector

    NASA Astrophysics Data System (ADS)

    Broadway, Christian; Gallego, Daniel; Pospori, Andreas; Zubel, Michal; Webb, David J.; Sugden, Kate; Carpintero, Guillermo; Lamela, Horacio

    2016-03-01

    Polymer optical fibre (POF) is a relatively new and novel technology that presents an innovative approach for ultrasonic endoscopic applications. Currently, piezo electric transducers are the typical detectors of choice, albeit possessing a limited bandwidth due to their resonant nature and a sensitivity that decreases proportionally to their size. Optical fibres provide immunity from electromagnetic interference and POF in particular boasts more suitable physical characteristics than silica optical fibre. The most important of these are lower acoustic impedance, a reduced Young's Modulus and a higher acoustic sensitivity than single-mode silica fibre at both 1 MHz and 10 MHz. POF therefore offers an interesting alternative to existing technology. Intrinsic fibre structures such as Bragg gratings and Fabry-Perot cavities may be inscribed into the fibre core using UV lasers. These gratings are a modulation of the refractive index of the fibre core and provide the advantages of high reflectivity, customisable bandwidth and point detection. We present a compact in fibre ultrasonic point detector based upon a POF Bragg grating (POFBG) sensor. We demonstrate that the detector is capable of leaving a laboratory environment by using connectorised fibre sensors and make a case for endoscopic ultrasonic detection through use of a mounting structure that better mimics the environment of an endoscopic probe. We measure the effects of water immersion upon POFBGs and analyse the ultrasonic response for 1, 5 and 10 MHz.

  1. Optical Fibre Pressure Sensors in Medical Applications

    PubMed Central

    Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed

    2015-01-01

    This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas. PMID:26184228

  2. Laser-induced breakdown spectroscopy with multi-kHz fibre laser for mobile metal analysis tasks — A comparison of different analysis methods and with a mobile spark-discharge optical emission spectroscopy apparatus

    NASA Astrophysics Data System (ADS)

    Scharun, Michael; Fricke-Begemann, Cord; Noll, Reinhard

    2013-09-01

    The identification and separation of different alloys are a permanent task of crucial importance in the metal recycling industry. Laser-induced breakdown spectroscopy (LIBS) offers important advantages in comparison to the state-of-the-art techniques for this application. For LIBS measurement no additional sample preparation is necessary. The overall analysis time is much smaller than for the state-of-the-art techniques. The LIBS setup presented in this study enables mobile operation with a handheld probe for the analysis of metallic materials. Excitation source is a fibre laser with a repetition rate of 30 kHz and a pulse energy of 1.33 mJ. The compact optical setup allows measurements at almost every point of a sample within 5 ms. The generated plasma light is analysed using a Multi-CCD spectrometer. The broad spectral coverage and high resolution provide an outstanding amount of spectroscopic information thereby enabling a variety of calibration approaches. Using a set of Al-based and a set of Fe-based samples the analytical performance of uni- and multivariate calibrations is evaluated. The same sample sets are analysed with a commercial state-of-the-art spark-discharge optical emission spectrometer allowing an assessment of the achieved results. Even though the possible analytical correctness of the fibre laser based LIBS measurements is found to similar or even better than that of the conventional technique, advantages of the multivariate data evaluation have not yet been realised in the investigations. However, due to the in situ sample preparation and short measurement times, fibre-laser based LIBS offers superior features.

  3. Fibre-optic sensors in health care

    NASA Astrophysics Data System (ADS)

    Grazia Mignani, Anna; Baldini, Francesco

    1997-05-01

    Biomedical fibre-optic sensors are attractive for the measurement of physical, chemical and biochemical parameters and for spectral measurements directly performed on the patient. An overview of fibre-optic sensors for in vivo monitoring is given, with particular attention paid to the advantages that these sensors are able to offer in different application fields such as cardiovascular and intensive care, angiology, gastroenterology, ophthalmology, oncology, neurology, dermatology and dentistry.

  4. Erbium-doped aluminophosphosilicate optical fibres

    SciTech Connect

    Likhachev, M E; Bubnov, M M; Zotov, K V; Medvedkov, O I; Lipatov, D S; Yashkov, M V; Gur'yanov, Aleksei N

    2010-09-10

    We have studied the active properties of erbium-doped aluminophosphosilicate (APS) core fibres in wide ranges of erbia, alumina and phosphorus pentoxide concentrations. The absorption and luminescence spectra of the P{sub 2}O{sub 5}- or Al{sub 2}O{sub 3}-enriched erbium-doped APS fibres are shown to be similar to those of the erbium-doped fibres singly doped with phosphorus pentoxide or alumina, respectively. The formation of AlPO{sub 4} in APS fibres leads not only to a reduction in the refractive index of the glass but also to a marked increase in Er{sub 2}O{sub 3} solubility in silica. (optical fibres)

  5. Fibre-optic nonlinear optical microscopy and endoscopy.

    PubMed

    Fu, L; Gu, M

    2007-06-01

    Nonlinear optical microscopy has been an indispensable laboratory tool of high-resolution imaging in thick tissue and live animals. Rapid developments of fibre-optic components in terms of growing functionality and decreasing size provide enormous opportunities for innovations in nonlinear optical microscopy. Fibre-based nonlinear optical endoscopy is the sole instrumentation to permit the cellular imaging within hollow tissue tracts or solid organs that are inaccessible to a conventional optical microscope. This article reviews the current development of fibre-optic nonlinear optical microscopy and endoscopy, which includes crucial technologies for miniaturized nonlinear optical microscopy and their embodiments of endoscopic systems. A particular attention is given to several classes of photonic crystal fibres that have been applied to nonlinear optical microscopy due to their unique properties for ultrashort pulse delivery and signal collection. Furthermore, fibre-optic nonlinear optical imaging systems can be classified into portable microscopes suitable for imaging behaving animals, rigid endoscopes that allow for deep tissue imaging with minimally invasive manners, and flexible endoscopes enabling imaging of internal organs. Fibre-optic nonlinear optical endoscopy is coming of age and a paradigm shift leading to optical microscope tools for early cancer detection and minimally invasive surgery.

  6. Twin-hollow-core optical fibres

    NASA Astrophysics Data System (ADS)

    Argyros, Alexander; Leon-Saval, Sergio G.; van Eijkelenborg, Martijn A.

    2009-05-01

    Twin-hollow-core microstructured optical fibres have been fabricated and characterised for the first time. The fibre cladding structure results in guidance by the inhibited coupling mechanism, in which there is a low overlap between the core modes and surrounding structure. This results in minimal interaction between the modes of each core in the transmission bands of the fibre and hence minimal coupling between the cores. It is shown that light is able to couple between the cores via coupling to cladding struts in the high loss wavelength bands.

  7. REVIEW OF METHODS OF OPTICAL GAS Detection by Direct Optical Spectroscopy, with Emphasis on Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dakin, John P.; Chambers, Paul

    This chapter reviews the development of optical gas sensors, starting with an initial emphasis on optical-fibre remoted techniques and finishing with a particular focus on our own group's work on highly selective methods using correlation spectroscopy. This latter section includes extensive theoretical modelling of a correlation spectroscopy method, and compares theory with practice for a CO2 sensor.

  8. OPTICAL FIBRES Experimental and theoretical study of optical losses in straight and bent Bragg fibres

    NASA Astrophysics Data System (ADS)

    Aleshkina, S. S.; Likhachev, M. E.; Uspenskii, Yurii A.; Bubnov, M. M.

    2010-12-01

    The leakage loss in straight and bent Bragg fibres has been studied experimentally and theoretically using five fibres differing in the core diameter, the number of layers in the Bragg mirror and their refractive indices. Simple analytical formulas have been derived within ray-optics theory which describe leakage and bending losses. The optical loss calculated using these formulas agrees well with our experimental data. Analysis of the theoretical and experimental results enables us to assess the effect of parameters of the waveguiding system on the optical loss in straight and bent fibres.

  9. Nonlinear optics of fibre event horizons.

    PubMed

    Webb, Karen E; Erkintalo, Miro; Xu, Yiqing; Broderick, Neil G R; Dudley, John M; Genty, Goëry; Murdoch, Stuart G

    2014-09-17

    The nonlinear interaction of light in an optical fibre can mimic the physics at an event horizon. This analogue arises when a weak probe wave is unable to pass through an intense soliton, despite propagating at a different velocity. To date, these dynamics have been described in the time domain in terms of a soliton-induced refractive index barrier that modifies the velocity of the probe. Here we complete the physical description of fibre-optic event horizons by presenting a full frequency-domain description in terms of cascaded four-wave mixing between discrete single-frequency fields, and experimentally demonstrate signature frequency shifts using continuous wave lasers. Our description is confirmed by the remarkable agreement with experiments performed in the continuum limit, reached using ultrafast lasers. We anticipate that clarifying the description of fibre event horizons will significantly impact on the description of horizon dynamics and soliton interactions in photonics and other systems.

  10. Fabrication of Polymer Optical Fibre (POF) Gratings

    PubMed Central

    Luo, Yanhua; Yan, Binbin; Zhang, Qijin; Peng, Gang-Ding; Wen, Jianxiang; Zhang, Jianzhong

    2017-01-01

    Gratings inscribed in polymer optical fibre (POF) have attracted remarkable interest for many potential applications due to their distinctive properties. This paper overviews the current state of fabrication of POF gratings since their first demonstration in 1999. In particular we summarize and discuss POF materials, POF photosensitivity, techniques and issues of fabricating POF gratings, as well as various types of POF gratings. PMID:28273844

  11. EDITORIAL: Optical Fibre Sensors 18 (OFS-18)

    NASA Astrophysics Data System (ADS)

    Jones, Julian D. C.; Tatam, Ralph P.

    2007-10-01

    The International Conference on Optical Fibre Sensors (OFS-18) was held in October 2006 in Cancún, Mexico, under the general chairmanship of Dr Alexis Mendez (MCH Engineering LLC, USA) and Dr Fernando Mendoza (Centro de Investigaciones en Optica, Mexico). 'OFS', as it has become known, is firmly established as the leading international conference for the optical fibre sensor community. Since its inception, in London in 1983, and under the leadership of an international steering committee independent of any learned society or professional institution, it has been held approximately every eighteen months. The venue nominally rotates from Europe, to the Americas, and thence to Asia and the Pacific. OFS-18 demonstrated the continuing vigour of the community, with some 250 papers presented, plus two workshops, with attendance as international as ever. In recent years, it has become a tradition to publish a post-conference special issue in the journal Measurement Science and Technology, and these special issues offer a representative sample of the current status of the field. In the nearly 25 years since OFS began, many of the early ideas and laboratory-based proof-of-principle experiments have led to highly developed instrumentation systems, and to successful commercial products. Perhaps the most mature of all of these technologies is the optical fibre gyroscope, with the fibre hydrophone a close second—originally developed for defence applications for which it is now established, but with increasing relevance to the oil and gas industry; electromagnetic sensors based on the Faraday and electro-optic effects are of growing significance in the power generation and distribution industry; whilst in-fibre grating-based sensors occupy an expanding niche in structural monitoring, especially in civil engineering. It is therefore appropriate that the first day of OFS was devoted to workshops on structural health monitoring, and to commemorate the 30th anniversary of the

  12. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre.

    PubMed

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-06-17

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the (1)S0-(3)P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time.

  13. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    PubMed Central

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  14. [INVITED] Developments in optical fibre sensors for industrial applications

    NASA Astrophysics Data System (ADS)

    Alwis, L.; Sun, T.; Grattan, K. T. V.

    2016-04-01

    It can be seen that optical fibre sensing technology has huge potential to address industrial applications. They offer various advantages over the conventional electrical systems and are increasingly becoming cost effective. Different types of fibre structure and configurations can be utilised to tailor specific applications. The paper aims to highlight the developments in optical fibre sensors for industrial applications.

  15. Simultaneous transfer of optical frequency and time over 306 km long-haul optical fibre link

    NASA Astrophysics Data System (ADS)

    Hucl, Vaclav; Cizek, Martin; Pravdova, Lenka; Rerucha, Simon; Hrabina, Jan; Mikel, Bretislav; Smotlacha, Vladimir; Vojtech, Josef; Lazar, Josef; Cip, Ondrej

    2016-12-01

    Optical fibre links for distributing optical frequencies and time stamps were researched and experimentally tested in the past fifteen years. They have been used mainly for stability comparison of experimental optical clocks. But recent development puts demands on a technology transfer from laboratory experiments to the real industry. The remote calibration of interrogators of Fibre Bragg Grating strain sensory networks is one of important examples. The first step of the adoption the time and frequency broadcasting should be the drop-out free long-term operation of this technology between research laboratories connected via long-haul fibre links. We present a 306 km long-haul optical fibre link between the cities of Prague and Brno in the Czech Republic where a coherent transfer of stable optical frequency and a stable time signal has been firstly demonstrated. The link between ISI CAS Brno and CESNET Prague uses an internet communication fibre where a window of 1540-1546 nm is dedicated for the coherent transfer and 1PPS signal. The link is equipped with 6 bidirectional EDFA amplifiers. The optical frequency standard based on the highly-coherent laser Koheras Adjustik working at 1540.5 nm and stabilized with a saturation absorption spectroscopy technique was used for the coherent wave transfer. The suppression of the Doppler shift induced by the optical fibre was based on an accoustooptical modulator with a servo-loop including a fast PID controller processing the beat-note frequency given by mixing of the Adjustik laser (Brno) and the reflected frequency of this laser from the far end of 306 km long-haul fibre link (Prague). We verified the Doppler shift suppression for the coherent wave with a measuring method analysing the transport delay of the 1PPS signal.

  16. Novel ultrahigh resolution optical fibre temperature sensor

    NASA Astrophysics Data System (ADS)

    Poeggel, Sven; Duraibabu, Dineshbabu; Dooly, Gerard; Lewis, Elfed; Leen, Gabriel

    2016-05-01

    In this paper a novel patent pending high resolution optical fibre temperature sensor, based on an optical fibre pressure and temperature sensor (OFTPS), which is surrounded by an oil filled chamber, is presented. The OFPTS is based on a Fabry Perot interferometer (FPI) which has an embedded fibre Bragg grating (FBG). The high ratio between the volume of the oil filled outer cavity and the FPIs air filled cavity, results in a highly sensitive temperature sensor. The FBG element of the device can be used for wide range temperature measurements, and combining this capability with the high resolution capability of the FPI/oil cavity results in a wide range and high resolution temperature sensing device. The outer diameter of the sensor is less than 1mm in diameter and can be designed to be even smaller. The sensors temperature response was measured in a range of ΔT = 7K and resulted in a shift in the optical spectrum of ΔλF = 61.42nm. Therefore the Q-point of the reflected optical FPI spectrum is shifting with a sensitivity of sot = 8.77 nm/K . The sensitivity can easily be further increased by changing the oil/air volumetric ratio and therefore adapt the sensor to a wide variety of applications.

  17. Generation of optical frequency combs in fibres: an optical pulse analysis

    NASA Astrophysics Data System (ADS)

    Zajnulina, Marina; Böhm, Michael; Blow, Keith; Chavez Boggio, José M.; Rieznik, Andres A.; Haynes, Roger; Roth, Martin M.

    2014-07-01

    The innovation of optical frequency combs (OFCs) generated in passive mode-locked lasers has provided astronomy with unprecedented accuracy for wavelength calibration in high-resolution spectroscopy in research areas such as the discovery of exoplanets or the measurement of fundamental constants. The unique properties of OCFs, namely a highly dense spectrum of uniformly spaced emission lines of nearly equal intensity over the nominal wavelength range, is not only beneficial for high-resolution spectroscopy. Also in the low- to medium-resolution domain, the OFCs hold the promise to revolutionise the calibration techniques. Here, we present a novel method for generation of OFCs. As opposed to the mode-locked laser-based approach that can be complex, costly, and difficult to stabilise, we propose an all optical fibre-based system that is simple, compact, stable, and low-cost. Our system consists of three optical fibres where the first one is a conventional single-mode fibre, the second one is an erbium-doped fibre and the third one is a highly nonlinear low-dispersion fibre. The system is pumped by two equally intense continuous-wave (CW) lasers. To be able to control the quality and the bandwidth of the OFCs, it is crucial to understand how optical solitons arise out of the initial modulated CW field in the first fibre. Here, we numerically investigate the pulse evolution in the first fibre using the technique of the solitons radiation beat analysis. Having applied this technique, we realised that formation of higherorder solitons is supported in the low-energy region, whereas, in the high-energy region, Kuznetsov-Ma solitons appear.

  18. Two-dimensional optical splitters with polymer optical fibre arrays

    NASA Astrophysics Data System (ADS)

    Wen, Fung Jacky; Sheun Chung, Po

    2007-07-01

    A novel approach for optical beam distribution into two-dimensional (2D) fibre arrays using 2D Dammann gratings is investigated. We report for the first time experimental results of a 2D optical power distribution into 2 × 2 polymer optical fibre arrays using a Dammann grating. This paper focuses on the design and fabrication of the diffractive optical element (DOE) along with investigating the coupling performance of the system. This grating may be applicable to a fibre to the home (FTTH) network as it can support sufficient channels with good output uniformity together with low polarization-dependent loss (PDL). Using an appropriate optimization algorithm, the optimum profile for the Dammann gratings can be calculated. The gratings are then fabricated on indium-doped tin oxide (ITO) glass using electron-beam lithography. This method shows that it can achieve low PDL and good uniformity together with acceptable insertion loss.

  19. Fibre Optic Sensors for Selected Wastewater Characteristics

    PubMed Central

    Chong, Su Sin; Abdul Aziz, A. R.; Harun, Sulaiman W.

    2013-01-01

    Demand for online and real-time measurements techniques to meet environmental regulation and treatment compliance are increasing. However the conventional techniques, which involve scheduled sampling and chemical analysis can be expensive and time consuming. Therefore cheaper and faster alternatives to monitor wastewater characteristics are required as alternatives to conventional methods. This paper reviews existing conventional techniques and optical and fibre optic sensors to determine selected wastewater characteristics which are colour, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). The review confirms that with appropriate configuration, calibration and fibre features the parameters can be determined with accuracy comparable to conventional method. With more research in this area, the potential for using FOS for online and real-time measurement of more wastewater parameters for various types of industrial effluent are promising. PMID:23881131

  20. Gallium arsenide deep-level optical emitter for fibre optics.

    PubMed

    Pan, Janet L; McManis, Joseph E; Osadchy, Thomas; Grober, Louise; Woodall, Jerry M; Kindlmann, Peter J

    2003-06-01

    Fibre-optic components fabricated on the same substrate as integrated circuits are important for future high-speed communications. One industry response has been the costly push to develop indium phosphide (InP) electronics. However, for fabrication simplicity, reliability and cost, gallium arsenide (GaAs) remains the established technology for integrated optoelectronics. Unfortunately, the GaAs bandgap wavelength (0.85 microm) is far too short for fibre optics at 1.3-1.5 microm. This has led to work on materials that have a large lattice mismatch on GaAs. Here we demonstrate the first light-emitting diode (LED) that emits at 1.5 microm fibre-optic wavelengths in GaAs using optical transitions from arsenic antisite (As(Ga)) deep levels. This is an enabling technology for fibre-optic components that are lattice-matched to GaAs integrated circuits. We present experimental results showing significant internal optical power (24 mW) and speed (in terahertz) from GaAs optical emitters using deep-level transitions. Finally, we present theory showing the ultimate limit to the efficiency-bandwidth product of semiconductor deep-level optical emitters.

  1. Fibre optic sensor with disturbance localization in one optical fibre

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Ciurapinski, W.

    2007-05-01

    Ordinary perimeter security systems consist of many individual sensors with detection range 200-300 meters. These limitations are connected with physical phenomena that are used in microwave and infrared barriers as well as in ground and fence cable sensors. On the contrary, fiber optic perimeter sensors can be applied in the range of many kilometers and zone length 200-300 meters is degradation of their possibilities. This paper presents investigation results of a new generation of the fiber optic perimeter sensor in a two Sagnac and Sagna'c interferometers configuration. This system can detect a potential intruder and determine its position along a protected zone. We propose a method that makes use of the inherent properties of both interferometers. After demodulation of signals from both interferometers, obtained amplitude characteristic of the Sagnac interferometer depends on position of a disturbance along the both interferometer. So, quotient of both demodulated characteristics is proportional to the position of the disturbance. Arrangement of a laboratory model of the sensor and its signal processing scheme is presented. During research of a laboratory model, it was possible to detect the position of the disturbance with resolution of about 50m along a 10-km long sensor.

  2. Determination of the percentage of milk (cow's, ewe's and goat's) in cheeses with different ripening times using near infrared spectroscopy technology and a remote reflectance fibre-optic probe.

    PubMed

    González-Martín, I; Hernández-Hierro, J M; Morón-Sancho, R; Salvador-Esteban, J; Vivar-Quintana, A; Revilla, I

    2007-12-05

    In the present work we studied the use of near infrared spectroscopy (NIRS) technology employing a remote reflectance fibre-optic probe (with a 5 cm x 5 cm quartz window) for the analysis of the percentage of milk (cow's, ewe's and goat's) used in the elaboration of cheeses with different ripening times. To do so, cheeses with known and varying percentages of cow's, ewe's and goat's milk were elaborated (112 samples with milk collected in winter and 112 samples with milk collected in summer) and used as reference material, and ripening controls were performed over 6 months. The method allows immediate control of the cheese without prior sample treatment or destruction by direct application of the fibre-optic probe to the sample. The regression method employed was modified partial least squares (MPLS). Of all the samples (224), 200 formed to so-called calibration set and the other 24 were used for external validation. The calibration results obtained using 200 samples of cheese allowed the percentage of cow's, ewe's and goat's milk to be measured. The multiple correlation coefficients (RSQ) and prediction corrected standard errors (SEP(C)) obtained were respectively, 0.834 and 11.6% for cow's milk; 0.871 and 9.8% for goat's milk; 0.880 and 10.6% for ewe's milk. The ratio performance deviation (RPD) values obtained indicate that the NIRS equations can be applied to unknown samples.

  3. Fibre Optic Sensors for Heat Transfer Studies.

    NASA Astrophysics Data System (ADS)

    Sinha, Pranay G.

    Available from UMI in association with The British Library. This thesis describes the design and development of a prototype sensor, based on a miniature optical fibre Fabry-Perot interferometer, for heat transfer studies on model turbomachinery components in transient flow wind tunnels. These sensors overcome a number of difficulties which are often encountered in using conventional electrical thin-film resistance gauges such as in the measurement of rapidly varying heat transfer rates, spatial resolution, electromagnetic interference, calibration and signal processing. The special features of the optical sensor are: (i) short length (<5 mm), and therefore embeddable in thin structures of model components; (ii) direct measurement of heat flux rates; (iii) calorimetric operation with temperature resolution of <25 mK over a measurement bandwidth of 100 kHz: (iv) capability of measuring heat flux <5 kWm^ {-2} with measurement range in excess of 10 MWm^{-2}; (v) temporal response time of <10 mus; (vi) minimal thermal disturbances because models are often made of ceramic materials with thermal properties similar to those of the optical fibre from which sensors are made; (vii) possibility of using in models with dissimilar thermal properties to the optical fibre, for example, metals; (viii) spatial resolution of <5 mu m; (ix) remote operation; (x) an ability to be multiplexed; and (xi) immunity to electromagnetic interference. A detailed discussion of the design considerations for the sensor, system development, evaluation of the sensor performance both in the laboratory and wind tunnel environments is presented in this thesis. The performance of the sensor compared favourably with electrical gauges namely, platinum thin-film resistance thermometers. A 4-sensor multiplexed system has been sucessfully operated, and is reported in the thesis. A brief discussion is also included to indicate that the same sensor design may be considered for applications in other engineering

  4. A fibre optic oxygen sensor for monitoring of human breathing

    NASA Astrophysics Data System (ADS)

    Chen, Rongsheng; Farmery, Andrew D.; Chen, Rui; Hahn, Clive E. W.

    2011-11-01

    A reliable and cost effective fibre optic oxygen sensor for monitoring of human breathing has been developed using a normal 200μm silica core/silica cladding optical fibre and a polymer sensing matrix. The fibre optic oxygen sensor is based on the fluorescence quenching of a fluorophore by oxygen. The sensing matrix, containing immobilized Pt(II) complexes, was coated at the end of the silica core/silica cladding optical fibre. The sensitivity and time response of the sensor were evaluated using the method of luminescence lifetime measurement. The polymer substrate influence on the time response of the sensor was improved by using a fibre taper design, and the response time of the optimized sensor was less than 200ms. This silica fibre based optic oxygen sensor is suitable for monitoring of patient breathing in intensive care unit in terms of safety and low cost.

  5. Fibre optic portable rail vehicle detector

    NASA Astrophysics Data System (ADS)

    Kepak, Stanislav; Cubik, Jakub; Zavodny, Petr; Hejduk, Stanislav; Nedoma, Jan; Davidson, Alan; Vasinek, Vladimir

    2016-12-01

    During track maintenance operations, the early detection of oncoming rail vehicles is critical for the safety of maintenance personnel. In addition, the detection system should be simple to install at the trackside by minimally qualified personnel. Fibre optic based sensor systems have the inherent advantages of being passive, unaffected by radio frequency interference (RFI) and suffering very low signal attenuation. Such a system therefore represents a good alternative to conventional approaches such as ultrasonic based sensor systems. The proposed system consists of one or more passive fibre trackside sensors and an x86 processing unit located at the work site. The solid fibre connection between sensors and processing unit eliminates the risk of RFI. In addition, the detection system sensors are easy to install with no requirement for electrical power at the sensor site. The system was tested on a tram line in Ostrava with the results obtained indicating the successful detection of all the trams in the monitoring windows using a single sensor. However, the platform allows flexibility in configuring multiple sensors where required by system users.

  6. Optical inclinometer based on fibre-taper-modal Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Amaral, L. M. N.; Frazão, O.; Santos, J. L.; Lobo Ribeiro, A. B.

    2010-09-01

    An inclinometer sensor based on optical fibre-taper-modal Michelson interferometer is demonstrated. The magnitude of the tilt (bending angle of the fibre taper interferometer) is obtained by passive interferometric interrogation based on the generation of two quadrature phase-shifted signals from two fibre Bragg gratings. Optical phase-to-rotation sensitivity of 1.13 rad/degree with a 14 mrad/√Hz resolution is achieved.

  7. Corrosion induced strain monitoring through fibre optic sensors

    NASA Astrophysics Data System (ADS)

    Grattan, S. K. T.; Basheer, P. A. M.; Taylor, S. E.; Zhao, W.; Sun, T.; Grattan, K. T. V.

    2007-10-01

    The use of strain sensors is commonplace within civil engineering. Fibre optic strain sensors offer a number of advantages over the current electrical resistance type gauges. In this paper the use of fibre optic strain sensors and electrical resistance gauges to monitor the production of corrosion by-products has been investigated and reported.

  8. Semiconductor optical fibres for infrared applications: A review

    NASA Astrophysics Data System (ADS)

    Peacock, Anna C.; Healy, Noel

    2016-10-01

    Over the last decade a new class of optical fibre has emerged that incorporates semiconductor materials within the core. These fibres are rich in optoelectronic functionality and offer extended transmission bands across the infrared spectral region so that their application potential is vast. Various fabrication methods have been developed to produce fibres with a range of unary and compound semiconductor core materials, which can be either amorphous or crystalline in form. This review discusses the main fabrication procedures and the infrared optical properties of the semiconductor fibres that have been fabricated to date, then takes a look at the future prospects of this exciting new technology.

  9. Modelling the extrusion of preforms for microstructured optical fibres

    NASA Astrophysics Data System (ADS)

    Tronnolone, Hayden; Stokes, Yvonne; Crowdy, Darren

    2013-11-01

    Owing to a novel design, microstructured optical fibres (MOFs) promise the realisation of fibres with effectively any desired optical properties. MOFs are typically constructed from glass and employ a series of air channels aligned along the fibre axis to form a waveguide. The construction of MOFs by first extruding a preform and then drawing this into the final fibre has the potential to produce fibres on an industrial scale; however, this is hindered by a limited understanding of the fluid flow that arises during this process. We focus on the extrusion stage of fabrication and discuss a model of the fibre evolution based upon complex-variable techniques. The relative influence of the various physical processes involved is discussed, along with limitations of the model.

  10. Flat Ge-doped optical fibres for food irradiation dosimetry

    NASA Astrophysics Data System (ADS)

    Noor, N. Mohd; Jusoh, M. A.; Razis, A. F. Abdull; Alawiah, A.; Bradley, D. A.

    2015-04-01

    Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.

  11. Flat Ge-doped optical fibres for food irradiation dosimetry

    SciTech Connect

    Noor, N. Mohd; Jusoh, M. A.; Razis, A. F. Abdull; Alawiah, A.; Bradley, D. A.

    2015-04-24

    Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.

  12. Optical fibre-coupled cryogenic radiometer with carbon nanotube absorber

    NASA Astrophysics Data System (ADS)

    Livigni, David J.; Tomlin, Nathan A.; Cromer, Christopher L.; Lehman, John H.

    2012-04-01

    A cryogenic radiometer was constructed for direct-substitution optical-fibre power measurements. The cavity is intended to operate at the 3 K temperature stage of a dilution refrigerator or 4.2 K stage of a liquid cryostat. The optical fibre is removable for characterization. The cavity features micromachined silicon centring rings to thermally isolate the optical fibre as well as an absorber made from micromachined silicon on which vertically aligned carbon nanotubes were grown. Measurements of electrical substitution, optical absorption and temperature change indicate that the radiometer is capable of measuring a power level of 10 nW with approximate responsivity of 155 nW K-1 and 1/e time constant of 13 min. An inequivalence between optical and electrical power of approximately 10% was found, but the difference was largely attributable to unaccounted losses in the optical fibre.

  13. OPTICAL FIBRES: Photoinduced and thermal reactions involving hydrogen in high-germania-core optical fibres

    NASA Astrophysics Data System (ADS)

    Rybaltovskii, A. O.; Koltashev, V. V.; Medvedkov, O. I.; Rybaltovsky, A. A.; Sokolov, V. O.; Klyamkin, Semen N.; Plotnichenko, V. G.; Dianov, Evgenii M.

    2008-12-01

    We report a Raman scattering study of photoinduced and thermal reactions between H2 and germanosilicate optical fibres with 22 mol % and 97 mol % GeO2 in the core (F1 and F2, respectively) after H2 loading at 150 MPa (1500 atm). The mechanisms of photoreactions are investigated in a wide range of incident laser wavelengths (244, 333, 354, 361 and 514 nm). Thermal reactions are studied at 500 °C. The results indicate that the main mechanism behind the formation of hydrogen-containing defects with Raman bands at 700, 750, 2190, 3600 and 3680 cm-1 involves ≡Ge—O—Ge≡ or ≡Ge—O—Si≡ bond breaking and formation of hydride and hydroxyl species: =GeH2 (700, 750 cm-1), ≡Ge—H (2190 cm-1), ≡GeO—H (3600 cm-1) and ≡SiO—H (3680 cm-1). The key features of the reactions in the F1 and F2 fibres are analysed. In particular, photoinduced reactions give ≡Si—OH groups only in the F1 fibres, whereas the formation of germanium nanoclusters at a relatively low temperature (~500 °C) or ≡GeO—H and ≡Ge—H defects under 514-nm irradiation has only been observed in the F2 fibres.

  14. Measurement of magnetic field using Rayleigh backscattering in optical fibres

    SciTech Connect

    Wuilpart, M.; Caucheteur, C.; Goussarov, A.; Aerssens, M.; Massaut, V.; Megret, P.

    2011-07-01

    In this paper, we investigate the use of optical reflectometry in optical fibres for the measurement of magnetic field. The dedicated application concerns the measurement of plasma current in the fusion reactor. The measurement is based on the rotation of the polarization state of the Rayleigh backscattered signal when an optical pulse is launched in the fibre. Particular care has been undertaken to evaluate the impact of linear birefringence on the measurement performance. (authors)

  15. High-temperature polyimide coating for optical fibres

    SciTech Connect

    Semjonov, S L; Dianov, E M; Sapozhnikov, D A; Erin, D Yu; Zabegaeva, O N; Kushtavkina, I A; Vygodskii, Ya S; Nishchev, K N

    2015-04-30

    We present our first results on the fabrication of new, high-performance polyimide coatings. The key components of the coatings are polyimides containing various cardo and/or fluoroalkylene groups, which allows the coatings to retain their high-temperature stability and facilitates the storage of the starting polymer and the optical fibre coating process owing to the good solubility of such copolymers in many organic solvents. Annealing for 30 s, 1 h and 24 h at temperatures of 430, 350 and 300 °C, respectively, reduces the strength of optical fibres having such coating by no more than 10%. (optical fibres)

  16. Optical fibres for high radiation dose environments

    NASA Astrophysics Data System (ADS)

    Henschel, H.; Kohn, O.; Schmidt, H. U.; Bawirzanski, E.; Landers, A.

    1994-06-01

    A variety of modern single mode (SM) and graded index (GI) fibres as well as a new pure silica multimode step index (MMSI) fibre with high OH content were irradiated at a Co-60 gamma ray source with a dose rate of approximately = 1.5Gy/s up to a total dose of 10(exp 6)Gy. The radiation-induced loss of all fibres was measured continuously during and after irradiation at discrete wavelengths (approximately = 850, approximately = 1070, approximately = 1300, approximately = 1550nm). With one SM fibre type also the 'breaking stress' before and after irradiation was determined. Radiation-induced losses of approximately less than 5dB/50m (at approximately = 1300nm) were found with some of the SM fibres, whereas the MMSI fibre showed a final induced loss of only 0.5dB/50m at 1070nm wavelength. The breaking stress of the SM fibre increased by about 10%.

  17. All-Optical Fibre Networks For Coal Mines

    NASA Astrophysics Data System (ADS)

    Zientkiewicz, Jacek K.

    1987-09-01

    A topic of the paper is fiber-optic integrated network (FOIN) suited to the most hostile environments existing in coal mines. The use of optical fibres for transmission of mine instrumentation data offers the prospects of improved safety and immunity to electromagnetic interference (EMI). The feasibility of optically powered sensors has opened up new opportunities for research into optical signal processing architectures. This article discusses a new fibre-optic sensor network involving a time domain multiplexing(TDM)scheme and optical signal processing techniques. The pros and cons of different FOIN topologies with respect to coal mine applications are considered. The emphasis has been placed on a recently developed all-optical fibre network using spread spectrum code division multiple access (COMA) techniques. The all-optical networks have applications in explosive environments where electrical isolation is required.

  18. Polarisation maintaining fibre with pure silica core and two depressed claddings for fibre optic gyroscope

    NASA Astrophysics Data System (ADS)

    Kurbatov, A. M.; Kurbatov, R. A.; Voloshin, V. V.; Vorob'ev, I. L.; Kolosovsky, A. O.

    2016-12-01

    Polarisation maintaining (PM) fibre is described with pure silica core and two depressed claddings for fibre optic gyro (FOG) sensing coil. Detailed mathematical simulation is presented by supermodes method, which is extremely necessary for such fibre. Simulation is fulfilled by frequency domain finite difference method (FDFDM), taking into account all details of realistic index profile with stress applying parts, while the leakage/bend loss occur in the region with complex index, surrounding the fibre. Cutoff and small bend loss are theoretically predicted and experimentally measured with excellent agreement between theory and experiment. Polarisation maintaining ability is measured in the form of conventional h-parameter (7.1·10-6 1/m) for 90-μm diameter fibre with birefringence value only 3.9·10-4.

  19. Fibre-Optic Endoscopy In Clinical Practice

    NASA Astrophysics Data System (ADS)

    Jourdan, Martin H.

    1985-08-01

    Man's curiosity has led him to seek methods of investigating the inner workings of the human body, but it is only recently that it has become possible to properly visualise the inner cavities of the human frame. Physiologists such as William Beaumont have occasionally had the opportunity to see the function of the gastrointestinal tract, in this case the gastric fistula of Alexis St Martin who was injured following an accidental firearm explosion. Rigid instruments, down which lights are shone, can be used to visualise the respiratory passages, the gullet, the rectum, and the bladder, and in the past artists were employed to record what was seen. Such instruments are still in use, although light from a powerful source is now conducted down the instrument using a fibreoptic bundle. The first semi-flexible instrument which could be inserted into the stomach and used to visualise its walls was developed by Schindler and Wolf in Germany in 1932. The optics consisted of a series of convex-lenses, transmitting an image back to the eye, but again the view obtained was limited and since its optics were side viewing, the gullet could not be viewed. The advent of fibre-optics revolutionised the situation, and the first fibrescope conducting the image up a fibreoptic bundle was a side-viewing instrument, developed by Hirschowitz, Curtiss, Peters and Pollard by 1958, and used for viewing the stomach. Since those pioneering days, the development of fibrescopes for viewing every potential cavity in the human body has proceeded in leaps and bounds.

  20. Micro fibre optic flow checker for the medical analysis application.

    PubMed

    Wang, Danping

    2007-01-01

    Two micro fibre optic flow checkers are presented in this paper. They are used for a medical analysis to control a solvent flow up to 1microl/min resolution. A fibre optic sensor as well as a hydraulic system are the principle components of these flow checkers. This paper describes the principle and the experiment setup. It gives the linearity, the repeatability and the stability results.

  1. Requirements On Fibre Optic Sensors For Wellhead Monitoring Subsea

    NASA Astrophysics Data System (ADS)

    Berg, Arne; Ellingsen, Reinold; Hordvik, Audun; Thingbo, Dag

    1986-01-01

    This paper presents the requirements on fibre optic sensors for subsea wellhead monitoring. A possible advantage of fibre optics is increased reliability of the monitoring system. However, to achieve this a substantial amount of development and testing has to be performed. A very important factor in the selection of sensor principles for further development is their possibility for success. New technologies have to solve problems and not increase the probability for failures.

  2. Sensitivity of a fibre scattered-light interferometer to external phase perturbations in an optical fibre

    SciTech Connect

    Alekseev, A E; Potapov, V T; Gorshkov, B G

    2015-10-31

    Sensitivity of a fibre scattered-light interferometer to external phase perturbations is studied for the first time. An expression is derived for an average power of a useful signal at the interferometer output under external harmonic perturbations in a signal fibre of the interferometer. It is shown that the maximum sensitivity of the scattered-light interferometer depends on the dispersion of the interferogram intensity. An average signal-to-noise ratio is determined theoretically and experimentally at the output of the interferometer at different amplitudes of external perturbations. Using the measured dependences of the signal-to-noise ratio, the threshold sensitivity of the fibre scattered-light interferometer to external phase perturbations is found. The results obtained can be used to optimise characteristics of optical time-domain reflectometers and to design individual phase-sensitive fibre-optic sensors. (laser applications and other topics in quantum electronics)

  3. Growth of Third-Harmonic Signal in Optical Glass Fibre

    DTIC Science & Technology

    1990-01-01

    harmonic signal In optical glass fibres , illuminated vith 10kV peak pover pulses from A NdYAG lasers has been observed. Broadband fluores.enc from the third...J’T. Al-0002 GROWTH OF THIFRO-HARMVONIC SIGNAL IN OPTICAL GLASS FIORE Irdexim tems 0,rkl f. N motwvij p~ .G For mo i fibres the Sit signal strtd g0r...Amorphous nature of glass ) but with time, as the fibre is illuminated with inltense laser light at 4 w1O6pm, the S1t signal 3rows. What is believed to

  4. Deep ultraviolet laser micromachining of novel fibre optic devices

    NASA Astrophysics Data System (ADS)

    Li, J.; Dou, J.; Herman, P. R.; Fricke-Begemann, T.; Ihlemann, J.; Marowsky, G.

    2007-04-01

    A deep ultraviolet F2 laser, with output at 157-nm wavelength, has been adopted for micro-shaping the end facets of single and multi-mode silica optical fibres. The high energy 7.9-eV photons drive strong interactions in the wide-bandgap silica fibres to enable the fabrication of surface-relief microstructures with high spatial resolution and smooth surface morphology. Diffraction gratings, focusing lenses, and Mach-Zehnder interferometric structures have been micromachined onto the cleaved-fibre facets and optically characterized. F2-laser micromachining is shown to be a rapid and facile means for direct-writing of novel infibre photonic components.

  5. High Speed Fibre Optic Backbone LAN

    NASA Astrophysics Data System (ADS)

    Tanimoto, Masaaki; Hara, Shingo; Kajita, Yuji; Kashu, Fumitoshi; Ikeuchi, Masaru; Hagihara, Satoshi; Tsuzuki, Shinji

    1987-09-01

    Our firm has developed the SUMINET-4100 series, a fibre optic local area network (LAN), to serve the communications system trunk line needs for facilities, such as steel refineries, automobile plants and university campuses, that require large transmission capacity, and for the backbone networks used in intelligent building systems. The SUMINET-4100 series is already in service in various fields of application. Of the networks available in this series, the SUMINET-4150 has a trunk line speed of 128 Mbps and the multiplexer used for time division multiplexing (TDM) was enabled by designing an ECL-TTL gate array (3000 gates) based custom LSI. The synchronous, full-duplex V.24 and V.3.5 interfaces (SUMINET-2100) are provided for use with general purpose lines. And the IBM token ring network, the SUMINET-3200, designed for heterogeneous PCs and the Ethernet can all be connected to sub loops. Further, the IBM 3270 TCA and 5080 CADAM can be connected in the local mode. Interfaces are also provided for the NTT high-speed digital service, the digital PBX systems, and the Video CODEC system. The built-in loop monitor (LM) and network supervisory processor (NSP) provide management of loop utilization and send loop status signals to the host CPU's network configuration and control facility (NCCF). These built-in functions allow both the computer system and LAN to be managed from a single source at the host. This paper outlines features of the SUMINET-4150 and provides an example of its installation.

  6. Smart Structures with Fibre-Optic Technologies

    SciTech Connect

    Del Grosso, Andrea; Zangani, Donato; Messervey, Thomas

    2008-07-08

    A number of smart structures have been proposed, and some of them realized, to reduce the effect that seismic motions induce on the structure themselves. In particular, active and semi-active control devices have been studied for being applied to buildings and bridges in seismic prone regions. The heart of the application for these devices consists of a network of sensors and computational nodes that produces the input to the actuating mechanisms. Despite the initial enthusiasm for these developments, only a few practical applications involving active devices have been implemented to-date, the main reason residing in questions concerning the reliability of active systems over time. Nevertheless, the allocation of sensory systems and computational intelligence in structures subjected to earthquakes can provide very important information on the real structural behavior, provide self-diagnosis functions after events, and allow for reliability estimates of critical components. The paper reviews several recently developed sensory devices and diagnostic algorithms that may be applied to existing structures or embedded in new ones for the above purpose. Special emphasis will be given to fibre optic technology and its applications.

  7. Carbon laminates with RE doped optical fibre sensors

    NASA Astrophysics Data System (ADS)

    Miluski, Piotr; Kochanowicz, Marcin; Żmojda, Jacek; Silva, AbíLio P.; Reis, Paulo N. B.; Dorosz, Dominik

    2016-11-01

    A new type of luminescent optical fibre sensor for structural health monitoring of composite laminates (CFRP) is proposed. The Nd3+ doped multi-core doubleclad fibre incorporated in composite structure was used as a distributed temperature sensor. The change of luminescence intensity (Nd3+ ions) at the wavelength of 880 nm (4F3/2 → 4I9/2) and 1060 nm (4F3/2 → 4I11/2) was used for internal temperature monitoring. The special construction of optical fibre was used as it assures an efficient pumping mechanism and, at same time, it increases the measuring sensitivity. The linear response with relative sensitivity 0.015 K-1 was obtained for temperature range from 30 up to 75ºC. The manufacturing process of CFRP with embedded optical fibre sensor is also discussed.

  8. Design of dual-mode optical fibres for the FTTH applications

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Yang; Li, Yu-Rong; Zhang, Yin; Zhu, Yuan-Feng; Zhang, Yong-Kang; Zhou, Jun

    2011-01-01

    We present in this article a proposal and design for dual-mode optical fibres for fibre-to-the-home applications. High-order modes in the fibre can be effectively suppressed by the connection of the fibre with standard single-mode optical fibres at the two ends of the fibre. The alignment tolerance at the splicing process is presented. In particular, a low bending loss operation with low splice loss is demonstrated using the proposed technique.

  9. Composite second-order performance improvement in optical fibre CATV transmission system using chirped fibre grating

    NASA Astrophysics Data System (ADS)

    Ye, Qing; Liu, Feng; Cai, Hai-Wen; Qu, Rong-Hui; Fang, Zu-Jie

    2005-05-01

    Theoretically, we analyse the dispersion compensation characteristics of the chirped fibre grating (CFG) in an optical fibre cable television (CATV) system and obtain the analytic expression of the composite second-order (CSO) distortion using the time-domain form of the field envelope wave equation. The obtained result is in good agreement with the numerical simulation result. Experimentally, we verify the result by making use of the tunable characteristics of CFG to change the dispersion compensation amount and obtain an optimal CSO performance in a 125km fibre transmission link. Both the theoretical and experimental results show that the CSO performance can be improved by properly choosing the dispersion compensation amount for a certain fibre transmission link.

  10. Fibre Optic Sensors Using Adiabatically Tapered Single Mode Fibres

    DTIC Science & Technology

    1994-02-01

    Membrane L!2ht Scurce ,ettor ([3Iar~nca] Property ImmobilIzatIon Optical Flba UAnpLl Dynamoc Range SeMfle Su art Arran ramene ,-t n i esuaorn Tlrrm...8217Solution-deposited thin films as passive and active light guides’, Applied Optics, 1972, 11, No 2, pp. 428-34. 397. Urbano , E. , H. Offenbacher, O.S...Chimica Acta, 1988, 208, pp. 53-8. 427. Wolfbeis, O.S., E. Urbano , ’A fluorimetric, heavy-metal-free method for the analysis of chlorine, bromine, and

  11. Optical fibre grating refractometers for resin cure monitoring

    NASA Astrophysics Data System (ADS)

    Buggy, S. J.; Chehura, E.; James, S. W.; Tatam, R. P.

    2007-06-01

    The use of fibre grating refractometers as a means of monitoring the cure of a UV-cured epoxy resin is presented. The wavelength shift of the attenuation bands of a long period grating and the spectral response of a tilted fibre Bragg grating sensor were measured simultaneously during the cure of the resin and compared with measurements made using a fibre optic Fresnel-based refractometer. The results showed a good correlation (6 × 10-3 rius) and illustrate the potential of the techniques for non-invasive composite material cure monitoring.

  12. Optical Fibre Sensors Using Graphene-Based Materials: A Review

    PubMed Central

    Hernaez, Miguel; Zamarreño, Carlos R.; Melendi-Espina, Sonia; Bird, Liam R.; Mayes, Andrew G.; Arregui, Francisco J.

    2017-01-01

    Graphene and its derivatives have become the most explored materials since Novoselov and Geim (Nobel Prize winners for Physics in 2010) achieved its isolation in 2004. The exceptional properties of graphene have attracted the attention of the scientific community from different research fields, generating high impact not only in scientific journals, but also in general-interest newspapers. Optical fibre sensing is one of the many fields that can benefit from the use of these new materials, combining the amazing morphological, chemical, optical and electrical features of graphene with the advantages that optical fibre offers over other sensing strategies. In this document, a review of the current state of the art for optical fibre sensors based on graphene materials is presented. PMID:28098825

  13. Extrinsic Michelson interferometric fibre optic sensor with bend insensitive downlead

    NASA Astrophysics Data System (ADS)

    Hand, D. P.; Carolan, T. A.; Barton, J. S.; Jones, J. D. C.

    1993-04-01

    A novel optical arrangement is described for an interferometric optical fibre sensor of the extrinsic type. Based on a Michelson interferometer, it combines a bend insensitive downlead with the availability of antiphase outputs without insertion loss, and provides isolation of the source.

  14. Near infrared spectroscopy for fibre based gas detection

    NASA Astrophysics Data System (ADS)

    Stewart, George; Johnstone, Walter; Thursby, Graham; Culshaw, Brian

    2010-04-01

    Gas sensing systems based on fibre optic linked near infra red absorption cells are potentially a flexible and effective tool for monitoring accumulations of hazardous and noxious gases in enclosed areas such as tunnels and mines. Additionally the same baseline technology is readily modified to measure concentrations of hydrocarbon fuels - notably but not exclusively methane, and monitoring emissions of greenhouse gases. Furthermore the system can be readily implemented to provide intrinsically safe monitoring over extensive areas at up to ~250 points from a single interrogation unit. In this paper we review our work on fibre coupled gas sensing systems. We outline the basic principles through which repeatable and accurate self calibrating gas measurements may be realised, including the recover of detailed line shapes for non contact temperature and / or pressure measurements in addition to concentration assessments in harsh environments. We also outline our experience in using these systems in extensive networks operating under inhospitable conditions over extended periods extending to several years.

  15. Optical fibre sensors based on multi-mode fibres and MIMO signal processing: an experimental approach

    NASA Astrophysics Data System (ADS)

    Ahrens, Andreas; Sandmann, Andre; Bremer, Kort; Roth, Bernhard; Lochmann, Steffen

    2015-09-01

    In this paper multiple-input multiple-output (MIMO) signal processing is investigated for fibre optic sensor applications. A (2 × 2) MIMO implementation is realized by using lower-order and higher-order mode groups of a graded-index (GI) multi-mode fibre (MMF) as separate transmission channels. A micro-bending pressure sensor changes these separate transmission characteristics and introduces additional crosstalk. By observing the weight-factors of the MIMO system the amount of load applied was determined. Experiments verified a good correlation between the change of the MIMO weight coefficients and the load applied to the sensor and thus verified that MIMO signal processing can beneficially be used for fibre optic sensor applications.

  16. Implementation and characterization of a fibre-optic colour sensor

    NASA Astrophysics Data System (ADS)

    Bajić, Jovan S.; Stupar, Dragan Z.; Dakić, Bojan M.; Manojlović, Lazo M.; Slankamenac, Miloš P.; Živanov, Miloš B.

    2014-09-01

    In this paper the implementation of a fibre-optic sensor for colour detection based on reflective colour sensing is proposed. The sensor consists of three plastic optical fibres emitting red, green and blue components and one optical fibre collecting light reflected from the object. Red, green and blue LEDs are excited at different frequencies. In this way detection of the reflected signal is achieved with only one photodetector and three bandpass filters. Bandpass filters are implemented as digital IIR (infinite impulse response) filters on the microcontroller. Results obtained from the proposed sensor are compared with commercial available colour sensors and the results are satisfactory. Analyses of the sensor performance both in RGB and HSV colour space are done. The proposed solution shows that in specific applications by using the HSV model the sensor can be used both as a colour and distance sensor.

  17. Experimental qualification by extensive evaluation of fibre optic strain sensors

    NASA Astrophysics Data System (ADS)

    Schilder, Constanze; Kusche, Nadine; Schukar, Vivien G.; Münzenberger, Sven; Habel, Wolfgang R.

    2013-09-01

    Fibre optic strain sensors used in practical applications have to provide reliable measurements. Therefore, the applied sensor and the sensor systems must be validated experimentally. This can be achieved with facilities which use physically independent measurement systems in order to avoid the influences caused by the application of a reference sensor. This paper describes the testing methods of the specially developed validation facility KALFOS for the qualification and evaluation of surface-applied strain sensors. For reliable sensor results, the performance of fibre optic strain patches with and without FBG under combined thermal and mechanical loading was investigated. Additionally, the strain gauge factor of the fibre optic strain patches with FBG was determined experimentally and compared to the specified strain gauge factor. These results will be the basis for the development of guidelines and standards concerning the application of the sensors.

  18. Bismuth-doped optical fibres: A new breakthrough in near-IR lasing media

    SciTech Connect

    Dianov, Evgenii M

    2012-09-30

    Recent results demonstrate that bismuth-doped optical fibres have considerable potential as near-IR active lasing media. This paper examines bismuth-doped fibres intended for the fabrication of fibre lasers and optical amplifiers and reviews recent results on the luminescence properties of various types of bismuth-doped fibres and the performance of bismuth-doped fibre lasers and optical amplifiers for the spectral range 1150 - 1550 nm. Problems are discussed that have yet to be solved in order to improve the efficiency of the bismuth lasers and optical amplifiers. (optical fibres, lasers and amplifiers. properties and applications)

  19. The Application of Fibre Optics in Fibre Distributed Data Interface (FDDI) 100Mb/s Local Area Networks (LANs)

    NASA Astrophysics Data System (ADS)

    King, Timothy; Roworth, Don

    1987-09-01

    The Fibre Distributed Data Interface (FDDI) is a flexible, high-speed token-passing twin ring network which is being specified by ANSI to provide synchronous and asynchronous data transmission, as well as isochronous channels for real-time digitised speech and video. Unlike existing open standard LANs, where fibre optic variants have been introduced following successful implementation on conductive media, FDDI has been designed from the start as a fibre optic network. This has involved issues of standardisation in such areas as duplex optical connectors, fibre characteristics, optical bandwidth, bypass relays and keyed cable assemblies. This paper gives an overview of the fibre optics aspects of the development, including the overall optical design, special component requirements, and practical issues of application.

  20. The thermoluminescence response of doped SiO2 optical fibres subjected to alpha-particle irradiation.

    PubMed

    Ramli, Ahmad Termizi; Bradley, D A; Hashim, Suhairul; Wagiran, Husin

    2009-03-01

    Ion beams are used in radiotherapy to deliver a more precise dose to the target volume while minimizing dose to the surrounding healthy tissue. For optimum dose monitoring in ion-beam therapy, it is essential to be able to measure the delivered dose with a sensitivity, spatial resolution and dynamic range that is sufficient to meet the demands of the various therapy situations. Optical fibres have been demonstrated by this group to show promising thermoluminescence properties with respect to photon, electron and proton irradiation. In particular, and also given the flexibility and small size of optical fibre cores, for example 125.0+/-0.1 microm for the Al- and Ge-doped fibres used in this study, these fibres have the potential to fulfill the above requirements. This study investigates the thermoluminescence dosimetric characteristics of variously doped SiO(2) optical fibres irradiated with alpha particles from (241)Am. Following subtraction of the gamma contribution from the above source, the thermoluminescence characteristics of variously doped SiO(2) optical fibres have been compared with that of TLD-100 rods. The irradiations were performed in a bell jar. Of related potential significance is the effective atomic number, Z(eff) of the fibre, modifying measured dose from that deposited in tissues; in the present work, a scanning electron microscope and associated energy dispersive X-ray spectroscopy facility have been used to provide evaluation of Z(eff). For Ge-doped fibres, the effective atomic numbers value was 11.4, the equivalent value for Al-doped fibres was 12.3. This paper further presents results on dose response and the glow curves obtained. The results obtained indicate there to be good potential for use of variously doped SiO(2) optical fibres in measuring ion-beam doses in radiotherapeutic applications.

  1. A fibre optic chemical sensor for the detection of cocaine

    NASA Astrophysics Data System (ADS)

    Nguyen, T. Hien; Sun, Tong; Grattan, Kenneth T. V.; Hardwick, S. A.

    2010-09-01

    A fibre-optic chemical sensor for the detection of cocaine has been developed, based on a molecularly imprinted polymer (MIP) containing a fluorescein moiety as the signalling group. The fluorescent MIP was formed and covalently attached to the distal end of an optical fibre. The sensor exhibited an increase in fluorescence intensity in response to cocaine in the concentration range of 0 - 500 μM in aqueous acetonitrile mixtures with good reproducibility over 24 h. Selectivity for cocaine over others drugs has also been demonstrated.

  2. Implications of information theory in optical fibre communications.

    PubMed

    Agrell, Erik; Alvarado, Alex; Kschischang, Frank R

    2016-03-06

    Recent decades have witnessed steady improvements in our ability to harness the information-carrying capability of optical fibres. Will this process continue, or will progress eventually stall? Information theory predicts that all channels have a limited capacity depending on the available transmission resources, and thus it is inevitable that the pace of improvements will slow. However, information theory also provides insights into how transmission resources should, in principle, best be exploited, and thus may serve as a guide for where to look for better ways to squeeze more out of a precious resource. This tutorial paper reviews the basic concepts of information theory and their application in fibre-optic communications.

  3. Polymer optical fibre sensors for endoscopic optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Broadway, Christian; Gallego, Daniel; Woyessa, Getinet; Pospori, Andreas; Bang, Ole; Webb, David J.; Carpintero, Guillermo; Lamela, Horacio

    2015-07-01

    Opto-acoustic imaging (OAI) shows particular promise for in-vivo biomedical diagnostics. Its applications include cardiovascular, gastrointestinal and urogenital systems imaging. Opto-acoustic endoscopy (OAE) allows the imaging of body parts through cavities permitting entry. The critical parameter is the physical size of the device, allowing compatibility with current technology, while governing flexibility of the distal end of the endoscope based on the needs of the sensor. Polymer optical fibre (POF) presents a novel approach for endoscopic applications and has been positively discussed and compared in existing publications. A great advantage can be obtained for endoscopy due to a small size and array potential to provide discrete imaging speed improvements. Optical fibre exhibits numerous advantages over conventional piezo-electric transducers, such as immunity from electromagnetic interference and a higher resolution at small sizes. Furthermore, micro structured polymer optical fibres offer over 12 times the sensitivity of silica fibre. We present a polymer fibre Bragg grating ultrasound detector with a core diameter of 125 microns. We discuss the ultrasonic signals received and draw conclusions on the opportunities and challenges of applying this technology in biomedical applications.

  4. Chalcogenide microstructured optical fibres for mid-IR applications

    NASA Astrophysics Data System (ADS)

    Trolès, Johann; Brilland, Laurent

    2017-01-01

    Compared to oxide-based glasses, vitreous materials composed of chalcogen elements (S, Se, Te) show large transparency windows in the infrared. Indeed, chalcogenide glasses can be transparent from the visible up to 12- 18 μm, depending on their compositions. In addition, chalcogenide glasses contain large polarisable atoms and external lone electron pairs that induce exceptional non-linear properties. Consequently, the non-linear properties can be 100 or 1000 times as high as the non-linearity of silica. An original way to obtain single-mode fibres is to design microstructured optical fibres (MOFs). These fibres present unique optical properties thanks to the high degree of freedom in the design of their geometrical structure. Various chalcogenide MOFs operating in the IR range have been elaborated in order to associate the high non-linear properties of these glasses with the original MOF properties. Indeed, chalcogenide MOFs might lead to new devices with unique optical properties in the mid-infrared domain, like multimode or endlessly single-mode transmission of light, small or large mode area fibres, highly birefringent fibres and non-linear properties for wavelength conversion or generation of supercontinuum sources. xml:lang="fr"

  5. Photonic bandgap single-mode optical fibre with ytterbium-doped silica glass core

    SciTech Connect

    Egorova, O N; Semenov, S L; Vel'miskin, V V; Dianov, Evgenii M; Salganskii, M Yu; Yashkov, M V; Gur'yanov, Aleksei N

    2011-01-24

    A photonic bandgap fibre with an ytterbium-doped silica glass core is fabricated and investigated. The possibility of implementing single-mode operation of such fibres in a wide spectral range at a large (above 20 {mu}m) mode field diameter makes them promising for fibre lasers and amplifiers. To ensure a high quality of the beam emerging from the fibre, particular attention is paid to increasing the optical homogeneity of the ytterbium-doped core glass. (optical fibres)

  6. A Continuously Tunable Erbium-Doped Fibre Laser Using Tunable Fibre Bragg Gratings and Optical Circulator

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Yan, Feng-Ping; Li, Jian; Wang, Lin; Ning, Ti-Gang; Gong, Tao-Rong; Jian, Shui-Sheng

    2008-12-01

    A continuously tunable erbium-doped fibre laser (TEDFL) based on tunable fibre Bragger grating (TFBG) and a three-port optical circulator (OC) is proposed and demonstrated. The OC acts as a 100%-reflective mirror. A strain-induced uniform fibre Bragger grating (FBG) which functions as a partial-reflecting mirror is implemented in the linear cavity. By applying axial strain onto the TFBG, a continuously tunable lasing output can be realized. The wavelength tuning range covers approximately 7.00nm in C band (from 1543.6161 to 1550.3307nm). The side mode suppression ratio (SMSR) is better than 50 dB, and the 3 dB bandwidth of the laser is less than 0.01 nm. Moreover, an array waveguide grating (AWG) is inserted into the cavity for wavelength preselecting, and a 50 km transmission experiment was performed using our TEDFL at a 10Gb/s modulation rate.

  7. Numerical modelling of multimode fibre-optic communication lines

    SciTech Connect

    Sidelnikov, O S; Fedoruk, M P; Sygletos, S; Ferreira, F

    2016-01-31

    The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong coupling regime provides a lower EVM level than the weak coupling one. (fibre-optic communication lines)

  8. New optical fibres for high-capacity optical communications

    PubMed Central

    Richardson, D. J.

    2016-01-01

    Researchers are within a factor of 2 or so from realizing the maximum practical transmission capacity of conventional single-mode fibre transmission technology. It is therefore timely to consider new technological approaches offering the potential for more cost-effective scaling of network capacity than simply installing more and more conventional single-mode systems in parallel. In this paper, I review physical layer options that can be considered to address this requirement including the potential for reduction in both fibre loss and nonlinearity for single-mode fibres, the development of ultra-broadband fibre amplifiers and finally the use of space division multiplexing. PMID:26809569

  9. Fibre Optics In A Multi-Star Wideband Local Network

    NASA Astrophysics Data System (ADS)

    Fox, J. R.

    1983-08-01

    Early experience has been gained with the switched-star type of network in the Fibrevision cable TV trial at Milton Keynes, and British Telecom are progressing towards a full-scale multi-star wideband local network. This paper discusses both the present and future use of fibre optics in this type of network.

  10. A novel fibre-optic system for methane detection

    NASA Astrophysics Data System (ADS)

    Wu, Xijun; Wang, Yutian; Chen, Leilei; Huang, Xinyan

    2007-11-01

    A novel fibre-optic methane detection system was proposed, which involved sampled fibre grating and improved differential absorption detection technique. By this method, near-infrared equal-spaced multi absorption line of methane was detected simultaneously, and that gas weak absorption detection theory was developed. Using the comb shaped filter characteristic of sampled fibre grating, R2, R3 and R4 line of molecule absorption spectrum in 2ν 3 overtone band around 1.66μm was measured at one time. Two sampled fibre gratings of same type were used to fulfill the task of difference absorption detection. One sampled grating worked as measure grating with its reflection spectrum corresponding to the absorption line. The other grating worked as reference grating with its reflection spectrum deviate from that of measure grating to some extent. Chirped fibre grating with its central wavelength around R3 was adopted as optical band-pass filter. The light power of the three absorption line and the three reference wavelength was detected alternately by PIN PD at the same time. So that difference absorption detection was achieved. The effect of light source instability was avoided by ratio treatment. The validity of the system was verified by experiments.

  11. Distributed fibre optic strain measurements on a driven pile

    NASA Astrophysics Data System (ADS)

    Woschitz, Helmut; Monsberger, Christoph; Hayden, Martin

    2016-05-01

    In civil engineering pile systems are used in unstable areas as a foundation of buildings or other structures. Among other parameters, the load capacity of the piles depends on their length. A better understanding of the mechanism of load-transfer to the soil would allow selective optimisation of the system. Thereby, the strain variations along the loaded pile are of major interest. In this paper, we report about a field trial using an optical backscatter reflectometer for distributed fibre-optic strain measurements along a driven pile. The most significant results gathered in a field trial with artificial pile loadings are presented. Calibration results show the performance of the fibre-optic system with variations in the strain-optic coefficient.

  12. A suite of optical fibre sensors for structural condition monitoring

    NASA Astrophysics Data System (ADS)

    Sun, T.; Grattan, K. T. V.; Carlton, J.

    2015-05-01

    This paper is to review the research activities at City University London in the development of a range of fibre Bragg grating (FBG)-based sensors, including strain, temperature, relative humidity, vibration and acoustic sensors, with an aim to meet the increasing demands from industry for structural condition monitoring. As a result, arrays of optical fibre sensors have been instrumented into various types of structures, including concrete, limestone, marine propellers, pantograph and electrical motors, allowing for both static and dynamic monitoring and thus enhanced structural reliability and integrity.

  13. Simple method for manufacturing and optical characterization of tapered optical fibres

    NASA Astrophysics Data System (ADS)

    Zakrzewski, A.; Pięta, A.; Patela, S.

    2016-12-01

    Photonic devices often use light delivered by a single-mode telecommunication fibre. However, as the diameter of the core of the optical fibre is of 10 microns, and the transverse dimensions of the photonic waveguides are usually micrometer or less, there is an issue of incompatibility. The problem may be solved by application of tapered optical fibres. For efficient light coupling, the taper should be prepared so as to create a beam of long focal length and small spot diameter in the focus. The article describes the design, fabrication and characterization of tapered optical fibres prepared with a fibre-optic fusion splicer. We modelled the tapers with FDTD method, for estimation of the influence of the tapered length and angle on the spot diameter and the focal length of an outgoing beam. We fabricated tapers from a standard single mode fibre by the Ericsson 995 PMfi- bre-optic fusion splicer. We planned the splicing technology so as to get the needed features of the beam. We planned a multistep fusion process, with optimized fusion current and fusion time. The experimental measurements of best tapered optical fibres were carried out by the knife-edge method.

  14. Programmable logic controller optical fibre sensor interface module

    NASA Astrophysics Data System (ADS)

    Allwood, Gary; Wild, Graham; Hinckley, Steven

    2011-12-01

    Most automated industrial processes use Distributed Control Systems (DCSs) or Programmable Logic Controllers (PLCs) for automated control. PLCs tend to be more common as they have much of the functionality of DCSs, although they are generally cheaper to install and maintain. PLCs in conjunction with a human machine interface form the basis of Supervisory Control And Data Acquisition (SCADA) systems, combined with communication infrastructure and Remote Terminal Units (RTUs). RTU's basically convert different sensor measurands in to digital data that is sent back to the PLC or supervisory system. Optical fibre sensors are becoming more common in industrial processes because of their many advantageous properties. Being small, lightweight, highly sensitive, and immune to electromagnetic interference, means they are an ideal solution for a variety of diverse sensing applications. Here, we have developed a PLC Optical Fibre Sensor Interface Module (OFSIM), in which an optical fibre is connected directly to the OFSIM located next to the PLC. The embedded fibre Bragg grating sensors, are highly sensitive and can detect a number of different measurands such as temperature, pressure and strain without the need for a power supply.

  15. Monitoring of harmful gaseous emissions from land transport vehicles using a mid-infrared optical fibre sensor

    NASA Astrophysics Data System (ADS)

    Mulrooney, Jim; Clifford, John; Fitzpatrick, Colin; Lewis, Elfed

    2006-04-01

    This paper discusses the development of an optical fibre sensor suitable for the detection of gas emissions from motor vehicles based on mid-infrared spectroscopy. Initial measurements are presented for carbon dioxide emissions from a petrol engine using low-cost mid-infrared components, and a practical detection system, which could be fitted to a vehicle, is outlined.

  16. Plastic optical fibre sensor for spine bending monitoring

    NASA Astrophysics Data System (ADS)

    Zawawi, M. A.; O'Keeffe, S.; Lewis, E.

    2013-06-01

    This paper presents a study on the application of plastic optical fibre for spine bending monitoring based on an intensity modulation. The bending angle is measured as the angle between the emitting and receiving fibres is changed. The measured light attenuation is compared with a theoretical evaluation and the differences between these values are discussed. It was found that the light attenuation for the light intensity agreed well (margin of error < 15%) with the theoretical value for the range between 180° (representing no bend) and 200° and it was significantly increased for the bending angle beyond that value due to the effect of fibre gap increment which resulted in a less reliable experimental estimation.

  17. FRD in optical fibres at low temperatures: investigations for Gemini's Wide-field Fibre Multi-Object Spectrograph

    NASA Astrophysics Data System (ADS)

    de Oliveira, A. C.; de Oliveira, L. S.; Dos Santos, J. B.; Arruda, M. V.; Dos Santos, L. G. C.; Rodrigues, F.; de Castro, F. L. F.

    2011-06-01

    While there is no direct evidence for the deterioration in Focal Ratio Degradation (FRD) of optical fibres in severe temperature gradients, the fibre ends inserted into metallic containment devices such as steel ferrules can be a source of stress, and hence increased FRD at low temperatures. In such conditions, instruments using optical fibres may suffer some increase in FRD and consequent loss of system throughput when they are working in environments with significant thermal gradients, a common characteristic of ground-based observatories. In this paper we present results of experiments with optical fibres inserted in different materials as a part of our prototyping study for Gemini's Wide-field Multi-Object Spectrograph (WFMOS) project. Thermal effects and the use of new holding techniques will be discussed in the context of Integral Field Units and multi-fibres systems. In this work, we have used careful methodologies that give absolute measurements of FRD to quantify the advantages of using epoxy-based composites rather than metals as support structures for the fibre ends. This is shown to be especially important in minimizing thermally induced stresses in the fibre terminations. Not only is this important for optimizing fibre spectrograph performance but the benefits of using such materials are demonstrated in the minimization of positional variations and the avoidance of metal-to-glass delamination. Furthermore, by impregnating the composites with small zirconium oxide particles the composite materials supply their own fine polishing grit which aids significantly to the optical quality of the finished product.

  18. Plastic optical fibre sensor for damage detection in offshore structures

    NASA Astrophysics Data System (ADS)

    Kuang, K. S. C.; Koh, C. G.

    2009-12-01

    It is important to ensure the safe and reliable use of massive engineering structures such as offshore platforms, including all aspects of safety and design code compliance. Although routine inspection is an integral part of the safety protocol in operating and maintaining these structures, regular assessment of the effectiveness and efficiency of existing safety evaluation methods is clearly desired in view of emerging technologies for structural health monitoring of engineering structures. The recent advancement in plastic optical fibre (POF) materials and processing render POF sensors an attractive alternative to glass-based optical fibre sensors as they offer much greater being flexibility, high resistance to fracture and hence the ease in their handling and installation. In this paper, some preliminary results demonstrating the use of plastic optical fibre sensors for damage detection and structural health monitoring for offshore and marine-related applications will be summarized. In this study, POF will be used for crack detection in tubular steel specimens in conjunction with a high-resolution photon-counting optical time-domain reflectrometry (v-OTDR). Although the use of OTDR technique is an established method in the telecommunication industry, this study is new in that it is now possible, with the availability of v-OTDR and graded-index perfluorinated POF, to detect and locate the crack position in the host structure to within 10 cm accuracy or better. It will also be shown that this technique could readily be configured to monitor crack growth in steel tubular members.

  19. Plastic optical fibre sensor for damage detection in offshore structures

    NASA Astrophysics Data System (ADS)

    Kuang, K. S. C.; Koh, C. G.

    2010-03-01

    It is important to ensure the safe and reliable use of massive engineering structures such as offshore platforms, including all aspects of safety and design code compliance. Although routine inspection is an integral part of the safety protocol in operating and maintaining these structures, regular assessment of the effectiveness and efficiency of existing safety evaluation methods is clearly desired in view of emerging technologies for structural health monitoring of engineering structures. The recent advancement in plastic optical fibre (POF) materials and processing render POF sensors an attractive alternative to glass-based optical fibre sensors as they offer much greater being flexibility, high resistance to fracture and hence the ease in their handling and installation. In this paper, some preliminary results demonstrating the use of plastic optical fibre sensors for damage detection and structural health monitoring for offshore and marine-related applications will be summarized. In this study, POF will be used for crack detection in tubular steel specimens in conjunction with a high-resolution photon-counting optical time-domain reflectrometry (v-OTDR). Although the use of OTDR technique is an established method in the telecommunication industry, this study is new in that it is now possible, with the availability of v-OTDR and graded-index perfluorinated POF, to detect and locate the crack position in the host structure to within 10 cm accuracy or better. It will also be shown that this technique could readily be configured to monitor crack growth in steel tubular members.

  20. Characteristics of SBS dynamics in single-mode optical fibres

    SciTech Connect

    Gordeev, A A; Efimkov, V F; Zubarev, I G; Mikhailov, S I; Sobolev, V B

    2016-03-31

    The characteristics of the gain of Stokes pulses in single-mode optical fibres by stimulated Brillouin scattering (SBS) of monochromatic and nonmonochromatic pump signals have been investigated by numerical simulation using a spectral approach. Conditions under which 'slow light' (caused by a group delay) can be implemented are found (it is reasonable to apply this term to a process in which a pulse is delayed with conservation of its shape). The plane-wave interaction model is shown to describe adequately the dynamics of this process in single-mode fibres. A number of gain modes are investigated for Stokes pulses with different time structures upon monochromatic and nonmonochromatic excitation. A new data transfer technique is proposed, which is based on the conversion of stepwise phase modulation of the input Stokes signal into amplitude modulation of the output signal. (nonlinear optical phenomena)

  1. Fluorescent optical fibre chemosensor for the detection of mercury

    NASA Astrophysics Data System (ADS)

    Nguyen, T. Hien; Wren, Stephen P.; Sun, Tong; Grattan, Kenneth T. V.

    2016-11-01

    This work aims to develop a stable, compact and portable fibre optic sensing system which is capable of real time detection of the mercury ion (II), Hg2+. A novel fluorescent polymeric material for Hg2+ detection, based on a coumarin derivative (acting as the fluorophore) and an azathia crown ether moiety (acting as the mercury ion receptor), has been designed and synthesized. The material was covalently attached to the distal end of an optical fibre and exhibited a significant increase in fluorescence intensity in response to Hg2+ in the μM concentration range via a photoinduced electron transfer (PET) mechanism. The sensor has also demonstrated a high selectivity for Hg2+ over other metal ions. A washing protocol was identified for sensor regeneration, allowing the probe to be re-used. The approach developed in this work can also be used for the preparation of sensors for other heavy metals.

  2. Ultralow thermal sensitivity of phase and propagation delay in hollow core optical fibres

    PubMed Central

    Slavík, Radan; Marra, Giuseppe; Fokoua, Eric Numkam; Baddela, Naveen; Wheeler, Natalie V.; Petrovich, Marco; Poletti, Francesco; Richardson, David J.

    2015-01-01

    Propagation time through an optical fibre changes with the environment, e.g., a change in temperature alters the fibre length and its refractive index. These changes have negligible impact in many key fibre applications, e.g., telecommunications, however, they can be detrimental in many others. Examples are fibre-based interferometry (e.g., for precise measurement and sensing) and fibre-based transfer and distribution of accurate time and frequency. Here we show through two independent experiments that hollow-core photonic bandgap fibres have a significantly smaller sensitivity to temperature variations than traditional solid-core fibres. The 18 times improvement observed, over 3 times larger than previously reported, makes them the most environmentally insensitive fibre technology available and a promising candidate for many next-generation fibre systems applications that are sensitive to drifts in optical phase or absolute propagation delay. PMID:26490424

  3. Development of fibre-optic confocal microscopy for detection and diagnosis of dental caries.

    PubMed

    Rousseau, C; Poland, S; Girkin, J M; Hall, A F; Whitters, C J

    2007-01-01

    We report on the development of a fibre-optics-based confocal imaging system for the detection and potential diagnosis of early dental caries. A novel optical instrument, capable of recording axial profiles through caries lesions using single-mode optical fibres, has been developed. The practical study illustrates that miniature confocal devices based around single-mode optical fibres may provide additional diagnostic information for the general dental practitioner.

  4. Precision 3-D microscopy with intensity modulated fibre optic scanners

    NASA Astrophysics Data System (ADS)

    Olmos, P.

    2016-01-01

    Optical 3-D imagers constitute a family of precision and useful instruments, easily available on the market in a wide variety of configurations and performances. However, besides their cost they usually provide an image of the object (i.e. a more or less faithful representation of the reality) instead of a truly object's reconstruction. Depending on the detailed working principles of the equipment, this reconstruction may become a challenging task. Here a very simple yet reliable device is described; it is able to form images of opaque objects by illuminating them with an optical fibre and collecting the reflected light with another fibre. Its 3-D capability comes from the spatial filtering imposed by the fibres together with their movement (scanning) along the three directions: transversal (surface) and vertical. This unsophisticated approach allows one to model accurately the entire optical process and to perform the desired reconstruction, finding that information about the surface which is of interest: its profile and its reflectance, ultimately related to the type of material.

  5. Distributed acoustic fibre optic sensors for condition monitoring of pipelines

    NASA Astrophysics Data System (ADS)

    Hussels, Maria-Teresa; Chruscicki, Sebastian; Habib, Abdelkarim; Krebber, Katerina

    2016-05-01

    Industrial piping systems are particularly relevant to public safety and the continuous availability of infrastructure. However, condition monitoring systems based on many discrete sensors are generally not well-suited for widespread piping systems due to considerable installation effort, while use of distributed fibre-optic sensors would reduce this effort to a minimum. Specifically distributed acoustic sensing (DAS) is employed for detection of third-party threats and leaks in oil and gas pipelines in recent years and can in principle also be applied to industrial plants. Further possible detection routes amenable by DAS that could identify damage prior to emission of medium are subject of a current project at BAM, which aims at qualifying distributed fibre optic methods such as DAS as a means for spatially continuous monitoring of industrial piping systems. Here, first tests on a short pipe are presented, where optical fibres were applied directly to the surface. An artificial signal was used to define suitable parameters of the measurement system and compare different ways of applying the sensor.

  6. Deformation mechanisms of carbon nanotube fibres under tensile loading by in situ Raman spectroscopy analysis.

    PubMed

    Li, Qiu; Kang, Yi-Lan; Qiu, Wei; Li, Ya-Li; Huang, Gan-Yun; Guo, Jian-Gang; Deng, Wei-Lin; Zhong, Xiao-Hua

    2011-06-03

    Deformation mechanisms of carbon nanotube (CNT) fibres under tensile loading are studied by means of in situ Raman spectroscopy to detect the CNT deformation and stress distributions in the fibres. The G' band in the Raman spectrum responds distinctly to the tensile stress in Raman shift, width and intensity. The G' band changes with the tensile deformation of the fibre at different stages, namely elastic deformation, strengthening and damage-fracture. It is deduced that the individual CNTs only deform elastically without obvious damage or bond breaking. The yield and fracture of fibres can be due to the slippage among the CNTs.

  7. Microstructured polymer optical fibre sensors for opto-acoustic endoscopy

    NASA Astrophysics Data System (ADS)

    Broadway, Christian; Gallego, Daniel; Pospori, Andreas; Zubel, Michal; Webb, David J.; Sugden, Kate; Carpintero, Guillermo; Lamela, Horacio

    2016-04-01

    Opto-acoustic imaging is a growing field of research in recent years, providing functional imaging of physiological biomarkers, such as the oxygenation of haemoglobin. Piezo electric transducers are the industry standard detector for ultrasonics, but their limited bandwidth, susceptibility to electromagnetic interference and their inversely proportional sensitivity to size all affect the detector performance. Sensors based on polymer optical fibres (POF) are immune to electromagnetic interference, have lower acoustic impedance and a reduced Young's Modulus compared to silica fibres. Furthermore, POF enables the possibility of a wideband sensor and a size appropriate to endoscopy. Micro-structured POF (mPOF) used in an interferometric detector has been shown to be an order of magnitude more sensitive than silica fibre at 1 MHz and 3 times more sensitive at 10 MHz. We present the first opto-acoustic measurements obtained using a 4.7mm PMMA mPOF Bragg grating with a fibre diameter of 130 μm and present the lateral directivity pattern of a PMMA mPOF FBG ultrasound sensor over a frequency range of 1-50 MHz. We discuss the impact of the pattern with respect to the targeted application and draw conclusions on how to mitigate the problems encountered.

  8. Controlling the interaction between optical solitons using periodic dispersion variations in an optical fibre

    SciTech Connect

    Konyukhov, A I; Dorokhova, M A; Melnikov, L A; Plastun, A S

    2015-11-30

    This paper considers interaction between two fundamental optical solitons in an optical fibre with a periodically varying dispersion. Numerical simulation results indicate that, by properly adjusting the modulation period, one can change the type of interaction between solitons. We consider three particular cases: the fission of a soliton pair into two separate pulses, the generation of an intense pulse as a result of the fusion of two solitons and the formation of a coupled state of two solitons (soliton molecule). The present findings demonstrate the possibility of controlling the number and group velocity of solitons using passive single-mode optical fibres. (nonlinear optical phenomena)

  9. Modified sensing element of a fibre-optic current sensor based on a low-eigenellipticity spun fibre

    SciTech Connect

    Przhiyalkovsky, Ya V; Morshnev, S K; Starostin, N I; Gubin, V P

    2014-10-31

    We have proposed and investigated a modified sensing element of a spun fibre current sensor for the case when the beat length of the built-in linear birefringence of the fibre is equal to or less than the spin pitch of its helical structure. The proposed configuration makes it possible to restore the interferometer contrast reduced because of the decrease in the ellipticity of the wavelength-averaged polarisation state of radiation propagating in such spun fibre. The modified sensing element contains two polarisation state converters: one, located at the spun fibre input, produces polarisation with ellipticity equal to the eigenellipticity of the fibre, and the other ensures conversion of the elliptical polarisation to an orthogonal one through mirror reflection at the fibre output. We have also demonstrated that the magneto-optical sensitivity decreases slightly for the analysed spectrum-averaged parameters of the polarisation state of radiation in the spun fibre. Experimental data lend support to the theoretical predictions. (fibre-optic sensors)

  10. Plastic optical fibre sensor for quality control in food industry

    NASA Astrophysics Data System (ADS)

    Novo, C.; Bilro, L.; Ferreira, R.; Alberto, N.; Antunes, P.; Leitão, C.; Nogueira, R.; Pinto, J. L.

    2013-05-01

    The present work addresses the need for new devices felt in the context of quality control, especially in the food industry. Due to the spectral dependence of the attenuation coefficient, a novel dual-parameter sensor for colour and refractive index was developed and tested. The sensor employs plastic optical fibres to measure the transmitted optical power in three measurement cells each with a different incident wavelength. The performance of the sensor was tested using several dyes at different concentrations and aqueous solutions of glycerine and ethanol. Results show that this technique allows the monitoring of refractive index and colour without cross-sensitivity.

  11. Fibre optic sensors for heat transfer studies

    NASA Astrophysics Data System (ADS)

    Sinha, Pranay G.

    This thesis describes the design and development of a prototype sensor, based on a miniature optical fiber Fabry-Perot interferometer, for heat transfer studies on model turbomachinery components in transient flow wind tunnels. These sensors overcome a number of difficulties which are often encountered in using conventional electrical thin-film resistance gauges such as in the measurement of rapidly varying heat transfer rates, spatial resolution, electromagnetic interference, calibration and signal processing. The special features of the optical sensor are: (1) short length (less than 5 mm), and therefore embeddable in thin structures of model components; (2) direct measurement of heat flux rates; (3) calorimetric operation with temperature resolution of less than 25 mK over a measurement bandwidth of 100 kHz; (4) capability of measuring heat flux less than 5 kWm(exp -2) with measurement range in excess of 10 MWm(exp -2); (5) temporal response time of less than 10 microseconds; (6) minimal thermal disturbances because models are often made of ceramic materials with thermal properties similar to those of the optical fiber from which sensors are made;(7) possibility of using in models with dissimilar thermal properties to the optical fiber, for example, metals; (8) spatial resolution of less than 5 microns; (9) remote operation; (10) an ability to be multiplexed; and (11) immunity to electromagnetic interference. A detailed discussion of the design considerations for the sensor, system development, evaluation of the sensor performance both in the laboratory and wind tunnel environments is presented in this thesis. The performance of the sensor compared favorably with electrical gauges namely, platinum thin-film resistance thermometers. A 4-sensor multiplexed system has been successfully operated, and is reported in the thesis. A brief discussion is also included to indicate that the same sensor design may be considered for applications in other engineering areas.

  12. Raman fibre optic approach to artwork dating

    NASA Astrophysics Data System (ADS)

    Castro, K.; Pérez-Alonso, M.; Rodríguez-Laso, M. D.; Madariaga, J. M.

    2004-10-01

    Raman micro-probe spectroscopy has been applied to the analysis of a non catalogued hand-crafted wallpaper during its restoration process. The analysis has been totally non-destructive without the necessity of taking any sample. The artwork showed a great chromatic palette having been detected the presence of calcium carbonate, Prussian blue, ultramarine blue, gypsum (CaSO 4·2H 2O), minium (Pb 3O 4), vermilion (HgS), chrome orange (CaCO 3), chrome yellow (PbCrO 4), barium sulphate and carbon black (C). From the spectroscopic analysis the date of its manufacturing has been set between 1828 and 1830, introduction of chrome yellow and orange, as well as artificial ultramarine blue, and 1840, when continuous industrial wallpapers were extensively manufactured in Europe.

  13. Raman fibre optic approach to artwork dating.

    PubMed

    Castro, K; Pérez-Alonso, M; Rodríguez-Laso, M D; Madariaga, J M

    2004-10-01

    Raman micro-probe spectroscopy has been applied to the analysis of a non catalogued hand-crafted wallpaper during its restoration process. The analysis has been totally non-destructive without the necessity of taking any sample. The artwork showed a great chromatic palette having been detected the presence of calcium carbonate, Prussian blue, ultramarine blue, gypsum (CaSO4.2H2O), minium (Pb3O4), vermilion (HgS), chrome orange (CaCO3), chrome yellow (PbCrO4), barium sulphate and carbon black (C). From the spectroscopic analysis the date of its manufacturing has been set between 1828 and 1830, introduction of chrome yellow and orange, as well as artificial ultramarine blue, and 1840, when continuous industrial wallpapers were extensively manufactured in Europe.

  14. Femtosecond laser waveguide and FBG inscription in four-core optical fibre

    NASA Astrophysics Data System (ADS)

    Theodosiou, Antreas; Ioannou, Andreas; Polis, Michael; Lacraz, Amédée.; Koutsides, Charalambos; Kalli, Kyriacos

    2016-04-01

    We present research into the use of femtosecond lasers to develop optical waveguides inscribed in the cladding of singlemode, silica optical fibre (SMF28). The waveguides are inscribed near to the fibre core, coupling light into them evanescently and so behaving as traditional couplers. By carefully controlling the laser parameters we are able to inscribe cladding waveguides with no evidence of damage through ablation. We show that this flexible inscription method can be used as an enabling technology to couple light from single-core fibres to new multi-core optical fibres, and in this work specifically to 4-core fibre. The SMF28 fibre is fusion spliced to the multi-core fibre and using the femtosecond laser we inscribe bridging waveguides from the centrally located single mode fibre core to a selected offset core of the 4-core fibre. To demonstrate the efficiency of the method and the possibility of making new kinds of optical fibre sensors, we inscribe a fibre Bragg grating (FBG) in one of the four fibre cores. The light reflected from the FBG is coupled back to the SMF28 core via bridging waveguide and we recovered the reflection spectrum of the grating using a commercial high-resolution spectrometer.

  15. Characterization of Fibre Channel over Highly Turbulent Optical Wireless Links

    SciTech Connect

    Johnson, G W; Henderer, B D; Wilburn, J W; Ruggiero, A J

    2003-07-28

    We report on the performance characterization and issues associated with using Fibre Channel (FC) over a highly turbulent free-space optical (FSO) link. Fibre Channel is a storage area network standard that provides high throughput with low overhead. Extending FC to FSO links would simplify data transfer from existing high-bandwidth sensors such as synthetic aperture radars and hyperspectral imagers. We measured the behavior of FC protocol at 1 Gbps in the presence of synthetic link dropouts that are typical of turbulent FSO links. Results show that an average bit error rate of less than 2 x 10{sup -8} is mandatory for adequate throughput. More importantly, 10 ns dropouts at a 2 Hz rate were sufficient to cause long (25 s) timeouts in the data transfer. Although no data was lost, this behavior is likely to be objectionable for most applications. Prospects for improvements in hardware and software will be discussed.

  16. Optical fibres based on natural biological minerals - sea sponge spicules

    SciTech Connect

    Kulchin, Yu N; Voznesenskii, S S; Galkina, A N; Mal'tseva, T L; Nagornyi, I G; Bukin, O A; Gnedenkov, S V; Kuryavyi, V G; Sinebryukhov, S L; Cherednichenko, A I; Drozdov, A L

    2008-01-31

    A complex study of spicules of glass sponges Hyalonema sieboldi and Pheronema sp. is performed. It is shown that skeletal spicules represent a bundle of composite fibres cemented with silicon dioxide, which imparts a high mechanical strength to spicules. The presence of a layered organosilicon structure at the nanometre scale in the spicule cross section gives rise to a periodic spatial modulation of the permittivity of the spicule material, which allows one to treat spicules as one-dimensional photonic crystals. Upon excitation of basal spicules by second-harmonic pulses from a Nd:YAG laser, we observed a considerable increase in the fluorescence intensity in the long-wavelength region with a maximum at 770 nm, saturation and anomalously large fluorescence lifetimes. (fibre optics)

  17. Arranging optical fibres for the spatial resolution improvement of topographical images

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tsuyoshi; Maki, Atsushi; Kadoya, Takuma; Tanikawa, Yukari; Yamada, Yukio; Okada, Eiji; Koizumi, Hideaki

    2002-09-01

    Optical topography is a method for visualization of cortical activity. Ways of improving the spatial resolution of the topographical image with three arrangements of optical fibres are discussed. A distribution of sensitivity is obtained from the phantom experiment, and used to reconstruct topographical images of an activation area of the brain with the fibres in each arrangement. The correlations between the activated area and the corresponding topographical images are obtained, and the effective arrangement of the optical fibres for improved resolution is discussed.

  18. A technique for detecting and locating polarisation nonuniformities in an anisotropic optical fibre

    SciTech Connect

    Burdin, V V; Konstantinov, Yurii A; Pervadchuk, Vladimir P; Smirnov, A S

    2013-06-30

    One of the most important requirements for optical fibres as waveguiding media is uniformity. Polarisation-maintaining anisotropic fibres contain a special type of nonuniformity, which leads to polarisation cross-talk: optical power is transferred from one polarisation mode to the orthogonal mode. In this paper, we report a technique for detecting and locating such nonuniformities in a PANDA anisotropic single-mode fibre using polarised reflectometry. (fiber optics)

  19. Monitoring Pre-Stressed Composites Using Optical Fibre Sensors

    PubMed Central

    Krishnamurthy, Sriram; Badcock, Rodney A.; Machavaram, Venkata R.; Fernando, Gerard F.

    2016-01-01

    Residual stresses in fibre reinforced composites can give rise to a number of undesired effects such as loss of dimensional stability and premature fracture. Hence, there is significant merit in developing processing techniques to mitigate the development of residual stresses. However, tracking and quantifying the development of these fabrication-induced stresses in real-time using conventional non-destructive techniques is not straightforward. This article reports on the design and evaluation of a technique for manufacturing pre-stressed composite panels from unidirectional E-glass/epoxy prepregs. Here, the magnitude of the applied pre-stress was monitored using an integrated load-cell. The pre-stressing rig was based on a flat-bed design which enabled autoclave-based processing. A method was developed to end-tab the laminated prepregs prior to pre-stressing. The development of process-induced residual strain was monitored in-situ using embedded optical fibre sensors. Surface-mounted electrical resistance strain gauges were used to measure the strain when the composite was unloaded from the pre-stressing rig at room temperature. Four pre-stress levels were applied prior to processing the laminated preforms in an autoclave. The results showed that the application of a pre-stress of 108 MPa to a unidirectional [0]16 E-glass/913 epoxy preform, reduced the residual strain in the composite from −600 µε (conventional processing without pre-stress) to approximately zero. A good correlation was observed between the data obtained from the surface-mounted electrical resistance strain gauge and the embedded optical fibre sensors. In addition to “neutralising” the residual stresses, superior axial orientation of the reinforcement can be obtained from pre-stressed composites. A subsequent publication will highlight the consequences of pres-stressing on fibre alignment, the tensile, flexural, compressive and fatigue performance of unidirectional E-glass composites. PMID

  20. Nonlinear Dynamics of Stimulated Brillouin Scattering in Optical Fibres

    NASA Astrophysics Data System (ADS)

    Johnstone, Alan

    1992-09-01

    Available from UMI in association with The British Library. This thesis presents an experimental investigation of the dynamical and steady-state behaviour of stimulated Brillouin scattering (SBS) under cw pump conditions in single-mode optical fibres. Both SBS generated from the amplification of spontaneous Brillouin scattering, an SBS generator, and from the amplification of a probe signal, an SBS amplifier, were studied. For the generator without feedback, both the scattered wave and the transmitted pump were found to exhibit aperiodic behaviour under all operating conditions, fibres lengths between 25 m and 300 m were studied using a maximum pump power of 4 W, with the SBS showing approximately 100% modulation. The bandwidth of the chaotic SBS signal was found to be independent of the single-pass gain. The addition of feedback leads to the SBS and transmitted pump signals showing sustained or random bursts of quasi-periodic oscillations. The effects of varying the cavity reflectivity and also the pump power are shown. These were the first experimental reports of such behaviour (HAR90,JOH91) and were found to be in good agreement with the theoretical work carried out by Lu and Harrison (LU91a,LU91b). The output of an SBS amplifier was found to dynamically follow the applied probe signal except in some cases of high pump and very low probe values. Also investigated was the creation of phase singularities in the wavefronts of optical fibres. Only first-order screw dislocations were observed and their dependence on the number of fibre modes present was examined.

  1. Monitoring Pre-Stressed Composites Using Optical Fibre Sensors.

    PubMed

    Krishnamurthy, Sriram; Badcock, Rodney A; Machavaram, Venkata R; Fernando, Gerard F

    2016-05-28

    Residual stresses in fibre reinforced composites can give rise to a number of undesired effects such as loss of dimensional stability and premature fracture. Hence, there is significant merit in developing processing techniques to mitigate the development of residual stresses. However, tracking and quantifying the development of these fabrication-induced stresses in real-time using conventional non-destructive techniques is not straightforward. This article reports on the design and evaluation of a technique for manufacturing pre-stressed composite panels from unidirectional E-glass/epoxy prepregs. Here, the magnitude of the applied pre-stress was monitored using an integrated load-cell. The pre-stressing rig was based on a flat-bed design which enabled autoclave-based processing. A method was developed to end-tab the laminated prepregs prior to pre-stressing. The development of process-induced residual strain was monitored in-situ using embedded optical fibre sensors. Surface-mounted electrical resistance strain gauges were used to measure the strain when the composite was unloaded from the pre-stressing rig at room temperature. Four pre-stress levels were applied prior to processing the laminated preforms in an autoclave. The results showed that the application of a pre-stress of 108 MPa to a unidirectional [0]16 E-glass/913 epoxy preform, reduced the residual strain in the composite from -600 µε (conventional processing without pre-stress) to approximately zero. A good correlation was observed between the data obtained from the surface-mounted electrical resistance strain gauge and the embedded optical fibre sensors. In addition to "neutralising" the residual stresses, superior axial orientation of the reinforcement can be obtained from pre-stressed composites. A subsequent publication will highlight the consequences of pres-stressing on fibre alignment, the tensile, flexural, compressive and fatigue performance of unidirectional E-glass composites.

  2. Radiation hardness of present optical fibres

    NASA Astrophysics Data System (ADS)

    Henschel, Henning

    1994-12-01

    Optical fibers find rapidly growing use also in the nuclear industry. The dependence of their radiation-induced loss on fiber type, wavelength, temperature, light power, dose rate, and radiation type (gamma rays, neutrons) is pointed out and test results of modern (1989 - 1993) single mode (SM), graded index (GI), multimode stepindex (MM SI), and polymer optical fibers (POF) are presented. Continuous 60Co gamma irradiation of the SM fibers with a dose rate of about 1.5 Gy/s up to a final dose of 106 Gy led to radiation-induced losses of only 0.85 to 1.3 dB/10 m at 1300 nm wavelength and temperatures around 30 degree(s)C, whereas the GI fibers had losses of 1.3 to 2 dB/10 m under the same conditions. The lowest radiation-induced loss show MM SI fibers with pure SiO2 core of high OH-content: about 0.15 dB/10 m around 850 nm and about 0.1 dB/10 m around 1060 nm (106 Gy, equals 30 degree(s)C). POF with a core made of polymethyl methacrylate also have loss increases of

  3. Improved optical amplification using metamaterial based split ring structures in optical fibres

    NASA Astrophysics Data System (ADS)

    Prakash, Geetha; Nigam, Raaghvam; Das, Sovan; Chellappa, Sharath

    2016-04-01

    Optical fibres provide the best solutions for transmitting high speed, large amounts of data with good power efficiency. However such transmission would also need amplification for transmission over large distances. Erbium Doped Fibre Amplifiers(EDFAs) are currently being used for optical amplification. But good amplification is achievable with multiple stages and considerable length of EDFA fibres. In this paper we compare the use of Silver Split Ring Resonators(SRRs) , Gold Nano Rods and Silver Fishnet structures which give metamaterial properties to be used in optical fibres to give better amplification than EDFA based fibres. Metamaterials belong to a new class of materials with negative values for permittivity and permeability. Such materials would exhibit negative refractive index leading to these materials being called as left handed media.If such left handed media have an internal structure made of dimensions much smaller than the wavelength but sufficiently thick to exhibit bulk properties, using other optical domains such as plasmonics, it is possible to control light interactions and propagation. Artificial structures smaller than the wavelength of light can be used to enhance electric and magnetic fields. Surface plasmons can be excited on a metal and this can enhance the electric field at the surface. Our paper proposes the use of this phenomenon of achieving gain at optical frequencies by using SRRs, Fishnet structures , Nano Rods. We compare the performance of these structures and observe that they provide gain which is much more than that provided by EDFAs.

  4. Design and development of an optical-fibre-based Integral Field Unit (IFU) on the IUCAA 2-m telescope

    NASA Astrophysics Data System (ADS)

    Srivastava, Mudit K.; Ramaprakash, A. N.; Das, Hillol K.; Burse, Mahesh P.; Chordia, Pravin A.; Kohok, Abhay A.; Rajarshi, Chaitanya V.

    2011-12-01

    An optical-fibre-based Integral Field Unit (IFU) has been developed for the Inter-University Centre for Astronomy and Astrophysics (IUCAA) Faint Object Spectrometer and Camera (IFOSC), the main back-end instrument on the IUCAA 2-m telescope at Girawali, Pune, India. This IFU enables IFOSC to perform two-dimensional spectroscopy of extended astronomical objects and is being used as one of the modes of IFOSC. Based on the concept of coupling the telescope focal plane with the spectrograph slit using a fibre bundle, the IFU (named the Fibre-based Integral Field Unit for IFOSC, hereafter FIFUI) uses 100 optical fibres, each associated with a tiny lenslet on its tip, to sample the incoming field of view spatially. In addition, FIFUI uses some coupling optics to realize this two-dimensional interface. FIFUI offers three different spatial sampling scales of 0.8, 1.0 and 1.2 arcsec fibre-1. It is optimized for the visible spectrum and for a field of view of ˜13 × 6 arcsec2 on the sky for the nominal 1-arcsec sampling mode. FIFUI was commissioned on the IUCAA 2-m telescope during 2010 February-March after a series of sky tests and science-verification observations and a data-analysis pipeline was developed to extract the spectra and reconstruct the sky maps. Here we report on the development of FIFUI, including its opto-mechanical design and commissioning observations.

  5. Modern fibre-optic coherent lidars for remote sensing

    NASA Astrophysics Data System (ADS)

    Hill, Chris

    2015-10-01

    This paper surveys some growth areas in optical sensing that exploit near-IR coherent laser sources and fibreoptic hardware from the telecoms industry. Advances in component availability and performance are promising benefits in several military and commercial applications. Previous work has emphasised Doppler wind speed measurements and wind / turbulence profiling for air safety, with recent sharp increases in numbers of lidar units sold and installed, and with wider recognition that different lidar / radar wavebands can and should complement each other. These advances are also enabling fields such as microDoppler measurement of sub-wavelength vibrations and acoustic waves, including non-lineof- sight acoustic sensing in challenging environments. To shed light on these different applications we review some fundamentals of coherent detection, measurement probe volume, and parameter estimation - starting with familiar similarities and differences between "radar" and "laser radar". The consequences of changing the operating wavelength by three or four orders of magnitude - from millimetric or centimetric radar to a typical fibre-optic lidar working near 1.5 μm - need regular review, partly because of continuing advances in telecoms technology and computing. Modern fibre-optic lidars tend to be less complicated, more reliable, and cheaper than their predecessors; and they more closely obey the textbook principles of easily adjusted and aligned Gaussian beams. The behaviours of noises and signals, and the appropriate processing strategies, are as expected different for the different wavelengths and applications. For example, the effective probe volumes are easily varied (e.g. by translating a fibre facet) through six or eight orders of magnitude; as the average number of contributing scatterers varies, from <<1 through ~1 to >>1, we should review any assumptions about "many" scatterers and Gaussian statistics. Finally, some much older but still relevant scientific

  6. Optical fibre monitoring of Madeira wine estufagem process

    NASA Astrophysics Data System (ADS)

    Novo, C.; Bilro, L.; Ferreira, R.; Alberto, N.; Antunes, P.; Nogueira, R.; Pinto, J. L.

    2013-11-01

    In this work, the study of a particular step of Madeira's winemaking process called estufagem with a plastic optical fibre sensor is presented. Madeira wine is a type of fortified wine produced in the Madeira island of Portugal. The characteristic aroma and exceptional stability of these wines result from the singular used winemaking method that consists in the estufagem where the wine is heated up to 55 °C for at least 3 months, among other steps. This heating based process can produce significant changes in wine colour, aroma and taste. By measuring the transmitted optical power through the wine in three different cells at three different wavelengths it is possible to monitor wine colour evolution during the estufagem. The plastic optical fibres offer easy non-skilled handling, ruggedness and low cost, overcoming the difficulties of the electronic and conventional systems and improving the time of the laboratory offline methods. Results show that it is possible to distinguish the different Madeira wines (from sweet to dry wines) obtained based on different wine grapes as well as the colour evolution during the diverse months of the estufagem.

  7. Optical fibre biosensors using enzymatic transducers to monitor glucose

    NASA Astrophysics Data System (ADS)

    Scully, P. J.; Betancor, L.; Bolyo, J.; Dzyadevych, S.; Guisan, J. M.; Fernández-Lafuente, R.; Jaffrezic-Renault, N.; Kuncová, G.; Matejec, V.; O'Kennedy, B.; Podrazky, O.; Rose, K.; Sasek, L.; Young, J. S.

    2007-10-01

    The construction and performance of a novel enzyme based optical sensor for in situ continuous monitoring of glucose in biotechnological production processes is presented. Sensitive optical coatings are formed from inorganic-organic hybrid polymers (ORMOCER®sORMOCER®: Trademark of Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. in Germany.) combined with a flurophore (ruthenium complex) and an enzyme, and applied to lenses, declad polymer optical fibre (POF) and polymer clad silica fibre (PCS). The enzyme, glucose oxidase, catalyzes oxidization of glucose to gluconic acid by depleting oxygen. Oxygen consumption is determined by measuring the fluorescence lifetime of metal organic ruthenium complexes which are quenched by oxygen. The coatings developed were designed to adhere to glass and polymer surfaces, to be compatible with enzymes and ruthenium complexes, and were demonstrated both as double- and single-layer structures. The sensor response to gaseous oxygen, dissolved oxygen and dissolved glucose was measured via fluorescence lifetime changes. A best detection limit of 0.5% (vol) has been determined for gaseous O2 with selected ORMOCER® sensing layers. Glucose concentrations were measured to a detection limit of 0.1 mmol L-1 over a range up to 30 mmol L-1. The sensor was usable for 30 days in a bioreactor. The opto-electronic instrumentation and performance in laboratory bioreactors and in an industrial reactor are evaluated.

  8. Condition monitoring of a subsea pump using fibre optic sensing

    NASA Astrophysics Data System (ADS)

    Jones, Kevin; Staveley, Chris; Vialla, Jean-Francois

    2014-05-01

    With the growth in deep-water oil and gas production, condition monitoring of high-value subsea assets to give early warning of developing problems is vital. Offshore operators can then transport and deploy spare parts before a failure occurs thus minimizing equipment down- time. Results are presented from a suite of tests in which multiple elements of a subsea twin-screw pump were monitored using a single fibre optic sensing system that simultaneously measured dynamic strain on the main rotor bearings, pressure and temperature of the lube oil, distributed temperature through the motor stator windings and vibration of the motor housing.

  9. Fibre optic sensor on robot end effector for flexible assembly

    SciTech Connect

    Yung, K.L.; Lau, W.S.; Choi, C.K.; Shan, Y.Y.

    1995-12-31

    A fibre optic sensor system was constructed for use on robot end effectors for flexible assembly. The sensor detected the deviations between robot end effector and the workpiece. The signal was fed back to robot controller to shift the end effector until the centre of end effector and the centre of workpiece were aligned at the correct orientation. Then workpiece can be grasped symmetrically. Sensor fusion concept was used to guard against sensor system failure. Fuzzy linguistic variable and control rule concept were introduced in the sensor integration. The experimental setup for the sensor integrated system was shown. The accuracy was also discussed.

  10. D-shape polymer optical fibres for surface plasmon resonance sensing

    NASA Astrophysics Data System (ADS)

    Gasior, K.; Martynkien, T.; Wojcik, G.; Mergo, P.; Urbanczyk, W.

    2016-12-01

    We experimentally studied three different D-shape polymer optical fibres with an exposed core for their applications as surface plasmon resonance sensors. The first one was a conventional D-shape fibre with no microstructure while in two others the fibre core was surrounded by two rings of air holes. In one of the microstructured fibres we introduced special absorbing inclusions placed outside the microstructure to attenuate leaky modes. We compared the performance of the surface plasmon resonance sensors based on the three fibres. We showed that the fibre bending enhances the resonance in all investigated fibres. The measured sensitivity of about 610 nm/RIUfor the refractive index of glycerol solution around 1.350 is similar in all fabricated sensors. However, the spectral width of the resonance curve is significantly lower for the fibre with inclusions suppressing the leaky modes.

  11. Optical spectroscopy and tooth decay

    NASA Astrophysics Data System (ADS)

    Misra, P.; De, T.; Singh, R.

    2005-11-01

    Optical spectroscopy in the ultraviolet, visible and mid-infrared spectral regions has been used to discriminate between healthy and diseased teeth of patients in the age range 15-75 years. Spectral scans of absorbance versus wavenumber and fluorescence intensity versus wavelength have been recorded and investigated for caries and periodontal disease. Such optical diagnostics can prove very useful in the early detection and treatment of tooth decay.

  12. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs

    NASA Astrophysics Data System (ADS)

    Caucheteur, Christophe; Guo, Tuan; Liu, Fu; Guan, Bai-Ou; Albert, Jacques

    2016-11-01

    Surface plasmon polaritons (SPP) can be excited on metal-coated optical fibres, enabling the accurate monitoring of refractive index changes. Configurations reported so far mainly operate in liquids but not in air because of a mismatch between permittivities of guided light modes and the surrounding medium. Here we demonstrate a plasmonic optical fibre platform that overcomes this limitation. The underpinning of our work is a grating architecture--a gold-coated highly tilted Bragg grating--that excites a spectral comb of narrowband-cladding modes with effective indices near 1.0 and below. Using conventional spectral interrogation, we measure shifts of the SPP-matched resonances in response to static atmospheric pressure changes. A dynamic experiment conducted using a laser lined-up with an SPP-matched resonance demonstrates the ability to detect an acoustic wave with a resolution of 10-8 refractive index unit (RIU). We believe that this configuration opens research directions for highly sensitive plasmonic sensing in gas.

  13. Recent Improvement of Medical Optical Fibre Pressure and Temperature Sensors.

    PubMed

    Poeggel, Sven; Duraibabu, Dineshbabu; Kalli, Kyriacos; Leen, Gabriel; Dooly, Gerard; Lewis, Elfed; Kelly, Jimmy; Munroe, Maria

    2015-07-13

    This investigation describes a detailed analysis of the fabrication and testing of optical fibre pressure and temperature sensors (OFPTS). The optical sensor of this research is based on an extrinsic Fabry-Perot interferometer (EFPI) with integrated fibre Bragg grating (FBG) for simultaneous pressure and temperature measurements. The sensor is fabricated exclusively in glass and with a small diameter of 0.2 mm, making it suitable for volume-restricted bio-medical applications. Diaphragm shrinking techniques based on polishing, hydrofluoric (HF) acid and femtosecond (FS) laser micro-machining are described and analysed. The presented sensors were examined carefully and demonstrated a pressure sensitivity in the range of sp = 2-10 nm/kPa and a resolution of better than ΔP = 10 Pa protect (0.1 cm H2O). A static pressure test in 38 cm H2O shows no drift of the sensor in a six-day period. Additionally, a dynamic pressure analysis demonstrated that the OFPTS never exceeded a drift of more than 130 Pa (1.3 cm H2O) in a 12-h measurement, carried out in a cardiovascular simulator. The temperature sensitivity is given by k = 10.7 pm/K, which results in a temperature resolution of better than ΔT = 0.1 K. Since the temperature sensing element is placed close to the pressure sensing element, the pressure sensor is insensitive to temperature changes.

  14. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs

    PubMed Central

    Caucheteur, Christophe; Guo, Tuan; Liu, Fu; Guan, Bai-Ou; Albert, Jacques

    2016-01-01

    Surface plasmon polaritons (SPP) can be excited on metal-coated optical fibres, enabling the accurate monitoring of refractive index changes. Configurations reported so far mainly operate in liquids but not in air because of a mismatch between permittivities of guided light modes and the surrounding medium. Here we demonstrate a plasmonic optical fibre platform that overcomes this limitation. The underpinning of our work is a grating architecture—a gold-coated highly tilted Bragg grating—that excites a spectral comb of narrowband-cladding modes with effective indices near 1.0 and below. Using conventional spectral interrogation, we measure shifts of the SPP-matched resonances in response to static atmospheric pressure changes. A dynamic experiment conducted using a laser lined-up with an SPP-matched resonance demonstrates the ability to detect an acoustic wave with a resolution of 10−8 refractive index unit (RIU). We believe that this configuration opens research directions for highly sensitive plasmonic sensing in gas. PMID:27834366

  15. Photoelectric Hybrid Optical Bistable Device Using Fibre Bragg Gratings with Two Feed Signals

    NASA Astrophysics Data System (ADS)

    Ye, Hong-An; Zhang, Xin-Ming; Zhu, Yong

    2004-05-01

    A photoelectric hybrid optical bistable device (OBD) is investigated by using fibre Bragg gratings as a light-intensity modulator. A new operation with two feed signals is proposed, and with this method the output characteristic of the OBD is remarkably improved. The potential application of such a device in optic stabilizer for fibre laser is also briefly discussed.

  16. Fibre Fabry - Perot cavity-based aperture probe for near-field optical microscopy systems

    SciTech Connect

    Kulchin, Yurii N; Vitrik, O B; Bezverbnyi, A V; Pustovalov, E V; Kuchmizhak, A A; Nepomnyashchii, A V

    2011-03-31

    We report a theoretical analysis and experimental study of the possibility of producing a novel type of interferometric near-field aperture probe for near-field optical microscopy systems using a fibre Fabry - Perot microcavity with a nanometre-scale aperture made in one of its output mirrors. The probe ensures a spatial resolution no worse than {lambda}/14. (fibre optics)

  17. Femtosecond fibre laser stabilisation to an optical frequency standard using a KTP electro-optic crystal

    SciTech Connect

    Nyushkov, B N; Pivtsov, V S; Koliada, N A; Kaplun, A B; Meshalkin, A B

    2015-05-31

    A miniature intracavity KTP-based electro-optic phase modulator has been developed which can be used for effective stabilisation of an optical frequency comb of a femtosecond erbiumdoped fibre laser to an optical frequency standard. The use of such an electro-optic modulator (EOM) has made it possible to extend the working frequency band of a phase-locked loop system for laser stabilisation to several hundred kilohertz. We demonstrate that the KTP-based EOM is sufficiently sensitive even at a small optical length, which allows it to be readily integrated into cavities of femtosecond fibre lasers with high mode frequency spacings (over 100 MHz). (extreme light fields and their applications)

  18. Micro-size optical fibre strain interrogation system

    NASA Astrophysics Data System (ADS)

    Mrad, Nezih; Xiao, Gaozhi; Guo, Honglei

    2008-03-01

    Within several countries, the military is undergoing significant economic pressure to extend the use of its air fleet beyond its established design life. The availability of low weight, small size, reliable and cost-effective technologies to detect and monitor incipient damage and to alert prior to catastrophic failures is critical to sustain operational effectiveness. To enable the implementation of distributed and highly multiplexed optical fiber sensors networks to aerospace platforms, the data acquisition (interrogation) system has to meet small size and low weight requirements. This paper reports on our current development of micro-sized Echelle Diffractive Gratings (EDG) based interrogation system for strain monitoring of serially multiplexed fibre Bragg grating sensors. The operation principle of the interrogator and its suitability for strain measurements is demonstrated. Static load measurements obtained using this system are compared to those acquired using a optical multi-wavelength meter and are found to have strong correlation.

  19. Six-channel adaptive fibre-optic interferometer

    SciTech Connect

    Romashko, R V; Bezruk, M N; Kamshilin, A A; Kulchin, Yurii N

    2012-06-30

    We have proposed and analysed a scheme for the multiplexing of orthogonal dynamic holograms in photorefractive crystals which ensures almost zero cross talk between the holographic channels upon phase demodulation. A six-channel adaptive fibre-optic interferometer was built, and the detection limit for small phase fluctuations in the channels of the interferometer was determined to be 2.1 Multiplication-Sign 10{sup -8} rad W{sup 1/2} Hz{sup -1/2}. The channel multiplexing capacity of the interferometer was estimated. The formation of 70 channels such that their optical fields completely overlap in the crystal reduces the relative detection limit in the working channel by just 10 %. We found conditions under which the maximum cross talk between the channels was within the intrinsic noise level in the channels (-47 dB).

  20. Optical Fiber Spectroscopy

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.

    1999-01-01

    This is the final report of work done on NASA Grant NAG-1-443. The work covers the period from July 1, 1992 to December 1, 1998. During this period several distinct but related research studies and work tasks were undertaken. These different subjects are enumerated below with a description of the work done on each of them. The focus of the research was the development of optical fibers for use as distributed temperature and stress sensors. The initial concept was to utilize the utilize the temperature and stress dependence of emission from rare earth and transition metal ions substitutionally doped into crystalline or glass fibers. During the course of investigating this it became clear that fiber Bragg gratings provided a alternative for making the desired measurements and there was a shift of research focus on to include the photo-refractive properties of germano-silicate glasses used for most gratings and to the possibility of developing fiber laser sources for an integrated optical sensor in the research effort. During the course of this work several students from Christopher Newport University and other universities participated in this effort. Their names are listed below. Their participation was an important part of their education.

  1. On the efficiency of optical joining of fibres in a photopolymerisable composition

    SciTech Connect

    Mensov, S N; Polushtaitsev, Yu V

    2007-09-30

    The efficiency of using nonlinear optical wave processes in photopolymerisable media for joining graded-index fibres is studied by simulations and experimentally. The influence of the mode structure of fibres, parameters of a medium and the geometry of a connector produced directly by radiation on its transfer coefficient is determined. The optical joining of multimode fibres at a distance of up to 3 mm and their axial displacement up to 150 {mu}m is experimentally realised with energy losses less than 5%. (fibres)

  2. Real-time locating and speed measurement of fibre fuse using optical frequency-domain reflectometry

    PubMed Central

    Jiang, Shoulin; Ma, Lin; Fan, Xinyu; Wang, Bin; He, Zuyuan

    2016-01-01

    We propose and experimentally demonstrate real-time locating and speed measurement of fibre fuse by analysing the Doppler shift of reflected light using optical frequency-domain reflectometry (OFDR). Our method can detect the start of a fibre fuse within 200 ms which is equivalent to a propagation distance of about 10 cm in standard single-mode fibre. We successfully measured instantaneous speed of propagating fibre fuses and observed their subtle fluctuation owing to the laser power instability. The resolution achieved for speed measurement in our demonstration is 1 × 10−3 m/s. We studied the fibre fuse propagation speed dependence on the launched power in different fibres. Our method is promising for both real time fibre fuse monitoring and future studies on its propagation and termination. PMID:27146550

  3. Possibility of using laser-fibre optics as a fire detection system

    NASA Astrophysics Data System (ADS)

    Chow, W. K.; Wan, Eric T. K.; Cheung, K. P.

    1997-05-01

    Optical fibres together with a helium-neon laser is proposed to be used as a new fire detection system. This has been Investigated experimentally and reported in this paper. Results on the coupling loss, bending loss, extinction loss of the fibres due to smoke and refraction loss through hot air shimmer are described. Comparison with the performance of common optical and ionization detectors is made. Experimental results indicate that the optical signal would be significantly changed when there is smoke. Hence it is highly probable that a new fire detection system can be designed using laser-fibre optics.

  4. Development of a prototype compact fibre frequency synthesiser for mobile femtosecond optical clocks

    SciTech Connect

    Pivtsov, V S; Korel', I I; Koliada, N A; Farnosov, S A; Denisov, V I; Nyushkov, B N

    2014-06-30

    A prototype compact fibre frequency synthesiser based on a femtosecond erbium fibre laser and an original hybrid highly nonlinear fibre is developed and preliminarily studied. This synthesiser will ensure an extremely low relative instability of synthesised frequencies (down to 10{sup -17}) with the use of a corresponding optical standard and will be used in mobile optical clocks. The realised frequency stabilisation principle makes the synthesiser universal and allows it to transfer the frequency stability of various types of optical standards to the synthesised radio- and optical frequencies. (extreme light fields and their applications)

  5. Elimination of Cerenkov interference in a fibre-optic-coupled radiation dosemeter.

    PubMed

    Justus, Brian L; Falkenstein, Paul; Huston, Alan L; Plazas, Maria C; Ning, Holly; Miller, Robert W

    2006-01-01

    An optical fibre point dosemeter based on the gated detection of the luminescence from a Cu(1+)-doped fused quartz detector effectively eliminated errors due to Cerenkov radiation and native fibre fluorescence. The gated optical fibre dosemeter overcomes serious problems faced by scintillation and optically stimulated luminescence approaches to optical fibre point dosimetry. The dosemeter was tested using an external beam radiotherapy machine that provided pulses of 6 MV X rays. Gated detection was used to discriminate the signal collected during the radiation pulses, which included contributions from Cerenkov radiation and native fibre fluorescence, from the signal collected between the radiation pulses, which contained only the long-lived luminescence from the Cu(1+)-doped fused quartz detector. Gated detection of the luminescence provided accurate, real-time dose measurements that were linear with absorbed dose, independent of dose rate and that were accurate for all field sizes studied.

  6. Access Protocol For An Industrial Optical Fibre LAN

    NASA Astrophysics Data System (ADS)

    Senior, John M.; Walker, William M.; Ryley, Alan

    1987-09-01

    A structure for OSI levels 1 and 2 of a local area network suitable for use in a variety of industrial environments is reported. It is intended that the LAN will utilise optical fibre technology at the physical level and a hybrid of dynamically optimisable token passing and CSMA/CD techniques at the data link (IEEE 802 medium access control - logical link control) level. An intelligent token passing algorithm is employed which dynamically allocates tokens according to the known upper limits on the requirements of each device. In addition a system of stochastic tokens is used to increase efficiency when the stochastic traffic is significant. The protocol also allows user-defined priority systems to be employed and is suitable for distributed or centralised implementation. The results of computer simulated performance characteristics for the protocol using a star-ring topology are reported which demonstrate its ability to perform efficiently with the device and traffic loads anticipated within an industrial environment.

  7. Toluene optical fibre sensor based on air microcavity in PDMS

    NASA Astrophysics Data System (ADS)

    Kacik, Daniel; Martincek, Ivan

    2017-03-01

    We prepared and demonstrated a compact, simple-to-fabricate, air microcavity in polydimethylsiloxane (PDMS) placed at the end of a single-mode optical fibre. This microcavity creates a Fabry-Perot interferometer sensor able to measure concentrations of toluene vapour in air. Operation of the sensor is provided by diffusion of the toluene vapour to the PDMS, and the consequent extension of length d of the air microcavity in PDMS. The sensor response for the presence of vapours is fast and occurs within a few seconds. By using the prepared sensor toluene vapour concentration in air can be measured in the range from about 0.833 g.m-3 to saturation, with better sensitivity than 0.15 nm/g.m-3 up to maximal sensitivity 1.4 nm/g.m-3 at around concentration 100 g.m-3 in time 5 s.

  8. Effect of temperature on the active properties of erbium-doped optical fibres

    SciTech Connect

    Kotov, L V; Ignat'ev, A D; Bubnov, M M; Likhachev, M E

    2016-03-31

    We have studied the effect of heating on the performance of erbium-doped fibre based devices and determined temperaturedependent absorption and emission cross sections of the erbium ion in silica glass. The results demonstrate that heating of fibres in claddingpumped high-power (∼100 W) erbium-doped fibre lasers causes no significant decrease in their efficiency. In contrast, superluminescent sources operating in the long-wavelength region (1565 – 1610 nm) are extremely sensitive to temperature changes. (fiber optics)

  9. Stabilisation of a fibre frequency synthesiser using acousto-optical and electro-optical modulators

    NASA Astrophysics Data System (ADS)

    Koliada, N. A.; Nyushkov, B. N.; Pivtsov, V. S.; Dychkov, A. S.; Farnosov, S. A.; Denisov, V. I.; Bagayev, S. N.

    2016-12-01

    A fibre-optic frequency synthesiser is developed that is stabilised to the optical frequency standard based on molecular iodine ({\\text{Nd : YAG/I}}2). The possibility of transferring stability of the optical frequency standard to other optical frequencies in the IR range 1 - 2 \\unicode{956}{\\text{m}} and to the RF range by using synthesiser phase-locked loops (PLLs) with acousto-optical and electro-optical modulators is experimentally demonstrated. The additive instability introduced into the optical frequency comb of the synthesiser (which arises due to PLL residual random errors) is several orders less than the intrinsic instability of the reference optical frequency standard employed (i.e., is noticeably less than 1 × 10-13 for 1 {\\text{s}} and 5 × 10-15 for 1000 {\\text{s}}).

  10. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range

    PubMed Central

    Jin, Wei; Cao, Yingchun; Yang, Fan; Ho, Hoi Lut

    2015-01-01

    Photothermal interferometry is an ultra-sensitive spectroscopic means for trace chemical detection in gas- and liquid-phase materials. Previous photothermal interferometry systems used free-space optics and have limitations in efficiency of light–matter interaction, size and optical alignment, and integration into photonic circuits. Here we exploit photothermal-induced phase change in a gas-filled hollow-core photonic bandgap fibre, and demonstrate an all-fibre acetylene gas sensor with a noise equivalent concentration of 2 p.p.b. (2.3 × 10−9 cm−1 in absorption coefficient) and an unprecedented dynamic range of nearly six orders of magnitude. The realization of photothermal interferometry with low-cost near infrared semiconductor lasers and fibre-based technology allows a class of optical sensors with compact size, ultra sensitivity and selectivity, applicability to harsh environment, and capability for remote and multiplexed multi-point detection and distributed sensing. PMID:25866015

  11. Photon Irradiation Response on Ge and Al-Doped SiO2 Optical Fibres

    NASA Astrophysics Data System (ADS)

    Yaakob, Nor Haliza; Wagiran, Husin; Ramli, Ahmad Termizi; Ali, Hassan; Asni, Hazila

    2010-07-01

    Recently, research groups have reported a number of radiation effects on the applications of SiO2 optical fibres with possible use as dosimeter material because these optical fibre provide a good basis for medical radiation dosimetry. The objective of this study is to investigate the thermoluminescence response and fading characteristic for germanium and aluminium doped SiO2 optical fibres with photon irradiation. These optical fibres are placed in solid phantom and irradiated to 6 and 10 MV photon beam at dose ranging from 0.06 Gy to 0.24 Gy using Primus MLC 3339 linear accelerator at Hospital Sultan Ismail, Johor Bahru. In fading studies, the TL measurements were continued up to 14 days period. The optical fibres will produce glow curves whereby the information is then analyzed. Al and Ge-doped optical fibres have a linear dose-TL signal relationship that is proportionality between the TL signal and the doses. Comparison for TL response between different linear accelerator showed a good agreement because these optical fibres also have a linear dose-TL signal relationship even using different equipments.

  12. Photon Irradiation Response on Ge and Al-Doped SiO{sub 2} Optical Fibres

    SciTech Connect

    Yaakob, Nor Haliza; Wagiran, Husin; Ramli, Ahmad Termizi; Asni, Hazila; Ali, Hassan

    2010-07-07

    Recently, research groups have reported a number of radiation effects on the applications of SiO{sub 2} optical fibres with possible use as dosimeter material because these optical fibre provide a good basis for medical radiation dosimetry. The objective of this study is to investigate the thermoluminescence response and fading characteristic for germanium and aluminium doped SiO{sub 2} optical fibres with photon irradiation. These optical fibres are placed in solid phantom and irradiated to 6 and 10 MV photon beam at dose ranging from 0.06 Gy to 0.24 Gy using Primus MLC 3339 linear accelerator at Hospital Sultan Ismail, Johor Bahru. In fading studies, the TL measurements were continued up to 14 days period. The optical fibres will produce glow curves whereby the information is then analyzed. Al and Ge-doped optical fibres have a linear dose-TL signal relationship that is proportionality between the TL signal and the doses. Comparison for TL response between different linear accelerator showed a good agreement because these optical fibres also have a linear dose-TL signal relationship even using different equipments.

  13. A proposed fibre optic time domain optical coherence tomography system using a micro-photonic stationary optical delay line

    NASA Astrophysics Data System (ADS)

    Jansz, Paul Vernon; Wild, Graham; Hinckley, Steven

    2008-04-01

    Conventional time domain Optical Coherence Tomography (OCT) relies on a reference Optical Delay Line (ODL). These reference ODLs require the physical movement of a mirror to scan a given depth range. This movement results in instrument degradation. We propose a new optical fibre based time domain OCT system that makes use of a micro-photonic structure as a stationary ODL. The proposed system uses an in-fibre interferometer, either a Michelson or a Mach-Zhender. The reference ODL makes use of a collimator to expand the light from the optical fibre. This is them expanded in one dimension via planar optics, that is, a cylindrical lens based telescope, using a concave and convex lens. The expanded beam is them passed through a transmissive Spatial Light Modulator (SLM), specifically a liquid crystal light valve used as an optical switch. Light is then reflected back through the system off the micro-photonic structure. The micro-photonic structure is a one dimensional array of stagged mirror steps, called a Stepped Mirror Structure (SMS). The system enables the selection of discrete optical delay lengths. The proposed ODL is capable of depth hoping and multicasting. We discuss the fabrication of the SMS, which consists of eight steps, each approximately 150 μm high. A change in notch frequency using an in-fibre Mach Zhender interferometer was used to gauge the average step height. The results gave an average step height of 146 μm.

  14. Determination of inorganic elements in animal feeds by NIRS technology and a fibre-optic probe.

    PubMed

    González-Martín, Inmaculada; Alvarez-García, Noelia; González-Pérez, Claudio; Villaescusa-García, Virginia

    2006-05-15

    In the present work we study the use of near infra-red spectroscopy (NIRS) technology together with a remote reflectance fibre-optic probe for the analysis of the mineral composition of animal feeds. The method allows immediate control of the feeds without prior sample treatment or destruction through direct application of the fibre-optic probe on the sample. The regression method employed was modified partial least squares (MPLS). The calibration results obtained using forty samples of animal feeds allowed the determination of Fe, Mn, Ca, Na, K, P, Zn and Cu, with a standard error of prediction (SEP(C)) and a correlation coefficient (RSQ) of 0.129 and 0.859 for Fe; 0.175 and 0.816 for Mn; 5.470 and 0.927 for Ca; 2.717 and 0.862 for Na; 4.397 and 0.891 for K; 2.226 and 0.881 for P; 0.153 and 0.764 for Zn, and 0.095 and 0.918 for Cu, respectively. The robustness of the method was checked by applying it to 10 animal feeds samples of unknown mineral composition in the external validation.

  15. Precision single mode fibre integral field spectroscopy with the RHEA spectrograph

    NASA Astrophysics Data System (ADS)

    Rains, Adam D.; Ireland, Michael J.; Jovanovic, Nemanja; Feger, Tobias; Bento, Joao; Schwab, Christian; Coutts, David W.; Guyon, Olivier; Arriola, Alexander; Gross, Simon

    2016-08-01

    The RHEA Spectrograph is a single-mode echelle spectrograph designed to be a replicable and cost effective method of undertaking precision radial velocity measurements. Two versions of RHEA currently exist, one located at the Australian National University in Canberra, Australia (450 - 600nm wavelength range), and another located at the Subaru Telescope in Hawaii, USA (600 - 800 nm wavelength range). Both instruments have a novel fibre feed consisting of an integral field unit injecting light into a 2D grid of single mode fibres. This grid of fibres is then reformatted into a 1D array at the input of the spectrograph (consisting of the science fibres and a reference fibre capable of receiving a white-light or xenon reference source for simultaneous calibration). The use of single mode fibres frees RHEA from the issue of modal noise and significantly reduces the size of the optics used. In addition to increasing the overall light throughput of the system, the integral field unit allows for cutting edge science goals to be achieved when operating behind the 8.2m Subaru Telescope and the SCExAO adaptive optics system. These include, but are not limited to: resolved stellar photospheres; resolved protoplanetary disk structures; resolved Mira shocks, dust and winds; and sub-arcsecond companions. We present details and results of early tests of RHEA@Subaru and progress towards the stated science goals.

  16. Whispering Gallery Modes in Standard Optical Fibres for Fibre Profiling Measurements and Sensing of Unlabelled Chemical Species

    PubMed Central

    Boleininger, Anna; Lake, Thomas; Hami, Sophia; Vallance, Claire

    2010-01-01

    Whispering gallery mode resonances in liquid droplets and microspheres have attracted considerable attention due to their potential uses in a range of sensing and technological applications. We describe a whispering gallery mode sensor in which standard optical fibre is used as the whispering gallery mode resonator. The sensor is characterised in terms of the response of the whispering gallery mode spectrum to changes in resonator size, refractive index of the surrounding medium, and temperature, and its measurement capabilities are demonstrated through application to high-precision fibre geometry profiling and the detection of unlabelled biochemical species. The prototype sensor is capable of detecting unlabelled biomolecular species in attomole quantities. PMID:22294898

  17. EDITORIAL: The 20th International Conference on Optical Fibre Sensors, OFS-20 The 20th International Conference on Optical Fibre Sensors, OFS-20

    NASA Astrophysics Data System (ADS)

    Culshaw, Brian; Ecke, Wolfgang; Jones, Julian; Tatam, Ralph; Willsch, Reinhardt

    2010-09-01

    Welcome to our special issue on fibre optic sensors. Fibre optic sensors were first suggested in the patent literature in the mid 1960s as an innovative means for making measurements. This proposed a surface finish measurement tool with high precision and resulted in an instrument that remains available today. Much has happened since, with significant innovation in the techniques through which light propagating whilst guided in a fibre can be unambiguously, repeatedly and predictably modulated in response to an external phenomenon. The technique offers not only the precision mentioned earlier but also inherent electromagnetic immunity, the capability to sense at long distances, light weight, small size and a multiplicity of network architectures, all of which can be interrogated from a single point. Even so, fibre sensors is a niche technology, attractive only when its very special features offer substantial user benefit. There are, however, many such niches exemplified in the electrical power supply industry, in gyroscopes for navigational instruments, in hydrophones and geophones. Then there are the distributed sensing architectures that enable useful measurements of pressure, strain and temperature fields affecting the optical properties of the fibre itself to map these parameter fields as a function of position along lengths of fibre to many tens of kilometres. The fibre sensing concept spawned its own research community, and the international conference on Optical Fibre Sensors first appeared in 1983 in London then emerged into a series travelling from Europe to the Americas and into the Asia-Pacific region. The 20th in the series took place in Edinburgh at the end of 2009 and this special issue of Measurement Science and Technology presents extended versions of some of the papers that first appeared at the conference. The science and technology of fibre sensing have evolved significantly over the history of the conference, drawing on developments in optical

  18. Advanced feed-through systems for in-well optical fibre sensing

    NASA Astrophysics Data System (ADS)

    Shiach, G.; Nolan, A.; McAvoy, S.; McStay, D.; Prel, C.; Smith, M.

    2007-07-01

    A new optical fibre feed-through for use in subsea in-well optical fibre sensing systems is reported. The new feed-through is compatible for use with standard subsea Christmas Tree penetrators and allows multiple re-mating of the feed-through over the lifetime of the device. The system has been extensively tested under in-well conditions and found to conform to the performance requirements. The new feed-through is planned to be used in one of the first subsea optical fibre in-well sensing systems.

  19. Polarization domain walls in optical fibres as topological bits for data transmission

    NASA Astrophysics Data System (ADS)

    Gilles, M.; Bony, P.-Y.; Garnier, J.; Picozzi, A.; Guasoni, M.; Fatome, J.

    2017-01-01

    Domain walls are topological defects that occur at symmetry-breaking phase transitions. Although domain walls have been intensively studied in ferromagnetic materials, where they nucleate at the boundary of neighbouring regions of oppositely aligned magnetic dipoles, their equivalents in optics have not been fully explored so far. Here, we experimentally demonstrate the existence of a universal class of polarization domain walls in the form of localized polarization knots in conventional optical fibres. We exploit their binding properties for optical data transmission beyond the Kerr limits of normally dispersive fibres. In particular, we demonstrate how trapping energy in a well-defined train of polarization domain walls allows undistorted propagation of polarization knots at a rate of 28 GHz along a 10 km length of normally dispersive optical fibre. These results constitute the first experimental observation of kink-antikink solitary wave propagation in nonlinear fibre optics.

  20. Polarization domain walls in optical fibres as topological bits for data transmission.

    PubMed

    Gilles, M; Bony, P-Y; Garnier, J; Picozzi, A; Guasoni, M; Fatome, J

    2017-02-01

    Domain walls are topological defects which occur at symmetry-breaking phase transitions. While domain walls have been intensively studied in ferromagnetic materials, where they nucleate at the boundary of neighbouring regions of oppositely aligned magnetic dipoles, their equivalent in optics have not been fully explored so far. Here, we experimentally demonstrate the existence of a universal class of polarization domain walls in the form of localized polarization knots in conventional optical fibres. We exploit their binding properties for optical data transmission beyond the Kerr limits of normally dispersive fibres. In particular, we demonstrate how trapping energy in well-defined train of polarization domain walls allows undistorted propagation of polarization knots at a rate of 28 GHz along a 10 km length of normally dispersive optical fibre. These results constitute the first experimental observation of kink-antikink solitary wave propagation in nonlinear fibre optics.

  1. Optical Spectroscopy at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Hong, Xiaoping

    Recent advances in material science and fabrication techniques enabled development of nanoscale applications and devices with superior performances and high degree of integration. Exotic physics also emerges at nanoscale where confinement of electrons and phonons leads to drastically different behavior from those in the bulk materials. It is therefore rewarding and interesting to investigate and understand material properties at the nanoscale. Optical spectroscopy, one of the most versatile techniques for studying material properties and light-matter interactions, can provide new insights into the nanomaterials. In this thesis, I explore advanced laser spectroscopic techniques to probe a variety of different nanoscale phenomena. A powerful tool in nanoscience and engineering is scanning tunneling microscopy (STM). Its capability in atomic resolution imaging and spectroscopy unveiled the mystical quantum world of atoms and molecules. However identification of molecular species under investigation is one of the limiting functionalities of the STM. To address this need, we take advantage of the molecular `fingerprints' - vibrational spectroscopy, by combining an infrared light sources with scanning tunneling microscopy. In order to map out sharp molecular resonances, an infrared continuous wave broadly tunable optical parametric oscillator was developed with mode-hop free fine tuning capabilities. We then combine this laser with STM by shooting the beam onto the STM substrate with sub-monolayer diamondoids deposition. Thermal expansion of the substrate is detected by the ultrasensitive tunneling current when infrared frequency is tuned across the molecular vibrational range. Molecular vibrational spectroscopy could be obtained by recording the thermal expansion as a function of the excitation wavelength. Another interesting field of the nanoscience is carbon nanotube, an ideal model of one dimensional physics and applications. Due to the small light absorption with

  2. Fabrication and characterisation of FBG sensors in low loss polymer optical fibre

    NASA Astrophysics Data System (ADS)

    Lacraz, Amédée.; Theodosiou, Andreas; Polis, Michalis; Kalli, Kyriacos

    2016-05-01

    In this paper, we report on an effective way to locally alter the refractive index of a low-loss polymer optical fibre (POF), in order to fabricate novel fibre optical sensors. Such refractive index modifications, if reproduced periodically, create fibre Bragg gratings (FBGs) that find diverse applications in telecommunications and sensing. With a femtosecond laser set-up, we were able to inscribe refractive index changes in the core of the fibre on an area as small as a μm2. This technique can be effectively used to produce FBGs with a tailored length and strength and, so, with desired optical properties. The fibre used was a large core, graded index, multimode perfluorinated fibre. FBGs resonate at different wavelengths depending on the mode distribution in multimode fibres, because the effective refractive index depends on the spatial distribution of the light inside the core. Therefore, the reflection spectrum from the grating degenerates into multiple resonances, each associated with a different mode. The detection of the reflected modes was performed with a custom made software that was able to track a specific reflected mode even when the FBG underwent perturbation, such as temperature or strain changes. Moreover, a key advantage of low-loss fibre is the possibility to use long lengths of fibre and to be able to inscribe several FBGs in a single piece of fibre. With our detection system, we managed to track the perturbation of individual FBGs in a fibre array of multiple gratings. The combination of our femtosecond inscription setup and a mode detection system is encouraging for the development of low loss POF sensing devices.

  3. Optical Spectroscopy of New Materials

    NASA Technical Reports Server (NTRS)

    White, Susan M.; Arnold, James O. (Technical Monitor)

    1993-01-01

    Composites are currently used for a rapidly expanding number of applications including aircraft structures, rocket nozzles, thermal protection of spacecraft, high performance ablative surfaces, sports equipment including skis, tennis rackets and bicycles, lightweight automobile components, cutting tools, and optical-grade mirrors. Composites are formed from two or more insoluble materials to produce a material with superior properties to either component. Composites range from dispersion-hardened alloys to advanced fiber-reinforced composites. UV/VIS and FTIR spectroscopy currently is used to evaluate the bonding between the matrix and the fibers, monitor the curing process of a polymer, measure surface contamination, characterize the interphase material, monitor anion transport in polymer phases, characterize the void formation (voids must be minimized because, like cracks in a bulk material, they lead to failure), characterize the surface of the fiber component, and measure the overall optical properties for energy balances.

  4. Spatial Kerr solitons in optical fibres of finite size cross section: beyond the Townes soliton

    NASA Astrophysics Data System (ADS)

    Drouart, F.; Renversez, G.; Nicolet, A.; Geuzaine, C.

    2008-12-01

    We propose a new and efficient numerical method to find spatial solitons in optical fibres with a nonlinear Kerr effect including microstructured ones. A nonlinear non-paraxial scalar model of the electric field in the fibre is used (nonlinear Helmholtz equation) and an iterative algorithm is proposed to obtain the nonlinear solutions using the finite element method. The field is supposed to be harmonic in time and along the direction of invariance of the fibre but inhomogeneous in the cross section. In our approach, we solve a nonlinear eigenvalue problem in which the propagation constant is the eigenvalue. Several examples dealing with step-index fibres and microstructured optical fibres with a finite size cross section are described. In each geometry, a single self-coherent nonlinear solution is obtained. This solution, which also depends on the size of the structure, is different from the Townes soliton—but converges towards it at small wavelengths.

  5. Design and performance characterization of a fibre optical sensor for liquid level monitoring

    NASA Astrophysics Data System (ADS)

    Gao, J. Z.; Zhao, Y. L.; Jiang, Z. D.

    2005-01-01

    In order to continuously monitor liquid level in petroleum and chemical industries, a fibre optical sensor based on a microbend effect was designed and manufactured. The sensor is composed of a sensing diaphragm with a hard center, a microbend modulator (a pair of tooth plates), sensing and reference fibres, adjusting bolts, a stainless steel housing, emitting/detecting devices and signal processing circuits. To reduce the effect of temperature, the diaphragm is directly machined instead of welded onto the housing. To eliminate the fluctuation of light source, a reference fibre configured in parallel with the sensing fibre is introduced. Also, the cost was lowered by using standard communication optical fibres. Test results show that this sensor is suited for applications of liquid level measurement especially in fields where electrical isolation and/or electro magnetic interference (EMI) resistance are strictly required.

  6. Strategies for spectroscopy on extremely large telescopes - III. Remapping switched fibre systems

    NASA Astrophysics Data System (ADS)

    Poppett, C. L.; Allington-Smith, J. R.; Murray, G. J.

    2009-10-01

    We explore the use of remapping techniques to improve the efficiency of highly multiplexed fibre systems for astronomical spectroscopy. This is particularly important for the implementation of diverse field spectroscopy (DFS) using highly multiplexed monolithic fibre systems (MFS). DFS allows arbitrary distributions of target regions to be addressed to optimize observing efficiency when observing complex, clumpy structures such as protoclusters which will be increasingly accessible to extremely large telescopes. We show how the adoption of various types of remapping between the input and output of an MFS can allow contiguous regions of spatial elements to be selected using only simple switch arrays. Finally, we show how this compares in efficiency with integral-field and multi-object spectroscopy by simulations using artificial and real catalogues of objects. With the adoption of these mapping strategies, DFS outperforms other techniques when addressing a range of realistic target distributions. These techniques are also applicable to biomedical science and were in fact inspired by it.

  7. Power transmission coefficients for multi-step index optical fibres.

    PubMed

    Aldabaldetreku, Gotzon; Zubia, Joseba; Durana, Gaizka; Arrue, Jon

    2006-02-20

    The aim of the present paper is to provide a single analytical expression of the power transmission coefficient for leaky rays in multi-step index (MSI) fibres. This expression is valid for all tunnelling and refracting rays and allows us to evaluate numerically the power attenuation along an MSI fibre of an arbitrary number of layers. We validate our analysis by comparing the results obtained for limit cases of MSI fibres with those corresponding to step-index (SI) and graded-index (GI) fibres. We also make a similar comparison between this theoretical expression and the use of the WKB solutions of the scalar wave equation.

  8. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Propagation of an optical discharge through optical fibres upon interference of modes

    NASA Astrophysics Data System (ADS)

    Bufetov, I. A.; Frolov, A. A.; Shubin, A. V.; Likhachev, M. E.; Lavrishchev, S. V.; Dianov, E. M.

    2008-05-01

    The propagation of an optical discharge (OD) through optical fibres upon interference of LP01 and LP02 modes is studied. Under these conditions after the OD propagation through the fibre, the formation of an axially-symmetric group sequence of voids with a spatial period equal to that of mode interference (200—500 μm depending on the parameters of the fibre) is observed. The groups of voids are formed near the sections of the fibre with a minimal diameter of the intensity distribution of laser radiation. Large spaces between voids in the fibre have allowed us to measure accurately the difference Δn of refractive indices of the fibre core and cladding and distribution of dopants in different cross sections of the fibre after the OD propagation. A substantial increase in Δn (up to ten times) is observed. Approximately half this increase is caused by compression and densification of the fibre material after the propagation of the optical discharge.

  9. Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres.

    PubMed

    Argyros, Alexander; Leon-Saval, Sergio G; Pla, Jarryd; Docherty, Andrew

    2008-04-14

    We propose a guidance mechanism in hollow-core optical fibres dominated by antiresonant reflection from struts of solid material in the cladding. Resonances with these struts determine the high loss bands of the fibres, and vector effects become important in determining the width of these bands through the non-degeneracy of the TE and TM polarised strut modes near cut-off. Away from resonances the light is confined through the inhibited coupling mechanism. This is demonstrated in a square lattice hollow-core microstructured polymer optical fibre.

  10. A Proposal to Develop and Test a Fibre-Optic Coupled Solar Thermal Propulsion System for Microsatellites

    DTIC Science & Technology

    2006-03-01

    high numerical aperture fibre optics. Applying fibre optics to STP allows the solar concentrator mirror to be mechanically decoupled from the solar...Applying fibre optics to STP allows the solar concentrator mirror to be mechanically decoupled from the solar heat exchanger as well as granting...concentration is achieved via an optical concentrating system, such as a series of lenses or mirrors . This concentrated sunlight impinges on a blackbody

  11. Optical fibre luminescence sensor for real-time LDR brachytherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Woulfe, P.; Sullivan, F. J.; O'Keeffe, S.

    2016-05-01

    An optical fibre sensor for monitoring low dose radiation is presented. The sensor is based on a scintillation material embedded within the optical fibre core, which emits visible light when exposed to low level ionising radiation. The incident level of ionising radiation can be determined by analysing the optical emission. An optical fibre sensor is presented, based on radioluminescence whereby radiation sensitive scintillation material, terbium doped gadolinium oxysulphide (Gd2O2S:Tb), is embedded in a cavity of 250μm of a 500μm plastic optical fibre. The sensor is designed for in-vivo monitoring of the radiation dose during radio-active seed implantation for brachytherapy, in prostate cancer treatment, providing oncologists with real-time information of the radiation dose to the target area and/or nearby critical structures. The radiation from the brachytherapy seeds causes emission of visible light from the scintillation material through the process of radioluminescence, which penetrates the fibre, propagating along the optical fibre for remote detection using a multi-pixel photon counter. The sensor demonstrates a high sensitivity to Iodine-125, the radioactive source most commonly used in brachytherapy for treating prostate cancer.

  12. Compaction in optical fibres and fibre Bragg gratings under nuclear reactor high neutron and gamma fluence

    SciTech Connect

    Remy, L.; Cheymol, G.; Morana, A.; Marin, E.; Girard, S.

    2015-07-01

    In the framework of the development by CEA and SCK.CEN of a Fabry Perot Sensor (FPS) able to measure dimensional changes in Material Testing Reactor (MTR), the first goal of the SAKE 1 (Smirnof extention - Additional Key-tests on Elongation of glass fibres) irradiation was to measure the linear compaction of single mode fibres under high fast neutron fluence. Indeed, the compaction of the fibre which forms one side of the Fabry Perot cavity, may in particular cause a noticeable measurement error. An accurate quantification of this effect is then required to predict the radiation-induced drift and optimize the sensor design. To achieve this, an innovative approach was used. Approximately seventy uncoated fibre tips (length: 30 to 50 mm) have been prepared from several different fibre samples and were installed in the SCK.CEN BR2 reactor (Mol Belgium). After 22 days of irradiation a total fast (E > 1 MeV) fluence of 3 to 5x10{sup 19} n{sub fast}/cm{sup 2}, depending on the sample location, was accumulated. The temperature during irradiation was 291 deg. C, which is not far from the condition of the intended FPS use. A precise measurement of each fibre tip length was made before the irradiation and compared to the post irradiation measurement highlighting a decrease of the fibres' length corresponding to about 0.25% of linear compaction. The amplitude of the changes is independent of the capsule, which could mean that the compaction effect saturates even at the lowest considered fluence. In the prospect of performing distributed temperature measurement in MTR, several fibre Bragg gratings written using a femtosecond laser have been also irradiated. All the gratings were written in radiation hardened fibres, and underwent an additional treatment with a procedure enhancing their resistance to ionizing radiations. A special mounting made it possible to test the reflection and the transmission of the gratings on fibre samples cut down to 30 to 50 mm. The comparison of

  13. Fibre optic system for monitoring rotational seismic phenomena.

    PubMed

    Kurzych, Anna; Jaroszewicz, Leszek R; Krajewski, Zbigniew; Teisseyre, Krzysztof P; Kowalski, Jerzy K

    2014-03-19

    We outline the development and the application in a field test of the Autonomous Fibre-Optic Rotational Seismograph (AFORS), which utilizes the Sagnac effect for a direct measurement of the seismic-origin rotations of the ground. The main advantage of AFORS is its complete insensitivity to linear motions, as well as a direct measurement of rotational components emitted during seismic events. The presented system contains a special autonomous signal processing unit which optimizes its operation for the measurement of rotation motions, whereas the applied telemetric system based on the Internet allows for an AFORS remote control. The laboratory investigation of such two devices indicated that they keep an accuracy of no less than 5.1 × 10(-9) to 5.5 × 10(-8) rad/s in the detection frequency band from 0.83~106.15 Hz and protect linear changes of sensitivity in the above bandpass. Some experimental results of an AFORS-1 application for a continuous monitoring of the rotational events in the Książ (Poland) seismological observatory are also presented.

  14. Fibre Optic System for Monitoring Rotational Seismic Phenomena

    PubMed Central

    Kurzych, Anna; Jaroszewicz, Leszek R.; Krajewski, Zbigniew; Teisseyre, Krzysztof P.; Kowalski, Jerzy K.

    2014-01-01

    We outline the development and the application in a field test of the Autonomous Fibre-Optic Rotational Seismograph (AFORS), which utilizes the Sagnac effect for a direct measurement of the seismic-origin rotations of the ground. The main advantage of AFORS is its complete insensitivity to linear motions, as well as a direct measurement of rotational components emitted during seismic events. The presented system contains a special autonomous signal processing unit which optimizes its operation for the measurement of rotation motions, whereas the applied telemetric system based on the Internet allows for an AFORS remote control. The laboratory investigation of such two devices indicated that they keep an accuracy of no less than 5.1 × 10−9 to 5.5 × 10−8 rad/s in the detection frequency band from 0.83∼106.15 Hz and protect linear changes of sensitivity in the above bandpass. Some experimental results of an AFORS-1 application for a continuous monitoring of the rotational events in the Książ (Poland) seismological observatory are also presented. PMID:24651723

  15. A fibre-optic oxygen sensor for monitoring human breathing.

    PubMed

    Chen, Rongsheng; Formenti, Federico; Obeid, Andy; Hahn, Clive E W; Farmery, Andrew D

    2013-09-01

    The development and construction of a tapered-tip fibre-optic fluorescence based oxygen sensor is described. The sensor is suitable for fast and real-time monitoring of human breathing. The sensitivity and response time of the oxygen sensor were evaluated in vitro with a gas pressure chamber system, where oxygen partial pressure was rapidly changed between 5 and 15 kPa, and then in vivo in five healthy adult participants who synchronized their breathing to a metronome set at 10, 20, 30, 40, 50, and 60 breaths min(-1). A Datex Ultima medical gas analyser was used to monitor breathing rate as a comparator. The sensor's response time in vitro was less than 150 ms, which allows accurate continuous measurement of inspired and expired oxygen pressure. Measurements of breathing rate by means of our oxygen sensor and of the Datex Ultima were in strong agreement. The results demonstrate that the device can reliably resolve breathing rates up to 60 breaths min(-1), and that it is a suitable cost-effective alternative for monitoring breathing rates and end-tidal oxygen partial pressure in the clinical setting. The rapid response time of the sensor may allow its use for monitoring rapid breathing rates as occur in children and the newborn.

  16. Raman-Enhanced Phase-Sensitive Fibre Optical Parametric Amplifier

    PubMed Central

    Fu, Xuelei; Guo, Xiaojie; Shu, Chester

    2016-01-01

    Phase-sensitive amplification is of great research interest owing to its potential in noiseless amplification. One key feature in a phase-sensitive amplifier is the gain extinction ratio defined as the ratio of the maximum to the minimum gains. It quantifies the capability of the amplifier in performing low-noise amplification for high phase-sensitive gain. Considering a phase-sensitive fibre optical parametric amplifier for linear amplification, the gain extinction ratio increases with the phase-insensitive parametric gain achieved from the same pump. In this work, we use backward Raman amplification to increase the phase-insensitive parametric gain, which in turn improves the phase-sensitive operation. Using a 955 mW Raman pump, the gain extinction ratio is increased by 9.2 dB. The improvement in the maximum phase-sensitive gain is 18.7 dB. This scheme can significantly boost the performance of phase-sensitive amplification in a spectral range where the parametric pump is not sufficiently strong but broadband Raman amplification is available. PMID:26830136

  17. Polarization Drift Channel Model for Coherent Fibre-Optic Systems

    PubMed Central

    Czegledi, Cristian B.; Karlsson, Magnus; Agrell, Erik; Johannisson, Pontus

    2016-01-01

    A theoretical framework is introduced to model the dynamical changes of the state of polarization during transmission in coherent fibre-optic systems. The model generalizes the one-dimensional phase noise random walk to higher dimensions, accounting for random polarization drifts, emulating a random walk on the Poincaré sphere, which has been successfully verified using experimental data. The model is described in the Jones, Stokes and real four-dimensional formalisms, and the mapping between them is derived. Such a model will be increasingly important in simulating and optimizing future systems, where polarization-multiplexed transmission and sophisticated digital signal processing will be natural parts. The proposed polarization drift model is the first of its kind as prior work either models polarization drift as a deterministic process or focuses on polarization-mode dispersion in systems where the state of polarization does not affect the receiver performance. We expect the model to be useful in a wide-range of photonics applications where stochastic polarization fluctuation is an issue. PMID:26905596

  18. Simultaneous temperature and humidity measurements in a mechanical ventilator using an optical fibre sensor

    NASA Astrophysics Data System (ADS)

    Hernandez, F. U.; Correia, R.; Morgan, S. P.; Hayes-Gill, B.; Evans, D.; Sinha, R.; Norris, A.; Harvey, D.; Hardman, J. G.; Korposh, S.

    2016-05-01

    An optical fibre sensor for simultaneous temperature and humidity measurements consisting of one fibre Bragg grating (FBG) to measure temperature and a mesoporous film of bilayers of Poly(allylamine hydrochloride)(PAH) and silica (SiO2) nanoparticles deposited onto the tip of the same fibre to measure humidity is reported. The hygroscopic film was created using the layer-by-layer (LbL) method and the optical reflection spectra were measured up to a maximum of 23 bilayers. The temperature sensitivity of the FBG was 10 pm/°C while the sensitivity to humidity was (-1.4x10-12 W / %RH) using 23 bilayers. The developed sensor was tested in the mechanical ventilator and temperature and humidity of the delivered artificial air was simultaneously measured. Once calibrated, the optical fibre sensor has the potential to control the absolute humidity as an essential part of critical respiratory care.

  19. Beam-shaping via femtosecond laser-modified optical fibre end faces

    NASA Astrophysics Data System (ADS)

    Ioannou, A.; Polis, M.; Lacraz, A.; Theodosiou, A.; Kalli, K.

    2016-04-01

    We present the results of investigations regarding laser micro-structuring of single mode optical fibres by direct access of the fibre end face and compare this with inscription in planar samples. We combine a high numerical aperture objective and femtosecond laser radiation at visible wavelengths to examine the spatial limits of direct writing and structuring at the surface of the optical fibre. We realise a number of interesting devices from one- and two-dimensional grating structures, to Bessel, Airy and vortex beam generators. We show the versatility of this simple but effective inscription method, where we demonstrate classic multiple slit diffraction patterns and patterns for non-diffracting beams, confirming that the flexible direct write method using femtosecond lasers can be to produce binary masks that can lead to beam shaping using a method that is applicable to all types of planar samples and through fine control of laser parameters to multi-mode and singlemode optical fibres.

  20. Study of a fibre optics current sensor for the measurement of plasma current in ITER

    NASA Astrophysics Data System (ADS)

    Wuilpart, Marc; Vanus, Benoit; Andrasan, Alina; Gusarov, Andrei; Moreau, Philippe; Mégret, Patrice

    2016-05-01

    In this article, we study the feasibility of using a fibre-optics current sensor (FOCS) for the measurement of plasma current in the future fusion reactor ITER. The sensor is based on a classical FOCS interrogator involving the measurement of the state of polarization rotation undergone by the light in presence of a magnetic field (Faraday effect) in an optical fibre surrounding the current and terminated by a Faraday mirror. We considered a uniformly spun optical fibre as the sensing element and we used the Stokes formalism to simulate the sensor. The objective of the simulations is to quantify the ratio LB/SP (beat length over the spun period of the spun fibre) enabling a measurement error in agreement with the ITER specifications. The simulator takes into account the temperature variations undergone by the measurement system under ITER operation. The simulation work showed that a LB/SP ratio of 19.2 is adequate.

  1. Measurement of sound field in cavitating media by an optical fibre-tip hydrophone.

    PubMed

    Koch, Christian; Jenderka, Klaus-Vitold

    2008-04-01

    A fibre-optic technique was applied to measure the sound field in an ultrasonic cleaning vessel under practical conditions. A metal-coated fibre-tip is used as a sensor and a heterodyne interferometer detects the change in the optical path resulting from the movement of the fibre-tip in the sound field. Spectrally resolved sound field parameters such as the fundamental, the subharmonic or cavitation noise are extracted from the measurements and compared with results obtained by a piezo-electric hydrophone. It was found that the fibre sensor provides a signal related to the velocity in the sound field, but the information about cavitation-related parameters is similar to the information for pressure sensing techniques. The fibre-optic sensors have a uniquely high spatial resolution and the sound detection process is strongly influenced by single cavitation events close to the small fibre-tip. This paper shows that fibre-tip sensors are an alternative to common hydrophone techniques. They can open up new possibilities for measurement problems for which so far no solution exists, in particular when a high spatial resolution is required or when the measurement site is small.

  2. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre

    NASA Astrophysics Data System (ADS)

    Saglamyurek, Erhan; Jin, Jeongwan; Verma, Varun B.; Shaw, Matthew D.; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2015-02-01

    The realization of a future quantum Internet requires the processing and storage of quantum information at local nodes and interconnecting distant nodes using free-space and fibre-optic links. Quantum memories for light are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory, has been reported. Here, we demonstrate the storage and faithful recall of the state of a 1,532 nm wavelength photon entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20-m-long silica fibre, using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality.

  3. Cardiac induced localised motion of the human torso detected by a long period grating fibre optic sensing scheme

    NASA Astrophysics Data System (ADS)

    Allsop, T.; Lloyd, G.; Bhamber, R. S.; Hadzievski, L.; Halliday, M.; Webb, D. J.

    2014-05-01

    Cardiovascular health of the human population is a major concern for medical clinicians, with cardiovascular diseases responsible for 48% of all deaths worldwide, according to the World Health Organisation. Therefore the development of new practicable and economical diagnostic tools to scrutinise the cardiovascular health of humans is a major driver for clinicians. We offer a new technique to obtain seismocardiographic signals covering both ballistocardiography (below 20Hz) and audible heart sounds (20Hz upwards). The detection scheme is based upon an array of curvature/displacement sensors using fibre optic long period gratings interrogated using a variation of the derivative spectroscopy interrogation technique.

  4. Identification and classification of textile fibres using ATR-FT-IR spectroscopy with chemometric methods.

    PubMed

    Peets, Pilleriin; Leito, Ivo; Pelt, Jaan; Vahur, Signe

    2017-02-15

    The possibility of classification of single- and two-component textile materials using ATR-FT-IR spectra and chemometric methods, principal component analysis (PCA) and discriminant analysis, was assessed. Altogether 89 textile samples belonging to 26 different types (11 one- and 15 two-component textiles) were investigated. It was found that PCA classification using only two or three principal components (PCs) enables identifying different one- and two-component textiles, although with two important limitations: it was not always possible to distinguish between the cellulose-based fibres (cotton, linen and in some cases viscose) and it was only partly possible to distinguish between silk and wool. The statistical discriminant analysis can use as many PCs as there are sample classes and due to that can discriminate between single-component fibres, including viscose from linen and cotton as well as silk from wool. Besides that, in both of these cases, involving optical microscopy as an additional technique enabled unequivocal identification of the fibres. The possibilities of semi-quantitative analysis of mixed fibres (cotton-polyester, wool-polyester and wool-polyamide) with PCA were investigated and it was found that approximate quantitative composition is obtainable if for the mixed fibre sample a number of spectra are averaged in order to minimize the effect of structural inhomogeneity. For approximate content determination 25 spectra of selected two-component samples were registered for calibration and the averaged spectrum for each sample was computed. Due to the structural inhomogeneity of mixed textiles, obtaining accurate quantitative composition from real samples is not possible with ATR-FT-IR. The main problems with ATR-FT-IR-PCA classification are (1) difficulties in getting high quality spectra from some textiles (e.g. polyacrylic), (2) inhomogeneity of the textile fibres in the case of two-component fibres and (3) intrinsic similarity between the

  5. Identification and classification of textile fibres using ATR-FT-IR spectroscopy with chemometric methods

    NASA Astrophysics Data System (ADS)

    Peets, Pilleriin; Leito, Ivo; Pelt, Jaan; Vahur, Signe

    2017-02-01

    The possibility of classification of single- and two-component textile materials using ATR-FT-IR spectra and chemometric methods, principal component analysis (PCA) and discriminant analysis, was assessed. Altogether 89 textile samples belonging to 26 different types (11 one- and 15 two-component textiles) were investigated. It was found that PCA classification using only two or three principal components (PCs) enables identifying different one- and two-component textiles, although with two important limitations: it was not always possible to distinguish between the cellulose-based fibres (cotton, linen and in some cases viscose) and it was only partly possible to distinguish between silk and wool. The statistical discriminant analysis can use as many PCs as there are sample classes and due to that can discriminate between single-component fibres, including viscose from linen and cotton as well as silk from wool. Besides that, in both of these cases, involving optical microscopy as an additional technique enabled unequivocal identification of the fibres. The possibilities of semi-quantitative analysis of mixed fibres (cotton-polyester, wool-polyester and wool-polyamide) with PCA were investigated and it was found that approximate quantitative composition is obtainable if for the mixed fibre sample a number of spectra are averaged in order to minimize the effect of structural inhomogeneity. For approximate content determination 25 spectra of selected two-component samples were registered for calibration and the averaged spectrum for each sample was computed. Due to the structural inhomogeneity of mixed textiles, obtaining accurate quantitative composition from real samples is not possible with ATR-FT-IR. The main problems with ATR-FT-IR-PCA classification are (1) difficulties in getting high quality spectra from some textiles (e.g. polyacrylic), (2) inhomogeneity of the textile fibres in the case of two-component fibres and (3) intrinsic similarity between the

  6. Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications

    PubMed Central

    Ruan, Yinlan; Ding, Liyun; Duan, Jingjing; Ebendorff-Heidepriem, Heike; Monro, Tanya M.

    2016-01-01

    Integration of conductive materials into optical fibres can largely expand functions of fibre devices including surface plasmon resonator/metamaterial, modulators/detectors, or biosensors. Some early attempts have been made to incorporate metals such as tin into fibres during the fibre drawing process. Due to the restricted range of materials that have compatible melting temperatures with that of silica glass, the methods to incorporate metals along the length of the fibres are very challenging. Moreover, metals are nontransparent with strong light absorption, which causes high fibre loss. This article demonstrates a novel but simple method for creating transparent conductive reduced graphene oxide film onto microstructured silica fibres for potential optoelectronic applications. The strongly confined evanescent field of the suspended core fibres with only 2 μW average power was creatively used to transform graphene oxide into reduced graphene oxide with negligible additional loss. Existence of reduced graphene oxide was confirmed by their characteristic Raman signals, shifting of their fluorescence peaks as well as largely decreased resistance of the bulk GO film after laser beam exposure. PMID:26899468

  7. Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications

    NASA Astrophysics Data System (ADS)

    Ruan, Yinlan; Ding, Liyun; Duan, Jingjing; Ebendorff-Heidepriem, Heike; Monro, Tanya M.

    2016-02-01

    Integration of conductive materials into optical fibres can largely expand functions of fibre devices including surface plasmon resonator/metamaterial, modulators/detectors, or biosensors. Some early attempts have been made to incorporate metals such as tin into fibres during the fibre drawing process. Due to the restricted range of materials that have compatible melting temperatures with that of silica glass, the methods to incorporate metals along the length of the fibres are very challenging. Moreover, metals are nontransparent with strong light absorption, which causes high fibre loss. This article demonstrates a novel but simple method for creating transparent conductive reduced graphene oxide film onto microstructured silica fibres for potential optoelectronic applications. The strongly confined evanescent field of the suspended core fibres with only 2 μW average power was creatively used to transform graphene oxide into reduced graphene oxide with negligible additional loss. Existence of reduced graphene oxide was confirmed by their characteristic Raman signals, shifting of their fluorescence peaks as well as largely decreased resistance of the bulk GO film after laser beam exposure.

  8. Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications.

    PubMed

    Ruan, Yinlan; Ding, Liyun; Duan, Jingjing; Ebendorff-Heidepriem, Heike; Monro, Tanya M

    2016-02-22

    Integration of conductive materials into optical fibres can largely expand functions of fibre devices including surface plasmon resonator/metamaterial, modulators/detectors, or biosensors. Some early attempts have been made to incorporate metals such as tin into fibres during the fibre drawing process. Due to the restricted range of materials that have compatible melting temperatures with that of silica glass, the methods to incorporate metals along the length of the fibres are very challenging. Moreover, metals are nontransparent with strong light absorption, which causes high fibre loss. This article demonstrates a novel but simple method for creating transparent conductive reduced graphene oxide film onto microstructured silica fibres for potential optoelectronic applications. The strongly confined evanescent field of the suspended core fibres with only 2 μW average power was creatively used to transform graphene oxide into reduced graphene oxide with negligible additional loss. Existence of reduced graphene oxide was confirmed by their characteristic Raman signals, shifting of their fluorescence peaks as well as largely decreased resistance of the bulk GO film after laser beam exposure.

  9. Thermal characterization of Bragg gratings in polarization-maintaining optical fibres: analysis of birefringence and regeneration

    NASA Astrophysics Data System (ADS)

    Abe, I.; de Oliveira, V.; Fiorin, R.; Kalinowski, H. J.

    2017-04-01

    This paper presents an analysis of birefringence and regeneration of fibre Bragg gratings (FBGs) in two types of polarization-maintaining (PM) optical fibres, bow tie and internal elliptical cladding (IEC), with different diameters. The thermal regeneration of FBGs in PM fibres with different degrees of saturation (weakly, slightly, and strongly saturated) is presented and the influence of the gratings’ saturation degree on the birefringence of PM fibres is shown. The birefringence values obtained for IEC fibres with 80 µm of diameter were for a strongly saturated seed grating of 5.3  ×  10‑4 and 6.2  ×  10‑4 refractive index units after the regeneration. The evolution of the fibre birefringence as a function of the temperature is presented and the results show hysteresis and nonlinear dependence of the birefringence on temperature. The thermal stability of regenerated gratings in PM fibres is demonstrated, and a sensitivity coefficient value of 0.0035 dBm min‑1 at 900 °C was obtained. The results obtained show the feasibility of optimization of fibre birefringence; this could allow such fibers to be used as temperature sensors and even improve the birefringence after the grating regeneration.

  10. Fibre Optic Biosensor Assay of Newcastle Disease Virus

    DTIC Science & Technology

    1993-10-01

    immobilized on solid support can provide a capture system for these target molecules. Antibodies immobilized on surfaces, especially polystyrene microtitre...and the physico-adsorption of antibodies to polystyrene has been studied (9). At the inception of this work the process of covalent immobilization of...Antibody directed against the target analyte was immobilized on the surface of quartz fibres. The fibres, when installed in the flow cell, provided the

  11. Nonlinear fibre-optic devices pumped by semiconductor disk lasers

    SciTech Connect

    Chamorovskiy, A Yu; Okhotnikov, Oleg G

    2012-11-30

    Semiconductor disk lasers offer a unique combination of characteristics that are particularly attractive for pumping Raman lasers and amplifiers. The advantages of disk lasers include a low relative noise intensity (-150 dB Hz{sup -1}), scalable (on the order of several watts) output power, and nearly diffraction-limited beam quality resulting in a high ({approx}70 % - 90 %) coupling efficiency into a single-mode fibre. Using this technology, low-noise fibre Raman amplifiers operating at 1.3 {mu}m in co-propagation configuration are developed. A hybrid Raman-bismuth doped fibre amplifier is proposed to further increase the pump conversion efficiency. The possibility of fabricating mode-locked picosecond fibre lasers operating under both normal and anomalous dispersion is shown experimentally. We demonstrate the operation of 1.38-{mu}m and 1.6-{mu}m passively mode-locked Raman fibre lasers pumped by 1.29-{mu}m and 1.48-{mu}m semiconductor disk lasers and producing 1.97- and 2.7-ps pulses, respectively. Using a picosecond semiconductor disk laser amplified with an ytterbium-erbium fibre amplifier, the supercontinuum generation spanning from 1.35 {mu}m to 2 {mu}m is achieved with an average power of 3.5 W. (invited paper)

  12. Palladium coated ball lens for optical fibre refractometry based hydrogen sensing

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sahar A.; Correia, Ricardo; Francis, Daniel; Brooks, Simon J.; Jones, Ben J. S.; Thompson, Alexander W. J.; Hodgkinson, Jane; Tatam, Ralph P.

    2014-05-01

    An optical fibre refractometer using a ball lens as a sensor head has been developed and characterised. Light from a superluminescent diode is directed to an optical fibre sensor head and the intensity of the returned beam gives a measure of the refractive index of the medium at the ball lens fibre tip. A second beam is used to reference the intensity measurements. The system is capable of detecting changes in refractive index with a resolution of 0.003 RIU. The ball lenses have been coated with an 80nm thick layer of palladium and the potential use of this system as a micromirror hydrogen sensor is demonstrated. This technique offers a simple sensor head arrangement, with a large signal sampling area compared with that of a bare fibre.

  13. Evaluation of diamond coatings on optical fibre sensors for biological use.

    PubMed

    Neto, V F; Santos, J A; Alberto, N J; Pinto, J L; Nogueira, R N; Grácio, J

    2011-06-01

    The inscription of a Fibre Bragg Grating (FBG) in optical fibres allows them to be used as sensors, being capable of decoding small variations of strain; temperature; pressure; loading; bending; or even refractive index, by means of a shift in the reflected wavelength. Nevertheless, broadening their sensitivity and operation range would be desirable. This may be achieved by appropriated fibre coating. Diamond possesses a set of extreme properties, such as high thermal conductivity, hardness and resistance to hazard environments. Furthermore, it is known for its excellent biocompatible response, so it may be suitable to be used as a coating material for biological sensors. In this paper, the results of the optimization process of diamond coatings on optical fibre sensors is presented, considering their potential use for practical biological purposes.

  14. Study of Brillouin scattering in a phosphosilicate optical fibre and its influence on a Raman laser operation

    SciTech Connect

    Babin, S A; Ismagulov, A E; Kablukov, S I; Podivilov, E V; Churkin, D V

    2007-05-31

    Stimulated Brillouin scattering (SBS) of single-frequency radiation in an AllWave(TM) telecommunication fibre and a phosphosilicate fibre is studied. The frequency shift and stimulated Raman gain are measured. The emission spectrum of a phosphosilicate Raman fibre laser is studied in the near-threshold regime. It is shown that SBS does not broaden the output emission spectrum of the Raman laser. (optical fibres)

  15. Fibres reinforced dentures investigated with en-face optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Negrutiu, Meda L.; Sinescu, Cosmin; Hughes, Michael; Bradu, Adrian; Goguta, Luciana; Rominu, Mihai; Negru, Radu; Podoleanu, Adrian Gh.

    2008-04-01

    The complete dentures are currently made using different technologies. In order to avoid deficiencies of the prostheses made using the classical technique, several alternative procedures have been devised. In order to enhance the mechanical strength, complete denture bases are reinforced with fibres. Their material and structure vary wildly, which makes the investigation difficult. In this study, optical coherence tomography (OCT) is evaluated as a possible non-invasive technique to assess the biomechanical behaviour of the reinforcing fibres. OCT images demonstrate structural defects between fibres and the acrylic material in all dentures bases investigated. We conclude that OCT can successfully be used as a noninvasive analysis method.

  16. Fibre-optic photochemical stroke: generating and measuring photochemical changes inside the brain

    NASA Astrophysics Data System (ADS)

    Tsiminis, G.; Klarić, T. S.; Schartner, E. P.; Warren-Smith, S. C.; Lewis, M. D.; Koblar, S. A.; Monro, T. M.

    2014-05-01

    We report here on the development of a method to induce a stroke in a specific location within a mouse brain through the use of an optical fibre. By capturing the emitted fluorescence signal generated using the same fibre it is then possible to monitor photochemical changes within the brain in real-time, potentially reducing the requirement for post-operative histology to determine if a stroke has successfully been induced within the animal.

  17. Optical fibre with a germanate glass core for lasing near 2 {mu}m

    SciTech Connect

    Dvoirin, Vladislav V; Mashinskii, Valerii M; Iskhakova, L D; Dianov, Evgenii M; Yashkov, M V; Khopin, V F; Gur'yanov, Aleksei N

    2011-01-24

    An optical fibre with a core based on thulium-doped germanate glass (45SiO{sub 2} - 55GeO{sub 2}) and a quartz glass cladding is developed for the first time. Lasing on Tm{sup 3+} ions ({lambda} =1.862 {mu}m) with an output power up to 70 mW at a differential efficiency of 37% is obtained in a laser based on this fibre. (letters)

  18. Inverse four-wave-mixing and self-parametric amplification effect in optical fibre

    PubMed Central

    Turitsyn, Sergei K.; Bednyakova, Anastasia E.; Fedoruk, Mikhail P.; Papernyi, Serguei B.; Clements, Wallace R.L.

    2015-01-01

    An important group of nonlinear processes in optical fibre involves the mixing of four waves due to the intensity dependence of the refractive index. It is customary to distinguish between nonlinear effects that require external/pumping waves (cross-phase modulation and parametric processes such as four-wave mixing) and self-action of the propagating optical field (self-phase modulation and modulation instability). Here, we present a new nonlinear self-action effect, self-parametric amplification (SPA), which manifests itself as optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation with a distinctive spectral distribution. The narrowing results from an inverse four-wave mixing, resembling an effective parametric amplification of the central part of the spectrum by energy transfer from the spectral tails. SPA and the observed stable nonlinear spectral propagation with random temporal waveform can find applications in optical communications and high power fibre lasers with nonlinear intra-cavity dynamics. PMID:26345290

  19. Ultraviolet radiation (UVR) dosimetry system and the use of Ge-doped silica optical fibres

    NASA Astrophysics Data System (ADS)

    Abdul Rahman, Ahmad Taufek; Abu Bakar, Noor Khairunnisa; Chandra Paul, Mukul; Bradley, D. A.

    2014-11-01

    Previous studies have shown that over exposure to ultraviolet radiation (UVR), either from sunlight or artificial sources, can cause severe biological effects including cataracts, photokeratitis and skin cancer. In this respect, there exists the need to introduce a sensitive UV dosimetric material capable of measuring radiation dose to high accuracy in order to deliver UVR safely and efficiently. Present study has focussed on the investigation of the potential thermoluminescent (TL) sensitivity of commercially available germanium (Ge)-doped silica (SiO2) optical fibres subjected to UVR. The main interest of this study is to find out whether these doped SiO2 optical fibres can be used as a sensible integrator of environmental UV exposures. In the present study, commercially available Ge-doped SiO2 optical fibres have been used with a core diameter of 11 μm (CorActive, Canada), 23 μm (Central Glass and Ceramic Research Institute Kolkata, India) and 50 μm (Central Glass and Ceramic Research Institute Kolkata, India) and a cladding diameter of 125±0.1 μm, irradiated over a wide range of UV dose. Results have shown that these fibres exhibit a linear dose response (with correlation coefficient better than 0.9852). The 50 μm fibre produces greater TL response than that obtained for 11- and 23 μm fibres. The TL results are compared with that of the well-established TL dosimeter material lithium fluoride.

  20. Shape memory polymeric composites sensing by optic fibre Bragg gratings: A very first approach

    NASA Astrophysics Data System (ADS)

    Quadrini, Fabrizio; Santo, Loredana; Ciminello, Monica; Concilio, Antonio; Volponi, Ruggero; Spena, Paola

    2016-05-01

    Shape memory polymer composites (SMPCs) have the potential for many applications in aerospace, spanning from self-repairing of structures to self-deploying of antennas, solar sails, or functional devices (e.g. for grabbing small space debris). In all these cases, it may be essential to have information about their configuration at different stages of shape recovery. In this study, the strain history of a prepreg carbon fibre system, cured with a shape memory polymer (SMP) interlayer, is monitored through a Fibre Bragg Grating (FBG), a fibre optic sensor device. SMPC has been manufactured by using traditional technologies for aerospace. After manufacturing cylindrical shape samples, an external fibre optic system is added to the composite structure; this system is especially suited for high temperatures which are necessary for SMP recovery and composite softening. Sensor functionality is checked before and after each strain history path. Optic fibre arrangement is optimized to avoid unwanted breakings whereas strains are limited by fibre collapsing, i.e. within nominal 2% of deformation. Dynamic information about shape recovery gives fundamental insights about strain evolution during time as well as its spatial distribution.

  1. A mobile wireless sensor network platform for use with optical fibre sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Bochao; Yang, Shuo; Sun, Tong; Grattan, Kenneth T. V.

    2013-05-01

    This paper presents a novel design of a system for using smart mobile robots to deploy a Wireless Sensor Network (WSN) for different optical fibre sensors, allowing for potential applications where there is a remote and harsh monitoring environment and allowing for the advantages of the optical fibre technology for the sensor itself to be used. The platform which was designed is comprised of a smart mobile robot, an optical fibre sensor module and a WSN module integrated with a localization component based on Received Signal Strength Indicator (RSSI), which has important advantages for mobile sensing and tracking, flexible deployment and mesh networking. The design principle and implementation-related issues for the platform have been discussed in this study. To investigate the performance of the mobile WSN platform, an experiment simulating measurement in a real environment has been performed. With the positive experimental data obtained, the functionalities of the platform are successfully demonstrated, which enables the real-time monitoring and transmission of sensor data and in addition estimated positional information. The exploitation of this kind of mobile WSN platform with fibre optic sensors is expected to make an impact on many applications, including those where advanced optical fibre sensing is particularly advantageous, yet where conventional WSNs cannot meet the requirements of the total sensing system.

  2. Photocatalytic reduction of NO pollutant using an optical-fibre photoreactor at room temperature.

    PubMed

    Yu, Yi-Hui; Su, I-Hsuan; Wu, Jeffrey C S

    2010-12-01

    Photo-assisted catalytic reduction of nitric oxide (NO) was studied over different metal-loaded TiO2 catalysts at room temperature. The activities of metal-loaded (Pt, Ag, Cu) TiO2 photocatalysts, prepared by the sol-gel method, were compared in a batch system using CH4 as the reducing agent. The Pt/TiO2 catalyst showed the highest activity for NO reduction. Thus, Pt/TiO2 was coated on optical fibres and used in a continuous-flow optical-fibre photoreactor. The optical-fibre photoreactor provides light irradiation on the photocatalyst through the optical fibre, thus improving the efficiency ofphotoreactions. Ten per cent conversion of NO was found using CH4 as the reducing agent. The NO conversions increased to 90% in the presence of water vapour and oxygen. However, most NO was oxidized to NO2. Hydrogen had superior reducing capabilities over CH4 on Pt/TiO2 photocatalyst, and the conversion of NO reached 85%. But the conversion of NO was substantially decreased to less than 10% in the presence of water vapour and oxygen. Our research proposed an alternative way to reduce NO pollutant to N2 at room temperature using an optical-fibre photoreactor, which could possibly utilize sunlight in the future.

  3. Frequency modulation and compression of optical pulses in an optical fibre with a travelling refractive-index wave

    SciTech Connect

    Zolotovskii, I O; Lapin, V A; Sementsov, D I

    2016-01-31

    We have studied the conditions for spectral broadening, frequency modulation and compression (both temporal and spectral) of Gaussian pulses propagating in a fibre with a travelling refractive-index wave. Analytical expressions have been derived for the dependences of pulse duration, chirp and spectral width on the distance travelled through the fibre, parameters of the fibre and radiation launched into it. Based on the numerical analysis we have studied the behaviour of these characteristics by changing the coefficient of the refractive-index modulation and other parameters of the travelling refractive-index wave. (nonlinear optical phenomena)

  4. Logical and pseudo-logical optical fibre networks based on two-state (binary) optical fibre sensors for industrial monitoring and control systems

    NASA Astrophysics Data System (ADS)

    Szczot, Feliks

    2005-09-01

    The possibilities of development of logical and pseudo-logical optical fibre networks for monitoring and control of equipment and industrial sites are presented. Such networks composed of simple binary attenuation and optical fibre communication lines may also be used as fast and reliable systems developing a final command signal - logical and/or pseudo-logical, depending or the architecture of network and the type of located sensors. They realise the process similar to standard electronic logical sets but use the optical signal directly on the monitored or controlled device. The analysis of serial and parallel networks was carried out in the "dark" mode detection. The examples of networks in power industry were presented where technical and economical merits of logical and pseudo-logical monitoring and controlling networks are clearly visible.

  5. The 22nd International Conference on Optical Fibre Sensors, OFS-22

    NASA Astrophysics Data System (ADS)

    Liao, Yianbiao; Jin, Wei; Jones, Julian; Tatam, Ralph

    2013-09-01

    In October 2013, the 22nd International Conference on Optical Fibre Sensors was held in Beijing, attracting about 500 participants with 417 presentations. The conference began in 1983 in London, and in the subsequent 30 years has defined the subject. The conference is held approximately every 18 months, and rotates between three world regions: Asia/Pacific, Europe and the Americas. The conference is not 'owned' by any learned society or professional institution, but is organized by a self-sustaining international steering committee. This special feature represents the sixth occasion on which Measurement Science and Technology has published papers based on a development of a cross-section of work presented at the conference. The subject of optical fibre sensors has its beginnings in the enabling technologies of the optical fibre itself and the development of laser technologies suitable for practical use in demanding real-world applications. But the real driver for the subject in its early years was in the development of systems for defence applications, most notably for strategic-grade sea-bed hydrophone arrays for submarine detection, and the optical fibre gyroscope (the community has recently celebrated the 35th anniversary of its earliest publication) for aerospace navigation. Both applications continue to be important, but now with extensive civil applications: hydrophones for oil exploration and reservoir monitoring and management, and fibre gyroscopes for applications ranging from those requiring low cost and mass production (such as industrial robots and in agricultural machinery) to the most exotic and highest performance for space applications. The articles in this special feature exemplify the principal themes of the subject: enabling technologies, application-specific developments and systems considerations. In recent years, perhaps the most important—indeed, dominant—enabling technologies have been based on structuring of fibres: longitudinally, as

  6. A Dual Sensor for pH and Hydrogen Peroxide Using Polymer-Coated Optical Fibre Tips

    PubMed Central

    Purdey, Malcolm S.; Thompson, Jeremy G.; Monro, Tanya M.; Abell, Andrew D.; Schartner, Erik P.

    2015-01-01

    This paper demonstrates the first single optical fibre tip probe for concurrent detection of both hydrogen peroxide (H2O2) concentration and pH of a solution. The sensor is constructed by embedding two fluorophores: carboxyperoxyfluor-1 (CPF1) and seminaphtharhodafluor-2 (SNARF2) within a polymer matrix located on the tip of the optical fibre. The functionalised fibre probe reproducibly measures pH, and is able to accurately detect H2O2 over a biologically relevant concentration range. This sensor offers potential for non-invasive detection of pH and H2O2 in biological environments using a single optical fibre. PMID:26694413

  7. Real-time dosimetry with Yb-doped silica optical fibres.

    PubMed

    Veronese, Ivan; Chiodini, Norberto; Cialdi, Simone; D'Ippolito, Eduardo; Fasoli, Mauro; Gallo, Salvatore; La Torre, Stefano; Mones, Eleonora; Vedda, Anna; Loi, Gianfranco

    2017-03-02

    Over the years, many efforts have been done to develop radiation detectors to afford the complex issues of small field dosimetry and to fulfil the needs of increasing accuracy, precision and in-vivo dose monitoring required by the new advanced treatment modalities. In this context, a growing interest has surged in the development of sensors based on scintillating optical fibres. In this paper, the near-infrared radioluminescence and dosimetric properties of Yb-doped silica optical fibres, coupled with a laboratory prototype based on an avalanche photo-diode, were studied by irradiating the fibres with photons and electron beams generated by a Varian Trilogy accelerator. The performances of the system in standard and small field sizes have been also investigated comparing the output factor, percent depth dose and off axis ratio measurements of the prototypal detector with other commercial sensors, including the Exradin W1 scintillator. The results of this study demonstrated that the drawback due to the stem effect in Yb-doped silica optical fibres can be managed in a simple but effective way by optical filtering. The robustness of the system in complex dosimetric scenarios and the accuracy and the precision achieved by Yb-doped fibres in relative dose assessments suggest an effective use of the system for real time in-vivo dosimetry applications.

  8. Development of Landslide Early Warning System Using Macro-bending Loss Based Optical Fibre Sensor

    NASA Astrophysics Data System (ADS)

    Marzuki, Ahmad; Heriyanto, Muhammad; Dedy Setiyadi, Ika; Koesuma, Sorja

    2015-06-01

    This paper presents the design of a simple and cheap landslide early warning system which mainly consists of a displacement fibre sensor, mechanical displacement converter, and Short Messaging Service (SMS) gateway equipped with a siren. Displacement fibre optic sensors were made by wrapping a polymer optical fibre (POF) around a holey elastic cylinder connected to a mechanical displacement converter that converts a real land displacement in centimetres order of magnitude into millimetres order that fibre optic sensor can detect. From the experimental results we suggest an optical fibre sensor that has ability to monitor land displacement in the range of 40 cm, sensitivity of (5.9 ± 0.2) dB/cm and linearity 99.5% as well as the way of improving sensor performance to meet the real need. A whole system has been tested making use of a slider attached to the mechanical displacement converter. Once a nonzero continuous displacement for 5 seconds or a downward land displacement of 10.0 cm occurs, the system will activate the siren and spread an alert via SMS automatically.

  9. Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss

    PubMed Central

    Zhang, Haojie; Healy, Noel; Shen, Li; Huang, Chung Che; Hewak, Daniel W.; Peacock, Anna C.

    2016-01-01

    Graphene is a highly versatile two-dimensional material platform that offers exceptional optical and electrical properties. Of these, its dynamic conductivity and low effective carrier mass are of particular interest for optoelectronic applications as they underpin the material’s broadband nonlinear optical absorption and ultra-fast carrier mobility, respectively. In this paper, we utilize these phenomena to demonstrate a high-speed, in-fibre optical modulator developed on a side-polished optical fibre platform. An especially low insertion loss (<1 dB) was achieved by polishing the fibre to a near atomically smooth surface (<1 nm RMS), which minimized scattering and ensured excellent contact between the graphene film and the fibre. In order to enhance the light-matter interaction, the graphene film is coated with a high index polyvinyl butyral layer, which has the added advantage of acting as a barrier to the surrounding environment. Using this innovative approach, we have fabricated a robust and stable all-fibre device with an extinction ratio as high as 9 dB and operation bandwidth of 0.5 THz. These results represent a key step towards the integration of low-dimensional materials within standard telecoms networks. PMID:27001353

  10. Histological evidence against the view that the cat's optic nerve contains centrifugal fibres

    PubMed Central

    Brindley, G. S.; Hamasaki, D. I.

    1966-01-01

    1. Degeneration that can be shown by the Nauta—Gygax technique in the orbital part of the cat's optic nerve does not begin until 10 days after intracranial transection of the nerve, though after enucleation of the eye it is conspicuous in 4 days. 2. We were not able to tell, by any silver-staining technique applied to an optic nerve at any interval after an operation, whether at that operation the nerve had been cut peripherally only or both peripherally and centrally. 3. From these and subsidiary observations we conclude that either the cat's optic nerve contains no centrifugal fibres detectable by silver staining and light microscopy, or, if there are such fibres, they are much less susceptible to prograde (Wallerian) degeneration and much more susceptible to retrograde degeneration than most of the centripetal fibres. The former is the simpler and, we suggest, the more likely conclusion. ImagesPlate 3Plate 4Plate 1Plate 2 PMID:4162347

  11. Early dental caries detection using a fibre-optic coupled polarization-resolved Raman spectroscopic system.

    PubMed

    Ko, Alex C-T; Hewko, Mark; Sowa, Michael G; Dong, Cecilia C S; Cleghorn, Blaine; Choo-Smith, Lin-P'ing

    2008-04-28

    A new fibre-optic coupled polarization-resolved Raman spectroscopic system was developed for simultaneous collection of orthogonally polarized Raman spectra in a single measurement. An application of detecting incipient dental caries based on changes observed in Raman polarization anisotropy was also demonstrated using the developed fibre-optic Raman spectroscopic system. The predicted reduction of polarization anisotropy in the Raman spectra of caries lesions was observed and the results were consistent with those reported previously with Raman microspectroscopy. The capability of simultaneous collection of parallel- and cross-polarized Raman spectra of tooth enamel in a single measurement and the improved laser excitation delivery through fibre-optics demonstrated in this new design illustrates its future clinical potential.

  12. Early dental caries detection using a fibre-optic coupled polarization-resolved Raman spectroscopic system

    PubMed Central

    Ko, Alex C.-T.; Hewko, Mark; Sowa, Michael G.; Dong, Cecilia C.S.; Cleghorn, Blaine; Choo-Smith, Lin-P’ing

    2008-01-01

    A new fibre-optic coupled polarization-resolved Raman spectroscopic system was developed for simultaneous collection of orthogonally polarized Raman spectra in a single measurement. An application of detecting incipient dental caries based on changes observed in Raman polarization anisotropy was also demonstrated using the developed fibre-optic Raman spectroscopic system. The predicted reduction of polarization anisotropy in the Raman spectra of caries lesions was observed and the results were consistent with those reported previously with Raman microspectroscopy. The capability of simultaneous collection of parallel-and cross-polarized Raman spectra of tooth enamel in a single measurement and the improved laser excitation delivery through fibre-optics demonstrated in this new design illustrates its future clinical potential. PMID:18545331

  13. Investigation of dyed human hair fibres using apertureless near-field scanning optical microscopy.

    PubMed

    Formanek, F; DE Wilde, Y; Luengo, G S; Querleux, B

    2006-11-01

    We present the first studies of dyed human hair fibres performed with an apertureless scanning near-field optical microscope. Samples consisted of 5-microm-thick cross-sections, the hair fibres being bleached and then dyed before being cut. Hair dyed with two molecular probes diffusing deep inside the fibre or mainly spreading at its periphery were investigated at a wavelength of 655 nm. An optical resolution of about 50 nm was achieved, well below the diffraction limit; the images exhibited different optical contrasts in the cuticle region, depending on the nature of the dye. Our results suggest that the dye that remains confined at the hair periphery is mainly located at its surface and in the endocuticle.

  14. The thermoluminescence response of doped SiO2 optical fibres subjected to fast neutrons.

    PubMed

    Hashim, S; Bradley, D A; Saripan, M I; Ramli, A T; Wagiran, H

    2010-01-01

    This paper describes a preliminary study of the thermoluminescence (TL) response of doped SiO(2) optical fibres subjected to (241)AmBe neutron irradiation. The TL materials, which comprise Al- and Ge-doped silica fibres, were exposed in close contact with the (241)AmBe source to obtain fast neutron interactions through use of measurements obtained with and without a Cd filter (the filter being made to entirely enclose the fibres). The neutron irradiations were performed for exposure times of 1-, 2-, 3-, 5- and 7-days in a neutron tank filled with water. In this study, use was also made of the Monte Carlo N-particle (MCNP) code version 5 (V5) to simulate the neutron irradiations experiment. It was found that the commercially available Ge-doped and Al-doped optical fibres show a linear dose response subjected to fast neutrons from (241)AmBe source up to seven days of irradiations. The simulation performed using MCNP5 also exhibits a similar pattern, albeit differing in sensitivity. The TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre, the total absorption cross section for Ge in both the fast and thermal neutrons region being some ten times greater than that of Al.

  15. Optical properties of bismuth-doped silica fibres in the temperature range 300 - 1500 K

    SciTech Connect

    Dvoretskii, D A; Bufetov, Igor' A; Vel'miskin, V V; Zlenko, Alexander S; Khopin, V F; Semjonov, S L; Guryanov, Aleksei N; Denisov, L K; Dianov, Evgenii M

    2012-09-30

    The visible and near-IR absorption and luminescence bands of bismuth-doped silica and germanosilicate fibres have been measured for the first time as a function of temperature. The temperature-dependent IR luminescence lifetime of a bismuth-related active centre associated with silicon in the germanosilicate fibre has been determined. The Bi{sup 3+} profile across the silica fibre preform is shown to differ markedly from the distribution of IR-emitting bismuth centres associated with silicon. The present results strongly suggest that the IR-emitting bismuth centre comprises a lowvalence bismuth ion and an oxygen-deficient glass network defect. (optical fibres, lasers and amplifiers. properties and applications)

  16. Reflective variable optical attenuators and fibre ring lasers for wavelength-division multiplexing systems

    NASA Astrophysics Data System (ADS)

    Liu, He Liang

    Wavelength division multiplexing (WDM) optical fibre system is an important enabling technology to fulfill the demands for bandwidth in the modern information age. The main objective of this project is to study novel devices with the potential to enhance the performance of WDM systems. In particular, a novel reflective variable optical attenuator (RVOA) used for dynamic gain equalization (DGE) and fibre lasers based on an entirely new type of erbium-doped fibres with ultrawide tuning range were investigated theoretically and experimentally. We proposed a new type of RVOA device which could be potentially integrated with arrayed waveguide grating (AWG) to reduce the cost of DGE substantially. Initially, fibre-based RVOAs, fabricated with optical fibre components such as fibre coupler and Faraday rotator mirror, were investigated theoretically and experimentally. Larger attenuation range up to 22 dB was realized for fibre coupler-based ROVA with a Faraday rotator mirror and its polarization-dependent loss is about 0.5 dB. Then polymeric waveguide-based RVOAs were investigated theoretically and experimentally. Using an epoxy Novolak resin as core material and an UV-cured resin (Norland's NOA61) as cladding material, a polymeric waveguide RVOA was successfully fabricated. The dynamic 15 dB attenuation range was achieved and the PDL was less than 0.2 dB. The measured insertion loss of the polymeric waveguide RVOA was too large (about 18 dB) and was mainly induced by coupling loss, material loss and poor alignment. In the second part of the study, fibre ring lasers with continuous wavelength tuning over wide wavelength range and fibre ring lasers with discrete wavelength tuning were investigated. Tunable lasers are important devices in WDM systems because they could be employed as reserved sources and therefore avoiding the need to stock large inventory of lasers to cover the ITU-wavelength grid. In this project, erbium ions doped bismuth oxide glass fibres instead of

  17. Optic nerve head and fibre layer imaging for diagnosing glaucoma

    PubMed Central

    Michelessi, Manuele; Lucenteforte, Ersilia; Oddone, Francesco; Brazzelli, Miriam; Parravano, Mariacristina; Franchi, Sara; Ng, Sueko M; Virgili, Gianni

    2016-01-01

    Background The diagnosis of glaucoma is traditionally based on the finding of optic nerve head (ONH) damage assessed subjectively by ophthalmoscopy or photography or by corresponding damage to the visual field assessed by automated perimetry, or both. Diagnostic assessments are usually required when ophthalmologists or primary eye care professionals find elevated intraocular pressure (IOP) or a suspect appearance of the ONH. Imaging tests such as confocal scanning laser ophthalmoscopy (HRT), optical coherence tomography (OCT) and scanning laser polarimetry (SLP, as used by the GDx instrument), provide an objective measure of the structural changes of retinal nerve fibre layer (RNFL) thickness and ONH parameters occurring in glaucoma. Objectives To determine the diagnostic accuracy of HRT, OCT and GDx for diagnosing manifest glaucoma by detecting ONH and RNFL damage. Search methods We searched several databases for this review. The most recent searches were on 19 February 2015. Selection criteria We included prospective and retrospective cohort studies and case-control studies that evaluated the accuracy of OCT, HRT or the GDx for diagnosing glaucoma. We excluded population-based screening studies, since we planned to consider studies on self-referred people or participants in whom a risk factor for glaucoma had already been identified in primary care, such as elevated IOP or a family history of glaucoma. We only considered recent commercial versions of the tests: spectral domain OCT, HRT III and GDx VCC or ECC. Data collection and analysis We adopted standard Cochrane methods. We fitted a hierarchical summary ROC (HSROC) model using the METADAS macro in SAS software. After studies were selected, we decided to use 2 × 2 data at 0.95 specificity or closer in meta-analyses, since this was the most commonly-reported level. Main results We included 106 studies in this review, which analysed 16,260 eyes (8353 cases, 7907 controls) in total. Forty studies (5574

  18. Addressing the needs of the telecoms industry for optical fibre communication in Africa

    NASA Astrophysics Data System (ADS)

    Leitch, Andrew W. R.; Conibear, Ann B.

    2005-10-01

    We report on a successful partnership between the Department of Physics at the Nelson Mandela Metropolitan University (NMMU) and Telkom, South Africa's national telecommunications company, to train physics students in the important fields related to optical fibre technology. The partnership, which began in 2001 and forms part of Telkom's Centre of Excellence program in South Africa, is currently being extended to other countries in Africa. The training being conducted in the Physics Department has as one of its main goals an increased understanding of polarisation mode dispersion (PMD), an effect that will ultimately limit the transmission speeds through optical fibre.

  19. Design of a fibre-optic disc accelerometer: theory and experiment

    NASA Astrophysics Data System (ADS)

    Wang, Yongjie; Xiao, Hao; Zhang, Songwei; Li, Fang; Liu, Yuliang

    2007-06-01

    Mechanical principles of fibre-optic disc accelerometers (FODA) different from those assumed in previous calculation methods are presented. An FODA with a high sensitivity of 82 rad/g and a resonance frequency of 360 Hz is designed and tested. In this system, the minimum measurable demodulation phase of the phase-generated carrier (PGC) is 10-5 rad, and the minimum acceleration reaches 120 ng theoretically. This kind of FODA, with its high responsivity, all-optic-fibre configuration, small size, light weight and stiff shell housing, ensures effective performance in practice.

  20. Non-disturbing optical power monitor for links in the visible spectrum using a polymer optical fibre

    NASA Astrophysics Data System (ADS)

    Ribeiro, Ricardo M.; Freitas, Taiane A. M. G.; Barbero, Andrés P. L.; Silva, Vinicius N. H.

    2015-08-01

    We describe a simple and inexpensive inline optical power monitor (OPMo) for polymer optical fibre (POF) links that are transmitting visible light carriers. The OPMo is non-invasive in the sense that it does not tap any guided light from the fibre core; rather, it collects and detects the spontaneous side-scattered light. Indeed, the OPMo indicates whether a POF transmission link has dark or live status and measures the average optical power level of the propagating signals without disconnecting the fibre link. This paper demonstrates the proof-of-principle of the device for one wavelength at a time, selected from a set of previously calibrated wavelength channels which have been found in the 45 dB dynamic range, with 50 dBm sensitivity or insensitivity by the use or non-use of a mode scrambler. Our findings are very promising milestones for further OPMo development towards the marketplace.

  1. Fibre optic Bragg grating sensors: an alternative method to strain gauges for measuring deformation in bone.

    PubMed

    Fresvig, T; Ludvigsen, P; Steen, H; Reikerås, O

    2008-01-01

    Strain gauges are currently the default method for measuring deformation in bone. Strain gauges are not well suited for in vivo measurements because of their size and because they are difficult to use in bone. They are also unsuitable for repeated measurements over time since they cannot be left in the patient. The optical Bragg grating fibres behave like selective filters of light. As a result the structure will transmit most wavelengths of light, but will reflect certain specific wavelengths. If the Bragg grating is strained along the fibre axis, the wavelength will shift, and this change represents a measure of strain. The optical fibres are very thin, no thicker than a standard surgical suture and are easy to adhere to bone by use of the FDA approved polymethyl-methacrylate (PMMA) as bonding adhesive. Since they are made of biocompatible silica porous bioglass ceramics, it should also be possible to leave the fibres in the patient between and after measurements. We have shown that fibre optic Bragg grating sensors can be used as a measurement tool for bone strain by performing measurements both on an acryl tube and on an extracted sample of human femur diaphysis. On either of them we used four fibre optic sensors and four strain gauges, interspersed at every 45 degrees around the circumference. The standard deviation of the measurements on the acrylic tube for each of the sensors, both optical fibres and strain gauges, varied from 1.0 to 5.2%. Every sensor, both optical fibre and strain gauge, correlated significantly with all of the rest at the 0.01 level with a Pearson correlation coefficient r ranging from 0.986 to 1.0. The linearity for all of the sensors versus load was excellent, the lowest linearity of the eight sensors was 0.996 as expressed by r(2) (coefficient of determination), with no significant difference in linearity between optical fibres and strain gauges. Bone is not an ideal isotropic material, and we found that the strain readings of the

  2. An 8-mm diameter fibre robot positioner for massive spectroscopy surveys

    NASA Astrophysics Data System (ADS)

    Fahim, N.; Prada, F.; Kneib, J. P.; Glez-de-Rivera, G.; Hörler, P.; Sánchez, J.; Azzaro, M.; Becerril, S.; Bleuler, H.; Bouri, M.; Castaño, J.; Garrido, J.; Gillet, D.; Gómez, C.; Gómez, M. A.; González-Arroyo, A.; Jenni, L.; Makarem, L.; Yepes, G.; Arrillaga, X.; Carrera, M. A.; Diego, R.; Charif, M.; Hug, M.; Lachat, C.

    2015-06-01

    Massive spectroscopic survey are becoming trendy in astrophysics and cosmology, as they can address new fundamental knowledge such as understanding the formation of the Milky Way and probing the nature of the mysterious dark energy. To enable massive spectroscopic surveys, new technology has been developed to place thousands of optical fibres at a given position on a focal plane. This technology needs to be: (1) accurate, with micrometer positional accuracy; (2) fast to minimize overhead; (3) robust to minimize failure; and (4) low cost. In this paper, we present the development, properties, and performance of a new single 8-mm in diameter fibre positioner robot, using two 4-mm DC-brushless gearmotors, that allows us to achieve accuracies up to 0.07 arcsec (5 μm). This device has been developed in the context of the Dark Energy Spectroscopic Instrument.1

  3. Fibre optic sensor for the detection of adulterant traces in coconut oil

    NASA Astrophysics Data System (ADS)

    Sheeba, M.; Rajesh, M.; Vallabhan, C. P. G.; Nampoori, V. P. N.; Radhakrishnan, P.

    2005-11-01

    The design and development of a fibre optic evanescent wave refractometer for the detection of trace amounts of paraffin oil and palm oil in coconut oil is presented. This sensor is based on a side-polished plastic optical fibre. At the sensing region, the cladding and a small portion of the core are removed and the fibre nicely polished. The sensing region is fabricated in such a manner that it sits perfectly within a bent mould. This bending of the sensing region enhances its sensitivity. The oil mixture of different mix ratios is introduced into the sensing region and we observed a sharp decrease in the output intensity. The observed variation in the intensity is found to be linear and the detection limit is 2% (by volume) paraffin oil/palm oil in coconut oil. The resolution of this refractometric sensor is of the order of 10-3. Since coconut oil is consumed in large volumes as edible oil in south India, this fibre optic sensor finds great relevance for the detection of adulterants such as paraffin oil or palm oil which are readily miscible in coconut oil. The advantage of this type of sensor is that it is inexpensive and easy to set up. Another attraction of the side-polished fibre is that only a very small amount of analyte is needed and its response time is only 7 s.

  4. Preliminary evaluation of a new fibre-optic cerebral oximetry system.

    PubMed

    Phillips, J P; Langford, R M; Kyriacou, P A; Jones, D P

    2008-12-01

    A new system for measuring the oxygen saturation of blood within tissue has been developed, for a variety of patient monitoring applications. A particular unmet need is in the central nervous system, and this project aims to devise a means for measuring blood oxygen saturation in the brain tissue of patients recovering from neurosurgery or head injury. Coupling light sources and a photodetector to optical fibres results in a probe small enough to pass through a cranial bolt of the type already in use for intra-cranial pressure monitoring. The development and evaluation of a two-wavelength fibre-optic reflectance photoplethysmography (PPG) system are described. It was found that good quality red and near-infrared PPG signals could be obtained from the finger using a fibre-optic probe. Experiments were conducted to find the inter-fibre spacings that yield signals most suitable for calculating oxygen saturation. Reliable signals could be obtained for inter-fibre spacings between 2 mm and 5 mm, the latter being the size of the maximum aperture in the cranial bolt. A preliminary measurement from human brain tissue is also presented.

  5. Optical transmission of PMMA optical fibres exposed to high intensity UVA and visible blue light

    NASA Astrophysics Data System (ADS)

    Alobaidani, A. D.; Furniss, D.; Johnson, M. S.; Endruweit, A.; Seddon, A. B.

    2010-05-01

    Optical transmission of PMMA (polymethylmethacrylate) POF (polymer optical fibre) in the spectral range from 280 to 450 nm is investigated with a high radiation emission source comprising a mercury lamp delivering 40 W/cm 2 at the PMMA POF launch face. The heat generated from the radiation source causes a sudden drop in the launched radiation due to thermal-oxidation and photo-degradation of the launch face of the PMMA POF; this results in a loss of 53% of the total launched power within 13 min of exposure to the source. The thermal-oxidation degradation is controlled by a cooling device which improves the transmission stability of the fibre. However, photo-degradation is still active and causes a loss in power of 7% in 13 min. The spectral output of the transmitted radiation through the PMMA POF was monitored and indicates the variation in optical loss with wavelength. High rates of nominal absorption for the irradiated PMMA POF are found below 320 nm wavelength. From the Beer-Lambert law, the photo-degradation effect with time of a fixed path length of PMMA POF is described by the absorption coefficient ( αλ, cm -1) . The nominal absorption coefficient αλ values in the range 335-368 nm wavelength are found to be higher after 1 h of irradiation than the values in the range 406-438 nm. However, the relative change in the nominal absorption coefficient Δ αλ is greater at 438 nm than at 335 nm, 368 or 406 nm. After 1 h of irradiation with the cooling device in place, the PMMA POF transmission was reduced to 44.8% of its initial value; this recovered to a maximum of 86% of the original transmission of the total launched power after 5 weeks in ambient conditions.

  6. Fibre-optic coupling to high-resolution CCD and CMOS image sensors

    NASA Astrophysics Data System (ADS)

    van Silfhout, R. G.; Kachatkou, A. S.

    2008-12-01

    We describe a simple method of gluing fibre-optic faceplates to complementary metal oxide semiconductor (CMOS) active pixel and charge coupled device (CCD) image sensors and report on their performance. Cross-sectional cuts reveal that the bonding layer has a thickness close to the diameter of the individual fibres and is uniform over the whole sensor area. Our method requires no special tools or alignment equipment and gives reproducible and high-quality results. The method maintains a uniform bond layer thickness even if sensor dies are mounted at slight angles with their package. These fibre-coupled sensors are of particular interest to X-ray imaging applications but also provide a solution for compact optical imaging systems.

  7. Optofluidic realization and retaining of cell-cell contact using an abrupt tapered optical fibre

    NASA Astrophysics Data System (ADS)

    Xin, Hongbao; Zhang, Yao; Lei, Hongxiang; Li, Yayi; Zhang, Huixian; Li, Baojun

    2013-06-01

    Studies reveal that there exists much interaction and communication between bacterial cells, with parts of these social behaviors depending on cell-cell contacts. The cell-cell contact has proved to be crucial for determining various biochemical processes. However, for cell culture with relatively low cell concentration, it is difficult to precisely control and retain the contact of a small group of cells. Particularly, the retaining of cell-cell contact is difficult when flows occur in the medium. Here, we report an optofluidic method for realization and retaining of Escherichia coli cell-cell contact in a microfluidic channel using an abrupt tapered optical fibre. The contact process is based on launching a 980-nm wavelength laser into the fibre, E. coli cells were trapped onto the fibre tip one after another, retaining cell-cell contact and forming a highly organized cell chain. The formed chains further show the ability as bio-optical waveguides.

  8. CONFERENCE NOTE: CETO—Centro de Ciências e Tecnologias Opticas, Trends in Optical Fibre Metrology and Standards

    NASA Astrophysics Data System (ADS)

    1994-01-01

    Summer School, 27 June to 8 July 1994, Viana do Castelo, Hotel do Parque, Portugal Optical fibres, with their extremely low transmission loss, untapped bandwidth and controllable dispersion, dominate a broad range of technologies in which applications must respond to the increasing constraints of today's specifications as well as envisage future requirements. Optical fibres dominate communications systems. In the area of sensors, fibre optics will be fully exploited for their immunity to EMI, their high sensitivity and their large dynamic range. The maturity of single mode optical technology has led to intensive R&D of a range of components based on the advantages of transmission characteristics and signal processing. Specifications and intercompatibility requests for the new generation of both analogue and digital fibre optical components and systems has created a demand for sophisticated measuring techniques based on unique and complex instruments. In recent years there has been a signification evolution in response to the explosion of applications and the tightening of specifications. These developments justify a concerted effort to focus on trends in optical fibre metrology and standards. Objective The objective of this school is to provide a progressive and comprehensive presentation of current issues concerning passive and active optical fibre characterization and measurement techniques. Passive fibre components support a variety of developments in optical fibre systems and will be discussed in terms of relevance and standards. Particular attention will be paid to devices for metrological purposes such as reference fibres and calibration artefacts. The characterization and testing of optical fibre amplifiers, which have great potential in telecommunications, data distribution networks and as a system part in instrumentation, will be covered. Methods of measurement and means of calibration with traceability will be discussed, together with the characterization

  9. Luminescence and photoinduced absorption in ytterbium-doped optical fibres

    SciTech Connect

    Rybaltovsky, A A; Aleshkina, S S; Likhachev, M E; Bubnov, M M; Umnikov, A A; Yashkov, M V; Gur'yanov, Aleksei N; Dianov, Evgenii M

    2011-12-31

    Photochemical reactions induced in the glass network of an ytterbium-doped fibre core by IR laser pumping and UV irradiation have been investigated by analysing absorption and luminescence spectra. We have performed comparative studies of the photoinduced absorption and luminescence spectra of fibre preforms differing in core glass composition: Al{sub 2}O{sub 3} : SiO{sub 2}, Al{sub 2}O{sub 3} : Yb{sub 2}O{sub 3} : SiO{sub 2}, and P{sub 2}O{sub 5} : Yb{sub 2}O{sub 3} : SiO{sub 2}. The UV absorption spectra of unirradiated preform core samples show strong bands peaking at 5.1 and 6.5 eV, whose excitation plays a key role in photoinduced colour centre generation in the glass network. 'Direct' UV excitation of the 5.1- and 6.5-eV absorption bands at 244 and 193 nm leads to the reduction of some of the Yb{sup 3+} ions to Yb{sup 2+}. The photodarkening of ytterbium-doped fibres by IR pumping is shown to result from oxygen hole centre generation. A phenomenological model is proposed for the IR-pumping-induced photodarkening of ytterbium-doped fibres. The model predicts that colour centre generation in the core glass network and the associated absorption in the visible range result from a cooperative effect involving simultaneous excitation of a cluster composed of several closely spaced Yb{sup 3+} ions.

  10. Dense central office solution for point-to-point fibre access including a novel compact dual bi-directional fibre optical transceiver

    NASA Astrophysics Data System (ADS)

    Arvidsson, Gunnar; Junique, Stéphane; Persson, Karl-Åke; Sundberg, Erland

    2006-07-01

    The centralized Point-to-Point fibre access approach with a dedicated single mode optical fibre link connecting each customer to a Central Office (CO) has advantages regarding future-proofness, security, and simple and low-cost optical links and transceivers. The potential bottleneck in handling the large number of optical fibres that need to be terminated in the CO, and combined with optoelectronic components, has been studied within the IST 6th Framework Programme integrated project MUSE. The key parts in the CO are the passive cabinet where customer fibres are accessible through fibre connectors in the Optical Distribution Frame (ODF), and the active cabinet with switching equipment and optical transceivers. For the passive cabinet we conclude, that the most efficient solution is that each connection from the active cabinet to a customer passes only one ODF, and that small form factor connectors are used. For the active cabinet we have demonstrated the feasibility of an SFF-size module containing two bi-directional transceiver units by building and successfully testing a prototype, increasing the customer port density by a factor of two compared to commercial transceivers. The power consumption, which impacts power supply, cooling and cost, has been analyzed, and we propose measures to significantly decrease the power consumption.

  11. Deformation Measurement of a Driven Pile Using Distributed Fibre-optic Sensing

    NASA Astrophysics Data System (ADS)

    Monsberger, Christoph; Woschitz, Helmut; Hayden, Martin

    2016-03-01

    New developments in distributed fibre-optic sensing allow the measurement of strain with a very high precision of about 1 µm / m and a spatial resolution of 10 millimetres or even better. Thus, novel applications in several scientific fields may be realised, e. g. in structural monitoring or soil and rock mechanics. Especially due to the embedding capability of fibre-optic sensors, fibre-optic systems provide a valuable extension to classical geodetic measurement methods, which are limited to the surface in most cases. In this paper, we report about the application of an optical backscatter reflectometer for deformation measurements along a driven pile. In general, pile systems are used in civil engineering as an efficient and economic foundation of buildings and other structures. Especially the length of the piles is crucial for the final loading capacity. For optimization purposes, the interaction between the driven pile and the subsurface material is investigated using pile testing methods. In a field trial, we used a distributed fibre-optic sensing system for measuring the strain below the surface of an excavation pit in order to derive completely new information. Prior to the field trial, the fibre-optic sensor was investigated in the laboratory. In addition to the results of these lab studies, we briefly describe the critical process of field installation and show the most significant results from the field trial, where the pile was artificially loaded up to 800 kN. As far as we know, this is the first time that the strain is monitored along a driven pile with such a high spatial resolution.

  12. Acousto-optic devices for operation with 2μm fibre lasers

    NASA Astrophysics Data System (ADS)

    Ward, J. D.; Stevens, G.; Shardlow, P. C.

    2016-03-01

    Fibre lasers operating in the 2μm region are of increasing interest for a range of applications, including laser machining and biomedical systems. The large mode area compared to 1μm fibre lasers combined with operation in an "eye-safe" region of the spectrum makes them particularly attractive. When developing fibre lasers at 1μm and 1·5μm manufacturers were able to call upon enabling technologies used by the telecoms industry, but at longer wavelengths, including 2μm, many such components are either unavailable or immature. We report on recent developments of Acousto-Optic Modulators and Tunable Filters that are specifically optimised for use with fibre systems operating at or around 2μm. AO devices are interesting due to their ability to conserve spatial-coherence, making them appropriate for use with single-mode optical fibres. We describe how the choice of interaction medium is an important consideration, particularly affecting the drive power and the polarisation behaviour of the device - the latter being an important parameter when used in a fibre system. We also describe two designs of AO Tunable Filter intended for laser tuning. Both designs have been demonstrated intracavity in 2μm fibre lasers. The first gives exceptionally narrow resolution (δλ/λ<0·1%). The second design is of a novel type of AOTF where a matched pair of AOTFs is configured to give a substantially net zero frequency-shift with little or no loss of pointing stability, any minor deviations in manufacture being self-compensated. Furthermore, small controlled frequency-shifts (up to about 10kHz) may be introduced with little or no detriment to the alignment of the system.

  13. Measuring the Dispersion Curve of a PMMA-Fibre Optic Cable Using a Dye Laser

    ERIC Educational Resources Information Center

    Zorba, Serkan; Farah, Constantine; Pant, Ravi

    2010-01-01

    An advanced undergraduate laboratory experiment is outlined which uses a dye laser to map out the chromatic dispersion curve of a polymethyl methacrylate (PMMA) optical fibre. Seven different wavelengths across the visible spectrum are employed using five different dyes. The light pulse is split into two pulses, one to a nearby photodetector and…

  14. Hybrid optical-fibre/geopolymer sensors for structural health monitoring of concrete structures

    NASA Astrophysics Data System (ADS)

    Perry, M.; Saafi, M.; Fusiek, G.; Niewczas, P.

    2015-04-01

    In this work, we demonstrate hybrid optical-fibre/geopolymer sensors for monitoring temperature, uniaxial strain and biaxial strain in concrete structures. The hybrid sensors detect these measurands via changes in geopolymer electrical impedance, and via optical wavelength measurements of embedded fibre Bragg gratings. Electrical and optical measurements were both facilitated by metal-coated optical fibres, which provided the hybrid sensors with a single, shared physical path for both voltage and wavelength signals. The embedded fibre sensors revealed that geopolymer specimens undergo 2.7 mɛ of shrinkage after one week of curing at 42 °C. After curing, an axial 2 mɛ compression of the uniaxial hybrid sensor led to impedance and wavelength shifts of 7 × 10-2 and -2 × 10-4 respectively. The typical strain resolution in the uniaxial sensor was 100 μ \\varepsilon . The biaxial sensor was applied to the side of a concrete cylinder, which was then placed under 0.6 mɛ of axial, compressive strain. Fractional shifts in impedance and wavelength, used to monitor axial and circumferential strain, were 3 × 10-2 and 4 × 10-5 respectively. The biaxial sensor’s strain resolution was approximately 10 μ \\varepsilon in both directions. Due to several design flaws, the uniaxial hybrid sensor was unable to accurately measure ambient temperature changes. The biaxial sensor, however, successfully monitored local temperature changes with 0.5 °C resolution.

  15. A review of recent advances in optical fibre sensors for in vivo dosimetry during radiotherapy

    PubMed Central

    O'Keeffe, S; McCarthy, D; Woulfe, P; Grattan, M W D; Hounsell, A R; Sporea, D; Mihai, L; Vata, I; Leen, G

    2015-01-01

    This article presents an overview of the recent developments and requirements in radiotherapy dosimetry, with particular emphasis on the development of optical fibre dosemeters for radiotherapy applications, focusing particularly on in vivo applications. Optical fibres offer considerable advantages over conventional techniques for radiotherapy dosimetry, owing to their small size, immunity to electromagnetic interferences, and suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based dosemeters, together with being lightweight and flexible, mean that they are minimally invasive and thus particularly suited to in vivo dosimetry. This means that the sensor can be placed directly inside a patient, for example, for brachytherapy treatments, the optical fibres could be placed in the tumour itself or into nearby critical tissues requiring monitoring, via the same applicators or needles used for the treatment delivery thereby providing real-time dosimetric information. The article outlines the principal sensor design systems along with some of the main strengths and weaknesses associated with the development of these techniques. The successful demonstration of these sensors in a range of different clinical environments is also presented. PMID:25761212

  16. Role of the interface between distributed fibre optic strain sensor and soil in ground deformation measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-Cheng; Zhu, Hong-Hu; Shi, Bin

    2016-11-01

    Recently the distributed fibre optic strain sensing (DFOSS) technique has been applied to monitor deformations of various earth structures. However, the reliability of soil deformation measurements remains unclear. Here we present an integrated DFOSS- and photogrammetry-based test study on the deformation behaviour of a soil foundation model to highlight the role of strain sensing fibre–soil interface in DFOSS-based geotechnical monitoring. Then we investigate how the fibre–soil interfacial behaviour is influenced by environmental changes, and how the strain distribution along the fibre evolves during progressive interface failure. We observe that the fibre–soil interfacial bond is tightened and the measurement range of the fibre is extended under high densities or low water contents of soil. The plastic zone gradually occupies the whole fibre length when the soil deformation accumulates. Consequently, we derive a theoretical model to simulate the fibre–soil interfacial behaviour throughout the progressive failure process, which accords well with the experimental results. On this basis, we further propose that the reliability of measured strain can be determined by estimating the stress state of the fibre–soil interface. These findings may have important implications for interpreting and evaluating fibre optic strain measurements, and implementing reliable DFOSS-based geotechnical instrumentation.

  17. Role of the interface between distributed fibre optic strain sensor and soil in ground deformation measurement

    PubMed Central

    Zhang, Cheng-Cheng; Zhu, Hong-Hu; Shi, Bin

    2016-01-01

    Recently the distributed fibre optic strain sensing (DFOSS) technique has been applied to monitor deformations of various earth structures. However, the reliability of soil deformation measurements remains unclear. Here we present an integrated DFOSS- and photogrammetry-based test study on the deformation behaviour of a soil foundation model to highlight the role of strain sensing fibre–soil interface in DFOSS-based geotechnical monitoring. Then we investigate how the fibre–soil interfacial behaviour is influenced by environmental changes, and how the strain distribution along the fibre evolves during progressive interface failure. We observe that the fibre–soil interfacial bond is tightened and the measurement range of the fibre is extended under high densities or low water contents of soil. The plastic zone gradually occupies the whole fibre length when the soil deformation accumulates. Consequently, we derive a theoretical model to simulate the fibre–soil interfacial behaviour throughout the progressive failure process, which accords well with the experimental results. On this basis, we further propose that the reliability of measured strain can be determined by estimating the stress state of the fibre–soil interface. These findings may have important implications for interpreting and evaluating fibre optic strain measurements, and implementing reliable DFOSS-based geotechnical instrumentation. PMID:27827385

  18. Optically stimulated differential impedance spectroscopy

    SciTech Connect

    Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

    2014-02-18

    Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

  19. Optics and Spectroscopy at Surfaces and Interfaces

    NASA Astrophysics Data System (ADS)

    Bordo, Vladimir G.; Rubahn, Horst-Günter

    2005-10-01

    This book covers linear and nonlinear optics as well as optical spectroscopy at solid surfaces and at interfaces between a solid and a liquid or gas. The authors give a concise introduction to the physics of surfaces and interfaces. They discuss in detail physical properties of solid surfaces and of their interfaces to liquids and gases and provide the theoretical background for understanding various optical techniques. The major part of the book is dedicated to a broad review on optical techniques and topical applications such as infrared and optical spectroscopy or optical microscopy. Discussions of nonlinear optics, but also nano-optics and local spectroscopy complement this self-contained work. Helpful features include about 50 problems with solutions, a glossary and a thoroughly elaborated list of topical references. The book is suited as a text for graduate students but also for scientists working in physics, chemistry, materials or life sciences who look for an expert introduction to surface optical aspects of their studies.

  20. Optical and structural properties of polycrystalline CVD diamond films grown on fused silica optical fibres pre-treated by high-power sonication seeding

    NASA Astrophysics Data System (ADS)

    Bogdanowicz, R.; Śmietana, M.; Gnyba, M.; Gołunski, Ł.; Ryl, J.; Gardas, M.

    2014-09-01

    In this paper, the growth of polycrystalline chemical vapour deposition (CVD) diamond thin films on fused silica optical fibres has been investigated. The research results show that the effective substrate seeding process can lower defect nucleation, and it simultaneously increases surface encapsulation. However, the growth process on glass requires high seeding density. The effects of suspension type and ultrasonic power were the specific objects of investigation. In order to increase the diamond density, glass substrates were seeded using a high-power sonication process. The highest applied power of sonotrode reached 72 W during the performed experiments. The two, most common diamond seeding suspensions were used, i.e. detonation nanodiamond dispersed in (a) dimethyl sulfoxide and (b) deionised water. The CVD diamond nucleation and growth processes were performed using microwave plasma assisted chemical vapour deposition system. Next, the seeding efficiency was determined and compared using the numerical analysis of scanning electron microscopy images. The molecular composition of nucleated diamond was examined with micro-Raman spectroscopy. The sp3/sp2 band ratio was calculated using Raman spectra deconvolution method. Thickness, roughness, and optical properties of the nanodiamond films in UV-vis wavelength range were investigated by means of spectroscopic ellipsometry. It has been demonstrated that the high-power sonication process can improve the seeding efficiency on glass substrates. However, it can also cause significant erosion defects at the fibre surface. We believe that the proposed growth method can be effectively applied to manufacture the novel optical fibre sensors. Due to high chemical and mechanical resistance of CVD diamond films, deposition of such films on the sensors is highly desirable. This method enables omitting the deposition of an additional adhesion interlayer at the glass-nanocrystalline interface, and thus potentially increases

  1. EDITORIAL: The 19th International Conference on Optical Fibre Sensors, OFS-19 The 19th International Conference on Optical Fibre Sensors, OFS-19

    NASA Astrophysics Data System (ADS)

    Sampson, David D.; Jones, Julian D. C.; Tatam, Ralph P.

    2009-03-01

    OFS-19 was held in April 2008 in Perth, Australia, with Professor David Sampson (University of Western Australia) as General Chair assisted by Technical Programme Co-Chairs Professor Stephen Collins (Victoria University, Australia), Professor Kyunghwan Oh (Yonsei University, Korea) and Dr Ryozo Yamauchi (Fujikura Ltd, Japan). 'OFS-19' has once again affirmed the OFS series as the leading international conference for the optical fibre sensor community. Since its inception, in London in 1983, and under the leadership of an international steering committee independent of any learned society or professional institution, it has been held approximately every eighteen months. The venue nominally rotates from Europe, to the Americas, and thence to Asia and the Pacific. OFS-19 demonstrated the continuing vigour of the community, with some 240 papers presented, plus 8 tutorials; submissions and attendance were from 29 countries, with a little over half coming from the Asia-Pacific Region. In recent years, it has become a tradition to publish a post-conference special issue in Measurement Science and Technology, and these special issues offer a representative sample of the current status of the field. In the 25 years since OFS began, many of the early ideas and laboratory-based proof-of-principle experiments have successfully evolved into highly developed instrumentation systems and commercial products. One of the greatest success stories has been the optical fibre Bragg grating. Its exquisite intrinsic sensitivity to temperature and strain has led to an expanding niche in structural monitoring, especially in civil engineering. It has formed the 'beach-head' for penetration of optical fibre sensors into the oil and gas industry, initially in the harsh environment of down-hole monitoring. Latterly, it has paved the way for new applications of one of the earliest fibre optic sensors, the fibre hydrophone, which is now making its mark in sub-sea seismic surveying. Additionally

  2. Capillary optical fibre sensor for measurement of dry weight in liquid sugar

    NASA Astrophysics Data System (ADS)

    Miluski, Piotr

    Miniaturization in technology of optical fiber sensors implies new areas of applications in the field of control of food fabrication. The paper presents new idea of capillary optical fibre sensor based on double layer capillary waveguide for dry weight in liquid sugar measurement. The mathematical analysis of sensor's construction is presented. The construction of sensor, its fabrication process and measurement results are shown. The paper also contains the experimental characteristic of elaborated sensor.

  3. Static and dynamic pile testing of reinforced concrete piles with structure integrated fibre optic strain sensors

    NASA Astrophysics Data System (ADS)

    Schilder, Constanze; Kohlhoff, Harald; Hofmann, Detlef; Basedau, Frank; Habel, Wolfgang R.; Baeßler, Matthias; Niederleithinger, Ernst; Georgi, Steven; Herten, Markus

    2013-05-01

    Static and dynamic pile tests are carried out to determine the load bearing capacity and the quality of reinforced concrete piles. As part of a round robin test to evaluate dynamic load tests, structure integrated fibre optic strain sensors were used to receive more detailed information about the strains along the pile length compared to conventional measurements at the pile head. This paper shows the instrumentation of the pile with extrinsic Fabry-Perot interferometers sensors and fibre Bragg gratings sensors together with the results of the conducted static load test as well as the dynamic load tests and pile integrity tests.

  4. Surface plasmon resonance based fibre optic chemical sensor for the detection of cocaine

    NASA Astrophysics Data System (ADS)

    Nguyen, T. Hien; Sun, Tong; Grattan, Kenneth T. V.

    2016-05-01

    A surface plasmon based fibre-optic chemical sensor for the detection of cocaine has been developed using a molecularly imprinted polymer (MIP) film with embedded gold nanoparticles as the recognition element. The MIP was formed on the layer of gold thin film which was deposited on the surface of a fibre core. The sensing was based on swelling of the MIP film induced by analyte binding that shifted the resonance spectrum toward a shorter wavelength. The sensor exhibited a response to cocaine in the concentration range of 0 - 400 μM in aqueous acetonitrile mixtures. Selectivity for cocaine over other drugs has also been demonstrated.

  5. Glucose optical fibre sensor based on a luminescent molecularly imprinted polymer

    NASA Astrophysics Data System (ADS)

    Elosua, C.; Wren, S. P.; Sun, T.; Arregui, F. J.; Grattan, Kenneth T. V.

    2015-09-01

    An optrode able to detect glucose dissolved in water has been implemented. The device is based on the luminescence emission of a Molecularly Imprinted Polymer synthesized specifically for glucose detection, therefore its intensity changes in presence of glucose. This sensing material is attached onto a cleaved ended polymer-clad optical fibre and it is excited by light via 1x2 fibre coupler. The reflected fluorescence signal increases when it is immersed into glucose solutions and recovers to the baseline when it is dipped in ultrapure water. This reversible behaviour indicates the measurement repeatability of using such a glucose sensor.

  6. Use of NIRS technology with a remote reflectance fibre-optic probe for predicting major components in bee pollen.

    PubMed

    González-Martín, I; Hernández-Hierro, J M; Barros-Ferreiro, N; Cordón Marcos, C; García-Villanova, R J

    2007-05-15

    In the present work, we study the use of near infra-red spectroscopy (NIRS) technology together with a remote reflectance fibre-optic probe for determination of the major components in bee pollen. The method allows immediate control of the bee pollen without prior sample treatment or destruction through direct application of the fibre-optic probe to the sample. The regression method employed was modified partial least squares (MPLS). The calibration results obtained using 45 samples of bee pollen allowed the measurement of protein, moisture, ash, reducing sugars, and pH with multiple correlation coefficients (RSQ) and prediction corrected standard errors (SEPC) of 0.91, 0.56% for protein, of 0.78 and 0.49% for moisture; 0.92 and 0.049% for ash; 0.81 and 1.32g of glucose/100g of bee pollen; 0.84 and 0.15 for pH, respectively. The prediction capacity of the pattern was checked by applying it to samples of unknown pollen in external validation.

  7. An investigation into the use of micro-Raman spectroscopy for the analysis of car paints and single textile fibres

    NASA Astrophysics Data System (ADS)

    Zięba-Palus, Janina; Wąs-Gubała, Jolanta

    2011-05-01

    Micro-Raman spectroscopy was applied to identification and differentiation between criminalistic traces such as micropaint chips and single fibres. The aim was to determine the degree of discrimination between fibres coloured by defined chemical dye classes and to differentiate between paint samples on the basis of pigment/dye content. Samples of coloured cotton fibres and samples of green car paints were examined. It was found that the majority of the obtained Raman spectra provided information about the main dyes present in the sample. However, in some cases fluorescence of the samples made dye identification impossible. Spectral libraries for examined paint samples and single fibres were created in order to facilitate quick recognition of similar forensic traces using this analytical method.

  8. Validation and qualification of surface-applied fibre optic strain sensors using application-independent optical techniques

    NASA Astrophysics Data System (ADS)

    Schukar, Vivien G.; Kadoke, Daniel; Kusche, Nadine; Münzenberger, Sven; Gründer, Klaus-Peter; Habel, Wolfgang R.

    2012-08-01

    Surface-applied fibre optic strain sensors were investigated using a unique validation facility equipped with application-independent optical reference systems. First, different adhesives for the sensor's application were analysed regarding their material properties. Measurements resulting from conventional measurement techniques, such as thermo-mechanical analysis and dynamic mechanical analysis, were compared with measurements resulting from digital image correlation, which has the advantage of being a non-contact technique. Second, fibre optic strain sensors were applied to test specimens with the selected adhesives. Their strain-transfer mechanism was analysed in comparison with conventional strain gauges. Relative movements between the applied sensor and the test specimen were visualized easily using optical reference methods, digital image correlation and electronic speckle pattern interferometry. Conventional strain gauges showed limited opportunities for an objective strain-transfer analysis because they are also affected by application conditions.

  9. Long-term stability testing of optical fibre Fabry-Perot temperature sensors

    NASA Astrophysics Data System (ADS)

    Polyzos, Dimitrios; Jinesh, Mathew; MacPherson, William N.; Maier, Robert R. J.

    2016-05-01

    Applications of fibre optic sensors at high temperatures have gained a huge interest recently, as they appeared to be suitable for temperature recording in harsh environments. In this paper, we are demonstrating two intrinsic Fabry-Perot (F-P) fibre optic sensors for high temperature monitoring. The sensors are consisting of a 125μm diameter single mode fibre (SMF28) and a 125μm diameter PCF ESM-12B pure fused silica fibre spliced to a SMF28, respectively. The result was a low finesse optical SMF-Cr-SMF, and SMF-Cr-PCF, sensor with cavity lengths varying from 50μm to 100μm. Both types of Fabry-Perot sensors were tested in a tube furnace over a temperature range from room temperature up to 1100°C. Following a number of annealing cycles, between the above mentioned temperatures range, very good repeatability of the phase response was achieved. During the cycling process, thermal stress relief takes place which makes the sensors suitable for temperature testing at temperatures just in excess of 1000°C. After initial cycling the sensors are subjected to long term stability tests. The phase response is stable, less than 4°C, over a period of 5 days at a temperature of 1050°C for both sensors. The temperature resolution is around 3°C.

  10. Fibre optic ocean bottom seismic cable system: from innovation to commercial success

    NASA Astrophysics Data System (ADS)

    Kringlebotn, Jon Thomas; Nakstad, Hilde; Eriksrud, Morten

    2009-10-01

    Optoplan has been awarded the world's first commercial contract for a fibre optic Ocean Bottom Seismic Cable (OBC) system [1] for permanent reservoir monitoring at the Ekofisk field in the North Sea. An area of 60 sq. km of the seabed will be covered by four component (4C) sensors in 2010. The system consists of i) a top-side (platform) laser interrogation and recording system, and ii) a wet-end system including 200 km of seismic cable with 4000 sensor stations, each containing 4 FBG-based interferometric sensors (three accelerometers and one hydrophone). The wet-end system includes 24000 FBGs and more than 3500km of optical fibres, and will probably be the largest single fibre optic sensor network ever made. The completely passive wet-end part of the system is designed to operate with ultra-high reliability subsea over more than 25 years. The system is expected to significantly enhance the oil and gas recovery of the field. This commercial success is a result of i) Optoplan's long experience and credibility in the field of fibreoptic sensors for the oil and gas industry [2], [3], ii) close collaboration with oil companies and qualification through extensive field testing [4], [5], iii) the establishment of a high capacity supply chain and manufacturing system with innovative automated processes, iv) sensor/manufacturing design for high reliability and good manufacturability with high yield, v) innovative sensor fibre network and instrumentation design [1], [6], [7], [

  11. A Micro-Computed Tomography Technique to Study the Quality of Fibre Optics Embedded in Composite Materials

    PubMed Central

    Chiesura, Gabriele; Luyckx, Geert; Voet, Eli; Lammens, Nicolas; Van Paepegem, Wim; Degrieck, Joris; Dierick, Manuel; Van Hoorebeke, Luc; Vanderniepen, Pieter; Sulejmani, Sanne; Sonnenfeld, Camille; Geernaert, Thomas; Berghmans, Francis

    2015-01-01

    Quality of embedment of optical fibre sensors in carbon fibre-reinforced polymers plays an important role in the resultant properties of the composite, as well as for the correct monitoring of the structure. Therefore, availability of a tool able to check the optical fibre sensor-composite interaction becomes essential. High-resolution 3D X-ray Micro-Computed Tomography, or Micro-CT, is a relatively new non-destructive inspection technique which enables investigations of the internal structure of a sample without actually compromising its integrity. In this work the feasibility of inspecting the position, the orientation and, more generally, the quality of the embedment of an optical fibre sensor in a carbon fibre reinforced laminate at unit cell level have been proven. PMID:25961383

  12. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration

    PubMed Central

    Soto, Marcelo A.; Ramírez, Jaime A.; Thévenaz, Luc

    2016-01-01

    Distributed optical fibre sensors possess the unique capability of measuring the spatial and temporal map of environmental quantities that can be of great interest for several field applications. Although existing methods for performance enhancement have enabled important progresses in the field, they do not take full advantage of all information present in the measured data, still giving room for substantial improvement over the state-of-the-art. Here we propose and experimentally demonstrate an approach for performance enhancement that exploits the high level of similitude and redundancy contained on the multidimensional information measured by distributed fibre sensors. Exploiting conventional image and video processing, an unprecedented boost in signal-to-noise ratio and measurement contrast is experimentally demonstrated. The method can be applied to any white-noise-limited distributed fibre sensor and can remarkably provide a 100-fold improvement in the sensor performance with no hardware modification. PMID:26927698

  13. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability

    PubMed Central

    Närhi, Mikko; Wetzel, Benjamin; Billet, Cyril; Toenger, Shanti; Sylvestre, Thibaut; Merolla, Jean-Marc; Morandotti, Roberto; Dias, Frederic; Genty, Goëry; Dudley, John M.

    2016-01-01

    Modulation instability is a fundamental process of nonlinear science, leading to the unstable breakup of a constant amplitude solution of a physical system. There has been particular interest in studying modulation instability in the cubic nonlinear Schrödinger equation, a generic model for a host of nonlinear systems including superfluids, fibre optics, plasmas and Bose–Einstein condensates. Modulation instability is also a significant area of study in the context of understanding the emergence of high amplitude events that satisfy rogue wave statistical criteria. Here, exploiting advances in ultrafast optical metrology, we perform real-time measurements in an optical fibre system of the unstable breakup of a continuous wave field, simultaneously characterizing emergent modulation instability breather pulses and their associated statistics. Our results allow quantitative comparison between experiment, modelling and theory, and are expected to open new perspectives on studies of instability dynamics in physics. PMID:27991513

  14. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability

    NASA Astrophysics Data System (ADS)

    Närhi, Mikko; Wetzel, Benjamin; Billet, Cyril; Toenger, Shanti; Sylvestre, Thibaut; Merolla, Jean-Marc; Morandotti, Roberto; Dias, Frederic; Genty, Goëry; Dudley, John M.

    2016-12-01

    Modulation instability is a fundamental process of nonlinear science, leading to the unstable breakup of a constant amplitude solution of a physical system. There has been particular interest in studying modulation instability in the cubic nonlinear Schrödinger equation, a generic model for a host of nonlinear systems including superfluids, fibre optics, plasmas and Bose-Einstein condensates. Modulation instability is also a significant area of study in the context of understanding the emergence of high amplitude events that satisfy rogue wave statistical criteria. Here, exploiting advances in ultrafast optical metrology, we perform real-time measurements in an optical fibre system of the unstable breakup of a continuous wave field, simultaneously characterizing emergent modulation instability breather pulses and their associated statistics. Our results allow quantitative comparison between experiment, modelling and theory, and are expected to open new perspectives on studies of instability dynamics in physics.

  15. Coherent tunnelling adiabatic passage in optical fibres using superimposed long-period fiber gratings

    NASA Astrophysics Data System (ADS)

    Thyagarajan, K.; Gupta, Ruchi

    2016-08-01

    In this paper, we present the optical analogue of stimulated Raman adiabatic passage (STIRAP) technique for three level atomic system in optical fibre geometry. Considering linearly polarized modes of an optical fibre, it is shown that using a pair of superimposed long-period gratings with peak refractive index perturbation varying spatially along the propagation axis, light can be transferred adiabatically from one core mode to another core mode via an intermediate cladding mode which itself does not get appreciably excited; thus acting like a dark mode. We compare the transmission spectrum of superimposed long-period gratings involved in adiabatic transfer with the transmission spectrum of conventional long-period grating. The analogue output is further analysed for its tolerance to the changes in the ambient refractive index, temperature and other fabrication parameters.

  16. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability.

    PubMed

    Närhi, Mikko; Wetzel, Benjamin; Billet, Cyril; Toenger, Shanti; Sylvestre, Thibaut; Merolla, Jean-Marc; Morandotti, Roberto; Dias, Frederic; Genty, Goëry; Dudley, John M

    2016-12-19

    Modulation instability is a fundamental process of nonlinear science, leading to the unstable breakup of a constant amplitude solution of a physical system. There has been particular interest in studying modulation instability in the cubic nonlinear Schrödinger equation, a generic model for a host of nonlinear systems including superfluids, fibre optics, plasmas and Bose-Einstein condensates. Modulation instability is also a significant area of study in the context of understanding the emergence of high amplitude events that satisfy rogue wave statistical criteria. Here, exploiting advances in ultrafast optical metrology, we perform real-time measurements in an optical fibre system of the unstable breakup of a continuous wave field, simultaneously characterizing emergent modulation instability breather pulses and their associated statistics. Our results allow quantitative comparison between experiment, modelling and theory, and are expected to open new perspectives on studies of instability dynamics in physics.

  17. Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass

    PubMed Central

    Bony, P.Y.; Guasoni, M.; Morin, P.; Sugny, D.; Picozzi, A.; Jauslin, H.R.; Pitois, S.; Fatome, J.

    2014-01-01

    Recent research has been focused on the ability to manipulate a light beam in such a way to hide, namely to cloak, an event over a finite time or localization in space. The main idea is to create a hole or a gap in the spatial or time domain so as to allow for an object or data to be kept hidden for a while and then to be restored. By enlarging the field of applications of this concept to telecommunications, researchers have recently reported the possibility to hide transmitted data in an optical fibre. Here we report the first experimental demonstration of perpetual temporal spying and blinding process of optical data in fibre-optic transmission line based on polarization bypass. We successfully characterize the performance of our system by alternatively copying and then concealing 100% of a 10-Gb s−1 transmitted signal. PMID:25135759

  18. On the feasibility of optical fibre sensors for strain monitoring in thermoplastic composites under fatigue loading conditions

    NASA Astrophysics Data System (ADS)

    De Baere, I.; Luyckx, G.; Voet, E.; Van Paepegem, W.; Degrieck, J.

    2009-03-01

    This study investigates the possibility of using optical fibres with Bragg gratings for measurements in thermoplastic composites under fatigue loading conditions. Two setups are considered: (i) the fibre is embedded in the composite and (ii) the grating is bonded externally. Detailed information is given on the principle of optical fibre measurements and the data acquisition for both setups. To verify the strain derived from the optical fibre, the strain is compared with extensometer measurements. A special design of the blades of the extensometer is presented, since the standard blades suffer from a loss of grip on the surface of the specimen. The material used for this study was a carbon fibre-reinforced polyphenylene sulphide. It can be concluded for both setups that the optical fibre survives over half a million loading cycles, without de-bonding of the fibre. The advantage of the external fibre over the embedded one is that it can be mounted after manufacturing of the plate, but it has a higher risk of being damaged during working conditions of the component.

  19. Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cells

    PubMed Central

    Kreysing, Moritz; Ott, Dino; Schmidberger, Michael J.; Otto, Oliver; Schürmann, Mirjam; Martín-Badosa, Estela; Whyte, Graeme; Guck, Jochen

    2014-01-01

    The classical purpose of optical fibres is delivery of either optical power, as for welding, or temporal information, as for telecommunication. Maximum performance in both cases is provided by the use of single-mode optical fibres. However, transmitting spatial information, which necessitates higher-order modes, is difficult because their dispersion relation leads to dephasing and a deterioration of the intensity distribution with propagation distance. Here we consciously exploit the fundamental cause of the beam deterioration—the dispersion relation of the underlying vectorial electromagnetic modes—by their selective excitation using adaptive optics. This allows us to produce output beams of high modal purity, which are well defined in three dimensions. The output beam distribution is even robust against significant bending of the fibre. The utility of this approach is exemplified by the controlled rotational manipulation of live cells in a dual-beam fibre-optical trap integrated into a modular lab-on-chip system. PMID:25410595

  20. Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cells

    NASA Astrophysics Data System (ADS)

    Kreysing, Moritz; Ott, Dino; Schmidberger, Michael J.; Otto, Oliver; Schürmann, Mirjam; Martín-Badosa, Estela; Whyte, Graeme; Guck, Jochen

    2014-11-01

    The classical purpose of optical fibres is delivery of either optical power, as for welding, or temporal information, as for telecommunication. Maximum performance in both cases is provided by the use of single-mode optical fibres. However, transmitting spatial information, which necessitates higher-order modes, is difficult because their dispersion relation leads to dephasing and a deterioration of the intensity distribution with propagation distance. Here we consciously exploit the fundamental cause of the beam deterioration—the dispersion relation of the underlying vectorial electromagnetic modes—by their selective excitation using adaptive optics. This allows us to produce output beams of high modal purity, which are well defined in three dimensions. The output beam distribution is even robust against significant bending of the fibre. The utility of this approach is exemplified by the controlled rotational manipulation of live cells in a dual-beam fibre-optical trap integrated into a modular lab-on-chip system.

  1. Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor

    NASA Astrophysics Data System (ADS)

    Allen, T. J.; Zhang, E.; Beard, P. C.

    2015-03-01

    Laser-Scanning-Optical-Resolution Photoacoustic Microscopy (LSOR-PAM) requires an ultrasound detector with a low noise equivalent pressure (NEP) and a large angular detection aperture in order to image a large field of view (FOV). It is however challenging to meet these requirements when using piezoelectric receivers since using a small sensing element size (<100μm) in order to achieve a large angular detection aperture will inevitability reduce the sensitivity of the detector as it scales with decreasing element size. Fibre optic ultrasound sensors based on a Fabry Perot cavity do not suffer from this limitation and can provide high detection sensitivity (NEP<0.1kPa over a 20 MHz measurement bandwidth) with a large angular detection aperture due to their small active element size (~10μm). A LSOR-PAM system was developed and combined with this type of fibre optic ultrasound sensor. A set of phantom studies were undertaken. The first study demonstrated that a high resolution image over a large field of view (Ø11mm) could be obtained with a sampledetector separation of only 1.6mm. In the second study, a 12μm diameter tube filled with methylene blue whose absorption coefficient was similar to that of blood was visualised demonstrating that the fibre optic sensor could provide sufficient SNR for in-vivo microvascular OR-PAM imaging. These preliminary results suggest that the fibre optic sensor has the potential to outperform piezoelectric detectors for Laser-Scanning Optical Resolution Photoacoustic Microscopy (LSOR-PAM).

  2. Thermoluminescent sensitivity of single clad neodymium doped SiO2 optical fibres measured with 6 MeV photons

    NASA Astrophysics Data System (ADS)

    Saeed, M. A.; Hossain, I.; Hida, N.; Wagiran, H.

    2013-10-01

    This study investigates the thermoluminescent sensitivity of neodymium doped SiO2 optical fibre with various dose ranges from 0.5 Gy to 4.0 Gy by 6 MeV photon irradiations. The TL responses of the neodymium doped silica fibres are compared with available TLD-100 dosimeter in order to determine the suitability as a TL material. We found that the TLD-100 and neodymium doped silica fibre have a significant linear signal to dose relationship. Neodymium doped fibres sensitivity is approximately 11% of TLD-100.

  3. A simple and inexpensive optical power monitor for two visible wavelength WDM channels in plastic optical fibre links

    NASA Astrophysics Data System (ADS)

    Freitas, Taiane A. M. G.; Marcondes, Claudia B.; Ribeiro, Ricardo M.

    2016-12-01

    This paper shows for the first time, to the best of our knowledge, the design of a simple, non-invasive, bidirectional and inexpensive optical power monitor (OPMo) for WDM over PMMA-based polymer optical fibre (POF) links transmitting 470 nm and 650 nm wavelengths light carriers. Low-cost cellophane plastic optical filters were used for each WDM channel aiming to demonstrate the OPMo operational principle. The OPMo is non-invasive because it does not tap any guided light from the fibre core; rather, it collects and detects the spontaneous side-scattered light. A sensitivity of  -32 dBm and dynamic range of 38.8 dB were measured. A crosstalk rejection better than 25 dB was achieved when both light carriers are of the same power.

  4. Optical fibre Fabry-Perot relative humidity sensor based on HCPCF and chitosan film

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohui; Jiang, Mingshun; Sui, Qingmei; Geng, Xiangyi

    2016-09-01

    An optical fibre Fabry-Perot interferometer (FPI) sensor for relative humidity (RH) measurement is proposed. The FPI is formed by splicing a short section of hollow-core photonic crystal fibre(HCPCF) to single mode fibre and covering a chitosan film at the end of HCPCF. The refractive index of chitosan and film thickness will change with ambient RH, leading to the change in the reflected interference spectrum of FPI. RH response of the FPI sensor is analysed theoretically and demonstrated experimentally. It shows nonlinear response to RH values from 35 to 95%RH. The interference fringe shifts to shorter wavelength as RH increases with a maximum sensitivity of 0.28 nm/%RH at high RH level. And the fringe contrast also decreases as RH increases with an available maximum sensitivity of 0.5 dB/%RH. The sensor shows good stability and fast response time less than 1 min. With its advantages of compact structure, good performance, simple and safe fabrication, the proposed optical fibre FPI sensor has great potential for RH sensing.

  5. Glass beads and Ge-doped optical fibres as thermoluminescence dosimeters for small field photon dosimetry.

    PubMed

    Jafari, S M; Alalawi, A I; Hussein, M; Alsaleh, W; Najem, M A; Hugtenburg, R P; Bradley, D A; Spyrou, N M; Clark, C H; Nisbet, A

    2014-11-21

    An investigation has been made of glass beads and optical fibres as novel dosimeters for small-field photon radiation therapy dosimetry. Commercially available glass beads of largest dimension 1.5 mm and GeO2-doped SiO2 optical fibres of 5 mm length and 120 µm diameter were characterized as thermoluminescence dosimeters. Results were compared against Monte-Carlo simulations with BEAMnrc/DOSXYZnrc, EBT3 Gafchromic film, and a high-resolution 2D-array of liquid-filled ionization chambers. Measurements included relative output factors and dose profiles for square-field sizes of 1, 2, 3, 4, and 10 cm. A customized Solid-Water® phantom was employed, and the beads and fibres were placed at defined positions along the longitudinal axis to allow accurate beam profile measurement. Output factors and the beam profile parameters were compared against those calculated by BEAMnrc/DOSXYZnrc. The output factors and field width measurements were found to be in agreement with reference measurements to within better than 3.5% for all field sizes down to 2 cm2 for both dosimetric systems, with the beads showing a discrepancy of no more than 2.8% for all field sizes. The results confirm the potential of the beads and fibres as thermoluminescent dosimeters for use in small photon radiation field sizes.

  6. Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection

    NASA Astrophysics Data System (ADS)

    Zhang, Edward Z.; Beard, Paul C.

    2015-03-01

    A range of miniature (125μm o.d.) fibre optic ultrasound sensors based on the use of interferometric polymer optical cavities has been developed for minimally invasive photoacoustic imaging and sensing applications. It was observed that by careful selection of both the fibre tip and cavity geometry it is possible to achieve exceptional acoustic performance. Specifically, rounding the tip of the fibre to remove the presence of sharp diffractive boundaries enables a well behaved frequency response along with a near omnidirectional response at frequencies in the tens of MHz range to be achieved. The use of a plano-convex rather than a planar cavity provides high finesse and therefore detection sensitivity. Thus, by using a plano-convex cavity formed at the tip of radiused single mode fibre it was possible to realise a miniature ultrasound detector with a bandwidth of 80MHz, a noise-equivalent pressure of 40Pa (over a 20MHz measurement bandwidth) and a near omnidirectional response at frequencies as high as 30MHz. These characteristics suggest this type of sensor could find applications in interventional medicine for guiding needles or catheters, as mechanically scanned photoacoustic imaging probes or in laser scanning OR-PAM.

  7. A Fibre-Optic Communications Network for Teaching Clinical Medicine.

    ERIC Educational Resources Information Center

    Williams, Robin

    1985-01-01

    Describes an interactive television system based on fiber-optic communications technology which is used to facilitate participation by University of London medical students in lecture/tutorials by teachers in different hospital locations. Highlights include advantages of fiber-optics, cable manufacture and installation, opto-electronic interface,…

  8. Optic Disc and Retinal Nerve Fibre Layer Changes in Parkinson’s Disease

    PubMed Central

    Cetin, Ebru N.; Bir, Levent S.; Sarac, Gülden; Yaldızkaya, Filiz; Yaylalı, Volkan

    2013-01-01

    Abstract This study was conducted to assess optic nerve and peripapillary retinal nerve fibre layer (RNFL) changes in patients with idiopathic Parkinson’s disease (PD) and its correlation with disease duration and severity. Optic nerve parameters and RNFL thickness were measured in 24 PD patients and 25 age–gender-matched controls by Heidelberg Retinal Tomography II (Heidelberg Engineering, Dossenheim, Germany). Patients with visual acuity below 20/25 were excluded. The mean RNFL in the temporal sector was significantly thinner in the study group than the control group (p = 0.020). Additionally, disease severity and duration negatively correlated with optic disc parameters in some sectors. PMID:28163751

  9. A model of the mammalian optic nerve fibre based on experimental data.

    PubMed

    Oozeer, M; Veraart, C; Legat, V; Delbeke, J

    2006-08-01

    Several experimental data about membrane dynamics and pharmacological sensitivities of optic nerve axons have been published. The present work summarizes these data and computer simulations have been used to develop a model of the mammalian optic nerve fibre. The ionic currents description were derived from existing membrane models and particularly from a model of the somatic retinal ganglion cell (RGC) impulse generation. However, original equations had to be modified to match experimental data, which suggests that in RGCs, axonal and somatic ion channel expression are different. The new model is consistent with recent experimental results about optic nerve axonal excitability.

  10. Multiple object fiber optic spectroscopy

    NASA Technical Reports Server (NTRS)

    Hill, J. M.; Angel, J. R. P.; Scott, J. S.; Lindley, D.; Hintzen, P.

    1982-01-01

    The Steward Observatory of the University of Arizona employs short optical fiber lengths to bring light from galaxy images at the 2.3 m telescope's focus to a line along a spectrograph slit, thereby obtaining simultaneous spectra of many objects of the field of view. After describing this instrument, attention is given to the development of an improved version through which efficiency gains will be obtained by remotely positioning the fibers under computer control and by correctly matching fiber outputs to the spectrograph optics. A CCD will replace the presently employed image tube and photographic plate detector system, in order to permit sky subtraction, yield increased dynamic range, and provide more accurate wavelength calibration due to the detector's fixed format.

  11. Use of NIRS technology with a remote reflectance fibre-optic probe for predicting major components in cheese.

    PubMed

    González-Martín, Inmaculada; González-Pérez, Claudio; Hernández-Hierro, José Miguel; González-Cabrera, José Miguel

    2008-04-15

    In the present work the potential of near infra-red spectroscopy technology (NIRS) together with the use of a remote reflectance fibre-optic probe for the analysis of fat, moisture, protein and chlorides contents of commercial cheeses elaborated with mixtures of cow's, ewe's and goat's milk and with different curing times was examined. The probe was applied directly, with no previous sample treatment. The regression method employed was modified partial least squares (MPLS). The equations developed for the cheese samples afforded fat, moisture, protein, and chloride contents in the range 13-52%, 10-62%, 20-30%, and 0.7-2.9%, respectively. The multiple correlation coefficients (RSQ) and prediction corrected standard errors (SEP (C)) obtained were respectively 0.97 and 0.995% for fat; 0.96% and 1.640% for moisture; 0.78% and 0.760% for protein, and 0.89% and 0.112% for chlorides.

  12. Review of optical breast imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Grosenick, Dirk; Rinneberg, Herbert; Cubeddu, Rinaldo; Taroni, Paola

    2016-09-01

    Diffuse optical imaging and spectroscopy of the female breast is an area of active research. We review the present status of this field and discuss the broad range of methodologies and applications. Starting with a brief overview on breast physiology, the remodeling of vasculature and extracellular matrix caused by solid tumors is highlighted that is relevant for contrast in optical imaging. Then, the various instrumental techniques and the related methods of data analysis and image generation are described and compared including multimodality instrumentation, fluorescence mammography, broadband spectroscopy, and diffuse correlation spectroscopy. We review the clinical results on functional properties of malignant and benign breast lesions compared to host tissue and discuss the various methods to improve contrast between healthy and diseased tissue, such as enhanced spectroscopic information, dynamic variations of functional properties, pharmacokinetics of extrinsic contrast agents, including the enhanced permeability and retention effect. We discuss research on monitoring neoadjuvant chemotherapy and on breast cancer risk assessment as potential clinical applications of optical breast imaging and spectroscopy. Moreover, we consider new experimental approaches, such as photoacoustic imaging and long-wavelength tissue spectroscopy.

  13. Optical Spectroscopy of Dynamically Compressed Liquids.

    DTIC Science & Technology

    1986-06-30

    VA 22217-5000 ELEMENTNO. NO 11 TITLE (Include Security Cia.iicoo OPTICAL SPECTROSCOPY OIF DYNAMICA I Y COMPRFSSFnI I TQIIITD), (1N1.A A--,FT% 12...Enhanced Solid-State Reactivity and the Chemistry of Shock-Compressed Fluids , 7th Rocky Mountain Regional Meeting of the American Chemical Society, June 6-8

  14. Demonstration of Berry Phase in Optical Spectroscopy

    NASA Technical Reports Server (NTRS)

    Xia, Hui-Rong; Zhang, Yong; Jiang, Hong-Ji; Ding, Liang-En

    1996-01-01

    In this paper we demonstrate that the observed phase shift of the RF signal and its intensity dependence under extreme low pump and probe laser field conditions are dominated by Berry phase effect in optical spectroscopy with good adiabatic approximation, which provides all features' agreements between the theoretical and the experimental results.

  15. Methanol selective fibre-optic gas sensor with a nanoporous thin film of organic-inorganic hybrid multilayers

    NASA Astrophysics Data System (ADS)

    Wang, T.; Okuda, H.; Lee, S.-W.

    2015-07-01

    The development of an evanescent wave optical fibre (EWOF) sensor modified with an organic-inorganic hybrid nanoporous thin film for alcohol vapor detection was demonstrated. The optical fibre with a core diameter of 200 μm was bent into U-shape probe optic fibre to enhance the penetation depth of light transferred into the evanescent filed. The bended region of the fibre was modified with a multilayered thin film of poly(allyamine hydrochloride) and silica nanoparticels, (PAH/SiO2)n, by a layer-by-layer (LbL) film deposition technique, followed by infusion of tetrakis(4- sulfophenyl)porphine, TPPS. The mesoporous film structure showed high sensitivity and selectivity to methanol by the aid of the TPPS infused inside the film. The optical sensor response was reversible and reproducible over many times of exposures to analytes, which was caused by the change in refractive index (RI) of the film.

  16. Novel fibre-optic-based ionization radiation probes

    NASA Astrophysics Data System (ADS)

    Jackson, David A.

    2004-06-01

    CsI ionization radiation probes interrogated via a fiber optic transceiver link for monitoring medical procedures such as Intensity Modulated Radiotherapy, Brachytherapy and Nuclear Medicine are presented together with potential industrial, environmental and military applications.

  17. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy.

    PubMed

    Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F

    2015-10-13

    Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies.

  18. Multichannel optical-fibre heterodyne interferometer for ultrasound detection of partial discharges in power transformers

    NASA Astrophysics Data System (ADS)

    Posada, J. E.; Garcia-Souto, J. A.; Rubio-Serrano, J.

    2013-09-01

    A multichannel interferometric system is proposed for the ultrasonic detection of partial discharges using intrinsic optical fibre sensors that may be immersed in oil. It is based on a heterodyne scheme which drives at least four sensor heads in order to localize the source of the acoustic emissions. Proper design of the sensing head improves its sensitivity through magnification and reaches a compact encapsulated probe able to be installed within power transformers. The optoelectronic implementation and the experimental tests are presented to optimize the resolution (4 channels—4 mrad). In addition, the results of ultrasound measurements at 150 kHz with an optical fibre sensor immersed in water in an acoustic test bench are shown, in which a resolution better than 10 Pa was obtained. Finally, the set-up for three-phase power transformers is demonstrated and characterized to detect and locate the source of acoustic emissions.

  19. Applications Of A Fibre Optic TV Holography System To The Study Of Large Automotive Structures.

    NASA Astrophysics Data System (ADS)

    Davies, Jeremy C.; Buckberry, Clive H.

    1990-04-01

    Mono-mode fibre optic components, including directional couplers and piezo-electric phase control elements, have been used to construct a TV holography system. The instrument has advantages of simplicity and ruggedness of construction and, with a 40m fibre optic link to a 600m argon ion laser, has proved to be an ideal tool for studying the structural behaviour of automotive assemblies. The TV holography system is described and two examples presented of its use: analysis of the deformation of a petrol engine cylinder bore due to head bolt forces, and the vibration study of a vehicle bodyshell subjected to wheel induced inputs. Limitations in the application of the technique are identified and future work to address these shortcomings outlined.

  20. The application of fibre optics in self-teaching programmes in anatomy.

    PubMed

    Robertson-Rintoul, J J; Smolenski, T; Robertson-Rintoul, J

    1986-01-01

    Self-teaching programmes in the form of tape/slide sequences have been used in the Department of Anatomy and Experimental Pathology, University of St Andrews, Scotland for a number of years and provide students with taped text and colour projections of two-dimensional drawings or diagrams. Such presentations are intended to replicate the lectures. Like anatomy departments elsewhere, anatomical and pathological specimens in museum pots have a fully-labelled photograph alongside to help identify specific anatomical structures. Recently, fibre optics have been introduced to illustrate anatomical features in prosections or museum specimens as a means of overcoming the drawbacks of a two dimensional illustration. A labelled push-button device has been constructed to illuminate optical fibres in order to identify and pinpoint anatomical structures in wet or dry specimens. Pinpoints of bright light are more readily seen than pin labels which also proved to be unsuitable in certain situations, such as within the skull foramina.

  1. Plastic optical fibre sensor for in-vivo radiation monitoring during brachytherapy

    NASA Astrophysics Data System (ADS)

    Woulfe, P.; Sullivan, F. J.; Lewis, E.; O'Keeffe, S.

    2015-09-01

    An optical fibre sensor is presented for applications in real-time in-vivo monitoring of the radiation dose a cancer patient receives during seed implantation in Brachytherapy. The sensor is based on radioluminescence whereby radiation sensitive scintillation material is embedded in the core of a 1mm plastic optical fibre. Three scintillation materials are investigated: thallium-doped caesium iodide (CsI:Tl), terbium-doped gadolinium oxysulphide (Gd2O2S:Tb) and europium-doped lanthanum oxysulphide (La2O2S:Eu). Terbium-doped gadolinium oxysulphide was identified as being the most suitable scintillator and further testing demonstrates its measureable response to different activities of Iodine-125, the radio-active source commonly used in Brachytherapy for treating prostate cancer.

  2. Study on the Sensing Coating of the Optical Fibre CO2 Sensor

    PubMed Central

    Wysokiński, Karol; Napierała, Marek; Stańczyk, Tomasz; Lipiński, Stanisław; Nasiłowski, Tomasz

    2015-01-01

    Optical fibre carbon dioxide (CO2) sensors are reported in this article. The principle of operation of the sensors relies on the absorption of light transmitted through the fibre by a silica gel coating containing active dyes, including methyl red, thymol blue and phenol red. Stability of the sensor has been investigated for the first time for an absorption based CO2 optical fiber sensor. Influence of the silica gel coating thickness on the sensitivity and response time has also been studied. The impact of temperature and humidity on the sensor performance has been examined too. Response times of reported sensors are very short and reach 2–3 s, whereas the sensitivity of the sensor ranges from 3 to 10 for different coating thicknesses. Reported parameters make the sensor suitable for indoor and industrial use. PMID:26694412

  3. The radiation tolerance of MTP and LC optical fibre connectors to 500 kGy(Si) of gamma radiation

    NASA Astrophysics Data System (ADS)

    Hall, D. C.; Hamilton, P.; Huffman, B. T.; Teng, P. K.; Weidberg, A. R.

    2012-04-01

    The LHC luminosity upgrade, known as the High Luminosity LHC (HL-LHC), will require high-speed optical links to read out data from the detectors. The optical fibre connectors contained within such a link must have a small form factor and be capable of operating in the harsh radiation environment at the HL-LHC. MTP ribbon fibre connectors and LC single fibre connectors were exposed to 500 kGy(Si) of gamma radiation and their radiation hardness was investigated. Neither type of connector exhibited evidence for any significant radiation damage and both connectors could be qualified for use at HL-LHC detectors.

  4. A Novel Approach to the Sensing of Liquid Density Using a Plastic Optical Fibre Cantilever Beam

    ERIC Educational Resources Information Center

    Kulkarni, Atul; Kim, Youngjin; Kim, Taesung

    2009-01-01

    This article reports for the first time the use of a plastic optical fibre (POF) cantilever beam to measure the density of a liquid. The sensor is based on the Archimedes buoyancy principle. The sensor consists of a POF bonded on the surface of a metal beam in the form of a cantilever configuration, and at the free end of the beam a displacer is…

  5. Railway track component condition monitoring using optical fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Buggy, S. J.; James, S. W.; Staines, S.; Carroll, R.; Kitson, P.; Farrington, D.; Drewett, L.; Jaiswal, J.; Tatam, R. P.

    2016-05-01

    The use of optical fibre Bragg grating (FBG) strain sensors to monitor the condition of safety critical rail components is investigated. Fishplates, switchblades and stretcher bars on the Stagecoach Supertram tramway in Sheffield in the UK have been instrumented with arrays of FBG sensors. The dynamic strain signatures induced by the passage of a tram over the instrumented components have been analysed to identify features indicative of changes in the condition of the components.

  6. Design and clinical results from a fibre optic manometry catheter for oesophageal motility studies

    NASA Astrophysics Data System (ADS)

    Arkwright, J. W.; Doe, S. N.; Smith, M. C.; Blenman, N. G.; Underhill, I. D.; Maunder, S. A.; Glasscock, J. A.; Lim, B.; Szczesniak, M. M.; Dinning, P. G.; Cook, I. J.

    2008-04-01

    We report the design and operation of an optical fibre manometry catheter for measuring variation in pressure in the oesophagus during peristalsis. Catheters of this kind are used to help diagnose oesophageal disorders by recording the muscular contractions of the oesophageal wall in patients having difficulty swallowing. Traditional oesophageal catheters consist of an array of recording sites enabling pressure measurement from multiple locations along the the oesophagus. However, these catheters tend to be bulky or complex to operate whereas our optical equivalent uses a series of Fibre Bragg Grating (FBG) pressure sensors on a single fibre; significantly reducing complexity and allowing the catheter diameter to be minimised. The data from each FBG was recorded using a solid state spectrometer in which the reflected peaks each covered a number of pixels of the spectrometer. This has enabled the FBG peaks to be tracked in wavelength with sub-nanometre precision resulting in pressure sensitivities of less than 1mmHg. Results from a clinical trial carried out on 10 healthy subjects will be presented. For the trial, each subject was simultaneously intubated with the optical catheter and a commercially available solid-state catheter. Back-to-back readings were taken from both devices during a series of controlled water swallows. Ten swallows were recorded with the catheters sensors positioned in proximal, mid, and distal regions of the oesophagus and the data analysed statistically. The fibre optic device accurately picked up the dynamic variations in pressure, and can react at least as fast as the solid state device.

  7. Distributed optical fibre temperature measurements in a low dose rate radiation environment based on Rayleigh backscattering

    NASA Astrophysics Data System (ADS)

    Faustov, A.; Gussarov, A.; Wuilpart, M.; Fotiadi, A. A.; Liokumovich, L. B.; Kotov, O. I.; Zolotovskiy, I. O.; Tomashuk, A. L.; Deschoutheete, T.; Mégret, P.

    2012-04-01

    On-line monitoring of environmental conditions in nuclear facilities is becoming a more and more important problem. Standard electronic sensors are not the ideal solution due to radiation sensitivity and difficulties in installation of multiple sensors. In contrast, radiation-hard optical fibres can sustain very high radiation doses and also naturally offer multi-point or distributed monitoring of external perturbations. Multiple local electro-mechanical sensors can be replaced by just one measuring fibre. At present, there are over four hundred operational nuclear power plants (NPPs) in the world 1. Operating experience has shown that ineffective control of the ageing degradation of major NPP components can threaten plant safety and also plant life. Among those elements, cables are vital components of I&C systems in NPPs. To ensure their safe operation and predict remaining life, environmental monitoring is necessary. In particular, temperature and radiation dose are considered to be the two most important parameters. The aim of this paper is to assess experimentally the feasibility of optical fibre temperature measurements in a low doserate radiation environment, using a commercially available reflectometer based on Rayleigh backscattering. Four different fibres were installed in the Sub-Pile Room of the BR2 Material testing nuclear reactor in Mol, Belgium. This place is man-accessible during the reactor shut-down, allowing easy fibre installation. When the reactor operates, the dose-rates in the room are in a range 0.005-5 Gy/h with temperatures of 40-60 °C, depending on the location. Such a surrounding is not much different to some "hot" environments in NPPs, where I&C cables are located.

  8. Evaluation of the optical switching characteristics of erbium-doped fibres for the development of a fibre Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Rigas, Evangelos; Correia, R.; Stathopoulos, N. A.; Savaidis, S. P.; James, S. W.; Bhattacharyya, D.; Kirby, P. B.; Tatam, R. P.

    2014-05-01

    A polling topology that employs optical switching based on the properties of erbium-doped fibres (EDFs) is used to interrogate an array of FBGs. The properties of the EDF are investigated in its pumped and un-pumped states and the EDFs' switching properties are evaluated by comparing them with a high performance electronically controlled MEM optical switch. Potential advantages of the proposed technique are discussed.

  9. An Optical Fibre Depth (Pressure) Sensor for Remote Operated Vehicles in Underwater Applications.

    PubMed

    Duraibabu, Dinesh Babu; Poeggel, Sven; Omerdic, Edin; Capocci, Romano; Lewis, Elfed; Newe, Thomas; Leen, Gabriel; Toal, Daniel; Dooly, Gerard

    2017-02-19

    A miniature sensor for accurate measurement of pressure (depth) with temperature compensation in the ocean environment is described. The sensor is based on an optical fibre Extrinsic Fabry-Perot interferometer (EFPI) combined with a Fibre Bragg Grating (FBG). The EFPI provides pressure measurements while the Fibre Bragg Grating (FBG) provides temperature measurements. The sensor is mechanically robust, corrosion-resistant and suitable for use in underwater applications. The combined pressure and temperature sensor system was mounted on-board a mini remotely operated underwater vehicle (ROV) in order to monitor the pressure changes at various depths. The reflected optical spectrum from the sensor was monitored online and a pressure or temperature change caused a corresponding observable shift in the received optical spectrum. The sensor exhibited excellent stability when measured over a 2 h period underwater and its performance is compared with a commercially available reference sensor also mounted on the ROV. The measurements illustrates that the EFPI/FBG sensor is more accurate for depth measurements (depth of ~0.020 m).

  10. Microcontroller based fibre-optic visual presentation system for multisensory neuroimaging.

    PubMed

    Kurniawan, Veldri; Klemen, Jane; Chambers, Christopher D

    2011-10-30

    Presenting visual stimuli in physical 3D space during fMRI experiments carries significant technical challenges. Certain types of multisensory visuotactile experiments and visuomotor tasks require presentation of visual stimuli in peripersonal space, which cannot be accommodated by ordinary projection screens or binocular goggles. However, light points produced by a group of LEDs can be transmitted through fibre-optic cables and positioned anywhere inside the MRI scanner. Here we describe the design and implementation of a microcontroller-based programmable digital device for controlling fibre-optically transmitted LED lights from a PC. The main feature of this device is the ability to independently control the colour, brightness, and timing of each LED. Moreover, the device was designed in a modular and extensible way, which enables easy adaptation for various experimental paradigms. The device was tested and validated in three fMRI experiments involving basic visual perception, a simple colour discrimination task, and a blocked multisensory visuo-tactile task. The results revealed significant lateralized activation in occipital cortex of all participants, a reliable response in ventral occipital areas to colour stimuli elicited by the device, and strong activations in multisensory brain regions in the multisensory task. Overall, these findings confirm the suitability of this device for presenting complex fibre-optic visual and cross-modal stimuli inside the scanner.

  11. An Optical Fibre Depth (Pressure) Sensor for Remote Operated Vehicles in Underwater Applications

    PubMed Central

    Duraibabu, Dinesh Babu; Poeggel, Sven; Omerdic, Edin; Capocci, Romano; Lewis, Elfed; Newe, Thomas; Leen, Gabriel; Toal, Daniel; Dooly, Gerard

    2017-01-01

    A miniature sensor for accurate measurement of pressure (depth) with temperature compensation in the ocean environment is described. The sensor is based on an optical fibre Extrinsic Fabry-Perot interferometer (EFPI) combined with a Fibre Bragg Grating (FBG). The EFPI provides pressure measurements while the Fibre Bragg Grating (FBG) provides temperature measurements. The sensor is mechanically robust, corrosion-resistant and suitable for use in underwater applications. The combined pressure and temperature sensor system was mounted on-board a mini remotely operated underwater vehicle (ROV) in order to monitor the pressure changes at various depths. The reflected optical spectrum from the sensor was monitored online and a pressure or temperature change caused a corresponding observable shift in the received optical spectrum. The sensor exhibited excellent stability when measured over a 2 h period underwater and its performance is compared with a commercially available reference sensor also mounted on the ROV. The measurements illustrates that the EFPI/FBG sensor is more accurate for depth measurements (depth of ~0.020 m). PMID:28218727

  12. Fibre Optic Connections And Method For Using Same

    DOEpatents

    Chan, Benson; Cohen, Mitchell S.; Fortier, Paul F.; Freitag, Ladd W.; Hall, Richard R.; Johnson, Glen W.; Lin, How Tzu; Sherman, John H.

    2004-03-30

    A package is described that couples a twelve channel wide fiber optic cable to a twelve channel Vertical Cavity Surface Emitting Laser (VCSEL) transmitter and a multiple channel Perpendicularly Aligned Integrated Die (PAID) receiver. The package allows for reduction in the height of the assembly package by vertically orienting certain dies parallel to the fiber optic cable and horizontally orienting certain other dies. The assembly allows the vertically oriented optoelectronic dies to be perpendicularly attached to the horizontally oriented laminate via a flexible circuit.

  13. FIBRE OPTICS: Narrow-band Bragg filters for the 1.5-μm spectral region based on polished-side single-mode silica fibres

    NASA Astrophysics Data System (ADS)

    Sokolov, Viktor I.; Khudobenko, A. I.

    2003-06-01

    Narrow-band reflecting filters for the telecommunication 1.5-μm wavelength region are fabricated. They consist of a single-mode silica fibre with a polished side and a periodic relief Bragg grating located in the region of the fibre-mode propagation. The filters have the reflectivity R > 98 % and an almost rectangular reflection band with a width of 0.58 — 0.78 nm. They can be used as elements of optical multiplexers/demultiplexers for combining and separating signals in high-speed multichannel fibreoptic communication lines.

  14. Sensitivity enhancement using annealed polymer optical-fibre-based sensors for pressure sensing applications

    NASA Astrophysics Data System (ADS)

    Pospori, A.; Marques, C. A. F.; Sáez-Rodríguez, D.; Nielsen, K.; Bang, O.; Webb, D. J.

    2016-05-01

    Thermal annealing can be used to induce a permanent negative Bragg wavelength shift for polymer fibre grating sensors and it was originally used for multiplexing purposes. Recently, researchers showed that annealing can also provide additional benefits, such as strain and humidity sensitivity enhancement and augmented temperature operational range. The annealing process can change both the optical and mechanical properties of the fibre. In this paper, the annealing effects on the stress and force sensitivities of PMMA fibre Bragg grating sensors are investigated. The incentive for that investigation was an unexpected behaviour observed in an array of sensors which were used for liquid level monitoring. One sensor exhibited much lower pressure sensitivity and that was the only one that was not annealed. To further investigate the phenomenon, additional sensors were photo-inscribed and characterised with regard their stress and force sensitivities. Then, the fibres were annealed by placing them in hot water, controlling with that way the humidity factor. After annealing, stress and force sensitivities were measured again. The results show that the annealing can improve the stress and force sensitivity of the devices. This can provide better performing sensors for use in stress, force and pressure sensing applications.

  15. Optical fibre PH sensor based on immobilized indicator

    NASA Astrophysics Data System (ADS)

    Cai, Defu; Cao, Qiang; Han, JingHong; Cai, Jine; Li, YaTing; Zhu, ZeMin; Fan, Jie; Gao, Ning

    1991-08-01

    An optical fiber pH sensor which has the immobilized pH sensitive indicator dye reagents on the tip of the optical fiber has been studied. The probe is made by covalently immobilizing the phenol red, bromine phenol blue, or bromothymol blue on the polyacrylamide microsphere fixed by polyterafluoroethylene (PTFE) film. A gap between the dye and optical fiber was used to make the diffusion of the hydrogen ions easier. The parameters of the optical fiber pH sensor have been given completely. The ranges of measurement are 3.0 - 5.0 pH, 7.0 - 8.5 pH, and 8.0 - 10.0 pH for bromine phenol blue, phenol red, and bromothymol blue, respectively. The sensitivity is 66.6 mV/pH. The probe has a precision of better than 0.55 pH. The linear correlation coefficient is 0.999. The response time is 1 - 2 min. The hysteresis is 0.52%. The repeatability is 0.013 mV, while the stability is 0.015 pH/h.

  16. Fibre-optic thermometer using semiconductor-etalon sensor

    NASA Technical Reports Server (NTRS)

    Beheim, G.

    1986-01-01

    A fiber-optic thermometer is described which uses a thick-film SiC sensing etalon. The etalon's temperature-dependent phase shift is determined by analyzing its spectral reflectance, using an LED and a tunable Michelson interferometer. Temperatures from 20 to 1000 C are measured with better than 0.5 deg C resolution.

  17. Optical Spectroscopy of Stardust Samples

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.

    2006-01-01

    The Stardust spacecraft collected dust samples of the Kuiper belt comet 81P Wild-2 in aerogel and returned them to Earth January 15, 2006. Preliminary examination (PE) of the collected dust includes teams focused on mineralogy, chemical composition, isotopic measurements, organic analysis, cratering and spectroscopic properties. The main PE science goals are to provide an initial characterization of the returned samples with an emphasis on the capture process and its effects on the samples, a comparison of Stardust samples to other meteoritic materials, and the abundance of presolar materials in the Stardust samples. The science objectives of the Spectroscopy team are to obtain spectroscopic data on Stardust particles through infrared (IR), UV/Vis and Raman measurements of particles in aerogel, extracted particles, keystones, and microtome thin sections. These data will be used to answer fundamental science questions about the nature of the samples, but will also serve as preliminary mineralogical data to guide follow-on measurements that will be performed in the other preliminary examination teams. The IR characteristics of Stardust particles are measured to determine: 1) the nature of the indigenous 3.4 micron organic feature, is it detected and can it be differentiated/deconvolved from the contaminated aerogel? How does it compare to features observed in interplanetary dust particles (IDPs) and to astronomical measurements of comets and interstellar dust? 2) the shape and fine structure within the 10 micron silicate feature. Overlap with the strong Si-O stretching vibration from the aerogel complicates this analysis, but we hope to determine if the feature is dominated by amorphous silicates such as those observed in IDPs and comets and whether or not crystalline silicates (e.g. olivine, pyroxene, clays) are present, 3) the presence of secondary (alteration) phases. Deep Impact results suggest that IR observations of Stardust particles should be evaluated for

  18. Europium complex-based thermochromic sensor for integration in plastic optical fibres

    NASA Astrophysics Data System (ADS)

    Lopez, Inma Suarez; Luisa Mendonça, A.; Fernandes, Mariana; Bermudez, Verónica de Zea; Morgado, Jorge; Del Pozo, G.; Romero, B.; Cabanillas-Gonzalez, Juan

    2012-06-01

    We report on a new thermochromic material containing a europium complex for thermal sensing through its fluorescence response to temperature. The ratio between the strong luminescence peak of europium (III) and a side band emission is employed as a new probe for optical sensing of temperature. The ratio is observed to follow an Arrhenius-type dependence with temperature. Based on these results we developed a thermal probe based on a segment of luminescent thermometer optically cemented to the tip of a PMMA fibre.

  19. A simplified hollow-core microstructured optical fibre laser with microring resonators and strong radial emission

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Li; Liu, Yan-Ge; Yan, Min; Zhou, Wen-Yuan; Ying, Cui-Feng; Ye, Qing; Tian, Jian-Guo

    2014-08-01

    A simplified hollow-core microstructured optical fibre (SHMOF) laser with microring resonators and strong radial emission is demonstrated. We propose that a submicron thickness silica ring embedded in the SHMOF can act as a microring resonator, with the advantages of being both compact and solid. Furthermore, the microfluidics can be easily controlled with a side pumping scheme. We also obtained a highly stable and tunable laser. The attractive possibility of developing microfluidic dye lasers within single SHMOFs presents opportunities for integrated optics applications and biomedical analysis.

  20. Design, Simulation and Optimisation of a Fibre-optic 3D Accelerometer

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Fang, Xiao-Yong; Zhou, Yan; Li, Ya-lin; Yuan, Jie; Cao, Mao-Sheng

    2013-07-01

    Using an inertia pendulum comprised of two prisms, flexible beams and an elastic flake, we present a novel fibre-optic 3D accelerometer design. The total reverse reflection of the cube-corner prism and the spectroscopic property of an orthogonal holographic grating enable the measurement of the two transverse components of the 3D acceleration simultaneously, while the longitudinal component can be determined from the elastic deformation of the flake. Due to optical interferometry, this sensor may provide a wider range, higher sensitivity and better resolving power than other accelerometers. Moreover, we use finite element analysis to study the performance and to optimise the structural design of the sensor.

  1. Multivariate optical computation for predictive spectroscopy.

    PubMed

    Nelson, M P; Aust, J F; Dobrowolski, J A; Verly, P G; Myrick, M L

    1998-01-01

    A novel optical approach to predicting chemical and physical properties based on principal component analysis (PCA) is proposed and evaluated using a data set from earlier work. In our approach, a regression vector produced by PCA is designed into the structure of a set of paired optical filters. Light passing through the paired filters produces an analog detector signal that is directly proportional to the chemical/physical property for which the regression vector was designed. This simple optical computational method for predictive spectroscopy is evaluated in several ways, using the example data for numeric simulation. First, we evaluate the sensitivity of the method to various types of spectroscopic errors commonly encountered and find the method to have the same susceptibilities toward error as standard methods. Second, we use propagation of errors to determine the effects of detector noise on the predictive power of the method, finding the optical computation approach to have a large multiplex advantage over conventional methods. Third, we use two different design approaches to the construction of the paired filter set for the example measurement to evaluate manufacturability, finding that adequate methods exist to design appropriate optical devices. Fourth, we numerically simulate the predictive errors introduced by design errors in the paired filters, finding that predictive errors are not increased over conventional methods. Fifth, we consider how the performance of the method is affected by light intensities that are not linearly related to chemical composition (as in transmission spectroscopy) and find that the method is only marginally affected. In summary, we conclude that many types of predictive measurements based on use of regression (or other) vectors and linear mathematics can be performed more rapidly, more effectly, and at considerably lower cost by the proposed optical computation method than by traditional dispersive or interferometric

  2. Characterization of chemically and enzymatically treated hemp fibres using atomic force microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    George, Michael; Mussone, Paolo G.; Abboud, Zeinab; Bressler, David C.

    2014-09-01

    The mechanical and moisture resistance properties of natural fibre reinforced composites are dependent on the adhesion between the matrix of choice and the fibre. The main goal of this study was to investigate the effect of NaOH swelling of hemp fibres prior to enzymatic treatment and a novel chemical sulfonic acid method on the physical properties of hemp fibres. The colloidal properties of treated hemp fibres were studied exclusively using an atomic force microscope. AFM imaging in tapping mode revealed that each treatment rendered the surface topography of the hemp fibres clean and exposed the individual fibre bundles. Hemp fibres treated with laccase had no effect on the surface adhesion forces measured. Interestingly, mercerization prior to xylanase + cellulase and laccase treatments resulted in greater enzyme access evident in the increased adhesion force measurements. Hemp fibres treated with sulfonic acid showed an increase in surface de-fibrillation and smoothness. A decrease in adhesion forces for 4-aminotoulene-3-sulfonic acid (AT3S) treated fibres suggested a reduction in surface polarity. This work demonstrated that AFM can be used as a tool to estimate the surface forces and roughness for modified fibres and that enzymatic coupled with chemical methods can be used to improve the surface properties of natural fibres for composite applications. Further, this work is one of the first that offers some insight into the effect of mercerization prior to enzymes and the effect on the surface topography. AFM will be used to selectively screen treated fibres for composite applications based on the adhesion forces associated with the colloidal interface between the AFM tip and the fibre surfaces.

  3. Spectroscopy and optical imaging of coalescing droplets

    NASA Astrophysics Data System (ADS)

    Ivanov, Maksym; Viderström, Michel; Chang, Kelken; Ramírez Contreras, Claudia; Mehlig, Bernhard; Hanstorp, Dag

    2016-09-01

    We report on experimental investigations of the dynamics of colliding liquid droplets by combining optical trapping, spectroscopy and high-speed color imaging. Two droplets with diameters between 5 and 50 microns are suspended in quiescent air by optical traps. The traps allows us to control the initial positions, and hence the impact parameter and the relative velocity of the colliding droplets. Movies of the droplet dynamics are recorded using high-speed digital movie cameras at a frame rate of up to 63000 frames per second. A fluorescent dye is added to one of the colliding droplets. We investigate the temporal evolution of the scattered and fluorescence light from the colliding droplets with concurrent spectroscopy and color imaging. This technique can be used to detect the exchange of molecules between a pair of neutral or charged droplets.

  4. Visible light optical coherence correlation spectroscopy.

    PubMed

    Broillet, Stephane; Szlag, Daniel; Bouwens, Arno; Maurizi, Lionel; Hofmann, Heinrich; Lasser, Theo; Leutenegger, Marcel

    2014-09-08

    Optical coherence correlation spectroscopy (OCCS) allows studying kinetic processes at the single particle level using the backscattered light of nanoparticles. We extend the possibilities of this technique by increasing its signal-to-noise ratio by a factor of more than 25 and by generalizing the method to solutions containing multiple nanoparticle species. We applied these improvements by measuring protein adsorption and formation of a protein monolayer on superparamagnetic iron oxide nanoparticles under physiological conditions.

  5. Plastic optical fibre sensor for spine bending monitoring with power fluctuation compensation.

    PubMed

    Zawawi, Mohd Anwar; O'Keeffe, Sinead; Lewis, Elfed

    2013-10-25

    This paper presents the implementation of power fluctuation compensation for an intensity-based optical fibre bending sensor aimed at monitoring human spine bending in a clinical environment. To compensate for the light intensity changes from the sensor light source, a reference signal was provided via the light reflection from an aluminum foil surface fixed at a certain distance from the source fibre end tips. From the results, it was found that the investigated sensor compensation technique was capable of achieving a 2° resolution for a bending angle working range between 0° and 20°. The study also suggested that the output voltage ratio has a 0.55% diversion due to input voltage variation between 2.9 V and 3.4 V and a 0.25% output drift for a 2 h measurement. With the achieved sensor properties, human spine monitoring in a clinical environment can potentially be implemented using this approach with power fluctuation compensation.

  6. Measurement of composite shrinkage using a fibre optic Bragg grating sensor.

    PubMed

    Milczewski, M S; Silva, J C C; Paterno, A S; Kuller, F; Kalinowski, H J

    2007-01-01

    Fibre Bragg grating is used to determine resin-based composite shrinkage. Two composite resins (Freedom from SDI and Z100 from 3M) were tested to determine the polymerization contraction behaviour. Each sample of resin was prepared with an embedded fibre Bragg grating. A LED activation unit with wavelength from 430 nm to 470 nm (Dabi Atlante) was used for resin polymerization. The wavelength position of the peak in the optical reflection spectra of the sensor was measured. The wavelength shift was related to the shrinkage deformation of the samples. Temperature and strain evolution during the curing phase of the material was monitored. The shrinkage in the longitudinal direction was 0.15 +/- 0.02% for resin Z100 (3M) and 0.06+/-0.01% for Freedom (SDI); two-thirds of shrinkage occurred after the first 50 s of illumination.

  7. Selective vancomycin detection using optical fibre long period gratings functionalised with molecularly imprinted polymer nanoparticles

    PubMed Central

    Korposh, Sergiy; Chianella, Iva; Guerreiro, Antonio; Caygill, Sarah; Piletsky, Sergey; James, Stephen W.; Tatam, Ralph P.

    2015-01-01

    An optical fibre long period grating (LPG) sensor modified with molecularly imprinted polymer nanoparticles (nanoMIPs) for the specific detection of antibiotics is presented. The operation of the sensor is based on the measurement of changes in refractive index induced by the interaction of nanoMIPs deposited onto the cladding of the LPG with free vancomycin (VA). The binding of nanoMIPs to vancomycin was characterised by a binding constant of 4.3±0.1×10−8 M. The lowest concentration of analyte measured by the fibre sensor was 10 nM. In addition, the sensor exhibited selectivity, as much smaller responses were obtained for high concentrations (~ 700 μM) of other commonly prescribed antibiotics such as amoxicillin, bleomycin and gentamicin. In addition, the response of the sensor was characterised in a complex matrix, porcine plasma, spiked with 10 μM of VA. PMID:24634909

  8. Cellular biosensing using optical spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wax, Adam

    2016-03-01

    The interaction of light with biological cells can provide a unique tool for studying their biophysical properties. Optical spectroscopy of biological cells can reveal detailed information on their structure and dynamics in a way that is not possible with traditional microscopy techniques. Histological evaluation can only obtain a snapshot of the activity of individual cells, relying instead on large ensembles to develop a picture of their temporal evolution. On the other hand optical spectroscopy can be applied to cells with little to no preparation and can enable studies of the same live cells at extended time intervals. Our research group has developed a suite of optical spectroscopic tools to assess the structure and function of biological cells and modulation due to the onset of disease. The wavelength dependence of the interaction of cells with light provides information of cell features through elastic scattering across the visible and near infrared spectrum. Alternatively, the angular dependence of scattered light can also be used to reveal cell properties. We will discuss how both modes of elastic scattering can be used to evaluate cell status. Finally, the recent advances in the use of optical phase imaging to create contrast in nearly transparent biological cells will also be discussed as related to the role of this modality in biosensing.

  9. Decreased retinal nerve fibre layer thickness detected by optical coherence tomography in patients with ethambutol‐induced optic neuropathy

    PubMed Central

    Chai, Samantha J; Foroozan, Rod

    2007-01-01

    Background It is difficult to assess the degree of optic nerve damage in patients with ethambutol‐induced optic neuropathy, especially just after the onset of visual loss, when the optic disc typically looks normal. Aim To evaluate changes in retinal nerve fibre layer thickness (RNFLT) using optical coherence tomography (OCT) in patients with optic neuropathy within 3 months of cessation of ethambutol treatment. Design A retrospective observational case series from a single neuro‐ophthalmology practice. Methods 8 patients with a history of ethambutol‐induced optic neuropathy were examined within 3 months after stopping ethambutol treatment. All patients underwent a neuro‐ophthalmologic examination, including visual acuity, colour vision, visual fields and funduscopy. OCT was performed on both eyes of each patient using the retinal nerve fibre layer analysis protocol. Results The interval between cessation of ethambutol treatment and the initial visit ranged from 1 week to 3 months. All patients had visual deficits characteristic of ethambutol‐induced optic neuropathy at their initial visit, and the follow‐up examination was performed within 12 months. Compared with the initial RNFLT, there was a statistically significant decrease in the mean RNFLT of the temporal, superior and nasal quadrants (p = 0.009, 0.019 and 0.025, respectively), with the greatest decrease in the temporal quadrant (mean decrease 26.5 μm). Conclusions A decrease in RNFLT is observed in all quadrants in patients with ethambutol‐induced optic neuropathy who have recently discontinued the medication. This decrease is most pronounced in the temporal quadrant of the optic disc. PMID:17215265

  10. A fabry-perot fibre-optic hydrophone for the characterisation of ultrasound fields

    NASA Astrophysics Data System (ADS)

    Morris, Paul

    This thesis documents the development of a novel fibre optic hydrophone, for the characterisation of medical ultrasound transducers and the measurement of ultrasound induced temperature rises. The transduction mechanism of the hydrophone is based on the detection of acoustically and thermally induced changes in the optical thickness of a Fabry-Perot interferometer deposited at the tip of a single mode optical fibre. The interferometer comprises a layer of Parylene-C sandwiched between two thin gold mirrors. The design of the sensor was optimised using a numerical model of the interferometer transfer function. Through the use of vacuum deposition techniques, a fabrication procedure has been developed which enables batch production of the sensors. A self contained sensor interrogation system has also been developed. The system uses a rapidly tuneable laser developed originally for the telecoms industry to interrogate the sensor and make acoustic and thermal measurements. Control of the system is achieved via a PC using software written in Labview 8.0. The acoustic performance of the sensors was characterised using a substitution calibration. The frequency response, directivity and sensitivity of the sensor were all investigated. It was found that whilst the sensor offers a wide bandwidth (>50 MHz), the frequency response is significantly non uniform. Using a finite difference model (AFiDS), it was found that diffraction at the sensor tip is the main cause of resonances in the response. The thermal measurement performance of the sensor was investigated in the presence of an ultra sound field. By comparing the temperature measurements from the hydrophone with those obtained from a thin-film thermocouple, it was found that the fibre-optic hydrophone is immune to viscoelastic heating artefacts. Finally, a novel tracking algorithm was developed, allowing the hydrophone to be used to make simultaneous measurements of both acoustic pressures and ultrasound induced

  11. Optical fibre multi-parameter sensing with secure cloud based signal capture and processing

    NASA Astrophysics Data System (ADS)

    Newe, Thomas; O'Connell, Eoin; Meere, Damien; Yuan, Hongwei; Leen, Gabriel; O'Keeffe, Sinead; Lewis, Elfed

    2016-05-01

    Recent advancements in cloud computing technologies in the context of optical and optical fibre based systems are reported. The proliferation of real time and multi-channel based sensor systems represents significant growth in data volume. This coupled with a growing need for security presents many challenges and presents a huge opportunity for an evolutionary step in the widespread application of these sensing technologies. A tiered infrastructural system approach is adopted that is designed to facilitate the delivery of Optical Fibre-based "SENsing as a Service- SENaaS". Within this infrastructure, novel optical sensing platforms, deployed within different environments, are interfaced with a Cloud-based backbone infrastructure which facilitates the secure collection, storage and analysis of real-time data. Feedback systems, which harness this data to affect a change within the monitored location/environment/condition, are also discussed. The cloud based system presented here can also be used with chemical and physical sensors that require real-time data analysis, processing and feedback.

  12. Cavity-enhanced spectroscopy in optical fibers.

    PubMed

    Gupta, Manish; Jiao, Hong; O'Keefe, Anthony

    2002-11-01

    Cavity-enhanced methods have been extended to fiber optics by use of fiber Bragg gratings (FBGs) as reflectors. High-finesse fiber cavities were fabricated from FBGs made in both germanium/boron-co-doped photosensitive fiber and hydrogen-loaded Corning SMF-28 fiber. Optical losses in these cavities were determined from the measured Fabry-Perot transmission spectra and cavity ring-down spectroscopy. For a 10-m-long single-mode fiber cavity, ring-down times in excess of 2 ms were observed at 1563.6 nm, and individual laser pulses were resolved. An evanescent-wave access block was produced within a fiber cavity, and an enhanced sensitivity to optical loss was observed as the external medium's refractive index was altered.

  13. Statistical properties of intensity of partially polarised semiconductor laser light backscattered by a single-mode optical fibre

    SciTech Connect

    Alekseev, A E; Potapov, V T; Gorshkov, B G

    2015-08-31

    We report the results of studying statistical properties of the intensity of partially polarised coherent light backscattered by a single mode optical fibre. An expression is derived for the deviation of the backscattered light intensity depending on the scattering region length, the degree of the light source coherence and the degree of scattered light polarisation. It is shown that the backscattered light in a fibre scattered-light interferometer is partially polarised with the polarisation degree P = 1/3 in the case of external perturbations of the interferometer fibre. (scattering of light)

  14. Get smart, go optical: example uses of optical fibre sensing technology for production optimisation and subsea asset monitoring

    NASA Astrophysics Data System (ADS)

    Staveley, Chris

    2014-06-01

    With the growth in deep-water oil and gas production, condition monitoring of high-value subsea assets to give early warning of developing problems is vital. Offshore operators can then transport and deploy spare parts before a failure occurs, so minimizing equipment down-time, and the significant costs associated with unscheduled maintenance. Results are presented from a suite of tests in which multiple elements of a subsea twin-screw pump and associated electric motor were monitored using a fibre optic sensing system based on fibre Bragg gratings (FBG) that simultaneously measured dynamic strain on the main rotor bearings, pressure and temperature of the lubricating oil, distributed temperature through the motor stator windings and vibration of the pump and motor housings.

  15. Effect of alpha and Gaussian refractive index profiles on the design of highly nonlinear optical fibre for efficient nonlinear optical signal processing

    NASA Astrophysics Data System (ADS)

    Selvendran, S.; Sivanantharaja, A.; Arivazhagan, S.; Kannan, M.

    2016-09-01

    We propose an index profiled, highly nonlinear ultraflattened dispersion fibre (HN-UFF) with appreciable values of fibre parameters such as dispersion, dispersion slope, effective area, nonlinearity, bending loss and splice loss. The designed fibre has normal zero flattened dispersion over S, C, L, U bands and extends up to 1.9857 μm. The maximum dispersion variation observed for this fibre is as low as 1.61 ps km-1 nm-1 over the 500-nm optical fibre transmission spectrum. This fibre also has two zero dispersion wavelengths at 1.487 and 1.9857 μm and the respective dispersion slopes are 0.02476 and 0.0068 ps nm-2 km-1. The fibre has a very low ITU-T cutoff wavelength of 1.2613 μm and a virtuous nonlinear coefficient of 9.43 W-1 km-1. The wide spectrum of zero flattened dispersion and a good nonlinear coefficient make the designed fibre very promising for different nonlinear optical signal processing applications.

  16. Fibre optic sensors for temperature and pressure monitoring in laser ablation: experiments on ex-vivo animal model

    NASA Astrophysics Data System (ADS)

    Tosi, Daniele; Saccomandi, Paola; Schena, Emiliano; Duraibabu, Dinesh B.; Poeggel, Sven; Adilzhan, Abzal; Aliakhmet, Kamilla; Silvestri, Sergio; Leen, Gabriel; Lewis, Elfed

    2016-05-01

    Optical fibre sensors have been applied to perform biophysical measurement in ex-vivo laser ablation (LA), on pancreas animal phantom. Experiments have been performed using Fibre Bragg Grating (FBG) arrays for spatially resolved temperature detection, and an all-glass Extrinsic Fabry-Perot Interferometer (EFPI) for pressure measurement. Results using a Nd:YAG laser source as ablation device, are presented and discussed.

  17. Optical properties of LFZ grown β-Ga2O3:Eu3+ fibres

    NASA Astrophysics Data System (ADS)

    Santos, N. F.; Rodrigues, J.; Fernandes, A. J. S.; Alves, L. C.; Alves, E.; Costa, F. M.; Monteiro, T.

    2012-09-01

    Due to their relevance for electronic and optoelectronic applications, transparent conductive oxides (TCO) have been extensively studied in the last decades. Among them, monoclinic β-Ga2O3 is well known by its large direct bandgap of ˜4.9 eV being considered a deep UV TCO suitable for operation in short wavelength optoelectronic devices. The wide bandgap of β-Ga2O3 is also appropriate for the incorporation of several electronic energy levels such as those associated with the intra-4fn configuration of rare earth ions. Among these, Eu3+ ions (4f6) are widely used as a red emitting probes both in organic and inorganic compounds. In this work, undoped and Eu2O3 doped (0.1 and 3.0 mol%) Ga2O3 crystalline fibres were grown by the laser floating zone approach. All fibres were found to stabilize in the monoclinic β-Ga2O3 structure while for the heavily doped fibres the X-ray diffraction patterns show, in addition a cubic europium gallium garnet phase, Eu3Ga5O12. The spectroscopic properties of the undoped and Eu doped fibres were analysed by Raman spectroscopy, low temperature photoluminescence (PL) and photoluminescence excitation (PLE). The Eu3+ luminescence is mainly originated in the garnet, from where different europium site locations can be inferred. The spectral analysis indicates that at least one of the centres corresponds to Eu3+ ions in dodecahedral site symmetry. For the lightly doped samples, the spectral shape and intensity ratio of the 5D0 → 7FJ transitions is totally different from those on Eu3Ga5O12, suggesting that the emitting ions are placed in low symmetry sites in the β-Ga2O3 host.

  18. Polymeric fibre optic sensor based on a SiO2 nanoparticle film for humidity sensing on wounds

    NASA Astrophysics Data System (ADS)

    Gomez, David; Morgan, Stephen P.; Hayes Gill, Barrie R.; Korposh, Serhiy

    2016-05-01

    Optical fibre sensors have the potential to be incorporated into wound dressings to monitor moisture and predict healing without the need to remove the dressing. A low cost polymeric optical fibre humidity sensor based on evanescent wave absorption is demonstrated for skin humidity measurement. The sensor is fabricated by coating the fibre with a hydrophilic film based on bilayers of Poly(allylamine hydrochloride) (PAH) and SiO2 mesoporous nanoparticles. The Layer-by-Layer method was used for the deposition of the layers. Multimode polymeric optical fibre with a cladding diameter of 250μm was covered by 7 layers of PAH/SiO2 film on the central region of an unclad fibre with a diameter of 190μm. The length of the sensitive region is 30mm. Experiment results show a decrease in light intensity when relative humidity increases due to refractive index changes of the fibre coating. The sensitivity obtained was 200mV/%RH and the sensor was demonstrated to provide a faster response to changes in the humidity of the skin microenvironment than a commercial sensor.

  19. Characterisation of a fibre optic Raman probe within a hypodermic needle.

    PubMed

    Iping Petterson, Ingeborg E; Day, John C C; Fullwood, Leanne M; Gardner, Benjamin; Stone, Nick

    2015-11-01

    We demonstrate the first use of a multifibre Raman probe that fits inside the bore of a hypodermic needle. A Raman probe containing multiple collection fibres provides improved signal collection efficiency in biological samples compared with a previous two-fibre design. Furthermore, probe performance (signal-to-noise ratios) compared favourably with the performance achieved in previous Raman microscope experiments able to distinguish between benign lymph nodes, primary malignancies in lymph nodes and secondary malignancies in lymph nodes. The experimental measurements presented here give an indication of the sampling volume of the Raman needle probe in lymphoid tissues. Liquid tissue phantoms were used that contained scattering medium encompassing a range of scattering properties similar to those of a variety of tissue types, including lymph node tissues. To validate the appropriateness of the phantoms, the sampling depth of the probe was also measured in excised lymph node tissue. More than 50 % of Raman photons collected were found to originate from between the tip of the needle and a depth of 500 μm into the tissue. The needle probe presented here achieves spectral quality comparable to that in numerous studies previously demonstrating Raman disease discrimination. It is expected that this approach could achieve targeted subcutaneous tissue measurements and be viable for use for the in vivo Raman diagnostics of solid organs located within a few centimetres below the skin's surface. Graphical Abstract Schematic of multi-fibre Raman needle probe with disposible tips and proximal optical filtration.

  20. Development and application of optical fibre strain and pressure sensors for in-flight measurements

    NASA Astrophysics Data System (ADS)

    Lawson, N. J.; Correia, R.; James, S. W.; Partridge, M.; Staines, S. E.; Gautrey, J. E.; Garry, K. P.; Holt, J. C.; Tatam, R. P.

    2016-10-01

    Fibre optic based sensors are becoming increasingly viable as replacements for traditional flight test sensors. Here we present laboratory, wind tunnel and flight test results of fibre Bragg gratings (FBG) used to measure surface strain and an extrinsic fibre Fabry-Perot interferometric (EFFPI) sensor used to measure unsteady pressure. The calibrated full scale resolution and bandwidth of the FBG and EFFPI sensors were shown to be 0.29% at 2.5 kHz up to 600 μɛ and 0.15% at up to 10 kHz respectively up to 400 Pa. The wind tunnel tests, completed on a 30% scale model, allowed the EFFPI sensor to be developed before incorporation with the FBG system into a Bulldog aerobatic light aircraft. The aircraft was modified and certified based on Certification Standards 23 (CS-23) and flight tested with steady and dynamic manoeuvres. Aerobatic dynamic manoeuvres were performed in flight including a spin over a g-range  -1g to  +4g and demonstrated both the FBG and the EFFPI instruments to have sufficient resolution to analyse the wing strain and fuselage unsteady pressure characteristics. The steady manoeuvres from the EFFPI sensor matched the wind tunnel data to within experimental error while comparisons of the flight test and wind tunnel EFFPI results with a Kulite pressure sensor showed significant discrepancies between the two sets of data, greater than experimental error. This issue is discussed further in the paper.

  1. Electronic and optical spectroscopy of molecular junctions

    NASA Astrophysics Data System (ADS)

    Preiner, Michael J.

    Electronic transport through molecules has been intensively studied in recent years, due to scientific interest in fundamental questions about charge transport and the technological promise of nanoscale circuitry. A wide range of range of experimental platforms have been developed to electronically probe both single molecules and molecular monolayers. However, it remains challenging to fabricate reliable electronic contacts to molecules, and the vast majority of molecular electronic architectures are not amenable to standard characterization techniques, such as optical spectroscopy. Thus the field of molecular electronics has been hampered with problems of reproducibility, and many fundamental questions about electronic transport remain unanswered. This thesis describes four significant contributions towards the fabrication and characterization of molecular electronic devices: (1) The development of a new method for creating robust, large area junctions where the electronic transport is through a single monolayer of molecules. This method utilizes atomic layer deposition (ALD) to grow an ultrathin oxide layer on top of a molecular monolayer, which protects the molecules against subsequent processing. (2) A new method for rapid imaging and analysis of single defects in molecular monolayers. This method also electrically passivates defects as it labels them. (3) Hot carrier spectroscopy of molecular junctions. Using optically excited hot carriers, we demonstrate the ability to probe the energy level lineup inside buried molecular junctions. (4) Efficient coupling of optical fields to metal-insulator-metal (MIM) surface plasmon modes. We show both theoretical and experimental work illustrating the ability to create very intense optical fields inside MIM systems. The intense fields generated in this manner have natural extensions to a variety of applications, such as photon assisted tunneling in molecular junctions, optical modulators, and ultrafast optoelectronic

  2. Speckle interferometry, fibre optic sensors and laser induced ultrasounds as solutions to industrial demands

    NASA Astrophysics Data System (ADS)

    Corbani, Franco; Delvò, Pierino; Fiorina, Lorenzo; Rizzi, Cristina Mariottini e. Maria Luciana

    2002-04-01

    Industrial operators have been taking interest in optical diagnostics through years. Optical methods are mainly well appreciated for their attitude to be used as non-contact and non-invasive techniques. The paper presents three examples of applications carried-out by researchers of Centro Elettrotecnico Sperimentale Italiano (CESI) in collaboration with people working in industrial fields. The first part shows the applications of speckle interferometry to measure residual stresses in association with the traditional blind-hole drilling, while the second part presents the installation of fibre optic sensors in a power plant for monitoring possible overheating to avoid fires and finally the last presentation outlines a particular application in the field of laser generated ultrasounds that is the monitoring of the variation of ultrasonic speed propagation due to residual stresses.

  3. Intelligent Composites Containing Measuring Fibre Optic Networks For Continuous Self Diagnosis

    NASA Astrophysics Data System (ADS)

    Sansonetti, Pierre; Lequime, Michel; Engrand, D.; Ferdinand, Pierre; Plantey, J.; Bowen, Dennis H.; Davidson, Roger; Roberts, Scott S.; Crowther, Margaret F.; Pleydell, Mark E.; Culshaw, Brian; Michie, W. Craig; Martinelli, Mario; Escobar Rojo, Priscilla; Fornari, B.

    1990-02-01

    This paper describes a collaborative European Programme No. RI IB-0173-C(CD) under the auspices of BRITE (Basic Research in Industrial Technologies for Europe) which is jointly sponsored by the Commission of the European Communities and by European industry. The programme aims to explore the use of optical sensing techniques in composites. Several sensor methods (microbending, phase, polarimetric and multiplexing schemes) have been considered. The fabrication issues relating to moulding and filament winding of composite samples containing embedded sensors with emergent pigtails have been addressed. The effects of embedded fibre optics on the structural integrity of the composites have been investigated by both mechanical testing and by the use of two mathematical modelling techniques, a homogenization method based on continuum mechanics and finite element techniques. Through a suitable choice of sensor dimension, jacketing type and thickness the detrimental effects of the embedded inclusions on mechanical properties can be minimized. This has been verified by the experimental determination of deformation fields around optical fibres embedded in composite laminates.

  4. A spectrally tunable microstructured optical fibre Bragg grating utilizing an infiltrated ferrofluid.

    PubMed

    Candiani, A; Konstantaki, M; Margulis, W; Pissadakis, S

    2010-11-22

    The spectral response of a Bragg grating reflector inscribed in a microstructured optical fibre is tuned by employing an infiltrated ferrofluid, while modifying the overlap of the ferrofluidic medium with the grating length. Significant spectral changes in terms of Bragg grating wavelength shift and extinction ratio were obtained under static magnetic field actuation. Spectral measurements revealed non-bidirectional propagation effects dependent upon the relative position between the ferrofluid and the grating. The actuation speed of the device was measured to be of the order of few seconds.

  5. Bragg grating-based fibre optic sensors in structural health monitoring.

    PubMed

    Todd, Michael D; Nichols, Jonathan M; Trickey, Stephen T; Seaver, Mark; Nichols, Christy J; Virgin, Lawrence N

    2007-02-15

    This work first considers a review of the dominant current methods for fibre Bragg grating wavelength interrogation. These methods include WDM interferometry, tunable filter (both Fabry-Perot and acousto-optic) demultiplexing, CCD/prism technique and a newer hybrid method utilizing Fabry-Perot and interferometric techniques. Two applications using these techniques are described: hull loads monitoring on an all-composite fast patrol boat and bolt pre-load loss monitoring in a composite beam in conjunction with a state-space modelling data analysis technique.

  6. Fabrication of microstructured optical fibres by drawing preforms sealed at their top end

    NASA Astrophysics Data System (ADS)

    Denisov, A. N.; Kosolapov, A. F.; Senatorov, A. K.; Pal'tsev, P. E.; Semjonov, S. L.

    2016-11-01

    This paper presents results of a theoretical analysis and a series of experiments dealing with microstructured optical fibre (MOF) drawing from preforms sealed at their top end. We demonstrate that maintaining a constant temperature in the top part of the preform is of key importance for the ability to produce long MOFs with stable parameters. We have proposed and implemented a technique for additional, controlled heating of the top part of preforms, which allows one to fabricate long MOFs with both constant and varying parameters. Evidence is provided that MOFs with holes differing in size can be produced rather easily by this method.

  7. Smart medical textiles with embedded optical fibre sensors for continuous monitoring of respiratory movements during MRI

    NASA Astrophysics Data System (ADS)

    Witt, J.; Narbonneau, F.; Schukar, M.; Krebber, K.; De Jonckheere, J.; Jeanne, M.; Kinet, D.; Paquet, B.; Depré, A.; D'Angelo, L. T.; Thiel, T.; Logier, R.

    2010-09-01

    We report on three respiration sensors based on pure optical technologies developed during the FP6 EU project OFSETH. The developed smart medical textiles can sense elongation up to 3%, while maintaining the stretching properties of the textile substrates for a good comfort of the patient. The sensors, based on silica and polymer fibre, are developed for monitoring of patients during MRI examination. The OFSETH harness allows a continuous measurement of respiration movements while all vitals organs are free for medical staff actions. The sensors were tested in MRI environment and on healthy adults.

  8. High Efficiency Coupling of Optical Fibres with SU8 Micro-droplet Using Laser Welding Process

    NASA Astrophysics Data System (ADS)

    Yardi, Seema; Gupta, Ankur; Sundriyal, Poonam; Bhatt, Geeta; Kant, Rishi; Boolchandani, D.; Bhattacharya, Shantanu

    2016-09-01

    Apart from micro- structure fabrication, ablation, lithography etc., lasers find a lot of utility in various areas like precision joining, device fabrication, local heat delivery for surface texturing and local change of microstructure fabrication of standalone optical micro-devices (like microspheres, micro-prisms, micro-scale ring resonators, optical switches etc). There is a wide utility of such systems in chemical/ biochemical diagnostics and also communications where the standalone optical devices exist at a commercial scale but chip based devices with printed optics are necessary due to coupling issues between printed structures and external optics. This paper demonstrates a novel fabrication strategy used to join standalone optical fibres to microchip based printed optics using a simple SU8 drop. The fabrication process is deployed for fiber to fiber optical coupling and coupling between fiber and printed SU-8 waveguides. A CO2 laser is used to locally heat the coupling made up of SU8 material. Optimization of various dimensional parameters using design of experiments (DOE) on the bonded assembly has been performed as a function of laser power, speed, cycle control, spot size so on so forth. Exclusive optical [RF] modelling has been performed to estimate the transmissibility of the optical fibers bonded to each other on a surface with SU8. Our studies indicate the formation of a Whispering gallery mode (WGM) across the micro-droplet leading to high transmissibility of the signal. Through this work we have thus been able to develop a method of fabrication for optical coupling of standalone fibers or coupling of on-chip optics with off-chip illumination/detection.

  9. Optical Spectroscopy of Marine Bioadhesive Interfaces

    NASA Astrophysics Data System (ADS)

    Barlow, Daniel E.; Wahl, Kathryn J.

    2012-07-01

    Marine organisms have evolved extraordinarily effective adhesives that cure underwater and resist degradation. These underwater adhesives differ dramatically in structure and function and are composed of multiple proteins assembled into functional composites. The processes by which these bioadhesives cure—conformational changes, dehydration, polymerization, and cross-linking—are challenging to quantify because they occur not only underwater but also in a buried interface between the substrate and the organism. In this review, we highlight interfacial optical spectroscopy approaches that can reveal the biochemical processes and structure of marine bioadhesives, with particular emphasis on macrofoulers such as barnacles and mussels.

  10. Assessing PDT response with diffuse optical spectroscopies

    NASA Astrophysics Data System (ADS)

    Rohrbach, Daniel J.

    Photodynamic therapy (PDT) is used to treat a variety of conditions including cancer. Effective PDT requires three components: a photosensitizer (PS), light of a specific wavelength to activate the PS and oxygen. When all three are present in a lesion it leads to cell death and vascular destruction. Optical techniques such as diffuse reflectance spectroscopy (DRS), diffuse fluorescence spectroscopy (DFS) and diffuse correlation spectroscopy (DCS) can be used to quantify vascular parameters and photosensitizer content before and after PDT, providing valuable information for assessing response. For the quantification of vascular parameters, a probe-specific empirical light transport model was developed. A look-up-table was constructed using tissue simulating phantoms made of Intralipid to control the scattering, India Ink to control the absorption and water. The empirical model allowed the quantification of optical properties as well as the vascular parameters blood volume fraction (BVf) and blood oxygen saturation (SO2) with DRS. Blood flow was measured using DCS. For the quantification of PS content two techniques were used. DRS was used to fit the absorption of the PS and DFS measured the fluorescence of the PS. For quantification of PS content from measured fluorescence, a correction factor was developed using Monte Carlo simulations to account for the optical properties at the excitation and emission wavelengths. The three techniques were used to assess PDT response in pre-clinical and clinical studies. For the preclinical study, mice were treated with HPPH-PDT and blood flow was measured continuously with DCS. Blood flow variables were compared to STAT3 crosslinking (a molecular marker for PDT photoreaction) and CD31 staining (to visualize intact endothelial cells after PDT). For the clinical study, patients in a clinical trial for HPPH-PDT were measured with DRS, DFS and DCS before and after treatment. Multiple parameters were compared to the clinical response

  11. Optical spectroscopy of marine bioadhesive interfaces.

    PubMed

    Barlow, Daniel E; Wahl, Kathryn J

    2012-01-01

    Marine organisms have evolved extraordinarily effective adhesives that cure underwater and resist degradation. These underwater adhesives differ dramatically in structure and function and are composed of multiple proteins assembled into functional composites. The processes by which these bioadhesives cure--conformational changes, dehydration, polymerization, and cross-linking--are challenging to quantify because they occur not only underwater but also in a buried interface between the substrate and the organism. In this review, we highlight interfacial optical spectroscopy approaches that can reveal the biochemical processes and structure of marine bioadhesives, with particular emphasis on macrofoulers such as barnacles and mussels.

  12. FOSREM - Fibre-Optic System for Rotational Events&Phenomena Monitoring

    NASA Astrophysics Data System (ADS)

    Jaroszewicz, Leszek; Krajewski, Zbigniew; Kurzych, Anna; Kowalski, Jerzy; Teisseyre, Krzysztof

    2016-04-01

    We present the construction and tests of fiber-optic rotational seismometer named FOSREM (Fibre-Optic System for Rotational Events&Phenomena Monitoring). This presented device is designed for detection and monitoring the one-axis rotational motions, brought about to ground or human-made structures both by seismic events and the creep processes. The presented system works by measuring Sagnac effect and generally consists of two basic elements: optical sensor and electronic part. The optical sensor is based on so-called the minimum configuration of FOG (Fibre-Optic Gyroscope) where the Sagnac effect produces a phase shift between two counter-propagating light beams proportional to the measured rotation speed. The main advantage of the sensor of this type is its complete insensitivity to linear motions and a direct measurement of rotational speed. It may work even when tilted, moreover, used in continuous mode it may record the tilt. The electronic system, involving specific electronic solutions, calculates and records rotational events data by realizing synchronous in a digital form by using 32 bit DSP (Digital Signal Processing). Storage data and system control are realised over the internet by using connection between FOSREM and GSM/GPS. The most significant attribute of our system is possibility to measure rotation in wide range both amplitude up to 10 rad/s and frequency up to 328.12 Hz. Application of the wideband, low coherence and high power superluminescent diode with long fibre loop and suitable low losses optical elements assures the theoretical sensitivity of the system equal to 2·10-8 rad/s/Sqrt(Hz). Moreover, the FOSREM is fully remote controlled as well as is suited for continuous, autonomous work in very long period of time (weeks, months, even years), so it is useful for systematic seismological investigation at any place. Possible applications of this system include seismic monitoring in observatories, buildings, mines and even on glaciers and in

  13. Numerical analysis on using compound parabolic couplers for direct transmission of concentrated solar radiation via optical fibre (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rahou, Maryam; Andrews, John; Rosengarten, Gary

    2016-09-01

    A challenge in high-temperature solar thermal applications is transfer of concentrated solar radiation to the load with minimum energy loss. The use of a solar concentrator in conjunction with optical fibres has potential advantages in terms of transmission efficiency, technical feasibility and cost-effectiveness compared to a conventional heat transfer system employing heat exchangers and a heat transfer fluid. For transferring higher levels of concentrated flux it is necessary to employ multiple optical fibres or fibre bundles. However, the losses at the incident plane of a bundle due to absorption by the epoxy and cladding between the individual fibres in a bundle are substantial, typically over 60% of the overall transmission loss. The optical transmission of the system can thus be enhanced by employing a coupler between the concentrated solar radiation and the entrance to the bundle that reflects all incident light into the cores of individual fibres rather than allowing it to strike the interstitial spaces between the cores. This paper describes the design for such couplers based on multiple compound parabolic (CP) reflectors each with its exit aperture coinciding with the core of an individual fibre within the bundle. The proposed design employs external reflection from a machined metallic aluminium surface. This CP arrangement has the additional benefit of increasing the concentration ratio of the primary solar concentrator used. Simulation modeling using LightTools is conducted into a parabolic Cassegrain solar concentrator employing these CP couplers prior to a fibre bundle. The dependence of overall transmission and total optical efficiency of the system over lengths of the bundle up to 100 m are investigated quantitatively. In addition, the influence on transmission of the angular distribution of radiation intensity at the aperture of the couplers is studied.

  14. Effect of heat treatment on absorption and fluorescence properties of PbS-doped silica optical fibre

    NASA Astrophysics Data System (ADS)

    Qin, Fu; Dong, Yanhua; Wen, Jianxiang; Pang, Fufei; Luo, Yanhua; Peng, Gang-Ding; Chen, Zhenyi; Wang, Tingyun

    2017-02-01

    The effect of heat treatment on the optical properties of a PbS-doped silica optical fibre was investigated. The experimental results showed that the absorption peak of the fibre red shifted from 1032 to 1133 nm when the heat treatment temperatures were carried out at 900, 950, 1000, and 1100 °C for 1 h, respectively. At the same time, when the heat treatment at 900 °C was carried out for 2, 5, 10, 20, and 40 h, the absorption spectra of the fibre showed a red shift from 1074 to 1143 nm. In addition, the intensity of the absorption peak increased from 0.258 to 1.384 dB/m and the full width at half maximum (FWHM) became narrower (from 130 to 50 nm) as the heat treatment proceeded. Moreover, the photoluminescence (PL) intensity in the wavelength range of 1100-1500 nm decreased with an increase in the heat treatment temperature. The theoretical analysis, using an effective mass method, showed that the effective band gap energy and average size of the lead sulphide (PbS) quantum dots (QDs) in the silica fibre core varied from 1.199 to 1.083 eV and from 4.28 to 4.81 nm, respectively. The results indicate that the size of the PbS QDs present in the silica fibre core could be controlled by a proper heat treatment, which is of great interest in optical fibre amplifiers and other fibre optic devices.

  15. Radiation dose to radiosensitive organs in PET/CT myocardial perfusion examination using versatile optical fibre

    NASA Astrophysics Data System (ADS)

    Salasiah, M.; Nordin, A. J.; Fathinul Fikri, A. S.; Hishar, H.; Tamchek, N.; Taiman, K.; Ahmad Bazli, A. K.; Abdul-Rashid, H. A.; Mahdiraji, G. A.; Mizanur, R.; Noor, Noramaliza M.

    2013-05-01

    Cardiac positron emission tomography (PET) provides a precise method in order to diagnose obstructive coronary artery disease (CAD), compared to single photon emission tomography (SPECT). PET is suitable for obese and patients who underwent pharmacologic stress procedures. It has the ability to evaluate multivessel coronary artery disease by recording changes in left ventricular function from rest to peak stress and quantifying myocardial perfusion (in mL/min/g of tissue). However, the radiation dose to the radiosensitive organs has become crucial issues in the Positron Emission Tomography/Computed Tomography(PET/CT) scanning procedure. The objective of this study was to estimate radiation dose to radiosensitive organs of patients who underwent PET/CT myocardial perfusion examination at Centre for Diagnostic Nuclear Imaging, Universiti Putra Malaysia in one month period using versatile optical fibres (Ge-B-doped Flat Fibre) and LiF (TLD-100 chips). All stress and rest paired myocardial perfusion PET/CT scans will be performed with the use of Rubidium-82 (82Rb). The optic fibres were loaded into plastic capsules and attached to patient's eyes, thyroid and breasts prior to the infusion of 82Rb, to accommodate the ten cases for the rest and stress PET scans. The results were compared with established thermoluminescence material, TLD-100 chips. The result shows that radiation dose given by TLD-100 and Germanium-Boron-doped Flat Fiber (Ge-B-doped Flat Fiber) for these five organs were comparable to each other where the p>0.05. For CT scans,thyroid received the highest dose compared to other organs. Meanwhile, for PET scans, breasts received the highest dose.

  16. Optical fibre long period grating spectral actuators utilizing ferrofluids as outclading overlayers

    NASA Astrophysics Data System (ADS)

    Konstantaki, M.; Candiani, A.; Pissadakis, S.

    2011-03-01

    Results are presented on the spectral tuning of optical fibre long period gratings utilizing water and oil based ferrofluids as outclading overlayers, under static magnetic field stimulus. Two approaches are adopted for modifying the ambient refractive index at the position of the long period grating. In the first approach, a water based ferrofluid is controllably translated along the length of the grating via a magnetic field. Changes as high as 7.5nm and 6.5dB are monitored in the wavelength and strength, respectively, of the attenuation bands of the grating. The repeatable performance of this device for repetitive forward and backward translation verifies that no ferrofluidic residue is left on the fibre, due to silanization cladding functionalisation. In the second approach, the refractive index of an oil based ferrofluidic overlayer is modified through the magneto-optical effect. For an applied static magnetic field in the order of 400 Gauss the strength of the attenuation band of the grating is modified by more than 10% while its spectral position remains unaffected. Accordingly for the implementation of the last approach, the magnetically induced refractive index changes of ferrofluids of different solution concentrations are studied by employing diffraction efficiency measurements.

  17. A simple optical fibre probe for differentiation between healthy and tumorous tissue

    NASA Astrophysics Data System (ADS)

    Schartner, Erik P.; Henderson, Matthew R.; Purdey, Malcolm; Monro, Tanya M.; Gill, P. Grantley; Callen, David F.

    2016-11-01

    Incomplete removal of malignant tumours continues to be a significant issue in cancer surgery. It increases the risk of local recurrence and impaired survival, and results in the need for additional surgery with associated attendant costs and morbidity. While pathological methods exist to determine tissue type during surgery, these methods can compromise post-operative pathology, have a lag of minutes to hours before the surgeon receives the results of the tissue analysis and are restricted to excised tissue. In this work we report the development of an optical fibre probe which could find use as an aid for margin detection during surgery. A fluorophore doped polymer coating is deposited on the tip of an optical fibre, which can then be used to record the pH by monitoring the emission spectra from the embedded indicator. The pH values of unknown tissue are measured and compared to healthy tissue, allowing for discrimination between healthy and cancerous tissue. The probe developed here shows strong potential for use during surgery, as the probe design can be readily adapted to a low-cost portable configuration which could find use in the operating theatre. Use of this probe in surgery either on excised or in-vivo tissue has the potential to improve success rates for complete removal of cancers.

  18. Ultrastable optical frequency dissemination on a multi-access fibre network

    NASA Astrophysics Data System (ADS)

    Bercy, Anthony; Lopez, Olivier; Pottie, Paul-Eric; Amy-Klein, Anne

    2016-07-01

    We report a laboratory demonstration of the dissemination of an ultrastable optical frequency signal to two distant users simultaneously using a branching network. The ultrastable signal is extracted along a main fibre link; it is optically tracked by a narrow linewidth laser diode, which light is injected in a secondary link. The propagation noise of both links is actively compensated. We implement this scheme with two links of 50-km fibre spools, the extraction being set up at the mid-point of the main link. We show that the extracted signal at the end of the secondary link exhibits a fractional frequency instability of 1.4 × 10-15 at 1-s measurement time, almost equal to the 1.3 × 10-15 instability of the main link output end. The long-term instabilities are also very similar, at a level of 3-5 × 10-20 at 3 × 104-s integration time. We also show that the setting up of this extraction device, or of a simpler one, at the main link input, can test the proper functioning of the noise rejection on this main link. This work is a significant step towards a robust and flexible ultrastable network for multi-users dissemination.

  19. Uranyl-specific binding at a functionalised interface: a chemophotonic fibre optic sensor platform.

    PubMed

    Hayes, Neil W; Tremlett, Clare J; Melfi, Patricia J; Sessler, Jonathon D; Shaw, Andrew M

    2008-05-01

    Detection of radiological materials in the solution phase is restricted by conventional radiation-counting techniques owing to extreme attenuation. Chemical sensing of the resultant radiological species such as uranyl UO(2)(2+) is possible on the surface of a plastic or glass fibre optic. A dihydroxy isoamethryin complex is tethered to the fibre surface which has a large extinction coefficient (119 000 M(-1) cm(-1) at lambda = 439 nm) and changes colour upon binding UO(2)(2+). The spectral changes are greater on the surface than in solution and binding is specific to UO(2)(2+) with small interferences from Gd(3+). Monitoring the spectral response in three detector bands in the red, green and blue enable the optical power change to be measured with sensitivities of 1 mdB, allowing UO(2)(2+) to be detected confidently at 50-100 ppb levels. Real-time kinetic analysis enables discrimination between the target species and possible interferents.

  20. Measuring forest evaporation and transpiration rates with fibre optic temperature sensing

    NASA Astrophysics Data System (ADS)

    Coenders-Gerrits, Miriam; Luxemburg, Wim; Hessels, Tim; de Kloe, Arjan; Elbers, Jan

    2014-05-01

    Evaporation is one of the most important fluxes of the water balance as it accounts for 55-80% of the precipitation. However, measuring evaporation remains difficult and requires sophisticated and expensive equipment. In this paper we propose a new measuring technique based on the existing Bowen ratio method. With a fibre optic cable a temperature and a vapour pressure profile can be measured by the principle of a psychrometer and combined with the net radiation (and ground heat flux) the latent heat can be calculated. Compared to the conventional Bowen ratio method the advantages of this method is that the profiles are measured with a single sensor (resulting in a smaller error), and contain more measuring points in the vertical and therefore give more insight into the developed profiles. The method also allows to measure through a forest canopy. Applying the Bowen ratio above and below the canopy an estimation of the transpiration flux can be obtained. As a first test, we compared in a pine forest in The Netherlands (Loobos) the transpiration estimates of the fibre optic cable with sapflow measurements, and eddy covariance measurements above and below the canopy. The experiment was carried out on three days in September 2013 and the preliminary results show reasonable correlation with the eddy covariance estimates, but not with the sapflow observations. To explain the differences further investigation is needed and a longer measuring period is required.

  1. Fabrication of integrated optic fibre tip for micron CMMs touch trigger probe application

    NASA Astrophysics Data System (ADS)

    Ji, H.; Hsu, H. Y.; Chua, J.; Kong, L. X.; Wedding, A. B.; She, M.; Lin, G. C. I.; Fan, K. C.

    2005-12-01

    In the last decade the general miniaturisation of complex products has lead to an increased importance of high precision machining and assembly. Together with increasing precision of products, the need for highly accurate dimensional inspection increases. CMMs (Coordinate Measuring Machines), as a versatile and widespread dimensional metrology tool, can efficiently perform complex measurement with a resolution of about 0.1μm and a repeatability of about 0.3μm. The existing probes for CMMs tend to be very bulky and result in high probing forces for geometrical measurements of high accuracy on small parts. In this paper, an economical flexible method, which is based on optical fibre splicer, is proposed to fabricate an integrated micro scale silicon probe with spherical tip for micron CMMs. Based on Taguchi method, a combination of optimised process parameters has been obtained to control the fabrication conditions that will ensure the manufacturing of tips of a high and consistent quality. With proper control of the process parameters, an optic fibre probe tip with the diameter dimension in the range of 200 to 400μm is achieved and there is a great potential to fabricate a smaller tip with a diameter of 50-100μm in the future.

  2. AlGaInN laser diode technology for free-space and plastic optical fibre telecom applications

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Bóckowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.; Watson, S.; Kelly, A. E.; Watson, M. A.; Blanchard, P.; White, H.

    2016-03-01

    Gallium Nitride laser diodes fabricated from the AlGaInN material system is an emerging technology for laser sources from the UV to visible and is a potential key enabler for new system applications such as free-space (underwater & air bourne links) and plastic optical fibre telecommunications. We measure visible light (free-space and underwater) communications at high frequency (up to 2.5 Gbit/s) and in plastic optical fibre (POF) using a directly modulated GaN laser diode.

  3. In-situ monitoring of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre sensor

    NASA Astrophysics Data System (ADS)

    Lewis, Elfed; Clifford, John; Fitzpatrick, Colin; Dooly, Gerard; Zhao, Weizhong; Sun, Tong; Grattan, Ken; Lucas, James; Degner, Martin; Ewald, Hartmut; Lochmann, Steffan; Bramann, Gero; Merlone-Borla, Edoardo; Gili, Flavio

    2011-05-01

    A robust optical fibre based CO2 exhaust gas sensor operating in the mid infrared spectral range is described. It is capable of detecting on board carbon dioxide (CO2) emissions from both diesel and petrol engines. The optical fibre sensor is not cross sensitive to other gaseous species in the exhaust such as water vapour (H2O), carbon monoxide (CO), oxides of nitrogen (NOx) or oxides of sulphur (SOx).The response of the sensor to carbon dioxide present in the exhaust of Fiat Croma diesel engine are presented.

  4. Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system

    NASA Astrophysics Data System (ADS)

    Beddows, D. C. S.; Samek, O.; Liška, M.; Telle, H. H.

    2002-09-01

    Using a novel laser-induced breakdown spectroscopy set-up, accurate quantitative analysis of samples submerged in liquids has been demonstrated. The measurements were conducted using a single-fibre plus plastic tube assembly of 20 m length. This delivered the ablation laser light pulse and a buffer gas flow to the sample surface, and collected the light emitted by the micro-plasma for analysis. No distil optics were used at the sample end of the fibre. Argon, nitrogen and compressed air were used as buffer gases; while the rare gas resulted in slightly better signal-to-noise ratios, most analytical measurements were carried out with nitrogen for convenience and to provide comparability with in-air measurements. Detection limits and reproducibility were comparable to those achieved for the same samples placed in standard ambient air, with all other experimental conditions unchanged. In standard steel samples, detection limits of 310±45, 325±48 and 455±55 ppm for Cr, Mn and Si, respectively, could be achieved. Pattern recognition algorithms were used to identify, for classification, spectra of specimen submerged in turbid and non-transparent liquids.

  5. Application of the fibre-optic interferometer as a rotational seismograph type AFORS

    NASA Astrophysics Data System (ADS)

    Kurzych, Anna; Jaroszewicz, Leszek R.; Krajewski, Zbigniew; Teisseyre, Krzysztof P.; Kowalski, Jerzy K.

    2014-12-01

    In this article we show a fibre-optic device based on the Sagnac effect designed for measuring rotational motions which appear during seismic events. The experimental investigations of presented Autonomous Fiber-Optical Rotational Seismographs indicate that such devices keep the accuracy no less than 5.1·10-9 to 5.5·10-8 rad/s in the frequency band from 0.83 Hz to 106.15 Hz. Furthermore, their operations are controlled fully remotely via Internet. We present the comparison of results obtained by such system in the field test with a mechanical rotational seismometer which is mounted simultaneously in the seismological observatory in Książ, Poland.

  6. Potential clinical utility of a fibre optic-coupled dosemeter for dose measurements in diagnostic radiology.

    PubMed

    Jones, A Kyle; Hintenlang, David

    2008-01-01

    Many types of dosemeters have been investigated for absorbed dose measurements in diagnostic radiology, including ionisation chambers, metal-oxide semiconductor field-effect transistor dosemeters, thermoluminescent dosemeters, optically stimulated luminescence detectors, film and diodes. Each of the aforementioned dosemeters suffers from a critical limitation, either the need to interrogate, or read, the dosemeter to retrieve dose information or large size to achieve adequate sensitivity. This work presents an evaluation of a fibre optic-coupled dosemeter (FOCD) for use in diagnostic radiology dose measurement. This dosemeter is small, tissue-equivalent and capable of providing true real-time dose information. The FOCD has been evaluated for dose linearity, angular dependence, sensitivity and energy dependence at energies, beam qualities and beam quantities relevant to diagnostic radiology. The FOCD displayed excellent dose linearity and high sensitivity, while exhibiting minimal angular dependence of response. However, the dosemeter does exhibit positive energy dependence, and is subject to attenuation of response when bent.

  7. Design of the Polarimeter for the Fibre Arrayed Solar Optical Telescope

    NASA Astrophysics Data System (ADS)

    Dun, Guang-tao; Qu, Zhong-quan

    2013-01-01

    The theoretical design of the polarimeter used for the Fibre Arrayed Solar Optical Telescope (FASOT) is described. It has the following characteris- tics: (1) It is provided with the function of optical polarization switching, which makes the high-effciency polarimetry possible; (2) In the waveband of 750 nm, the polarimetric effciency is higher than 50% for the every Stokes parameter, and higher than 86.6% for the total polarization, thus an observer can make the simultaneous polarization measurements on multiple magnetosensitive lines in such a broad range of wavelength; (3) According to the selected photospheric and chromospheric lines, the measurement can be focused on either linear polarization or circular polarization; (4) The polarimeter has a loose tolerance on the manufacturing technology of polarimetric elements and installation errors. All this makes this polarimeter become a high-performance polarimetric device.

  8. New sensitivity-enhancing scheme for a fibre-optic interferometer utilising two optical loops

    NASA Astrophysics Data System (ADS)

    Arai, K.; Hayashi, K.; Iiyama, K.; Ida, Y.; Mori, T.

    1988-08-01

    To improve the sensitivity or dynamic range of fiber-optic interferometer systems a new scheme utilizing two optical loops is presented. The validity of the scheme is also experimentally confirmed by a tentative bulk-optic configuration.

  9. Laser-tuned whispering gallery modes in a solid-core microstructured optical fibre integrated with magnetic fluids

    PubMed Central

    Lin, Wei; Zhang, Hao; Liu, Bo; Song, Binbin; Li, Yuetao; Yang, Chengkun; Liu, Yange

    2015-01-01

    A laser-assisted tuning method of whispering gallery modes (WGMs) in a cylindrical microresonator based on magnetic-fluids-infiltrated microstructured optical fibres (MFIMOFs, where MF and MOF respectively refer to magnetic fluid and microstructured optical fibre) is proposed, experimentally demonstrated and theoretically analysed in detail. The MFIMOF is prepared by infiltrating the air-hole array of the MOF using capillary action effect. A fibre-coupling system is set up for the proposed MFIMOF-based microresonator to acquire an extinction ratio up to 25 dB and a Q-factor as large as 4.0 × 104. For the MF-infiltrated MOF, the light propagating in the fibre core region would rapidly spread out and would be absorbed by the MF-rod array cladding to induce significant thermal effect. This has been exploited to achieve a WGM resonance wavelength sensitivity of 0.034 nm/mW, which is ~20 times higher than it counterpart without MF infiltration. The wavelength response of the resonance dips exhibit linear power dependence, and owing to such desirable merits as ease of fabrication, high sensitivity and laser-assisted tunability, the proposed optical tuning approach of WGMs in the MFIMOF would find promising applications in the areas of optical filtering, sensing, and signal processing, as well as future all-optical networking systems. PMID:26632445

  10. Optical spectroscopy of nanoscale and heterostructured oxides

    NASA Astrophysics Data System (ADS)

    Senty, Tess R.

    Through careful analysis of a material's properties, devices are continually getting smaller, faster and more efficient each day. Without a complete scientific understanding of material properties, devices cannot continue to improve. This dissertation uses optical spectroscopy techniques to understand light-matter interactions in several oxide materials with promising uses mainly in light harvesting applications. Linear absorption, photoluminescence and transient absorption spectroscopy are primarily used on europium doped yttrium vanadate nanoparticles, copper gallium oxide delafossites doped with iron, and cadmium selenide quantum dots attached to titanium dioxide nanoparticles. Europium doped yttrium vanadate nanoparticles have promising applications for linking to biomolecules. Using Fourier-transform infrared spectroscopy, it was shown that organic ligands (benzoic acid, 3-nitro 4-chloro-benzoic acid and 3,4-dihydroxybenzoic acid) can be attached to the surface of these molecules using metal-carboxylate coordination. Photoluminescence spectroscopy display little difference in the position of the dominant photoluminescence peaks between samples with different organic ligands although there is a strong decrease in their intensity when 3,4-dihydroxybenzoic acid is attached. It is shown that this strong quenching is due to the presence of high-frequency hydroxide vibrational modes within the organic linker. Ultraviolet/visible linear absorption measurements on delafossites display that by doping copper gallium oxide with iron allows for the previously forbidden fundamental gap transition to be accessed. Using tauc plots, it is shown that doping with iron lowers the bandgap from 2.8 eV for pure copper gallium oxide, to 1.7 eV for samples with 1 -- 5% iron doping. Using terahertz transient absorption spectroscopy measurements, it was also determined that doping with iron reduces the charge mobility of the pure delafossite samples. A comparison of cadmium selenide

  11. Optical spectroscopy of four young radio sources

    NASA Astrophysics Data System (ADS)

    Fan, Xu-Liang; Bai, Jin-Ming; Hu, Chen; Wang, Jian-Guo

    2017-01-01

    We report the optical spectroscopy of four young radio sources which are observed with the Lijiang 2.4 m telescope. The Eddington ratios of these sources are similar with those of narrow-line Seyfert 1 galaxies (NLS1s). Their Fe II emission is strong while [O III] strength is weak. These results confirm the NLS1 features of young radio sources, except that the width of broad Hβ of young radio sources is larger than that of NLS1s. We thus suggest that the young radio sources are the high black hole mass counterparts of steep-spectrum radio-loud NLS1s. In addition, the broad Hβ component of 4C 12.50 is the blue wing of the narrow component, but not from the broad line region.

  12. Optical Reflection Spectroscopy of GEO Objects

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Cardona, Tammaso; Lederer, Susan M.; Cowardin, Heather; Abercromby, Kira J.; Barker, Edwin S.; Bedard, Donald

    2013-01-01

    We report on optical reflection spectroscopy of geosynchronous (GEO) objects in the US Space Surveillance Network (SSN) catalog. These observations were obtained using imaging spectrographs on the 6.5-m Magellan telescopes at the Las Campanas Observatory in Chile. Our goal is to determine the composition of these objects by comparing these spectral observations with ground-based laboratory measurements of spacecraft materials. The observations are all low resolution (1 nm after smoothing) obtained through a 5 arcsecond wide slit and using a grism as the dispersing element. The spectral range covered was from 450 nm to 800 nm. All spectra were flux calibrated using observations of standard stars with the exact same instrumental setup. An effort was made to obtain all observations within a limited range of topocentric phase angle, although the solar incident angle is unknown due to the lack of any knowledge of the attitude of the observed surface at the time of observation.

  13. Adaptive Optics Imaging and Spectroscopy of Neptune

    NASA Technical Reports Server (NTRS)

    Johnson, Lindley (Technical Monitor); Sromovsky, Lawrence A.

    2005-01-01

    OBJECTIVES: We proposed to use high spectral resolution imaging and spectroscopy of Neptune in visible and near-IR spectral ranges to advance our understanding of Neptune s cloud structure. We intended to use the adaptive optics (AO) system at Mt. Wilson at visible wavelengths to try to obtain the first groundbased observations of dark spots on Neptune; we intended to use A 0 observations at the IRTF to obtain near-IR R=2000 spatially resolved spectra and near-IR A0 observations at the Keck observatory to obtain the highest spatial resolution studies of cloud feature dynamics and atmospheric motions. Vertical structure of cloud features was to be inferred from the wavelength dependent absorption of methane and hydrogen,

  14. Application of Fourier-transform infrared and Raman spectroscopy to the study of the influence of orthosilicic acid on the structure of wool fibre

    NASA Astrophysics Data System (ADS)

    Wojciechowska, E.; Włochowicz, A.; Wesełucha-Birczyńska, A.

    2000-11-01

    Wool fibres obtained from Polish Merino sheep was treated with orthosilicic acid [E. Wojciechowska, A. Włochowicz, A. Wesełucha-Birczyńska, J. Mol. Struct. 511-512 (1999) 307]. The changes of the structure of keratin on the length of the hair staple, with the bottom (near skin) and the top parts separated, were analysed. The results obtained in the processes of dyeing and reducing of these fibres indicate the change in the keratin particle conformation. The changes in the structure of wool fibre were studied by means of Fourier-transform Infrared and Raman spectroscopy.

  15. Determination of the accessibility of N-H groups of Kevlar 49 fibres by photoacoustic FTi. r. spectroscopy

    SciTech Connect

    Chatzi, E.G.; Urban, M.W.; Ishida, H.; Koenig, J.L.

    1986-12-01

    Fourier transform infrared (FTi.r.) photoacoustic spectroscopy in combination with deuterium exchange was used to determine the accessibility of the N-H groups of Kevlar 49 fibres. The spectra were corrected for the dependence of the photoacoustic signal on the frequency and the integrated intensities of the N-H and N-D stretching bands were used to calculate the fraction of accessible N-H groups. Exposure of the deuterated fibers to saturated water vapor showed a residual N-D stretching absorption, in agreement with the improved molecular packaging expected after heat treatment at high temperature.

  16. A Fibre-Optic Based System For Chemical In Vivo Mapping Of The Human Body

    NASA Astrophysics Data System (ADS)

    Hougham, B.; Brown, R. S.; Krull, U. J.

    1987-01-01

    In vivo chemical mapping of the human body could be very useful in the treatment of patients undergoing surgery such as heart surgery, with acute conditions such as hepatitis, or chronic conditions such as diabetes. Chemical mapping would be a continuous analytical profile of physical parameters such as blood pressure, chemical parameters such as pH, pCO2 and p02, simple molecules such as glucose and large biomolecules such as serum glutamate-oxoloacetate trans-aminase (SGOT), serum glutamate-pyruvate transaminase (SGPT) and billirubin. The advantage of a particular mapping strategy employing fibre-optic sensors is that all these different chemical signals arriving from different sensors can be multiplexed and detected concurrently. Although physical sensors for parameters such as temperature, pressure and blood viscosity have not yet found their way into routine use, those which employ fibre-optics do already exist. Fibre-optic chemical sensors (FOCS) have been developed for pH, pCO2, p02 and 3lucose (for review see Ref. 1). The existing FOCS utilize absorption, reflectance and fluorescence spectro-photometry. An integrated system for chemical mapping could utilize FOCS which exclusively use fluorescence probes which have a high signal to noise ratio and are sensitive to trace amounts of chemicals and biochemicals. One proposed strategy for detecting physiological analytes is the use of fluorescently labelled immunochemicals. These are useful in that the antibodies can be tailored to selectively bind almost any antigen conceivable (2) but are limited in that these reactions are mainly irreversible which is an important consideration for in vivo probes. A second strategy proposed is a receptor-based system (3). While agonist-receptor systems are slightly less selective than antigen-antibody systems, these reactions are reversible which is an important consideration for in vivo probes. Using existing FOCS and a new family of fluorescent chemical sensors that use

  17. Plastic Optical Fibre Sensor for Spine Bending Monitoring with Power Fluctuation Compensation

    PubMed Central

    Zawawi, Mohd Anwar; O'Keeffe, Sinead; Lewis, Elfed

    2013-01-01

    This paper presents the implementation of power fluctuation compensation for an intensity-based optical fibre bending sensor aimed at monitoring human spine bending in a clinical environment. To compensate for the light intensity changes from the sensor light source, a reference signal was provided via the light reflection from an aluminum foil surface fixed at a certain distance from the source fibre end tips. From the results, it was found that the investigated sensor compensation technique was capable of achieving a 2° resolution for a bending angle working range between 0° and 20°. The study also suggested that the output voltage ratio has a 0.55% diversion due to input voltage variation between 2.9 V and 3.4 V and a 0.25% output drift for a 2 h measurement. With the achieved sensor properties, human spine monitoring in a clinical environment can potentially be implemented using this approach with power fluctuation compensation. PMID:24233073

  18. Fibre optic sensors for high speed hypervelocity impact studies and low velocity drop tests

    NASA Astrophysics Data System (ADS)

    Jackson, D. A.; Cole, M. J.; Burchell, M. J.; Webb, D. J.

    2011-05-01

    The initial aim of this project was to develop a non-contact fibre optic based displacement sensor to operate in the harsh environment of a 'Light Gas Gun' (LGG), which can 'fire' small particles at velocities ranging from 1-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the centre of the impact to minimise corruption of the data from edge effects and survive the impact. A further requirement is that it should operate at a stand-off distance of ~ 8cm. For these reasons we chose to develop a pseudo con-focal intensity sensor, which demonstrated resolution comparable with conventional PVDF sensors combined with high survivability and low cost. A second sensor was developed based on 'Fibre Bragg Gratings' (FBG) which although requiring contact with the target the low weight and very small contact area had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on composite and aluminium plates in the LGG and on low speed drop tests. The particle momentum for the drop tests was chosen to be similar to that of the particles used in the LGG.

  19. Applications of optical fibre Bragg gratings sensing technology-based smart stay cables

    NASA Astrophysics Data System (ADS)

    Li, Hui; Ou, Jinping; Zhou, Zhi

    2009-10-01

    Stay cable is one of the most critical structural components of a bridge. However, it readily suffers from fatigue damage, corrosion damage, and their coupled effects. Thus, health monitoring of stay cables is important for ensuring the integrity and safety of a bridge. A smart stay cable assembled with optical fibre Bragg grating (OFBG) strain and temperature sensors was proposed in this study. To protect the OFBG sensors against breakage in application, the OFBG sensors were first incorporated into a glass-fibre-reinforced polymer (GFRP) bar (GFRP-OFBG bar) when the bar was fabricated. To fabricate cables assembled with OFBG sensors, several GFRP-OFBG bars were inserted into the hollows of steel wires and fixed with the steel wires together at the anchorages of the cable. Therefore, the GFRP-OFBG bars can consistently deform with the steel wires in a cable and the smart stay cable can sense its own strain and temperature through OFBG sensors. The fabrication procedure of the smart stay cable was developed and the self-sensing property of the smart stay cable was calibrated. Finally, the application of the smart stay cables on the Tianjing Yonghe Bridge was demonstrated. The fatigue accumulative damage of the smart stay cables was evaluated based on field monitoring strain.

  20. Measurement of stress-strain behaviour of human hair fibres using optical techniques.

    PubMed

    Lee, J; Kwon, H J

    2013-06-01

    Many studies have presented stress-strain relationship of human hair, but most of them have been based on an engineering stress-strain curve, which is not a true representation of stress-strain behaviour. In this study, a more accurate 'true' stress-strain curve of human hair was determined by applying optical techniques to the images of the hair deformed under tension. This was achieved by applying digital image cross-correlation (DIC) to 10× magnified images of hair fibres taken under increasing tension to estimate the strain increments. True strain was calculated by summation of the strain increments according to the theoretical definition of 'true' strain. The variation in diameter with the increase in longitudinal elongation was also measured from the 40× magnified images to estimate the Poisson's ratio and true stress. By combining the true strain and the true stress, a true stress-strain curve could be determined, which demonstrated much higher stress values than the conventional engineering stress-strain curve at the same degree of deformation. Four regions were identified in the true stress-strain relationship and empirical constitutive equations were proposed for each region. Theoretical analysis on the necking condition using the constitutive equations provided the insight into the failure mechanism of human hair. This analysis indicated that local thinning caused by necking does not occur in the hair fibres, but, rather, relatively uniform deformation takes place until final failure (fracture) eventually occurs.

  1. Picosecond lasing in ytterbium fibre laser with nonlinear optical loop mirror: experiment and numerical simulation

    SciTech Connect

    Borodkin, A A; Khudyakov, D V; Vartapetov, S K

    2015-02-28

    The operation regimes of a pulsed all-normal-dispersion polarisation-maintaining fibre laser with a nonlinear optical loop mirror are studied. The use of polarisation-maintaining fibres ensures polarisation and temperature stability of output radiation. The lasing and instability thresholds of the pulsed laser are determined experimentally. A spectral filter placed in the cavity makes it possible to change the centre wavelength of laser radiation within the range 1.02 – 1.05 μm with a spectral full width at half maximum of 2 nm. The average output power is 7 mW, which corresponds to a pulse energy of 0.8 nJ. The autocorrelation function width of the output pulse is 50 ps. The minimum pulse duration achieved after compression by an external pair of diffraction gratings is 1.8 ps. The dynamics of the temporal and spectral parameters of laser pulses is studied using mathematical simulation based on numerical solution of the nonlinear Schrödinger equation. The simulation results coincide with experimental data with a high accuracy. (lasers)

  2. Single-Mode Propagation in Optical Waveguides and Fibres: A Critical Review of its Treatment in Physics Textbooks

    ERIC Educational Resources Information Center

    Ruddock, Ivan S.

    2009-01-01

    The derivation and description of the modes in optical waveguides and fibres are reviewed. The version frequently found in undergraduate textbooks is shown to be incorrect and misleading due to the assumption of an axial ray of light corresponding to the lowest order mode. It is pointed out that even the lowest order must still be represented in…

  3. Fibre Optic Laser Doppler Anemometry, The Potential For Measurements In Man.

    NASA Astrophysics Data System (ADS)

    Kilpatrick, Walker D.

    1984-10-01

    Fibre optic laser Doppler anemometry (FOLDA) is a useful technique for in vitro studies but has yet to be used successfully for the measurement of intravascular velocity in man. Some reasons for this are: 1. The difficulty of locating the position of the fibre within the vessel. 2. Lack of knowledge of the precise velocity profile across the vessel. 3. The effects of flow perturbation at the tip of the probe. These problems have been assessed using a FOLDA system developed in our laboratory. Three dimensional velocity profiles of blood flowing in arteries with and without stenoses have been plotted at different rates of flow. The results show that the parabolic profile of fully developed laminar flow is flattened in an arterial stenosis and the degree of flattening increases as flow increases. This means the relationship of the flow and velocity is nonlinear. Any use of FOLDA to assess vessel dimension must take this into account. The position of the fibre in the vessel can only be adequately controlled in in-vitro studies. The region of measurement is only 50 μm diameter and must be at the position of the peak velocity to enable quantitative measurement. Thus the technique is useful in humans only when there is a flat velocity profile such as in the coronary sinus. The relationship between coronary sinus flow and FOLDA velocity is linear in experimental animals. The current FOLDA system has a limited range of projection into the blood stream. The velocity is not linearly related to blood flow when the direction of flow is the same as the projected light, probably due to flow perturbation at the fibre tip. This means that a probe introduced into a coronary artey would not measure linear flow however a probe introduced against the flow could be used to assess the severity of peripheral arterial stenoses. To measure flow across a stenoses before and after angioplasty is possible but requires a method of obtaining an average spatial velocity before it is practicable.

  4. Micro-optical instrumentation for process spectroscopy

    NASA Astrophysics Data System (ADS)

    Crocombe, Richard A.; Flanders, Dale C.; Atia, Walid

    2004-12-01

    Traditional laboratory ultraviolet/visible/near-infrared spectroscopy instruments are tabletop-sized pieces of equipment that exhibit very high performance, but are generally too large and costly to be widely distributed for process control applications or used as spectroscopic sensors. Utilizing a unique, and proven, micro-optical technology platform origi-nally developed, qualified and deployed in the telecommunications industry, we have developed a new class of spectro-scopic micro-instrumentation that has laboratory quality resolution and spectral range, with superior speed and robust-ness. The fundamentally lower cost and small form factor of the technology will enable widespread use in process moni-toring and control. This disruption in the ground rules of spectroscopic analysis in these processes is enabled by the re-placement of large optics and detector arrays with a high-finesse, high-speed micro electro mechanical system (MEMS) tunable filter and a single detector, that enable the manufacture of a high performance and extremely rugged spectrome-ter in the footprint of a credit card. Specific process monitoring and control applications discussed in the paper include pharmaceutical, gas sensing and chemical processing applications.

  5. Using a fibre-optic cable as Distributed Acoustic Sensor for Vertical Seismic Profiling - Overview of various field tests

    NASA Astrophysics Data System (ADS)

    Götz, Julia; Lüth, Stefan; Henninges, Jan; Reinsch, Thomas

    2015-04-01

    Fibre-optic Distributed Acoustic Sensing (DAS) or Distributed Vibration Sensing (DVS) is a technology, where an optical fibre cable is used as a sensor for acoustic signals. An ambient seismic wavefield, which is coupled by friction or pressure to the optical fibre, induces dynamic strain changes along the cable. The DAS/DVS technology offers the possibility to record an optoelectronic signal which is linearly related to the time dependent local strain. The DAS/DVS technology is based on the established technique of phase-sensitive optical time-domain reflectometry (phi-OTDR). Coherent laser pulses are launched into the fibre to monitor changes in the resulting elastic Rayleigh backscatter with time. Dynamic strain changes lead to small displacements of the scattering elements (non-uniformities within the glass structure of the optical fibre), and therefore to variations of the relative phases of the backscattered photons. The fibre behaves as a series of interferometers whose output is sensitive to small changes of the strain at any point along its length. To record the ground motion not only in space but also in time, snapshots of the wavefield are created by repeatedly firing laser pulses into the fibre at sampling frequencies much higher than seismic frequencies. DAS/DVS is used e.g. for continuous monitoring of pipelines, roads or borders and for production monitoring from within the wellbore. Within the last years, the DAS/DVS technology was further developed to record seismic data. We focus on the recording of Vertical Seismic Profiling (VSP) data with DAS/DVS and present an overview of various field tests published between 2011 and 2014. Here, especially CO2 storage pilot sites provided the opportunity to test this new technology for geophysical reservoir monitoring. DAS/DVS-VSP time-lapse measurements have been published for the Quest CO2 storage site in Canada. The DAS/DVS technology was also tested at the CO2 storage sites in Rousse (France), Citronelle

  6. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres.

    PubMed

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-06-24

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices.

  7. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    PubMed Central

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-01-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices. PMID:27339700

  8. Time transfer through optical fibres over a distance of 73 km with an uncertainty below 100 ps

    NASA Astrophysics Data System (ADS)

    Rost, M.; Piester, D.; Yang, W.; Feldmann, T.; Wübbena, T.; Bauch, A.

    2012-12-01

    We demonstrate the capability of accurate time transfer using optical fibres over long distances utilizing a dark fibre and hardware which is usually employed in two-way satellite time and frequency transfer (TWSTFT). Our time transfer through optical fibre (TTTOF) system is a variant of the standard TWSTFT by employing an optical fibre in the transmission path instead of free-space transmission of signals between two ground stations through geostationary satellites. As we use a dark fibre there are practically no limitations to the bandwidth of the transmitted signals so that we can use the highest chip rate of the binary phase-shift modulation available from the commercial equipment. This leads to an enhanced precision compared with satellite time transfer where the occupied bandwidth is limited for cost reasons. The TTTOF system has been characterized and calibrated in a common-clock experiment at PTB, and the combined calibration uncertainty is estimated as 74 ps. In a second step the remote part of the system was operated at Leibniz Universität Hannover, Institut für Quantenoptik (IQ) separated by 73 km from PTB in Braunschweig. In parallel, a GPS time transfer link between Braunschweig and Hannover was established, and both links connected a passive hydrogen maser at IQ with the reference time scale UTC(PTB) maintained in PTB. The results obtained with both links agree within the 1-σ uncertainty of the GPS link results, which is estimated as 0.72 ns. The fibre link exhibits a nearly ten-fold improved stability compared with the GPS link, and assessment of its performance has been limited by the properties of the passive maser.

  9. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    PubMed Central

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  10. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    PubMed

    Di Sante, Raffaella

    2015-07-30

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  11. Hardware Implementation of Multiple Fan Beam Projection Technique in Optical Fibre Process Tomography

    PubMed Central

    Rahim, Ruzairi Abdul; Fazalul Rahiman, Mohd Hafiz; Leong, Lai Chen; Chan, Kok San; Pang, Jon Fea

    2008-01-01

    The main objective of this project is to implement the multiple fan beam projection technique using optical fibre sensors with the aim to achieve a high data acquisition rate. Multiple fan beam projection technique here is defined as allowing more than one emitter to transmit light at the same time using the switch-mode fan beam method. For the thirty-two pairs of sensors used, the 2-projection technique and 4-projection technique are being investigated. Sixteen sets of projections will complete one frame of light emission for the 2-projection technique while eight sets of projection will complete one frame of light emission for the 4-projection technique. In order to facilitate data acquisition process, PIC microcontroller and the sample and hold circuit are being used. This paper summarizes the hardware configuration and design for this project. PMID:27879885

  12. Review of Trackside Monitoring Solutions: From Strain Gages to Optical Fibre Sensors

    PubMed Central

    Kouroussis, Georges; Caucheteur, Christophe; Kinet, Damien; Alexandrou, Georgios; Verlinden, Olivier; Moeyaert, Véronique

    2015-01-01

    A review of recent research on structural monitoring in railway industry is proposed in this paper, with a special focus on stress-based solutions. After a brief analysis of the mechanical behaviour of ballasted railway tracks, an overview of the most common monitoring techniques is presented. A special attention is paid on strain gages and accelerometers for which the accurate mounting position on the track is requisite. These types of solution are then compared to another modern approach based on the use of optical fibres. Besides, an in-depth discussion is made on the evolution of numerical models that investigate the interaction between railway vehicles and tracks. These models are used to validate experimental devices and to predict the best location(s) of the sensors. It is hoped that this review article will stimulate further research activities in this continuously expanding field. PMID:26287207

  13. Monitoring of inhomogeneous flow distributions using fibre-optic Bragg grating temperature sensor arrays

    NASA Astrophysics Data System (ADS)

    Latka, Ines; Bosselmann, Thomas; Ecke, Wolfgang; Willsch, Michael

    2006-04-01

    Knowledge of the gas flow distributions, their mass velocity and turbulences, in chemical reactors, thermodynamic engines, pipes, and other industrial facilities may help to achieve a more efficient system performance. In our novel approach, optical fibre Bragg grating (FBG) sensors have been used for measuring the temperature of a heated element, adapting the principles of conventional hot-wire-anemometers. Because of the multiplexing capability of FBG sensors, the gas mass flow distribution can be measured along the sensor array. The length of the heated and sensor-equipped element can be easily adapted to the cross section of the gas flow, from <10 cm up to several metres. The number and distances of FBGs distributed over this length defines the spatial resolution and is basically limited by the sensor signal processing. According to FBG sensor lengths < 5 mm, spatial resolutions of gas flow measurements of less than 1 cm can be achieved.

  14. Smart current collector—fibre optic hit detection system for improved security on railway tracks

    NASA Astrophysics Data System (ADS)

    Schröder, Kerstin; Ecke, Wolfgang; Kautz, Michael; Willett, Simon; Unterwaditzer, Hansjörg; Bosselmann, Thomas; Rothhardt, Manfred

    2013-11-01

    In a deregulated EU railway market, monitoring the vehicle and infrastructure interfaces is mandatory for the enhanced availability of operation and for reducing costs. Therefore, infrastructure managers need monitoring tools on overhead contact lines (OCLs). We know from earlier investigations that a measurement of contact forces alone is not sufficient (Schröder et al 2013 Opt. Lasers Eng. 51 172-9). In this study, we introduce a system which is fast enough to detect short disturbances and which can be used with regular trains. It is based on fibre optic sensors integrated with conventional current collectors (CCs). The system is designed to monitor hard and soft hits on the CC in horizontal (driving) and vertical (contact) direction. It was systematically tested in the laboratory as well as in test runs on commercial railways in several countries. With its help, a variety of minor as well as serious defects have been discovered and repaired at the CC-OCL interface.

  15. A Sagnac-Michelson fibre optic interferometer: Signal processing for disturbance localization

    NASA Astrophysics Data System (ADS)

    Kondrat, M.; Szustakowski, M.; Pałka, N.; Ciurapiński, W.; Życzkowski, M.

    2007-09-01

    We present numerical and experimental results on a new generation fibre optic perimeter sensor based on a Sagnac and Michelson interferometers configuration. In particular, an original signal processing scheme is presented. The sensor can detect a potential intruder and determine its position along a protected zone. We propose a localization method that offers the inherent properties of both interferometers. After demodulation of the signals from both interferometers, the obtained amplitude characteristic of the Sagnac interferometer depends on a position of a disturbance along the interferometer, while amplitude characteristic of the Michelson interferometer does not depend on this position. So, quotient of both demodulated characteristics makes it possible to localize the disturbance. During investigations of a laboratory model of the sensor, it was possible to detect the position of the disturbance with a resolution of about 40 m along the 6-km-long sensor.

  16. The application of fibre optic temperature sensing for under insulation monitoring of subsea infrastructure

    NASA Astrophysics Data System (ADS)

    Faichnie, David M.; Graham, Alan; McStay, Daniel

    2010-04-01

    The use of insulation within the oil and gas industry to provide heat retention during production downtime is important to reduce the risk of hydrate formation within the flow-loops in the subsea infrastructure. Hydrate formation can significantly decrease the production efficiency and hence the profitability of the well. Hydrates can also introduce serious safety risks, if formed with in critical components such as safety valves. During production downtime the elevated temperature of equipment such as XTs will begin to equalize to the ambient subsea temperature. The accurate assessment of the effectiveness of such insulation is thus critical. Monitoring insulation performance during cool down trials is typically performed during test and assembly of production equipment using a limited number of electrical sensors. The use of multiplexed fibre optic sensors offers a reduction in the number of penetrations in the insulation, when compared to traditional electrical sensors and thus allows far more representative temperature measurements to be made. Additionally, conventional electrical sensors will rapidly degrade in the subsea environment, making them unsuited for long term subsea monitoring. In this paper we report the use of embedded optical fibre sensors, which should maintain their full performance over the lifetime of the subsea equipment. This would enable the long term insulation performance to be assessed after a tree is recovered for maintenance, or even allow continuous monitoring of the insulation performance during service. Results of tests carried out in an environmental chamber to show the performance of the sensors during cooling cycles are reported and initial results taken during production testing prior to deployment of the equipment subsea are reported.

  17. Development of fiber optic spectroscopy for detection of genetically modified plants (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Liew, O. W.; Chean, X. Y.; Chong, J.-P. C.; Ho, J.-Z. E.; Chen, J. W.; Asundi, A. K.; Aiemwiwattanakul, O.

    2005-06-01

    In this paper, fibre optic spectroscopy (FOSpectr) was developed for detection and quantification of recombinant green fluorescent protein (EGFP) in transgenic tobacco plants. In vitro detection was first carried out to optimize the sensitivity of the optical system. The bacterial expression vectors, pEGFP and pDsRED, were transformed into Escherichia coli host cells and fluorescent proteins were produced following induction with IPTG. Soluble EGFP and DsRED proteins were isolated from lysed bacterial cells and successfully purified by size separation under nondenaturing electrophoretic conditions and quantified. The purified proteins were serially diluted for quantitative analysis by fibre optic spectroscopy using different light sources, namely, blue LED (475 nm), tungsten halogen (350-1000 nm) and double frequency Nd:YAG green laser (532 nm). Tungsten halogen was found to be unsuitable for excitation of both EGFP and DsRED. Blue LED and green laser were the most suitable for excitation of EGFP and DsRED, respectively. The minimum concentration of EGFP detectable with blue LED excitation was 7.5 tg/ml whereas that for DsRED under excitation by green laser was 3.75 ig/ml. To determine the capability of spectroscopy detection in planta, transgenic tobacco plants expressing EGFP were first imaged under a fluorescence microscope. This was to select a panel of transformed plants expressing varying levels of the fluorescent protein. These plants were then screened via FOSpectr. The results showed that the amplitude of the fluorescence emission signal obtained from FOSpectr correlated well with the level of EGFP expressed as indicated by fluorescence microscopy. Thus, proof-of-concept for the use of FOSpectr as a potentially powerful tool for screening transgenic plants was provided in this paper.

  18. Optical Spectroscopy of Nano Materials and Structures

    NASA Astrophysics Data System (ADS)

    Guo, Wenhao

    In this thesis, nanostructures and nanomaterials ranging from 3D to OD will be studied compresively, by using optical methods. Firstly, for 3D and 2D nanomaterials, nanoporous zeolite crystals, such as AFI and AEL are introduced as host materials to accommodate diatomic iodine molecules. Polarized Raman spectroscopy is utilized to identify the two configurations of iodine molecules to stay in the channels of AEL: the lying mode (the bond of the two atoms is parallel to the direction of the channels) and the standing mode (the bond is perpendicular to the direction of the channels). The lying mode and standing mode are switchable and can be well controlled by the amount of water molecules inside the crystal, revealed by both molecule dynamics simulation and experiment observation. With more water molecules inside, iodine molecules choose to stay in the standing mode, while with less water molecules, iodine molecules prefer to lie along the channel. Therefore, the configurations of molecules could be precisely controlled, globally by the surrounding pressure and temperature, and locally by the laser light. Ii is believed that this easy and reversible control of single molecule will be valuable in nanostructured devices, such as molecular sieving or molecular detection. Secondly, for 1D case, the PL spectrum of ZnO nanowire under uniaxial strain is studied. When a ZnO nanowire is bent, besides the lattice constant induced bandgap change on the tensile and compressive sides, there is a piezoelectric field generated along the cross section. This piezoelectric potential, together with the bandgap changes induced by the deformation, will redistribute the electrons excited by incident photons from valence band to conduction band. As a result, the electrons occupying the states at the tensile side will largely outnumbered the ones at the compressive side. Therefore, the PL spectrum we collected at the whole cross section will manifest a redshift, other than the peak

  19. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    SciTech Connect

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  20. Optical Spectroscopy of Hybrid Semiconductor Quantum Dots and Metal Nanoparticles

    DTIC Science & Technology

    2014-11-07

    SECURITY CLASSIFICATION OF: Optical studies of semiconductor quantum dots (SQDs), metal nanoparticles (MNPs), and their hybrid nanomaterials are...Distribution Unlimited Final Report: Optical Spectroscopy of Hybrid Semiconductor Quantum Dots and Metal Nanoparticles The views, opinions and/or findings...Semiconductor Quantum Dots and Metal Nanoparticles Report Title Optical studies of semiconductor quantum dots (SQDs), metal nanoparticles (MNPs), and their

  1. Gamma-irradiation tests of IR optical fibres for ITER thermography--a case study

    SciTech Connect

    Reichle, R.; Pocheau, C.; Jouve, M.

    2008-03-12

    In the course of the development of a concept for a spectrally resolving infrared thermography diagnostic for the ITER divertor we have tested 3 types of infrared (IR) fibres in Co{sup 60} irradiation facilities under {gamma} irradiation. The fibres were ZrF{sub 4} (and HfF{sub 4}) fibres from different manufacturers, hollow fibres (silica capillaries with internal Ag/AgJ coating) and a sapphire fibre. For the IR range, only the latter fibre type encourages to go further for neutron tests in a reactor. If one restricted the interest onto the near infrared range, high purity core silica fibres could be used. This study might be seen as a typical example of the relation between diagnostic development for a nuclear environment and irradiation experiments.

  2. Gamma-irradiation tests of IR optical fibres for ITER thermography—a case study

    NASA Astrophysics Data System (ADS)

    Reichle, R.; Brichard, B.; Pocheau, C.; Jouve, M.; van Ierschot, S.; Martinez, S.; Ooms, H.; Berghmans, F.; Decréton, M.

    2008-03-01

    In the course of the development of a concept for a spectrally resolving infrared thermography diagnostic for the ITER divertor we have tested 3 types of infrared (IR) fibres in Co60 irradiation facilities under γ irradiation. The fibres were ZrF4 (and HfF4) fibres from different manufacturers, hollow fibres (silica capillaries with internal Ag/AgJ coating) and a sapphire fibre. For the IR range, only the latter fibre type encourages to go further for neutron tests in a reactor. If one restricted the interest onto the near infrared range, high purity core silica fibres could be used. This study might be seen as a typical example of the relation between diagnostic development for a nuclear environment and irradiation experiments.

  3. Optical Zeeman spectroscopy of calcium monohydride

    SciTech Connect

    Chen, Jinhai; Gengler, Jamie; Steimle, T. C.; Brown, John M.

    2006-01-15

    The Zeeman effect in the ground and low-lying excited electronic states of calcium monohydride CaH has been experimentally investigated using optical Zeeman spectroscopy of the (0,0) band of the B{sup 2}{sigma}{sup +}-X{sup 2}{sigma}{sup +} and the (0,0) band of the A{sup 2}{pi}-X{sup 2}{sigma}{sup +} systems. The observed Zeeman-induced shifts and splittings of numerous branch features recorded near the natural linewidth limit were successfully modeled using a traditional effective Hamiltonian approach to account for the interaction between the (v=0) A{sup 2}{pi} and (v=0) B{sup 2}{sigma}{sup +} states and explicit inclusion of the interaction matrix elements for the heterogeneous perturbations between the (v=1) A{sup 2}{pi} and (v=0) B{sup 2}{sigma}{sup +} states. The determined magnetic g factors for the X{sup 2}{sigma}{sup +}, B{sup 2}{sigma}{sup +}, and A{sup 2}{pi} states are compared with previously assumed values and those predicted by perturbation theory.

  4. Optical Emission Spectroscopy in an Unmagnetized Plasma

    NASA Astrophysics Data System (ADS)

    Milhone, Jason; Cooper, Christopher; Desangles, Victor; Nornberg, Mark; Seidlitz, Blair; Forest, Cary; WiPAL Team

    2015-11-01

    An optical emission spectroscopic analysis has been developed to measure electron temperature, neutral burnout, and Zeff in Ar and He plasmas in the Wisconsin plasma astrophysics laboratory (WiPAL). The WiPAL vacuum chamber is a 3 meter diameter spherical vessel lined with 3000 SmCo permanent magnets (B > 3 kG) that create an axisymmetric multi-cusp ring for confining the plasma. WiPAL is designed to study unmagnetized plasmas that are hot (Te > 10 eV), dense (ne >1018), and with high ionization fraction. Electron temperature and density can be measured via Langmuir probes. However, probes can disturb the plasma, be difficult to interpret, and become damaged by large heat loads from the plasma. A low cost non-invasive spectroscopy system capable of scanning the plasma via a linear stage has been installed to study plasma properties. From the neutral particle emission, the neutral burnout and estimated neutral temperature can be inferred. A modified coronal model with metastable states is being implemented to determine Te for Ar plasmas.

  5. Fibre optics wavemeters calibration using a self-referenced optical frequency comb

    SciTech Connect

    Galindo-Santos, J.; Velasco, A. V.; Corredera, P.

    2015-01-15

    Self-referenced optical frequency combs enable the measurement of optical frequencies with a very high accuracy, achieving uncertainties close to the atomic clock used as reference (<10{sup −13} s). In this paper, we present the technique for the measurement of laser frequencies for optical communications followed at IO-CSIC and its application to the calibration of two wavemeters in the 1.5 μm optical communication window. Calibration uncertainties down to 12 MHz and 59 MHz were obtained, respectively, for each of the devices. Furthermore, the long-term behaviour of the higher resolution wavemeter was studied during a 750 h period of sustained operation, exhibiting a dispersion in the measurements of 7.72 MHz. Temperature dependence of the device was analysed, enabling to further reduce dispersion down to a 2.15 MHz range, with no significant temporal deviations.

  6. Impact of amplitude jitter and signal-to-noise ratio on the nonlinear spectral compression in optical fibres

    NASA Astrophysics Data System (ADS)

    Boscolo, Sonia; Fatome, Julien; Finot, Christophe

    2017-04-01

    We numerically study the effects of amplitude fluctuations and signal-to-noise ratio degradation of the seed pulses on the spectral compression process arising from nonlinear propagation in an optical fibre. The unveiled quite good stability of the process against these pulse degradation factors is assessed in the context of optical regeneration of intensity-modulated signals, by combining nonlinear spectral compression with centered bandpass optical filtering. The results show that the proposed nonlinear processing scheme indeed achieves mitigation of the signal's amplitude noise. However, in the presence of a jitter of the temporal duration of the pulses, the performance of the device deteriorates. © 2016 Elsevier

  7. The use of Fourier transform-infrared (FTIR) and Raman spectroscopy (FTR) for the investigation of structural changes in wool fibre keratin after enzymatic treatment

    NASA Astrophysics Data System (ADS)

    Wojciechowska, Elżbieta; Rom, Monika; Włochowicz, Andrzej; Wysocki, Marian; Wesełucha-Birczyńska, Aleksandra

    2004-10-01

    Keratin of wool fibres obtained from Polish Merino Sheep was treated with proteolytic enzyme in buffered conditions. The zoll of orthosilicic acid was applied as a pretreatment, before enzymatic attack. It has been shown that buffer environment has significant influence on the changes in the structure of wool fibre keratin. Depending of the type of buffer utilised, different conformational changes are observed. Ammonia and tetraborate buffers were used (within pH=8.2). Each of the used buffers had a different influence on the changes in the structure of wool fibre keratin. Ammonia buffer caused bigger conformational changes in the region of disulphide bonds while tetraborate buffer disrupted the stability of amide components. To evaluate the changes of wool keratin structure infrared spectroscopy and Raman spectroscopy were applied.

  8. Optical-fibre sensor system for monitoring the performance of the gas propellant centrifuge separator of a spacecraft

    NASA Astrophysics Data System (ADS)

    Romo-Medrano, Katya E.; Khotiaintsev, Sergei N.; García-Garduño, Victor

    2004-08-01

    An optical-fibre sensor system is presented for monitoring void fraction distribution in a spacecraft's gas and propellant centrifuge separator. The system could be used at the separator development stage or for monitoring, during ground tests, the elements of the spacecraft propulsion system. Our sensor system employs an array of point optical-fibre refractometric transducers installed in the form of several linear radial arrays on the separator rotating blades. We employed a small-size hemispherical optical detection element as the transducer and we optimized its parameters through numerical ray-tracing. The aim is to minimize the effect of the thin film of liquid that forms on the transducer's surface in this application. The features of this sensor system are: (1) an efficient matrix-type multiplexing scheme, (2) the installation of the main optoelectronic unit of the sensor in a hermetically sealed container inside the separator tank located on the rotating shaft and (3) the spark-proof and explosion-proof design of the sensor circuits and elements. The sensor is simple, reliable, low-cost and is capable of withstanding the factors involved during operation of the propulsion system such as cryogenic temperatures and chemically aggressive liquids. The novel elements and design concepts implemented in this sensor system can also find applications in other sensors for spacecraft propulsion systems and also in a variety of optical-fibre sensors used in scientific research and industry.

  9. Influences of semiconductor laser on fibre-optic distributed disturbance sensor based on Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Liang, Sheng; Zhang, Chun-Xi; Lin, Bo; Lin, Wen-Tai; Li, Qin; Zhong, Xiang; Li, Li-Jing

    2010-12-01

    This paper investigates the influences of a semiconductor laser with narrow linewidth on a fibre-optic distributed disturbance sensor based on Mach-Zehnder interferometer. It establishes an effective numerical model to describe the noises and linewidth of a semiconductor laser, taking into account their correlations. Simulation shows that frequency noise has great influences on location errors and their relationship is numerically investigated. Accordingly, there is need to determine the linewidth of the laser less than a threshold and obtain the least location errors. Furthermore, experiments are performed by a sensor prototype using three semiconductor lasers with different linewidths, respectively, with polarization maintaining optical fibres and couplers to eliminate the polarization induced noises and fading. The agreement of simulation with experimental results means that the proposed numerical model can make a comprehensive description of the noise behaviour of a semiconductor laser. The conclusion is useful for choosing a laser source for fibre-optic distributed disturbance sensor to achieve optimized location accuracy. What is more, the proposed numerical model can be widely used for analysing influences of semiconductor lasers on other sensing, communication and optical signal processing systems.

  10. A factor limiting the accuracy of optical loss measurements in single-mode fibres: ‘frozen-in’ inhomogeneities of the Rayleigh backscatter coefficient

    NASA Astrophysics Data System (ADS)

    Busurin, V. I.; Gorshkov, B. G.; Gorshkov, G. B.; Grinshtein, M. L.; Taranov, M. A.

    2017-02-01

    Backscatter coefficient fluctuations at a wavelength of 1560 nm in Fujikura FutureGuide-LWP, Corning ClearCurve XB and Corning SMF-28 ULL telecom fibres have been studied using optical time-domain reflectometry and broadband (10 nm) depolarised light. It has been shown that, under the conditions of our experiments, such fluctuations are ‘frozen-in’ and that a typical standard deviation in noiselike reflectograms is 0.16 dB, with a correlation distance no greater than 1 m. Such results have been obtained for all fibre samples. The effect studied experimentally limits the accuracy of attenuation measurements in optical fibres, especially at short fibre lengths (tens and hundreds of metres). Moreover, it should be taken into account in designing distributed physical parameter sensors using Rayleigh scattering intensity as a reference channel. Possible sources of the inhomogeneities in the fibres are discussed.

  11. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles.

    PubMed

    Redding, Brandon; Schwab, Mark; Pan, Yong-le

    2015-08-04

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field.

  12. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    PubMed Central

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  13. Application of Optical Imaging and Spectroscopy to Radiation Biology

    PubMed Central

    Palmer, Gregory M.; Vishwanath, Karthik; Dewhirst, Mark W.

    2013-01-01

    Optical imaging and spectroscopy is a diverse field that has been of critical importance in a wide range of areas in radiation research. It is capable of spanning a wide range of spatial and temporal scales, and has the sensitivity and specificity needed for molecular and functional imaging. This review will describe the basic principles of optical imaging and spectroscopy, highlighting a few relevant applications to radiation research. PMID:22360397

  14. Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre

    NASA Astrophysics Data System (ADS)

    Lin, Yuechuan; Jin, Wei; Yang, Fan; Ma, Jun; Wang, Chao; Ho, Hoi Lut; Liu, Yang

    2016-12-01

    Gas detection with hollow-core photonic bandgap fibre (HC-PBF) and pulsed photothermal (PT) interferometry spectroscopy are studied theoretically and experimentally. A theoretical model is developed and used to compute the gas-absorption-induced temperature and phase modulation in a HC-PBF filled with low-concentration of C2H2 in nitrogen. The PT phase modulation dynamics for different pulse duration, peak power and energy of pump beam are numerically modelled, which are supported by the experimental results obtained around the P(9) absorption line of C2H2 at 1530.371 nm. Thermal conduction is identified as the main process responsible for the phase modulation dynamics. For a constant peak pump power level, the phase modulation is found to increase with pulse duration up to ~1.2 μs, while it increases with decreasing pulse duration for a constant pulse energy. It is theoretically possible to achieve ppb level detection of C2H2 with ~1 m length HC-PBF and a pump beam with ~10 ns pulse duration and ~100 nJ pulse energy.

  15. Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre

    PubMed Central

    Lin, Yuechuan; Jin, Wei; Yang, Fan; Ma, Jun; Wang, Chao; Ho, Hoi Lut; Liu, Yang

    2016-01-01

    Gas detection with hollow-core photonic bandgap fibre (HC-PBF) and pulsed photothermal (PT) interferometry spectroscopy are studied theoretically and experimentally. A theoretical model is developed and used to compute the gas-absorption-induced temperature and phase modulation in a HC-PBF filled with low-concentration of C2H2 in nitrogen. The PT phase modulation dynamics for different pulse duration, peak power and energy of pump beam are numerically modelled, which are supported by the experimental results obtained around the P(9) absorption line of C2H2 at 1530.371 nm. Thermal conduction is identified as the main process responsible for the phase modulation dynamics. For a constant peak pump power level, the phase modulation is found to increase with pulse duration up to ~1.2 μs, while it increases with decreasing pulse duration for a constant pulse energy. It is theoretically possible to achieve ppb level detection of C2H2 with ~1 m length HC-PBF and a pump beam with ~10 ns pulse duration and ~100 nJ pulse energy. PMID:28009011

  16. Cone penetrometer fiber optic raman spectroscopy probe assembly

    DOEpatents

    Kyle, Kevin R.; Brown, Steven B.

    2000-01-01

    A chemically and mechanically robust optical Raman spectroscopy probe assembly that can be incorporated in a cone penetrometer (CPT) for subsurface deployment. This assembly consists of an optical Raman probe and a penetrometer compatible optical probe housing. The probe is intended for in-situ chemical analysis of chemical constituents in the surrounding environment. The probe is optically linked via fiber optics to the light source and the detection system at the surface. A built-in broadband light source provides a strobe method for direct measurement of sample optical density. A mechanically stable sapphire window is sealed directly into the side-wall of the housing using a metallic, chemically resistant, hermetic seal design. This window permits transmission of the interrogation light beam and the resultant signal. The spectroscopy probe assembly is capable of accepting Raman, Laser induced Fluorescence, reflectance, and other optical probes with collimated output for CPT deployment.

  17. Repositioning a displaced tracheostomy tube with an Aintree intubation catheter mounted on a fibre-optic bronchoscope.

    PubMed

    Rajendram, R; McGuire, N

    2006-10-01

    Although tracheostomy tube displacement is uncommon, the management is often difficult and the associated mortality is high. It is important to ensure that the airway is secure and then either replace or reposition the tracheostomy tube. This case report describes the use of an Aintree intubation catheter (C-CAE-19.0-56-AIC, William Cook Europe, Denmark) mounted on an intubating fibre-optic bronchoscope (11302BD1, Karl Storz Endoskope, Germany) to reposition a partially displaced tracheostomy tube.

  18. Design validation of an air cooled turbo generator by using fibre optic sensors in a shop test

    NASA Astrophysics Data System (ADS)

    Bosselmann, T.; Willsch, M.; Villnow, M.; Strack, S.; Chernogorski, V.; Weidner, J. R.; Roeding, R.; Schwanengel, U.; Trefflich, L.; Lindholm, S.; Abromitis, E.

    2012-06-01

    The increasing need of energy and the increasing share of renewables in electric power generation demands higher flexibility in the operation of conventional power plants. Turbo generators have to face higher stress during operation without consuming additional life time. For the first time in a shop test a new generator design was extensively evaluated by using about 250 fibre optic sensors - mostly new developed - to control temperature, strain, movement and vibration.

  19. Embedded optical fibres as strain sensors in polymer matrix fibre composites: The influence of adhesion in strain transfer

    NASA Astrophysics Data System (ADS)

    Ekroth, M.

    1994-06-01

    Optical fibers can serve as strain sensors embedded in load carrying polymer matrix fiber composites. The aim of the study was to investigate the influence of chemical bonding between the optical fiber, its protective polyimide coating and the surrounding composite, in strain transfer from the composite to the optical fiber. The degree of adhesion was determined by measuring the force during debonding and pull-out of the optical fiber from the composite. Debonding occurred between the quartz fiber and the coating for both untreated and ammonia modified fibers. The PTFE coated fibers debonded between the coating and the composite. The modified fibers debonded at a lower applied load than the untreated fibers. The strain during tensile loading was measured both with conventional resistance strain gages mounted on the specimen surfaces, and optically with a Mach-Zehnder-interferometer. The optically measured strains, obtained with the untreated fiber and the modified fibers, were all in good agreement with the response from the resistance strain gages. It is concluded that the chemical bonding between the quartz fiber/coating/composite consequently has little or no influence on the strain transfer. Internal stresses (mechanical pressure and friction forces) arising from the laminate fabrication process are sufficient for strain transfer.

  20. Broadband optical parametric amplifier formed by two pairs of adjacent four-wave mixing sidebands in a tellurite microstructured optical fibre

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Tuan, Tong-Hoang; Kawamura, Harutaka; Nagasaka, Kenshiro; Suzuki, Takenobu; Ohishi, Yasutake

    2016-05-01

    A broadband fibre-optical parametric amplifier (FOPA) operating at a novel wavelength region that is far from the pump wavelength has been demonstrated by exploiting two pairs of adjacent four-wave mixing (FWM) sidebands generated simultaneously in a tellurite microstructured optical fibre (TMOF). Owing to the large nonlinearity of the TMOF and the high pump peak power provided by a picosecond laser, a maximal average gain of 65.1 dB has been obtained. When the FOPA is operated in a saturated state, a flat-gain amplification from 1424 nm to 1459 nm can be achieved. This broadband and high-gain FOPA operating at new wavelength regions far from the pump offers the prospect of all-optical signal processing.

  1. The role of iodine treatment in enhancing the optical and structural properties of stretched nylon 6 fibres

    NASA Astrophysics Data System (ADS)

    Shabana, H. M.

    2006-07-01

    Stretched nylon 6 fibres are treated with iodine at 50 °C at different time intervals. The effects of the treatment on the optical and structural parameters are investigated. Using the double-beam Pluta polarizing interference microscope, the interference patterns are recorded for the investigated samples and used for calculating the refractive indices, birefringence and other optical properties. The refractive indices and the birefringence values are directly proportional to the time of iodine evaporation. The iodine treatment increases the isotropic refractive index, mean polarizability per unit volume, surface reflectivity and orientation function, while decreasing the orientation angle (θ). The angle (θm) between the chain axis and the dipole moment seems to be constant. The investigated parameters show remarkable variation for the uniaxially drawn fibres to draw ratios (3 and 3.5). Moreover, the iodinated undrawn and drawn samples reveal an increase in the magnitude of the investigated parameters compared with those only annealed at the same conditions of temperature and time. The obtained results indicate that the iodine treatment modifies the nylon 6 fibre structure and consequently the optical properties, which may be useful for different industrial purposes.

  2. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: a review.

    PubMed

    Roriz, Paulo; Carvalho, Lídia; Frazão, Orlando; Santos, José Luís; Simões, José António

    2014-04-11

    In vivo measurement, not only in animals but also in humans, is a demanding task and is the ultimate goal in experimental biomechanics. For that purpose, measurements in vivo must be performed, under physiological conditions, to obtain a database and contribute for the development of analytical models, used to describe human biomechanics. The knowledge and control of the mechanisms involved in biomechanics will allow the optimization of the performance in different topics like in clinical procedures and rehabilitation, medical devices and sports, among others. Strain gages were first applied to bone in a live animal in 40's and in 80's for the first time were applied fibre optic sensors to perform in vivo measurements of Achilles tendon forces in man. Fibre optic sensors proven to have advantages compare to conventional sensors and a great potential for biomechanical and biomedical applications. Compared to them, they are smaller, easier to implement, minimally invasive, with lower risk of infection, highly accurate, well correlated, inexpensive and multiplexable. The aim of this review article is to give an overview about the evolution of the experimental techniques applied in biomechanics, from conventional to fibre optic sensors. In the next sections the most relevant contributions of these sensors, for strain and force in biomechanical applications, will be presented. Emphasis was given to report of in vivo experiments and clinical applications.

  3. Challenges in Ecohydrological Monitoring at Soil-Vegetation Interfaces: Exploiting the Potential for Fibre Optic Technologies

    NASA Astrophysics Data System (ADS)

    Chalari, A.; Ciocca, F.; Krause, S.; Hannah, D. M.; Blaen, P.; Coleman, T. I.; Mondanos, M.

    2015-12-01

    The Birmingham Institute of Forestry Research (BIFoR) is using Free-Air Carbon Enrichment (FACE) experiments to quantify the long-term impact and resilience of forests into rising atmospheric CO2 concentrations. The FACE campaign critically relies on a successful monitoring and understanding of the large variety of ecohydrological processes occurring across many interfaces, from deep soil to above the tree canopy. At the land-atmosphere interface, soil moisture and temperature are key variables to determine the heat and water exchanges, crucial to the vegetation dynamics as well as to groundwater recharge. Traditional solutions for monitoring soil moisture and temperature such as remote techniques and point sensors show limitations in fast acquisition rates and spatial coverage, respectively. Hence, spatial patterns and temporal dynamics of heat and water fluxes at this interface can only be monitored to a certain degree, limiting deeper knowledge in dynamically evolving systems (e.g. in impact of growing vegetation). Fibre optics Distributed Temperature Sensors (DTS) can measure soil temperatures at high spatiotemporal resolutions and accuracy, along kilometers of optical cable buried in the soil. Heat pulse methods applied to electrical elements embedded in the optical cable can be used to obtain the soil moisture. In July 2015 a monitoring system based on DTS has been installed in a recently forested hillslope at BIFoR in order to quantify high-resolution spatial patterns and high-frequency temporal dynamics of soil heat fluxes and soil moisture conditions. Therefore, 1500m of optical cables have been carefully deployed in three overlapped loops at 0.05m, 0.25m and 0.4m from the soil surface and an electrical system to send heat pulses along the optical cable has been developed. This paper discussed both, installation and design details along with first results of the soil moisture and temperature monitoring carried out since July 2015. Moreover, interpretations

  4. The thermoluminescence response of doped SiO2 optical fibres subjected to photon and electron irradiations.

    PubMed

    Hashim, S; Al-Ahbabi, S; Bradley, D A; Webb, M; Jeynes, C; Ramli, A T; Wagiran, H

    2009-03-01

    Modern linear accelerators, the predominant teletherapy machine in major radiotherapy centres worldwide, provide multiple electron and photon beam energies. To obtain reasonable treatment times, intense electron beam currents are achievable. In association with this capability, there is considerable demand to validate patient dose using systems of dosimetry offering characteristics that include good spatial resolution, high precision and accuracy. Present interest is in the thermoluminescence response and dosimetric utility of commercially available doped optical fibres. The important parameter for obtaining the highest TL yield during this study is to know the dopant concentration of the SiO2 fibre because during the production of the optical fibres, the dopants tend to diffuse. To achieve this aim, proton-induced X-ray emission (PIXE), which has no depth resolution but can unambiguously identify elements and analyse for trace elements with detection limits approaching microg/g, was used. For Al-doped fibres, the dopant concentration in the range 0.98-2.93 mol% have been estimated, with equivalent range for Ge-doped fibres being 0.53-0.71 mol%. In making central-axis irradiation measurements a solid water phantom was used. For 6-MV photons and electron energies in the range 6, 9 and 12 MeV, a source to surface distance of 100 cm was used, with a dose rate of 400 cGy/min for photons and electrons. The TL measurements show a linear dose-response over the delivered range of absorbed dose from 1 to 4 Gy. Fading was found to be minimal, less than 10% over five days subsequent to irradiation. The minimum detectable dose for 6-MV photons was found to be 4, 30 and 900 microGy for TLD-100 chips, Ge- and Al-doped fibres, respectively. For 6-, 9- and 12-MeV electron energies, the minimum detectable dose were in the range 3-5, 30-50 and 800-1400 microGy for TLD-100 chip, Ge-doped and Al-doped fibres, respectively.

  5. Effect of optical pumping on the refractive index and temperature in the core of active fibre

    SciTech Connect

    Gainov, V V; Ryabushkin, Oleg A

    2011-09-30

    This paper examines the refractive index change (RIC) induced in the core of Yb{sup 3+}-doped active silica fibres by pulsed pumping. RIC kinetic measurements with a Mach - Zehnder interferometer make it possible to separately assess the contributions of the electronic and thermal mechanisms to the RIC and evaluate temperature nonuniformities in the fibre.

  6. The crocidolite fibres interaction with human mesothelial cells as investigated by combining electron microscopy, atomic force and scanning near-field optical microscopy.

    PubMed

    Andolfi, Laura; Trevisan, Elisa; Zweyer, Marina; Prato, Stefano; Troian, Barbara; Vita, Francesca; Borelli, Violetta; Soranzo, Maria Rosa; Melato, Mauro; Zabucchi, Giuliano

    2013-03-01

    In this study, we have performed a morphological analysis of crocidolite fibres interaction with mesothelial cells (MET5A) by combining conventional electron microscopy with atomic force (AFM) and scanning near-field optical microscopy (SNOM). After 6-h exposure at a crocidolite dose of 5 μg cm(-2), 90% of MET5A cells interact with fibres that under these conditions have a low cytotoxic effect. SEM images point out that fibres can be either engulfed by the cells that lose their typical morphology or they can accumulate over or partially inside the cells, which preserve their typical spread morphology. By using AFM we are able to directly visualize the entry-site of nanometric-sized fibres at the plasma membrane of the spread mesothelial cells. More importantly, the crocidolite fibres that are observed to penetrate the plasma membrane in SNOM topography can be simultaneously followed beneath the cell surface in the SNOM optical images. The analysis of SNOM data demonstrates the entrance of crocidolite fibres in proximity of nuclear compartment, as observed also in the TEM images. Our findings indicate that the combination of conventional electron microscopy with novel nanoscopic techniques can be considered a promising approach to achieve a comprehensive morphological description of the interaction between asbestos fibres and mesothelial cells that represents the early event in fibre pathogenesis.

  7. Detection of premature browning in ground beef using an optical-fibre-based sensor

    NASA Astrophysics Data System (ADS)

    Sheridan, C.; O'Farrell, M.; Lewis, E.; Flanagan, C.; Kerry, J. F.; Jackman, N.

    2007-07-01

    This paper reports on an optical fibre based sensor system to detect the occurrence of premature browning in ground beef. Premature browning (PMB) occurs when, at a temperature below the pasteurisation temperature of 71°C, there are no traces of pink meat left in the patty. PMB is more frequent in poorer quality beef or beef that has been stored under imperfect conditions. The experimental work pertaining to this paper involved cooking fresh meat and meat that has been stored in a freezer for, 1 week, 1 month and 3 months and recording the reflected spectra and temperature at the core of the product, during the cooking process, in order to develop a classifier based on the spectral response and using a Self-Organising Map (SOM) to classify the patties into one of four categories, based on their colour. The combination of both the classifier and temperature data can be used to determine the presence of PMB for a given patty and can thus be used for Quality Control by food producers.

  8. Optical fibre bragg gratings based magnetic force measurement of magnetic bearings

    NASA Astrophysics Data System (ADS)

    Ding, Guoping; Zhou, Zude; Hu, Yefa; Zhou, Jianhua

    2008-12-01

    Magnetic bearings are typical electromechanical systems of high performance. Current-displacement-force relationship between stator and rotor is an important research topic of magnetic bearings. The critical issue is to realize magnetic force online dynamic measurement. This paper presents a novel method on magnetic force measurement of magnetic bearings with optical fibre bragg gratings (FBG), which realizes a non-contact and online force measurement with simple configuration, good noise immunity even when the rotor is running. A novel micro force transducer is designed and fabricated, which is mounted within the stator magnetic pole. To obtain current-displacement-force relationship a FBG based magnetic force measurement test rig is setup to simulate magnetic bearing working states as the stator coils currents, air gap between stator and rotor, rotor speed is adjustable. Magnetic force is measured under three classifications of test conditions and test results are presented. The measurement data show good consistency with the theory analysis and calculation, which means that the FBG based magnetic force measurement is available and of good accuracy.

  9. Direct and rapid discrimination of aflatoxigenic strains based on fibre-optic room temperature phosphorescence detection.

    PubMed

    Rojas-Durán, T; Sánchez-Barragán, I; Costa-Fernández, J M; Sanz-Medel, A

    2007-04-01

    An innovative analytical methodology for the rapid identification of aflatoxin-producing moulds belonging to Aspergillus genus is presented here. The procedure is based on the measurement, using a fibre-optic luminometer, of the room temperature phosphorescence (RTP) emitted by aflatoxins produced by isolated aflatoxigenic strains, cultured in a special culture medium consisting of malt extract agar modified with beta-cyclodextrin and sodium deoxycholate for RTP induction. Unequivocal detection of the presence of aflatoxins in the culture medium is achieved within the first 36 h of incubation at 32 degrees C, owing to the selectivity and sensitivity of the RTP emission, as compared with the minimum of 72 h needed using a conventional microbiological method. In a first step, the capability of aflatoxin standard solutions to emit analytically useful RTP was evaluated. In this line all experimental conditions were optimised for in vitro induction of RTP from aflatoxins. In a second step, a simple analytical test was developed and it has been evaluated for the rapid identification of aflatoxigenic strains, as a discriminating assay from non-aflatoxigenic strains based on the measurement of experimental RTP emission observed. Confirmation of aflatoxin production on the studied culture plates was accomplished by means of an HPLC/fluorescence reference method.

  10. Construction and laboratory test of a fibre optic sensor for rotational events recording

    NASA Astrophysics Data System (ADS)

    Kurzych, Anna; Krajewski, Zbigniew; Kowalski, Jerzy K.; Jaroszewicz, Leszek R.

    2016-05-01

    We present a novel and technically advanced system - Fibre-Optic System for Rotational Events & Phenomena Monitoring (FOSREM). It has been designed in order to register and monitor rotational events in seismological observatories, engineering constructions, mines and even on glaciers and in their vicinity. Its wide application field is a result of unique parameters and electronic solutions which give an opportunity to measure a component of rotation in the wide range of a signal amplitude from 10-8 rad/s to 10 rad/s, as well as a frequency from 0 Hz to the upper frequency between 2.56 Hz to 328.12 Hz. Moreover, the numerical analysis and simulations indicate that it keeps the theoretical sensitivity equal to 2·10-8 rad/s/Hz1/2. FOSREM is equipped with an advanced communication module which gives the possibility for a remote detection parameter control, as well as the recorded data receiving. It enables the sensor to assemble in any chosen place. In the paper we present laboratory investigations and tests which confirm the wide application field and practical aspects of FOSREM.

  11. Fibre optic chemical sensor based on graphene oxide-coated long period grating

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Cai, Qi; Sun, Zhongyuan; Xu, Baojian; Zhao, Jianlong; Zhang, Lin; Chen, Xianfeng

    2016-05-01

    In this work, a graphene oxide-coated long period fibre grating (GO-LPG) is proposed for chemical sensing application. Graphene oxide (GO) has been deposited on the surface of long period grating to form a sensing layer which significantly enhances the interaction between LPG propagating light and the surrounding-medium. The sensing mechanism of GO-LPG relies on the change of grating resonance intensity against surrounding-medium refractive index (SRI). The proposed GO-LPG has been used to measure the concentrations of sugar aqueous solutions. The refractive index sensitivities with 99.5 dB/RIU in low refractive index region (1.33-1.35) and 320.6 dB/RIU in high index region (1.42-1.44) have been achieved, showing an enhancement by a factor of 3.2 and 6.8 for low and high index regions, respectively. The proposed GO-LPG can be further extended to the development of optical biochemical sensor with advantages of high sensitivity, real-time and label-free sensing.

  12. Use of fibre-optic endoscopes in studies of gastric digestion in carnivorous vertebrates.

    PubMed

    Jackson, S; Cooper, J

    1988-01-01

    1. Two methods of assessing gastric digestion rates of three prey types fed to Sooty albatrosses Phoebetria fusca were compared: removal of stomach contents, using a water-flushing stomach pump (a technique used commonly in diet studies), and inspection using a fibre-optic gastroscope (a previously unused technique). 2. The stomach pump yielded quantitative information, but proved stressful and resulted in incomplete recovery of meals ingested 3-6 hr before pumping. Gastric morphology of the animals studied and digestion state of their stomach contents may influence the effectiveness of this technique. 3. Inspection using the gastroscope yielded qualitative information only but permitted serial inspection of the same animal, and was less stressful than the stomach pump. Times for total evacuation of the stomach were 6-12 hr less when estimated using the gastroscope than when using the stomach pump. 4. The specifications of endoscopes relevant to their use by biologists are given. 5. Previous non-medical biological uses of endoscopes are given. Potential uses include underwater observations, sampling of digestive juices and stomach linings for enzyme analyses, observations of ingested prey, and assessment of parasite infestation.

  13. Fibre optic confocal imaging (FOCI) for subsurface microscopy of the colon in vivo.

    PubMed Central

    Delaney, P M; King, R G; Lambert, J R; Harris, M R

    1994-01-01

    Fibre optic confocal imaging (FOCI) is a new type of microscopy which has been recently developed (Delaney et al. 1993). In contrast to conventional light microscopy, FOCI and other confocal techniques allow clear imaging of subsurface structures within translucent objects. However, unlike conventional confocal microscopes which are bulky (because of a need for accurate alignment of large components) FOCI allows the imaging end to be miniaturised and relatively mobile. FOCI is thus particularly suited for clear subsurface imaging of structures within living animals or subjects. The aim of the present study was to assess the suitability of using FOCI for imaging of subsurface structures within the colon, both in vitro (human and rat biopsies) and in vivo (in rats). Images were obtained in fluorescence mode (excitation 488 nm, detection above 515 nm) following topical application of fluorescein. By this technique the glandular structure of the colon was imaged. FOCI is thus suitable for subsurface imaging of the colon in vivo. Images Fig. 2 Fig. 3 PMID:8157487

  14. Retinal Fibre Layer Thickness Measurement in Normal Paediatric Population in Sweden Using Optical Coherence Tomography

    PubMed Central

    Ntoula, Evangelia

    2016-01-01

    Purpose. To evaluate the correlation between peripapillary retinal nerve fibre layer (RNFL) thickness and both age and refraction error in healthy children using optical coherence tomography (OCT). Patients and Methods. 80 healthy children with a mean age of 9.1 years (range 3.8 to 16.7 years) undergoing routine ocular examination at the orthoptic section of the Ophthalmology Department were recruited for this cross-sectional study. After applying cycloplegia, the peripapillary RNFL thickness was measured in both eyes using the Topcon 3D OCT 2000 device. Results. 138 eyes were included in the analysis. The average refractive error (SE) was +1.7 D (range −5.25 to +7.25 D). The mean total RNFL thickness was 105 μm ± 10.3, the mean superior RNFL thickness was 112.7 μm ± 16.5, and the mean inferior RNFL thickness was 132.6 μm ± 18.3. We found no statistically significant effect of age on RNFL thickness (ANOVA, f = 0.33, p = 0.56). Refraction was proven to have a statistically significant effect (ANOVA, f = 67.1, p < 0.05) in RNFL measurements. Conclusions. Data obtained from this study may assist in establishing a normative database for a paediatric population. Refraction error should be taken into consideration due to its statistically significant correlation with RNFL thickness. PMID:27980862

  15. Performance analysis of polymer optical fibre based Fabry-Perot sensor formed by two uniform Bragg gratings

    NASA Astrophysics Data System (ADS)

    Pospori, A.; Webb, D. J.

    2016-04-01

    The stress sensitivity of polymer optical fibre (POF) based Fabry-Perot sensors formed by two uniform Bragg gratings with finite dimensions is investigated. POF has received high interest in recent years due to its different material properties compared to its silica counterpart. Biocompatibility, a higher failure strain and the highly elastic nature of POF are some of the main advantages. The much lower Young's modulus of polymer materials compared to silica offers enhanced stress sensitivity to POF based sensors which renders them great candidates for acoustic wave receivers and any kind of force detection. The main drawback in POF technology is perhaps the high fibre loss. In a lossless fibre the sensitivity of an interferometer is proportional to its cavity length. However, the presence of the attenuation along the optical path can significantly reduce the finesse of the Fabry-Perot interferometer and it can negatively affect its sensitivity at some point. The reflectivity of the two gratings used to form the interferometer can be also reduced as the fibre loss increases. In this work, a numerical model is developed to study the performance of POF based Fabry-Perot sensors formed by two uniform Bragg gratings with finite dimensions. Various optical and physical properties are considered such as grating physical length, grating effective length which indicates the point where the light is effectively reflected, refractive index modulation of the grating, cavity length of the interferometer, attenuation and operating wavelength. Using this model, we are able to identify the regimes in which the PMMA based sensor offer enhanced stress sensitivity compared to silica based one.

  16. Spectroscopy of Metamaterials from Infrared to Optical Frequencies

    DTIC Science & Technology

    2006-03-01

    negative permeability,” Phys. Rev. Lett. 94, 37402 (2005). 14. F . Wooten , Optical Properties of Solids (Academic, 1972). 15. For example, see M. Born...for materials with differ- ent symmetry properties of the constitutive relations. The terms and are called the magneto- optical permittivi- ties...Spectroscopy of metamaterials from infrared to optical frequencies Willie J. Padilla Materials Science and Technology Division, Center for Integrated

  17. Strain and ground-motion monitoring at magmatic areas: ultra-long and ultra-dense networks using fibre optic sensing systems

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Reinsch, Thomas; Henninges, Jan; Blanck, Hanna; Ryberg, Trond

    2016-04-01

    The fibre optic distributed acoustic sensing technology (DAS) is a "new" sensing system for exploring earth crustal elastic properties and monitoring both strain and seismic waves with unprecedented acquisition characteristics. The DAS technology principle lies in sending successive and coherent pulses of light in an optical fibre and measuring the back-scattered light issued from elastic scattering at random defaults within the fibre. The read-out unit includes an interferometer, which measures light interference patterns continuously. The changes are related to the distance between such defaults and therefore the strain within the fibre can be detected. Along an optical fibre, DAS can be used to acquire acoustic signals with a high spatial (every meter over kilometres) and high temporal resolution (thousand of Hz). Fibre optic technologies were, up to now, mainly applied in perimeter surveillance applications and pipeline monitoring and in boreholes. Previous experiments in boreholes have shown that the DAS technology is well suited for probing subsurface elastic properties, showing new ways for cheaper VSP investigations of the Earth crust. Here, we demonstrate that a cable deployed at ground surface can also help in exploring subsurface properties at crustal scale and monitor earthquake activity in a volcanic environment. Within the framework of the EC funded project IMAGE, we observed a >15 km-long fibre optic cable at the surface connected to a DAS read-out unit. Acoustic data was acquired continuously for 9 days. Hammer shots were performed along the surface cable in order to locate individual acoustic traces and calibrate the spatial distribution of the acoustic information. During the monitoring period both signals from on- and offshore explosive sources and natural seismic events could be recorded. We compare the fibre optic data to conventional seismic records from a dense seismic network deployed on Reykjanes. We show that we can probe and monitor earth

  18. Multiphoton, optical fiber-based fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Bereś-Pawlik, ElŻbieta; Stawska, Hanna; Popenda, Maciej; Pajewski, Łukasz; Malinowska, Natalia; Hossa, Robert

    2016-12-01

    This paper presents investigation of normal and cancerous tissue by the means of one and two photon fluorescence spectroscopy. A comparison those methods has been conducted, allowing for eventual determination of granting the best possible diagnostic results.

  19. Nonlinear optical spectroscopy of chiral molecules.

    PubMed

    Fischer, Peer; Hache, François

    2005-10-01

    We review nonlinear optical processes that are specific to chiral molecules in solution and on surfaces. In contrast to conventional natural optical activity phenomena, which depend linearly on the electric field strength of the optical field, we discuss how optical processes that are nonlinear (quadratic, cubic, and quartic) functions of the electromagnetic field strength may probe optically active centers and chiral vibrations. We show that nonlinear techniques open entirely new ways of exploring chirality in chemical and biological systems: The cubic processes give rise to nonlinear circular dichroism and nonlinear optical rotation and make it possible to observe dynamic chiral processes at ultrafast time scales. The quadratic second-harmonic and sum-frequency-generation phenomena and the quartic processes may arise entirely in the electric-dipole approximation and do not require the use of circularly polarized light to detect chirality. They provide surface selectivity and their observables can be relatively much larger than in linear optical activity. These processes also give rise to the generation of light at a new color, and in liquids this frequency conversion only occurs if the solution is optically active. We survey recent chiral nonlinear optical experiments and give examples of their application to problems of biophysical interest.

  20. Reconfigurable high-speed optical fibre networks: Optical wavelength conversion and switching using VCSELs to eliminate channel collisions

    NASA Astrophysics Data System (ADS)

    Boiyo, Duncan Kiboi; Chabata, T. V.; Kipnoo, E. K. Rotich; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-01-01

    We experimentally provide an alternative solution to channel collisions through up-wavelength conversion and switching by using vertical cavity surface-emitting lasers (VCSELs). This has been achieved by utilizing purely optical wavelength conversion on VCSELs at the low attenuation, 1550 nm transmission window. The corresponding transmission and bit error-rate (BER) performance evaluation is also presented. In this paper, two 1550 nm VCSELs with 50-150 GHz channel spacing are modulated with a 10 Gb/s NRZ PRBS 27-1 data and their interferences investigated. A channel interference penalty range of 0.15-1.63 dB is incurred for 150-50 GHz channel spacing without transmission. To avoid channel collisions and to minimize high interference penalties, the transmitting VCSEL with data is injected into the side-mode of a slave VCSEL to obtain a new up converted wavelength. A 16 dB extinction ratio of the incoming wavelength is achieved when a 15 dBm transmitting beam is injected into the side-mode of a -4.5 dBm slave VCSEL. At 8.5 Gb/s, a 1.1 dB conversion and a 0.5 dB transmission penalties are realized when the converted wavelength is transmitted over a 24.7 km G.655 fibre. This work offers a low-cost, effective wavelength conversion and channel switching to reduce channel collision probability by reconfiguring channels at the node of networks.

  1. A modified method for determining the focal ratio degradation and length properties of optical fibres in astronomy

    NASA Astrophysics Data System (ADS)

    Yan, Yunxiang; Wang, Gang; Sun, Weimin; Luo, A.-Li; Ma, Zhenyu; Li, Jian; Wang, Shuqing

    2017-04-01

    Focal ratio degradation (FRD) is a major contributor to throughput and light loss in a fibre spectroscopic telescope system. We combine the guided mode theory in geometric optics and a well-known model, the power distribution model (PDM), to predict and explain the FRD dependence properties. We present a robust method by modifying the energy distribution method with f-intercept to control the input condition. This method provides a way to determine the proper position of the fibre end on the focal plane to improve energy utilization and FRD performance, which lifts the relative throughput up to 95 per cent with variation of output focal ratio less than 2 per cent. This method can also help to optimize the arrangement of the position of focal-plane plate to enhance the coupling efficiency in a telescope. To investigate length properties, we modified the PDM by introducing a new parameter, the focal distance f, into the original model to make it available for a multiposition measurement system. The results show that the modified model is robust and feasible for measuring the key parameter d0 to simulate the transmission characteristics. The output focal ratio in the experiment does not follow the prediction trend but shows an interesting phenomenon: the output focal ratio increases first to the peak, then decreases and remains stable finally with increasing fibre length longer than 15 m. This provides a reference for choosing the appropriate length of fibre to improve the FRD performance for the design of the fibre system in a telescope.

  2. Hybrid UWB and WiMAX radio-over-multi-mode fibre for in-building optical networks

    NASA Astrophysics Data System (ADS)

    Perez, J.; Llorente, R.

    2014-01-01

    In this paper the use of hybrid WiMedia-defined ultra-wideband (UWB) and IEEE 802.16d WiMAX radio-over-fibre is proposed and experimentally demonstrated for multi-mode based in-building optical networks with the advantage of great immunity to optical transmission impairments. In the proposed approach, spectral coexistence of both signals must be achieved with negligible mutual interference. The experimental study performed addressed an indoor configuration with 50 μm multi-mode fibres (MMF) and 850 nm vertical-cavity surface-emitting laser (VCSEL) transmitters. The results indicate that the impact of the wireless convergence in radio-over-multi-mode fibre (RoMMF) is significant for UWB transmissions, mainly due to MMF dispersion and electrooptical (EO) devices with limited bandwidth. On the other hand, WiMAX transmission is feasible for a 300 m MMF and 30 m wireless link in the presence of UWB, with -31 dBm WiMAX EVM.

  3. Analysis of intrinsic coupling loss in multi-step index optical fibres.

    PubMed

    Aldabaldetreku, Gotzon; Durana, Gaizka; Zubia, Joseba; Arrue, Jon; Jiménez, Felipe; Mateo, Javier

    2005-05-02

    The main goal of the present paper is to provide a comprehensive analysis of the intrinsic coupling loss for multi-step index (MSI) fibres and compare it with those obtained for step- and graded-index fibres. We investigate the effects of tolerances to each waveguide parameter typical in standard manufacturing processes by carrying out several simulations using the ray-tracing method. The results obtained will serve us to identify the most critical waveguide variations to which fibre manufactures will have to pay closer attention to achieve lower coupling losses.

  4. In vivo study for the discrimination of cancerous and normal skin using fibre probe-based Raman spectroscopy.

    PubMed

    Schleusener, Johannes; Gluszczynska, Patrycja; Reble, Carina; Gersonde, Ingo; Helfmann, Jürgen; Fluhr, Joachim W; Lademann, Jürgen; Röwert-Huber, Joachim; Patzelt, Alexa; Meinke, Martina C

    2015-10-01

    Raman spectroscopy has proved its capability as an objective, non-invasive tool for the detection of various melanoma and non-melanoma skin cancers (NMSC) in a number of studies. Most publications are based on a Raman microspectroscopic ex vivo approach. In this in vivo clinical evaluation, we apply Raman spectroscopy using a fibre-coupled probe that allows access to a multitude of affected body sites. The probe design is optimized for epithelial sensitivity, whereby a large part of the detected signal originates from within the epidermal layer's depth down to the basal membrane where early stages of skin cancer develop. Data analysis was performed on measurements of 104 subjects scheduled for excision of lesions suspected of being malignant melanoma (MM) (n = 36), basal cell carcinoma (BCC) (n = 39) and squamous cell carcinoma (SCC) (n = 29). NMSC were discriminated from normal skin with a balanced accuracy of 73% (BCC) and 85% (SCC) using partial least squares discriminant analysis (PLS-DA). Discriminating MM and pigmented nevi (PN) resulted in a balanced accuracy of 91%. These results lie within the range of comparable in vivo studies and the accuracies achieved by trained dermatologists using dermoscopy. Discrimination proved to be unsuccessful between cancerous lesions and suspicious lesions that had been histopathologically verified as benign by dermoscopy.

  5. Photoacoustic endoscopy probe using a coherent fibre-optic bundle and Fabry-Pérot ultrasound sensor (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ansari, Rehman; Beard, Paul C.; Zhang, Edward Z.; Desjardins, Adrien E.

    2016-03-01

    There is considerable interest in the development of photoacoustic endoscopy (PAE) probes for the clinical assessment of pathologies in the gastrointestinal (GI) tract, guiding minimally invasive laparoscopic surgeries and applications in foetal medicine. However, most previous PAE probes integrate mechanical scanners and piezoelectric transducers at the distal end which can be technically complex, expensive and pose challenges in achieving the necessary level of miniaturisation. We present two novel all-optical forward-viewing endoscopic probes operating in widefield tomography mode that have the potential to overcome these limitations. In one configuration, the probe comprises a transparent 40 MHz Fabry-Pérot ultrasound sensor deposited at the tip of a rigid, 3 mm diameter coherent fibre-optic bundle. In this way, the distal end of coherent fibre bundle acts as a 2D array of wideband ultrasound detectors. In another configuration, an optical relay is used between the distal end face of flexible fibre bundle and the Fabry-Pérot sensor to enlarge the lateral field of view to 6 mm x 6 mm. In both configurations, the pulsed excitation laser beam is full-field coupled into the fibre bundle at the proximal end for uniform backward-mode illumination of the tissue at the probe tip. In order to record the photoacoustic waves arriving at the probe tip, the proximal end of the fibre bundle is optically scanned in 2D with a CW wavelength-tunable interrogation laser beam thereby interrogating different spatial points on the sensor. A time-reversal image reconstruction algorithm was used to reconstruct a 3D image from the detected signals. The 3D field of view of the flexible PAE probe is 6 mm x 6 mm x 6 mm and the axial and lateral spatial resolution is 30 µm and 90 µm, respectively. 3D imaging capability is demonstrated using tissue phantoms, ex vivo tissues and in vivo. To the best of our knowledge, this is the first forward-viewing implementation of a photoacoustic

  6. Fibre optic sensors for load-displacement measurements and comparisons to piezo sensor based electromechanical admittance signatures

    NASA Astrophysics Data System (ADS)

    Maheshwari, Muneesh; Annamdas, Venu Gopal Madhav; Pang, John H. L.; Tjin, Swee Chuan; Asundi, Anand

    2015-04-01

    Structural health monitoring techniques using smart materials are on rise to meet the ever ending demand due to increased construction and manufacturing activities worldwide. The civil-structural components such as slabs, beams and columns and aero-components such as wings are constantly subjected to some or the other forms of external loading. This article thus focuses on condition monitoring due to loading/unloading cycle for a simply supported aluminum beam using multiple smart materials. On the specimen, fibre optic polarimetric sensor (FOPS) and fibre Bragg grating (FBG) sensors were glued. Piezoelectric wafer active sensor (PWAS) was also bonded at the centre of the specimen. FOPS and FBG provided the global and local strain measurements respectively whereas, PWAS predicted boundary condition variations by electromechanical admittance signatures. Thus these multiple smart materials together successfully assessed the condition of structure for loading and unloading tests.

  7. Optical Frequency Synthesizer for Precision Spectroscopy

    NASA Astrophysics Data System (ADS)

    Holzwarth, R.; Udem, Th.; Hänsch, T. W.; Knight, J. C.; Wadsworth, W. J.; Russell, P. St. J.

    2000-09-01

    We have used the frequency comb generated by a femtosecond mode-locked laser and broadened to more than an optical octave in a photonic crystal fiber to realize a frequency chain that links a 10 MHz radio frequency reference phase-coherently in one step to the optical region. By comparison with a similar frequency chain we set an upper limit for the uncertainty of this new approach to 5.1×10-16. This opens the door for measurement and synthesis of virtually any optical frequency and is ready to revolutionize frequency metrology.

  8. Application of a Fibre Optic Distributed Acoustic Sensor (DAS) for Shallow Seismic Investigations of a Fractured Dolostone Aquifer in Guelph, Ontario.

    NASA Astrophysics Data System (ADS)

    Munn, J. D.; Parker, B. L.; Coleman, T. I.; Mondanos, M.; Chalari, A.

    2014-12-01

    Understanding groundwater flow and contaminant transport in fractured bedrock aquifers requires detailed characterization of the discrete features that control flow, as well as the properties of the rock matrix. This requires multiple, high-resolution, depth discrete datasets that provide different, but complementary information. Distributed fibre optic sensing is a relatively new technology used to continuously monitor properties along the entire length of an optical fibre. Technological advances over the past few years have brought the sensitivity and spatial resolution to the point where shallow (<200m) borehole applications are practicable. Recent studies using fibre optic distributed temperature sensors (DTS) have shown excellent application of DTS for characterizing groundwater flow in both continuously sealed and open boreholes. This presentation highlights the results of a field trial at the Bedrock Aquifer Research Station on the University of Guelph campus (Ontario, Canada) where a single fibre optic cable was interrogated by both a DTS (Ultima-DTS) and a Distributed Acoustic Sensor (iDAS). DAS is a relatively recent development that allows an optical fibre to be used as a receiver for seismic imaging. These seismic images are produced by sending an optical pulse down the fibre and analyzing the effects of seismic waves on the propagating light. Numerous vertical seismic profiles were collected and the effects of different fibre optic cable structures and coupling techniques were examined. The seismic profiles will help delineate structural features and lithological contacts away from the borehole wall, and will assist in correlating other geophysical, hydraulic, or geological logs collected in the boreholes across the site. Preliminary results show promise for shallow seismic imaging and continued field trials will allow refinement of the technique.

  9. Use of NIRS technology with a remote reflectance fibre-optic probe for predicting mineral composition (Ca, K, P, Fe, Mn, Na, Zn), protein and moisture in alfalfa.

    PubMed

    González-Martín, I; Hernández-Hierro, J M; González-Cabrera, J M

    2007-03-01

    In the present work we study the use of near-infrared spectroscopy (NIRS) technology together with a remote reflectance fibre-optic probe for the analysis of major (Ca, K, P) and minor (Fe, Mn, Na, Zn) elements, protein and moisture in alfalfa. The method allows immediate analysis of the alfalfa without prior sample treatment or destruction through direct application of the fibre-optic probe on ground samples in the case of the mineral composition and on-ground and compacted (baled) samples in the case of protein and humidity. The regression method employed was modified partial least-squares (MPLS). The calibration results obtained using samples of alfalfa allowed the determination of Ca, K, P, Fe, Mn, Na and Zn, with a standard error of prediction (SEP(C)) and a correlation coefficient (RSQ) expressed in mg/kg of alfalfa of 1.37x10(3) and 0.878 for Ca, 1.10x10(3) and 0.899 for K, 227 and 0.909 for P, 103 and 0.948 for Fe, 5.1 and 0.843 for Mn, 86.2 and 0.979 for Na, and of 1.9 and 0.853 for Zn, respectively. The SEP(C) and RSQ values (in %) for protein and moisture in ground samples were 0.548 and 0.871 and 0.150 and 0.981, respectively; while in the compacted samples they were 0.564 and 0.826 and 0.262 and 0.935, respectively. The prediction capacity of the model and the robustness of the method were checked in the external validation in alfalfa samples of unknown composition, and the results confirmed the suitability of the method.

  10. Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology

    NASA Technical Reports Server (NTRS)

    Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh

    1998-01-01

    This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.

  11. A fibre-optic temperature sensor based on the deposition of a thermochromic material on an adiabatic taper

    NASA Astrophysics Data System (ADS)

    Díaz-Herrera, N.; Navarrete, M. C.; Esteban, O.; González-Cano, A.

    2004-02-01

    A fibre-optic sensor has been developed for the measurement of temperature, especially of liquids. The device is conceived as part of an all-optical CTD probe for the control of the physical parameters of a marine medium. The dependence on temperature of the optical properties (specifically, absorbance) of a thermochromic material, namely lophine (2,4,5-triphenylimidazole), is the basis of the sensor. The sensor presents some significant differences with respect to other similar sensors proposed in the literature: the use of adiabatic, long, tapered optical fibres with adjustable geometric parameters; the use of LED illumination in the 800 nm range; improvements in the deposition technique, etc. The sensors show a linear behaviour over the desired temperature range, and their sensitivity is high. Also, the dependence of the response of the sensor with variations of the geometry of the tapers is discussed. Specifically, we have performed measurements with different diameters of the taper waist, and we show the dependence of the slope of the response curve with that parameter.

  12. Fibre optic spectrophotometry for the in vitro evaluation of ultraviolet radiation (UVR) spectral transmittance of rabbit corneas.

    PubMed

    Walsh, J E; Bergmanson, J P G; Koehler, L V; Doughty, M J; Fleming, D P; Harmey, J H

    2008-03-01

    A fibre optic spectrophotometer front-end system for measuring corneas to overcome shortcomings associated with existing instruments was tested. The system allowed prompt measurement postmortem, minimizing beam pathlength to reduce the effects of scatter and unwanted refraction and eliminated optical interfaces and cuvette media. Rabbit corneas were excised immediately postmortem and placed on a detecting fibre optic coupled to an Ocean Optics spectrophotometer and illuminated by a deuterium-halogen source. The compact instrument with its small beam size allowed tissue profiling at test points across the corneal surface and efficient interchange for comparison of different tissues. This simplified system operation allowed rapid tissue altering to study induced changes on transmittance. The corneal transmittance data showed a consistent sharp cut-off at 320 nm in the ultraviolet radiation (UVR) spectrum, which decayed rapidly from postmortem swelling. Inter- and intra-corneal consistency was demonstrated by comparing data from different regions of the same cornea and those from opposite eyes. Changes to the spectra, particularly in the UVB below 300 nm, were evident when the corneal epithelium was removed, indicating that this layer is not the only corneal UVR filter. The new system reduced much of the variability associated with previous methods, as it rapidly measured corneal transmittance postmortem. Data are in broad agreement with published transmittance curves. The removal of the corneal epithelium revealed a substantial stromal contribution to the overall corneal UVR absorption, suggesting that corneas with pathologically or iatrogenically thinned stromas are less effective UVR blockers.

  13. Hyper-Ramsey spectroscopy of optical clock transitions

    SciTech Connect

    Yudin, V. I.; Taichenachev, A. V.; Oates, C. W.; Barber, Z. W.; Lemke, N. D.; Ludlow, A. D.; Sterr, U.; Lisdat, Ch.; Riehle, F.

    2010-07-15

    We present nonstandard optical Ramsey schemes that use pulses individually tailored in duration, phase, and frequency to cancel spurious frequency shifts related to the excitation itself. In particular, the field shifts and their uncertainties can be radically suppressed (by two to four orders of magnitude) in comparison with the usual Ramsey method (using two equal pulses) as well as with single-pulse Rabi spectroscopy. Atom interferometers and optical clocks based on two-photon transitions, heavily forbidden transitions, or magnetically induced spectroscopy could significantly benefit from this method. In the latter case, these frequency shifts can be suppressed considerably below a fractional level of 10{sup -17}. Moreover, our approach opens the door for high-precision optical clocks based on direct frequency comb spectroscopy.

  14. GENERAL: Direct implementation of a scalable non-local multi-qubit controlled phase gate via optical fibres and adiabatic passage

    NASA Astrophysics Data System (ADS)

    Tang, Yao-Xiang; Lin, Xiu-Min; Lin, Gong-Wei; Chen, Li-Bo; Huang, Xiu-Hua

    2008-12-01

    This paper presents a direct implementation scheme of the non-local multi-qubit controlled phase gate by using optical fibres and adiabatic passage. The smaller operation number for implementing the multi-qubit controlled phase gate and needlessness for addressing individually save physical resource and lower the difficulties of experiment. Meanwhile, the scheme is immune from some decoherence effects such as the atomic spontaneous emission and fibre loss. In principle, it is scalable.

  15. A flowing liquid test system for assessing the linearity and time-response of rapid fibre optic oxygen partial pressure sensors.

    PubMed

    Chen, R; Hahn, C E W; Farmery, A D

    2012-08-15

    The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood.

  16. Multiplexed spectroscopy with holographic optical tweezers

    NASA Astrophysics Data System (ADS)

    Cibula, Matthew A.; McIntyre, David H.

    2014-09-01

    We have developed a multiplexed holographic optical tweezers system with an imaging spectrometer to manipulate multiple optically trapped nanosensors and detect multiple fluorescence spectra. The system uses a spatial light modulator (SLM) to control the positions of infrared optical traps in the sample so that multiple nanosensors can be positioned into regions of interest. Spectra of multiple nanosensors are detected simultaneously with the application of an imaging spectrometer. Nanosensors are capable of detecting changes in their environment such as pH, ion concentration, temperature, and voltage by monitoring changes in the nanosensors' emitted fluorescence spectra. We use streptavidin labeled quantum dots bound to the surface of biotin labeled polystyrene microspheres to measure temperature changes by observing a corresponding shift in the wavelength of the spectral peak. The fluorescence is excited at 532 nm with a wide field source.

  17. Glow Discharge Optical Spectroscopy of Ion Implanted Gallium Arsenide.

    DTIC Science & Technology

    1979-12-01

    a depth profile. Obj ect ives Work on this thesis is a part of the continuing research by thca Air Force Avionics Laboratory. Three specific objec...AD- A *" 413 AIR FORCE INST OF YENf WRIGNT-PATTIRSO APB ON /I GLOV OICHARK OPTICAL SPECTROSCOPY OK SON ZNPLANTID "eLL Up AN-fTC (U) MC 79 S PUWrWTI...8217S THESIS,_ (,/AFIT/GE/EE/79D-2 ~ ~ a t u Approved for public release; distribution unlimited. AFIT/GE/EE/79D-29 GLOW DISCHARGE OPTICAL SPECTROSCOPY

  18. Optical fiber sensing based on reflection laser spectroscopy.

    PubMed

    Gagliardi, Gianluca; Salza, Mario; Ferraro, Pietro; Chehura, Edmond; Tatam, Ralph P; Gangopadhyay, Tarun K; Ballard, Nicholas; Paz-Soldan, Daniel; Barnes, Jack A; Loock, Hans-Peter; Lam, Timothy T-Y; Chow, Jong H; De Natale, Paolo

    2010-01-01

    An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs) and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

  19. Optical fiber spectroscopy for measuring quality indicators of lubricant oils

    NASA Astrophysics Data System (ADS)

    Grazia Mignani, Anna; Ciaccheri, Leonardo; Díaz-Herrera, Natalia; Azelio Mencaglia, Andrea; Ottevaere, Heidi; Thienpont, Hugo; Francalanci, Stefano; Paccagnini, Alessandro; Pavone, Francesco S.

    2009-03-01

    A collection of lubricant oils from different types of turbines, which were characterized by different degrees of degradation, were analyzed by means of wide-range absorption spectroscopy, fluorescence spectroscopy and scattering measurements. All these measurements were performed by means of optical fiber-based instrumentation that made use of compact lamps or LED illumination, and miniaturized spectrometers for detection. Multivariate data analysis was used to successfully correlate the wide optical spectral signature of lubricant oils with some of the most important parameters indicating the degree of oil degradation, such as TAN, JOAP index, water content and phosphorus.

  20. Optical fiber spectroscopy for measuring quality indicators of lubricant oils

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Díaz-Herrera, N.; Mencaglia, A. A.; Ottevaere, H.; Thienpont, H.; Francalanci, S.; Paccagnini, A.; Pavone, F.

    2008-04-01

    A collection of lubricant oils from different types of turbines, which were characterized by different degrees of degradation, were analyzed by means of UV-VIS-NIR absorption spectroscopy, fluorescence spectroscopy and scattering measurements. All these measurements were performed by means of optical fiber-based instrumentation that made use of LEDs or compact lamps for illumination and miniaturized spectrometers for detection. Multivariate data analysis was used to successfully correlate the wide optical spectral signature of lubricant oils to some of the most important parameters for indicating the degree of degradation of the oil, such as TAN, JOAP-index, water content, and phosphorus.

  1. Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain.

    PubMed

    Ivask, Angela; Green, Tal; Polyak, Boris; Mor, Amit; Kahru, Anne; Virta, Marko; Marks, Robert

    2007-02-15

    Fibre-optic biosensors for Hg and As were developed by attaching alginate-immobilised recombinant luminescent Hg- and As-sensor bacteria onto optical fibres. The optimised biosensors (consisting of seven layers of fibre-attached bacteria pre-grown till mid-logarithmic growth phase) enabled quantification of environmentally relevant concentrations of the target analytes: 2.6 microg l-1 of Hg(II) and 141 microg l-1 of As(V) or 18 microg l-1 of As(III). The highest viability and sensitivity for target analyte was obtained when fibre tips were stored in CaCl2 solution at -80 degrees C. Applicability of the fibre-optic biosensors in parallel to the respective non-immobilised sensors was assessed on 10 natural soil and sediment samples from Aznalcollar mining area (Spain). On the average 0.2% of the total Hg and 0.87% of the total As proved bioavailable to fibre-attached bacteria. Interestingly, about 20-fold more Hg and 4-fold more As was available to non-immobilised sensor bacteria indicating the importance of direct cell contact (possible only for non-immobilised cells) for enhanced bioavailability of these metals in solid samples.

  2. Tunable error-free optical frequency conversion of a 4ps optical short pulse over 25 nm by four-wave mixing in a polarisation-maintaining optical fibre

    NASA Astrophysics Data System (ADS)

    Morioka, T.; Kawanishi, S.; Saruwatari, M.

    1994-05-01

    Error-free, tunable optical frequency conversion of a transform-limited 4.0 ps optical pulse signalis demonstrated at 6.3 Gbit/s using four-wave mixing in a polarization-maintaining optical fibre. The process generates 4.0-4.6 ps pulses over a 25nm range with time-bandwidth products of 0.31-0.43 and conversion power penalties of less than 1.5 dB.

  3. Quantitative Optical Spectroscopy for Tissue Diagnosis

    NASA Astrophysics Data System (ADS)

    Richards-Kortum, Rebecca; Sevick-Muraca, Eva

    1996-10-01

    The interaction of light within tissue has been used to recognize disease since the mid-1800s. The recent developments of small light sources, detectors, and fiber optic probes provide opportunities to quantitatively measure these interactions, which yield information for diagnosis at the biochemical, structural, or (patho)physiological level within intact tissues. However, because of the strong scattering properties of tissues, the reemitted optical signal is often influenced by changes in biochemistry (as detected by these spectroscopic approaches) and by physiological and pathophysiological changes in tissue scattering. One challenge of biomedical optics is to uncouple the signals influenced by biochemistry, which themselves provide specificity for identifying diseased states, from those influenced by tissue scattering, which are typically unspecific to a pathology. In this review, we describe optical interactions pursued for biomedical applications (fluorescence, fluorescence lifetime, phosphorescence, and Raman from cells, cultures, and tissues) and then provide a descriptive framework for light interaction based upon tissue absorption and scattering properties. Finally, we review important endogenous and exogenous biological chromophores and describe current work to employ these signals for detection and diagnosis of disease.

  4. On-line monitoring of multi-component strain development in a tufting needle using optical fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Chehura, Edmon; Dell'Anno, Giuseppe; Huet, Tristan; Staines, Stephen; James, Stephen W.; Partridge, Ivana K.; Tatam, Ralph P.

    2014-07-01

    Dynamic loadings induced on a tufting needle during the tufting of dry carbon fibre preform via a commercial robot-controlled tufting head were investigated in situ and in real-time using optical fibre Bragg grating (FBG) sensors bonded to the needle shaft. The sensors were configured such that the axial strain and bending moments experienced by the needle could be measured. A study of the influence of thread and thread type on the strain imparted to the needle revealed axial strain profiles which had equivalent trends but different magnitudes. The mean of the maximum axial compression strains measured during the tufting of a 4-ply quasi-isotropic carbon fibre dry preform were - 499 ± 79 μɛ, - 463 ± 51 μɛ and - 431 ± 59 μɛ for a needle without thread, with metal wire and with Kevlar® thread, respectively. The needle similarly exhibited bending moments of different magnitude when the different needle feeding configurations were used.

  5. Advances in Optical Spectroscopy and Imaging of Breast Lesions

    SciTech Connect

    Demos, S; Vogel, A J; Gandjbakhche, A H

    2006-01-03

    A review is presented of recent advances in optical imaging and spectroscopy and the use of light for addressing breast cancer issues. Spectroscopic techniques offer the means to characterize tissue components and obtain functional information in real time. Three-dimensional optical imaging of the breast using various illumination and signal collection schemes in combination with image reconstruction algorithms may provide a new tool for cancer detection and monitoring of treatment.

  6. Development of fiber optic spectroscopy for in-vitro and in-planta detection of fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Liew, Oi Wah; Chen, Jun-Wei; Asundi, Anand K.

    2001-10-01

    The objective of this project is to apply photonics technology to bio-safety management of genetically modified (GM) plants. The conventional method for screening GM plants is through selection using antibiotic resistance markers. There is public concern with such approaches and these are associated with food safety issues, escape of antibiotic resistance genes to pathogenic microorganisms and interference with antibiotic therapy. Thus, the strategy taken in this project is to replace antibiotic resistance markers with fluorescent protein markers that allow for rapid and non-invasive optical screening of genetically modified plants. In this paper, fibre optic spectroscopy was developed to detect and quantify recombinant green (EGFP) and red (DsRED) fluorescent proteins in vitro and in planta. In vitro detection was first carried out to optimize the sensitivity of the optical system. The bacterial expression vectors carrying the coding regions of EGFP and DsRED were introduced into Escherichia coli host cells and fluorescent proteins were produced following induction with IPTG. Soluble EGFP and DsRED proteins were isolated from lysed bacterial cells and serially diluted for quantitative analysis by fibre optic spectroscopy using different light sources, namely, blue LED (475 nm), tungsten halogen (350 - 1000 nm) and double frequency Nd:YAG green laser (532 nm). Fluorescence near the expected emission wavelengths could be detected up to 320X dilution for EGFP and DsRED with blue LED and 532 nm green laser, respectively, as the excitation source. Tungsten halogen was found to be unsuitable for excitation of both EGFP and DsRED. EGFP was successfully purified by size separation under non-denaturing electrophoretic conditions and quantified. The minimum concentration of EGFP detectable with blue LED excitation was 5 mg/ml. To determine the capability of spectroscopy detection in planta, transgenic potato hairy roots and whole modified plant lines expressing the

  7. Study of on-line monitoring of lactate based on optical fibre sensor and in-channel mixing mechanism.

    PubMed

    Wu, Min-Hsien; Wang, Junbo; Taha, Taha; Cui, Zhanfeng; Urban, Jill P G; Cui, Zheng

    2007-04-01

    A PDMS-based microfluidic device with integrated optical fibres was developed for online monitoring of lactate. The detection is based on the optical adsorption of the colour solution formed by in-channel mixing of sample and reagent solutions. Computational Fluid Dynamics (CFD) simulation and kinetic study of the colour development were conducted to determine the minimum channel length and optimum residential time for homogenous mixing and maximum optical adsorption respectively. The system was proved to be able to detect lactate with good linearity (R(2)=0.98), response time of about 130 s and estimated limitation of detection (LOD) of 0.52 mM (about 47 mg/L), which is sufficient for a general online lactate detection. Due to the miniaturization of sensing system and micro-scale mixing, higher detection sensitivity (0.15 V/mM) can be realized than the mixing in lab-scale equipments (0.08 V/mM).

  8. Optical absorption and scattering spectroscopies of single nano-objects.

    PubMed

    Crut, Aurélien; Maioli, Paolo; Del Fatti, Natalia; Vallée, Fabrice

    2014-06-07

    Developments of optical detection and spectroscopy methods for single nano-objects are key advances for applications and fundamental understanding of the novel properties exhibited by nanosize systems. These methods are reviewed, focusing on far-field optical approaches based on light absorption and elastic scattering. The principles of the main linear and nonlinear methods are described and experimental results are illustrated in the case of metal nanoparticles, stressing the key role played by the object environment, such as the presence of a substrate, bound surface molecules or other nano-objects. Special attention is devoted to quantitative methods and correlation of the measured optical spectra of a nano-object with its morphology, characterized either optically or by electron microscopy, as this permits precise comparison with theoretical models. Application of these methods to optical detection and spectroscopy for single semiconductor nanowires and carbon nanotubes is also presented. Extension to ultrafast nonlinear extinction or scattering spectroscopies of single nano-objects is finally discussed in the context of investigation of their nonlinear optical response and their electronic, acoustic and thermal properties.

  9. Adaptive optics high resolution spectroscopy: present status and future direction

    SciTech Connect

    Alcock, C; Angel, R; Ciarlo, D; Fugate, R O; Ge, J; Kuzmenko, P; Lloyd-Hart, M; Macintosh, B; Najita, J; Woolf, N

    1999-07-27

    High resolution spectroscopy experiments with visible adaptive optics (AO) telescopes at Starfire Optical Range and Mt. Wilson have demonstrated that spectral resolution can be routinely improved by a factor of - 10 over the seeing-limited case with no extra light losses at visible wavelengths. With large CCDs now available, a very wide wavelength range can be covered in a single exposure. In the near future, most large ground-based telescopes will be equipped with powerful A0 systems. Most of these systems are aimed primarily at diffraction-limited operation in the near IR. An exciting new opportunity will thus open up for high resolution IR spectroscopy. Immersion echelle gratings with much coarser grooves being developed by us at LLNL will play a critical role in achieving high spectral resolution with a compact and low cost IR cryogenically cooled spectrograph and simultaneous large wavelength coverage on relatively small IR detectors. We have constructed a new A0 optimized spectrograph at Steward Observatory to provide R = 200,000 in the optical, which is being commissioned at the Starfire Optical Range 3.5m telescope. We have completed the optical design of the LLNL IR Immersion Spectrograph (LISPEC) to take advantage of improved silicon etching technology. Key words: adaptive optics, spectroscopy, high resolution, immersion gratings

  10. Evaluating a novel application of optical fibre evanescent field absorbance: rapid measurement of red colour in winegrape homogenates

    NASA Astrophysics Data System (ADS)

    Lye, Peter G.; Bradbury, Ronald; Lamb, David W.

    Silica optical fibres were used to measure colour (mg anthocyanin/g fresh berry weight) in samples of red wine grape homogenates via optical Fibre Evanescent Field Absorbance (FEFA). Colour measurements from 126 samples of grape homogenate were compared against the standard industry spectrophotometric reference method that involves chemical extraction and subsequent optical absorption measurements of clarified samples at 520 nm. FEFA absorbance on homogenates at 520 nm (FEFA520h) was correlated with the industry reference method measurements of colour (R2 = 0.46, n = 126). Using a simple regression equation colour could be predicted with a standard error of cross-validation (SECV) of 0.21 mg/g, with a range of 0.6 to 2.2 mg anthocyanin/g and a standard deviation of 0.33 mg/g. With a Ratio of Performance Deviation (RPD) of 1.6, the technique when utilizing only a single detection wavelength, is not robust enough to apply in a diagnostic sense, however the results do demonstrate the potential of the FEFA method as a fast and low-cost assay of colour in homogenized samples.

  11. Mesh-based Monte Carlo method for fibre-optic optogenetic neural stimulation with direct photon flux recording strategy.

    PubMed

    Shin, Younghoon; Kwon, Hyuk-Sang

    2016-03-21

    We propose a Monte Carlo (MC) method based on a direct photon flux recording strategy using inhomogeneous, meshed rodent brain atlas. This MC method was inspired by and dedicated to fibre-optics-based optogenetic neural stimulations, thus providing an accurate and direct solution for light intensity distributions in brain regions with different optical properties. Our model was used to estimate the 3D light intensity attenuation for close proximity between an implanted optical fibre source and neural target area for typical optogenetics applications. Interestingly, there are discrepancies with studies using a diffusion-based light intensity prediction model, perhaps due to use of improper light scattering models developed for far-field problems. Our solution was validated by comparison with the gold-standard MC model, and it enabled accurate calculations of internal intensity distributions in an inhomogeneous near light source domain. Thus our strategy can be applied to studying how illuminated light spreads through an inhomogeneous brain area, or for determining the amount of light required for optogenetic manipulation of a specific neural target area.

  12. Blood detection in the spinal column of whole cooked chicken using an optical fibre based sensor system

    NASA Astrophysics Data System (ADS)

    Sheridan, C.; O'Farrell, M.; Lyons, W. B.; Lewis, E.; Flanagan, C.; Jackman, N.

    2005-01-01

    An optical fibre based sensor has been developed to aid the quality assurance of food cooked in industrial ovens by monitoring the product in situ as it cooks. The sensor measures the product colour as it cooks by examining the reflected visible light from the surface as well as the core of the product. This paper examines the use of the sensor for the detection of blood in the spinal area of cooked whole chickens. The results presented here show that the sensor can be successfully used for this purpose.

  13. Design and synthesis of a fluorescent molecular imprinted polymer for use in an optical fibre-based cocaine sensor

    NASA Astrophysics Data System (ADS)

    Wren, Stephen P.; Piletsky, Sergey A.; Karim, Kal; Gascoine, Paul; Lacey, Richard; Sun, Tong; Grattan, Kenneth T. V.

    2014-05-01

    Previously, we have developed chemical sensors using fibre optic-based techniques for the detection of Cocaine, utilising molecularly imprinted polymers (MIPs) containing fluorescein moieties as the signalling groups. Here, we report the computational design of a fluorophore which was incorporated into a MIP for the generation of a novel sensor that offers improved sensitivity for Cocaine with a detection range of 1-100μM. High selectivity for Cocaine over a suite of known Cocaine interferants (25μM) was also demonstrated by measuring changes in the intensity of fluorescence signals received from the sensor.

  14. HOMES Holographic Optical Method for Exoplanet Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ditto, Thomas D.; McGrew, Stephen P.

    2013-09-01

    A novel telescope architecture is proposed specifically for the purpose of taking spectra of exoplanets orbiting stars within 10 pc ("the neighborhood"). The primary objective and the secondary spectrograph are holographic optical elements (HOEs) formed on flat membrane substrates of low areal mass that can be transported on cylinder rolls that are compatible with the payload geometry of delivery vehicles. Ribbon-shaped HOEs of up to 100 x 10 meters are contemplated. Computer models are presented with these dimensions. The models predict resolving power better than 10 mas. Because the primary separates wavelengths, we consider coronagraphs that use the divide and conquer strategy of one wavelength at a time. After delivery at the second Lagrange point, the stowed membranes are unfurled into flat holographic optics positioned in a four part formation spanning 1 km of open space.

  15. Optical spectroscopy of ancient paper and textiles

    NASA Astrophysics Data System (ADS)

    Missori, M.

    2016-03-01

    Ancient paper and textiles represent a striking example of optically inhomogenous materials whose optical responses are strongly governed by scattering effects. In order to recover the absorption coefficient from non-invasive and non-destructive reflectance measurements a specific approach based on Kubelka-Munk two-flux theory must be applied. In this way quantitative chemical information, such as chromophores concentration, can be obtained, as well as quantitative spectra of additional substances such as pigments or dyes. Results on a folio of the Codex on the Flight of Birds by Leonardo da Vinci and a linen cloth dated back to 1653 and called the Shroud of Arquata, a copy of the Shroud of Turin, will be presented.

  16. Fibre positioning algorithms for the WEAVE spectrograph

    NASA Astrophysics Data System (ADS)

    Terrett, David L.; Lewis, Ian J.; Dalton, Gavin; Abrams, Don Carlos; Aguerri, J. Alfonso L.; Bonifacio, Piercarlo; Middleton, Kevin; Trager, Scott C.

    2014-07-01

    WEAVE is the next-generation wide-field optical spectroscopy facility for the William Herschel Telescope (WHT) in La Palma, Canary Islands, Spain. It is a multi-object "pick and place" fibre fed spectrograph with more than one thousand fibres, similar in concept to the Australian Astronomical Observatory's 2dF1 instrument with two observing plates, one of which is observing the sky while other is being reconfigured by a robotic fibre positioner. It will be capable of acquiring more than 10000 star or galaxy spectra a night. The WEAVE positioner concept uses two robots working in tandem in order to reconfigure a fully populated field within the expected 1 hour dwell-time for the instrument (a good match between the required exposure times and the limit of validity for a given configuration due to the effects of differential refraction). This presents additional constraints and complications for the software that determines the optimal path from one configuration to the next, particularly given the large number of fibre crossings implied by the 1000 fibre multiplex. This paper describes the algorithms and programming techniques used in the prototype implementations of the field configuration tool and the fibre positioner robot controller developed to support the detailed design of WEAVE.

  17. Multi-object spectroscopy with an automatic fibre positioning system in a one-degree field

    NASA Astrophysics Data System (ADS)

    Bellenger, R.; Dreux, M.; Felenbok, P.; Fernandez, A.; Guerin, J.; Schmidt, R.; Avila, G.; D'Odorico, S.; Eckert, W.; Rupprecht, G.

    1991-09-01

    A prototype version of Meudon-ESO Fiber Optics Spectrograph (MEFOS) tested at La Silla in January 1991 is briefly described. Computation results which take into account telescope, fiber and spectrograph effects show that MEFOS should be about 25 percent more efficient than OPTOPUS.

  18. Optical & Infrared Spectroscopy of Transiting Exoplanets

    NASA Astrophysics Data System (ADS)

    Griffith, C. A.; Tinetti, G.

    2010-10-01

    Two types of spectra can be measured from transiting extrasolar planets. The primary eclipse provides a transmission spectra of the exoplanet's limb as the planet passes in front of the star. These data probe the gas and particle composition of the atmosphere, as well as the atmospheric scale height. The secondary eclipse measures the emission of mainly the planet's dayside atmosphere from the planet plus star's emission minus the emission of star alone, when it eclipses the planet. These data probe the temperature and composition structure of the exoplanet. Only in the past 3 years, have infrared transmission and emission spectroscopy revealed the presence of the primary carbon and oxygen species (CH4, CO2, CO, and H2O). Efforts to constrain the abundances of these molecules are hindered by degenerate effects of the temperature and composition in the emission spectra. Transmission spectra, while less sensitive to the atmospheric temperatures, are difficult to interpret because the composition derived depends delicately on the assumed radius at a specified pressure level. This talk will discuss the correlations in the degenerate solutions that result from the radiative transfer analyses of both emission and transmission spectroscopy. The physical implications of these correlations are assessed in order to determine the temperature and composition structure of extrasolar planets, and their significance with respect to the exoplanet's chemistry and dynamics.

  19. Effective rumen degradation of dry matter, crude protein and neutral detergent fibre in forage determined by near infrared reflectance spectroscopy.

    PubMed

    Ohlsson, C; Houmøller, L P; Weisbjerg, M R; Lund, P; Hvelplund, T

    2007-12-01

    The objective of the present study was to examine if near infrared reflectance spectroscopy (NIRS) could be used to predict degradation parameters and effective degradation from scans of original forage samples. Degradability of dry matter (DM), crude protein (CP) and neutral detergent fibre (NDF) of 61 samples of perennial ryegrass (Lolium perenne L.) and orchardgrass (Dactylis glomerata L.) was tested by using the in situ technique. The grass samples were harvested at three different stages, early vegetative growth, early reproductive growth and late reproductive growth. Degradability was described in terms of immediately rumen soluble fraction (a fraction, for DM and CP only as NDF does not contain a soluble fraction), the degradable but not soluble faction (b fraction) and the rate of degradation of the b fraction (c value). Overall effective degradability of DM, CP and NDF was also calculated. Near infrared reflectance spectroscopy was examined for its ability to predict degradation parameters and to make a direct prediction of effective degradation from scans of the original samples of perennial ryegrass and orchardgrass. Prediction of effective degradation of the different feed fractions showed different accuracy. The coefficients of determination (R(2)) from regressions of predicted vs. measured effective degradation, using a cross-validation method, were 0.92 for DM, 0.78 for CP and 0.61 for NDF. The attempt to predict the degradation parameters (a, b and c) by NIRS was less successful as the coefficients of determination for the degradation parameters were low. Concentrations of CP and NDF in the original samples were predicted by using NIRS and the validated R(2) value was 0.98 for CP and 0.92 for NDF. It is concluded that using NIRS predictions from scans of original samples is a promising method to obtain values for the effective degradation of DM, CP and NDF in ruminant feeds, but that larger calibration sets are necessary for obtaining improved

  20. Doppler optical mixing spectroscopy in multiparticle scattering fluids

    SciTech Connect

    Dubnishchev, Yu N

    2011-03-31

    We discuss the basic scheme of laser Doppler optical mixing spectroscopy for the analysis of media with multiparticle scattering. It is shown that the Rayleigh scheme, in contrast to the heterodyne and differential schemes, is insensitive to the effects of multiparticle scattering. (laser applications and other aspects of quantum electronics)

  1. Optical spectroscopy of SNHiTS15aw

    NASA Astrophysics Data System (ADS)

    Pignata, G.; Olivares, F.; Forster, F.; Smith, C.; Vivas, K.; Hamuy, M.; Martin, J. San; Maureira, J. C.; Cabrera, G.; Anderson, J.; Gonzalez-Gaitan, S.; Galbany, L.; Bufano, F.; de Jaeger, T.; Hsiao, E.; Munoz, R.; Vera, E.

    2015-03-01

    We report optical wavelength spectroscopy obtained using the Goodman instrument mounted on SOAR at CTIO on UT 2015-03-12.1, for SNHiTS15aw discovered by HiTS, the High Cadence Transient Survey (see ATELs #5949, #5956, #7099, #7108, #7115, #7122, #7131, #7132, #7146, #7148, #7221).

  2. IR luminescence of tellurium-doped silica-based optical fibre

    SciTech Connect

    Dianov, Evgenii M; Alyshev, S V; Shubin, Aleksei V; Khopin, V F; Gur'yanov, Aleksei N

    2012-03-31

    Tellurium-doped germanosilicate fibre has been fabricated by the MCVD process. In contrast to Te-containing glasses studied earlier, it has a broad luminescence band (full width at half maximum of {approx}350 nm) centred at 1500 nm, with a lifetime of {approx}2 {mu}s. The luminescence of the fibre has been studied before and after gamma irradiation in a {sup 60}Co source to 309 and 992 kGy. The irradiation produced a luminescence band around 1100 nm, with a full width at half maximum of {approx}400 nm and lifetime of {approx}5 {mu}s. (letters)

  3. Fibre-optic gamma-flux monitoring in a fission reactor by means of Cerenkov radiation

    NASA Astrophysics Data System (ADS)

    Brichard, B.; Fernandez, A. F.; Ooms, H.; Berghmans, F.

    2007-10-01

    We demonstrate the possibility of using Cerenkov radiation to monitor the reactor power and the high energy gamma-ray flux in a high neutron flux reactor. The system employs a radiation-resistant pure silica glass fibre to measure the Cerenkov radiation in the infrared region (800-1100 nm). A model is proposed to determine the order of magnitude of the gamma-ray flux from the measurement. The method and concept can be extended to the monitoring of low reactor powers if Cerenkov radiation is measured in the 450-500 nm region by means of hydrogen-treated fibres.

  4. Assessment of Renal Ischemia By Optical Spectroscopy

    SciTech Connect

    Fitzgerald, J T; Demos, S; Michalopoulou, A; Pierce, J L; Troppmann, C

    2004-01-07

    Introduction: No reliable method currently exists for quantifying the degree of warm ischemia in kidney grafts prior to transplantation. We describe a method for evaluating pretransplant warm ischemia time using optical spectroscopic methods. Methods: Lewis rat kidney vascular pedicles were clamped unilaterally in vivo for 0, 5, 10, 20, 30, 60, 90 or 120 minutes; 8 animals were studied at each time point. Injured and contra-lateral control kidneys were then flushed with Euro-Collins solution, resected and placed on ice. 335 nm excitation autofluorescence as well as cross polarized light scattering images were taken of each injured and control kidney using filters of various wavelengths. The intensity ratio of the injured to normal kidneys was compared to ischemia time. Results: Autofluorescence intensity ratios through a 450 nm filter and light scattering intensity ratios through an 800 nm filter both decreased significantly with increasing ischemia time (p < 0.0001 for each method, one-way ANOVA). All adjacent and non-adjacent time points between 0 and 90 minutes were distinguishable using one of these two modalities by Fisher's PLSD. Conclusions: Optical spectroscopic methods can accurately quantify warm ischemia time in kidneys that have been subsequently hypothermically preserved. Further studies are needed to correlate results with physiological damage and posttransplant performance.

  5. On the suitability of fibre optical parametric amplifiers for use in all-optical agile photonic networks

    NASA Astrophysics Data System (ADS)

    Gryspolakis, Nikolaos

    The objective of this thesis is to investigate the suitability of fibre optical parametric amplifiers (FOPAs) for use in multi-channel, dynamic networks. First, we investigate their quasi-static behaviour in such an environment. We study the behaviour of a FOPA under realistic conditions and we examine the impact on the gain spectrum of channel addition for several different operating conditions and regimes. In particular, we examine the impact of surviving channel(s) position, input power and channel spacing. We see how these parameters affect the gain tilt as well as its dynamic characteristics, namely the generation of under or over-shoots at the transition point, possible dependence of rise and fall times on any of the aforementioned parameters and how the gain excursions depend on those parameters. For these studies we assume continuous wave operation for all signals. We observe that the gain spectrum changes are a function of the position and the spacing of the channels. We also find that the gain excursion can reach several dBs (up to 5 dB) in the case of channel add/drop and are heavily dependent on the position of the surviving channels. The channels located in the middle of the transmission band are more prone to channel add/drop-induced gain changes. Moreover, we investigate for the first time the FOPA dynamic behaviour in a packet switching scenario. This part of the study assumes that all but one channels normally vary in a packet-switched fashion. The remaining channel (probe channel) is expected to undergo gain variations due to the perturbation of the system experienced by the other channels. Furthermore, we consider several different scenarios for which the channels spacing, per channel input power (PCIP), variance of the power fluctuation and position of the probe channel will change. We find that when the FOPA operates near saturation the target gain is not achieved more than 50% of the time while the peak-to-peak gain excursions can exceed 1 d

  6. PREFACE: XVIII International Youth Scientific School "Coherent Optics and Optical Spectroscopy"

    NASA Astrophysics Data System (ADS)

    Salakhov, M. Kh; Samartsev, V. V.; Gainutdinov, R. Kh

    2015-05-01

    Kazan Federal University has held the annual International Youth School "Coherent Optics and Optical Spectroscopy" since 1997. The choice of the topic is not accidental. Kazan is the home of photon echo which was predicted at Kazan Physical-Technical Institute in 1963 by Prof. U.G. Kopvil'em and V.R. Nagibarov and observed in Columbia University by N.A. Kurnit, I.D. Abella, and S.R. Hartmann in 1964. Since then, photon echo has become a powerful tool of coherent optical spectroscopy and optical information processing, which have been developed here in Kazan in close collaboration between Kazan Physical-Technical Institute and Kazan Federal University. The main subjects of the XVIII International Youth School are: Nonlinear and coherent optics; Atomic and molecular spectroscopy; Coherent laser spectroscopy; Problems of quantum optics; Quantum theory of radiation; and Nanophotonics and Scanning Probe Microscopy. The unchallenged organizers of that school are Kazan Federal University and Kazan E.K. Zavoisky Physical-Technical Institute. The rector of the School is Professor Myakzyum Salakhov, and the vice-rector is Professor Vitaly Samartsev. The International Youth Scientific School "Coherent Optics and Optical Spectroscopy" follows the global pattern of comprehensive studies of matter properties and their interaction with electromagnetic fields. Since 1997 more than 100 famous scientists from the USA, Germany, Ukraine, Belarus and Russia have given plenary lecture presentations. Here over 1000 young scientists had an opportunity to participate in lively discussions about the latest scientific news. Many young people have submitted interesting reports on photonics, quantum electronics, laser physics, quantum optics, traditional optical and laser spectroscopy, non-linear optics, material science and nanotechnology. Here we are publishing the fullsize papers prepared from the most interesting lectures and reports selected by the Program Committee of the School. The

  7. Development of facilities and methods for the metrological characterization of distributed temperature sensing systems based on optical fibres

    NASA Astrophysics Data System (ADS)

    Failleau, G.; Beaumont, O.; Delepine-Lesoille, S.; Plumeri, S.; Razouk, R.; Beck, Y. L.; Hénault, J. M.; Bertrand, J.; Hay, B.

    2017-01-01

    Raman distributed temperature sensing (DTS) technologies are currently under evaluation by the nuclear and hydraulic industries as it may bring promising alternatives to classical measurement techniques. The reliability of the DTS measurements, as well as the traceability to the temperature standards, must be ensured throughout the entire period of monitoring (typically over a few tens of years). In order to achieve this goal, one key task consists in the verification of the performances claimed by the DTS devices manufacturers. Thus, the metrological performances and characteristics of the DTS devices, such as their limitations and accuracies, as well as the practical aspects of systems implemented on site should be evaluated step by step. This paper describes the dedicated facilities which have been developed at LNE in order to evaluate and to qualify DTS devices for very demanding applications. A first case study performed on one specific DTS device is detailed. A systematic bias has been observed among others on the spatial resolution. The DTS response to a temperature variation step over 1 m (spatial resolution typically claimed by the manufacturers) of sensing optical fibre corresponds indeed to only 90% of the temperature step magnitude, whereas the full DTS response is obtained in fact for 10 m (the practical spatial resolution) of sensing optical fibre solicited by this temperature step variation.

  8. Optical Stark Spectroscopy of Gold Chrolride

    NASA Astrophysics Data System (ADS)

    Zhang, Ruohan; Steimle, Timothy

    2014-06-01

    The bonding and electrostatic properties of gold containing molecules are highly influenced by relativistic effects and electron correlation. Hence it is difficult to predict those properties via electron structure calculation, and such calculation are guided by experimental observations. Here we report on the A(Ω=1)-X1Σ+ and B(Ω=0)-X1Σ+ bands of AuCl, which have been previously recorded at Doppler limited resolution. A cold molecular beam sample was generated and the bands were recorded at high resolution (FWHM =35 MHz) using laser excitation spectroscopy, both field-free and in the presence of a static electric field. An improved set of spectroscopic parameters for the A(Ω=1) and B(Ω=0) states were obtained. The Stark induced shifts were analyzed to determine the permanent electric dipole moments for the X, A, and B states. A comparison with AuF and theory will be made. P. Pyykko; Angew Chem. Int {43} 4412, 2004. L. C. O'Brien, A. L. Elliott, and M. Dulick; J. Mol. Spectrosc, 194, 124, 1999.

  9. The application of Fourier-transform infrared (FTIR) and Raman spectroscopy (FTR) to the evaluation of structural changes in wool fibre keratin after deuterium exchange and modification by the orthosilicic acid

    NASA Astrophysics Data System (ADS)

    Wojciechowska, Elżbieta; Włochowicz, Andrzej; Wysocki, Marian; Pielesz, Anna; Wesełucha-Birczyńska, Aleksandra

    2002-09-01

    An injury of hair macrostructure and substantial alkalinity of the water-lipid shield medium on wool fibre surface is conducive to a transition of heavy metal elements into ion forms. It also helps SiO 2 in a transition into a colloidal form of orthosilicic acid and its penetration in this form of the wool fibre structure. Consequently, it leads to the biomineralization of the wool fibre [J. Mol. Struct. 511-512 (1999) 307; J. Mol. Struct. 511-512 (2000) 397]. Changes taking place in the process of biomineralization, mainly in the amorphous region, may be responsible for the effectiveness of the technological processes and the properties of ready wool products [3]. Wool fibres obtained from Polish Merino sheep were treated with solution of orthosilicic acid (H 4SiO 4· nH 2O) in experimental conditions during which fibres first underwent extraction with methylene chloride and them with asolution of orthosilicic acid in alkaline medium. Studies of deuterium exchange in the wool fibre keratin were applied to study changes in the structure of wool fibre keratin in the process of orthosilicic acid treatment. The changes in the structure of wool fibre were studied by means of infrared spectroscopy (FTIR) and Raman spectroscopy (FTR).

  10. Nonlinear optical spectroscopy of diamond surfaces

    SciTech Connect

    Chin, Rodney Peter

    1995-04-01

    Second harmonic generation (SHG) and infrared-visible sum frequency generation (SFG) spectroscopies have been shown to be powerful and versatile for studying surfaces with submonolayer sensitivity. They have been used in this work to study bare diamond surfaces and molecular adsorption on them. In particular, infrared-visible SFG as a surface vibrational spectroscopic technique has been employed to identify and monitor in-situ surface bonds and species on the diamond (111) surface. The CH stretch spectra allow us to investigate hydrogen adsorption, desorption, abstraction, and the nature of the hydrogen termination. The C(111) surface dosed with atomic hydrogen was found to be in a monohydride configuration with the hydrogen atoms situated at top-sites. The ratio of the abstraction rate to the adsorption rate was appreciable during atomic hydrogen dosing. Kinetic parameters for thermal desorption of H on C(111) were determined showing a near first-order kinetics. For the fully H-terminated (111) surface, a large (110 cm-1) anharmonicity and ~19 psec lifetime were measured for the first-excited CH stretch mode. The bare reconstructed C(111)-(2 x l) surface showed the presence of CC stretch modes which were consistent with the Pandey π-bonded chain structure. When exposed to the methyl radical, the SFG spectra of the C(111) surface showed features suggesting the presence of adsorbed methyl species. After heating to sufficiently high temperatures, they were converted into the monohydride species. Preliminary results on the hydrogen-terminated diamond (100) surface are also presented.

  11. Optic nerve atrophy and retinal nerve fibre layer thinning following optic neuritis: evidence that axonal loss is a substrate of MRI-detected atrophy.

    PubMed

    Trip, S Anand; Schlottmann, Patricio G; Jones, Stephen J; Li, Wai-Yung; Garway-Heath, David F; Thompson, Alan J; Plant, Gordon T; Miller, David H

    2006-05-15

    Magnetic resonance imaging (MRI) measures of brain atrophy are often considered to be a marker of axonal loss in multiple sclerosis (MS) but evidence is limited. Optic neuritis is a common manifestation of MS and results in optic nerve atrophy. Retinal nerve fibre layer (RNFL) imaging is a non-invasive way of detecting axonal loss following optic neuritis. We hypothesise that if the optic nerve atrophy that develops following optic neuritis is contributed to by axonal loss, it will correlate with thinning of the RNFL. Twenty-five patients were studied at least 1 year after a single unilateral attack of optic neuritis without recurrence, with a selection bias towards incomplete recovery. They had MR quantification of optic nerve cross-sectional area and optic nerve lesion length, as well as optical coherence tomography (OCT) measurement of mean RNFL thickness and macular volume, quantitative visual testing, and visual evoked potentials (VEPs). Fifteen controls were also studied. Significant optic nerve atrophy (mean decrease 30% versus controls), RNFL thinning (mean decrease 33% versus controls), and macular volume loss occurred in patients' affected eyes when compared with patients' unaffected eyes and healthy controls. The optic nerve atrophy was correlated with the RNFL thinning, macular volume loss, visual acuity, visual field mean deviation, and whole field VEP amplitude but not latency. These findings suggest that axonal loss contributes to optic nerve atrophy following a single attack of optic neuritis. By inference, axonal loss due to other post-inflammatory brain lesions is likely to contribute to the global MRI measure of brain atrophy in multiple sclerosis.

  12. Fibres get functional

    NASA Astrophysics Data System (ADS)

    Graham-Rowe, Duncan

    2011-02-01

    New forms of advanced optical fibres featuring exotic glasses, carefully designed microstructures and cores that are either hollow, fluidic, semiconductor or piezoelectric are giving light guides a new lease of life, reports Duncan Graham-Rowe.

  13. Asbestos as 'toxic short-circuit' optic-fibre for UV within the cell-net: — Likely roles and hazards for secret UV and IR metabolism

    NASA Astrophysics Data System (ADS)

    Traill, Robert R.

    2011-12-01

    The most toxic asbestos fibres have widths 250nm-10nm, and this toxicity is "physical", which could mean either mechanical or optical: Tangling with chromosomes is a •mechanical hazard occasionally reported, and fibres <100nm wide would probably be most knife-like. Our other concern here is •optical: Calculations for fibres <=300nm reveal such a transmission possibility, but only when the amphibole fibres (brown and blue asbestos) are >100nm wide — or chrysotile (white asbestos) is >150nm. In both cases, UVA/UVB -transmission would then predominate. (Chrysotile 150nm might be benign — escaping both mechanical and optical!). But what would generate such UV, and why would its transmission be toxic? Thar and Kühl (J.Theor.Biol.:2004) explain that the long mitochondria on microtubules may be able to act as UV-lasers, (and many observers since Gurwitsch 1923 have reported ultraweak UV emissions escaping from all types of living bio-tissue). That all suggests some universal secret role for UV, apparently related to mitosis. Insertion of fibre "short-circuits" could then cause upsets in mitosis-control, and hence DNA irregularities. Such UV-control could parallel similar lower-powered Infra-Red control-systems (as considered elsewhere for coaxial myelin; or as portrayed by G.Albrecht-Buehler's online animations etc.); and the traditional short mitochondria seem better suited for this IR task.

  14. All-optical processing in coherent nonlinear spectroscopy

    SciTech Connect

    Oron, Dan; Dudovich, Nirit; Silberberg, Yaron

    2004-08-01

    In spectroscopy, the fingerprint of a substance is usually comprised of a sequence of spectral lines with characteristic frequencies and strengths. Identification of substances often involves postprocessing, where the measured spectrum is compared with tabulated fingerprint spectra. Here we suggest a scheme for nonlinear spectroscopy, where, through coherent control of the nonlinear process, the information from the entire spectrum can be practically collected into a single coherent entity. We apply this for all-optical analysis of coherent Raman spectra and demonstrate enhanced detection and effective background suppression using coherent processing.

  15. Developmental changes in the fibre population of the optic nerve follow an avian/mammalian-like pattern in the turtle Mauremys leprosa.

    PubMed

    Hidalgo-Sánchez, Matías; Francisco-Morcillo, Javier; Navascués, Julio; Martín-Partido, Gervasio

    2006-10-03

    The changes in the axon and growth cone numbers in the optic nerve of the freshwater turtle Mauremys leprosa were studied by electron microscopy from the embryonic day 14 (E14) to E80, when the animals normally hatch, and from the first postnatal day (P0) to adulthood (5 years on). At E16, the first axons appeared in the optic nerve and were added slowly until E21. From E21, the fibre number increased rapidly, peaking at E34 (570,000 fibres). Thereafter, the axon number decreased sharply, and from E47 declined steadily until reaching the mature number (about 330,000). These observations indicated that during development of the retina there was an overproduction and later elimination of retinal ganglion cells. Growth cones were first observed in the optic nerve at as early as E16. Their number increased rapidly until E21 and continued to be high through E23 and E26. After E26, the number declined steeply and by E40 the optic nerve was devoid of growth cones. These results indicated that differentiation of the retinal ganglion cells occurred during the first half of the embryonic life. To examine the correlation between the loss of the fibres from the optic nerve and loss of the parent retinal ganglion cells, retinal sections were processed with the TUNEL technique. Apoptotic nuclei were detected in the ganglion cell layer throughout the period of loss of the optic fibres. Our results showed that the time course of the numbers of the fibres in the developing turtle optic nerve was similar to those found in birds and mammals.

  16. In-vivo optical imaging and spectroscopy of cerebral hemodynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Chao

    Functional optical imaging techniques, such as diffuse optical imaging and spectroscopy and laser speckle imaging (LSI), were used in research and clinical settings to measure cerebral hemodynamics. In this thesis, theoretical and experimental developments of the techniques and their in-vivo applications ranging from small animals to adult humans are demonstrated. Near infrared diffuse optical techniques non-invasively measure hemoglobin concentrations, blood oxygen saturation (diffuse reflectance spectroscopy, DRS) and blood flow (diffuse correlation spectroscopy, DCS) in deep tissues, e.g. brain. A noise model was derived for DCS measurements. Cerebral blood flow (CBF) measured with DCS was validated with arterial-spin-labeling MRI. Three-dimensional CBF tomography was obtained during cortical spreading depression from a rat using the optimized diffuse correlation tomographic method. Cerebral hemodynamics in newborn piglets after traumatic brain injury were continuously monitored optically for six hours to demonstrate the feasibility of using diffuse optical techniques as bedside patient monitors. Cerebral autoregulation in piglets and human stroke patients was demonstrated to be non-invasively assessable via the continuous DCS measurement. Significant differences of CBF responses to head-of-bead maneuvers were observed between the peri- and contra-infarct hemispheres in human stroke patients. A significant portion of patient population showed paradoxical CBF responses, indicating the importance of individualized stroke management. The development of a speckle noise model revealed the source of noise for LSI. LSI was then applied to study the acute functional recovery of the rat brain following transient brain ischemia. The spatial and temporal cerebral blood flow responses to functional stimulation were statistically quantified. The area of activation, and the temporal response to stimulation were found significantly altered by the ischemic insult, while the

  17. Effect of small variations in the refractive index of the ambient medium on the spectrum of a bent fibre-optic Fabry - Perot interferometer

    SciTech Connect

    Kulchin, Yurii N; Vitrik, O B; Gurbatov, S O

    2011-09-30

    The phase of light propagating through a bent optical fibre is shown to depend on the refractive index of the medium surrounding the fibre cladding when there is resonance coupling between the guided core mode and cladding modes. This shifts the spectral maxima in the bent fibre-optic Fabry - Perot interferometer. The highest phase and spectral sensitivities achieved with this interferometer configuration are 0.71 and 0.077, respectively, and enable changes in the refractive index of the ambient medium down to 5 Multiplication-Sign 10{sup -6} to be detected. This makes the proposed approach potentially attractive for producing highly stable, precision refractive index sensors capable of solving a wide range of liquid refractometry problems.

  18. First-time demonstration of measuring concrete prestress levels with metal packaged fibre optic sensors

    NASA Astrophysics Data System (ADS)

    Mckeeman, I.; Fusiek, G.; Perry, M.; Johnston, M.; Saafi, M.; Niewczas, P.; Walsh, M.; Khan, S.

    2016-09-01

    In this work we present the first large-scale demonstration of metal packaged fibre Bragg grating sensors developed to monitor prestress levels in prestressed concrete. To validate the technology, strain and temperature sensors were mounted on steel prestressing strands in concrete beams and stressed up to 60% of the ultimate tensile strength of the strand. We discuss the methods and calibration procedures used to fabricate and attach the temperature and strain sensors. The use of induction brazing for packaging the fibre Bragg gratings and welding the sensors to prestressing strands eliminates the use of epoxy, making the technique suitable for high-stress monitoring in an irradiated, harsh industrial environment. Initial results based on the first week of data after stressing the beams show the strain sensors are able to monitor prestress levels in ambient conditions.

  19. Optical cavity fibre sensor for detection of microcystin-LR in water

    NASA Astrophysics Data System (ADS)

    Queirós, Raquel B.; Silva, S. O.; Sales, M. G. F.; Noronha, J. P.; Frazão, O.; Jorge, P. A. S.; Aguilar, G. G.

    2010-09-01

    The deterioration of water quality by Cyanobacteria causes outbreaks and epidemics associated with harmful diseases in Humans and animals because of the released toxins. Microcystin-LR (mcyst) is one of the most widely studied hepatotoxin and World Health Organization recommends a maximum value of 1 μg L-1 of mcyst in drinking-water. Therefore, there is a great demand for remote, real-time sensing techniques to detect and quantify the presence of mcyst. In this work a Fabry-Perot sensing probe based on a fibre tip coated with a mcyst sensitive thin film is presented. Highly specific recognition membranes, using sol-gel based Molecular Imprinted Polymers (MIPs), were developed to quantify microcystins in water, showing great potential in the analysis of this kind of samples. The fibre Fabry-Perot MIP sensor shows a linear response to mcyst concentration with a sensitivity of -13.2 +/-} 0.4 nm L μg-1.

  20. Fiber-optic Raman Spectroscopy of Joint Tissues

    PubMed Central

    Esmonde-White, Karen A.; Esmonde-White, Francis W.L.; Morris, Michael D.

    2011-01-01

    In this study, we report adaptation of Raman spectroscopy for arthroscopy of joint tissues using a custom-built fiber optic probe. Differentiation of healthy and damaged tissue or examination of subsurface tissue, such as subchondral bone, is a challenge in arthroscopy because visual inspection may not provide sufficient contrast. Discrimination of healthy versus damaged tissue may be improved by incorporating point spectroscopy or hyperspectral imaging into arthroscopy where contrast is based on molecular structure or chemical composition. Articular joint surfaces of knee cadaveric human tissue and tissue phantoms were examined using a custom-designed Raman fiber optic probe. Fiber-optic Raman spectra were compared against reference spectra of cartilage, subchondral bone and cancellous bone collected using Raman microspectroscopy. In fiber-optic Raman spectra of the articular surface, there was an effect of cartilage thickness on recovery of signal from subchondral bone. At sites with intact cartilage, the bone mineralization ratio decreased but there was a minimal effect in the bone mineral chemistry ratios. Tissue phantoms were prepared as experimental models of the osteochondral interface. Raman spectra of tissue phantoms suggested that optical scattering of cartilage has a large effect on the relative cartilage and bone signal. Finite element analysis modeling of light fluence in the osteochondral interface confirmed experimental findings in human cadaveric tissue and tissue phantoms. These first studies demonstrate proof of principle for Raman arthroscopic measurement of joint tissues and provide a basis for future clinical or animal model studies. PMID:21359366