Science.gov

Sample records for fibrin glue scaffold

  1. Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering.

    PubMed

    Han, Chun-mao; Zhang, Li-ping; Sun, Jin-zhang; Shi, Hai-fei; Zhou, Jie; Gao, Chang-you

    2010-07-01

    To create a scaffold that is suitable for the construction of tissue-engineered skin, a novel asymmetric porous scaffold with different pore sizes on either side was prepared by combining a collagen-chitosan porous membrane with fibrin glue. Tissue-engineered skin was fabricated using this asymmetric scaffold, fibroblasts, and a human keratinocyte line (HaCaT). Epidermal cells could be seen growing easily and achieved confluence on the fibrin glue on the upper surface of the scaffold. Scanning electron microscopy showed typical shuttle-like fibroblasts adhering to the wall of the scaffold and fluorescence microscopy showed them growing in the dermal layer of the scaffold. The constructed composite skin substitute had a histological structure similar to that of normal skin tissue after three weeks of culture. The results of our study suggest that the asymmetric scaffold is a promising biologically functional material for skin tissue engineering, with prospects for clinical applications.

  2. Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering*

    PubMed Central

    Han, Chun-mao; Zhang, Li-ping; Sun, Jin-zhang; Shi, Hai-fei; Zhou, Jie; Gao, Chang-you

    2010-01-01

    To create a scaffold that is suitable for the construction of tissue-engineered skin, a novel asymmetric porous scaffold with different pore sizes on either side was prepared by combining a collagen-chitosan porous membrane with fibrin glue. Tissue-engineered skin was fabricated using this asymmetric scaffold, fibroblasts, and a human keratinocyte line (HaCaT). Epidermal cells could be seen growing easily and achieved confluence on the fibrin glue on the upper surface of the scaffold. Scanning electron microscopy showed typical shuttle-like fibroblasts adhering to the wall of the scaffold and fluorescence microscopy showed them growing in the dermal layer of the scaffold. The constructed composite skin substitute had a histological structure similar to that of normal skin tissue after three weeks of culture. The results of our study suggest that the asymmetric scaffold is a promising biologically functional material for skin tissue engineering, with prospects for clinical applications. PMID:20593518

  3. Effects of fibrinogen concentration on fibrin glue and bone powder scaffolds in bone regeneration.

    PubMed

    Kim, Beom-Su; Sung, Hark-Mo; You, Hyung-Keun; Lee, Jun

    2014-10-01

    Fibrin polymers are widely used in the tissue engineering field as biomaterials. Although numerous researchers have studied the fabrication of scaffolds using fibrin glue (FG) and bone powder, the effects of varied fibrinogen content during the fabrication of scaffolds on human mesenchymal stem cells (hMSCs) and bone regeneration remain poorly understood. In this study, we formulated scaffolds using demineralized bone powder and various fibrinogen concentrations and analyzed the microstructure and mechanical properties. Cell proliferation, cell viability, and osteoblast differentiation assays were performed. The ability of the scaffold to enhance bone regeneration was evaluated using a rabbit calvarial defect model. Micro-computed tomography (micro-CT) showed that bone powders were uniformly distributed on the scaffolds, and scanning electron microscopy (SEM) showed that the fibrin networks and flattened fibrin layers connected adjacent bone powder particles. When an 80 mg/mL fibrinogen solution was used to formulate scaffolds, the porosity decreased 41.6 ± 3.6%, while the compressive strength increased 1.16 ± 0.02 Mpa, when compared with the values for the 10 mg/mL fibrinogen solution. Proliferation assays and SEM showed that the scaffolds prepared using higher fibrinogen concentrations supported and enhanced cell adhesion and proliferation. In addition, mRNA expression of alkaline phosphatase and osteocalcin in cells grown on the scaffolds increased with increasing fibrinogen concentration. Micro-CT and histological analysis revealed that newly formed bone was stimulated in the scaffold implantation group. Our results demonstrate that optimization of the fibrinogen content of fibrin glue/bone powder scaffolds will be beneficial for bone tissue engineering.

  4. Evaluation of bone matrix gelatin/fibrin glue and chitosan/gelatin composite scaffolds for cartilage tissue engineering.

    PubMed

    Wang, Z H; Zhang, J; Zhang, Q; Gao, Y; Yan, J; Zhao, X Y; Yang, Y Y; Kong, D M; Zhao, J; Shi, Y X; Li, X L

    2016-07-15

    This study was designed to evaluate bone matrix gelatin (BMG)/fibrin glue and chitosan/gelatin composite scaffolds for cartilage tissue engineering. Chondrocytes were isolated from costal cartilage of Sprague-Dawley rats and seeded on BMG/fibrin glue or chitosan/gelatin composite scaffolds. After different in vitro culture durations, the scaffolds were subjected to hematoxylin and eosin, Masson's trichrome, and toluidine blue staining, anti-collagen II and anti-aggrecan immunohistochemistry, and scanning electronic microscopy (SEM) analysis. After 2 weeks of culture, chondrocytes were distributed evenly on the surfaces of both scaffolds. Cell numbers and the presence of extracellular matrix components were markedly increased after 8 weeks of culture, and to a greater extent on the chitosan/gelatin scaffold. The BMG/fibrin glue scaffold showed signs of degradation after 8 weeks. Immunofluorescence analysis confirmed higher levels of collagen II and aggrecan using the chitosan/gelatin scaffold. SEM revealed that the majority of cells on the surface of the BMG/fibrin glue scaffold demonstrated a round morphology, while those in the chitosan/gelatin group had a spindle-like shape, with pseudopodia. Chitosan/gelatin scaffolds appear to be superior to BMG/ fibrin glue constructs in supporting chondrocyte attachment, proliferation, and biosynthesis of cartilaginous matrix components.

  5. Fibrin glue is a candidate scaffold for long-term therapeutic protein expression in spontaneously differentiated adipocytes in vitro

    SciTech Connect

    Aoyagi, Yasuyuki; Kuroda, Masayuki; Asada, Sakiyo; Tanaka, Shigeaki; Konno, Shunichi; Tanio, Masami; Aso, Masayuki; Okamoto, Yoshitaka; Nakayama, Toshinori; Saito, Yasushi; Bujo, Hideaki

    2012-01-01

    Adipose tissue is expected to provide a source of cells for protein replacement therapies via auto-transplantation. However, the conditioning of the environment surrounding the transplanted adipocytes for their long-term survival and protein secretion properties has not been established. We have recently developed a preparation procedure for preadipocytes, ceiling culture-derived proliferative adipocytes (ccdPAs), as a therapeutic gene vehicle suitable for stable gene product secretion. We herein report the results of our evaluation of using fibrin glue as a scaffold for the transplanted ccdPAs for the expression of a transduced gene in a three-dimensional culture system. The ccdPAs secreted the functional protein translated from an exogenously transduced gene, as well as physiological adipocyte proteins, and the long viability of ccdPAs (up to 84 days) was dependent on the fibrinogen concentrations. The ccdPAs spontaneously accumulated lipid droplets, and their expression levels of the transduced exogenous gene with its product were maintained for at least 56 days. The fibrinogen concentration modified the adipogenic differentiation of ccdPAs and their exogenous gene expression levels, and the levels of exogenously transduced gene expression at the different fibrinogen concentrations were dependent on the extent of adipogenic differentiation in the gel. These results indicate that fibrin glue helps to maintain the high adipogenic potential of cultured adipocytes after passaging in a 3D culture system, and suggests that once they are successfully implanted at the transplantation site, the cells exhibit increased expression of the transduced gene with adipogenic differentiation.

  6. Salmon fibrin glue in rats: antibody studies.

    PubMed

    Laidmäe, Ivo; Belozjorova, Jevgenia; Sawyer, Evelyn S; Janmey, Paul A; Uibo, Raivo

    2012-01-01

    Fibrin sealants and topical thrombin preparations are often used for haemostatic and sealing applications in clinical practice. Some of these preparations contain coagulation factors from bovine sources. To minimize the risk of infection and immunogenicity connected with mammalian blood products, proteins derived from the plasma of farmed Atlantic salmon have been considered as an alternative to these mammalian sources. The purpose of this study is to characterize the immunogenicity of salmon fibrin glue in an animal model focusing on crossreactivity of IgG antibodies to host endogenous counterparts. After two immunizations with salmon fibrin glue, rats developed antibodies of IgG and IgM type to both fibrin glue components. Weak crossreactivity to endogenous fibrinogen and thrombin was seen in a subset of rats after the second application of salmon proteins. Coagulation tests showed that salmon fibrin application has no effect on coagulation profiles in mammalian hosts, consistent with previous reports that found no evidence of significant crossreactivity with host proteins. These studies support the potential suitability of salmon fibrin glue for the development of preparations with clinical impact. Before human use can be considered, however, additional data about safety of this preparation in other animal models, including large animal studies, should be obtained.

  7. Fibrin glue inhibits migration of ocular surface epithelial cells.

    PubMed

    Yeung, A M; Faraj, L A; McIntosh, O D; Dhillon, V K; Dua, H S

    2016-10-01

    PurposeFibrin glue has been used successfully in numerous ophthalmic surgical procedures. Recently, fibrin glue has been used in limbal stem cell transplantation to reduce both operative time and to negate the need for sutures. The aim of this study was to determine the effects of fibrin glue on epithelial cell migration in vitro.MethodsCorneoscleral rims were split to retain the epithelial layer, Bowman's layer, and anterior stroma. Rims were cut into eight equal-sized pieces and were placed directly on culture plates or affixed with fibrin glue. Rims were maintained in culture for 25 days and epithelial cell growth was monitored. Cells were photographed to measure area or growth and immunofluorescence staining of explants for fibrin was performed.ResultsExplants that were glued demonstrated significantly delayed epithelial cell growth and migration as compared with explants without glue. By day 16, all fibrin glue had dissolved and coincided with onset of cell growth from glued explants. Cell growth commenced between days 3 and 4 for control explants without glue and around days 14-16 for explants with fibrin glue.ConclusionsFibrin glue delays epithelial cell migration by acting as a physical barrier and can potentially interfere with explant-derived limbal epithelial cell migration on to the corneal surface. We propose that glue should be used to attach the conjunctival frill of the limbal explant but care should be taken to ensure that the glue does not wrap around the explant if used to secure the explant as well. Strategic use of glue, to attach the recessed conjunctiva, can be advantageous in delaying conjunctival cell migration and reducing the need for sequential sector conjunctival epitheliectomy.

  8. Adhesive strength of autologous fibrin glue.

    PubMed

    Yoshida, H; Hirozane, K; Kamiya, A

    2000-03-01

    To establish an easy and rapid method for measuring the adhesive strength of fibrin glue and to clarify the factor(s) most affecting the strength, a study was made on the effect of the concentration of plasma components on the strength of cryoprecipitate (Cryo) prepared from a subject's own autologous plasma to be used as fibrin glue. The adhesive strength of the Cryo was measured with various supporting materials instead of animal skin using a tester of tension and compression. The results were as follows: (1) the strength of Cryo applied to ground flat glass (4 cm2) was significantly greater than that applied to clear glass, clear plastic, or smooth and flat wood chips; (2) the adhesive strength of Cryo depended on the concentration of thrombin with the optimal concentration being 50 units/ml; (3) the concentration of CaCl2 did not affect the adhesive strength of Cryo; (4) the adhesive reaction was dependent on the temperature and the adhesive strength more quickly reached a steady state at 37 degrees C than at lower temperature; (5) the adhesive strength was correlated well with the total concentration of fibrinogen and fibronectin. These results indicate that the adhesive strength of Cryo can be easily and quickly evaluated using a tester and ground glass with thrombin at 50 units/ml, and that the adhesive strength of Cryo can be predicted from the total concentration of fibrinogen and fibronectin.

  9. Autologous fibrin glue with growth factors in reconstructive maxillofacial surgery.

    PubMed

    Thorn, J J; Sørensen, H; Weis-Fogh, U; Andersen, M

    2004-01-01

    The aim of this paper was to describe a method for the preparation of autologous fibrin glue with platelet growth factors and to report its use with particulate cancellous bone in reconstructive maxillofacial surgery. The fibrin glue is a two-component glue, where the one component is a concentrated fibrinogen solution with platelet growth factors and the other component is a thrombin solution. Both components were produced from the patients own blood, thus making the glue entirely autologous. The glue was prepared from platelet rich plasma separated from 200 ml of the patient's blood prior to the operation. The fibrinogen in the glue was precipitated from the platelet rich plasma by ethanol precipitation at low temperature and separated together with the platelets by centrifugation. Raising the temperature to 37 degrees C redissolved the precipitate. The thrombin solution in the glue was produced from prothrombin precipitated from 10 ml of the platelet rich plasma by lowering the pH and the ionic strength. The precipitate was separated by centrifugation and dissolved in a calcium ion solution. Increasing the pH to neutral value induced activation to thrombin. Preparation of the fibrin glue was performed in the blood bank within 60 to 90 min with the use of standard equipment. The outcome from 200 ml of blood was approximately 8 ml of fibrin glue: 6 ml fibrinogen to be coagulated with 2 ml of thrombin. The glue had a fibrinogen concentration of approximately 12 times the value in platelet rich plasma and the concentration of growth factors was approximately eight times the value in platelet rich plasma. We have used this glue successfully with particulate bone grafts for reconstructive purposes within the oral and maxillofacial field. It might as well be applied to other surgical areas. Whenever larger amount of the glue will be needed, a whole unit of blood may be taken from the patient, and the red cells re-transfused to the patient during or after the operation.

  10. Effect of collagen sponge and fibrin glue on bone repair

    PubMed Central

    SANTOS, Thiago de Santana; ABUNA, Rodrigo Paolo Flores; de ALMEIDA, Adriana Luisa Gonçalves; BELOTI, Marcio Mateus; ROSA, Adalberto Luiz

    2015-01-01

    ABSTRACT The ability of hemostatic agents to promote bone repair has been investigated using in vitro and in vivo models but, up to now, the results are inconclusive. Objective In this context, the aim of this study was to compare the potential of bone repair of collagen sponge with fibrin glue in a rat calvarial defect model. Material and Methods Defects of 5 mm in diameter were created in rat calvariae and treated with either collagen sponge or fibrin glue; untreated defects were used as control. At 4 and 8 weeks, histological analysis and micro-CT-based histomorphometry were carried out and data were compared by two-way ANOVA followed by Student-Newman-Keuls test when appropriated (p≤0.05). Results Three-dimensional reconstructions showed increased bone formation in defects treated with either collagen sponge or fibrin glue compared with untreated defects, which was confirmed by the histological analysis. Morphometric parameters indicated the progression of bone formation from 4 to 8 weeks. Additionally, fibrin glue displayed slightly higher bone formation rate when compared with collagen sponge. Conclusion Our results have shown the benefits of using collagen sponge and fibrin glue to promote new bone formation in rat calvarial bone defects, the latter being discreetly more advantageous. PMID:26814464

  11. Fibrin glue improves the therapeutic effect of MSCs by sustaining survival and paracrine function.

    PubMed

    Kim, Inok; Lee, Sung Koo; Yoon, Jung In; Kim, Da Eun; Kim, Mihyung; Ha, Hunjoo

    2013-11-01

    Fibrin glue has been widely investigated as a cell delivery vehicle for improving the therapeutic effects of mesenchymal stem cells (MSCs). Implanted MSCs produce their therapeutic effects by secreting paracrine factors and by replacing damaged tissues after differentiation. While the influence of fibrin glue on the differentiation potential of MSCs has been well documented, its effect on paracrine function of MSCs is largely unknown. Herein we investigated the influence of fibrin glue on the paracrine effects of MSCs. MSCs were isolated from human adipose tissue. The effects of fibrin glue on survival, migration, secretion of growth factors, and immune suppression of MSCs were investigated in vitro. MSCs in fibrin glue survived and secreted growth factors such as the vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) over 14 days. VEGF and immune modulators, including the transforming growth factor (TGF)-β1 and prostaglandin E2, secreted from MSCs in fibrin glue significantly increased under inflammatory conditions. Thus, MSCs in fibrin glue effectively suppressed immune reactions. In addition, fibrin glue protected the MSCs from oxidative stress and prevented human dermal fibroblast death induced by exposure to extreme stress. In contrast, MSCs within fibrin glue hardly migrated. These results suggest that fibrin glue may sustain survival of implanted MSCs and their paracrine function. Our results provide a mechanistic data to allow further development of MSCs with fibrin glue as a clinical treatment.

  12. Osteogenic properties of calcium phosphate ceramics and fibrin glue based composites.

    PubMed

    Le Nihouannen, Damien; Saffarzadeh, Afchine; Aguado, Eric; Goyenvalle, Eric; Gauthier, Olivier; Moreau, Françoise; Pilet, Paul; Spaethe, Reiner; Daculsi, Guy; Layrolle, Pierre

    2007-02-01

    Calcium phosphate (Ca-P) ceramics are currently used in various types of orthopaedic and maxillofacial applications because of their osteoconductive properties. Fibrin glue is also used in surgery due to its haemostatic, chemotactic and mitogenic properties and also as scaffolds for cell culture and transplantation. In order to adapt to surgical sites, bioceramics are shaped in blocks or granules and preferably in porous forms. Combining these bioceramics with fibrin glue provides a mouldable and self-hardening composite biomaterial. The aim of this work is to study the osteogenic properties of this composite material using two different animal models. The formation of newly formed bone (osteoinduction) and bone healing capacity (osteconduction) have been study in the paravertebral muscles of sheep and in critical sized defects in the femoral condyle of rabbits, respectively. The different implantations sites were filled with composite material associating Ca-P granules and fibrin glue. Ca-P granules of 1-2 mm were composed with 60% of hydroxyapatite and 40% of beta tricalcium phosphate in weight. The fibrin glue was composed of fibrinogen, thrombin and other biological factors. After both intramuscular or intraosseous implantations for 24 weeks and 3, 6, 12 and 24 weeks, samples were analyzed using histology and histomorphometry and mechanical test. In all cases, the newly formed bone was observed in close contact and around the ceramic granules. Depending on method of quantification, 6.7% (with BSEM) or 17% (with micro CT) of bone had formed in the sheep muscles and around 40% in the critical sized bone rabbit defect after 24 weeks. The Ca-P/fibrin material could be used for filling bone cavities in various clinical indications.

  13. Construction of a Corneal Stromal Equivalent with SMILE-Derived Lenticules and Fibrin Glue

    PubMed Central

    Yin, Houfa; Qiu, Peijin; Wu, Fang; Zhang, Wei; Teng, Wenqi; Qin, Zhenwei; Li, Chao; Zhou, Jiaojie; Fang, Zhi; Tang, Qiaomei; Fu, Qiuli; Ma, Jian; Yang, Yabo

    2016-01-01

    The scarcity of corneal tissue to treat deep corneal defects and corneal perforations remains a challenge. Currently, small incision lenticule extraction (SMILE)-derived lenticules appear to be a promising alternative for the treatment of these conditions. However, the thickness and toughness of a single piece of lenticule are limited. To overcome these limitations, we constructed a corneal stromal equivalent with SMILE-derived lenticules and fibrin glue. In vitro cell culture revealed that the corneal stromal equivalent could provide a suitable scaffold for the survival and proliferation of corneal epithelial cells, which formed a continuous pluristratified epithelium with the expression of characteristic markers. Finally, anterior lamellar keratoplasty in rabbits demonstrated that the corneal stromal equivalent with decellularized lenticules and fibrin glue could repair the anterior region of the stroma, leading to re-epithelialization and recovery of both transparency and ultrastructural organization. Corneal neovascularization, graft degradation, and corneal rejection were not observed within 3 months. Taken together, the corneal stromal equivalent with SMILE-derived lenticules and fibrin glue appears to be a safe and effective alternative for the repair of damage to the anterior cornea, which may provide new avenues in the treatment of deep corneal defects or corneal perforations. PMID:27651001

  14. The ineffectiveness of fibrin glue and cyanoacrylate on fixation of meniscus transplants in rabbits.

    PubMed

    Reckers, Leandro José; Fagundes, Djalma José; Cohen, Moisés

    2009-08-01

    Our aim was to evaluate whether a fibrin glue and octyl-cyanoacrylate can promote fixation of meniscal allograft in rabbits. The medial menisci of 18 rabbits were frozen and stored at -73 degrees C (30 days) and then was allotransplantation and fixed by: GSu (n=6) soft tissue; GFi (n=6) fibrin glue; GCy (n=6) cyanoacrylate. They were evaluated by daily surgery recovery score (4 weeks), gross inspection and cells density on scaffold. A severe inflammatory response with caseous necrosis from the inside of the joint on through the approach incision led us to an early sacrifice (16th day) of all animals of GCy. The daily score of recovery was similar in both groups GSu and GFi, with a peak of 40% of mild suffering score in the 12th day. At the 4th week in all animals of GFi the menisci were loose into the joint and the density of cells of collagen matrix was significantly fewer (p<0.001) than the GSu. The octyl-cyanoacrylate adhesive was totally inadequate for use on fixation of an allograft implant due to the severe inflammatory response. The fibrin glue was inappropriate to promote the allograft fixation and subsequently impaired the cells spread into the collagen matrix of allograft implant.

  15. Laparoscopic Incisional Hernia Repair With Fibrin Glue in Select Patients

    PubMed Central

    Stefano, Olmi; Luca, Saguatti; Claudio, Pagano; Giuseppe, Vittoria; Enrico, Croce

    2010-01-01

    Background and Objective: Laparoscopic treatment of incisional hernias can be performed using different types of fixation devices and prosthesis. We present a case series of 19 patients with incisional hernias with a diameter of <6cm, who underwent laparoscopic repair using Hi-tex dual-side mesh, positioned intraperitoneally, fixed to the abdominal wall by fibrin glue (Tissucol). Methods: Nineteen patients with incisional hernias <6cm in diameter were enrolled in this study and treated laparoscopically with Hi-tex and Tissucol. Surgical complications and patient outcomes were assessed with a clinical follow-up. Results: Laparoscopic repair of incisional hernias by using Hi-tex mesh affixed to the parietal wall with fibrin glue was feasible and easy in patients with parietal defects <6cm in diameter. Mean operating time was 30 minutes. Mean hospital stay was 1.5 days. Almost no postoperative pain, major surgical complications, seroma formation, relapses, or prosthesis infection occurred during a mean follow-up of 20 months. Conclusions: In select patients, Hi-tex mesh affixed using fibrin glue allows laparoscopic repair of incisional hernias with very good patient outcomes, especially in terms of postoperative pain and seroma formation. PMID:20932376

  16. [Fibrin glue injection therapy with diluted thrombin for complicated postoperative fistulas following digestive surgery].

    PubMed

    Tono, Takeshi; Murakami, Masahiro; Ohtsuru, Minoru; Monden, Takushi

    2014-11-01

    Fibrin glue injection is used for treating postoperative digestive fistulas; however, this method is not always successful, especially in cases of complicated fistulas. Generally, the fibrin glue coagulates immediately after application before it reaches the end of the fistulas. Based on the results of an in vitro study of tensile strength and coagulation time, we utilized fibrin glue injection therapy with diluted thrombin solution (× 30) for treating refractory postoperative complicated fistulas in 23 cancer patients. In 20 of these patients, the fistulas were successfully closed after an average of 2.0 treatment cycles. This simple method of fibrin glue injection with diluted thrombin is useful for treating complicated postoperative digestive fistulas.

  17. [Application of fibrin glue in facial nerve repair].

    PubMed

    Wang, Qinying; Hua, Qingquan; Wang, Shenqing

    2007-06-01

    This animal experiment was aimed to apply fibrin in facial nerve repair and to quest for technical improvements in facial surgery. In each of 15 healthy large ear white rabbits, a unilateral 5 mm intratemporal facial nerve gap was created, the proximal and distal stumps were inserted into chitin tube, 1 ml autologous fibrin glue was applied around the anastomotic zone, and no suture was employed. At 3 months and 5 months after opertion, electrophysioligical study was performed. Compared with normal nerves, the regenerating nerves in both the chitin tube bridged group and the perineurium suture group had longer incubation period, lower amplitude, slower nerve-muscle conduction velocity at 3 months postoperatively. The differences were distinctly significant (P < 0.01). Although being decreased at 5 months after operation, the differences were still statistically significant (P < 0.05). There were no significant differences between the chitin tube bridged group and perineurium suture group at 3 months and 5 months, respectively. The study suggests that facial nerve repair using fibrin glue and chitin tube has the advantages of being easier,faster and more stable.

  18. Fibrinolysis inhibitors adversely affect remodeling of tissues sealed with fibrin glue.

    PubMed

    Krishnan, Lissy K; Vijayan Lal, Arthur; Uma Shankar, P R; Mohanty, Mira

    2003-01-01

    Experiments have been carried out to determine if aprotinin and epsilon -amino caproic acid increases the quality of Fibrin glue. A rat model was used for tissues such as liver and skin while rabbits were used for application of glue in dura mater. Apposition of all the tissues, glued with fibrin was found to be good and remnants of the polymerized fibrin were seen even on the seventh day of application, though inhibitors were not incorporated with the glue. In skin, excessive amounts of fibrin remained as a result of addition of aprotinin and epsilon -amino caproic acid, as compared to the glue applied without any inhibitor. After dural sealing, the wound repair and new bone formation at craniotomy site progressed well in the fibrin glue applied area as compared to the commercially available glue that contained aprotinin. The adhesive strength of the glue without or with fibrinolysis inhibitors was found to be similar, after 1h grafts on rat back. The observations from this study suggests that the use of aprotinin with fibrin glue may not be required because, even liver tissue that is known to have high fibrinolytic activity was sealed and repaired well in the absence of plasminogen inhibitors. On the other hand, it was found that if inhibitors were added, nondegraded matrix remained in the tissue even after 15 days and affected migration of repair cells. Thus, the inhibition of fibrinolysis after fibrin glue application is found detrimental to wound healing.

  19. Fibrin glue mixed with gelatin/hyaluronic acid/chondroitin-6-sulfate tri-copolymer for articular cartilage tissue engineering: the results of real-time polymerase chain reaction.

    PubMed

    Chou, Cheng-Hung; Cheng, Winston T K; Kuo, Tzong-Fu; Sun, Jui-Sheng; Lin, Feng-Huei; Tsai, Jui-Che

    2007-09-01

    Autologous fibrin glue has been demonstrated as a potential scaffold with very good biocompatibility for neocartilage formation. However, fibrin glue has been reported not to provide enough mechanical strength, but with many growth factors to interfere the tissue growth. Gelatin/hyaluronic acid/chondroitin-6-sulfate (GHC6S) tri-copolymer sponge has been prepared as scaffold for cartilage tissue engineering and showed very good results, but problems of cell seeding and cell distribution troubled the researchers. In this study, GHC6S particles would be added into the fibrin glue to provide better mechanical strength, better cell distribution, and easier cell seeding, which would be expected to improve cartilage regeneration in vitro. Porcine cryo-precipitated fibrinogen and thrombin prepared from prothrombin activated by 10% CaCl(2) solution were used in two groups. One is the fibrin glue group in which porcine chondrocytes were mixed with thrombin-fibrinogen solution, which was then converted into fibrin glue. The other is GHC6S-fibrin glue in which GHC6S particles were added into the thrombin-fibrinogen solution with porcine chondrocytes. After culturing for 1-2 weeks, the chondrocytes cultured in GHC6S-fibrin glue showed a round shape with distinct lacuna structure and showed positive in S-100 protein immunohistochemical stain. The related gene expressions of tissue inhibitor of metalloproteinases-1, matrix metalloproteinase-2, MT1-MMP, aggrecan, decorin, type I, II, X collagen, interleukin-1 beta, transforming growth factor-beta 1 (TGF-beta1), and Fas-associating death domain were checked by real-time PCR. The results indicated that the chondrocytes cultured in GHC6S-fibrin glue would effectively promote extracellular matrix (ECM) secretion and inhibit ECM degradation. The evidence could support that GHC6S-fibrin glue would be a promising scaffold for articular cartilage tissue engineering.

  20. Fibrin glue prevents complications of septal surgery: findings in a series of 100 patients.

    PubMed

    Daneshrad, Payam; Chin, Gregory Y; Rice, Dale H

    2003-03-01

    Septal surgery is a common type of otolaryngology--head and neck surgery, and it is often performed in combination with other procedures. Complications of septal surgery include bleeding, hematoma, infection, abscess formation, and perforation. The most common methods of preventing these complications are the use of nasal packing, septal splints, and quilting sutures as a means of approximating the septal flaps. In this article, we describe our study of an alternate method: fibrin glue. We used fibrin glue as the sole method of approximating flaps on 100 consecutive septal surgery patients. Our results indicate that the use of fibrin glue is effective, rapid, comfortable, and inexpensive.

  1. Fibrin Glue Injection for Cavernous Sinus Hemostasis Associated with Cranial Nerve Deficit: A Case Report

    PubMed Central

    Tavanaiepour, Daryoush; Jernigan, Sarah; Abolfotoh, Mohamad; Al-Mefty, Ossama

    2015-01-01

    Fibrin glue injection has been used to control intraoperative cavernous sinus (CS) venous bleeding. There have been no reported complications related to this maneuver. We present a case where a patient developed a sensory trigeminal nerve deficit after injection of fibrin glue into the posterior CS during resection of a petrosal meningioma. We believe that this deficit was due to the compression of the trigeminal ganglion similar to balloon compression procedures. Although fibrin glue injection may achieve satisfactory cavernous sinus homeostasis, the volume and rate of injection should be kept in mind to avoid a compressive lesion on traversing cranial nerves and surrounding structures, or retrograde filling of the venous tributaries. PMID:26251815

  2. [Fibrin glue for operative correction of septal deviations].

    PubMed

    Boenisch, M; Nolst Trenité, G J

    2004-11-01

    The routine procedure after correction of septal deviations is the utilization of endonasal packing in order to avoid septal haematoma. However, the mechanical pressure of this packing damages the mucociliar activity of the mucosa and causes lymphoedema by blocking the lymphatic vessels. Besides it represents a foreign body within the nose causing pain and unpleasant feeling for the patient. In order to avoid these disadvantages, in 57 patients we used fibrin glue instead of nasal packing. After correction of the septal deviation the two mucoperichondrium blades where fixed together with Tissucol Duo Quick. This technique not only leads to haemostasis, but also provides fixation of the newly modeled septum. In only one patient we found a small unilateral septal haematoma, in all other cases the postoperative period showed no complications. Patients had a significant reduction of endonasal crusts and postoperative swelling. Patients comfort increased significant without the (standard) nasal packing.

  3. Axillary lymphadenectomy for breast cancer in elderly patients and fibrin glue

    PubMed Central

    2013-01-01

    Background Axillary lymphadenectomy or sentinel biopsy is integral part of breast cancer treatment, yet seroma formation occurs in 15-85% of cases. Among methods employed to reduce seroma magnitude and duration, fibrin glue has been proposed in numerous studies with controversial results. Methods Thirty patients over 60 years underwent quadrantectomy or mastectomy with level I/II axillary lymphadenectomy; a suction drain was fitted in all patients. Fibrin glue spray were applied to the axillary fossa in 15 patients; the other 15 patients were treated with harmonic scalpel. Results Suction drainage was removed between post-operative Days 3 and 4. Seroma magnitude and duration were not significant in patients receiving fibrin glue compared with the harmonic scalpel group. Conclusions Use of fibrin glue does not always prevent seroma formation, but can reduce seroma magnitude, duration and necessary evacuative punctures. PMID:24266959

  4. Fibrin glue-infiltrating hemostasis for intractable bleeding from the liver or spleen during liver transplantation

    PubMed Central

    Jung, Dong-Hwan; Song, Gi-Won; Ha, Tae-Yong; Jwa, Eun-Kyeong; Lee, Sung-Gyu

    2016-01-01

    Portal hypertension induces congestion of the liver and spleen, thus any capsular or parenchymal injury to these organs can produce intractable bleeding which generally is not easily controlled. To cope with intractable bleeding such as being encountered during liver transplantation, we developed an infiltrating hemostasis technique as a conceptual shift from conventional application methods, in which fibrin glue is locally injected into the bleeding area on the liver or spleen. This technique, which uses a fibrin glue kit (2 ml kit; Greenplast, Green Cross, Seoul, Korea), consists of inserting the needle 0.5-1 cm deep at the bleeding point, forcefully injecting 1 ml of fibrin glue contained in the fibrin glue kit, and then slowly withdrawing the needle with continuous forceful injection of the remaining 1 ml of fibrin glue. We have successfully performed this procedure in 6 cases of living donor liver transplantation and in 2 cases of non-transplant resection of the cirrhotic livers with hepatocellular carcinoma. This technique was also successfully applied to one liver transplant recipient in which intractable bleeding occurred from a small laceration at the spleen. Our fibrin glue-infiltrating hemostasis would be indicated to intractable bleeding from the hepatic or splenic cut surface. In such a situation, it would be applicable as a second-line rescue method for hemostasis. PMID:28261700

  5. Fibrin glue-infiltrating hemostasis for intractable bleeding from the liver or spleen during liver transplantation.

    PubMed

    Hwang, Shin; Jung, Dong-Hwan; Song, Gi-Won; Ha, Tae-Yong; Jwa, Eun-Kyeong; Lee, Sung-Gyu

    2016-11-01

    Portal hypertension induces congestion of the liver and spleen, thus any capsular or parenchymal injury to these organs can produce intractable bleeding which generally is not easily controlled. To cope with intractable bleeding such as being encountered during liver transplantation, we developed an infiltrating hemostasis technique as a conceptual shift from conventional application methods, in which fibrin glue is locally injected into the bleeding area on the liver or spleen. This technique, which uses a fibrin glue kit (2 ml kit; Greenplast, Green Cross, Seoul, Korea), consists of inserting the needle 0.5-1 cm deep at the bleeding point, forcefully injecting 1 ml of fibrin glue contained in the fibrin glue kit, and then slowly withdrawing the needle with continuous forceful injection of the remaining 1 ml of fibrin glue. We have successfully performed this procedure in 6 cases of living donor liver transplantation and in 2 cases of non-transplant resection of the cirrhotic livers with hepatocellular carcinoma. This technique was also successfully applied to one liver transplant recipient in which intractable bleeding occurred from a small laceration at the spleen. Our fibrin glue-infiltrating hemostasis would be indicated to intractable bleeding from the hepatic or splenic cut surface. In such a situation, it would be applicable as a second-line rescue method for hemostasis.

  6. Sciatic nerve regeneration using a nerve growth factor-containing fibrin glue membrane.

    PubMed

    Ma, Shengzhong; Peng, Changliang; Wu, Shiqing; Wu, Dongjin; Gao, Chunzheng

    2013-12-25

    Our previous findings confirmed that the nerve growth factor-containing fibrin glue membrane provides a good microenvironment for peripheral nerve regeneration; however, the precise mechanism remains unclear. p75 neurotrophin receptor (p75(NTR)) plays an important role in the regulation of peripheral nerve regeneration. We hypothesized that a nerve growth factor-containing fibrin glue membrane can promote neural regeneration by up-regulating p75(NTR) expression. In this study, we used a silicon nerve conduit to bridge a 15 mm-long sciatic nerve defect and injected a mixture of nerve growth factor and fibrin glue at the anastomotic site of the nerve conduit and the sciatic nerve. Through RT-PCR and western blot analysis, nerve growth factor-containing fibrin glue membrane significantly increased p75(NTR) mRNA and protein expression in the Schwann cells at the anastomotic site, in particular at 8 weeks after injection of the nerve growth factor/fibrin glue mixture. These results indicate that nerve growth factor-containing fibrin glue membrane can promote peripheral nerve regeneration by up-regulating p75(NTR) expression in Schwann cells.

  7. Bonding of synthetic hydrogels with fibrin as the glue to engineer hydrogel-based biodevices.

    PubMed

    Nagamine, Kuniaki; Okamoto, Kohei; Kaji, Hirokazu; Nishizawa, Matsuhiko

    2014-07-01

    We show the fibrous protein fibrin can serve as biocompatible glue with which to bind synthetic cationic or anionic hydrogels together. Both the bonding to and detachment from the hydrogels by fibrin (gelation and degradation, respectively) proceeded enzymatically under physiological conditions. We built a hydrogel-based actuator to demonstrate the method.

  8. Microvascular anastomosis using fibrin glue and venous cuff in rat carotid artery.

    PubMed

    Sacak, Bulent; Tosun, Ugur; Egemen, Onur; Sakiz, Damlanur; Ugurlu, Kemal

    2015-04-01

    Conventional anastomosis with interrupted sutures can be time-consuming, can cause vessel narrowing, and can lead to thrombosis at the site of repair. The amount of suture material inside the lumen can impair the endothelium of the vessel, triggering thrombosis. In microsurgery, fibrin sealants have the potential beneficial effects of reducing anastomosis time and promoting accurate haemostasis at the anastomotic site. However, there has been a general reluctance to use fibrin glue for microvascular anastomoses because the fibrin polymer is highly thrombogenic and may not provide adequate strength. To overcome these problems, a novel technique was defined for microvascular anastomosis with fibrin glue and a venous cuff. Sixty-four rats in two groups are included in the study. In the experimental group (n = 32), end-to-end arterial anastomosis was performed with two stay sutures, fibrin glue, and a venous cuff. In the control group (n = 32), conventional end-to-end arterial anastomosis was performed. Fibrin glue assisted anastomosis with a venous cuff took less time, caused less bleeding at the anastomotic site, and achieved a patency rate comparable to that provided by the conventional technique. Fibrin sealant assisted microvascular anastomosis with venous cuff is a rapid, easy, and reliable technique compared to the end-to-end arterial anastomosis.

  9. Application of Fibrin Glue Sealant After Hepatectomy Does Not Seem Justified

    PubMed Central

    Figueras, Juan; Llado, Laura; Miro, Mónica; Ramos, Emilio; Torras, Jaume; Fabregat, Juan; Serrano, Teresa

    2007-01-01

    Objective: To evaluate the efficacy, amount of hemorrhage, biliary leakage, complications, and postoperative evolution after fibrin glue sealant application in patients undergoing liver resection. Summary Background Data: Fibrin sealants have become popular as a means of improving perioperative hemostasis and reducing biliary leakage after liver surgery. However, trials regarding its use in liver surgery remain limited and of poor methodologic quality. Patients and Methods: A total of 300 patients undergoing hepatic resection were randomly assigned to fibrin glue application or control groups. Characteristics and debit of drainage and postoperative complications were evaluated. The amount of blood loss, measurements of hematologic parameters liver test, and postoperative evolution (particularly involving biliary fistula and morbidity) was also recorded. Results: Postoperatively, no differences were observed in the amount of transfusion (0.15 ± 0.66 vs. 0.17 ± 0.63 PRCU; P = 0.7234) or in the patients that required transfusion (18% vs. 12%; P = 0.2), respectively, for the fibrin glue or control group. There were no differences in overall drainage volumes (1180 ± 2528 vs. 960 ± 1253 mL) or in days of postoperative drainage (7.9 ± 5 vs. 7.1 ± 4.7). Incidence of biliary fistula was similar in the fibrin glue and control groups, (10% vs. 11%). There were no differences regarding postoperative morbidity between groups (23% vs. 23%; P = 1). Conclusions: Application of fibrin sealant in the raw surface of the liver does not seem justified. Blood loss, transfusion, incidence of biliary fistula, and outcome are comparable to patients without fibrin glue. Therefore, discontinuation of routine use of fibrin sealant would result in significant cost saving. PMID:17414601

  10. Clinical evaluations of autologous fibrin glue and polyglycolic acid sheets as oral surgical wound coverings after partial glossectomy.

    PubMed

    Kouketsu, Atsumu; Nogami, Shinnosuke; Fujiwara, Minami; Mori, Shiro; Yamauchi, Kensuke; Hashimoto, Wataru; Miyashita, Hitoshi; Kurihara, Jun; Kawai, Tadashi; Higuchi, Keisuke; Takahashi, Tetsu

    2016-08-01

    Polyglycolic acid (PGA) sheets and commercial fibrin glue are commonly used to cover open wound surfaces in oral surgery. Compared to commercial fibrin glue composed of pooled allogeneic blood, autologous fibrin glue is less expensive and poses lower risks of viral infection and allergic reaction. Here, we evaluated postoperative pain, scar contracture, ingestion, tongue dyskinesia, and postoperative bleeding in 24 patients who underwent partial glossectomy plus the application of a PGA sheet and an autologous fibrin glue covering (autologous group) versus 11 patients in whom a PGA sheet and commercial fibrin glue were used (allogeneic group). The evaluated clinical measures were nearly identical in both groups. Remarkable wound surface granulation was recognized in two cases in the autologous group. No complications were observed in either group, including viral infection or allergic reaction. Abnormal postoperative bleeding in the wound region was observed in one case in the allogeneic group. Coagulation and adhesion of the autologous fibrin glue were equivalent to those of conventional therapy with a PGA sheet and commercial fibrin glue. Thus, our results show that covering wounds with autologous fibrin glue and PGA sheets may help avoid the risks of viral infection and allergic reaction in partial glossectomy cases.

  11. Adhesive arachnoiditis after percutaneous fibrin glue treatment of a sacral meningeal cyst.

    PubMed

    Hayashi, Kazunori; Nagano, Junji; Hattori, Satoshi

    2014-06-01

    The authors present the case of a 64-year-old woman who was referred for severe sacral pain. She reported that her pain had been longstanding, and had greatly increased after percutaneous fibrin glue placement therapy for a sacral meningeal cyst 2 months earlier at a different hospital. An MRI scan obtained immediately after fibrin glue placement at that hospital suggested that fibrin glue had migrated superiorly into the subarachnoid space from the sacral cyst to the level of L-4. On admission to the authors' institution, physical examination demonstrated no abnormal findings except for perianal hypesthesia. An MRI study obtained at admission demonstrated a cystic lesion in the peridural space from the level of S-2 to S-4. Inhomogeneous intensity was identified in this region on T2-weighted images. Because the cauda equina and nerve roots appeared to be compressed by the lesion, total cyst excision was performed. The cyst cavity was filled with fluid that resembled CSF, plus gelatinous material. Histopathological examination revealed that the cyst wall was composed of hyaline connective tissue with some calcification. No nervous tissue or ganglion cells were found in the tissue. The gelatinous material was acellular, and appeared to be degenerated fibrin glue. Sacral pain persisted to some extent after surgery. The authors presumed that migrated fibrin glue caused the development of adhesive arachnoiditis. The risk of adhesive arachnoiditis should be considered when this therapy is planned. Communication between a cyst and the subarachnoid space should be confirmed to be sufficiently narrow to prevent the migration of injected fibrin glue.

  12. Non-Recurrence Complications of Fibrin Glue Use in Pterygium Surgery: Prevention and Management

    PubMed Central

    Hüseyin Cagatay, Halil; Gökçe, Gökçen; Mete, Alper; Koban, Yaran; Ekinci, Metin

    2015-01-01

    Purpose : To present complications of using fibrin glue in conjunctival-limbal autografting in pterygium surgeries other than recurrences and discuss their prevention and management strategies. Materials and Methodology: The charts of all patients who underwent fibrin glue assisted pterygium excision surgery with conjunctival-limbal autograft transplantation from 2010 to 2013 were reviewed. Patients who developed complications except recurrence postoperatively were included in this study. Results : Sixteen (17.39%) of the 92 patients were detected with a complication. Graft dehiscence was diagnosed in 7 (7.6%) patients with 5 of them treated conservatively and 2 patients requiring suturing. Five (5.43%) patients were diagnosed with cyst formation between the graft and conjunctiva or in the graft-removal area; these cysts were primarily excised and no additional problems occurred. Corneal dellen developed in 3 (3.26%) patients and 2 of them regressed after cessation of topical steroids and application of lubricant therapy while one was treated with amniotic membrane transplantation. Residual fibrin glue particles had stiffened on the ocular surface, which resulted in intensive pain and irritation in one (1.08%) patient on the same day of the surgery. The patient’s complaints were reduced by removing these particles from the ocular surface under topical anesthesia. Conclusion : Complications in fibrin glue assisted pterygium surgery are relatively different from other techniques. To avoid potential complications of fibrin glue in pterygium surgery, peroperatively ophthalmologists should ensure the conjunctival autograft and conjunctiva are properly adhered, fibrin glue remnants are completely removed from the ocular surface, and no Tenon’s capsule remains between the graft and the conjunctiva. PMID:26862358

  13. Repaired left ventricular free wall rupture after acute myocardial infarction by percutaneous intrapericardial fibrin-glue injection therapy.

    PubMed

    Okonogi, Taichi; Otsuka, Yoritaka; Saito, Taro

    2013-09-01

    Left ventricular free wall rupture is a rare, but occasionally lethal, complication after acute myocardial infarction (AMI). This case report describes a patient who presented with cardiogenic shock due to oozing-type rupture secondary to AMI and successfully underwent percutaneous intrapericardial fibrin-glue injection therapy. Cardiac magnetic resonance imaging demonstrated the thin layer of fibrin that covered the ruptured infarct myocardium immediately after fibrin-glue injection and its disappearance without any complications at 6 months.

  14. Slime method: modified hemostatic technique of fibrin glue in major cardiothoracic surgery.

    PubMed

    Matsushita, Tsutomu; Masuda, Shinsuke; Inoue, Tomoya

    2011-05-01

    Surgical bleeding from anastomoses due to systemic heparinization or prolonged extracorporeal circulation, which is more effectively controlled with topical hemostatic agents than with sutures, has been one of the major problems in cardiovascular surgery. We describe a novel hemostatic technique using fibrin glue. Briefly, the two components of fibrinogen and thrombin solutions are mixed and put over the bleeding point immediately after the glue has become a viscous gel. Within a minute of local compression, the glue sets well enough to stop the bleed.

  15. Scaffold architecture and fibrin gels promote meniscal cell proliferation

    SciTech Connect

    Pawelec, K. M. E-mail: jw626@cam.ac.uk; Best, S. M.; Cameron, R. E.; Wardale, R. J. E-mail: jw626@cam.ac.uk

    2015-01-01

    Stability of the knee relies on the meniscus, a complex connective tissue with poor healing ability. Current meniscal tissue engineering is inadequate, as the signals for increasing meniscal cell proliferation have not been established. In this study, collagen scaffold structure, isotropic or aligned, and fibrin gel addition were tested. Metabolic activity was promoted by fibrin addition. Cellular proliferation, however, was significantly increased by both aligned architectures and fibrin addition. None of the constructs impaired collagen type I production or triggered adverse inflammatory responses. It was demonstrated that both fibrin gel addition and optimized scaffold architecture effectively promote meniscal cell proliferation.

  16. Microporous Nanofibrous Fibrin-based Scaffolds for Bone Tissue Engineering

    PubMed Central

    Osathanon, Thanaphum; Linnes, Michael L.; Rajachar, Rupak M.; Ratner, Buddy D.; Somerman, Martha J.; Giachelli, Cecilia M.

    2008-01-01

    The fibrotic response of the body to synthetic polymers limits their success in tissue engineering and other applications. Though porous polymers have demonstrated improved healing, difficulty in controlling their pore sizes and pore interconnections has clouded the understanding of this phenomenon. In this study, a novel method to fabricate natural polymer/calcium phosphate composite scaffolds with tightly controllable pore size, pore interconnection, and calcium phosphate deposition was developed. Microporous, nanofibrous fibrin scaffolds were fabricated using sphere-templating methods. Composite scaffolds were created by solution deposition of calcium phosphate on fibrin surfaces or by direct incorporation of nanocrystalline hydroxyapatite (nHA). The SEM results showed that fibrin scaffolds exhibited a highly porous and interconnected structure. Osteoblast-like cells, obtained from murine calvaria, attached, spread and showed a polygonal morphology on the surface of the biomaterial. Multiple cell layers and fibrillar matrix deposition were observed. Moreover, cells seeded on mineralized fibrin scaffolds exhibited significantly higher alkaline phosphatase activity as well as osteoblast marker gene expression compared to fibrin scaffolds and nHA incorporated fibrin scaffolds (0.25 g and 0.5 g). All types of scaffolds were degraded both in vitro and in vivo. Furthermore, these scaffolds promoted bone formation in a mouse calvarial defect model and the bone formation was enhanced by addition of rhBMP-2. PMID:18640716

  17. Percutaneous injection of fibrin glue for persistent nephrocutaneous fistula after partial nephrectomy.

    PubMed

    Bradford, Timothy J; Wolf, J Stuart

    2005-04-01

    We report a case of persistent urinary leak of nearly 4 months' duration after open surgical partial nephrectomy. The urinary leak was refractory to ureteral stenting, urethral catheter placement, and ureteroscopic fulguration. Fibrin glue was injected percutaneously under fluoroscopic guidance into the nephrocutaneous fistula tract, which resulted in its prompt and complete resolution.

  18. Effect of cultured autologous oral keratinocyte suspension in fibrin glue on oral wound healing in rabbits.

    PubMed

    Lis, G J; Zarzecka, J; Litwin, J A; Jasek, E; Cichocki, T; Zapała, J

    2012-09-01

    The effect of cultured autologous oral keratinocyte suspension in fibrin glue on the healing of surgically produced oral mucosal wounds was assessed in the rabbit model. Using the light microscope and a digital image analysis system, the epithelization parameters (marginal epithelization and percentage of wound re-epithelization) were measured in haematoxylin-eosin stained sections of the wound area and compared with those of wounds treated with fibrin glue alone and untreated ones. The epithelization was significantly higher in keratinocytes plus fibrin glue-treated wounds on postoperative days 3 and 7. No significant differences were observed on postoperative day 1, when the healing process had just begun, and on postoperative day 14, when re-epithelization was completed or nearly completed in all groups. The inflammatory infiltration of the wounded mucosa was weakest in keratinocyte-treated wounds and strongest in untreated wounds. In conclusion, suspension of cultured autologous oral keratinocytes in fibrin glue significantly accelerates oral wound healing in the rabbit model and could be beneficial in the treatment of oral wounds in patients.

  19. Application of fibrin glue to damaged bladder mucosa in a case of BK viral hemorrhagic cystitis.

    PubMed

    Purves, J Todd; Graham, Michael L; Ramakumar, Sanjay

    2005-09-01

    BK virus is a common cause of severe hemorrhagic cystitis refractory to standard treatment. We describe a technique to achieve hemostasis after failed conservative therapy using fibrin glue applied suprapubically while visualizing and insufflating the bladder through a cystoscope. Long-term hemostasis was achieved using this novel procedure.

  20. Combined treatment of iatrogenic rectourethral fistula with endoscopic fibrin glue application and clipping.

    PubMed

    Dolay, Kemal; Aras, Bekir; Tuğcu, Volkan; Ozbay, Bedi; Aygün, Erşan; Taşçi, Ali Ihsan

    2007-04-01

    Rectourethral fistula (RUF) formation is a rare complication of prostatic surgery and other pelvic surgical procedures. The results of operations to correct RUF are not always satisfying, with a particular risk of recurrent breakdown or stricture formation at the site of the urethral closure. We present a case of a small RUF treated videoendoscopically with fibrin-glue application combined with endoscopic clipping.

  1. Fibrin sealants from fresh or fresh/frozen plasma as scaffolds for in vitro articular cartilage regeneration.

    PubMed

    Dare, Emma V; Griffith, May; Poitras, Philippe; Wang, Tao; Dervin, Geoffrey F; Giulivi, Antonio; Hincke, Maxwell T

    2009-08-01

    Our objective was to evaluate human CryoSeal fibrin glue derived from single units of plasma as scaffolds for articular cartilage tissue engineering. Human articular chondrocytes were encapsulated into genipin cross-linked fibrin glue derived from individual units of fresh or frozen plasma using the CryoSeal fibrin sealant (FS) system. The constructs were cultured for up to 7 weeks in vitro under low (5%) or normal (21%) oxygen. Chondrocyte viability was >90% within the fibrin gels. Hypoxia induced significant increases in collagen II and Sox9 gene expression and a significant decrease in collagen I. A significant increase in collagen II was detected in fresh plasma-derived cultures, while only collagen I was significantly increased in frozen plasma cultures. Significant increases in total glycosaminoglycan and collagen were detected in the extracellular matrix secreted by the encapsulated chondrocytes. A significant increase in compression modulus was only observed for fresh plasma-derived gels, which is likely explained by a greater amount of collagen type I detected after 7 weeks in frozen compared to fresh plasma gels. Our results indicate that CryoSeal fibrin glue derived from fresh plasma is suitable as a tissue engineering scaffold for human articular chondrocytes, and therefore should be evaluated for autologous articular cartilage regeneration.

  2. Fibrin glue repair leads to enhanced axonal elongation during early peripheral nerve regeneration in an in vivo mouse model.

    PubMed

    Koulaxouzidis, Georgios; Reim, Gernot; Witzel, Christian

    2015-07-01

    Microsurgical suturing is the gold standard of nerve coaptation. Although literature on the usefulness of fibrin glue as an alternative is becoming increasingly available, it remains contradictory. Furthermore, no data exist on how both repair methods might influence the morphological aspects (arborization; branching) of early peripheral nerve regeneration. We used the sciatic nerve transplantation model in thy-1 yellow fluorescent protein mice (YFP; n = 10). Pieces of nerve (1cm) were grafted from YFP-negative mice (n = 10) into those expressing YFP. We performed microsuture coaptations on one side and used fibrin glue for repair on the contralateral side. Seven days after grafting, the regeneration distance, the percentage of regenerating and arborizing axons, the number of branches per axon, the coaptation failure rate, the gap size at the repair site and the time needed for surgical repair were all investigated. Fibrin glue repair resulted in regenerating axons travelling further into the distal nerve. It also increased the percentage of arborizing axons. No coaptation failure was detected. Gap sizes were comparable in both groups. Fibrin glue significantly reduced surgical repair time. The increase in regeneration distance, even after the short period of time, is in line with the results of others that showed faster axonal regeneration after fibrin glue repair. The increase in arborizing axons could be another explanation for better functional and electrophysiological results after fibrin glue repair. Fibrin glue nerve coaptation seems to be a promising alternative to microsuture repair.

  3. Fibrin glue application in the management of refractory chylous ascites in children.

    PubMed

    Zeidan, S; Delarue, A; Rome, A; Roquelaure, B

    2008-04-01

    The purpose of this retrospective review of the charts of 6 children who underwent surgical treatment of chylous ascites refractory to conservative measures between 1993 and 2006 was to evaluate the efficiency of fibrin glue application for control of lymph leakage. Five children had postoperative chylous ascites (neuroblastoma, 4; cystic lymphangioma, 1) and 1 had a congenital malformation. Surgical exploration revealed large areas of diffuse lymphatic leakage in all of the patients. Lymphatic fistula was not identified intraoperatively in any patient. Ingestion of lipophilic dye in a concentrated fatty meal was not helpful in locating a lymph fistula. Absorbable mesh was used in association with glue application in the last 3 patients treated. Control of ascites was achieved immediately in 2 patients and within 3 weeks in 2 patients. Repeat surgery was required in the remaining 2 patients. The mean follow-up time was 4.3 years. One patient died of tumor recurrence 12 months after surgical treatment without relapse of the ascites. Two mild late recurrences were observed at 6 and 11 months after surgery and were managed conservatively. The findings of this study show that fibrin glue application on absorbable mesh after dissection of the leakage zones is easy, safe, and effective. We recommend that surgery with glue application be repeated until control of ascites is achieved. We suggest fibrin glue application as a preventive measure against postoperative chylous ascites.

  4. Preparation of hybrid scaffold from fibrin and biodegradable polymer fiber.

    PubMed

    Hokugo, Akishige; Takamoto, Tomoaki; Tabata, Yasuhiko

    2006-01-01

    A biodegradable hybrid scaffold was prepared from fibrin and poly(glycolic acid) (PGA) fiber. Mixed fibrinogen and thrombin solution homogeneously dispersed in the presence of various amounts (0, 1.5, 3.0, and 6.0mg) of PGA fiber was freeze-dried to obtain fibrin sponges with or without PGA fiber incorporation. By scanning electron microscopy observation, the fibrin sponges had an interconnected pore structure, irrespective of the amount of PGA fiber incorporated. PGA fiber incorporation enabled the fibrin sponges to significantly enhance their compression strength. In vitro cell culture studies revealed that the number of L929 fibroblasts initially attached was significantly larger for any fibrin sponge with PGA fiber incorporation than for the fibrin sponge without PGA fiber. The shrinkage of sponges after cell seeding was suppressed by fiber incorporation. It is possible that the shrinkage suppression of sponges maintains their intraspace, resulting in the superior cell attachment of a sponge with PGA fiber incorporation. After subcutaneous implantation into the backs of mice, the residual volume of a fibrin sponge with PGA fiber incorporation was significant compared with that of a fibrin sponge without PGA fiber. Larger number of cells infiltrated deep inside the fibrin sponges with PGA fiber incorporation implanted subcutaneously. It is concluded that the fibrin sponge reinforced by fiber incorporation is a promising three-dimensional scaffold of cells for tissue engineering.

  5. Comparison of fibrin glue and suture in the healing of teat incisions in lactating goats.

    PubMed

    Alan, M; Yener, Z; Tasal, I; Bakir, B

    2008-05-01

    The aims of this study were to investigate whether fibrin glue can be used to close experimentally induced incisions of the teat (mammary papillae) in lactating goats and to compare the healing of the glued with the sutured incisions. Four clinically healthy lactating dairy goats, namely 8 mammary papillae were used. After surgical preparation of the papillae, a 3.5 cm long incision of each papilla was made through skin, muscular layer and mucosa into the papillary sinus. The wounds in the right papillae in all goats were closed with U-shaped uninterrupted 00 chromic catgut sutures. The wounds in the left papillae in all goats were closed, using fibrin glue. One incision was seen to be dehisced and fistulous one day after in fibrin glued teats. The animals were slaughtered 8 days after surgical manipulation. The mammary papillae were removed and examined in the viewpoint on gross and microscopic findings. The healing of wounds was slower and feeble in glued mammary papillary incisions, however faster and stronger in sutured incisions on day 8 after operations. But, available outcomes like less tissue thickness and positive cosmetic results could be obtained byfibrin glue used on mammary papillary incisions, which are very important for teats to be milked by hand and milking machine. Results suggest that it is advisable to use only one or two simple interrupted sutures in teat incisions glued with fibrin to prevent the dehiscence but with a more reliable healing than the sutured incisions.

  6. [Experience in fibrin glue application for the treatment of non-formed fistulas of the gastrointestinal tract].

    PubMed

    Chernousov, A F; Khorobrykh, T V; Ishchenko, O V

    2006-01-01

    Fibrin glue was used for conservative closure of non-formed fistulas of the gastrointestinal tract in 38 patients. The variant of fibrin glue produced with cryoprecipitation (concentration of coagulant protein not less than 60 g/l) was applied as reparation stimulator. Fibrin glue has been used for closure of 8 duodenal and 4 gastric fistulas with chime loss to 1.5 l per day. Surgeries for palliative arrest of the intestinal loop with a fistula and classical obturators were not performed. The fistulas have been closed in 36 patients, 3 patients died (only 1 of them due to fistula). Fibrin glue reduced surgical aggression and improved treatment results in critically ill patients.

  7. Successful Endoscopic Management of Non-Healing Perforated Duodenal Ulcer with Polyglycolic Acid Sheet and Fibrin Glue

    PubMed Central

    Shibagaki, Kotaro; Matsuda, Kayo; Fukuyama, Chika; Okada, Mayumi; Mikami, Hironobu; Izumi, Daisuke; Yamashita, Noritsugu; Okimoto, Eiko; Fukuda, Naoki; Aimi, Masahito; Fukuba, Nobuhiko; Oshima, Naoki; Takanashi, Toshihiro; Matsubara, Takeshi; Ishimura, Norihisa; Ishihara, Shunji; Kinoshita, Yoshikazu

    2016-01-01

    In recent years, treatment techniques in which polyglycolic acid sheets are applied to various situations with fibrin glue have exhibited great clinical potential, and previous studies have reported safety and efficacy. We describe closure of a non-healing perforated duodenal ulcer with the use of a polyglycolic acid sheet and fibrin glue in an elderly patient who was not a candidate for surgery. PMID:28119948

  8. Enhancement of posterolateral lumbar spine fusion using recombinant human bone morphogenetic protein-2 and mesenchymal stem cells delivered in fibrin glue.

    PubMed

    Liu, Zunpeng; Zhu, Yue; Zhu, Haitao; He, Xiaoning; Liu, Xinchun

    2016-10-01

    Mesenchymal stem cells have shown great potential for accelerating bone healing. In the present study, we evaluate the efficacy of fibrin glue/mesenchymal stem cells/recombinant human bone morphogenetic protein-2 composite for posterolateral spinal fusion in a rabbit model. Forty adult rabbits underwent posterolateral intertransverse fusion at the L5-L6 level. The animals were randomly divided into four groups based on the implant material: fibrin glue, fibrin glue/mesenchymal stem cells composite, fibrin glue-recombinant human bone morphogenetic protein-2 (fibrin glue/recombinant human bone morphogenetic protein-2) composite, and fibrin glue/mesenchymal stem cells/recombinant human bone morphogenetic protein-2 composite. After six weeks, the rabbits were euthanized for manual palpation, radiographic examination, biomechanical testing, and histology. Manual palpation results showed that the fusion rate for fibrin glue, fibrin glue/mesenchymal stem cells, fibrin glue/recombinant human bone morphogenetic protein-2, and fibrin glue/mesenchymal stem cells/recombinant human bone morphogenetic protein-2 was 0, 0, 40%, and 70%, respectively. Moreover, fusion rate determined by radiographic examination for fibrin glue, fibrin glue/mesenchymal stem cells, fibrin glue/recombinant human bone morphogenetic protein-2, and fibrin glue/mesenchymal stem cells/recombinant human bone morphogenetic protein-2 was 0, 0, 40%, and 80%, respectively. Gray analysis showed that fibrin glue/recombinant human bone morphogenetic protein-2 group had higher ossification area and density than fibrin glue group; and fibrin glue/mesenchymal stem cells/recombinant human bone morphogenetic protein-2 group had higher ossification area and density than fibrin glue/recombinant human bone morphogenetic protein-2 group. Formation of continuous bone masses between L5 and L6 level in mesenchymal stem cells/recombinant human bone morphogenetic protein-2/fibrin glue group was further confirmed by computed

  9. Nitrogenous subcutaneous emphysema caused by spray application of fibrin glue during retroperitoneal laparoscopic surgery.

    PubMed

    Matsuse, Shinji; Maruyama, Atsushi; Hara, Yoshiki

    2011-06-01

    We report a case of a patient treated by retroperitoneoscopic partial nephrectomy who developed nitrogenous subcutaneous emphysema (SCE) as a complication. The use of a nitrogen gas-pressured fibrin tissue adhesive applied as a spray caused excessively increased pressure in the closed retroperitoneal space and resulted in widespread SCE with protracted clinical course. To the best of our knowledge, this is the first report of nitrogenous SCE associated with pneumoperitoneum. The clinical significance of nitrogenous SCE is emphasized, and the risks associated with the use of fibrin glue as a spray during laparoscopic surgery are discussed.

  10. Bond strength of fibrin glue between layers of porcine small intestine submucosa (SIS).

    PubMed

    Nicoson, Zach R; Buckley, Christine A

    2002-01-01

    This study investigated the strength of the bond between layers of small intestine submucosa (SIS, Cook Biotech, Inc., West Lafayette, IN) glued with commercially available fibrin glue (Haemacure Corporation). To determine the conditions leading to the highest bond strength, three parameters were varied: the concentration of the fibrin component, the concentration of the thrombin component, and the type of applicator used to apply the two components. Five glue concentrations and two applicator types, a Paasch Airbrush and one provided with the Haemacure glue kit, were studied. To make the test specimens, two pieces of SIS were each sprayed separately with 1 mL of one of the glue components. The two pieces were then adhered and allowed to cure for two minutes. After the panels were glued, frozen, and lyophilized, they were cut to size according to ASTM Standard D 1876: Peel Resistance of Adhesives (T-Peel Test). The panels were then rehydrated, and tests were performed in an MTS tensile testing machine set to pull at a constant rate of 1 mm/sec over a 100 mm span. The mean force over the duration of the test was computed as specified in the ASTM standard. The airbrush was found to produce a stronger bond than the applicator supplied by Haemacure. Judged qualitatively, the airbrush also produced a much more uniform spray and consistent flow rate than the glue manufacturer's applicator. The data suggest that a decrease in concentration of both glue components yields increased bond strength, although variability in the results also increased with decreased glue component concentration.

  11. Fibrin glue as adjuvant treatment for gastrocutaneous fistula after gastrostomy tube removal.

    PubMed

    González-Ojeda, A; Avalos-González, J; Muciño-Hernández, M I; López-Ortega, A; Fuentes-Orozco, C; Sánchez-Hochoa, M; Anaya-Prado, R; Arenas-Márquez, H

    2004-04-01

    Gastrocutaneous fistulas are infrequent after gastrostomy tube removal. However, if the fistulous tract remains permeable, even low-volume output can produce significant cutaneous burns. The use of biodegradable adhesives has been described, where fibrin glue is applied directly over the fistulous tract or under the guidance of procedures such as upper or lower gastrointestinal endoscopy or fistuloscopy. We studied the use of fibrin glue in five consecutive adult patients with gastrocutaneous fistulas after gastrostomy tube removal, with no complications that might impede spontaneous closure. A comparison group included seven patients treated during the preceding 2 years with conservative medical management, who were not treated with fibrin glue. There was no difference between the two groups with regard to age and gender, nor with regard to type of gastrostomy (surgical or endoscopic). The mean output volume from the fistulas was 151.4 +/- 146.1 ml/24 h in the study group and 115.0 +/- 42.7 ml/24 h in the control group, which was not significantly different ( P = 0.80). The duration of previous conservative treatment was 93.8 +/- 85.1 days for the study group and 95.8 +/- 80.7 days for the control group and this also did not differ significantly ( P = 0.93). The time to achieve total fistula closure was 7.0 +/- 3.1 days in the study group and 32.7 +/- 15.7 days in the control group. This difference was statistically significant ( P < 0.004). The time required before oral feeding could be recommenced after spontaneous or induced closure was similar in the two groups, at 2.8 +/- 1.3 days and 4.71 +/- 2.36 days, respectively. Endoscopic guidance allows direct instillation of fibrin glue via the external opening through the whole fistulous tract. This procedure reduces the time required for the closure of gastrocutaneous fistulas.

  12. [Use of human fibrin glue (Tissucol) in the treatment of recurrent fistulas].

    PubMed

    La Torre, F; Pascarella, G; Nicolai, A P; Pontone, P; Montori, A

    1995-05-01

    In this study, the treatment of either primitive or secondary abdominal relapsed fistulas with Human Fibrin Glue (Tissucol) is reported. Twelve patients with different types of fistulas were treated in day hospital with the above mentioned procedure. Apart from two patients, the good percentage of success obtained in a short period of time is stressed. Results show that such a technique may be favourably adopted, nevertheless a correct first surgical procedure is recommended.

  13. Common bile duct injury by fibrin glue: report of a rare complication.

    PubMed

    Yang, Yu-Long; Zhang, Cheng; Zhang, Hong-Wei; Wu, Ping; Ma, Yue-Feng; Lin, Mei-Ju; Shi, Li-Jun; Li, Jing-Yi; Zhao, Mu

    2015-03-07

    Fibrin glue is widely used in clinical practice and plays an important role in reducing postoperative complications. We report a case of a 65-year-old man, whose common bile duct was injured by fibrin glue, with a history of failed laparoscopic cholecystectomy and open operation for uncontrolled laparoscopic bleeding. In view of the persistent liver dysfunction, xanthochromia and skin itching, the patient was admitted to us for further management. Ultrasound, computed tomography, and magnetic resonance cholangiopancreatography (MRCP) revealed multiple stones in the common bile duct, and liver function tests confirmed the presence of obstructive jaundice and liver damage. Endoscopic retrograde cholangiopancreatography was unsuccessfully performed to remove choledocholithiasis, but a small amount of tissue was removed and pathologically confirmed as calcified biliary mucosa. This was followed by open surgery for suspicious cholangiocarcinoma. There was no evidence of cholangiocarcinoma, but the common bile duct wall had a defect of 8 mm × 10 mm at Calot's triangle. A hard, grid-like foreign body was removed, which proved to be solid fibrin glue. Subsequently, the residual choledocholithiasis was removed by a choledochoscopic procedure, and the common bile duct deletion was repaired by liver round ligament with T-tube drainage. Six months later, endoscopy was performed through the T-tube fistula and showed a well-repaired bile duct wall. Eight months later, MRCP confirmed no bile duct stenosis. A review of reported cases showed that fibrin glue is widely used in surgery, but it can also cause organ damage. Its mechanism may be related to discharge reactions.

  14. Efficacy of bubaline fibrin glue on full-thickness pinch and punch skin grafting in a pig.

    PubMed

    Dejyong, Krittee; Kaewamatawong, Theerayuth; Brikshavana, Pasakorn; Durongphongtorn, Sumit

    2017-03-01

    Fibrin glue, which is formed from the action of thrombin (a serine protease) on fibrinogen, has been developed for use as an adhesive to increase the success of skin graft surgery. The objective of this study was to evaluate if bubaline fibrin glue would promote skin graft survival in pigs. The grafting was divided into two steps. First, granulation wound preparation was performed in a healthy swine by creating four full-skin depth wounds (3 × 12 cm(2)) at the dorsal part of the loin area on each side. Second, pinch and punch skin grafting, where eight skin discs (0.6 cm diameter) were regularly placed (0.6 cm distance apart) in the granulation tissue bed of each wound, was performed 5 days later. The bubaline fibrin glue was added prior to application of the 16 skin graft discs in two of the wounds, while no glue was added to the other 16 skin graft discs in the other two wounds. The number of surviving graft pieces and histological examination was evaluated after 3, 7, and 14 days post-operation and compared by pairing between the control and the bubaline fibrin glue groups. The number of grafts that remained at 3 and 7 days post-operation and the number of new microvessels at 3 days post-operation were significantly higher ( p < 0.05) in the bubaline fibrin glue group than in the control group. However, there was no significant difference in the number of fibroblasts, the intensity of scarring and the intensity of inflammation between the two groups, except for the significantly lower intensity of inflammation at 7 days post-operation in the bubaline fibrin glue group. In conclusion, bubaline fibrin glue has the advantage of decreasing the skin graft loss by approximately 31.3-37.5% compared with the control group and also promotes angiogenesis.

  15. Introduction of a potent single-donor fibrin glue for vascular anastomosis: An animal study

    PubMed Central

    Ardakani, Mehdi Rasti; Hormozi, Abdoljalil Kalantar; Ardakani, Jalal Rasti; Davarpanahjazi, Amir Hossein; Moghadam, Ali Shayesteh

    2012-01-01

    Background: Vascular anastomosis is considered as a difficult surgical procedure. Although different alternative methods have been tried to tackle these difficulties, none were found to be successful. Commercial fibrin glue has recently been used for vascular anastomosis. However, it did not gain popularity due to some limitations such as low tensile strength, rapid removal by the immune system, and risk of transmission of blood-borne viral infections. In this article, we presented a novel method for producing single-donor human fibrin glue and determined its success rate for vascular anastomosis in an animal model. Materials ans Methods: In this study, 3 mL of single-donor fibrin sealant was prepared from 150 mL of whole blood containing 50-70 mg/mL of fibrinogen. The study was performed on 10 dogs and 5 cats. After transection of the carotid artery, both ends were anastomosed by means of 3-4 sutures (Prolene 8-0). The suture line was then sealed with one layer of the new fibrin sealant. After 3-8 weeks, the site of anastomosis was evaluated angiographically and morphologically for healing and possible complications such as thrombosis or aneurysm. Results: In evaluations 3 weeks after the surgery, all arterial anastomoses were patent in dogs, but some degree of subintimal hyperplasia was noted. After 8 weeks, all anastomoses were patent and the degree of subintimal hyperplasia was decreased. In cats on the other hand, after 4 weeks, all anastomoses were patent and subintimal hyperplasia was absent. Conclusions: Single-donor fibrin glue was a quite reliable and practical alternative to minimize suturing and therefore operative time in our animal model. This sealant can easily be obtained from the patient's whole blood. Its application in humans would require further studies. PMID:23626612

  16. New method to prepare autologous fibrin glue on demand.

    PubMed

    Alston, Steven M; Solen, Kenneth A; Broderick, Adam H; Sukavaneshvar, Sivaprasad; Mohammad, S Fazal

    2007-04-01

    Fibrin-based sealants are commonly employed to arrest bleeding after surgery. Usually, fibrinogen obtained from pooled human plasma is used to prepare sealants, with attendant risk of blood-borne infections. Availability of autologous fibrinogen would eliminate this risk. To prepare autologous fibrin sealant, fibrinogen was precipitated from human plasma using protamine. Under optimal conditions (10-mg/mL protamine and 22 degrees C), 96 +/- 4% of clottable fibrinogen was recovered by a simple and inexpensive technique. Nearly 50% of the plasma factor XIII was also recovered with the fibrinogen. Using bovine thrombin, the fibrinogen was clotted (1) in a specially designed mold to measure tensile strength and (2) in a lap joint between 2 aortic vessel strips to measure adhesion strength. Tensile and adhesion strengths increased with increasing fibrinogen concentration, and they were increased by the addition of calcium chloride. The addition of aprotinin and -aminocaproic acid to the fibrinogen concentrate before clotting had no effect on the mechanical properties of the clots. After adding thrombin to sealant containing 15-mg/mL fibrinogen, maximum tensile strength was achieved in 1-5 min, and maximum adhesion strength was reached in 5-15 min. For the sealant with 30-60-mg/mL fibrinogen and added calcium, the tensile strength was equivalent to that of the commercial fibrin sealant Tisseel. The adhesion strength of sealant with 30-60-mg/mL fibrinogen exceeded the adhesive strength of Tisseel under identical conditions. Autologous fibrin sealant is an attractive alternative to commercial sealants. It can be readily prepared from 5-mL plasma or more and exhibits mechanical properties equivalent to those of the leading commercial sealant.

  17. A basic study of the effect of the shielding method with polyglycolic acid fabric and fibrin glue after endoscopic submucosal dissection.

    PubMed

    Hiroyuki, Tsujimoto; Kohki, Yamanaka; Hiroe, Miyamoto; Tsunehito, Horii; Rie, Abe; Shota, Tanaka; Hiroko, Torii; Yuki, Ozamoto; Takagi, Toshitaka; Kengo, Takimoto; Takashi, Torii; Hideyuki, Konishi; Hideki, Takamori; Akeo, Hagiwara

    2016-12-01

    Background and study aims: Recently, the shielding method with polyglycolic acid (PGA) fabric and fibrin glue (P-F method) has been reported to prevent serious complications after endoscopic submucosal dissection (ESD). However, the effectiveness and mechanism to prevent complications by this method remain unclear and the corresponding basic research has not been fully conducted. Methods and results: We examined the effectiveness and mechanism of the P-F method, using a surgical ESD model of canine stomach and in vitro experiments. In the model experiment treated by P-F method or no treatment (control), ulcer perforation or penetration occurred only in the control group, but not in the P-F group. Microscopically, the P-F group showed less damages of the ulcer lesion than that of the control group, showing thicker granulation tissues including PGA fibers on the third day and excellent mucosal regeneration on the fourteenth day. In vitro culture experiments showed that fibroblasts proliferated at a significantly higher rate on PGA than on fibrin or a complex thereof. However, under hydrochloric acid treatment, fibroblasts were protected by fibrin, followed by the complex of both, and PGA. Conclusion: The P-F method exhibited a protective effect against gastric juice by fibrin glue to reduce tissue damages and a scaffold function of PGA fabric to induce better granulation formation at the earlier phase, resulting in excellent long-term tissue repair, on ulcer lesion following ESD, although the results were based on basic experiments.

  18. A basic study of the effect of the shielding method with polyglycolic acid fabric and fibrin glue after endoscopic submucosal dissection

    PubMed Central

    Hiroyuki, Tsujimoto; Kohki, Yamanaka; Hiroe, Miyamoto; Tsunehito, Horii; Rie, Abe; Shota, Tanaka; Hiroko, Torii; Yuki, Ozamoto; Takagi, Toshitaka; Kengo, Takimoto; Takashi, Torii; Hideyuki, Konishi; Hideki, Takamori; Akeo, Hagiwara

    2016-01-01

    Background and study aims: Recently, the shielding method with polyglycolic acid (PGA) fabric and fibrin glue (P-F method) has been reported to prevent serious complications after endoscopic submucosal dissection (ESD). However, the effectiveness and mechanism to prevent complications by this method remain unclear and the corresponding basic research has not been fully conducted. Methods and results: We examined the effectiveness and mechanism of the P-F method, using a surgical ESD model of canine stomach and in vitro experiments. In the model experiment treated by P-F method or no treatment (control), ulcer perforation or penetration occurred only in the control group, but not in the P-F group. Microscopically, the P-F group showed less damages of the ulcer lesion than that of the control group, showing thicker granulation tissues including PGA fibers on the third day and excellent mucosal regeneration on the fourteenth day. In vitro culture experiments showed that fibroblasts proliferated at a significantly higher rate on PGA than on fibrin or a complex thereof. However, under hydrochloric acid treatment, fibroblasts were protected by fibrin, followed by the complex of both, and PGA. Conclusion: The P-F method exhibited a protective effect against gastric juice by fibrin glue to reduce tissue damages and a scaffold function of PGA fabric to induce better granulation formation at the earlier phase, resulting in excellent long-term tissue repair, on ulcer lesion following ESD, although the results were based on basic experiments. PMID:27995192

  19. Fibrinogen and thrombin concentrations are critical for fibrin glue adherence in rat high-risk colon anastomoses

    PubMed Central

    Buen, Eliseo Portilla-de; Orozco-Mosqueda, Abel; Leal-Cortés, Caridad; Vázquez-Camacho, Gonzalo; Fuentes-Orozco, Clotilde; Alvarez-Villaseñor, Andrea Socorro; Macías-Amezcua, Michel Dassaejv; González-Ojeda, Alejandro

    2014-01-01

    OBJECTIVE: Fibrin glues have not been consistently successful in preventing the dehiscence of high-risk colonic anastomoses. Fibrinogen and thrombin concentrations in glues determine their ability to function as sealants, healers, and/or adhesives. The objective of the current study was to compare the effects of different concentrations of fibrinogen and thrombin on bursting pressure, leaks, dehiscence, and morphology of high-risk ischemic colonic anastomoses using fibrin glue in rats. METHODS: Colonic anastomoses in adult female Sprague-Dawley rats (weight, 250-350 g) treated with fibrin glue containing different concentrations of fibrinogen and thrombin were evaluated at post-operative day 5. The interventions were low-risk (normal) or high-risk (ischemic) end-to-end colonic anastomoses using polypropylene sutures and topical application of fibrinogen at high (120 mg/mL) or low (40 mg/mL) concentrations and thrombin at high (1000 IU/mL) or low (500 IU/mL) concentrations. RESULTS: Ischemia alone, anastomosis alone, or both together reduced the bursting pressure. Glues containing a low fibrinogen concentration improved this parameter in all cases. High thrombin in combination with low fibrinogen also improved adherence exclusively in low-risk anastomoses. No differences were detected with respect to macroscopic parameters, histopathology, or hydroxyproline content at 5 days post-anastomosis. CONCLUSIONS: Fibrin glue with a low fibrinogen content normalizes the bursting pressure of high-risk ischemic left-colon anastomoses in rats at day 5 after surgery. PMID:24714834

  20. Fibrin glue-assisted for the treatment of corneal perforations using glycerin-cryopreserved corneal tissue

    PubMed Central

    Dong, Nuo; Li, Cheng; Chen, Wen-Sheng; Qin, Wen-Juan; Xue, Yu-Hua; Wu, Hu-Ping

    2014-01-01

    AIM To evaluate the outcomes and safety of lamellar keratoplasty (LK) assisted by fibrin glue in corneal perforations. METHODS Six eyes of 6 patients affected by different corneal pathologies (2 posttraumatic corneal scar and 3 bacterial keratitis) underwent LK procedures by using fibrin glue. The mean corneal perforation diameter was 1.35±0.64mm (range, 0.7-2.5mm), and the greatest diameter of the ulcerative stromal defect was 2.47±0.77mm in average (range, 1.5-3.5mm). The donor corneal lamella diameters were 0.20-mm larger and thicker than the recipient to restore a physiologic corneal thickness and shape: mean donor diameter was 8.34±0.28mm (range, 8.2-8.7mm) and mean thickness was 352±40.27mm (range, 220-400mm). Mean follow-up was 7.33±1.97 months (range, 6-11 months). Postoperatively, the graft status, graft clarity, anterior chamber response, the visual prognosis, intraocular pressures, and postoperative complications were recorded. RESULTS All the corneal perforations were successfully healed after the procedure. The best-corrected visual acuity (BCVA) ranged from 20/1 000 to 20/50 in their initial presentation, and from 20/100 to 20/20 in their last visit, showed increase in all the patients. No major complications such as graft dislocation and graft failure were noted. Neovascularization developed in the superficial stroma of donor graft in 1 case. High intraocular pressure developed on day 2 after surgery, while was remained in normal range after application of anti-glaucomatous eyedrops for 1 week in 1 case. CONCLUSION Fibrin glue-assisted sutureless LK is valuable for maintaining the ocular integrity in the treatment of corneal perforations. PMID:24634865

  1. Local Application of BMP-2 Specific Plasmids in Fibrin Glue does not Promote Implant Fixation

    PubMed Central

    2011-01-01

    Background BMP-2 is known to accelerate fracture healing and might also enhance osseointegration and implant fixation. Application of recombinant BMP-2 has a time-limited effect. Therefore, a gene transfer approach with a steady production of BMP-2 appears to be attractive. The aim of this study was to examine the effect of locally applied BMP-2 plasmids on the bone-implant integration in a non-weight bearing rabbit tibia model using a comparatively new non-viral copolymer-protected gene vector (COPROG). Methods Sixty rabbits were divided into 4 groups. All of them received nailing of both tibiae. The verum group had the nails inserted with the COPROG vector and BMP-2 plasmids using fibrin glue as a carrier. Controls were a group with fibrin glue only and a blank group. After 28 and 56 days, these three groups were sacrificed and one tibia was randomly chosen for biomechanical testing, while the other tibia underwent histomorphometrical examination. In a fourth group, a reporter-gene was incorporated in the fibrin glue instead of the BMP-2 formula to prove that transfection was successful. Results Implant fixation strength was significantly lower after 28 and 56 days in the verum group. Histomorphometry supported the findings after 28 days, showing less bone-implant contact. In the fourth group, successful transfection could be confirmed by detection of the reporter-gene in 20 of 22 tibiae. But, also systemic reporter-gene expression was found in heterotopic locations, showing an undesired spreading of the locally applied gene formula. Conclusion Our results underline the transfecting capability of this vector and support the idea that BMP-2 might diminish osseointegration. Further studies are necessary to specify the exact mechanisms and the systemic effects. PMID:21762501

  2. Endoluminal embolization of bilateral atherosclerotic common iliac aneurysms with fibrin tissue glue (Beriplast)

    SciTech Connect

    Beese, Richard C.; Tomlinson, Mark A.; Buckenham, Timothy M.

    2000-05-15

    The standard surgical approach to nonleaking iliac aneurysms found at repair of a leaking abdominal aortic aneurysm is to minimize the operative risk by repairing the abdominal aorta only. This means that the bypassed iliac aneurysms may have to be repaired later. As this population of patients are usually elderly with coexisting medical problems, interventional radiology is being used to embolize these aneurysms, thus avoiding the morbidity and mortality associated with further general anesthesia and surgery. Various materials and stents have been reported to be effective in the treatment of iliac aneurysms. We report the successful use of endoluminal fibrin tissue glue (Beriplast) to treat two large iliac aneurysms in a patient who had had a previous abdominal aortic aneurysm repair. We discuss the technique involved and the reasons why we used tissue glue in this patient.

  3. Successful application of subcutaneous adipose tissue with fibrin glue in conservative treatment of tracheobronchial rupture.

    PubMed

    Tokuishi, Keita; Yamamoto, Satoshi; Anami, Kentaro; Moroga, Toshihiko; Miyawaki, Michiyo; Chujo, Masao; Yamashita, Shin-Ichi; Kawahara, Katsunobu

    2012-11-01

    An 84-year-old woman underwent aortic and mitral valve replacement. After weaning from cardiopulmonary bypass, hemorrhage was observed in the endobronchial tube. The bleeding bronchus was isolated to protect the airway using the blocker cuff of a Univent tube (Fuji Systems Corp, Tokyo, Japan). Computed tomography showed a pulmonary pseudoaneurysm in the left upper lobe. She underwent selective pulmonary angiography and embolization of the pseudoaneurysm. Bronchoscopy revealed a 5-mm bronchial rupture at the left upper lobe bronchus. The laceration was filled with adipose tissue and fibrin glue. Bronchoscopy showed a completely reepithelialized membrane, and she was discharged 38 days postoperatively.

  4. The mechanical and biological properties of an injectable calcium phosphate cement-fibrin glue composite for bone regeneration.

    PubMed

    Cui, Geng; Li, Jie; Lei, Wei; Bi, Long; Tang, Peifu; Liang, Yutian; Tao, Sheng; Wang, Yan

    2010-02-01

    Calcium phosphate cement (CPC) that can be injected to form a scaffold in situ has promise for the repair of bone defects. However, its low-strength limits the CPC to non-stress-bearing repairs. Fibrin glue (FG) with good sticking property and biocompatibility is possible used to reinforce the CPC. The objective of this study was to investigate the effects of FG on the mechanical and biological properties of CPC in an injectable CPC-FG composite. The initial setting time of this CPC-FG was delayed compared with the CPC control at different powder/liquid (P/L) mass ratio (p > 0.05). At a P/L of 5, the strength was (38.41 +/- 4.32) MPa for the CPC-FG, much higher than (27.42 +/- 2.85) MPa for the CPC alone (p < 0.05). SEM showed bone marrow stromal cells (BMSCs) with healthy spreading and anchored on the CPC-FG composite. After 14 days, the alkaline phosphatase (ALP) activity was (538 +/- 33) for the BMSCs on the CPC-FG and (517 +/- 27) for the BMSCs on the CPC alone. Both ALPs were higher than the baseline ALP (93 +/- 10) for the undifferentiated BMSCs (p < 0.05). The results demonstrate that this stronger CPC-FG scaffold may be useful for stem cell-based bone regeneration in moderate load-bearing orthopedic applications.

  5. Effect of intraoperative platelet-rich plasma and fibrin glue application on skin flap survival.

    PubMed

    Findikcioglu, Fulya; Findikcioglu, Kemal; Yavuzer, Reha; Lortlar, Nese; Atabay, Kenan

    2012-09-01

    The experiment was designed to compare the effect of intraoperative platelet-rich plasma (PRP) and fibrin glue application on skin flap survival. In this study, bilateral epigastric flaps were elevated in 24 rats. The right-side flaps were used as the control of the left-side flaps. Platelet-rich plasma, fibrin glue, and thrombin had been applied under the flap sites in groups 1, 2, and 3, respectively. Five days later, all flap pedicles were ligated. Necrotic area measurements, microangiography, and histologic and immunohistochemical evaluations were performed to compare the groups. Platelet-rich plasma reduced necrotic area percentages as compared with other groups. Histologically and microangiographically increased number of arterioles were observed in PRP groups. Thrombin when used alone increased flap necrosis. Vascular endothelial growth factor, platelet-derived growth factor, and transforming growth factor β3 primary antibody staining showed increased neovascularization and reepithelialization in all PRP-applied flaps. This study demonstrated that PRP, when applied intraoperatively under the skin flap, may enhance flap survival. Thrombin used alone was found to be unsuitable in flap surgery.

  6. Reduction of bone resorption by the application of fibrin glue in the reconstruction of the alveolar cleft.

    PubMed

    Segura-Castillo, José L; Aguirre-Camacho, Humberto; González-Ojeda, Alejandro; Michel-Perez, Jorge

    2005-01-01

    A major complication in 30% to 75% of cases of surgical treatment of alveolar cleft is resorption of the bone graft. A treatment alternative is the application of fibrin glue, which has the capacity to favor the integration of the graft. The main objective of the study was to evaluate if the use of the fibrin glue reduces bone resorption when it is applied locally. The authors designed a randomized clinical trial. Patients were divided into two groups: group 1, fibrin glue; and group 2, control. Pre- and postoperative graft volume, bone density, bone quality (Lekholm and Zarb, and Norton and Gamble classifications), and postoperative complications were evaluated. The follow-up for all patients was 3 months after discharge. Twenty-seven patients were surgically treated, 13 in group 1 and 14 in group 2. Group 1 had increased graft volume compared with group 2 (64.32 cm v 21.70 cm; P < 0.0001). Bone density was higher in group 1 than in group 2 (396.57 v 245.68; P > 0.076). Bone quality was type 1, 2 and 3 and 4 in group 1. Resorption in group 2 was 62.26%; in group 1, it was 29.72% (P > 0.081). The observed complications were infection and dehiscence of sutures (P > 0.537). The authors conclude that the fibrin glue significantly diminishes bone resorption, allowing improved graft integration and quality.

  7. Management of urine leak after laparoscopic cyst decortication with retrograde endoscopic fibrin glue application and ureteral stent placement.

    PubMed

    Chen, Mang L; Tomaszewski, Jeffrey J; Matoka, Derek J; Ost, Michael C

    2011-01-01

    Urine leakage is an uncommon complication after renal cyst decortication that typically resolves with adequate drainage. With prolonged large volume urine leakage from a perinephric drain, however, consideration for open surgical repair must be taken into account. We present the successful management of persistent urine leakage after laparoscopic cyst decortication with endoscopic retrograde fibrin glue injection and ureteral stent placement.

  8. A Prospective Randomized Study Comparing Fibrin Glue Versus Prolene Suture for Mesh Fixation in Lichtenstein Inguinal Hernia Repair.

    PubMed

    Karigoudar, Ashirwad; Gupta, Arun Kumar; Mukharjee, Sourabh; Gupta, Nikhil; Durga, C K

    2016-08-01

    The aim of this study is to assess the advantages of fibrin glue over Prolene suture in fixation of the mesh in open inguinal hernia repair. Sixty-four cases of inguinal hernia underwent hernia repair by the Lichtenstein method in the department of surgery in PGIMER & Dr. RML Hospital, New Delhi. The patients were randomized prospectively into group A (fibrin glue group) and group B (Prolene suture group). In group A, fibrin glue was used for mesh fixation, and in group B, Prolene suture was used for mesh fixation. The mean age of patients in group A was 44.5 years and that of group B patients was 44.2 years. There was a significant difference in the duration of surgery, with the mean duration in fibrin glue group being 30.6 min and that of the suture group was 43.3 min. The mean visual analogue pain score of postoperative pain at 1, 6, 12, and 24 h was significantly higher in the suture group than in the fibrin glue group (p < 0.001). The mean total dose of analgesia in ampoules of tramadol was significantly less in the fibrin glue group (1.56 ampoules) than that in the suture group (4.125 ampoules) with p = 0.000. At the end of the first month, 25 % of subjects in the suture group presented with mild groin pain (p value = 0.0048). At the end of the second and third month, 22 % (p 68 value = 0.0048) and 12.5 % (p value = 0.1132) of subjects respectively presented with mild groin pain in the suture group. The present study demonstrates that the use of fibrin glue in place of Prolene suture for mesh fixation in open inguinal hernia repair can help decreasing the time required for surgery, reduce the intensity of postoperative pain, shorten the duration of hospital stay, and prevent the incidence of chronic groin pain.

  9. Fibrin glue system for adjuvant brachytherapy of brain tumors with 188Re and 186Re-labeled microspheres.

    PubMed

    Häfeli, Urs O; Pauer, Gayle J; Unnithan, Jaya; Prayson, Richard A

    2007-03-01

    Brain tumors such as glioblastoma reappear in their original location in almost 50% of cases. To prevent this recurrence, we developed a radiopharmaceutical system that consists of a gel applied immediately after surgical resection of a brain tumor to deliver local radiation booster doses. The gel, which strongly adheres to tissue in the treatment area, consists of fibrin glue containing the beta-emitters rhenium-188 and rhenium-186 in microsphere-bound form. Such microspheres can be prepared by short (2 h or less) neutron activation even in low neutron flux reactors, yielding a mixture of the two beta-emitters rhenium-188 (E(max)=2.1 MeV, half life=17 h) and rhenium-186 (E(max)=1.1 MeV, half life=90.6h). The dosimetry of this rhenium-188/rhenium-186 fibrin glue system was determined using gafchromic film measurements. The treatment efficacy of the radioactive fibrin glue was measured in a 9L-glioblastoma rat model. All animals receiving the non-radioactive fibrin glue died within 17+/-3 days, whereas 60% of the treated animals survived 36 days, the final length of the experiment. Control animals that were treated with the same amount of radioactive fibrin glue, but had not received a previous tumor cell injection, showed no toxic effects over one year. The beta-radiation emitting rhenium-188/rhenium-186-based gel thus provides an effective method of delivering high doses of local radiation to tumor tissue, particularly to wet areas where high adhesive strength and long-term radiation (with or without drug) delivery are needed.

  10. Removal of a malignant cystic brain tumor utilizing pyoktanin blue and fibrin glue: Technical note

    PubMed Central

    Hayashi, Nobuhide; Sasaki, Takahiro; Tomura, Nagatsuki; Okada, Hideo; Kuwata, Toshikazu

    2017-01-01

    Background: The leakage of cystic fluid during metastatic cystic brain tumor resection may cause tumor dissemination. When the cyst wall is thin, excision without removing the wall is often difficult. Methods: We were able to perform an en bloc resection of a cystic malignant brain tumor after aspirating the cystic fluid, injecting pyoktanin blue into the cyst to stain the cyst walls, and solidifying the empty cyst cavity by filling it with fibrin glue. Results: Pyoktanin blue readily stained the thin cystic walls and enabled visualization of mural damage. Solidification of the tumor made it easier to grasp and facilitated the dissection of tumor margins. Conclusions: This method has the potential to become a useful technique for the resection of malignant cystic brain tumors. PMID:28303204

  11. Cartilage putty: a novel use of fibrin glue with morselised cartilage grafts for rhinoplasty surgery.

    PubMed

    Stevenson, Susan; Hodgkinson, Peter D

    2014-11-01

    Cartilage grafts have multiple purposes within rhinoplasty surgery. The senior author has previously used wrapped diced cartilage grafts but found it difficult to maintain the integrity of the graft "package" during placement. Introduction of Tisseel fibrin glue stabilises the cartilage fragments producing a rubbery mass that can be used like "cartilage putty." This malleable construct can be inserted and moulded with less risk of dispersal. This technique has now been used on nineteen patients. It has provided a valuable method of reconstruction especially in complex cases such as revision rhinoplasty and patients with a thin dorsal skin envelope. There has been no evidence of graft absorption or requirement for additional surgery to date. The addition of Tisseel to wrapped diced cartilage grafts, has proven in this series of complex rhinoplasty patients, to be a useful adjunct which aids insertion and contouring. Furthermore, beneficial effects on healing have been demonstrated which contributes to good quality long-term cosmetic results. Level of Evidence V.

  12. The efficacy of fibrin glue injection in the prostatic fossa on decreasing postoperative bleeding following transurethral resection of prostate

    PubMed Central

    Khorrami, Mohammad Hatef; Tadaion, Farhad; Ghanaat, Iman; Alizadeh, Farshid

    2016-01-01

    Background: To evaluate the efficacy of fibrin glue injection in the prostatic fossa at the end of transurethral resection of prostate (TURP), in decreasing postoperative bleeding in patient with benign prostatic hyperplasia (BPH). Materials and Methods: In this prospective randomized clinical trial, sixty patients with BPH, who were a candidate for TURP, were randomly divided into two equal groups. In the intervention group, 10cc of fibrin glue was injected in the prostatic fossa at the end of the surgery; through a 5 Fr feeding tube attached to Foley catheter and its tip was proximal to the balloon of catheter. The other thirty patients created the control group. Hemoglobin (Hb) level and lower urinary tract symptoms (LUTS) score were recorded before and 6, 24, 48 h, and 5 days after TURP. Results: The mean age of the patients and prostate volumes were comparable between the groups. The mean Hb level before and 6 h after TURP were not different between the two groups, however, 24 and 48 h and 5 days after TURP, there was a significant difference as well as a higher decrease in the mean Hb level of the control group (P = 0.023). The mean LUTS score was not statistically different between the two groups. Conclusion: Fibrin glue injection in the prostatic after TURP reduces postoperative bleeding without any effect on LUTS score in patients with BPH. PMID:27995100

  13. Fibrin glue reduces the duration of lymphatic drainage after lumpectomy and level II or III axillary lymph node dissection for breast cancer: a prospective randomized trial.

    PubMed

    Ko, Eunyoung; Han, Wonshik; Cho, Jihyoung; Lee, Jong Won; Kang, So Young; Jung, So-Youn; Kim, Eun-Kyu; Hwang, Ki-Tae; Noh, Dong-Young

    2009-02-01

    This randomized prospective study investigated the effect of fibrin glue use on drainage duration and overall drain output after lumpectomy and axillary dissection in breast cancer patients. A total of 100 patients undergoing breast lumpectomy and axillary dissection were randomized to a fibrin glue group (N=50; glue sprayed onto the axillary dissection site) or a control group (N=50). Outcome measures were drainage duration, overall drain output, and incidence of seroma. Overall, the fibrin glue and control groups were similar in terms of drainage duration, overall drain output, and incidence of seroma. However, subgroup analysis showed that fibrin glue use resulted in a shorter drainage duration (3.5 vs. 4.7 days; p=0.0006) and overall drain output (196 vs. 278 mL; p=0.0255) in patients undergoing level II or III axillary dissection. Fibrin glue use reduced drainage duration and overall drain output in breast cancer patients undergoing a lumpectomy and level II or III axillary dissection.

  14. A single-surgeon randomized trial comparing sutures, N-butyl-2-cyanoacrylate and human fibrin glue for mesh fixation during primary inguinal hernia repair

    PubMed Central

    Testini, Mario; Lissidini, Germana; Poli, Elisabetta; Gurrado, Angela; Lardo, Domenica; Piccinni, Giuseppe

    2010-01-01

    Background We sought to determine the efficacy of sutures, human fibrin glue and N-butyl-2-cyanoacrylate for mesh fixation in patients undergoing the plug and mesh procedure for groin hernia. Methods A total of 156 patients with 167 inguinal hernias (11 bilateral) underwent a plug and mesh procedure and were randomly assigned to received either sutures (n = 59 hernias), human fibrin glue (n = 52) or N-butyl-2-cyanoacrylate (n = 56) for mesh fixation. Results The overall morbidity rate was 38.98% in the suture group, 9.62% in the fibrin glue group and 10.71% in the N-butyl-2-cyanoacrylate group (suture v. fibrin glue, p < 0.001; suture v. N-butyl-2-cyanoacrylate, p < 0.001). There was no significant difference in morbidity between the fibrin glue and N-butyl-2-cyanoacrylate groups. Overall, short-term morbidity was significantly higher in the suture group (27.12%) than in the fibrin glue (9.62%, p = 0.01) or N-butyl-2-cyanoacrylate (8.93%, p = 0.004) groups, but there was no significant difference between the fibrin glue and N-butyl-2-cyanoacrylate groups. There was no significant difference between the groups in terms of mean postoperative stay (32.6 h in the suture group v. 30.8 h in the fibrin glue group v. 32.0 h in the N-butyl-2-cyanoacrylate group) or mean time to return to work (20.4 d in the suture group v. 20.3 d in the fibrin glue group v. 19.8 d in the N-butyl-2-cyanoacrylate group). Overall, long-term morbidity was significantly higher in the suture group (11.86%) than in the fibrin glue (0%, p = 0.001) or N-butyl-2-cyanoacrylate (1.78%, p = 0.03) groups. There was no recurrence in any of the groups. Two cases (3.39%) of chronic groin pain were reported in patients in the suture group. A sensation of extraneous body was reported in 5 (8.47%) patients who received sutures and in 1 (1.78%) patient in the N-butyl-2-cyanoacrylate group; there were no reported cases in the fibrin glue group (suture v. fibrin glue, p = 0.01; suture v. N-butyl-2-cyanoacrylate

  15. Fibrin glue injection into the hematoma cavity for refractory chronic subdural hematoma: A case report

    PubMed Central

    Watanabe, Saiko; Amagasaki, Kenichi; Shono, Naoyuki; Nakaguchi, Hiroshi

    2016-01-01

    Background: Repeat burr hole irrigation and drainage has been effective in most cases of recurrent chronic subdural hematoma (CSDH), however, refractory cases require further procedures or other interventions. Case Description: An 85-year-old male presented with left CSDH, which recurred five times. The hematoma was irrigated and drained through a left frontal burr hole during the first to third surgery and through a left parietal burr hole during the fourth and fifth surgery. The hematoma had no septation and was well-evacuated during each surgery. Antiplatelet therapy for preventing ischemic heart disease was stopped after the second surgery, the hematoma cavity was irrigated with artificial cerebrospinal fluid at the third surgery, and the direction of the drainage tube was changed to reduce the postoperative subdural air collection at the fourth surgery. However, none of these interventions was effective. He was successfully treated by fibrin glue injection into the hematoma cavity after the fifth surgery. Conclusion: This procedure may be effective for refractory CSDH in elderly patients. PMID:27999712

  16. Experimental study on the viscosity and adhesive performance of exogenous liquid fibrin glue.

    PubMed

    Hayashi, Takuro; Hasegawa, Mitsuhiro; Inamasu, Joji; Adachi, Kazuhide; Nagahisa, Shinya; Hirose, Yuichi

    2014-01-01

    Exogenous fibrin glue (FG) is highly suitable for neurosurgical procedures, because of its viscosity and adhesive properties. Several FGs are commercially available, but only few reports detail their differences. In the present study, we investigated the viscosity and adhesive performance of two types of FG: one is derived from blood donated in Europe and the United States (CSL Behring's Beriplast(®), BP) and the other is derived from blood donated in Japan (the Chemo-Sero-Therapeutic Research Institute's Bolheal(®), BH). The viscosity test that measured fibrinogen viscosity revealed that BP had significantly higher viscosity than BH. Similarly, the dripping test showed that BP traveled a significantly shorter drip distance in the vertical direction than BH, although the transverse diameter of the coagulated FG did not differ statistically significantly. In the tensile strength test, BP showed superior adhesion performance over BH. The histological study of the hematoxylin-eosin-stained specimens in both groups showed favorable adhesion. Although further studies are required on its manufacturing and usage methods, FG shows differences in viscosity and adhesive performance according to the blood from which it is derived. We conclude that it is desirable to select the type and usage method of FG according to the characteristics of the surgical operation in question. Our findings suggest that FG produced from the blood donated in Europe and the United States might be more suitable for use in surgical procedures that demand an especially high degree of viscosity and rapid adhesive performance.

  17. Microporous nanofibrous fibrin-based scaffolds for craniofacial bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Osathanon, Thanaphum

    The fibrotic response of the body to synthetic polymers limits their success in tissue engineering and other applications. Though porous polymers have demonstrated improved healing, difficulty in controlling their pore sizes and pore interconnections has clouded the understanding of this phenomenon. In this study, a novel method to fabricate natural polymer/calcium phosphate composite scaffolds and immobilized alkaline phosphatase fibrin scaffolds with tightly controllable pore size, pore interconnection has been investigated. Microporous, nanofibrous fibrin scaffolds (FS) were fabricated using sphere-templating method. Calcium phosphate/fibrin composite scaffolds were created by solution deposition of calcium phosphate on fibrin surfaces or by direct incorporation of nanocrystalline hydroxyapatite (nHA). The SEM results showed that fibrin scaffolds exhibited a highly porous and interconnected structure. Osteoblast-like cells, obtained from murine calvaria, attached, spread and showed a polygonal morphology on the surface of the biomaterial. Multiple cell layers and fibrillar matrix deposition were observed. Moreover, cells seeded on mineralized fibrin scaffolds (MFS) exhibited significantly higher alkaline phosphatase activity as well as osteoblast marker gene expression compared to FS and nHA incorporated fibrin scaffolds (nHA/FS). These fibrin-based scaffolds were degraded both in vitro and in vivo. Furthermore, these scaffolds promoted bone formation in a mouse calvarial defect model and the bone formation was enhanced by addition of rhBMP-2. The second approach was to immobilize alkaline phosphatase (ALP) on fibrin scaffolds. ALP enzyme was covalently immobilized on the microporous nanofibrous fibrin scaffolds using 1-ethyl-3-(dimethylaminopropyl)carbodiimide hydrochloride (EDC). The SEM results demonstrated mineral deposition on immobilized ALP fibrin scaffolds (ALP/FS) when incubated in medium supplemented with beta-glycerophosphate, suggesting that the

  18. THE ROLE OF FIBRIN GLUE AND SUTURE ON THE FIXATION OF ULTRA FROZEN PRESERVED MENISCUS TRANSPLANTATION IN RABBITS

    PubMed Central

    Reckers, Leandro José; Fagundes, Djalma José; Pozo Raymundo, José Luiz; Granata Júnior, Geraldo Sérgio de Mello; Moreira, Márcia Bento; Paiva, Vanessa Carla; Negrini Fagundes, Anna Luiza; Cohen, Moises

    2015-01-01

    Objective: To evaluate the ability of fibrin adhesive in promoting the meniscus fixation within two, four and eight weeks compared to the conventional soft-tissue suture technique. Materials and Methods: 36 right medial menisci of rabbits preserved at negative 73° Celsius for 30 days were transplanted to animals of the same sample and fixed with soft-tissue suture or fibrin glue. After 2, 4 or 8 weeks, the appearance of the menisci and the quality of fixation were macroscopically checked and evaluated by a scoring system. The findings were subjected to the statistical study of variance analysis (p ≤ 0.05%). Results: The deep-frozen meniscus preservation maintained the integrity of the meniscus transplant, and, macroscopically, there was no significant reduction of the length of the meniscus in all post-transplant periods (p = 0.015). The menisci fixed with fibrin showed slight changes in color and surface roughness. There were no signs of rejection or infection in both groups. Suture fixation scoring was superior (p = 0.015) in all periods (80% of total fixation) as compared to the setting promoted by fibrin (20% of total fixation). Conclusion: The homologous transplantation of the meniscus of rabbits experienced various degrees of integration to the knee according to the fixation method; the surgical soft tissues suturing technique was shown to be superior in the evaluation of scores compared to the fixation with fibrin adhesive. PMID:27004186

  19. Cell culture in autologous fibrin scaffolds for applications in tissue engineering.

    PubMed

    de la Puente, Pilar; Ludeña, Dolores

    2014-03-10

    In tissue engineering techniques, three-dimensional scaffolds are needed to adjust and guide cell growth and to allow tissue regeneration. The scaffold must be biocompatible, biodegradable and must benefit the interactions between cells and biomaterial. Some natural biomaterials such as fibrin provide a structure similar to the native extracellular matrix containing the cells. Fibrin was first used as a sealant based on pools of commercial fibrinogen. However, the high risk of viral transmission of these pools led to the development of techniques of viral inactivation and elimination and the use of autologous fibrins. In recent decades, fibrin has been used as a release system and three-dimensional scaffold for cell culture. Fibrin scaffolds have been widely used for the culture of different types of cells, and have found several applications in tissue engineering. The structure and development of scaffolds is a key point for cell culture because scaffolds of autologous fibrin offer an important alternative due to their low fibrinogen concentrations, which are more suitable for cell growth. With this review our aim is to follow methods of development, analyze the commercial and autologous fibrins available and assess the possible applications of cell culture in tissue engineering in these three-dimensional structures.

  20. Mesenchymal stem cell growth on and mechanical properties of fibrin-based biomimetic bone scaffolds.

    PubMed

    Linsley, Chase S; Wu, Benjamin M; Tawil, Bill

    2016-12-01

    Using the microenvironment of healing bone tissue as inspiration, this study utilized fibrin hydrogels combined with collagen type I and calcium phosphate ceramics to create a biomimetic bone scaffold. The contribution each component had on the growth of mesenchymal stem cells (hMSC) was assessed, and changes in the scaffold's mechanical properties were measured by indentation testing. The results show cell growth was greatest in scaffolds with lower concentrations of fibrinogen complex and followed a similar trend with the addition of collagen. However, cell growth was greatest in fibrin scaffolds with high concentrations of fibrinogen complex when combined with hydroxyapatite-β-tricalcium phosphate. The fibrin scaffold's stiffness does not significantly change over time, but the addition of collagen to scaffolds with low concentrations of fibrinogen complex had significant increases in stiffness by day 14. These results demonstrate that hMSC do not rapidly degrade fibrin and fibrin-collagen scaffolds in vitro. The data reported here can aid in the design and fabrication of fibrin-based engineered tissues and cell delivery vehicles that promote hMSC growth and viability as well as meet the mechanical requirements of native tissues. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2945-2953, 2016.

  1. "Hemosuccus pancreaticus"--primarily ultrasound-guided successful intervention using transcutaneous fibrin glue application and histoacryl injection.

    PubMed

    Will, U; Mueller, A-K; Grote, R; Meyer, F

    2008-12-01

    There is a broad spectrum of causes for upper gastrointestinal (GI) bleeding that can be stopped by various approaches. On the basis of the report of an extraordinary case, the favorable minimally invasive approach of applying fibrin glue and histoacryl/lipiodol to the vascular basis of a bleeding pseudoaneurysm leading to "Hemosuccus pancreaticus" as a rare cause of recurrent bleeding in the upper GI tract and dangerous complications in the case of chronic pancreatitis is described. There were recurrent bleeding episodes within the upper GI tract in a 40-year-old female patient. Her medical history was significant for chronic pancreatitis and pseudocyst. Abdominal ultrasound plus duplex ultrasonography revealed a pseudoaneurysm within the tail of the pancreas as the cause of "Hemosuccus pancreaticus". Ultrasound guidance was used to repeatedly apply 2 ml of fibrin glue and 2 x 2 ml of the mixture of lipiodol and histoacryl to the basis of the pseudoaneurysm which led to complete and permanent cessation of the bleeding. Immediate and follow-up control duplex ultrasonographies (up to one year) demonstrated sufficient exclusion of the pseudoaneurysm but a preservation of the lienal artery with no disturbance of the blood perfusion in the splenic parenchyma. In conclusion, this is one of the first reports of the successful cessation of recurrent bleeding into a pseudocyst out of pseudoaneurysm ("Hemosuccus pancreaticus") by an ultrasound-guided transcutaneous fibrin glue and histoacryl/lipiodol application, which 1. is recommended as an alternative but feasible and safe therapeutic tool, 2. can provide sufficient and permanent cessation of bleeding but preserve the perfusion of the natural vessel as an initial step in the possible therapeutic algorithm, and 3. can avoid, in case of success, more invasive approaches such as angiography-guided embolization with coils or implantation of a prosthesis and even open surgical intervention, in particular, in high

  2. Comparison of the Clinical Outcome and Complications in Laparoscopic Hernia Repair of Inguinal Hernia With Mesh Fixation Using Fibrin Glue vs Tacker.

    PubMed

    Chandra, Prasant; Phalgune, Deepak; Shah, Shashank

    2016-12-01

    Although laparoscopic repair offers a quick and less morbid way of treating hernias, complications like hematoma, seroma, neuralgia, recurrence, mesh infection, hydrocele, etc. are known. The present study was undertaken to compare various clinical outcomes between mesh fixation using fibrin glue and mesh fixation with tacker in a 3-months follow-up. One hundred patients aged 18 to 60 years having inguinal hernia admitted in Poona Hospital and Research Centre, Pune, between October 2012 and November 2014 for laparoscopic hernia surgery and ready to participate in this study were included. All of them underwent laparoscopic repair of hernia by total extra peritoneal (TEP) method following sample surgical protocol in all of them except for method of mesh fixation. Mean time calculated from insertion of the first trocar to beginning of skin suturing was 54.9 min in tacker group and 50.3 min in fibrin glue group with no statistically significant difference between the two. The incidence of urinary retention was significantly higher in tacker (34 %) as compared to fibrin glue (12 %) group. Incidence of hematoma was significantly higher in tacker group in 15-day follow-up, but there was no significant difference in hematoma formation at hernial sites in both groups after 15 days of follow-up. The incidence of neuralgia was significantly higher in the tacker group (24 %) compared with the fibrin glue group (2 %). Significantly, more number of people in the fibrin glue group 68 and 90 %, respectively, returned to work during 15 and 30 days follow-up as compared to the tacker group 46 and 64 %. Fibrin glue can be considered as an alternative to tacker for mesh fixation.

  3. Feasibility and Efficacy of Olfactory Protection Using Gelfoam and Fibrin Glue during Anterior Communicating Artery Aneurysm Surgery

    PubMed Central

    Cho, Hoyeon; Jo, Kyung-Il; Yeon, Je Young; Hong, Seung-Chyul

    2015-01-01

    Objective Patients treated with surgical clipping for anterior communicating artery (A-com) aneurysm often complain of anosmia, which can markedly impede their quality of life. We introduce a simple and useful technique to reduce postoperative olfactory dysfunction in A-com aneurysm surgery. Methods We retrospectively reviewed the medical records of patients who underwent surgical clipping for unruptured aneurysm from 2011-2013 by the same senior attending physician. Since March 2012, olfactory protection using gelfoam and fibrin glue was applied in A-com aneurysm surgery. Therefore we categorized patients in two groups from this time-protected group and unprotected group. Results Of the 63 enrolled patients, 16 patients showed postoperative olfactory dysfunction-including 8 anosmia patients (protected group : unprotected group=1 : 7) and 8 hyposmia patients (protected group : unprotected group=2 : 6). Thirty five patients who received olfactory protection during surgery showed a lower rate of anosmia (p=0.037, OR 10.516, 95% CI 1.159-95.449) and olfactory dysfunction (p=0.003, OR 8.693, 95% CI 2.138-35.356). Superior direction of the aneurysm was also associated with a risk of olfactory dysfunction (p=0.015, OR 5.535, 95% CI 1.390-22.039). Conclusion Superior direction of aneurysm appears associated with postoperative olfactory dysfunction. Olfactory protection using gelfoam and fibrin glue could be a simple, safe, and useful method to preserve olfactory function during A-com aneurysm surgery. PMID:26361525

  4. Effect of thrombin concentration on the adhesion strength and clinical application of fibrin glue-soaked sponge.

    PubMed

    Campos, Francia; Fujio, Shingo; Sugata, Sei; Tokimura, Hiroshi; Hanaya, Ryosuke; Bohara, Manoj; Arita, Kazunori

    2013-01-01

    Fibrin glue-soaked gelatin sponge (FGGS) has been used for tissue sealing in neurosurgical practice, but too rapid clotting of fibrin glue occasionally prevents good fixation of FGGS. Dilution of thrombin may provide adequate manipulation time between mixing fibrinogen and thrombin on gelatin sponge and application into the tissue defects. The present study characterized the effect of thrombin dilution on the adhesion strength of FGGS and retrospectively assessed the clinical usage of the dilution for filling dead space or sealing arachnoid defect in 255 cases who underwent transsphenoidal surgery for the last 66 months. FGGS was prepared using three different concentrations of thrombin: 250 (standard), 50 (1:5 dilution), and 25 (1:10 dilution) units/ml, and incubated for three different periods (5, 20, and 60 seconds). FGGSs were applied over two adjacently positioned porcine skins placed on two metallic plates. The adhesion strength was evaluated by measuring maximum tensile strength during pulling out the sliding plate at a constant rate of displacement. The maximum adhesion strength was greater for FGGS with 1:10 diluted thrombin solution than for FGGS prepared with higher concentrations (p < 0.05). Adhesion strength did not decay for 20 seconds after the mixture. Only four of 255 cases (1.6%) required second reconstruction of sella floor due to the cerebrospinal fluid leakage. FGGS prepared with diluted thrombin solution can provide adequate adhesion strength for clinical use.

  5. Optimization and Use of 3D sintered porous material in medical field for mixing fibrin glue.

    NASA Astrophysics Data System (ADS)

    Delmotte, Y.; Laroumanie, H.; Brossard, G.

    2012-04-01

    In medical field, Mixing of two or more chemical components (liquids and/or gases) is extremely important as improper mixing can affect the physico-chemical properties of the final product. At Baxter Healthcare Corporation, we are using a sintered porous material (PM) as a micro-mixer in medical device for mixing Fibrinogen and Thrombin in order to obtain a homogeneous polymerized Fibrin glue clot used in surgery. First trials were carried out with an interconnected PM from Porvair® (made of PE - porosity: 40% - permeability: 18Darcy). The injection rate is very low, usually about 10mL/min (Re number about 50) which keeps fluids in a laminar flow. Such a low flow rate does not favour mixing of fluids having gradient of viscosity if a mixer is not used. Promising results that were obtained lead the team to understand this ability to mix fluids which will be presented in the poster. Topology of porous media (PM) which associates a solid phase with interconnected (or not) porous structure is known and used in many commodity products. Researches on PM usually focus on flows inside this structure. By opposition to transport and filtration capacity, as well as mechanic and thermic properties, mixing is rarely associated with PM. However over the past few years, we shown that some type of PM have a real capacity to mix certain fluids. Poster will also describe the problematic of mixing complex biological fluids as fibrinogen and Thrombin. They indeed present a large viscosity difference (ratio about 120) limiting the diffusion and the interaction between the two solutions. As those products are expensive, we used Water (1cPo) and Glycerol 87% (120cPo) which are matching the viscosities of Thrombin and Fibrinogen. A parametric investigation of the "porous micro-mixer" as well as a scale up investigation was carried out to examine the influence of both diffusion and advection to successful mix fluids of different viscosity. Experiments were implemented with Planar Laser

  6. Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering.

    PubMed

    Li, Yuting; Meng, Hao; Liu, Yuan; Lee, Bruce P

    2015-01-01

    Due to the increasing needs for organ transplantation and a universal shortage of donated tissues, tissue engineering emerges as a useful approach to engineer functional tissues. Although different synthetic materials have been used to fabricate tissue engineering scaffolds, they have many limitations such as the biocompatibility concerns, the inability to support cell attachment, and undesirable degradation rate. Fibrin gel, a biopolymeric material, provides numerous advantages over synthetic materials in functioning as a tissue engineering scaffold and a cell carrier. Fibrin gel exhibits excellent biocompatibility, promotes cell attachment, and can degrade in a controllable manner. Additionally, fibrin gel mimics the natural blood-clotting process and self-assembles into a polymer network. The ability for fibrin to cure in situ has been exploited to develop injectable scaffolds for the repair of damaged cardiac and cartilage tissues. Additionally, fibrin gel has been utilized as a cell carrier to protect cells from the forces during the application and cell delivery processes while enhancing the cell viability and tissue regeneration. Here, we review the recent advancement in developing fibrin-based biomaterials for the development of injectable tissue engineering scaffold and cell carriers.

  7. A new fibrin sealant as a three-dimensional scaffold candidate for mesenchymal stem cells

    PubMed Central

    2014-01-01

    Introduction The optimization of an organic scaffold for specific types of applications and cells is vital to successful tissue engineering. In this study, we investigated the effects of a new fibrin sealant derived from snake venom as a scaffold for mesenchymal stem cells, to demonstrate the ability of cells to affect and detect the biological microenvironment. Methods The characterization of CD34, CD44 and CD90 expression on mesenchymal stem cells was performed by flow cytometry. In vitro growth and cell viability were evaluated by light and electron microscopy. Differentiation into osteogenic, adipogenic and chondrogenic lineages was induced. Results The fibrin sealant did not affect cell adhesion, proliferation or differentiation and allowed the adherence and growth of mesenchymal stem cells on its surface. Hoechst 33342 and propidium iodide staining demonstrated the viability of mesenchymal stem cells in contact with the fibrin sealant and the ability of the biomaterial to maintain cell survival. Conclusions The new fibrin sealant is a three-dimensional scaffolding candidate that is capable of maintaining cell survival without interfering with differentiation, and might also be useful in drug delivery. Fibrin sealant has a low production cost, does not transmit infectious diseases from human blood and has properties of a suitable scaffold for stem cells because it permits the preparation of differentiated scaffolds that are suitable for every need. PMID:24916098

  8. Haemostasis with fibrin glue injection into the pericardial space for right ventricular perforation caused by an iatrogenic procedural complication.

    PubMed

    Arai, Hirofumi; Miyamoto, Takamichi; Hara, Nobuhiro; Obayashi, Tohru

    2016-05-17

    An 89-year-old woman with severe aortic valve stenosis and bradycardia presented with circulatory shock due to cardiac tamponade. We performed pericardiocentesis, and then diagnosed right ventricular perforation by echocardiography with microcavitation contrast medium just before inserting a drainage tube. We then inserted the drainage tube in the appropriate position and withdrew blood-filled fluid. The patient was haemodynamically stabilised, but haemorrhage from the perforation site continued for a few days. We injected fibrin glue into the pericardial space through the drainage tube and achieved haemostasis. Thus, we avoided surgery to close the perforation in this high-risk patient. There was no recurrence of haemorrhage. She subsequently had elective aortic valve replacement at another hospital. No adhesions in the pericardial space were seen during surgery.

  9. Premature rupture of membranes at 20 weeks: report of a successful outcome after transcervical application of fibrin glue.

    PubMed

    Calado, Elsa; Ayres-de-Campos, Diogo

    2007-01-01

    A 30-year-old primigravida was admitted to hospital at 20 weeks of gestation because of premature rupture of membranes and oligohydramnios. The patient was maintained in bed rest and given intravenous ampicillin. Forty-eight hours later, after documenting the absence of infection and maintenance of the oligohydramnios, fibrin glue was applied transcervically under ultrasound control. There was subjective improvement in amniotic fluid volume after treatment, but always within the criteria of oligohydramnios. Fibrin glue application was repeated twice due to reported increase in fluid loss and diminished amniotic fluid volume on ultrasound. Amoxicillin per os was started at 23 weeks, and clavulanic acid was added at 26 weeks due to the isolation of an Escherichia coli on cervical-vaginal cultures. No signs of infection ensued until 34 weeks, when an axillary temperature of 39.5 degrees C was detected together with a non-reassuring cardiotocographic pattern, the latter leading to the performance of an urgent cesarean section. The newborn had an Apgar score of 9/10/10, umbilical artery pH of 7.32, and no external deformities. He showed no signs of lung hypoplasia and required no oxygen supplementation. Oropharyngeal and blood cultures revealed an E. coli infection and antibiotic treatment was started. No further complications occurred and he was discharged home on the 8th day of life. At 12 months, the child reveals a normal development. The mother had a mild and short-lasting wound infection and was discharged on the 8th postoperative day.

  10. Characterization of the biological effect of fish fibrin glue in experiments on rats: Immunological and coagulation studies

    PubMed Central

    Laidmäe, Ivo; Salum, Tiit; Sawyer, Evelyn S.; Janmey, Paul A.; Uibo, Raivo

    2011-01-01

    Fibrin glues (FG) of human or bovine origin are widely used for haemostasis and wound healing. In addition FGs are studied in many biomedical areas like cell therapy or tissue engineering. As any mammalian plasma products FG-s pose risk of transmission of bacteria, viruses, or prions and may compromise patient homeostasis. In this study, we examined coagulation parameters and immunological status of rats treated with salmon-derived FG. We evaluated the changes in thrombin time, prothrombin activity, and presence of antibodies on 46 Wistar rats. This study shows that salmon-derived FG, injected intraperitoneally, does not cause coagulation disturbances in the peripheral blood. After a first challenge with salmon-derived FG there were low but detectable amounts of antibodies revealed by ELISA and immunoblot. After a second administration there was substantial elevation of antibodies to FG components and other copurifying plasma proteins. Antibody reactivity to human Factor Va, revealed in three animals, was not associated with FG application. Taken together, blood immunological and coagulation parameters support the suitability of salmon-derived FG in the development of fibrin sealants for medical use. PMID:19484773

  11. Co-Culture of Human Endothelial Cells and Foreskin Fibroblasts on 3D Silk-Fibrin Scaffolds Supports Vascularization.

    PubMed

    Samal, Juhi; Weinandy, Stefan; Weinandy, Agnieszka; Helmedag, Marius; Rongen, Lisanne; Hermanns-Sachweh, Benita; Kundu, Subhas C; Jockenhoevel, Stefan

    2015-10-01

    A successful strategy to enhance the in vivo survival of engineered tissues would be to prevascularize them. In this study, fabricated silk fibroin scaffolds from mulberry and non-mulberry silkworms are investigated and compared for supporting the co-culture of human umbilical vein endothelial cells and human foreskin fibroblasts. Scaffolds are cytocompatible and when combined with fibrin gel support capillary-like structure formation. Density and interconnectivity of the formed structures are found to be better in mulberry scaffolds. ELISA shows that levels of vascular endothelial growth factor (VEGF) released in co-cultures with fibrin gel are significantly higher than in co-cultures without fibrin gel. RT PCR shows an increase in VEGFR2 expression in mulberry scaffolds indicating these scaffolds combined with fibrin provide a suitable microenvironment for the development of capillary-like structures.

  12. Free-electron laser effects on fibrin tissue glue: a preliminary study

    NASA Astrophysics Data System (ADS)

    Joos, Karen M.; Topadze, Katie; Shieh, Charles; Shen, Jin-Hui; Casagrande, Vivien A.

    2000-06-01

    One glaucoma challenge is the treatment of leaking trabeculectomy blebs. Simple methods such as patching, autologous blood injection, compression sutures or cyanoacrylate glue application often fail. Because the conjunctiva is thin and ischemic, it often can't be sutured together so major surgery is required to excise the thin tissue and advance healthy conjunctiva. We report the preliminary results of Tisseel and Tisseel treated with two wavelengths from Vanderbilt's free electron laser placed on leaking trabeculectomy bleb holes in Dutch belted rabbits. The holes were healed at one week in the sutured group and in the 7.7 micrometer FEL-treated Tisseel group. One hole was healed in the cyanoacrylate glue-treated group. Holes remained in the other treatment groups. Tisseel irradiated with 7.7 micrometer energy from the free electron laser may promote healing of trabeculectomy bleb holes.

  13. Effective approach for the treatment of bronchopleural fistula: application of endovascular metallic ring-shaped coil in combination with fibrin glue.

    PubMed

    Sivrikoz, Cumhur M; Kaya, Tamer; Tulay, Cumhur M; Ak, Ilknur; Bilir, Ayten; Döner, Egemen

    2007-06-01

    The development of bronchopleural fistula is an important complication after pulmonary resections. Generally, conventional treatment methods are used in patients having bronchopleural fistulas. Recently, there has been an increase in the use of minimally invasive methods yielding better results. In our study, we applied a combination of endovascular metallic ring coil and fibrin glue. We hereby think that such an approach for a combination might be a contribution to improving the already existing minimally invasive treatment methods.

  14. Staple Line Coverage with a Polyglycolic Acid Patch and Fibrin Glue without Pleural Abrasion after Thoracoscopic Bullectomy for Primary Spontaneous Pneumothorax

    PubMed Central

    Hong, Ki Pyo; Kim, Do Kyun; Kang, Kyung Hoon

    2016-01-01

    Background This study was conducted to determine the efficacy of staple line coverage using a polyglycolic acid patch and fibrin glue without pleural abrasion to prevent recurrent postoperative pneumothorax. Methods A retrospective analysis was carried out of 116 operations performed between January 2011 and April 2013. During this period, staple lines were covered with a polyglycolic acid patch and fibrin glue in 58 cases (group A), while 58 cases underwent thoracoscopic bullectomy only (group B). Results The median follow-up period was 33 months (range, 22 to 55 months). The duration of chest tube drainage was shorter in group A (group A 2.7±1.2 day vs. group B 3.9±2.3 day, p=0.001). Prolonged postoperative air leakage occurred more frequently in group B than in group A (43% vs. 19%, p=0.005). The postoperative recurrence rate of pneumothorax was significantly lower in group A (8.6%) than in group B (24.1%) (p=0.043). The total cost of treatment during the follow-up period, including the cost for the treatment of postoperative recurrent pneumothorax, was not significantly different between the two groups (p=0.43). Conclusion Without pleural abrasion, staple line coverage with a medium-sized polyglycolic acid patch and fibrin glue after thoracoscopic bullectomy for primary spontaneous pneumothorax is a useful technique that can reduce the duration of postoperative pleural drainage and the postoperative recurrence rate of pneumothorax. PMID:27066431

  15. The Effect of Controlled Growth Factor Delivery on Embryonic Stem Cell Differentiation Inside of Fibrin Scaffolds

    PubMed Central

    Willerth, Stephanie M.; Rader, Allison; Sakiyama-Elbert, Shelly E.

    2009-01-01

    The goal of this project is to develop 3-D biomaterial scaffolds that present cues to direct differentiation of embryonic stem cell derived neural progenitor cells (ESNPCs) seeded inside into mature neural phenotypes, specifically neurons and oligodendrocytes. Release studies were performed to determine the appropriate conditions for retention of neurotrophin-3 (NT-3), sonic hedgehog (Shh), and platelet derived growth factor (PDGF) by an affinity-based delivery system (ABDS) incorporated into fibrin scaffolds. Embryoid bodies (EBs) containing neural progenitors were formed from mouse ES cells, using a 4−/4+ retinoic acid treatment protocol, and then seeded inside of fibrin scaffolds containing the drug delivery system. This delivery system was used to deliver various growth factor doses and combinations to the cells seeded inside of the scaffolds. Controlled delivery of NT-3 and PDGF simultaneously increased the fraction of neural progenitors, neurons, and oligodendrocytes while decreasing the fraction of astrocytes obtained compared to control cultures seeded inside of unmodified fibrin scaffolds with no growth factors present in the media. These results demonstrate that such a strategy can be used to generate an engineered tissue for the potential treatment of spinal cord injury and could be extended to study of differentiation in other tissues. PMID:19383401

  16. A composite fibrin-based scaffold for controlled delivery of bioactive pro-angiogenetic growth factors.

    PubMed

    Briganti, Enrica; Spiller, Dario; Mirtelli, Chiara; Kull, Silvia; Counoupas, Claudio; Losi, Paola; Senesi, Sonia; Di Stefano, Rossella; Soldani, Giorgio

    2010-02-25

    The aim of this study was to fabricate and characterize in vitro a novel composite scaffold that, combining good mechanical properties with a controlled and sustained release of bioactive pro-angiogenetic growth factors, should be useful for angiogenesis induction in organs/tissues in which is also necessary to give resistance and mechanical strength. Composite scaffolds, constituted by a synthetic biocompatible material, a poly(ether)urethane-polydimethylsiloxane blend, and a biological polymer, the fibrin, were manufactured by spray, phase-inversion technique. During the manufacturing process heparin and heparin-binding growth factors, such as VEGF(165) and bFGF, were incorporated into the fibrin layer. Microscopical examinations showed a homogeneous fibrin layer firmly adherent on top of the synthetic material. Tensile tests highlighted the high elasticity of the composite scaffold and its capability to maintain integrity up to high deformation. VEGF(165) and bFGF release were controlled by fibrinogen concentration, whereas it was not affected by heparin concentration, as revealed by ELISA assay. The biological activity of the released growth factors was maintained as demonstrated by HUVEC proliferation. Finally, scaffolds induced a low monocyte mRNA expression of inflammatory markers (IL-8, L-SEL, LFA-1 and iNOS). In conclusion, the new composite scaffolds, once implanted, providing a co-localization and temporal distribution of bioactive VEGF and bFGF in addition to good mechanical properties, may be useful to stimulate new vessels formation in ischemic tissues.

  17. The Effects of Soluble Growth Factors on Embryonic Stem Cell Differentiation Inside of Fibrin Scaffolds

    PubMed Central

    Willerth, Stephanie M.; Faxel, Tracy E.; Gottlieb, David I.; Sakiyama-Elbert, Shelly E.

    2008-01-01

    The goal of this research was to determine the effects of different growth factors on the survival and differentiation of murine embryonic stem cell derived neural progenitor cells (ESNPCs) seeded inside of fibrin scaffolds. Embryoid bodies (EBs) were cultured for 8 days in suspension, retinoic acid was applied for the final 4 days to induce ESNPC formation, and then the EBs were seeded inside of 3 dimensional (3D) fibrin scaffolds. Scaffolds were cultured in the presence of media containing different doses of the following growth factors: neurotrophin-3 (NT-3), basic fibroblast growth factor (bFGF), platelet derived growth factor (PDGF-AA), ciliary neurotrophic factor (CNTF), and sonic hedgehog (Shh). The cell phenotypes were characterized using fluorescence activated cell sorting (FACS) and immunohistochemistry after 14 days of culture. Cell viability was also assessed at this time point. Shh (10 ng/mL) and NT-3 (25 ng/mL) produced the largest fractions of neurons and oligodendrocytes while PDGF (2 and 10 ng/mL) and bFGF (10 ng/mL) produced an increase in cell viability after 14 days of culture. Combinations of growth factors were tested based on the results of the individual growth factor studies to determine their effect on cell differentiation. The incorporation of ESNPCs and growth factors into fibrin scaffolds may serve as potential treatment for spinal cord injury (SCI). PMID:17585170

  18. Simplified Technique for Sealing Corneal Perforations Using a Fibrin Glue-Assisted Amniotic Membrane Transplant-Plug

    PubMed Central

    Kara, Selcuk; Arikan, Sedat; Ersan, Ismail

    2014-01-01

    Purpose. To describe a surgical technique using amniotic membrane transplant (AMT) with fibrin glue (FG) for treating smaller corneal perforations more practically and appropriately filling the defect. Method. A patient with noninfectious central corneal perforation, in 1 mm in diameter, was treated with FG-assisted AMT-plug. An AMT was folded in on itself twice by using FG then a small piece of this FG-AMT mixture was cut to maintain an appropriate plug for the site of the corneal perforation. The FG-assisted AMT-plug was placed in the perforation area by using FG. An amniotic membrane patch was placed over the plug, which was then secured by a bandage contact lens. Result. Surgery to restore corneal stromal thickness without recurrence of perforation. Conclusion. The FG-assisted AMT-plug allowed a successful repair of 1 mm in diameter corneal perforation. This technique was easily performed, thus seeming to be a good alternative to treat corneal perforations with restoring corneal thickness. PMID:25045563

  19. Efficacy of arachnoid plasty with collagen sheets and fibrin glue: An in vitro experiment and a case review

    PubMed Central

    Abe, Junya; Ichinose, Tsutomu; Terakawa, Yuzo; Tsuyuguchi, Naohiro; Tsuruno, Takashi; Ohata, Kenji

    2015-01-01

    Background: Postoperative subdural fluid collection sometimes occurs after clipping of cerebral aneurysms. Arachnoid plasty is used to prevent such postoperative complications; however, the optimal materials for arachnoid plasty remain unclear. In this study, we aimed to clarify the optimal materials for arachnoid plasty and report our experience of arachnoid plasty after clipping of unruptured aneurysms. Methods: In an in vitro experiment, adhesive strengths of three materials permitted for use in the intradural space, such as collagen sheets, gelatin sponge, and oxidized cellulose sheets, were measured by assessing their water pressure resistance. Then, 80 consecutive cases surgically treated unruptured cerebral aneurysms were retrospectively reviewed to examine the occurrence rate of postoperative subdural fluid collection. Results: The collagen sheet exhibited the greatest adhesive strength, so we used collagen sheets for the arachnoid plasty procedures. In all of these cases, arachnoid plasty was performed with fibrin glue-soaked collagen sheets. No postoperative subdural fluid collection, inflammation, or allergic reactions occurred in any case. Conclusions: The present study suggests that collagen sheet might be one of the optimal materials for arachnoid plasty. This technique is simple and may be effective to prevent subdural fluid collection after clipping. PMID:26060599

  20. Clinical evaluation of coverage of open wounds: Polyglycolic acid sheet with fibrin glue spray vs split thickness skin

    PubMed Central

    Mochizuki, Yumi; Tomioka, Hirofumi; Tushima, Fumihiko; Shimamoto, Hiroaki; Hirai, Hideaki; Oikawa, Yuu; Harada, Hiroyuki

    2016-01-01

    Purpose: This study aimed to evaluate the coverage of oral wounds using either a polyglycolic acid (PGA) sheet or split-thickness skin grafting (STSG). Materials and Methods: A total of 119 cases of wound coverage using a PGA sheet and fibrin glue spray as well as 132 cases of wound coverage cases using STSG were reviewed retrospectively. The site of the excision area, perioperative conditions, and postoperative functional problems were evaluated. Results: The PGA group had significantly shorter operation time, earlier start of oral intake, and shorter hospitalization than the STSG group. If the PGA sheet over the wound with exposed bone could be protected by a surgical sprint, oral food intake could be started on the day after surgery at the earliest. When the size of the wound in the buccal excisional area was classified into two groups (<6 or ≥6 cm2), mouth opening in the STSG group was significantly larger at 3 months postoperatively. When the size of the wound in the tongue and floor of mouth was classified into two groups (<12 or ≥12 cm2), the STSG group had a significantly higher score in postoperative speech intelligibility. Conclusion: Selection of a PGA sheet or STSG based on the consideration of defect size, tumor location, patients’ local and general condition and tolerance for surgery could reduce the patients’ postsurgical dysfunctional problems. PMID:28299263

  1. The Effect of Bone Marrow-Derived Mesenchymal Stem Cells and Their Conditioned Media Topically Delivered in Fibrin Glue on Chronic Wound Healing in Rats.

    PubMed

    Mehanna, Radwa A; Nabil, Iman; Attia, Noha; Bary, Amany A; Razek, Khalid A; Ahmed, Tamer A E; Elsayed, Fatma

    2015-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) represent a modern approach for management of chronic skin injuries. In this work, we describe BM-MSCs application versus their conditioned media (CM) when delivered topically admixed with fibrin glue to enhance the healing of chronic excisional wounds in rats. Fifty-two adult male rats were classified into four groups after induction of large-sized full-thickness skin wound: control group (CG), fibrin only group (FG), fibrin + MSCs group (FG + SCs), and fibrin + CM group (FG + CM). Healing wounds were evaluated functionally and microscopically. Eight days after injury, number of CD68+ macrophages infiltrating granulation tissue was considerably higher in the latter two groups. Although--later--none of the groups depicted a substantially different healing rate, the quality of regenerated skin was significantly boosted by the application of either BM-MSCs or their CM both (1) structurally as demonstrated by the obviously increased mean area percent of collagen fibers in Masson's trichrome-stained skin biopsies and (2) functionally as supported by the interestingly improved epidermal barrier as well as dermal tensile strength. Thus, we conclude that topically applied BM-MSCs and their CM-via fibrin vehicle--could effectively improve the quality of healed skin in chronic excisional wounds in rats, albeit without true acceleration of wound closure.

  2. The Effect of Bone Marrow-Derived Mesenchymal Stem Cells and Their Conditioned Media Topically Delivered in Fibrin Glue on Chronic Wound Healing in Rats

    PubMed Central

    Mehanna, Radwa A.; Nabil, Iman; Attia, Noha; Bary, Amany A.; Razek, Khalid A.; Ahmed, Tamer A. E.; Elsayed, Fatma

    2015-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) represent a modern approach for management of chronic skin injuries. In this work, we describe BM-MSCs application versus their conditioned media (CM) when delivered topically admixed with fibrin glue to enhance the healing of chronic excisional wounds in rats. Fifty-two adult male rats were classified into four groups after induction of large-sized full-thickness skin wound: control group (CG), fibrin only group (FG), fibrin + MSCs group (FG + SCs), and fibrin + CM group (FG + CM). Healing wounds were evaluated functionally and microscopically. Eight days after injury, number of CD68+ macrophages infiltrating granulation tissue was considerably higher in the latter two groups. Although—later—none of the groups depicted a substantially different healing rate, the quality of regenerated skin was significantly boosted by the application of either BM-MSCs or their CM both (1) structurally as demonstrated by the obviously increased mean area percent of collagen fibers in Masson's trichrome-stained skin biopsies and (2) functionally as supported by the interestingly improved epidermal barrier as well as dermal tensile strength. Thus, we conclude that topically applied BM-MSCs and their CM—via fibrin vehicle—could effectively improve the quality of healed skin in chronic excisional wounds in rats, albeit without true acceleration of wound closure. PMID:26236740

  3. Optimization of acidic fibroblast growth factor (FGF-1) and its delivery through a modified degradable fibrin scaffold

    NASA Astrophysics Data System (ADS)

    Pandit, Abhay Smashikant

    The aim of this investigation was to develop a degradable fibrin wound dressing that can deliver an optimized dose of acidic fibroblast growth factor (FGF-1). This aim led to three distinct phases of study. In the first phase, a structurally modified fibrin degradable scaffold was developed and tested in a rabbit ear ulcer model. A significant increase in the angiogenic and fibroblastic response with a corresponding decrease in healing time was seen in the modified fibrin-treated ulcers as compared with untreated ulcers and ulcers treated with non-modified fibrin systems. In the second phase of the study, a biochemical factor, FGF-1, was added to this scaffold. An optimal dose of 8 mug of FGF-1 was determined to be required to initiate a desired wound-healing response in a rabbit ear ulcer model, based on an enhanced angiogenic and fibroblastic response and an increased epithelialization rate. The objective of the last phase was to investigate the efficacy of a modified scaffold as a vehicle for FGF-1. In vivo testing was conducted in a full-thickness defect model in a rabbit. Improvements were seen in the angiogenic and fibroblastic responses in the FGF-1/modified fibrin treatment group and, hence, FGF-1/modified fibrin was the preferred treatment. In conclusion, the modified fibrin/FGF-1 matrix served as a suitable vehicle for the growth factor, providing a desired healing response and a desirable release rate and, thus, was determined to be an effective scaffold.

  4. Effect of Prevascularization on In Vivo Vascularization of Poly(Propylene fumarate)/Fibrin Scaffolds

    PubMed Central

    Mishra, Ruchi; Roux, Brianna M.; Posukonis, Megan; Bodamer, Emily; Brey, Eric M.; Fisher, John P.; Dean, David

    2016-01-01

    The importance of vascularization in the field of bone tissue engineering has been established by previous studies. The present work proposes a novel poly(propylene fumarate) (PPF)/fibrin composite scaffold for the development of vascularized neobone tissue. The effect of prevascularization (i.e., in vitro pre-culture prior to implantation) with human mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVECs) on in vivo vascularization of scaffolds was determined. Five conditions were studied: no pre-culture (NP), 1 week preculture (1P), 2 week pre-culture (2P), 3 week pre-culture (3P), and scaffolds without cells (control, C). Scaffolds were implanted subcutaneously in a severe combined immunodeficiency (SCID) mice model for 9 days. During in vitro studies, CD31 staining showed a significant increase in vascular network area over 3 weeks of culture. Vascular density was significantly higher in vivo when comparing NP to 3P groups. Immunohistochemical staining of human CD-31 expression indicated spreading of vascular networks with increasing pre-culture time. These vascular networks were perfused with mouse blood indicated by perfused lectin staining in human CD-31 positive vessels. Our results demonstrate that in vitro prevascularization supports in vivo vascularization in PPF/fibrin scaffolds. PMID:26606451

  5. Hemostasis and other benefits of fibrin sealants/glues in spine surgery beyond cerebrospinal fluid leak repairs

    PubMed Central

    Epstein, Nancy E.

    2014-01-01

    Background: Fibrin sealants (FS)/glues (FG) are primarily utilized in spinal surgery to either strengthen repairs of elective (e.g., intradural tumors/pathology) or traumatic cerebrospinal fluid (CSF) fistulas. Here, additional roles/benefits of FS/FG in spine surgery are explored; these include increased hemostasis, reduction of scar, reduction of the risk of infection if impregnated with antibiotics, and its application to restrict diffusion and limit some of the major complications attributed to the controversial “off-label” use of bone morphogeneitc protein (rhBMP-2/INFUSE). Methods: We reviewed multiple studies, focusing not just on the utility of FS/FG in the treatment of CSF fistulas, but on its other applications. Results: FS/FG have been primarily used to supplement elective/traumatic dural closure in spinal surgery. However, FS/FG also contribute to; hemostasis, reducing intraoperative/postoperative bleeding/transfusion requirements, length of stay (LOS)/costs, reduced postoperative scar/radiculitis, and infection when impregnated with antibiotics. Nevertheless, one should seriously question whether FS/FG should be applied to prevent diffusion and limit major complications attributed to the “off-label” use of BMP/INFUSE (e.g., limit/prevent heterotopic ossification, dysphagia/respiratory decompensation, and new neurological deficits). Conclusions: FS/FG successfully supplement watertight dural closure following elective (e.g., intradural tumor) or traumatic CSF fistulas occurring during spinal surgery. Additional benefits include: intraoperative hemostasis with reduced postoperative drainage, reduced transfusion requirements, reduced LOS, cost, scar, and prophylaxis against infection (e.g., impregnated with antibiotics). However, one should seriously question whether FS/FG should be used to contain the diffusion of BMP/INFUSE and limit its complications when utilized “off-label”. PMID:25289150

  6. S53P4 bioactive glass and fibrin glue for the treatment of osteochondral lesions of the knee - a preliminary in vivo study in rabbits.

    PubMed

    Zazgyva, AncuŢa Marilena; Gurzu, Simona; Jung, Ioan; Nagy, Örs; Mühlfay, Gheorghe; Pop, Tudor Sorin

    2015-01-01

    The role of the subchondral bone and the importance of treating both bone and cartilage in cases of chondral and osteochondral lesions of the knee have been highly emphasized. There are no current studies on the experimental use of bioactive glass S53P4 (BonAlive®) as granules in the treatment of osteochondral lesions of the knee. Our preliminary study was designed to establish an experimental model and assesses the effect of glass granules fixed with fibrin compared to fibrin alone as fillers of the osteochondral defects created in the weight-bearing and partial weight-bearing regions of the distal femur in six adult rabbits. We found that the size of the distal femur in adult domestic rabbits allows the creation of 4 mm diameter and 5 mm deep osteochondral defects on both the medial femoral condyle and the trochlea, bilaterally, without significantly affecting the activity level of the animals. Retention of the glass granules in the defects was achieved successfully using a commercially available fibrin sealant. At five weeks post-implantation, we found macroscopic and microscopic differences between the four types of defects. The use of bioactive glass S53P4 for filling condylar osteochondral defects in rabbit femora led to the initiation of an early bone repair process, observed at five weeks after implantation, while the filling of trochlear defects with fibrin glue resulted in the appearance of cartilaginous tissue characteristic of endochondral ossification.

  7. Quercetin impregnated chitosan-fibrin composite scaffolds as potential wound dressing materials - Fabrication, characterization and in vivo analysis.

    PubMed

    Vedakumari, Weslen S; Ayaz, Nazeeha; Karthick, Arun S; Senthil, Rethinam; Sastry, Thotapalli P

    2017-01-15

    The present study efforts at fabricating chitosan-fibrin composite (CF) scaffolds impregnated with quercetin for wound dressing application and aims at investigating their physicochemical properties. CF scaffolds were prepared by mixing acidic solution of chitosan with an alkaline solution of fibrin, to which quercetin (Q) was added, homogenized and lyophilized obtain Q-CF scaffold. FTIR spectra were used to determine the interactions between the functional groups of quercetin and CF scaffolds. TGA analysis revealed the decomposition of saccharide rings and amino acids of chitosan and fibrin at the temperature range of 255-400°C. Q-CF scaffold exhibited maximum tensile strength of 1.45MPa, an ideal mechanical strength for a wound dressing material. Q-CF scaffolds exhibited good bactericidal activity against Escherichia coli and Staphylococcus aureus. Biocompatibility of Q-CF scaffold was assessed using MTT assay, which elucidated its non-toxic property and excellent suitability for tissue engineering applications. In vivo wound healing experiments performed using albino rats revealed that topical application of Q-CF scaffold on open excision type of wounds can significantly accelerate the process of wound healing. These results suggest that Q-CF scaffold could serve as a promising wound dressing material.

  8. Novel technology and innovations in colorectal surgery: the circular stapler for treatment of hemorrhoids and fibrin glue for treatment of perianal fistulae.

    PubMed

    Person, Benjamin; Wexner, Steven D

    2004-12-01

    The introduction of new techniques and technologies in medical science is both stimulating and controversial. This article is a review of the current status of two such advances. Since its first description, the so-called "stapled hemorrhoidectomy" has been gaining increasing popularity, at first in Asia and Europe, and more recently in the United States. It is obviously a misnomer, since no excision of hemorrhoidal tissue is undertaken in this procedure. It is probably the most significant change in the surgical treatment of hemorrhoids since the introduction of conventional hemorrhoidectomy. Patients routinely experience less postoperative pain and have excellent control of symptoms, with few serious complications in most series. Despite a relatively simple operative technique, the procedure still has specific steps and features that must be followed and mastered to help insure success. The use of fibrin glue for treatment of perianal fistulae has also been a controversial issue, thus it is seldom included in any algorithm as a therapeutic step for fistula-in-ano. The reported success rates of the treatment range from 0% to 100% owing to the heterogeneity of the clinical trials, treatment protocols, patients, etiologies, and types of fistulae. However, the benign nature, simplicity, negligible morbidity, and repeatability of the treatment, potentially makes fibrin glue an attractive first line treatment for perianal fistulae.

  9. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    SciTech Connect

    Puente, Pilar de la

    2013-02-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  10. The mechanical and biological studies of calcium phosphate cement-fibrin glue for bone reconstruction of rabbit femoral defects.

    PubMed

    Dong, Jingjing; Cui, Geng; Bi, Long; Li, Jie; Lei, Wei

    2013-01-01

    In order to improve the mechanical and biological properties of calcium phosphate cement (CPC, nanometer-biomaterial) for bone reconstruction in the rabbit femoral defect model, fibrin glue (FG, the natural product, purified from the blood) was introduced at three different ratios. The CPC powder and the FG solution were mixed, respectively, at the powder/liquid (P/L) ratios (g/mL) of 1:1, 3:1, and 5:1 (g/mL), and pure CPC was used as a control. After being implanted into the femoral defect in rabbit, the healing process was evaluated by micro-computed tomography scan, biomechanical testing, and histological examination. By micro-computed tomography analysis, the P/L ratio of 1:1 (g/mL) group indicated the largest quantity of new bone formation at 4 weeks, 8 weeks, and 12 weeks after implantation, respectively. Bone volume per trabecular volume of the 1:1 group was highest in the four groups, which was 1.45% ± 0.42%, 7.35% ± 1.45%, and 29.10% ± 1.67% at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. In the biomechanical tests, the compressive strength and the elastic modulus of the three CPC-FG groups were much higher than those of the pure CPC group at the determined time point (P < 0.05). The histological evaluation also showed the best osseointegration in the 1:1 group at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. In the 1:1 group, the bone grew into the pore of the cement in the laminar arrangement and connected with the cement tightly at the 12th week after the operation. This present study indicated that the CPC-FG composite at the P/L ratio of 1:1 (g/mL) stimulated bone regeneration better than any other designed group, which suggested that CPC-FG at the P/L ratio of 1:1 has significant potential as the bioactive material for the treatment of bone defects.

  11. Autologous fibrin scaffolds cultured dermal fibroblasts and enriched with encapsulated bFGF for tissue engineering.

    PubMed

    de la Puente, Pilar; Ludeña, Dolores; Fernández, Ana; Aranda, Jose L; Varela, Gonzalo; Iglesias, Javier

    2011-12-15

    Autologous fibrin scaffolds (AFSs) enriched with cells and specific growth factors represent a promising biocompatible scaffold for tissue engineering. Here, we analyzed the in vitro behavior of dermal fibroblasts (DFs) (cellular attachment, distribution, viability and proliferation, histological and immunohistochemical changes), comparing AFS with and without alginate microcapsules loaded with basic fibroblast growth factor (bFGF), to validate our scaffold in a future animal model in vivo. In all cases, DFs showed good adhesion and normal distribution, while in scaffolds with bFGF at 14 days, the cell counts detected in proliferation and viability assays were greatly improved, as was the proliferative state, and there was a decrease in muscle specific actin expression and collagen synthesis in comparison with the scaffolds without bFGF. In addition, the use of plasma without fibrinogen concentration methods, together with the maximum controlled release of bFGF at 14 days, favored cell proliferation. To conclude, we have been able to create an AFS enriched with fully functional DFs and release-controlled bFGF that could be used in multiple applications for tissue engineering.

  12. Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering

    PubMed Central

    Ziv-Polat, Ofra; Skaat, Hadas; Shahar, Abraham; Margel, Shlomo

    2012-01-01

    Novel tissue-engineered magnetic fibrin hydrogel scaffolds were prepared by the interaction of thrombin-conjugated iron oxide magnetic nanoparticles with fibrinogen. In addition, stabilization of basal fibroblast growth factor (bFGF) was achieved by the covalent and physical conjugation of the growth factor to the magnetic nanoparticles. Adult nasal olfactory mucosa (NOM) cells were seeded in the transparent fibrin scaffolds in the absence or presence of the free or conjugated bFGF-iron oxide nanoparticles. The conjugated bFGF enhanced significantly the growth and differentiation of the NOM cells in the fibrin scaffolds, compared to the same or even five times higher concentration of the free bFGF. In the presence of the bFGF-conjugated magnetic nanoparticles, the cultured NOM cells proliferated and formed a three-dimensional interconnected network composed mainly of tapered bipolar cells. The magnetic properties of these matrices are due to the integration of the thrombin- and bFGF-conjugated magnetic nanoparticles within the scaffolds. The magnetic properties of these scaffolds may be used in future work for various applications, such as magnetic resonance visualization of the scaffolds after implantation and reloading the scaffolds via magnetic forces with bioactive agents, eg, growth factors bound to the iron oxide magnetic nanoparticles. PMID:22419873

  13. Recombinant human bone morphogenetic protein-2 suspended in fibrin glue enhances bone formation during distraction osteogenesis in rabbits

    PubMed Central

    Li, Yunfeng; Li, Rui; Hu, Jing; Song, Donghui; Jiang, Xiaowen

    2016-01-01

    Introduction Bone morphogenetic protein-2 (BMP-2) has high potential for bone formation, but its in vivo effects are unpredictable due to the short life time. This study was designed to evaluate the effects of recombinant human (rh) BMP-2 suspended in fibrin on bone formation during distraction osteogenesis (DO) in rabbits. Material and methods The in vitro release kinetics of rhBMP-2 suspended in fibrin was tested using an enzyme-linked immunosorbent assay. Unilateral tibial lengthening for 10 mm was achieved in 48 rabbits. At the completion of osteodistraction, vehicle, fibrin, rhBMP-2 or rhBMP-2 suspended in fibrin (rhBMP-2 + fibrin) was injected into the center of the lengthened gap, with 12 animals in each group. Eight weeks later, the distracted callus was examined by histology, micro-CT and biomechanical testing. Radiographs of the distracted tibiae were taken at both 4 and 8 weeks after drug treatment. Results It was found that fibrin prolonged the life span of rhBMP-2 in vitro with sustained release during 17 days. The rhBMP-2 + fibrin treated animals showed the best results in bone mineral density, bone volume fraction, cortical bone thickness by micro-CT evaluation and mechanical properties by the three-point bending test when compared to the other groups (p < 0.05). In histological images, rhBMP-2 + fibrin treatment showed increased callus formation and better gap bridging compared to the other groups. Conclusions The results of this study suggest that fibrin holds promise to be a good carrier of rhBMP-2, and rhBMP-2 suspended in fibrin showed a stronger promoting effect on bone formation during DO in rabbits. PMID:27279839

  14. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture.

    PubMed

    Lee, Yeong-Bae; Polio, Samuel; Lee, Wonhye; Dai, Guohao; Menon, Lata; Carroll, Rona S; Yoo, Seung-Schik

    2010-06-01

    Time-released delivery of soluble growth factors (GFs) in engineered hydrogel tissue constructs promotes the migration and proliferation of embedded cells, which is an important factor for designing scaffolds that ultimately aim for neural tissue regeneration. We report a tissue engineering technique to print murine neural stem cells (C17.2), collagen hydrogel, and GF (vascular endothelial growth factor: VEGF)-releasing fibrin gel to construct an artificial neural tissue. We examined the morphological changes of the printed C17.2 cells embedded in the collagen and its migration toward the fibrin gel. The cells showed high viability (92.89+/-2.32%) after printing, which was equivalent to that of manually-plated cells. C17.2 cells printed within 1mm from the border of VEGF-releasing fibrin gel showed GF-induced changes in their morphology. The cells printed in this range also migrated toward the fibrin gel, with the total migration distance of 102.4+/-76.1microm over 3days. The cells in the control samples (fibrin without the VEGF or VEGF printed directly in collagen) neither proliferated nor migrated. The results demonstrated that bio-printing of VEGF-containing fibrin gel supported sustained release of the GF in the collagen scaffold. The presented method can be gainfully used in the development of three-dimensional (3D) artificial tissue assays and neural tissue regeneration applications.

  15. Design and characterization of fibrin-based acoustically responsive scaffolds for tissue engineering applications

    PubMed Central

    Moncion, Alexander; Arlotta, Keith J.; Kripfgans, Oliver D.; Fowlkes, J. Brian; Carson, Paul L.; Putnam, Andrew J.; Franceschi, Renny T.; Fabiilli, Mario L.

    2015-01-01

    Hydrogel scaffolds are used in tissue engineering as a delivery vehicle for regenerative growth factors (GFs). Spatiotemporal patterns of GF signaling are critical for tissue regeneration, yet most scaffolds afford limited control of GF release, especially after implantation. We previously demonstrated that acoustic droplet vaporization (ADV) can control GF release from a fibrin scaffold doped with a perfluorocarbon emulsion. This study investigates properties of the acoustically responsive scaffold (ARS) critical for further translation. At 2.5 MHz, ADV and inertial cavitation thresholds ranged from 1.5 – 3.0 MPa and 2.0 – 7.0 MPa peak rarefactional pressure, respectively, for ARSs of varying compositions. Viability of C3H10T1/2 cells, encapsulated in the ARS, did not decrease significantly for pressures below 4 MPa. ARSs with perfluorohexane emulsions displayed higher stability versus perfluoropentane emulsions, while surrogate payload release was minimal without ultrasound. These results enable the selection of ARS compositions and acoustic parameters needed for optimized spatiotemporal control. PMID:26526782

  16. Repair of a traumatic subarachnoid-pleural fistula with the percutaneous injection of fibrin glue in a 2-year-old.

    PubMed

    Chu, Jason K; Miller, Brandon A; Bazylewicz, Michael P; Holbrook, John F; Chern, Joshua J

    2016-01-01

    Subarachnoid-pleural fistulas (SPFs) are rare clinical entities that occur after severe thoracic trauma or iatrogenic injury during anterolateral approaches to the spine. Treatment of these fistulas often entails open repair of the dural defect. The authors present the case of an SPF in a 2-year-old female after a penetrating injury to the chest. The diagnosis of an SPF was suspected given the high chest tube output and was confirmed with a positive β2-transferrin test of the chest tube fluid, as well as visualization of dural defects on MRI. The dural defects were successfully repaired with CT-guided percutaneous epidural injection of fibrin glue alone. This case represents the youngest pediatric patient with a traumatic SPF to be treated percutaneously. This technique can be safely used in pediatric patients, offers several advantages over open surgical repair, and could be considered as an alternative first-line therapy for the obliteration of SPFs.

  17. Self-gripping mesh versus fibrin glue fixation in laparoscopic inguinal hernia repair: a randomized prospective clinical trial in young and elderly patients

    PubMed Central

    Bindi, Marco; Rivelli, Matteo; Solej, Mario; Enrico, Stefano; Martino, Valter

    2016-01-01

    Abstract Laparoscopic transabdominal preperitoneal inguinal hernia repair is a safe and effective technique. In this study we tested the hypothesis that self-gripping mesh used with the laparoscopic approach is comparable to polypropylene mesh in terms of perioperative complications, against a lower overall cost of the procedure. We carried out a prospective randomized trial comparing a group of 30 patients who underwent laparoscopic inguinal hernia repair with self-gripping mesh versus a group of 30 patients who received polypropylene mesh with fibrin glue fixation. There were no statistically significant differences between the two groups with regard to intraoperative variables, early or late intraoperative complications, chronic pain or recurrence. Self-gripping mesh in transabdominal hernia repair was found to be a valid alternative to polypropylene mesh in terms of complications, recurrence and postoperative pain. The cost analysis and comparability of outcomes support the preferential use of self-gripping mesh. PMID:28352842

  18. Addition of Mesenchymal Stem Cells to Autologous Platelet-Enhanced Fibrin Scaffolds in Chondral Defects

    PubMed Central

    Goodrich, Laurie R.; Chen, Albert C.; Werpy, Natasha M.; Williams, Ashley A.; Kisiday, John D.; Su, Alvin W.; Cory, Esther; Morley, Paul S.; McIlwraith, C. Wayne; Sah, Robert L.; Chu, Constance R.

    2016-01-01

    Background: The chondrogenic potential of culture-expanded bone-marrow-derived mesenchymal stem cells (BMDMSCs) is well described. Numerous studies have also shown enhanced repair when BMDMSCs, scaffolds, and growth factors are placed into chondral defects. Platelets provide a rich milieu of growth factors and, along with fibrin, are readily available for clinical use. The objective of this study was to determine if the addition of BMDMSCs to an autologous platelet-enriched fibrin (APEF) scaffold enhances chondral repair compared with APEF alone. Methods: A 15-mm-diameter full-thickness chondral defect was created on the lateral trochlear ridge of both stifle joints of twelve adult horses. In each animal, one defect was randomly assigned to receive APEF+BMDMSCs and the contralateral defect received APEF alone. Repair tissues were evaluated one year later with arthroscopy, histological examination, magnetic resonance imaging (MRI), micro-computed tomography (micro-CT), and biomechanical testing. Results: The arthroscopic findings, MRI T2 map, histological scores, structural stiffness, and material stiffness were similar (p > 0.05) between the APEF and APEF+BMDMSC-treated repairs at one year. Ectopic bone was observed within the repair tissue in four of twelve APEF+BMDMSC-treated defects. Defects repaired with APEF alone had less trabecular bone edema (as seen on MRI) compared with defects repaired with APEF+BMDMSCs. Micro-CT analysis showed thinner repair tissue in defects repaired with APEF+BMDMSCs than in those treated with APEF alone (p < 0.05). Conclusions: APEF alone resulted in thicker repair tissue than was seen with APEF+BMDMSCs. The addition of BMDMSCs to APEF did not enhance cartilage repair and stimulated bone formation in some cartilage defects. Clinical Relevance: APEF supported repair of critical-size full-thickness chondral defects in horses, which was not improved by the addition of BMDMSCs. This work supports further investigation to determine

  19. Fibrin Scaffolds Designing in order to Human Adipose-derived Mesenchymal Stem Cells Differentiation to Chondrocytes in the Presence of TGF-β3

    PubMed Central

    Sheykhhasan, Mohsen; Qomi, Reza Tabatabaei; Ghiasi, Mahdieh

    2015-01-01

    Background and Objectives One of the most cellular source used for cartilage tissue engineering are mesenchymal stem cells (MSCs). In present study, human MSCs were used as cellular source. Since scaffold plays an important role in tissue engineering the aim of this study is to assess fibrin scaffold ability in chondrogenic differentiation of adipose-derived mesenchymal stem cells (ADMSCs). Methods ADMSCs were isolated and cultured in DMEM medium supplemented with 10% FBS. Also ADMSCs expanded and characterised by flow cytometry. ADMSCs expressed CD44, CD90, CD105 but not CD34. After trypsinization, cells were entered within the fibrin scaffold. Then, chondrogenic medium was added to the scaffold. Seven days after cell culture, cell viability and proliferation were assessed by MTT test. Finally, 14 days after the ending of chondrogenic differentiation, analysis of chondrogenic genes expression was evaluated by RT-PCR and Real time PCR. Also, formation and development of chondrocyte cells was analysed by histological and immunohistochemistry evaluations. Results Viability and proliferation as well as chondrogenic genes expression within fibrin scaffold increased significantly compared with control group (cells free scaffold). Also, histological and immunohistochemistry evaluation showed that chondrocyte cells and collagen type II are formed on fibrin scaffold. Conclusions Fibrin is a suitable scaffold for chondrogenic differentiation of ADMSCs. PMID:26634070

  20. Use of fibrin glue in preventing pseudorecurrence after laparoscopic total extraperitoneal repair of large indirect inguinal hernia

    PubMed Central

    Sürgit, Önder; Çavuşoğlu, Nadir Turgut; Ünal, Yılmaz; Koşar, Pınar Nergis; İçen, Duygu

    2016-01-01

    Purpose Seroma is among the most common complications of laparoscopic total extraperitoneal (TEP) for especially large indirect inguinal hernia, and may be regarded as a recurrence by some patients. A potential area localized behind the mesh and extending from the inguinal cord into the scrotum may be one of the major etiological factors of this complication. Our aim is to describe a novel technique in preventing pseudorecurrence by using fibrin sealant to close that potential dead space. Methods Forty male patients who underwent laparoscopic TEP for indirect inguinal hernia with at least 100-mL volume were included in this prospective clinical study. While fibrin sealant was used to close the potential dead space in the study group, nothing was used in the control group. The volume of postoperative fluid collection on ultrasound was compared between the groups. Results Patient characteristics and the volumes of hernia sac were similar between the 2 groups. The mean volume of postoperative fluid collection was found as 120.2 mL in the control group and 53.7 mL in the study group, indicating a statistical significance (P < 0.001). Conclusion Minimizing the potential dead space with a fibrin sealant can reduce the amount of postoperative fluid collection, namely the incidence of pseudorecurrence. PMID:27617253

  1. “Controlled release of neurotrophin-3 from fibrin-based tissue engineering scaffolds enhances neural fiber sprouting following subacute spinal cord injury”†

    PubMed Central

    Johnson, Philip J; Parker, Stanley R; Sakiyama-Elbert, Shelly E.

    2009-01-01

    This study investigated whether delayed treatment of spinal cord injury with controlled release of neurotrophin-3 (NT-3) from fibrin scaffolds can stimulate enhanced neural fiber sprouting. Long Evans rats received a T9 dorsal hemisection spinal cord injury. Two weeks later, the injury site was re-exposed, and either a fibrin scaffold alone, a fibrin scaffold containing a heparin-based delivery system with different concentrations of NT-3 (500 and 1000 ng/mL), or a fibrin scaffold containing 1000 ng/mL of NT-3 (no delivery system) was implanted into the injury site. The injured spinal cords were evaluated for morphological differences using markers for neurons, astrocytes, and chondroitin sulfate proteoglycans 2 weeks after treatment. The addition of 500 ng/mL of NT-3 with the delivery system resulted in an increase in neural fiber density compared to fibrin alone. These results demonstrate that the controlled release of NT-3 from fibrin scaffolds can enhance neural fiber sprouting even when treatment is delayed 2 weeks following injury. PMID:19603426

  2. A Combined Synthetic-Fibrin Scaffold Supports Growth and Cardiomyogenic Commitment of Human Placental Derived Stem Cells

    PubMed Central

    Lisi, Antonella; Grimaldi, Settimio; Marchese, Rodolfo; Soldani, Giorgio

    2012-01-01

    Aims A potential therapy for myocardial infarction is to deliver isolated stem cells to the infarcted site. A key issue with this therapy is to have at one's disposal a suitable cell delivery system which, besides being able to support cell proliferation and differentiation, may also provide handling and elastic properties which do not affect cardiac contractile function. In this study an elastic scaffold, obtained combining a poly(ether)urethane-polydimethylsiloxane (PEtU-PDMS) semi-interpenetrating polymeric network (s-IPN) with fibrin, was used as a substrate for in vitro studies of human amniotic mesenchymal stromal cells (hAMSC) growth and differentiation. Methodology/Principal Findings After hAMSC seeding on the fibrin side of the scaffold, cell metabolic activity and proliferation were evaluated by WST-1 and bromodeoxyuridine assays. Morphological changes and mRNAs expression for cardiac differentiation markers in the hAMSCs were examined using immunofluorescence and RT-PCR analysis. The beginning of cardiomyogenic commitment of hAMSCs grown on the scaffold was induced, for the first time in this cell population, by a nitric oxide (NO) treatment. Following NO treatment hAMSCs show morphological changes, an increase of the messenger cardiac differentiation markers [troponin I (TnI) and NK2 transcription factor related locus 5 (Nkx2.5)] and a modulation of the endothelial markers [vascular endothelial growth factor (VEGF) and kinase insert domain receptor (KDR)]. Conclusions/Significance The results of this study suggest that the s-IPN PEtU-PDMS/fibrin combined scaffold allows a better proliferation and metabolic activity of hAMSCs cultured up to 14 days, compared to the ones grown on plastic dishes. In addition, the combined scaffold sustains the beginning of hAMSCs differentiation process towards a cardiomyogenic lineage. PMID:22509287

  3. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype.

    PubMed

    de la Puente, Pilar; Ludeña, Dolores; López, Marta; Ramos, Jennifer; Iglesias, Javier

    2013-02-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering.

  4. First step in developing a 3D biodegradable fibrin scaffold for an artificial ovary

    PubMed Central

    2013-01-01

    Background Although transplantation of cryopreserved ovarian tissue is a promising approach to restore fertility in cancer patients, it is not advisable for women at risk of ovarian involvement due to the threat of reintroducing malignant cells. The aim of this study was therefore to find an alternative for these patients by development of an artificial ovary. Methods For construction of the artificial ovary matrix, we used a central composite design to investigate nine combinations of fibrinogen (mg/ml) and thrombin (IU/mL) (F/T): F1/T4, F12.5/T1, F12.5/T20, F25/T0.1, F25/T4, F25/T500, F50/T1, F50/T20 and F100/T4. From the first qualitative analyses (handling and matrix size), five combinations (F12.5/T1, F25/T4, F50/T20, F50/T1 and F100/T4) yielded positive results. They were further evaluated in order to assess fibrin matrix degradation and homogeneous cell encapsulation (density), survival and proliferation (Ki67), and atresia (TUNEL) before and after 7 days of in vitro culture. To determine the best compromise between maximizing the dynamic density (Y1) and minimizing the apoptosis rate (Y2), we used the desirability function approach. Results Two combinations (F12.5/T1 and F25/T4) showed greater distribution of cells before in vitro culture, reproducible degradation of the fibrin network and adequate support for isolated human ovarian stromal cells, with a high proportion of Ki67-positive cells. SEM analysis revealed a network of fibers with regular pores and healthy stromal cells after in vitro culture with both F/T combinations. Conclusion This study reports two optimal F/T combinations that allow survival and proliferation of isolated human ovarian cells. Further studies are required to determine if such a scaffold will also be a suitable environment for isolated ovarian follicles. PMID:24274108

  5. Synthetic vs natural scaffolds for human limbal stem cells

    PubMed Central

    Tominac Trcin, Mirna; Dekaris, Iva; Mijović, Budimir; Bujić, Marina; Zdraveva, Emilija; Dolenec, Tamara; Pauk-Gulić, Maja; Primorac, Dragan; Crnjac, Josip; Špoljarić, Branimira; Mršić, Gordan; Kuna, Krunoslav; Špoljarić, Daniel; Popović, Maja

    2015-01-01

    Aim To investigate the impact of synthetic electrospun polyurethane (PU) and polycaprolactone (PCL) nanoscaffolds, before and after hydrolytic surface modification, on viability and differentiation of cultured human eye epithelial cells, in comparison with natural scaffolds: fibrin and human amniotic membrane. Methods Human placenta was taken at elective cesarean delivery. Fibrin scaffolds were prepared from commercial fibrin glue kits. Nanoscaffolds were fabricated by electrospinning. Limbal cells were isolated from surpluses of human cadaveric cornea and seeded on feeder 3T3 cells. The scaffolds used for viability testing and immunofluorescence analysis were amniotic membrane, fibrin, PU, and PCL nanoscaffolds, with or without prior NaOH treatment. Results Scanning electron microscope photographs of all tested scaffolds showed good colony spreading of seeded limbal cells. There was a significant difference in viability performance between cells with highest viability cultured on tissue culture plastic and cells cultured on all other scaffolds. On the other hand, electrospun PU, PCL, and electrospun PCL treated with NaOH had more than 80% of limbal cells positive for stem cell marker p63 compared to only 27%of p63 positive cells on fibrin. Conclusion Natural scaffolds, fibrin and amniotic membrane, showed better cell viability than electrospun scaffolds. On the contrary, high percentages of p63 positive cells obtained on these scaffolds still makes them good candidates for efficient delivery systems for therapeutic purposes. PMID:26088849

  6. Early stages of bone fracture healing: formation of a fibrin-collagen scaffold in the fracture hematoma.

    PubMed

    Echeverri, L F; Herrero, M A; Lopez, J M; Oleaga, G

    2015-01-01

    This work is concerned with the sequence of events taking place during the first stages of bone fracture healing, from bone breakup until the formation of early fibrous callus (EFC). The latter provides a scaffold over which subsequent remodeling processes will eventually result in successful bone repair. Specifically, some mathematical models are proposed to estimate the time required for (1) the formation immediately after fracture of a fibrin clot, described in terms of a phase transition in a polymerization process, and (2) the onset of EFC which is produced when fibroblasts arising from differentiation of chemotactically recruited mesenchymal stem cells remodel a previous fibrin clot by releasing a collagen matrix over it. An attempt has been made to keep models as simple as possible, so that a explicit dependence of the estimates obtained on relevant biochemical parameters involved is obtained.

  7. Joint mimicking mechanical load activates TGFβ1 in fibrin-poly(ester-urethane) scaffolds seeded with mesenchymal stem cells.

    PubMed

    Gardner, Oliver F W; Fahy, Niamh; Alini, Mauro; Stoddart, Martin J

    2016-07-22

    Transforming growth factor-β1 (TGF-β1) is widely used in an active recombinant form to stimulate the chondrogenic differentiation of mesenchymal stem cells (MSCs). Recently, it has been shown that the application of multiaxial load, that mimics the loading within diarthrodial joints, to MSCs seeded in to fibrin-poly(ester-urethane) scaffolds leads to the endogenous production and secretion of TGF-β1 by the mechanically stimulated cells, which in turn drives the chondrogenic differentiation of the cells within the scaffold. The work presented in this short communication provides further evidence that the application of joint mimicking multiaxial load induces the secretion of TGF-β1 by mechanically stimulated MSCs. The results of this work also show that joint-like multiaxial mechanical load activates latent TGF-β1 in response to loading in the presence or absence of cells; this activation was not seen in non-loaded control scaffolds. Despite the application of mechanical load to scaffolds with different distributions/numbers of cells no significant differences were seen in the percentage of active TGF-β1 quantified in the culture medium of scaffolds from different groups. The similar level of activation in scaffolds containing different numbers of cells, cells at different stages of differentiation or with different distributions of cells suggests that this activation results from the mechanical forces applied to the culture system rather than differences in cellular behaviour. These results are relevant when considering rehabilitation protocols after cell therapy or microfracture, for articular cartilage repair, where increased TGF-β1 activation in response to joint mobilization may improve the quality of developing cartilaginous repair material. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Comparative evaluation of absorbable hemostats: advantages of fibrin-based sheets.

    PubMed

    Krishnan, Lissy K; Mohanty, Mira; Umashankar, P R; Lal, Arthur Vijayan

    2004-11-01

    Bioactive hemostats and wound dressings consist of either inherently active materials or act as delivery vehicles which contain such materials. Fibrin is a natural hemostat and scaffold, guiding the direction of wound contraction and closure. In order to improve the ease of application of liquid fibrin glue, we have made a freeze-dried form of polymerized fibrin that supports hemostasis and wound healing. The bleeding from the middle ear artery of rabbits was found to be arrested instantaneously on application of fibrin sheets, even when the animal was heparinized systemically. As the fibrin sheet was found to be fragile, gelatin was incorporated to the sheet and thus the mechanical stability was improved without compromising the hemostatic effect. The efficacy of the fabricated fibrin and fibrin-gelatin sheets to seal traumatized rat liver was compared with commercially available hemostats, Abgel (cross-linked gelatin) and Surgicel (cross-linked cellulose). Tissue compatibility of all the hemostats was studied by analyzing the liver tissue 15 days after application. While the hemostatic effect was best with fibrin and fibrin-gelatin sheets, both Surgicel and Abgel were not capable of arresting the bleeding quickly. Gross analysis of tissue on the 15th day of application, visibly, Abgel was not only degraded but resulted in severe adhesions of internal organs and histologically capsule formation around the implant was evident. Though Surgicel was also seen as cream soft material on the site of application that joined two pieces of liver, there was no adhesion of other internal organs and histologically, immune reaction and foreign-body-type giant cells were present in large amounts. Fibrin was not found grossly on application site whereas fibrin-gelatin was seen as a small white spot. Granulation tissue formation and cell migration into the fibrin-based sheets were evident, and therefore, fibrin-based sheets are not only efficient hemostats but showed optimum

  9. Asymmetrical seeding of MSCs into fibrin-poly(ester-urethane) scaffolds and its effect on mechanically induced chondrogenesis.

    PubMed

    Gardner, Oliver F W; Musumeci, Giuseppe; Neumann, Alexander J; Eglin, David; Archer, Charles W; Alini, Mauro; Stoddart, Martin J

    2016-07-13

    Mesenchymal stem cells (MSCs) are currently being investigated as candidate cells for regenerative medicine approaches for the repair of damaged articular cartilage. For these cells to be used clinically, it is important to understand how they will react to the complex loading environment of a joint in vivo. In addition to investigating alternative cell sources, it is also important for the structure of tissue-engineered constructs and the organization of cells within them to be developed and, if possible, improved. A custom built bioreactor was used to expose human MSCs to a combination of shear and compression loading. The MSCs were either evenly distributed throughout fibrin-poly(ester-urethane) scaffolds or asymmetrically seeded with a small proportion seeded on the surface of the scaffold. The effect of cell distribution on the production and deposition of cartilage-like matrix in response to mechanical load mimicking in vivo joint loading was then investigated. The results show that asymmetrically seeding the scaffold led to markedly improved tissue development based on histologically detectable matrix deposition. Consideration of cell location, therefore, is an important aspect in the development of regenerative medicine approaches for cartilage repair. This is particularly relevant when considering the natural biomechanical environment of the joint in vivo and patient rehabilitation protocols. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Nerve glue for upper extremity reconstruction.

    PubMed

    Tse, Raymond; Ko, Jason H

    2012-11-01

    Nerve glue is an attractive alternative to sutures to improve the results of nerve repair. Improved axon alignment, reduced scar and inflammation, greater and faster reinnervation, and better functional results have been reported with the use of nerve glue. The different types of nerve glue and the evidence to support or oppose their use are reviewed. Although the ideal nerve glue has yet to be developed, fibrin sealants can be used as nerve glue in select clinical situations. Technology to allow suture-free nerve repair is one development that can potentially improve functional nerve recovery and the outcomes of upper extremity reconstruction.

  11. Enhanced Osteogenic and Vasculogenic Differentiation Potential of Human Adipose Stem Cells on Biphasic Calcium Phosphate Scaffolds in Fibrin Gels

    PubMed Central

    2016-01-01

    For bone tissue engineering synthetic biphasic calcium phosphate (BCP) with a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ratio of 60/40 (BCP60/40) is successfully clinically applied, but the high percentage of HA may hamper efficient scaffold remodelling. Whether BCP with a lower HA/β-TCP ratio (BCP20/80) is more desirable is still unclear. Vascular development is needed before osteogenesis can occur. We aimed to test the osteogenic and/or vasculogenic differentiation potential as well as degradation of composites consisting of human adipose stem cells (ASCs) seeded on BCP60/40 or BCP20/80 incorporated in fibrin gels that trigger neovascularization for bone regeneration. ASC attachment to BCP60/40 and BCP20/80 within 30 min was similar (>93%). After 11 days of culture BCP20/80-based composites showed increased alkaline phosphatase activity and DMP1 gene expression, but not RUNX2 and osteonectin expression, compared to BCP60/40-based composites. BCP20/80-based composites also showed enhanced expression of the vasculogenic markers CD31 and VEGF189, but not VEGF165 and endothelin-1. Collagen-1 and collagen-3 expression was similar in both composites. Fibrin degradation was increased in BCP20/80-based composites at day 7. In conclusion, BCP20/80-based composites showed enhanced osteogenic and vasculogenic differentiation potential compared to BCP60/40-based composites in vitro, suggesting that BCP20/80-based composites might be more promising for in vivo bone augmentation than BCP60/40-based composites. PMID:27547223

  12. Stem Cell Spheroid-Based Sprout Assay in Three-Dimensional Fibrin Scaffold: A Novel In Vitro Model for the Study of Angiogenesis.

    PubMed

    Sharifpanah, Fatemeh; Sauer, Heinrich

    2016-01-01

    Angiogenesis is a complex process of critical importance during development and in physiological and pathophysiological conditions. There is considerable research interest in studying the angiogenesis cascade and consequently a need for a physiologically valid, quantitative, and cost-effective assay. In this chapter, we describe the stem cell spheroid-based sprout assay in three-dimensional fibrin scaffold which allows fast and easy screening of pro- and anti-angiogenic effects of substances with a high degree of reproducibility.

  13. Glorious Glue

    ERIC Educational Resources Information Center

    Guhin, Paula

    2010-01-01

    There's something irresistible about squeezing out lines and shapes with a bottle of glue. It's fun, yes. But, even better: it's tactile. The glue dries slightly raised on the surface, lending itself to several exciting treatments. In this article, the author describes some activities that confirm how a simple art material like glue can be…

  14. Fibrin glue application in conjunction with tetracycline hydrochloride root conditioning and semilunar coronally repositioned flap in the treatment of gingival recession.

    PubMed

    George, Joann Pauline; Prabhuji, M L V; Shaeesta, K B; Lazarus, Flemingson

    2011-01-01

    The purpose of this case report is to present the results of Fibrin Adhesive System (FAS) application, a topical biological tissue adhesive in the treatment of maxillary buccal recessions. A 40-year-old male patient presented with a pair of class I buccal recession defects on maxillary cuspids. Clinical parameters were recorded at baseline, 1 month, and 3 months. Semilunar coronally repositioned flap (Tarnow's technique), root debridement, root conditioning with tetracycline hydrochloride solution and one of the defect was treated with FAS application. Significant recession, height reduction, and attachment gain were observed with the FAS application defect site. About 50% of root coverage was noted in the FAS-treated defect and almost no root coverage in the defect site with no FAS application. Semilunar coronally repositioned flap with FAS application is an effective procedure for root coverage in anterior teeth. The addition of FAS improves the amount of root coverage, especially in relatively shallow defects.

  15. Fibrin glue application in conjunction with tetracycline hydrochloride root conditioning and semilunar coronally repositioned flap in the treatment of gingival recession

    PubMed Central

    George, Joann Pauline; Prabhuji, M. L. V.; Shaeesta, K. B.; Lazarus, Flemingson

    2011-01-01

    The purpose of this case report is to present the results of Fibrin Adhesive System (FAS) application, a topical biological tissue adhesive in the treatment of maxillary buccal recessions. A 40-year-old male patient presented with a pair of class I buccal recession defects on maxillary cuspids. Clinical parameters were recorded at baseline, 1 month, and 3 months. Semilunar coronally repositioned flap (Tarnow's technique), root debridement, root conditioning with tetracycline hydrochloride solution and one of the defect was treated with FAS application. Significant recession, height reduction, and attachment gain were observed with the FAS application defect site. About 50% of root coverage was noted in the FAS-treated defect and almost no root coverage in the defect site with no FAS application. Semilunar coronally repositioned flap with FAS application is an effective procedure for root coverage in anterior teeth. The addition of FAS improves the amount of root coverage, especially in relatively shallow defects. PMID:21772728

  16. Human coronary artery smooth muscle cell response to a novel PLA textile/fibrin gel composite scaffold.

    PubMed

    Gundy, Sarah; Manning, Grainne; O'Connell, Enda; Ellä, Ville; Harwoko, Marvi Sri; Rochev, Yuri; Smith, Terry; Barron, Valerie

    2008-11-01

    Previous studies have demonstrated the potential of fibrin as a cell carrier for cardiovascular tissue engineering applications. Unfortunately, fibrin exhibits poor mechanical properties. One method of addressing this issue is to incorporate a textile in fibrin to provide structural support. However, it is first necessary to develop a deeper understanding of the effect of the textile on cell response. In this study, the cytotoxicity of a polylactic acid (PLA) warp-knit textile was assessed with human coronary artery smooth muscle cells (HCASMC). Subsequently, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was employed to examine the gene expression of HCASMC embedded in fibrin with and without the textile. Five genes were examined over a 3-week period: smooth muscle alpha-actin (SMalphaA), myosin heavy chain 11 smooth muscle (SM1/SM2), calponin, myosin heavy chain 10 non-muscle (SMemb) and collagen. Additionally, a microarray analysis was performed to examine a wider range of genes. The knitting process did not adversely affect the cell response; there was no dramatic change in cell number or metabolic rate compared to the negative control. After 3 weeks, there was no significant difference in gene expression, except for a slight decrease of 10% in SMemb in the fibrin with textile. After 3 weeks, there were no obvious cytotoxic effects observed as a result of the knitting process and the gene expression profile did not appear to be altered in the presence of the mesh in the fibrin gel.

  17. Mussel Glue

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A mytilus edilus, a common blue ocean mussel is attaching itself to the underside of a wet glass in a laboratory. It secretes a glue like substance in the form of multiple threads which attach to surfaces such as shells, rocks, piers and ships. This natural super glue hardens within minutes and tightly affixes to its selected platform even in the roughest seas. Its superior adhesive properties suggest many practical applications. One company, Bio-Polymers, Inc., has developed a synthetic mussel glue for the commercial market.

  18. Influence of calcium chloride and aprotinin in the in vivo biological performance of a composite combining biphasic calcium phosphate granules and fibrin sealant.

    PubMed

    Le Guehennec, Laurent; Goyenvalle, Eric; Aguado, Eric; Pilet, Paul; Spaethe, Reiner; Daculsi, Guy

    2007-08-01

    Highly bioactive biomaterials have been developed to replace bone grafts in orthopedic revision and maxillofacial surgery for bone augmentation. A mouldable, self-hardening material can be obtained by combining TricOs Biphasic Calcium Phosphate Granules and Tissucol Fibrin Sealant. Two components, calcium chloride and antifibrinolytic agents (aprotinin), are essential for the stability of the fibrin clot. The ingrowth of cells in composites combining sealants without calcium chloride or with a low concentration of aprotinin was evaluated in vivo in an experiment on rabbits. Bone colonization was compared using TricOs alone or with the composite made from TricOs and the standard fibrin sealant. Without the addition of calcium chloride, the calcium ions released by the ceramic component interacted with the components of the sealant too late to stabilize the clot. With a low concentration of aprotinin, the degradation of the clot occurred more quickly, leading to the absence of a scaffold on which the bone cells could colonize the composite. Our results indicate that a stable fibrin scaffold is crucial for bone colonization. The low calcium chloride and low aprotinin groups have shown lower bone growth. Further studies will be necessary to determine the minimal amount of antifibrinolytic agent (aprotinin) necessary to allow the same level of osteogenic activity as the TricOs-fibrin glue composite.

  19. Polylactic-co-glycolic acid mesh coated with fibrin or collagen and biological adhesive substance as a prefabricated, degradable, biocompatible, and functional scaffold for regeneration of the urinary bladder wall.

    PubMed

    Salem, Salah Abood; Hwei, Ng Min; Bin Saim, Aminuddin; Ho, Christopher C K; Sagap, Ismail; Singh, Rajesh; Yusof, Mohd Reusmaazran; Md Zainuddin, Zulkifili; Idrus, Ruszymah Bt Hj

    2013-08-01

    The chief obstacle for reconstructing the bladder is the absence of a biomaterial, either permanent or biodegradable, that will function as a suitable scaffold for the natural process of regeneration. In this study, polylactic-co-glycolic acid (PLGA) plus collagen or fibrin was evaluated for its suitability as a scaffold for urinary bladder construct. Human adipose-derived stem cells (HADSCs) were cultured, followed by incubation in smooth muscle cells differentiation media. Differentiated HADSCs were then seeded onto PLGA mesh supported with collagen or fibrin. Evaluation of cell-seeded PLGA composite immersed in culture medium was performed under a light and scanning microscope. To determine if the composite is compatible with the urodynamic properties of urinary bladder, porosity and leaking test was performed. The PLGA samples were subjected to tensile testing was pulled until PLGA fibers break. The results showed that the PLGA composite is biocompatible to differentiated HADSCs. PLGA-collagen mesh appeared to be optimal as a cell carrier while the three-layered PLGA-fibrin composite is better in relation to its leaking/ porosity property. A biomechanical test was also performed for three-layered PLGA with biological adhesive and three-layered PLGA alone. The tensile stress at failure was 30.82 ± 3.80 (MPa) and 34.36 ± 2.57 (MPa), respectively. Maximum tensile strain at failure was 19.42 ± 2.24 (mm) and 23.06 ± 2.47 (mm), respectively. Young's modulus was 0.035 ± 0.0083 and 0.043 ± 0.012, respectively. The maximum load at break was 58.55 ± 7.90 (N) and 65.29 ± 4.89 (N), respectively. In conclusion, PLGA-Fibrin fulfils the criteria as a scaffold for urinary bladder reconstruction.

  20. The potential of 3-dimensional construct engineered from poly(lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells for in vitro cartilage tissue engineering.

    PubMed

    Abdul Rahman, Rozlin; Mohamad Sukri, Norhamiza; Md Nazir, Noorhidayah; Ahmad Radzi, Muhammad Aa'zamuddin; Zulkifly, Ahmad Hafiz; Che Ahmad, Aminudin; Hashi, Abdurezak Abdulahi; Abdul Rahman, Suzanah; Sha'ban, Munirah

    2015-08-01

    Articular cartilage is well known for its simple uniqueness of avascular and aneural structure that has limited capacity to heal itself when injured. The use of three dimensional construct in tissue engineering holds great potential in regenerating cartilage defects. This study evaluated the in vitro cartilaginous tissue formation using rabbit's bone marrow mesenchymal stem cells (BMSCs)-seeded onto poly(lactic-co-glycolic acid) PLGA/fibrin and PLGA scaffolds. The in vitro cartilaginous engineered constructs were evaluated by gross inspection, histology, cell proliferation, gene expression and sulphated glycosaminoglycan (sGAG) production at week 1, 2 and 3. After 3 weeks of culture, the PLGA/fibrin construct demonstrated gross features similar to the native tissue with smooth, firm and glistening appearance, superior histoarchitectural and better cartilaginous extracellular matrix compound in concert with the positive glycosaminoglycan accumulation on Alcian blue. Significantly higher cell proliferation in PLGA/fibrin construct was noted at day-7, day-14 and day-21 (p<0.05 respectively). Both constructs expressed the accumulation of collagen type II, collagen type IX, aggrecan and sox9, showed down-regulation of collagen type I as well as produced relative sGAG content with PLGA/fibrin construct exhibited better gene expression in all profiles and showed significantly higher relative sGAG content at each time point (p<0.05). This study suggested that with optimum in vitro manipulation, PLGA/fibrin when seeded with pluripotent non-committed BMSCs has the capability to differentiate into chondrogenic lineage and may serve as a prospective construct to be developed as functional tissue engineered cartilage.

  1. Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits.

    PubMed

    Shao, Xin Xin; Hutmacher, Dietmar W; Ho, Saey Tuan; Goh, James C H; Lee, Eng Hin

    2006-03-01

    The objective of this study was to evaluate the feasibility and potential of a hybrid scaffold system in large- and high-load-bearing osteochondral defects repair. The implants were made of medical-grade PCL (mPCL) for the bone compartment whereas fibrin glue was used for the cartilage part. Both matrices were seeded with allogenic bone marrow-derived mesenchymal cells (BMSC) and implanted in the defect (4 mm diameter x 5 mm depth) on medial femoral condyle of adult New Zealand White rabbits. Empty scaffolds were used at the control side. Cell survival was tracked via fluorescent labeling. The regeneration process was evaluated by several techniques at 3 and 6 months post-implantation. Mature trabecular bone regularly formed in the mPCL scaffold at both 3 and 6 months post-operation. Micro-Computed Tomography showed progression of mineralization from the host-tissue interface towards the inner region of the grafts. At 3 months time point, the specimens showed good cartilage repair. In contrast, the majority of 6 months specimens revealed poor remodeling and fissured integration with host cartilage while other samples could maintain good cartilage appearance. In vivo viability of the transplanted cells was demonstrated for the duration of 5 weeks. The results demonstrated that mPCL scaffold is a potential matrix for osteochondral bone regeneration and that fibrin glue does not inherit the physical properties to allow for cartilage regeneration in a large and high-load-bearing defect site.

  2. Fibrin Adhesive: Clinical Application in Coronary Artery Bypass Graft Surgery

    PubMed Central

    Fundaró, Pino; Velardi, Antonio R.; Santoli, Carmine

    1985-01-01

    Fibrin adhesive was used 72 times in a group of 67 patients undergoing elective coronary artery bypass graft surgery. The indications were prophylactic sealing of potential sources of bleeding, topical hemostasis (control of bleeding sites dangerous or difficult to suture), and fixation of the graft in the optimal position. The method of glue application under varying circumstances is described and the results are reported. This experience suggests that in some cases the glue expedites the operation and makes it safer. We conclude that the fibrin sealing represents a valid aid in coronary artery bypass graft surgery. PMID:15227018

  3. Mechanical and chemical characteristics of an autologous glue.

    PubMed

    De Somer, Filip; Delanghe, Joris; Somers, Pamela; Debrouwere, Maarten; Van Nooten, Guido

    2008-09-15

    The study evaluates the mechanical and chemical characteristics of autologous surgical glue made by mixing ultrafiltered plasma with glutaraldehyde (GTA). Human albumin 200 g/L mixed with different concentrations of GTA (25, 50, 75, or 100 g/L) was used as a single protein set-up for testing tensile strength, elasticity, and rate of crosslinking. Subsequently, ultrafiltered canine or human plasma to obtain autologous glue replaced human albumin. BioGlue, a surgical glue, and Tissucol Duo, a fibrin sealant, were used as controls. Tensile strength of human albumin 200 g/L mixed with 75 g/L GTA is 825 +/- 109 N versus 672 +/- 167 N for BioGlue. Ultrafiltered canine plasma showed a maximum tensile strength of 634 +/- 137 N when mixed with GTA 75 g/L. For human plasma, the maximum tensile strength of 436 +/- 69 N was reached after mixing with GTA 25 g/L. Autologous glue had a higher elasticity of 144 +/- 66 N versus 322 +/- 104 N for BioGlue at maximum load. Autologous glues for vascular repair can be easily prepared out of the patient's plasma. The optimal characteristics, compared to BioGlue, are obtained for ultrafiltered canine and human plasma by mixing with a GTA concentration of 50-75 g/L and 25-50 g/L, respectively. The autologous glue will exert less tensile strength than BioGlue but has a better compliance. In case where no plasma can obtained from the patient, mixing human albumin 200 g/L with GTA 75 g/L can be an alternative to BioGlue.

  4. Usefulness of a new gelatin glue sealant system for dural closure in a rat durotomy model.

    PubMed

    Kawai, Hisashi; Nakagawa, Ichiro; Nishimura, Fumihiko; Motoyama, Yasushi; Park, Young-Su; Nakamura, Mitsutoshi; Nakase, Hiroyuki; Suzuki, Shuko; Ikada, Yoshito

    2014-01-01

    Watertight dural closure is imperative after neurosurgical procedures, because inadequately treated leakage of cerebrospinal fluid (CSF) can have serious consequences. We used a rat durotomy model to test the usefulness of a new gelatin glue as a dural sealant in a rat model of transdural CSF leakage. All rats were randomly divided into one of the following three treatment groups: no application (control group: N = 18), application of fibrin glue (fibrin glue group: N = 18), and application of the new gelatin glue (new gelatin glue group: N = 18). The craniotomy side was re-opened, and CSF leakage was checked and recorded at 1, 7, and 28 days postoperatively. The new gelatin glue was adequate for stopping CSF leakage; no leakage was observed at postoperative days 1 or 7, and leakage was observed in only one rat at postoperative day 28. This result was statistically significant when compared to the control group (P = 0.002, P = 0.015, P = 0.015, respectively). The pathologic score of the new gelatin group was not different from that of the control or fibrin glue groups. We conclude that our new gelatin glue provides effective watertight closure 1, 7, and 28 days after operation in the rat durotomy model.

  5. Role of plasma-rich fibrin in oral surgery

    PubMed Central

    Kumar, K. Retna; Genmorgan, K.; Abdul Rahman, S. M.; Rajan, M. Alaguvel; Kumar, T. Arul; Prasad, V. Srinivas

    2016-01-01

    Platelet-rich fibrin (PRF) is a fibrin meshwork, in which platelet cytokines, growth factors, and cells are entrapped and discharged after a period and can serve as a resorbable film. PRF is the next generation of platelet concentrates equipped to improve arrangement without biochemical blood handling; PRF is an evolution of the fibrin adhesive, which is widely used in the oral surgery. The guidelines of this innovation depend on concentrating platelets and growth factors in a plasma medium, and initiating them in a fibrin gel, keeping in mind the end goal to enhance the healing of wounds. Maxillary bone loss requires numerous regenerative techniques: as a supplement to the procedures of tissue regeneration, a platelet concentrate called PRF was tested for the 1st time in France by Dr. Choukroun. This article enriches the benefits and role of plasma-rich fibrin in oral surgery. Platelet-concentrate fibrin is an evolution of the fibrin glue, which is widely used in the oral surgery. PMID:27829743

  6. The impact of tissue glue in wound healing of head and neck patients undergoing neck dissection.

    PubMed

    Huang, Che-Wei; Wang, Chen-Chi; Jiang, Rong-San; Huang, Yu-Chia; Ho, Hui-Ching; Liu, Shih-An

    2016-01-01

    We investigated the impact of fibrin glue on postoperative drainage amount and duration in head and neck cancer patients who underwent neck dissection. This study was a prospective randomized controlled trial. Patients who were scheduled to undergo neck dissection due to head and neck cancer were eligible for this study. After receiving a detailed explanation, all patients signed an informed consent form before enrollment. Patients were then randomly assigned to the study group (fibrin glue) or control group. In the study group, 2 ml of fibrin glue (Tissucol(®); Duploject, Baxter AG) was applied on the surface of the surgical wound before closure. Basic demographic data along with tumor-related features, operation-related variables, postoperative drainage amount/duration, postoperative pain, and analgesic usage were collected and analyzed. A total of 15 patients were included in the final analyses, with eight patients in the study group and seven patients in the control group. No significant differences were found between the two groups in age, gender, primary site, clinical N stage, neck dissection levels, perioperative bleeding, postoperative drainage amount/duration, hospitalization duration, and postoperative pain status. The application of 2 ml fibrin glue by the method described herein did not reduce the postoperative drainage amount/duration nor the postoperative pain status in patients who underwent neck dissection.

  7. Adipose-derived mesenchymal stem cells embedded in platelet-rich fibrin scaffolds promote angiogenesis, preserve heart function, and reduce left ventricular remodeling in rat acute myocardial infarction

    PubMed Central

    Chen, Yung-Lung; Sun, Cheuk-Kwan; Tsai, Tzu-Hsien; Chang, Li-Teh; Leu, Steve; Zhen, Yen-Yi; Sheu, Jiunn-Jye; Chua, Sarah; Yeh, Kuo-Ho; Lu, Hung-I; Chang, Hsueh-Wen; Lee, Fan-Yen; Yip, Hon-Kan

    2015-01-01

    Objective: This study tested the hypothesis that autologous adipose-derived mesenchymal stem cells (ADMSCs) embedded in platelet-rich fibrin (PRF) can significant promote myocardial regeneration and repair after acute myocardial infarction (AMI). Summary background: With avoiding the needle-related complications, PRF-embedded autologous ADMSCs graft provides a new effective stem cell-based therapeutic strategy for myocardial repair. Methods: Adult male Sprague-Dawley rats were equally divided (n = 8 per group) into group 1 (sham-operated), group 2 (AMI by ligating left coronary artery), group 3 (AMI+ PRF), and group 4 (AMI+PRF-embedded autologous ADMSCs). RPF with or without ADMSCs was patched on infarct area 1h after AMI induction. All animals were sacrificed on day 42 after echocardiography. Results: Left ventricular (LV) dimension and infarct/fibrotic areas were lowest in group 1, highest in group 2, in group 3 higher than in group 4, whereas LV performance and wall thickness exhibited a reversed pattern in all groups (all p < 0.001). Protein expressions of inflammatory (MMP-9, IL-1β), oxidative, apoptotic (Bax, cleaved PARP), fibrotic (Smad 3, TFG-β), hypertrophic (β-MHC), and heart failure (BNP) biomarkers displayed an identical pattern in infarct/fibrotic areas, whereas the protein expressions of anti-inflammatory (IL-10), anti-apoptotic (Bcl-2), anti-fibrotic (Smad1/5, BMP-2) biomarkers and α-MHC showed an opposite pattern (all p < 0.01). Angiogenic activities (c-Kit+, Sca-1+, CD31+, SDF-1α+, CXCR4+ cells; protein expressions of SDF-1α, CXCR4, VEGF) were highest in group 4 and lowest in group 1 (all p < 0.001). Conclusion: ADMSCs embedded in PRF offered significant benefit in preserving LV function and limiting LV remodeling after AMI. PMID:26175843

  8. Albumen Glue, New Material for Conjunctival Graft Surgery, an Animal Experiment

    NASA Astrophysics Data System (ADS)

    Kartiwa, A.; Miraprahesti, R.; Sovani, I.; Enus, S.; Boediono, A.

    2017-02-01

    Attach conjunctival graft commonly used are suture technique and fibrin glue. This study was to investigate albumen glue as an alternative to suture technique in attaching conjunctival graft in rabbits. Aim of this study was to compare the conjunctival wound healing between albumen glue and suture technique in rabbit eye as a model. There was an experimental animal study included 32 eyes (16 rabbits) in PT. Bio Farma (Persero) and Histology Laboratory, Faculty of Medicine, Padjadjaran University from March 2014 to July 2104. The study consisted of albumen glue group and suture technique group. The examination included the comparison of conjunctival graft attachment and histologic examination by microscopically was done to obtain the wound gap, then analyze by Mann-Whitney test. The results indicated that the graft attachment was significantly better-using albumen glue (grade 4) compared to suture (grade 2-3) on day-1 after surgery (p=0,000). The wound gap was smaller using albumen glue (0-0,33 μm versus 5,33-14 μm ; p=0,0005) on 10 minutes after surgery and 0 μm versus 0,33-4 μm ; p=0,0005 on day-7 after surgery. In conclusion, the graft attachment using albumen glue was better and the wound gap was smaller using albumen glue than suture technique.

  9. Enhanced Neurite Growth from Mammalian Neurons in Three-Dimensional Salmon Fibrin Gels

    PubMed Central

    Ju, Yo-El; Janmey, Paul A.; McCormick, Margaret; Sawyer, Evelyn S.; Flanagan, Lisa A.

    2007-01-01

    Three-dimensional fibrin matrices have been used as cellular substrates in vitro and as bridging materials for central nervous system repair. Cells can be embedded within fibrin gels since the polymerization process is non-toxic, making fibrin an attractive scaffold for transplanted cells. Most studies have utilized fibrin prepared from human or bovine blood proteins. However, fish fibrin may be well suited for neuronal growth since fish undergo remarkable central nervous system regeneration and molecules implicated in this process are present in fibrin. We assessed the growth of mammalian central nervous system neurons in bovine, human, and salmon fibrin and found that salmon fibrin gels encouraged the greatest degree of neurite (dendrite and axon) growth and were the most resistant to degradation by cellular proteases. The neurite growth-promoting effect was not due to the thrombin used to polymerize the gels or to any copurifying plasminogen. Co-purified fibronectin partially accounted for the effect on neurites, and blockade of fibrinogen/fibrin-binding integrins markedly decreased neurite growth. Anion exchange chromatography revealed different elution profiles for salmon and mammalian fibrinogens. These data demonstrate that salmon fibrin encourages the growth of neurites from mammalian neurons and suggest that salmon fibrin may be a beneficial scaffold for neuronal regrowth after CNS injury. PMID:17258313

  10. TAPE: A Biodegradable Hemostatic Glue Inspired by a Ubiquitous Compound in Plants for Surgical Application.

    PubMed

    Kim, Keumyeon; Lee, Haeshin; Hong, Seonki

    2016-06-08

    This video describes the simplest protocol for preparing biodegradable surgical glue that has an effective hemostatic ability and greater water-resistant adhesion strength than commercial tissue adhesives. Medical adhesives have attracted great attention as potential alternative tools to sutures and staples due to their convenience in usage with minimal invasiveness. Although there are several protocols for developing tissue adhesives including those commercially available such as fibrin glues and cyanoacrylate-based materials, mostly they require a series of chemical syntheses of organic molecules, or complicated protein-purification methods, in the case of bio-driven materials (i.e., fibrin glue). Also, the development of surgical glues exhibiting high adhesive properties while maintaining biodegradability is still a challenge due to difficulties in achieving good performance in the wet environment of the body. We illustrate a new method to prepare a medical glue, known as TAPE, by the weight-based separation of a water-immiscible supramolecular aggregate formed after a physical mixing of a plant-derived, wet-resistant adhesive molecule, Tannic Acid (TA), and a well-known biopolymer, Poly(Ethylene) glycol (PEG). With our approach, TAPE shows high adhesion strength, which is 2.5-fold more than commercial fibrin glue in the presence of water. Furthermore, TAPE is biodegradable in physiological conditions and can be used as a potent hemostatic glue against tissue bleeding. We expect the widespread use of TAPE in a variety of medical settings and drug delivery applications, such as polymers for muco-adhesion, drug depots, and others.

  11. Glue Guns: Aiming for Safety

    ERIC Educational Resources Information Center

    Roy, Ken

    2010-01-01

    While glue guns are very useful, there are safety issues. Regardless of the temperature setting, glue guns can burn skin. The teacher should demonstrate and supervise the use of glue guns and have a plan should a student get burned. There should be an initial first aid protocol in place, followed by a visit to the school nurse. An accident report…

  12. Glue-sniffing neuropathies.

    PubMed Central

    Dittmer, D. K.; Jhamandas, J. H.; Johnson, E. S.

    1993-01-01

    The commonly used term for solvent abuse, glue sniffing, generally encompasses a variety of substances, including spray paint, thinners, nail varnish remover, gasoline, marking pens, and lighter fluids. Inhaled vapours eventually reach the lipids in the nervous system, where they can be stored for long periods. In three cases of glue-sniffing-related neurotoxicity, the peripheral nervous system was affected in two cases and predominantly the central nervous system in the third. Unfortunately follow up is difficult with this patient population and symptoms are often complicated by alcohol abuse. Images p1966-a Figures 1-2 Figure 3 PMID:8219845

  13. Fibrin glue‐assisted glaucoma drainage device surgery

    PubMed Central

    Kahook, M Y; Noecker, R J

    2006-01-01

    Aim To describe the use of fibrin glue as a suture substitute for portions of glaucoma drainage device (GDD) surgery. Methods Retrospective non‐randomised case–control study reviewing 28 consecutive cases of GDD implantation using traditional suture material compared with 14 consecutive cases of GDD implantation using Tisseel fibrin glue (Baxter AG, Vienna, Austria) for portions of the procedure. The fibrin glue was used to close the conjunctiva, secure the pericardium patch graft and secure the tube to the sclera. Three‐month follow‐up data for each group as well as data on operating times, postoperative conjunctival inflammation, drugs used for glaucoma and intraocular pressure (IOP) were evaluated. Statistical analysis was carried out using analysis of variance. Results The mean (SD) age of the patients in the suture group (17 men and 11 women) was 56.6 (10.5) years and that in the Tisseel‐assisted group (8 men and 6 women) was 54.7 (8.6) years (p = 0.56). No significant differences were observed in IOP levels at any time point between the two groups. No significant differences were found for the need for postoperative glaucoma drops or postoperative complication rates in both groups. Conjunctival inflammation was more pronounced in the suture group (p = 0.002) using a standard scale for comparison. The mean (SD) time of surgery was significantly less for the Tisseel‐assisted group, 15.0 (3.11) min, than for the suture group, 25.93 (4.04) min (p<0.001). Conclusions Tisseel fibrin glue seems to be a safe substitute for some of the sutures used in GDD surgery. Use of Tisseel seems to have no effect on IOP control or complications, whereas it considerably improved postoperative conjunctival inflammation and reduced time of surgery. Further studies are needed to better understand the role of fibrin glue in GDD implantation. PMID:16916877

  14. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution.

    PubMed

    Dohan, David M; Choukroun, Joseph; Diss, Antoine; Dohan, Steve L; Dohan, Anthony J J; Mouhyi, Jaafar; Gogly, Bruno

    2006-03-01

    Platelet-rich fibrin (PRF) belongs to a new generation of platelet concentrates geared to simplified preparation without biochemical blood handling. In this initial article, we describe the conceptual and technical evolution from fibrin glues to platelet concentrates. This retrospective analysis is necessary for the understanding of fibrin technologies and the evaluation of the biochemical properties of 3 generations of surgical additives, respectively fibrin adhesives, concentrated platelet-rich plasma (cPRP) and PRF. Indeed, the 3-dimensional fibrin architecture is deeply dependent on artificial clinical polymerization processes, such as massive bovine thrombin addition. Currently, the slow polymerization during PRF preparation seems to generate a fibrin network very similar to the natural one. Such a network leads to a more efficient cell migration and proliferation and thus cicatrization.

  15. Development of a novel glue consisting of naturally-derived biomolecules: citric acid and human serum albumin.

    PubMed

    Taguchi, Tetsushi; Saito, Hirofumi; Iwasashi, Masashi; Sakane, Masataka; Kakinoki, Sachiro; Ochiai, Naoyuki; Tanaka, Junzo

    2007-03-01

    A novel glue consisting of human serum albumin (HSA) and citric acid derivative (CAD) was developed where the glue is named as CAD-A glue. In this adhesive, CAD works as a crosslinking reagent of HSA. For preparing crosslinking reagent CAD, using citric acid as a starting material, three carboxyl groups of a citric acid were modified with N-hydroxysuccinimide in the presence of 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride. From 1H-NMR spectrum, CAD with three active ester groups in a molecule was successfully synthesized with a high yield (more than 80%). The boding time of CAD-A glue to collagen-based casing was saturated within 15 minutes. The bonding strength of this glue to collagen-based casings increased with increasing of HSA concentration. The maximum bonding strength of CAD-A glue was a slightly low level compared to the bonding strength of cyanoacrylate adhesive and was 9 times higher than that of fibrin glue. The CAD-A glue showed excellent biocompatibility and high ability of wound closure similar to that of cyanoacrylate-based adhesive when glues were applied to the mouse skin. These results suggested that this developed adhesive had both tissue compatibility and bonding strength for use in clinical field.

  16. Structural basis for the nonlinear mechanics of fibrin networks under compression

    PubMed Central

    Kim, Oleg V.; Litvinov, Rustem I.; Weisel, John W.; Alber, Mark S.

    2014-01-01

    Fibrin is a protein polymer that forms a 3D filamentous network, a major structural component of protective physiological blood clots as well as life threatening pathological thrombi. It plays an important role in wound healing, tissue regeneration and is widely employed in surgery as a sealant and in tissue engineering as a scaffold. The goal of this study was to establish correlations between structural changes and mechanical responses of fibrin networks exposed to compressive loads. Rheological measurements revealed nonlinear changes of fibrin network viscoelastic properties under dynamic compression, resulting in network softening followed by its dramatic hardening. Repeated compression/decompression enhanced fibrin clot stiffening. Combining fibrin network rheology with simultaneous confocal microscopy provided direct evidence of structural modulations underlying nonlinear viscoelasticity of compressed fibrin networks. Fibrin clot softening in response to compression strongly correlated with fiber buckling and bending, while hardening was associated with fibrin network densification. Our results suggest a complex interplay of entropic and enthalpic mechanisms accompanying structural changes and accounting for the nonlinear mechanical response in fibrin networks undergoing compressive deformations. These findings provide new insight into the fibrin clot structural mechanics and can be useful for designing fibrin-based biomaterials with modulated viscoelastic properties. PMID:24840618

  17. Structural basis for the nonlinear mechanics of fibrin networks under compression.

    PubMed

    Kim, Oleg V; Litvinov, Rustem I; Weisel, John W; Alber, Mark S

    2014-08-01

    Fibrin is a protein polymer that forms a 3D filamentous network, a major structural component of protective physiological blood clots as well as life threatening pathological thrombi. It plays an important role in wound healing, tissue regeneration and is widely employed in surgery as a sealant and in tissue engineering as a scaffold. The goal of this study was to establish correlations between structural changes and mechanical responses of fibrin networks exposed to compressive loads. Rheological measurements revealed nonlinear changes of fibrin network viscoelastic properties under dynamic compression, resulting in network softening followed by its dramatic hardening. Repeated compression/decompression enhanced fibrin clot stiffening. Combining fibrin network rheology with simultaneous confocal microscopy provided direct evidence of structural modulations underlying nonlinear viscoelasticity of compressed fibrin networks. Fibrin clot softening in response to compression strongly correlated with fiber buckling and bending, while hardening was associated with fibrin network densification. Our results suggest a complex interplay of entropic and enthalpic mechanisms accompanying structural changes and accounting for the nonlinear mechanical response in fibrin networks undergoing compressive deformations. These findings provide new insight into the fibrin clot structural mechanics and can be useful for designing fibrin-based biomaterials with modulated viscoelastic properties.

  18. In Vitro and In Vivo Evaluation of Commercially Available Fibrin Gel as a Carrier of Alendronate for Bone Tissue Engineering

    PubMed Central

    Kim, Beom Su; Shkembi, Feride

    2017-01-01

    Alendronate (ALN) is a bisphosphonate drug that is widely used for the treatment of osteoporosis. Furthermore, local delivery of ALN has the potential to improve the bone regeneration. This study was designed to investigate an ALN-containing fibrin (fibrin/ALN) gel and evaluate the effect of this gel on both in vitro cellular behavior using human mesenchymal stem cells (hMSCs) and in vivo bone regenerative capacity. Fibrin hydrogels were fabricated using various ALN concentrations (10−7–10−4 M) with fibrin glue and the morphology, mechanical properties, and ALN release kinetics were characterized. Proliferation and osteogenic differentiation of and cytotoxicity in fibrin/ALN gel-embedded hMSCs were examined. In vivo bone formation was evaluated using a rabbit calvarial defect model. The fabricated fibrin/ALN gel was transparent with Young's modulus of ~13 kPa, and these properties were not affected by ALN concentration. The in vitro studies showed sustained release of ALN from the fibrin gel and revealed that hMSCs cultured in fibrin/ALN gel showed significantly increased proliferation and osteogenic differentiation. In addition, microcomputed tomography and histological analysis revealed that the newly formed bone was significantly enhanced by implantation of fibrin/ALN gel in a calvarial defect model. These results suggest that fibrin/ALN has the potential to improve bone regeneration. PMID:28210623

  19. Cyanoacrylate medical glue application in intervertebral disc annulus defect repair: Mechanical and biocompatible evaluation.

    PubMed

    Kang, Ran; Li, Haisheng; Lysdahl, Helle; Quang Svend Le, Dang; Chen, Menglin; Xie, Lin; Bünger, Cody

    2017-01-01

    In an attempt to find an ideal closure method during annulus defect repair, we evaluate the use of medical glue by mechanical and biocompatible test. Cyanoacrylate medical glue was applied together with a multilayer microfiber/nanofiber polycaprolactone scaffold and suture in annulus repair. Continuous axial loading and fatigue mechanical test was performed. Furthermore, the in vitro response of mesenchymal stem cell (MSC) to the glue was evaluated by cell viability assay. The in vivo response of annulus tissue to the glue and scaffold was also studied in porcine lumbar spine; histological sections were evaluated after 3 months. Cyanoacrylate glue significantly improved the closure effect in the experimental group with failure load 2825.7 ± 941.6 N, compared to 774.1 ± 281.3 N in the control group without glue application (p < 0.01). The experimental group also withstood the fatigue test. No toxic effect was observed by in vitro cell culture and in vivo implantation. On the basis of this initial evaluation, the use of cyanoacrylate medical glue improves closure effect with no toxicity in annulus defect repair. This method of annulus repair merits further effectiveness study in vivo. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 14-20, 2017.

  20. Glue Sniffers with Special Needs.

    ERIC Educational Resources Information Center

    O'Connor, Denis

    1987-01-01

    Glue sniffing and solvent misuse have seriously affected children and teenagers throughout the United Kingdom. This article discusses glue sniffing in terms of prevalence, association with disability, physical and psychological effects, signs and symptoms, counseling for sniffers, and successful interventions including an approach using videotape…

  1. Rapidly light-activated surgical protein glue inspired by mussel adhesion and insect structural crosslinking.

    PubMed

    Jeon, Eun Young; Hwang, Byeong Hee; Yang, Yun Jung; Kim, Bum Jin; Choi, Bong-Hyuk; Jung, Gyu Yong; Cha, Hyung Joon

    2015-10-01

    Currently approved surgical tissue glues do not satisfy the requirements for ideal bioadhesives due to limited adhesion in wet conditions and severe cytotoxicity. Herein, we report a new light-activated, mussel protein-based bioadhesive (LAMBA) inspired by mussel adhesion and insect dityrosine crosslinking chemistry. LAMBA exhibited substantially stronger bulk wet tissue adhesion than commercially available fibrin glue and good biocompatibility in both in vitro and in vivo studies. Besides, the easily tunable, light-activated crosslinking enabled an effective on-demand wound closure and facilitated wound healing. Based on these outstanding properties, LAMBA holds great potential as an ideal surgical tissue glue for diverse medical applications, including sutureless wound closures of skin and internal organs.

  2. 21 CFR 178.3120 - Animal glue.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Animal glue. 178.3120 Section 178.3120 Food and... and Production Aids § 178.3120 Animal glue. Animal glue may be safely used as a component of articles..., transporting, or holding food, subject to the provisions of this section. (a) Animal glue consists of...

  3. 21 CFR 178.3120 - Animal glue.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Animal glue. 178.3120 Section 178.3120 Food and... and Production Aids § 178.3120 Animal glue. Animal glue may be safely used as a component of articles..., transporting, or holding food, subject to the provisions of this section. (a) Animal glue consists of...

  4. 21 CFR 178.3120 - Animal glue.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Animal glue. 178.3120 Section 178.3120 Food and... and Production Aids § 178.3120 Animal glue. Animal glue may be safely used as a component of articles..., transporting, or holding food, subject to the provisions of this section. (a) Animal glue consists of...

  5. 21 CFR 178.3120 - Animal glue.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Animal glue. 178.3120 Section 178.3120 Food and... and Production Aids § 178.3120 Animal glue. Animal glue may be safely used as a component of articles..., transporting, or holding food, subject to the provisions of this section. (a) Animal glue consists of...

  6. 21 CFR 178.3120 - Animal glue.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Animal glue. 178.3120 Section 178.3120 Food and... Animal glue. Animal glue may be safely used as a component of articles intended for use in producing... the provisions of this section. (a) Animal glue consists of the proteinaceous extractives...

  7. [Healing of tubal anastomoses--microsurgery vs. fibrin gluing: morphologic aspects].

    PubMed

    Gauwerky, J F; Klose, R P; Forssmann, W G

    1994-01-01

    The healing of anastomoses either by microsurgical suture technique or by fibrin sealant technique has been examined in an experimental morphological study. With view to morphological criteria the healing of tubal anastomoses after one month is completed. Afterwards only little areas of regeneration could be found in the region of the anastomosis. These statements are valid for both types of anastomoses. In single cases a more progressive regeneration of the mucosa could be demonstrated. Using fibrin glue a more pronounced fibrosis could not be seen.

  8. Treatment of post-prostatectomy rectourethral fistula with fibrin sealant (Quixil™) injection: a novel application.

    PubMed

    Verriello, V; Altomare, M; Masiello, G; Curatolo, C; Balacco, G; Altomare, D F

    2010-12-01

    Rectourethral fistulas in adults is a rare but potentially devastating postoperative condition requiring complex and demanding surgery. Fibrin glue treatment has been used with some success in anal and rectovaginal fistulas, and in the case we present here this indication has been extended to a postoperative rectourethral fistula following radical prostatectomy. For the first time, to our knowledge, a fibrin sealant (Quixil) was injected into the fistula tract, and a rectal mucosal flap was used to close the internal opening. The fistula healed in few weeks, and the patient is symptom free after 1 year of follow-up.

  9. Microstructural and mechanical differences between digested collagen-fibrin co-gels and pure collagen and fibrin gels.

    PubMed

    Lai, Victor K; Frey, Christina R; Kerandi, Allan M; Lake, Spencer P; Tranquillo, Robert T; Barocas, Victor H

    2012-11-01

    Collagen and fibrin are important extracellular matrix (ECM) components in the body, providing structural integrity to various tissues. These biopolymers are also common scaffolds used in tissue engineering. This study investigated how co-gelation of collagen and fibrin affected the properties of each individual protein network. Collagen-fibrin co-gels were cast and subsequently digested using either plasmin or collagenase; the microstructure and mechanical behavior of the resulting networks were then compared with the respective pure collagen or fibrin gels of the same protein concentration. The morphologies of the collagen networks were further analyzed via three-dimensional network reconstruction from confocal image z-stacks. Both collagen and fibrin exhibited a decrease in mean fiber diameter when formed in co-gels compared with the pure gels. This microstructural change was accompanied by an increased failure strain and decreased tangent modulus for both collagen and fibrin following selective digestion of the co-gels. In addition, analysis of the reconstructed collagen networks indicated the presence of very long fibers and the clustering of fibrils, resulting in very high connectivities for collagen networks formed in co-gels.

  10. Microstructural and Mechanical Differences Between Digested Collagen-Fibrin Co-Gels and Pure Collagen and Fibrin Gels

    PubMed Central

    Lai, Victor K.; Frey, Christina R.; Kerandi, Allan M.; Lake, Spencer P.; Tranquillo, Robert T.; Barocas, Victor H.

    2012-01-01

    Collagen and fibrin are important extra-cellular matrix (ECM) components in the body, providing structural integrity to various tissues. These biopolymers are also common scaffolds used in tissue engineering. This study investigated how co-gelation of collagen and fibrin affected the properties of each individual protein network. Collagen-fibrin co-gels were cast and subsequently digested using either plasmin or collagenase; the microstructure and mechanical behavior of the resulting networks were then compared with respective pure collagen or fibrin gels of the same protein concentration. The morphologies of the collagen networks were further analyzed via 3-D network reconstruction from confocal image z-stacks. Both collagen and fibrin exhibited a decrease in mean fiber diameter when formed in the co-gels compared to the pure gels; this microstructural change was accompanied by increased failure strain and decreased tangent modulus for both collagen and fibrin following selected digestion of the co-gels. In addition, analysis of the reconstructed collagen networks indicated presence of very long fibers and clustering of fibrils, resulting in very high connectivities for collagen networks formed in co-gels. PMID:22828381

  11. Fibrin-based biomaterials: Modulation of macroscopic properties through rational design at the molecular level

    PubMed Central

    Brown, Ashley C.; Barker, Thomas H.

    2013-01-01

    Fibrinogen is one of the primary components of the coagulation cascade and rapidly forms an insoluble matrix following tissue injury. In addition to its important role in hemostasis, fibrin acts as a scaffold for tissue repair and provides important cues for directing cell phenotype following injury. Because of these properties and the ease of polymerization of the material, fibrin has been widely utilized as a biomaterial for over a century. Modifying the macroscopic properties of fibrin, such as elasticity and porosity, has been somewhat elusive until recently, yet with a molecular-level rational design approach can now be somewhat easily modified through alterations of molecular interactions key to the protein’s polymerization process. This review outlines the biochemistry of fibrin and discusses methods for modification of molecular interactions and their application to fibrin based biomaterials. PMID:24056097

  12. Rheological characterization of human fibrin and fibrin-agarose oral mucosa substitutes generated by tissue engineering.

    PubMed

    Rodríguez, I A; López-López, M T; Oliveira, A C X; Sánchez-Quevedo, M C; Campos, A; Alaminos, M; Durán, J D G

    2012-08-01

    In regenerative medicine, the generation of biocompatible substitutes of tissues by in vitro tissue engineering must fulfil certain requirements. In the case of human oral mucosa, the rheological properties of tissues deserve special attention because of their influence in the acoustics and biomechanics of voice production. This work is devoted to the rheological characterization of substitutes of the connective tissue of the human oral mucosa. Two substitutes, composed of fibrin and fibrin-agarose, were prepared in cell culture for periods in the range 1-21 days. The time evolution of the rheological properties of both substitutes was studied by two different experimental procedures: steady-state and oscillatory measurements. The former allows the plastic behaviour of the substitutes to be characterized by estimating their yield stress; the latter is employed to quantify their viscoelastic responses by obtaining the elastic (G') and viscous (G'') moduli. The results demonstrate that both substitutes are characterized by a predominant elastic response, in which G' (order 100 Pa) is roughly one order of magnitude larger than G'' (order 10 Pa). But the most relevant insight is the stability, throughout the 21 days of culture time, of the rheological quantities in the case of fibrin-agarose, whereas the fibrin substitute shows a significant hardening. This result provides evidence that the addition to fibrin of a small amount of agarose allows the rheological stability of the oral mucosa substitute to be maintained. This feature, together with its viscoelastic similitude with native tissues, makes this biomaterial appropriate for potential use as a scaffold in regenerative therapies of human oral mucosa.

  13. Transglutaminases: nature's biological glues.

    PubMed Central

    Griffin, Martin; Casadio, Rita; Bergamini, Carlo M

    2002-01-01

    Transglutaminases (Tgases) are a widely distributed group of enzymes that catalyse the post-translational modification of proteins by the formation of isopeptide bonds. This occurs either through protein cross-linking via epsilon-(gamma-glutamyl)lysine bonds or through incorporation of primary amines at selected peptide-bound glutamine residues. The cross-linked products, often of high molecular mass, are highly resistant to mechanical challenge and proteolytic degradation, and their accumulation is found in a number of tissues and processes where such properties are important, including skin, hair, blood clotting and wound healing. However, deregulation of enzyme activity generally associated with major disruptions in cellular homoeostatic mechanisms has resulted in these enzymes contributing to a number of human diseases, including chronic neurodegeneration, neoplastic diseases, autoimmune diseases, diseases involving progressive tissue fibrosis and diseases related to the epidermis of the skin. In the present review we detail the structural and regulatory features important in mammalian Tgases, with particular focus on the ubiquitous type 2 tissue enzyme. Physiological roles and substrates are discussed with a view to increasing and understanding the pathogenesis of the diseases associated with transglutaminases. Moreover the ability of these enzymes to modify proteins and act as biological glues has not gone unnoticed by the commercial sector. As a consequence, we have included some of the present and future biotechnological applications of this increasingly important group of enzymes. PMID:12366374

  14. Biomechanical properties of Achilles tendon repair augmented with a bioadhesive-coated scaffold

    PubMed Central

    Brodie, Michael; Vollenweider, Laura; Murphy, John L; Xu, Fangmin; Lyman, Arinne; Lew, William D; Lee, Bruce P

    2011-01-01

    The Achilles tendon is the most frequently ruptured tendon. Both acute and chronic (neglected) tendon ruptures can dramatically affect a patient’s quality of life, and require a prolonged period of recovery before return to pre-injury activity levels. This paper describes the use of an adhesive-coated biologic scaffold to augment primary suture repair of transected Achilles tendons. The adhesive portion consisted of a synthetic mimic of mussel adhesive proteins that can adhere to various surfaces in a wet environment, including biologic tissues. When combined with biologic scaffolds such as bovine pericardium or porcine dermal tissues, these adhesive constructs demonstrated lap shear adhesive strengths significantly greater than that of fibrin glue, while reaching up to 60% of the strength of a cyanoacrylate-based adhesive. These adhesive constructs were wrapped around transected cadaveric porcine Achilles tendons repaired with a combination of parallel and three-loop suture patterns. Tensile mechanical testing of the augmented repairs exhibited significantly higher stiffness (22–34%), failure load (24–44%), and energy to failure (27–63%) when compared to control tendons with suture repair alone. Potential clinical implications of this novel adhesive biomaterial are discussed. PMID:21266745

  15. Platelet interaction with polymerizing fibrin.

    PubMed

    Niewiarowski, S; Regoeczi, E; Stewart, G J; Senyl, A F; Mustard, J F

    1972-03-01

    Interaction of washed pig, rabbit, or human platelets with fibrinogen was studied during its transition to fibrin using photometric, isotopic, and electron microscopic techniques. Untreated fibrinogen and fully polymerized fibrin had no detectable effect on platelets. Fibrinogen, incubated with low concentrations of reptilase or thrombin, formed intermediate products which readily became associated with platelets and caused their aggregation. Neutralization of the thrombin did not prevent this interaction. In the absence of fibrinogen, reptilase did not affect platelets. The interaction of polymerizing fibrin with platelets was accompanied by small losses of platelet constituents (serotonin, adenine nucleotides, platelet factor 4, and lactic dehydrogenase). This loss did not appear to be the result of the platelet release reaction. Inhibitors of the release reaction or of adenosine diphosphate (ADP)-induced aggregation did not prevent the interaction of platelets with polymerizing fibrin. Apyrase or prostaglandin E(1) (PGE(1)) reduced the extent of platelet aggregation by polymerizing fibrin, but the amount of protein associated with platelets was slightly increased. The interaction of polymerizing fibrin with platelets was completely inhibited by ethylenediaminetetraacetate (EDTA) or ethylene glycol bis (beta-aminoethyl ether) N, N,N',N'-tetraacetic acid (EGTA).Fibers formed in solutions of polymerizing fibrin were larger in the presence than in the absence of washed platelets, suggesting that platelets affect fibrin polymerization. The adherence of platelets to polymerizing fibrin may be responsible for the establishment of links between platelets and fibrin in hemostatic plugs and thrombi.

  16. Fibrin structure and wound healing.

    PubMed

    Laurens, N; Koolwijk, P; de Maat, M P M

    2006-05-01

    Fibrinogen and fibrin play an important role in blood clotting, fibrinolysis, cellular and matrix interactions, inflammation, wound healing, angiogenesis, and neoplasia. The contribution of fibrin(ogen) to these processes largely depends not only on the characteristics of the fibrin(ogen) itself, but also on interactions between specific-binding sites on fibrin(ogen), pro-enzymes, clotting factors, enzyme inhibitors, and cell receptors. In this review, the molecular and cellular biology of fibrin(ogen) is reviewed in the context of cutaneous wound repair. The outcome of wound healing depends largely on the fibrin structure, such as the thickness of the fibers, the number of branch points, the porosity, and the permeability. The binding of fibrin(ogen) to hemostasis proteins and platelets as well as to several different cells such as endothelial cells, smooth muscle cells, fibroblasts, leukocytes, and keratinocytes is indispensable during the process of wound repair. High-molecular-weight and low-molecular-weight fibrinogen, two naturally occurring variants of fibrin, are important determinants of angiogenesis and differ in their cell growth stimulation, clotting rate, and fibrin polymerization characteristics. Fibrin sealants have been investigated as matrices to promote wound healing. These sealants may also be an ideal delivery vehicle to deliver extra cells for the treatment of chronic wounds.

  17. Alignment of the Fibrin Network Within an Autologous Plasma Clot.

    PubMed

    Gessmann, Jan; Seybold, Dominik; Peter, Elvira; Schildhauer, Thomas Armin; Köller, Manfred

    2016-01-01

    Autologous plasma clots with longitudinally aligned fibrin fibers could serve as a scaffold for longitudinal axonal regrowth in cases of traumatic peripheral nerve injuries. Three different techniques for assembling longitudinally oriented fibrin fibers during the fibrin polymerization process were investigated as follows: fiber alignment was induced by the application of either a magnetic field or-as a novel approach-electric field or by the induction of orientated flow. Fiber alignment was characterized by scanning electron microscopy analysis followed by image processing using fast Fourier transformation (FFT). Besides FFT output images, area xmin to xmax, as well as full width at half maximum (FWHM) of the FFT graph plot peaks, was calculated to determine the relative degree of fiber alignment. In addition, fluorescently labeled human fibrinogen and mesenchymal stem cells (MSCs) were used to visualize fibrin and cell orientation in aligned and nonaligned plasma clots. Varying degrees of fiber alignment were achieved by the three different methods, with the electric field application producing the highest degree of fiber alignment. The embedded MSCs showed a longitudinal orientation in the electric field-aligned plasma clots. The key feature of this study is the ability to produce autologous plasma clots with aligned fibrin fibers using physical techniques. This orientated internal structure of an autologous biomaterial is promising for distinct therapeutic applications, such as a guiding structure for cell migration and growth dynamics.

  18. A fibrinogen-based precision microporous scaffold for tissue engineering.

    PubMed

    Linnes, Michael P; Ratner, Buddy D; Giachelli, Cecilia M

    2007-12-01

    Fibrin has been long used as an effective scaffolding material to grow a variety of cells and tissue constructs. It has been utilized mainly as a hydrogel in varying concentrations to provide an environment in which suspended cells work to rearrange the fibers and lay down their own extracellular matrix. For these fibrin hydrogels to be useful in many tissue-engineering applications, the gels must be cultured for long periods of time in order to increase their mechanical strength to the levels of native tissues. High concentrations of fibrinogen increase the mechanical strength of fibrin hydrogels, but at the same time reduce the ability of cells within the scaffold to spread and survive. We present a method to create a microporous, nanofibriliar fibrin scaffold that has controllable pore size, porosity, and microstructure for applications in tissue engineering. Fibrin has numerous advantages as a scaffolding material as it is normally used by the body as temporary scaffolding for tissue regeneration and healing, and can be autologously sourced. We present here a scaffolding process which enhances the mechanical properties of the fibrin hydrogel by forming it surrounding poly(methyl-methacrylate) beads, then removing the beads with acetone to form an interconnected microporous network. The acetone serves the dual purpose of precipitating and fixing the fibrinogen-based scaffolds as well as adding strength to the network during polymer bead removal. Effects of fibrinogen concentration and time in acetone were examined as well as polymerization with thrombin. A natural crosslinker, genipin, was also used to add strength to the scaffolds, producing a Young's modulus of up to 184+/-5 kPa after 36 h of reaction. Using these methods we were able to produce microporous fibrin scaffolds that support cell growth and have mechanical properties similar to many native tissues.

  19. Mechanical Behavior of Collagen-Fibrin Co-Gels Reflects Transition From Series to Parallel Interactions With Increasing Collagen Content

    PubMed Central

    Lai, Victor K.; Lake, Spencer P.; Frey, Christina R.; Tranquillo, Robert T.; Barocas, Victor H.

    2013-01-01

    Fibrin and collagen, biopolymers occurring naturally in the body, are commonly-used biomaterials as scaffolds for tissue engineering. How collagen and fibrin interact to confer macroscopic mechanical properties in collagen-fibrin composite systems remains poorly understood. In this study, we formulated collagen-fibrin co-gels at different collagen-to-fibrin ratios to observe changes in overall mechanical behavior and microstructure. A modeling framework of a two-network system was developed by modifying our micro-scale model, considering two forms of interaction between the networks: (a) two interpenetrating but non-interacting networks (“parallel”), and (b) a single network consisting of randomly alternating collagen and fibrin fibrils (“series”). Mechanical testing of our gels show that collagen-fibrin co-gels exhibit intermediate properties (UTS, strain at failure, tangent modulus) compared to those of pure collagen and fibrin. Comparison with model predictions show that the parallel and series model cases provide upper and lower bounds respectively for the experimental data, suggesting that a combination of such interactions exist between collagen and fibrin in co-gels. A transition from the series model to the parallel model occurs with increasing collagen content, with the series model best describing predominantly fibrin co-gels, and the parallel model best describing predominantly collagen co-gels. PMID:22482659

  20. Glues Used in Airplane Parts

    NASA Technical Reports Server (NTRS)

    Allen, S W; Truax, T R

    1920-01-01

    This report was prepared for the National Advisory Committee for Aeronautics and presents the results of investigations conducted by the Forest Products Laboratory of the United States Forest Service on the manufacture, preparation, application, testing and physical properties of the different types of glues used in wood airplane parts.

  1. Enhanced Viability of Endothelial Colony Forming Cells in Fibrin Microbeads for Sensor Vascularization.

    PubMed

    Gandhi, Jarel K; Zivkovic, Lada; Fisher, John P; Yoder, Mervin C; Brey, Eric M

    2015-09-18

    Enhanced vascularization at sensor interfaces can improve long-term function. Fibrin, a natural polymer, has shown promise as a biomaterial for sensor coating due to its ability to sustain endothelial cell growth and promote local vascularization. However, the culture of cells, particularly endothelial cells (EC), within 3D scaffolds for more than a few days is challenging due to rapid loss of EC viability. In this manuscript, a robust method for developing fibrin microbead scaffolds for long-term culture of encapsulated ECs is described. Fibrin microbeads are formed using sodium alginate as a structural template. The size, swelling and structural properties of the microbeads were varied with needle gauge and composition and concentration of the pre-gel solution. Endothelial colony-forming cells (ECFCs) were suspended in the fibrin beads and cultured within a perfusion bioreactor system. The perfusion bioreactor enhanced ECFCs viability and genome stability in fibrin beads relative to static culture. Perfusion bioreactors enable 3D culture of ECs within fibrin beads for potential application as a sensor coating.

  2. Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales.

    PubMed

    Kurniawan, Nicholas A; Vos, Bart E; Biebricher, Andreas; Wuite, Gijs J L; Peterman, Erwin J G; Koenderink, Gijsje H

    2016-09-06

    Tissues and cells sustain recurring mechanical loads that span a wide range of loading amplitudes and timescales as a consequence of exposure to blood flow, muscle activity, and external impact. Both tissues and cells derive their mechanical strength from fibrous protein scaffolds, which typically have a complex hierarchical structure. In this study, we focus on a prototypical hierarchical biomaterial, fibrin, which is one of the most resilient naturally occurring biopolymers and forms the structural scaffold of blood clots. We show how fibrous networks composed of fibrin utilize irreversible changes in their hierarchical structure at different scales to maintain reversible stress stiffening up to large strains. To trace the origin of this paradoxical resilience, we systematically tuned the microstructural parameters of fibrin and used a combination of optical tweezers and fluorescence microscopy to measure the interactions of single fibrin fibers for the first time, to our knowledge. We demonstrate that fibrin networks adapt to moderate strains by remodeling at the network scale through the spontaneous formation of new bonds between fibers, whereas they adapt to high strains by plastic remodeling of the fibers themselves. This multiscale adaptation mechanism endows fibrin gels with the remarkable ability to sustain recurring loads due to shear flows and wound stretching. Our findings therefore reveal a microscopic mechanism by which tissues and cells can balance elastic nonlinearity and plasticity, and thus can provide microstructural insights into cell-driven remodeling of tissues.

  3. Successful Closure of A Bronchopleural Fistula by Intrapleural Administration of Fibrin Sealant: A Case Report With Review of Literature

    PubMed Central

    Shrestha, Pranabh; Safdar, Syed Aatif; Jawad, Sami Abdul; Shaaban, Hamid; Dieguez, Javier; Elberaqdar, Enas; Rai, Srijana; Adelman, Marc

    2014-01-01

    Context: There are no established guidelines for the proper treatment of patients with bronchopleural fistulas (BPFs). Apart from attempts to close the fistula, emphasis of treatment and management is placed on preventive measures, early administration of antibiotics, drainage of the empyema and aggressive nutritional and rehabilitative support. Case Report: A 53-year-old male presented with nausea, vomiting, and dry cough with eventual respiratory failure. He was found to have an empyema of the left hemithorax which was managed with thoracostomy drainage and antibiotics. However, he had persistent air leak through the chest tube due to a BPF. Bronchoscopy failed to localize the involved segment. Application of fibrin glue through the chest tube succeeded in completely sealing the leak. Conclusion: To our knowledge, this is the first case report in which fibrin glue was successfully used intrapleurally to close a BPF related to an empyema. PMID:25317397

  4. Glue analysis and behavior in copper electrolyte

    NASA Astrophysics Data System (ADS)

    Blechta, V. K.; Wang, Z. Z.; Krueger, D. W.

    1993-04-01

    Animal glue in combination with other chemicals is often used as a leveling agent in the copper electroplating industry. The control of the glue concentration in the electrolyte is critical to the quality of copper produced. A quantitative galvanostatic technique for glue analysis in copper electrolyte containing lignin sulfonate and Cl- was developed. The kinetics of glue hydrolysis in industrial electrolytes was studied and found to follow first-order reaction kinetics, with sulfuric acid acting as a catalyst. The dependence of the glue hydrolysis rate constant on temperature follows the Arrhenius equation. By adding fresh glue to the electrolyte, the glue activity first rises and then falls. This effect can be explained by the presence of long-chain molecules in the glue which are less active but hydrolyze into the more active medium-sized molecules. A mathematical model of this process shows good agreement with experimental data. The bulk of the electrolyte flow in the INCO commercial electrolytic plating cell bypasses the electrodes, probably across the bottom of the cell. The electrolyte circulation between electrodes is not very intense. A simple equation for the glue concentration calculation in the cell inlet and outlet, depending on the glue addition rate, was derived.

  5. Generation of a Fibrin Based Three-Layered Skin Substitute.

    PubMed

    Kober, Johanna; Gugerell, Alfred; Schmid, Melanie; Kamolz, Lars-Peter; Keck, Maike

    2015-01-01

    A variety of skin substitutes that restore epidermal and dermal structures are currently available on the market. However, the main focus in research and clinical application lies on dermal and epidermal substitutes whereas the development of a subcutaneous replacement (hypodermis) is often disregarded. In this study we used fibrin sealant as hydrogel scaffold to generate a three-layered skin substitute. For the hypodermal layer adipose-derived stem cells (ASCs) and mature adipocytes were embedded in the fibrin hydrogel and were combined with another fibrin clot with fibroblasts for the construction of the dermal layer. Keratinocytes were added on top of the two-layered construct to form the epidermal layer. The three-layered construct was cultivated for up to 3 weeks. Our results show that ASCs and fibroblasts were viable, proliferated normally, and showed physiological morphology in the skin substitute. ASCs were able to differentiate into mature adipocytes during the course of four weeks and showed morphological resemblance to native adipose tissue. On the surface keratinocytes formed an epithelial-like layer. For the first time we were able to generate a three-layered skin substitute based on a fibrin hydrogel not only serving as a dermal and epidermal substitute but also including the hypodermis.

  6. Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics

    PubMed Central

    Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.

    2013-01-01

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375

  7. Reduction of the closure time of postoperative enterocutaneous fistulas with fibrin sealant

    PubMed Central

    Avalos-González, Jorge; Portilla-deBuen, Eliseo; Leal-Cortés, Caridad Aurea; Orozco-Mosqueda, Abel; del Carmen Estrada-Aguilar, María; Velázquez-Ramírez, Gabriela Abigail; Ambriz-González, Gabriela; Fuentes-Orozco, Clotilde; Guzmán-Gurrola, Aldo Emmerson; González-Ojeda, Alejandro

    2010-01-01

    AIM: To assess whether the use of fibrin sealant shortens the closure time of postoperative enterocutaneous fistulas (ECFs). METHODS: The prospective case-control study included 70 patients with postoperative ECFs with an output of < 500 mL/d, a fistulous tract of > 2 cm and without any local complication. They were divided into study (n = 23) and control groups (n = 47). Esophageal, gastric and colocutaneous fistulas were monitored under endoscopic visualization, which also allowed fibrin glue application directly through the external hole. Outcome variables included closure time, time to resume oral feeding and morbidity related to nutritional support. RESULTS: There were no differences in mean age, fistula output, and follow-up. Closure-time for all patients of the study group was 12.5 ± 14.2 d and 32.5 ± 17.9 d for the control group (P < 0.001), and morbidity related to nutritional support was 8.6% and 42.5%, respectively (P < 0.01). In patients with colonic fistulas, complete closure occurred 23.5 ± 19.5 d after the first application of fibrin glue, and spontaneous closure was observed after 36.2 ± 22.8 d in the control group (P = 0.36). Recurrences were observed in 2 patients because of residual disease. One patient of each group died during follow-up as a consequence of septic complications related to parenteral nutrition. CONCLUSION: Closure time was significantly reduced with the use of fibrin sealant, and oral feeding was resumed faster. We suggest the use of fibrin sealant for the management of stable enterocutaneous fistulas. PMID:20533600

  8. A new heterologous fibrin sealant as scaffold to recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins for the repair of tibial bone defects.

    PubMed

    Machado, Eduardo Gomes; Issa, João Paulo Mardegan; Figueiredo, Fellipe Augusto Tocchini de; Santos, Geovane Ribeiro Dos; Galdeano, Ewerton Alexandre; Alves, Mariana Carla; Chacon, Erivelto Luis; Ferreira Junior, Rui Seabra; Barraviera, Benedito; Cunha, Marcelo Rodrigues da

    2015-04-01

    Tissue engineering has special interest in bone tissue aiming at future medical applications Studies have focused on recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins due to the osteogenic properties of rhBMP-2 and the angiogenic characteristic of fraction 1 protein (P-1) extracted from the rubber tree Hevea brasiliensis. Furthermore, heterologous fibrin sealant (FS) has been shown as a promising alternative in regenerative therapies. The aim of this study was to evaluate these substances for the repair of bone defects in rats. A bone defect measuring 3mm in diameter was created in the proximal metaphysis of the left tibia of 60 rats and was implanted with rhBMP-2 or P-1 in combination with a new heterologous FS derived from snake venom. The animals were divided into six groups: control (unfilled bone defect), rhBMP-2 (defect filled with 5μg rhBMP-2), P-1 (defect filled with 5μg P-1), FS (defect filled with 8μg FS), FS/rhBMP-2 (defect filled with 8μg FS and 5μg rhBMP-2), FS/P-1 (defect filled with 8μg FS and 5μg P-1). The animals were sacrificed 2 and 6 weeks after surgery. The newly formed bone projected from the margins of the original bone and exhibited trabecular morphology and a disorganized arrangement of osteocyte lacunae. Immunohistochemical analysis showed intense expression of osteocalcin in all groups. Histometric analysis revealed a significant difference in all groups after 2 weeks (p<0.05), except for the rhBMP-2 and FS/rhBMP-2 groups (p>0.05). A statistically significant difference (p<0.05) was observed in all groups after 6 weeks in relation to the volume of newly formed bone in the surgical area. In conclusion, the new heterologous fibrin sealant was found to be biocompatible and the combination with rhBMP-2 showed the highest osteogenic and osteoconductive capacity for bone healing. These findings suggest a promising application of this combination in the regeneration surgery.

  9. Lyophilized Platelet-Rich Fibrin (PRF) Promotes Craniofacial Bone Regeneration through Runx2

    PubMed Central

    Li, Qi; Reed, David A.; Min, Liu; Gopinathan, Gokul; Li, Steve; Dangaria, Smit J.; Li, Leo; Geng, Yajun; Galang, Maria-Therese; Gajendrareddy, Praveen; Zhou, Yanmin; Luan, Xianghong; Diekwisch, Thomas G. H.

    2014-01-01

    Freeze-drying is an effective means to control scaffold pore size and preserve its composition. The purpose of the present study was to determine the applicability of lyophilized Platelet-rich fibrin (LPRF) as a scaffold for craniofacial tissue regeneration and to compare its biological effects with commonly used fresh Platelet-rich fibrin (PRF). LPRF caused a 4.8-fold ± 0.4-fold elevation in Runt-related transcription factor 2 (Runx2) expression in alveolar bone cells, compared to a 3.6-fold ± 0.2-fold increase when using fresh PRF, and a more than 10-fold rise of alkaline phosphatase levels and mineralization markers. LPRF-induced Runx2 expression only occurred in alveolar bone and not in periodontal or dental follicle cells. LPRF also caused a 1.6-fold increase in osteoblast proliferation (p < 0.001) when compared to fresh PRF. When applied in a rat craniofacial defect model for six weeks, LPRF resulted in 97% bony coverage of the defect, compared to 84% for fresh PRF, 64% for fibrin, and 16% without scaffold. Moreover, LPRF thickened the trabecular diameter by 25% when compared to fresh PRF and fibrin, and only LPRF and fresh PRF resulted in the formation of interconnected trabeculae across the defect. Together, these studies support the application of lyophilized PRF as a biomimetic scaffold for craniofacial bone regeneration and mineralized tissue engineering. PMID:24830554

  10. Effect of intracameral injection of fibrin tissue sealant on the rabbit anterior segment

    PubMed Central

    Chew, Annabel C.Y.; Tan, Donald T.H.; Poh, Rebekah; HM, Htoon; Beuerman, Roger W.

    2010-01-01

    Purpose To investigate the effect of intracameral injection of fibrin tissue sealant on the anterior segment structures in a rabbit model. Methods One eye of 10 rabbits received an intracameral injection of fibrin tissue sealant with a thrombin concentration of 500 IU (TISSEEL), and the fellow eye received an intracameral injection of balanced salt solution as a control. The rabbits were followed up with serial slit-lamp examinations, photography, high resolution anterior segment optical coherence tomography scans with pachymetry measurement, and intraocular pressure (IOP) monitoring until complete dissolution of the fibrin sealant. Corneal endothelial cell viability was evaluated using live/dead cell assays. Apoptosis of the cornea and trabecular meshwork were evaluated using TUNEL assays. Ultra-structural examinations of the cornea and trabecular meshwork were performed using electron microscopy. Histology of the trabecular meshwork and iris were analyzed using light microscopy. Results The quantity of the intracameral fibrin sealant was shown to be significantly correlated with increased IOP and pachymetry post-operatively. Complete dissolution of the fibrin sealant occurred between 15 and 30 days. Live/dead cell assays showed no decrease in viability of the corneal endothelium, and TUNEL assays showed no increase in apoptosis of the corneal epithelium, stroma, endothelium, or trabecular meshwork in the eyes with the fibrin sealant. Light and electron microscopy of the anterior segment structures were unremarkable. Conclusion The intracameral use of fibrin glue was associated with a transient increase in IOP and pachymetry. However, there was no evidence of toxicity or structural damage to the corneal endothelium, trabecular meshwork, or iris. PMID:20596250

  11. Fabrication and physical and biological properties of fibrin gel derived from human plasma.

    PubMed

    Zhao, Haiguang; Ma, Lie; Zhou, Jie; Mao, Zhengwei; Gao, Changyou; Shen, Jiacong

    2008-03-01

    The fast development of tissue engineering and regenerative medicine drives the old biomaterials, for example, fibrin glue, to find new applications in these areas. Aiming at developing a commercially available hydrogel for cell entrapment and delivery, in this study we optimized the fabrication and gelation conditions of fibrin gel. Fibrinogen was isolated from human plasma by a freeze-thaw circle. Gelation of the fibrinogen was accomplished by mixing with thrombin. Absorbance of the fibrinogen/thrombin mixture at 550 nm as a function of reaction time was monitored by UV-VIS spectroscopy. It was found that the clotting time is significantly influenced by the thrombin concentration and the temperature, while less influenced by the fibrinogen concentration. After freeze-drying, the fibrin gel was characterized by scanning electron microscopy (SEM), revealing fibrous microstructure. Thermal gravimetric analysis found that the degradation temperature of the crosslinked fibrin gel starts from 288 degrees C, which is about 30 degrees C higher than that of the fibrinogen. The hydrogel has an initial water-uptake ratio of approximately 50, decreased to 30-40 after incubation in water for 11 h depending on the thrombin concentration. The fibrin gels lost their weights in PBS very rapidly, while slowly in DMEM/fetal bovine serum and DMEM. In vitro cell culture found that human fibroblasts could normally proliferate in the fibrin gel with spreading morphology. In conclusion, the fibrin gel containing higher concentration of fibrinogen (20 mg ml(-1)) and thrombin (5 U ml(-1)) has suitable gelation time and handling properties, and thus is applicable as a delivery vehicle for cells such as fibroblasts.

  12. Characterisation of cell-substrate interactions between Schwann cells and three-dimensional fibrin hydrogels containing orientated nanofibre topographical cues.

    PubMed

    Hodde, Dorothee; Gerardo-Nava, José; Wöhlk, Vanessa; Weinandy, Stefan; Jockenhövel, Stefan; Kriebel, Andreas; Altinova, Haktan; Steinbusch, Harry W M; Möller, Martin; Weis, Joachim; Mey, Jörg; Brook, Gary A

    2016-02-01

    The generation of complex three-dimensional bioengineered scaffolds that are capable of mimicking the molecular and topographical cues of the extracellular matrix found in native tissues is a field of expanding research. The systematic development of such scaffolds requires the characterisation of cell behaviour in response to the individual components of the scaffold. In the present investigation, we studied cell-substrate interactions between purified populations of Schwann cells and three-dimensional fibrin hydrogel scaffolds, in the presence or absence of multiple layers of highly orientated electrospun polycaprolactone nanofibres. Embedded Schwann cells remained viable within the fibrin hydrogel for up to 7 days (the longest time studied); however, cell behaviour in the hydrogel was somewhat different to that observed on the two-dimensional fibrin substrate: Schwann cells failed to proliferate in the fibrin hydrogel, whereas cell numbers increased steadily on the two-dimensional fibrin substrate. Schwann cells within the fibrin hydrogel developed complex process branching patterns, but, when presented with orientated nanofibres, showed a strong tendency to redistribute themselves onto the nanofibres, where they extended long processes that followed the longitudinal orientation of the nanofibres. The process length along nanofibre-containing fibrin hydrogel reached near-maximal levels (for the present experimental conditions) as early as 1 day after culturing. The ability of this three-dimensional, extracellular matrix-mimicking scaffold to support Schwann cell survival and provide topographical cues for rapid process extension suggest that it may be an appropriate device design for the bridging of experimental lesions of the peripheral nervous system.

  13. Beware of canine Gorilla Glue ingestions.

    PubMed

    Lubich, Carol; Mrvos, Rita; Krenzelok, Edward P

    2004-06-01

    Household adhesive ingestions are considered relatively non-toxic. Gorilla Glue is a household glue containing a urethane polymer and a polymeric isocyanate liquid compound available in container sizes of 2 to 36 oz, and when applied will expand to 3-4 times its original volume. We report the ingestion of Gorilla Glue by 2 dogs that caused obstructive masses requiring surgical intervention. Dogs with a history of Gorilla Glue ingestion should be monitored closely by their owners and a veterinary referral made if signs of gastrointestinal distress develop.

  14. Direct Spinal Ventral Root Repair following Avulsion: Effectiveness of a New Heterologous Fibrin Sealant on Motoneuron Survival and Regeneration

    PubMed Central

    Barbizan, Roberta; Seabra Ferreira, Rui

    2016-01-01

    Axonal injuries at the interface between central and peripheral nervous system, such as ventral root avulsion (VRA), induce important degenerative processes, mostly resulting in neuronal and motor function loss. In the present work, we have compared two different fibrin sealants, one derived from human blood and another derived from animal blood and Crotalus durissus terrificus venom, as a promising treatment for this type of injury. Lewis rats were submitted to VRA (L4–L6) and had the avulsed roots reimplanted to the surface of the spinal cord, with the aid of fibrin sealant. The spinal cords were processed to evaluate neuronal survival, synaptic stability, and glial reactivity, 4 and 12 weeks after lesion. Sciatic nerves were processed to investigate Schwann cell activity by p75NTR expression (4 weeks after surgery) and to count myelinated axons and morphometric evaluation (12 weeks after surgery). Walking track test was used to evaluate gait recovery, up to 12 weeks. The results indicate that both fibrin sealants are similarly efficient. However, the snake-derived fibrin glue is a potentially safer alternative for being a biological and biodegradable product which does not contain human blood derivatives. Therefore, the venom glue can be a useful tool for the scientific community due to its advantages and variety of applications. PMID:27642524

  15. ERK Signals: Scaffolding Scaffolds?

    PubMed Central

    Casar, Berta; Crespo, Piero

    2016-01-01

    ERK1/2 MAP Kinases become activated in response to multiple intra- and extra-cellular stimuli through a signaling module composed of sequential tiers of cytoplasmic kinases. Scaffold proteins regulate ERK signals by connecting the different components of the module into a multi-enzymatic complex by which signal amplitude and duration are fine-tuned, and also provide signal fidelity by isolating this complex from external interferences. In addition, scaffold proteins play a central role as spatial regulators of ERKs signals. In this respect, depending on the subcellular localization from which the activating signals emanate, defined scaffolds specify which substrates are amenable to be phosphorylated. Recent evidence has unveiled direct interactions among different scaffold protein species. These scaffold-scaffold macro-complexes could constitute an additional level of regulation for ERK signals and may serve as nodes for the integration of incoming signals and the subsequent diversification of the outgoing signals with respect to substrate engagement. PMID:27303664

  16. Physics Prospects with GlueX

    SciTech Connect

    Somov, A.

    2011-10-24

    The new experiment GlueX is currently being constructed at Jefferson Lab. The experiment was designed to search for hybrid mesons with exotic-quantum-numbers using a beam of linearly polarized photons incident on a liquid hydrogen target. We will discuss the discovery potential of the GlueX experiment and briefly overview its physics program.

  17. In vivo evaluation of bonding ability and biocompatibility of a novel biodegradable glue consisting of tartaric acid derivative and human serum albumin.

    PubMed

    Iwasashi, Masashi; Sakane, Masataka; Saito, Hirofumi; Taguchi, Tetsushi; Tateishi, Tetsuya; Ochiai, Naoyuki

    2009-08-01

    We recently developed a novel biological glue from tartaric acid derivative (TAD) with two active ester groups and human serum albumin (HSA), named TAD-A. In this study, in vivo experiments were performed to investigate clinical applicability of TAD-A. TAD was prepared by reacting carboxyl groups of tartaric acid with N-hydroxysuccinimide in the presence of carbodiimide. Bonding strength was evaluated by using mouse skin closed with TAD-A of different TAD concentrations from 0.1 to 0.5 mmol in 0.8 mg of 44 w/w % HSA solution. Commercially available glues such as fibrin and aldehyde-based glue were used for comparison. We found that TAD-A's bonding strength increased significantly with TAD-A concentration. The bonding strength of 0.5 mmol of TAD-A in 0.8 mg of 44 w/w % HSA solution was significantly higher than that of fibrin or aldehyde-based glue (p < 0.01), and that of 0.3 mmol of TAD-A was significantly higher than of fibrin glue (p < 0.05). To determine toxicity, we implanted disks made from TAD-A of different TAD concentrations from 0.1 to 0.5 mmol in 0.8 mg of 44 w/w % HSA solution subcutaneously in mice. The inflammatory reaction in surrounding tissue increased with increasing TAD concentration, and then the disks were absorbed. In conclusion, TAD-A has sufficient bonding strength and comparatively low toxicity in clinical use of 0.3 mmol or less of TAD and 0.8 mL of 44 w/w % HSA solution.

  18. The GlueX DIRC detector

    DOE PAGES

    Barbosa, F.; Bessuille, J.; Chudakov, E.; ...

    2017-02-03

    We present the GlueX DIRC (Detection of Internally Reflected Cherenkov light) detector that is being developed to upgrade the particle identification capabilities in the forward region of the GlueX experiment at Jefferson Lab. The GlueX DIRC will utilize four existing decommissioned BaBar DIRC bar boxes, which will be oriented to form a plane roughly 4 m away from the fixed target of the experiment. A new photon camera has been designed that is based on the SuperB FDIRC prototype. The full GlueX DIRC system will consist of two such cameras, with the first planned to be built and installed inmore » 2017. In addition, we present the current status of the design and R&D, along with the future plans of the GlueX DIRC detector.« less

  19. The Use Fibrin Sealant after Spinal Intradural Tumor Surgery: Is It Necessary?

    PubMed Central

    Won, Young Il; Chung, Chun Kee; Jahng, Tae-Ahn; Park, Sung Bae

    2016-01-01

    Objective A fibrin sealant is commonly applied after closure of an incidental or intended durotomy to reduce the complications associated with the leakage of cerebrospinal fluid. Routine usage might not be essential after closure of an intended durotomy, which has clear cut-margins. We investigated the efficacy of fibrin sealants for primary intradural spinal cord tumor surgery. Methods A retrospective review was performed for 231 consecutive surgically treated patients with primary intradural spinal cord tumors without extradural extension. Fibrin sealants were not used for 47 patients (group I: age, 51.57±16.75 years) and were applied to 184 patients (group II: age, 48.8±14.7 years). The surgical procedures were identical except for the use of a fibrin sealant after closure of the durotomy. The primary outcome was the occurrence of complications (wound problems, hematoma collection, infection, and neurological deterioration). The covariates were age, sex, body mass index, operation time, pre-/postoperative ambulation, number of laminectomies, and type of tumor. Results Schwannoma was the most common pathology (n=134), followed by meningioma (n=35) and ependymoma (n=31). Complications occurred in 13 patients (3 in group I and 10 in group II, p=0.73). The postoperative ambulation status (p<0.01; odds ratio, 28.8; 95% confidence interval, 6.9-120.0) and operation time (p=0.04; cutoff, 229 minutes; sensitivity, 62%; specificity, 72%) were significant factors, whereas the use of a fibrin glue was not (p=0.47). Conclusion The use of a fibrin sealant might not be essential to reduce complications after surgery for primary spinal intradural tumor. PMID:27123027

  20. The safety of fibrin sealants.

    PubMed

    Joch, Christine

    2003-08-01

    Fibrin sealants are prepared from fibrinogen, thrombin and sometimes also factor XIII that have been purified from human plasma. Bovine aprotinin is also included in some preparations. Each of these components has the potential to carry blood-borne pathogens, albeit at a very low frequency. In order to minimize the risk of viral transmission from commercial fibrin sealants, plasma donations undergo a series of procedures that contribute to avoiding, inactivating and eliminating potential contaminants. The procedures for selection and screening of plasma donors, and the testing of donated plasma, incorporates highly sensitive molecular techniques (e.g. PCR testing) and contributes significantly to reducing the theoretical possibility of viral transmission. The starting material for bovine aprotinin is also carefully selected, and the manufacturing process rigorously assessed, to minimize the putative risk of transmission of bovine spongiform encephalopathies. The manufacturing process for commercial fibrin sealants comprises a range of procedures, including heat treatment (e.g. pasteurization, dry or vapor heating), filtration, solvent/detergent treatment, precipitation, pH treatment and chromatography. Some steps are an inherent part of the purification process and others (e.g. pasteurization, nanofiltration) are deliberately introduced to inactivate/eliminate potential pathogens. Current manufacturing processes provide a very high degree of safety for fibrin sealants. In 20 years of worldwide use, there have been no known cases of hepatitis or HIV transmission associated with the use of commercial fibrin sealants.

  1. Glue Film Thickness Measurements by Spectral Reflectance

    SciTech Connect

    B. R. Marshall

    2010-09-20

    Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 μm, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.

  2. Characterisation of a new bioadhesive system based on polysaccharides with the potential to be used as bone glue.

    PubMed

    Hoffmann, Bettina; Volkmer, Elias; Kokott, Andreas; Augat, Peter; Ohnmacht, Michael; Sedlmayr, Nicole; Schieker, Matthias; Claes, Lutz; Mutschler, Wolf; Ziegler, Günter

    2009-10-01

    Although gluing bone is in theory a very attractive alternative to classical fracture treatment, this method is not yet clinically established due to the lack of an adhesive which would meet all the necessary requirements. We therefore developed a novel two-component bioadhesive system with the potential to be used as a bone adhesive based on biocompatible and degradable biopolymers (chitosan, oxidised dextran or starch). After mixing in water, the two components covalently cross-link by forming a Schiff's base. By the same mechanism, the glue binds to any other exposed amino group such as for example those exposed in fractured bone, even in the presence of water. Modified chitosan was synthesised from commercially available chitosan by deacetylation and was then reduced in molecular weight by heating in acid. The amount of free amino groups was analysed by IR. The molecular weight was determined by viscosimetry. Starch or dextran were oxidised with periodic acid to generate aldehyde groups, which were quantified by titration. l-Dopa was conjugated to oxidised dextran or starch in analogy to the gluing mechanism of mussels. Biomechanical studies revealed that the new glue is superior to fibrin glue, but has less adhesive strength than cyanoacrylates. In vitro cell testing demonstrated excellent biocompatibility, rendering this glue a potential candidate for clinical use.

  3. Biomimetic interconnected porous keratin-fibrin-gelatin 3D sponge for tissue engineering application.

    PubMed

    Singaravelu, Sivakumar; Ramanathan, Giriprasath; Raja, M D; Nagiah, Naveen; Padmapriya, P; Kaveri, Krishnasamy; Sivagnanam, Uma Tiruchirapalli

    2016-05-01

    The medicated wound dressing material with highly interconnected pores, mimicking the function of the extracellular matrix was fabricated for the promotion of cell growth. In this study, keratin (K), fibrin (F) and gelatin (G) composite scaffold (KFG-SPG) was fabricated by freeze drying technique and the mupirocin (D) drug was successfully incorporated with KFG-SPG (KFG-SPG-D) intended for tissue engineering applications. The fabrication of scaffold was performed without the use of any strong chemical solvents, and the solid sponge scaffold was obtained with well interconnected pores. The porous morphology of the scaffold was confirmed by SEM analysis and exhibited competent mechanical properties. KFG-SPG and KFG-SPG-D possess high level of biocompatibility, cell proliferation and cell adhesion of NIH 3T3 fibroblast and human keratinocytes (HaCaT) cell lines thereby indicating the scaffolds potential as a suitable medicated dressing for wound healing.

  4. The mechanics of fibrin networks and their alterations by platelets

    NASA Astrophysics Data System (ADS)

    Jawerth, Louise Marie

    Fibrin is a biopolymer that assembles into a network during blood coagulation to become the structural scaffold of a blood clot. The precise mechanics of this network are crucial for a blood clot to properly stem the flow of blood at the site of vascular injury while still remaining pliable enough to avoid dislocation. A hallmark of fibrin's mechanical response is strain-stiffening: at small strains, its response is low and linear; while at high strains, its stiffness increases non-linearly with increasing strain. The physical origins of strain-stiffening have been studied for other biopolymer systems but have remained elusive for biopolymer networks composed of stiff filaments, such as fibrin. To understand the origins of this intriguing behavior, we directly observe and quantify the motion of all of the fibers in the fibrin networks as they undergo shear in 3D using confocal microscopy. We show that the strain-stiffening response of a clot is a result of the full network deformation rather than an intrinsic strain-stiffening response of the individual fibers. We observe a distinct transition from a linear, low-strain regime, where all fibers avoid any internal stretching, to a non-linear, high-strain regime, where an increasing number of fibers become stretched. This transition is characterized by a high degree of non-affine motion. Moreover, we are able to precisely calculate the non-linear stress-strain response of the network by using the strains on each fiber measured directly with confocal microscopy and by assuming the fibers behave like linearly elastic beams. This result confirms that it is the network deformation that causes the strain-stiffening behavior of fibrin clots. These data are consistent with predictions for low-connectivity networks with soft, bending, or floppy modes. Moreover, we show that the addition of small contractile cells, platelets, increases the low-strain stiffness of the network while the high-strain stiffness is independent of

  5. Esthetics and super glue: a case report.

    PubMed

    Winkler, Sheldon; Wood, Robert; Facchiano, Anne M; Bergloff, Jonathan F

    2003-01-01

    This article describes how a man attempted to repair damage to his maxillary teeth with super glue. Such action is discouraged, however, because of possible adverse reactions in the hard and soft tissues.

  6. Spiders Tune Glue Viscosity to Maximize Adhesion.

    PubMed

    Amarpuri, Gaurav; Zhang, Ci; Diaz, Candido; Opell, Brent D; Blackledge, Todd A; Dhinojwala, Ali

    2015-11-24

    Adhesion in humid conditions is a fundamental challenge to both natural and synthetic adhesives. Yet, glue from most spider species becomes stickier as humidity increases. We find the adhesion of spider glue, from five diverse spider species, maximizes at very different humidities that matches their foraging habitats. By using high-speed imaging and spreading power law, we find that the glue viscosity varies over 5 orders of magnitude with humidity for each species, yet the viscosity at maximal adhesion for each species is nearly identical, 10(5)-10(6) cP. Many natural systems take advantage of viscosity to improve functional response, but spider glue's humidity responsiveness is a novel adaptation that makes the glue stickiest in each species' preferred habitat. This tuning is achieved by a combination of proteins and hygroscopic organic salts that determines water uptake in the glue. We therefore anticipate that manipulation of polymer-salts interaction to control viscosity can provide a simple mechanism to design humidity responsive smart adhesives.

  7. Platelet-Rich Fibrin Promotes Periodontal Regeneration and Enhances Alveolar Bone Augmentation

    PubMed Central

    Li, Qi; Pan, Shuang; Dangaria, Smit J.; Gopinathan, Gokul; Kolokythas, Antonia; Chu, Shunli; Geng, Yajun; Zhou, Yanmin; Luan, Xianghong

    2013-01-01

    In the present study we have determined the suitability of platelet-rich fibrin (PRF) as a complex scaffold for periodontal tissue regeneration. Replacing PRF with its major component fibrin increased mineralization in alveolar bone progenitors when compared to periodontal progenitors, suggesting that fibrin played a substantial role in PRF-induced osteogenic lineage differentiation. Moreover, there was a 3.6-fold increase in the early osteoblast transcription factor RUNX2 and a 3.1-fold reduction of the mineralization inhibitor MGP as a result of PRF application in alveolar bone progenitors, a trend not observed in periodontal progenitors. Subcutaneous implantation studies revealed that PRF readily integrated with surrounding tissues and was partially replaced with collagen fibers 2 weeks after implantation. Finally, clinical pilot studies in human patients documented an approximately 5 mm elevation of alveolar bone height in tandem with oral mucosal wound healing. Together, these studies suggest that PRF enhances osteogenic lineage differentiation of alveolar bone progenitors more than of periodontal progenitors by augmenting osteoblast differentiation, RUNX2 expression, and mineralized nodule formation via its principal component fibrin. They also document that PRF functions as a complex regenerative scaffold promoting both tissue-specific alveolar bone augmentation and surrounding periodontal soft tissue regeneration via progenitor-specific mechanisms. PMID:23586051

  8. The application of plastic compression to modulate fibrin hydrogel mechanical properties.

    PubMed

    Haugh, Matthew G; Thorpe, Stephen D; Vinardell, Tatiana; Buckley, Conor T; Kelly, Daniel J

    2012-12-01

    The inherent biocompatibility of fibrin hydrogels makes them an attractive material for use in a wide range of tissue engineering applications. Despite this, their relatively low stiffness and high compliance limits their potential for certain orthopaedic applications. Enhanced mechanical properties are desirable so as to withstand surgical handling and in vivo loading after implantation and additionally, can provide important cues to cells seeded within the hydrogel. Standard methods used to enhance the mechanical properties of biological scaffolds such as chemical or thermal crosslinking cannot be used with fibrin hydrogels as cell seeding and gel formation occurs simultaneously. The objective of this study was to investigate the use of plastic compression as a means to improve the mechanical properties of chondrocyte-seeded fibrin hydrogels and to determine the influence of such compression on cell viability within these constructs. It was found that the application of 80% strain to fibrin hydrogels for 30 min (which resulted in a permanent strain of 47.4%) produced a 2.1-fold increase in the subsequent compressive modulus. Additionally, chondrocyte viability was maintained in the plastically compressed gels with significant cellular proliferation and extracellular matrix accumulation observed over 28 days of culture. In conclusion, plastic compression can be used to modulate the density and mechanical properties of cell-seeded fibrin hydrogels and represents a useful tool for both in theatre and in vitro tissue engineering applications.

  9. Astrocytes: Everything but the glue

    PubMed Central

    Gonzalez-Perez, Oscar; Lopez-Virgen, Veronica; Quiñones-Hinojosa, Alfredo

    2015-01-01

    The current knowledge in neuroscience indicates that neural tissue has two major cell populations: neurons and glia (term derived from the Greek word for glue). Neuronal population is characterized by the capacity to produce action potentials, whereas glial cells are typically identified as the subordinate cell population of neurons. To date, this point of view has changed dramatically and growing evidence indicates that glial cells play a crucial role in normal mental functions and the pathogenesis of neurological diseases. Classically, glial cells include four major populations clearly discernible in the adult brain: astrocytes, oligodendrocytes, microglia cells and NG2 glia. Astrocytes, also referred as to astroglia, are by far the most abundant cell lineage in the adult brain. These cells are in close contact with several tissue components of the brain parenchyma including neurons, vasculature, extracellular matrix and other glial populations. Hence, the number and strategic position of astrocytes provide them with exceptional capacity for modulating multiple functions in the neural tissue. PMID:25938129

  10. Platelet-rich plasma (PRP) and Platelet-Rich Fibrin (PRF): surgical adjuvants, preparations for in situ regenerative medicine and tools for tissue engineering.

    PubMed

    Bielecki, Tomasz; Dohan Ehrenfest, David M

    2012-06-01

    The recent developement of platelet concentrate for surgical use is an evolution of the fibrin glue technologies used since many years. The initial concept of these autologous preparations was to concentrate platelets and their growth factors in a plasma solution, and to activate it into a fibrin gel on a surgical site, in order to improve local healing. These platelet suspensions were often called Platelet-Rich Plasma (PRP) like the platelet concentrate used in transfusion medicine, but many different technologies have in fact been developed; some of them are even no more platelet suspensions, but solid fibrin-based biomaterials called Platelet-Rich Fibrin (PRF). These various technologies were tested in many different clinical fields, particularly oral and maxillofacial surgery, Ear-Nose-Throat surgery, plastic surgery, orthopaedic surgery, sports medicine, gynecologic and cardiovascular surgery and ophthalmology. This field of research unfortunately suffers from the lack of a proper accurate terminology and the associated misunderstandings, and the literature on the topic is quite contradictory. Indeed, the effects of these preparations cannot be limited to their growth factor content: these products associate many actors of healing in synergy, such as leukocytes, fibrin matrix, and circulating progenitor cells, and are in fact as complex as blood itself. If platelet concentrates were first used as surgical adjuvants for the stimulation of healing (as fibrin glues enriched with growth factors), many applications for in situ regenerative medicine and tissue engineering were developed and offer a great potential. However, the future of this field is first dependent on his coherence and scientific clarity. The objectives of this article is to introduce the main definitions, problematics and perspectives that are described in this special issue of Current Pharmaceutical Biotechnology about platelet concentrates.

  11. Injectable alginate-O-carboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering.

    PubMed

    Jaikumar, Dhanya; Sajesh, K M; Soumya, S; Nimal, T R; Chennazhi, K P; Nair, Shantikumar V; Jayakumar, R

    2015-03-01

    Injectable, biodegradable scaffolds are required for soft tissue reconstruction owing to its minimally invasive approach. Such a scaffold can mimic the native extracellular matrix (ECM), provide uniform distribution of cells and overcome limitations like donor site morbidity, volume loss, etc. So, here we report two classes of biocompatible and biodegradable hydrogel blend systems namely, Alginate/O-carboxymethyl chitosan (O-CMC) and Alginate/poly (vinyl alcohol) (PVA) with the inclusion of fibrin nanoparticles in each. The hydrogels were prepared by ionic cross-linking method. The developed hydrogels were compared in terms of its swelling ratio, degradation profile, compressive strength and elastic moduli. From these preliminary findings, it was concluded that Alginate/O-CMC formed a better blend for tissue engineering applications. The potential of the formed hydrogel as an injectable scaffold was revealed by the survival of adipose derived stem cells (ADSCs) on the scaffold by its adhesion, proliferation and differentiation into adipocytes. Cell differentiation studies of fibrin incorporated hydrogel scaffolds showed better differentiation was confirmed by Oil Red O staining technique. These injectable gels have potential in soft tissue regeneration.

  12. Fibrin glue as a protective tool for microanastomoses in limb reconstructive surgery.

    PubMed

    Langer, Stefan; Schildhauer, Thomas A; Dudda, Marcel; Sauber, Jeannine; Spindler, Nick

    2015-01-01

    Einleitung: Fibrinkleber ist ein immer häufiger in der klinischen Routine eingesetztes Tool zur Stabilisierung von Mikroanastomosen und Nervenreparatur.Dieser Artikel fasst die technischen Eigenschaften und Vorteile im Gebrauch sowie die variable Anwendungsmöglichkeit von Fibrinkleber im mikrochirurgischen Kontext zusammen und illustriert dies an einem extremitätenrekonstruierenden Fallbeispiel.Patienten und Methoden: 131 Patienten, an welchen sowohl elektiv als auch in einer Notfallsituation eine mikrochirurgische Intervention durchgeführt wurde, hauptsächlich in der Extremitäten erhaltenden Chirurgie, wurden retrospektiv untersucht; ebenso die Patienten, welche eine freie Lappenplastik erhalten hatten.Ergebnisse: Die Verwendung von Fibrinkleber in der Mikrochirurgie erlaubt ein exaktes Positionieren der Anastomose von Gefäßen und Nerven. Ein Verdrehen oder Kinking des Pedickels konnte in keinem Fall festgestellt werden. Die Überlebensrate der Lappen betrug >94%. In 99% der Fälle konnte der Fibrinkleber belassen werden. In dem seltenen Fall der Revision konnte der Fibrinkleber leicht entfernt werden ohne Schaden an der Anastomose zu hinterlassen. Zusammenfassung: Fibrinkleber ist nicht geeignet Anastomoseninsuffizienzen oder leckende Anastomosen zu behandeln, allerdings schützt er die Anastomose vor schadendem Druck ausgelöst durch Gewebe oder Flüssigkeit. Er bewahrt den Gefäßstiel vor Verdrehung und hilft dem Operateur beim Wiederauffinden der Anastomose im Fall einer Revision.

  13. The GlueX DIRC project

    NASA Astrophysics Data System (ADS)

    Stevens, J.; Barbosa, F.; Bessuille, J.; Chudakov, E.; Dzhygadlo, R.; Fanelli, C.; Frye, J.; Hardin, J.; Kelsey, J.; Patsyuk, M.; Schwartz, C.; Schwiening, J.; Shepherd, M.; Whitlatch, T.; Williams, M.

    2016-07-01

    The GlueX experiment was designed to search for and study the pattern of gluonic excitations in the meson spectrum produced through photoproduction reactions at a new tagged photon beam facility in Hall D at Jefferson Laboratory. The particle identification capabilities of the GlueX experiment will be enhanced by constructing a DIRC (Detection of Internally Reflected Cherenkov light) detector, utilizing components of the decommissioned BaBar DIRC. The DIRC will allow systematic studies of kaon final states that are essential for inferring the quark flavor content of both hybrid and conventional mesons. The design for the GlueX DIRC is presented, including the new expansion volumes that are currently under development.

  14. The GlueX DIRC project

    SciTech Connect

    Stevens, J.; Barbosa, F.; Bessuille, J.; Chudakov, E.; Dzhygadlo, R.; Fanelli, C.; Frye, J.; Hardin, J.; Kelsey, J.; Patsyuk, M.; Schwartz, C.; Schwiening, J.; Shepherd, M.; Whitlatch, T.; Williams, M.

    2016-07-20

    Here, the GlueX experiment was designed to search for and study the pattern of gluonic excitations in the meson spectrum produced through photoproduction reactions at a new tagged photon beam facility in Hall D at Jefferson Laboratory. The particle identification capabilities of the GlueX experiment will be enhanced by constructing a DIRC (Detection of Internally Reflected Cherenkov light) detector, utilizing components of the decommissioned BaBar DIRC. The DIRC will allow systematic studies of kaon final states that are essential for inferring the quark flavor content of both hybrid and conventional mesons. In this contribution, the design for the GlueX DIRC will be discussed including new expansion volumes, read out with MaPMTs, that are currently under development.

  15. The GlueX DIRC project

    DOE PAGES

    Stevens, J.; Barbosa, F.; Bessuille, J.; ...

    2016-07-20

    Here, the GlueX experiment was designed to search for and study the pattern of gluonic excitations in the meson spectrum produced through photoproduction reactions at a new tagged photon beam facility in Hall D at Jefferson Laboratory. The particle identification capabilities of the GlueX experiment will be enhanced by constructing a DIRC (Detection of Internally Reflected Cherenkov light) detector, utilizing components of the decommissioned BaBar DIRC. The DIRC will allow systematic studies of kaon final states that are essential for inferring the quark flavor content of both hybrid and conventional mesons. In this contribution, the design for the GlueX DIRCmore » will be discussed including new expansion volumes, read out with MaPMTs, that are currently under development.« less

  16. Hackable User Interfaces In Astronomy with Glue

    NASA Astrophysics Data System (ADS)

    Beaumont, C.; Goodman, A.; Greenfield, P.

    2015-09-01

    Astronomers typically choose between Graphical User Interfaces and custom-written computer code when exploring and analyzing data. Few tools are designed to encourage both of these workflows, despite their complementary strengths. We believe that such hybrid hackable user interfaces could enable more agile data exploration, combining the fluidity that comes from a GUI with the precision and reproducibility that comes from writing code. In this article we articulate the different strengths and weaknesses of both workflows and discuss how to enable both in a single tool. We focus on Glue (http://glue-viz.org) as a case study and examine how the goal of creating a hackable user interface has influenced the design of Glue.

  17. Glue Sniffing In Children-A Position Paper

    ERIC Educational Resources Information Center

    Silberberg, Norman E.; Silberberg, Margaret C.

    1974-01-01

    The question of whether the preventative measures and cures for glue sniffing are more dangerous than the glue sniffing itself is examined. Research is reviewed which indicates that glue sniffing does not seem to occur in isolation but accompanies environmental stress. (Author)

  18. Fibrin nanoconstructs: a novel processing method and their use as controlled delivery agents

    NASA Astrophysics Data System (ADS)

    Praveen, G.; Sreerekha, P. R.; Menon, Deepthy; Nair, Shantikumar V.; Prasad Chennazhi, Krishna

    2012-03-01

    Fibrin nanoconstructs (FNCs) were prepared through a modified water-in-oil emulsification-diffusion route without the use of any surfactants, resulting in a high yield synthesis of fibrin nanotubes (FNTs) and fibrin nanoparticles (FNPs). The fibrin nanoconstructs formed an aligned structure with self-assembled nanotubes with closed heads that eventually formed spherical nanoparticles of size ˜250 nm. The nanotubes were typically ˜700 nm long and 150-300 nm in diameter, with a wall thickness of ˜50 nm and pore diameter of about 150-250 nm. These constructs showed high stability against aggregation indicated by a zeta potential of -44 mV and an excellent temperature stability upto 200 °C. Furthermore, they were found to be enzymatically degradable, thereby precluding any long term toxicity effects. These unique fibrin nanostructures were analyzed for their ability to deliver tacrolimus, an immunosuppressive drug that is used widely to prevent the initial phase of tissue rejection during allogenic transplantation surgeries. Upon conjugation with tacrolimus, a drug encapsulation efficiency of 66% was achieved, with the in vitro release studies in PBS depicting a sustained and complete drug release over a period of one week at the physiological pH of 7.4. At a more acidic pH, the drug release was very slow, suggesting their potential for oral-intestinal drug administration as well. The in vivo drug absorption rates analyzed in Sprague Dawley rats further confirmed the sustained release pattern of tacrolimus for both oral and parenteral delivery routes. The novel fibrin nanoconstructs developed using a green chemistry approach thus proved to be excellent biodegradable nanocarriers for oral as well as parenteral administrations, with remarkable potential also for delivering specific growth factors in tissue engineering scaffolds.

  19. Cyanoacrylate glue for type iii lad perforation.

    PubMed

    Trehan, V K; Nigam, Arima

    2008-01-01

    Coronary artery perforation especially type III is a rare and catastrophic complication of percutaneous coronary intervention. It mandates emergency open heart surgery if hemostasis is not achieved promptly. We report a case of type III left anterior descending artery (LAD) perforation which was managed successfully with cyanoacrylate glue.

  20. Tracheal reconstruction using chondrocytes seeded on a poly(L-lactic-co-glycolic acid)-fibrin/hyaluronan.

    PubMed

    Hong, Hyun Jun; Chang, Jae Won; Park, Ju-Kyeong; Choi, Jae Won; Kim, Yoo Suk; Shin, Yoo Seob; Kim, Chul-Ho; Choi, Eun Chang

    2014-11-01

    Reconstruction of trachea is still a clinical dilemma. Tissue engineering is a recent and promising concept to resolve this problem. This study evaluated the feasibility of allogeneic chondrocytes cultured with fibrin/hyaluronic acid (HA) hydrogel and degradable porous poly(L-lactic-co-glycolic acid) (PLGA) scaffold for partial tracheal reconstruction. Chondrocytes from rabbit articular cartilage were expanded and cultured with fibrin/HA hydrogel and injected into a 5 × 10 mm-sized, curved patch-shape PLGA scaffold. After 4 weeks in vitro culture, the scaffold was implanted on a tracheal defect in eight rabbits. Six and 10 weeks postoperatively, the implanted sites were evaluated by bronchoscope and radiologic and histologic analyses. Ciliary beat frequency (CBF) of regenerated epithelium was also evaluated. None of the eight rabbits showed any sign of respiratory distress. Bronchoscopic examination did not reveal stenosis of the reconstructed trachea and the defects were completely recovered with respiratory epithelium. Computed tomography scan showed good luminal contour of trachea. Histologic data showed that the implanted chondrocytes successfully formed neocartilage with minimal granulation tissue. CBF of regenerated epithelium was similar to that of normal epithelium. Partial tracheal defect was successfully reconstructed anatomically and functionally using allogeneic chondrocytes cultured with PLGA-fibrin/HA composite scaffold.

  1. Immunobiology of Fibrin-Based Engineered Heart Tissue

    PubMed Central

    Conradi, Lenard; Schmidt, Stephanie; Neofytou, Evgenios; Deuse, Tobias; Peters, Laura; Eder, Alexandra; Hua, Xiaoqin; Hansen, Arne; Robbins, Robert C.; Beygui, Ramin E.; Reichenspurner, Hermann; Eschenhagen, Thomas

    2015-01-01

    Different tissue-engineering approaches have been developed to induce and promote cardiac regeneration; however, the impact of the immune system and its responses to the various scaffold components of the engineered grafts remains unclear. Fibrin-based engineered heart tissue (EHT) was generated from neonatal Lewis (Lew) rat heart cells and transplanted onto the left ventricular surface of three different rat strains: syngeneic Lew, allogeneic Brown Norway, and immunodeficient Rowett Nude rats. Interferon spot frequency assay results showed similar degrees of systemic immune activation in the syngeneic and allogeneic groups, whereas no systemic immune response was detectable in the immunodeficient group (p < .001 vs. syngeneic and allogeneic). Histological analysis revealed much higher local infiltration of CD3- and CD68-positive cells in syngeneic and allogeneic rats than in immunodeficient animals. Enzyme-linked immunospot and immunofluorescence experiments revealed matrix-directed TH1-based rejection in syngeneic recipients without collateral impairment of heart cell survival. Bioluminescence imaging was used for in vivo longitudinal monitoring of transplanted luciferase-positive EHT constructs. Survival was documented in syngeneic and immunodeficient recipients for a period of up to 110 days after transplant, whereas in the allogeneic setting, graft survival was limited to only 14 ± 1 days. EHT strategies using autologous cells are promising approaches for cardiac repair applications. Although fibrin-based scaffold components elicited an immune response in our studies, syngeneic cells carried in the EHT were relatively unaffected. Significance An initial insight into immunological consequences after transplantation of engineered heart tissue was gained through this study. Most important, this study was able to demonstrate cell survival despite rejection of matrix components. Generation of syngeneic human engineered heart tissue, possibly using human induced

  2. Enhancing neuronal growth from human endometrial stem cells derived neuron-like cells in three-dimensional fibrin gel for nerve tissue engineering.

    PubMed

    Navaei-Nigjeh, Mona; Amoabedini, Ghasem; Noroozi, Abbas; Azami, Mahmoud; Asmani, Mohammad N; Ebrahimi-Barough, Somayeh; Saberi, Hooshang; Ai, Armin; Ai, Jafar

    2014-08-01

    Nerve tissue engineering (NTE) is one of the most promising methods to restore central nerve systems in human health care. Three-dimensional (3D) distribution and growth of cells within the porous scaffold composed of nanofibers are of clinical significance for NTE. In this study, an attempt was made to develop and characterize the use of fibrin gel and human endometrial stem cells (hEnSCs)-derived neuron-like cells simultaneously to support cell behavior especially neuron outgrowth. The structural and mechanical characteristics of fibrin gel scaffold were examined with SEM and rheometer. Also, hEnSCs-derived neuron-like cells were cultured in fibrin gel and were subsequently analyzed with immunofluorescent staining against neuronal markers. In parallel, the survival and growth rates of the cells were determined by MTT assay and neurite extension. At the end, cell-matrix interactions were investigated with SEM and TEM micrographs. Mechanical properties of fabricated scaffold were studied and results indicated appropriate choice of material, SEM and TEM showed excellent integration of cells with nanofibers regarding the relation between cells and fibrin gel. Immunofluorescent staining of fibrin gel after 6 days of cell seeding and culture demonstrated well expanded and incorporated network of neurons. In addition, viability, proliferation, and neuronal growth of seeded cells were analyzed at days 1, 3, and 6. Comparing those results with 2D culture of seeded cells showed positive effect of 3D culture. Taken together, the results suggest that fibrin can provide a suitable, three-dimensional scaffold for neuronal survival and outgrowth for regeneration of the central nervous system.

  3. Summary of Glue Tests 1993

    SciTech Connect

    Bell, D.; /Fermilab

    1993-01-07

    I have reported most of the results of my adhesive testing to members of the VLPC design team at one time or another, usually verbally, but I am wnnng this summary as an easy reference to the results I obtained. The adhesives I tested were for two primary purposes. The first was adhering optical fibers to Torlon 7130; the other was for securing an aluminum nitride substrate to the same material. I have not had access to a scanning electron microscope and someone with the knowledge to determine actual failure mechanisms, so the deductions I have made about why some adhesives have worked well at low temperatures for some purposes and not for other applications while a different material never worked and another always worked are partially speculation. They should be taken merely at face value with no particular results 'carved in stone' so to speak. The first aspect of my testing was adhesion of optical fiber to torlon. Knowing that this is a very important joint, I tested a variety of glues of two primary types: acrylic and W cure. W cure adhesives are known to possess reasonably good properties at low temperatures and are quite convenient to use as long as a W source is available. The W cure adhesives I tested were: Loctite Utak 376 and also 7EN484(?), Master Bond 1 Component W 15-7, and Norland optical adhesive 61. I found them quite easy to use, and they were packaged in a way in which they were not likely to cause a mess. Lab 6 e Perimenters generally used the Loctite 376 optical cure adhesive in their research into connecting scintillating fibers to the standard type. The acrylics I tested were Loctite Speed Bonder 324 and Permabond Quick Bond 610. These worked reasonably well, but they require a considerably longer set time than the W cure adhesives and are more complicated to use. (5 minutes set time or so for the acrylics versus about 30 seconds for the W. The Loctite must have the activator applied about 5 minutes prior to the adhesive application and the

  4. The Fixed Combination of Collagen With Components of Fibrin Adhesive—A New Hemostypic Agent in Skull Base Procedures

    PubMed Central

    Nistor, Raymond F.; Chiari, Friedrich M.; Maier, Heinz; Hehl, Klaus

    1997-01-01

    CSF leak still is one of the major sources of morbidity after extensive skull base procedures. Of the various standard closure techniques of traumatic or iatrogenic dural defects, none provides a really waterlight, persistent closure. Even the supplementary use of fluid fibrin glue did not substantially improve the rate of postoperative CSF leaks. The application of a collagen sheet covered with a fixed layer of solid components of a fibrin tissue glue (TachoComb®) overcomes the major drawbacks of dural sealing in skull base surgery. The dural defects of 58 patients undergoing extensive skull base procedures were sealed with this new hemostyptic agent. The series includes 44 patients undergoing primary surgery, 6 patients with traumatic or iatrogenic tears of venous sinuses, and 8 patients with postoperative leaks after previous skull base procedures in which other sealing methods were previously used. In the group of primary surgery, none of the patients had postoperative CSF leakage or venous rebleeding. One patient developed a delayed pneumatocephalus. All cases of patent CSF fistulas were resolved without any adjuvant therapy. Preliminary experience shows that the good sealing and hemostyptic performance of this new agent will considerably reduce the risk of postoperative CSF leak and infection after skull base procedures. ImagesFigure 2Figure 3Figure 4 PMID:17171003

  5. Soft materials to treat central nervous system injuries: evaluation of the suitability of non-mammalian fibrin gels.

    PubMed

    Uibo, Raivo; Laidmäe, Ivo; Sawyer, Evelyn S; Flanagan, Lisa A; Georges, Penelope C; Winer, Jessamine P; Janmey, Paul A

    2009-05-01

    Polymeric scaffolds formed from synthetic or natural materials have many applications in tissue engineering and medicine, and multiple material properties need to be optimized for specific applications. Recent studies have emphasized the importance of the scaffolds' mechanical properties to support specific cellular responses in addition to considerations of biochemical interactions, material transport, immunogenicity, and other factors that determine biocompatibility. Fibrin gels formed from purified fibrinogen and thrombin, the final two reactants in the blood coagulation cascade, have long been shown to be effective in wound healing and supporting the growth of cells in vitro and in vivo. Fibrin, even without additional growth factors or other components has potential for use in neuronal wound healing in part because of its mechanical compliance that supports the growth of neurons without activation of glial proliferation. This review summarizes issues related to the use of fibrin gels in neuronal cell contexts, with an emphasis on issues of immunogenicity, and considers the potential advantages and disadvantages of fibrin prepared from non-mammalian sources.

  6. PVA glue as a recording holographic medium

    NASA Astrophysics Data System (ADS)

    Toxqui-López, S.; Olivares-Pérez, A.; Pinto-Iguanero, B.; Aguilar-Mora, A.; Fuentes-Tapia, I.

    2012-03-01

    PVA (Polyvinyl acetate ) glue is one of the most common forms of adhesive on the market, which is popular because it has an ability to adhere to many different surface, but besides in this research we shown that can be employed as polymeric matrix and is employed for holographic recording when this is doped with ammonium dichromate. Thin, uniform coating of this photopolymer is generated by gravity settling method. The drying time for the photosensitive layers is approximately 24 h. Therefore, we present the experimental results obtained through diffraction gratings were recorded using a laser of He-Cd (442 nm).Furthermore the average results of the diffraction efficiency parameter which is quantified by their two first orders of diffraction. The PVA glue with ammonium dichromate can be considered as versatile holographic recording media due to their good sensitivity low cost and self -developing.

  7. Structural hierarchy governs fibrin gel mechanics.

    PubMed

    Piechocka, Izabela K; Bacabac, Rommel G; Potters, Max; Mackintosh, Fred C; Koenderink, Gijsje H

    2010-05-19

    Fibrin gels are responsible for the mechanical strength of blood clots, which are among the most resilient protein materials in nature. Here we investigate the physical origin of this mechanical behavior by performing rheology measurements on reconstituted fibrin gels. We find that increasing levels of shear strain induce a succession of distinct elastic responses that reflect stretching processes on different length scales. We present a theoretical model that explains these observations in terms of the unique hierarchical architecture of the fibers. The fibers are bundles of semiflexible protofibrils that are loosely connected by flexible linker chains. This architecture makes the fibers 100-fold more flexible to bending than anticipated based on their large diameter. Moreover, in contrast with other biopolymers, fibrin fibers intrinsically stiffen when stretched. The resulting hierarchy of elastic regimes explains the incredible resilience of fibrin clots against large deformations.

  8. Structural Hierarchy Governs Fibrin Gel Mechanics

    PubMed Central

    Piechocka, Izabela K.; Bacabac, Rommel G.; Potters, Max; MacKintosh, Fred C.; Koenderink, Gijsje H.

    2010-01-01

    Abstract Fibrin gels are responsible for the mechanical strength of blood clots, which are among the most resilient protein materials in nature. Here we investigate the physical origin of this mechanical behavior by performing rheology measurements on reconstituted fibrin gels. We find that increasing levels of shear strain induce a succession of distinct elastic responses that reflect stretching processes on different length scales. We present a theoretical model that explains these observations in terms of the unique hierarchical architecture of the fibers. The fibers are bundles of semiflexible protofibrils that are loosely connected by flexible linker chains. This architecture makes the fibers 100-fold more flexible to bending than anticipated based on their large diameter. Moreover, in contrast with other biopolymers, fibrin fibers intrinsically stiffen when stretched. The resulting hierarchy of elastic regimes explains the incredible resilience of fibrin clots against large deformations. PMID:20483337

  9. Multiple-Step Injection Molding for Fibrin-Based Tissue-Engineered Heart Valves

    PubMed Central

    Weber, Miriam; Gonzalez de Torre, Israel; Moreira, Ricardo; Frese, Julia; Oedekoven, Caroline; Alonso, Matilde; Rodriguez Cabello, Carlos J.

    2015-01-01

    Heart valves are elaborate and highly heterogeneous structures of the circulatory system. Despite the well accepted relationship between the structural and mechanical anisotropy and the optimal function of the valves, most approaches to create tissue-engineered heart valves (TEHVs) do not try to mimic this complexity and rely on one homogenous combination of cells and materials for the whole construct. The aim of this study was to establish an easy and versatile method to introduce spatial diversity into a heart valve fibrin scaffold. We developed a multiple-step injection molding process that enables the fabrication of TEHVs with heterogeneous composition (cell/scaffold material) of wall and leaflets without the need of gluing or suturing components together, with the leaflets firmly connected to the wall. The integrity of the valves and their functionality was proved by either opening/closing cycles in a bioreactor (proof of principle without cells) or with continuous stimulation over 2 weeks. We demonstrated the potential of the method by the two-step molding of the wall and the leaflets containing different cell lines. Immunohistology after stimulation confirmed tissue formation and demonstrated the localization of the different cell types. Furthermore, we showed the proof of principle fabrication of valves using different materials for wall (fibrin) and leaflets (hybrid gel of fibrin/elastin-like recombinamer) and with layered leaflets. The method is easy to implement, does not require special facilities, and can be reproduced in any tissue-engineering lab. While it has been demonstrated here with fibrin, it can easily be extended to other hydrogels. PMID:25654448

  10. Fibroblast migration in fibrin gel matrices.

    PubMed Central

    Brown, L. F.; Lanir, N.; McDonagh, J.; Tognazzi, K.; Dvorak, A. M.; Dvorak, H. F.

    1993-01-01

    In healing wounds and many solid tumors, locally increased microvascular permeability results in extravasation of fibrinogen and its extravascular coagulation to form a fibrin gel, with concomitant covalent cross-linking of fibrin by factor XIIIa. Subsequently, inflammatory cells, fibroblasts, and endothelial cells migrate into the gel and organize it into granulation tissue and later into mature collagenous connective tissue. To gain insight into some of the cell migration events associated with these processes, we developed a quantitative in vitro assay that permits the study of fibroblast migration in fibrin gels. Early passage human or rat fibroblasts were allowed to attach to tissue culture dishes and then were overlaid with a thin layer of fibrinogen that was clotted with thrombin. Fibroblasts began to migrate upwards into the fibrin within 24 hours and their numbers and the distance migrated were quantified over several days. The extent of fibroblast migration was affected importantly by the nature of the fibrin clot. Fibroblasts migrated optimally into gels prepared from fibrinogen at concentrations of -3 mg/ml; ie, near normal plasma fibrinogen levels. Migration was greatly enhanced by extensive cross-linking of the fibrin alpha-chains by factor XIIIa, as occurs when clotting takes place in vivo. When fibrinogen was clotted in Dulbecco's modified Eagle's medium, gamma-chains were cross-linked, but alpha-chain cross-linking was strikingly inhibited, and fibroblasts migrated poorly. Gels prepared from factor XIII-depleted fibrinogen exhibited neither alpha-nor gamma-chain cross-linking and did not support fibroblast migration. Further purification of fibrinogen by anion exchange high pressure liquid chromatography depleted fibrinogen of fibronectin, plasminogen, and other impurities; this purified fibrinogen clotted to form fibrin gels that supported reproducible fibroblast migration. Images Figure 1 Figure 2 Figure 4 Figure 6 PMID:8424460

  11. Tensile strength of wound closure with cyanoacrylate glue.

    PubMed

    Shapiro, A J; Dinsmore, R C; North, J H

    2001-11-01

    2-Octyl cyanoacrylate tissue adhesive is increasingly being used for closure of traumatic lacerations. Data regarding the strength of incisions closed with 2-octyl cyanoacrylate are limited. We compared the strength of disruption of closure with glue with that of more conventional methods of wound closure. Segments of fresh porcine skin measuring 3.5 x 10 cm were approximated by one of four methods: 1) 2-octyl cyanoacrylate glue, 2) surgical staples, 3) 0.5 inch Steri-Strips, and 4) interrupted 4-0 poliglecaprone 25 sutures in a subcuticular fashion. Fifteen specimens were used to test each type of closure. The strength of closure was tested on an Instron 4502 tensionometer. The peak force required for disruption of the closure was recorded and the strength of the closure was compared. Staples provided the strongest closure. Skin glue proved superior to Steri-Strips but inferior to stapled closure. The difference between skin glue and suture closure was not statistically significant (P = 0.12). Patterns of failure differed between the groups. Skin glue failed because of disruption of the skin-glue interface. 2-Octyl cyanoacrylate glue provides a wound closure that is similar to closure with an interrupted subcuticular absorbable suture. This study validates the clinical use of skin glue for closure of surgical incisions. The technique should be used with caution in areas of the body that are subject to tension.

  12. Zinc modulates thrombin adsorption to fibrin

    SciTech Connect

    Hopmeier, P.; Halbmayer, M.; Fischer, M.; Marx, G. )

    1990-05-01

    Human thrombin with high affinity to Sepharose insolubilized fibrin monomers (high-affinity thrombin) was used to investigate the effect of Zn(II) on the thrombin adsorption to fibrin. Results showed that at Zn(II) concentrations exceeding 100 mumols/l, thrombin binding to fibrin was decreased concomitant with the Zn(II) concentration and time; at lower Zn(II) concentrations, thrombin adsorption was enhanced. Experimental results were identical by using 125I-labelled high-affinity alpha-thrombin or by measuring the thrombin activity either by chromogenic substrate or by a clotting time method. In contrast, Ca(II) alone (final conc. 3 mmol/l) or in combination with Zn(II) was not effective. However, at higher Ca(II) concentrations (7.5-15 mmol/l), thrombin adsorption was apparently decreased. Control experiments revealed that Zn(II) had no impact on the clottability of fibrinogen, and that the results of the experiments with Ca(II) were not altered by possible cross-linking of fibrin. We conclude that unlike Ca(II), Zn(II) is highly effective in modulating thrombin adsorption to fibrin.

  13. GlueX: Meson Spectroscopy in Photoproduction

    SciTech Connect

    Salgado, Carlos; Smith, Elton S.

    2014-03-01

    The goal of the GlueX experiment \\cite{gluex} is to provide crucial data to help understand the soft gluonic fields responsible for binding quarks in hadrons. Hybrid mesons, and in particular exotic hybrid mesons, provide the ideal laboratory for testing QCD in the confinement regime since these mesons explicitly manifest the gluonic degrees of freedom. Photoproduction is expected to be effective in producing exotic hybrids but there is little data on the photoproduction of light mesons. GlueX will use the new 12-GeV electron beam at Jefferson Lab to produce a 9-GeV beam of linearly polarized photons using the technique of coherent bremsstrahlung. A solenoid-based hermetic detector is under construction, which will be used to collect data on meson production and decays. These data will also be used to study the spectrum of conventional mesons, including the poorly understood excited vector mesons. This talk will give an update on the experiment as well as describe theoretical developments \\cite{Dudek:2011bn} to help understand how these data can provide insights into the fundamental theory of strong interactions.

  14. 9 CFR 95.10 - Glue stock; importations permitted subject to restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Glue stock; importations permitted... ENTRY INTO THE UNITED STATES § 95.10 Glue stock; importations permitted subject to restrictions. Glue... permission by the Deputy Administrator, Veterinary Services glue stock may be stored for a temporary...

  15. 9 CFR 95.10 - Glue stock; importations permitted subject to restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Glue stock; importations permitted... ENTRY INTO THE UNITED STATES § 95.10 Glue stock; importations permitted subject to restrictions. Glue... permission by the Deputy Administrator, Veterinary Services glue stock may be stored for a temporary...

  16. 9 CFR 95.10 - Glue stock; importations permitted subject to restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Glue stock; importations permitted... ENTRY INTO THE UNITED STATES § 95.10 Glue stock; importations permitted subject to restrictions. Glue... permission by the Deputy Administrator, Veterinary Services glue stock may be stored for a temporary...

  17. 9 CFR 95.10 - Glue stock; importations permitted subject to restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Glue stock; importations permitted... ENTRY INTO THE UNITED STATES § 95.10 Glue stock; importations permitted subject to restrictions. Glue... permission by the Deputy Administrator, Veterinary Services glue stock may be stored for a temporary...

  18. Scaffolded biology.

    PubMed

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  19. Chronic glue sniffing with transient central hypothyroidism and hypergonadotropism.

    PubMed

    Chen, Hua-Fen; Chen, Shwe-Winn; Chen, Peter; Su, Mei-Chin; See, Ting-Ting; Lee, Hsin-Yu

    2003-12-01

    Neuropsychiatric, gastrointestinal and muscular disorders associated with glue sniffing have been widely reported, but endocrinologic abnormalities of glue exposure are rarely mentioned in the literature. We report a 26-year old male patient, a chronic glue sniffer, who presented with weakness of both lower limbs. On physical examination, he had reduced muscle strength of his 4 limbs, especially in his lower limbs. Laboratory examination revealed hypokalemia with hyperchloremic metabolic acidosis. His thyroid function showed low TSH, T4, T3, free T4 and reverse T3 level. Other pituitary functions were normal apart from high FSH and LH level. TSH response to TRH stimulation was normal, but there was impaired T3 response to TRH. MRI of pituitary showed no significant changes. He continued glue sniffing after discharge. He repeatedly came to our hospital for recurrent hypokalemic paralysis. His serum T4 and free T4 level were low when he had certain amount of glue sniffing and it returned to normal after he stopped sniffing or sniffed less amount of glue. His serum T3 concentrations were normal most of the times thereafter. His FSH and LH level were persistently elevated, even after he did not sniff glue for 2 weeks. Low free T4, TSH and reverse T3 level associated with glue sniffing in our patient were compatible with central hypothyroidism. Toluene, a neurotoxic organic solvent, is present in glues. Being highly lipophilic, it can easily enter and is retained within the lipid-rich nervous system after being inhaled. Like other organic solvents, toluene has been shown to affect dopaminergic and adrenergic turnover within various parts of the brain. The effects on these neurotransmitters could lead to abnormal secretion of pituitary hormones resulting in transient central hypothyroidism and abnormal gonadotropin levels. Long-term harmful effect of central hypothyroidism and chronic influence of abnormal gonadotropins to reproduction function needs further observation.

  20. Human umbilical cord stem cell encapsulation in novel macroporous and injectable fibrin for muscle tissue engineering

    PubMed Central

    Liu, Jun; Xu, Hockin H.K.; Zhou, Hongzhi; Weir, Michael D.; Chen, Qianming; Trotman, Carroll Ann

    2012-01-01

    There has been little research on the seeding of human umbilical cord mesenchymal stem cells (hUCMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of this study were: (i) to seed hUCMSCs in a fibrin hydrogel containing fast-degradable microbeads (dMBs) to create macropores to enhance cell viability; and (ii) to investigate the encapsulated cell proliferation and myogenic differentiation for muscle tissue engineering. Mass fractions of 0–80% of dMBs were tested, and 35% of dMBs in fibrin was shown to avoid fibrin shrinkage while creating macropores and promoting cell viability. This construct was referred to as “dMB35”. Fibrin without dMBs was termed “dMB0”. Microbead degradation created macropores in fibrin and improved cell viability. The percentage of live cells in dMB35 reached 91% at 16 days, higher than the 81% in dMB0 (p < 0.05). Live cell density in dMB35 was 1.6-fold that of dMB0 (p < 0.05). The encapsulated hUCMSCs proliferated, increasing the cell density by 2.6 times in dMB35 from 1 to 16 days. MTT activity for dMB35 was substantially higher than that for dMB0 at 16 days (p < 0.05). hUCMSCs in dMB35 had high gene expressions of myotube markers of myosin heavy chain 1 (MYH1) and alpha-actinin 3 (ACTN3). Elongated, multinucleated cells were formed with positive staining of myogenic specific proteins including myogenin, MYH, ACTN and actin alpha 1. Moreover, a significant increase in cell fusion was detected with myogenic induction. In conclusion, hUCMSCs were encapsulated in fibrin with degradable microbeads for the first time, achieving greatly enhanced cell viability and successful myogenic differentiation with formation of multinucleated myotubes. The injectable and macroporous fibrin–dMB–hUCMSC construct may be promising for muscle tissue engineering applications. PMID:22902812

  1. Epithelial and stromal developmental patterns in a novel substitute of the human skin generated with fibrin-agarose biomaterials.

    PubMed

    Carriel, Víctor; Garzón, Ingrid; Jiménez, Jose-María; Oliveira, Ana-Celeste-Ximenes; Arias-Santiago, Salvador; Campos, Antonio; Sánchez-Quevedo, Maria-Carmen; Alaminos, Miguel

    2012-01-01

    Development of human skin substitutes by tissue engineering may offer new therapeutic alternatives to the use of autologous tissue grafts. For that reason, it is necessary to investigate and develop new biocompatible biomaterials that support the generation of a proper human skin construct. In this study, we generated a novel model of bioengineered human skin substitute using human cells obtained from skin biopsies and fibrin-agarose biomaterials and we evaluated this model both at the ex vivo and the in vivo levels. Once the dermal fibroblasts and the epithelial keratinocytes were isolated and expanded in culture, we used fibrin-agarose scaffolds for the development of a full-thickness human skin construct, which was evaluated after 1, 2, 3 and 4 weeks of development ex vivo. The skin substitutes were then grafted onto immune-deficient nude mice and analyzed at days 10, 20, 30 and 40 postimplantation using transmission electron microscopy, histochemistry and immunofluorescence. The results demonstrated that the fibrin-agarose artificial skin had adequate biocompatibility and proper biomechanical properties. A proper development of both the bioengineered dermis and epidermis was found after 30 days in vivo, although the tissues kept ex vivo and those implanted in the animal model for 10 or 20 days showed lower levels of differentiation. In summary, our model of fibrin-agarose skin equivalent was able to reproduce the structure and histological architecture of the native human skin, especially after long-term in vivo implantation, suggesting that these tissues could reproduce the native skin.

  2. Soft materials to treat central nervous system injuries: evaluation of the suitability of non-mammalian fibrin gels

    PubMed Central

    Uibo, Raivo; Laidmäe, Ivo; Sawyer, Evelyn S.; Flanagan, Lisa A.; Georges, Penelope C.; Winer, Jessamine P.; Janmey, Paul A.

    2010-01-01

    Polymeric scaffolds formed from synthetic or natural materials have many applications in tissue engineering and medicine, and multiple material properties need to be optimized for specific applications. Recent studies have emphasized the importance of the scaffolds’ mechanical properties to support specific cellular responses in addition to considerations of biochemical interactions, material transport, immunogenicity, and other factors that determine biocompatibility. Fibrin gels formed from purified fibrinogen and thrombin, the final two reactants in the blood coagulation cascade, have long been shown to be effective in wound healing and supporting the growth of cells in vitro and in vivo. Fibrin, even without additional growth factors or other components has potential for use in neuronal wound healing in part because of its mechanical compliance that supports the growth of neurons without activation of glial proliferation. This review summarizes issues related to the use of fibrin gels in neuronal cell contexts, with an emphasis on issues of immunogenicity, and considers the potential advantages and disadvantages of fibrin prepared from non-mammalian sources. PMID:19344675

  3. Mussel Glue Protein Has an Open Conformation

    DTIC Science & Technology

    1989-03-01

    model containing two rate constants, 5.6 (±0.6) X 10-3 and 7.2 (±0.3) X 10-2 in ’.At equilibrium, HPLC analy- sis of digests showed nearly 100...spectra of the glue protein in a pH 7.0 tides was determined by PTH- derivatization using a Beckman 890C sequenator with 0.1 M Quadrol in the buffer...24.7+4.3 74.2 Dopa/(Dopa + tyrosineI. In the HPLC -pu- 0.6M NaCI Difaed patrosin in , the Levp 37WC 6.3 - I.S 29.6 ± 3.9 64.1 rifled tyrosinase

  4. Strong tissue glue with tunable elasticity.

    PubMed

    Kelmansky, Regina; McAlvin, Brian J; Nyska, Abraham; Dohlman, Jenny C; Chiang, Homer H; Hashimoto, Michinao; Kohane, Daniel S; Mizrahi, Boaz

    2017-02-09

    Many bio-adhesive materials adhere weakly to tissue due to their high water content and weak structural integrity. Others provide desirable adhesive strength but suffer from rigid structure and lack of elasticity after administration. We have developed two water-free, liquid four-armed PEG pre-polymers modified with NHS or with NH2 end groups which upon mixing changed from liquids to an elastic solid. The sealant and adhesive properties increased with the amount of the %v/v PEG4-NHS pre-polymer, and achieved adhesive properties comparable to those of cyanoacrylate glues. All mixtures showed minimal cytotoxicity in vitro. Mixtures of 90%v/v PEG4-NHS were retained in the subcutaneous space in vivo for up to 14days with minimal inflammation. This material's combination of desirable mechanical properties and biocompatibility has potential in numerous biomedical applications.

  5. Identification of VLDLR as a novel endothelial cell receptor for fibrin that modulates fibrin-dependent transendothelial migration of leukocytes.

    PubMed

    Yakovlev, Sergiy; Mikhailenko, Irina; Cao, Chunzhang; Zhang, Li; Strickland, Dudley K; Medved, Leonid

    2012-01-12

    While testing the effect of the (β15-66)(2) fragment, which mimics a pair of fibrin βN-domains, on the morphology of endothelial cells, we found that this fragment induces redistribution of vascular endothelial-cadherin in a process that is inhibited by the receptor-associated protein (RAP). Based on this finding, we hypothesized that fibrin may interact with members of RAP-dependent low-density lipoprotein (LDL) receptor family. To test this hypothesis, we examined the interaction of (β15-66)(2), fibrin, and several fibrin-derived fragments with 2 members of this family by ELISA and surface plasmon resonance. The experiments showed that very LDL (VLDL) receptor (VLDLR) interacts with high affinity with fibrin through its βN-domains, and this interaction is inhibited by RAP and (β15-66)(2). Furthermore, RAP inhibited transendothelial migration of neutrophils induced by fibrin-derived NDSK-II fragment containing βN-domains, suggesting the involvement of VLDLR in fibrin-dependent leukocyte transmigration. Our experiments with VLDLR-deficient mice confirmed this suggestion by showing that, in contrast to wild-type mice, fibrin-dependent leukocyte transmigration does not occur in such mice. Altogether, the present study identified VLDLR as a novel endothelial cell receptor for fibrin that promotes fibrin-dependent leukocyte transmigration and thereby inflammation. Establishing the molecular mechanism underlying this interaction may result in the development of novel inhibitors of fibrin-dependent inflammation.

  6. The calcification of fibrin in vitro

    NASA Astrophysics Data System (ADS)

    Koutsopoulos, S.; Dalas, E.

    2000-06-01

    In the present work we employed fibrin in order to assess its capability to induce biological mineralization. Fibrin is a very important factor in the blood-clotting system. Structurally, fibrin is an ordered organic matrix which has a periodic structure that repeats every 230 Å. Hydroxyapatite, HAP and octacalcium phosphate (OCP) are the most interesting calcium phosphate salts. Hydroxyapatite is thermodynamically the most stable calcium phosphate which is mostly used as a model compound for the study of biological-calcification processes. On the other hand, octacalcium phosphate has been proposed as a precursor of hydroxyapatite whose formation is favoured kinetically in solutions supersaturated to both salts. The kinetics of crystallization of HAP and OCP on fibrin were studied using the constant composition technique. The onset of HAP crystallization started immediately after introducing the substrate in the supersaturated solution. Unlike HAP crystallization induction periods were observed before the appearance of OCP precipitate in a solution supersaturated with respect to both HAP and OCP. Using nucleation rate equations derived from the classical homogeneous nucleation theory, interfacial energies and the size of the critical nucleus for both HAP and OCP were calculated. Phosphate was taken up extensively by the biological molecule studied. The dependence of adsorption upon ionic strength and pH of the medium suggests an appreciable contribution of electrostatic forces. Controversially calcium ions did not exhibit any detectable adsorption from solutions containing calcium dichloride at concentrations ranging from 1×10 -4 to 5×10 -3 M in 0.15 M NaCl supporting electrolyte, 37°C, pH=7.4. From the results above it follows that formation of HAP on fibrin may be initiated via adsorption of inorganic phosphate on the biological substrate.

  7. The adhesive skin exudate of Notaden bennetti frogs (Anura: Limnodynastidae) has similarities to the prey capture glue of Euperipatoides sp. velvet worms (Onychophora: Peripatopsidae).

    PubMed

    Graham, Lloyd D; Glattauer, Veronica; Li, Dongmei; Tyler, Michael J; Ramshaw, John A M

    2013-08-01

    The dorsal adhesive secretion of the frog Notaden bennetti and the prey-capture "slime" ejected by Euperipatoides sp. velvet worms look and handle similarly. Both consist largely of protein (55-60% of dry weight), which provides the structural scaffold. The major protein of the onychophoran glue (Er_P1 for Euperipatoides rowelli) and the dominant frog glue protein (Nb-1R) are both very large (260-500 kDa), and both give oddly "turbulent" electrophoresis bands. Both major proteins, which are rich in Gly (16-17 mol%) and Pro (7-12 mol%) and contain 4-hydroxyproline (Hyp, 4 mol%), have the composition of intrinsically unstructured proteins. Their propensities for elastomeric or amyloid structures are discussed in light of Er_P1's large content of intrinsically disordered long tandem repeats. The low carbohydrate content of both glues is consistent with conventional protein glycosylation, which in the N. bennetti adhesive was explored by 2D PAGE. The N-linked sugars of Nb-1R appear to prevent inappropriate self-aggregation. Some peptide sequences from Nb-1R are presented. Overall, there are enough similarities between the frog and the velvet worm glues to suspect that they employ related mechanisms for setting and adhesion. A common paradigm is proposed for amphibian and onychophoran adhesives, which, if correct, points to convergent evolution.

  8. Clinical evaluation of cyanoacrylate glue in corneal perforations.

    PubMed

    Bansal, D C; Sandhu, P S; Khosla, A D

    1987-01-01

    Our experience of the use of Cyanoacrylate glue in 50 cases of perforation or impending perforation of cornea has been presented. The method of application has been described. Quite encouraging and useful results have been obtained.

  9. Applying Machine Learning to GlueX Data Analysis

    NASA Astrophysics Data System (ADS)

    Boettcher, Thomas

    2014-03-01

    GlueX is a high energy physics experiment with the goal of collecting data necessary for understanding confinement in quantum chromodynamics. Beginning in 2015, GlueX will collect huge amounts of data describing billions of particle collisions. In preparation for data collection, efforts are underway to develop a methodology for analyzing these large data sets. One of the primary challenges in GlueX data analysis is isolating events of interest from a proportionally large background. GlueX has recently begun approaching this selection problem using machine learning algorithms, specifically boosted decision trees. Preliminary studies indicate that these algorithms have the potential to offer vast improvements in both signal selection efficiency and purity over more traditional techniques.

  10. UNDERSIDE FROM SOUTH BANKS; NOTICE NEW GLUE LAM CROSSBEAMS SISTERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    UNDERSIDE FROM SOUTH BANKS; NOTICE NEW GLUE LAM CROSSBEAMS SISTERED TO OLDER BEAMS, NEW STRINGERS AND COMPONENTS MAKE UP A NEARLY NEW SUPPORT SYSTEM - Short Bridge, Spanning South Santiam River at High Deck Road, Cascadia, Linn County, OR

  11. The GlueX Project at Jefferson Lab

    SciTech Connect

    Papandreou, Zisis

    2009-01-01

    One of the main scientific questions that remains unanswered in subatomic physics is the nature and behaviour of the "Glue" which holds the quarks together. The puzzling feature of this construction is that quarks are never found free, but only in triplets or pairs, a phenomenon known as "confinement". Since gluons carry colour charge, they can form chromoelectric flux tubes, which may result in unusual objects, such as glue-balls or hybrid combinations of gluons and quarks. In certain models, the later can be produced with quantum numbers not allowed in the simple quark picture. An international experiment (GlueX) at Jefferson Lab, Virginia, is being designed to search for such exotic hybrid mesons and thus elucidate the phenomenon of confinement. GlueX is considered a 'discovery' experiment; its salient features, the planned methodology of partial- wave analysis, and the R&D progress of its detector subsystems will be

  12. Asthma and rhinitis due to ethylcyanoacrylate instant glue.

    PubMed

    Kopp, S K; McKay, R T; Moller, D R; Cassedy, K; Brooks, S M

    1985-05-01

    A 32-year-old man developed asthma due to a cyanoacrylate ester instant glue used in building remote control model airplanes. Typical asthma and rhinitis symptoms developed after 1 year using the adhesive. Delayed onset of symptoms was consistently related to the application of the glue to balsa wood. Bronchial provocation to the glue vapors in a manner simulating his home exposure resulted in a late asthmatic response with rhinorrhea and lacrimation. Increased bronchial hyperreactivity to methacholine occurred after bronchial challenge and persisted for several weeks. Complete resolution of the patient's asthma symptoms occurred with avoidance of the glue. Reversion to a negative methacholine challenge test occurred after 6 months of continued avoidance.

  13. Patient-performed pinnaplasty using industrial nail glue.

    PubMed

    Chadha, Priyanka; Bast, Florian

    2017-02-01

    Malformations of the pinna occur in around 2-5% of all newborns. Prominent ears in childhood can be a source of psychological distress and lead to bullying and social exclusion. We present the case of a 14-year-old girl who inflicted chronic, non-healing wounds in the post auricular area bilaterally after attempting to glue back her ears with industrial strength glue. To our knowledge, this is the first case of its kind to be published.

  14. [Strategies to choose scaffold materials for tissue engineering].

    PubMed

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    mixed with sustained-release nano-microsphere containing growth factors. What's more, the stent internal surface coated with glue/collagen matrix mixing layer containing bFGF and EGF so could supplying the early release of the two cytokines. Finally, combining the poly(L-lactic acid)/poly(ε-caprolactone) biliary stent with the induced cells was the last step for preparing tissue-engineered bile duct. This literature reviewed a variety of the existing tissue engineering scaffold materials and briefly introduced the impact factors on the characteristics of tissue engineering scaffold materials such as preparation procedure, surface modification of scaffold, and so on. We explored the choosing strategy of desired tissue engineering scaffold materials.

  15. Toward an understanding of fibrin branching structure

    NASA Astrophysics Data System (ADS)

    Fogelson, Aaron L.; Keener, James P.

    2010-05-01

    The blood clotting enzyme thrombin converts fibrinogen molecules into fibrin monomers which polymerize to form a fibrous three-dimensional gel. The concentration of thrombin affects the architecture of the resulting gel, in particular, a higher concentration of thrombin produces a gel with more branch points per unit volume and with shorter fiber segments between branch points. We propose a mechanism by which fibrin branching can occur and show that this mechanism can lead to dependence of the gel’s structure (at the time of gelation) on the rate at which monomer is supplied. A higher rate of monomer supply leads to a gel with a higher branch concentration and with shorter fiber segments between branch points. The origin of this dependence is explained.

  16. The GlueX Start Counter

    NASA Astrophysics Data System (ADS)

    Llodra, Anthony; Pooser, Eric; GlueX Collaboration

    2015-04-01

    The GlueX experiment, which is online as of October of 2014, will study meson photo production with unprecedented precision. This experiment will use the coherent bremsstrahlung technique to produce a 9 GeV linearly polarized photon beam incident on a liquid H2 target kept at a few degrees Kelvin. A Start Counter detector has been fabricated to identify the accelerator electron beam buckets, approximately 2 nanoseconds apart, and to provide accurate timing information. This detector is designed to operate at photon intensities of up to 108 γ/s in the coherent peak and provide a timing resolution of less than 350 picoseconds so as to provide successful identification of the electron beam buckets. It consists of a cylindrical array of 30 scintillators with pointed ends that bend towards the beam at the downstream end. The EJ-200 scintillator is best suited for the Start Counter due to its fast decay time on the order of 2 nanoseconds and long attenuation length. Silicon Photo Multiplier (SiPM) detectors have been selected as the readout system and are to be placed as close as possible, less than 300 micron, to the upstream end of each scintillator. The methods/details of the assembly and the optimization of the surface quality of scintillator paddles are discussed. This work was supported in part by DoE Contracts DE-FG02-99ER41065 and DE-AC05-06OR23177.

  17. The GlueX Start Counter

    NASA Astrophysics Data System (ADS)

    Pooser, Eric; GlueX Collaboration

    2015-03-01

    The GlueX experiment will study meson photoproduction with unprecedented precision. This experiment will use the coherent bremsstrahlung technique to produce a 9 GeV linearly polarized photon beam incident on a liquid H2 target. A Start Counter detector has been fabricated to identify the accelerator electron beam buckets, approximately 2 ns apart, and to provide accurate timing information which is used in the level-1 trigger of the experiment. This detector is designed to operate at photon intensities of up to 108 γ / s in the coherent peak and provide a timing resolution < 350 ps so as to provide successful identification of the electron beam buckets to within 99 % accuracy. Furthermore, the Start Counter detector will provide excellent solid angle coverage, ~ 90 % of 4 π hermeticity , and a high degree of segmentation for background rejection. It consists of a cylindrical array of 30 scintillators with pointed ends that bend towards the beam at the downstream end. Silicon PhotoMultiplier (SiPM) detectors have been selected as the readout system. The physical properties of the Start Counter have been studied extensively. The results of theses studies are discussed. This material is based upon work supported by the U.S. Department of Energy, Office of Science, and Office of Nuclear Physics under Contracts DE-AC05-06OR23177 & DE-FG02-99ER41065.

  18. The GlueX Start Counter

    NASA Astrophysics Data System (ADS)

    Pooser, Eric; GlueX Collaboration

    2015-04-01

    The GlueX experiment will study meson photoproduction with unprecedented precision. This experiment will use the coherent bremsstrahlung technique to produce a 9 GeV linearly polarized photon beam incident on a liquid H2 target. A Start Counter detector has been fabricated to identify the accelerator electron beam buckets, approximately 2 ns apart, and to provide accurate timing information which is used in the level-1 trigger of the experiment. This detector is designed to operate at photon intensities of up to 108 γ / s in the coherent peak and provide a timing resolution < 350ps so as to provide successful identification of the electron beam buckets to within 99 % accuracy. Furthermore, the Start Counter detector will provide excellent solid angle coverage, ~ 90 % of 4 π hermeticity , and a high degree of segmentation for background rejection. It consists of a cylindrical array of 30 scintillators with pointed ends that bend towards the beam at the downstream end. Silicon PhotoMultiplier (SiPM) detectors have been selected as the readout system. The physical properties of the Start Counter have been studied extensively. The results of theses studies are discussed. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contracts DE-AC05-06OR23177 & DE-FG02-99ER41065.

  19. 21 CFR 864.7300 - Fibrin monomer paracoagulation test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... clotting within a blood vessel) or in the differential diagnosis between disseminated intravascular coagulation and primary fibrinolysis (dissolution of the fibrin in a blood clot). (b) Classification. Class...

  20. 21 CFR 864.7300 - Fibrin monomer paracoagulation test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... clotting within a blood vessel) or in the differential diagnosis between disseminated intravascular coagulation and primary fibrinolysis (dissolution of the fibrin in a blood clot). (b) Classification. Class...

  1. 21 CFR 864.7300 - Fibrin monomer paracoagulation test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... clotting within a blood vessel) or in the differential diagnosis between disseminated intravascular coagulation and primary fibrinolysis (dissolution of the fibrin in a blood clot). (b) Classification. Class...

  2. 21 CFR 864.7300 - Fibrin monomer paracoagulation test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... clotting within a blood vessel) or in the differential diagnosis between disseminated intravascular coagulation and primary fibrinolysis (dissolution of the fibrin in a blood clot). (b) Classification. Class...

  3. 21 CFR 864.7300 - Fibrin monomer paracoagulation test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... clotting within a blood vessel) or in the differential diagnosis between disseminated intravascular coagulation and primary fibrinolysis (dissolution of the fibrin in a blood clot). (b) Classification. Class...

  4. Revitalization of an Immature Permanent Mandibular Molar with a Necrotic Pulp Using Platelet-Rich Fibrin: A Case Report

    PubMed Central

    Shoba, Krishnamma; Aman, Shibu; Bharkavi, Srinivasan Kumar Indu

    2016-01-01

    Any insult to the pulp during its development causes cessation of dentin formation and root growth. Pulpal status and degree of root development are the decisive factors in the treatment approach. Various treatment options have been tried like surgery with root-end sealing, calcium hydroxide–apexification, placement of apical plug and regenerative endodontic procedures to induce apexogenesis. An ideal scenario for a necrosed tooth with immature root would be continued root development coupled with regeneration of pulp tissue. We report a case, where revitalization was done using Platelet-Rich Fibrin (PRF) as a scaffold in immature mandibular molar tooth. PMID:28050518

  5. A Bone Glue with Sustained Adhesion under Wet Conditions.

    PubMed

    Wistlich, Laura; Rücker, Anja; Schamel, Martha; Kübler, Alexander C; Gbureck, Uwe; Groll, Jürgen

    2017-02-01

    Bone glues often suffer from low adhesion to bone under wet conditions. This study aims to improve wet adhesiveness of a bone glue based on a photocurable poly(ethylene glycol) dimethacrylate matrix through in situ interpenetrating network formation by addition of six-armed isocyanate functional star-shaped prepolymers (NCO-sP(EO-stat-PO)). Biodegradable ceramic fillers are added to adjust the paste workability. The 3-point bending strength of the bone glues is in the range of 3.5-5.5 MPa and not significantly affected by the addition of NCO-sP(EO-stat-PO). Storage in phosphate buffered saline (PBS) decreases the bending strength of all formulations to approximately 1 MPa but the adhesion to cortical bone increases from 0.15-0.2 to 0.3-0.5 MPa after adding 20-40 wt% NCO-sP(EO-stat-PO) to the matrix. Bone glues without the NCO-sP(EO-stat-PO) additive lose their adhesiveness to bone after aging in PBS for 7 days, whereas modified glues maintain a shear strength of 0.18-0.25 MPa demonstrating the efficacy of the approach. Scanning electron microscopy and energy-dispersive X-ray spectroscopy investigations of the fracture surfaces prove a high amount of residual adhesive on the bone surface indicating that adhesion to the bone under wet conditions is stronger than cohesion.

  6. Adhesive Performance of Biomimetic Adhesive-Coated Biologic Scaffolds

    PubMed Central

    Murphy, John L.; Vollenweider, Laura; Xu, Fangmin; Lee, Bruce P.

    2010-01-01

    Surgical repair of a discontinuity in traumatized or degenerated soft tissues is traditionally accomplished using sutures. A current trend is to reinforce this primary repair with surgical grafts, meshes, or patches secured with perforating mechanical devices (i.e., sutures, staples, or tacks). These fixation methods frequently lead to chronic pain and mesh detachment. We developed a series of biodegradable adhesive polymers that are synthetic mimics of mussel adhesive proteins (MAPs), composed of 3,4-dihydroxyphenylalanine (DOPA)-derivatives, polyethylene glycol (PEG), and polycaprolactone (PCL). These polymers can be cast into films, and their mechanical properties, extent of swelling, and degradation rate can be tailored through the composition of the polymers as well as blending with additives. When coated onto a biologic mesh used for hernia repair, these adhesive constructs demonstrated adhesive strengths significantly higher than fibrin glue. With further development, a pre-coated bioadhesive mesh may represent a new surgical option for soft tissue repair. PMID:20919699

  7. Transforming growth factor Beta-releasing scaffolds for cartilage tissue engineering.

    PubMed

    Madry, Henning; Rey-Rico, Ana; Venkatesan, Jagadeesh K; Johnstone, Brian; Cucchiarini, Magali

    2014-04-01

    The maintenance of a critical threshold concentration of transforming growth factor beta (TGF-β) for a given period of time is crucial for the onset and maintenance of chondrogenesis. Thus, the development of scaffolds that provide temporal and/or spatial control of TGF-β bioavailability has appeal as a mechanism to induce the chondrogenesis of stem cells in vitro and in vivo for articular cartilage repair. In the past decade, many types of scaffolds have been designed to advance this goal: hydrogels based on polysaccharides, hyaluronic acid, and alginate; protein-based hydrogels such as fibrin, gelatin, and collagens; biopolymeric gels and synthetic polymers; and solid and hybrid composite (hydrogel/solid) scaffolds. In this study, we review the progress in developing strategies to deliver TGF-β from scaffolds with the aim of enhancing chondrogenesis. In the future, such scaffolds could prove critical for tissue engineering cartilage, both in vitro and in vivo.

  8. Contaminating fibrin in CPD-blood: solubility in plasma and distribution in blood components following separation

    SciTech Connect

    Skjonsberg, O.H.; Kierulf, P.; Gravem, K.; Fagerhol, M.K.; Godal, H.C.

    1986-01-01

    In order to estimate the solubility of contaminating fibrin in CPD-blood, thrombin induced fibrin polymerzation in CPD-plasma was examined by light scattering and fibrinopeptide A (FPA) determinations. In addition, I-125 fibrin monomer enriched CPD-blood was used to investigate fibrin monomer retention in blood bags and transfusion filters (170 microns) and fibrin distribution in blood components derived from CPD-blood. Initial fibrin polymerization in CPD-blood occurred after conversion of 15 per cent of the fibrinogen to fibrin, implying that substantial amounts of fibrin may be kept solubilized in CPD-blood bags. Only minor amounts of I-125 fibrin monomers were retained in blood bags (2.4 per cent) and in transfusion filters (2.9 per cent) after sham transfusions. After separating I-125-fibrin monomer enriched CPD-blood into its constituent components, the major part of fibrin (75.0 per cent) could be traced in the cryoprecipitate.

  9. Light quark meson spectroscopy: First results from GlueX

    NASA Astrophysics Data System (ADS)

    Stevens, Justin

    2017-01-01

    The GlueX experiment is located in the recently constructed experimental Hall D at Jefferson Lab (JLab), and provides a unique capability to search for hybrid mesons in high-energy photoproduction, utilizing a 9 GeV linearly polarized photon beam. Commissioning of the Hall D beamline and GlueX detector began in 2014 and was recently completed in the spring of 2016 with the collection of the first dataset utilizing 12 GeV electrons from the upgraded CEBAF at JLab. The statistical precision of this dataset surpasses the previous world data on polarized photoproduction in this energy domain by orders of magnitude. First results from this dataset will be presented along with the plan for acquiring higher statistics datasets to begin the search for hybrid mesons at GlueX.

  10. Circulating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots

    PubMed Central

    Zubairova, Laily D.; Nabiullina, Roza M.; Nagaswami, Chandrasekaran; Zuev, Yuriy F.; Mustafin, Ilshat G.; Litvinov, Rustem I.; Weisel, John W.

    2015-01-01

    Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel. Microparticles accelerate fibrin polymerisation and support formation of more compact clots that resist internal and external fibrinolysis. These variations correlate with faster thrombin generation, suggesting thrombin-mediated kinetic effects of microparticles on fibrin formation, structure, and properties. In addition, clots formed in the presence of microparticles, unlike clots from the microparticle-depleted plasma, contain 0.1–0.5-μm size granular and CD61-positive material on fibres, suggesting that platelet-derived microparticles attach to fibrin. Therefore, the blood of healthy individuals contains functional microparticles at the levels that have a procoagulant potential. They affect the structure and stability of fibrin clots indirectly through acceleration of thrombin generation and through direct physical incorporation into the fibrin network. Both mechanisms underlie a potential role of microparticles in haemostasis and thrombosis as modulators of fibrin formation, structure, and resistance to fibrinolysis. PMID:26635081

  11. Activated Schwann Cell-Like Cells on Aligned Fibrin-Poly(Lactic-Co-Glycolic Acid) Structures: A Novel Construct for Application in Peripheral Nerve Regeneration.

    PubMed

    Schuh, Christina M A P; Morton, Tatjana J; Banerjee, Asmita; Grasl, Christian; Schima, Heinrich; Schmidhammer, Robert; Redl, Heinz; Ruenzler, Dominik

    2015-01-01

    Tissue engineering approaches in nerve regeneration search for ways to support gold standard therapy (autologous nerve grafts) and to improve results by bridging nerve defects with different kinds of conduits. In this study, we describe electrospinning of aligned fibrin-poly(lactic-co-glycolic acid) (PLGA) fibers in an attempt to create a biomimicking tissue-like material seeded with Schwann cell-like cells (SCLs) in vitro for potential use as an in vivo scaffold. Rat adipose-derived stem cells (rASCs) were differentiated into SCLs and evaluated with flow cytometry concerning their differentiation and activation status [S100b, P75, myelin-associated glycoprotein (MAG), and protein 0 (P0)]. After receiving the proliferation stimulus forskolin, SCLs expressed S100b and P75; comparable to native, activated Schwann cells, while cultured without forskolin, cells switched to a promyelinating phenotype and expressed S100b, MAG, and P0. Human fibrinogen and thrombin, blended with PLGA, were electrospun and the alignment and homogeneity of the fibers were proven by scanning electron microscopy. Electrospun scaffolds were seeded with SCLs and the formation of Büngner-like structures in SCLs was evaluated with phalloidin/propidium iodide staining. Carrier fibrin gels containing rASCs acted as a self-shaping matrix to form a tubular structure. In this study, we could show that rASCs can be differentiated into activated, proliferating SCLs and that these cells react to minimal changes in stimulus, switching to a promyelinating phenotype. Aligned electrospun fibrin-PLGA fibers promoted the formation of Büngner-like structures in SCLs, which also rolled the fibrin-PLGA matrix into a tubular scaffold. These in vitro findings favor further in vivo testing.

  12. Growth factor-rich plasma increases tendon cell proliferation and matrix synthesis on a synthetic scaffold: an in vitro study.

    PubMed

    Visser, Lance C; Arnoczky, Steven P; Caballero, Oscar; Kern, Andreas; Ratcliffe, Anthony; Gardner, Keri L

    2010-03-01

    Numerous scaffolds have been proposed for use in connective tissue engineering. Although these scaffolds direct cell migration and attachment, many are biologically inert and thus lack the physiological stimulus to attract cells and induce mitogenesis and matrix synthesis. In the current study, a bioactive scaffold was created by combining a synthetic scaffold with growth factor-rich plasma (GFRP), an autologous concentration of growth factors derived from a platelet-rich plasma preparation. In vitro tendon cell proliferation and matrix synthesis on autologous GFRP-enriched scaffolds, autologous serum-enriched scaffolds, and scaffolds alone were compared. The GFRP preparation was found to have a 4.7-fold greater concentration of a sentinel growth factor (transforming growth factor-beta1) compared with serum. When combined with media containing calcium, the GFRP produced a thin fibrin matrix over and within the GFRP-enriched scaffolds. Cell proliferation assays demonstrated that GFRP-enriched scaffolds significantly enhanced cell proliferation over autologous serum and control groups at both 48 and 72 h. Analysis of the scaffolds at 14, 21, and 28 days revealed that GFRP-enriched scaffolds significantly increased the deposition of a collagen-rich extracellular matrix when compared with the other groups. These results indicate that GFRP can be used to enhance in vitro cellular population and matrix deposition of tissue-engineered scaffolds.

  13. Scattering of glue by glue on the light-cone worldsheet. II. Helicityconserving amplitudes

    SciTech Connect

    Chakrabarti, D.; Qiu, J.; Thorn, C. B.

    2006-08-15

    This is the second of a pair of articles on scattering of glue by glue,in which we give the light-cone gauge calculation of the one-loop on-shellhelicity conserving scattering amplitudes for gluon-gluon scattering (neglectingquark loops). The 1/p{sup +} factors in the gluon propagatorare regulated by replacing p{sup +} integrals with discretized sums omitting the p{sup +}=0 terms in each sum. We alsoemploy a novel ultraviolet regulator that is convenient for the light-coneworldsheet description of planar Feynman diagrams. The helicity conservingscattering amplitudes are divergent in the infrared. The infrared divergencesin the elastic one-loop amplitude are shown to cancel, in their contributionto cross sections, against ones in the cross section for unseen bremsstrahlunggluons. We include here the explicit calculation of the latter, because itassumes an unfamiliar form due to the peculiar way discretization of p{sup +} regulates infrared divergences. In resolving the infrareddivergences we employ a covariant definition of jets, which allows a transparentdemonstration of the Lorentz invariance of our final results. Because we usean explicit cutoff of the ultraviolet divergences in exactly four spacetimedimensions, we must introduce explicit counterterms to achieve this finalcovariant result. These counterterms are polynomials in the external momentaof the precise order dictated by power counting. We discuss the modificationsthey entail for the light-cone worldsheet action that reproduces the bareplanar diagrams of the gluonic sector of QCD. The simplest way to do thisis to interpret the QCD string as moving in six spacetime dimensions.

  14. Lendrum (-MSB) staining for fibrin identification in sealed skin grafts.

    PubMed

    Fisseler-Eckhoff, A; Müller, K M

    1994-05-01

    The significance and effect of fibrin sealant systems for woundhealing are still unknown, because of the use of insufficient, conventional staining methods for the demonstration of the fibrin components used by sealant systems. From 21 patients with extensive burns of 2nd and 3rd degree biopsies of the skin were obtained during consecutive operations to cover the defect of the skin with split-thickness skin grafting. In the present paper morphological results concerning the demonstration of fibrin components and morphological differences in woundhealing of sealed and unsealed skin grafts are presented using Lendrum (-MSB) staining. With this staining method it is possible to identify exogenous fibrin components of the sealant system and to differentiate between fresh and older fibrin components, due to colour changes depending on time.

  15. Cultivation of endothelial progenitor cells on fibrin matrix and layering on dacron/polytetrafluoroethylene vascular grafts.

    PubMed

    Sreerekha, Perumcherry Raman; Krishnan, Lissy K

    2006-04-01

    Completely biological tissue-engineered vascular graft is an upcoming substitute for damaged blood vessel, but its clinical use is currently limited due to poor mechanical strength. Therefore, at present, polymeric small-diameter vascular grafts lined with endothelial cells (ECs) to reduce graft thrombosis may be a more viable option. Successful construction of EC-seeded artificial grafts faces some challenges such as (i) retention of endothelial lining; and (ii) availability of differentiated autologous cells. Biomaterial surfaces that are modified by depositing extracellular matrix (ECM) components may stabilize cells in the lumen against forces of blood flow. Adult stem cells such as endothelial progenitor cells (EPCs) circulate in the blood and they usually attach to the exposed matrix at the injured blood vessel site. Depending on the signaling capabilities of ECM, cells may differentiate into ECs,, and if a similar composition of the matrix is provided in vitro, EPCs isolated from blood might get differentiated and thus autologous cells for tissue engineering may be obtained. In this in vitro study, ECM scaffold consisting of biomolecules such as fibrin, fibronectin, and gelatin along with growth factors is found to have supported differentiation of EPC into EC. Further, the ECM precoated on Dacron and polytetrafluoroethylene is found to have supported the formation of EC monolayer that synthesized nitric oxide, and resisted shear stress. Thus, biomimetic fibrin composite is found to be suitable not only to seed cells on currently available artificial grafts but also to obtain differentiated EC from EPC.

  16. Tissue-Engineered Fibrin-Based Heart Valve with Bio-Inspired Textile Reinforcement.

    PubMed

    Moreira, Ricardo; Neusser, Christine; Kruse, Magnus; Mulderrig, Shane; Wolf, Frederic; Spillner, Jan; Schmitz-Rode, Thomas; Jockenhoevel, Stefan; Mela, Petra

    2016-08-01

    The mechanical properties of tissue-engineered heart valves still need to be improved to enable their implantation in the systemic circulation. The aim of this study is to develop a tissue-engineered valve for the aortic position - the BioTexValve - by exploiting a bio-inspired composite textile scaffold to confer native-like mechanical strength and anisotropy to the leaflets. This is achieved by multifilament fibers arranged similarly to the collagen bundles in the native aortic leaflet, fixed by a thin electrospun layer directly deposited on the pattern. The textile-based leaflets are positioned into a 3D mould where the components to form a fibrin gel containing human vascular smooth muscle cells are introduced. Upon fibrin polymerization, a complete valve is obtained. After 21 d of maturation by static and dynamic stimulation in a custom-made bioreactor, the valve shows excellent functionality under aortic pressure and flow conditions, as demonstrated by hydrodynamic tests performed according to ISO standards in a mock circulation system. The leaflets possess remarkable burst strength (1086 mmHg) while remaining pliable; pronounced extracellular matrix production is revealed by immunohistochemistry and biochemical assay. This study demonstrates the potential of bio-inspired textile-reinforcement for the fabrication of functional tissue-engineered heart valves for the aortic position.

  17. Revascularization of immature, nonvital permanent tooth using platelet-rich fibrin in children.

    PubMed

    Nagaveni, N B; Poornima, P; Joshi, Jooie S; Pathak, Sidhant; Nandini, D B

    2015-01-01

    The purpose of this paper was to present a new approach wherein revascularization of the immature, nonvital permanent tooth was performed using platelet-rich fibrin (PRF) as a novel scaffold material. This was performed after disinfection of the root canal space using triple antibiotic paste followed by placing a PRF membrane in the root canal. The patient was followed up regularly at three-, six-, nine-, and 12-month intervals for review. After 12 months, clinical examination showed negative response to percussion and palpation tests but positive response to cold and electric pulp tests. Radiographic examination revealed continued thickening of the root dentinal walls, narrowing of root canal space, root lengthening, and closure of the root apex with normal periradicular architecture. However, more clinical research using large samples is necessary to prove it advantageous for regenerative endodontic therapy in children.

  18. New techniques in the treatment of common perianal diseases: stapled hemorrhoidopexy, botulinum toxin, and fibrin sealant.

    PubMed

    Singer, Marc; Cintron, Jose

    2006-08-01

    There have been several recent advances in the treatment of common perianal diseases. Stapled hemorrhoidopexy is a procedure of hemorrhoidal fixation, combining the benefits of rubber band ligation into an operative technique. The treatment of anal fissure has typically relied upon internal sphincterotomy; however, it carries a risk of incontinence. The injection of botulinum toxin represents a new form of sphincter relaxation, without division of any sphincter muscle; morbidity is minimal and results are promising. For the treatment of fistula in a fistulotomy remains the gold standard, however, it carries significant risk of incontinence. Use of fibrin sealant to treat fistulae has been met with variable success. It offers sealing of the tract, and then provides scaffolding for native tissue ingrowth.

  19. Fibrin in Reproductive Tissue Engineering: A Review on Its Application as a Biomaterial for Fertility Preservation.

    PubMed

    Chiti, M C; Dolmans, M M; Donnez, J; Amorim, C A

    2017-03-07

    In recent years, reproductive medicine has made good use of tissue engineering and regenerative medicine techniques to develop alternatives to restore fertility in cancer patients. For young female cancer patients who cannot undergo any of the currently applied strategies due to the possible presence of malignant cells in their ovaries, the challenge is creating an in vitro or in vivo artificial ovary using carefully selected biomaterials. Thanks to its numerous qualities, fibrin has been widely used as a scaffold material for fertility preservation applications. The goal of this review is to examine and discuss the applications and advantages of this biopolymer for fertility restoration in cancer patients, and consider the main results achieved so far.

  20. Concentration of fibrin and presence of plasminogen affect proliferation, fibrinolytic activity, and morphology of human fibroblasts and keratinocytes in 3D fibrin constructs.

    PubMed

    Reinertsen, Erik; Skinner, Michael; Wu, Benjamin; Tawil, Bill

    2014-11-01

    Fibrin is a hemostatic protein found in the clotting cascade. It is used in the operating room to stop bleeding and deliver cells and growth factors to heal wounds. However, formulations of clinically approved fibrin are optimized for hemostasis, and the extent to which biochemical and physical cues in fibrin mediate skin cell behavior is not fully understood nor utilized in the design of biomaterials. To determine if the concentration of fibrinogen and the presence of plasminogen affect cell behavior relevant to wound healing, we fabricated three-dimensional fibrin constructs made from 5, 10, or 20 mg/mL of clinical fibrin or plasminogen-depleted (PD) fibrin. We cultured dermal fibroblasts or epidermal keratinocytes in these constructs. Fibroblasts proliferated similarly in both types of fibrin, but keratinocytes proliferated more in low concentrations of clinical fibrin and less in PD fibrin. Clinical fibrin constructs with fibroblasts were less stiff and degraded faster than PD fibrin constructs with fibroblasts. Similarly, keratinocytes degraded clinical fibrin, but not PD fibrin. Fibroblast spreading varied with fibrin concentration in both types of fibrin. In conclusion, the concentration of fibrinogen and the presence of plasminogen affect fibroblast and keratinocyte proliferation, morphology, and fibrin degradation. Creating materials with heterogeneous regions of fibrin formulations and concentrations could be a novel strategy for controlling the phenotype of encapsulated fibroblasts and keratinocytes, and the subsequent biomechanical properties of the construct. However, other well-investigated aspects of wound healing remain to be utilized in the design of fibrin biomaterials, such as autocrine and paracrine signaling between fibroblasts, keratinocytes, and immune cells.

  1. Three Dimensional Collagen Scaffold Promotes Intrinsic Vascularisation for Tissue Engineering Applications.

    PubMed

    Chan, Elsa C; Kuo, Shyh-Ming; Kong, Anne M; Morrison, Wayne A; Dusting, Gregory J; Mitchell, Geraldine M; Lim, Shiang Y; Liu, Guei-Sheung

    2016-01-01

    Here, we describe a porous 3-dimensional collagen scaffold material that supports capillary formation in vitro, and promotes vascularization when implanted in vivo. Collagen scaffolds were synthesized from type I bovine collagen and have a uniform pore size of 80 μm. In vitro, scaffolds seeded with primary human microvascular endothelial cells suspended in human fibrin gel formed CD31 positive capillary-like structures with clear lumens. In vivo, after subcutaneous implantation in mice, cell-free collagen scaffolds were vascularized by host neovessels, whilst a gradual degradation of the scaffold material occurred over 8 weeks. Collagen scaffolds, impregnated with human fibrinogen gel, were implanted subcutaneously inside a chamber enclosing the femoral vessels in rats. Angiogenic sprouts from the femoral vessels invaded throughout the scaffolds and these degraded completely after 4 weeks. Vascular volume of the resulting constructs was greater than the vascular volume of constructs from chambers implanted with fibrinogen gel alone (42.7±5.0 μL in collagen scaffold vs 22.5±2.3 μL in fibrinogen gel alone; p<0.05, n = 7). In the same model, collagen scaffolds seeded with human adipose-derived stem cells (ASCs) produced greater increases in vascular volume than did cell-free collagen scaffolds (42.9±4.0 μL in collagen scaffold with human ASCs vs 25.7±1.9 μL in collagen scaffold alone; p<0.05, n = 4). In summary, these collagen scaffolds are biocompatible and could be used to grow more robust vascularized tissue engineering grafts with improved the survival of implanted cells. Such scaffolds could also be used as an assay model for studies on angiogenesis, 3-dimensional cell culture, and delivery of growth factors and cells in vivo.

  2. Single-molecule force spectroscopy studies of fibrin 'A-a' polymerization interactions via the atomic force microscope

    NASA Astrophysics Data System (ADS)

    Averett, Laurel E.

    Fibrin, the polymerized form of the soluble plasma protein fibrinogen, plays a critical role in hemostasis as the structural scaffold of blood clots. The primary functions of fibrin are to withstand the shear forces of blood flow and provide mechanical stability to the clot, protecting the wound. While studies have investigated the mechanical properties of fibrin constructs, the response to force of critical polymerization interactions such as the 'A--a' knob--hole interaction remains unclear. Herein, the response of the 'A--a' bond to force was examined at the single-molecule level using the atomic force microscope. Force spectroscopy methodology was developed to examine the 'A--a' interaction while reducing the incidence of both nonspecific and multiple molecule interactions. The rupture of this interaction resulted in a previously unreported characteristic force profile comprised of up to four events. We hypothesized that the first event represented reorientation of the fibrinogen molecule, the second and third represented unfolding of structures in the D region of fibrinogen, and the last event was the rupture of the 'A--a' bond weakened by prior structural unfolding. The configuration, molecular extension, and kinetic parameters of each event in the characteristic pattern were examined to compare the unfolding of fibrin to other proteins unfolded by force. Fitting the pattern with polymer models showed that the D region of fibrinogen could lengthen by ˜50% of the length of a fibrin monomer before rupture of the 'A--a' bond. Analysis showed that the second and third events had kinetic parameters similar to other protein structures unfolded by force. Studies of the dependence of the characteristic pattern on calcium, concentration of sodium chloride, pH, and temperature demonstrated that the incidence of the last event was affected by solution conditions. However, only low pH and high temperatures reduced the probability that an interaction was characteristic

  3. Measurement of Fibrin Fiber Strength using AFM

    NASA Astrophysics Data System (ADS)

    Jawerth, Louise; Falvo, Mchael; Canning, Anthony; Matthews, Garrett; Superfine, Richard; Guthold, Martin

    2003-11-01

    Blood clots usually form in the event of injury or damage to blood vessels to prevent the loss of blood. Moreover, as we age, blood clots often form in undesired locations, i.e. in blood vessels around the heart or brain, or in uninjured vessels resulting in heart attacks or strokes. Fibrin fibers, the skeleton of a blood clot, essentially perform the mechanical task of creating a blockage that stems blood flow. Thus, a better understanding of the mechanical properties of these fibers, such as the tensile strength and Young's modulus, will enhance our understanding of blood clots. For quantitative stress and strain measurements, we need to image the deformation of the fiber and measure the applied force simultaneously. For this reason, we are combining fluorescent microscopy with atomic force microscopy. Fibrin fibers were fluorescently labeled with streptavidin-coated quantum dots and deposited on a functionalized glass substrate, imaged and manipulated under buffer. We will describe our progress in obtaining quantitative lateral force measurements under buffer simultaneous with strain measurements from optical microscope images.

  4. Gravity: The Glue of the Universe. History and Activities.

    ERIC Educational Resources Information Center

    Gilbert, Harry; Smith, Diana Gilbert

    This book presents a story of the history of gravity, the glue of the universe, and is based on two premises: (1) an understanding of mathematics is not required to grasp the concepts and implications of relativity; and (2) relativity has altered forever the perceptions of gravity, space, time, and how the universe works. A narrative text section…

  5. Control of DNA hybridization by photoswitchable molecular glue.

    PubMed

    Dohno, Chikara; Nakatani, Kazuhiko

    2011-12-01

    Hybridization of DNA is one of the most intriguing events in molecular recognition and is essential for living matter to inherit life beyond generations. In addition to the function of DNA as genetic material, DNA hybridization is a key to control the function of DNA-based materials in nanoscience. Since the hybridization of two single stranded DNAs is a thermodynamically favorable process, dissociation of the once formed DNA duplex is normally unattainable under isothermal conditions. As the progress of DNA-based nanoscience, methodology to control the DNA hybridization process has become increasingly important. Besides many reports using the chemically modified DNA for the regulation of hybridization, we focused our attention on the use of a small ligand as the molecular glue for the DNA. In 2001, we reported the first designed molecule that strongly and specifically bound to the mismatched base pairs in double stranded DNA. Further studies on the mismatch binding molecules provided us a key discovery of a novel mode of the binding of a mismatch binding ligand that induced the base flipping. With these findings we proposed the concept of molecular glue for DNA for the unidirectional control of DNA hybridization and, eventually photoswitchable molecular glue for DNA, which enabled the bidirectional control of hybridization under photoirradiation. In this tutorial review, we describe in detail how we integrated the mismatch binding ligand into photoswitchable molecular glue for DNA, and the application and perspective in DNA-based nanoscience.

  6. Peptide-derivatized albumins that inhibit fibrin polymerization.

    PubMed

    Watson, Joseph W; Doolittle, Russell F

    2011-11-15

    Synthetic peptides patterned on sequences that appear during thrombin proteolysis of fibrinogen are known to influence fibrin formation in very different ways. A-Knob sequences (GPR-) inhibit polymerization, but B-knob sequences (GHR-) can actually enhance the process. We now report that when such peptides are attached to albumin carriers, both knob conjugates inhibit fibrin formation. In contrast, the 2-aminoethylthiol-albumin conjugate control enhances the polymerization to the same degree as albumin. The peptide AHRPam, which is known to bind exclusively to the βC holes of fibrinogen/fibrin, nullifies the inhibitory effects of the GHRPYGGGCam-albumin conjugate on fibrin polymerization, indicating that the inhibition was exclusively due to interactions with βC holes. AHRPam was much less effective in countering inhibition by the GPRPGGGGCam-albumin conjugate, suggesting that the observed effects with this conjugate involve mainly the γC holes of fibrin/fibrinogen. This study demonstrates that peptides modeled on fibrin polymerization knobs tethered to albumin retain their capacity to interact with fibrinogen/fibrin and may prove useful as inhibitors of clotting in vivo.

  7. Discriminating Neoantigenic Differences Between Fibrinogen and Fibrin Derivatives

    PubMed Central

    Plow, Edward F.; Edgington, Thomas S.

    1973-01-01

    Discrimination between the physiological cleavage fragments of fibrinogen and fibrin offers an approach to differentiation between fibrinogenolytic processes and fibrinolysis after coagulation. By use of the cleavage-associated neoantigen of fibrinogen (fg-Dneo) as a molecular marker, characteristic differences between the D regions of fibrinogen derivatives and fibrin derivatives can be demonstrated. The expression of fg-Dneo by X, Y, D:E complex, and D-fragments of fibrinogen or fibrin is shown to be quantitative and unitary. Characteristic differences between fg-Dneo sites present on fibrinogen cleavage fragments, as contrasted to fibrin cleavage fragments, are indicated by different competitive inhibition slopes, and appear to reflect differential binding affinity of selected anti-fg-Dneo antibodies for the specific molecular site. There is a linear relationship between the slope of quantitative competitive inhibition and the relative molar ratio of fibrinogen and fibrin derivatives. Identical immunochemical expressions are observed in vitro and in vivo, and support the thesis that cleavage in vivo is produced by plasmin. The differential immunochemical features of fg-Dneo expression may be the result of stable conformational and/or subtle structural differences between the D region of fibrinogen and fibrin cleavage fragments and suggest that precise changes in the D region are associated with the fibrin transition. These molecular features not only provide additional insight into the molecular immunology and structure of fibrinogen, but also appear to offer a new molecular approach to discrimination between fibrinogenolytic mechanisms as contrasted to fibrinolysis secondary to coagulation. PMID:4123931

  8. Engineering fibrin polymers through engagement of alternative polymerization mechanisms.

    PubMed

    Stabenfeldt, Sarah E; Gourley, Merek; Krishnan, Laxminarayanan; Hoying, James B; Barker, Thomas H

    2012-01-01

    Fibrin is an attractive material for regenerative medicine applications. It not only forms a polymer but also contains cryptic matrikines that are released upon its activation/degradation and enhance the regenerative process. Despite this advantageous biology associated with fibrin, commercially available systems (e.g. TISSEEL) display limited regenerative capacity. This limitation is in part due to formulations that are optimized for tissue sealant applications and result in dense fibrous networks that limit cell infiltration. Recent evidence suggests that polymerization knob 'B' engagement of polymerization hole 'b' activates an alternative polymerization mechanism in fibrin, which may result in altered single fiber mechanical properties. We hypothesized that augmenting fibrin polymerization through the addition of PEGylated knob peptides with specificity to hole 'b' (AHRPYAAC-PEG) would result in distinct fibrin polymer architectures with grossly different physical properties. Polymerization dynamics, polymer architecture, diffusivity, viscoelasticity, and degradation dynamics were analyzed. Results indicate that specific engagement of hole 'b' with PEGylated knob 'B' conjugates during polymerization significantly enhances the porosity of and subsequent diffusivity through fibrin polymers. Paradoxically, these polymers also display increased viscoelastic properties and decreased susceptibility to degradation. As a result, fibrin polymer strength was significantly augmented without any adverse effects on angiogenesis within the modified polymers.

  9. Interactions between ultrasound stimulated microbubbles and fibrin clots

    NASA Astrophysics Data System (ADS)

    Acconcia, Christopher; Leung, Ben Y. C.; Hynynen, Kullervo; Goertz, David E.

    2013-07-01

    While it is well established that ultrasound stimulated microbubbles (USMBs) can potentiate blood clot lysis, the mechanisms are not well understood. Here we examine the interaction between USMBs and fibrin clots, which are comprised of fibrin networks that maintain the mechanical integrity of blood clots. High speed camera observations demonstrated that USMBs can penetrate fibrin clots. Two-photon microscopy revealed that penetrating bubbles can leave behind patent "tunnels" along their paths and that fluid can be transported into the clots. Finally, it is observed that primary radiation forces associated with USMBs can induce local deformation and macroscopic translation of clot boundaries.

  10. Prevention of growth arrest by fibrin interposition into physeal injury.

    PubMed

    Jie, Qiang; Hu, Yunyu; Yang, Liu; Lei, Wei; Zhao, Li; Lv, Rong; Wang, Jun

    2010-03-01

    This study investigated the repair effects of fat and fibrin graft interposition through a proximal tibia transphyseal injury model and assessed the effectiveness of treatment to physeal injury with the fibrin. In this study, a unilateral growth plate injury was created in the right proximal tibia of 28 rats without any graft interposition; all left tibias were left untouched. In the other group of 28 rats, a bilateral physeal injury was made with the left tibia filled with autogenously adipose tissue and the right tibia filled with fibrin. To compare the malformed extents induced by different interventions, the length and the metaphyseal-diaphyseal angle of the tibia of three injured groups were examined. Further studies on bone density analysis and histological change were used to compare the bony bridge formation under different interventions. Results showed that the deformity angle and medial length of the tibia were significantly different between the grafted groups and nongrafted group at 4, 16, and 24 weeks postoperative (P<0.01). Results also showed no significant difference between fibrin-graft and fat-graft groups (P>0.05). Furthermore, the bone mineralization density of bony bridge induced by injury was significantly different between the grafted group and nongrafted group at 4, 16, and 24 weeks postoperative (P<0.01). Histological findings showed that bony repair after physeal injury was inhibited by both fibrin and fat interventions. We concluded that fibrin could be a substitute of adipose tissue in preventing the deformities induced by epiphyseal injury. Similar to autogenous fat, fibrin was found to alleviate limb shortness and prevent angular malformation by forming a scar instead of a bony bridge. The use of fibrin can help us to develop effective and compound intervention grafts to prevent skeletal deformity and regenerate normal cartilage tissue in the future.

  11. A Novel Technique for Conjunctivoplasty in a Rabbit Model: Platelet-Rich Fibrin Membrane Grafting

    PubMed Central

    Çakmak, Hasan Basri; Dereli Can, Gamze; Ünverdi, Hatice; Toklu, Yasin; Hücemenoğlu, Sema

    2016-01-01

    Purpose. To investigate the effect of platelet-rich fibrin (PRF) membrane on wound healing. Methods. Twenty-four right eyes of 24 New Zealand rabbits equally divided into 2 groups for the study design. After the creation of 5 × 5 mm conjunctival damage, it was secured with PRF membrane, which was generated from the rabbit's whole blood samples in PRF membrane group, whereas damage was left unsutured in the control group. Three animals were sacrificed in each group on the 1st, 3rd, 7th, and 28th postoperative days. Immunohistochemical (IHC) stainings and biomicroscopic evaluation were performed and compared between groups. Results. PRF membrane generated significant expressions of vascular endothelial growth factor (VEGF), transforming growth factor-beta (TGF-β), and platelet-derived growth factor (PDGF) in the early postoperative period. However, the IHC evaluation allowed showing the excessive staining at day 28, in control group. Biomicroscopic evaluation revealed complete epithelialization in PRF membrane group, but none of the cases showed complete healing in the control group. Conclusions. This experimental study showed us the beneficial effects of the PRF membrane on conjunctival healing. Besides its chemical effects, it provides mechanical support as a scaffold for the migrating cells that are important for ocular surface regeneration. These overall results encourage us to apply autologous PRF membrane as a growth factor-enriched endogenous scaffold for ocular surface reconstruction. PMID:27747098

  12. The role of sutures and fibrin sealant in wound healing.

    PubMed

    Spotnitz, W D; Falstrom, J K; Rodeheaver, G T

    1997-06-01

    Sutures and fibrin sealant are important surgical aids for facilitating wound closure and creating an optimal setting for wound healing. Most commonly, sutures are used to close wounds because suture material provides the mechanical support necessary to sustain closure. A wide variety of suturing material is available, and the surgeon can choose among sutures with a range of attributes to find the one best suited to his or her needs. Considerations when choosing an appropriate suture for wound closure and healing include strength of suture, holding power of tissue, absorbability, risk of infection, and inflammatory reaction associated with the suture material. Other factors to be considered include type of incision, suturing technique, and appearance of wound site. Fibrin sealant, in contrast, is a biologic tissue adhesive that can function as a useful adjunct to sutures. Fibrin sealant can be used in conjunction with sutures or tape to promote optimal wound integrity, or it can be used independently to seal wound sites where sutures cannot control bleeding or would aggravate bleeding. This adhesive can effectively seal tissue planes and eliminate potential spaces. Fibrin sealant has been used clinically in many surgical applications, although an FDA-approved commercially available product does not yet exist in the United States. Clinically, fibrin sealant has resulted in a low rate of infection and has promoted healing. Further study is needed to determine the best fibrin sealant mixtures both to achieve hemostasis and to encourage healing. It may even be desirable to use different sealant formulations for particular clinical situations.

  13. In Vitro Evaluation of Scaffolds for the Delivery of Mesenchymal Stem Cells to Wounds

    PubMed Central

    Wahl, Elizabeth A.; Fierro, Fernando A.; Peavy, Thomas R.; Hopfner, Ursula; Dye, Julian F.; Machens, Hans-Günther; Egaña, José T.; Schenck, Thilo L.

    2015-01-01

    Mesenchymal stem cells (MSCs) have been shown to improve tissue regeneration in several preclinical and clinical trials. These cells have been used in combination with three-dimensional scaffolds as a promising approach in the field of regenerative medicine. We compare the behavior of human adipose-derived MSCs (AdMSCs) on four different biomaterials that are awaiting or have already received FDA approval to determine a suitable regenerative scaffold for delivering these cells to dermal wounds and increasing healing potential. AdMSCs were isolated, characterized, and seeded onto scaffolds based on chitosan, fibrin, bovine collagen, and decellularized porcine dermis. In vitro results demonstrated that the scaffolds strongly influence key parameters, such as seeding efficiency, cellular distribution, attachment, survival, metabolic activity, and paracrine release. Chick chorioallantoic membrane assays revealed that the scaffold composition similarly influences the angiogenic potential of AdMSCs in vivo. The wound healing potential of scaffolds increases by means of a synergistic relationship between AdMSCs and biomaterial resulting in the release of proangiogenic and cytokine factors, which is currently lacking when a scaffold alone is utilized. Furthermore, the methods used herein can be utilized to test other scaffold materials to increase their wound healing potential with AdMSCs. PMID:26504774

  14. Cyanoacrylate glue in the treatment of corneal ulcerations.

    PubMed

    Golubović, S; Parunović, A

    1990-01-01

    The application of tissue adhesives to treat different corneal diseases has been used extensively in recent years. Owing to the widespread application, it has been possible to establish the advantages and disadvantages of this method of treatment. Keeping in mind the disadvantages (primarily the toxicity of cyanoacrylate glue for the corneal endothelium and lens when it comes into direct contact with these structures), the application of cyanoacrylate glue was restricted to the treatment of progressive corneal ulcerations where the risk of corneal perforation was recognized. This method of treatment was applied in 30 patients with corneal melting in dry eye associated with rheumatoid arthritis (12), trophic postherpetic ulcerations of the cornea (9), chemical corneal burns (7), neurotrophic corneal ulceration (1) and Mooren's ulcer (1). The defect healed and anterior corneal surface epithelization occurred in 73.33% of patients in contrast to the additional treatment, most commonly penetrating keratoplasty, required in the remaining patients (26.67%).

  15. Photoproduction of η' mesons with the GlueX experiment

    NASA Astrophysics Data System (ADS)

    Kamel, Mahmoud; GlueX Collaboration Collaboration

    2017-01-01

    The GlueX experiment at Jefferson Lab studies the light meson spectrum and searches for hybrid and exotic mesons. In this experiment, a 9 GeV tagged, linearly polarized photon beam interacts with a liquid hydrogen target at the center of the GlueX detector. First results of the photo-production of η' mesons at beam energies ranging from 3.5 to 11 GeV will be presented. The η' have been identified through the decay channel η' ->π+π- γ , which has a large branching ratio of 29%. No data exist for beam energies above 6 GeV for this reaction. Supported by Jefferson Science Associates , LLC under U.S. DOE Contract NO. DE-AC05-06OR23177 and DESC0013620.

  16. Glue, steam and Clarivein--Best practice techniques and evidence.

    PubMed

    Whiteley, Mark S

    2015-11-01

    In July 2013, the National Institute of Health and Clinical Excellence (NICE) recommended "endothermal" ablation (meaning endovenous thermal ablation) is the first line treatment for truncal venous reflux in varicose veins. The initial endovenous thermoablation devices were radiofrequency ablation and endovenous laser ablation. More recently, Glue (cyanoacrylate), endovenous steam and Clarivein (mechanochemical ablation or MOCA) have entered the market as new endovenous techniques for the treatment of varicose veins. Glue and Clarivein do not require tumescent anaesthesia and do not use heat and therefore termed non-tumescent non-thermal (NTNT). Steam both requires tumescence and is also a thermal technique (TT). This article reviews the current position of these 3 new technologies in the treatment of varicose veins.

  17. The Forward Calorimeter of the GlueX Experiment

    NASA Astrophysics Data System (ADS)

    Bennett, Daniel; GlueX Collaboration

    2013-10-01

    The Forward Calorimeter (FCAL) of the GlueX experiment is a lead glass electromagnetic calorimeter currently being built in Hall D of Jefferson Lab. The GlueX experiment is a photoproduction experiment that will utilize coherent bremsstrahlung radiation to map out the light meson spectrum, including a search for hybrid mesons with exotic quantum numbers (JPC). The FCAL will detect photons between 1° and 10 .8° downstream from the target. The calorimeter is built out of 2800 elements, each of which consists of a lead glass block, an FEU 84-3 PMT, and a custom Cockcroft-Walton electronic base. In the Fall of 2011, a 25 element prototype detector was installed in Hall B of Jefferson Lab to measure the energy and timing resolution of the calorimeter using electrons between 100 and 250 MeV. The design and construction of FCAL and the results from the prototype test will be discussed.

  18. Fibrin Sealants in Dura Sealing: A Systematic Literature Review

    PubMed Central

    2016-01-01

    Background Fibrin sealants are widely used in neurosurgery to seal the suture line, provide watertight closure, and prevent cerebrospinal fluid leaks. The aim of this systematic review is to summarize the current efficacy and safety literature of fibrin sealants in dura sealing and the prevention/treatment of cerebrospinal fluid leaks. Methods A comprehensive electronic literature search was run in the following databases: Cochrane Database of Systematic Reviews, Cochrane Central Resister of Controlled Trials, clinicaltrials.gov, MEDLINE/PubMed, and EMBASE. Titles and abstracts of potential articles of interest were reviewed independently by 3 of the authors. Results A total of 1006 database records and additional records were identified. After screening for duplicates and relevance, a total of 78 articles were assessed by the investigators for eligibility. Thirty-eight were excluded and the full-text of 40 articles were included in the qualitative synthesis. Seven of these included only safety data and were included in the safety assessment. The remaining 33 articles included findings from 32 studies that enrolled a total of 2935 patients who were exposed to fibrin sealant. Among these 33 studies there were only 3 randomized controlled trials, with the remaining being prospective cohort analysis, case controlled studies, prospective or retrospective case series. One randomized controlled trial, with 89 patients exposed to fibrin sealant, found a greater rate of intraoperative watertight dura closure in the fibrin sealant group than the control group (92.1% versus 38.0%, p<0.001); however, post-operative cerebrospinal fluid leakage occurred in more fibrin sealant than control patients (6.7% versus 2.0%, p>0.05). Other clinical trials evaluated the effect of fibrin sealant in the postoperative prevention of cerebrospinal fluid leaks. These were generally lower level evidence studies (ie, not prospective, randomized, controlled trials) that were not designed or

  19. Superselective Embolization in Posttraumatic Priapism with Glubran 2 Acrylic Glue

    SciTech Connect

    Gandini, Roberto; Spinelli, Alessio; Konda, Daniel Reale, Carlo Andrea; Fabiano, Sebastiano; Pipitone, Vincenzo; Simonetti, Giovanni

    2004-09-15

    Two patients with posttraumatic priapism underwent transcatheter embolization using microcoils, resulting in temporary penile detumescence and an apparent resolution of the artero-venous fistula. In both cases, priapism recurred 24 hours after the procedure and was successfully treated through selective transcatheter embolization of the nidus using acrylic glue (Glubran 2). The patients showed complete recovery of sexual activity within 30 days from the procedure and persistent exclusion of the artero-venous fistula after a 12-month follow-up.

  20. Search for Gluonic Excitations in Hadrons with GlueX

    SciTech Connect

    Igor Senderovich

    2011-12-01

    The GlueX experiment will employ a linearly polarized 9 GeV tagged photon beam incident on a liquid hydrogen target to search for exotic states in the light meson spectrum. Optimized for this purpose, the detector has a highly uniform acceptance over nearly 4p solid angle, with high efficiency for both neutral and charged final state particles. An overview of the physics motivation and detector design will be given.

  1. [Histoacryl vs Dermabond cyanoacrylate glue for closing small operative wounds].

    PubMed

    Steiner, Z; Mogilner, J

    2000-12-01

    Acrylate glues used in a childrens' day care unit to close small surgical wounds were compared. In 157 children, aged 12 weeks to 3.7 years, either Histoacryl or Dermabond was used (respectively, H: Ethicon Inc., Johnson & Johnson, NJ or D: Dermabond, Braun Surgical Gmbh, Melsungen, Germany). Operations were for inguinal hernia (110 cases), hydrocele (25), undescended testis (16), umbilical hernia (13) and funiculocele (3). 1 week after surgery the wounds were evaluated in terms of integrity of closure, redness or infection, need for antibiotics, wound granuloma, and parental satisfaction with instructions and actual method of wound caring. 3 months after surgery the wound/scar was reexamined. The margins of the wounds were separated partially or completely in 8 of 85 in group H (9.4%) while in the D group, 2 wounds (2.4%) had partially opened (p < 0.05). There were no differences between the glues with regard to wound infection or cosmetic results. Parental satisfaction was higher with D (96%) than H (82%) but the difference was not statistically significant. It is convenient to use glue to close operative wounds in children after ambulatory surgery. The use of D significantly reduced wound ruptures compared to H. Long-term cosmetic results were similar.

  2. Infiltrated Embolization of Meningioma with Dilute Cyanoacrylate Glue

    PubMed Central

    OHNISHI, Hiroyuki; MIYACHI, Shigeru; MURAO, Kenichi; HIRAMATSU, Ryo; TAKAHASHI, Kenkichi; OHNISHI, Hideyuki; KUROIWA, Toshihiko

    2017-01-01

    We describe the efficacy and technical aspects of infiltrated preoperative embolization of meningioma by penetration of very dilute glue. In this method, a 13% n-butyl-cyanoacrylate (NBCA)-lipiodol mixture is injected extremely slowly from the middle meningeal artery (MMA) in a similar manner to plug and push injection of ethylene vinyl alcohol copolymer mixed with tantalum and dimethyl sulfoxide (Onyx®) after the tortuous side feeders are proximally embolized. The glue is infiltrated into small tumor arteries and extends to inaccessible feeders from deep meningeal arteries. Since 2011, we have used this technique in the embolization of 32 cases preoperatively diagnosed with meningioma. Intratumoral embolization was possible in 30 cases (94%), and a greater than 50% reduction in contrast area of contrast-enhanced T1-weighted MR imaging (T1-WI) was achieved in 18 cases (56%). Two cases achieved complete devascularization, showing a remarkable shrinkage in tumor size after embolization. If excessive reflux of embolization and the resulting migration of glue into normal arteries is achieved, this method provides extremely effective devascularization on surgical extirpation. It might also be applicable to surgically untreatable meningiomas as a semi-radical treatment option. PMID:27646010

  3. Laparoscopic applications of laser-activated tissue glues

    NASA Astrophysics Data System (ADS)

    Bass, Lawrence S.; Oz, Mehmet C.; Auteri, Joseph S.; Williams, Matthew R.; Rosen, Jeffrey; Libutti, Steven K.; Eaton, Alexander M.; Lontz, John F.; Nowygrod, Roman; Treat, Michael R.

    1991-07-01

    The rapid growth of laparoscopic cholecystectomy and other laparoscopic procedures has created the need for simple, secure techniques for laparoscopic closure without sutures. While laser tissue welding offers one solution to this problem, concerns about adequacy of weld strength and watertightness remain. Tissue solders are proteinaceous materials which are placed on coapted tissue edges of the tissue to be closed or sealed. Laser energy is then applied to fix the glue in place completing the closure. Closure of the choledochotomy following a laparoscopic common duct exploration is one potential application of this technique. Canine longitudinal choledochotomies 5 mm in length were sealed using several laser glues and using the 808 nm diode laser. Saline was then infused until rupture of the closure and peak bursting strength recorded. Fibrinogen glue provided moderately good adhesion but poor burst strength. Handling characteristics were variable. A viscosity adjusted fibrinogen preparation produced good adherence with mean weld strength 264 +/- 7 mm Hg. The clinical endpoint for welding was a whitening and drying of the tissue. New laser solders can provide a watertight choledochotomy closure of adequate immediate strength. This would allow reliable, technically feasible common bile duct exploration via a laparoscopic approach.

  4. Glue Spin and Helicity in the Proton from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Yang, Yi-Bo; Sufian, Raza Sabbir; Alexandru, Andrei; Draper, Terrence; Glatzmaier, Michael J.; Liu, Keh-Fei; Zhao, Yong; χ QCD Collaboration

    2017-03-01

    We report the first lattice QCD calculation of the glue spin in the nucleon. The lattice calculation is carried out with valence overlap fermions on 2 +1 flavor domain-wall fermion gauge configurations on four lattice spacings and four volumes including an ensemble with physical values for the quark masses. The glue spin SG in the Coulomb gauge in the modified minimal subtraction (MS ¯ ) scheme is obtained with one-loop perturbative matching. We find the results fairly insensitive to lattice spacing and quark masses. We also find that the proton momentum dependence of SG in the range 0 ≤|p → |<1.5 GeV is very mild, and we determine it in the large-momentum limit to be SG=0.251 (47 )(16 ) at the physical pion mass in the MS ¯ scheme at μ2=10 GeV2 . If the matching procedure in large-momentum effective theory is neglected, SG is equal to the glue helicity measured in high-energy scattering experiments.

  5. Light Meson Spectroscopy: First Results from GlueX

    NASA Astrophysics Data System (ADS)

    Shepherd, Matthew

    2016-09-01

    The GlueX experiment is optimized to search for and study light hybrid mesons utilizing a 9 GeV linearly polarized photon beam that is derived from the 12 GeV electron beam of the recently upgraded CEBAF at Jefferson Lab. Construction of the GlueX detector was completed in winter 2015, and it was commissioned and calibrated using data collected in 2015 and 2016. During the spring of 2016 the first substantial data acquisition period was conducted with the detector and beamline in its design configuration. The data from this pilot physics run exceed the statistical capability of existing polarized photoproduction data sets in this energy regime by orders of magnitude. In this talk the broad objectives of the GlueX physics program will be reviewed along with the status and performance of the detector. Ongoing data analysis activities will be summarized, and the plan for both additional data acquisition and analysis to pursue the goal of searching for hybrid mesons will be outlined. Dept. of Energy, Office of Nuclear Physics.

  6. In situ vascularization of injectable fibrin/poly(ethylene glycol) hydrogels by human amniotic fluid-derived stem cells.

    PubMed

    Benavides, Omar M; Brooks, Abigail R; Cho, Sung Kyung; Petsche Connell, Jennifer; Ruano, Rodrigo; Jacot, Jeffrey G

    2015-08-01

    One of the greatest challenges in regenerative medicine is generating clinically relevant engineered tissues with functional blood vessels. Vascularization is a key hurdle faced in designing tissue constructs larger than the in vivo limit of oxygen diffusion. In this study, we utilized fibrin-based hydrogels to serve as a foundation for vascular formation, poly(ethylene glycol) (PEG) to modify fibrinogen and increase scaffold longevity, and human amniotic fluid-derived stem cells (AFSC) as a source of vascular cell types (AFSC-EC). AFSC hold great potential for use in regenerative medicine strategies, especially those involving autologous congenital applications, and we have shown previously that AFSC-seeded fibrin-PEG hydrogels have the potential to form three-dimensional vascular-like networks in vitro. We hypothesized that subcutaneously injecting these hydrogels in immunodeficient mice would both induce a fibrin-driven angiogenic host response and promote in situ AFSC-derived neovascularization. Two weeks postinjection, hydrogels were sectioned, and the following was demonstrated: the average maximum invasion distance of host murine cells into the subcutaneous fibrin/PEG scaffold was 147 ± 90 µm after 1 week and 395 ± 138 µm after 2 weeks; the average number of cell-lined lumen per square millimeter was significantly higher in hydrogels seeded with stem cells or cocultures containing stem cells (MSC, 36.5 ± 11.4; AFSC, 47.0 ± 18.9; AFSC/AFSC-EC, 32.8 ± 11.6; and MSC/HUVEC, 43.1 ± 25.1) versus endothelial cell types alone (AFSC-EC, 9.7 ± 6.1; HUVEC, 14.2 ± 8.8); and a subset of these lumen were characterized by the presence of red blood cells. Select areas of cell-seeded hydrogels contained CD31(+) lumen surrounded by α-smooth muscle cell support cells, whereas control hydrogels with no cells only showed infiltration of α-smooth muscle cell-positive host cells.

  7. Biomimetic magnetic silk scaffolds.

    PubMed

    Samal, Sangram K; Dash, Mamoni; Shelyakova, Tatiana; Declercq, Heidi A; Uhlarz, Marc; Bañobre-López, Manuel; Dubruel, Peter; Cornelissen, Maria; Herrmannsdörfer, Thomas; Rivas, Jose; Padeletti, Giuseppina; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L; Dediu, V Alek

    2015-03-25

    Magnetic silk fibroin protein (SFP) scaffolds integrating magnetic materials and featuring magnetic gradients were prepared for potential utility in magnetic-field assisted tissue engineering. Magnetic nanoparticles (MNPs) were introduced into SFP scaffolds via dip-coating methods, resulting in magnetic SFP scaffolds with different strengths of magnetization. Magnetic SFP scaffolds showed excellent hyperthermia properties achieving temperature increases up to 8 °C in about 100 s. The scaffolds were not toxic to osteogenic cells and improved cell adhesion and proliferation. These findings suggest that tailored magnetized silk-based biomaterials can be engineered with interesting features for biomaterials and tissue-engineering applications.

  8. Compounds from Silicones Alter Enzyme Activity in Curing Barnacle Glue and Model Enzymes

    PubMed Central

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H.

    2011-01-01

    Background Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. Methodology/Principal Findings GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Conclusions/Significance Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management. PMID:21379573

  9. A CCR2 macrophage endocytic pathway mediates extravascular fibrin clearance in vivo.

    PubMed

    Motley, Michael P; Madsen, Daniel H; Jürgensen, Henrik J; Spencer, David E; Szabo, Roman; Holmbeck, Kenn; Flick, Matthew J; Lawrence, Daniel A; Castellino, Francis J; Weigert, Roberto; Bugge, Thomas H

    2016-03-03

    Extravascular fibrin deposition accompanies many human diseases and causes chronic inflammation and organ damage, unless removed in a timely manner. Here, we used intravital microscopy to investigate how fibrin is removed from extravascular space. Fibrin placed into the dermis of mice underwent cellular endocytosis and lysosomal targeting, revealing a novel intracellular pathway for extravascular fibrin degradation. A C-C chemokine receptor type 2 (CCR2)-positive macrophage subpopulation constituted the majority of fibrin-uptaking cells. Consequently, cellular fibrin uptake was diminished by elimination of CCR2-expressing cells. The CCR2-positive macrophage subtype was different from collagen-internalizing M2-like macrophages. Cellular fibrin uptake was strictly dependent on plasminogen and plasminogen activator. Surprisingly, however, fibrin endocytosis was unimpeded by the absence of the fibrin(ogen) receptors, αMβ2 and ICAM-1, the myeloid cell integrin-binding site on fibrin or the endocytic collagen receptor, the mannose receptor. The study identifies a novel fibrin endocytic pathway engaged in extravascular fibrin clearance and shows that interstitial fibrin and collagen are cleared by different subsets of macrophages employing distinct molecular pathways.

  10. A CCR2 macrophage endocytic pathway mediates extravascular fibrin clearance in vivo

    PubMed Central

    Motley, Michael P.; Madsen, Daniel H.; Jürgensen, Henrik J.; Spencer, David E.; Szabo, Roman; Holmbeck, Kenn; Flick, Matthew J.; Lawrence, Daniel A.; Castellino, Francis J.; Weigert, Roberto

    2016-01-01

    Extravascular fibrin deposition accompanies many human diseases and causes chronic inflammation and organ damage, unless removed in a timely manner. Here, we used intravital microscopy to investigate how fibrin is removed from extravascular space. Fibrin placed into the dermis of mice underwent cellular endocytosis and lysosomal targeting, revealing a novel intracellular pathway for extravascular fibrin degradation. A C-C chemokine receptor type 2 (CCR2)-positive macrophage subpopulation constituted the majority of fibrin-uptaking cells. Consequently, cellular fibrin uptake was diminished by elimination of CCR2-expressing cells. The CCR2-positive macrophage subtype was different from collagen-internalizing M2-like macrophages. Cellular fibrin uptake was strictly dependent on plasminogen and plasminogen activator. Surprisingly, however, fibrin endocytosis was unimpeded by the absence of the fibrin(ogen) receptors, αMβ2 and ICAM-1, the myeloid cell integrin-binding site on fibrin or the endocytic collagen receptor, the mannose receptor. The study identifies a novel fibrin endocytic pathway engaged in extravascular fibrin clearance and shows that interstitial fibrin and collagen are cleared by different subsets of macrophages employing distinct molecular pathways. PMID:26647393

  11. Fibronectin alters the rate of formation and structure of the fibrin matrix.

    PubMed

    Ramanathan, Anand; Karuri, Nancy

    2014-01-10

    Plasma fibronectin is a vital component of the fibrin clot; however its role on clot structure is not clearly understood. The goal of this study was to examine the influence of fibronectin on the kinetics of formation, structural characteristics and composition of reconstituted fibrin clots or fibrin matrices. Fibrin matrices were formed by adding thrombin to 1, 2 or 4 mg/ml fibrinogen supplemented with 0-0.4 mg/ml fibronectin. The rate of fibrin matrix formation was then monitored by measuring light absorbance properties at different time points. Confocal microscopy of fluorescein conjugated fibrinogen was used to visualize the structural characteristics of fibrin matrices. The amount of fibronectin in fibrin matrices was determined through electrophoresis and immunoblotting of solubilized matrices. Fibronectin concentration positively correlated with the initial rate of fibrin matrix formation and with steady state light absorbance values of fibrin matrices. An increase in fibronectin concentration resulted in thinner and denser fibers in the fibrin matrices. Electrophoresis and immunoblotting showed that fibronectin was covalently and non-covalently bound to fibrin matrices and in the form of high molecular weight multimers. The formation of fibronectin multimers was attributed to cross-linking of fibronectin by trace amounts Factor XIIIa. These findings are novel because they link results from light absorbance studies to microcopy analyses and demonstrate an influence of fibronectin on fibrin matrix structural characteristics. This data is important in developing therapies that destabilize fibrin clots.

  12. Foam-like compression behavior of fibrin networks

    PubMed Central

    Litvinov, Rustem I.; Weisel, John W.; Alber, Mark S.; Purohit, Prashant K.

    2016-01-01

    The rheological properties of fibrin networks have been of long-standing interest. As such there is a wealth of studies of their shear and tensile responses, but their compressive behavior remains unexplored. Here, by characterization of the network structure with synchronous measurement of the fibrin storage and loss moduli at increasing degrees of compression, we show that the compressive behavior of fibrin networks is similar to that of cellular solids. A non-linear stress-strain response of fibrin consists of three regimes: 1) an initial linear regime, in which most fibers are straight, 2) a plateau regime, in which more and more fibers buckle and collapse, and 3) a markedly non-linear regime, in which network densification occurs by bending of buck-led fibers and inter-fiber contacts. Importantly, the spatially non-uniform network deformation included formation of a moving “compression front” along the axis of strain, which segregated the fibrin network into compartments with different fiber densities and structure. The Young’s modulus of the linear phase depends quadratically on the fibrin volume fraction while that in the densified phase depends cubically on it. The viscoelastic plateau regime corresponds to a mixture of these two phases in which the fractions of the two phases change during compression. We model this regime using a continuum theory of phase transitions and analytically predict the storage and loss moduli which are in good agreement with the experimental data. Our work shows that fibrin networks are a member of a broad class of natural cellular materials which includes cancellous bone, wood and cork. PMID:25982442

  13. Ultrastructural changes to rabbit fibrin and platelets due to aspartame.

    PubMed

    Pretorius, E; Humphries, P

    2007-01-01

    The coagulation process, including thrombin, fibrin, as well as platelets, plays an important role in hemostasis, contributing to the general well-being of humans. Fibrin formation and platelet activation are delicate processes that are under the control of many small physiological events. Any one of these many processes may be influenced or changed by external factors, including pharmaceutical or nutritional products, e.g., the sweetener aspartame (L-aspartyl-L-phenylalanine methyl ester). It is known that phenylalanine is present at position P(9) and aspartate at position P(10) of the alpha-chain of human fibrinogen, and plays an important role in the conversion of fibrinogen to fibrin by the catalyst alpha-thrombin. The authors investigate the effect of aspartame on platelet and fibrin ultrastructure, by using the rabbit animal model and the scanning electron microscope. Animals were exposed to 34 mg/kg of aspartame 26x during a 2-month period. Aspartame-exposed fibrin networks appeared denser, with a thick matted fine fiber network covering thick major fibers. Also, the platelet aggregates appeared more granular than the globular control platelet aggregates. The authors conclude by suggesting that aspartame usage may interfere with the coagulation process and might cause delayed fibrin breakup after clot formation. They suggest this, as the fibrin networks from aspartame-exposed rabbits are more complex and dense, due to the netlike appearance of the minor, thin fibers. Aspartame usage should possibly be limited by people on anti-clotting medicine or those with prone to clot formation.

  14. Foam-like compression behavior of fibrin networks.

    PubMed

    Kim, Oleg V; Liang, Xiaojun; Litvinov, Rustem I; Weisel, John W; Alber, Mark S; Purohit, Prashant K

    2016-02-01

    The rheological properties of fibrin networks have been of long-standing interest. As such there is a wealth of studies of their shear and tensile responses, but their compressive behavior remains unexplored. Here, by characterization of the network structure with synchronous measurement of the fibrin storage and loss moduli at increasing degrees of compression, we show that the compressive behavior of fibrin networks is similar to that of cellular solids. A nonlinear stress-strain response of fibrin consists of three regimes: (1) an initial linear regime, in which most fibers are straight, (2) a plateau regime, in which more and more fibers buckle and collapse, and (3) a markedly nonlinear regime, in which network densification occurs by bending of buckled fibers and inter-fiber contacts. Importantly, the spatially non-uniform network deformation included formation of a moving "compression front" along the axis of strain, which segregated the fibrin network into compartments with different fiber densities and structure. The Young's modulus of the linear phase depends quadratically on the fibrin volume fraction while that in the densified phase depends cubically on it. The viscoelastic plateau regime corresponds to a mixture of these two phases in which the fractions of the two phases change during compression. We model this regime using a continuum theory of phase transitions and analytically predict the storage and loss moduli which are in good agreement with the experimental data. Our work shows that fibrin networks are a member of a broad class of natural cellular materials which includes cancellous bone, wood and cork.

  15. Failure mechanisms of fibrin-based surgical tissue adhesives

    NASA Astrophysics Data System (ADS)

    Sierra, David Hugh

    A series of studies was performed to investigate the potential impact of heterogeneity in the matrix of multiple-component fibrin-based tissue adhesives upon their mechanical and biomechanical properties both in vivo and in vitro. Investigations into the failure mechanisms by stereological techniques demonstrated that heterogeneity could be measured quantitatively and that the variation in heterogeneity could be altered both by the means of component mixing and delivery and by the formulation of the sealant. Ex vivo tensile adhesive strength was found to be inversely proportional to the amount of heterogeneity. In contrast, in vivo tensile wound-closure strength was found to be relatively unaffected by the degree of heterogeneity, while in vivo parenchymal organ hemostasis in rabbits was found to be affected: greater heterogeneity appeared to correlate with an increase in hemostasis time and amount of sealant necessary to effect hemostasis. Tensile testing of the bulk sealant showed that mechanical parameters were proportional to fibrin concentration and that the physical characteristics of the failure supported a ductile mechanism. Strain hardening as a function of percentage of strain, and strain rate was observed for both concentrations, and syneresis was observed at low strain rates for the lower fibrin concentration. Blister testing demonstrated that burst pressure and failure energy were proportional to fibrin concentration and decreased with increasing flow rate. Higher fibrin concentration demonstrated predominately compact morphology debonds with cohesive failure loci, demonstrating shear or viscous failure in a viscoelastic rubbery adhesive. The lower fibrin concentration sealant exhibited predominately fractal morphology debonds with cohesive failure loci, supporting an elastoviscous material condition. The failure mechanism for these was hypothesized and shown to be flow-induced ductile fracture. Based on these findings, the failure mechanism was

  16. Capillary-like network formation by human amniotic fluid-derived stem cells within fibrin/poly(ethylene glycol) hydrogels.

    PubMed

    Benavides, Omar M; Quinn, Joseph P; Pok, Seokwon; Petsche Connell, Jennifer; Ruano, Rodrigo; Jacot, Jeffrey G

    2015-04-01

    A major limitation in tissue engineering strategies for congenital birth defects is the inability to provide a significant source of oxygen, nutrient, and waste transport in an avascular scaffold. Successful vascularization requires a reliable method to generate vascular cells and a scaffold capable of supporting vessel formation. The broad potential for differentiation, high proliferation rates, and autologous availability for neonatal surgeries make amniotic fluid-derived stem cells (AFSC) well suited for regenerative medicine strategies. AFSC-derived endothelial cells (AFSC-EC) express key proteins and functional phenotypes associated with endothelial cells. Fibrin-based hydrogels were shown to stimulate AFSC-derived network formation in vitro but were limited by rapid degradation. Incorporation of poly(ethylene glycol) (PEG) provided mechanical stability (65%±9% weight retention vs. 0% for fibrin-only at day 14) while retaining key benefits of fibrin-based scaffolds-quick formation (10±3 s), biocompatibility (88%±5% viability), and vasculogenic stimulation. To determine the feasibility of AFSC-derived microvasculature, we compared AFSC-EC as a vascular cell source and AFSC as a perivascular cell source to established sources of these cell types-human umbilical vein endothelial cells (HUVEC) and mesenchymal stem cells (MSC), respectively. Cocultures were seeded at a 4:1 endothelial-to-perivascular cell ratio, and gels were incubated at 37°C for 2 weeks. Mechanical testing was performed using a stress-controlled rheometer (G'=95±10 Pa), and cell-seeded hydrogels were assessed based on morphology. Network formation was analyzed based on key parameters such as vessel thickness, length, and area, as well as the degree of branching. There was no statistical difference between individual cultures of AFSC-EC and HUVEC in regard to these parameters, suggesting the vasculogenic potential of AFSC-EC; however, the development of robust vessels required the

  17. Platelet rich fibrin in jaw defects

    NASA Astrophysics Data System (ADS)

    Nica, Diana; Ianes, Emilia; Pricop, Marius

    2016-03-01

    Platelet rich fibrin (PRF) is a tissue product of autologous origin abundant in growth factors, widely used in regenerative procedures. Aim of the study: Evaluation of the regenerative effect of PRF added in the bony defects (after tooth removal or after cystectomy) Material and methods: The comparative nonrandomized study included 22 patients divided into 2 groups. The first group (the test group) included 10 patients where the bony defects were treated without any harvesting material. The second group included 12 patients where the bony defects were filled with PRF. The bony defect design was not critical, with one to two walls missing. After the surgeries, a close clinically monitoring was carried out. The selected cases were investigated using both cone beam computer tomography (CBCT) and radiographic techniques after 10 weeks postoperatively. Results: Faster bone regeneration was observed in the bony defects filled with PRF comparing with the not grafted bony defects. Conclusions: PRF added in the bony defects accelerates the bone regeneration. This simplifies the surgical procedures and decreases the economic costs.

  18. Macroporous Three Dimensional PDMS Scaffolds for Extrahepatic Islet Transplantation

    PubMed Central

    Pedraza, Eileen; Brady, Ann-Christina; Fraker, Christopher A.; Molano, R. Damaris; Sukert, Steven; Berman, Dora M.; Kenyon, Norma S.; Pileggi, Antonello; Ricordi, Camillo; Stabler, Cherie L.

    2015-01-01

    Clinical islet transplantation has demonstrated success in treating type 1 diabetes. A current limitation is the intrahepatic portal vein transplant site, which is prone to mechanical stress and inflammation. Transplantation of pancreatic islets into alternative sites is preferable, but challenging, as it may require a three-dimensional vehicle to confer mechanical protection and to confine islets to a well-defined, retrievable space where islet neovascularization can occur. We have fabricated biostable, macroporous scaffolds from poly(dimethylsiloxane) (PDMS) and investigated islet retention and distribution, metabolic function, and glucose-dependent insulin secretion within these materials. Islets from multiple sources, including rodents, non-human primates, and humans, were tested in vitro. We observed high islet retention and distribution within PDMS scaffolds, with retention of small islets (< 100 µm) improved through the post-loading addition of fibrin gel. Islets loaded within PDMS scaffolds exhibited viability and function comparable to standard culture conditions when incubated under normal oxygen tensions, but displayed improved viability compared to standard two-dimensional culture controls under low oxygen tensions. In vivo efficacy of scaffolds to support islet grafts was evaluated after transplantation in the omental pouch of chemically-induced diabetic syngeneic rats, which promptly achieved normoglycemia. Collectively, these results are promising in that they indicate the potential for transplanting islets into a clinically relevant, extrahepatic site that provides spatial distribution of islets, as well as intra-device vascularization. PMID:23031502

  19. Integration of colloids into a semi-flexible network of fibrin.

    PubMed

    Bharadwaj, N Ashwin K; Kang, Jin Gu; Hatzell, Marta C; Schweizer, Kenneth S; Braun, Paul V; Ewoldt, Randy H

    2017-02-15

    Typical colloid-polymer composites have particle diameters much larger than the polymer mesh size, but successful integration of smaller colloids into a large-mesh network could allow for the realization of new colloidal states of spatial organization and faster colloid motion which can allow the possibility of switchable re-configuration of colloids or more dramatic stimuli-responsive property changes. Experimental realization of such composites requires solving non-trivial materials selection and fabrication challenges; key questions include composition regime maps of successful composites, the resulting structure and colloidal contact network, and the mechanical properties, in particular the ability to form a network and retain strain stiffening in the presence of colloids. Here, we study these fundamental questions by formulating composites with fluorescent (though not stimuli-responsive) carboxylate modified polystyrene/latex (CML) colloidal particles (diameters 200 nm and 1000 nm) in bovine fibrin networks (a semi-flexible biopolymer network with mesh size 1-5 μm). We describe and characterize two methods of composite preparation: adding colloids before fibrinogen polymerization (Method I), and electrophoretically driving colloids into a network already formed by fibrinogen polymerization (Method II). We directly image the morphology of colloidal and fibrous components with two-color fluorescent confocal microscopy under wet conditions and SEM of fixed dry samples. Mechanical properties are studied with shear and extensional rheology. Both fabrication methods are successful, though with trade-offs. Method I retains the nonlinear strain-stiffening and extensibility of the native fibrin network, but some colloid clustering is observed and fibrin network integrity is lost above a critical colloid concentration that depends on fibrinogen and thrombin concentration. Larger colloids can be included at higher volume fractions before massive aggregation occurs

  20. Optimization of a biomimetic poly-(lactic acid) ligament scaffold

    NASA Astrophysics Data System (ADS)

    Uehlin, Andrew F.

    The anterior cruciate ligament (ACL) is the most commonly injured ligament of the knee, often requiring orthopedic reconstruction using autograft or allograph tissue, both with significant disadvantages. As a result, tissue engineering an ACL replacement graft has been heavily investigated. The present study attempts to replicate the morphology and mechanical properties of the ACL using a nanomatrix composite of highly-aligned poly(lactic acid) (PLA) fibers with various surface and biochemical modifications. Additionally, this study attempts to recreate the natural mineralization gradient found at the ACL enthesis onto the scaffold, capable of inducing a favorable cellular response in vitro. Unidirectional electrospinning was used to create nanofibers of PLA, followed by an induced degradation of the nanofibers via 0.25M NaOH hydrolysis. The effects of the unidirectional electrospinning as well as the effects of NaOH hydrolysis on fiber alignment, fiber diameter, surface morphology, crystallinity, in vitro swelling, immobilization of fibrin, and mechanical properties were investigated, resulting in a modified morphology correlating to the microstructure of native ligament tissue with similar mechanical properties. Furthering the development of the PLA nanomatrix composite, a bioinkjet printer was used to immobilize nanoparticulate hydroxyapatite (HANP) on the surface of the scaffold. A series of 300pL droplets of HANP bioink were printed over a gradient pattern mimetic of (and spatially corresponding to) the mineralization gradient found over the microanatomy at the ACL enthesis. Proliferation and differentiation response of human mesenchymal stem cells (hMSCs) in vitro was assessed on a variety of conditions and combinations of the PLA nanofiber scaffold surface modifications (inclusive and exclusive of HANP, fibrin, and various time dependent NaOH treatments). It was found that a combinatory effect of the HANP gradient with fibrin on 20 minute NaOH treated PLA

  1. Phase-separated chitosan–fibrin microbeads for cell delivery

    PubMed Central

    Chen, Zhewei; Wang, Limin; Stegemann, Jan P.

    2011-01-01

    Matrix-enhanced delivery of cells is a promising approach to improving current cell therapies. Our objective was to create cell-laden composite microbeads that combine the attractive features of the natural polymers chitosan and fibrin. Liquid polydimethylsiloxane was used to emulsify a chitosan–fibrinogen solution containing suspended human fibroblast cells, followed by initiation of thrombin-mediated polymerization of fibrin and thermal/pH-mediated gelation of chitosan. Chitosan/fibrin weight percent (wt%) ratios of 100/0, 75/25, 50/50 and 25/75 were investigated. Microbead diameters ranged from 275 ± 99 μm to 38 ± 10 μm using impeller speeds from 600 to 1400 rpm. Fibroblasts remained viable on day 1 post-fabrication in all matrices, but cell viability was markedly higher in high-fibrin microbeads by day 8 post-fabrication. Cell spreading and interaction with the extracellular matrix was also markedly increased in high-fibrin matrices. Such composite microbeads containing viable entrapped cells have potential for minimally invasive delivery of cells for a variety of tissue repair applications. PMID:21736519

  2. Weight reduction is associated with increased plasma fibrin clot lysis.

    PubMed

    Brzezińska-Kolarz, Beata; Kolarz, Marek; Wałach, Angelika; Undas, Anetta

    2014-11-01

    Obesity is associated with an increased risk of vascular thrombotic events. We sought to investigate how obesity and weight loss affect plasma fibrin clot properties. A total of 29 obese patients were studied before and after 3-month low-fat diet. Plasma fibrin clot parameters, including fibrin clot permeation coefficient (Ks), the lag phase of the turbidity curve, clot lysis time (t 50%), maximum rate of increase in D-dimer levels, and maximum D-dimer concentrations, were determined. Low-fat diet resulted in the reduction of body weight (P < .0001), body mass index (P < .0001), fat mass (P < .0001), total cholesterol (P < .0001), low-density lipoprotein cholesterol (P = .0005), triglycerides (P = .008), and plasminogen activator inhibitor 1 (P = .02), but not in fibrinogen or C-reactive protein. The only change in fibrin clot variables was shorter t 50% (P = .02). Baseline t 50%, but not posttreatment, correlated with waist circumference (r = .44, p = .02). This study demonstrates that weight loss in obese people can increase the efficiency of fibrin clot lysis.

  3. Phase-separated chitosan-fibrin microbeads for cell delivery.

    PubMed

    Chen, Zhewei; Wang, Limin; Stegemann, Jan P

    2011-01-01

    Matrix-enhanced delivery of cells is a promising approach to improving current cell therapies. Our objective was to create cell-laden composite microbeads that combine the attractive features of the natural polymers chitosan and fibrin. Liquid polydimethylsiloxane was used to emulsify a chitosan-fibrinogen solution containing suspended human fibroblast cells, followed by initiation of thrombin-mediated polymerization of fibrin and thermal/pH-mediated gelation of chitosan. Chitosan/fibrin weight percent (wt%) ratios of 100/0, 75/25, 50/50 and 25/75 were investigated. Microbead diameters ranged from 275 ± 99 µm to 38 ± 10 µm using impeller speeds from 600 to 1400 rpm. Fibroblasts remained viable on day 1 post-fabrication in all matrices, but cell viability was markedly higher in high-fibrin microbeads by day 8 post-fabrication. Cell spreading and interaction with the extracellular matrix was also markedly increased in high-fibrin matrices. Such composite microbeads containing viable entrapped cells have potential for minimally invasive delivery of cells for a variety of tissue repair applications.

  4. Measurement of clottability of fibrin polymers using magnetic orientation

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Ueno, S.; Tsuda, H.

    1996-04-01

    Fibrin polymers, as a kind of diamagnetic material, are oriented parallel to the direction of magnetic fields. We investigated the polymerization of partially digested fibrinogens in an 8 T magnetic field in order to observe the clotting ability of various sizes of fibrinogen fractions using a magnetic orientation technique. We purified high-molecular weight fraction (F1) and low-molecular weight fraction from human fibrinogen (F2). Fibrin gels were formed in an 8 T magnetic field for 9 h, and transmittancies were measured to evaluate the degree of magnetic orientation. The results show that a lack at the C-terminal half of one Aα chain did not affect the magnetic orientation of fibrin. We also investigated the effect of the digestion of fibrinogen by plasmin on the magnetic orientation of fibrin. The result shows that partially digested fibrin molecules also orient in an 8 T magnetic field. However, the degree of magnetic orientation significantly decreases when fragment X and fragment Y appear.

  5. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    SciTech Connect

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-09-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: > Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. > Bt-VSP activates prothrombin. > Bt-VSP directly degrades fibrinogen into fibrin degradation products. > Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  6. Fibrin-fiber architecture influences cell spreading and differentiation

    PubMed Central

    Bruekers, Stéphanie M. C.; Jaspers, Maarten; Hendriks, José M. A.; Kurniawan, Nicholas A.; Koenderink, Gijsje H.; Kouwer, Paul H. J.; Rowan, Alan E.; T. S. Huck, Wilhelm

    2016-01-01

    ABSTRACT The mechanical and structural properties of the extracellular matrix (ECM) play an important role in regulating cell fate. The natural ECM has a complex fibrillar structure and shows nonlinear mechanical properties, which are both difficult to mimic synthetically. Therefore, systematically testing the influence of ECM properties on cellular behavior is very challenging. In this work we show two different approaches to tune the fibrillar structure and mechanical properties of fibrin hydrogels. Addition of extra thrombin before gelation increases the protein density within the fibrin fibers without significantly altering the mechanical properties of the resulting hydrogel. On the other hand, by forming a composite hydrogel with a synthetic biomimetic polyisocyanide network the protein density within the fibrin fibers decreases, and the mechanics of the composite material can be tuned by the PIC/fibrin mass ratio. The effect of the changes in gel structure and mechanics on cellular behavior are investigated, by studying human mesenchymal stem cell (hMSC) spreading and differentiation on these gels. We find that the trends observed in cell spreading and differentiation cannot be explained by the bulk mechanics of the gels, but correlate to the density of the fibrin fibers the gels are composed of. These findings strongly suggest that the microscopic properties of individual fibers in fibrous networks play an essential role in determining cell behavior. PMID:26910190

  7. Hemostasis During Urologic Surgery: Fibrin Sealant Compared With Absorbable Hemostat

    PubMed Central

    Albala, David M; Riebman, Jerome B; Kocharian, Richard; Ilie, Bogdan; Albanese, John; Shen, Jessica; Ovington, Liza; Batiller, Jonathan

    2015-01-01

    In the United States, fibrin sealants have been used to achieve hemostasis for nearly two decades. Although their clinical utility was first demonstrated in cardiac surgery, their effectiveness and safety have since been demonstrated to extend to a wide array of procedures. Fibrin sealants typically contain two components—fibrinogen and thrombin—that are combined and delivered simultaneously to a target bleeding site in order to achieve hemostasis. However, many commercial formulations contain other additional components, such as antifibrinolytic agents, that have been associated with adverse outcomes. This subanalysis compares the safety and effectiveness of a fibrin sealant versus an absorbable hemostat for achieving hemostasis during urologic procedures with mild to moderate bleeding. PMID:26028998

  8. Characterization of Leukocyte-platelet Rich Fibrin, A Novel Biomaterial.

    PubMed

    Madurantakam, Parthasarathy; Yoganarasimha, Suyog; Hasan, Fadi K

    2015-09-29

    Autologous platelet concentrates represent promising innovative tools in the field of regenerative medicine and have been extensively used in oral surgery. Unlike platelet rich plasma (PRP) that is a gel or a suspension, Leukocyte-Platelet Rich Fibrin (L-PRF) is a solid 3D fibrin membrane generated chair-side from whole blood containing no anti-coagulant. The membrane has a dense three dimensional fibrin matrix with enriched platelets and abundant growth factors. L-PRF is a popular adjunct in surgeries because of its superior handling characteristics as well as its suturability to the wound bed. The goal of the study is to demonstrate generation as well as provide detailed characterization of relevant properties of L-PRF that underlie its clinical success.

  9. First Results from The GlueX Experiment

    SciTech Connect

    Meyer, Curtis

    2016-05-01

    The GlueX experiment at Jefferson Lab ran with its first commissioning beam in late 2014 and the spring of 2015. Data were collected on both plastic and liquid hydrogen targets, and much of the detector has been commissioned. All of the detector systems are now performing at or near design specifications and events are being fully reconstructed, including exclusive production of pi^0, eta and omega mesons. Linearly-polarized photons were successfully produced through coherent bremsstrahlung and polarization transfer to the ρ has been observed.

  10. The GlueX central drift chamber: Design and performance

    SciTech Connect

    Van Haarlem, Y; Barbosa, F; Dey, B; Lawrence, D; Razmyslovich, V; Smith, Visser; Whitlatch, T; Wilkin, G; Zihlmann, B

    2010-10-01

    Tests and studies concerning the design and performance of the GlueX Central Drift Chamber (CDC) are presented. A full-scale prototype was built to test and steer the mechanical and electronic design. Small scale prototypes were constructed to test for sagging and to do timing and resolution studies of the detector. These studies were used to choose the gas mixture and to program a Monte Carlo simulation that can predict the detector response in an external magnetic field. Particle identification and charge division possibilities were also investigated.

  11. First results from the GlueX experiment

    NASA Astrophysics Data System (ADS)

    Al Ghoul, H.; Anassontzis, E. G.; Barbosa, F.; Barnes, A.; Beattie, T. D.; Bennett, D. W.; Berdnikov, V. V.; Black, T.; Boeglin, W.; Brooks, W. K.; Cannon, B.; Chernyshov, O.; Chudakov, E.; Crede, V.; Dalton, M. M.; Deur, A.; Dobbs, S.; Dolgolenko, A.; Dugger, M.; Egiyan, H.; Eugenio, P.; Foda, A. M.; Frye, J.; Furletov, S.; Gan, L.; Gasparian, A.; Gerasimov, A.; Gevorgyan, N.; Goryachev, V. S.; Guegan, B.; Guo, L.; Hakobyan, H.; Hakobyan, H.; Hardin, J.; Huber, G. M.; Ireland, D.; Ito, M. M.; Jarvis, N. S.; Jones, R. T.; Kakoyan, V.; Kamel, M.; Klein, F. J.; Kourkoumeli, C.; Kuleshov, S.; Lara, M.; Larin, I.; Lawrence, D.; Leckey, J.; Levine, W. I.; Livingston, K.; Lolos, G. J.; Mack, D.; Mattione, P. T.; Matveev, V.; McCaughan, M.; McGinley, W.; McIntyre, J.; Mendez, R.; Meyer, C. A.; Miskimen, R.; Mitchell, R. E.; Mokaya, F.; Moriya, K.; Nigmatkulov, G.; Ochoa, N.; Ostrovidov, A. I.; Papandreou, Z.; Pedroni, R.; Pennington, M.; Pentchev, L.; Ponosov, A.; Pooser, E.; Pratt, B.; Qiang, Y.; Reinhold, J.; Ritchie, B. G.; Robison, L.; Romanov, D.; Salgado, C.; Schumacher, R. A.; Semenov, A. Yu.; Semenova, I. A.; Senderovich, I.; Seth, K. K.; Shepherd, M. R.; Smith, E. S.; Sober, D. I.; Somov, A.; Somov, S.; Soto, O.; Sparks, N.; Staib, M. J.; Stevens, J. R.; Subedi, A.; Tarasov, V.; Taylor, S.; Tolstukhin, I.; Tomaradze, A.; Toro, A.; Tsaris, A.; Vasileiadis, G.; Vega, I.; Voulgaris, G.; Walford, N. K.; Whitlatch, T.; Williams, M.; Wolin, E.; Xiao, T.; Zarling, J.; Zihlmann, B.

    2016-05-01

    The GlueX experiment at Jefferson Lab ran with its first commissioning beam in late 2014 and the spring of 2015. Data were collected on both plastic and liquid hydrogen targets, and much of the detector has been commissioned. All of the detector systems are now performing at or near design specifications and events are being fully reconstructed, including exclusive production of π0, η and ω mesons. Linearly-polarized photons were successfully produced through coherent bremsstrahlung and polarization transfer to the ρ has been observed.

  12. Silicon photomultiplier characterization for the GlueX barrel calorimeter

    SciTech Connect

    F. Barbosa, J.E. McKisson, J. McKisson, Y. Qiang, E. Smith, C. Zorn

    2012-12-01

    GlueX is a new detector being constructed at Jefferson Laboratory to study gluonic excitations and confinement via the detection of exotic meson states. The hermetic detector includes a barrel calorimeter where the photodetectors must operate in a high magnetic field exceeding 0.5 T. After extensive tests with a variety of sensors, the chosen photodetector will be a custom silicon photomultiplier (SiPM) array manufactured by Hamamatsu Corporation. This paper will focus on the characterization of the first 80 production samples of these SiPMs, including dark rate, photodetection efficiency (PDE), crosstalk, response uniformity and radiation tolerance.

  13. GLUE!: An Architecture for the Integration of External Tools in Virtual Learning Environments

    ERIC Educational Resources Information Center

    Alario-Hoyos, Carlos; Bote-Lorenzo, Miguel L.; Gomez-Sanchez, Eduardo; Asensio-Perez, Juan I.; Vega-Gorgojo, Guillermo; Ruiz-Calleja, Adolfo

    2013-01-01

    The integration of external tools in Virtual Learning Environments (VLEs) aims at enriching the learning activities that educational practitioners may design and enact. This paper presents GLUE!, an architecture that enables the lightweight integration of multiple existing external tools in multiple existing VLEs. GLUE! fosters this integration by…

  14. In vitro characterization of the technique of portal vein embolization by injection of a surgical glue

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Sandulache, Mihai-Cristinel; Lancon, Oceane; El Kadri Benkara, Khadija

    2012-11-01

    Partial embolization of the portal trunk by glue injection is a minimally invasive technique used in the case of malignant liver tumors. It is conducted few weeks prior to partial liver ablation, when the volume of the remnant liver section is too small to allow hepatectomy. The limitation of glue embolotherapy is that its clinical practice is based on empirical knowledge. The present objective is to study glue injection in a confined blood flow and investigate how the injection dynamics is coupled with glue polymerization. We first characterize polymerization under static conditions for various glue concentrations and then consider the influence of injection. An experimental setup reproduces the co-flow of two immiscible fluids. The glue mixture is injected through a capillary tube into a saline solution with the same ionic concentration, pH and viscosity as blood, flowing steadily in a straight cylindrical tube. The injected phase is visualized with a high-speed imaging system and results are compared with those obtained for non-reacting fluids. These experiments have enabled us to characterize the characteristic times of polymerization of the glue mixtures under static and dynamic conditions and understand how they affect the flow topology of the glue once injected. Biomechanics and Bioengineering Laboratory (UMR CNRS 7338).

  15. Spiritual and Religious Supports Part 8: Church G.L.U.E.

    ERIC Educational Resources Information Center

    Newman, Barbara J.

    2009-01-01

    CLC Network is an organization that partners with churches, schools, and families to help promote and build inclusive and interdependent communities for those with disabilities. This article describes CLC Network's most recent tool--a book entitled the G.L.U.E. Training Manual. G.L.U.E. is an adhesive process to allow each individual to be firmly…

  16. Fibrin activates GPVI in human and mouse platelets

    PubMed Central

    Alshehri, Osama M.; Montague, Samantha; Watson, Stephanie K.; Frampton, Jon; Bender, Markus; Watson, Steve P.

    2015-01-01

    The glycoprotein VI (GPVI)-Fc receptor γ (FcRγ) chain is the major platelet signaling receptor for collagen. Paradoxically, in a FeCl3 injury model, occlusion, but not initiation of thrombus formation, is delayed in GPVI-deficient and GPVI-depleted mice. In this study, we demonstrate that GPVI is a receptor for fibrin and speculate that this contributes to development of an occlusive thrombus. We observed a marked increase in tyrosine phosphorylation, including the FcRγ chain and Syk, in human and mouse platelets induced by thrombin in the presence of fibrinogen and the αIIbβ3 blocker eptifibatide. This was not seen in platelets stimulated by a protease activated receptor (PAR)-4 peptide, which is unable to generate fibrin from fibrinogen. The pattern of tyrosine phosphorylation was similar to that induced by activation of GPVI. Consistent with this, thrombin did not induce tyrosine phosphorylation of Syk and the FcRγ chain in GPVI-deficient mouse platelets. Mouse platelets underwent full spreading on fibrin but not fibrinogen, which was blocked in the presence of a Src kinase inhibitor or in the absence of GPVI. Spreading on fibrin was associated with phosphatidylserine exposure (procoagulant activity), and this too was blocked in GPVI-deficient platelets. The ectodomain of GPVI was shown to bind to immobilized monomeric and polymerized fibrin. A marked increase in embolization was seen following FeCl3 injury in GPVI-deficient mice, likely contributing to the delay in occlusion in this model. These results demonstrate that GPVI is a receptor for fibrin and provide evidence that this interaction contributes to thrombus growth and stability. PMID:26282541

  17. Fibrin activates GPVI in human and mouse platelets.

    PubMed

    Alshehri, Osama M; Hughes, Craig E; Montague, Samantha; Watson, Stephanie K; Frampton, Jon; Bender, Markus; Watson, Steve P

    2015-09-24

    The glycoprotein VI (GPVI)-Fc receptor γ (FcRγ) chain is the major platelet signaling receptor for collagen. Paradoxically, in a FeCl3 injury model, occlusion, but not initiation of thrombus formation, is delayed in GPVI-deficient and GPVI-depleted mice. In this study, we demonstrate that GPVI is a receptor for fibrin and speculate that this contributes to development of an occlusive thrombus. We observed a marked increase in tyrosine phosphorylation, including the FcRγ chain and Syk, in human and mouse platelets induced by thrombin in the presence of fibrinogen and the αIIbβ3 blocker eptifibatide. This was not seen in platelets stimulated by a protease activated receptor (PAR)-4 peptide, which is unable to generate fibrin from fibrinogen. The pattern of tyrosine phosphorylation was similar to that induced by activation of GPVI. Consistent with this, thrombin did not induce tyrosine phosphorylation of Syk and the FcRγ chain in GPVI-deficient mouse platelets. Mouse platelets underwent full spreading on fibrin but not fibrinogen, which was blocked in the presence of a Src kinase inhibitor or in the absence of GPVI. Spreading on fibrin was associated with phosphatidylserine exposure (procoagulant activity), and this too was blocked in GPVI-deficient platelets. The ectodomain of GPVI was shown to bind to immobilized monomeric and polymerized fibrin. A marked increase in embolization was seen following FeCl3 injury in GPVI-deficient mice, likely contributing to the delay in occlusion in this model. These results demonstrate that GPVI is a receptor for fibrin and provide evidence that this interaction contributes to thrombus growth and stability.

  18. Vasculogenesis and Angiogenesis in Modular Collagen-Fibrin Microtissues.

    PubMed

    Peterson, A W; Caldwell, D J; Rioja, A Y; Rao, R R; Putnam, A J; Stegemann, J P

    2014-10-01

    The process of new blood vessel formation is critical in tissue development, remodeling and regeneration. Modular tissue engineering approaches have been developed to enable the bottom-up assembly of more complex tissues, including vascular networks. In this study, collagen-fibrin composite microbeads (100-300 μm in diameter) were fabricated using a water-in-oil emulsion technique. Human endothelial cells and human fibroblasts were embedded directly in the microbead matrix at the time of fabrication. Microbead populations were characterized and cultured for 14 days either as free-floating populations or embedded in a surrounding fibrin gel. The collagen-fibrin matrix efficiently entrapped cells and supported their viability and spreading. By 7 days in culture, endothelial cell networks were evident within microbeads, and these structures became more prominent by day 14. Fibroblasts co-localized with endothelial cells, suggesting a pericyte-like function, and laminin deposition indicated maturation of the vessel networks over time. Microbeads embedded in a fibrin gel immediately after fabrication showed the emergence of cells and the coalescence of vessel structures in the surrounding matrix by day 7. By day 14, inosculation of neighboring cords and prominent vessel structures were observed. Microbeads pre-cultured for 7 days prior to embedding in fibrin gave rise to vessel networks that emanated radially from the microbead by day 7, and developed into connected networks by day 14. Lumen formation in endothelial cell networks was confirmed using confocal sectioning. These data show that collagen-fibrin composite microbeads support vascular network formation. Microbeads embedded directly after fabrication emulated the process of vasculogenesis, while the branching and joining of vessels from pre-cultured microbeads resembled angiogenesis. This modular microtissue system has utility in studying the processes involved in new vessel formation, and may be developed into

  19. Revascularization Induced Maturogenesis of Non-Vital Immature Permanent Tooth Using Platelet-Rich-Fibrin: A Case Report.

    PubMed

    Nagaveni, N B; Pathak, Sidhant; Poornima, P; Joshi, Jooie S

    2016-01-01

    The aim of this report is to describe a novel method of revascularization therapy done in a non-vital, immature permanent tooth using Platelet-rich fibrin (PRF),in a recently developed scaffold material to overcome limitations associated with the traditional method of revascularization using natural blood clot. PRF prepared from autologous blood was placed in the root canal and patient was followed up regularly at one, three, six, nine and 12 months for detailed clinical and radiographic evaluation. At 12 months, radiographic examination revealed root elongation, root end closure, continued thickening of the root dentinal walls, obliteration of root canal space, and normal periradicular anatomy. However, more long term prospective trials and histological studies are highly needed before to testify PRF a panacea for the regenerative endodontic therapy in children.

  20. Research on Intelligent Glue-coating Robot Based on Visual Servo

    NASA Astrophysics Data System (ADS)

    Yang, Zhigang; An, Yi; Sun, Yanbin; Zhang, Jingchun

    At present, Glue-coating machines have some shortages, such as unintelligence, complexity of setting glue path for new parts. In this paper, real-time image capture was achieved by using digital camera technology and image processing technology. The captured image is converted into a character vector. Workpiece model is determined through comparing with the standard library and the similarity. The image of workpiece was vectored through frame extracting and fitting. With NC (Numerical Control) code generation technology, the NC code is automatically generated for sprinkler nozzle walking track. By Appling visual servo and embedding the vision system into feedback loop of the robot, the system achieves high-precision robot control. By extracting the glue line curve from image, thinning glue curve by morphological method, and extracting the frame information, the closure and quality of the glue curve can be detected. Results of test show that the effect is satisfactory and the method is effective.

  1. Nuclear and bound nucleon structure studies using GlueX

    NASA Astrophysics Data System (ADS)

    Patsyuk, Maria; Hen, Or; Williams, Mike

    2016-09-01

    We propose extending the physics program of the GlueX detector at Jefferson Lab to study structure of bound nucleon and short range correlations (SRC) in nuclei. Many important properties of nuclear systems are significantly influenced by the existence of SRC-pairs, which are high- momentum nucleons in a nucleus with considerably overlapping wave functions. Using the new JLab high-energy high-intensity photon beam, we will study exclusive meson photo-production on the nucleon in nuclei from Deuterium to Lead. We will compare the branching ratio of these reactions on semi-free nucleons in deuterium, deeply bound nucleons in heavier nuclei, and nucleons belonging to SRC pairs (by tagging the spectator recoil nucleon in the GlueX Barrel Calorimeter) in order to learn about short range structure of nuclei and the possible modification of the internal structure of bound nucleons. In this talk, we will present a brief summary of the physics goals and a data-driven determination of the neutron-detection efficiency using the so-called tag and probe technique.

  2. The use of platelet-rich fibrin combined with periodontal ligament and jaw bone mesenchymal stem cell sheets for periodontal tissue engineering

    PubMed Central

    Wang, Zhong-Shan; Feng, Zhi-Hong; Wu, Guo-Feng; Bai, Shi-Zhu; Dong, Yan; Chen, Fa-Ming; Zhao, Yi-Min

    2016-01-01

    Periodontal regeneration involves the restoration of at least three unique tissues: cementum, periodontal ligament tissue (PDL) and alveolar bone tissue. Here, we first isolated human PDL stem cells (PDLSCs) and jaw bone mesenchymal stem cells (JBMSCs). These cells were then induced to form cell sheets using an ascorbic acid-rich approach, and the cell sheet properties, including morphology, thickness and gene expression profile, were compared. Platelet-rich fibrin (PRF) derived from human venous blood was then fabricated into bioabsorbable fibrin scaffolds containing various growth factors. Finally, the in vivo potential of a cell-material construct based on PDLSC sheets, PRF scaffolds and JBMSC sheets to form periodontal tissue was assessed in a nude mouse model. In this model, PDLSC sheet/PRF/JBMSC sheet composites were placed in a simulated periodontal space comprising human treated dentin matrix (TDM) and hydroxyapatite (HA)/tricalcium phosphate (TCP) frameworks. Eight weeks after implantation, the PDLSC sheets tended to develop into PDL-like tissues, while the JBMSC sheets tended to produce predominantly bone-like tissues. In addition, the PDLSC sheet/PRF/JBMSC sheet composites generated periodontal tissue-like structures containing PDL- and bone-like tissues. Further improvements in this cell transplantation design may have the potential to provide an effective approach for future periodontal tissue regeneration. PMID:27324079

  3. possible role of soluble fibrin monomer complex after gastroenterological surgery

    PubMed Central

    Kochi, Masatoshi; Shimomura, Manabu; Hinoi, Takao; Egi, Hiroyuki; Tanabe, Kazuaki; Ishizaki, Yasuyo; Adachi, Tomohiro; Tashiro, Hirotaka; Ohdan, Hideki

    2017-01-01

    AIM To examine the role of soluble fibrin monomer complex (SFMC) in the prediction of hypercoagulable state after gastroenterological surgery. METHODS We collected data on the clinical risk factors and fibrin-related makers from patients who underwent gastroenterological surgery at Hiroshima University Hospital between April 1, 2014 and March 31, 2015. We investigated the clinical significance of SFMC, which is known to reflect the early plasmatic activation of coagulation, in the view of these fibrin related markers. RESULTS A total of 123 patients were included in the present study. There were no patients with symptomatic VTE. Thirty-five (28%) patients received postoperative anticoagulant therapy. In the multivariate analysis, a high SFMC level on POD 1 was independently associated with D-dimer elevation on POD 7 (OR = 4.31, 95%CI: 1.10-18.30, P = 0.03). The cutoff SFMC level was 3.8 μg/mL (AUC = 0.78, sensitivity, 63%, specificity, 89%). The D-dimer level on POD 7 was significantly reduced in high-SFMC patients who received anticoagulant therapy in comparison to high-SFMC patients who did not. CONCLUSION The SFMC on POD 1 strongly predicted the hypercoagulable state after gastroenterological surgery than the clinical risk factors and the other fibrin related markers.

  4. Fiber optic immunosensor for cross-linked fibrin concentration

    NASA Astrophysics Data System (ADS)

    Moskowitz, Samuel E.

    2000-08-01

    Working with calcium ions in the blood, platelets produce thromboplastin which transforms prothrombin into thrombin. Removing peptides, thrombin changes fibrinogen into fibrin. Cross-linked insoluble fibrin polymers are solubilized by enzyme plasmin found in blood plasma. Resulting D-dimers are elevated in patients with intravascular coagulation, deep venous thrombosis, pulmonary embolism, myocardial infarction, multiple trauma, cancer, impaired renal and liver functions, and sepsis. Consisting principally of a NIR 780 nm GaAlAs laser diode and a 800 nm avalanche photodiode (APD), the fiber-optic immunosensor can determined D-dimer concentration to levels <0.1 ng/ml. A capture monoclonal antibody to the antigen soluble cross-linked fibrin is employed. Immobilized at the tip of an optical fiber by avidin-biotin, the captured antigen is detected by a second antibody which is labeled with NN 382 fluorescent dye. An evanescent wave traveling on an excitation optical fiber excites the antibody-antigen fluorophore complex. Concentration of cross-linked fibrin is directly proportional to the APD measured intensity of fluorescence. NIR fluorescence has advantages of low background interference, short fluorescence lifetime, and large difference between excitation and emission peaks. Competitive ELISA test for D-dimer concentration requires trained personnel performing a time consuming operation.

  5. Capillary-Like Network Formation by Human Amniotic Fluid-Derived Stem Cells Within Fibrin/Poly(Ethylene Glycol) Hydrogels

    PubMed Central

    Benavides, Omar M.; Quinn, Joseph P.; Pok, Seokwon; Petsche Connell, Jennifer; Ruano, Rodrigo

    2015-01-01

    A major limitation in tissue engineering strategies for congenital birth defects is the inability to provide a significant source of oxygen, nutrient, and waste transport in an avascular scaffold. Successful vascularization requires a reliable method to generate vascular cells and a scaffold capable of supporting vessel formation. The broad potential for differentiation, high proliferation rates, and autologous availability for neonatal surgeries make amniotic fluid-derived stem cells (AFSC) well suited for regenerative medicine strategies. AFSC-derived endothelial cells (AFSC-EC) express key proteins and functional phenotypes associated with endothelial cells. Fibrin-based hydrogels were shown to stimulate AFSC-derived network formation in vitro but were limited by rapid degradation. Incorporation of poly(ethylene glycol) (PEG) provided mechanical stability (65%±9% weight retention vs. 0% for fibrin-only at day 14) while retaining key benefits of fibrin-based scaffolds—quick formation (10±3 s), biocompatibility (88%±5% viability), and vasculogenic stimulation. To determine the feasibility of AFSC-derived microvasculature, we compared AFSC-EC as a vascular cell source and AFSC as a perivascular cell source to established sources of these cell types—human umbilical vein endothelial cells (HUVEC) and mesenchymal stem cells (MSC), respectively. Cocultures were seeded at a 4:1 endothelial-to-perivascular cell ratio, and gels were incubated at 37°C for 2 weeks. Mechanical testing was performed using a stress-controlled rheometer (G′=95±10 Pa), and cell-seeded hydrogels were assessed based on morphology. Network formation was analyzed based on key parameters such as vessel thickness, length, and area, as well as the degree of branching. There was no statistical difference between individual cultures of AFSC-EC and HUVEC in regard to these parameters, suggesting the vasculogenic potential of AFSC-EC; however, the development of robust vessels required the

  6. Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds.

    PubMed

    Wei, Qinghua; Wang, Yanen; Li, Xinpei; Yang, Mingming; Chai, Weihong; Wang, Kai; zhang, Yingfeng

    2016-04-01

    In 3DP fabricating artificial bone scaffolds process, the interaction mechanism between binder and bioceramics power determines the microstructure and macro mechanical properties of Hydroxyapatite (HA) bone scaffold. In this study, we applied Molecular Dynamics (MD) methods to investigating the bonding mechanism and essence of binders on the HA crystallographic planes for 3DP fabrication bone scaffolds. The cohesive energy densities of binders and the binding energies, PCFs g(r), mechanical properties of binder/HA interaction models were analyzed through the MD simulation. Additionally, we prepared the HA bone scaffold specimens with different glues by 3DP additive manufacturing, and tested their mechanical properties by the electronic universal testing machine. The simulation results revealed that the relationship of the binding energies between binders and HA surface is consistent with the cohesive energy densities of binders, which is PAM/HA>PVA/HA>PVP/HA. The PCFs g(r) indicated that their interfacial interactions mainly attribute to the ionic bonds and hydrogen bonds which formed between the polar atoms, functional groups in binder polymer and the Ca, -OH in HA. The results of mechanical experiments verified the relationship of Young׳s modulus for three interaction models in simulation, which is PVA/HA>PAM/HA>PVP/HA. But the trend of compressive strength is PAM/HA>PVA/HA>PVP/HA, this is consistent with the binding energies of simulation. Therefore, the Young׳s modulus of bone scaffolds are limited by the Young׳s modulus of binders, and the compressive strength is mainly decided by the viscosity of binder. Finally, the major reasons for differences in mechanical properties between simulation and experiment were found, the space among HA pellets and the incomplete infiltration of glue were the main reasons influencing the mechanical properties of 3DP fabrication HA bone scaffolds. These results provide useful information in choosing binder for 3DP fabrication

  7. Bio-inspired Nanoparticulate Medical Glues for Minimally Invasive Tissue Repair

    PubMed Central

    Lee, Yuhan; Xu, Chenjie; Sebastin, Monisha; Lee, Albert; Holwell, Nathan; Xu, Calvin; Miranda-Nieves, David; Mu, Luye; Lin, Charles

    2015-01-01

    Delivery of tissue glues through small-bore needles or trocars is critical for sealing holes, affixing medical devices, or attaching tissues together during minimally invasive surgeries. Inspired by the granule-packaged glue delivery system of sandcastle worms, we have developed a nanoparticulate formulation of a viscous hydrophobic light-activated adhesive based on poly(glycerol sebacate)-acrylate. Negatively charged alginate was used to stabilize the nanoparticulate surface to significantly reduce its viscosity and to maximize injectability through small-bore needles. The nanoparticulate glues can be concentrated to ~30w/v% dispersions in water that remain localized following injection. With the trigger of a positively charged polymer (e.g., protamine), the nanoparticulate glues can quickly assemble into a viscous glue that exhibits rheological, mechanical and adhesive properties resembling the native poly(glycerol sebacate)-acrylate based glues. This platform should be useful to enable the delivery of viscous glues to augment or replace sutures and staples during minimally invasive procedures. PMID:26227833

  8. Using Adhesive Glue to Repair First Degree Perineal Tears: A Prospective Randomized Controlled Trial

    PubMed Central

    Maor-Sagie, Esther; Zivi, Einat; Abu-Dia, Mushira; Ben-Meir, Assaf; Sela, Hen Y.; Ezra, Yossef

    2014-01-01

    Our objective was to evaluate the effectiveness of adhesive glue in repairing first degree perineal tears. We conducted a noninferiority prospective, randomized, controlled trial comparing adhesive glue with traditional suturing. Each case was evaluated immediately after birth and after the puerperium. The two-sample t-test and the Mann-Whitney nonparametric test were applied to compare quantitative variables between the treatment groups. The chi-squared test and Fisher's exact test were used to assess the association between qualitative variables. A total of 102 women participated, 28 in the suture arm and 74 in the adhesive glue arm. While cosmetic and functional results of adhesive glue use were not inferior to suturing, the use of adhesive glue was associated with a shorter procedure, less need for local anesthetic, less pain, and greater satisfaction. Our results suggest a novel approach for the repair of common postpartum first degree lacerations. The use of adhesive glue achieves cosmetic and functional results equal to traditional suturing and offers some immediate advantages for the patient. While further clinical trials are needed to validate our results, it is important to inform obstetrician of the possible use of adhesive glue in these very common clinical scenarios. This trial is registered with NCT00746707. PMID:25089271

  9. Using adhesive glue to repair first degree perineal tears: a prospective randomized controlled trial.

    PubMed

    Feigenberg, Tomer; Maor-Sagie, Esther; Zivi, Einat; Abu-Dia, Mushira; Ben-Meir, Assaf; Sela, Hen Y; Ezra, Yossef

    2014-01-01

    Our objective was to evaluate the effectiveness of adhesive glue in repairing first degree perineal tears. We conducted a noninferiority prospective, randomized, controlled trial comparing adhesive glue with traditional suturing. Each case was evaluated immediately after birth and after the puerperium. The two-sample t-test and the Mann-Whitney nonparametric test were applied to compare quantitative variables between the treatment groups. The chi-squared test and Fisher's exact test were used to assess the association between qualitative variables. A total of 102 women participated, 28 in the suture arm and 74 in the adhesive glue arm. While cosmetic and functional results of adhesive glue use were not inferior to suturing, the use of adhesive glue was associated with a shorter procedure, less need for local anesthetic, less pain, and greater satisfaction. Our results suggest a novel approach for the repair of common postpartum first degree lacerations. The use of adhesive glue achieves cosmetic and functional results equal to traditional suturing and offers some immediate advantages for the patient. While further clinical trials are needed to validate our results, it is important to inform obstetrician of the possible use of adhesive glue in these very common clinical scenarios. This trial is registered with NCT00746707.

  10. Impact of homocysteine-thiolactone on plasma fibrin networks.

    PubMed

    Genoud, Valeria; Lauricella, Ana María; Kordich, Lucía C; Quintana, Irene

    2014-11-01

    Epidemiologic studies have shown that hyperhomocysteinemia is an independent risk factor for vascular disease. Homocysteine (Hcy) circulates as different species, mostly protein bound, and approximately 1% as its reduced form and the cyclic thioester homocysteine-thiolactone (HTL). Despite the level of plasma thiolactone being markedly low, detrimental effects are related to its high reactivity. HTL reacts with proteins by acylation of free basic amino groups; in particular, the epsilon-amino group of lysine residues forms adducts and induces structural and functional changes in plasma proteins. In order to assess the effects of HTL on plasma fibrin networks, a pool of normal plasma incubated with HTL (100, 500 and 1,000 μmol/L, respectively) was evaluated by global coagulation tests and fibrin formation kinetic assays, and the resulting fibrin was observed by scanning electron microscopy. HTL significantly prolonged global coagulation tests in a concentration-dependent manner with respect to control, and increases were up to 14.5%. Fibrin formation kinetic parameters displayed statistically significant differences between HTL-treated plasma and control in a concentration-dependent way, showing higher lag phase and lower maximum reaction velocity and final network optical density. Electron microscopy analysis of HTL plasma networks revealed a compact architecture, with more branches and shorter fibers than control. We can conclude that HTL induced a slower coagulation process, rendering more tightly packed fibrin clots. Since these features of the networks have been related to impaired fibrinolysis, the N-homocysteinylation reactions would be involved in the prothrombotic effects associated to hyperhomocysteinemia.

  11. Fibrin-Targeted Magnetic Resonance Imaging Allows In Vivo Quantification of Thrombus Fibrin Content and Identifies Thrombi Amenable for Thrombolysis

    PubMed Central

    Jenkins, Julia; Modarai, Bijan; Wiethoff, Andrea J.; Phinikaridou, Alkystis; Grover, Steven P.; Patel, Ashish S.; Schaeffter, Tobias; Smith, Alberto; Botnar, Rene M.

    2014-01-01

    Objective Deep venous thrombosis is a major health problem. Thrombolytic therapies are effective in recanalizing the veins and preventing post-thrombotic complications, but there is no consensus on selection criteria. The aim of this study was to investigate a fibrin-specific MRI contrast agent (EP-2104R) for the accurate quantification of thrombus’ fibrin content in vivo and for the identification of thrombus suitable for thrombolysis. Approach and Results Venous thrombosis was induced in the inferior vena cava of 8- to 10-week-old male BALB/C mice and MRI performed 2, 4, 7, 10, 14, and 21 days later. Eighteen mice were scanned at each time point pre and 2 hours post injection of EP-2104R (8.0 μmol/kg) with 12 mice at each time point used to correlate fibrin contrast uptake with thrombus’ histological stage and fibrin content. Six mice at each time point were immediately subjected to intravascular thrombolytic therapy (10 mg/kg of tissue-type plasminogen activator). Mice were imaged to assess response to lytic therapy 24 hours after thrombolytic treatment. Two mice at each time point were scanned post injection of 0.2 mmol/kg of Gd-DTPA (gadolinium with diethylenetriaminepentacetate, Magnevist, Schering AG, Berlin, Germany) for control purpose. Contrast uptake was correlated positively with the fibrin content of the thrombus measured by Western blotting (R2=0.889; P<0.001). Thrombus relaxation rate (R1) post contrast and the change in visualized thrombus size on late gadolinium enhancement inversion recovery MRI pre–EP-2104R and post–EP-2104R injection were the best predictors for successful thrombolysis (area under the curve, 0.989 [95% confidence interval, 0.97–1.00] and 0.994 [95% confidence interval, 0.98–1.00] respectively). Conclusions MRI with a fibrin-specific contrast agent accurately estimates thrombus fibrin content in vivo and identifies thrombi that are amenable for thrombolysis. PMID:24723557

  12. A water-borne adhesive modeled after the sandcastle glue of P. californica.

    PubMed

    Shao, Hui; Bachus, Kent N; Stewart, Russell J

    2009-05-13

    Polyacrylate glue protein analogs of the glue secreted by Phragmatopoma californica, a marine polycheate, were synthesized with phosphate, primary amine, and catechol sidechains with molar ratios similar to the natural glue proteins. Aqueous mixtures of the mimetic polyelectrolytes condensed into liquid complex coacervates around neutral pH. Wet cortical bone specimens bonded with the coacervates, oxidatively crosslinked through catechol sidechains, had bond strengths nearly 40% of the strength of a commercial cyanoacrylate. The unique material properties of complex coacervates may be ideal for development of clinically useful adhesives and other biomaterials.

  13. Shear and bulk viscosities for pure glue matter

    SciTech Connect

    Khvorostukhin, A. S.; Toneev, V. D.; Voskresensky, D. N.

    2011-03-15

    Shear {eta} and bulk {zeta} viscosities are calculated in a quasiparticle model within a relaxation-time approximation for pure gluon matter. Below T{sub c}, the confined sector is described within a quasiparticle glueball model. The constructed equation of state reproduces the first-order phase transition for the glue matter. It is shown that with this equation of state, it is possible to describe the temperature dependence of the shear viscosity to entropy ratio {eta}/s and the bulk viscosity to entropy ratio {zeta}/s in reasonable agreement with available lattice data, but absolute values of the {zeta}/s ratio underestimate the upper limits of this ratio in the lattice measurements typically by an order of magnitude.

  14. Bioorthogonal Click Chemistry-Based Synthetic Cell Glue.

    PubMed

    Koo, Heebeom; Choi, Myunghwan; Kim, Eunha; Hahn, Sei Kwang; Weissleder, Ralph; Yun, Seok Hyun

    2015-12-22

    Artificial methods of cell adhesion can be effective in building functional cell complexes in vitro, but methods for in vivo use are currently lacking. Here, a chemical cell glue based on bioorthogonal click chemistry with high stability and robustness is introduced. Tetrazine (Tz) and trans-cyclooctene (TCO) conjugated to the cell surface form covalent bonds between cells within 10 min in aqueous conditions. Glued, homogeneous, or heterogeneous cell pairs remain viable and stably attached in a microfluidic flow channel at a shear stress of 20 dyn cm(-2) . Upon intravenous injection of assembled Jurkat T cells into live mice, fluorescence microscopy shows the trafficking of cell pairs in circulation and their infiltration into lung tissues. These results demonstrate the promising potential of chemically glued cell pairs for various applications ranging from delivering therapeutic cells to studying cell-cell interactions in vivo.

  15. Elastic behavior and platelet retraction in low- and high-density fibrin gels.

    PubMed

    Wufsus, Adam R; Rana, Kuldeepsinh; Brown, Andrea; Dorgan, John R; Liberatore, Matthew W; Neeves, Keith B

    2015-01-06

    Fibrin is a biopolymer that gives thrombi the mechanical strength to withstand the forces imparted on them by blood flow. Importantly, fibrin is highly extensible, but strain hardens at low deformation rates. The density of fibrin in clots, especially arterial clots, is higher than that in gels made at plasma concentrations of fibrinogen (3-10 mg/mL), where most rheology studies have been conducted. Our objective in this study was to measure and characterize the elastic regimes of low (3-10 mg/mL) and high (30-100 mg/mL) density fibrin gels using shear and extensional rheology. Confocal microscopy of the gels shows that fiber density increases with fibrinogen concentration. At low strains, fibrin gels act as thermal networks independent of fibrinogen concentration. Within the low-strain regime, one can predict the mesh size of fibrin gels by the elastic modulus using semiflexible polymer theory. Significantly, this provides a link between gel mechanics and interstitial fluid flow. At moderate strains, we find that low-density fibrin gels act as nonaffine mechanical networks and transition to affine mechanical networks with increasing strains within the moderate regime, whereas high-density fibrin gels only act as affine mechanical networks. At high strains, the backbone of individual fibrin fibers stretches for all fibrin gels. Platelets can retract low-density gels by >80% of their initial volumes, but retraction is attenuated in high-density fibrin gels and with decreasing platelet density. Taken together, these results show that the nature of fibrin deformation is a strong function of fibrin fiber density, which has ramifications for the growth, embolization, and lysis of thrombi.

  16. Meniscal repair in vivo using human chondrocyte-seeded PLGA mesh scaffold pretreated with platelet-rich plasma.

    PubMed

    Kwak, Hong Suk; Nam, Jinwoo; Lee, Ji-Hye; Kim, Hee Joong; Yoo, Jeong Joon

    2017-02-01

    The objective of this study was to test the hypothesis that platelet-rich plasma (PRP) pretreatment on a poly-lactic-co-glycolic acid (PLGA) mesh scaffold enhances the healing capacity of the meniscus with human chondrocyte-seeded scaffolds in vivo, even when the seeded number of cells was reduced from 10 million to one million. A flexible PLGA mesh scaffold was pretreated with PRP using a centrifugal technique. One million human articular chondrocytes were seeded onto the scaffold by dynamic oscillation. After 7 days, scaffolds were placed between human meniscal discs and were implanted subcutaneously in nude mice for 6 weeks (n = 16/group). Fluorescence microscopy demonstrated uniform attachment of the chondrocytes throughout the scaffolds 24 h following seeding. Cell attachment analysis revealed a significantly increased number of chondrocytes on PRP-pretreated than non-treated scaffolds (p < 0.05). Field emission scanning electron microscopy revealed chondrocytes attached to the PRP-pretreated scaffolds interconnecting their cellular processes with the fibrin network at 24 h and day 7 of culture. Of the 16 constructs containing PRP-pretreated scaffolds implanted in mice, six menisci healed completely, nine healed incompletely and one did not heal. Histological results from the 16 control constructs containing non-treated scaffolds revealed that none had healed completely, four healed incompletely and 12 did not heal. The histological outcome between the groups was significantly different (p < 0.05). These findings suggest that human articular chondrocytes on PRP-pretreated PLGA mesh scaffolds demonstrate increased cell attachment and enhance the healing capacity of meniscus with a reduced number of seeding cells in a meniscal repair mouse model. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Chondrogenic Regeneration Using Bone Marrow Clots and a Porous Polycaprolactone-Hydroxyapatite Scaffold by Three-Dimensional Printing

    PubMed Central

    Yao, Qingqiang; Wei, Bo; Liu, Nancy; Li, Chenshuang; Guo, Yang; Shamie, Arya Nick; Chen, James; Tang, Cheng; Jin, Chengzhe; Xu, Yan

    2015-01-01

    Scaffolds play an important role in directing three-dimensional (3D) cartilage regeneration. Our recent study reported the potential advantages of bone marrow clots (MC) in promoting extracellular matrix (ECM) scaffold chondrogenic regeneration. The aim of this study is to build a new scaffold for MC, with improved characteristics in mechanics, shaping, and biodegradability, compared to our previous study. To address this issue, this study prepared a 3D porous polycaprolactone (PCL)-hydroxyapatite (HA) scaffold combined with MC (Group A), while the control group (Group B) utilized a bone marrow stem cell seeded PCL-HA scaffold. The results of in vitro cultures and in vivo implantation demonstrated that although an initial obstruction of nutrient exchange caused by large amounts of fibrin and erythrocytes led to a decrease in the ratio of live cells in Group A, these scaffolds also showed significant improvements in cell adhesion, proliferation, and chondrogenic differentiation with porous recanalization in the later culture, compared to Group B. After 4 weeks of in vivo implantation, Group A scaffolds have a superior performance in DNA content, Sox9 and RunX2 expression, cartilage lacuna-like cell and ECM accumulation, when compared to Group B. Furthermore, Group A scaffold size and mechanics were stable during in vitro and in vivo experiments, unlike the scaffolds in our previous study. Our results suggest that the combination with MC proved to be a highly efficient, reliable, and simple new method that improves the biological performance of 3D PCL-HA scaffold. The MC-PCL-HA scaffold is a candidate for future cartilage regeneration studies. PMID:25530453

  18. Chondrogenic regeneration using bone marrow clots and a porous polycaprolactone-hydroxyapatite scaffold by three-dimensional printing.

    PubMed

    Yao, Qingqiang; Wei, Bo; Liu, Nancy; Li, Chenshuang; Guo, Yang; Shamie, Arya Nick; Chen, James; Tang, Cheng; Jin, Chengzhe; Xu, Yan; Bian, Xiuwu; Zhang, Xinli; Wang, Liming

    2015-04-01

    Scaffolds play an important role in directing three-dimensional (3D) cartilage regeneration. Our recent study reported the potential advantages of bone marrow clots (MC) in promoting extracellular matrix (ECM) scaffold chondrogenic regeneration. The aim of this study is to build a new scaffold for MC, with improved characteristics in mechanics, shaping, and biodegradability, compared to our previous study. To address this issue, this study prepared a 3D porous polycaprolactone (PCL)-hydroxyapatite (HA) scaffold combined with MC (Group A), while the control group (Group B) utilized a bone marrow stem cell seeded PCL-HA scaffold. The results of in vitro cultures and in vivo implantation demonstrated that although an initial obstruction of nutrient exchange caused by large amounts of fibrin and erythrocytes led to a decrease in the ratio of live cells in Group A, these scaffolds also showed significant improvements in cell adhesion, proliferation, and chondrogenic differentiation with porous recanalization in the later culture, compared to Group B. After 4 weeks of in vivo implantation, Group A scaffolds have a superior performance in DNA content, Sox9 and RunX2 expression, cartilage lacuna-like cell and ECM accumulation, when compared to Group B. Furthermore, Group A scaffold size and mechanics were stable during in vitro and in vivo experiments, unlike the scaffolds in our previous study. Our results suggest that the combination with MC proved to be a highly efficient, reliable, and simple new method that improves the biological performance of 3D PCL-HA scaffold. The MC-PCL-HA scaffold is a candidate for future cartilage regeneration studies.

  19. Sonothrombolysis for intraocular fibrin formation in an animal model.

    PubMed

    Yamashita, Toshifumi; Ohtsuka, Hiroki; Arimura, Noboru; Sonoda, Shozo; Kato, Chihiro; Ushimaru, Kaneo; Hara, Naoko; Tachibana, Katsuro; Sakamoto, Taiji

    2009-11-01

    Vascular diseases such as diabetic retinopathy or retinal arterial occlusion are always associated with retinal and/or choroidal vasculopathy and intravascular thrombosis is commonly found. The ultrasound (US) therapy is a recently developed technique to accelerate fibrinolysis and it is being applied to some clinical fields. The present study was to observe the effects of extraocular US exposure on intraocular fibrin, which is a deteriorating factor in various ocular diseases. Tubes containing human blood (2 mL) in the following groups were irradiated with US; US alone, US with tissue plasminogen activator (tPA), tPA alone, and saline (control). Fibrinolysis was quantified by measuring D-dimer after 2h. In rat eyes, intracameral fibrin (fibrin formation in the anterior chamber of the eye) was induced by YAG-laser-induced iris bleeding. Then, eyes in the following groups were irradiated with US; US alone, subconjunctival tPA alone, US and subconjunctival tPA, control. Intracameral fibrin was scored on day 3 (3+ maximum to 0). The temperatures of rat eyes were measured by infrared thermography. Histologic evaluation was also performed. D-dimer was increased by US with statistical significance (p <0.05) or tPA (p <0.01). D-dimer in US with tPA group was significantly higher than either US alone or tPA alone group (p <0.01). In rat eyes, the average intracameral fibrin score on day 3 was 1.4 in control group and 1.2 in subconjunctival tPA alone group; however, it decreased significantly in the US alone group (0.75; p <0.05, vs. control), US and subconjunctival tPA group (0.71; p <0.01, vs. control). The temperature was less than 34 degrees C after US exposure. No histologic damage was observed. US irradiation from outside accelerated intracameral fibrinolysis without causing apparent tissue damage. This noninvasive method might have therapeutic value for intraocular fibrin.

  20. Exact approaches for scaffolding

    PubMed Central

    2015-01-01

    This paper presents new structural and algorithmic results around the scaffolding problem, which occurs prominently in next generation sequencing. The problem can be formalized as an optimization problem on a special graph, the "scaffold graph". We prove that the problem is polynomial if this graph is a tree by providing a dynamic programming algorithm for this case. This algorithm serves as a basis to deduce an exact algorithm for general graphs using a tree decomposition of the input. We explore other structural parameters, proving a linear-size problem kernel with respect to the size of a feedback-edge set on a restricted version of Scaffolding. Finally, we examine some parameters of scaffold graphs, which are based on real-world genomes, revealing that the feedback edge set is significantly smaller than the input size. PMID:26451725

  1. Scaffold: Quantum Programming Language

    DTIC Science & Technology

    2012-07-24

    it in pointer and addressing errors. • C2QG: A key feature of Scaffold is a Classical code to Quantum Gates sequence (C2QG) mod- ule. C2QG modules...Scaffold: Quantum Programming Language Ali Javadi Abhari, Arvin Faruque, Mohammad Javad Dousti, Lukas Svec, Oana Catu, Amlan Chakrabati, Chen-Fu...endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S. Government. 1 Introduction Quantum computing is of significant research

  2. GLUE that sticks to HIV: a helix-grafted GLUE protein that selectively binds the HIV gp41 N-terminal helical region.

    PubMed

    Walker, Susanne N; Tennyson, Rachel L; Chapman, Alex M; Kennan, Alan J; McNaughton, Brian R

    2015-01-19

    Methods for the stabilization of well-defined helical peptide drugs and basic research tools have received considerable attention in the last decade. Here, we report the stable and functional display of an HIV gp41 C-peptide helix mimic on a GRAM-Like Ubiquitin-binding in EAP45 (GLUE) protein. C-peptide helix-grafted GLUE selectively binds a mimic of the N-terminal helical region of gp41, a well-established HIV drug target, in a complex cellular environment. Additionally, the helix-grafted GLUE is folded in solution, stable in human serum, and soluble in aqueous solutions, and thus overcomes challenges faced by a multitude of peptide drugs, including those derived from HIV gp41 C-peptide.

  3. Double Coaxial Microcatheter Technique for Glue Embolization of Renal Arteriovenous Malformations

    SciTech Connect

    Uchikawa, Yoko; Mori, Kensaku; Shiigai, Masanari; Konishi, Takahiro; Hoshiai, Sodai; Ishigro, Toshitaka Hiyama, Takashi; Nakai, Yasunobu; Minami, Manabu

    2015-10-15

    PurposeTo demonstrate the technical benefit of the double coaxial microcatheter technique for embolization of renal arteriovenous malformations (AVMs) with n-butyl cyanoacrylate and iodized oil (glue).Materials and MethodsSix consecutive patients (1 man and 5 women; mean age 61 years; range 44–77 years) with renal AVMs were included. Five patients had hematuria, and one had a risk of heart failure due to a large intrarenal arteriovenous shunt. All patients underwent transarterial embolization using glue and the double coaxial microcatheter technique with outer 2.6F and inner 1.9F microcatheters. After glue injection, the inner microcatheter was retracted, while the outer microcatheter was retained. We assessed the complications and clinical outcomes of this technique.ResultsTechnical success was achieved in all patients. In 9 sessions, 34 feeding arteries were embolized with glue using the double coaxial microcatheter technique, 1 was embolized with glue using a single microcatheter, and 2 were embolized with coils. The double coaxial microcatheter technique was useful for selecting small tortuous feeding arteries, preventing glue reflux to the proximal arteries, and approaching multiple feeding arteries without complete retraction of the microcatheters. As a minor complication, glue migrated into the venous system in four patients without any sequelae. In all patients, favorable clinical outcomes, including hematuria cessation in five patients and improvement of the large intrarenal arteriovenous shunt in one patient, were obtained without deterioration of renal function.ConclusionGlue embolization with the double coaxial microcatheter technique was useful for treating renal AVMs with multiple tortuous feeding arteries.

  4. Calibration of cathode strip gains in multiwire drift chambers of the GlueX experiment

    SciTech Connect

    Berdnikov, V. V.; Somov, S. V.; Pentchev, L.; Somov, A.

    2016-07-01

    A technique for calibrating cathode strip gains in multiwire drift chambers of the GlueX experiment is described. The accuracy of the technique is estimated based on Monte Carlo generated data with known gain coefficients in the strip signal channels. One of the four detector sections has been calibrated using cosmic rays. Results of drift chamber calibration on the accelerator beam upon inclusion in the GlueX experimental setup are presented.

  5. Cyanoacrylate glue as an alternative mounting medium for resin-embedded semithin sections.

    PubMed

    Liu, Pei-Yun; Phillips, Gael E; Kempf, Margit; Cuttle, Leila; Kimble, Roy M; McMillan, James R

    2010-01-01

    Commercially available generic Superglue (cyanoacrylate glue) can be used as an alternative mounting medium for stained resin-embedded semithin sections. It is colourless and contains a volatile, quick-setting solvent that produces permanent mounts of semithin sections for immediate inspection under the light microscope. Here, we compare the use of cyanoacrylate glue for mounting semithin sections with classical dibutyl phthalate xylene (DPX) in terms of practical usefulness, effectiveness and the quality of the final microscopic image.

  6. [Embolization with cyanoacrylate glue as a treatment method in giant direct carotid cavernous fistula].

    PubMed

    Sprezak, Kamila; Brzegowy, Paweł; Szajner, Maciej; Urbanik, Andrzej

    2012-01-01

    A case of 21-year-old woman with postraumatic giant direct carotid-cavernous fistula, successfully treated by endovascular embilisation with cyanoacrylate glue, is presented. Stent-assisted coils placement is the method of choice for the treatment of patients with carotid-cavernous fistulas, but closure of direct fistula with cyanoacrylate glue can be alternative, safety and efficient technique especially in cases in which standard interventions offer increased risk or in which other methods have failed.

  7. Scaffolds in Tendon Tissue Engineering

    PubMed Central

    Longo, Umile Giuseppe; Lamberti, Alfredo; Petrillo, Stefano; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Tissue engineering techniques using novel scaffold materials offer potential alternatives for managing tendon disorders. Tissue engineering strategies to improve tendon repair healing include the use of scaffolds, growth factors, cell seeding, or a combination of these approaches. Scaffolds have been the most common strategy investigated to date. Available scaffolds for tendon repair include both biological scaffolds, obtained from mammalian tissues, and synthetic scaffolds, manufactured from chemical compounds. Preliminary studies support the idea that scaffolds can provide an alternative for tendon augmentation with an enormous therapeutic potential. However, available data are lacking to allow definitive conclusion on the use of scaffolds for tendon augmentation. We review the current basic science and clinical understanding in the field of scaffolds and tissue engineering for tendon repair. PMID:22190961

  8. Fibrin Targeted Block Copolymers for the Prevention of Postsurgical Adhesions

    PubMed Central

    Medley, John M.; Kaplan, Eugene; Oz, Helieh S.; Sundararaj, Sharath C.; Puleo, David A.; Dziubla, Thomas D.

    2015-01-01

    Despite advances in surgical methods, postsurgical adhesions (PSA) remain a significant clinical challenge affecting millions of patients each year. These permanent fibrous connections between tissues result from the bridging of wounded internal surfaces by an extended fibrin gel matrix (FGM). Adhesion formation is a result of a systems level convergence of wound healing pathways, complicating the design of materials that could inhibit their occurrence. In this study, a systematic approach that identifies key material properties required for functional performance optimization was used to design a new fibrin-targeted PSA prevention material. A series of multifunctional polymers with varied molecular architectures was synthesized to investigate the effect of changing polymer structural parameters on the ability to disrupt the formation of an extended FGM. Initial studies in a murine adhesion model demonstrated a statistically significant reduction in the degree of PSA formation, demonstrating the potential value of this systematic approach. PMID:21695779

  9. Spider web glue: two proteins expressed from opposite strands of the same DNA sequence.

    PubMed

    Choresh, Omer; Bayarmagnai, Battuya; Lewis, Randolph V

    2009-10-12

    The various silks that make up the web of the orb web spiders have been studied extensively. However, success in prey capture depends as much on the web glue as on the fibers. Spider silk glue, which is considered one of the strongest and most effective biological glues, is an aqueous solution secreted from the orb weaving spider's aggregate glands and coats the spiral prey capturing threads of their webs. Studies identified the major component of the glue as microscopic nodules made of a glycoprotein. This study describes two newly discovered proteins that form the glue-glycoprotein of the golden orb weaving spider Nephila clavipes . Our results demonstrate that both proteins contain unique 110 amino acid repetitive domains that are encoded by opposite strands of the same DNA sequence. Thus, the genome of the spider encodes two distinct yet functionally related genes by using both strands of an identical DNA sequence. Moreover, the closest match for the nonrepetitive region of one of the proteins is chitin binding proteins. The web glue appears to have evolved a substantial level of sophistication matching that of the spider silk fibers.

  10. Dynamics of spider glue adhesion: effect of surface energy and contact area

    NASA Astrophysics Data System (ADS)

    Amarpuri, Gaurav; Chen, Yizhou; Blackledge, Todd; Dhinojwala, Ali

    Spider glue is a unique biological adhesive which is humidity responsive such that the adhesion continues to increase upto 100% relative humidity (RH) for some species. This is unlike synthetic adhesives that significantly drop in adhesion with an increase in humidity. However, most of adhesion data reported in literature have used clean hydrophilic glass substrate, unlike the hydrophobic, and charged insect cuticle surface that adheres to spider glue in nature. Previously, we have reported that the spider glue viscosity changes over five orders of magnitude with humidity. Here, we vary the surface energy and surface charge of the substrate to test the change in Larnioides cornutus spider glue adhesion with humidity. We find that an increase in both surface energy and surface charge density increases the droplet spreading and there exists an optimum droplet contact area where adhesion is maximized. Moreover, spider glue droplets act as reusable adhesive for low energy hydrophobic surface at the optimum humidity. These results explain why certain prey are caught more efficiently by spiders in their habitat. The mechanism by which spider species tune its glue adhesion for local prey capture can inspire new generation smart adhesives.

  11. Effect of Glue Layers on Response of Cellulose Fiberboard at Low Temperature

    SciTech Connect

    Smith, A.C.

    2001-03-07

    Studies of crush performance of cane fiberboard assemblies, sometimes used in overpacks for radioactive materials packages, has shown that, under low temperature or desiccated conditions, a short duration transient stress spike may occur for specimens loaded parallel to the plane of the fiberboard. This effect has been attributed to the stiffening effect of the layers of glue bonding the fiberboard sheets together. The question of the possibility of a property of the fiberboard itself being responsible for this phenomenon has been raised. To answer this question, specimens of fiberboard were bonded with varying amounts of glue and the resulting joint evaluated. Microscopic analysis was performed of the Celotex(R) and glue layer in these specimens and in specimens cut from production packages. Available test results indicate that the Celotex(R) is essentially isotropic. No indication of cellulose properties which could account for the spike phenomenon was found. The study revealed that the glue layer is in the form of islands of glue, formed in pores on the fiberboard surface, connected by thin ligaments of glue.

  12. Evidence from Multiple Species that Spider Silk Glue Component ASG2 is a Spidroin

    PubMed Central

    Collin, Matthew A.; Clarke, Thomas H.; Ayoub, Nadia A.; Hayashi, Cheryl Y.

    2016-01-01

    Spiders in the superfamily Araneoidea produce viscous glue from aggregate silk glands. Aggregate glue coats prey-capture threads and hampers the escape of prey from webs, thereby increasing the foraging success of spiders. cDNAs for Aggregate Spider Glue 1 (ASG1) and 2 (ASG2) have been previously described from the golden orb-weaver, Nephila clavipes, and Western black widow, Latrodectus hesperus. To further investigate aggregate glues, we assembled ASG1 and ASG2 from genomic target capture libraries constructed from three species of cob-web weavers and three species of orb-web weavers, all araneoids. We show that ASG1 is unlikely to be a glue, but rather is part of a widespread arthropod gene family, the peritrophic matrix proteins. For ASG2, we demonstrate its remarkable architectural and sequence similarities to spider silk fibroins, indicating that ASG2 is a member of the spidroin gene family. Thus, spidroins have diversified into glues in addition to task-specific, high performance fibers. PMID:26875681

  13. ε-(γ-Glutamyl)lysine in Fibrin: Lack of Crosslink Formation in Factor XIII Deficiency

    PubMed Central

    Pisano, J. J.; Finlayson, J. S.; Peyton, Marjorie P.; Nagai, Yumiko

    1971-01-01

    Fibrin clots formed in normal plasma contained about 6 mol of ε-(γ-glutamyl)lysine per mol of fibrin, whereas those formed in plasma from individuals with Factor XIII deficiency contained little or none of this crosslink (0.02-0.64 mol/mol of fibrin). Partial supplementation of the plasma with Factor XIII, at a single concentration tested, commensurately increased the number of crosslinks. PMID:5279517

  14. Fibrin gel-immobilized primary osteoblasts in calcium phosphate bone cement: in vivo evaluation with regard to application as injectable biological bone substitute.

    PubMed

    Kneser, U; Voogd, A; Ohnolz, J; Buettner, O; Stangenberg, L; Zhang, Y H; Stark, G B; Schaefer, D J

    2005-01-01

    Osteogenic injectable bone substitutes may be useful for many applications. We developed a novel injectable bone substitute based on osteoblast-fibrin glue suspension and calcium phosphate bone cement (BC). Human osteoblasts were isolated from trabecular bone samples and cultured under standard conditions. Osteoblasts were suspended in fibrinogen solution (FS). BC was cured with thrombin solution. 8 x 4 mm injectable bone discs were prepared using silicon molds and a custom-made applicator device. Discs containing BC, BC/FS, or BC/FS/osteoblasts were implanted subcutaneously into athymic nude mice. After 3, 9 and 24 weeks, specimens were explanted and subjected to morphologic and biomechanical evaluation. In vitro fibrin gel-embedded osteoblasts displayed a differentiated phenotype as evidenced by alkaline phosphatase, collagen type 1 and von Kossa stains. A proportion of osteoblasts appeared morphologically intact over a 3-day in vitro period following application into the BC. BC/FS and BC/FS/osteoblast discs were sparsely infiltrated with vascularized connective tissue. There was no bone formation in implants from all groups. However, positive von Kossa staining only in BC/FS/osteoblast groups suggests engraftment of at least some of the transplanted cells. Biomechanical evaluation demonstrated initial stability of the composites. Young's modulus and maximal load did not differ significantly in the BC/FS and BC/FS/osteoblast groups. The practicability of osteoblast-containing injectable bone could be demonstrated. The dense microstructure and the suboptimal initial vascularization of the composites may explain the lack of bone formation. Modifications with regard to enhanced osteoblast survival are mandatory for a possible application as injectable osteogenic bone replacement system.

  15. Acoustic droplet–hydrogel composites for spatial and temporal control of growth factor delivery and scaffold stiffness

    PubMed Central

    Fabiilli, Mario L.; Wilson, Christopher G.; Padilla, Frédéric; Martín-Saavedra, Francisco M.; Fowlkes, J. Brian; Franceschi, Renny T.

    2013-01-01

    Wound healing is regulated by temporally and spatially restricted patterns of growth factor signaling, but there are few delivery vehicles capable of the “on-demand” release necessary for recapitulating these patterns. Recently we described a perfluorocarbon double emulsion that selectively releases a protein payload upon exposure to ultrasound through a process known as acoustic droplet vaporization (ADV). In this study, we describe a delivery system composed of fibrin hydrogels doped with growth factor-loaded double emulsion for applications in tissue regeneration. Release of immunoreactive basic fibroblast growth factor (bFGF) from the composites increased up to 5-fold following ADV and delayed release was achieved by delaying exposure to ultrasound. Releasates of ultrasound-treated materials significantly increased the proliferation of endothelial cells compared to sham controls, indicating that the released bFGF was bioactive. ADV also triggered changes in the ultrastructure and mechanical properties of the fibrin as bubble formation and consolidation of the fibrin in ultrasound-treated composites were accompanied by up to a 22-fold increase in shear stiffness. ADV did not reduce the viability of cells suspended in composite scaffolds. These results demonstrate that an acoustic droplet–hydrogel composite could have broad utility in promoting wound healing through on-demand control of growth factor release and/or scaffold architecture. PMID:23535233

  16. Altered plasma fibrin clot properties in essential thrombocythemia.

    PubMed

    Małecki, Rafał; Gacka, Małgorzata; Kuliszkiewicz-Janus, Małgorzata; Jakobsche-Policht, Urszula; Kwiatkowski, Jacek; Adamiec, Rajmund; Undas, Anetta

    2016-01-01

    Patients with increased thromboembolic risk tend to form denser fibrin clots which are relatively resistant to lysis. We sought to investigate whether essential thrombocythemia (ET) is associated with altered fibrin clot properties in plasma. Ex vivo plasma fibrin clot permeability coefficient (Ks), turbidimetry and clot lysis time (CLT) were measured in 43 consecutive patients with ET (platelet count from 245 to 991 × 10(3)/µL) and 50 control subjects matched for age, sex and comorbidities. Fibrinolysis proteins and inhibitors together with platelet activation markers were determined. Reduced Ks (-38%, p < 0.0001) and prolonged CLT (+34%, p < 0.0001) were observed in ET. The differences remained significant after adjustment for fibrinogen and platelet count. ET was associated with a slightly shorter lag phase (-5%, p = 0.01) and higher maximum absorbency of the turbidimetric curve (+6%, p < 0.001). The ET patients had higher plasma P-selectin by 193% (p < 0.00001) and platelet factor 4 (PF4) by 173% (p < 0.00001), with higher P-selectin observed in 19 (44%) patients with JAK-2 gene V617F mutation. Higher t-PA (+20%, p < 0.001), 23% higher plasminogen activator inhibitor-1, PAI-1 (+23%, p < 0.01) and unaltered thrombin-activatable fibrinolysis inhibitor, plasminogen and α2-antiplasmin activity were found in the ET group. Ks inversely correlated with fibrinogen, PF4 and C-reactive protein. CLT positively correlated only with PAI-1. Patients with ET display prothrombotic plasma fibrin clot phenotype including impaired fibrinolysis, which represents a new prothrombotic mechanism in this disease.

  17. 21 CFR 864.7320 - Fibrinogen/fibrin degradation products assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... dissolution of the fibrin in a blood clot) and in monitoring therapy for disseminated intravascular coagulation (nonlocalized clotting in the blood vessels). (b) Classification. Class II (performance standards)....

  18. 21 CFR 864.7320 - Fibrinogen/fibrin degradation products assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dissolution of the fibrin in a blood clot) and in monitoring therapy for disseminated intravascular coagulation (nonlocalized clotting in the blood vessels). (b) Classification. Class II (performance standards)....

  19. 21 CFR 864.7320 - Fibrinogen/fibrin degradation products assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... dissolution of the fibrin in a blood clot) and in monitoring therapy for disseminated intravascular coagulation (nonlocalized clotting in the blood vessels). (b) Classification. Class II (performance standards)....

  20. 21 CFR 864.7320 - Fibrinogen/fibrin degradation products assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... dissolution of the fibrin in a blood clot) and in monitoring therapy for disseminated intravascular coagulation (nonlocalized clotting in the blood vessels). (b) Classification. Class II (performance standards)....

  1. 21 CFR 864.7320 - Fibrinogen/fibrin degradation products assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dissolution of the fibrin in a blood clot) and in monitoring therapy for disseminated intravascular coagulation (nonlocalized clotting in the blood vessels). (b) Classification. Class II (performance standards)....

  2. The potential applications of fibrin-coated electrospun polylactide nanofibers in skin tissue engineering

    PubMed Central

    Bacakova, Marketa; Musilkova, Jana; Riedel, Tomas; Stranska, Denisa; Brynda, Eduard; Zaloudkova, Margit; Bacakova, Lucie

    2016-01-01

    Fibrin plays an important role during wound healing and skin regeneration. It is often applied in clinical practice for treatment of skin injuries or as a component of skin substitutes. We prepared electrospun nanofibrous membranes made from poly(l-lactide) modified with a thin fibrin nanocoating. Fibrin surrounded the individual fibers in the membrane and also formed a thin fibrous mesh on several places on the membrane surface. The cell-free fibrin nanocoating remained stable in the cell culture medium for 14 days and did not change its morphology. On membranes populated with human dermal fibroblasts, the rate of fibrin degradation correlated with the degree of cell proliferation. The cell spreading, mitochondrial activity, and cell population density were significantly higher on membranes coated with fibrin than on nonmodified membranes, and this cell performance was further improved by the addition of ascorbic acid in the cell culture medium. Similarly, fibrin stimulated the expression and synthesis of collagen I in human dermal fibroblasts, and this effect was further enhanced by ascorbic acid. The expression of beta1-integrins was also improved by fibrin, and on pure polylactide membranes, it was slightly enhanced by ascorbic acid. In addition, ascorbic acid promoted deposition of collagen I in the form of a fibrous extracellular matrix. Thus, the combination of nanofibrous membranes with a fibrin nanocoating and ascorbic acid seems to be particularly advantageous for skin tissue engineering. PMID:26955273

  3. Collagen scaffold meniscus implant integration in a canine model: a histological analysis.

    PubMed

    Hansen, Robert; Bryk, Eli; Vigorita, Vincent

    2013-12-01

    In the situation of an irreparable meniscus tear, an implant comparable to a normal meniscus is an attractive option. Using a canine model, we assessed the early and late histologic response to a tissue engineered meniscal collagen scaffold (CS). All animals received bilateral arthrotomies, and all joints receiving the CS had an 80% resection of the meniscus. Animals were sacrificed at 3 and 6 weeks, and 12, 13, and 17 months. The CS/tissue complex and host meniscal rim were sectioned for histologic examination with specific focus on the extracellular matrix, angiogenesis, cellular resorption of the scaffold, scaffold appearance, and CS/Host integration. Early histologic samples (3-6 weeks) revealed active angiogenesis and fibrin clots evolving into cellular granulation type tissue. At 12 months, a mature fibrochondrocytic matrix was depositing with gradations of dissolution and integration of the CS implant. Maturing CS/host integration was observed at 18 months. Active cellular resorption of the implant decreased over time. Four cases showed a mild non-specific chronic inflammation and one additional case showed inflammatory engulfment of the scaffold with giant cells at 3 weeks. No evidence of infection either clinically or histologically was observed at any time point. Overall, this histologic analysis demonstrated the active integration of a meniscal like cartilage into a tissue engineered biological scaffold in a canine model.

  4. MBCP biphasic calcium phosphate granules and tissucol fibrin sealant in rabbit femoral defects: the effect of fibrin on bone ingrowth.

    PubMed

    Le Guehennec, Laurent; Goyenvalle, Eric; Aguado, Eric; Pilet, Paul; Bagot D'Arc, Maurice; Bilban, Melitta; Spaethe, Reiner; Daculsi, Guy

    2005-01-01

    An ageing population implies an increase in bone and dental diseases, which are in turn a source of numerous handicaps. These pathologies are an expensive burden for the European health system. As no specific bioactive materials are efficient enough to cope with this burden, we have to develop an injectable, mouldable, self-hardening bone substitute to support bone tissue reconstruction and augmentation. New, highly bioactive and suitable biomaterials have been developed to replace bone grafts in orthopedic revision and maxillofacial surgery for bone augmentation. These mouldable, self-hardening materials are based on the association of MBCP Biphasic Calcium Phosphate Granules and Tissucol Fibrin Sealant. The in vivo evaluation of ingrowth in relation to the composite was made in an experiment on rabbits. The results indicate that in the presence of fibrin sealant, newly-formed bone developed at a small distance from the surface of the calcium phosphate ceramic. Two different bone apposition processes were identified. Without the fibrin component (MBCP group), bone rested directly on the surface of the granules. This observation is commonly described as osteoconduction in calcium phosphate materials. On the contrary, the presence of the fibrinogen component seemed to modify this standard osteoconduction phenomenon: the newly-formed bone essentially grew at a distance from the surface of the granules, on the fibrillar network, and could be considered as an inductive phenomenon for osteogenic cell differentiation from mesenchymal stem cells.

  5. Kinetics of the multistep rupture of fibrin 'A-a' polymerization interactions measured using atomic force microscopy.

    PubMed

    Averett, Laurel E; Schoenfisch, Mark H; Akhremitchev, Boris B; Gorkun, Oleg V

    2009-11-18

    Fibrin, the structural scaffold of blood clots, spontaneously polymerizes through the formation of 'A-a' knob-hole bonds. When subjected to external force, the dissociation of this bond is accompanied by two to four abrupt changes in molecular dimension observable as rupture events in a force curve. Herein, the configuration, molecular extension, and kinetic parameters of each rupture event are examined. The increases in contour length indicate that the D region of fibrinogen can lengthen by approximately 50% of the length of a fibrin monomer before rupture of the 'A-a' interaction. The dependence of the dissociation rate on applied force was obtained using probability distributions of rupture forces collected at different pull-off velocities. These distributions were fit using a model in which the effects of the shape of the binding potential are used to quantify the kinetic parameters of forced dissociation. We found that the weak initial rupture (i.e., event 1) was not well approximated by these models. The ruptured bonds comprising the strongest ruptures, events 2 and 3, had kinetic parameters similar to those commonly found for the mechanical unfolding of globular proteins. The bonds ruptured in event 4 were well described by these analyses, but were more loosely bound than the bonds in events 2 and 3. We propose that the first event represents the rupture of an unknown interaction parallel to the 'A-a' bond, events 2 and 3 represent unfolding of structures in the D region of fibrinogen, and event 4 is the rupture of the 'A-a' knob-hole bond weakened by prior structural unfolding. Comparison of the activation energy obtained via force spectroscopy measurements with the thermodynamic free energy of 'A-a' bond dissociation indicates that the 'A-a' bond may be more resistant to rupture by applied force than to rupture by thermal dissociation.

  6. Kinetics of the Multistep Rupture of Fibrin ‘A-a’ Polymerization Interactions Measured Using Atomic Force Microscopy

    PubMed Central

    Averett, Laurel E.; Schoenfisch, Mark H.; Akhremitchev, Boris B.; Gorkun, Oleg V.

    2009-01-01

    Abstract Fibrin, the structural scaffold of blood clots, spontaneously polymerizes through the formation of ‘A-a’ knob-hole bonds. When subjected to external force, the dissociation of this bond is accompanied by two to four abrupt changes in molecular dimension observable as rupture events in a force curve. Herein, the configuration, molecular extension, and kinetic parameters of each rupture event are examined. The increases in contour length indicate that the D region of fibrinogen can lengthen by ∼50% of the length of a fibrin monomer before rupture of the ‘A-a’ interaction. The dependence of the dissociation rate on applied force was obtained using probability distributions of rupture forces collected at different pull-off velocities. These distributions were fit using a model in which the effects of the shape of the binding potential are used to quantify the kinetic parameters of forced dissociation. We found that the weak initial rupture (i.e., event 1) was not well approximated by these models. The ruptured bonds comprising the strongest ruptures, events 2 and 3, had kinetic parameters similar to those commonly found for the mechanical unfolding of globular proteins. The bonds ruptured in event 4 were well described by these analyses, but were more loosely bound than the bonds in events 2 and 3. We propose that the first event represents the rupture of an unknown interaction parallel to the ‘A-a’ bond, events 2 and 3 represent unfolding of structures in the D region of fibrinogen, and event 4 is the rupture of the ‘A-a’ knob-hole bond weakened by prior structural unfolding. Comparison of the activation energy obtained via force spectroscopy measurements with the thermodynamic free energy of ‘A-a’ bond dissociation indicates that the ‘A-a’ bond may be more resistant to rupture by applied force than to rupture by thermal dissociation. PMID:19917237

  7. Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration.

    PubMed

    Liu, Xiaolin; Yang, Yunlong; Li, Yan; Niu, Xin; Zhao, Bizeng; Wang, Yang; Bao, Chunyan; Xie, Zongping; Lin, Qiuning; Zhu, Linyong

    2017-03-16

    The regeneration of articular cartilage, which scarcely shows innate self-healing ability, is a great challenge in clinical treatment. Stem cell-derived exosomes (SC-Exos), an important type of extracellular nanovesicle, exhibit great potential for cartilage regeneration to replace stem cell-based therapy. Cartilage regeneration often takes a relatively long time and there is currently no effective administration method to durably retain exosomes at cartilage defect sites to effectively exert their reparative effect. Therefore, in this study, we exploited a photoinduced imine crosslinking hydrogel glue, which presents excellent operation ability, biocompatibility and most importantly, cartilage-integration, as an exosome scaffold to prepare an acellular tissue patch (EHG) for cartilage regeneration. It was found that EHG can retain SC-Exos and positively regulate both chondrocytes and hBMSCs in vitro. Furthermore, EHG can integrate with native cartilage matrix and promote cell deposition at cartilage defect sites, finally resulting in the promotion of cartilage defect repair. The EHG tissue patch therefore provides a novel, cell-free scaffold material for wound repair.

  8. The relative contribution of calcium, zinc and oxidation-based cross-links to the stiffness of Arion subfuscus glue.

    PubMed

    Braun, M; Menges, M; Opoku, F; Smith, A M

    2013-04-15

    Metal ions are present in many different biological materials, and are capable of forming strong cross-links in aqueous environments. The relative contribution of different metal-based cross-links was measured in the defensive glue produced by the terrestrial slug Arion subfuscus. This glue contains calcium, magnesium, zinc, manganese, iron and copper. These metals are essential to the integrity of the glue and to gel stiffening. Removal of all metals caused at least a 15-fold decrease in the storage modulus of the glue. Selectively disrupting cross-links involving hard Lewis acids such as calcium reduced the stiffness of the glue, while disrupting cross-links involving borderline Lewis acids such as zinc did not. Calcium is the most common cation bound to the glue (40 mmol l(-1)), and its charge is balanced primarily by sulphate at 82-84 mmol l(-1). Thus these ions probably play a primary role in bringing polymers together directly. Imine bonds formed as a result of protein oxidation also contribute substantially to the stiffness of the glue. Disrupting these bonds with hydroxylamine caused a 33% decrease in storage modulus of the glue, while stabilizing them by reduction with sodium borohydride increased the storage modulus by 40%. Thus a combination of metal-based bonds operates in this glue. Most likely, cross-links directly involving calcium play a primary role in bringing together and stabilizing the polymer network, followed by imine bond formation and possible iron coordination.

  9. From glue to gasoline: how competition turns perspective takers unethical.

    PubMed

    Pierce, Jason R; Kilduff, Gavin J; Galinsky, Adam D; Sivanathan, Niro

    2013-10-01

    Perspective taking is often the glue that binds people together. However, we propose that in competitive contexts, perspective taking is akin to adding gasoline to a fire: It inflames already-aroused competitive impulses and leads people to protect themselves from the potentially insidious actions of their competitors. Overall, we suggest that perspective taking functions as a relational amplifier. In cooperative contexts, it creates the foundation for prosocial impulses, but in competitive contexts, it triggers hypercompetition, leading people to prophylactically engage in unethical behavior to prevent themselves from being exploited. The experiments reported here establish that perspective taking interacts with the relational context--cooperative or competitive--to predict unethical behavior, from using insidious negotiation tactics to materially deceiving one's partner to cheating on an anagram task. In the context of competition, perspective taking can pervert the age-old axiom "do unto others as you would have them do unto you" into "do unto others as you think they will try to do unto you."

  10. Cyanoacrylate glue in the management of gastric varices.

    PubMed

    Consolo, P; Luigiano, C; Giacobbe, G; Scaffidi, M G; Pellicano, R; Familiari, L

    2009-02-01

    Gastric varices (GV) are less common than esophageal varices, but their management represents a particular challenge. When bleeding occurs is usually severe, requiring immediate supportive intensive care and has a high mortality rate. The best management of GV is supposed to be with a multidisciplinary approach and close cooperation between gastroenterologists, interventional radiologists and the surgical team. Many studies in literature reported high success rates with intravariceal injection of cyanoacrylate in acute GV bleeding. This agent obliterates the variceal lumen by solidification within the vein and more than 80% primary obliteration rates are achieved. In comparison with other endoscopic techniques as variceal band ligation or sclerotherapy with ethanolamine oleate, alcohol and sodium tetradecyl sulphate, cyanoacrylate has shown to be more effective, with a decrease in complications and mortality rates. The cyanoacrylate has shown effective also in the secondary prophylaxis with an incidence of re-bleeding that ranges between 15% and 30%. Actually, there is no scientific evidence supporting the application of cyanoacrylate in primary prophylaxis of bleeding from GV. Significant procedural, septic and embolic complications have been reported with cyanoacrylate glue injection. In conclusion, the endoscopic treatment with cyanoacrylate of actively bleeding GV, as well as the prophylaxis of the re-bleeding, is a safe and effective procedure and should be considered as a first-line therapy, whenever available.

  11. Forward Drift Chambers for the GlueX experiment

    NASA Astrophysics Data System (ADS)

    Pentchev, Lubomir; GlueX Collaboration

    2014-09-01

    The GlueX experiment will search for exotic mesons produced by 9 GeV linearly polarized photon beam from the 12 GeV CEBAF machine. A hermetic solenoid-based detector system that includes tracking and calorimetry has been constructed. The Forward Drift Chamber (FDC) system consists of 24 circular planar drift chambers of 1 m diameter. Additional information from cathode strips, placed at both sides of the wire planes, is required to achieve efficient pattern recognition in the presence of high background rates in forward direction, resulting in 12,500 readout channels in total. The detection of relatively low energy photons by the electro-magnetic calorimeters imposes severe constraints on the amount of the material used in the FDC. Challenges in the production of this low-mass detector will be discussed. The FDC has been completed and recently installed in the bore of the solenoid magnet. Results from the tests of the whole detector system will be presented.

  12. The activated partial thromboplastin time of diluted plasma: variability due to the method of fibrin detection.

    PubMed Central

    Johnstone, I B

    1984-01-01

    The purpose of this study was to determine the effects of the dilution of plasma (1/3 in saline) on the kinetics of fibrin generation in the activated partial thromboplastin time (APTT) assay. The diluted APTT is considered to increase the sensitivity of the APTT test however, studies in our laboratory using an electro-optical fibrin detection system failed to show significant differences in APTT values obtained with diluted and undiluted canine plasma. Seventeen plasmas, including plasmas moderately and markedly deficient in intrinsic factor activity were assayed in the undiluted and diluted APTT assay using two methods for fibrin endpoint detection; a visual "tilt-tube" technique and an electro-optical detection system. In the former technique the endpoint was the formation of a visible fibrin web or clot; in the latter procedure the end point was the first detection of a change in optical density of the plasma. Optical density changes during fibrin formation were also recorded ( thrombokinetograms ). The results indicated that the electro-optical fibrin detection system failed to identify a prolongation of the APTT as a result of 1/3 plasma dilution; a prolongation that was consistently observed with the visual fibrin detection technique. Plasma dilution however, did significantly reduce the rate of fibrin production as indicated by the thrombokinetogram profile. It was concluded that the dilution of plasma with saline, as has been used to increase the sensitivity of the APTT assay procedure, has little effect on the time of onset of fibrin formation in a given plasma. The major effect appears to be on the way in which fibrin forms in that the polymerization/crosslinkage events associated with macroscopic fibrin production are delayed. PMID:6722646

  13. Glue test results for high-precision large cryogenic lens holder

    NASA Astrophysics Data System (ADS)

    Reutlinger, A.; Mottaghibonab, A.; Gal, C.; Boesz, A.; Grupp, F.; Geis, N.; Bode, A.; Katterloher, R.; Bender, R.

    2012-09-01

    The Near Infrared Spectrometer and Photometer (NISP) of EUCLID requires high precision large lens holders (Ø170 mm) at cryogenic temperatures (150 K). The lenses of the optical system are glued into separate lens holders, the so called adaption rings. For the selection and verification of a suitable adhesive extensive glue selection tests are performed and results presented in this paper. With potential glue candidates, handling, single lap shear, connection tension and shear tests are carried out at room temperature (RT) and 150 K (OPS). For the NISP optical system DP490 is selected as the most suitable adhesive. The test results have shown that an even distribution of the glue in the glue gap is of crucial importance for the functioning and performance of the bonded lens system. The different coefficients of thermal expansion (CTE) between lens and lens holder produce large local mechanical stress and might cause lens breakage or failure of bonding. The design of the injection channel and the gluing procedure are developed to meet the lens performance requirements. An example is shown that after thermal cycling the remaining 0.5 mm - 1 mm thick adhesive in the injection channel results in large local mechanical stresses, and hence, damage of the lens. For a successful performance of the glue interface not only an optimum glue gap of 80 - 150 μm is important, also micro-cracks of the glass at the gluing area have to be avoided. The performed glue tests with DP490 for 3 different lens/ring material combinations show sufficient mechanical tension and shear strength for bonding of the lens system. Titanium/LF5G15 and Invar/Fused Silica combinations have reached the strength of 30 MPa at RT and 50 GPa at 150 K. These results are presented on behalf of the EUCLID consortium.

  14. L_RNA_scaffolder: scaffolding genomes with transcripts

    PubMed Central

    2013-01-01

    Background Generation of large mate-pair libraries is necessary for de novo genome assembly but the procedure is complex and time-consuming. Furthermore, in some complex genomes, it is hard to increase the N50 length even with large mate-pair libraries, which leads to low transcript coverage. Thus, it is necessary to develop other simple scaffolding approaches, to at least solve the elongation of transcribed fragments. Results We describe L_RNA_scaffolder, a novel genome scaffolding method that uses long transcriptome reads to order, orient and combine genomic fragments into larger sequences. To demonstrate the accuracy of the method, the zebrafish genome was scaffolded. With expanded human transcriptome data, the N50 of human genome was doubled and L_RNA_scaffolder out-performed most scaffolding results by existing scaffolders which employ mate-pair libraries. In these two examples, the transcript coverage was almost complete, especially for long transcripts. We applied L_RNA_scaffolder to the highly polymorphic pearl oyster draft genome and the gene model length significantly increased. Conclusions The simplicity and high-throughput of RNA-seq data makes this approach suitable for genome scaffolding. L_RNA_scaffolder is available at http://www.fishbrowser.org/software/L_RNA_scaffolder. PMID:24010822

  15. Bone tissue engineering scaffolding: computer-aided scaffolding techniques.

    PubMed

    Thavornyutikarn, Boonlom; Chantarapanich, Nattapon; Sitthiseripratip, Kriskrai; Thouas, George A; Chen, Qizhi

    Tissue engineering is essentially a technique for imitating nature. Natural tissues consist of three components: cells, signalling systems (e.g. growth factors) and extracellular matrix (ECM). The ECM forms a scaffold for its cells. Hence, the engineered tissue construct is an artificial scaffold populated with living cells and signalling molecules. A huge effort has been invested in bone tissue engineering, in which a highly porous scaffold plays a critical role in guiding bone and vascular tissue growth and regeneration in three dimensions. In the last two decades, numerous scaffolding techniques have been developed to fabricate highly interconnective, porous scaffolds for bone tissue engineering applications. This review provides an update on the progress of foaming technology of biomaterials, with a special attention being focused on computer-aided manufacturing (Andrade et al. 2002) techniques. This article starts with a brief introduction of tissue engineering (Bone tissue engineering and scaffolds) and scaffolding materials (Biomaterials used in bone tissue engineering). After a brief reviews on conventional scaffolding techniques (Conventional scaffolding techniques), a number of CAM techniques are reviewed in great detail. For each technique, the structure and mechanical integrity of fabricated scaffolds are discussed in detail. Finally, the advantaged and disadvantage of these techniques are compared (Comparison of scaffolding techniques) and summarised (Summary).

  16. Automatic segmentation and analysis of fibrin networks in 3D confocal microscopy images

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomin; Mu, Jian; Machlus, Kellie R.; Wolberg, Alisa S.; Rosen, Elliot D.; Xu, Zhiliang; Alber, Mark S.; Chen, Danny Z.

    2012-02-01

    Fibrin networks are a major component of blood clots that provides structural support to the formation of growing clots. Abnormal fibrin networks that are too rigid or too unstable can promote cardiovascular problems and/or bleeding. However, current biological studies of fibrin networks rarely perform quantitative analysis of their structural properties (e.g., the density of branch points) due to the massive branching structures of the networks. In this paper, we present a new approach for segmenting and analyzing fibrin networks in 3D confocal microscopy images. We first identify the target fibrin network by applying the 3D region growing method with global thresholding. We then produce a one-voxel wide centerline for each fiber segment along which the branch points and other structural information of the network can be obtained. Branch points are identified by a novel approach based on the outer medial axis. Cells within the fibrin network are segmented by a new algorithm that combines cluster detection and surface reconstruction based on the α-shape approach. Our algorithm has been evaluated on computer phantom images of fibrin networks for identifying branch points. Experiments on z-stack images of different types of fibrin networks yielded results that are consistent with biological observations.

  17. Anti-fibrin antibody binding in valvular vegetations and kidney lesions during experimental endocarditis.

    PubMed

    Yokota, M; Basi, D L; Herzberg, M C; Meyer, M W

    2001-01-01

    In Streptococcus sanguinis (sanguis) induced experimental endocarditis, we sought evidence that the development of aortic valvular vegetation depends on the availability of fibrin. Endocarditis was induced in New Zealand white rabbits by catheter placement into the left ventricle and inoculation of the bacteria. Fibrin was localized in the developing vegetation with 99mTechnetium (Tc)-labeled anti-fibrin antibody one or three days later. When rabbit anti-fibrin antibody was given intravenously on day 1, the mass of aortic valvular vegetation was significantly reduced at day 3; infusion of non-specific rabbit IgG showed no effect. The 99mTc-labeled anti-fibrin antibody also labeled kidneys that showed macroscopic subcapsular hemorrhage. To learn if the deposition of fibrin in the kidneys was a consequence of endocarditis required a comparison of farm-bred and specific pathogen-free rabbits before and after the induction of endocarditis. Before induction, the kidneys of farm-bred rabbits were labeled, but specific pathogen-free rabbits were free of labeling and signs of macroscopic hemorrhage. After 3 days of endocarditis, kidneys of 10 of 14 specific pathogen-free rabbits labeled with 99mTc-labeled anti-fibrin antibody and showed hemorrhage. Kidney lesions were suggested to be a frequent sequellae of S. sanguinis infective endocarditis. For the first time, fibrin was shown to be required for the continued development of aortic valvular vegetations.

  18. Effect of microgravity, temperature, and concentration on fibrin and collagen assembly.

    PubMed

    Nunes, C R; Roedersheimer, M T; Simske, S J; Luttges, M W

    1995-08-01

    In purified form collagen and fibrin can be processed into gel-like matrices of interconnecting fibers. The microscopic structure of materials produced from these macromolecules is critical to their utility as biomaterials. Varying the conditions of the assembly environment allows for the production of a wide range of morphologies. In this study, changes in gravity, temperature, and concentration were examined. Contrary to protein crystal growth studies which indicate substantial increases in organization and size in microgravity, the gravitational environment had no repeatable effect on collagen and fibrin fiber diameters and matrix porosity. However, fibrin gels formed in microgravity appeared more homogeneous than ground samples. Changes in temperature and concentration of both protein and buffer had substantial effects on fiber diameters and material porosity for both collagen and fibrin. Temperature experiments were performed over the range 23.8 to 39 degrees C for fibrin and 22 to 33 degrees C for collagen. Thrombin concentration was varied from 0.02 to 0.10 units/ml for fibrin experiments and buffer concentration was varied by means of a dialysis membrane for collagen experiments. Consequently, the temperature and concentration controls developed for flight experiments are being considered for their potential in developing fibrin and collagen based materials with well-defined microscopic structures. The increased homogeneity of fibrin gels produced in microgravity suggests the possibility of using this environment for the production of optimal biomaterials.

  19. Influence of a constant magnetic field on the fibrinogen-fibrin system. [in blood coagulation process

    NASA Technical Reports Server (NTRS)

    Matskevichene, V. B.; Platonova, A. T.

    1974-01-01

    The effect of a constant magnetic field with a strength of 2500 oersteds on the fibrinogen-fibrin system was studied in the organism of healthy rabbits with exposure times of 1 and 5 hours. The results obtained indicate disruptions in the stage of conversion of fibrinogen to fibrin and an increase in the amount of fibrinogen.

  20. Improvement of fibrin clot structure after factor VIII injection in haemophilia A patients treated on demand.

    PubMed

    Antovic, Aleksandra; Mikovic, Danijela; Elezovic, Ivo; Zabczyk, Michael; Hutenby, Kjell; Antovic, Jovan P

    2014-04-01

    Patients with haemophilia A have seriously impaired thrombin generation due to an inherited deficiency of factor (F)VIII, making them form unstable fibrin clots that are unable to maintain haemostasis. Data on fibrin structure in haemophilia patients remain limited. Fibrin permeability, assessed by a flow measurement technique, was investigated in plasma from 20 patients with severe haemophilia A treated on demand, before and 30 minutes after FVIII injection. The results were correlated with concentrations of fibrinogen, FVIII and thrombin-activatable fibrinolysis inhibitor (TAFI), and global haemostatic markers: endogenous thrombin potential (ETP) and overall haemostatic potential (OHP). Fibrin structure was visualised using scanning electron microscopy (SEM). The permeability coefficient Ks decreased significantly after FVIII treatment. Ks correlated significantly with FVIII levels and dosage, and with ETP, OHP and levels of TAFI. SEM images revealed irregular, porous fibrin clots composed of thick and short fibers before FVIII treatment. The clots had recovered after FVIII replacement almost to levels in control samples, revealing compact fibrin with smaller intrinsic pores. To the best of our knowledge, this is the first description of fibrin porosity and structure before and after FVIII treatment of selected haemophilia patients. It seems that thrombin generation is the main determinant of fibrin structure in haemophilic plasma.

  1. Protein unfolding accounts for the unusual mechanical behavior of fibrin networks

    PubMed Central

    Purohit, Prashant K.; Litvinov, Rustem I.; Brown, Andre E. X.; Discher, Dennis E.; Weisel, John W.

    2011-01-01

    We describe the mechanical behavior of isotropic fibrin networks at the macroscopic scale in terms of the nanoscale force response of fibrin molecules that are its basic building blocks. We show that the remarkable extensibility and compressibility of fibrin networks have their origins in the unfolding of fibrin molecules. The force-stretch behavior of a single fibrin fiber is described using a two-state model in which the fiber has a linear force-stretch relation in the folded phase and behaves like a worm-like-chain in the unfolded phase. The nanoscale force-stretch response is connected to the macro-scale stress-stretch response by means of the eight-chain model. This model is able to capture the macroscopic response of a fibrin network in uniaxial tension and appears remarkably simple given the molecular complexity. We use the eight-chain model to explain why fibrin networks have negative compressibility and Poisson’s ratio greater than one due to unfolding of fibrin molecules. PMID:21342665

  2. Kinetic Model Facilitates Analysis of Fibrin Generation and Its Modulation by Clotting Factors: Implications for Hemostasis-Enhancing Therapies

    DTIC Science & Technology

    2014-01-01

    investigating its potential as a hemostatic agent in trauma and surgery.6,7 These applications necessitate a detailed understanding of fibrin ...facilitates analysis of fibrin generation and its modulation by clotting factors: implications for hemostasis-enhancing therapies† Alexander Y...ability of the suggested molecular mechanisms to account for fibrin generation and degradation kinetics in diverse, physiologically relevant in vitro

  3. Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion

    NASA Astrophysics Data System (ADS)

    Amarpuri, Gaurav; Chaurasia, Vishal; Jain, Dharamdeep; Blackledge, Todd A.; Dhinojwala, Ali

    2015-03-01

    Modern orb-weaving spiders use micron-sized glue droplets on their viscid silk to retain prey in webs. A combination of low molecular weight salts and proteins makes the glue viscoelastic and humidity responsive in a way not easily achieved by synthetic adhesives. Optically, the glue droplet shows a heterogeneous structure, but the spatial arrangement of its chemical components is poorly understood. Here, we use optical and confocal Raman microscopy to show that salts and proteins are present ubiquitously throughout the droplet. The distribution of adhesive proteins in the peripheral region explains the superior prey capture performance of orb webs as it enables the entire surface area of the glue droplet to act as a site for prey capture. The presence of salts throughout the droplet explains the recent Solid-State NMR results that show salts directly facilitate protein mobility. Understanding the function of individual glue components and the role of the droplet's macro-structure can help in designing better synthetic adhesives for humid environments.

  4. Tracing the biological origin of animal glues used in paintings through mitochondrial DNA analysis.

    PubMed

    Albertini, Emidio; Raggi, Lorenzo; Vagnini, Manuela; Sassolini, Alessandro; Achilli, Alessandro; Marconi, Gianpiero; Cartechini, Laura; Veronesi, Fabio; Falcinelli, Mario; Brunetti, Brunetto Giovanni; Miliani, Costanza

    2011-03-01

    We report the development of a suitable protocol for the identification of the biological origin of binding media on tiny samples from ancient paintings, by exploitation of the high specificity and high sensitivity offered by the state-of-the art DNA analysis. In particular, our aim was to molecularly characterize mitochondrial regions of the animal species traditionally employed for obtaining glues. The model has been developed using aged painting models and then tested to analyze the organic components in samples from the polychrome terracotta Madonna of Citerna by Donatello (1415-1420), where, by GC-MS and FTIR spectroscopy, animal glues and siccative oils were identified. The results obtained are good in terms of both sensibility and specificity of the method. First of all, it was possible to confirm that Donatello used animal glue for the preparation of the painted layers of the Madonna of Citerna and, specifically, glue derived from Bos taurus. Data obtained from sequencing confirm that each sample contains animal glue, revealing that it was mostly prepared from two common European taurine lineages called T2 and T3. There is one remarkable exception represented by one sample which falls into a surviving lineage of the now extinct European aurochs.

  5. Application of COMPONT Medical Adhesive Glue for Tension-Reduced Duraplasty in Decompressive Craniotomy

    PubMed Central

    Zhou, Yujia; Wang, Gesheng; Liu, Jialin; Du, Yong; Wang, Lei; Wang, Xiaoyong

    2016-01-01

    Background The aim of this study was to evaluate the application of medical adhesive glue for tension-reduced duraplasty in decompressive craniotomy. Material/Methods A total of 56 cases were enrolled for this study from Jan 2013 to May 2015. All patients underwent decompressive craniotomy and the dura was repaired in all of them with tension-reduced duraplasty using the COMPONT medical adhesive to glue artificial dura together. The postoperative complications and the healing of dura mater were observed and recorded. Results No wound infection, epidural or subdural hematoma, cerebrospinal fluid leakage, or other complications associated with the procedure occurred, and there were no allergic reactions to the COMPONT medical adhesive glue. The second-phase surgery of cranioplasty was performed at 3 to 6 months after the decompressive craniotomy in 32 out of the 56 cases. During the cranioplasty we observed no adherence of the artificial dura mater patch to the skin flap, no residual COMPONT glue, or hydropic or contracture change of tissue at the surgical sites. Additionally, no defect or weakening of the adherence between the artificial dura mater patch and the self dura matter occurred. Conclusions COMPONT medical adhesive glue is a safe and reliable tool for tension-reduced duraplasty in decompressive craniotomy. PMID:27752035

  6. Application of COMPONT Medical Adhesive Glue for Tension-Reduced Duraplasty in Decompressive Craniotomy.

    PubMed

    Zhou, Yujia; Wang, Gesheng; Liu, Jialin; Du, Yong; Wang, Lei; Wang, Xiaoyong

    2016-10-14

    BACKGROUND The aim of this study was to evaluate the application of medical adhesive glue for tension-reduced duraplasty in decompressive craniotomy. MATERIAL AND METHODS A total of 56 cases were enrolled for this study from Jan 2013 to May 2015. All patients underwent decompressive craniotomy and the dura was repaired in all of them with tension-reduced duraplasty using the COMPONT medical adhesive to glue artificial dura together. The postoperative complications and the healing of dura mater were observed and recorded. RESULTS No wound infection, epidural or subdural hematoma, cerebrospinal fluid leakage, or other complications associated with the procedure occurred, and there were no allergic reactions to the COMPONT medical adhesive glue. The second-phase surgery of cranioplasty was performed at 3 to 6 months after the decompressive craniotomy in 32 out of the 56 cases. During the cranioplasty we observed no adherence of the artificial dura mater patch to the skin flap, no residual COMPONT glue, or hydropic or contracture change of tissue at the surgical sites. Additionally, no defect or weakening of the adherence between the artificial dura mater patch and the self dura matter occurred. CONCLUSIONS COMPONT medical adhesive glue is a safe and reliable tool for tension-reduced duraplasty in decompressive craniotomy.

  7. Cyanoacrylate glue burn in a child--lessons to be learned.

    PubMed

    Clarke, T F E

    2011-07-01

    Cyanoacrylate is the generic name for cyanoacrylate based 'fast-acting' adhesives such as methyl-2-cyanoacrylate and ethyl-2-cyanoacrylate(commonly sold under trade names like Super Glue and Krazy Glue). Other forms have been developed as medical grade glues to be non-toxic and less irritating to skin tissue. Cyanoacrylate has a multitude of uses, ranging from simple domestic applications, to those for industrial purposes. It is an acrylic resin which rapidly polymerises in the presence of water (specifically hydroxide ions), forming long, strong chains, joining the bonded surfaces together. Cyanoacrylate sets quickly, often in less than a minute and a normal bond reaches full strength in two hours and is waterproof. This case report outlines an interesting case of a full thickness burn resulting from skin in contact with cyanoacrylate glue, including highlighting several areas where the management was not appropriate. This was likely due to the novel presentation of this patient, and lack of education of staff. Although there have been cases of burns resulting from this type of glue documented in the literature, there are none of this exact nature and depth. [See figure in text]. Polymerization of methyl-2-cyanoacrylate.

  8. Scaffolding Reading Comprehension Skills

    ERIC Educational Resources Information Center

    Salem, Ashraf Atta Mohamed Safein

    2017-01-01

    The current study investigates whether English language teachers use scaffolding strategies for developing their students' reading comprehension skills or just for assessing their comprehension. It also tries to demonstrate whether teachers are aware of these strategies or they use them as a matter of habit. A questionnaire as well as structured…

  9. Fibrin Clots Are Equilibrium Polymers That Can Be Remodeled Without Proteolytic Digestion

    NASA Astrophysics Data System (ADS)

    Chernysh, Irina N.; Nagaswami, Chandrasekaran; Purohit, Prashant K.; Weisel, John W.

    2012-11-01

    Fibrin polymerization is a necessary part of hemostasis but clots can obstruct blood vessels and cause heart attacks and strokes. The polymerization reactions are specific and controlled, involving strong knob-into-hole interactions to convert soluble fibrinogen into insoluble fibrin. It has long been assumed that clots and thrombi are stable structures until proteolytic digestion. On the contrary, using the technique of fluorescence recovery after photobleaching, we demonstrate here that there is turnover of fibrin in an uncrosslinked clot. A peptide representing the knobs involved in fibrin polymerization can compete for the holes and dissolve a preformed fibrin clot, or increase the fraction of soluble oligomers, with striking rearrangements in clot structure. These results imply that in vivo clots or thrombi are more dynamic structures than previously believed that may be remodeled as a result of local environmental conditions, may account for some embolization, and suggest a target for therapeutic intervention.

  10. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring

    PubMed Central

    Syedain, Zeeshan H.; Meier, Lee A.; Bjork, Jason W.; Lee, Ann; Tranquillo, Robert T.

    2011-01-01

    Tissue-engineered arteries based on entrapment of human dermal fibroblasts in fibrin gel yield completely biological vascular grafts that possess circumferential alignment characteristic of native arteries and essential to their mechanical properties. A bioreactor was developed to condition six grafts in the same culture medium while being subjected to similar cyclic distension and transmural flow resulting from pulsed flow distributed among the graft lumens via a manifold. The lumenal pressure and circumferential stretch were noninvasively monitored and used to calculate stiffness in the range of 80-120 mmHg and then to successfully predict graft burst strength. The length of the graft was incrementally shortened during bioreactor culture to maintain circumferential alignment and achieve mechanical anisotropy comparable to native arteries. After 7-9 weeks of bioreactor culture, the fibrin-based grafts were extensively remodeled by the fibroblasts into circumferentially-aligned tubes of collagen and other extracellular matrix with burst pressures in the range of 1400-1600 mmHg and compliance comparable to native arteries. The tissue suture retention force was also suitable for implantation in the rat model and, with poly(lactic acid) sewing rings entrapped at both ends of the graft, also in the ovine model. The strength achieved with a biological scaffold in such a short duration is unprecedented for an engineered artery. PMID:20934214

  11. Platelet rich fibrin - a novel acumen into regenerative endodontic therapy

    PubMed Central

    Sharma, Krishna

    2014-01-01

    Research into regenerative dentistry has added impetus onto the field of molecular biology. It can be documented as a prototype shift in the therapeutic armamentarium for dental disease. Regenerative endodontic procedures are widely being added to the current armamentarium of pulp therapy procedures. The regenerative potential of platelets has been deliberated. A new family of platelet concentrates called the platelet rich fibrin (PRF) has been recently used by several investigators and has shown application in diverse disciplines of dentistry. This paper is intended to add light on the various prospects of PRF and clinical insights to regenerative endodontic therapy. PMID:24516822

  12. Platelet-rich fibrin application in dentistry: a literature review.

    PubMed

    Borie, Eduardo; Oliví, Daniel García; Orsi, Iara Augusta; Garlet, Katia; Weber, Benjamín; Beltrán, Víctor; Fuentes, Ramón

    2015-01-01

    The development of bioactive surgical additives to regulate the inflammation and increase the speed of healing process is one of the great challenges in clinical research. In this sense, platelet rich fibrin (PRF) appears as a natural and satisfactory alternative with favorable results and low risks. The following review attempts to summarize the relevant literature regarding the technique of using PRF, focusing on its preparation, advantages, and disadvantages of using it in clinical applications. PRF alone or in combination with other biomaterials seems to have several advantages and indications both for medicine and dentistry, due it is a minimally invasive technique with low risks and satisfactory clinical results.

  13. Platelet-rich fibrin application in dentistry: a literature review

    PubMed Central

    Borie, Eduardo; Oliví, Daniel García; Orsi, Iara Augusta; Garlet, Katia; Weber, Benjamín; Beltrán, Víctor; Fuentes, Ramón

    2015-01-01

    The development of bioactive surgical additives to regulate the inflammation and increase the speed of healing process is one of the great challenges in clinical research. In this sense, platelet rich fibrin (PRF) appears as a natural and satisfactory alternative with favorable results and low risks. The following review attempts to summarize the relevant literature regarding the technique of using PRF, focusing on its preparation, advantages, and disadvantages of using it in clinical applications. PRF alone or in combination with other biomaterials seems to have several advantages and indications both for medicine and dentistry, due it is a minimally invasive technique with low risks and satisfactory clinical results. PMID:26221349

  14. Computational imaging analysis of fibrin matrices with the inclusion of erythrocytes from homozygous SS blood reveals agglomerated and amorphous structures.

    PubMed

    Averett, Rodney D; Norton, David G; Fan, Natalie K; Platt, Manu O

    2017-01-01

    Sickle cell disease is a single point mutation disease that is known to alter the coagulation system, leading to hypercoagulable plasma conditions. These hypercoagulable conditions can lead to complications in the vasculature, caused by fibrin clots that form undesirably. There is a need to understand the morphology and structure of fibrin clots from patients with sickle cell disease, as this could lead to further discovery of treatments and life-saving therapies. In this work, a computational imaging analysis method is presented to evaluate fibrin agglomeration in the presence of erythrocytes (RBCs) homozygous for the sickle cell mutation (SS). Numerical algorithms were used to determine agglomeration of fibrin fibers within a matrix with SS RBCs to test the hypothesis that fibrin matrices with the inclusion of SS RBCs possess a more agglomerated structure than native fibrin matrices with AA RBCs. The numerical results showed that fibrin structures with SS RBCs displayed an overall higher degree of agglomeration as compared to native fibrin structures. The computational algorithm was also used to evaluate fibrin fiber overlap (aggregation) and anisotropy (orientation) in normal fibrin matrices compared to fibrin matrices polymerized around SS RBCs; however, there was no statistical difference. Ultrasound measurements of stiffness revealed rigid RBCs in the case of samples derived from homozygous SS blood, and densely evolving matrices, when compared to normal fibrin with the inclusion of AA RBCs. An agglomeration model is suggested to quantify the fibrin aggregation/clustering near RBCs for both normal fibrin matrices and for the altered structures. The results of this work are important in the sense that the understanding of aggregation and morphology in fibrin clots with incorporation of RBCs from persons living with sickle cell anemia may elucidate the complexities of comorbidities and other disease complications.

  15. Application of the silicon photomultipliers for detectors in the GlueX experiment

    SciTech Connect

    Somov, Sergey V.; Tolstukhin, Ivan; Somov, Alexander S.

    2015-11-01

    The GlueX detector in Hall D at Jefferson Lab is instrumented with about 5000 Silicon Photomultipliers (SiPM) manufactured by Hamamatsu Corporation [2]. These photo sensors have properties similar to conventional photomultipliers but can be operated at high magnetic fields. Silicon photomultipliers with a sensitive area of 3x3 mm2 are used to detect light from the following GlueX scintillator detectors: the tagger microscope, pair spectrometer, and start counter. Arrays of 4x4 SiPMs sensors were chosen for the instrumentation of the barrel electromagnetic calorimeter. The tagger microscope must operate at high rates (up to 2.5 MHz) and provide time measurements with a resolution better than 0.3 ns. The paper will describe some results of the characterization of SiPMs for various GlueX sub-detectors.

  16. Exotic Hybrid Meson Spectroscopy with the GlueX detector at Jlab

    SciTech Connect

    Lawrence, David W.

    2014-03-01

    The GlueX experiment is scheduled to begin taking data in 2015. The goal is to discover evidence for the existence of exotic hybrid mesons and to map out their spectrum in the light quark sector. Recent theoretical developments using Lattice QCD predict exotic hybrid states in a mass range accessible using the newly upgraded 12GeV electron accelerator at Jefferson Lab. Hybrid mesons, and in particular exotic hybrid mesons, provide the ideal laboratory for testing QCD in the confinement regime since these mesons explicitly manifest the gluonic degrees of freedom. The experiment will use 9 GeV linearly polarized photons produced via coherent bremsstrahlung to produce the exotic hybrids. The decay products will be detected in the solenoid-based GlueX detector currently under construction at Jefferson Lab. The status of the GlueX experiment including detector parameters will be presented along with theoretical motivation for the experiment.

  17. Solvent vapor exposures in booth spray painting and spray glueing, and associated operations.

    PubMed

    Whitehead, L W; Ball, G L; Fine, L J; Langolf, G D

    1984-11-01

    Time-weighted average exposures for all solvents present at detectable levels were obtained for eighty-nine solvent-using workers and thirty-six control-group (unexposed) workers in seven plants of three companies applying paints and glues, primarily by spraying. Over twenty solvents were quantified if detected. Concentrations of specific solvents and cumulative fractions of TLVs were measured for various job types. All spray painting and most spray glueing was conducted in operating spray booths. Only low to moderate exposures were observed, with one TWA exceeding the cumulative TLV and three additional TWAs exceeding 50 percent of the cumulative TLV. It may be concluded that solvent TWA exposures in spraying of paints and glues are often well-controlled by common spray booths, and further, that other solvent-use operations including light-duty solvent wiping and manual paint mixing do not frequently produce high exposures (relative to TLV levels) in the presence of ordinary general room ventilation.

  18. Application of the Silicon Photomultipliers for Detectors in the GlueX Experiment

    NASA Astrophysics Data System (ADS)

    Somov, S. V.; Tolstukhin, I. A.; Somov, A. S.

    The GlueX detector in Hall D at Jefferson Lab [1]is instrumented with about 5000 Silicon Photomultipliers (SiPM) manufactured by Hamamatsu Corporation [2]. These photo sensors have properties similar to conventional photomultipliers but can be operated at high magnetic fields. Silicon photomultipliers with a sensitive area of 3x3 mm2 are used to detect light from the following GlueX scintillator detectors: the tagger microscope, pair spectrometer, and start counter. Arrays of 4x4 SiPMs sensors were chosen for the instrumentation of the barrel electromagnetic calorimeter. The tagger microscope must operate at high rates (up to 2.5 MHz) and provide time measurements with a resolution better than 0.3 ns. The paper will describe some results of the characterization of SiPMs for various GlueX sub-detectors.

  19. Acute and chronic glue sniffing effects and consequences of withdrawal on aggressive behavior.

    PubMed

    Bouchatta, Otmane; Ouhaz, Zakaria; Ba-Mhamed, Saadia; Kerekes, Nóra; Bennis, Mohamed

    2016-05-01

    Drug abuse act on brain mechanisms that cause a high-risk individual to engage in aggressive and violent behavior. While a drug-violence relationship exists, the nature of this relationship is often complex, with intoxication, neurotoxic, and withdrawal effects often being confused and/or confounded. Glue sniffing is often a springboard to the abuse of more addictive drugs. Despite its high prevalence and serious consequences, we know relatively little about the aggressive behavioral effects of volatile inhalants abuse, especially glue. The aim of the present study was to investigate the link between the duration of glue exposure, a common substance abuse problem in Morocco, and the level of aggressive behavior during withdrawal. For this we used the isolation-induced aggression model "residents" in three groups of mice. The first group served as control resident animals (n=10, without exposure); the second group as experimental resident mice (n=10) tested before and after acute (first day) and chronic exposure to the glue, and at 1 and 2weeks of withdrawal; and the third group of 10 intruder animals. The results showed that the number of attacks decreased (halved) and the latency of the first attack increased (doubled) following acute glue sniffing. However, the effects of chronic exposure and of 1week of withdrawal led to an increase in the intensity of agonistic encounters. After 2weeks of withdrawal, the intensity of aggressive behavior decreased again. These results indicated that chronic glue exposure and the first week of withdrawal are associated with increased aggression in mice.

  20. Computational Parametric Analysis of Mechanical Behaviors of Celotex Implanted with Glue Plates

    SciTech Connect

    Gong, C.

    2001-02-20

    The purpose of this analysis of the Celotex implanted with glue plates is two-fold, first is to identify the cause of the initial stress peak in the pseudo engineering stress-strain curve in the dynamic impact test that the impact is loaded in the orientation parallel to the plane of the glue. Secondly, from the existing static mechanical properties to derive the true constitutive properties of the Celotex under dynamic impact and other environmental conditions, such as warm (250 degrees Fahrenheit), wet (100 percent relative humidity), cold (minus 40 degrees Fahrenheit), and desiccated.

  1. Soft fibrin gels promote selection and growth of tumorigenic cells

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Tan, Youhua; Zhang, Huafeng; Zhang, Yi; Xu, Pingwei; Chen, Junwei; Poh, Yeh-Chuin; Tang, Ke; Wang, Ning; Huang, Bo

    2012-08-01

    The identification of stem-cell-like cancer cells through conventional methods that depend on stem cell markers is often unreliable. We developed a mechanical method for selecting tumorigenic cells by culturing single cancer cells in fibrin matrices of ~100 Pa in stiffness. When cultured within these gels, primary human cancer cells or single cancer cells from mouse or human cancer cell lines grew within a few days into individual round colonies that resembled embryonic stem cell colonies. Subcutaneous or intravenous injection of 10 or 100 fibrin-cultured cells in syngeneic or severe combined immunodeficiency mice led to the formation of solid tumours at the site of injection or at the distant lung organ much more efficiently than control cancer cells selected using conventional surface marker methods or cultured on conventional rigid dishes or on soft gels. Remarkably, as few as ten such cells were able to survive and form tumours in the lungs of wild-type non-syngeneic mice.

  2. Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo

    PubMed Central

    Munks, Michael W.; McKee, Amy S.; MacLeod, Megan K.; Powell, Roger L.; Degen, Jay L.; Reisdorph, Nichole A.; Kappler, John W.

    2010-01-01

    It has been recognized for nearly 80 years that insoluble aluminum salts are good immunologic adjuvants and that they form long-lived nodules in vivo. Nodule formation has long been presumed to be central for adjuvant activity by providing an antigen depot, but the composition and function of these nodules is poorly understood. We show here that aluminum salt nodules formed within hours of injection and contained the clotting protein fibrinogen. Fibrinogen was critical for nodule formation and required processing to insoluble fibrin by thrombin. DNase treatment partially disrupted the nodules, and the nodules contained histone H3 and citrullinated H3, features consistent with extracellular traps. Although neutrophils were not essential for nodule formation, CD11b+ cells were implicated. Vaccination of fibrinogen-deficient mice resulted in normal CD4 T-cell and antibody responses and enhanced CD8 T-cell responses, indicating that nodules are not required for aluminum's adjuvant effect. Moreover, the ability of aluminum salts to retain antigen in the body, the well-known depot effect, was unaffected by the absence of nodules. We conclude that aluminum adjuvants form fibrin-dependent nodules in vivo, that these nodules have properties of extracellular traps, and the nodules are not required for aluminum salts to act as adjuvants. PMID:20876456

  3. Fibrin formation and dissolution in women receiving oral contraceptive drugs.

    PubMed

    Ball, A P; McKee, P A

    1977-04-01

    Factors affecting fibrin formation and dissolution were compared for 15 women taking combined oral contraceptives and 15 women using nonpharmacological methods of birth control. The two groups were matched for age, body weight, time of blood collection, and day in menstrual cycle; none of the women was receiving other drugs known to affect the blood coagulation or fibrinolytic parameters measured in this study. Fibrinogen concentrations tended to be higher in the experimental group; the degree of fibrinogen degradation, number of fibrin cross-links, and levels of factor XIII and plasminogen were the same for both group. There were significant reductions in antithrombin activity, the euglobulin lysis time, and fibrinolytic inhibitor level in women using oral contraceptives. An estrogen dose effect was suggested for fibrinogen concentration and the degree of antithrombin activity. The increased fibrinolytic activity and decreased fibrinolytic inhibitor levels are consistent with in vitro observations that antithrombin also inhibits plasmin activity. Thus while oral contraceptive-induced depression of antithrombin III could possibly predispose to thrombosis by diminishing the inhibition of the serine protease clotting factors, the concomitant decreased level of plasmin inhibition might balance the system by favoring thrombolysis as well as the digestion and inactivation of certain clotting factors by plasmin.

  4. Preparation of hydrophilic poly(lactic acid) tissue engineering scaffold via (PLA)-(PLA-b-PEG)-(PEG) solution casting and thermal-induced surface structural transformation.

    PubMed

    Zhu, Xiaomin; Zhong, Tian; Huang, Ran; Wan, Ajun

    2015-01-01

    Porous poly(lactic acid) (PLA) tissue engineering scaffolds with a hydrophilic surface assembled by polyethylene glycol aggregations were prepared by the solvent casting/particulate leaching method from (PLA)-(PLA-b-PEG)-(PEG) blend solution, where the PLA-b-PEG block polymer serves as an amphiphilic glue between two phases. A thermal recrystallization process was inserted before leaching to induce a phase separation, which subsequently squeezes out PEG to form a hydrophilic shell. Characterizations of XRD and DSC indicated the composition and mixing states of materials. The water contact angle test qualitatively presented the excellent hydrophilicity compared to the pure PLA or PLA-PEG simple blend scaffold. The scanning electron microscope results confirmed the formation of porous structure of [Formula: see text] pore size, with an observable phase separation on the surface. The scaffold was degraded in PBS at [Formula: see text], and the degradation exhibits a three-stage behavior, which evidenced the amphiphilically glued phase separations.

  5. Scaffolding Student Participation in Mathematical Practices

    ERIC Educational Resources Information Center

    Moschkovich, Judit N.

    2015-01-01

    The concept of scaffolding can be used to describe various types of adult guidance, in multiple settings, across different time scales. This article clarifies what we mean by scaffolding, considering several questions specifically for scaffolding in mathematics: What theoretical assumptions are framing scaffolding? What is being scaffolded? At…

  6. Surface plasmon resonance analysis of immobilized fibrinogen and fibrin and their interaction with thrombin and fibrinogen

    NASA Astrophysics Data System (ADS)

    Dyr, Jan E.; Jirouskova, Marketa; Rysava, Jitka; Tichy, Ivo; Tobiska, Petr; Slavik, Radan; Homola, Jiri; Suttnar, Jiri

    1999-01-01

    The exploitation of surface plasmon resonance optical sensor for the study of the interaction of immobilized fibrinogen and fibrin monomer with soluble fibrinogen and thrombin is reported. Soluble fibrinogen was mostly reversible, the bound thrombin could be inhibited by milimolar concentration of phenylmethylsulphonyl fluoride (PMSF). At lease three sets of different thrombin binding sites were found. There was a residual fraction of thrombin bound to washed fibrin (ogin) (to about a five to ten percent of fibron monomer units) suggesting that a known naturally occurring fibrinogen variant differing in the gamma chain was the target. Surface bound fibrinogen was converted by thrombin to fibrin monomer that interacted with fibrinogen in solution. At low fibrin monomer surface density the second layer was formed that contained about the same amount of protein as the first layer, at higher fibrin monomer concentration less than one molecule of fibrinogen per molecule of fibrin monomer was captured. Starting with surface-bound fibrinogen and alternating addition of thrombin and fibrinogen a fibrin network of predetermined composition, size, and arrangement could be formed.

  7. Thrombin bound to a fibrin clot confers angiogenic and haemostatic properties on endothelial progenitor cells.

    PubMed

    Smadja, David M; Basire, Agnès; Amelot, Aymeric; Conte, Aurélie; Bièche, Ivan; Le Bonniec, Bernard F; Aiach, Martine; Gaussem, Pascale

    2008-06-01

    Recent data suggest that endothelial progenitor cells (EPCs) are involved in recanalizing venous thrombi. We examined the impact of a fibrin network, and particularly of adsorbed thrombin, on EPCs derived from cord blood CD34(+) cells. Fibrin networks generated in microplates by adding CaCl(2) to platelet-depleted plasma retained adsorbed thrombin at the average concentration of 4.2 nM per well. EPCs expressed high levels of endothelial cell protein C receptor and thrombomodulin, allowing the generation of activated protein C on the fibrin matrix in the presence of exogenous human protein C. The fibrin matrix induced significant EPC proliferation and, when placed in the lower chamber of a Boyden device, strongly enhanced EPC migration. These effects were partly inhibited by hirudin by 41% and 66%, respectively), which suggests that fibrin-adsorbed thrombin interacts with EPCs via the thrombin receptor PAR-1. Finally, spontaneous lysis of the fibrin network, studied by measuring D-dimer release into the supernatant, was inhibited by EPCs but not by control mononuclear cells. Such an effect was associated with a 10-fold increase in plasminogen activator inhibitor-1 (PAI-1) secretion by EPCs cultivated in fibrin matrix. Overall, our data show that EPCs, in addition to their angiogenic potential, have both anticoagulant and antifibrinolytic properties. Thrombin may modulate these properties and contribute to thrombus recanalization by EPCs.

  8. Thrombin bound to a fibrin clot confers angiogenic and haemostatic properties on endothelial progenitor cells

    PubMed Central

    Smadja, David M; Basire, Agnès; Amelot, Aymeric; Conte, Aurélie; Bièche, Ivan; Le Bonniec, Bernard F; Aiach, Martine; Gaussem, Pascale

    2008-01-01

    Abstract Recent data suggest that endothelial progenitor cells (EPCs) are involved in recanalizing venous thrombi. We examined the impact of a fibrin network, and particularly of adsorbed thrombin, on EPCs derived from cord blood CD34+ cells. Fibrin networks generated in microplates by adding CaCl2 to platelet-depleted plasma retained adsorbed thrombin at the average concentration of 4.2 nM per well. EPCs expressed high levels of endothelial cell protein C receptor and thrombomodulin, allowing the generation of activated protein C on the fibrin matrix in the presence of exogenous human protein C. The fibrin matrix induced significant EPC proliferation and, when placed in the lower chamber of a Boyden device, strongly enhanced EPC migration. These effects were partly inhibited by hirudin by 41% and 66%, respectively), which suggests that fibrin-adsorbed thrombin interacts with EPCs via the thrombin receptor PAR-1. Finally, spontaneous lysis of the fibrin network, studied by measuring D-dimer release into the supernatant, was inhibited by EPCs but not by control mononuclear cells. Such an effect was associated with a 10-fold increase in plasminogen activator inhibitor-1 (PAI-1) secretion by EPCs cultivated in fibrin matrix. Overall, our data show that EPCs, in addition to their angiogenic potential, have both anticoagulant and antifibrinolytic properties. Thrombin may modulate these properties and contribute to thrombus recanalization by EPCs. PMID:18494938

  9. Fibrin/platelet plug counteracts cutaneous wound contraction: the hypothesis of "skipping stone".

    PubMed

    Farahani, Ramin Mostofi Zadeh

    2007-01-01

    Cutaneous wound contraction and epithelialization act collaboratively to minimize the exposed wound surface. However excessive wound contraction is undesirable due to the resultant disfigurement and scarring. Fibrin clot has greater stiffness than surrounding tissue and mechanical strain further enhances its stiffness. On the contrary, skin exhibits diminished stiffness when affected by high strain rates. Therefore during early stages of wound healing, the contractile wound border is confronted by fibrin clot forming a high strain region in the interface of contractile tissue and fibrin clot--which is evidenced by computer simulation. Due to the stress relaxation property of skin, the contractile strain is partly neutralized. Meanwhile, gradually the stiffness of fibrin clot decreases which is followed by another cycle of wound contraction. This cyclic pattern of contraction resembles the movement of a stone over water or "skipping stone". The stone bounces repeatedly when thrown across the surface of water with reduction of jumping altitude with each bounce till the stone stops completely. This hypothesis is further supported by the observed initial delay in wound contraction and the chronological correlation of enhanced wound contraction with loss of superficial eschar and substitution of fibrin clot with granulation tissue. Also there is evidence that fibrin inhibits fibroblast-mediated contraction of collagen. Furthermore, modest increase in wound contraction rate in fibrinogen deficient mice and fibrin-mediated diminished wound contraction are agreement with the proposed hypothesis.

  10. Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair.

    PubMed

    Schek, R M; Michalek, A J; Iatridis, J C

    2011-04-18

    Treatment of damaged intervertebral discs is a significant clinical problem and, despite advances in the repair and replacement of the nucleus pulposus, there are few effective strategies to restore defects in the annulus fibrosus. An annular repair material should meet three specifications: have a modulus similar to the native annulus tissue, support the growth of disc cells, and maintain adhesion to tissue under physiological strain levels. We hypothesized that a genipin crosslinked fibrin gel could meet these requirements. Our mechanical results showed that genipin crosslinked fibrin gels could be created with a modulus in the range of native annular tissue. We also demonstrated that this material is compatible with the in vitro growth of human disc cells, when genipin:fibrin ratios were 0.25:1 or less, although cell proliferation was slower and cell morphology more rounded than for fibrin alone. Finally, lap tests were performed to evaluate adhesion between fibrin gels and pieces of annular tissue. Specimens created without genipin had poor handling properties and readily delaminated, while genipin crosslinked fibrin gels remained adhered to the tissue pieces at strains exceeding physiological levels and failed at 15-30%. This study demonstrated that genipin crosslinked fibrin gels show promise as a gap-filling adhesive biomaterial with tunable material properties, yet the slow cell proliferation suggests this biomaterial may be best suited as a sealant for small annulus fibrosus defects or as an adhesive to augment large annulus repairs. Future studies will evaluate degradation rate, fatigue behaviors, and long-term biocompatibility.

  11. Bioresorbable Scaffolds for Atheroregression: Understanding of Transient Scaffolding

    PubMed Central

    N. Kharlamov, M.D., Alexander

    2016-01-01

    This review focuses on the clinical and biological features of the bioresorbable scaffolds in interventional cardiology highlighting scientific achievements and challenges of the transient scaffolding with Absorb BVS. Special attention is granted to the vascular biology pathways which, involved in the resorption of scaffold, artery remodeling and mechanisms of Glagovian atheroregression setting the stage for subsequent clinical applications. Twenty five years ago Glagov described the phenomenon of limited external elastic membrane enlargement in response to an increase in plaque burden. We believe this threshold becomes the target for development of strategies that reverse atherosclerosis, and particularly transient scaffolding has a potential to be a tool to ultimately conquer atherosclerosis. PMID:26818488

  12. Fibronectin provides a conduit for fibroblast transmigration from collagenous stroma into fibrin clot provisional matrix.

    PubMed

    Greiling, D; Clark, R A

    1997-04-01

    After injury, the wound space is filled with a fibrin/fibronectin clot containing growth factors released by platelets and monocytes. In response to these factors, fibroblasts migrate into the fibrin clot and contribute to the formation of granulation tissue. The functional mechanisms allowing fibroblasts to leave the collagenous matrix of normal connective tissue and invade the provisional matrix of the fibrin clot have not been fully defined. To investigate these mechanisms we established a new in vitro model which simulates specific aspects of early wound healing, that is, the migration of fibroblasts from a three-dimensional collagen matrix into a fibrin clot. This transmigration could be induced by physiological concentrations of platelet releasate or platelet-derived growth factor BB (PDGF-BB) in a concentration-dependent manner. At 24 hours irradiated fibroblasts invaded the fibrin gel almost as well as non-irradiated cells, indicating that transmigration was independent of proliferation. Plasminogen and its activators appear to be necessary for invasion of the fibrin clot since protease inhibitors decreased the amount of migration. These serine proteases, however, were not necessary for exit from the collagen gel as fibroblasts migrated out of the collagen gel onto a surface coated with fibrin fibrils even in the presence of inhibitors. Removal of fibronectin (FN) from either the collagen gel or the fibrin gel markedly decreased the number of migrating cells, suggesting that FN provides a conduit for transmigration. Cell movement in the in vitro model was inhibited by RGD peptide, and by monoclonal antibodies against the subunits of the alpha5 beta1 and alpha v beta3 integrin receptor. Thus, the functional requirements for fibroblast transmigration from collagen-rich to fibrin-rich matrices, such as occurs in early wound healing, have been partially defined using an in vitro paradigm of this important biologic process.

  13. Abnormalities of pathways of fibrin turnover in lung lavage of rats with oleic acid and bleomycin-induced lung injury support alveolar fibrin deposition.

    PubMed Central

    Idell, S.; James, K. K.; Gillies, C.; Fair, D. S.; Thrall, R. S.

    1989-01-01

    Alveolar fibrin deposition commonly accompanies acute lung injury, but the nature of the local abnormalities of coagulation and fibrinolysis that support pathologic fibrin deposition are not well understood. The trended abnormalities of procoagulant and fibrinolytic activities occurring in lung lavage fluids of Fischer 344 rats after lung injury induced by intravenous oleic acid (OA) or intratracheal bleomycin were studied. After injury by either agent, bronchoalveolar lavage (BAL) contained increased procoagulant activity and decreased fibrinolytic activity. Lavage procoagulant activity was mainly due to an activator of Factor X attributable to the extrinsic coagulation pathway, and fibrinolytic activity was almost completely plasminogen dependent. Major mechanisms of inhibition of fibrinolytic activity involved both the inhibition of the plasminogen activator (PA) and plasmin. These abnormalities were temporally associated with prominent alveolar fibrin deposition in both models. In OA-treated animals, lavage fibrinolytic activity was absent or profoundly decreased, and antiplasmin and procoagulant activities were increased within 4 hours after the induction of acute lung injury. By 24 hours after OA, lavage PA inhibitor (PAI) activity was elevated with sustained antiplasmin activity. By 3 days after OA, these abnormalities had resolved in association with almost complete resolution of alveolar fibrin deposits. Within 3 days after bleomycin-induced lung injury, lavage procoagulant activity was increased and fibrinolytic activity was depressed due to increased antiplasmin and PAI activities. These conditions persisted for 2 weeks, during which time alveolar fibrin deposition was associated with the development of pulmonary fibrosis. These data indicate that a disruption of the normal balance between procoagulant and fibrinolytic activities occurs in alveolar lining fluids of rats with alveolitis induced by either OA or bleomycin, and that concurrent abnormalities

  14. RETICULOENDOTHELIAL CLEARANCE OF CIRCULATING FIBRIN IN THE PATHOGENESIS OF THE GENERALIZED SHWARTZMAN REACTION

    PubMed Central

    Lee, Leung

    1962-01-01

    Intravenous injections of endotoxin or infusions of thrombin in the rabbit initiate intravascular coagulation but do not usually result in massive deposition of fibrin. It has been proposed that the reticuloendothelial system may function efficiently in the removal of circulating fibrin; its blockade permits reproduction of all of the features of the generalized Shwartzman reaction by infusions of thrombin. In the rabbit the reticuloendothelial system may constitute the major protective mechanism against the vasculo-occlusive lesions of the generalized Shwartzman reaction, which appears to be the direct consequence of intravascular fibrin formation and deposition. PMID:14463528

  15. An ultrastructural analysis of platelets, erythrocytes, white blood cells, and fibrin network in systemic lupus erythematosus.

    PubMed

    Pretorius, Etheresia; du Plooy, Jenny; Soma, Prashilla; Gasparyan, Armen Yuri

    2014-07-01

    The study suggests that patients with systemic lupus erythematosus (SLE) present with distinct inflammatory ultrastructural changes such as platelets blebbing, generation of platelet-derived microparticles, spontaneous formation of massive fibrin network and fusion of the erythrocytes membranes. Lupoid platelets actively interact with other inflammatory cells, particularly with white blood cells (WBCs), and the massive fibrin network facilitates such an interaction. It is possible that the concerted actions of platelets, erythrocytes and WBC, caught in the inflammatory fibrin network, predispose to pro-thrombotic states in patients with SLE.

  16. The Platelet Integrin αIIbβ3 Differentially Interacts with Fibrin Versus Fibrinogen.

    PubMed

    Litvinov, Rustem I; Farrell, David H; Weisel, John W; Bennett, Joel S

    2016-04-08

    Fibrinogen binding to the integrin αIIbβ3 mediates platelet aggregation and spreading on fibrinogen-coated surfaces. However,in vivoαIIbβ3 activation and fibrinogen conversion to fibrin occur simultaneously, although the relative contributions of fibrinogenversusfibrin to αIIbβ3-mediated platelet functions are unknown. Here, we compared the interaction of αIIbβ3 with fibrin and fibrinogen to explore their differential effects. A microscopic bead coated with fibrinogen or monomeric fibrin produced by treating the immobilized fibrinogen with thrombin was captured by a laser beam and repeatedly brought into contact with surface-attached purified αIIbβ3. When αIIbβ3-ligand complexes were detected, the rupture forces were measured and displayed as force histograms. Monomeric fibrin displayed a higher probability of interacting with αIIbβ3 and a greater binding strength. αIIbβ3-fibrin interactions were also less sensitive to inhibition by abciximab and eptifibatide. Both fibrinogen- and fibrin-αIIbβ3 interactions were partially inhibited by RGD peptides, suggesting the existence of common RGD-containing binding motifs. This assumption was supported using the fibrin variants αD97E or αD574E with mutated RGD motifs. Fibrin made from a fibrinogen γ'/γ' variant lacking the γC αIIbβ3-binding motif was more reactive with αIIbβ3 than the parent fibrinogen. These results demonstrate that fibrin is more reactive with αIIbβ3 than fibrinogen. Fibrin is also less sensitive to αIIbβ3 inhibitors, suggesting that fibrin and fibrinogen have distinct binding requirements. In particular, the maintenance of αIIbβ3 binding activity in the absence of the γC-dodecapeptide and the α-chain RGD sequences suggests that the αIIbβ3-binding sites in fibrin are not confined to its known γ-chain and RGD motifs.

  17. Venous gas embolism caused by fibrin sealant application to the prostate during greenlight laser photoselective vaporization.

    PubMed

    Lee, Alexander; Vazquez, Rafael

    2015-04-15

    Venous gas embolism is a complication of fibrin sealant application and is a well-described event during various modes of prostate resection. We describe the case of a nitrogen venous gas embolism during Greenlight laser photovaporization of the prostate during the application of fibrin sealant to the operative site for hemostasis. Fibrin sealant application by a compressed gas applicator is a cause of venous air embolism, and this case highlights the need to keep venous gas embolism in mind when compressed gas applicators are used.

  18. Effect of hierarchically aligned fibrin hydrogel in regeneration of spinal cord injury demonstrated by tractography: A pilot study

    PubMed Central

    Zhang, Zhenxia; Yao, Shenglian; Xie, Sheng; Wang, Xiumei; Chang, Feiyan; Luo, Jie; Wang, Jingming; Fu, Jun

    2017-01-01

    Some studies have reported that scaffold or cell-based transplantation may improve functional recovery following SCI, but no imaging information regarding regeneration has been provided to date. This study used tractography to show the regenerating process induced by a new biomaterial-aligned fibrin hydrogel (AFG). A total of eight canines subjected to SCI procedures were assigned to the control or the AFG group. AFG was implanted into the SCI lesion immediately after injury in 5 canines. A follow-up was performed at 12 weeks to evaluate the therapeutic effect including the hindlimb functional recovery, anisotropy and continuity of fibers on tractography. Using tractography, we found new fibers running across the SCI in three canines of the AFG group. Further histological examination confirmed limited glial scarring and regenerated nerve fibers in the lesions. Moreover, Repeated Measures Analysis revealed a significantly different change in fractional anisotropy (FA) between the two groups during the follow-up interval. An increase in FA during the post injury time interval was detected in the AFG group, indicating a beneficial effect of AFG in the rehabilitation of injured axons. Using tractography, AFG was suggested to be helpful in the restoration of fibers in SCI lesions, thus leading to promoted functional recovery. PMID:28067245

  19. Comparison of the Mechanical Properties of Early Leukocyte- and Platelet-Rich Fibrin versus PRGF/Endoret Membranes

    PubMed Central

    Khorshidi, Hooman; Raoofi, Saeed; Bagheri, Rafat; Banihashemi, Hodasadat

    2016-01-01

    Objectives. The mechanical properties of membranes are important factors in the success of treatment and clinical handling. The goal of this study was to compare the mechanical properties of early leukocyte- and platelet-rich fibrin (L-PRF) versus PRGF/Endoret membrane. Materials and Methods. In this experimental study, membranes were obtained from 10 healthy male volunteers. After obtaining 20 cc venous blood from each volunteer, 10 cc was used to prepare early L-PRF (group 1) and the rest was used to get a membrane by PRGF-Endoret system (group 2). Tensile loads were applied to specimens using universal testing machine. Tensile strength, stiffness, and toughness of the two groups of membranes were calculated and compared by paired t-test. Results. The mean tensile strength and toughness were higher in group 1 with a significant difference (P < 0.05). The mean stiffness in group 1 was also higher but not statistically significant (P > 0.05). Conclusions. The results showed that early L-PRF membranes had stronger mechanical properties than membranes produced by PRGF-Endoret system. Early L-PRF membranes might have easier clinical handling and could be a more proper scaffold in periodontal regenerative procedures. The real results of the current L-PRF should be in fact much higher than what is reported here. PMID:26880919

  20. Enzymatic mineralization of silk scaffolds.

    PubMed

    Samal, Sangram K; Dash, Mamoni; Declercq, Heidi A; Gheysens, Tom; Dendooven, Jolien; Van Der Voort, Pascal; Cornelissen, Ria; Dubruel, Peter; Kaplan, David L

    2014-07-01

    The present study focuses on the alkaline phosphatase (ALP) mediated formation of apatitic minerals on porous silk fibroin protein (SFP) scaffolds. Porous SFP scaffolds impregnated with different concentrations of ALP are homogeneously mineralized under physiological conditions. The mineral structure is apatite while the structures differ as a function of the ALP concentration. Cellular adhesion, proliferation, and colonization of osteogenic MC3T3 cells improve on the mineralized SFP scaffolds. These findings suggest a simple process to generate mineralized scaffolds that can be used to enhanced bone tissue engineering-related utility.

  1. The polymerization and thrombin-binding properties of des-(B beta 1-42)-fibrin.

    PubMed

    Siebenlist, K R; DiOrio, J P; Budzynski, A Z; Mosesson, M W

    1990-10-25

    Multiple factors affect the thrombin-catalyzed conversion of fibrinogen to fibrin, including: fibrinopeptide (FPA and FPB) release leading to exposure of two types of polymerization domains ("A" and "B," respectively) in the central portion of the molecule, and exposure of a noncatalytic "secondary" thrombin-binding site in fibrin. Fibrinogen containing the FPA sequence but lacking the B beta 1-42 sequence ("des-(B beta 1-42)-fibrinogen"), was compared to native fibrinogen (containing both FPA and FPB) to investigate the role played by B beta 1-42 in the polymerization of alpha-fibrin (i.e. fibrin lacking FPA), to compare reptilase and thrombin cleavage of FPA from fibrinogen, and to explore the location and function of the secondary thrombin-binding site. Electron microscopy of evolving polymer structures (mu, 0.14; pH 7.4) plus turbidity measurements, showed that early thin fibril formation as well as subsequent lateral fibril associations were impaired in des-(B beta 1-42)-alpha-fibrin, thus indicating that the B beta 1-42 sequence contributes to the A polymerization site. Reptilase-activated des-(B beta 1-42)-alpha-fibrin polymerized even more slowly than thrombin-activated des-(B beta 1-42)-alpha-fibrin, differences that disappeared when repolymerization of preformed fibrin monomers was carried out. Since existing data indicate that thrombin releases FPA in a concerted manner, resulting in relatively rapid evolution of fully functional divalent alpha-fibrin monomers, it can be inferred that delayed fibrin assembly of reptilase fibrin is due to slower formation of divalent alpha-fibrin monomers. Thrombin-activated des-(B beta 1-42)-alpha-fibrin polymerized more rapidly at low ionic strength (mu, 0.04) than did native alpha,beta-fibrin, a reversal of their behavior at physiological ionic strength (mu, 0.14). Concomitant measurement of FPA release revealed modest slowing of release at low ionic strength from des-(B beta 1-42)-fibrinogen (t1/2, 36.5 versus 21

  2. An automated method for fibrin clot permeability assessment.

    PubMed

    Ząbczyk, Michał; Piłat, Adam; Awsiuk, Magdalena; Undas, Anetta

    2015-01-01

    The fibrin clot permeability coefficient (Ks) is a useful measure of porosity of the fibrin network, which is determined by a number of genetic and environmental factors. Currently available methods to evaluate Ks are time-consuming, require constant supervision and provide only one parameter. We present an automated method in which drops are weighed individually, buffer is dosed by the pump and well defined clot washing is controlled by the software. The presence of a straight association between drop mass and their dripping time allows to shorten the measurement time twice. In 40 healthy individuals, Ks, the number of drops required to reach the plateau (DTP), the time to achieve the plateau (TTP) and the DTP/TTP ratio (DTR) were calculated. There was a positive association between Ks (r = 0.69, P < 0.0001) evaluated by using the manual [median of 4.17 (3.60-5.18) ·10⁻⁹ cm²) and the automated method [median of 4.35 (3.74-5.38) ·10⁻⁹ cm²]. The correlation was stronger (r = 0.85, P < 0.001) in clots with DTP of 7 or less (n = 12). DTP was associated with total homocysteine (tHcy) (r = 0.35, P < 0.05) and activated partial thromboplastin time (APTT) (r = -0.34, P < 0.05), TTP with Ks (r = -0.55, P < 0.01 for the manual method and r = -0.44, P < 0.01 for the automated method) and DTP (r = 0.75, P < 0.0001), and DTR with Ks (r = 0.70, P < 0.0001 for the manual method and r = 0.76, P < 0.0001 for the automated method), fibrinogen (r = -0.58, P < 0.0001) and C-reactive protein (CRP) (r = -0.47, P < 0.01). The automated method might be a suitable tool for research and clinical use and may offer more additional parameters describing fibrin clot structure.

  3. 9 CFR 95.10 - Glue stock; importations permitted subject to restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... disinfection by such method or methods as the Deputy Administrator, Veterinary Services may prescribe unless... permission by the Deputy Administrator, Veterinary Services glue stock may be stored for a temporary period... persons authorized by the Deputy Administrator, Veterinary Services so to do, or without sealing...

  4. Unusual Management of Thoracic Aortic Injury After Spinal Instrumentation: Just Glue It!

    PubMed Central

    Deswysen, Yannick; Labeau, Jason; Kaminski, Ludovik; Astarci, Parla

    2016-01-01

    We report the cases of two patients who presented with screw misplacement following spinal surgery. Both benefited from unusual vascular surgical management with removal of the material and injection of biological glue facing the injury, with uneventful postoperative courses. PMID:28097186

  5. Glueballs, gluon condensate, and pure glue QCD below T{sub c}

    SciTech Connect

    Buisseret, F.

    2011-05-23

    A quasiparticle description of pure glue QCD below T{sub c} is presented. It is shown that the strong decrease of both the gluon condensate and the lightest glueball masses when approaching T{sub c} might be the trigger of the phase transition. The proposed model compares favorably with recent lattice data.

  6. Transcatheter Embolization of a Large Symptomatic Pelvic Arteriovenous Malformation with Glubran 2 Acrylic Glue

    SciTech Connect

    Gandini, R.; Angelopoulos, G. Konda, D.; Messina, M.; Chiocchi, M.; Perretta, T.; Simonetti, G.

    2008-09-15

    A young patient affected by a pelvic arteriovenous malformation (pAVM) with recurrent episodes of hematuria following exercise, underwent transcatheter embolization using Glubran 2 acrylic glue (GEM, Viareggio, Italy). All branches of the pAVM were successfully occluded. The patient showed prompt resolution of symptoms and persistent occlusion of the pAVM at the 6 month follow-up.

  7. Is skin closure with cyanoacrylate glue effective for the prevention of sternal wound infections?

    PubMed

    Chambers, Anthony; Scarci, Marco

    2010-05-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed whether cyanoacrylate glue was effective at preventing wound infection following sternotomy incision. Altogether more than 108 papers were found using the reported search, of which seven represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. We conclude that applying cyanoacrylate glue to a sternal wound has superior outcomes in terms of infection rates, both if applied preoperatively (decreasing from 10.8% to 2.7% or 7.8% to 1.1%, according to two studies) and postoperatively (4.9%-2.1%). This trend is true of both deep surgical site infections (0.6%-0%) and superficial site infections (4.3%-2.1%). Furthermore, in patients who had developed mediastinitis following cardiac surgery rates of recurrent sternal detachment and osteomyelitis were significantly reduced in cases where sealant was applied compared to controls (35.3% vs. 0%). In all studies examining hospital stay, duration was reduced in cases where cyanoacrylate glue was used, both in patients treated for recurrent mediastinitis (24.06 vs. 14.16 days) and those with uncomplicated recovery following cardiac surgery (13 vs. 9 days). In addition, two studies examining the use of cyanoacrylate glue to secure the sternum in complicated cases of recurrent detachment report success rates of 86% and 100%.

  8. Magnetic retraction of bowel by intraluminal injectable cyanoacrylate-based magnetic glue.

    PubMed

    Wang, Zhigang; Brown, Andrew; André, Pascal; Brown, Stuart I; Florence, Gordon J; Cuschieri, Alfred

    2013-01-01

    Magnetic retraction offers advantages over physical retraction by graspers because of reduced tissue trauma. The objectives of this study are to investigate a novel method of magnetisation of bowel segments by intraluminal injection of magnetic glue and to demonstrate the feasibility of magnetic retraction of bowel with sufficient force during minimal access surgery. Following an initial materials characterisation study, selected microparticles of stainless steel (SS410- μ Ps) were mixed with chosen cyanoacrylate glue (Loctite 4014). During intraluminal injection of the magnetic glue using ex vivo porcine colonic segments, a magnetic probe placed at the injected site ensured that the SS410-μPs aggregated during glue polymerisation to form an intraluminal mucosally adherent coagulum. The magnetised colonic segments were retracted by magnetic probes (5 and 10 mm) placed external to the bowel wall. A tensiometer was used to record the retraction force. With an injected volume of 2 mL in a particle concentration of 1 g/mL, this technique produced maximal magnetic retraction forces of 2.24 ± 0.23 N and 5.11 ± 0.34 N (n = 20), with use of 5 and 10 mm probes, respectively. The results indicate that the formation of an intraluminal coagulum based on SS410- μPs and Loctite 4014 produces sufficient magnetic retraction for bowel retraction.

  9. Prosthodontic self-treatment with acrylic resin super glue: a case report.

    PubMed

    Winkler, Sheldon; Wood, Robert; Facchiano, Anne M; Boberick, Kenneth G; Patel, Amita R

    2006-01-01

    A case history is presented of a patient who fabricated 3 prostheses from autopolymerizing acrylic resin intended for fingernail augmentation and then cemented them into her mouth with super glue. Patients must be warned not to attempt self-treatment for esthetics with self-fabricated prostheses because severe adverse and irreversible hard and soft tissue reactions may occur.

  10. Biomarkers of exposure to organic solvents from glues used in table tennis bats.

    PubMed

    Karacić, V; Skender, L; Kruslin, E

    1995-09-01

    In nine samples of the glues used to glue rubber onto the table tennis bats, benzene, toluene, xylene, trichloroethene (TRI) and tetrachloroethene (TETRA) were determined by head-space gas chromatography. The analyses demonstrated the presence of benzene (1.8-4.8% (w/w)), toluene (0.32-33.90% (w/w)) and TRI (0.0006-0.280% (w/w)) in seven samples and of toluene only (22.50-67.20% (w/w)) in two samples. Xylene and TETRA were not detected in any of the glue samples analysed. Benzene, toluene and TRI in blood, as a measure of body burden, were determined in four table tennis players (aged 11-14 years) and five volunteers (aged 26-38 years). They were at the same level as in the general population. The aim of the study was to draw attention to the possibility of exposure to organic solvents from glues used in table tennis bats, particularly as it is very often a question of child exposure.

  11. Note: Effects of several thermal glues used on temperature dependent Hall measurements.

    PubMed

    Rangel-Kuoppa, Victor-Tapio; Chen, Gang

    2010-03-01

    The effects of four thermal glues (cry-con, fixogum, RS 503-357, and silicon-high vacuum-grease from Leybold vacuum) on temperature dependent Hall measurements on n-type silicon are tested. All thermal glues yielded the same results (resistivity, mobility, and charge carrier density) between 300 and 190 K. The use of RS 503-357 drastically distorts the expected results below 190 K, probably due to a phase transition and its latent heat, which affects the sample temperature during the phase transition. All the other thermal glues give reproducible results down to 100 K. Below 100 K, the use of cry-con, fixogum, and the silicon-high vacuum-grease from Leybold vacuum yield decreasing mobility and charge carrier density and increasing resistivity, as temperature decreases, but with different magnitudes. This is explained as the thermal properties of each glue start to diverge. Fixogum seems to give the best thermal conductivity, while the silicon-high vacuum grease from Leybold vacuum performs the worst below 100K. Crycon has an intermediate behavior between these two former ones. Cooling speed plays an important role at these low temperatures.

  12. Photoinduced Bioorthogonal 1,3-Dipolar Poly-cycloaddition Promoted by Oxyanionic Substrates for Spatiotemporal Operation of Molecular Glues.

    PubMed

    Hatano, Junichi; Okuro, Kou; Aida, Takuzo

    2016-01-04

    PGlue(PZ), a pyrazoline (PZ)-based fluorescent adhesive which can be generated spatiotemporally in living systems, was developed. Since PGlue(PZ) carries many guanidinium ion (Gu(+)) pendants, it strongly adheres to various oxyanionic substrates through a multivalent salt-bridge interaction. PGlue(PZ) is given by bioorthogonal photopolymerization of a Gu(+)-appended monomer (Glue(TZ)), bearing tetrazole (TZ) and olefinic termini. Upon exposure to UV light, Glue(TZ) transforms into a nitrileimine (NI) intermediate (Glue(NI)), which is eligible for 1,3-dipolar polycycloaddition. However, Glue(NI) in aqueous media can concomitantly be deactivated into Glue(WA) by the addition of water, and the polymerization hardly occurs unless Glue(NI) is concentrated. We found that, even under high dilution, Glue(NI) is concentrated on oxyanionic substrates to a sufficient level for the polymerization, so that their surfaces can be point-specifically functionalized with PGlue(PZ) by the use of a focused beam of UV light.

  13. THE PATHOGENIC ROLE OF FIBRIN DEPOSITION IN THE GLOMERULAR LESIONS OF TOXEMIA OF PREGNANCY

    PubMed Central

    Vassalli, Pierre; Morris, Robert H.; McCluskey, Robert T.

    1963-01-01

    An immunofluorescent study of renal biopsies from patients with toxemia of pregnancy has been performed. It was found that the glomeruli consistently showed bright staining for fibrin within endothelial cells, as well as occasional deposits along the basement membrane. Gamma globulin was only occasionally demonstrable, generally in the form of irregular deposits along the basement membrane. β1C was absent and albumin was not seen in glomeruli, except sometimes in the form of droplets within epithelial cells. In biopsies from pregnant patients without toxemia only equivocal staining for fibrin was seen. On the basis of these observations and other evidence discussed, it is proposed that the accumulation of fibrin in glomeruli reflects a prolonged state of intravascular clotting in toxemia and that the arrest in glomeruli of some form of circulating fibrin constitutes the basic pathogenic mechanism of the glomerular damage in this disease. PMID:14078004

  14. Scaffolding Experiences in Reading Instruction.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    This paper discusses the importance of scaffolding and other techniques in teaching reading. It details numerous ways to employ scaffolding, such as the following: a teacher may read aloud new passages while students follow along; a teacher may print new words on the chalkboard before students read a passage which uses the words; and teachers may…

  15. Soluble fibrin degradation products potentiate tissue plasminogen activator-induced fibrinogen proteolysis.

    PubMed Central

    Weitz, J I; Leslie, B; Ginsberg, J

    1991-01-01

    Despite its affinity for fibrin, tissue plasminogen activator (t-PA) administration causes systemic fibrinogenolysis. To investigate the mechanism, t-PA was incubated with plasma in the presence or absence of a fibrin clot, and the extent of fibrinogenolysis was determined by measuring B beta 1-42. In the presence of fibrin, there is a 21-fold increase in B beta 1-42 levels. The potentiation of fibrinogenolysis in the presence of fibrin is mediated by soluble fibrin degradation products because (a) the extent of t-PA induced fibrinogenolysis and clot lysis are directly related, (b) once clot lysis has been initiated, fibrinogenolysis continues even after the clot is removed, and (c) lysates of cross-linked fibrin clots potentiate t-PA-mediated fibrinogenolysis. Fibrin degradation products stimulate fibrinogenolysis by binding t-PA and plasminogen because approximately 70% of the labeled material in the clot lysates binds to both t-PA- and plasminogen-Sepharose, and only the bound fractions have potentiating activity. The binding site for t-PA and plasminogen is on the E domain because characterization of the potentiating fragments using gel filtration followed by PAGE and immunoblotting indicates that the major species is (DD)E complex, whereas minor components include high-molecular weight derivatives containing the (DD)E complex and fragment E. In contrast, D-dimer is the predominant species found in the fractions that do not bind to the adsorbants, and it has no potentiating activity. Thus, soluble products of t-PA-induced lysis of cross-linked fibrin potentiate t-PA-mediated fibrinogenolysis by providing a surface for t-PA and plasminogen binding thereby promoting plasmin generation. The occurrence of this phenomenon after therapeutic thrombolysis may explain the limited clot selectivity of t-PA. Images PMID:1900308

  16. Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing.

    PubMed

    Dvorak, H F; Harvey, V S; Estrella, P; Brown, L F; McDonagh, J; Dvorak, A M

    1987-12-01

    Fibrin deposition is a consistent early event in solid tumors and healing wounds and precedes new blood vessel ingrowth in both. We now demonstrate that fibrin gels of themselves induce an angiogenic response in the absence of tumor cells or platelets. Angiogenesis was enhanced when certain chemoattractants or mitogens were included in the fibrin gel. Newly devised, inert plastic chambers with one porous surface were filled with varying contents and were implanted in the subcutaneous space of guinea pigs. Chambers filled with cross-linked homologous fibrin or plasma induced an angiogenic response within 4 days. Vessels entered chambers through the surface pores and flared out radially; angiogenesis was quantitated by point counting. Vessels were functional and matured along a gradient that proceeded from distal (least mature) to proximal. The intensity of the angiogenic response was enhanced when zymosan activated serum, an N-formylmethionine tripeptide, or platelet-derived growth factor was included in the fibrin matrix. Prior aldehyde fixation or boiling of fibrin-filled chambers inhibited angiogenesis, as did high concentrations of hyaluronic acid. Chambers filled with type I collagen or agarose did not induce new blood vessel formation, but addition of collagen did not reduce fibrin's capacity to initiate angiogenesis. The novel assay introduced here offers several advantages that should facilitate the study of angiogenesis. These include reproducibility, low background, objective and quantitative scoring, and the capacity to evaluate native molecules in animals of several species. Taken together, our findings strongly implicate fibrin or related proteins in the pathogenesis of angiogenesis and offer a new approach for elucidating the underlying molecular mechanisms.

  17. [APPLICATION OF FISTULA PLUG WITH THE FIBRIN ADHESIVE IN TREATMENT OF RECTAL FISTULAS].

    PubMed

    Aydinova, P R; Aliyev, E A

    2015-05-01

    Results of surgical treatment of 21 patients, suffering high transsphincteric and extrasphincteric rectal fistulas, were studied. In patients of Group I the fistula passage was closed, using fistula plug obturator; and in patients of Group II--by the same, but preprocessed by fibrin adhesive. The fistula aperture germeticity, prophylaxis of rude cicatrices development in operative wound zone, promotion of better fixation of bioplastic material were guaranteed, using fistula plug obturator with preprocessing, using fibrin adhesive.

  18. Classification of Scaffold Hopping Approaches

    PubMed Central

    Sun, Hongmao; Tawa, Gregory; Wallqvist, Anders

    2012-01-01

    The general goal of drug discovery is to identify novel compounds that are active against a preselected biological target with acceptable pharmacological properties defined by marketed drugs. Scaffold hopping has been widely applied by medicinal chemists to discover equipotent compounds with novel backbones that have improved properties. In this review, scaffold hopping is classified into four major categories, namely heterocycle replacements, ring opening or closure, peptidomimetics, and topology-based hopping. The structural diversity of original and final scaffolds with respect to each category will be reviewed. The advantages and limitations of small, medium, and large-step scaffold hopping will also be discussed. Software that is frequently used to facilitate different kinds of scaffold hopping methods will be summarized. PMID:22056715

  19. Nanostructured scaffolds for neural applications.

    PubMed

    Seidlits, Stephanie K; Lee, Jae Y; Schmidt, Christine E

    2008-04-01

    This review discusses the design of scaffolds having submicron and nanoscale features for neural-engineering applications. In particular, the goal is to create materials that can interface more intimately with individual neuronal cells, within both living tissues and in culture, by better mimicking the native extracellular environment. Scaffolds with nanoscale features have the potential to improve the specificity and accuracy of materials for a number of neural-engineering applications, ranging from neural probes for Parkinson's patients to guidance scaffolds for axonal regeneration in patients with traumatic nerve injuries. This review will highlight several techniques that are used to create nanostructured scaffolds, such as photolithography to create grooves for neurite guidance, electrospinning of fibrous matrices, self-assembly of 3D scaffolds from designer peptides and fabrication of conductive nanoscale materials. Most importantly, this review focuses on the effects of incorporating nanoscale architectures into these materials on neuronal and glial cell growth and function.

  20. Inhibition of thrombin generation in plasma by fibrin formation (Antithrombin I).

    PubMed

    de Bosch, N B; Mosesson, M W; Ruiz-Sáez, A; Echenagucia, M; Rodriguez-Lemoin, A

    2002-08-01

    The adsorption of thrombin to fibrin during clotting defines "Antithrombin I" activity. We confirmed that thrombin generation in afibrinogenemic or in Reptilase defibrinated normal plasma was higher than in normal plasma. Repletion of these fibrinogen-deficient plasmas with fibrinogen 1 (gamma A/gamma A), whose fibrin has two "low affinity" non-substrate thrombin binding sites, resulted in moderately reduced thrombin generation by 29-37%. Repletion with fibrinogen 2 (gamma'/gamma A), which in addition to low affinity thrombin-binding sites in fibrin, has a "high affinity" non-substrate thrombin binding site in the carboxy-terminal region of its gamma' chain, was even more effective and reduced thrombin generation by 57-67%. Adding peptides that compete for thrombin binding to fibrin [S-Hir53-64 (hirugen) or gamma'414-427] caused a transient delay in the onset of otherwise robust thrombin generation, indicating that fibrin formation is necessary for full expression of Antithrombin I activity. Considered together, 1) the increased thrombin generation in afibrinogenemic or fibrinogen-depleted normal plasma that is mitigated by fibrinogen replacement; 2) evidence that prothrombin activation is increased in afibrinogenemia and normalized by fibrinogen replacement; 3) the severe thrombophilia that is associated with defective thrombin-binding in dysfibrinogenemias Naples I and New York I, and 4) the association of afibrinogenemia or hypofibrinogenemia with venous or arterial thromboembolism, indicate that Antithrombin I (fibrin) modulates thromboembolic potential by inhibiting thrombin generation in blood.

  1. Fibrin Sealant: The Only Approved Hemostat, Sealant, and Adhesive—a Laboratory and Clinical Perspective

    PubMed Central

    Spotnitz, William D.

    2014-01-01

    Background. Fibrin sealant became the first modern era material approved as a hemostat in the United States in 1998. It is the only agent presently approved as a hemostat, sealant, and adhesive by the Food and Drug Administration (FDA). The product is now supplied as patches in addition to the original liquid formulations. Both laboratory and clinical uses of fibrin sealant continue to grow. The new literature on this material also continues to proliferate rapidly (approximately 200 papers/year). Methods. An overview of current fibrin sealant products and their approved uses and a comprehensive PubMed based review of the recent literature (February 2012, through March 2013) on the laboratory and clinical use of fibrin sealant are provided. Product information is organized into sections based on a classification system for commercially available materials. Publications are presented in sections based on both laboratory research and clinical topics are listed in order of decreasing frequency. Results. Fibrin sealant remains useful hemostat, sealant, and adhesive. New formulations and applications continue to be developed. Conclusions. This agent remains clinically important with the recent introduction of new commercially available products. Fibrin sealant has multiple new uses that should result in further improvements in patient care. PMID:24729902

  2. Fibrin clot properties and haemostatic function in men and women with type 1 diabetes.

    PubMed

    Tehrani, Sara; Jörneskog, Gun; Ågren, Anna; Lins, Per-Eric; Wallén, Håkan; Antovic, Aleksandra

    2015-02-01

    The increased risk of vascular complications in type 1 diabetes may in part be explained by changes in haemostatic function. In the present study, we investigated the fibrin clot properties in patients with type 1 diabetes in relation to sex and microvascular complications. The study included 236 patients (107 women) aged between 20-70 years and without any history of cardiovascular disease. Fibrin clot properties, assessed by determination of the permeability coefficient (Ks) and turbidimetric clotting and lysis assays, did not differ between men and women. Compared with men, women had worse glycaemic control as well as higher levels of prothrombin fragment 1+2 and peak thrombin generation in vitro, indicating increased thrombin generation both in vivo and in vitro. Subgroup analyses of patients younger than 30 years revealed less permeable fibrin clots and prolonged lysis time in females compared with age-matched men. Patients with microvascular complications had higher fibrinogen concentrations and denser and less permeable fibrin clots. Thus, we conclude that in vitro fibrin clot properties in patients with type 1 diabetes without cardiovascular disease are not different between the sexes, but associate with prevalence of microvascular complications. Tighter fibrin clot formation in younger women, as suggested by our results, may affect their future cardiovascular risk and should be investigated in a larger population.

  3. Induction therapy alters plasma fibrin clot properties in multiple myeloma patients: association with thromboembolic complications.

    PubMed

    Undas, Anetta; Zubkiewicz-Usnarska, Lidia; Helbig, Grzegorz; Woszczyk, Dariusz; Kozińska, Justyna; Dmoszyńska, Anna; Dębski, Jakub; Podolak-Dawidziak, Maria; Kuliczkowski, Kazimierz

    2015-09-01

    Induction therapy in patients with multiple myeloma increases the risk of thromboembolism. We have recently shown that multiple myeloma patients tend to form denser fibrin clots displaying poor lysability. We investigated the effect of induction therapy on fibrin clot properties in multiple myeloma patients. Ex-vivo plasma fibrin clot permeability, turbidity, susceptibility to lysis, thrombin generation, factor VIII and fibrinolytic proteins were compared in 48 multiple myeloma patients prior to and following 3 months of induction therapy, mainly with cyclophosphamide-thalidomide-dexamethasone regimen. Patients on thromboprophylaxis with aspirin or heparins were eligible. A 3-month induction therapy resulted in improved clot properties, that is higher clot permeability, compaction, shorter lag phase and higher final turbidity, along with shorter clot lysis time and higher rate of D-dimer release from fibrin clots than the baseline values. The therapy also resulted in lower thrombin generation, antiplasmin and thrombin-activatable fibrinolysis inhibitor (TAFI), but elevated factor VIII. Progressive disease was associated with lower posttreatment clot permeability and lysability. Despite thromboprophylaxis, two patients developed ischemic stroke and 10 had venous thromboembolism. They were characterized by pretreatment lower clot permeability, prolonged clot lysis time, longer lag phase, higher peak thrombin generation, TAFI and plasminogen activator inhibitor -1. Formation of denser plasma fibrin clots with reduced lysability and increased thrombin generation at baseline could predispose to thrombotic complications during induction treatment in multiple myeloma patients. We observed improved fibrin clot properties and thrombin generation in multiple myeloma patients except those with progressive disease.

  4. Platelet factor 4 (CXCL4) seals blood clots by altering the structure of fibrin.

    PubMed

    Amelot, Aymeric A; Tagzirt, Madjid; Ducouret, Guylaine; Kuen, René Lai; Le Bonniec, Bernard F

    2007-01-05

    Platelet factor-4 (PF4/CXCL4) is an orphan chemokine released in large quantities in the vicinity of growing blood clots. Coagulation of plasma supplemented with a matching amount of PF4 results in a translucent jelly-like clot. Saturating amounts of PF4 reduce the porosity of the fibrin network 4.4-fold and decrease the values of the elastic and loss moduli by 31- and 59-fold, respectively. PF4 alters neither the cleavage of fibrinogen by thrombin nor the cross-linking of protofibrils by activated factor XIII but binds to fibrin and dramatically transforms the structure of the ensuing network. Scanning electron microscopy showed that PF4 gives rise to a previously unreported pattern of polymerization where fibrin assembles to form a sealed network. The subunits constituting PF4 form a tetrahedron having at its corners a RPRH motif that mimics (in reverse orientation) the Gly-His-Arg-Pro-amide peptides that co-crystallize with fibrin. Molecular modeling showed that PF4 could be docked to fibrin with remarkable complementarities and absence of steric clashes, allowing the assembly of irregular polymers. Consistent with this hypothesis, as little as 50 microm the QVRPRHIT peptide derived from PF4 affects the polymerization of fibrin.

  5. Endothelial Cells Organize Fibrin Clots into Structures That Are More Resistant to Lysis

    NASA Astrophysics Data System (ADS)

    Gray Jerome, W.; Handt, Stefan; Hantgan, Roy R.

    2005-06-01

    Acute myocardial infarction is a major cause of death and disability in the United States. Introducing thrombolytic agents into the clot to dissolve occlusive coronary artery thrombi is one method of treatment. However, despite advances in our knowledge of thrombosis and thrombolysis, survival rates following thrombolytic therapy have not improved substantially. This failure highlights the need for further study of the factors mediating clot stabilization. Using laser scanning confocal microscopy of clots formed from fluorescein-labeled fibrinogen, we investigated what effect binding of fibrin to the endothelial surface has on clot structure and resistance to lysis. Fluorescent fibrin clots were produced over human umbilical vein endothelial cells (HUVEC) and the clot structure analyzed. In the presence of HUVEC, fibrin near the endothelial surface was more organized and occurred in tighter bundles compared to fibrin just 50 [mu]m above. The HUVEC influence on fibrin architecture was blocked by inhibitory concentrations of antibodies to [alpha]V or [beta]3 integrin subunits. The regions of the clots associated with endothelial cells were more resistant to lysis than the more homogenous regions distal to endothelium. Thus, our data show that binding of fibrin to integrins on endothelial surfaces produces clots that are more resistant to lysis.

  6. Discovery of an uncovered region in fibrin clots and its clinical significance

    PubMed Central

    Hisada, Yohei; Yasunaga, Masahiro; Hanaoka, Shingo; Saijou, Shinji; Sugino, Takashi; Tsuji, Atsushi; Saga, Tsuneo; Tsumoto, Kouhei; Manabe, Shino; Kuroda, Jun-ichiro; Kuratsu, Jun-ichi; Matsumura, Yasuhiro

    2013-01-01

    Despite the pathological importance of fibrin clot formation, little is known about the structure of these clots because X-ray and nuclear magnetic resonance (NMR) analyses are not applicable to insoluble proteins. In contrast to previously reported anti-fibrin monoclonal antibodies (mAbs), our anti-fibrin clot mAb (clone 102–10) recognises an uncovered region that is exposed only when a fibrin clot forms. The epitope of the 102–10 mAb was mapped to a hydrophobic region on the Bβ chain that interacted closely with a counterpart region on the γ chain in a soluble state. New anti-Bβ and anti-γ mAbs specific to peptides lining the discovered region appeared to bind exclusively to fibrin clots. Furthermore, the radiolabelled 102–10 mAb selectively accumulated in mouse spontaneous tumours, and immunohistochemistry using this mAb revealed greater fibrin deposition in World Health Organization (WHO) grade 4 glioma than in lower-grade gliomas. Because erosive tumours are apt to cause micro-haemorrhages, even early asymptomatic tumours detected with a radiolabelled 102-10 mAb may be aggressively malignant. PMID:24008368

  7. Bambus 2: scaffolding metagenomes

    PubMed Central

    Koren, Sergey; Treangen, Todd J.; Pop, Mihai

    2011-01-01

    Motivation: Sequencing projects increasingly target samples from non-clonal sources. In particular, metagenomics has enabled scientists to begin to characterize the structure of microbial communities. The software tools developed for assembling and analyzing sequencing data for clonal organisms are, however, unable to adequately process data derived from non-clonal sources. Results: We present a new scaffolder, Bambus 2, to address some of the challenges encountered when analyzing metagenomes. Our approach relies on a combination of a novel method for detecting genomic repeats and algorithms that analyze assembly graphs to identify biologically meaningful genomic variants. We compare our software to current assemblers using simulated and real data. We demonstrate that the repeat detection algorithms have higher sensitivity than current approaches without sacrificing specificity. In metagenomic datasets, the scaffolder avoids false joins between distantly related organisms while obtaining long-range contiguity. Bambus 2 represents a first step toward automated metagenomic assembly. Availability: Bambus 2 is open source and available from http://amos.sf.net. Contact: mpop@umiacs.umd.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:21926123

  8. Release of alpha 2-plasmin inhibitor from plasma fibrin clots by activated coagulation factor XIII. Its effect on fibrinolysis.

    PubMed Central

    Mimuro, J; Kimura, S; Aoki, N

    1986-01-01

    When blood coagulation takes place in the presence of calcium ions, alpha 2-plasmin inhibitor (alpha 2PI) is cross-linked to fibrin by activated coagulation Factor XIII (XIIIa) and thereby contributes to the resistance of fibrin to fibrinolysis. It was previously shown that the cross-linking reaction is a reversible one, since the alpha 2PI-fibrinogen cross-linked complex could be dissociated. In the present study we have shown that the alpha 2PI-fibrin cross-linking reaction is also a reversible reaction and alpha 2PI which had been cross-linked to fibrin can be released from fibrin by disrupting the equilibrium, resulting in a decrease of its resistance to fibrinolysis. When the fibrin clot formed from normal plasma in the presence of calcium ions was suspended in alpha 2PI-deficient plasma of buffered saline, alpha 2PI was gradually released from fibrin on incubation. When alpha 2PI was present in the suspending milieu, the release was decreased inversely to the concentrations of alpha 2PI in the suspending milieu. The release was accelerated by supplementing XIIIa or the presence of a high concentration of the NH2-terminal 12-residue peptide of alpha 2PI (N-peptide) which is cross-linked to fibrin in exchange for the release of alpha 2PI. When the release of alpha 2PI from fibrin was accelerated by XIIIa or N-peptide, the fibrin became less resistant to the fibrinolytic process, resulting in an acceleration of fibrinolysis which was proportional to the degree of the release of alpha 2PI. These results suggest the possibility that alpha 2PI could be released from fibrin in vivo by disrupting the equilibrium of the alpha 2PI-fibrin cross-linking reaction, and that the release would result in accelerated thrombolysis. Images PMID:2419360

  9. Optimum design and experimental verification of glue bonding area and thickness for an eight-inch reflective mirror

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Yen; Chen, Yi-Cheng; Huang, Ting-Ming

    2016-09-01

    Effects of glue bonding area and bonding thickness on an eight-inch BOROFLOAT® reflective mirror have been studied numerically and experimentally. The comparison of optical aberrations under the self-weight loading and temperature difference has also been investigated. RTV566 has been selected to bond the mirror with on a ring support mount. The optimum glue bonding area and bonding thickness for isolating the temperature variation have been obtained through a design optimization process and then been used practically. A laser interferometer with a wavelength of 632.8 nm has been used to observe the optical path difference pattern and aberrations. The influence of ambient temperature on the mirror with the optimum glue bonding area and thickness has been carried out. It is concluded that the optimum design of the glue for isolating the temperature variation has been attained numerically and verified successfully with the experimental observations.

  10. Three-dimensional structure and cytokine distribution of platelet-rich fibrin

    PubMed Central

    Bai, Meng-Yi; Wang, Ching-Wei; Wang, Jyun-Yi; Lin, Ming-Fang; Chan, Wing P

    2017-01-01

    OBJECTIVES: Previous reports have revealed that several cytokines (including platelet-derived growth factor-BB, transforming growth factors-β1 and insulin-like growth factor-1) can enhance the rate of bone formation and synthesis of extracellular matrix in orthopaedics or periodontology. This study aimed to determine the concentration of cytokines within platelet-rich fibrin microstructures and investigate whether there are differences in the different portions of platelet-rich fibrin, which has implications for proper clinical use of platelet-rich fibrin gel. METHODS: Whole blood was obtained from six New Zealand rabbits (male, 7 to 39 weeks old, weight 2.7-4 kg); it was then centrifuged for preparation of platelet-rich fibrin gels and harvest of plasma. The resultant platelet-rich fibrin gels were used for cytokine determination, histological analyses and scanning electron microscopy. All plasmas obtained were subject to the same cytokine determination assays for the purpose of comparison. RESULTS: Cytokines platelet-derived growth factor-BB and transforming growth factor-β1 formed concentration gradients from high at the red blood cell end of the platelet-rich fibrin gel (p=1.88×10-5) to low at the plasma end (p=0.19). Insulin-like growth factor-1 concentrations were similar at the red blood cell and plasma ends. The porosities of the platelet-rich fibrin samples taken in sequence from the red blood cell end to the plasma end were 6.5% ± 4.9%, 24.8% ± 7.5%, 30.3% ± 8.5%, 41.4% ± 12.3%, and 40.3% ± 11.7%, respectively, showing a gradual decrease in the compactness of the platelet-rich fibrin network. CONCLUSION: Cytokine concentrations are positively associated with platelet-rich fibrin microstructure and portion in a rabbit model. As platelet-rich fibrin is the main entity currently used in regenerative medicine, assessing cytokine concentration and the most valuable portion of PRF gels is essential and recommended to all physicians. PMID:28273236

  11. Using Scaffolds in Problem-Based Hypermedia

    ERIC Educational Resources Information Center

    Su, Yuyan; Klein, James D.

    2010-01-01

    This study investigated the use of scaffolds in problem-based hypermedia. Three hundred and twelve undergraduate students enrolled in a computer literacy course worked in project teams to use a hypermedia PBL program focused on designing a personal computer. The PBL program included content scaffolds, metacognitive scaffolds, or no scaffolds.…

  12. Electrospun multifunctional tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Wang, Min

    2014-03-01

    Tissue engineering holds great promises in providing successful treatments of human body tissue loss that current methods are unable to treat or unable to achieve satisfactory clinical outcomes. In scaffold-based tissue engineering, a highperformance scaffold underpins the success of a tissue engineering strategy and a major direction in the field is to create multifunctional tissue engineering scaffolds for enhanced biological performance and for regenerating complex body tissues. Electrospinning can produce nanofibrous scaffolds that are highly desirable for tissue engineering. The enormous interest in electrospinning and electrospun fibrous structures by the science, engineering and medical communities has led to various developments of the electrospinning technology and wide investigations of electrospun products in many industries, including biomedical engineering, over the past two decades. It is now possible to create novel, multicomponent tissue engineering scaffolds with multiple functions. This article provides a concise review of recent advances in the R & D of electrospun multifunctional tissue engineering scaffolds. It also presents our philosophy and research in the designing and fabrication of electrospun multicomponent scaffolds with multiple functions.

  13. Enhancing Interfacial Bonding between Anisotropically Oriented Grains Using a Glue-Nanofiller for Advanced Li-Ion Battery Cathode.

    PubMed

    Kim, Hyejung; Lee, Sanghan; Cho, Hyeon; Kim, Junhyeok; Lee, Jieun; Park, Suhyeon; Joo, Se Hun; Kim, Su Hwan; Cho, Yoon-Gyo; Song, Hyun-Kon; Kwak, Sang Kyu; Cho, Jaephil

    2016-06-01

    Formation of a glue-nanofiller layer between grains, consisting of a middle-temperature spinel-like Lix CoO2 phase, reinforces the strength of the incoherent interfacial binding between anisotropically oriented grains by enhancing the face-to-face adhesion strength. The cathode treated with the glue-layer exhibits steady cycling performance at both room-temperature and 60 °C. These results represent a step forward in advanced lithium-ion batteries via simple cathode coating.

  14. A comparative evaluation of the blood clot, platelet-rich plasma, and platelet-rich fibrin in regeneration of necrotic immature permanent teeth: A clinical study

    PubMed Central

    Narang, Isha; Mittal, Neelam; Mishra, Navin

    2015-01-01

    Introduction: This study was designed as a clinical trial to evaluate and compare the regenerative potential of platelet-rich fibrin (PRF), platelet-rich plasma (PRP), and blood clot in immature necrotic permanent teeth with or without associated apical periodontitis. Methods: Access preparation was done under rubber dam isolation. Copious irrigation was done with 2.5% NaOCl and triple antibiotic paste was placed as an intracanal medicament. After 4 weeks, the cases were divided into four groups with five patients in each group. The study design had three test arms and one control arm. Group I in which mineral trioxide aggregate apexification was carried out and it was kept as control group to evaluate the regenerative potential of blood clot and platelet concentrates, Group II in which blood clot was used as scaffold in the canal, Group III in PRF was used as scaffold, and Group IV in which PRP carried on collagen was used as a scaffold. Results: The clinical and radiographic evaluation after 6 and 18 months was done by two independent observers who were blinded from the groups. The scoring was done as: None score was denoted by, Fair by 1, Good by 2, and Excellent by 3. The data were then analyzed statistically by Fisher's exact test using Statistics and Data 11.1(PRP Using harvest Smart PReP2) which showed statistically significant values in Group III as compared to other Groups. Conclusion: PRF has huge potential to accelerate the growth characteristics in immature necrotic permanent teeth as compared to PRP and blood clot. PMID:25684914

  15. Exploring the scaffold universe of kinase inhibitors.

    PubMed

    Hu, Ye; Bajorath, Jürgen

    2015-01-08

    The scaffold concept was applied to systematically determine, analyze, and compare core structures of kinase inhibitors. From publicly available inhibitors of the human kinome, scaffolds and cyclic skeletons were systematically extracted and organized taking activity data, structural relationships, and retrosynthetic criteria into account. Scaffold coverage varied greatly across the kinome, and many scaffolds representing compounds with different activity profiles were identified. The majority of kinase inhibitor scaffolds were involved in well-defined yet distinct structural relationships, which had different consequences on compound activity. Scaffolds exclusively representing highly potent compounds were identified as well as structurally analogous scaffolds with very different degrees of promiscuity. Scaffold relationships presented herein suggest a variety of hypotheses for inhibitor design. Our detailed organization of the kinase inhibitor scaffold universe with respect to different activity and structural criteria, all scaffolds, and the original compound data assembled for our analysis are made freely available.

  16. Development of Silicon Photomultipliers and their Applications to GlueX Calorimetry

    SciTech Connect

    Smith, Elton S.

    2016-07-01

    The GlueX experiment is a photoproduction experiment in Hall D at Jefferson Lab that is being commissioned for use with the new 12 GeV accelerator. The purpose of the experiment is to search for Hybrid mesons, which are mesons with quark and gluon degrees of freedom. The barrel calorimeter of GlueX is instrumented with 4000 large-area (1.2 x1.2 cm2) silicon photomultipliers (SiPMs). These photon sensors have properties similar to vacuum photomultipliers, but are unaffected by high magnetic fields. In our experiment they operate in magnetic fields exceeding 1T. After extensive tests with a variety of sensors, we chose the S12045(X) custom SiPM arrays manufactured by Hamamatsu Corporation, also known as multi-pixel photon counters (MPPCs). We will give an overview of this new technology as well as the experience gained during two commissioning periods with beam.

  17. Study of nano imprinting using soft lithography on Krafty glue & PVDF polymer thin films

    NASA Astrophysics Data System (ADS)

    Sankar, M. S. Ravi; Gangineni, Ramesh Babu

    2014-04-01

    The present work reveals soft lithography strategy based on self assembly and replica molding for carrying out micro and nanofabrication. It provides a convenient, effective and very low cost method for the formation and manufacturing of micro and nano structures. Al-layer of compact disc (sony CD-R) used as a stamp with patterned relief structures to generate patterns and structures with pattern size of 100nm height, 1.7 μm wide. In literature, PDMS (Polydimethylsiloxane) solution is widely used to get negative copy of the Al-layer. In this work, we have used inexpensive white glue (Polyvinylacetate + water), 15gm (□5) and PVDF (Polyvinylidene difluoride) spin coated films and successfully transferred the nano patterns of Al layer on to white glue and PVDF films.

  18. The Research of Improving the Particleboard Glue Dosing Process Based on TRIZ Analysis

    NASA Astrophysics Data System (ADS)

    Yu, Huiling; Fan, Delin; Zhang, Yizhuo

    This research creates a design methodology by synthesizing the Theory of Inventive Problem Solving (TRIZ) and cascade control based on Smith predictor. The particleboard glue supplying and dosing system case study defines the problem and the solution using the methodology proposed in the paper. Status difference existing in the gluing dosing process of particleboard production usually causes gluing volume inaccurately. In order to solve the problem above, we applied the TRIZ technical contradiction and inventive principle to improve the key process of particleboard production. The improving method mapped inaccurate problem to TRIZ technical contradiction, the prior action proposed Smith predictor as the control algorithm in the glue dosing system. This research examines the usefulness of a TRIZ based problem-solving process designed to improve the problem-solving ability of users in addressing difficult or reoccurring problems and also testify TRIZ is practicality and validity. Several suggestions are presented on how to approach this problem.

  19. Exclusive η photoproduction and Σ beam asymmetries at GlueX

    NASA Astrophysics Data System (ADS)

    McGinley, William; GlueX Collaboration Collaboration

    2017-01-01

    The goal of the GlueX experiment is to study the gluonic degrees of freedom in QCD by mapping the light meson spectrum with an emphasis on hybrid exotic states. This will be done using a tagged, linearly-polarized 9 GeV photon beam incident on a hydrogen target. Early measurements of exclusive η photoproduction will provide insight into the reaction mechanism. The GlueX experiment is making the first Σ beam asymmetry measurement for the η in this energy range and is expected to further constrain Regge theory models for photoproduced pseudoscalar mesons. This talk will present preliminary results for the photon beam Σ asymmetry for multiple decay modes of the exclusive reaction γ p -> η p using data from a recent commissioning run. Supported by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-FG02-87ER40315.

  20. Study of nano imprinting using soft lithography on Krafty glue and PVDF polymer thin films

    SciTech Connect

    Sankar, M. S. Ravi Gangineni, Ramesh Babu

    2014-04-24

    The present work reveals soft lithography strategy based on self assembly and replica molding for carrying out micro and nanofabrication. It provides a convenient, effective and very low cost method for the formation and manufacturing of micro and nano structures. Al-layer of compact disc (sony CD-R) used as a stamp with patterned relief structures to generate patterns and structures with pattern size of 100nm height, 1.7 μm wide. In literature, PDMS (Polydimethylsiloxane) solution is widely used to get negative copy of the Al-layer. In this work, we have used inexpensive white glue (Polyvinylacetate + water), 15gm (□5) and PVDF (Polyvinylidene difluoride) spin coated films and successfully transferred the nano patterns of Al layer on to white glue and PVDF films.

  1. Full thickness burns caused by cyanoacrylate nail glue: A case series.

    PubMed

    Kelemen, Noemi; Karagergou, Eleni; Jones, Sarah L; Morritt, Andrew N

    2016-06-01

    Artificial (acrylic) nails are popular cosmetic enhancements that provide the user with the appearance of manicured nails, do not chip or crack, and are generally considered very safe to apply. We report three cases where full thickness thermal burns were sustained from nail glue adhesive (cyanoacrylate) during the application of artificial nails. All three cases underwent surgical debridement and split skin graft reconstruction. We carried out an experiment to characterize the exothermic reaction between nail glue and cotton leggings. The average high temperature produced was 68°C which was sustained for 12.2s which is more than sufficient to cause full thickness burns on skin. We report these cases to increase both professional and public awareness of this serious potential complication associated with the application of artificial nails.

  2. Cyanoacrylate surgical glue for mesh fixation in laparoscopic total extraperitoneal hernia repair.

    PubMed

    Garcia-Vallejo, Luis; Couto-Gonzalez, Ivan; Concheiro-Coello, Pablo; Brea-Garcia, Beatriz; Taboada-Suarez, Antonio

    2014-06-01

    In an attempt to find the ideal surgical technique for mesh fixation during laparoscopic total extraperitoneal inguinal hernia repair, we evaluate the use of a synthetic surgical glue (N-butyl-cyanoacrylate-Glubran 2) in an effort to reduce postoperative pain and the complications associated with the use of staples. We have prospectively evaluated 61 consecutive patients (73 hernias) with a minimum follow-up period of 18 months and an average of 29.7 months, without any significant complications present. The majority (59%) only required low dosages of painkillers during the first 24 hours after surgery and have not experienced any cases of chronic pain or recurring hernias in the time period described. On the basis of this initial experience, the use of the surgical glue used to repair inguinal hernias with the laparoscopic total extraperitoneal technique has been proved to be a simple and effective surgical method for mesh fixation.

  3. Cyanoacrylate: a handy tissue glue in maxillofacial surgery: our experience in alexandria, egypt.

    PubMed

    Habib, Ahmed; Mehanna, Ahmed; Medra, Ahmed

    2013-09-01

    Cyanoacrylate tissue glue has been widely used in different surgical applications. It is easy to apply and can save considerable time and effort. Reports including series of oral and maxillofacial cases are yet to be well documented. We report our experience using cyanoacrylate tissue glue in the head and neck region in 165 patients. We have used it for indications including orbital floor graft fixation, cleft lip and palate repair, oral dressing, skin graft fixation, nasal splinting, immobilisation of traumatised teeth, management of chyle leak during neck dissection and wound closure. We have not had any complications from using cyanoacrylate. It is found to be safe and effective in different indications it is used for without undue hazards. The role of cyanoacrylate in oral and maxillofacial surgery needs further research.

  4. Development of silicon photomultipliers and their applications to GlueX calorimetry

    NASA Astrophysics Data System (ADS)

    Smith, Elton S.

    2016-07-01

    The GlueX experiment is a photoproduction experiment in Hall D at Jefferson Lab that is being commissioned for use with the new 12 GeV accelerator. The purpose of the experiment is to search for Hybrid mesons, which are mesons with quark and gluon degrees of freedom. The barrel calorimeter of GlueX is instrumented with 4000 large-area (1.2 × 1.2 cm2) silicon photomultipliers (SiPMs). These photon sensors have properties similar to vacuum photomultipliers, but are unaffected by high magnetic fields. In our experiment they operate in magnetic fields exceeding 1T. After extensive tests with a variety of sensors, we chose the S12045(X) custom SiPM arrays manufactured by Hamamatsu Corporation, also known as multi-pixel photon counters (MPPCs). We will give an overview of this new technology as well as the experience gained during two commissioning periods with beam.

  5. Results of patch testing with a specialized collection of plastic and glue allergens.

    PubMed

    Holness, D L; Nethercottdagger, J R

    1997-06-01

    Patch testing was performed on 235 patients with a specialized collection of plastic and glue components. Thirteen percent had a positive response to at least one of the allergens. Seventy-four percent of the responses were relevant to