Science.gov

Sample records for fibroblastic cell lines

  1. Toxicity of Calcium Hydroxide Nanoparticles on Murine Fibroblast Cell Line

    PubMed Central

    Dianat, Omid; Azadnia, Sina; Mozayeni, Mohammad Ali

    2015-01-01

    Introduction: One of the major contributing factors, which may cause failure of endodontic treatment, is the presence of residual microorganisms in the root canal system. For years, most dentists have been using calcium hydroxide (CH) as the intracanal medicament between treatment sessions to eliminate remnant microorganisms. Reducing the size of CH particles into nanoparticles enhances the penetration of this medicament into dentinal tubules and increases their antimicrobial efficacy. This in vitro study aimed to compare the cytotoxicity of CH nanoparticles and conventional CH on fibroblast cell line using the Mosmann’s Tetrazolium Toxicity (MTT) assay. Methods and Materials: This study was conducted on L929 murine fibroblast cell line by cell culture and evaluation of the direct effect of materials on the cultured cells. Materials were evaluated in two groups of 10 samples each at 24, 48 and 72 h. At each time point, 10 samples along with 5 positive and 5 negative controls were evaluated. The samples were transferred into tubes and exposed to fibroblast cells. The viability of cells was then evaluated. The Two-way ANOVA was used for statistical analysis and the level of significance was set at 0.05. Results: Cytotoxicity of both materials decreased over time and for conventional CH was lower than that of nanoparticles. However, this difference was not statistically significant (P>0.05). Conclusion: The cytotoxicity of CH nanoparticles was similar to that of conventional CH. PMID:25598810

  2. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    PubMed

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-01-01

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts. PMID:26840224

  3. A FTIR imaging characterization of fibroblasts stimulated by various breast cancer cell lines.

    PubMed

    Kumar, Saroj; Shabi, Thankaraj Salammal; Goormaghtigh, Erik

    2014-01-01

    It is well known that the microenvironment plays a major role in breast cancer progression. Yet, the mechanism explaining the transition from normal fibroblasts to cancer-stimulated fibroblasts remains to be elucidated. Here we report a FTIR imaging study of the effects of three different breast cancer cell lines on normal fibroblasts in culture. Fibroblast activation process was monitored by FTIR imaging and spectra compared by multivariate statistical analyses. Principal component analysis evidenced that the fibroblasts stimulated by these cancer cell lines grouped together and remained distinctly separated from normal fibroblasts indicating a modified different chemical composition in the cancer-stimulated fibroblasts. Similar changes in fibroblasts were induced by the various breast cancer cell lines belonging to different sub-types. Most significant changes were observed in the region of 2950 and 1230 cm(-1), possibly related to changes in lipids and in the 1230 cm(-1) area assigned to phosphate vibrations (nucleotides). Interestingly, the cancer-cell induced changes in the fibroblasts also occurred when there was no possible direct contact between the two cell lines in the co-culture. When contact was possible, the spectral changes were similar, suggesting that soluble factors but not direct cell-cell interactions were responsible for fibroblast activation. Overall, the results indicate that IR imaging could be used in the future for analyzing the microenvironment of breast tumors.

  4. Inductive role of fibroblastic cell lines in development of the mouse thymus anlage in organ culture.

    PubMed

    Itoi, M; Amagai, T

    1998-01-10

    Previously, we have shown that embryonic day 12 thymus anlage cultured alone cannot develop into the mature organ but degenerates. In the present study, we investigated the cause of this insufficient organogenesis of embryonic day 12 thymus anlage in organ culture. We cocultured embryonic day 12 thymus anlages with various cell lines as pellets formed by centrifugation. In coculture with fibroblastic cell lines, but not with thymic epithelial cell lines, embryonic day 12 thymus anlages developed to support full T cell differentiation, and expressed mature stromal cell markers, Ia and Kb. By pellet culture of thymus anlages and fibroblastic cell lines transfected with a beta-galactosidase expression vector, we analyzed the distribution of added fibroblastic cells in pellets. The added fibroblastic cells constituted neither thymic capsule nor septa but disappeared after about 2 weeks in culture. Moreover, immunohistochemical studies indicated that added fibroblastic cells were adjacent to mesenchymal cells of thymus anlage. Our results strongly suggest that added fibroblastic cells support the development of the thymus anlage through interaction with its mesenchymal cells.

  5. Identification of Human Fibroblast Cell Lines as a Feeder Layer for Human Corneal Epithelial Regeneration

    PubMed Central

    Lu, Rong; Bian, Fang; Lin, Jing; Su, Zhitao; Qu, Yangluowa; Pflugfelder, Stephen C.; Li, De-Quan

    2012-01-01

    There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE) and cell growth capacity were evaluated on days 5–14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1×104 in a 35-mm dish (9.6 cm2) grew to confluence (about 1.87–2.41×106 cells) in 12–14 days, representing 187–241 fold expansion with over 7–8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction. PMID:22723892

  6. Fibroblast cell line establishment, cryopreservation and interspecies embryos reconstruction in red panda ( Ailurus fulgens).

    PubMed

    Tao, Yong; Liu, Jianming; Zhang, Yunhai; Zhang, Meiling; Fang, Junshun; Han, Wei; Zhang, Zhizhong; Liu, Ya; Ding, Jianping; Zhang, Xiaorong

    2009-05-01

    In evolution, the red panda (Ailurus fulgens) plays a pivotal role in the higher level phylogeny of arctoides carnivore mammals. The red panda inhabits certain Asian countries only and its numbers are decreasing. Therefore, the development of feasible ways to preserve this species is necessary. Genetic resource cryopreservation and somatic cell nuclear transfer (SCNT) have been used extensively to rescue this endangered species. The present study describes the establishment, for the first time, of a red panda ear fibroblast cell line, which was then cryopreserved, thawed and cultured. Through micromanipulation, interspecies embryos were reconstructed using the cryopreserved-thawed fibroblasts of the red panda as the donor and rabbit oocytes as recipients. A total of 194 enucleated rabbit oocytes were reconstructed with red panda ear fibroblasts; enucleated oocytes were activated without fusion as the control. The results show that the fibroblast cell line was established successfully by tissue culture and then cryopreserved in liquid nitrogen. Supplementation with 20% fetal bovine serum and 8% dimethyl sulphoxide in basic medium facilitated the cryopreservation. The interspecies embryos were successfully reconstructed. The cleavage, morulae and blastocyst rates after in vitro culture were 71, 47 and 23% (31/194), respectively. This study indicated that a somatic cell line could be established and cryopreserved from red panda and that rabbit cytoplast supports mitotic cleavage of the red panda karyoplasts and is capable of reprogramming the nucleus to achieve blastocysts.

  7. Establishment of the first humpback whale fibroblast cell lines and their application in chemical risk assessment.

    PubMed

    Burkard, Michael; Whitworth, Deanne; Schirmer, Kristin; Nash, Susan Bengtson

    2015-10-01

    This paper reports the first successful derivation and characterization of humpback whale fibroblast cell lines. Primary fibroblasts were isolated from the dermal connective tissue of skin biopsies, cultured at 37 °C and 5% CO2 in the standard mammalian medium DMEM/F12 supplemented with 10% fetal bovine serum (FBS). Of nine initial biopsies, two cell lines were established from two different animals and designated HuWa1 and HuWa2. The cells have a stable karyotype with 2n=44, which has commonly been observed in other baleen whale species. Cells were verified as being fibroblasts based on their spindle-shaped morphology, adherence to plastic and positive immunoreaction to vimentin. Population doubling time was determined to be ∼41 h and cells were successfully cryopreserved and thawed. To date, HuWa1 cells have been propagated 30 times. Cells proliferate at the tested temperatures, 30, 33.5 and 37 °C, but show the highest rate of proliferation at 37 °C. Short-term exposure to para,para'-dichlorodiphenyldichloroethylene (p,p'-DDE), a priority compound accumulating in southern hemisphere humpback whales, resulted in a concentration-dependent loss of cell viability. The effective concentration which caused a 50% reduction in HuWa1 cell viability (EC50 value) was approximately six times greater than the EC50 value for the same chemical measured with human dermal fibroblasts. HuWa1 exposed to a natural, p,p'-DDE-containing, chemical mixture extracted from whale blubber showed distinctively higher sensitivity than to p,p'-DDE alone. Thus, we provide the first cytotoxicological data for humpback whales and with establishment of the HuWa cell lines, a unique in vitro model for the study of the whales' sensitivity and cellular response to chemicals and other environmental stressors.

  8. In vitro study for laser gene transfer in BHK-21 fibroblast cell line

    NASA Astrophysics Data System (ADS)

    Abdel Aziz, M.; Salem, D. S.; Salama, M. S.; Badr, Y.

    2009-02-01

    Modifications to our previously introduced system for laser microbeam cell surgery were carried out in the present work to match animal cells. These modifications included: 1- Using other laser system that used before, Excimer laser with 193 and 308 nm wavelengths. The used laser here, is He-Cd with low power and 441.5 nm wavelength in the visible region. 2- Instead of using pulsed laser, we used here CW He-Cd chopped by electrical chopper, which is synchronized with the mechanical motion of the mobile stage with step 40 microns, according to cell dimensions to avoid puncturing the same cell twice. The advantages of the modified here laser setup for gene transfer is: it is less damaging to the sensitive animal cell which has thin cell membrane. The present work aimed to: 1- Design a modified laser microbeam cell surgery, applicable to animal cells, such as fibroblast cells 2- To examine the efficiency of such system. 3- To assure gene transfer and its expression in the used cells. 4- To evaluate the ultra damages produced from using the laser beam as a modality for gene transfer. On the other wards, to introduce: safe, efficient and less damaging modality for gene transfer in animal cells. To achieve these goals, we applied the introduced here home-made laser setup with its synchronized parameters to introduce pBK-CMV phagemid, containing LacZ and neomycin resistance (neor )genes into BHK-21 fibroblast cell line. The results of the present work showed that: 1- Our modified laser microbeam cell surgery setup proved to be useful and efficient tool for gene transfer into fibroblast cells. 2- The presence and expression of LacZ gene was achieved using histochemical LacZ assay. 3- Selection of G418 antibiotic sensitivity assay confirmed the presence and expression towards stability of neor gene with time. 4- Presence of LacZ and neor genes in the genomic DNA of transfected fibroblast cells was indicated using PCR analysis. 5- Transmission electron microscopy indicated

  9. Establishment and cryopreservation of a fibroblast cell line derived from Bengal tiger (Panthera tigris tigris).

    PubMed

    Guan, W J; Liu, C Q; Li, C Y; Liu, D; Zhang, W X; Ma, Y H

    2010-01-01

    The Bengal tiger ear marginal tissue fibroblasts cell line (BTF22), containing 157 tubes of frozen cells, was successfully established by using primary explants technique and cell cryoconservation technology. Biological analysis showed that the population doubling time (PDT) for revival cells was approximately 28 h. Measurement of LDH and MDH isoenzymes showed no cross-contamination among the cells. Karyotyping showed that the frequency of cells with chromosome number 2n = 38 was 90.6-92.2%. Tests for bacteria, fungi, viruses and mycoplasma were negative. Plasmids encoding the fluorescent proteins pEGFP-N3, pEGFP-C1, pECFP-N1, pECFP-mito, pDsRed1-N1, and pEYFP-N1 were transfected into cells to study exogenous gene expression in the cells. The plasmid transfection efficiency was between 4.4% and 31.9%. Every index of the BTF22 cell line meets all the standard quality controls of American type Culture Collection (ATCC). Not only has the germline of this important Bengal tiger species been preserved at the cell level, but also valuable material had been provided for genome, postgenome and somacloning research. Moreover, the establishment of this technical platform would provide both technical and theoretical support for storing the genetic resources of other animals and poultry at the cell level.

  10. Establishment and cryopreservation of a fibroblast cell line derived from Bengal tiger (Panthera tigris tigris).

    PubMed

    Guan, W J; Liu, C Q; Li, C Y; Liu, D; Zhang, W X; Ma, Y H

    2010-01-01

    The Bengal tiger ear marginal tissue fibroblasts cell line (BTF22), containing 157 tubes of frozen cells, was successfully established by using primary explants technique and cell cryoconservation technology. Biological analysis showed that the population doubling time (PDT) for revival cells was approximately 28 h. Measurement of LDH and MDH isoenzymes showed no cross-contamination among the cells. Karyotyping showed that the frequency of cells with chromosome number 2n = 38 was 90.6-92.2%. Tests for bacteria, fungi, viruses and mycoplasma were negative. Plasmids encoding the fluorescent proteins pEGFP-N3, pEGFP-C1, pECFP-N1, pECFP-mito, pDsRed1-N1, and pEYFP-N1 were transfected into cells to study exogenous gene expression in the cells. The plasmid transfection efficiency was between 4.4% and 31.9%. Every index of the BTF22 cell line meets all the standard quality controls of American type Culture Collection (ATCC). Not only has the germline of this important Bengal tiger species been preserved at the cell level, but also valuable material had been provided for genome, postgenome and somacloning research. Moreover, the establishment of this technical platform would provide both technical and theoretical support for storing the genetic resources of other animals and poultry at the cell level. PMID:20687455

  11. Immunomodulatory Effects of Bee Venom in Human Synovial Fibroblast Cell Line

    PubMed Central

    Mohammadi, Ebrahim; Vatanpour, Hossein; H Shirazi, Farshad

    2015-01-01

    As in Iranian traditional medicine, bee venom (BV) is a promising treatment for the rheumatoid arthritis (RA) which is considered as a problematic human chronic inflammatory disease in the present time. Smoking is considered to be a major risk factor in RA onset and severity. The main aim of this study is to investigate the effects of BV on cigarette smoke-induced inflammatory response in fibroblast-like synoviocytes (FLS). Cytotoxicity of cigarette smoke condensate (CSC) and bee venom were determined by the tetrazolium (MTT) method in cultured synovial fibroblastes. The expression of interleukin-1β and sirtuin1 mRNA were analyzed by SYBR green real-time quantitative PCR. Differences between the mean values of treated and untreated groups were assessed by student t-test. Based on MTT assay, CSC and BV did not exert any significant cytotoxic effects up to 40 µg/mL and 10 µg/mL, respectively. Our results showed that interleukin-1β mRNA level was significantly up-regulated by CSC treatments in LPS-stimulated synoviocytes in a dose-dependent manner. Conversely, the expressions of IL-1β and Sirt1 were up-regulated even in lower concentrations of BV and attenuated at higher concentrations. Also, BV attenuated the CSC-induced and LPS-induced inflammatory responses in synovial fibroblasts. Our results support the epidemiological studies indicating pro-inflammatory effects of CSC and anti-inflammatory effects of BV on FLS cell line. PMID:25561937

  12. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    NASA Astrophysics Data System (ADS)

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo; Mohamed, Azman Seeni; Saifuddin, Siti Nazmin; Masudi, Sam'an Malik; Mohamad, Dasmawati

    2015-04-01

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shifted of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line.

  13. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    SciTech Connect

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo; Mohamed, Azman Seeni; Saifuddin, Siti Nazmin; Masudi, Sam’an Malik; Mohamad, Dasmawati

    2015-04-24

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shifted of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line.

  14. Genome-wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line

    PubMed Central

    2011-01-01

    Background When compared to primary chicken embryo fibroblast (CEF) cells, the immortal DF-1 CEF line exhibits enhanced growth rates and susceptibility to oxidative stress. Although genes responsible for cell cycle regulation and antioxidant functions have been identified, the genome-wide transcription profile of immortal DF-1 CEF cells has not been previously reported. Global gene expression in primary CEF and DF-1 cells was performed using a 4X44K chicken oligo microarray. Results A total of 3876 differentially expressed genes were identified with a 2 fold level cutoff that included 1706 up-regulated and 2170 down-regulated genes in DF-1 cells. Network and functional analyses using Ingenuity Pathways Analysis (IPA, Ingenuity® Systems, http://www.ingenuity.com) revealed that 902 of 3876 differentially expressed genes were classified into a number of functional groups including cellular growth and proliferation, cell cycle, cellular movement, cancer, genetic disorders, and cell death. Also, the top 5 gene networks with intermolecular connections were identified. Bioinformatic analyses suggested that DF-1 cells were characterized by enhanced molecular mechanisms for cell cycle progression and proliferation, suppressing cell death pathways, altered cellular morphogenesis, and accelerated capacity for molecule transport. Key molecules for these functions include E2F1, BRCA1, SRC, CASP3, and the peroxidases. Conclusions The global gene expression profiles provide insight into the cellular mechanisms that regulate the unique characteristics observed in immortal DF-1 CEF cells. PMID:22111699

  15. Multiangle light scattering flow photometry of cultured human fibroblasts: comparison of normal cells with a mutant line containing cytoplasmic inclusions.

    PubMed

    Schafer, I A; Jamieson, A M; Petrelli, M; Price, B J; Salzman, G C

    1979-01-01

    Multi-angle light scattering flow photometry was used to study the light scattering properties of normal cultured fibroblasts and a mutant fibroblast line containing cytoplasmic lysosomal inclusions. The effect of glutaraldehyde fixation on the light scattering properties of the cells was also examined and correlated with their ultrastructure. Normal fibroblasts showed uniform organelle distribution with few vacuoles or dense bodies in the cytoplasm while the mutant line showed abnormal cytoplasmic inclusions of varying morphology, density and lucency. As predicted by light scattering theory, the mutant cells containing the cytoplasmic inclusions scattered more light at large angles (greater than theta = 1.85 degrees) than did the normal cells. Glutaraldehyde fixation decreased light scattering at small angles (less than theta = 1.85 degrees), increased light scattering at larger angles (greater than theta = 1.85 degrees) in both normal and mutant cells and enhanced resolution of the light scattering signatures. The mutant line scattered 2-3 times more light at a wide angle (greater than theta = 12.74 degrees) than did the normal cells. These data suggest that abnormal lysosomal storage inclusion bodies in the cytoplasm of the cells can be detected by differential light scattering methods.

  16. Selective suicide gene therapy of colon cancer cell lines exploiting fibroblast growth factor 18 promoter.

    PubMed

    Teimoori-Toolabi, Ladan; Azadmanesh, Kayhan; Zeinali, Sirous

    2010-02-01

    Fibroblast growth factor 18 (FGF18) is one of the genes downstream of Wnt, one of the most important signaling pathways activated in colon cancer. An FGF18 promoter containing a single T-cell factor/lymphocyte enhancing factor 1 (TCF/LEF1) binding site was inserted upstream of a thymidine kinase (TK) suicide gene module, while a bacterial beta-Gal (LacZ) element served as the reporter gene. Following transient transfection with pUCFGF18LacZ, beta-Gal staining showed that 5% of SW480, 10% of HCT116, 0% of human umbilical vein endothelial cells (HUVECs) and 0% of normal colon cells (NCCs) had expressed LacZ. beta-Gal enzyme-linked immunosorbent assay revealed that the ratio of pUCFGF18LacZ activity to that of positive control was 0.09 and 0.25 in SW480 and HCT116, respectively (significantly higher than mock plasmid), while there were no significant changes in the beta-Gal expression in HUVEC and NCC cells transfected with pUCFGF18LacZ or mock plasmid. Following transfection with pUCFGF18TK and pUCCMVTK (positive control), cytotoxicity analysis of transfected cells showed that treatment with ganciclovir (GCV) significantly decreased SW480 and HCT116 cell survival at GCV concentrations above 20 microg/mL. An inverse correlation between GCV concentration and cell viability was evident in both colon cancer cell lines following transfection with these suicide plasmids. pUCFGF18TK and pUCCMVTK induced apoptosis after the administration of GCV in HCT116, but not in SW480, as demonstrated by M30 cytodeath antibody. This discrepancy may stem from differences in the mechanisms of TK/GCV-induced apoptosis in p53-proficient (HCT116) and -deficient (SW480) cells. The specific activity of the FGF18 promoter in HCT116 and SW480 may reflect the advantage of this promoter over artificial promoters containing artificial TCF/LEF binding sites. PMID:20187803

  17. Cytotoxicity of endodontic irrigants containing calcium hydroxide and sodium lauryl sulphate on fibroblasts derived from mouse L929 cell line.

    PubMed

    Barbosa, Sérgio Valmor; Barroso, Cristiane Maria Sodré; Ruiz, Patrícia Alvarez

    2009-01-01

    The aim of this study was to evaluate the cytotoxicity of root canal irrigating solutions containing calcium hydroxide and sodium lauryl sulphate on fibroblasts derived from L929 cell line. Saturated calcium hydroxide aqueous solution (CH), sodium lauryl sulphate (SLS) and SLS associated with calcium hydroxide (HCT20) were diluted with sterile distilled water at 50%, 20%, 10% and 5% concentrations. Minimum essential medium (MEM) served as the control group. The cytotoxicity of the solutions was evaluated on L929 mouse fibroblast cell line, at 4 and 24 h of contact time by the 51Cr radiotracer method. Data were compared and statistical inferences were made with the chi-square test. In all analysis, significance level was set at 5%. CH and HCT20 showed toxicity at 50% concentration, while at concentrations lower than 50% these solutions showed cell tolerance. SLS was cytotoxic at all concentrations. In conclusion, the association of calcium hydroxide and SLS (HCT20) combines the beneficial properties of these solutions and was not harmful to the fibroblast cell line, seeming to be a suitable endodontic irrigating solution.

  18. [The influence of substrate from extracellular matrix proteins on karyotypic variability of the Indian muntjac skin fibroblast two cell lines].

    PubMed

    Polianskaia, G G; Kol'tsova, A M

    2013-01-01

    The effect of cell culture conditions on numerical and structural karyotypic variability was investigated in two Indian muntjac skin fibroblast "markerless" cell lines, M and MT. The cells cultivated on the substrate consisting of extracellular matrix proteins (ECM), synthesized by human mesenchymal stem cells (SC5-MSC). The character of cell distribution for chromosome number of cell line M changed after cultivation for 1 and 4 days as compared to control cells, which were cultured on hydrophilic surface without ECM-coating. These changes involve a significant decrease in frequency of cells with modal numbers of chromosomes and an increase in frequency of cells with lower chromosome numbers. Many new types of additional structural variants of the karyotype (SVK) appear. MT cell line, differing from M line in the number of homologous chromosomes, demonstrated similar with M line the character of cell distribution for chromosome number only for 1 day after cultivating on the ECM-substrate, but not after 4 days in the same culture conditions, no difference from the control cells was observed. The observed alterations seem to be due to disturbances in correct chromosome segregation process, which were caused by abrupt shift in the cell culture conditions. The analysis of the structural karyotypic variability revealed significant increase in frequency of chromosomal aberrations in M cell line for 1 and 4 days in culture on the ECM-substrate as compared to the control cells. The frequency of dicentric chromosomes (telomeric associations) was increased and constituted more than 50% of all chromosome aberrations. No increase in frequency of chromosome aberrations was observed for MT cells cultured in the same conditions. The obtained results show that the cell lines of the same origin but of different karyotypic structure react to substrate in a different way. In contrast to M line, in MT line a fast normalization of numerical karyotypic characteristics and no enhancement

  19. Genome-wide expression analysis in fibroblast cell lines from probands with Pallister Killian syndrome.

    PubMed

    Kaur, Maninder; Izumi, Kosuke; Wilkens, Alisha B; Chatfield, Kathryn C; Spinner, Nancy B; Conlin, Laura K; Zhang, Zhe; Krantz, Ian D

    2014-01-01

    Pallister Killian syndrome (OMIM: # 601803) is a rare multisystem disorder typically caused by tissue limited mosaic tetrasomy of chromosome 12p (isochromosome 12p). The clinical manifestations of Pallister Killian syndrome are variable with the most common findings including craniofacial dysmorphia, hypotonia, cognitive impairment, hearing loss, skin pigmentary differences and epilepsy. Isochromosome 12p is identified primarily in skin fibroblast cultures and in chorionic villus and amniotic fluid cell samples and may be identified in blood lymphocytes during the neonatal and early childhood period. We performed genomic expression profiling correlated with interphase fluorescent in situ hybridization and single nucleotide polymorphism array quantification of degree of mosaicism in fibroblasts from 17 Caucasian probands with Pallister Killian syndrome and 9 healthy age, gender and ethnicity matched controls. We identified a characteristic profile of 354 (180 up- and 174 down-regulated) differentially expressed genes in Pallister Killian syndrome probands and supportive evidence for a Pallister Killian syndrome critical region on 12p13.31. The differentially expressed genes were enriched for developmentally important genes such as homeobox genes. Among the differentially expressed genes, we identified several genes whose misexpression may be associated with the clinical phenotype of Pallister Killian syndrome such as downregulation of ZFPM2, GATA6 and SOX9, and overexpression of IGFBP2. PMID:25329894

  20. Genome-Wide Expression Analysis in Fibroblast Cell Lines from Probands with Pallister Killian Syndrome

    PubMed Central

    Wilkens, Alisha B.; Chatfield, Kathryn C.; Spinner, Nancy B.; Conlin, Laura K.; Zhang, Zhe; Krantz, Ian D.

    2014-01-01

    Pallister Killian syndrome (OMIM: # 601803) is a rare multisystem disorder typically caused by tissue limited mosaic tetrasomy of chromosome 12p (isochromosome 12p). The clinical manifestations of Pallister Killian syndrome are variable with the most common findings including craniofacial dysmorphia, hypotonia, cognitive impairment, hearing loss, skin pigmentary differences and epilepsy. Isochromosome 12p is identified primarily in skin fibroblast cultures and in chorionic villus and amniotic fluid cell samples and may be identified in blood lymphocytes during the neonatal and early childhood period. We performed genomic expression profiling correlated with interphase fluorescent in situ hybridization and single nucleotide polymorphism array quantification of degree of mosaicism in fibroblasts from 17 Caucasian probands with Pallister Killian syndrome and 9 healthy age, gender and ethnicity matched controls. We identified a characteristic profile of 354 (180 up- and 174 down-regulated) differentially expressed genes in Pallister Killian syndrome probands and supportive evidence for a Pallister Killian syndrome critical region on 12p13.31. The differentially expressed genes were enriched for developmentally important genes such as homeobox genes. Among the differentially expressed genes, we identified several genes whose misexpression may be associated with the clinical phenotype of Pallister Killian syndrome such as downregulation of ZFPM2, GATA6 and SOX9, and overexpression of IGFBP2. PMID:25329894

  1. Human cytomegalovirus transcriptome activity differs during replication in human fibroblast, epithelial and astrocyte cell lines

    PubMed Central

    Towler, James C.; Ebrahimi, Bahram; Lane, Brian; Davison, Andrew J.

    2012-01-01

    Broad cell tropism contributes to the pathogenesis of human cytomegalovirus (HCMV), but the extent to which cell type influences HCMV gene expression is unclear. A bespoke HCMV DNA microarray was used to monitor the transcriptome activity of the low passage Merlin strain of HCMV at 12, 24, 48 and 72 h post-infection, during a single round of replication in human fetal foreskin fibroblast cells (HFFF-2s), human retinal pigmented epithelial cells (RPE-1s) and human astrocytoma cells (U373MGs). In order to correlate transcriptome activity with concurrent biological responses, viral cytopathic effect, growth kinetics and genomic loads were examined in the three cell types. The temporal expression pattern of viral genes was broadly similar in HFFF-2s and RPE-1s, but dramatically different in U373MGs. Of the 165 known HCMV protein-coding genes, 41 and 48 were differentially regulated in RPE-1s and U373MGs, respectively, compared with HFFF-2s, and 22 of these were differentially regulated in both RPE-1s and U373MGs. In RPE-1s, all differentially regulated genes were downregulated, but, in U373MGs, some were down- and others upregulated. Differentially regulated genes were identified among the immediate-early, early, early late and true-late viral gene classes. Grouping of downregulated genes according to function at landmark stages of the replication cycle led to the identification of potential bottleneck stages (genome replication, virion assembly, and virion maturation and release) that may account for cell type-dependent viral growth kinetics. The possibility that cell type-specific differences in expressed cellular factors are responsible for modulation of viral gene expression is discussed. PMID:22258857

  2. Replacement of primary chicken embryonic fibroblasts (CEF) by the DF-1 cell line for detection of avian leucosis viruses.

    PubMed

    Maas, Riks; van Zoelen, Diana; Oei, Hok; Claassen, Ivo

    2006-09-01

    International regulations prescribe that the absence of avian leucosis viruses (ALV) in avian live virus vaccines has to be demonstrated. Primary chicken embryo fibroblasts (CEF) from special SPF chicken lines are normally used for detection of ALV. The suitability of the DF-1 cell line for ALV-detection, as alternative for primary CEF, was studied in three types of experiments: (1) in titration experiments without cell passage, (2) in experiments with passages in cell cultures according to European Pharmacopoeia requirements, and (3) in experiments with commercial live avian vaccines that had been spiked with known amounts of ALV. In all tests the sensitivity of ALV-A and ALV-J detections on DF-1 cells was at least as high as on primary CEF. The sensitivity of ALV-B detection was always superior when DF-1 cells were used. ALV were detected earlier in all comparative tests when DF-1 cells were used. ALV-A, ALV-B and ALV-J all induced CPE on DF-1 cells, whereas no clear CPE was seen on CEF-cells. For reasons of sensitivity, standardisation as well as reduction of animal use, the data support the use of DF-1 cells to monitor absence of ALV in vaccine virus seed lots or finished products.

  3. Establishment and cryopreservation of a skin fibroblast cell line derived from Yunnan semi-fine wool sheep in the presence of synthetic ice blocker.

    PubMed

    Wu, Shuai Shuai; Li, Dong Jiang; Lv, Chun Rong; Yang, Hong Yuan; Zhu, Lan; Li, Wei Juan; Quan, Guo Bo; Hong, Qiong Hua

    2013-01-01

    In this study, the fibroblasts cell line derived from ear marginal tissue of Yunnan semi-fine wool sheep was successfully established using the primary explants technique and cryopreservation technology. Additionally, the protective effect of synthetic ice blocker (SIB) including 1, 3-cyclohexanediol (1, 3-CHD) and 1, 4-cyclohexanediol (1, 4-CHD) on frozen fibroblast cells was also assessed and compared. Propidium iodide (PI) was used to stain the dead cells following cryopreservation and thawing. The results showed that compared with Medium 199 (M199) and Dulbecco's modified Eagle's medium : Nutrient Mixture F-12 (1 : 1) Mixture (DMEM/F12), Dulbecco's modified Eagle's medium (DMEM) may be more suitable for the primary culture of fibroblast cells of Yunnan semi-fine wool sheep. The growth curve of cells is a typical "S" type. After subculture for four days, the cells entered the plateau phase and began to degenerate. Biological analysis showed that the population doubling time (PDT) for subculturing fibroblast cells was approximately 26h. The Karyotyping data indicated that the percentage of fibroblast cells with normal chromosome number 2n = 54 was over 90% following subculture for 10 passages. Moreover, the tests for bacteria, fungi, viruses and mycoplasma were negative. After serial subculture for 5 generations, the fibroblast cells were cryopreserved in the presence or absence of 1, 3-CHD or 1, 4-CHD. The data indicated that with increase of the synthetic ice blocker concentrations, the viability of frozen-thawed fibroblast cells was firstly increased and then decreased. When the concentration of 1, 3-CHD or 1, 4-CHD was 50 mM, the viable percentage of frozen-thawed fibroblast cells was 91.93% +/- 2.24% and 94.13% +/- 0.55% respectively and significantly higher than that of the cells frozen in the absence of synthetic ice blockers (88.10% +/- 1.49%, P < 0.05). In conclusion, the skin fibroblast cell line of Yunnan semi-fine wool sheep was firstly established in

  4. METHOTREXATE AND MYOTREXATE INDUCE APOPTOSIS IN HUMAN MYOMA FIBROBLASTS (T hES CELL LINE) VIA MITOCHONDRIAL PATHWAY.

    PubMed

    Kastratović, Tatjana; Arsenijević, Slobodan; Matović, Zoran; Mitrović, Marina; Nikolić, Ivana; Milosavljević, Zoran; Protrka, Zoran; Šorak, Marija; Đurić, Janko

    2015-01-01

    Uterine leiomyomas (fibroids) are the most common benign tumors in women of reproductive age. Although the local application of low doses of methotrexate (MTX) is used as an effective treatment of the myomas, myotrexate could be a promising new drug. This study investigated the cytotoxic and apoptotic effects of both MTX and myotrexate in human fibroblasts derived from the uterine fibroids (T hES cell line). The myotrexate adduct is an aqueous solution of MTX and L-arginine. Cells were treated with a graded concentrations of both MTX and myothrexate (0.1-16 µM) for 24 h. The cytotoxicity was assayed by MTT test, apoptosis was evaluated by Annexin V-FITC assay and their possible role in apoptosis was determined by immnu- flourescence. Both MTX and myotrexate induced apoptosis in T hES cells in a dose dependent manner (p < 0.001). Myotrexate significantly increased the percentage of AnnexinV positive cells, BAX/Bcl-2 ratio and subsequent caspase-3 activation compared to the MTX treated cells (p < 0.05). Both MTX or myotrexate treatment showed a diffuse staining of cytochrome c indicating its release from mitochondria to the cytosol, suggesting that their mechanisms of action most likely involves the mitochondrial apoptotic pathway. PMID:26642654

  5. Comparison of primary human fibroblasts and keratinocytes with immortalized cell lines regarding their sensitivity to sodium dodecyl sulfate in a neutral red uptake cytotoxicity assay.

    PubMed

    Olschläger, Veronika; Schrader, Andreas; Hockertz, Stefan

    2009-01-01

    Cell lines present a valuable tool for in vitro assessment of skin damage caused by application of cosmeticals or pharmaceuticals. They form a reproducible test system under controllable test conditions and, in many cases, can be used as alternatives to animal testing in order to assess the compatibility of drugs or cosmetics and human skin. Yet, it can not necessarily be assumed that the behavior of cultured cells, when treated with different substances, is exactly consistent with the behavior of cells being part of a live organism. Becoming immortal, cells exhibit changes in genotype and/or phenotype, possibly resulting in modified reactions to external influences. Therefore, to obtain results close to in vivo studies, it seems apparent to use primary cells for testing that have not yet undergone any modifications. To compare the properties of primary fibroblasts (Normal Human Dermal Fibroblasts, NHDF) and primary keratinocytes (Normal Human Epidermal Keratinocytes, NHEK) with those of immortal cell lines (3T3 (ACC 173) Swiss albino mouse fibroblasts and HaCaT (human, adult, low calcium, high temperature, human adult skin keratinocytes) cells), their sensitivities in cytotoxicity assays have been assessed. While both fibroblast cell cultures showed similar sensitivities towards sodium dodecyl sulfate (SDS), primary keratinocytes died at SDS concentrations about three times lower than the immortal HaCaT cells. PMID:19402346

  6. Evaluation of chicken-origin (DF-1) and quail-origin (QT-6) fibroblast cell lines for replication of avian influenza viruses.

    PubMed

    Lee, C-W; Jung, K; Jadhao, S J; Suarez, D L

    2008-10-01

    Avian influenza viruses (AIVs) are isolated routinely and propagated in specific pathogen free embryonated chicken eggs (ECE) and mammalian origin Madin-Darby Canine Kidney (MDCK) cell line. Continuous avian cell lines offer advantages for propagation of AIVs over MDCK cells because they maintain species specificity, and lower recurring costs compared to ECE. In this study, the characteristics of two avian fibroblast cell lines were evaluated, DF-1 (chicken-origin) and QT-6 (quail-origin), and their ability to support the growth of AIVs (n=19) belonging to nine different hemagglutinin subtypes from a variety of avian species. The replication efficiency of the AIVs in QT-6 and DF-1 cells was comparable to those in primary chicken embryo fibroblast (CEF) and MDCK cells. Receptor distribution analysis demonstrated high prevalence of SA alpha2,3-gal linked receptors in QT-6 and DF-1 cells which support a high growth of AIVs in these cell lines. Furthermore, the QT-6 and DF-1 cells supported high plaque-forming ability of representative highly pathogenic Eurasian H5N1 and H7N1 subtype AIVs. These two avian cell lines, especially QT-6 cells, also showed high transfection efficiency and could be useful for reverse genetics based rescue of AIVs. This study indicates that the DF-1 and QT-6 cell lines may be useful as a substitute for primary CEF and MDCK cells for AIV research in the areas of in vitro host range, molecular pathobiology and molecular genetics.

  7. Hyaluronan production in human rheumatoid fibroblastic synovial lining cells is increased by interleukin 1β but inhibited by transforming growth factor β1

    PubMed Central

    Kawakami, M.; Suzuki, K.; Matsuki, Y.; Ishizuka, T.; Hidaka, T.; Konishi, T.; Matsumoto, M.; Kataharada, K.; Nakamura, H.

    1998-01-01

    OBJECTIVES—To investigate the regulatory roles of interleukin 1β (IL1β), tumour necrosis factor α (TNFα), interferon γ (IFNγ) or transforming growth factor β1 (TGFβ1) on hyaluronan (HA) synthesis by human fibroblastic synovial lining cells.
METHODS—Concentrations of HA in culture supernatants of fibroblastic synovial lining cell line (RAMAK-1 cell line) with or without stimulation by IL1β, TNFα, IFNγ or TGFβ1 were measured by sandwich binding protein assay. Levels of HA synthase mRNA of the cells with or without stimulation were detected by reverse transcribed polymerase chain reaction. Molecular weights of HA in the culture supernatants of the cells with or without stimulation were measured using high performance gel permeation liquid chromatography.
RESULTS—HA synthesis by the cells was not significantly augmented by TNFα or by IFNγ. It was significantly stimulated by IL1β but inhibited by TGFβ1. Molecular weights of HA in the culture supernatants of the cells were unchanged by stimulation with TNFα. They were remarkably increased by stimulation with IL1β and IFNγ, but reduced with TGFβ1.
CONCLUSION—IL1β is an up regulator of HA synthesis, while TGFβ1 is a down regulator. HA production in the synovial lining cells of inflamed joints (for example, rheumatoid arthritis) might be regulated by the balance of these cytokines.

 Keywords: synovial lining cells; hyaluronan, interleukin 1β; transforming growth factor β1 PMID:9893571

  8. Establishment and characterization of equine fibroblast cell lines transformed in vivo and in vitro by BPV-1: Model systems for equine sarcoids

    SciTech Connect

    Yuan, Z.Q.; Gault, E.A.; Gobeil, P.; Nixon, C.; Campo, M.S.; Nasir, L.

    2008-04-10

    It is now widely recognized that BPV-1 and less commonly BPV-2 are the causative agents of equine sarcoids. Here we present the generation of equine cell lines harboring BPV-1 genomes and expressing viral genes. These lines have been either explanted from sarcoid biopsies or generated in vitro by transfection of primary fibroblasts with BPV-1 DNA. Previously detected BPV-1 genome variations in equine sarcoids are also found in sarcoid cell lines, and only variant BPV-1 genomes can transform equine cells. These equine cell lines are morphologically transformed, proliferate faster than parental cells, have an extended life span and can grow independently of substrate. These characteristics are more marked the higher the level of viral E5, E6 and E7 gene expression. These findings confirm that the virus has an active role in the induction of sarcoids and the lines will be invaluable for further studies on the role of BPV-1 in sarcoid pathology.

  9. Radiation induced DNA damage and damage repair in human tumor and fibroblast cell lines assessed by histone H2AX phosphorylation

    SciTech Connect

    Mahrhofer, Hartmut; Buerger, Susann; Oppitz, Ulrich; Flentje, Michael; Djuzenova, Cholpon S. . E-mail: djuzenova_t@klinik.uni-wuerzburg.de

    2006-02-01

    Purpose: To analyze the radiation-induced levels of {gamma}H2AX and its decay kinetics in 10 human cell lines covering a wide range of cellular radiosensitivity (SF2, 0.06-0.63). Methods and Materials: Five tumor cell lines included Colo-800 melanoma, two glioblastoma (MO59J and MO59K), fibrosarcoma HT 1080, and breast carcinoma MCF7. Five primary skin fibroblasts lines included two normal strains, an ataxia telangiectasia strain, and two fibroblast strains from breast cancer patients with an adverse early skin reaction to radiotherapy. Cellular radiosensitivity was assessed by colony-forming test. Deoxyribonucleic acid damage and repair were analyzed according to nuclear {gamma}H2AX foci intensity, with digital image analysis. Results: The cell lines tested showed a wide degree of variation in the background intensity of immunostained nuclear histone {gamma}H2AX, which was higher for the tumor cell lines compared with the fibroblast strains. It was not possible to predict clonogenic cell survival (SF2) for the 10 cell lines studied from the radiation-induced {gamma}H2AX intensity. In addition, the slopes of the dose-response (0-4 Gy) curves, the rates of {gamma}H2AX disappearance, and its residual expression ({<=}18 h after irradiation) did not correlate with SF2 values. Conclusions: The results from 10 cell lines showed that measurements of immunofluorescence intensity by digital image analysis of phosphorylated histone H2AX as a surrogate marker of DNA double-strand breaks did not allow reliable ranking of cell strains according to their clonogenic survival after irradiation.

  10. Transgene-free human induced pluripotent stem cell line (HS5-SV.hiPS) generated from cesarean scar-derived fibroblasts.

    PubMed

    Rungsiwiwut, Ruttachuk; Pavarajarn, Wipawee; Numchaisrika, Pranee; Virutamasen, Pramuan; Pruksananonda, Kamthorn

    2016-01-01

    Transgene-free human HS5-SV.hiPS line was generated from human cesarean scar-derived fibroblasts using temperature-sensitive Sendai virus vectors carrying Oct4, Sox2, cMyc and Klf4 exogenous transcriptional factors. The viral constructs were eliminated from HS5-SV.hiPS line through heat treatment. Transgene-free HS5-SV.hiPS cells expressed pluripotent associated transcription factors Oct4, Nanog, Sox2, Rex1 and surface markers SSEA-4, TRA-1-60 and OCT4. HS5-SV.hiPS cells formed embryoid bodies and differentiated into three embryonic germ layers in vivo. HS5-SV.hiPS cells maintained their normal karyotype (46, XX) after culture for extended period. HS5-SV.hiPS displayed the similar pattern of DNA fingerprinting to the parenteral scar-derived fibroblasts. PMID:27345776

  11. Cytoskeletal proteins from human skin fibroblasts, peripheral blood leukocytes, and a lymphoblastoid cell line compared by two-dimensional gel electrophoresis

    SciTech Connect

    Giometti, C.S.; Willard, K.E.; Anderson, N.L.

    1982-04-01

    Differences in proteins between cells grown as suspension cultures and those grown as attached cultures were studied by comparing the proteins of detergent-resistant cytoskeletons prepared from peripheral blood leukocytes and a lymphoblastoid cell line (GM607) (both grown as suspension cultures) and those of human skin fibroblasts (grown as attached cultures) by two-dimensional gel electrophoresis. The major cytoskeletal proteins of the leukocytes were also present in the protein pattern of GM607 cytoskeletons. In contrast, the fibroblast cytoskeletal protein pattern contained four groups of proteins that differed from the patterns of the leukocytes and GM607. In addition, surface labeling of GM607 and human fibroblasts with /sup 125/I demonstrated that substantial amounts of vimentin and actin are exposed at the surface of the attached fibroblasts, but there is little evidence of similar exposure at the surface of the suspension-grown GM607. These results demonstrate some differences in cytoskeletal protein composition between different types of cells could be related to their ability or lack of ability to grow as attached cells in tissue culture.

  12. In Vitro Study of Er:YAG and Er, Cr:YSGG Laser Irradiation on Human Gingival Fibroblast Cell Line.

    PubMed

    Talebi-Ardakani, Mohammad Reza; Torshabi, Maryam; Karami, Elahe; Arbabi, Elham; Rezaei Esfahrood, Zeinab

    2016-04-01

    The ultimate goal of the periodontal treatments is a regeneration of periodontium. Recently, laser irradiations are commonly used to improve wound repair. Because of many controversies about the effects of laser on soft tissue regeneration, more in vitro studies are still needed. The aim of the present in vitro study was to compare the effects of different doses of Er:YAG (erbium-doped:yttrium, aluminum, garnet) and Er, Cr:YSGG (erbium, chromium-doped: yttrium, scandium, gallium, garnet) laser treatment on human gingival fibroblasts (HGF) proliferation. In this randomized single-blind controlled in vitro trial, HGF cells were irradiated using Er:YAG and Er, Cr:YSGG laser for 10 and 30 seconds or remained unexposed as a control group. After a culture period of 24 and 48 hours, HGF cell proliferation was evaluated by MTT assay. The data were subjected to one-sided analysis of variance and Tukey multiple comparison tests. Our results showed Er:YAG application for 10 and 30 seconds as well as Er, Cr:YSGG irradiation for 10 and 30 seconds induced statistically significant (P<0.05) proliferation of HGF cells as compared with the control at 24 hours up to 18.39%, 26.22%, 21.21%, and 17.06% respectively. In 48 hour incubations, Er:YAG and Er, Cr:YSGG irradiation for 10 and 30 seconds significantly increased cellular proliferation up to 22.9%, 32.24%, 30.52% and 30.02% respectively (P<0.05). This study demonstrates that Er:YAG and Er, Cr:YSGG laser significantly increased HGF cell proliferation compared to the control specimens. This higher proliferation can lead to increased wound repair in clinical conditions. PMID:27309266

  13. Whole-exome sequencing of fibroblast and its iPS cell lines derived from a patient diagnosed with xeroderma pigmentosum.

    PubMed

    Okamura, Kohji; Toyoda, Masashi; Hata, Kenichiro; Nakabayashi, Kazuhiko; Umezawa, Akihiro

    2015-12-01

    Cells from a patient with a DNA repair-deficiency disorder are anticipated to bear a large number of somatic mutations. Because such mutations occur independently in each cell, there is a high degree of mosaicism in patients' tissues. While major mutations that have been expanded in many cognate cells are readily detected by sequencing, minor ones are overlaid with a large depth of non-mutated alleles and are not detected. However, cell cloning enables us to observe such cryptic mutations as well as major mutations. In the present study, we focused on a fibroblastic cell line that is derived from a patient diagnosed with xeroderma pigmentosum (XP), which is an autosomal recessive disorder caused by a deficiency in nucleotide excision repair. By making a list of somatic mutations, we can expect to see a characteristic pattern of mutations caused by the hereditary disorder. We cloned a cell by generating an iPS cell line and performed a whole-exome sequencing analysis of the progenitor and its iPS cell lines. Unexpectedly, we failed to find causal mutations in the XP-related genes, but we identified many other mutations including homozygous deletion of GSTM1 and GSTT1. In addition, we found that the long arm of chromosome 9 formed uniparental disomy in the iPS cell line, which was also confirmed by a structural mutation analysis using a SNP array. Type and number of somatic mutations were different from those observed in XP patients. Taken together, we conclude that the patient might be affected by a different type of the disorder and that some of the mutations that we identified here may be responsible for exhibiting the phenotype. Sequencing and SNP-array data have been submitted to SRA and GEO under accession numbers SRP059858 and GSE55520, respectively. PMID:26697316

  14. Differential Regulation of the Dioxin-Induced Cyp1a1 and Cyp1b1 Genes in Mouse Hepatoma and Fibroblast cell lines

    PubMed Central

    Beedanagari, Sudheer R.; Taylor, Robert T.; Hankinson, Oliver

    2010-01-01

    The xenobiotic metabolizing enzymes Cyp1a1 and Cyp1b1 can be induced by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (dioxin) via the Aryl Hydrocarbon Receptor (AhR). These genes are differentially induced by dioxin in different mouse cell lines. In the mouse hepatoma cell line Hepa1c1c7 (Hepa-1), the Cyp1a1 gene is induced to very high levels by dioxin, but the levels of Cyp1b1 mRNA are extremely low and are not inducible by dioxin. The reverse is the case for the mouse embryonic fibroblast cell line C3H10T1/2, in which Cyp1b1 is induced to very high levels by dioxin, but the levels of Cyp1a1 mRNA are extremely low and not inducible by dioxin. However, dioxin treatment leads to the recruitment of AhR to the enhancer regions of both genes in both cell lines. Somatic cell hybrid clones generated between the two cell lines display high levels of induction of both genes in response to dioxin. Strong reactivation of the Cyp1a1 gene was also observed in C3H10T1/2 cell line after treatment with the DNA methyl transferase inhibitor, 5-aza-2′-deoxycytidine (5-AzadC) and the histone deacetylase inhibitor, trichostatin-A (TSA). However, only modest reactivation of Cyp1b1 was observed in Hepa-1 cells after 5-AzadC or TSA treatment. These data demonstrate that the presence or absence of binding of AhR to regulatory regions is not responsible for determining the differences in levels of induction of the two genes in these cell lines, and indicate that DNA methylation plays a major role in silencing of Cyp1a1 gene expression in C3H10T1/2 cells, but appears to play only a minor role in silencing Cyp1b1 gene expression in Hepa-1 cells, which likely occurs principally because Hepa-1 cells lack a factor required for high levels of induction of this gene. PMID:20116417

  15. Protective Effect of Boric Acid on Oxidative DNA Damage In Chinese Hamster Lung Fibroblast V79 Cell Lines

    PubMed Central

    Yılmaz, Sezen; Ustundag, Aylin; Cemiloglu Ulker, Ozge; Duydu, Yalcın

    2016-01-01

    Objective Many studies have been published on the antioxidative effects of boric acid (BA) and sodium borates in in vitro studies. However, the boron (B) concentrations tested in these in vitro studies have not been selected by taking into account the realistic blood B concentrations in humans due to the lack of comprehensive epidemiological studies. The recently published epidemiological studies on B exposure conducted in China and Turkey provided blood B concentrations for both humans in daily life and workers under extreme exposure conditions in occupational setting. The results of these studies have made it possible to test antioxidative effects of BA in in vitro studies within the concentra- tion range relevant to humans. The aim of this study was to investigate the protective ef- fects of BA against oxidative DNA damage in V79 (Chinese hamster lung fibroblast) cells. The concentrations of BA tested for its protective effect was selected by taking the blood B concentrations into account reported in previously published epidemiological studies. Therefore, the concentrations of BA tested in this study represent the exposure levels for humans in both daily life and occupational settings. Materials and Methods In this experimental study, comet assay and neutral red uptake (NRU) assay methods were used to determinacy to toxicity and genotoxicity of BA and hydrogen peroxide (H2O2). Results The results of the NRU assay showed that BA was not cytotoxic within the tested concentrations (3, 10, 30, 100 and 200 µM). These non-cytotoxic concentrations were used for comet assay. BA pre-treatment significantly reduced (P<0.05, one-way ANOVA) the DNA damaging capacity of H2O2 at each tested BA concentrations in V79 cells. Conclusion Consequently, pre-incubation of V79 cells with BA has significantly reduced the H2O2-induced oxidative DNA damage in V79 cells. The protective effect of BA against oxidative DNA damage in V79 cells at 5, 10, 50, 100 and 200 μM (54, 108, 540

  16. Enhancement of mucus accumulation in a human gastric scirrhous carcinoma cell line (KATO-III) by fibroblast-tumor cell interaction.

    PubMed

    Yamamoto, R; Iishi, H; Tatsuta, M; Nakamura, H; Terada, N; Komatsu, K; Matsusaka, T

    1990-01-01

    Human fibroblasts (WI-38 cells) were found to enhance mucus accumulation by human scirrhous carcinoma cells (KATO-III cells). Coculture of KATO-III with WI-38 cells resulted in enlargement of the KATO-III cells and increases in the proportions of PAS- and colloidal iron-positive KATO-III cells. These morphological alterations were reversed when the KATO-III cells were again cultured without WI-38 cells. Conditioned media from cultures of WI-38 cells or cocultures of KATO-III and WI-38 cells induced the same morphological alterations in KATO-III cells, suggesting that WI-38 cells produce a factor or factors that enhance mucus accumulation in KATO-III cells. This factor seemed to be a protein with a molecular weight of more than 10,000 daltons. PMID:1974095

  17. Pharmacological comparison of the cloned human and rat M2 muscarinic receptor genes expressed in the murine fibroblast (B82) cell line.

    PubMed

    Kovacs, I; Yamamura, H I; Waite, S L; Varga, E V; Roeske, W R

    1998-02-01

    The coding sequence of the human m2 receptor gene was amplified by polymerase chain reaction and stably transfected into a murine fibroblast cell line (B82). We have compared the human M2 clonal cell line (HM2-B10) with the previously established B82 cell line (M2LKB2-2) expressing the rat M2 receptor to assess drug specificity, drug selectivity and effector coupling. Both transfected cell lines showed a high level of specific, saturable [3H](-)-N-methyl-3-quinuclidinyl benzilate binding with Kd values of 243 pM (155-352 pM) and 345 pM (234-539 pM) and Bmax values of 97 +/- 4 and 338 +/- 16 fmol/10(6) cells, respectively. Inhibition of [3H](-)-N-methyl-3-quinuclidinyl benzilate binding to HM2-B10 cells and M2LKB2-2 cells showed the same rank order of potency for the antagonists: atropine > dexetimide > 4-diphenylacetoxy-N-methylpiperidine methiodide > himbacine > methoctramine > 11-[[2-[(diethylamino) methyl]-1-piperidinyl]acetyl]-5,11-dihidro-6H-pyrido-[2,3-b](1, 4)-benzodiazepine-6-one > hexahydro-sila-difenidol hydro-chloride > pirenzepine. Correlation analysis of the pKi values indicate that the expressed human and rat M2 receptors have nearly identical ligand-binding characteristics. Carbachol inhibited forskolin-stimulated cAMP formation with similar potency in both cell lines [EC50 = 2.4 microM (0.2-2.8) and 1.1 microM (0.2-5.3) for the human and rat M2 receptor, respectively]. In the M2LKB2-2 cells, carbachol slightly stimulated the [3H]inositol monophosphate formation but had no significant effect in HM2-B10 cells. In conclusion, the human and rat M2 receptors expressed in the B82 cell line have very similar binding properties but exhibit slight differences in effector coupling mechanisms. PMID:9454790

  18. Remodeling of the fibroblast cytoskeletal architecture during the replication cycle of Ectromelia virus: A morphological in vitro study in a murine cell line.

    PubMed

    Szulc-Dabrowska, Lidia; Gregorczyk, Karolina P; Struzik, Justyna; Boratynska-Jasinska, Anna; Szczepanowska, Joanna; Wyzewski, Zbigniew; Toka, Felix N; Gierynska, Malgorzata; Ostrowska, Agnieszka; Niemialtowski, Marek G

    2016-08-01

    Ectromelia virus (ECTV, the causative agent of mousepox), which represents the same genus as variola virus (VARV, the agent responsible for smallpox in humans), has served for years as a model virus for studying mechanisms of poxvirus-induced disease. Despite increasing knowledge on the interaction between ECTV and its natural host-the mouse-surprisingly, still little is known about the cell biology of ECTV infection. Because pathogen interaction with the cytoskeleton is still a growing area of research in the virus-host cell interplay, the aim of the present study was to evaluate the consequences of ECTV infection on the cytoskeleton in a murine fibroblast cell line. The viral effect on the cytoskeleton was reflected by changes in migration of the cells and rearrangement of the architecture of tubulin, vimentin, and actin filaments. The virus-induced cytoskeletal rearrangements observed in these studies contributed to the efficient cell-to-cell spread of infection, which is an important feature of ECTV virulence. Additionally, during later stages of infection L929 cells produced two main types of actin-based cellular protrusions: short (actin tails and "dendrites") and long (cytoplasmic corridors). Due to diversity of filopodial extensions induced by the virus, we suggest that ECTV represents a valuable new model for studying processes and pathways that regulate the formation of cytoskeleton-based cellular structures. © 2016 Wiley Periodicals, Inc. PMID:27169394

  19. Cholesteatoma Fibroblasts Promote Epithelial Cell Proliferation through Overexpression of Epiregulin

    PubMed Central

    Yoshikawa, Mamoru; Kojima, Hiromi; Yaguchi, Yuichiro; Okada, Naoko; Saito, Hirohisa; Moriyama, Hiroshi

    2013-01-01

    To investigate whether keratinocytes proliferate in response to epiregulin produced by subepithelial fibroblasts derived from middle ear cholesteatoma. Tissue samples were obtained from patients undergoing tympanoplasty. The quantitative polymerase chain reaction and immunohistochemistry were performed to examine epiregulin expression and localization in cholesteatoma tissues and retroauricular skin tissues. Fibroblasts were cultured from cholesteatoma tissues and from normal retroauricular skin. These fibroblasts were used as feeder cells for culture with a human keratinocyte cell line (PHK16-0b). To investigate the role of epiregulin in colony formation by PHK16-0b cells, epiregulin mRNA expression was knocked down in fibroblasts by using short interfering RNA and epiregulin protein was blocked with a neutralizing antibody. Epiregulin mRNA expression was significantly elevated in cholesteatoma tissues compared with that in normal retroauricular skin. Staining for epiregulin was more intense in the epithelial cells and subepithelial fibroblasts of cholesteatoma tissues than in retroauricular skin. When PHK16-0b cells were cultured with cholesteatoma fibroblasts, their colony-forming efficiency was 50% higher than when these cells were cultured with normal skin fibroblasts. Also, knockdown of epiregulin mRNA in cholesteatoma fibroblasts led to greater suppression of colony formation than knockdown in skin fibroblasts. Furthermore, the colony-forming efficiency of PHK16-0b cells was significantly reduced after treatment with an epiregulin neutralizing antibody in co-culture with cholesteatoma fibroblasts, but not in co-culture with skin fibroblasts. These results suggest that keratinocyte hyperproliferation in cholesteatoma is promoted through overexpression of epiregulin by subepithelial fibroblasts via epithelial–mesenchymal interactions, which may play a crucial role in the pathogenesis of middle ear cholesteatoma. PMID:23826119

  20. Tricyclic antidepressant amitriptyline activates fibroblast growth factor receptor signaling in glial cells: involvement in glial cell line-derived neurotrophic factor production.

    PubMed

    Hisaoka, Kazue; Tsuchioka, Mami; Yano, Ryoya; Maeda, Natsuko; Kajitani, Naoto; Morioka, Norimitsu; Nakata, Yoshihiro; Takebayashi, Minoru

    2011-06-17

    Recently, both clinical and animal studies demonstrated neuronal and glial plasticity to be important for the therapeutic action of antidepressants. Antidepressants increase glial cell line-derived neurotrophic factor (GDNF) production through monoamine-independent protein-tyrosine kinase, extracellular signal-regulated kinase (ERK), and cAMP responsive element-binding protein (CREB) activation in glial cells (Hisaoka, K., Takebayashi, M., Tsuchioka, M., Maeda, N., Nakata, Y., and Yamawaki, S. (2007) J. Pharmacol. Exp. Ther. 321, 148-157; Hisaoka, K., Maeda, N., Tsuchioka, M., and Takebayashi, M. (2008) Brain Res. 1196, 53-58). This study clarifies the type of tyrosine kinase and mechanism of antidepressant-induced GDNF production in C6 glioma cells and normal human astrocytes. The amitriptyline (a tricyclic antidepressant)-induced ERK activation was specifically and completely inhibited by fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitors and siRNA for FGFR1 and -2. Treatment with amitriptyline or several different classes of antidepressants, but not non-antidepressants, acutely increased the phosphorylation of FGFRs and FGFR substrate 2α (FRS2α). Amitriptyline-induced CREB phosphorylation and GDNF production were blocked by FGFR-tyrosine kinase inhibitors. Therefore, antidepressants activate the FGFR/FRS2α/ERK/CREB signaling cascade, thus resulting in GDNF production. Furthermore, we attempted to elucidate how antidepressants activate FGFR signaling. The effect of amitriptyline was inhibited by heparin, non-permeant FGF-2 neutralizing antibodies, and matrix metalloproteinase (MMP) inhibitors. Serotonin (5-HT) also increased GDNF production through FGFR2 (Tsuchioka, M., Takebayashi, M., Hisaoka, K., Maeda, N., and Nakata, Y. (2008) J. Neurochem. 106, 244-257); however, the effect of 5-HT was not inhibited by heparin and MMP inhibitors. These results suggest that amitriptyline-induced FGFR activation might occur through an extracellular pathway

  1. FAP-α (Fibroblast activation protein-α) is involved in the control of human breast cancer cell line growth and motility via the FAK pathway

    PubMed Central

    2014-01-01

    Background Fibroblast Activation Protein alpha (FAP-α) or seprase is an integral membrane serine peptidase. Previous work has not satisfactorily explained both the suppression and promotion effects that have been observed in cancer. The purpose of this work was to investigate the role of FAP-α in human breast cancer. Expression of FAP-α was characterized in primary tumour samples and in cell lines, along with the effects of FAP-α expression on in vitro growth, invasion, attachment and migration. Furthermore the potential interaction of FAP-α with other signalling pathways was investigated. Results FAP-α was significantly increased in patients with poor outcome and survival. In vitro results showed that breast cancer cells over expressing FAP-α had increased growth ability and impaired migratory ability. The growth of MDA-MB-231 cells and the adhesion and invasion ability of both MCF-7 cells and MDA-MB-231 cells were not dramatically influenced by FAP-α expression. Over-expression of FAP-α resulted in a reduction of phosphorylated focal adhesion kinase (FAK) level in both cells cultured in normal media and serum-free media. An inhibitor to FAK restored the reduced motility ability of both MCF-7exp cells and MDA-MB-231exp cells and prevented the change in phosphorylated FAK levels. However, inhibitors to PI3K, ERK, PLCϒ, NWASP, ARP2/3, and ROCK had no influence this. Conclusions FAP-α in significantly associated with poor outcome in patients with breast cancer. In vitro, FAP-α promotes proliferation and inhibits migration of breast cancer cells, potentially by regulating the FAK pathway. These results suggest FAP-α could be a target for future therapies. PMID:24885257

  2. Receptor for advanced glycation endproducts signaling cascades are activated in pancreatic fibroblasts, but not in the INS1E insulinoma cell line: Are mesenchymal cells major players in chronic inflammation?

    PubMed Central

    Tago, Kazuma; Inoue, Ken-ichi; Ouchi, Motoshi; Miura, Yoshikazu; Kubota, Keiichi

    2016-01-01

    ABSTRACT The receptor for advanced glycation endproducts (RAGE) is a pattern recognition receptor that plays an important role in natural immunity. It is suggested that mesenchymal cells are the major players during inflammation. Previously, we reported that advanced glycation end products (AGE), known to be one of the ligands of RAGE, inhibited glucose-induced insulin secretion from ex vivo pancreatic islets, although the mechanism responsible remains largely unknown. In the present study, we examined the cascades operating downstream from RAGE using the insulinoma cell line INS1E and primary-cultured pancreatic fibroblasts as in vitro models for parenchymal (β) cells and mesenchymal cells, respectively. Phosphorylation of c-jun N-terminal kinase, inhibitor of nuclear factor κB kinase, and nuclear factor κB was stimulated by AGE or high mobility group binding 1 (HMGB1) in pancreatic fibroblasts, whereas no such effect was observed in INS1E cells. Expression of the Ccl5, Il-6, and Il-1b genes was increased by AGE/HMGB1 in fibroblasts, but not in INS1E cells. On the other hand, AGE inhibited the secretion of insulin from ex vivo pancreatic islets, and this effect was ameliorated by MK615, a Japanese apricot extract used as an anti-inflammatory agent. Glucose-induced insulin secretion from INS1E cells was not affected by direct administration of AGE/HMGB1, but was inhibited by fibroblast-conditioned medium. These results suggest that AGE suppresses glucose-induced insulin secretion from pancreatic islets through indirect mesenchymal RAGE signaling. PMID:27415824

  3. Receptor for advanced glycation endproducts signaling cascades are activated in pancreatic fibroblasts, but not in the INS1E insulinoma cell line: Are mesenchymal cells major players in chronic inflammation?

    PubMed

    Tago, Kazuma; Inoue, Ken-Ichi; Ouchi, Motoshi; Miura, Yoshikazu; Kubota, Keiichi

    2016-09-01

    The receptor for advanced glycation endproducts (RAGE) is a pattern recognition receptor that plays an important role in natural immunity. It is suggested that mesenchymal cells are the major players during inflammation. Previously, we reported that advanced glycation end products (AGE), known to be one of the ligands of RAGE, inhibited glucose-induced insulin secretion from ex vivo pancreatic islets, although the mechanism responsible remains largely unknown. In the present study, we examined the cascades operating downstream from RAGE using the insulinoma cell line INS1E and primary-cultured pancreatic fibroblasts as in vitro models for parenchymal (β) cells and mesenchymal cells, respectively. Phosphorylation of c-jun N-terminal kinase, inhibitor of nuclear factor κB kinase, and nuclear factor κB was stimulated by AGE or high mobility group binding 1 (HMGB1) in pancreatic fibroblasts, whereas no such effect was observed in INS1E cells. Expression of the Ccl5, Il-6, and Il-1b genes was increased by AGE/HMGB1 in fibroblasts, but not in INS1E cells. On the other hand, AGE inhibited the secretion of insulin from ex vivo pancreatic islets, and this effect was ameliorated by MK615, a Japanese apricot extract used as an anti-inflammatory agent. Glucose-induced insulin secretion from INS1E cells was not affected by direct administration of AGE/HMGB1, but was inhibited by fibroblast-conditioned medium. These results suggest that AGE suppresses glucose-induced insulin secretion from pancreatic islets through indirect mesenchymal RAGE signaling. PMID:27415824

  4. Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line.

    PubMed

    Śmieszek, Agnieszka; Czyrek, Aleksandra; Basinska, Katarzyna; Trynda, Justyna; Skaradzińska, Aneta; Siudzińska, Anna; Marędziak, Monika; Marycz, Krzysztof

    2015-01-01

    Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2) signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure. PMID:26064951

  5. Modulatory Effects of Connexin-43 Expression on Gap Junction Intercellular Communications with Mast Cells and Fibroblasts

    PubMed Central

    Pistorio, Ashey L.; Ehrlich, H. Paul

    2011-01-01

    The influence of mast cells upon aberrant wound repair and excessive fibrosis has supportive evidence, but the mechanism for these mast cell activities is unclear. It is proposed that heterocellular gap junctional intercellular communication (GJIC) between fibroblasts and mast cells directs some fibroblast activities. An in vitro model was used employing a rodent derived peritoneal mast cell line (RMC-1) and human dermal derived fibroblasts. The influence of the expression of the gap junction channel structural protein, connexin 43 (Cx-43) on heterocellular GJIC, the expression of microtubule β-tubulin and microfilament α smooth muscle actin (SMA) were investigated. The knockdown of Cx-43 by siRNA in RMC-1 cells completely blocked GJIC between RMC-1 cells. SiRNA knockdown of Cx-43 within fibroblasts only dampened GJIC between fibroblasts. It appears Cx-43 is the only expressed connexin in RMC-1 cells. Fibroblasts express other connexins that participate in GJIC between fibroblasts in the absence of Cx-43 expression. Heterocellular GJIC between RMC-1 cells and fibroblasts transformed fibroblasts into myofibroblasts, expressing α SMA within cytoplasmic stress fibers. The knockdown of Cx-43 in RMC-1 cells increased β-tubulin expression, but its knockdown in fibroblasts reduced β-tubulin expression. Knocking down the expression of Cx-43 in fibroblasts limited α SMA expression. Cx-43 participation is critical for heterocellular GJIC between mast cells and fibroblasts, which may herald a novel direction for controlling fibrosis. PMID:21328609

  6. Aqueous extract of Arbutus unedo inhibits STAT1 activation in human breast cancer cell line MDA-MB-231 and human fibroblasts through SHP2 activation.

    PubMed

    Mariotto, S; Ciampa, A R; de Prati, A Carcereri; Darra, E; Vincenzi, S; Sega, M; Cavalieri, E; Shoji, K; Suzuki, H

    2008-05-01

    Arbutus unedo L. has been for a long time employed in traditional and popular medicine as an astringent, diuretic, urinary anti-septic, and more recently, in the therapy of hypertension and diabetes. Signal transducer and activator of transcription 1 (STAT1) is a fascinating and complex protein with multiple yet contrasting transcriptional functions. Although activation of this nuclear factor is finely regulated in order to control the entire inflammatory process, its hyper-activation or time-spatially erroneous activation may lead to exacerbation of inflammation. The modulation of this nuclear factor, therefore, has recently been considered as a new strategy in the treatment of inflammatory diseases. In this study, we present data showing that the aqueous extract of Arbutus unedo's leaves exerts inhibitory action on interferon-gamma (IFN-gamma) elicited activation of STAT1, both in human breast cancer cell line MDA-MB-231 and in human fibroblasts. This down-regulation of STAT1 is shown to result from a reduced tyrosine phosphorylation of STAT1 protein. Evidence is also presented indicating that the inhibitory effect of this extract may be mediated through enhancement of tyrosine phosphorylation of SHP2 tyrosine phosphatase. The modulation of this nuclear factor turns out into the regulation of the expression of a number of genes involved in the inflammatory response such as inducible nitric oxide synthase (iNOS) and intercellular adhesion molecule-1 (ICAM-1). Taken together, our results suggest that the employment of the Arbutus unedo aqueous extract is promising, at least, as an auxiliary anti-inflammatory treatment of diseases in which STAT1 plays a critical role. PMID:18473914

  7. The effects of acoustic vibration on fibroblast cell migration.

    PubMed

    Mohammed, Taybia; Murphy, Mark F; Lilley, Francis; Burton, David R; Bezombes, Frederic

    2016-12-01

    Cells are known to interact and respond to external mechanical cues and recent work has shown that application of mechanical stimulation, delivered via acoustic vibration, can be used to control complex cell behaviours. Fibroblast cells are known to respond to physical cues generated in the extracellular matrix and it is thought that such cues are important regulators of the wound healing process. Many conditions are associated with poor wound healing, so there is need for treatments/interventions, which can help accelerate the wound healing process. The primary aim of this research was to investigate the effects of mechanical stimulation upon the migratory and morphological properties of two different fibroblast cells namely; human lung fibroblast cells (LL24) and subcutaneous areolar/adipose mouse fibroblast cells (L929). Using a speaker-based system, the effects of mechanical stimulation (0-1600Hz for 5min) on the mean cell migration distance (μm) and actin organisation was investigated. The results show that 100Hz acoustic vibration enhanced cell migration for both cell lines whereas acoustic vibration above 100Hz was found to decrease cell migration in a frequency dependent manner. Mechanical stimulation was also found to promote changes to the morphology of both cell lines, particularly the formation of lamellipodia and filopodia. Overall lamellipodia was the most prominent actin structure displayed by the lung cell (LL24), whereas filopodia was the most prominent actin feature displayed by the fibroblast derived from subcutaneous areolar/adipose tissue. Mechanical stimulation at all the frequencies used here was found not to affect cell viability. These results suggest that low-frequency acoustic vibration may be used as a tool to manipulate the mechanosensitivity of cells to promote cell migration. PMID:27612824

  8. Development, characterization and application of a new fibroblastic-like cell line from kidney of a freshwater air breathing fish Channa striatus (Bloch, 1793).

    PubMed

    Abdul Majeed, S; Nambi, K S N; Taju, G; Sahul Hameed, A S

    2013-07-01

    A new cell line, Channa striatus kidney (CSK), derived from the kidney tissue of murrel, was established and characterized. The CSK cell line was maintained in Leibovitz's L-15 supplemented with 10% fetal bovine serum and has been subcultured more than 140 times. This cell line was able to grow in a range of temperatures from 22 to 32°C with optimal growth at 28°C. The plating efficiency was very high (67.54%) and doubling time was approximately 29h. The kidney cell line was cryopreserved at different passage levels and revived successfully with 90-92% survival. Polymerase chain reaction amplification of mitochondrial 16S rRNA using primer specific to C. striatus confirmed the origin of this cell line from murrel. The cell line was further characterized by chromosome number, transfection and mycoplasma detection. A marine fish nodavirus was tested to determine the susceptibility of this new cell line. The CSK cell line was found to be susceptible to nodavirus and the infection was confirmed by cytopathic effect (CPE), reverse transcriptase-polymerase chain reaction (RT-PCR), immunodot blot, enzyme linked immunosorbent assay (ELISA), virus replication efficiency and real time RT-PCR. The present study highlights the development and characterization of a new kidney cell line from an air breathing fish that could be used as an in vitro tools for propagation of fish viruses and gene expression studies. PMID:23558109

  9. Effects of metal ions on fibroblasts and spiral ganglion cells.

    PubMed

    Paasche, G; Ceschi, P; Löbler, M; Rösl, C; Gomes, P; Hahn, A; Rohm, H W; Sternberg, K; Lenarz, T; Schmitz, K-P; Barcikowski, S; Stöver, T

    2011-04-01

    Degeneration of spiral ganglion cells (SGC) after deafness and fibrous tissue growth around the electrode carrier after cochlear implantation are two of the major challenges in current cochlear implant research. Metal ions are known to possess antimicrobial and antiproliferative potential. The use of metal ions could therefore provide a way to reduce tissue growth around the electrode array after cochlear implantation. Here, we report on in vitro experiments with different concentrations of metal salts with antiproliferative and toxic effects on fibroblasts, PC-12 cells, and freshly isolated spiral ganglion cells, the target cells for electrical stimulation by a cochlear implant. Standard cell lines (NIH/3T3 and L-929 fibroblasts and PC-12 cells) and freshly isolated SGC were incubated with concentrations of metal ions between 0.3 μmol/liter and 10 mmol/liter for 48 hr. Cell survival was investigated by neutral red uptake, CellQuantiBlue assay, or counting of stained surviving neurons. Silver ions exhibited distinct thresholds for proliferating and confluent cells. For zinc ions, the effective concentration was lower for fibroblasts than for PC-12 cells. SGC showed comparable thresholds for reduced cell survival not only for silver and zinc ions but also for copper(II) ions, indicating that these ions might be promising for reducing tissue growth on the surface of CI electrode arrays. These effects were also observed when combinations of two of these ions were investigated. PMID:21312225

  10. Irradiated fibroblasts promote epithelial–mesenchymal transition and HDGF expression of esophageal squamous cell carcinoma

    SciTech Connect

    Bao, Ci-Hang; Wang, Xin-Tong; Ma, Wei; Wang, Na-Na; Nesa, Effat un; Wang, Jian-Bo; Wang, Cong; Jia, Yi-Bin; Wang, Kai; Tian, Hui; Cheng, Yu-Feng

    2015-03-06

    Recent evidence suggested that nonirradiated cancer-associated fibroblasts (CAFs) promoted aggressive phenotypes of cancer cells through epithelial–mesenchymal transition (EMT). Hepatoma-derived growth factor (HDGF) is a radiosensitive gene of esophageal squamous cell carcinoma (ESCC). This study aimed to investigate the effect of irradiated fibroblasts on EMT and HDGF expression of ESCC. Our study demonstrated that coculture with nonirradiated fibroblasts significantly increased the invasive ability of ESCC cells and the increased invasiveness was further accelerated when they were cocultured with irradiated fibroblasts. Scattering of ESCC cells was also accelerated by the supernatant from irradiated fibroblasts. Exposure of ESCC cells to supernatant from irradiated fibroblasts resulted in decreased E-cadherin, increased vimentin in vitro and β-catenin was demonstrated to localize to the nucleus in tumor cells with irradiated fibroblasts in vivo models. The expression of HDGF and β-catenin were increased in both fibroblasts and ESCC cells of irradiated group in vitro and in vivo models. Interestingly, the tumor cells adjoining the stromal fibroblasts displayed strong nuclear HDGF immunoreactivity, which suggested the occurrence of a paracrine effect of fibroblasts on HDGF expression. These data suggested that irradiated fibroblasts promoted invasion, growth, EMT and HDGF expression of ESCC. - Highlights: • Irradiated CAFs accelerated invasiveness and scattering of ESCC cell lines. • Irradiated CAFs promoted EMT of ESCC cells. • Irradiated fibroblasts induced nuclear β-catenin relocalization in ESCC cells. • Irradiated fibroblasts increased HDGF expression in vitro and in vivo.

  11. Chemical composition of the essential oil from basil (Ocimum basilicum Linn.) and its in vitro cytotoxicity against HeLa and HEp-2 human cancer cell lines and NIH 3T3 mouse embryonic fibroblasts.

    PubMed

    Kathirvel, Poonkodi; Ravi, Subban

    2012-01-01

    This study examines the chemical composition and in vitro anticancer activity of the essential oil from Ocimum basilicum Linn. (Lamiaceae), cultivated in the Western Ghats of South India. The chemical compositions of basil fresh leaves were identified by GC-MS: 11 components were identified. The major constituents were found to be methyl cinnamate (70.1%), linalool (17.5%), β-elemene (2.6%) and camphor (1.52%). The results revealed that this plant may belong to the methyl cinnamate and linalool chemotype. A methyl thiazol tetrazolium assay was used for in vitro cytotoxicity screening against the human cervical cancer cell line (HeLa), human laryngeal epithelial carcinoma cell line (HEp-2) and NIH 3T3 mouse embryonic fibroblasts. The IC(50) values obtained were 90.5 and 96.3 µg mL(-1), respectively, and the results revealed that basil oil has potent cytotoxicity.

  12. Bioactive Constituents of Zanthoxylum rhetsa Bark and Its Cytotoxic Potential against B16-F10 Melanoma Cancer and Normal Human Dermal Fibroblast (HDF) Cell Lines.

    PubMed

    Santhanam, Ramesh Kumar; Ahmad, Syahida; Abas, Faridah; Safinar Ismail, Intan; Rukayadi, Yaya; Tayyab Akhtar, Muhammad; Shaari, Khozirah

    2016-01-01

    Zanthoxylum rhetsa is an aromatic tree, known vernacularly as "Indian Prickly Ash". It has been predominantly used by Indian tribes for the treatment of many infirmities like diabetes, inflammation, rheumatism, toothache and diarrhea. In this study, we identified major volatile constituents present in different solvent fractions of Z. rhetsa bark using GC-MS analysis and isolated two tetrahydrofuran lignans (yangambin and kobusin), a berberine alkaloid (columbamine) and a triterpenoid (lupeol) from the bioactive chloroform fraction. The solvent fractions and purified compounds were tested for their cytotoxic potential against human dermal fibroblasts (HDF) and mouse melanoma (B16-F10) cells, using the MTT assay. All the solvent fractions and purified compounds were found to be non-cytotoxic to HDF cells. However, the chloroform fraction and kobusin exhibited cytotoxic effect against B16-F10 melanoma cells. The presence of bioactive lignans and alkaloids were suggested to be responsible for the cytotoxic property of Z. rhetsa bark against B16-F10 cells. PMID:27231889

  13. Electrically excitable normal rat kidney fibroblasts: A new model system for cell-semiconductor hybrids.

    PubMed

    Parak, W J; Domke, J; George, M; Kardinal, A; Radmacher, M; Gaub, H E; de Roos, A D; Theuvenet, A P; Wiegand, G; Sackmann, E; Behrends, J C

    1999-03-01

    In testing various designs of cell-semiconductor hybrids, the choice of a suitable type of electrically excitable cell is crucial. Here normal rat kidney (NRK) fibroblasts are presented as a cell line, easily maintained in culture, that may substitute for heart or nerve cells in many experiments. Like heart muscle cells, NRK fibroblasts form electrically coupled confluent cell layers, in which propagating action potentials are spontaneously generated. These, however, are not associated with mechanical disturbances. Here we compare heart muscle cells and NRK fibroblasts with respect to action potential waveform, morphology, and substrate adhesion profile, using the whole-cell variant of the patch-clamp technique, atomic force microscopy (AFM), and reflection interference contrast microscopy (RICM), respectively. Our results clearly demonstrate that NRK fibroblasts should provide a highly suitable test system for investigating the signal transfer between electrically excitable cells and extracellular detectors, available at a minimum cost and effort for the experimenters. PMID:10049346

  14. First cloned swamp buffalo produced from adult ear fibroblast cell.

    PubMed

    Tasripoo, K; Suthikrai, W; Sophon, S; Jintana, R; Nualchuen, W; Usawang, S; Bintvihok, A; Techakumphu, M; Srisakwattana, K

    2014-07-01

    The world's first cloned swamp buffalo (Bubalus bubalis) derived from adult ear skin fibroblast has been reported. Donor fibroblast cells were produced from biopsies taken from adult male ear skin and in vitro matured oocytes obtained from a slaughterhouse were used as cytoplasts. A total of 39 blastocysts and 19 morulae fresh embryos were transferred into 12 recipient buffaloes. Progesterone assays indicated establishment of pregnancy in 10 of the 12 buffaloes (83.3%) after 45 days, with six animals still pregnant at 3 months. One recipient maintained pregnancy to term and naturally delivered a 40 kg male calf after 326 days of gestation. DNA analysis showed that the cloned calf was genetically identical to the donor cells. Genotype analyses, using 12 buffalo microsatellite markers, confirmed that the cloned calf was derived from the donor cell lines. In conclusion, the present study reports, for the first time, the establishment of pregnancy and birth of the first cloned Thai swamp buffalo derived from adult ear skin fibroblast cells.

  15. Induced pluripotent stem cells from goat fibroblasts.

    PubMed

    Song, Hui; Li, Hui; Huang, Mingrui; Xu, Dan; Gu, Chenghao; Wang, Ziyu; Dong, Fulu; Wang, Feng

    2013-12-01

    Embryonic stem cells (ESCs) are a powerful model for genetic engineering, studying developmental biology, and modeling disease. To date, ESCs have been established from the mouse (Evans and Kaufman, 1981, Nature 292:154-156), non-human primates (Thomson et al., , Proc Nat Acad Sci USA 92:7844-7848), humans (Thomson et al., 1998, Science 282:1145-1147), and rats (Buehr et al., , Cell 135:1287-1298); however, the derivation of ESCs from domesticated ungulates such as goats, sheep, cattle, and pigs have not been successful. Alternatively, induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with several combinations of genes encoding transcription factors (OCT3/4, SOX2, KLF4, cMYC, LIN28, and NANOG). To date, iPSCs have been isolated from various species, but only limited information is available regarding goat iPSCs (Ren et al., 2011, Cell Res 21:849-853). The objectives of this study were to generate goat iPSCs from fetal goat primary ear fibroblasts using lentiviral transduction of four human transcription factors: OCT4, SOX2, KLF4, and cMYC. The goat iPSCs were successfully generated by co-culture with mitomycin C-treated mouse embryonic fibroblasts using medium supplemented with knockout serum replacement and human basic fibroblast growth factor. The goat iPSCs colonies are flat, compact, and closely resemble human iPSCs. They have a normal karyotype; stain positive for alkaline phosphatase, OCT4, and NANOG; express endogenous pluripotency genes (OCT4, SOX2, cMYC, and NANOG); and can spontaneously differentiate into three germ layers in vitro and in vivo. PMID:24123501

  16. Induced pluripotent stem cells from goat fibroblasts.

    PubMed

    Song, Hui; Li, Hui; Huang, Mingrui; Xu, Dan; Gu, Chenghao; Wang, Ziyu; Dong, Fulu; Wang, Feng

    2013-12-01

    Embryonic stem cells (ESCs) are a powerful model for genetic engineering, studying developmental biology, and modeling disease. To date, ESCs have been established from the mouse (Evans and Kaufman, 1981, Nature 292:154-156), non-human primates (Thomson et al., , Proc Nat Acad Sci USA 92:7844-7848), humans (Thomson et al., 1998, Science 282:1145-1147), and rats (Buehr et al., , Cell 135:1287-1298); however, the derivation of ESCs from domesticated ungulates such as goats, sheep, cattle, and pigs have not been successful. Alternatively, induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with several combinations of genes encoding transcription factors (OCT3/4, SOX2, KLF4, cMYC, LIN28, and NANOG). To date, iPSCs have been isolated from various species, but only limited information is available regarding goat iPSCs (Ren et al., 2011, Cell Res 21:849-853). The objectives of this study were to generate goat iPSCs from fetal goat primary ear fibroblasts using lentiviral transduction of four human transcription factors: OCT4, SOX2, KLF4, and cMYC. The goat iPSCs were successfully generated by co-culture with mitomycin C-treated mouse embryonic fibroblasts using medium supplemented with knockout serum replacement and human basic fibroblast growth factor. The goat iPSCs colonies are flat, compact, and closely resemble human iPSCs. They have a normal karyotype; stain positive for alkaline phosphatase, OCT4, and NANOG; express endogenous pluripotency genes (OCT4, SOX2, cMYC, and NANOG); and can spontaneously differentiate into three germ layers in vitro and in vivo.

  17. Regulation of IL-6 and IL-8 production by reciprocal cell-to-cell interactions between tumor cells and stromal fibroblasts through IL-1α in ameloblastoma

    SciTech Connect

    Fuchigami, Takao; Kibe, Toshiro; Koyama, Hirofumi; Kishida, Shosei; Iijima, Mikio; Nishizawa, Yoshiaki; Hijioka, Hiroshi; Fujii, Tomomi; Ueda, Masahiro; Nakamura, Norifumi; Kiyono, Tohru; Kishida, Michiko

    2014-09-05

    Highlights: • We studied the interaction between tumor cells and fibroblasts in ameloblastoma. • AM-3 ameloblastoma cells secreted significantly high IL-1α levels. • IL-1α derived from AM-3 cells promoted IL-6 and IL-8 secretion of fibroblasts. • IL-6 and IL-8 activated the cellular motility and proliferation of AM-3 cells. - Abstract: Ameloblastoma is an odontogenic benign tumor that occurs in the jawbone, which invades bone and reoccurs locally. This tumor is treated by wide surgical excision and causes various problems, including changes in facial countenance and mastication disorders. Ameloblastomas have abundant tumor stroma, including fibroblasts and immune cells. Although cell-to-cell interactions are considered to be involved in the pathogenesis of many diseases, intercellular communications in ameloblastoma have not been fully investigated. In this study, we examined interactions between tumor cells and stromal fibroblasts via soluble factors in ameloblastoma. We used a human ameloblastoma cell line (AM-3 ameloblastoma cells), human fibroblasts (HFF-2 fibroblasts), and primary-cultured fibroblasts from human ameloblastoma tissues, and analyzed the effect of ameloblastoma-associated cell-to-cell communications on gene expression, cytokine secretion, cellular motility and proliferation. AM-3 ameloblastoma cells secreted higher levels of interleukin (IL)-1α than HFF-2 fibroblasts. Treatment with conditioned medium from AM-3 ameloblastoma cells upregulated gene expression and secretion of IL-6 and IL-8 of HFF-2 fibroblasts and primary-cultured fibroblast cells from ameloblastoma tissues. The AM3-stimulated production of IL-6 and IL-8 in fibroblasts was neutralized by pretreatment of AM-3 cells with anti-IL-1α antibody and IL-1 receptor antagonist. Reciprocally, cellular motility of AM-3 ameloblastoma cells was stimulated by HFF-2 fibroblasts in IL-6 and IL-8 dependent manner. In conclusion, ameloblastoma cells and stromal fibroblasts behave

  18. Distribution of fibroblast growth factors and their roles in skin fibroblast cell migration.

    PubMed

    Song, Yong Huan; Zhu, Yu Ting; Ding, Jian; Zhou, Fei Ya; Xue, Ji Xin; Jung, Jin Hee; Li, Zhi Jie; Gao, Wei Yang

    2016-10-01

    Fibroblast growth factor (FGF)2/basic FGF is a member of the fibroblast growth factor family. Its function in skin wound healing has been well-characterized. However, the function of other FGFs in skin tissues remains to be elucidated. In the present study, FGF expression patterns in heart, liver, skin and kidney tissues were analyzed. Notably, in contrast to other tissues, only four FGFs, FGF2, 7, 10 and 21, were dominant in the skin. To examine FGF function in the wound healing process, mouse NIH3T3 fibroblast cells were treated with FGF2, FGF10 and FGF21, and cell migration was monitored. The results revealed that FGF treatment promoted cell migration, which is an important step in wound healing. In addition, FGF treatment enhanced the activity of c-Jun N-terminal kinase (JNK), a key regulator of fibroblast cell migration. To analyze its role in cell migration, FGF7 was overexpressed in fibroblast cells via a lentivirus system; however, this did not change cell migration speed. FGF2, 7, 10 and 21 were highly expressed in skin tissue, and all except FGF7 regulated fibroblast cell migration and activated JNK. The results of the present study increase our understanding of the role of FGFs in skin wound healing. PMID:27572477

  19. Mesenchymal stem cells induce dermal fibroblast responses to injury

    SciTech Connect

    Smith, Andria N.; Willis, Elise; Chan, Vincent T.; Muffley, Lara A.; Isik, F. Frank; Gibran, Nicole S.; Hocking, Anne M.

    2010-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. When co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury.

  20. Mesenchymal stem cells induce dermal fibroblast responses to injury.

    PubMed

    Smith, Andria N; Willis, Elise; Chan, Vincent T; Muffley, Lara A; Isik, F Frank; Gibran, Nicole S; Hocking, Anne M

    2010-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. When co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury.

  1. Development of a human mitochondrial oligonucleotide microarray (h-MitoArray) and gene expression analysis of fibroblast cell lines from 13 patients with isolated F1Fo ATP synthase deficiency

    PubMed Central

    Čížková, Alena; Stránecký, Viktor; Ivánek, Robert; Hartmannová, Hana; Nosková, Lenka; Piherová, Lenka; Tesařová, Markéta; Hansíková, Hana; Honzík, Tomáš; Zeman, Jiří; Divina, Petr; Potocká, Andrea; Paul, Jan; Sperl, Wolfgang; Mayr, Johannes A; Seneca, Sara; Houštĕk, Josef; Kmoch, Stanislav

    2008-01-01

    Background To strengthen research and differential diagnostics of mitochondrial disorders, we constructed and validated an oligonucleotide microarray (h-MitoArray) allowing expression analysis of 1632 human genes involved in mitochondrial biology, cell cycle regulation, signal transduction and apoptosis. Using h-MitoArray we analyzed gene expression profiles in 9 control and 13 fibroblast cell lines from patients with F1Fo ATP synthase deficiency consisting of 2 patients with mt9205ΔTA microdeletion and a genetically heterogeneous group of 11 patients with not yet characterized nuclear defects. Analysing gene expression profiles, we attempted to classify patients into expected defect specific subgroups, and subsequently reveal group specific compensatory changes, identify potential phenotype causing pathways and define candidate disease causing genes. Results Molecular studies, in combination with unsupervised clustering methods, defined three subgroups of patient cell lines – M group with mtDNA mutation and N1 and N2 groups with nuclear defect. Comparison of expression profiles and functional annotation, gene enrichment and pathway analyses of differentially expressed genes revealed in the M group a transcription profile suggestive of synchronized suppression of mitochondrial biogenesis and G1/S arrest. The N1 group showed elevated expression of complex I and reduced expression of complexes III, V, and V-type ATP synthase subunit genes, reduced expression of genes involved in phosphorylation dependent signaling along MAPK, Jak-STAT, JNK, and p38 MAP kinase pathways, signs of activated apoptosis and oxidative stress resembling phenotype of premature senescent fibroblasts. No specific functionally meaningful changes, except of signs of activated apoptosis, were detected in the N2 group. Evaluation of individual gene expression profiles confirmed already known ATP6/ATP8 defect in patients from the M group and indicated several candidate disease causing genes for

  2. Generation of iPSC line iPSC-FH2.1 in hypoxic conditions from human foreskin fibroblasts.

    PubMed

    Questa, María; Romorini, Leonardo; Blüguermann, Carolina; Solari, Claudia María; Neiman, Gabriel; Luzzani, Carlos; Scassa, María Élida; Sevlever, Gustavo Emilio; Guberman, Alejandra Sonia; Miriuka, Santiago Gabriel

    2016-03-01

    Human foreskin fibroblasts were used to generate the iPSC line iPSC-FH2.1 using the EF1a-hSTEMCCA-loxP vector expressing OCT4, SOX2, c-MYC and KLF4, in 5% O2 culture conditions. Stemness was confirmed, as was pluripotency both in vivo and in vitro, in normoxia and hypoxia. Human Embryonic Stem Cell (hESC) line WA-09 and reprogrammed fibroblast primary culture HFF-FM were used as controls. PMID:27345989

  3. Generation of iPSC line iPSC-FH2.1 in hypoxic conditions from human foreskin fibroblasts.

    PubMed

    Questa, María; Romorini, Leonardo; Blüguermann, Carolina; Solari, Claudia María; Neiman, Gabriel; Luzzani, Carlos; Scassa, María Élida; Sevlever, Gustavo Emilio; Guberman, Alejandra Sonia; Miriuka, Santiago Gabriel

    2016-03-01

    Human foreskin fibroblasts were used to generate the iPSC line iPSC-FH2.1 using the EF1a-hSTEMCCA-loxP vector expressing OCT4, SOX2, c-MYC and KLF4, in 5% O2 culture conditions. Stemness was confirmed, as was pluripotency both in vivo and in vitro, in normoxia and hypoxia. Human Embryonic Stem Cell (hESC) line WA-09 and reprogrammed fibroblast primary culture HFF-FM were used as controls.

  4. Basic fibroblast growth factor support of human embryonic stem cell self-renewal.

    PubMed

    Levenstein, Mark E; Ludwig, Tenneille E; Xu, Ren-He; Llanas, Rachel A; VanDenHeuvel-Kramer, Kaitlyn; Manning, Daisy; Thomson, James A

    2006-03-01

    Human embryonic stem (ES) cells have most commonly been cultured in the presence of basic fibroblast growth factor (FGF2) either on fibroblast feeder layers or in fibroblast-conditioned medium. It has recently been reported that elevated concentrations of FGF2 permit the culture of human ES cells in the absence of fibroblasts or fibroblast-conditioned medium. Herein we compare the ability of unconditioned medium (UM) supplemented with 4, 24, 40, 80, 100, and 250 ng/ml FGF2 to sustain low-density human ES cell cultures through multiple passages. In these stringent culture conditions, 4, 24, and 40 ng/ml FGF2 failed to sustain human ES cells through three passages, but 100 ng/ml sustained human ES cells with an effectiveness comparable to conditioned medium (CM). Two human ES cell lines (H1 and H9) were maintained for up to 164 population doublings (7 and 4 months) in UM supplemented with 100 ng/ml FGF2. After prolonged culture, the cells formed teratomas when injected into severe combined immunodeficient beige mice and expressed markers characteristic of undifferentiated human ES cells. We also demonstrate that FGF2 is degraded more rapidly in UM than in CM, partly explaining the need for higher concentrations of FGF2 in UM. These results further facilitate the large-scale, routine culture of human ES cells and suggest that fibroblasts and fibro-blast-conditioned medium sustain human ES cells in part by stabilizing FGF signaling above a critical threshold.

  5. Role of fibroblast growth factor receptors in astrocytic stem cells

    PubMed Central

    Galvez-Contreras, Alma Y.; Gonzalez-Castaneda, Rocio E; Luquin, Sonia; Gonzalez-Perez, Oscar

    2012-01-01

    There are two well-defined neurogenic regions in the adult brain, the subventricular zone (SVZ) lining the lateral wall of the lateral ventricles and, the subgranular zone (SGZ) in the dentate gyrus at the hippocampus. Within these neurogenic regions, there are neural stem cells with astrocytic characteristics, which actively respond to the basic fibroblast growth factor (bFGF, FGF2 or FGF-β) by increasing their proliferation, survival and differentiation, both in vivo and in vitro. FGF2 binds to fibroblast growth factor receptors 1 to 4 (FGFR1, FGFR2, FGFR3, FGFR4). Interestingly, these receptors are differentially expressed in neurogenic progenitors. During development, FGFR-1 and FGFR-2 drive oligodendrocytes and motor neuron specification. In particular, FGFR-1 determines oligodendroglial and neuronal cell fate, whereas FGFR-2 is related to oligodendrocyte specification. In the adult SVZ, FGF-2 promotes oligodendrogliogenesis and myelination. FGF-2 deficient mice show a reduction in the number of new neurons in the SGZ, which suggests that FGFR-1 is important for neuronal cell fate in the adult hippocampus. In human brain, FGF-2 appears to be an important component in the anti-depressive effect of drugs. In summary, FGF2 is an important modulator of the cell fate of neural precursor and, promotes oligodendrogenesis. In this review, we describe the expression pattern of FGFR2 and its role in neural precursors derived from the SVZ and the SGZ. PMID:22347841

  6. Influence of three laser wavelengths on human fibroblasts cell culture.

    PubMed

    Crisan, Bogdan; Soritau, Olga; Baciut, Mihaela; Campian, Radu; Crisan, Liana; Baciut, Grigore

    2013-02-01

    Although experimental studies in vitro and vivo have been numerous, the effect of laser wavelength irradiation on human fibroblast cell culture is poorly understood. This emphasizes the need of additional cellular and molecular research into laser influence with low energy and power. The aim of this study was to assess the influence of three different laser wavelengths on the human skin fibroblasts cell culture. We wanted to evaluate if near infrared lasers had any influence in healing of wounds by stimulating mitochondrial activity of fibroblasts. The cells were irradiated using 830-, 980- and 2,940-nm laser wavelengths. The irradiated cells were incubated and their mitochondrial activity was assessed by the MTT assay at 24, 48 and 72 h. Simultaneously, an apoptosis assay was assessed on the irradiated fibroblasts. It can be concluded that laser light of the near-infrared region (830 and 980 nm) influences fibroblasts mitochondrial activity compared to the 2,940-nm wavelength which produces apoptosis.

  7. Fibroblasts as Efficient Antigen-Presenting Cells in Lymphoid Organs

    NASA Astrophysics Data System (ADS)

    Kundig, Thomas M.; Bachmann, Martin F.; Dipaolo, Claudio; Simard, John J. L.; Battegay, Manuel; Lother, Heinz; Gessner, Andre; Kuhlcke, Klaus; Ohashi, Pamela S.; Hengartner, Hans; Zinkernagel, Rolf M.

    1995-06-01

    Only so-called "professional" antigen-presenting cells (APCs) of hematopoietic origin are believed capable of inducing T lymphocyte responses. However, fibroblasts transfected with viral proteins directly induced antiviral cytotoxic T lymphocyte responses in vivo, without involvement of host APCs. Fibroblasts induced T cells only in the milieu of lymphoid organs. Thus, antigen localization affects self-nonself discrimination and cell-based vaccine strategies.

  8. Generation of Induced Pluripotent Stem Cells from Diabetic Foot Ulcer Fibroblasts Using a Nonintegrative Sendai Virus.

    PubMed

    Gerami-Naini, Behzad; Smith, Avi; Maione, Anna G; Kashpur, Olga; Carpinito, Gianpaolo; Veves, Aristides; Mooney, David J; Garlick, Jonathan A

    2016-08-01

    Diabetic foot ulcers (DFUs) are nonhealing chronic wounds that are a serious complication of diabetes. Since induced pluripotent stem cells (iPSCs) may offer a potent source of autologous cells to heal these wounds, we studied if repair-deficient fibroblasts, derived from DFU patients and age- and site-matched control fibroblasts, could be reprogrammed to iPSCs. To establish this, we used Sendai virus to successfully reprogram six primary fibroblast cell lines derived from ulcerated skin of two DFU patients (DFU8, DFU25), nonulcerated foot skin from two diabetic patients (DFF24, DFF9), and healthy foot skin from two nondiabetic patients (NFF12, NFF14). We confirmed reprogramming to a pluripotent state through three independent criteria: immunofluorescent staining for SSEA-4 and TRA-1-81, formation of embryoid bodies with differentiation potential to all three embryonic germ layers in vitro, and formation of teratomas in vivo. All iPSC lines showed normal karyotypes and typical, nonmethylated CpG sites for OCT4 and NANOG. iPSCs derived from DFUs were similar to those derived from site-matched nonulcerated skin from both diabetic and nondiabetic patients. These results have established for the first time that multiple, DFU-derived fibroblast cell lines can be reprogrammed with efficiencies similar to control fibroblasts, thus demonstrating their utility for future regenerative therapy of DFUs. PMID:27328415

  9. Estradiol regulation of nucleotidases in female reproductive tract epithelial cells and fibroblasts.

    PubMed

    Shen, Zheng; Fahey, John V; Bodwell, Jack E; Rodriguez-Garcia, Marta; Rossoll, Richard M; Crist, Sarah G; Patel, Mickey V; Wira, Charles R

    2013-01-01

    The use of topical and oral adenosine derivatives in HIV prevention that need to be maintained in tissues and cells at effective levels to prevent transmission prompted us to ask whether estradiol could influence the regulation of catabolic nucleotidase enzymes in epithelial cells and fibroblasts from the upper and lower female reproductive tract (FRT) as these might affect cellular TFV-DP levels. Epithelial cells and fibroblasts were isolated from endometrium (EM), endocervix (CX) and ectocervix (ECX) tissues from hysterectomy patients, grown to confluence and treated with or without estradiol prior to RNA isolation. The expression of nucleotidase (NT) genes was measurable by RT-PCR in epithelial cells and fibroblasts from all FRT tissues. To determine if sex hormones have the potential to regulate NT, we evaluated NT gene expression and NT biological activity in FRT cells following hormone treatment. Estradiol increased expression of Cytosolic 5'-nucleotidase after 2 or 4 h in endometrial epithelial cells but not epithelial cells or fibroblasts from other sites. In studies using a modified 5'-Nucleotidase biological assay for nucleotidases, estradiol increased NT activity in epithelial cells and fibroblasts from the EM, CX and ECX at 24 and 48 h. In related studies, HUVEC primary cells and a HUVEC cell line were unresponsive to estradiol in terms of nucleotidase expression or biological activity. Our findings of an increase in nucleotidase expression and biological activity induced by estradiol do not directly assess changes in microbicide metabolism. However, they do suggest that when estradiol levels are elevated during the menstrual cycle, FRT epithelial cells and fibroblasts from the EM, CX and ECX have the potential to influence microbicide levels that could enhance protection of HIV-target cells (CD4+T cells, macrophages and dendritic cells) throughout the FRT. PMID:23936114

  10. Interaction between head and neck squamous cell carcinoma cells and fibroblasts in the biosynthesis of PGE2

    PubMed Central

    Alcolea, Sonia; Antón, Rosa; Camacho, Mercedes; Soler, Marta; Alfranca, Arantzazu; Avilés-Jurado, Francesc-Xavier; Redondo, Juan-Miguel; Quer, Miquel; León, Xavier; Vila, Luis

    2012-01-01

    Prostaglandin (PG)E2 is relevant in tumor biology, and interactions between tumor and stroma cells dramatically influence tumor progression. We tested the hypothesis that cross-talk between head and neck squamous cell carcinoma (HNSCC) cells and fibroblasts could substantially enhance PGE2 biosynthesis. We observed an enhanced production of PGE2 in cocultures of HNSCC cell lines and fibroblasts, which was consistent with an upregulation of COX-2 and microsomal PGE-synthase-1 (mPGES-1) in fibroblasts. In cultured endothelial cells, medium from fibroblasts treated with tumor cell-conditioned medium induced in vitro angiogenesis, and in tumor cell induced migration and proliferation, these effects were sensitive to PGs inhibition. Proteomic analysis shows that tumor cells released IL-1, and tumor cell-induced COX-2 and mPGES-1 were suppressed by the IL-1-receptor antagonist. IL-1α levels were higher than those of IL-1β in the tumor cell-conditioning medium and in the secretion from samples obtained from 20 patients with HNSCC. Fractionation of tumor cell-conditioning media indicated that tumor cells secreted mature and unprocessed forms of IL-1. Our results support the concept that tumor-associated fibroblasts are a relevant source of PGE2 in the tumor mass. Because mPGES-1 seems to be essential for a substantial biosynthesis of PGE2, these findings also strengthen the concept that mPGES-1 may be \\a target for therapeutic intervention in patients with HNSCC. PMID:22308510

  11. Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1

    PubMed Central

    Moon, Jai-Hee; Heo, June Seok; Kim, Jun Sung; Jun, Eun Kyoung; Lee, Jung Han; Kim, Aeree; Kim, Jonggun; Whang, Kwang Youn; Kang, Yong-Kook; Yeo, Seungeun; Lim, Hee-Joung; Han, Dong Wook; Kim, Dong-Wook; Oh, Sejong; Yoon, Byung Sun; Schöler, Hans R; You, Seungkwon

    2011-01-01

    Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by the transcription factors Oct4, Sox2, and Klf4 in combination with c-Myc. Recently, Sox2 plus Oct4 was shown to reprogram fibroblasts and Oct4 alone was able to reprogram mouse and human neural stem cells (NSCs) into iPS cells. Here, we report that Bmi1 leads to the transdifferentiation of mouse fibroblasts into NSC-like cells, and, in combination with Oct4, can replace Sox2, Klf4 and c-Myc during the reprogramming of fibroblasts into iPS cells. Furthermore, activation of sonic hedgehog signaling (by Shh, purmorphamine, or oxysterol) compensates for the effects of Bmi1, and, in combination with Oct4, reprograms mouse embryonic and adult fibroblasts into iPS cells. One- and two-factor iPS cells are similar to mouse embryonic stem cells in their global gene expression profile, epigenetic status, and in vitro and in vivo differentiation into all three germ layers, as well as teratoma formation and germline transmission in vivo. These data support that converting fibroblasts with Bmi1 or activation of the sonic hedgehog pathway to an intermediate cell type that expresses Sox2, Klf4, and N-Myc allows iPS generation via the addition of Oct4. PMID:21709693

  12. Fibroblast Cell-Based Therapy for Experimental Autoimmune Diabetes.

    PubMed

    Jalili, Reza B; Zhang, Yun; Hosseini-Tabatabaei, Azadeh; Kilani, Ruhangiz T; Khosravi Maharlooei, Mohsen; Li, Yunyuan; Salimi Elizei, Sanam; Warnock, Garth L; Ghahary, Aziz

    2016-01-01

    Type 1 diabetes (T1D) results from autoimmune destruction of insulin producing β cells of the pancreatic islets. Curbing autoimmunity at the initiation of T1D can result in recovery of residual β cells and consequently remission of diabetes. Here we report a cell-based therapy for autoimmune diabetes in non-obese diabetic (NOD) mice using dermal fibroblasts. This was achieved by a single injection of fibroblasts, expressing the immunoregulatory molecule indoleamine 2,3 dioxygenase (IDO), into peritoneal cavity of NOD mice shortly after the onset of overt hyperglycemia. Mice were then monitored for reversal of hyperglycemia and changes in inflammatory/regulatory T cell profiles. Blood glucose levels dropped into the normal range in 82% of NOD mice after receiving IDO-expressing fibroblasts while all control mice remained diabetic. We found significantly reduced islet inflammation, increased regulatory T cells, and decreased T helper 17 cells and β cell specific autoreactive CD8+ T cells following IDO cell therapy. We further showed that some of intraperitoneal injected fibroblasts migrated to local lymph nodes and expressed co-inhibitory molecules. These findings suggest that IDO fibroblasts therapy can reinstate self-tolerance and alleviate β cell autoreactivity in NOD mice, resulting in remission of autoimmune diabetes. PMID:26765526

  13. Fibroblast nemosis induces angiogenic responses of endothelial cells

    SciTech Connect

    Enzerink, Anna; Rantanen, Ville; Vaheri, Antti

    2010-03-10

    Increasing evidence points to a central link between inflammation and activation of the stroma, especially of fibroblasts therein. However, the mechanisms leading to such activation mostly remain undescribed. We have previously characterized a novel type of fibroblast activation (nemosis) where clustered fibroblasts upregulated the production of cyclooxygenase-2, secretion of prostaglandins, proteinases, chemotactic cytokines, and hepatocyte growth factor (HGF), and displayed activated nuclear factor-{kappa}B. Now we show that nemosis drives angiogenic responses of endothelial cells. In addition to HGF, nemotic fibroblasts secreted vascular endothelial growth factor (VEGF), and conditioned medium from spheroids promoted sprouting and networking of human umbilical venous endothelial cells (HUVEC). The response was partly inhibited by function-blocking antibodies against HGF and VEGF. Conditioned nemotic fibroblast medium promoted closure of HUVEC and human dermal microvascular endothelial cell monolayer wounds, by increasing the motility of the endothelial cells. Wound closure in HUVEC cells was partly inhibited by the antibodies against HGF. The stromal microenvironment regulates wound healing responses and often promotes tumorigenesis. Nemosis offers clues to the activation process of stromal fibroblasts and provides a model to study the part they play in angiogenesis-related conditions, as well as possibilities for therapeutical approaches desiring angiogenesis in tissue.

  14. PU.1 and C/EBPalpha/beta convert fibroblasts into macrophage-like cells.

    PubMed

    Feng, Ru; Desbordes, Sabrina C; Xie, Huafeng; Tillo, Ester Sanchez; Pixley, Fiona; Stanley, E Richard; Graf, Thomas

    2008-04-22

    Earlier work has shown that the transcription factor C/EBPalpha induced a transdifferentiation of committed lymphoid precursors into macrophages in a process requiring endogenous PU.1. Here we have examined the effects of PU.1 and C/EBPalpha on fibroblasts, a cell type distantly related to blood cells and akin to myoblasts, adipocytes, osteoblasts, and chondroblasts. The combination of the two factors, as well as PU.1 and C/EBPbeta, induced the up-regulation of macrophage/hematopoietic cell surface markers in a large proportion of NIH 3T3 cells. They also up-regulated these markers in mouse embryo- and adult skin-derived fibroblasts. Based on cell morphology, activation of macrophage-associated genes, and extinction of fibroblast-associated genes, cell lines containing an attenuated form of PU.1 and C/EBPalpha acquired a macrophage-like phenotype. The lines also display macrophage functions: They phagocytose small particles and bacteria, mount a partial inflammatory response, and exhibit strict CSF-1 dependence for growth. The myeloid conversion is primarily induced by PU.1, with C/EBPalpha acting as a modulator of macrophage-specific gene expression. Our data suggest that it might become possible to induce the transdifferentiation of skin-derived fibroblasts into cell types desirable for tissue regeneration.

  15. Molecularly Characterized Solvent Extracts and Saponins from Polygonum hydropiper L. Show High Anti-Angiogenic, Anti-Tumor, Brine Shrimp, and Fibroblast NIH/3T3 Cell Line Cytotoxicity.

    PubMed

    Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Subhan, Fazal; Khan, Mir Azam; Ahmad, Waqar; Ali, Gowhar; Imran, Muhammad; Ahmad, Sajjad

    2016-01-01

    Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography-Mass Spectrometry (GC-MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC-MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer. PMID:27065865

  16. Molecularly Characterized Solvent Extracts and Saponins from Polygonum hydropiper L. Show High Anti-Angiogenic, Anti-Tumor, Brine Shrimp, and Fibroblast NIH/3T3 Cell Line Cytotoxicity.

    PubMed

    Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Subhan, Fazal; Khan, Mir Azam; Ahmad, Waqar; Ali, Gowhar; Imran, Muhammad; Ahmad, Sajjad

    2016-01-01

    Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography-Mass Spectrometry (GC-MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC-MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer.

  17. Molecularly Characterized Solvent Extracts and Saponins from Polygonum hydropiper L. Show High Anti-Angiogenic, Anti-Tumor, Brine Shrimp, and Fibroblast NIH/3T3 Cell Line Cytotoxicity

    PubMed Central

    Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Subhan, Fazal; Khan, Mir Azam; Ahmad, Waqar; Ali, Gowhar; Imran, Muhammad; Ahmad, Sajjad

    2016-01-01

    Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography–Mass Spectrometry (GC–MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC–MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer. PMID:27065865

  18. Cell proliferation in vitro modulates fibroblast collagenase activity

    SciTech Connect

    Lindblad, W.J.; Flood, L.

    1986-05-01

    Collagenase enzyme activity is regulated by numerous control mechanisms which prevent excessive release and activation of this protease. A primary mechanism for regulating enzyme extracellular activity may be linked to cell division, therefore they have examined the release of collagenase by fibroblasts in vitro in response to cellular proliferation. Studies were performed using fibroblasts derived from adult rat dermis maintained in DMEM containing 10% newborn calf serum, 25 mM tricine buffer, and antibiotics. Cells between subculture 10 and 19 were used with enzyme activity determined with a /sup 14/C-labelled soluble Type I collagen substrate with and without trypsin activation. Fibroblasts, trypsinized and plated at low density secreted 8.5 fold more enzyme than those cells at confluence (975 vs. 115 dpm/..mu..g DNA). This diminution occurred gradually as the cells went from logrithmic growth towards confluence. Confluent fibroblast monolayers were scraped in a grid arrangement, stimulating the remaining cells to divide, without exposure to trypsin. Within 24-48 hr postscraping enzyme levels had increased 260-400%, accompanied by enhanced incorporation of /sup 3/H-thymidine and /sup 3/H-uridine into cell macromolecules. The burst of enzyme release began to subside 12 hr later. These results support a close relationship between fibroblast proliferation and collagenase secretion.

  19. Osteoclast-independent bone resorption by fibroblast-like cells

    PubMed Central

    Pap, Thomas; Claus, Anja; Ohtsu, Susumu; Hummel, Klaus M; Schwartz, Peter; Drynda, Susanne; Pap, Géza; Machner, Andreas; Stein, Bernhard; George, Michael; Gay, Renate E; Neumann, Wolfram; Gay, Steffen; Aicher, Wilhelm K

    2003-01-01

    To date, mesenchymal cells have only been associated with bone resorption indirectly, and it has been hypothesized that the degradation of bone is associated exclusively with specific functions of osteoclasts. Here we show, in aseptic prosthesis loosening, that aggressive fibroblasts at the bone surface actively contribute to bone resorption and that this is independent of osteoclasts. In two separate models (a severe combined immunodeficient mouse coimplantation model and a dentin pit formation assay), these cells produce signs of bone resorption that are similar to those in early osteoclastic resorption. In an animal model of aseptic prosthesis loosening (i.e. intracranially self-stimulated rats), it is shown that these fibroblasts acquire their ability to degrade bone early on in their differentiation. Upon stimulation, such fibroblasts readily release acidic components that lower the pH of their pericellular milieu. Through the use of specific inhibitors, pericellular acidification is shown to involve the action of vacuolar type ATPases. Although fibroblasts, as mesenchymal derived cells, are thought to be incapable of resorbing bone, the present study provides the first evidence to challenge this widely held belief. It is demonstrated that fibroblast-like cells, under pathological conditions, may not only enhance but also actively contribute to bone resorption. These cells should therefore be considered novel therapeutic targets in the treatment of bone destructive disorders. PMID:12723988

  20. Gene Signature of Human Oral Mucosa Fibroblasts: Comparison with Dermal Fibroblasts and Induced Pluripotent Stem Cells.

    PubMed

    Miyoshi, Keiko; Horiguchi, Taigo; Tanimura, Ayako; Hagita, Hiroko; Noma, Takafumi

    2015-01-01

    Oral mucosa is a useful material for regeneration therapy with the advantages of its accessibility and versatility regardless of age and gender. However, little is known about the molecular characteristics of oral mucosa. Here we report the first comparative profiles of the gene signatures of human oral mucosa fibroblasts (hOFs), human dermal fibroblasts (hDFs), and hOF-derived induced pluripotent stem cells (hOF-iPSCs), linking these with biological roles by functional annotation and pathway analyses. As a common feature of fibroblasts, both hOFs and hDFs expressed glycolipid metabolism-related genes at higher levels compared with hOF-iPSCs. Distinct characteristics of hOFs compared with hDFs included a high expression of glycoprotein genes, involved in signaling, extracellular matrix, membrane, and receptor proteins, besides a low expression of HOX genes, the hDFs-markers. The results of the pathway analyses indicated that tissue-reconstructive, proliferative, and signaling pathways are active, whereas senescence-related genes in p53 pathway are inactive in hOFs. Furthermore, more than half of hOF-specific genes were similarly expressed to those of hOF-iPSC genes and might be controlled by WNT signaling. Our findings demonstrated that hOFs have unique cellular characteristics in specificity and plasticity. These data may provide useful insight into application of oral fibroblasts for direct reprograming.

  1. Human lung fibroblasts express interleukin-6 in response to signaling after mast cell contact.

    PubMed

    Fitzgerald, S Matthew; Lee, Steven A; Hall, H Kenton; Chi, David S; Krishnaswamy, Guha

    2004-04-01

    Asthma is a chronic inflammatory disease of the airways. Mast cell-derived cytokines may mediate both airway inflammation and remodeling. It has also been shown that fibroblasts can be the source of proinflammatory cytokines. In the human airways, mast cell-fibroblast interactions may have pivotal effects on modulating inflammation. To study this further, we cocultured normal human lung fibroblasts (NHLF) with a human mast cell line (HMC-1) and assayed for production of interleukin (IL)-6, an important proinflammatory cytokine. When cultured together, NHLF/HMC-1 contact induced IL-6 secretion. Separation of HMC-1 and NHLF cells by a porous membrane inhibited this induction. HMC-1-derived cellular membranes caused an increase in IL-6 production in NHLF. Activation of p38 MAPK was also seen in cocultures by Western blot, whereas IL-6 production in cocultures was significantly inhibited by the p38 inhibitor SB203580. IL-6 production in cocultures was minimally inhibited by a chemical inhibitor of nuclear factor-kappaB (Bay11), indicating that nuclear factor-kappaB may have a minimal role in signaling IL-6 production in mast cell/fibroblasts cocultures. Blockade of inter-cellular adhesion molecule-1, tumor necrosis factor-RI, and surface IL-1beta with neutralizing antibodies failed to significantly decrease IL-6 production in our coculture, indicating that other receptor-ligand associations may be responsible for this activation. These novel studies reveal the importance of cell-cell interactions in the complex milieu of airway inflammation.

  2. Rho A and the Rho kinase pathway regulate fibroblast contraction: Enhanced contraction in constitutively active Rho A fibroblast cells

    SciTech Connect

    Nobe, Koji; Nobe, Hiromi; Yoshida, Hiroko; Kolodney, Michael S.; Paul, Richard J.; Honda, Kazuo

    2010-08-20

    Research highlights: {yields} Mechanisms of fibroblast cell contraction in collagen matrix. {yields} Assessed an isometric force development using 3D-reconstituted-fibroblast fiber. {yields} Constitutively active Rho A induced the over-contraction of fibroblast cells. {yields} Rho A and Rho kinase pathway has a central role in fibroblast cell contraction. -- Abstract: Fibroblast cells play a central role in the proliferation phase of wound healing processes, contributing to force development. The intracellular signaling pathways regulating this non-muscle contraction are only partially understood. To study the relations between Rho A and contractile responses, constitutively active Rho A (CA-Rho A) fibroblast cells were reconstituted into fibers and the effects of calf serum (CS) on isometric force were studied. CS-induced force in CA-Rho A fibroblast fibers was twice as large as that in wild type (NIH 3T3) fibroblast fibers. During this response, the translocation of Rho A from the cytosol to the membrane was detected by Rho A activity assays and Western blot analysis. Pre-treatment with a Rho specific inhibitor (C3-exoenzyme) suppressed translocation as well as contraction. These results indicate that Rho A activation is essential for fibroblast contraction. The Rho kinase inhibitor ( (Y27632)) inhibited both NIH 3T3 and CA-Rho A fibroblast fiber contractions. Activation of Rho A is thus directly coupled with Rho kinase activity. We conclude that the translocation of Rho A from the cytosol to the membrane and the Rho kinase pathway can regulate wound healing processes mediated by fibroblast contraction.

  3. Long-Term Quiescent Fibroblast Cells Transit into Senescence

    PubMed Central

    Marthandan, Shiva; Priebe, Steffen; Hemmerich, Peter; Klement, Karolin; Diekmann, Stephan

    2014-01-01

    Cellular senescence is described to be a consequence of telomere erosion during the replicative life span of primary human cells. Quiescence should therefore not contribute to cellular aging but rather extend lifespan. Here we tested this hypothesis and demonstrate that cultured long-term quiescent human fibroblasts transit into senescence due to similar cellular mechanisms with similar dynamics and with a similar maximum life span as proliferating controls, even under physiological oxygen conditions. Both, long-term quiescent and senescent fibroblasts almost completely fail to undergo apoptosis. The transition of long-term quiescent fibroblasts into senescence is also independent of HES1 which protects short-term quiescent cells from becoming senescent. Most significantly, DNA damage accumulates during senescence as well as during long-term quiescence at physiological oxygen levels. We suggest that telomere-independent, potentially maintenance driven gradual induction of cellular senescence during quiescence is a counterbalance to tumor development. PMID:25531649

  4. Pigment-cell-specific genes from fibroblasts are transactivated after chromosomal transfer into melanoma cells.

    PubMed Central

    Powers, T P; Shows, T B; Davidson, R L

    1994-01-01

    Human and mouse fibroblast chromosomes carrying tyrosinase or b-locus genes were introduced, by microcell hybridization, into pigmented Syrian hamster melanoma cells, and the microcell hybrids were tested for transactivation of the fibroblast tyrosinase and b-locus genes. By using species-specific PCR amplification to distinguish fibroblast and melanoma cDNAs, it was demonstrated that the previously silent fibroblast tyrosinase and b-locus genes were transactivated following chromosomal transfer into pigmented melanoma cells. However, transactivation of the mouse fibroblast tyrosinase gene was unstable in microcell hybrid subclones and possibly dependent on a second fibroblast locus that could have segregated in the subclones. This second locus was not necessary for transactivation of the fibroblast b-locus gene, thus demonstrating noncoordinate transactivation of fibroblast tyrosinase and b-locus genes. Transactivation of the fibroblast tyrosinase gene in microcell hybrids apparently is dependent on the absence of a putative fibroblast extinguisher locus for tyrosinase gene expression, which presumably is responsible for the extinction of pigmentation in hybrids between karyotypically complete fibroblasts and melanoma cells. Images PMID:8289799

  5. Pigment-cell-specific genes from fibroblasts are transactivated after chromosomal transfer into melanoma cells

    SciTech Connect

    Powers, T.P.; Davidson, R.L.; Shows, T.B.

    1994-02-01

    Human and mouse fibroblast chromosomes carrying tyrosinase or b-locus genes were introduced, by microcell hybridization, into pigmented Syrian hamster melanoma cells, and the microcell hybrids were tested for transactivation of the fibroblast tyrosinase and b-locus genes. By using species-specific PCR amplification to distinguish fibroblast and melanoma cDNAs, it was demonstrated that the previously silent fibroblast tyrosinase and b-locus genes were transactivated following chromosomal transfer into pigmented melanoma cells. However, transactivation of the mouse fibroblast tyrosinase gene was unstable in microcell hybrid subclones and possibly dependent on a second fibroblast locus that could have segregated in the subclones. This second locus was not necessary for transactivation of the fibroblast b-locus gene, thus demonstrating noncoordinate transactivation of fibroblast tyrosinase and b-locus genes. Transactivation of the fibroblast tyrosinase gene in microcell hybrids apparently is dependent on the absence of a putative fibroblast extinguisher locus for tyrosinase gene expression, which presumably is responsible for the extinction of pigmentation in hybrids between karyotypically complete fibroblasts and melanoma cells. 46 refs., 5 figs., 2 tabs.

  6. ETM study of electroporation influence on cell morphology in human malignant melanoma and human primary gingival fibroblast cells

    PubMed Central

    Skolucka, Nina; Daczewska, Malgorzata; Saczko, Jolanta; Chwilkowska, Agnieszka; Choromanska, Anna; Kotulska, Malgorzata; Kaminska, Iwona; Kulbacka, Julita

    2011-01-01

    Objective To estimate electroporation (EP) influence on malignant and normal cells. Methods Two cell lines including human malignant melanoma (Me-45) and normal human gingival fibroblast (HGFs) were used. EP parameters were the following: 250, 1 000, 1 750, 2 500 V/cm; 50 µs by 5 impulses for every case. The viability of cells after EP was estimated by MTT assay. The ultrastructural analysis was observed by transmission electron microscope (Zeiss EM 900). Results In the current study we observed the intracellular effect following EP on Me-45 and HGF cells. At the conditions applied, we did not observe any significant damage of mitochondrial activity in both cell lines treated by EP. Conversely, we showed that EP in some conditions can stimulate cells to proliferation. Some changes induced by EP were only visible in electron microscopy. In fibroblast cells we observed significant changes in lower parameters of EP (250 and 1 000 V/cm). After applying higher electric field intensities (2 500 V/cm) we detected many vacuoles, myelin-like bodies and swallowed endoplasmic reticulum. In melanoma cells such strong pathological modifications after EP were not observed, in comparison with control cells. The ultrastructure of both treated cell lines was changed according to the applied parameters of EP. Conclusions We can claim that EP conditions are cell line dependent. In terms of the intracellular morphology, human fibroblasts are more sensitive to electric field as compared with melanoma cells. Optimal conditions should be determined for each cell line. Summarizing our study, we can conclude that EP is not an invasive method for human normal and malignant cells. This technique can be safely applied in chemotherapy for delivering drugs into tumor cells. PMID:23569735

  7. Scleroderma fibroblasts show increased responsiveness to endothelial cell-derived IL-1 and bFGF.

    PubMed

    Denton, C P; Xu, S; Black, C M; Pearson, J D

    1997-03-01

    Fibroblasts cultured from lesional skin in scleroderma (systemic sclerosis) demonstrate an activated phenotype that may be important in pathogenesis. Endothelial cell-derived cytokines can modulate fibroblast properties, and endothelial cell changes occur early in scleroderma. Thus, endothelial cell and fibroblast dysfunction may be linked through the paracrine activity of soluble endothelial cell products. We have explored endothelial cell-fibroblast interactions in vitro by investigating the modulation of scleroderma and control fibroblast properties by endothelial cell-conditioned medium (EC-CM). EC-CM caused a concentration-dependent stimulation of fibroblast DNA and protein synthesis and upregulation of cell surface ICAM-1 expression. Scleroderma fibroblasts showed consistently greater responses than control cells. Medium conditioned by mechanically wounded endothelial cells had a greater effect than that from resting endothelial cells. Pre-incubation of EC-CM with anti-bFGF significantly reduced the promotion of fibroblast thymidine incorporation but did not affect endothelial cell-induced leucine incorporation. Conversely, anti-IL-1 antibodies abrogated EC-CM-induced leucine incorporation and ICAM-1 expression but did not diminish thymidine incorporation. Recombinant bFGF or IL-1 modulated fibroblast properties similarly. These data demonstrate that endothelial cell-derived IL-1 and bFGF modulate fibroblast properties independently and that lesional scleroderma strains are more responsive than control fibroblasts to endothelial cell-induced modulation, which supports the hypothesis that altered endothelial cell-fibroblast communication may be involved in the pathogenesis of scleroderma.

  8. Microinjection of fos-specific antibodies blocks DNA synthesis in fibroblast cells

    SciTech Connect

    Riabowol, K.T.; Vosatka, R.J.; Ziff, E.B.; Lamb, N.J.; Feramisco, J.R.

    1988-04-01

    Transcription of the protooncogene c-fos is increased >10-fold within minutes of treatment of fibroblasts with serum or purified growth factors. Recent experiments with mouse 3T3 cell lines containing inducible fos antisense RNA constructs have shown that induced fos antisense RNA transcripts cause either a marked inhibition of growth in continuously proliferating cells or, conversely, a minimal effect except during the transition from a quiescent (G/sub o/) state into the cell cycle. Since intracellular production of large amounts of antisense RNA does not completely block gene expression, the authors microinjected affinity-purified antibodies raised against fos to determine whether and when during the cell cycle c-fos expression was required for cell proliferation. Using this independent method, they found that microinjected fos antibodies efficiently blocked serum-stimulated DNA synthesis when injected up to 6 to 8 h after serum stimulation of quiescent REF-52 fibroblasts. Furthermore, when fos antibodies were injected into asynchronously growing cells, a consistently greater number of cells was prevented from synthesizing DNA than when cells were injected with nonspecific immunoglobulins. Thus, whereas the activity of c-fos may be necessary for transition of fibroblasts from G/sub o/ to G/sub 1/ of the cell cycle, its function is also required during the early G/sub 1/ portion of the cell cycle to allow subsequent DNA synthesis.

  9. Conversion of monkey fibroblasts to transplantable telencephalic neuroepithelial stem cells.

    PubMed

    Ai, Zongyong; Xiang, Zheng; Li, Yuemin; Liu, Guoku; Wang, Hong; Zheng, Yun; Qiu, Xiaoyan; Zhao, Shumei; Zhu, Xiaoqing; Li, Yanhua; Ji, Weizhi; Li, Tianqing

    2016-01-01

    Non-human primates provide optimal models for the development of stem cell therapies. Although somatic cells have been converted into neural stem/progenitor cells, it is unclear whether telencephalic neuroepithelial stem cells (NESCs) with stable properties can be generated from fibroblasts in primate. Here we report that a combination of transcription factors (Oct4, Sox2, Klf4) with a new culture medium induces rhesus monkey fibroblasts into NESCs, which can develop into miniature neural tube (NT)-like structures at a cell level. Furthermore, single induced NESCs (iNESCs) can generate later-stage 3D-NTs after grown on matrigel in suspension culture. iNESCs express NT cell markers, have a unique gene expression pattern biasing towards telencephalic patterning, and give rise to cortical neurons. Via transplantation, single iNESCs can extensively survive, regenerate myelinated neuron axons and synapse structures in adult monkey striatum and cortex, and differentiate into cortical neurons. Successful transplantation is closely associated with graft regions and grafted cell identities. The ability to generate defined and transplantable iNESCs from primate fibroblasts under a defined condition with predictable fate choices will facilitate disease modeling and cell therapy.

  10. The growth regulatory fibroblast IK channel is the prominent electrophysiological feature of rat prostatic cancer cells.

    PubMed

    Rane, S G

    2000-03-16

    Physiological effectors for mitogenic cell growth control remain to be determined for mammalian tumor cells, particularly those derived from prostatic tissue. One such effector for mitogenic Ras/MAPK signaling in fibroblasts is an intermediate-conductance, calcium-activated potassium channel (FIK). In this study patch-clamp electrophysiology was used to show that both AT2.1 and MatLyLu rat prostate cancer cell lines express high levels of a current identified as FIK, based on the following criteria: activation by elevation of intracellular calcium, voltage independence, potassium selectivity, and block by charybdotoxin (ChTX) and the Stichodactyla helianthus potassium channel neurotoxin (StK). FIK current densities in AT2.1 and MatLyLu cells were comparable to the high levels seen in fibroblasts transfected with oncogenic Ras or Raf, suggesting hyperactivity of the Ras/MAPK pathway in prostatic cancer cells. Voltage-gated sodium current was present in most MatLyLu cells but absent from AT2.1 cells, and all AT2.1 cells had voltage-gated potassium currents. Thus, FIK is the main electrophysiological feature of rat prostatic cancer cells as it is for mitogenically active fibroblasts, suggesting it may play a similar growth regulatory role in both. PMID:10708575

  11. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    NASA Astrophysics Data System (ADS)

    Pennisi, C. P.; Sevcencu, C.; Dolatshahi-Pirouz, A.; Foss, M.; Lundsgaard Hansen, J.; Nylandsted Larsen, A.; Zachar, V.; Besenbacher, F.; Yoshida, K.

    2009-09-01

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  12. Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent

    PubMed Central

    1994-01-01

    Directional cellular locomotion is thought to involve localized intracellular calcium changes and the lateral transport of cell surface molecules. We have examined the roles of both calcium and cell surface glycoprotein redistribution in the directional migration of two murine fibroblastic cell lines, NIH 3T3 and SV101. These cell types exhibit persistent, cathode directed motility when exposed to direct current electric fields. Using time lapse phase contrast microscopy and image analysis, we have determined that electric field-directed locomotion in each cell type is a calcium independent process. Both exhibit cathode directed motility in the absence of extracellular calcium, and electric fields cause no detectable elevations or gradients of cytosolic free calcium. We find evidence suggesting that galvanotaxis in these cells involves the lateral redistribution of plasma membrane glycoproteins. Electric fields cause the lateral migration of plasma membrane concanavalin A receptors toward the cathode in both NIH 3T3 and SV101 fibroblasts. Exposure of directionally migrating cells to Con A inhibits the normal change of cell direction following a reversal of electric field polarity. Additionally, when cells are plated on Con A- coated substrata so that Con A receptors mediate cell-substratum adhesion, cathode-directed locomotion and a cathodal accumulation of Con A receptors are observed. Immunofluorescent labeling of the fibronectin receptor in NIH 3T3 fibroblasts suggests the recruitment of integrins from large clusters to form a more diffuse distribution toward the cathode in field-treated cells. Our results indicate that the mechanism of electric field directed locomotion in NIH 3T3 and SV101 fibroblasts involves the lateral redistribution of plasma membrane glycoproteins involved in cell-substratum adhesion. PMID:7929557

  13. Comparison of polypeptides from cultured human fibroblasts and sarcoma cells.

    PubMed

    Vartio, T; Kaelin, H; Vaheri, A

    1978-10-23

    The proteins in cell layers of cultured normal diploid human skin (ES, ER) and lung (WI-38) fibroblasts were compared to those of SV40-transformed human fibroblasts (WI-38/VA-13), human rhabdomyosarcoma (RD) and fibrosarcoma (HT-1080) cells using metabolic amino acid and sugar labeling and surface labeling with tritiated sodium borohydride after oxidation with galactose oxidase. The labeled proteins were analysed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography (fluorography). A transformation-associated decrease in the pericellular glycoprotein fibronectin (subunit molecular weight, 220 000) and in the synthesis of a set of polypeptides in the 130 000--180 000 dalton region was seen. Synthesis of a glycosylated 160 000 dalton polypeptide was markedly reduced. In transformed cells distinct increases of several specific polypeptides was detected in both [35S]methionine and [3H] mannose incorporation experiments but not using the surface labeling method.

  14. Rat embryo fibroblast cells expressing human papillomavirus 1a genes exhibit altered growth properties and tumorigenicity.

    PubMed Central

    Green, M; Brackmann, K H; Loewenstein, P M

    1986-01-01

    Human papillomavirus 1a (HPV1a) induces benign tumors (papillomas or warts) in humans under natural conditions of infection but has not been found to replicate significantly in cell culture or in experimental animals. To establish model systems to study the oncogenic properties and expression of HPV genes, we established cell lines by cotransfecting the 3Y1 rat fibroblast cell line with HPV1a DNA constructs containing an intact early gene region and the Tn5 neomycin resistance gene. Most cell lines selected for expression of the neomycin resistance gene by treatment with the antibiotic G-418 contained viral DNA in a high-molecular-weight form. The growth characteristics of several cell lines containing high copy numbers of HPV1a DNA were studied further. They were shown to differ from the parental cell line and from G-418-resistant cell lines that did not incorporate viral DNA in the following properties: morphological alteration, increased cell density at confluence, growth in 0.5% serum, efficient anchorage-independent growth in soft agar, and rapid formation of tumors in nude mice. Those cell lines that possessed altered growth properties and tumorigenicity were found to express abundant quantities of polyadenylated virus-specific RNA species in the cytoplasm. Images PMID:3023676

  15. Characterization of Mesenchymal Stem Cells from Human Vocal Fold Fibroblasts

    PubMed Central

    Hanson, Summer; Kim, Jaehyup; Quinchia Johnson, Beatriz H.; Bradley, Bridget; Breunig, Melissa; Hematti, Peiman; Thibeault, Susan L.

    2009-01-01

    Objective/Hypothesis Mesenchymal stem cells (MSCs) originally isolated from bone marrow, are fibroblast-looking cells that are now assumed to be present in the stromal component of many tissues. MSCs are characterized by a certain set of criteria including their growth culture characteristics, a combination of cell surface markers, and the ability to differentiate along multiple mesenchymal tissue lineages. We hypothesized that human vocal fold fibroblasts (hVFF) isolated from the lamina propria meet the criteria established to define MSCs and are functionally similar to MSCs derived from BM and adipose tissue. Study Design In vitro study Methods HVFF were previously derived from human vocal fold tissues. MSCs were derived from adipose tissue (AT), and BM of healthy donors, based on their attachment to culture dishes and their morphology, and expanded in culture. Cells were analyzed for standard cell surface markers identified on BM-derived MSCs as well as the ability to differentiate into cells of mesenchymal lineage, i.e. fat, bone and cartilage. We investigated the immunophenotype of these cells before and after interferon-γ (INF- γ) stimulation. Results HVFF displayed cell surface markers and multipotent differentiation capacity characteristic of MSCs. Furthermore, these cells exhibited similar patterns of expression of HLA and co-stimulatory molecules, after stimulation with INF- γ compared to MSCs derived from BM and AT. Conclusions Based on our findings hVFF derived from lamina propria have the same cell surface markers, immunophenotypic characteristics, and differentiation potential as BM- and AT-derived MSCs. We propose VF fibroblasts are MSCs resident in the vocal fold lamina propria. PMID:20131365

  16. Endocytosis, the sorting problem and cell locomotion in fibroblasts.

    PubMed

    Bretscher, M S

    1982-01-01

    Fibroblasts endocytose lipid plus a subset of plasma membrane proteins over their entire surface and reinsert this into the plasma membrane at the cell's leading edge. This process is used to extend the fibroblast forwards. This circulation causes a flow of these endocytosed molecules over the cell's surface. Molecules, such as proteins, sitting in this flow can distribute themselves randomly by Brownian motion, but large objects (or small tethered ones) cannot. These large objects therefore cap. A mechanism is presented whereby this process could be used for locomotion using many weak interactions with the substrate. In addition it is suggested that the observed selectivity of coated pits may be sufficient to sort out proteins during transfer of membrane from one organelle to another so that the specific characters of the parent membranes are maintained.

  17. Different reactivity of primary fibroblasts and endothelial cells towards crystalline silica: A surface radical matter.

    PubMed

    Pozzolini, Marina; Vergani, Laura; Ragazzoni, Milena; Delpiano, Livia; Grasselli, Elena; Voci, Adriana; Giovine, Marco; Scarfì, Sonia

    2016-06-15

    Quartz is a well-known occupational fibrogenic agent able to cause fibrosis and other severe pulmonary diseases such as silicosis and lung cancer. The silicotic pathology owes its severity to the structural and chemo-physical properties of the particles such as shape, size and abundance of surface radicals. In earlier studies, we reported that significant amounts of surface radicals can be generated on crystalline silica by chemical aggression with ascorbic acid (AA), a vitamin naturally abundant in the lung surfactant, and this reaction led to enhanced cytotoxicity and production of inflammatory mediators in a macrophage cell line. However in the lung, other cells acting in the development of silicosis, like fibroblasts and endothelial cells, can come to direct contact with inhaled quartz. We investigated the cytotoxic/pro-inflammatory effects of AA-treated quartz microcrystals (QA) in human primary fibroblasts and endothelial cells as compared to unmodified microcrystals (Q). Our results show that, in fibroblasts, the abundance of surface radicals on quartz microcrystals (Q vs QA) significantly enhanced cell proliferation (with or without co-culture with macrophages), reactive oxygen species (ROS) production, NF-κB nuclear translocation, smooth muscle actin, fibronectin, Bcl-2 and tissue inhibitor of metalloproteinase-1 expression and collagen production. Contrariwise, endothelial cells reacted to the presence of quartz microcrystals independently from the abundance of surface radicals showing similar levels of cytotoxicity, ROS production, cell migration, MCP-1, ICAM-I and fibronectin gene expression when challenged with Q or QA. In conclusion, our in vitro experimental model demonstrates an important and quite unexplored direct contribute of silica surface radicals to fibroblast proliferation and fibrogenic responses. PMID:27381660

  18. Genomic instability of gold nanoparticle treated human lung fibroblast cells.

    PubMed

    Li, Jasmine J; Lo, Soo-Ling; Ng, Cheng-Teng; Gurung, Resham Lal; Hartono, Deny; Hande, Manoor Prakash; Ong, Choon-Nam; Bay, Boon-Huat; Yung, Lin-Yue Lanry

    2011-08-01

    Gold nanoparticles (AuNPs) are one of the most versatile and widely researched materials for novel biomedical applications. However, the current knowledge in their toxicological profile is still incomplete and many on-going investigations aim to understand the potential adverse effects in human body. Here, we employed two dimensional gel electrophoresis to perform a comparative proteomic analysis of AuNP treated MRC-5 lung fibroblast cells. In our findings, we identified 16 proteins that were differentially expressed in MRC-5 lung fibroblasts following exposure to AuNPs. Their expression levels were also verified by western blotting and real time RT-PCR analysis. Of interest was the difference in the oxidative stress related proteins (NADH ubiquinone oxidoreductase (NDUFS1), protein disulfide isomerase associate 3 (PDIA3), heterogeneous nuclear ribonucleus protein C1/C2 (hnRNP C1/C2) and thioredoxin-like protein 1 (TXNL1)) as well as proteins associated with cell cycle regulation, cytoskeleton and DNA repair (heterogeneous nuclear ribonucleus protein C1/C2 (hnRNP C1/C2) and Secernin-1 (SCN1)). This finding is consistent with the genotoxicity observed in the AuNP treated lung fibroblasts. These results suggest that AuNP treatment can induce oxidative stress-mediated genomic instability.

  19. Intracellular collagen fibrils: evidence of an intracellular source from experiments with tendon fibroblasts and fibroblastic tumour cells.

    PubMed Central

    Michna, H

    1988-01-01

    This study was designed to substantiate one or both of the two hypotheses for the explanation of intracellular collagen fibrils in collagen-producing cells. The more obvious is the phagocytosis of extracellular collagen fibrils by the cell and the other is a form of autophagocytosis of newly synthesised collagenous products. Information was collected on fibroblasts from murine tendons after exercise and simultaneously stimulating collagen synthesis by treatment with an anabolic steroid hormone. Moreover, in vivo and in vitro fibroblastic tumour cells which demonstrate enhanced protein synthesis were also treated with the anabolic steroid. The findings of intracellular collagen fibrils in tendon fibroblasts and the sarcoma cells after experimentally stimulating collagen synthesis are discussed in the light of the hypothesis that the findings may represent steps of autophagocytosis of newly synthesised collagenous products in the absence of a control mechanism to remove collagenous products which cannot be secreted. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:3225213

  20. Fibroblast growth factor-10 is a mitogen for urothelial cells

    SciTech Connect

    Bagai, Shelly; Rubio, Eric; Cheng, Jang-Fang; Sweet, Robert; Thomas, Regi; Fuchs, Elaine; Grady, Richard; Mitchell, Michael; Bassuk, James A.

    2002-02-01

    Fibroblast Growth Factor (FGF)-10 plays an important role in regulating growth, differentiation, and repair of the urothelium. This process occurs through a paracrine cascade originating in the mesenchyme (lamina propria) and targeting the epithelium (urothelium). In situ hybridization analysis demonstrated that (i) fibroblasts of the human lamina propria were the cell type that synthesized FGF-10 RNA and (ii) the FGF-10 gene is located at the 5p12-p13 locus of chromosome 5. Recombinant (r) preparations of human FGF-10 were found to induce proliferation of human urothelial cells in vitro and of transitional epithelium of wild-type and FGF7-null mice in vivo. Mechanistic studies with human cells indicated two modes of FGF-10 action: (i) translocation of rFGF-10 into urothelial cell nuclei and (ii) a signaling cascade that begins with the heparin-dependent phosphorylation of tyrosine residues of surface transmembrane receptors. The normal urothelial phenotype, that of quiescence, is proposed to be typified by negligible levels of FGF-10. During proliferative phases, levels of FGF-10 rise at the urothelial cell surface and/or within urothelial cell nuclei. An understanding of how FGF-10 works in conjunction with these other processes will lead to better management of many diseases of the bladder and urinary tract.

  1. Characterization of epicardial-derived cardiac interstitial cells: differentiation and mobilization of heart fibroblast progenitors.

    PubMed

    Ruiz-Villalba, Adrián; Ziogas, Algirdas; Ehrbar, Martin; Pérez-Pomares, José M

    2013-01-01

    The non-muscular cells that populate the space found between cardiomyocyte fibers are known as 'cardiac interstitial cells' (CICs). CICs are heterogeneous in nature and include different cardiac progenitor/stem cells, cardiac fibroblasts and other cell types. Upon heart damage CICs soon respond by initiating a reparative response that transforms with time into extensive fibrosis and heart failure. Despite the biomedical relevance of CICs, controversy remains on the ontogenetic relationship existing between the different cell kinds homing at the cardiac interstitium, as well as on the molecular signals that regulate their differentiation, maturation, mutual interaction and role in adult cardiac homeostasis and disease. Our work focuses on the analysis of epicardial-derived cells, the first cell type that colonizes the cardiac interstitium. We present here a characterization and an experimental analysis of the differentiation potential and mobilization properties of a new cell line derived from mouse embryonic epicardium (EPIC). Our results indicate that these cells express some markers associated with cardiovascular stemness and retain part of the multipotent properties of embryonic epicardial derivatives, spontaneously differentiating into smooth muscle, and fibroblast/myofibroblast-like cells. Epicardium-derived cells are also shown to initiate a characteristic response to different growth factors, to display a characteristic proteolytic expression profile and to degrade biological matrices in 3D in vitro assays. Taken together, these data indicate that EPICs are relevant to the analysis of epicardial-derived CICs, and are a god model for the research on cardiac fibroblasts and the role these cells play in ventricular remodeling in both ischemic or non/ischemic myocardial disease. PMID:23349729

  2. Derivation of human embryonic stem cell lines, towards clinical quality.

    PubMed

    Hovatta, Outi

    2006-01-01

    Human embryonic stem (hES) cells offer an excellent source of cells for transplantation in the treatment of severe diseases. To be clinically safe, the lines have to be derived using strict quality criteria and good manufacturing practice. Animal proteins are immunogenic and may contain microbes, and they should not be used in establishing or propagating hES cells. Derivation systems have been improved towards clinical quality by establishing all 25 hES cell lines using human skin fibroblasts as feeder cells instead of mouse fibroblasts. A further 21 cell lines have been established using synthetic serum instead of fetal calf serum in the medium. In the five latest derivations, the inner cell mass was isolated mechanically instead of by immunosurgery (animal antibodies). Feeder-free derivation would be optimal, but it is not yet considered safe. Clinical-quality lines can be derived by establishing the skin fibroblast feeders in the good manufacturing practice laboratory with human serum in the medium, and by establishing the hES cells on such feeders. In this process, a serum replacement that contains only human protein can be used, the inner cell mass has to be isolated mechanically, and the colonies have to be split mechanically for passaging. Somatic cell nuclear transfer would help to overcome rejection of transplanted cells. PMID:17147930

  3. Stretching Fibroblasts Remodels Fibronectin and Alters Cancer Cell Migration

    NASA Astrophysics Data System (ADS)

    Ao, Mingfang; Brewer, Bryson M.; Yang, Lijie; Franco Coronel, Omar E.; Hayward, Simon W.; Webb, Donna J.; Li, Deyu

    2015-02-01

    Most investigations of cancer-stroma interactions have focused on biochemical signaling effects, with much less attention being paid to biophysical factors. In this study, we investigated the role of mechanical stimuli on human prostatic fibroblasts using a microfluidic platform that was adapted for our experiments and further developed for both repeatable performance among multiple assays and for compatibility with high-resolution confocal microscopy. Results show that mechanical stretching of normal tissue-associated fibroblasts (NAFs) alters the structure of secreted fibronectin. Specifically, unstretched NAFs deposit and assemble fibronectin in a random, mesh-like arrangement, while stretched NAFs produce matrix with a more organized, linearly aligned structure. Moreover, the stretched NAFs exhibited an enhanced capability for directing co-cultured cancer cell migration in a persistent manner. Furthermore, we show that stretching NAFs triggers complex biochemical signaling events through the observation of increased expression of platelet derived growth factor receptor α (PDGFRα). A comparison of these behaviors with those of cancer-associated fibroblasts (CAFs) indicates that the observed phenotypes of stretched NAFs are similar to those associated with CAFs, suggesting that mechanical stress is a critical factor in NAF activation and CAF genesis.

  4. Lactic Acid Bacteria Convert Human Fibroblasts to Multipotent Cells

    PubMed Central

    Ohta, Kunimasa; Kawano, Rie; Ito, Naofumi

    2012-01-01

    The human gastrointestinal tract is colonized by a vast community of symbionts and commensals. Lactic acid bacteria (LAB) form a group of related, low-GC-content, gram-positive bacteria that are considered to offer a number of probiotic benefits to general health. While the role of LAB in gastrointestinal microecology has been the subject of extensive study, little is known about how commensal prokaryotic organisms directly influence eukaryotic cells. Here, we demonstrate the generation of multipotential cells from adult human dermal fibroblast cells by incorporating LAB. LAB-incorporated cell clusters are similar to embryoid bodies derived from embryonic stem cells and can differentiate into endodermal, mesodermal, and ectodermal cells in vivo and in vitro. LAB-incorporated cell clusters express a set of genes associated with multipotency, and microarray analysis indicates a remarkable increase of NANOG, a multipotency marker, and a notable decrease in HOX gene expression in LAB-incorporated cells. During the cell culture, the LAB-incorporated cell clusters stop cell division and start to express early senescence markers without cell death. Thus, LAB-incorporated cell clusters have potentially wide-ranging implications for cell generation, reprogramming, and cell-based therapy. PMID:23300571

  5. The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation

    PubMed Central

    Newman, Andrew C.; Nakatsu, Martin N.; Chou, Wayne; Gershon, Paul D.; Hughes, Christopher C. W.

    2011-01-01

    A role for fibroblasts in physiological and pathological angiogenesis is now well recognized; however, the precise mechanisms underlying their action have not been determined. Using an in vitro angiogenesis model in combination with a candidate gene approach, column chromatography, and mass spectrometry, we identify two classes of fibroblast-derived factors—one that supports vessel sprouting but not lumen formation, and one that promotes lumen formation. In the absence of fibroblasts a combination of angiopoietin-1, angiogenin, hepatocyte growth factor, transforming growth factor-α, and tumor necrosis factor drives robust endothelial cell (EC) sprouting; however, lumens fail to form. Subsequent addition of fibroblast-conditioned medium restores lumenogenesis. Using small interfering RNA–mediated knockdown, we show that five genes expressed in fibroblasts—collagen I, procollagen C endopeptidase enhancer 1, secreted protein acidic and rich in cysteine, transforming growth factor-β–induced protein ig-h3, and insulin growth factor–binding protein 7—are necessary for lumen formation. Moreover, lumen formation can be rescued by addition of purified protein to knockdown cultures. Finally, using rheology, we demonstrate that the presence of these matricellular proteins results in significantly stiffer gels, which correlates with enhanced lumen formation. These findings highlight the critical role that fibroblast-derived extracellular matrix components play in EC lumen formation and provide potential insight into the role of fibroblasts in the tumor microenvironment. PMID:21865599

  6. Form and Function in Cell Motility: From Fibroblasts to Keratocytes

    PubMed Central

    Herant, Marc; Dembo, Micah

    2010-01-01

    Abstract It is plain enough that a horse is made for running, but similar statements about motile cells are not so obvious. Here the basis for structure-function relations in cell motility is explored by application of a new computational technique that allows realistic three-dimensional simulations of cells migrating on flat substrata. With this approach, some cyber cells spontaneously display the classic irregular protrusion cycles and handmirror morphology of a crawling fibroblast, and others the steady gliding motility and crescent morphology of a fish keratocyte. The keratocyte motif is caused by optimal recycling of the cytoskeleton from the back to the front so that more of the periphery can be devoted to protrusion. These calculations are a step toward bridging the gap between the integrated mechanics and biophysics of whole cells and the microscopic molecular biology of cytoskeletal components. PMID:20409459

  7. CLO: The cell line ontology

    PubMed Central

    2014-01-01

    Background Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions. Construction and content Collaboration among the CLO, CL, and OBI has established consensus definitions of cell line-specific terms such as ‘cell line’, ‘cell line cell’, ‘cell line culturing’, and ‘mortal’ vs. ‘immortal cell line cell’. A cell line is a genetically stable cultured cell population that contains individual cell line cells. The hierarchical structure of the CLO is built based on the hierarchy of the in vivo cell types defined in CL and tissue types (from which cell line cells are derived) defined in the UBERON cross-species anatomy ontology. The new hierarchical structure makes it easier to browse, query, and perform automated classification. We have recently added classes representing more than 2,000 cell line cells from the RIKEN BRC Cell Bank to CLO. Overall, the CLO now contains ~38,000 classes of specific cell line cells derived from over 200 in vivo cell types from various organisms. Utility and discussion The CLO has been applied to different biomedical research studies. Example case studies include annotation and analysis of EBI ArrayExpress data, bioassays, and host-vaccine/pathogen interaction. CLO’s utility goes beyond a catalogue of cell line types. The alignment of the CLO with related ontologies combined with the use of ontological reasoners will support sophisticated inferencing to advance translational informatics development. PMID:25852852

  8. Human pancreatic beta-like cells converted from fibroblasts

    PubMed Central

    Zhu, Saiyong; Russ, Holger A.; Wang, Xiaojing; Zhang, Mingliang; Ma, Tianhua; Xu, Tao; Tang, Shibing; Hebrok, Matthias; Ding, Sheng

    2016-01-01

    Pancreatic beta cells are of great interest for biomedical research and regenerative medicine. Here we show the conversion of human fibroblasts towards an endodermal cell fate by employing non-integrative episomal reprogramming factors in combination with specific growth factors and chemical compounds. On initial culture, converted definitive endodermal progenitor cells (cDE cells) are specified into posterior foregut-like progenitor cells (cPF cells). The cPF cells and their derivatives, pancreatic endodermal progenitor cells (cPE cells), can be greatly expanded. A screening approach identified chemical compounds that promote the differentiation and maturation of cPE cells into functional pancreatic beta-like cells (cPB cells) in vitro. Transplanted cPB cells exhibit glucose-stimulated insulin secretion in vivo and protect mice from chemically induced diabetes. In summary, our study has important implications for future strategies aimed at generating high numbers of functional beta cells, which may help restoring normoglycemia in patients suffering from diabetes. PMID:26733021

  9. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    SciTech Connect

    Jozaki, K.; Kuriu, A.; Hirota, S.; Onoue, H.; Ebi, Y.; Adachi, S.; Ma, J.Y.; Tarui, S.; Kitamura, Y. )

    1991-03-01

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of (3H)thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3) and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of (3H)thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity.

  10. Effect of microemulsions on cell viability of human dermal fibroblasts

    NASA Astrophysics Data System (ADS)

    Li, Juyi; Mironava, Tatsiana; Simon, Marcia; Rafailovich, Miriam; Garti, Nissim

    Microemulsions are optically clear, thermostable and isotropic mixture consisting of water, oil and surfactants. Their advantages of ease preparation, spontaneous formation, long-term stability and enhanced solubility of bioactive materials make them great potentials as vehicles in food and pharmaceutical applications. In this study, comparative in vitro cytotoxicity tests were performed to select a best formulation of microemulsion with the least toxicity for human dermal fibroblasts. Three different kinds of oils and six different kinds of surfactants were used to form microemulsions by different ratios. The effect of oil type and surfactant type as well as their proportions on cell proliferation and viability were tested.

  11. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2.

    PubMed

    Miyahara, Daichi; Oishi, Isao; Makino, Ryuichi; Kurumisawa, Nozomi; Nakaya, Ryuma; Ono, Tamao; Kagami, Hiroshi; Tagami, Takahiro

    2016-04-22

    An in vitro culture system of chicken primordial germ cells (PGCs) has been recently developed, but the growth factor involved in the proliferation of PGCs is largely unknown. In the present study, we investigated the growth effects of chicken stem cell factor (chSCF) on the in vitro proliferation of chicken PGCs. We established two feeder cell lines (buffalo rat liver cells; BRL cells) that stably express the putative secreted form of chSCF (chSCF1-BRL) and membrane bound form of chSCF (chSCF2-BRL). Cultured PGC lines were incubated on chSCF1 or chSCF2-BRL feeder cells with fibroblast growth factor 2 (FGF2), and growth effects of each chSCF isoform were investigated. The in vitro proliferation rate of the PGCs cultured on chSCF2-BRL at 20 days of culture was more than threefold higher than those cultured on chSCF1-BRL cells and more than fivefold higher than those cultured on normal BRL cells. Thus, use of chSCF2-BRL feeder layer was effective for in vitro proliferation of chicken PGCs. However, the acceleration of PGC proliferation on chSCF2-BRL was not observed without FGF2, suggesting that chSCF2 would act as a proliferation co-factor of FGF2. We transferred the PGCs cultured on chSCF2-BRL cells to recipient embryos, generated germline chimeric chickens and assessed the germline competency of cultured PGCs by progeny test. Donor-derived progenies were obtained, and the frequency of germline transmission was 3.39%. The results of this study demonstrate that chSCF2 induces hyperproliferation of chicken PGCs retaining germline competency in vitro in cooperation with FGF2. PMID:26727404

  12. Differentiated fibroblastic progenies of human embryonic stem cells for toxicology screening.

    PubMed

    Cao, Tong; Lu, Kai; Fu, Xin; Heng, Boon Chin

    2008-03-01

    Immortalized cell lines and live animal models are commonly used for cytotoxicity screening of biomedical devices and materials. However, these assays poorly reflect human physiology and have numerous other disadvantages. An alternative may be to utilize differentiated fibroblastic progenies of human embryonic stem cells (hESC) for in vitro toxicology screening. These were generated through random spontaneous differentiation within standard culture media, over several passages. The cytotoxic response of the differentiated hESC fibroblastic progenies (pH9) to mitomycin C was observed to be not only very similar to the L929 cell line, but was, in fact, more sensitive. At an initial seeding density of 1000 cells/well (0.33 cm(2)), the proliferation index was observed to decrease 19.0% from 1.638 to 1.326 for the L929 cell line, as the dosage of mitomycin C was gradually increased from 0 to 1.54 microg/mL. By contrast, pH9 displayed a corresponding 40.5% drop in proliferation index from 3.713 to 2.209. At a higher seeding density of 2000 cells/well (0.33 cm(2)), the proliferation index was observed to decrease 27.0% from 1.213 to 0.885 for the L929 cell line, whereas pH9 displayed a corresponding 43.7% drop in proliferation index from 3.711 to 2.091. Hence, it is apparent that pH9 exhibited a more sensitive dose-response to mitomycin C compared to L929, which could be advantageous for cytotoxicity screening assays. Additionally, this study also demonstrated that a highly purified and well-defined phenotypic population of differentiated hESC progenies is not necessary for high reproducibility and accuracy in cytotoxic response. PMID:18241121

  13. Comparison of actin and cell surface dynamics in motile fibroblasts

    PubMed Central

    1992-01-01

    We have investigated the dynamic behavior of actin in fibroblast lamellipodia using photoactivation of fluorescence. Activated regions of caged resorufin (CR)-labeled actin in lamellipodia of IMR 90 and MC7 3T3 fibroblasts were observed to move centripetally over time. Thus in these cells, actin filaments move centripetally relative to the substrate. Rates were characteristic for each cell type; 0.66 +/- 0.27 microns/min in IMR 90 and 0.36 +/- 0.16 microns/min in MC7 3T3 cells. In neither case was there any correlation between the rate of actin movement and the rate of lamellipodial protrusion. The half-life of the activated CR-actin filaments was approximately 1 min in IMR 90 lamellipodia, and approximately 3 min in MC7 3T3 lamellipodia. Thus continuous filament turnover accompanies centripetal movement. In both cell types, the length of time required for a section of the actin meshwork to traverse the lamellipodium was several times longer than the filament half-life. The dynamic behavior of the dorsal surface of the cell was also observed by tracking lectin-coated beads on the surface and phase-dense features within lamellipodia of MC7 3T3 cells. The movement of these dorsal features occurred at rates approximately three times faster than the rate of movement of the underlying bulk actin cytoskeleton, even when measured in the same individual cells. Thus the transport of these dorsal features must occur by some mechanism other than simple attachment to the moving bulk actin cytoskeleton. PMID:1400580

  14. In vitro cytotoxicity of hydrothermally synthesized ZnO nanoparticles on human periodontal ligament fibroblast and mouse dermal fibroblast cells.

    PubMed

    Seker, Sükran; Elçin, A Eser; Yumak, Tuğrul; Sınağ, Ali; Elçin, Y Murat

    2014-12-01

    The use of metal oxide nanoparticles (NPs) in industrial applications has been expanding, as a consequence, risk of human exposure increases. In this study, the potential toxic effects of zinc oxide (ZnO) NPs on human periodontal ligament fibroblast cells (hPDLFs) and on mouse dermal fibroblast cells (mDFs) were evaluated in vitro. We synthesized ZnO NPs (particle size; 7-8 nm) by the hydrothermal method. Characterization assays were performed with atomic force microscopy, Braun-Emmet-Teller analysis, and dynamic light scattering. The hPDLFs and mDFs were incubated with the NPs with concentrations of 0.1, 1, 10, 50 and 100 μg/mL for 6, 24 and 48h. Under the control and NP-exposed conditions, we have made different types of measurements for cell viability and morphology, membrane leakage and intracellular reactive oxygen species generation. Also, we monitored cell responses to ZnO NPs using an impedance measurement system in real-time. While the morphological changes were visualized using scanning electron microscopy, the subcellular localization of NPs was investigated by transmission electron microscopy. Results indicated that ZnO NPs have significant toxic effects on both of the primary fibroblastic cells at concentrations of ∼50-100 μg/mL. The cytotoxicity of ZnO NPs on fibroblasts depended on concentration and duration of exposure.

  15. Glial cell line-derived neurotrophic factor in combination with insulin-like growth factor 1 and basic fibroblast growth factor promote in vitro culture of goat spermatogonial stem cells.

    PubMed

    Bahadorani, M; Hosseini, S M; Abedi, P; Abbasi, H; Nasr-Esfahani, M H

    2015-01-01

    Growth factors are increasingly considered as important regulators of spermatogonial stem cells (SSCs). This study investigated the effects of various growth factors (GDNF, IGF1, bFGF, EGF and GFRalpha-1) on purification and colonization of undifferentiated goat SSCs under in vitro and in vivo conditions. Irrespective of the culture condition used, the first signs of developing colonies were observed from day 4 of culture onwards. The number of colonies developed in GDNF + IGF1 + bFGF culture condition was significantly higher than the other groups (p < 0.05). In contrast, the size of colonies developed in GDNF + EGF + LIF culture condition was significantly higher than the other groups (p < 0.05). Immunocytochemical stationing for specific biomarkers of somatic cells (vimentin, alpha-inhibin and α-SMA) and spermatogonial cells (PLZF, THY 1, VASA, alpha-1 integrin, bet-1 integrin and DBA) revealed that both cell types existed in developing colonies, irrespective of the culture condition used. Even though, the relative abundance of VASA, FGFR3, OCT4, PLZF, BCL6B and THY1 transcription factors in GDNF + IGF1 + bFGF treatment group was significantly higher than the other groups (p < 0.05). Additionally, goat SSCs developed in the latter culture condition could colonize within the seminiferous tubules of the germ-cell depleted recipient mice following xenotransplantation. Obtained results demonstrated that combination of GDNF with IGF1 and bFGF promote in vitro culture of goat SSCs while precludes uncontrolled proliferation of somatic cells. PMID:26154310

  16. Glial cell line-derived neurotrophic factor in combination with insulin-like growth factor 1 and basic fibroblast growth factor promote in vitro culture of goat spermatogonial stem cells.

    PubMed

    Bahadorani, M; Hosseini, S M; Abedi, P; Abbasi, H; Nasr-Esfahani, M H

    2015-01-01

    Growth factors are increasingly considered as important regulators of spermatogonial stem cells (SSCs). This study investigated the effects of various growth factors (GDNF, IGF1, bFGF, EGF and GFRalpha-1) on purification and colonization of undifferentiated goat SSCs under in vitro and in vivo conditions. Irrespective of the culture condition used, the first signs of developing colonies were observed from day 4 of culture onwards. The number of colonies developed in GDNF + IGF1 + bFGF culture condition was significantly higher than the other groups (p < 0.05). In contrast, the size of colonies developed in GDNF + EGF + LIF culture condition was significantly higher than the other groups (p < 0.05). Immunocytochemical stationing for specific biomarkers of somatic cells (vimentin, alpha-inhibin and α-SMA) and spermatogonial cells (PLZF, THY 1, VASA, alpha-1 integrin, bet-1 integrin and DBA) revealed that both cell types existed in developing colonies, irrespective of the culture condition used. Even though, the relative abundance of VASA, FGFR3, OCT4, PLZF, BCL6B and THY1 transcription factors in GDNF + IGF1 + bFGF treatment group was significantly higher than the other groups (p < 0.05). Additionally, goat SSCs developed in the latter culture condition could colonize within the seminiferous tubules of the germ-cell depleted recipient mice following xenotransplantation. Obtained results demonstrated that combination of GDNF with IGF1 and bFGF promote in vitro culture of goat SSCs while precludes uncontrolled proliferation of somatic cells.

  17. Recombinogenic Telomeres in Diploid Sorex granarius (Soricidae, Eulipotyphla) Fibroblast Cells

    PubMed Central

    Draskovic, I.; Minina, J. M.; Karamysheva, T. V.; Novo, C. L.; Liu, W.-Y.; Porreca, R. M.; Gibaud, A.; Zvereva, M. E.; Skvortsov, D. A.; Rubtsov, N. B.

    2014-01-01

    The telomere structure in the Iberian shrew Sorex granarius is characterized by unique, striking features, with short arms of acrocentric chromosomes carrying extremely long telomeres (up to 300 kb) with interspersed ribosomal DNA (rDNA) repeat blocks. In this work, we investigated the telomere physiology of S. granarius fibroblast cells and found that telomere repeats are transcribed on both strands and that there is no telomere-dependent senescence mechanism. Although telomerase activity is detectable throughout cell culture and appears to act on both short and long telomeres, we also discovered that signatures of a recombinogenic activity are omnipresent, including telomere-sister chromatid exchanges, formation of alternative lengthening of telomeres (ALT)-associated PML-like bodies, production of telomere circles, and a high frequency of telomeres carrying marks of a DNA damage response. Our results suggest that recombination participates in the maintenance of the very long telomeres in normal S. granarius fibroblasts. We discuss the possible interplay between the interspersed telomere and rDNA repeats in the stabilization of the very long telomeres in this organism. PMID:24842907

  18. Induction of cell cycle progression by hepatitis B virus HBx gene expression in quiescent mouse fibroblasts.

    PubMed Central

    Koike, K; Moriya, K; Yotsuyanagi, H; Iino, S; Kurokawa, K

    1994-01-01

    The HBx gene of hepatitis B virus has been shown to induce hepatic tumors in transgenic mice and is implicated in hepatocarcinogenesis in human hepatitis B virus infection. To further characterize the role of HBx gene in carcinogenesis, we established mouse fibroblast cell lines in which the expression of HBx gene could be controlled by glucocorticoid hormone and examined the effect of HBx gene expression on cell growth in vitro. Along with the expression of HBx gene, most cells in the G0/G1 phase moved into the S phase in 24 h, and the cell cycle progressed further toward 48 h. Induction of DNA synthesis was also demonstrated by bromo-deoxyuridine labeling analysis. These results indicate that HBx gene has a function to trigger the synthesis of cellular DNA and suggest that HBx gene may play a role in hepatocarcinogenesis in human infection by driving deregulated cell cycle progression. Images PMID:8040286

  19. Mouse fibroblast cell adhesion studied by neutron reflectometry.

    PubMed

    Smith, Hillary L; Hickey, Joseph; Jablin, Michael S; Trujillo, Antoinette; Freyer, James P; Majewski, Jaroslaw

    2010-03-01

    Neutron reflectometry (NR) was used to examine live mouse fibroblast cells adherent on a quartz substrate in a deuterated phosphate-buffered saline environment at room temperature. These measurements represent the first, to our knowledge, successful visualization and quantization of the interface between live cells and a substrate with subnanometer resolution using NR. NR data, attributable to the adhesion of live cells, were observed and compared with data from pure growth medium. Independently of surface cell density, the average distance between the center of the cell membrane region and the quartz substrate was determined to be approximately 180 A. The membrane region ( approximately 80 A thick) contains the membranes of cells that are inhomogeneously distributed or undulating, likely conforming to the nonplanar geometry of the supporting adherence proteins. A second region of cell membranes at a greater distance from the substrate was not detectable by NR due to the resolution limits of the technique employed. Attachment of the live cell samples was confirmed by interaction with both distilled water and trypsin. Distinct changes in the NR data after exposure indicate the removal of cells from the substrate.

  20. Uranyl Acetate Induces Oxidative Stress and Mitochondrial Membrane Potential Collapse in the Human Dermal Fibroblast Primary Cells

    PubMed Central

    Daraie, Bahram; Pourahmad, Jalal; Hamidi-Pour, Neda; Hosseini, Mir-Jamal; Shaki, Fatemeh; Soleimani, Masoud

    2012-01-01

    Cytotoxicity of depleted uranium, as a byproduct of military has been came to spotlight in recent decades. DU is known as a chemical rather than radioactive hazard and efforts to illustrating its mechanism is undergo, but the precise complete molecular mechanisms are still unclear. Recent studies showed that uranium induces biological changes in many different target tissues, such as the kidney, brain and skin. The aim of this study was to assess the impact of depleted uranium exposure at the cellular level in the human dermal fibroblast primary cells. The human dermal fibroblast primary cells incubated with different concentration (250-750 μM) of depleted uranium. Cytotoxicity and mitochondrial function in this cell lines were determined with the LDH leakage assay and the MTT test respectively. MDA levels were measured for determination of Lipid peroxidation in DU treated cells. Besides glutathione depletion and apoptosis phenotype detection were also assessed to complete the mechanistic screening. Results showed that the cell viability ameliorates in concentration and time dependent manners following in 24, 48 and 72 h incubation with DU. Moreover the significant increase in lipid peroxidation and significant decrease in cellular GSH recorded in DU treated human dermal fibroblast primary cells suggesting the preoxidant effect of uranyl ions. Cytoprotective effects of N-acetylcysteine (NAC) and dramatic decrease of cell viability in buthionin sulfoxamid (BSO) pretreated cells indicated the possibility of a critical role for glutathione system in DU detoxification. Death pattern, in fibroblast cells following DU treatment was varied from apoptosis to necrosis while the time and concentration increased. Since ROS formation is the initiation step for cell apoptosis, the present studies suggest Uranyl-induced toxicity in the human dermal fibroblast primary cells originated from oxidative stress and lead to occurrence of programmed cell death. PMID:24250472

  1. Reversible Immortalization Enables Seamless Transdifferentiation of Primary Fibroblasts into Other Lineage Cells.

    PubMed

    Xie, Fei; Gong, Kerui; Li, Ke; Zhang, Mingliang; Chang, Judy C; Jiang, Shizhong; Ye, Lin; Wang, Jiaming; Tan, Yuting; Kan, Yuet Wai

    2016-08-15

    Fibroblasts can be transdifferentiated directly into other somatic cells such as cardiomyocytes, hematopoietic cells, and neurons. An advantage of somatic cell differentiation without first generating induced pluripotent stem cells (iPSCs) is that it avoids contamination of the differentiated cells with residual iPSCs, which may cause teratoma. However, since primary fibroblasts from biopsy undergo senescence during repeated culture, it may be difficult to grow transdifferentiated cells in sufficient numbers for future therapeutic purposes. To circumvent this problem, we reversibly immortalized primary fibroblasts by using the piggyBac transposon to deliver the human telomerase reverse transcriptase (hTERT) gene hTERT plus SV40 Large T. Both approaches enabled fibroblasts to grow continuously without senescence, and neither caused teratoma formation in immunodeficient mice. However, fibroblasts immortalized with hTERT plus SV40 large T antigen accumulated chromosomal rearrangements, whereas fibroblasts immortalized with hTERT retained the normal karyotype. To transdifferentiate hTERT-immortalized fibroblasts into other somatic lineage cells, we transiently transfected them with episomal OCT4 and cultured them under neural cell growth condition with transposase to remove the transposon. Tripotent neural progenitor cells were seamlessly and efficiently generated. Thus, reversible immortalization of primary fibroblasts with hTERT will allow potential autologous cell-based therapeutics that bypass and simulate iPSC generation. PMID:27328768

  2. Biased Allelic Expression in Human Primary Fibroblast Single Cells

    PubMed Central

    Borel, Christelle; Ferreira, Pedro G.; Santoni, Federico; Delaneau, Olivier; Fort, Alexandre; Popadin, Konstantin Y.; Garieri, Marco; Falconnet, Emilie; Ribaux, Pascale; Guipponi, Michel; Padioleau, Ismael; Carninci, Piero; Dermitzakis, Emmanouil T.; Antonarakis, Stylianos E.

    2015-01-01

    The study of gene expression in mammalian single cells via genomic technologies now provides the possibility to investigate the patterns of allelic gene expression. We used single-cell RNA sequencing to detect the allele-specific mRNA level in 203 single human primary fibroblasts over 133,633 unique heterozygous single-nucleotide variants (hetSNVs). We observed that at the snapshot of analyses, each cell contained mostly transcripts from one allele from the majority of genes; indeed, 76.4% of the hetSNVs displayed stochastic monoallelic expression in single cells. Remarkably, adjacent hetSNVs exhibited a haplotype-consistent allelic ratio; in contrast, distant sites located in two different genes were independent of the haplotype structure. Moreover, the allele-specific expression in single cells correlated with the abundance of the cellular transcript. We observed that genes expressing both alleles in the majority of the single cells at a given time point were rare and enriched with highly expressed genes. The relative abundance of each allele in a cell was controlled by some regulatory mechanisms given that we observed related single-cell allelic profiles according to genes. Overall, these results have direct implications in cellular phenotypic variability. PMID:25557783

  3. Indirect longitudinal cytotoxicity of root canal sealers on L929 cells and human periodontal ligament fibroblasts.

    PubMed

    Araki, K; Suda, H; Spångberg, L S

    1994-02-01

    The cytotoxicity of two root canal sealers was evaluated in vitro. The powder components of both sealers, mainly zinc, were the same. The liquid for one sealer, Canals, was clove oil (included eugenol in more than 80%) and other materials. For the other, Canals-N, the liquid was composed of higher fatty acids and glycol. The experiments included two cell lines, heteroploid L929 mouse fibroblasts and diploid human periodontal ligament fibroblasts. Cytotoxicity was assessed using the radiochromium release method with 4-h exposure time. The assay involved using insert chambers in multiwell arrays to produce indirect contact of materials with the cell monolayer at a controlled distance of approximately 1 mm. This model also allowed for the longitudinal study of the same material sample to assess time-dependent changes in toxicity. Freshly mixed Canals was highly toxic (p < 0.01) to both cell lines. On and after 24 h of setting no toxicity was detected. At no time could cytotoxicity be observed when experimenting with Canals-N. These results indicate that both materials have a low content of water diffusible toxic components. Substituting eugenol can further decrease the toxicity of the sealer. PMID:8006567

  4. Collagen matrix as a tool in studying fibroblastic cell behavior.

    PubMed

    Kanta, Jiří

    2015-01-01

    Type I collagen is a fibrillar protein, a member of a large family of collagen proteins. It is present in most body tissues, usually in combination with other collagens and other components of extracellular matrix. Its synthesis is increased in various pathological situations, in healing wounds, in fibrotic tissues and in many tumors. After extraction from collagen-rich tissues it is widely used in studies of cell behavior, especially those of fibroblasts and myofibroblasts. Cells cultured in a classical way, on planar plastic dishes, lack the third dimension that is characteristic of body tissues. Collagen I forms gel at neutral pH and may become a basis of a 3D matrix that better mimics conditions in tissue than plastic dishes.

  5. Collagen matrix as a tool in studying fibroblastic cell behavior.

    PubMed

    Kanta, Jiří

    2015-01-01

    Type I collagen is a fibrillar protein, a member of a large family of collagen proteins. It is present in most body tissues, usually in combination with other collagens and other components of extracellular matrix. Its synthesis is increased in various pathological situations, in healing wounds, in fibrotic tissues and in many tumors. After extraction from collagen-rich tissues it is widely used in studies of cell behavior, especially those of fibroblasts and myofibroblasts. Cells cultured in a classical way, on planar plastic dishes, lack the third dimension that is characteristic of body tissues. Collagen I forms gel at neutral pH and may become a basis of a 3D matrix that better mimics conditions in tissue than plastic dishes. PMID:25734486

  6. Fibroblasts induce heparin synthesis in chondroitin sulfate E containing human bone marrow-derived mast cells

    SciTech Connect

    Gilead, L.; Bibi, O.; Razin, E. )

    1990-09-15

    Human bone marrow-derived mast cells (hBMMCs), differentiated in vitro in suspension culture and under the influence of human peripheral blood mononuclear cells conditioned medium (hCM), were tested for their response to recombinant human interleukin-3 (rhIL-3) and for their behavior in different microenvironments. The hBMMCs were incubated in the presence of rhIL-3 and the changes in their proliferation rate were determined. Recombinant hIL-3 induced a more than sixfold increase in 3H-thymidine uptake into the hBMMC DNA in a dose-dependent manner. Human CM used as a control for proliferation response induced a more than eightfold maximal proliferation rate increase. Rabbit anti-rhIL-3 completely inhibited hBMMC 3H-thymidine uptake induced by rhIL-3 and decreased the hCM-induced proliferation by approximately 50%. These hBMMCs were cocultured with four different mytomicin C-treated cell monolayers and assayed for phenotypic changes. After only 2 days in coculture with either embryonic mouse skin-derived fibroblasts (MESFs) or human skin-derived fibroblasts (HSFs), a marked increase in granule number and density was noted on staining with toluidine blue. Mast cells that initially stained alcian blue+/safranin- at day 0 of coculture became alcian blue+/safranin+ during the coculture period. Human BMMC proteoglycan synthesis shifted from approximately 85% chondroitin sulfate E to approximately 60% heparin within 14 to 19 days of coculture with the MESF monolayer and to approximately 50% heparin within 19 days of coculture with the HSF monolayer. None of the above-mentioned changes were noted in cocultures of hBMMCs with 3T3 cell line fibroblast monolayers or in cocultures with bovine vascular endothelium (BVE) cell monolayers.

  7. Molecular biology of nickel carcinogenesis: identification of differentially expressed genes in morphologically transformed C3H10T1/2 Cl 8 mouse embryo fibroblast cell lines induced by specific insoluble nickel compounds.

    PubMed

    Verma, Rini; Ramnath, Jamuna; Clemens, Farrah; Kaspin, Lisa C; Landolph, Joseph R

    2004-01-01

    Inhalation of mixtures of insoluble and soluble nickel compounds by humans during nickel refining has been associated with excess lung and nasal sinus cancers. Insoluble nickel subsulfide (Ni3S2) and nickel oxide (NiO) are carcinogenic to rodents by inhalation. We previously showed that insoluble Ni3S2, crystalline nickel monosulfide (NiS), and green (high temperature, HT) and black (low temperature, LT) NiO, induced morphological transformation in cultured C3H/10T1/2 Cl 8 (10T1/2) mouse embryo cells. To understand molecular mechanisms of carcinogenesis by insoluble nickel compounds, we used random, arbitrarily primed-polymerase chain reaction (RAP-PCR) mRNA differential display and identified nine cDNA fragments that were differentially expressed between nontransformed and nickel-transformed cell lines in approximately 10.0% of the total mRNA. Expression of the calnexin gene (encoding a type I membrane protein/molecular chaperone), the ect-2 proto-oncogene, and the stress-inducible gene, Wdr1, was upregulated. Expression of six genes--the vitamin D interacting protein/thyroid hormone activating protein 80 (DRIP/TRAP-80) gene, the insulin-like growth factor receptor 1 (IGFR1) gene, the small nuclear activating protein (SNAP C3) gene, and three unknown genes, was down-regulated, in nickel-transformed cell lines. We hypothesize that these resulting aberrations in gene expression could contribute to the induction and/or maintenance of morphological transformation induced by specific insoluble nickel compounds. PMID:14971661

  8. Lysine hydroxylation of collagen in a fibroblast cell culture system

    NASA Technical Reports Server (NTRS)

    Uzawa, Katsuhiro; Yeowell, Heather N.; Yamamoto, Kazushi; Mochida, Yoshiyuki; Tanzawa, Hideki; Yamauchi, Mitsuo

    2003-01-01

    The lysine (Lys) hydroxylation pattern of type I collagen produced by human fibroblasts in culture was analyzed and compared. Fibroblasts were cultured from normal human skin (NSF), keloid (KDF), fetal skin (FDF), and skin tissues of Ehlers-Danlos syndrome type VIA and VIB patients (EDS-VIA and -VIB). The type I collagen alpha chains with or without non-helical telopeptides were purified from the insoluble matrix and analyzed. In comparison with NSFs, KDF and FDF showed significantly higher Lys hydroxylation, particularly in the telopeptide domains of both alpha chains. Both EDS-VIA and -VIB showed markedly lower Lys hydroxylation in the helical domains of both alpha chains whereas that in the telopeptides was comparable with those of NSFs. A similar profile was observed in the tissue sample of the EDS-VIB patient. These results demonstrate that the Lys hydroxylation pattern is domain-specific within the collagen molecule and that this method is useful to characterize the cell phenotypes in normal/pathological connective tissues.

  9. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    SciTech Connect

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  10. Fibroblasts induce epithelial to mesenchymal transition in breast tumor cells which is prevented by fibroblasts treatment with histamine in high concentration.

    PubMed

    Porretti, Juliana C; Mohamad, Nora A; Martín, Gabriela A; Cricco, Graciela P

    2014-06-01

    Epithelial to mesenchymal transition (EMT) of cancer cells is an essential process in cancer progression. Cancer cells that undergone EMT loose cell-cell contacts, acquire mesenchymal properties and develop migratory and invasive abilities. In previous studies we have demonstrated that histamine may modify the invasive phenotype of pancreatic and mammary tumor cells. In this work we proposed to investigate whether histamine may also influence the interaction between tumor cells and normal fibroblasts. The potential activation of normal CCD-1059Sk fibroblasts by histamine and EMT phenotypic changes induced in MCF-7 and MDA-MB-231 breast tumor cells by the conditioned media (CM) derived from fibroblasts were evaluated. Initially, we determined the presence of H1, H2 and H4 histamine receptors and matrix metalloproteinase 2 (MMP2) mRNA in CCD-1059Sk fibroblasts. MMP2 gelatinolytic activity, cell migration and alpha-smooth muscle actin expression were increased in fibroblasts by low doses (<1μM) and decreased by high doses (20μM) of histamine. MCF-7 cells cultured with CM from fibroblasts exhibited spindle-shaped morphology, cell spreading and cytoplasmic expression of β-catenin but there was no change in MMP2 activity and cell migration. MDA-MB-231 cells cultured with CM from fibroblasts showed a more elongated phenotype, cell spreading, cytoplasmic β-catenin, increased MMP2 activity and endogenous TGF-β1 expression, and enhanced cell migration and invasion. Notably, all these features were reversed when mammary tumor cells were cultured with CM from fibroblasts treated with 20μM histamine. In conclusion, high doses of histamine may prevent the activation of fibroblasts and also avert the EMT related changes induced in epithelial tumor cells by fibroblasts CM.

  11. Skin telocytes versus fibroblasts: two distinct dermal cell populations

    PubMed Central

    Kang, Yuli; Zhu, Zaihua; Zheng, Yonghua; Wan, Weiguo; Manole, Catalin G; Zhang, Qiangqiang

    2015-01-01

    It is already accepted that telocytes (TCs) represent a new type of interstitial cells in human dermis. In normal skin, TCs have particular spatial relations with different dermal structures such as blood vessels, hair follicles, arrector pili muscles or segments of sebaceous and/or eccrine sweat glands. The distribution and the density of TCs is affected in various skin pathological conditions. Previous studies mentioned the particular (ultra)structure of TCs and also their immunophenotype, miR imprint or proteome, genome or secretome features. As fibroblast is the most common intersitital cell (also in human dermis), a dedicated comparison between human skin TCs and fibroblasts (Fbs) was required to be performed. In this study, using different techniques, we document several points of difference between human dermis TCs and Fbs. By transmission electron microscopy (TEM) and scanning electron microscopy (SEM), we demonstrated TCs with their hallmark cellular prolongations – telopodes. Thus, we showed their ultrastructural distinctiveness from Fbs. By RayBio Human Cytokine Antibody Array V analyses performed on the supernatant from separately cultured TCs and Fbs, we detected the cytokine profile of both cell types, individually. Two of 79 detected cytokines – epithelial-derived neutrophil-activating peptide 78 and granulocyte chemotactic protein-2 – were 1.5 times higher in the supernatant of TCs (comparing with Fbs). On the other hand, 37 cytokines were at least 1.5 higher in Fbs supernatant (comparing with TCs), and among them six cytokines – interleukin 5, monocyte chemotactic protein-3 (MCP-3), MCP-4, macrophage inflammatory protein-3, angiogenin, thrombopoietin – being 9.5 times higher (results also confirmed by ELISA testing). In summary, using different techniques, we showed that human dermal TCs and Fbs are different in terms of ultrastructure and cytokine profile. PMID:26414534

  12. Skin telocytes versus fibroblasts: two distinct dermal cell populations.

    PubMed

    Kang, Yuli; Zhu, Zaihua; Zheng, Yonghua; Wan, Weiguo; Manole, Catalin G; Zhang, Qiangqiang

    2015-11-01

    It is already accepted that telocytes (TCs) represent a new type of interstitial cells in human dermis. In normal skin, TCs have particular spatial relations with different dermal structures such as blood vessels, hair follicles, arrector pili muscles or segments of sebaceous and/or eccrine sweat glands. The distribution and the density of TCs is affected in various skin pathological conditions. Previous studies mentioned the particular (ultra)structure of TCs and also their immunophenotype, miR imprint or proteome, genome or secretome features. As fibroblast is the most common intersitital cell (also in human dermis), a dedicated comparison between human skin TCs and fibroblasts (Fbs) was required to be performed. In this study, using different techniques, we document several points of difference between human dermis TCs and Fbs. By transmission electron microscopy (TEM) and scanning electron microscopy (SEM), we demonstrated TCs with their hallmark cellular prolongations - telopodes. Thus, we showed their ultrastructural distinctiveness from Fbs. By RayBio Human Cytokine Antibody Array V analyses performed on the supernatant from separately cultured TCs and Fbs, we detected the cytokine profile of both cell types, individually. Two of 79 detected cytokines - epithelial-derived neutrophil-activating peptide 78 and granulocyte chemotactic protein-2 - were 1.5 times higher in the supernatant of TCs (comparing with Fbs). On the other hand, 37 cytokines were at least 1.5 higher in Fbs supernatant (comparing with TCs), and among them six cytokines - interleukin 5, monocyte chemotactic protein-3 (MCP-3), MCP-4, macrophage inflammatory protein-3, angiogenin, thrombopoietin - being 9.5 times higher (results also confirmed by ELISA testing). In summary, using different techniques, we showed that human dermal TCs and Fbs are different in terms of ultrastructure and cytokine profile.

  13. Treatment with TNF-α or bacterial lipopolysaccharide attenuates endocardial endothelial cell-mediated stimulation of cardiac fibroblasts

    PubMed Central

    Kuruvilla, Leena; Kartha, Cheranellore Chandrasekharan

    2009-01-01

    Background The endocardial endothelium that lines the inner cavity of the heart is distinct from the microvascular endothelial cells and modulates cardiac muscle performance in a manner similar to the vascular endothelial modulation of vascular structure and vasomotor tone. Although the modulatory effects of endocardial endothelium (EE) on cardiomyocytes are firmly established, the regulatory effects of endocardial endothelium on the cardiac interstitium and its cellular components remain ill defined. Methods and Results We investigated whether the stimulatory effect of EE on cardiac fibroblasts would be altered when EECs are activated by the cytokine tumor necrosis factor-α (TNF-α) or the endotoxin bacterial lipopolysaccharide (LPS). Both TNF-α and LPS were found to independently attenuate the stimulatory effect of EE on cardiac fibroblasts. These agents lowered the synthesis or release of ET-1 and increased the secretion of TGF-β and NO. Conclusion The findings of this study using endocardial endothelial cells (EECs) and neonatal cardiac fibroblasts demonstrate that pro-inflammatory cytokines cause altered secretion of paracrine factors by EECs and inhibit proliferation and lower collagen synthesis in fibroblasts. These changes may influence fibroblast response and extra cellular matrix remodeling in pathological conditions of the heart. PMID:19272191

  14. Ultrasound Gene Transfer into Fibroblast Cells using Microbubbles

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoji; Hirayama, Kota; Yoshinaka, Kiyoshi; Tei, Yuichi; Takagi, Shu; Matsumoto, Yoichiro

    2009-04-01

    Ultrasound is widely applied in the medical field and offers the strong advantages of non-invasiveness and high-selectivity. Gene transfer using ultrasound, which is called sonoporation, is one application. Ultrasound has the potential to deliver therapeutic materials such as genes, drugs or proteins into cells. Microbubbles are known to be able to improve delivery efficiency. This is attributed to therapeutic materials passing through the cell membrane after permeability is increased by destruction or oscillation of microbubbles. The present study tried to deliver the GFP plasmids into fibroblast cells. Cells were cultured in 6-well culture plates and exposed to ultrasound (frequency, 2.1 MHz; wave pattern, duty cycle 10%; intensity, 0-26 W/cm2; time, 0-200 s) transmitted through medium containing microbubbles (Levovist® (void fraction, 8×10-5) or Sonazoid® (void fraction, 0-24×10-4)) and GFP plasmids at a concentration of 15 μg/mL. Density of microbubbles after ultrasound irradiation was measured. When ultrasound intensity was increased with Levovist® 8×10-4, transfection efficiency increased, cell viability decreased and microbubbles disappeared. With Sonazoid®, transfection efficiency and cell viability were basically unchanged and microbubbles decreased, but did not disappear. Transfection efficiency also improved with increased ultrasound irradiation time or microbubble density. Microbubble destruction appeared to have the main effect on gene transfection under Levovist® and microbubble oscillation had the main effect under Sonazoid®.

  15. High-LET Radiation Induced Chromosome Aberrations in Normal and Ataxia Telangiectasia Fibroblast Cells

    NASA Astrophysics Data System (ADS)

    Kawata, Tetsuya; George, Ms Kerry; Cucinotta, Francis A.; Shigematsu, Naoyuki; Ito, Hisao; Furusawa, Yoshiya; Uno, Takashi

    We investigated the effects of heavy ions beams on chromosomal aberrations in normal and AT cells. Normal and AT fibroblast cells arrested at G0/G1 phase were irradiated with 2 Gy of X-rays, 490 MeV/u Silicon (LET 55 keV/micron), 500 MeV/u Iron (LET 185 keV/micron) and 200 MeV/u Iron (LET 440 keV/micron) particles, and then cells were allowed to repair for 24 hours at 37 degrees before subculture. Calyculin-A induced PCC method was employed to collect G2/M chromosomes and whole DNA probes 1 and 3 were used to analyze chromosomal aberrations such as color-junctions, deletions, simple exchanges (incomplete and reciprocal exchanges) and complex-type exchanges. The percentages of aberrant cells were higher when normal and AT cells were exposed to heavy ions compared to X-rays, and had a tendency to increase with increasing LET up to 185 keV/micron and then decreased at 440 keV/micron. When the frequency of color-junctions per cell was compared after X-ray exposure, AT cells had around three times higher frequency of color-junctions (mis-rejoining) than normal cells. However, at 185 keV/micron there was no difference in the frequency of color-junctions between two cell lines. It was also found that the frequency of simple exchanges per cell was almost constant in AT cells regardless LET levels, but it was LET dependent for normal cells. Interestingly, the frequency of simple exchanges was higher for normal fibroblast cells when it was compared at 185 keV/micron, but AT cells had more complex-type exchanges at the same LET levels. Heavy ions are more efficient in inducing chromosome aberrations in normal and AT cells compared to X-rays, and the aberration types between normal and AT fibroblast appeared different probably due to difference in the ATM gene function.

  16. Induction of MAP kinase phosphatase 3 through Erk/MAP kinase activation in three oncogenic Ras (H-, K- and N-Ras)-expressing NIH/3T3 mouse embryonic fibroblast cell lines

    PubMed Central

    Koo, JaeHyung; Wang, Sen; Kang, NaNa; Hur, Sun Jin; Bahk, Young Yil

    2016-01-01

    Ras oncoproteins are small molecular weight GTPases known for their involvement in oncogenesis, which operate in a complex signaling network with multiple effectors. Approximately 25% of human tumors possess mutations in a member of this family. The Raf1/MEK/Erk1/2 pathway is one of the most intensively studied signaling mechanisms. Different levels of regulation account for the inactivation of MAP kinases by MAPK phosphatases in a cell type- and stimuli-dependent manner. In the present study, using three inducible Ras-expressing NIH/3T3 cell lines, we demonstrated that MKP3 upregulation requires the activation of the Erk1/2 pathway, which correlates with the shutdown of this pathway. We also demonstrated, by applying pharmacological inhibitors and effector mutants of Ras, that induction of MKP3 at the protein level is positively regulated by the oncogenic Ras/Raf/MEK/Erk1/2 signaling pathway. [BMB Reports 2016; 49(7): 370-375] PMID:26818088

  17. Intestinal trefoil factor promotes invasion in non-tumorigenic Rat-2 fibroblast cell.

    PubMed

    Chan, Victor Y W; Chan, Michael W Y; Leung, Wai-Keung; Leung, Po-Sing; Sung, Joseph J Y; Chan, Francis K L

    2005-04-15

    Intestinal trefoil factor (TFF3) is essential in regulating cell migration and maintaining mucosal integrity in gastrointestinal tract. We previously showed that TFF3 was overexpressed in gastric carcinoma. Whether TFF3 possesses malignant potential is not fully elucidated. We sought to investigate the effects of inducting TFF3 expression in a non-malignant rat fibroblast cell line (Rat-2) on the cell proliferation, invasion and the genes regulating cell invasion. Invasiveness and proliferation of transfected Rat-2 cell line were assessed using in vitro invasion chamber assay and colorimetric MTS assay. Differential mRNA expressions of invasion-related genes, namely, metalloproteinases (MMP-9), tissue inhibitors of metalloproteinases (TIMP-1), beta-catenin and E-cadherin, were determined by quantitative real-time polymerase chain reaction (PCR). We showed that TFF3 did not inhibit the proliferation of Rat-2 cells. We also demonstrated that transfection of TFF3 significantly promoted invasion of Rat-2 cells by 1.4- to 2.2-folds. There was an upregulation of beta-catenin (13.1-23.0%) and MMP-9 (43.4-92.2%) mRNA expression levels, and downregulation of E-cadherin (25.6-33.8%) and TIMP-1 (31.5-37.8%) in TFF3-transfected cells compared to controls during 48-h incubation. Our results suggested that TFF3 possesses malignant potential through promotion of cell invasiveness and alteration of invasion-related genes.

  18. Modelling Action Potential Generation and Propagation in Fibroblastic Cells

    NASA Astrophysics Data System (ADS)

    Torres, J. J.; Cornelisse, L. N.; Harks, E. G. A.; Theuvenet, A. P. R.; Ypey, D. L.

    2003-04-01

    Using a standard Hodgkin-Huxley (HH) formalism, we present a mathematical model for action potential (AP) generation and intercellular AP propagation in quiescent (serum-deprived) normal rat kidney (NRK) fibroblasts [1], based on the recent experimental identification of the ion channels involved [2]. The principal ion channels described are those of an inwardly rectifying K+ conductance (GKIR), an L-type calcium conductance (GCaL), an intracellular calcium activated Cl- conductance (GCl(Ca)), a residual leak conductance Gleak, and gap junctional channels between the cells (Ggj). The role of each one of these components in the particular shape of the AP wave-form has been analyzed and compared with experimental observations. In addition, we have studied the role of subcellular processes like intracellular calcium dynamics and calcium buffering in AP generation. AP propagation between cells was reconstructed in a hexagonal model of cells coupled by Ggj with physiological conductance values. The model revealed an excitability mechanism of quiescent NRK cells with a particular role of intracellular calcium dynamics. It allows further explorations of the mechanism of signal generation and transmission in NRK cell cultures and its dependence on growth conditions.

  19. Microbubble-Enhanced Ultrasound Gene Transfer into Fibroblast Cells

    NASA Astrophysics Data System (ADS)

    Hirayama, Kota; Kaneko, Yukio; Tei, Yuichi; Matsumoto, Yoichiro

    2007-05-01

    Ultrasound finds many applications in the medical field, including ultrasound imaging, non-invasive treatment of tumors and lithotripsy. Ultrasound also has a potential to deliver some therapeutic materials, such as genes, drugs or proteins into cells. It is known that microbubbles can improve the delivery efficiency. It is believed that therapeutic materials can pass through the cell membrane whose permeability is increased by microbubble destruction or the ultrasound pressure. In this study, we investigated the delivery of GFP plasmid gene into the fibroblast cells. Ultrasound (frequency = 2.1 MHz, duty cycle = 10%) was used to irradiate the cultured cells through a medium that contains microbubbles and GFP plasmid. GFP plasmid transfection could be easily observed by fluorescence microscopy. Ultrasound irradiation under a variety of conditions resulted in successful GFP plasmid delivery. Microbubbles enhanced GFP transfection, and conclusions were drawn as to the relationship between gene transfection and various ultrasound exposure parameters. We also investigated the effect of ultrasound intensity on cell viability.

  20. Functional diversity of gro gene expression in human fibroblasts and mammary epithelial cells.

    PubMed Central

    Anisowicz, A; Zajchowski, D; Stenman, G; Sager, R

    1988-01-01

    Previous studies of gro and related genes that are overexpressed in transformed fibroblasts suggest that gro may encode a specific growth regulator. However, DNA and protein sequence comparisons reveal relatedness to platelet factor 4 and other proteins involved in the inflammatory response. In this paper, both growth-related and cytokine-induced responses in gro gene expression are described. Human foreskin fibroblasts are shown to express approximately 10-fold elevated gro, myc, and fos mRNAs in response to serum and to phorbol 12-myristate 13-acetate stimulation, with early response kinetics indicative of growth regulation. In response to interleukin 1, however, in growing cells gro mRNA is elevated at least 100-fold but myc remains constant and fos is not expressed, suggesting a second regulatory pathway. In normal cultured mammary epithelial cells, gro is constitutively expressed, and elevated mRNA levels are induced by phorbol 12-myristate 13-acetate, but not by interleukin 1. However, most carcinoma cell lines examined do not express gro mRNA, suggesting a third function of gro as a negative growth regulator in epithelial cells. Images PMID:3264403

  1. Derivation and characterization of goat fetal fibroblast cells induced with human telomerase reverse transcriptase.

    PubMed

    Xie, Ying; Zhao, Xiaoe; Jia, Hongxiang; Ma, Baohua

    2013-01-01

    Fetal fibroblast cells (FFCs) are often used as donor cells for somatic cell nuclear transfer (SCNT) because they are easy to culture and suitable for genetic manipulation. However, through genetic modification process, which required FFCs to be cultured in vitro for several passages, cells tended to age very rapidly and became inappropriate for SCNT. Human telomerase reverse transcriptase (hTERT) possessed the activity of human telomerase and maintains telomere in dividing cells; therefore, hTERT can be transfected into somatic cells to extend their lifespan. In this study, we transfected a Xinong Saanen Dairy Goat FFC line with hTERT. Then, we tested several characteristics of transfected cells, including growth curve, expression and activity of hTERT, tumorigenicity, and expression of oct4 and nanog. The result showed that hTERT could significantly extend the lifespan of transfected cells in vitro. hTERT mRNA was expressed in hTERT-transfected cells. Moreover, hTERT-transfected cells presented enhanced telomerase activity and longer telomere than untransfected cells at the same passage. On the other hand, hTERT-transfected cells can maintain normal karyotype even after several times of subculture in vitro. After inoculation of hTERT-transfected cells in nude mouse, none of them developed tumors on the vaccination site. Interestingly, transfection of hTERT can improve expression of nanog and oct4 in Xinong Saanen Dairy Goat FFCs, especially in low generation after transfection, but with increasing subculture, this effect gradually weakened.

  2. Fibroblast-derived 3D matrix differentially regulates the growth and drug-responsiveness of human cancer cells

    PubMed Central

    Lamb, Acacia; Golemis, Erica A.; Cukierman, Edna

    2008-01-01

    Recent studies have emphasized the importance of cellular microenvironment in modulating cell growth and signaling. In vitro, collagen matrices, Matrigel, and other synthetic support systems have been used to simulate in vivo microenvironments, and epithelial cells grown in these matrices manifest significant differences in proliferation, differentiation, response to drugs, and other parameters. However, these substrates do not closely resemble the mesenchymal microenvironment that is typically associated with advanced carcinomas in vivo, which is produced to a large extent by fibroblasts. In this study, we have evaluated the ability of a fibroblast-derived three-dimensional matrix to regulate the growth of a panel of 11 human tumor epithelial cell lines. Although proliferative and morphological responses to three-dimensional cues segregated independently, general responsiveness to the matrix correlated with the ability of matrix to influence drug responses. Fibroblast-derived three-dimensional matrix increased β1-integrin-dependent survival of a subset of human cancer cell lines during taxol treatment, while it sensitized or minimally influenced survival of other cells. β1-integrin-dependent changes in cell resistance to taxol did not correlate with degree of modulation of FAK and Akt, implying additional signaling factors are involved. Based on these results, we propose these matrices potentially have value as in vitro drug screening platforms. PMID:18411046

  3. Immortalized tumor derived rat fibroblasts as feeder cells facilitate the cultivation of male embryonic stem cells from the rat strain WKY/Ztm.

    PubMed

    Zschemisch, Nils-Holger; Eisenblätter, Regina; Rudolph, Cornelia; Glage, Silke; Dorsch, Martina

    2014-01-01

    Feeder cells are essential for the establishment and culture of pluripotent rat embryonic stem cells (ESC) in vitro. Therefore, we tested several fibroblast and epithelial cell lines derived from the female genital tract as feeder cells to further improve ESC culture conditions. The immortalized tumor derived rat fibroblast TRF-O3 cells isolated from a Dnd1-deficient teratoma were identified as optimal feeder cells supporting stemness and proliferation of rat ESC. The TRF-O3 cells were characterized as myofibroblasts by expression of fibroblast specific genes alpha-2 type I collagen, collagen prolyl 4-hydroxylase alpha (II), vimentin, S100A4, and smooth muscle α-actin. Culture of inner cell masses (ICM) derived from WKY/Ztm rat blastocysts in 2i-LIF medium on TRF-O3 feeder cells lacking LIF, SCF and FGF2 expression resulted in pluripotent and germ-line competent rat ESC lines. Therein, genotyping confirmed up to 26% male ESC lines. On the other hand the TRF-O3 specific BMP4 expression was correlated with transcriptional activity of the mesodermal marker T-brachyury and the ectoderm specific nestin in the ESC line ES21 demonstrating mesodermal or ectodermal cell lineage differentiation processes within the ESC population. Substitution of 2i-LIF by serum-containing YPAC medium supplemented with TGF-β and rho kinase inhibitors or by 4i medium in combination with TRF-O3 feeder cells led to enhanced differentiation of ES21 cells and freshly isolated ICMs. These results suggest that the ESC culture conditions using TRF-O3 feeder cells and 2i-LIF medium supported the establishment of male ESC lines from WKY/Ztm rats, which represent a favored, permissive genetic background for rat ESC culture. PMID:25332888

  4. Biology of SNU Cell Lines

    PubMed Central

    Ku, Ja-Lok

    2005-01-01

    SNU (Seoul National University) cell lines have been established from Korean cancer patients since 1982. Of these 109 cell lines have been characterized and reported, i.e., 17 colorectal carcinoma, 12 hepatocellular carcinoma, 11 gastric carcinoma, 12 uterine cervical carcinoma, 17 B-lymphoblastoid cell lines derived from cancer patients, 5 ovarian carcinoma, 3 malignant mixed Mllerian tumor, 6 laryngeal squamous cell carcinoma, 7 renal cell carcinoma, 9 brain tumor, 6 biliary tract, and 4 pancreatic carcinoma cell lines. These SNU cell lines have been distributed to biomedical researchers domestic and worldwide through the KCLB (Korean Cell Line Bank), and have proven to be of value in various scientific research fields. The characteristics of these cell lines have been reported in over 180 international journals by our laboratory and by many other researchers from 1987. In this paper, the cellular and molecular characteristics of SNU human cancer cell lines are summarized according to their genetic and epigenetic alterations and functional analysis. PMID:19956504

  5. Modulation of Human Valve Interstitial Cell Phenotype and Function Using a Fibroblast Growth Factor 2 Formulation

    PubMed Central

    Latif, Najma; Quillon, Alfred; Sarathchandra, Padmini; McCormack, Ann; Lozanoski, Alec; Yacoub, Magdi H.; Chester, Adrian H.

    2015-01-01

    Valve interstitial cells (VICs) are fibroblastic in nature however in culture it is widely accepted that they differentiate into a myofibroblastic phenotype. This study assessed a fibroblast culture media formulation for its ability to maintain the phenotype and function of VICs as in the intact healthy valve. Normal human VICs were cultured separately in standard DMEM and in fibroblast media consisting of FGF2 (10ng/ml), insulin (50ng/ml) and 2% FCS for at least a week. Cell morphology, aspect ratio, size, levels and distribution of protein expression, proliferation, cell cycle, contraction and migration were assessed. Some VICs and some valve endothelial cells expressed FGF2 in valve tissue and this expression was increased in calcified valves. VICs in DMEM exhibited large, spread cells whereas VICs in fibroblast media were smaller, elongated and spindly. Aspect ratio and size were both significantly higher in DMEM (p<0.01). The level of expression of α-SMA was significantly reduced in fibroblast media at day 2 after isolation (p<0.01) and the expression of α-SMA, SM22 and EDA-fibronectin was significantly reduced in fibroblast media at days 7 and 12 post-isolation (p<0.01). Expression of cytoskeletal proteins, bone marker proteins and extracellular matrix proteins was reduced in fibroblast media. Proliferation of VICs in fibroblast media was significantly reduced at weeks 1 (p<0.05) and 2 (p<0.01). Collagen gel contraction was significantly reduced in fibroblast media (p<0.05). VICs were found to have significantly fewer and smaller focal adhesions in fibroblast media (p<0.01) with significantly fewer supermature focal adhesions in fibroblast media (p<0.001). Ultrastructurally, VICs in fibroblast media resembled native VICs from intact valves. VICs in fibroblast media demonstrated a slower migratory ability after wounding at 72 hours (p<0.01). Treatment of human VICs with this fibroblast media formulation has the ability to maintain and to dedifferentiate the

  6. The role of fibroblast Tiam1 in tumor cell invasion and metastasis

    PubMed Central

    Xu, Kun; Rajagopal, Soumitra; Klebba, Ina; Dong, Shumin; Ji, Yuxin; Liu, Jiewei; Kuperwasser, Charlotte; Garlick, Jonathan A.; Naber, Stephen P.; Buchsbaum, Rachel J.

    2010-01-01

    The co-evolution of tumors and their microenvironment involves bidirectional communication between tumor cells and tumor-associated stroma. Various cell types are present in tumor-associated stroma, of which fibroblasts are the most abundant. The Rac exchange factor Tiam1 is implicated in multiple signaling pathways in epithelial tumor cells and lack of Tiam1 in tumor cells retards tumor growth in Tiam1 knock-out mouse models. Conversely, tumors arising in Tiam1 knock-out mice have increased invasiveness. We have investigated the role of Tiam1 in tumor-associated fibroblasts as a modulator of tumor cell invasion and metastasis, using retroviral delivery of short hairpin RNA to suppress Tiam1 levels in three different experimental models. In spheroid co-culture of mammary epithelial cells and fibroblasts, Tiam1 silencing in fibroblasts led to increased epithelial cell outgrowth into matrix. In tissue-engineered human skin, Tiam1 silencing in dermal fibroblasts led to increased invasiveness of epidermal keratinocytes with premalignant features. In a model of human breast cancer in mice, co-implantation of mammary fibroblasts inhibited tumor invasion and metastasis, which was reversed by Tiam1 silencing in co-injected fibroblasts. These results suggest that stromal Tiam1 may play a role in modulating the effects of the tumor microenvironment on malignant cell invasion and metastasis. This suggests a set of pathways for further investigation, with implications for future therapeutic targets. PMID:20802514

  7. Human iPS cell-derived fibroblast-like cells as feeder layers for iPS cell derivation and expansion.

    PubMed

    Du, Shou-Hui; Tay, Johan Chin-Kang; Chen, Can; Tay, Felix-Chang; Tan, Wee-Kiat; Li, Zhen-Dong; Wang, Shu

    2015-08-01

    Mouse embryonic fibroblasts (MEFs) are commonly used as feeder cells for the generation of human induced pluripotent stem cells (hiPSCs). However, medical applications of cell derivatives of hiPSCs generated with a MEF feeder system run the risk of having xeno-factor contamination due to long-term cell culturing under an animal factor-containing environment. We developed a new method for the derivation of human fibroblast-like cells (FLCs) from a previously established hiPSC line in an FLC differentiation medium. The method was based on direct differentiation of hiPSCs seeded on Matrigel followed by expansion of differentiating cells on gelatin. Using inactivated FLCs as feeder layers, primary human foreskin fibroblasts were successfully reprogrammed into a state of pluripotency by Oct4, Sox2 Klf4, and c-Myc (OSKM) transcription factor genes, with a reprogramming efficiency under an optimized condition superior to that obtained on MEF feeder layers. Furthermore, the FLCs were more effective in supporting the growth of human pluripotent stem cells. The pluripotency and differentiation capability of the cells cultured on FLC feeder layers were well retained. Our results suggest that FLCs are a safe alternative to MEFs for hiPSC generation and expansion, especially in the clinical settings wherein hiPSC derivatives will be used for medical treatment.

  8. Generation of porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene by somatic cell nuclear transfer.

    PubMed

    Liu, Guoqian; Liu, Kai; Wei, Hengxi; Li, Li; Zhang, Shouquan

    2016-09-01

    Cas9 endonuclease, from so-called clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems of Streptococcus pyogenes, type II functions as an RNA-guided endonuclease and edits the genomes of prokaryotic and eukaryotic organisms, including deletion and insertion by DNA double‑stranded break repair mechanisms. In previous studies, it was observed that Cas9, with a genome‑scale lentiviral single‑guide RNA library, could be applied to a loss‑of‑function genetic screen, although the loss‑of‑function genes have yet to be verified in vitro and this approach has not been used in porcine cells. Based on these observations, lentiviral Cas9 was used to infect porcine primary fibroblasts to achieve cell colonies carrying Cas9 endonuclease. Subsequently, porcine fetal fibroblasts expressing the tetracycline‑inducible Cas9 gene were generated by somatic cell nuclear transfer, and three 30 day transgenic porcine fetal fibroblasts (PFFs) were obtained. Polymerase chain reaction (PCR), reverse transcription‑PCR and western blot analysis indicated that the PFFs were Cas9‑positive. In addition, one of the three integrations was located near to known functional genes in the PFF1 cell line, whereas neither of the integrations was located in the PFF1 or PFF2 cell lines. It was hypothesized that these transgenic PFFs may be useful for conditional genomic editing in pigs, and for generating ideal modified porcine models. PMID:27430306

  9. Generation of porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene by somatic cell nuclear transfer

    PubMed Central

    Liu, Guoqian; Liu, Kai; Wei, Hengxi; Li, Li; Zhang, Shouquan

    2016-01-01

    Cas9 endonuclease, from so-called clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems of Streptococcus pyogenes, type II functions as an RNA-guided endonuclease and edits the genomes of prokaryotic and eukaryotic organisms, including deletion and insertion by DNA double-stranded break repair mechanisms. In previous studies, it was observed that Cas9, with a genome-scale lentiviral single-guide RNA library, could be applied to a loss-of-function genetic screen, although the loss-of-function genes have yet to be verified in vitro and this approach has not been used in porcine cells. Based on these observations, lentiviral Cas9 was used to infect porcine primary fibroblasts to achieve cell colonies carrying Cas9 endonuclease. Subsequently, porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene were generated by somatic cell nuclear transfer, and three 30 day transgenic porcine fetal fibroblasts (PFFs) were obtained. Polymerase chain reaction (PCR), reverse transcription-PCR and western blot analysis indicated that the PFFs were Cas9-positive. In addition, one of the three integrations was located near to known functional genes in the PFF1 cell line, whereas neither of the integrations was located in the PFF1 or PFF2 cell lines. It was hypothesized that these transgenic PFFs may be useful for conditional genomic editing in pigs, and for generating ideal modified porcine models. PMID:27430306

  10. The cytoskeletal organization of breast carcinoma and fibroblast cells inside three dimensional (3-D) isotropic silicon microstructures.

    PubMed

    Nikkhah, Mehdi; Strobl, Jeannine S; De Vita, Raffaella; Agah, Masoud

    2010-06-01

    Studying the cytoskeletal organization as cells interact in their local microenvironment is interest of biological science, tissue engineering and cancer diagnosis applications. Herein, we describe the behavior of cell lines obtained from metastatic breast tumor pleural effusions (MDA-MB-231), normal fibrocystic mammary epithelium (MCF10A), and HS68 normal fibroblasts inside three dimensional (3-D) isotropic silicon microstructures fabricated by a single-mask, single-isotropic-etch process. We report differences in adhesion, mechanism of force balance within the cytoskeleton, and deformability among these cell types inside the 3-D microenvironment. HS68 fibroblasts typically stretched and formed vinculin-rich focal adhesions at anchor sites inside the etched cavities. In contrast, MCF10A and MDA-MB-231 cells adopted the curved surfaces of isotropic microstructures and exhibited more diffuse vinculin cytoplasmic staining in addition to vinculin localized in focal adhesions. The measurement of cells elasticity using atomic force microscopy (AFM) indentation revealed that HS68 cells are significantly stiffer (p < 0.0001) than MCF10A and MDA-MB-231 cells. Upon microtubule disruption with nocodazole, fibroblasts no longer stretched, but adhesion of MCF10A and MDA-MB-231 within the etched features remained unaltered. Our findings are consistent with tensegrity theory. The 3-D microstructures have the potential to probe cytoskeletal-based differences between healthy and diseased cells that can provide biomarkers for diagnostics purposes. PMID:20207413

  11. The characterization of fibrocyte-like cells: a novel fibroblastic cell of the placenta.

    PubMed

    Riddell, M R; Winkler-Lowen, B; Chakrabarti, S; Dunk, C; Davidge, S T; Guilbert, L J

    2012-03-01

    The placenta is a highly vascularized organ thus angiogenesis is a key process in placental development. The contribution that different cells in the villous stroma play in placental angiogenesis is largely unknown. In this study we identified a novel stromal cell type in sections of term placenta which is morphologically fibroblastic and expressing the fibroblast marker TE-7 but also positive for the monocytic markers CD115 and CD14 and designated these cells as fibrocyte-like cells. Populations of fibrocyte-like cells from the placenta were isolated by two methods: culture of adherence-selected placental cells and, for higher purity, by CD45 fluorescence activated cell sorting (FACS). Fibrocyte-like cell conditioned medium increased endothelial tubule-like structure formation 2-fold versus control medium. Both pro-angiogenic growth factors vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF) and the anti-angiogenic factor soluble-Flt were found in the conditioned medium. Neutralizing antibodies against VEGF and b-FGF reduced endothelial cell tubule-like structures to control levels. These data suggests that fibrocyte-like cells, a previously unidentified cell of the villous stroma, may play an important role in the regulation of placental angiogenesis.

  12. Electric Cell-Substrate Impedance Sensing (ECIS) with Microelectrode Arrays for Investigation of Cancer Cell-Fibroblasts Interaction.

    PubMed

    Tran, Trong Binh; Baek, Changyoon; Min, Junhong

    2016-01-01

    The tumor microenvironment, including stromal cells, surrounding blood vessels and extracellular matrix components, has been defined as a crucial factor that influences the proliferation, drug-resistance, invasion and metastasis of malignant epithelial cells. Among other factors, the communications and interaction between cancer cells and stromal cells have been reported to play pivotal roles in cancer promotion and progression. To investigate these relationships, an on-chip co-culture model was developed to study the cellular interaction between A549-human lung carcinoma cells and MRC-5-human lung epithelial cells in both normal proliferation and treatment conditions. In brief, a co-culture device consisting of 2 individual fluidic chambers in parallel, which were separated by a 100 μm fence was utilized for cell patterning. Microelectrodes arrays were installed within each chamber including electrodes at various distances away from the confrontation line for the electrochemical impedimetric sensing assessment of cell-to-cell influence. After the fence was removed and cell-to-cell contact occurred, by evaluating the impedance signal responses representing cell condition and behavior, both direct and indirect cell-to-cell interactions through conditioned media were investigated. The impact of specific distances that lead to different influences of fibroblast cells on cancer cells in the co-culture environment was also defined. PMID:27088611

  13. Electric Cell-Substrate Impedance Sensing (ECIS) with Microelectrode Arrays for Investigation of Cancer CellFibroblasts Interaction

    PubMed Central

    Tran, Trong Binh; Baek, Changyoon; Min, Junhong

    2016-01-01

    The tumor microenvironment, including stromal cells, surrounding blood vessels and extracellular matrix components, has been defined as a crucial factor that influences the proliferation, drug-resistance, invasion and metastasis of malignant epithelial cells. Among other factors, the communications and interaction between cancer cells and stromal cells have been reported to play pivotal roles in cancer promotion and progression. To investigate these relationships, an on-chip co-culture model was developed to study the cellular interaction between A549—human lung carcinoma cells and MRC-5—human lung epithelial cells in both normal proliferation and treatment conditions. In brief, a co-culture device consisting of 2 individual fluidic chambers in parallel, which were separated by a 100 μm fence was utilized for cell patterning. Microelectrodes arrays were installed within each chamber including electrodes at various distances away from the confrontation line for the electrochemical impedimetric sensing assessment of cell-to-cell influence. After the fence was removed and cell-to-cell contact occurred, by evaluating the impedance signal responses representing cell condition and behavior, both direct and indirect cell-to-cell interactions through conditioned media were investigated. The impact of specific distances that lead to different influences of fibroblast cells on cancer cells in the co-culture environment was also defined. PMID:27088611

  14. Protocol for the Direct Conversion of Murine Embryonic Fibroblasts into Trophoblast Stem Cells.

    PubMed

    Kubaczka, Caroline; Schorle, Hubert

    2016-01-01

    Trophoblast stem cells (TSCs) arise as a consequence of the first cell fate decision in mammalian development. They can be cultured in vitro, retaining the ability to self-renew and to differentiate into all subtypes of the trophoblast lineage, equivalent to the in vivo stem cell population giving rise to the fetal portion of the placenta. Therefore, TSCs offer a unique model to study placental development and embryonic versus extra-embryonic cell fate decision in vitro. From the blastocyst stage onwards, a distinct epigenetic barrier consisting of DNA methylation and histone modifications tightly separates both lineages. Here, we describe a protocol to fully overcome this lineage barrier by transient over-expression of trophoblast key regulators Tfap2c, Gata3, Eomes and Ets2 in murine embryonic fibroblasts. The induced trophoblast stem cells are able to self-renew and are almost identical to blastocyst derived trophoblast stem cells in terms of morphology, marker gene expression and methylation pattern. Functional in vitro and in vivo assays confirm that these cells are able to differentiate along the trophoblast lineage generating polyploid trophoblast giant cells and chimerizing the placenta when injected into blastocysts. The induction of trophoblast stem cells from somatic tissue opens new avenues to study genetic and epigenetic characteristics of this extra-embryonic lineage and offers the possibility to generate trophoblast stem cell lines without destroying the respective embryo. PMID:27500445

  15. Production of Pigs by Hand-Made Cloning Using Mesenchymal Stem Cells and Fibroblasts.

    PubMed

    Yang, Zhenzhen; Vajta, Gábor; Xu, Ying; Luan, Jing; Lin, Mufei; Liu, Cong; Tian, Jianing; Dou, Hongwei; Li, Yong; Liu, Tianbin; Zhang, Yijie; Li, Lin; Yang, Wenxian; Bolund, Lars; Yang, Huanming; Du, Yutao

    2016-08-01

    Mesenchymal stem cells (MSCs) exhibited self-renewal and less differentiation, making the MSCs promising candidates for adult somatic cell nuclear transfer (SCNT). In this article, we tried to produce genome identical pigs through hand-made cloning (HMC), with MSCs and adult skin fibroblasts as donor cells. MSCs were derived from either adipose tissue or peripheral blood (aMSCs and bMSCs, respectively). MSCs usually showed the expression pattern of CD29, CD73, CD90, and CD105 together with lack of expression of the hematopoietic markers CD34and CD45. Flow cytometry results demonstrated high expression of CD29 and CD90 in both MSC lines, while CD73, CD34, and CD45 expression were not detected. In contrary, in reverse transcription-polymerase chain reaction (RT-PCR) analysis, CD73 and CD34 were detected indicating that human antibodies CD73 and CD34 were not suitable to identify porcine cell surface markers and porcine MSC cellular surface markers of CD34 might be different from other species. MSCs also had potential to differentiate successfully into chondrocytes, osteoblasts, and adipocytes. After HMC, embryos reconstructed with aMSCs had higher blastocyst rate on day 5 and 6 than those reconstructed with bMSCs and fibroblasts (29.6% ± 1.3% and 41.1% ± 1.4% for aMSCs vs. 23.9% ± 1.2% and 35.5% ± 1.6% for bMSCs and 22.1% ± 0.9% and 33.3% ± 1.1% for fibroblasts, respectively). Live birth rate per transferred blastocyst achieved with bMSCs (1.59%) was the highest among the three groups. This article was the first report to compare the efficiency among bMSCs, aMSCs, and fibroblasts for boar cloning, which offered a realistic perspective to use the HMC technology for commercial breeding. PMID:27459584

  16. Altered pattern of replication of human chromosomes in a human fibroblast-mouse cell hybrid.

    PubMed Central

    Farber, R A; Davidson, R L

    1978-01-01

    The pattern of terminal replication of the human chromosomes in a clone of hybrids between diploid human fibroblasts and mouse cells was analyzed by autoradiography. An average of 10 human chromosomes was present in the hybrid cells. Several of these chromosomes were found to terminate replication in a different order from the same chromosomes in the parental human fibroblasts. Chromosomes 4 and 5 completed replication later in the hybrid than in the fibroblasts (relative to the other human chromosomes). In contrast, chromosomes 7, 12, and 15 completed replication earlier in the hybrid than in the fibroblasts. These results suggest that the sequence of terminal chromosome replication in human fibroblasts is not irreversibly programmed into each chromosome. Images PMID:274734

  17. Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro

    SciTech Connect

    Han, Yanfu; Chai, Jiake; Sun, Tianjun; Li, Dongjie; Tao, Ran

    2011-10-07

    Highlights: {yields} Mesenchymal stem cells (MSCs) are potential seed cells for tissue-engineered skin. {yields} Tissue-derived umbilical cord MSCs (UCMSCs) can readily be isolated in vitro. {yields} We induce UCMSCs to differentiate into dermal fibroblasts via conditioned medium. {yields} Collagen type I and collagen type III mRNA level was higher in differentiated cells. {yields} UCMSCs-derived fibroblast-like cells strongly express fibroblast-specific protein. -- Abstract: Tissue-derived umbilical cord mesenchymal stem cells (UCMSCs) can be readily obtained, avoid ethical or moral constraints, and show excellent pluripotency and proliferation potential. UCMSCs are considered to be a promising source of stem cells in regenerative medicine. In this study, we collected newborn umbilical cord tissue under sterile conditions and isolated UCMSCs through a tissue attachment method. UCMSC cell surface markers were examined using flow cytometry. On the third passage, UCMSCs were induced to differentiate into dermal fibroblasts in conditioned induction media. The induction results were detected using immunofluorescence with a fibroblast-specific monoclonal antibody and real time PCR for type I and type III collagen. UCMSCs exhibited a fibroblast-like morphology and reached 90% confluency 14 to 18 days after primary culture. Cultured UCMSCs showed strong positive staining for CD73, CD29, CD44, CD105, and HLA-I, but not CD34, CD45, CD31, or HLA-DR. After differentiation, immunostaining for collagen type I, type III, fibroblast-specific protein, vimentin, and desmin were all strongly positive in induced cells, and staining was weak or negative in non-induced cells; total transcript production of collagen type I and collagen type III mRNA was higher in induced cells than in non-induced cells. These results demonstrate that UCMSCs can be induced to differentiate into fibroblasts with conditioned induction media and, in turn, could be used as seed cells for tissue

  18. Senescent dermal fibroblasts enhance stem cell migration through CCL2/CCR2 axis.

    PubMed

    Ohgo, Shiro; Hasegawa, Seiji; Hasebe, Yuichi; Mizutani, Hiroshi; Nakata, Satoru; Akamatsu, Hirohiko

    2015-07-01

    During aging, increases in the number of senescent cells are seen in various tissues. On the other hand, stem cells play crucial roles in tissue repair and homeostasis. Therefore, it is likely that stem cells give rise to new cells that replace senescent cells. However, how stem cells contribute to homeostasis in the dermis has not been elucidated. Here, we investigated the effects of factors secreted from senescent fibroblasts on stem cells. We found that senescent human dermal fibroblast (HDF) conditioned medium (CM) significantly enhanced stem cell migration compared with young HDF CM. The senescent HDF CM strongly secreted chemokine ligand 2 (CCL2). Furthermore, CCL2 was found to enhance stem cell migration, and the inhibition of CCR2, a receptor for CCL2, reduced stem cell migration. These results suggest that senescent fibroblasts recruit stem cells by secreting various factors and that the CCL2/CCR2 axis is one of the mechanisms underlying this phenomenon.

  19. FSP1+ fibroblast subpopulation is essential for the maintenance and regeneration of medullary thymic epithelial cells

    PubMed Central

    Sun, Lina; Sun, Chenming; Liang, Zhanfeng; Li, Hongran; Chen, Lin; Luo, Haiying; Zhang, Hongmei; Ding, Pengbo; Sun, Xiaoning; Qin, Zhihai; Zhao, Yong

    2015-01-01

    Thymic epithelial cells (TECs) form a 3-dimentional network supporting thymocyte development and maturation. Besides epithelium and thymocytes, heterogeneous fibroblasts are essential components in maintaining thymic microenvironments. However, thymic fibroblast characteristics, development and function remain to be determined. We herein found that thymic non-hematopoietic CD45-FSP1+ cells represent a unique Fibroblast specific protein 1 (FSP1)—fibroblast-derived cell subset. Deletion of these cells in FSP1-TK transgenic mice caused thymus atrophy due to the loss of TECs, especially mature medullary TECs (MHCIIhigh, CD80+ and Aire+). In a cyclophosphamide-induced thymus injury and regeneration model, lack of non-hematopoietic CD45-FSP1+ fibroblast subpopulation significantly delayed thymus regeneration. In fact, thymic FSP1+ fibroblasts released more IL-6, FGF7 and FSP1 in the culture medium than their FSP1- counterparts. Further experiments showed that the FSP1 protein could directly enhance the proliferation and maturation of TECs in the in vitro culture systems. FSP1 knockout mice had significantly smaller thymus size and less TECs than their control. Collectively, our studies reveal that thymic CD45-FSP1+ cells are a subpopulation of fibroblasts, which is crucial for the maintenance and regeneration of TECs especially medullary TECs through providing IL-6, FGF7 and FSP1. PMID:26445893

  20. Leukaemia x fibroblast hybrid cells augment the antibody response to sheep red blood cells in inbred mice.

    PubMed Central

    Cohen, E P; Hagen, K

    1985-01-01

    ASL-1 x LM(TK-) hybrid cells, an established murine leukaemia x fibroblast hybrid cell line, augment the antibody response to sheep red blood cells in inbred mice, as determined by the plaque assay method. The intraperitoneal injection of viable hybrid cells or of growth medium conditioned by the cells leads to an increase both in the total number as well as the proportion of cells forming antibodies to sheep red blood cells. CSF-1, (M-CSF), is detected by radioimmunoassay in the medium conditioned by the hybrid and LM(TK-) cells, but not ASL-1 parental cells. Prior treatment of the conditioned medium with CSF-1 antiserum reduces its capacity to augment the antibody response, and its proliferative stimulus on cells from the marrow indicating that CSF-1 may be at least partly responsible for the adjuvant effect observed. The intraperitoneal implantation of diffusion chambers containing viable CSF-1 producing hybrid cells, like the cells themselves, also leads to an increase in the number of spleen cells forming antibodies to sheep red blood cells. PMID:3908292

  1. Reversible effects of sphingomyelin degradation on cholesterol distribution and metabolism in fibroblasts and transformed neuroblastoma cells.

    PubMed

    Pörn, M I; Slotte, J P

    1990-10-01

    Plasma-membrane sphingomyelin appears to be one of the major determinants of the preferential allocation of cell cholesterol into the plasma-membrane compartment, since removal of sphingomyelin leads to a dramatic redistribution of cholesterol within the cell [Slotte & Bierman (1988) Biochem. J. 250, 653-658]. In the present study we examined the long-term effects of sphingomyelin degradation on cholesterol redistribution in cells and determined the reversibility of the process. In a human lung fibroblast-cell line, removal of 80% of the sphingomyelin led to a rapid and transient up-regulation (3-fold) of acyl-CoA:cholesterol acyltransferase (ACAT) activity, and also, within 30 h, to the translocation of about 50% of the cell non-esterified cholesterol from a cholesterol oxidase-susceptible compartment (i.e. the cell surface) to oxidase-resistant compartments. At 49 h after the initial sphingomyelin degradation, the cell sphingomyelin level was back to 45% of the control level, and the direction of cell cholesterol flow was toward the cell surface, although the original distribution was not achieved. In a transformed neuroblastoma cell line (SH-SY5Y), the depletion of sphingomyelin led to a similarly rapid and transient up-regulation of ACAT activity, and to the translocation of about 25% of cell-surface cholesterol into internal membranes (within 3 h). The flow of cholesterol back to the cholesterol oxidase-susceptible pool was rapid, and a pretreatment cholesterol distribution was reached within 20-49 h. Also, the resynthesis of sphingomyelin was faster in SH-SY5Y neuroblastoma cells and reached control levels within 24 h. The findings of the present study show that the cellular redistribution of cholesterol, as induced by sphingomyelin degradation, is reversible and suggest that the normalization of cellular cholesterol distribution is linked to the re-synthesis of sphingomyelin.

  2. Targeting Inhibition of Fibroblast Activation Protein-α and Prolyl Oligopeptidase Activities on Cells Common to Metastatic Tumor Microenvironments1

    PubMed Central

    Christiansen, Victoria J; Jackson, Kenneth W; Lee, Kyung N; Downs, Tamyra D; McKee, Patrick A

    2013-01-01

    Fibroblast activation protein (FAP), a membrane prolyl-specific proteinase with both dipeptidase and endopeptidase activities, is overexpressed by reactive stromal fibroblasts during epithelial-derived cancer growth. FAP digests extracellular matrix as tissue is remodeled during cancer expansion and may also promote an immunotolerant tumor microenvironment. Recent studies suggest that nonspecific FAP inhibitors suppress human cancer xenografts in mouse models. Prolyl oligopeptidase (POP), another prolyl-specific serine proteinase, is also elevated in many cancers and may have a regulatory role in angiogenesis promotion. FAP and POP cell-associated activities may be targets for diagnosis and treatment of various cancers, but their accessibilities to highly effective specific inhibitors have not been shown for cells important to cancer growth. Despite their frequent simultaneous expression in many cancers and their overlapping activities toward commonly used substrates, precise, separate measurement of FAP or POP activity has largely been ignored. To distinguish each of the two activities, we synthesized highly specific substrates and inhibitors for FAP or POP based on amino acid sequences surrounding the scissile bonds of their respective putative substrates. We found varying amounts of FAP and POP protein and activities on activated fibroblasts, mesenchymal cells, normal breast cells, and one breast cancer cell line, with some cells exhibiting more POP than FAP activity. Replicating endothelial cells (ECs) expressed POP but not FAP until tubulogenesis began. Targeting FAP-positive cells, especially mesenchymal stem cells and cancer-associated fibroblasts for inactivation or destruction, and inhibiting POP-producing EC may abrogate stromal invasion and angiogenesis simultaneously and thereby diminish cancer growth. PMID:23555181

  3. Effect of Fe3O4 Nanoparticles on Skin Tumor Cells and Dermal Fibroblasts

    PubMed Central

    Alili, Lirija; Chapiro, Swetlana; Marten, Gernot U.; Schmidt, Annette M.; Zanger, Klaus; Brenneisen, Peter

    2015-01-01

    Iron oxide (Fe3O4) nanoparticles have been used in many biomedical approaches. The toxicity of Fe3O4 nanoparticles on mammalian cells was published recently. Though, little is known about the viability of human cells after treatment with Fe3O4 nanoparticles. Herein, we examined the toxicity, production of reactive oxygen species, and invasive capacity after treatment of human dermal fibroblasts (HDF) and cells of the squamous tumor cell line (SCL-1) with Fe3O4 nanoparticles. These nanoparticles had an average size of 65 nm. Fe3O4 nanoparticles induced oxidative stress via generation of reactive oxygen species (ROS) and subsequent initiation of lipid peroxidation. Furthermore, the question was addressed of whether Fe3O4 nanoparticles affect myofibroblast formation, known to be involved in tumor invasion. Herein, Fe3O4 nanoparticles prevent the expression alpha-smooth muscle actin and therefore decrease the number of myofibroblastic cells. Moreover, our data show in vitro that concentrations of Fe3O4 nanoparticles, which are nontoxic for normal cells, partially reveal a ROS-triggered cytotoxic but also a pro-invasive effect on the fraction of squamous cancer cells surviving the treatment with Fe3O4 nanoparticles. The data herein show that the Fe3O4 nanoparticles appear not to be adequate for use in therapeutic approaches against cancer cells, in contrast to recently published data with cerium oxide nanoparticles. PMID:26090418

  4. Lineage Tracing Reveals Distinctive Fates for Mesothelial Cells and Submesothelial Fibroblasts during Peritoneal Injury

    PubMed Central

    Chen, Yi-Ting; Chang, Yu-Ting; Pan, Szu-Yu; Chou, Yu-Hsiang; Chang, Fan-Chi; Yeh, Pei-Ying; Liu, Yuan-Hung; Chiang, Wen-Chih; Chen, Yung-Ming; Wu, Kwan-Dun; Tsai, Tun-Jun; Duffield, Jeremy S.

    2014-01-01

    Fibrosis of the peritoneal cavity remains a serious, life-threatening problem in the treatment of kidney failure with peritoneal dialysis. The mechanism of fibrosis remains unclear partly because the fibrogenic cells have not been identified with certainty. Recent studies have proposed mesothelial cells to be an important source of myofibroblasts through the epithelial–mesenchymal transition; however, confirmatory studies in vivo are lacking. Here, we show by inducible genetic fate mapping that type I collagen–producing submesothelial fibroblasts are specific progenitors of α-smooth muscle actin–positive myofibroblasts that accumulate progressively in models of peritoneal fibrosis induced by sodium hypochlorite, hyperglycemic dialysis solutions, or TGF-β1. Similar genetic mapping of Wilms’ tumor-1–positive mesothelial cells indicated that peritoneal membrane disruption is repaired and replaced by surviving mesothelial cells in peritoneal injury, and not by submesothelial fibroblasts. Although primary cultures of mesothelial cells or submesothelial fibroblasts each expressed α-smooth muscle actin under the influence of TGF-β1, only submesothelial fibroblasts expressed α-smooth muscle actin after induction of peritoneal fibrosis in mice. Furthermore, pharmacologic inhibition of the PDGF receptor, which is expressed by submesothelial fibroblasts but not mesothelial cells, attenuated the peritoneal fibrosis but not the remesothelialization induced by hypochlorite. Thus, our data identify distinctive fates for injured mesothelial cells and submesothelial fibroblasts during peritoneal injury and fibrosis. PMID:24854266

  5. Inhibition of tumor cell proliferation and motility by fibroblasts is both contact and soluble factor dependent

    PubMed Central

    Alkasalias, Twana; Flaberg, Emilie; Kashuba, Vladimir; Alexeyenko, Andrey; Pavlova, Tatiana; Savchenko, Andrii; Szekely, Laszlo; Klein, George; Guven, Hayrettin

    2014-01-01

    Normal human and murine fibroblasts can inhibit proliferation of tumor cells when cocultured in vitro. The inhibitory capacity varies depending on the donor and the site of origin of the fibroblast. We showed previously that effective inhibition requires formation of a morphologically intact fibroblast monolayer before seeding of the tumor cells. Here we show that inhibition is extended to motility of tumor cells and we dissect the factors responsible for these inhibitory functions. We find that inhibition is due to two different sets of molecules: (i) the extracellular matrix (ECM) and other surface proteins of the fibroblasts, which are responsible for contact-dependent inhibition of tumor cell proliferation; and (ii) soluble factors secreted by fibroblasts when confronted with tumor cells (confronted conditioned media, CCM) contribute to inhibition of tumor cell proliferation and motility. However, conditioned media (CM) obtained from fibroblasts alone (nonconfronted conditioned media, NCM) did not inhibit tumor cell proliferation and motility. In addition, quantitative PCR (Q-PCR) data show up-regulation of proinflammatory genes. Moreover, comparison of CCM and NCM with an antibody array for 507 different soluble human proteins revealed differential expression of growth differentiation factor 15, dickkopf-related protein 1, endothelial-monocyte-activating polypeptide II, ectodysplasin A2, Galectin-3, chemokine (C-X-C motif) ligand 2, Nidogen1, urokinase, and matrix metalloproteinase 3. PMID:25404301

  6. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells.

    PubMed

    Berndt, Alexander; Büttner, Robert; Gühne, Stefanie; Gleinig, Anna; Richter, Petra; Chen, Yuan; Franz, Marcus; Liebmann, Claus

    2014-04-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients' outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCMTGF, FCMPDGF) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCMB). FCMTGF stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCMTGF≫FCMPDGF induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCMTGF>FCMPDGF) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. PMID:24394543

  7. Nucleus transfer efficiency of ear fibroblast cells isolated from Bama miniature pigs at various ages.

    PubMed

    Wang, Qing-Hua; Peng, Yun; Cai, Xin-Yong; Wan, Meng; Liu, Yu; Wei, Hong

    2015-08-01

    Somatic cell nucleus transfer (SCNT) has been considered the most effective method for conserving endangered animals and expanding the quantity of adult animal models. Bama miniature pigs are genetically stable and share similar biological features to humans. These pigs have been used to establish animal models for human diseases, and for many other applications. However, there is a paucity of studies on the effect of ear fibroblasts derived from different age of adult Bama miniature pigs on nucleus transfer (NT). The present study examined the NT efficiency of ear fibroblasts from fetal, newborn, 1-, 2-, 4-, 6-, 12-month-old miniature pigs by using trypan blue staining, flow cytometry and NT technique, etc., and the cell biological function and SCNT efficiency were compared between groups. The results showed that ear fibroblasts grew well after passage in each group. Spindle-shaped cells initially predominated, and gradually declined with increase of culture time and replaced by polygonal cells. Irregular cell growth occurred in the 2-month-old group and the elder groups. The growth curves of the ear fibroblasts were "S-shaped" in different age groups. The cell proliferation of postnatal ear fibroblasts, especially those from 2-, 4-, 6-, 12-month-old miniature pigs was significantly different from that of fetus ear fibroblasts (P<0.05 or P<0.01). Two-month- and 4-month-old ear fibroblasts had a significantly higher proportion of G1 stage cells (85% to 91%) than those at 6 and 12 months (66% to 74%, P<0.01). The blastocyst rate of reconstructed embryos originating from newborn, 1-, 2-, 4-month-old donor pigs was 6.06% to 7.69% with no significant difference from that in fetus fibroblast group (8.06%). It was concluded that <4-month-old adult Bama miniature pigs represent a better donor cell resource than elder pigs.

  8. Estrogen Receptor Alpha (ERα)-Associated Fibroblasts Promote Cell Growth in Prostate Cancer.

    PubMed

    Da, Jun; Lu, Mujun; Wang, Zhong

    2015-12-01

    Estrogen receptor (ER) is expressed in cancer-associated fibroblasts (CAFs) in the stromal compartment of cancerous prostate. However, the effect of ERα in CAF cells on prostate cancer (PCa) cell growth remains unclear. We used lentiviral transduction to stably express ERα in CAF cells isolated from transgenic adenocarcinoma of the mouse prostate model. MTT and 3D colony-formation assays demonstrated that conditioned medium from ERα-expressing CAF cells (CAF-ERα+) promoted cell proliferation and colony growth of various PCa cell lines, such as PC3, LNCaP, 22RV1, and C4-2. We further confirmed the in vitro data by orthotopically co-implanting 22RV1, transfected with firefly luciferase, and CAF-ERα+ cells in vivo using mouse model. Mice co-implanted with CAF-ERα+ exhibited stronger luciferase signals and bigger tumor size compared to animals co-implanted with CAF that do not express ER. Our results demonstrate that ER expressed in CAF might play a pro-proliferative role in PCa. PMID:27259327

  9. Magnetite nanoparticles induced adaptive mechanisms counteract cell death in human pulmonary fibroblasts.

    PubMed

    Radu, Mihaela; Dinu, Diana; Sima, Cornelia; Burlacu, Radu; Hermenean, Anca; Ardelean, Aurel; Dinischiotu, Anca

    2015-10-01

    Magnetite nanoparticles (MNP) have attracted great interest for biomedical applications due to their unique chemical and physical properties, but the MNP impact on human health is not fully known. Consequently, our study proposes to highlight the biochemical mechanisms that underline the toxic effects of MNP on a human lung fibroblast cell line (MRC-5). The cytotoxicity generated by MNP in MRC-5 cells was dose and time-dependent. MNP-treated MRC-5 cells accumulated large amount of iron and reactive oxygen species (ROS) and exhibited elevated antioxidant scavenger enzymes. Reduced glutathione (GSH) depletion and enhanced lipid peroxidation (LPO) processes were also observed. The cellular capacity to counteract the oxidative damage was sustained by high levels of heat shock protein 60 (Hsp60), a protein that confers resistance against ROS attack and inhibition of cell death. While significant augmentations in nitric oxide (NO) and prostaglandine E2 (PGE2) levels were detected after 72 h of MNP-exposure only, caspase-1 was activated earlier starting with 24h post-treatment. Taken together, our results suggest that MRC-5 cells have the capacity to develop cell protection mechanisms against MNP. Detailed knowledge of the mechanisms induced by MNP in cell culture could be essential for their prospective use in various in vivo biochemical applications. PMID:26065626

  10. Deep dermal fibroblast profibrotic characteristics are enhanced by bone marrow-derived mesenchymal stem cells.

    PubMed

    Ding, Jie; Ma, Zengshuan; Shankowsky, Heather A; Medina, Abelardo; Tredget, Edward E

    2013-01-01

    Hypertrophic scars are a significant fibroproliferative disorder complicating deep injuries to the skin. We hypothesize that activated deep dermal fibroblasts are subject to regulation by bone marrow-derived mesenchymal stem cells (BM-MSCs), which leads to the development of excessive fibrosis following deep dermal injury. We found that the expression of fibrotic factors was higher in deep burn wounds compared with superficial burn wounds collected from burn patients with varying depth of skin injury. We characterized deep and superficial dermal fibroblasts, which were cultured from the deep and superficial dermal layers of normal uninjured skin obtained from abdominoplasty patients, and examined the paracrine effects of BM-MSCs on the fibrotic activities of the cells. In vitro, deep dermal fibroblasts were found higher in the messenger RNA (mRNA) levels of type 1 collagen, alpha smooth muscle actin, transforming growth factor beta, stromal cell-derived factor 1, and tissue inhibitor of metalloproteinase 1, an inhibitor of collagenase (matrix metalloproteinase 1). As well, deep dermal fibroblasts had low matrix metalloproteinase 1 mRNA, produced more collagen, and contracted collagen lattices significantly greater than superficial fibroblasts. By co-culturing layered fibroblasts with BM-MSCs in a transwell insert system, BM-MSCs enhanced the fibrotic behavior of deep dermal fibroblasts, which suggests a possible involvement of BM-MSCs in the pathogenesis of hypertrophic scarring.

  11. Fetal fibroblasts and keratinocytes with immunosuppressive properties for allogeneic cell-based wound therapy.

    PubMed

    Zuliani, Thomas; Saiagh, Soraya; Knol, Anne-Chantal; Esbelin, Julie; Dréno, Brigitte

    2013-01-01

    Fetal skin heals rapidly without scar formation early in gestation, conferring to fetal skin cells a high and unique potential for tissue regeneration and scar management. In this study, we investigated the possibility of using fetal fibroblasts and keratinocytes to stimulate wound repair and regeneration for further allogeneic cell-based therapy development. From a single fetal skin sample, two clinical batches of keratinocytes and fibroblasts were manufactured and characterized. Tolerogenic properties of the fetal cells were investigated by allogeneic PBMC proliferation tests. In addition, the potential advantage of fibroblasts/keratinocytes co-application for wound healing stimulation has been examined in co-culture experiments with in vitro scratch assays and a multiplex cytokines array system. Based on keratin 14 and prolyl-4-hydroxylase expression analyses, purity of both clinical batches was found to be above 98% and neither melanocytes nor Langerhans cells could be detected. Both cell types demonstrated strong immunosuppressive properties as shown by the dramatic decrease in allogeneic PBMC proliferation when co-cultured with fibroblasts and/or keratinocytes. We further showed that the indoleamine 2,3 dioxygenase (IDO) activity is required for the immunoregulatory activity of fetal skin cells. Co-cultures experiments have also revealed that fibroblasts-keratinocytes interactions strongly enhanced fetal cells secretion of HGF, GM-CSF, IL-8 and to a lesser extent VEGF-A. Accordingly, in the in vitro scratch assays the fetal fibroblasts and keratinocytes co-culture accelerated the scratch closure compared to fibroblast or keratinocyte mono-cultures. In conclusion, our data suggest that the combination of fetal keratinocytes and fibroblasts could be of particular interest for the development of a new allogeneic skin substitute with immunomodulatory activity, acting as a reservoir for wound healing growth factors.

  12. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    SciTech Connect

    Berndt, Alexander; Büttner, Robert; Gühne, Stefanie; Gleinig, Anna; Richter, Petra; Chen, Yuan; Franz, Marcus; Liebmann, Claus

    2014-04-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM{sub TGF}, FCM{sub PDGF}) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCM{sub B}). FCM{sub TGF} stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM{sub TGF}≫FCM{sub PDGF} induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM{sub TGF}>FCM{sub PDGF}) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin

  13. Cancer: An Oxidative Crosstalk between Solid Tumor Cells and Cancer Associated Fibroblasts

    PubMed Central

    Arcucci, Alessandro; Ruocco, Maria Rosaria; Granato, Giuseppina; Sacco, Anna Maria

    2016-01-01

    Redox balance is associated with the regulation of several cell signalling pathways and functions. In fact, under physiological conditions, cells maintain a balance between oxidant and antioxidant systems, and reactive oxygen species (ROS) can act as second messengers to regulate cell proliferation, cell death, and other physiological processes. Cancer tissues usually contain higher levels of ROS than normal tissues, and this ROS overproduction is associated with tumor development. Neoplastic tissues are very heterogeneous systems, composed of tumor cells and microenvironment that has a critical role in tumor progression. Cancer associated fibroblasts (CAFs) represent the main cell type of tumor microenvironment, and they contribute to tumor growth by undergoing an irreversible activation process. It is known that ROS can be transferred from cancer cells to fibroblasts. In particular, ROS affect the behaviour of CAFs by promoting the conversion of fibroblasts to myofibroblasts that support tumor progression and dissemination. Furthermore, the wrecking of redox homeostasis in cancer cells and tumor microenvironment induces a metabolic reprogramming in tumor cells and cancer associated fibroblasts, giving advantage to cancer growth. This review describes the role of ROS in tumor growth, by focusing on CAFs activation and metabolic interactions between cancer cells and stromal fibroblasts. PMID:27595103

  14. Cancer: An Oxidative Crosstalk between Solid Tumor Cells and Cancer Associated Fibroblasts

    PubMed Central

    Arcucci, Alessandro; Ruocco, Maria Rosaria; Granato, Giuseppina; Sacco, Anna Maria

    2016-01-01

    Redox balance is associated with the regulation of several cell signalling pathways and functions. In fact, under physiological conditions, cells maintain a balance between oxidant and antioxidant systems, and reactive oxygen species (ROS) can act as second messengers to regulate cell proliferation, cell death, and other physiological processes. Cancer tissues usually contain higher levels of ROS than normal tissues, and this ROS overproduction is associated with tumor development. Neoplastic tissues are very heterogeneous systems, composed of tumor cells and microenvironment that has a critical role in tumor progression. Cancer associated fibroblasts (CAFs) represent the main cell type of tumor microenvironment, and they contribute to tumor growth by undergoing an irreversible activation process. It is known that ROS can be transferred from cancer cells to fibroblasts. In particular, ROS affect the behaviour of CAFs by promoting the conversion of fibroblasts to myofibroblasts that support tumor progression and dissemination. Furthermore, the wrecking of redox homeostasis in cancer cells and tumor microenvironment induces a metabolic reprogramming in tumor cells and cancer associated fibroblasts, giving advantage to cancer growth. This review describes the role of ROS in tumor growth, by focusing on CAFs activation and metabolic interactions between cancer cells and stromal fibroblasts.

  15. Cancer: An Oxidative Crosstalk between Solid Tumor Cells and Cancer Associated Fibroblasts.

    PubMed

    Arcucci, Alessandro; Ruocco, Maria Rosaria; Granato, Giuseppina; Sacco, Anna Maria; Montagnani, Stefania

    2016-01-01

    Redox balance is associated with the regulation of several cell signalling pathways and functions. In fact, under physiological conditions, cells maintain a balance between oxidant and antioxidant systems, and reactive oxygen species (ROS) can act as second messengers to regulate cell proliferation, cell death, and other physiological processes. Cancer tissues usually contain higher levels of ROS than normal tissues, and this ROS overproduction is associated with tumor development. Neoplastic tissues are very heterogeneous systems, composed of tumor cells and microenvironment that has a critical role in tumor progression. Cancer associated fibroblasts (CAFs) represent the main cell type of tumor microenvironment, and they contribute to tumor growth by undergoing an irreversible activation process. It is known that ROS can be transferred from cancer cells to fibroblasts. In particular, ROS affect the behaviour of CAFs by promoting the conversion of fibroblasts to myofibroblasts that support tumor progression and dissemination. Furthermore, the wrecking of redox homeostasis in cancer cells and tumor microenvironment induces a metabolic reprogramming in tumor cells and cancer associated fibroblasts, giving advantage to cancer growth. This review describes the role of ROS in tumor growth, by focusing on CAFs activation and metabolic interactions between cancer cells and stromal fibroblasts. PMID:27595103

  16. Derivation and characterization of goat fetal fibroblast cells induced with human telomerase reverse transcriptase.

    PubMed

    Xie, Ying; Zhao, Xiaoe; Jia, Hongxiang; Ma, Baohua

    2013-01-01

    Fetal fibroblast cells (FFCs) are often used as donor cells for somatic cell nuclear transfer (SCNT) because they are easy to culture and suitable for genetic manipulation. However, through genetic modification process, which required FFCs to be cultured in vitro for several passages, cells tended to age very rapidly and became inappropriate for SCNT. Human telomerase reverse transcriptase (hTERT) possessed the activity of human telomerase and maintains telomere in dividing cells; therefore, hTERT can be transfected into somatic cells to extend their lifespan. In this study, we transfected a Xinong Saanen Dairy Goat FFC line with hTERT. Then, we tested several characteristics of transfected cells, including growth curve, expression and activity of hTERT, tumorigenicity, and expression of oct4 and nanog. The result showed that hTERT could significantly extend the lifespan of transfected cells in vitro. hTERT mRNA was expressed in hTERT-transfected cells. Moreover, hTERT-transfected cells presented enhanced telomerase activity and longer telomere than untransfected cells at the same passage. On the other hand, hTERT-transfected cells can maintain normal karyotype even after several times of subculture in vitro. After inoculation of hTERT-transfected cells in nude mouse, none of them developed tumors on the vaccination site. Interestingly, transfection of hTERT can improve expression of nanog and oct4 in Xinong Saanen Dairy Goat FFCs, especially in low generation after transfection, but with increasing subculture, this effect gradually weakened. PMID:23271363

  17. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene.

    PubMed

    Reznickova, Alena; Novotna, Zdenka; Kolska, Zdenka; Kasalkova, Nikola Slepickova; Rimpelova, Silvie; Svorcik, Vaclav

    2015-01-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells. PMID:25953566

  18. Generation of Arbas Cashmere Goat Induced Pluripotent Stem Cells Through Fibroblast Reprogramming.

    PubMed

    Tai, Dapeng; Liu, Pengxia; Gao, Jing; Jin, Muzi; Xu, Teng; Zuo, Yongchun; Liang, Hao; Liu, Dongjun

    2015-08-01

    Various factors affect the process of obtaining stable Arbas cashmere goat embryonic stem cells (ESCs), for example, the difficulty in isolating cells at the appropriate stage of embryonic development, the in vitro culture environment, and passage methods. With the emergence of induced pluripotent stem cell (iPSC) technology, it has become possible to use specific genes to induce somatic cell differentiation in PSCs. We transferred OCT4, SOX2, c-MYC, and KLF4 into Arbas cashmere goat fetal fibroblasts, then induced and cultured them using a drug-inducible system to obtain Arbas goat iPSCs that morphologically resembled mouse iPSCs. After identification, the obtained goat iPSCs expressed ESC markers, had a normal karyotype, could differentiate into embryoid bodies in vitro, and could differentiate into three germ layer cell types and form teratomas in vivo. We used microarray gene expression profile analysis to elucidate the reprogramming process. Our results provide the experimental basis for establishing cashmere goat iPSC lines and for future in-depth studies on molecular mechanism of cashmere goat somatic cell reprogramming.

  19. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene.

    PubMed

    Reznickova, Alena; Novotna, Zdenka; Kolska, Zdenka; Kasalkova, Nikola Slepickova; Rimpelova, Silvie; Svorcik, Vaclav

    2015-01-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells.

  20. Deriving cell lines from zebrafish embryos and tumors.

    PubMed

    Choorapoikayil, Suma; Overvoorde, John; den Hertog, Jeroen

    2013-09-01

    Over the last two decades the zebrafish has emerged as a powerful model organism in science. The experimental accessibility, the broad range of zebrafish mutants, and the highly conserved genetic and biochemical pathways between zebrafish and mammals lifted zebrafish to become one of the most attractive vertebrate models to study gene function and to model human diseases. Zebrafish cell lines are highly attractive to investigate cell biology and zebrafish cell lines complement the experimental tools that are available already. We established a straightforward method to culture cells from a single zebrafish embryo or a single tumor. Here we describe the generation of fibroblast-like cell lines from wild-type and ptenb(-/-) embryos and an endothelial-like cell line from a tumor of an adult ptena(+/-)ptenb(-/-) zebrafish. This protocol can easily be adapted to establish stable cell lines from any mutant or transgenic zebrafish line and the average time to obtain a pro-stable cell line is 3-5 months.

  1. Fibroblast growth factor receptor-3 regulates Paneth cell lineage allocation and accrual of epithelial stem cells during murine intestinal development.

    PubMed

    Vidrich, Alda; Buzan, Jenny M; Brodrick, Brooks; Ilo, Chibuzo; Bradley, Leigh; Fendig, Kirstin Skaar; Sturgill, Thomas; Cohn, Steven M

    2009-07-01

    Fibroblast growth factor receptor 3 (FGFR-3) is expressed in the lower crypt epithelium, where stem cells of the intestine reside. The role of FGFR-3 signaling in regulating features of intestinal morphogenesis was examined in FGFR-3-null (FGFR-3(-/-)) mice. FGFR-3(-/-) mice had only about half the number of intestinal crypts and a marked decrease in the number of functional clonogenic stem cells, as assessed by an in vivo microcolony-forming assay, compared with wild-type littermates. A marked deficit in allocation of progenitor cells to Paneth cell differentiation was noted, although all the principal epithelial lineages were represented in FGFR-3(-/-) mice. The total cellular content and nuclear localization of beta-catenin protein were reduced in FGFR-3(-/-) mice, as was expression of cyclin D1 and matrix metalloproteinase-7, major downstream targets of beta-catenin/T cell factor-4 (Tcf-4) signaling. Activation of FGFR-3 in Caco-2 cells, an intestinal epithelial cell line, abrogated the fall in beta-catenin/Tcf-4 signaling activity that is normally observed in these cells as cultures become progressively more confluent. These findings are consistent with the hypothesis that, during intestinal development, FGFR-3 signaling regulates crypt epithelial stem cell expansion and crypt morphogenesis, as well as Paneth cell lineage specification, through beta-catenin/Tcf-4-dependent and -independent pathways. PMID:19407216

  2. Suppression of oxidative phosphorylation in mouse embryonic fibroblast cells deficient in apurinic/apyrimidinic endonuclease

    PubMed Central

    Suganya, Rangaswamy; Chakraborty, Anirban; Miriyala, Sumitra; Hazra, Tapas K.; Izumi, Tadahide

    2015-01-01

    The mammalian apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is an essential DNA repair/gene regulatory protein. Decrease of APE1 in cells by inducible shRNA knockdown or by conditional gene knockout caused apoptosis. Here we succeeded in establishing a unique mouse embryonic fibroblast (MEF) line expressing APE1 at a level far lower than those achieved with shRNA knockdown. The cells, named MEFla (MEFlowAPE1), were hypersensitive to methyl methanesulfonate (MMS), and showed little activity for repairing AP-sites and MMS induced DNA damage. While these results were consistent with the essential role of APE1 in repair of AP sites, the MEFla cells grew normally and the basal activation of poly(ADP-ribose) polymerases in MEFla was lower than that in the wild-type MEF (MEFwt), indicating the low DNA damage stress in MEFla under the normal growth condition. Oxidative phosphorylation activity in MEFla was lower than in MEFwt, while the glycolysis rates in MEFla were higher than in MEFwt. In addition, we observed decreased intracellular oxidative stress in MEFla. These results suggest that cells with low APE1 reversibly suppress mitochondrial respiration and thereby reduce DNA damage stress and increases the cell viability. PMID:25645679

  3. Suppression of oxidative phosphorylation in mouse embryonic fibroblast cells deficient in apurinic/apyrimidinic endonuclease.

    PubMed

    Suganya, Rangaswamy; Chakraborty, Anirban; Miriyala, Sumitra; Hazra, Tapas K; Izumi, Tadahide

    2015-03-01

    The mammalian apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is an essential DNA repair/gene regulatory protein. Decrease of APE1 in cells by inducible shRNA knockdown or by conditional gene knockout caused apoptosis. Here we succeeded in establishing a unique mouse embryonic fibroblast (MEF) line expressing APE1 at a level far lower than those achieved with shRNA knockdown. The cells, named MEF(la) (MEF(lowAPE1)), were hypersensitive to methyl methanesulfonate (MMS), and showed little activity for repairing AP-sites and MMS induced DNA damage. While these results were consistent with the essential role of APE1 in repair of AP sites, the MEF(la) cells grew normally and the basal activation of poly(ADP-ribose) polymerases in MEF(la) was lower than that in the wild-type MEF (MEF(wt)), indicating the low DNA damage stress in MEF(la) under the normal growth condition. Oxidative phosphorylation activity in MEF(la) was lower than in MEF(wt), while the glycolysis rates in MEF(la) were higher than in MEF(wt). In addition, we observed decreased intracellular oxidative stress in MEF(la). These results suggest that cells with low APE1 reversibly suppress mitochondrial respiration and thereby reduce DNA damage stress and increases the cell viability.

  4. Thyroid cell lines in research on goitrogenesis.

    PubMed

    Gerber, H; Peter, H J; Asmis, L; Studer, H

    1991-12-01

    Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes. PMID:1726925

  5. The Effects of Brazilian Green Propolis against Excessive Light-Induced Cell Damage in Retina and Fibroblast Cells

    PubMed Central

    Murase, Hiromi; Shimazawa, Masamitsu; Kakino, Mamoru; Ichihara, Kenji; Tsuruma, Kazuhiro; Hara, Hideaki

    2013-01-01

    Background. We investigated the effects of Brazilian green propolis and its constituents against white light- or UVA-induced cell damage in mouse retinal cone-cell line 661W or human skin-derived fibroblast cells (NB1-RGB). Methods. Cell damage was induced by 3,000lx white light for 24 h or 4/10 J/cm2 UVA exposure. Cell viability was assessed by Hoechst33342 and propidium iodide staining or by tetrazolium salt (WST-8) cell viability assay. The radical scavenging activity of propolis induced by UVA irradiation in NB1-RGB cells was measured using a reactive-oxygen-species- (ROS-) sensitive probe CM-H2DCFDA. Moreover, the effects of propolis on the UVA-induced activation of p38 and extracellular signal-regulated kinase (ERK) were examined by immunoblotting. Results. Treatment with propolis and two dicaffeoylquinic acids significantly inhibited the decrease in cell viability induced by white light in 661W. Propolis and its constituents inhibited the decrease in cell viability induced by UVA in NB1-RGB. Moreover, propolis suppressed the intracellular ROS production by UVA irradiation. Propolis also inhibited the levels of phosphorylated-p38 and ERK by UVA irradiation. Conclusion. Brazilian green propolis may become a major therapeutic candidate for the treatment of AMD and skin damage induced by UV irradiation. PMID:24416064

  6. Morphology and growth of murine cell lines on model biomaterials.

    PubMed

    Godek, Marisha L; Duchsherer, Nichole L; McElwee, Quinn; Grainger, David W

    2004-01-01

    All biomaterial implants are assaulted by the host "foreign body" immune response. Understanding the complex, dynamic relationship between cells, biomaterials and milieu is an important first step towards controlling this reaction. Material surface chemistry dictates protein adsorption, and thus subsequent cell interactions. The cell-implant is a microenvironment involving 1) proteins that coat the surface and 2) cells that interact with these proteins. Macrophages and fibroblasts are two cell types that interact with proteins on biomaterials surfaces and play different related, but equally important, roles in biomaterials rejection and implant failure. Growth characteristics of four murine cell lines on model biomaterials surfaces were examined. Murine monocyte-macrophages (RAW 264.7 and J774A.1), murine macrophage (IC-21) and murine fibroblast (NIH 3T3) cell lines were tested to determine whether differences exist in adhesion, proliferation, differentiation, spreading, and fusion (macrophage lineages only) on these surfaces. Differences were observed in the ability of cells to adhere to and subsequently proliferate on polymer surfaces. (Monocyte-) macrophages grew well on all surfaces tested and growth rates were measured on three representative polymer biomaterials surfaces: tissue culture polystyrene (TCPS), polystyrene, and Teflon-AF. J774A.1 cultures grown on TCPS and treated with exogenous cytokines IL-4 and GM-CSF were observed to contain multinucleate cells with unusual morphologies. Thus, (monocyte-) macrophage cell lines were found to effectively attach to and interrogate each surface presented, with evidence of extensive spreading on Teflon-AF surfaces, particularly in the IC-21 cultures. The J774A.1 line was able to proliferate and/or differentiate to more specialized cell types (multinucleate/dendritic-like cells) in the presence of soluble chemokine cues. PMID:15133927

  7. In vitro cytotoxic and anti-inflammatory effects of myrrh oil on human gingival fibroblasts and epithelial cells.

    PubMed

    Tipton, D A; Lyle, B; Babich, H; Dabbous, M Kh

    2003-06-01

    Limited scientific studies suggest that myrrh (Commiphora molmol) has antibacterial and anti-inflammatory activities. This study determined myrrh oil (MO) cytotoxicity to human gingival fibroblasts and epithelial cells and its effect, measured by ELISA, on interleukin (IL)-1beta-stimulated IL-6 and IL-8 production. Cell viability and cytotoxicity were determined by metabolic reduction of a tetrazolium salt to a formazan dye (MTT assay) and by release of lactate dehydrogenase (LDH) from membrane damaged (LDH release assay) cells, respectively. Based on the MTT assay, 24- and 48-h exposures to fibroblast and epithelial cell (24-h only) viability. At 48 h, 0.0005-0.001% MO decreased epithelial cell viability 30-50%. After 24 and 48 h, MO, at >/=0.005%, maximally decreased viability of all cell lines. In the LDH release assay, exposure to cells. At 24 h, >/=0.0025% MO caused maximal cytotoxicity; cells were more susceptible to cytotoxic effects of MO. There was little or no detectable IL-1beta-stimulated production of IL-6 or IL-8 by cells exposed to >/=0.0025% MO, probably reflective of loss of viability. At subtoxic MO levels (0.00001-0.001%), there was a significant reduction of IL-1beta-stimulated IL-6 and IL-8 production by fibroblasts, but not by epithelial cells. PMID:12781209

  8. Brief Azacytidine Step Allows The Conversion of Suspension Human Fibroblasts into Neural Progenitor-Like Cells

    PubMed Central

    Mirakhori, Fahimeh; Zeynali, Bahman; Kiani, Sahar; Baharvand, Hossein

    2015-01-01

    In recent years transdifferentiation technology has enabled direct conversion of human fibroblasts to become a valuable, abundant and accessible cell source for patient-specific induced cell generation in biomedical research. The majority of transdifferentiation approaches rely upon viral gene delivery which due to random integration with the host genome can cause genome instability and tumorigenesis upon transplantation. Here, we provide a simple way to induce neural progenitor-like cells from human fibroblasts without genetic manipulation by changing physicochemical culture properties from monolayer culture into a suspension in the presence of a chemical DNA methyltransferase inhibitor agent, Azacytidine. We have demonstrated the expression of neural progenitor-like markers, morphology and the ability to spontaneously differentiate into neural-like cells. This approach is simple, inexpensive, lacks genetic manipulation and could be a foundation for future chemical neural transdifferentiation and a safe induction of neural progenitor cells from human fibroblasts for clinical applications. PMID:25870845

  9. Priming cancer cells for drug resistance: role of the fibroblast niche

    PubMed Central

    FANG, Wei Bin; YAO, Min; CHENG, Nikki

    2014-01-01

    Conventional and targeted chemotherapies remain integral strategies to treat solid tumors. Despite the large number of anti-cancer drugs available, chemotherapy does not completely eradicate disease. Disease recurrence and the growth of drug resistant tumors remain significant problems in anti-cancer treatment. To develop more effective treatment strategies, it is important to understand the underlying cellular and molecular mechanisms of drug resistance. It is generally accepted that cancer cells do not function alone, but evolve through interactions with the surrounding tumor microenvironment. As key cellular components of the tumor microenvironment, fibroblasts regulate the growth and progression of many solid tumors. Emerging studies demonstrate that fibroblasts secrete a multitude of factors that enable cancer cells to become drug resistant. This review will explore how fibroblast secretion of soluble factors act on cancer cells to enhance cancer cell survival and cancer stem cell renewal, contributing to the development of drug resistant cancer. PMID:25045348

  10. CRISPLD2 (LGL1) inhibits proinflammatory mediators in human fetal, adult, and COPD lung fibroblasts and epithelial cells.

    PubMed

    Zhang, Hui; Kho, Alvin T; Wu, Qing; Halayko, Andrew J; Limbert Rempel, Karen; Chase, Robert P; Sweezey, Neil B; Weiss, Scott T; Kaplan, Feige

    2016-09-01

    Chronic lung disease of prematurity/bronchopulmonary dysplasia (BPD) is the leading cause of perinatal morbidity in developed countries. Inflammation is a prominent finding. Currently available interventions have associated toxicities and limited efficacy. While BPD often resolves in childhood, survivors of preterm birth are at risk for acquired respiratory disease in early life and are more likely to develop chronic obstructive pulmonary disease (COPD) in adulthood. We previously cloned Crispld2 (Lgl1), a glucocorticoid-regulated mesenchymal secretory protein that modulates lung branching and alveogenesis through mesenchymal-epithelial interactions. Absence of Crispld2 is embryonic lethal. Heterozygous Crispld2+/- mice display features of BPD, including distal airspace enlargement, disruption of elastin, and neonatal lung inflammation. CRISPLD2 also plays a role in human fetal lung fibroblast cell expansion, migration, and mesenchymal-epithelial signaling. This study assessed the effects of endogenous and exogenous CRISPLD2 on expression of proinflammatory mediators in human fetal and adult (normal and COPD) lung fibroblasts and epithelial cells. CRISPLD2 expression was upregulated in a lipopolysaccharide (LPS)-induced human fetal lung fibroblast line (MRC5). LPS-induced upregulation of the proinflammatory cytokines IL-8 and CCL2 was exacerbated in MRC5-CRISPLD2(knockdown) cells. siRNA suppression of endogenous CRISPLD2 in adult lung fibroblasts (HLFs) led to augmented expression of IL-8, IL-6, CCL2. LPS-stimulated expression of proinflammatory mediators by human lung epithelial HAEo- cells was attenuated by purified secretory CRISPLD2. RNA sequencing results from HLF-CRISPLD2(knockdown) suggest roles for CRISPLD2 in extracellular matrix and in inflammation. Our data suggest that suppression of CRISPLD2 increases the risk of lung inflammation in early life and adulthood. PMID:27597766

  11. A GTPase controls cell-substrate adhesion in Xenopus XTC fibroblasts.

    PubMed

    Symons, M H; Mitchison, T J

    1992-09-01

    Cell-substrate adhesion is crucial at various stages of development and for the maintenance of normal tissues. Little is known about the regulation of these adhesive interactions. To investigate the role of GTPases in the control of cell morphology and cell-substrate adhesion we have injected guanine nucleotide analogs into Xenopus XTC fibroblasts. Injection of GTP gamma S inhibited ruffling and increased spreading, suggesting an increase in adhesion. To further investigate this, we made use of GRGDSP, a peptide which inhibits binding of integrins to vitronectin and fibronectin. XTC fibroblasts injected with non-hydrolyzable analogs of GTP took much more time to round up than mock-injected cells in response to treatment with GRGDSP, while GDP beta S-injected cells rounded up in less time than controls. Injection with GTP gamma S did not inhibit cell rounding induced by trypsin however, showing that cell contractility is not significantly affected by the activation of GTPases. These data provide evidence for the existence of a GTPase which can control cell-substrate adhesion from the cytoplasm. Treatment of XTC fibroblasts with the phorbol ester 12-o-tetradecanoylphorbol-13-acetate reduced cell spreading and accelerated cell rounding in response to GRGDSP, which is essentially opposite to the effect exerted by non-hydrolyzable GTP analogs. These results suggest the existence of at least two distinct pathways controlling cell-substrate adhesion in XTC fibroblasts, one depending on a GTPase and another one involving protein kinase C.

  12. Non-Viral Generation of Neural Precursor-like Cells from Adult Human Fibroblasts

    PubMed Central

    Maucksch, C; Firmin, E; Butler-Munro, C; Montgomery, JM; Dottori, M; Connor, B

    2012-01-01

    Recent studies have reported direct reprogramming of human fibroblasts to mature neurons by the introduction of defined neural genes. This technology has potential use in the areas of neurological disease modeling and drug development. However, use of induced neurons for large-scale drug screening and cell-based replacement strategies is limited due to their inability to expand once reprogrammed. We propose it would be more desirable to induce expandable neural precursor cells directly from human fibroblasts. To date several pluripotent and neural transcription factors have been shown to be capable of converting mouse fibroblasts to neural stem/precursor-like cells when delivered by viral vectors. Here we extend these findings and demonstrate that transient ectopic insertion of the transcription factors SOX2 and PAX6 to adult human fibroblasts through use of non-viral plasmid transfection or protein transduction allows the generation of induced neural precursor (iNP) colonies expressing a range of neural stem and pro-neural genes. Upon differentiation, iNP cells give rise to neurons exhibiting typical neuronal morphologies and expressing multiple neuronal markers including tyrosine hydroxylase and GAD65/67. Importantly, iNP-derived neurons demonstrate electrophysiological properties of functionally mature neurons with the capacity to generate action potentials. In addition, iNP cells are capable of differentiating into glial fibrillary acidic protein (GFAP)-expressing astrocytes. This study represents a novel virusfree approach for direct reprogramming of human fibroblasts to a neural precursor fate. PMID:24693194

  13. Basal Cell Carcinoma in Gorlin’s Patients: a Matter of Fibroblasts-Led Protumoral Microenvironment?

    PubMed Central

    Gache, Yannick; Brellier, Florence; Rouanet, Sophie; Al-Qaraghuli, Sahar; Goncalves-Maia, Maria; Burty-Valin, Elodie; Barnay, Stéphanie; Scarzello, Sabine; Ruat, Martial; Sevenet, Nicolas; Avril, Marie-Françoise; Magnaldo, Thierry

    2015-01-01

    Basal cell carcinoma (BCC) is the commonest tumor in human. About 70% sporadic BCCs bear somatic mutations in the PATCHED1 tumor suppressor gene which encodes the receptor for the Sonic Hedgehog morphogen (SHH). PATCHED1 germinal mutations are associated with the dominant Nevoid Basal Cell Carcinoma Syndrome (NBCCS), a major hallmark of which is a high susceptibility to BCCs. Although the vast majority of sporadic BCCs arises exclusively in sun exposed skin areas, 40 to 50% BCCs from NBCCS patients develop in non photo-exposed skin. Since overwhelming evidences indicate that microenvironment may both be modified by- and influence the- epithelial tumor, we hypothesized that NBCCS fibroblasts could contribute to BCCs in NBCCS patients, notably those developing in non photo-exposed skin areas. The functional impact of NBCCS fibroblasts was then assessed in organotypic skin cultures with control keratinocytes. Onset of epidermal differentiation was delayed in the presence of primary NBCCS fibroblasts. Unexpectedly, keratinocyte proliferation was severely reduced and showed high levels of nuclear P53 in both organotypic skin cultures and in fibroblast-led conditioning experiments. However, in spite of increased levels of senescence associated β-galactosidase activity in keratinocytes cultured in the presence of medium conditioned by NBCCS fibroblasts, we failed to observe activation of P16 and P21 and then of bona fide features of senescence. Constitutive extinction of P53 in WT keratinocytes resulted in an invasive phenotype in the presence of NBCCS fibroblasts. Finally, we found that expression of SHH was limited to fibroblasts but was dependent on the presence of keratinocytes. Inhibition of SHH binding resulted in improved epidermal morphogenesis. Altogether, these data suggest that the repertoire of diffusible factors (including SHH) expressed by primary NBCCS fibroblasts generate a stress affecting keratinocytes behavior and epidermal homeostasis. Our findings

  14. In vitro biological evaluation of beta-TCP/HDPE--A novel orthopedic composite: a survey using human osteoblast and fibroblast bone cells.

    PubMed

    Homaeigohar, S Sh; Shokrgozar, M A; Khavandi, A; Sadi, A Yari

    2008-02-01

    Beta-tricalcium phosphate reinforced high density polyethylene (beta-TCP/HDPE) was prepared to simulate bone composition and to study its capacity to act as bone tissue. This material was produced by replacing the mineral component and collagen soft tissue of the bone with beta-TCP and HDPE, respectively. The biocompatibility of the composite samples with different volume fractions of TCP (20, 30 and 40 vol %) was examined in vitro using two osteoblast cell lines G-292 and Saos-2, and also a type of fibroblast cell isolated from bone tissue, namely human bone fibroblast (HBF) by proliferation, and cell adhesion assays. Cell-material interaction with the surface of the composite samples was examined by scanning electron microscopy (SEM). The effect of beta-TCP/HDPE on the behavior of osteoblast and fibroblast cells was compared with those of composite and negative control samples; polyethylene (PE) and tissue culture polystyrene (TPS), respectively. In general, the results showed that the composite samples containing beta-TCP as reinforcement supported a higher rate of proliferation by various bone cells after 3, 7, and 14 days of incubation compared to the composite control sample. Furthermore, more osteoblast cells were attached to the surface of the composite samples when compared to the composite control samples after the above incubation periods (p < 0.05), while in the case of HBF an equal or even higher number of cells adhered to PE was observed. The number of adhered osteoblast cells was almost equal and in some days even higher than the number of adhered cells on negative control sample, while in the case of fibroblast this difference was significantly higher than TPS (p < 0.05). Adhered cells presented a normal morphology by SEM and many of the cells were observed to be undergoing cell division. These findings indicate that beta-TCP/HDPE composites are biocompatible, nontoxic, and act to stimulate proliferation and adhesion of the cells, whether osteoblast

  15. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells

    SciTech Connect

    Arora, S.; Jain, J.; Rajwade, J.M.; Paknikar, K.M.

    2009-05-01

    Primary cells are ideal for in vitro toxicity studies since they closely resemble tissue environment. Here, we report a detailed study on the in vitro interactions of 7-20 nm spherical silver nanoparticles (SNP) with primary fibroblasts and primary liver cells isolated from Swiss albino mice. The intended use of silver nanoparticles is in the form of a topical antimicrobial gel formulation for the treatment of burns and wounds. Upon exposure to SNP for 24 h, morphology of primary fibroblasts and primary liver cells remained unaltered up to 25 {mu}g/mL and 100 {mu}g/mL SNP, respectively, although with minor decrease in confluence. IC{sub 50} values for primary fibroblasts and primary liver cells as revealed by XTT assay were 61 {mu}g/mL and 449 {mu}g/mL, respectively. Ultra-thin sections of primary cells exposed to 1/2 IC{sub 50} SNP for 24 h, visualized under Transmission electron microscope showed the presence of dark, electron dense, spherical aggregates inside the mitochondria, and cytoplasm, probably representing the intracellular SNP. When the cells were challenged with {approx} 1/2 IC{sub 50} concentration of SNP (i.e. 30 {mu}g/mL and 225 {mu}g/mL for primary fibroblasts and primary liver cells, respectively), enhancement of GSH ({approx} 1.2 fold) and depletion of lipid peroxidation ({approx} 1.4 fold) were seen in primary fibroblasts which probably protect the cells from functional damage. In case of primary liver cells; increased levels of SOD ({approx} 1.4 fold) and GSH ({approx} 1.1 fold) as compared to unexposed cells were observed. Caspase-3 activity assay indicated that the SNP concentrations required for the onset of apoptosis were found to be much lower (3.12 {mu}g/mL in primary fibroblasts, 12.5 {mu}g/mL in primary liver cells) than the necrotic concentration (100 {mu}g/mL in primary fibroblasts, 500 {mu}g/mL in primary liver cells). These observations were confirmed by CLSM studies by exposure of cells to 1/2 IC{sub 50} SNP (resulting in apoptosis

  16. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells.

    PubMed

    Arora, S; Jain, J; Rajwade, J M; Paknikar, K M

    2009-05-01

    Primary cells are ideal for in vitro toxicity studies since they closely resemble tissue environment. Here, we report a detailed study on the in vitro interactions of 7-20 nm spherical silver nanoparticles (SNP) with primary fibroblasts and primary liver cells isolated from Swiss albino mice. The intended use of silver nanoparticles is in the form of a topical antimicrobial gel formulation for the treatment of burns and wounds. Upon exposure to SNP for 24 h, morphology of primary fibroblasts and primary liver cells remained unaltered up to 25 microg/mL and 100 microg/mL SNP, respectively, although with minor decrease in confluence. IC(50) values for primary fibroblasts and primary liver cells as revealed by XTT assay were 61 microg/mL and 449 microg/mL, respectively. Ultra-thin sections of primary cells exposed to 1/2 IC(50) SNP for 24 h, visualized under Transmission electron microscope showed the presence of dark, electron dense, spherical aggregates inside the mitochondria, and cytoplasm, probably representing the intracellular SNP. When the cells were challenged with approximately 1/2 IC(50) concentration of SNP (i.e. 30 microg/mL and 225 microg/mL for primary fibroblasts and primary liver cells, respectively), enhancement of GSH (approximately 1.2 fold) and depletion of lipid peroxidation (approximately 1.4 fold) were seen in primary fibroblasts which probably protect the cells from functional damage. In case of primary liver cells; increased levels of SOD ( approximately 1.4 fold) and GSH ( approximately 1.1 fold) as compared to unexposed cells were observed. Caspase-3 activity assay indicated that the SNP concentrations required for the onset of apoptosis were found to be much lower (3.12 microg/mL in primary fibroblasts, 12.5 microg/mL in primary liver cells) than the necrotic concentration (100 microg/mL in primary fibroblasts, 500 microg/mL in primary liver cells). These observations were confirmed by CLSM studies by exposure of cells to 1/2 IC(50) SNP

  17. In-Vitro Biocompatibility Studies of Plasma-Nitrided Titanium Alloy β-21S Using Fibroblast Cells

    NASA Astrophysics Data System (ADS)

    Mohan, L.; Raja, M. D.; Uma, T. S.; Rajendran, N.; Anandan, C.

    2016-04-01

    In the present work, titanium alloy β-21S was nitrided in a low-pressure RF plasma with 100% nitrogen and 20% hydrogen-diluted nitrogen at 800 °C for 4 h and the samples were evaluated for in-vitro biocompatibility by using NIH 3T3 fibroblast cell line. Cellular behavior was evaluated in terms of cell morphology and its viability. FESEM was exploited to observe the morphology of the cells fixed over the surface of the implant. Fibroblasts were seemed to be well distributed over the surface with its characteristic spindle-like shape. Over all, the results indicate that nitriding provided a compatible surface for cell attachment and cell growth. Cell viability and proliferation was assessed by using standard MTT assay. Compared with substrate, the nitrided samples exhibited high-percentage cell viability demonstrating their increased biocompatibility. In addition, the nitrided samples facilitate bone-like apatite formation and exhibited a gradual increase of apatite formation after immersion in Hanks' solution.

  18. NOTCH3 Is Induced in Cancer-Associated Fibroblasts and Promotes Angiogenesis in Oral Squamous Cell Carcinoma

    PubMed Central

    Kayamori, Kou; Katsube, Ken-ichi; Sakamoto, Kei; Ohyama, Yoshio; Hirai, Hideaki; Yukimori, Akane; Ohata, Yae; Akashi, Takumi; Saitoh, Masao; Harada, Kiyoshi; Harada, Hiroyuki; Yamaguchi, Akira

    2016-01-01

    Recent studies have shown that Notch signaling is involved in many types of cancers, including oral squamous cell carcinomas (OSCCs). However, the role of Notch signaling in the tumor microenvironment is not yet fully understood. In this study, we investigated the roles of NOTCH3 signaling in cancer associated fibroblasts (CAFs) in OSCCs. Immunohistochemical study of 93 human tongue OSCC cases indicated that about one third of OSCCs showed NOTCH3 expression in CAFs, and that this expression significantly correlated with tumor-size. In vitro study showed that OSCC cell lines, especially HO1-N-1 cells stimulated NOTCH3 expression in normal human dermal fibroblasts (NHDFs) through direct cell-to-cell contact. Immunohistochemical and morphometric analysis using human OSCC samples demonstrated that NOTCH3 expression in CAFs significantly correlated with micro-vessel density in cancer stroma. In vitro angiogenesis assays involving co-culture of NHDFs with HO1-N-1 and human umbilical endothelial cells (HUVECs), and NOTCH3 knockdown in NHDFs using siRNA, demonstrated that HO1-N-1 cells significantly promoted tube formation dependent on NOTCH3-expression in NHDFs. Moreover, NOTCH3 expression in CAFs was related to poor prognosis of the OSCC patients. This work provides a new insight into the role of Notch signaling in CAFs associated with tumor angiogenesis and the possibility of NOTCH3-targeted molecular therapy in OSCCs. PMID:27124156

  19. Modifications of glycosphingolipid profile and synthesis in normal rat fibroblasts and in syngeneic neoplastic cells at different subculture stages.

    PubMed

    Colombo, I; Sottocornola, E; Moretti, S; Meloni, M A; Pippia, P; Berra, B

    2000-05-31

    Glycosphingolipids are plasma membrane macromolecules involved in diversified recognition functions on the cell surface resulting in modulation of cell adhesion and differentiation. As the in vitro cellular system of the neoplastic cell line SGS/4A and syngeneic normal fibroblasts (FG) represents a useful tool for studies on molecular mechanisms regulating cell adhesion, neoplastic transformation and cellular ageing, we studied the changes of glycosphingolipid and of the enzymes involved in their metabolism in both cultured cells at different subculture stages. The FG subculture progression induces a drastic decrease of total glycosphingolipid content with consistent alterations in the molecular composition. In particular, a significant decrease of GM(3), a slight increase of GD(1a), the disappearance of 'b'-series gangliosides and the drastic reduction of triosylceramides were observed. On the contrary, the increasing number of SGS/4A subcultures, characterized by a specific and different glycosphingolipid composition as compared with FG cells, does not cause modifications. Although glycosyltransferase activity levels quite well parallel the glycosphingolipid patterns and can account for the noted variations, the mRNA expression analysis of two glycosyltransferases suggests that the in vitro cell ageing of normal rat fibroblasts causes drastic changes in the glycosphingolipid profile through the regulation, at either the transcriptional or post-translational level, of some biosynthetic enzymes.

  20. Suitability of human Tenon's fibroblasts as feeder cells for culturing human limbal epithelial stem cells.

    PubMed

    Scafetta, Gaia; Tricoli, Eleonora; Siciliano, Camilla; Napoletano, Chiara; Puca, Rosa; Vingolo, Enzo Maria; Cavallaro, Giuseppe; Polistena, Andrea; Frati, Giacomo; De Falco, Elena

    2013-12-01

    Corneal epithelial regeneration through ex vivo expansion of limbal stem cells (LSCs) on 3T3-J2 fibroblasts has revealed some limitations mainly due to the corneal microenvironment not being properly replicated, thus affecting long term results. Insights into the feeder cells that are used to expand LSCs and the mechanisms underlying the effects of human feeder cells have yet to be fully elucidated. We recently developed a standardized methodology to expand human Tenon's fibroblasts (TFs). Here we aimed to investigate whether TFs can be employed as feeder cells for LSCs, characterizing the phenotype of the co-cultures and assessing what human soluble factors are secreted. The hypothesis that TFs could be employed as alternative human feeder layer has not been explored yet. LSCs were isolated from superior limbus biopsies, co-cultured on TFs, 3T3-J2 or dermal fibroblasts (DFs), then analyzed by immunofluorescence (p63α), colony-forming efficiency (CFE) assay and qPCR for a panel of putative stem cell and epithelial corneal differentiation markers (KRT3). Co-cultures supernatants were screened for a set of soluble factors. Results showed that the percentage of p63α(+)LSCs co-cultured onto TFs was significantly higher than those on DFs (p = 0.032) and 3T3-J2 (p = 0.047). Interestingly, LSCs co-cultures on TFs exhibited both significantly higher CFE and mRNA expression levels of ΔNp63α than on 3T3-J2 and DFs (p < 0.0001), showing also significantly greater levels of soluble factors (IL-6, HGF, b-FGF, G-CSF, TGF-β3) than LSCs on DFs. Therefore, TFs could represent an alternative feeder layer to both 3T3-J2 and DFs, potentially providing a suitable microenvironment for LSCs culture. PMID:23832306

  1. Implanted neonatal human dermal fibroblasts influence the recruitment of endothelial cells in mice

    PubMed Central

    Guerreiro, Susana G.; Brochhausen, Christoph; Negrão, Rita; Barbosa, Mário A.; Unger, Ronald E.; Kirkpatrick, C. James; Soares, Raquel; Granja, Pedro L.

    2012-01-01

    The vascularization of new tissue within a reasonable time is a crucial prerequisite for the success of different cell- and material-based strategies. Considering that angiogenesis is a multi-step process involving humoral and cellular regulatory components, only in vivo assays provide the adequate information about vessel formation and the recruitment of endothelial cells. The present study aimed to investigate if neonatal human dermal fibroblasts could influence in vivo neovascularization. Results obtained showed that fibroblasts were able to recruit endothelial cells to vascularize the implanted matrix, which was further colonized by murine functional blood vessels after one week. The vessels exhibited higher levels of hemoglobin, compared with the control matrix, implanted without fibroblasts, in which no vessel formation could be observed. No significant differences were detected in systemic inflammation. The presence of vessels originated from the host vasculature suggested that host vascular response was involved, which constitutes a fundamental aspect in the process of neovascularization. Fibroblasts implanted within matrigel increased the presence of endothelial cells with positive staining for CD31 and for CD34 and the production of collagen influencing the angiogenic process and promoting the formation of microvessels. New strategies in tissue engineering could be delineated with improved angiogenesis using neonatal fibroblasts. PMID:23507785

  2. UVB-Induced Cell Death Signaling Is Associated with G1-S Progression and Transcription Inhibition in Primary Human Fibroblasts

    PubMed Central

    Ortolan, Tatiana Grohmann; Menck, Carlos Frederico M.

    2013-01-01

    DNA damage induced by ultraviolet (UV) radiation can be removed by nucleotide excision repair through two sub-pathways, one general (GGR) and the other specific for transcribed DNA (TCR), and the processing of unrepaired lesions trigger signals that may lead to cell death. These signals involve the tumor suppressor p53 protein, a central regulator of cell responses to DNA damage, and the E3 ubiquitin ligase Mdm2, that forms a feedback regulatory loop with p53. The involvement of cell cycle and transcription on the signaling to apoptosis was investigated in UVB-irradiated synchronized, DNA repair proficient, CS-B (TCR-deficient) and XP-C (GGR-deficient) primary human fibroblasts. Cells were irradiated in the G1 phase of the cell cycle, with two doses with equivalent levels of apoptosis (low and high), defined for each cell line. In the three cell lines, the low doses of UVB caused only a transient delay in progression to the S phase, whereas the high doses induced permanent cell cycle arrest. However, while accumulation of Mdm2 correlated well with the recovery from transcription inhibition at the low doses for normal and CS-B fibroblasts, for XP-C cells this protein was shown to be accumulated even at UVB doses that induced high levels of apoptosis. Thus, UVB-induced accumulation of Mdm2 is critical for counteracting p53 activation and apoptosis avoidance, but its effect is limited due to transcription inhibition. However, in the case of XP-C cells, an excess of unrepaired DNA damage would be sufficient to block S phase progression, which would signal to apoptosis, independent of Mdm2 accumulation. The data clearly discriminate DNA damage signals that lead to cell death, depending on the presence of UVB-induced DNA damage in replicating or transcribing regions. PMID:24155908

  3. UVB-induced cell death signaling is associated with G1-S progression and transcription inhibition in primary human fibroblasts.

    PubMed

    Ortolan, Tatiana Grohmann; Menck, Carlos Frederico M

    2013-01-01

    DNA damage induced by ultraviolet (UV) radiation can be removed by nucleotide excision repair through two sub-pathways, one general (GGR) and the other specific for transcribed DNA (TCR), and the processing of unrepaired lesions trigger signals that may lead to cell death. These signals involve the tumor suppressor p53 protein, a central regulator of cell responses to DNA damage, and the E3 ubiquitin ligase Mdm2, that forms a feedback regulatory loop with p53. The involvement of cell cycle and transcription on the signaling to apoptosis was investigated in UVB-irradiated synchronized, DNA repair proficient, CS-B (TCR-deficient) and XP-C (GGR-deficient) primary human fibroblasts. Cells were irradiated in the G1 phase of the cell cycle, with two doses with equivalent levels of apoptosis (low and high), defined for each cell line. In the three cell lines, the low doses of UVB caused only a transient delay in progression to the S phase, whereas the high doses induced permanent cell cycle arrest. However, while accumulation of Mdm2 correlated well with the recovery from transcription inhibition at the low doses for normal and CS-B fibroblasts, for XP-C cells this protein was shown to be accumulated even at UVB doses that induced high levels of apoptosis. Thus, UVB-induced accumulation of Mdm2 is critical for counteracting p53 activation and apoptosis avoidance, but its effect is limited due to transcription inhibition. However, in the case of XP-C cells, an excess of unrepaired DNA damage would be sufficient to block S phase progression, which would signal to apoptosis, independent of Mdm2 accumulation. The data clearly discriminate DNA damage signals that lead to cell death, depending on the presence of UVB-induced DNA damage in replicating or transcribing regions. PMID:24155908

  4. Intravitreous transplantation of encapsulated fibroblasts secreting the human fibroblast growth factor 2 delays photoreceptor cell degeneration in Royal College of Surgeons rats

    PubMed Central

    Uteza, Yves; Rouillot, Jean-Sébastien; Kobetz, Alexandra; Marchant, Dominique; Pecqueur, Sèverine; Arnaud, Emmanuelle; Prats, Hervé; Honiger, Jiri; Dufier, Jean-Louis; Abitbol, Marc; Neuner-Jehle, Martin

    1999-01-01

    We developed an experimental approach with genetically engineered and encapsulated mouse NIH 3T3 fibroblasts to delay the progressive degeneration of photoreceptor cells in dark-eyed Royal College of Surgeons rats. These xenogeneic fibroblasts can survive in 1.5-mm-long microcapsules made of the biocompatible polymer AN69 for at least 90 days under in vitro and in vivo conditions because of their stable transfection with the gene for the 18-kDa form of the human basic fibroblast growth factor (hFGF-2). Furthermore, when transferred surgically into the vitreous cavity of 21-day-old Royal College of Surgeons rats, the microencapsulated hFGF-2-secreting fibroblasts provoked a local delay of photoreceptor cell degeneration, as seen at 45 days and 90 days after transplantation. This effect was limited to 2.08 mm2 (45 days) and 0.95 mm2 (90 days) of the retinal surface. In both untreated eyes and control globes with encapsulated hFGF-2-deficient fibroblasts, the rescued area (of at most 0.08 mm2) was significantly smaller at both time points. Although, in a few ocular globes, surgical trauma induced a reorganization of the retinal cytoarchitecture, neither microcapsule rejection nor hFGF-2-mediated tumor formation were detected in any treated eyes. These findings indicate that encapsulated fibroblasts secreting hFGF-2 or perhaps other agents can be applied as potential therapeutic tools to treat retinal dystrophies. PMID:10077648

  5. Lack of complementation in somatic cell hybrids between fibroblasts from patients with different forms of cystinosis

    SciTech Connect

    Pellett, O.L.; Smith, M.L.; Greene, A.A.; Schneider, J.A. )

    1988-05-01

    Cystinosis is an autosomal recessive disease in which three clinical forms are recognized: infantile nephropathic, with renal tubular damage by 1 year of age and progressive glomerular insufficiency; intermediate, with tubular and glomerular insufficiency beginning at a later age; benign, with no kidney damage. Skin fibroblasts cultured from patients with all types of cystinosis show increased intralysosomal free (nonprotein) cystine; however, fibroblasts from heterozygotes have normal free-cystine values. To determine whether genetic complementation occurs between the different forms, somatic cell hybrids were constructed between cells from a patient with infantile nephropathic cystinosis and cells from patients with other types of cystinosis. If complementation occurred, the hybrids would be expected to have normal cystine levels. To construct hybrid cells, a universal parent cell type (TG1-neo), which was hypoxanthine/aminopterin/thymidine (HAT) sensitive and G418 resistant was constructed from an infantile nephropathic cystinosis fibroblast strain. Polyethylene glycol fusion of TG1-neo with other cells that are not HAT sensitive or G418 resistant allowed for selection of hybrid cells in a medium containing HAT and the aminoglycoside G418. As indicated by elevated cystine levels, complementation did not occur between TG1-neo and two different benign cystinosis strains, an intermediate cystinosis strain, or another nephropathic cystinosis cell strain. When a normal fibroblast strain was fused with TG1-neo, all 15 hybrid clones studied contained normal amounts of intracellular free cystine.

  6. Characterization of chitosan films and effects on fibroblast cell attachment and proliferation.

    PubMed

    Hamilton, V; Yuan, Y; Rigney, D A; Puckett, A D; Ong, J L; Yang, Y; Elder, S H; Bumgardner, J D

    2006-12-01

    Chitosan has been researched for implant and wound healing applications. However, there are inconsistencies in reports on the tissue and fibroblast responses to chitosan materials. These inconsistencies may be due to variations in chitosan material characteristics. The aim of this study was to correlate fibroblast responses with known chitosan material characteristics. To achieve this aim, chitosan was characterized for degree of deacetylation (DDA), molecular weight (MW), residual protein and ash contents, and then solution cast into films and characterized for hydrophilicity by water contact angle. The films were seeded with normal human dermal fibroblasts and the number of attached cells was evaluated for after 30 min. Cell proliferation was evaluated over 5 days. This study found no relationship between DDA, contact angle, cell attachment, and or proliferation. General trends were observed for increasing proliferation with increasing residual ash content and decreasing residual protein. These data indicate that chitosan characteristics other than DDA may be important to their biological performance.

  7. Recombinant Rabbit Leukemia Inhibitory Factor and Rabbit Embryonic Fibroblasts Support the Derivation and Maintenance of Rabbit Embryonic Stem Cells

    PubMed Central

    Xue, Fei; Ma, Yinghong; Chen, Y. Eugene; Zhang, Jifeng; Lin, Tzu-An; Chen, Chien-Hong; Lin, Wei-Wen; Roach, Marsha; Ju, Jyh-Cherng; Yang, Lan; Du, Fuliang

    2012-01-01

    Abstract The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs. PMID:22775411

  8. Recombinant rabbit leukemia inhibitory factor and rabbit embryonic fibroblasts support the derivation and maintenance of rabbit embryonic stem cells.

    PubMed

    Xue, Fei; Ma, Yinghong; Chen, Y Eugene; Zhang, Jifeng; Lin, Tzu-An; Chen, Chien-Hong; Lin, Wei-Wen; Roach, Marsha; Ju, Jyh-Cherng; Yang, Lan; Du, Fuliang; Xu, Jie

    2012-08-01

    The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs.

  9. Generation of induced pluripotent stem cells from buffalo (Bubalus bubalis) fetal fibroblasts with buffalo defined factors.

    PubMed

    Deng, Yanfei; Liu, Qingyou; Luo, Chan; Chen, Shibei; Li, Xiangping; Wang, Caizhu; Liu, Zhenzhen; Lei, Xiaocan; Zhang, Huina; Sun, Hongliang; Lu, Fenghua; Jiang, Jianrong; Shi, Deshun

    2012-09-01

    Ectopically, expression of defined factors could reprogram mammalian somatic cells into induced pluripotent stem cells (iPSCs), which initiates a new strategy to obtain pluripotent stem cell lines. Attempts have been made to generate buffalo pluripotent stem cells by culturing primary germ cells or inner cell mass, but the efficiency is extremely low. Here, we report a successful method to reprogram buffalo fetal fibroblasts (BFFs) into pluripotent stem cells [buffalo induced pluripotent stem cell (biPSCs)] by transduction of buffalo defined factors (Oct4, Sox2, Klf4, and c-Myc) using retroviral vectors. The established biPSCs displayed typical morphological characteristics of pluripotent stem cells, normal karyotype, positive staining of alkaline phosphatase, and expressed pluripotent markers including Oct4, Sox2, Nanog, Lin28, E-Cadherin, SSEA-1, SSEA-4, TRA-1-81, STAT3, and FOXD3. They could form embryoid bodies (EBs) in vitro and teratomas after injecting into the nude BALB/C mice, and 3 germ layers were identified in the EBs and teratomas. Methylation assay revealed that the promoters of Oct4 and Nanog were hypomethylated in biPSCs compared with BFFs and pre-biPSCs, while the promoters of Sox2 and E-Cadherin were hypomethylated in both BFFs and biPSCs. Further, inhibiting p53 expression by coexpression of SV40 large T antigen and buffalo defined factors in BFFs or treating BFFs with p53 inhibitor pifithrin-a (PFT) could increase the efficiency of biPSCs generation up to 3-fold, and nuclear transfer embryos reconstructed with biPSCs could develop to blastocysts. These results indicate that BFFs can be reprogrammed into biPSCs by buffalo defined factors, and the generation efficiency of biPSCs can be increased by inhibition of p53 expression. These efforts will provide a feasible approach for investigating buffalo stem cell signal pathways, establishing buffalo stem cell lines, and producing genetic modification buffaloes in the future. PMID:22420535

  10. Procollagen mRNA metabolism during the fibroblast cell cycle and its synthesis in transformed cells.

    PubMed

    Parker, I; Fitschen, W

    1980-06-25

    Procollagen mRNA was isolated from mouse embryos and used for the synthesis of a highly labelled cDNA probe complementary to collagen mRNA. This probe was used for the investigation of procollagen mRNA metabolism during the cell cycle of 3T6 mouse embryo fibroblasts in culture. Titration hybridization experiments revealed that procollagen mRNA was present throughout the cell cycle following stumulation of confluent monolayers. Procollagen mRNA levels of sparse cultures appeared similar to those of unstimulated monolayers. The fluctuating levels of collagen synthesis during the cell cycle can be ascribed to changes in the amount of collagen mRNA present. In mouse sarcoma virus transformed 3T3 cells only 20--30% of the amount of procollagen mRNA in 3T3 cells is present indicating that the decline in collagen synthesis is due to mRNA availability.

  11. Prevention of asbestos-induced cell death in rat lung fibroblasts and alveolar macrophages by scavengers of active oxygen species

    SciTech Connect

    Shatos, M.A.; Doherty, J.M.; Marsh, J.P.; Mossman, B.T.

    1987-10-01

    The possible modulation of asbestos-related cell death using antioxidants in both target and effector cells of asbestosis was investigated. After exposure to crocidolite asbestos at a range of concentrations (2.5-25 ..mu..gcm/sup 2/ dish), the viability of a normal rat lung fibroblast line and freshly isolated alveolar macrophages (AM) was determined. In comparison to fibroblasts, AM were more resistant to the cytotoxic effects of asbestos. Cytotoxic concentrations of asbestos then were added to both cell types in combination with the antioxidants, superoxide dismutase (SOD), a scavenger of superoxide (O/sub 2//sup -./), and catalase, an enzyme scavenging H/sub 2/O/sub 2/. Dimethylthiourea (DMTU), a scavenger of the hydroxyl radical (OH/sup ./) and deferoxamine, an iron chelator, also were evaluated in similar studies. Results showed significant dosage-dependent reduction of asbestos-associated cell death with all agents. In contrast, asbestos-induced toxicity was not ameliorated after addition of chemically inactivated SOD and catalase or bovine serum albumin. Results above suggest asbestos-induced cell damage is mediated by active oxygen species. In this regard, the iron associated with the fiber andor its interaction with cell membranes might be critical in deriving a modified Haber-Weiss (Fenton-type) reaction resulting in production of OH/sup ./.

  12. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    PubMed

    Brun, Paola; Pathak, Surajit; Castagliuolo, Ignazio; Palù, Giorgio; Brun, Paola; Zuin, Matteo; Cavazzana, Roberto; Martines, Emilio

    2014-01-01

    Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS) in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR)-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine) cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and can be considered a

  13. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    PubMed

    Brun, Paola; Pathak, Surajit; Castagliuolo, Ignazio; Palù, Giorgio; Brun, Paola; Zuin, Matteo; Cavazzana, Roberto; Martines, Emilio

    2014-01-01

    Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS) in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR)-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine) cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and can be considered a

  14. Bcl-2+ tonsillar plasma cells are rescued from apoptosis by bone marrow fibroblasts

    PubMed Central

    1996-01-01

    Plasma cells represent the final stage of B lymphocyte differentiation. Most plasma cells in secondary lymphoid tissues live for a few days, whereas those in the lamina propria of mucosa and in bone marrow live for several weeks. To investigate the regulation of human plasma cell survival, plasma cells were isolated from tonsils according to high CD38 and low CD20 expression. Tonsillar plasma cells express CD9, CD19, CD24, CD37, CD40, CD74, and HLA-DR, but not CD10, HLA-DQ, CD28, CD56, and Fas/CD95. Although plasma cells express intracytoplasmic Bcl-2, they undergo swift apoptosis in vitro and do not respond to CD40 triggering. Bone marrow fibroblasts and rheumatoid synoviocytes, however, prevented plasma cells from undergoing apoptosis in a contact- dependent fashion. These data indicate that fibroblasts may form a microenvironment favorable for plasma cell survival under normal and pathological conditions. PMID:8551226

  15. Antitumor cell-complex vaccines employing genetically modified tumor cells and fibroblasts.

    PubMed

    Miguel, Antonio; Herrero, María José; Sendra, Luis; Botella, Rafael; Diaz, Ana; Algás, Rosa; Aliño, Salvador F

    2014-02-19

    The present study evaluates the immune response mediated by vaccination with cell complexes composed of irradiated B16 tumor cells and mouse fibroblasts genetically modified to produce GM-CSF. The animals were vaccinated with free B16 cells or cell complexes. We employed two gene plasmid constructions: one high producer (pMok) and a low producer (p2F). Tumor transplant was performed by injection of B16 tumor cells. Plasma levels of total IgG and its subtypes were measured by ELISA. Tumor volumes were measured and survival curves were obtained. The study resulted in a cell complex vaccine able to stimulate the immune system to produce specific anti-tumor membrane proteins (TMP) IgG. In the groups vaccinated with cells transfected with the low producer plasmid, IgG production was higher when we used free B16 cell rather than cell complexes. Nonspecific autoimmune response caused by cell complex was not greater than that induced by the tumor cells alone. Groups vaccinated with B16 transfected with low producer plasmid reached a tumor growth delay of 92% (p ≤ 0.01). When vaccinated with cell complex, the best group was that transfected with high producer plasmid, reaching a tumor growth inhibition of 56% (p ≤ 0.05). Significant survival (40%) was only observed in the groups vaccinated with free transfected B16 cells.

  16. Antitumor Cell-Complex Vaccines Employing Genetically Modified Tumor Cells and Fibroblasts

    PubMed Central

    Miguel, Antonio; Herrero, María José; Sendra, Luis; Botella, Rafael; Diaz, Ana; Algás, Rosa; Aliño, Salvador F.

    2014-01-01

    The present study evaluates the immune response mediated by vaccination with cell complexes composed of irradiated B16 tumor cells and mouse fibroblasts genetically modified to produce GM-CSF. The animals were vaccinated with free B16 cells or cell complexes. We employed two gene plasmid constructions: one high producer (pMok) and a low producer (p2F). Tumor transplant was performed by injection of B16 tumor cells. Plasma levels of total IgG and its subtypes were measured by ELISA. Tumor volumes were measured and survival curves were obtained. The study resulted in a cell complex vaccine able to stimulate the immune system to produce specific anti-tumor membrane proteins (TMP) IgG. In the groups vaccinated with cells transfected with the low producer plasmid, IgG production was higher when we used free B16 cell rather than cell complexes. Nonspecific autoimmune response caused by cell complex was not greater than that induced by the tumor cells alone. Groups vaccinated with B16 transfected with low producer plasmid reached a tumor growth delay of 92% (p ≤ 0.01). When vaccinated with cell complex, the best group was that transfected with high producer plasmid, reaching a tumor growth inhibition of 56% (p ≤ 0.05). Significant survival (40%) was only observed in the groups vaccinated with free transfected B16 cells. PMID:24556729

  17. Fatty acid double bond orientation alters interaction with L-cell fibroblasts.

    PubMed

    Heyliger, C E; Kheshgi, T J; Murphy, E J; Myers-Payne, S; Schroeder, F

    1996-02-23

    Relatively little is known of fatty acid specificity in cellular fatty acid uptake. In this study L-cells, a fibroblastic cell line with very low levels of endogenous cytosolic fatty acid binding protein, were used to examine the role of cis and trans unsaturation on fatty acid uptake. The fluorescent fatty acids, trans-parinaric acid and cis-parinaric acid, were used as analogs of straight-chain saturated, and kinked-chain unsaturated fatty acids, respectively, in order to evaluate the fatty acid specificity of the uptake system. Parinaric acid is poorly metabolizable; greater than 97% was unesterified while 3H-oleic acid was almost totally metabolized after 30 min uptake. Cis- and trans-parinaric acid uptake was saturable and dependent on the concentration of fatty acid. However, the initial rate and maximal amount of trans-parinaric acid taken up by the L-cells was greater than for cis-parinaric acid under the same conditions. The affinity of L-cell uptake for trans-parinaric acid (Km = 0.12 uM) was 35-fold higher than that for cis-parinaric acid (Km = 4.17 uM). Based on competition studies with oleic and stearic acids, it was concluded that the cis- and trans-parinaric acid were taken up by the same L-cell fatty acid uptake system. The results suggest that the L-cell fatty acid uptake system has selectivity for straight chain rather than kinked chain unsaturated fatty acids.

  18. Fatty acid double bond orientation alters interaction with L-cell fibroblasts.

    PubMed

    Heyliger, C E; Kheshgi, T J; Murphy, E J; Myers-Payne, S; Schroeder, F

    1996-02-23

    Relatively little is known of fatty acid specificity in cellular fatty acid uptake. In this study L-cells, a fibroblastic cell line with very low levels of endogenous cytosolic fatty acid binding protein, were used to examine the role of cis and trans unsaturation on fatty acid uptake. The fluorescent fatty acids, trans-parinaric acid and cis-parinaric acid, were used as analogs of straight-chain saturated, and kinked-chain unsaturated fatty acids, respectively, in order to evaluate the fatty acid specificity of the uptake system. Parinaric acid is poorly metabolizable; greater than 97% was unesterified while 3H-oleic acid was almost totally metabolized after 30 min uptake. Cis- and trans-parinaric acid uptake was saturable and dependent on the concentration of fatty acid. However, the initial rate and maximal amount of trans-parinaric acid taken up by the L-cells was greater than for cis-parinaric acid under the same conditions. The affinity of L-cell uptake for trans-parinaric acid (Km = 0.12 uM) was 35-fold higher than that for cis-parinaric acid (Km = 4.17 uM). Based on competition studies with oleic and stearic acids, it was concluded that the cis- and trans-parinaric acid were taken up by the same L-cell fatty acid uptake system. The results suggest that the L-cell fatty acid uptake system has selectivity for straight chain rather than kinked chain unsaturated fatty acids. PMID:8700156

  19. Effects of Mechanical Stretch on Cell Proliferation and Matrix Formation of Mesenchymal Stem Cell and Anterior Cruciate Ligament Fibroblast

    PubMed Central

    Qu, Ling; Zhu, Rui; Li, Hongguo; Xue, Yingsen; Liu, Xincheng

    2016-01-01

    Mesenchymal stem cells (MSCs) and fibroblasts are two major seed cells for ligament tissue engineering. To understand the effects of mechanical stimulation on these cells and to develop effective approaches for cell therapy, it is necessary to investigate the biological effects of various mechanical loading conditions on cells. In this study, fibroblasts and MSCs were tested and compared under a novel Uniflex/Bioflex culture system that might mimic mechanical strain in ligament tissue. The cells were uniaxially or radially stretched with different strains (5%, 10%, and 15%) at 0.1, 0.5, and 1.0 Hz. The cell proliferation and collagen production were compared to find the optimal parameters. The results indicated that uniaxial stretch (15% at 0.5 Hz; 10% at 1.0 Hz) showed positive effects on fibroblast. The uniaxial strains (5%, 10%, and 15%) at 0.5 Hz and 10% strain at 1.0 Hz were favorable for MSCs. Radial strain did not have significant effect on fibroblast. On the contrary, the radial strains (5%, 10%, and 15%) at 0.1 Hz had positive effects on MSCs. This study suggested that fibroblasts and MSCs had their own appropriate mechanical stimulatory parameters. These specific parameters potentially provide fundamental knowledge for future cell-based ligament regeneration. PMID:27525012

  20. Direct reprogramming of human fibroblasts into sweat gland-like cells.

    PubMed

    Zhao, Zhiliang; Xu, Mengyao; Wu, Meng; Ma, Kui; Sun, Mengli; Tian, Xiaocheng; Zhang, Cuiping; Fu, Xiaobing

    2015-01-01

    The skin of patients with an extensive deep burn injury is repaired by a process that leaves a hypertrophic scar without sweat glands and therefore loses the function of perspiration. The aim of this study was to identify whether the key factors related to sweat gland development could directly reprogram fibroblasts into sweat gland-like cells. After introducing the NF-κB and Lef-1 genes into fibroblasts, we found that stably transfected fibroblasts expressed specific markers of sweat glands, including CEA, CK7, CK14 and CK19, both at the protein and mRNA levels. The immunofluorescence staining also showed positive expression of CEA, CK7, CK14 and CK19 in induced fibroblasts, but there were no positive cells in the control groups. The expression of Shh and Cyclin D1, downstream genes of NF-κB and Lef-1, were also significantly increased during regeneration. The induced fibroblasts were implanted into an animal model. Twenty days later, iodine-starch perspiration tests showed that 7 out of the 10 cell-treated paws were positive for perspiration, with a distinctive black point-like area appearing in the center of the paw. Contralateral paws tested negative. Histological examination of skin biopsies from experimental and control paws revealed that sweat glands were fully reconstructed in the test paws, with integral, secretory and ductal portions, but were not present in the control paws. This is the first report of successful reprogramming of fibroblasts into sweat gland-like cells, which will provide a new cell source for sweat gland regeneration in patients with extensive deep burns. PMID:26566868

  1. Fibroblast contraction of collagen lattices in vitro: inhibition by chronic inflammatory cell mediators.

    PubMed

    Ehrlich, H P; Wyler, D J

    1983-09-01

    Fibroblast-populated collagen lattices (FPCL), prepared in petri dishes with serum-containing culture medium and incubated at 37 degrees C, undergo progressive and symmetric contraction (reduction in size) over a period of days. The in vitro contraction process requires viable cells with intact cytoskeletal elements, is associated with cell elongation, and is believed to represent a fibroblast function which also occurs in vivo during wound healing and tissue fibrosis. We report that soluble mediators elaborated by chronic inflammatory cells cultured in vitro, when added to FPCL, inhibit lattice contraction. Granulomas, isolated from the liver of Schistosoma mansoni-infected mice, secrete a factor(s) with an estimated molecular weight between 13,700 and 43,000 daltons (gel filtration: Sephadex G-200) and pI = 6 (preparative isoelectrofocusing in granular gel) which inhibits lattice contraction but is not toxic to fibroblasts. Supernatants (cell-free conditioned culture medium) of cultured macrophages isolated from these granulomas also contain this activity. The contraction inhibitory activity present in granuloma culture supernatants is abrogated by the addition of indomethacin to the lattices, while the addition of prostaglandin E2 (PGE2) alone to lattices inhibits contraction. Furthermore, culture supernatants interfere with fibroblast elongation in lattices. We propose that the ability of fibroblasts to contract collagen lattices in vitro and a fibrotic mass in vivo may be regulated by soluble products of chronic inflammatory cells, including macrophages. This process may be mediated by fibroblast-derived prostaglandins which alter cytoskeletal functions and has implications for understanding regulation of tissue fibrogenesis in a variety of diseases. PMID:6885932

  2. Evaluation of Glucose Uptake in Normal and Cancer Cell Lines by Positron Emission Tomography.

    PubMed

    Maddalena, Francesca; Lettini, Giacomo; Gallicchio, Rosj; Sisinni, Lorenza; Simeon, Vittorio; Nardelli, Anna; Venetucci, Angela Assunta; Storto, Giovanni; Landriscina, Matteo

    2015-01-01

    To date, there is no definitive demonstration of the utility of positron emission tomography (PET) in studying glucose metabolism in cultured cell lines. Thus, this study was designed to compare PET to more standardized methods for the quantitative assessment of glucose uptake in nontransformed and transformed living cells and to validate PET for metabolic studies in vitro. Human colon and breast carcinoma cell lines and mouse embryo fibroblasts were evaluated for [(18)F]fluorodeoxyglucose ([(18)F]FDG) uptake by PET and autoradiography and 2-deoxyglucose (2-DG) incorporation by colorimetric assay and analyzed for the radiotoxic effects of [(18)F]FDG and the expression levels of glucose transporters. Indeed, [(18)F]FDG incorporation on PET was comparable to [(18)F]FDG uptake by autoradiography and 2-DG incorporation by colorimetric assay, although radiotracer-based methods exhibited more pronounced differences between individual cell lines. As expected, these data correlated with glucose transporters 1 to 4 and hexokinase II expression in tumor cell lines and mouse fibroblasts. Notably, [(18)F]FDG incorporation resulted in low apoptotic rates, with fibroblasts being slightly more sensitive to radiotracer-induced cell death. The quantitative analysis of [(18)F]FDG uptake in living cells by PET represents a valuable and reproducible method to study tumor cell metabolism in vitro, being representative of the differences in the molecular profile of normal and tumor cell lines.

  3. Cancer-associated fibroblasts up-regulate CCL2, CCL26, IL6 and LOXL2 genes related to promotion of cancer progression in hepatocellular carcinoma cells.

    PubMed

    Lin, Zu-Yau; Chuang, Yen-Hwang; Chuang, Wan-Long

    2012-10-01

    Impact of different cancer-associated fibroblast (CAF) cell lines on proliferation, migration, invasion and differential expressions of genes in different hepatocellular carcinoma (HCC) cell lines was investigated. Two human CAF cell lines (F26/KMUH, F28/KMUH) and two human HCC cell lines (HCC24/KMUH, HCC38/KMUH) were studied. Influence of F28/KMUH cells on expressions of genes in HCC38/KMUH cells was detected by microarray to select genes for further analysis. Both CAF cell lines promoted proliferation (all P<0.05), migration (all P<0.05) and Matrigel invasion (all P<0.0001) of both HCC cell lines. F26/KMUH cells showed stronger promoted effects on, firstly, proliferation of HCC24/KMUH cells (P=0.0064) and, secondly, migration of both HCC cell lines than F28/KMUH cells did (all P<0.002). Ten up-regulated genes (APLN, CCL2, CCL26, CXCR4, IL6, MUC1, LOXL2, PDGFA, PGK1, VEGFA) related to proliferation, migration, invasion and angiogenesis of HCC detected by microarray were selected for quantitative reverse transcriptase-polymerase chain reaction analysis. Both CAF cell lines had same tendency of effects on differential expressions of genes in same HCC cell line, but expressions of genes between different HCC cell lines were not consistent. Only CCL2, CCL26, IL6 and LOXL2 genes were consistently up-regulated in both HCC cell lines. In conclusion, the effects of CAFs to promote proliferation, migration and invasion of HCC cells are influenced by the characteristics of both CAFs and HCC cells. Up-regulations of CCL2, CCL26, IL6 and LOXL2 genes in cancer cells are part of the common effects of CAFs on HCC cells.

  4. Fibroblastic reticular cell-derived lysophosphatidic acid regulates confined intranodal T-cell motility

    PubMed Central

    Takeda, Akira; Kobayashi, Daichi; Aoi, Keita; Sasaki, Naoko; Sugiura, Yuki; Igarashi, Hidemitsu; Tohya, Kazuo; Inoue, Asuka; Hata, Erina; Akahoshi, Noriyuki; Hayasaka, Haruko; Kikuta, Junichi; Scandella, Elke; Ludewig, Burkhard; Ishii, Satoshi; Aoki, Junken; Suematsu, Makoto; Ishii, Masaru; Takeda, Kiyoshi; Jalkanen, Sirpa; Miyasaka, Masayuki; Umemoto, Eiji

    2016-01-01

    Lymph nodes (LNs) are highly confined environments with a cell-dense three-dimensional meshwork, in which lymphocyte migration is regulated by intracellular contractile proteins. However, the molecular cues directing intranodal cell migration remain poorly characterized. Here we demonstrate that lysophosphatidic acid (LPA) produced by LN fibroblastic reticular cells (FRCs) acts locally to LPA2 to induce T-cell motility. In vivo, either specific ablation of LPA-producing ectoenzyme autotaxin in FRCs or LPA2 deficiency in T cells markedly decreased intranodal T cell motility, and FRC-derived LPA critically affected the LPA2-dependent T-cell motility. In vitro, LPA activated the small GTPase RhoA in T cells and limited T-cell adhesion to the underlying substrate via LPA2. The LPA-LPA2 axis also enhanced T-cell migration through narrow pores in a three-dimensional environment, in a ROCK-myosin II-dependent manner. These results strongly suggest that FRC-derived LPA serves as a cell-extrinsic factor that optimizes T-cell movement through the densely packed LN reticular network. DOI: http://dx.doi.org/10.7554/eLife.10561.001 PMID:26830463

  5. Mercury specifically induces LINE-1 activity in a human neuroblastoma cell line.

    PubMed

    Habibi, Laleh; Shokrgozar, Mohammad Ali; Tabrizi, Mina; Modarressi, Mohammad Hossein; Akrami, Seyed Mohammad

    2014-01-01

    L1 retro-elements comprise 17% of the human genome. Approximately 100 copies of these autonomous mobile elements are active in our DNA and can cause mutations, gene disruptions, and genomic instability. Therefore, human cells control the activities of L1 elements, in order to prevent their deleterious effects through different mechanisms. However, some toxic agents increase the retrotransposition activity of L1 elements in somatic cells. In order to identify specific effects of neurotoxic metals on L1 activity in neuronal cells, we studied the effects of mercury and cobalt on L1-retroelement activity by measuring levels of cellular transcription, protein expression, and genomic retrotransposition in a neuroblastoma cell line compared with the effects in three non-neuronal cell lines. Our results show that mercury increased the expression of L1 RNA, the activity of the L1 5'UTR, and L1 retrotransposition exclusively in the neuroblastoma cell line but not in non-neuronal cell lines. However, cobalt increased the expression of L1 RNA in neuroblastoma cells, HeLa cells, and wild-type human fibroblasts, and also increased the activity of the L1 5'UTR as well as the SV40 promoter in HeLa cells but not in neuroblastoma cells. Exposure to cobalt did not result in increased retrotransposition activity in HeLa cells or neuroblastoma cells. We conclude that non-toxic levels of the neurotoxic agent mercury could influence DNA by increasing L1 activities, specifically in neuronal cells, and may make these cells susceptible to neurodegeneration over time.

  6. Generation of integration-free induced hepatocyte-like cells from mouse fibroblasts

    PubMed Central

    Kim, Jonghun; Kim, Kee-Pyo; Lim, Kyung Tae; Lee, Seung Chan; Yoon, Juyong; Song, Guangqi; Hwang, Seon In; Schöler, Hans R.; Cantz, Tobias; Han, Dong Wook

    2015-01-01

    The ability to generate integration-free induced hepatocyte-like cells (iHeps) from somatic fibroblasts has the potential to advance their clinical application. Here, we have generated integration-free, functional, and expandable iHeps from mouse somatic fibroblasts. To elicit this direct conversion, we took advantage of an oriP/EBNA1-based episomal system to deliver a set of transcription factors, Gata4, Hnf1a, and Foxa3, to the fibroblasts. The established iHeps exhibit similar morphology, marker expression, and functional properties to primary hepatocytes. Furthermore, integration-free iHeps prolong the survival of fumarylacetoacetate-hydrolase-deficient (Fah−/−) mice after cell transplantation. Our study provides a novel concept for generating functional and expandable iHeps using a non-viral, non-integrating, plasmid-based system that could facilitate their pharmaceutical and biomedical application. PMID:26503743

  7. Conditioned medium from irradiated bovine pulmonary artery endothelial cells stimulates increased protein synthesis by irradiated bovine lung fibroblasts in vitro

    SciTech Connect

    Flavin, M.P.; Parton, L.A.; Bowman, C.M. )

    1990-09-01

    Pulmonary fibrosis, a potentially fatal consequence of radiation exposure, occurs by unknown mechanisms. The hypothesis that endothelial cells, injured by radiation, could alter the biochemical function of lung fibroblasts, was tested by exposing cultures of bovine pulmonary artery endothelial cells to 0 or 5 Gy radiation and then incubating them in fresh medium for 48 h. This endothelial cell conditioned medium (ECCM) was then applied to irradiated or nonirradiated cultures of bovine lung fibroblasts. Forty-eight hours later the fibroblasts were analyzed for their ability to synthesize DNA and protein. The ECCM from injured cells stimulated fibroblast protein synthesis twofold to threefold in irradiated fibroblasts without increasing DNA synthesis. It also stimulated a significant but less marked increase in protein synthesis in nonirradiated fibroblasts. Two-dimensional gel electrophoresis revealed this increased synthesis to be expressed in less than 10% of the 1100 separable fibroblast proteins. This study shows that endothelial cells injured by radiation produce factors that stimulate injured fibroblasts to markedly increase their synthesis of certain intracellular proteins, while not stimulating fibroblast replication.

  8. Activation of fibroblast and papilla cells by glycolipid biosurfactants, mannosylerythritol lipids.

    PubMed

    Morita, Tomotake; Kitagawa, Masaru; Yamamoto, Shuhei; Suzuki, Michiko; Sogabe, Atsushi; Imura, Tomohiro; Fukuoka, Tokuma; Kitamoto, Dai

    2010-01-01

    Mannosylerythritol lipids (MELs), the extracellular glycolipids produced from feedstock by yeasts belonging to the genus Pseudozyma, are the most promising biosurfactants known due to its versatile interfacial and biochemical actions. In order to broaden the application in cosmetics, the cell activating property of MELs was investigated using cultured fibroblast and papilla cells, and a three-dimensional cultured human skin model. The di-acetylated MEL (MEL-A) produced from soybean oil significantly increased the viability of the fibroblast cells over 150% compared with that of control cells. On the other hand, no cell activation was observed by the treatment with MEL-A produced from olive oil. The mono-acetylated MEL (MEL-B) hardly increased the cell viability. The viability of the fibroblast cells decreased with the addition of more than 1 microg/L of MELs, whereas the cultured human skin cells showed high viability with 5 microg/L of MELs. Interestingly, the papilla cells were dramatically activated with 0.001 microg/L of MEL-A produced from soybean oil: the cell viability reached at 150% compared with that of control cells. Consequently, the present MEL-A produced from soybean oil should have a potential as a new hair growth agent stimulating the papilla cells. PMID:20625237

  9. Endothelial Cell-Derived Basic Fibroblast Growth Factor: Synthesis and Deposition into Subendothelial Extracellular Matrix

    NASA Astrophysics Data System (ADS)

    Vlodavsky, Israel; Folkman, Judah; Sullivan, Robert; Fridman, Rafael; Ishai-Michaeli, Rivka; Sasse, Joachim; Klagsbrun, Michael

    1987-04-01

    Bovine aortic and corneal endothelial cells synthesize a growth factor that remains mostly cell-associated but can also be extracted from the subendothelial extracellular matrix (ECM) deposited by these cells. The endothelial cell-derived growth factors extracted from cell lysates and from the extracellular matrix appear to be structurally related to basic fibroblast growth factor by the criteria that they (i) bind to heparin-Sepharose and are eluted at 1.4-1.6 M NaCl, (ii) have a molecular weight of about 18,400, (iii) cross-react with anti-basic fibroblast growth factor antibodies when analyzed by electrophoretic blotting and immunoprecipitation, and (iv) are potent mitogens for bovine aortic and capillary endothelial cells. It is suggested that endothelium can store growth factors capable of autocrine growth promotion in two ways: by sequestering growth factor within the cell and by incorporating it into the underlying extracellular matrix.

  10. Generation of KCL032 clinical grade human embryonic stem cell line

    PubMed Central

    Miere, Cristian; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Stephenson, Emma; Ilic, Dusko

    2016-01-01

    The KCL032 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards. Pluripotent state and differentiation potential were confirmed by in vitro assays. PMID:27345778

  11. Generation of KCL031 clinical grade human embryonic stem cell line

    PubMed Central

    Jacquet, Laureen; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Hobbs, Carl; Stephenson, Emma; Ilic, Dusko

    2016-01-01

    The KCL031 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards. Pluripotent state and differentiation potential were confirmed by in vitro and in vivo assays. PMID:27345813

  12. Generation of KCL037 clinical grade human embryonic stem cell line

    PubMed Central

    Miere, Cristian; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Stephenson, Emma; Ilic, Dusko

    2016-01-01

    The KCL037 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards. Pluripotent state and differentiation potential were confirmed by in vitro assays. PMID:27345800

  13. Generation of KCL040 clinical grade human embryonic stem cell line

    PubMed Central

    Jacquet, Laureen; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Stephenson, Emma; Ilic, Dusko

    2016-01-01

    The KCL040 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards. Pluripotent state and differentiation potential were confirmed by in vitro assays. PMID:27345807

  14. Generation of KCL039 clinical grade human embryonic stem cell line

    PubMed Central

    Devito, Liani; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Stephenson, Emma; Ilic, Dusko

    2016-01-01

    The KCL039 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards. Pluripotent state and differentiation potential were confirmed by in vitro assays. PMID:27345806

  15. Generation of KCL038 clinical grade human embryonic stem cell line

    PubMed Central

    Miere, Cristian; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Stephenson, Emma; Ilic, Dusko

    2016-01-01

    The KCL038 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards. Pluripotent state and differentiation potential were confirmed by in vitro assays. PMID:27345799

  16. Hepatic Carcinoma-Associated Fibroblasts Promote an Adaptative Response in Colorectal Cancer Cells That Inhibit Proliferation and Apoptosis: Nonresistant Cells Die by Nonapoptotic Cell Death1

    PubMed Central

    Berdiel-Acer, Mireia; Bohem, Monika E; López-Doriga, Adriana; Vidal, August; Salazar, Ramon; Martínez-Iniesta, Maria; Santos, Cristina; Sanjuan, Xavier; Villanueva, Alberto; Molleví, David G

    2011-01-01

    Carcinoma-associated fibroblasts (CAFs) are important contributors of microenvironment in determining the tumor's fate. This study aimed to compare the influence of liver microenvironment and primary tumor microenvironment on the behavior of colorectal carcinoma. Conditioned medium (CM) from normal colonic fibroblasts (NCFs), CAFs from primary tumor (CAF-PT) or liver metastasis (CAF-LM) were obtained. We performed functional assays to test the influence of each CM on colorectal cell lines. Microarray and gene set enrichment analysis (GSEA) were performed in DLD1 cells cultured in matched CM. In DLD1 cells, CAF-LM CM compared with CAF-PT CM and NCF led to a more aggressive phenotype, induced the features of an epithelial-to-mesenchymal transition more efficiently, and stimulated migration and invasion to a greater extent. Sustained stimulation with CAF-LM CM evoked a transient G2/M cell cycle arrest accompanied by a reduction of apoptosis, inhibition of proliferation, and decreased viability of SW1116, SW620, SW480, DLD1, HT-29, and Caco-2 cells and provoked nonapoptotic cell death in those cells carrying KRAS mutations. Cells resistant to CAF-LM CM completely changed their morphology in an extracellular signal-regulated protein kinase-dependent process and depicted an increased stemness capacity alongside the Wnt pathway stimulation. The transcriptomic profile of DLD1 cells treated with CAF-LM CM was associated with Wnt and mitogen-activated protein kinase pathways activation in GSEA. Therefore, the liver microenvironment induces more efficiently the aggressiveness of colorectal cancer cells than other matched microenvironments do but secondarily evokes cell death. Resistant cells displayed higher stemness capacity. PMID:22028619

  17. Cell Surface Glycoprotein of Reactive Stromal Fibroblasts as a Potential Antibody Target in Human Epithelial Cancers

    NASA Astrophysics Data System (ADS)

    Garin-Chesa, Pilar; Old, Lloyd J.; Rettig, Wolfgang J.

    1990-09-01

    The F19 antigen is a cell surface glycoprotein (M_r, 95,000) of human sarcomas and proliferating, cultured fibroblasts that is absent from resting fibroblasts in normal adult tissues. Normal and malignant epithelial cells are also F19^-. The present immunohistochemical study describes induction of F19 in the reactive mesenchyme of epithelial tumors. F19^+ fibroblasts were found in primary and metastatic carcinomas, including colorectal (18 of 18 cases studied), breast (14/14), ovarian (21/21), bladder (9/10), and lung carcinomas (13/13). In contrast, the stroma of benign colorectal adenomas, fibrocystic disease and fibroadenomas of breast, benign prostate hyperplasia, in situ bladder carcinomas, and benign ovarian tumors showed no or only moderate numbers of F19^+ fibroblasts. Analysis of dermal incision wounds revealed that F19 is strongly induced during scar formation. Comparison of F19 with the extracellular matrix protein tenascin, a putative marker of tumor mesenchyme, showed a cellular staining pattern for F19 vs. the extracellular matrix pattern for tenascin and widespread expression of tenascin in F19^- normal tissues and benign tumors. Our results suggest that the F19^+ phenotype correlates with specialized fibroblast functions in wound healing and malignant tumor growth. Because of its abundance in tumor mesenchyme, F19 may serve as a target for antibodies labeled with radioisotopes or toxic agents, or inflammatogenic antibodies, in carcinoma patients.

  18. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    PubMed

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-01-01

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment. PMID:26576741

  19. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    PubMed

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-11-18

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment.

  20. Saponins from Tribulus terrestris L are less toxic for normal human fibroblasts than for many cancer lines: influence on apoptosis and proliferation.

    PubMed

    Neychev, V K; Nikolova, E; Zhelev, N; Mitev, V I

    2007-01-01

    The objective of the study was to explore the influence of saponins derived from Tribulus terrestris L. (TT) on normal human skin fibroblasts and to compare it with their anticancer properties. In this study, [3H]thymidine incorporation and MTT to assess cell proliferation and viability, respectively, and immunoblotting and HPLC analysis to explore intracellular signal transduction pathways have been used. We found that TT caused a dose-dependent decrease in [3H]thymidine incorporation into the DNA of treated fibroblast compared to the untreated controls. Viability of treated cells remained within the control levels with treatment of up to 5 micro g TT/ml medium. It was significantly depressed with incubation in > or =6 micro g TT/ml medium with an IC50 of 12.6 micro g TT/ml of cultivating media. ERK1/2 was significantly dephosphorylated at 5 mins of incubation with TT until the 48th hour, when phosphorylation slightly recovered, but was still below the control levels. In contrast, p38 and JNK phosphorylation was positively influenced, with peaks at 1 hr and 24 hrs of incubation respectively. Phosphorylation/dephosphorylation events of SAPK/MAPK clearly correlated with Mkp-1 induction. Procaspase 3 was activated after 5 mins of incubation and coincided with a rapid actin cleavage. There was a significant decrease of putrescine concentration and a concomitant increase of spermidine and spermine at 2 mins of treatment. According to our results, TT is less toxic for normal human skin fibroblasts in comparison to many cancer lines investigated in previous studies. The molecular mechanism of this cytotoxicity involves up- and downregulation of polyamines' homeostasis, suppression of proliferation, and induction of apoptosis. Further research in this field using animal models would help to explore and interpret the potential properties of TT as an anticancer supplement.

  1. Linkage of extracellular plasminogen activator to the fibroblast cytoskeleton: colocalization of cell surface urokinase with vinculin

    PubMed Central

    1988-01-01

    Several cell types display binding sites for [125I]urokinase (Vassalli, J.-D., D. Baccino, D. Belin. 1985. J. Cell Biol. 100:86-92) which in certain cases are occupied with endogenous urokinase. These sites appear to focus urokinase at cell surfaces and hence may participate in tissue matrix destruction and cell invasion. Recently Pollanen et al. (1987) demonstrated that the cell surface urokinase of human fibroblasts and fibrosarcoma cells is deposited underneath the cells in strands, apparently at sites of cell-to-substratum contact. Here, using immunofluorescence double labeling, we show that the urokinase strands present on human foreskin fibroblasts are colocalized with strands of vinculin, an intracellular actin-binding protein that is deposited at cell-to-substratum focal adhesion sites. Thus, this indicates linkage of the plasminogen/plasmin system both to sites of cell adhesion and to the cytoskeleton. The urokinase strands on HT 1080 fibrosarcoma cells are more numerous and have shapes that are more tortuous than those on normal fibroblasts. In intact HT 1080 cells, colocalized vinculin strands are obscured by an intense background of soluble vinculin but are apparent on isolated ventral plasma membranes. Certain properties of the urokinase strands suggest that they are related to the [125I]urokinase-binding sites that have been described by several groups: (a) incubating fibroblasts with dexamethasone for 48 h or at pH 3 at 5 degrees C for 10 min greatly decreases the number and intensity of the urokinase strands; (b) strands reappear when glucocorticoid- treated cells are incubated with exogenous 54-kD (but not 35-kD) urokinase, and this process is inhibited by a previously described 16- amino acid peptide that blocks [125I]urokinase binding to the cells. PMID:3129438

  2. Sensitivity of simian virus 40-transformed C57BL/6 mouse embryo fibroblasts to lysis by murine natural killer cells.

    PubMed

    Fresa, K L; Karjalainen, H E; Tevethia, S S

    1987-02-15

    The susceptibility of mouse cells expressing full-length or truncated transforming protein (T antigen) of simian virus 40 (SV40) to lysis by murine natural killer (NK) cells was assessed. For these studies, C57BL/6 mouse embryo fibroblasts (B6/MEF) were transformed by transfection with SV40 DNA encoding the entire T antigen. The transformed cell lines were tested for susceptibility to lysis by nonimmune CBA splenocytes as a source of NK cells and to lysis by C57BL/6, SV40-specific cytolytic T cells (CTL). It was found that 13 of 15 clonally derived, SV40-transformed H-2b cell lines were susceptible to lysis by NK cells. However, there was some variation in their susceptibility to lysis by NK cells. There was no correlation between susceptibility to lysis by SV40-specific CTL and to lysis by NK cells. Cells transfected with a plasmid which encodes only the N-terminal half of the SV40 T antigen were consistently less susceptible to lysis by NK cells, suggesting that expression of only the N-terminus of the T antigen was insufficient for optimal susceptibility to lysis by NK cells. Primary mouse embryo fibroblasts transformed by human adenovirus type 5 E1 region DNA were also found to be susceptible to NK cell-mediated lysis. Lysis of SV40-transformed cells by nonimmune CBA splenocytes was mediated by NK cells because: lysis was augmented when the effector cells were treated with interferon before assay; and lysis was abrogated when the effector cells were obtained from mice that had been depleted of NK activity by treatment with antiserum against the asialo GM1 surface marker. These results indicate that primary mouse cells which are transformed by SV40 and which express the native T antigen are susceptible to lysis by mouse NK cells. Conversely, cells transformed by a plasmid encoding only the N-terminal half of the T antigen express reduced susceptibility to lysis by NK cells. PMID:3027174

  3. Antigen mRNA-transfected, allogeneic fibroblasts loaded with NKT-cell ligand confer antitumor immunity.

    PubMed

    Fujii, Shin-ichiro; Goto, Akira; Shimizu, Kanako

    2009-04-30

    The maturation of dendritic cells (DCs) in situ by danger signals plays a central role in linking innate and adaptive immunity. We previously demonstrated that the activation of invariant natural killer T (iNKT) cells by administration of alpha-galactosylceramide (alpha-GalCer)-loaded tumor cells can act as a cellular adjuvant through the DC maturation. In the current study, we used allogeneic fibroblasts loaded with alpha-GalCer and transfected with antigen-encoding mRNA, thus combining the adjuvant effects of iNKT-cell activation with delivery of antigen to DCs in vivo. We found that these cells produce antigen protein and activate NK and iNKT cells. When injected into major histocompatibility complex (MHC)-mismatched mice, they elicited antigen-specific T-cell responses and provided tumor protection, suggesting that these immune responses depend on host DCs. In addition, antigen-expressing fibroblasts loaded with alpha-GalCer lead to a more potent T-cell response than those expressing NK cell ligands. Thus, glycolipid-loaded, mRNA-transfected allogeneic fibroblasts act as cellular vectors to provide iNKT-cell activation, leading to DC maturation and T-cell immunity. By harnessing the innate immune system and generating an adaptive immune response to a variety of antigens, this unique tool could prove clinically beneficial in the development of immunotherapies against malignant and infectious diseases. PMID:19164596

  4. Melanoma Cells Can Adopt the Phenotype of Stromal Fibroblasts and Macrophages by Spontaneous Cell Fusion in Vitro

    PubMed Central

    Kemény, Lajos V.; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B.

    2016-01-01

    After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells’ nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma–stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments. PMID:27271591

  5. Hepatocellular carcinoma cells cause different responses in expressions of cancer-promoting genes in different cancer-associated fibroblasts.

    PubMed

    Lin, Zu-Yau; Chuang, Wan-Long

    2013-06-01

    Cancer-associated fibroblast (CAF) is one of the most crucial components of the tumor microenvironment to promote the invasiveness of cancer cells. The interactions between cancer cells and CAFs are bidirectional. Our recent study showed that up-regulations of chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 26 (CCL26), interleukin 6 (IL6), and lysyl oxidase-like 2 (LOXL2) genes in cancer cells were parts of the common effects of CAFs on hepatocellular carcinoma (HCC) cells to promote proliferation, migration and invasion of cancer cells. However, the subject of how HCC cells to influence the gene expressions of CAFs still needs to be clarified. The purpose of this study was to investigate this issue. Two human HCC (HCC24/KMUH, HCC38/KMUH) and two human CAF cell lines (F26/KMUH, F28/KMUH) were studied. Influence of HCC38/KMUH cancer cells on differential expressions of genes in F28/KMUH CAFs was detected by microarray to select target genes for further analysis. Both HCC cell lines increased proliferation (all p < 0.005) and migration (all p < 0.0001) of two CAF cell lines. HCC24/KMUH cancer cells had stronger ability to promote migration of F26/KMUH CAFs than HCC38/KMUH cancer cells did (p < 0.0001). Eleven up-regulated cancer-promoting genes, including apelin (APLN), CCL2, CCL26, fibroblast growth factor 1 (FGF1), fibroblast growth factor 2 (FGF2), IL6, mucin 1 (MUC1), LOXL2, platelet-derived growth factor alpha polypeptide (PDGFA), phosphoglycerate kinase 1 (PGK1), and vascular endothelial growth factor A (VEGFA) detected by microarray showed good correlation with results of quantitative reverse transcriptase-polymerase chain reaction study. Among these genes, HCC24/KMUH cancer cells had same tendency of effects on differential expressions of genes in F28/KMUH CAFs as HCC38/KMUH cancer cells did. However, the responses of F26/KMUH CAFs to different HCC cell lines were variable. Only PGK1 gene was consistently up-regulated and PDGFA gene

  6. Hepatocellular carcinoma cells cause different responses in expressions of cancer-promoting genes in different cancer-associated fibroblasts.

    PubMed

    Lin, Zu-Yau; Chuang, Wan-Long

    2013-06-01

    Cancer-associated fibroblast (CAF) is one of the most crucial components of the tumor microenvironment to promote the invasiveness of cancer cells. The interactions between cancer cells and CAFs are bidirectional. Our recent study showed that up-regulations of chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 26 (CCL26), interleukin 6 (IL6), and lysyl oxidase-like 2 (LOXL2) genes in cancer cells were parts of the common effects of CAFs on hepatocellular carcinoma (HCC) cells to promote proliferation, migration and invasion of cancer cells. However, the subject of how HCC cells to influence the gene expressions of CAFs still needs to be clarified. The purpose of this study was to investigate this issue. Two human HCC (HCC24/KMUH, HCC38/KMUH) and two human CAF cell lines (F26/KMUH, F28/KMUH) were studied. Influence of HCC38/KMUH cancer cells on differential expressions of genes in F28/KMUH CAFs was detected by microarray to select target genes for further analysis. Both HCC cell lines increased proliferation (all p < 0.005) and migration (all p < 0.0001) of two CAF cell lines. HCC24/KMUH cancer cells had stronger ability to promote migration of F26/KMUH CAFs than HCC38/KMUH cancer cells did (p < 0.0001). Eleven up-regulated cancer-promoting genes, including apelin (APLN), CCL2, CCL26, fibroblast growth factor 1 (FGF1), fibroblast growth factor 2 (FGF2), IL6, mucin 1 (MUC1), LOXL2, platelet-derived growth factor alpha polypeptide (PDGFA), phosphoglycerate kinase 1 (PGK1), and vascular endothelial growth factor A (VEGFA) detected by microarray showed good correlation with results of quantitative reverse transcriptase-polymerase chain reaction study. Among these genes, HCC24/KMUH cancer cells had same tendency of effects on differential expressions of genes in F28/KMUH CAFs as HCC38/KMUH cancer cells did. However, the responses of F26/KMUH CAFs to different HCC cell lines were variable. Only PGK1 gene was consistently up-regulated and PDGFA gene

  7. Transcriptome Profiling Reveals Degree of Variability in Induced Pluripotent Stem Cell Lines: Impact for Human Disease Modeling.

    PubMed

    Schuster, Jens; Halvardson, Jonatan; Pilar Lorenzo, Laureanne; Ameur, Adam; Sobol, Maria; Raykova, Doroteya; Annerén, Göran; Feuk, Lars; Dahl, Niklas

    2015-10-01

    Induced pluripotent stem cell (iPSC) technology has become an important tool for disease modeling. Insufficient data on the variability among iPSC lines derived from a single somatic parental cell line have in practice led to generation and analysis of several, usually three, iPSC sister lines from each parental cell line. We established iPSC lines from a human fibroblast line (HDF-K1) and used transcriptome sequencing to investigate the variation among three sister lines (iPSC-K1A, B, and C). For comparison, we analyzed the transcriptome of an iPSC line (iPSC-K5B) derived from a different fibroblast line (HDF-K5), a human embryonic stem cell (ESC) line (ESC-HS181), as well as the two parental fibroblast lines. All iPSC lines fulfilled stringent criteria for pluripotency. In an unbiased cluster analysis, all stem cell lines (four iPSCs and one ESC) clustered together as opposed to the parental fibroblasts. The transcriptome profiles of the three iPSC sister lines were indistinguishable from each other, and functional pathway analysis did not reveal any significant hits. In contrast, the expression profiles of the ESC line and the iPSC-K5B line were distinct from that of the sister lines iPSC-K1A, B, and C. Differentiation to embryoid bodies and subsequent analysis of germ layer markers in the five stem cell clones confirmed that the distribution of their expression profiles was retained. Taken together, our observations stress the importance of using iPSCs of different parental origin rather than several sister iPSC lines to distinguish disease-associated mechanisms from genetic background effects in disease modeling.

  8. Chitosan and polycaprolactone membranes patterned via electrospinning: effect of underlying chemistry and pattern characteristics on epithelial/fibroblastic cell behavior.

    PubMed

    Simşek, Murat; Capkın, Merve; Karakeçili, Ayşe; Gümüşderelioğlu, Menemşe

    2012-12-01

    Electrospinning was used as an effective route to pattern chitosan (CS) and polycaprolactone (PCL) membranes with submicron fibers having different chemical structure (PCL or PCL/collagen) and physical characteristics (size: between ≈200 and 550 nm; randomly oriented or aligned form). While the PCL fibers with diameters in the same range (≈200 nm) were patterned on both of CS and PCL membranes to evaluate the influence of the underlying membrane chemistry, only CS membranes were patterned with PCL fibers having different sizes simply by changing the electrospinning conditions to investigate the effects of pattern characteristics. Furthermore, collagen was added to the PCL fiber structure to change the chemical composition of the fibers in a cell-attractive way. Two cell lines with different morphologies, fibroblastic MC3T3-E1 preosteoblasts and epithelial Madine Darby Bovine Kidney (MDBK) cells, were cultured on the patterned membranes. The observation of cellular behavior in terms of cell morphology and F-actin synthesis was realized by scanning electron microscopy and confocal microscopy analysis during the first 12 h of culture period. The viability of cells was controlled by MTT assay through 96 h of cell culture. The cell culture studies indicated that the leading aspect for the morphology change on patterned membranes was the fiber orientation. The aligned topography controlled the morphology of cells both on CS and PCL membranes. In the presence of collagen in the fiber structure, F-actin filament synthesis increased for MC3T3-E1 and MDBK cell lines.

  9. Pancreatic Fibroblasts Stimulate the Motility of Pancreatic Cancer Cells through IGF1/IGF1R Signaling under Hypoxia

    PubMed Central

    Hirakawa, Toshiki; Yashiro, Masakazu; Doi, Yosuke; Kinoshita, Haruhito; Morisaki, Tamami; Fukuoka, Tatsunari; Hasegawa, Tsuyoshi; Kimura, Kenjiro; Amano, Ryosuke; Hirakawa, Kosei

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by its hypovascularity, with an extremely poor prognosis because of its highly invasive nature. PDAC proliferates with abundant stromal cells, suggesting that its invasive activity might be controlled by intercellular interactions between cancer cells and fibroblasts. Using four PDAC cell lines and two pancreas cancer-associated fibroblasts (CAFs), the expression of insulin-like growth factor-1 (IGF1) and IGF1 receptor (IGF1R) was evaluated by RT-PCR, FACScan, western blot, or ELISA. Correlation between IGF1R and the hypoxia marker carbonic anhydrase 9 (CA9) was examined by immunohistochemical staining of 120 pancreatic specimens. The effects of CAFs, IGF1, and IGF1R inhibitors on the motility of cancer cells were examined by wound-healing assay or invasion assay under normoxia (20% O2) and hypoxia (1% O2). IGF1R expression was significantly higher in RWP-1, MiaPaCa-2, and OCUP-AT cells than in Panc-1 cells. Hypoxia increased the expression level of IGF1R in RWP-1, MiaPaCa-2, and OCUP-AT cells. CA9 expression was correlated with IGF1R expression in pancreatic specimens. CAFs produced IGF1 under hypoxia, but PDAC cells did not. A conditioned medium from CAFs, which expressed αSMA, stimulated the migration and invasion ability of MiaPaCa-2, RWP-1, and OCUP-AT cells. The motility of all PDAC cells was greater under hypoxia than under normoxia. The motility-stimulating ability of CAFs was decreased by IGF1R inhibitors. These findings might suggest that pancreas CAFs stimulate the invasion activity of PDAC cells through paracrine IGF1/IGF1R signaling, especially under hypoxia. Therefore the targeting of IGF1R signaling might represent a promising therapeutic approach in IGF1R-dependent PDAC. PMID:27487118

  10. Changes of the ganglioside pattern and content in human fibroblasts by high density cell population subculture progression.

    PubMed

    Sciannamblo, Mariateresa; Chigorno, Vanna; Passi, Alberto; Valaperta, Rea; Zucchi, Ileana; Sonnino, Sandro

    2002-03-01

    In this study we show that the ganglioside content and pattern of human skin fibroblasts change along the process of cell subculture progression by varying the cell density. GM3, GD3 and GD1a were components of the total cell ganglioside mixtures extracted from cells, but GD1a was in all the extracts a minor component or very scant. Other gangliosides present in traces were not characterised. The fibroblast ganglioside content of 52 pools of cells obtained from 5 different cell lines cultured at variable cell density ranged from 2.0 to 13.1 nmoles per mg of cell protein. The molar ratio between GM3 and GD3 varied from 418 to 0.6 in the ganglioside mixtures, as determined by densitometric quantitative analysis after thin layer chromatographic separation. Both the ganglioside content and the GM3/GD3 molar ratio were constant along several passages of subculture progression performed by plating cells collected at confluence. Instead, when the subculture progression was performed by plating cells collected at a few days after reaching confluence, a progressive increase of the ganglioside content was observed. GD3 increased proportionally more than GM3 so that a progressive decrease of the ratio between GM3 and GD3 was observed. In some experiments, GD3 was very scant at the beginning of the progression, while it was near 30% after 5 passages under these conditions. The progressive increase of GD3 along the high density cell population subculture progression was associated to a moderate increase of the mRNA GD3 synthase.

  11. HIG-82: an established cell line from rabbit periarticular soft tissue, which retains the "activatable" phenotype.

    PubMed

    Georgescu, H I; Mendelow, D; Evans, C H

    1988-10-01

    We have isolated a continuous cell line from soft tissue lining the knee joints of rabbits. Designated HIG-82, this line was produced by spontaneous establishment of an aging, late-passage culture of primary cells. Like unpassaged, primary cells, HIG-82 cells can be activated by a number of stimuli, including phorbol myristate acetate (PMA), interleukin-1 (IL-1), and the endocytosis of latex beads. Activated cells secrete collagenase, gelatinase, caseinase (stromelysin), and prostaglandin E2 (PGE2) into their culture medium. Pseudodiploid, HIG-82 cells combine a high plating efficiency with a doubling time of approximately 24 h. As primary tissue of this origin is difficult to obtain in large quantities and shows cellular heterogeneity, the HIG-82 cell line should facilitate research into the biology and biochemistry of the fibroblastic cells that line the diarthrodial joints of mammals. Such cells are likely to be important in the pathophysiology of various arthritides.

  12. Human Adrenocortical Carcinoma Cell Lines

    PubMed Central

    Wang, Tao; Rainey, William E.

    2011-01-01

    Summary The human adrenal cortex secretes mineralocorticoids, glucocorticoids and adrenal androgens. These steroids are produced from unique cell types located within the three distinct zones of the adrenal cortex. Disruption of adrenal steroid production results in a variety of diseases that can lead to hypertension, metabolic syndrome, infertility and androgen excess. The adrenal cortex is also a common site for the development of adenomas, and rarely the site for the development of carcinomas. The adenomas can lead to diseases associated with adrenal steroid excess, while the carcinomas are particularly aggressive and have a poor prognosis. In vitro cell culture models provide an important tool to examine molecular and cellular mechanisms controlling both the normal and pathologic function of the adrenal cortex. Herein we discuss the human adrenocortical cell lines and their use as model systems for adrenal studies. PMID:21924324

  13. Trophic effect of a methanol yeast extract on 3T3 fibroblast cells.

    PubMed

    Gallo, Dominique; Dillemans, Monique; Allardin, David; Priem, Fabian; Van Nedervelde, Laurence

    2014-01-01

    With regard to the increase of human life expectancy, interest for topical treatments aimed to counteract skin aging is still growing. Hence, research for bioactive compounds able to stimulate skin fibroblast activity is an attractive topic. Having previously described the effects of a new methanol yeast extract on growth and metabolic activity of Saccharomyces cerevisiae, we studied its effects on 3T3 fibroblasts to evaluate its potential antiaging property. This investigation demonstrates that this extract increases proliferation as well as migration of 3T3 cells and decreases their entrance in senescence and apoptosis phases. Altogether, these results open new perspectives for the formulation of innovative antiaging topical treatments.

  14. Coculture with BJ fibroblast cells inhibits the adipogenesis and lipogenesis in 3T3-L1 cells

    SciTech Connect

    Jeong, Hyun Jeong; Park, Sahng Wook; Kim, Hojeong; Park, Sang-Kyu; Yoon, Dojun

    2010-02-19

    Mouse or human fibroblasts are commonly used as feeder cells to prevent differentiation in stem or primary cell culture. In the present study, we addressed whether fibroblasts can affect the differentiation of adipocytes. We found that the differentiation of 3T3-L1 preadipocytes was strongly suppressed when the cells were cocultured with human fibroblast (BJ) cells. BrdU incorporation analysis indicated that mitotic clonal expansion, an early event required for 3T3-L1 cell adipogenesis, was not affected by BJ cells. The 3T3-L1 cell expression levels of peroxisome proliferator-activated receptor {gamma}2, CCAAT/enhancer-binding protein alpha (C/EBP{alpha}), sterol regulatory element binding protein-1c, and Krueppel-like factor 15, but not those of C/EBP{beta} or C/EBP{delta}, were decreased by coculture with BJ cells. When mature 3T3-L1 adipocytes were cocultured with BJ cells, their lipid contents were significantly reduced, with decreased fatty acid synthase expression and increased phosphorylated form of acetyl-CoA carboxylase 1. Our data indicate that coculture with BJ fibroblast cells inhibits the adipogenesis of 3T3-L1 preadipocytes and decreases the lipogenesis of mature 3T3-L1 adipocytes.

  15. Cyclical cell stretching of skin-derived fibroblasts downregulates connective tissue growth factor (CTGF) production.

    PubMed

    Kanazawa, Yuichiro; Nomura, Jun; Yoshimoto, Shinya; Suzuki, Toshikazu; Kita, Kazuko; Suzuki, Nobuo; Ichinose, Masaharu

    2009-01-01

    Delayed healing of skin wounds can be caused by wound instability, whereas appropriate massage or exercise prevents sclerosis and scar contracture. However, the mechanism by which wound healing is related to mechanical stress has not been fully elucidated. The present study aimed to identify whether mechanical stretching of fibroblasts reduces their production of extracellular matrix. We transferred skin fibroblasts into collagen-coated elastic silicone chambers, cultured them on a stretching apparatus, and used RT-PCR to examine the effects of mechanical stretching on the expression levels of 17 genes related to extracellular matrix production and growth factor secretion. We found that connective tissue growth factor (CTGF) was downregulated after 24 hr of cell stretching. Specifically, the CTGF mRNA and protein levels were 50% and 48% of the control levels, respectively. These findings suggest that cyclic stretching of fibroblasts contributes to anti-fibrotic processes by reducing CTGF production.

  16. Fibroblasts Cultured on Nanowires Exhibit Low Motility, Impaired Cell Division, and DNA Damage

    PubMed Central

    Persson, Henrik; Købler, Carsten; Mølhave, Kristian; Samuelson, Lars; Tegenfeldt, Jonas O; Oredsson, Stina; Prinz, Christelle N

    2013-01-01

    Nanowires are commonly used as tools for interfacing living cells, acting as biomolecule-delivery vectors or electrodes. It is generally assumed that the small size of the nanowires ensures a minimal cellular perturbation, yet the effects of nanowires on cell migration and proliferation remain largely unknown. Fibroblast behaviour on vertical nanowire arrays is investigated, and it is shown that cell motility and proliferation rate are reduced on nanowires. Fibroblasts cultured on long nanowires exhibit failed cell division, DNA damage, increased ROS content and respiration. Using focused ion beam milling and scanning electron microscopy, highly curved but intact nuclear membranes are observed, showing no direct contact between the nanowires and the DNA. The nanowires possibly induce cellular stress and high respiration rates, which trigger the formation of ROS, which in turn results in DNA damage. These results are important guidelines to the design and interpretation of experiments involving nanowire-based transfection and electrical characterization of living cells. PMID:23813871

  17. Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage.

    PubMed

    Persson, Henrik; Købler, Carsten; Mølhave, Kristian; Samuelson, Lars; Tegenfeldt, Jonas O; Oredsson, Stina; Prinz, Christelle N

    2013-12-01

    Nanowires are commonly used as tools for interfacing living cells, acting as biomolecule-delivery vectors or electrodes. It is generally assumed that the small size of the nanowires ensures a minimal cellular perturbation, yet the effects of nanowires on cell migration and proliferation remain largely unknown. Fibroblast behaviour on vertical nanowire arrays is investigated, and it is shown that cell motility and proliferation rate are reduced on nanowires. Fibroblasts cultured on long nanowires exhibit failed cell division, DNA damage, increased ROS content and respiration. Using focused ion beam milling and scanning electron microscopy, highly curved but intact nuclear membranes are observed, showing no direct contact between the nanowires and the DNA. The nanowires possibly induce cellular stress and high respiration rates, which trigger the formation of ROS, which in turn results in DNA damage. These results are important guidelines to the design and interpretation of experiments involving nanowire-based transfection and electrical characterization of living cells.

  18. Differential activation of mitogen-activated protein kinase in response to basic fibroblast growth factor in skeletal muscle cells.

    PubMed Central

    Campbell, J S; Wenderoth, M P; Hauschka, S D; Krebs, E G

    1995-01-01

    In the MM14 mouse myoblast cell line, fibroblast growth factor (FGF) stimulates proliferation and represses differentiation. However, the intracellular signaling pathways used by FGF to affect these cellular processes are unknown. The predominant FGF receptor present on MM14 cells, FGFR1, is a receptor tyrosine kinase capable of activating the mitogen-activated protein kinase (MAPK) cascade in fibroblast and neuronal cell lines. To determine whether the FGF signal is mediated via the MAPK cascade in myoblasts, MM14 cells were stimulated with basic FGF (bFGF) and activities of the various kinases were measured. After withdrawal from serum and bFGF for 3 hr, bFGF stimulated MAPK kinase (MAPKK) activity, but MAPK and S6 peptide kinase activities were not detected. In contrast, when serum and bFGF were withdrawn for 10 hr, the activities of MAPKK, MAPK, and S6 peptide kinase were all stimulated by bFGF treatment. The inability of bFGF to stimulate MAPK after 3 hr of withdrawal may be due, in part, to the presence of a MAPK phosphatase activity that was detected in MM14 cell extracts. This dephosphorylating activity diminishes during commitment to terminal differentiation and is inhibited by sodium orthovanadate. Thus, the ability of bFGF to stimulate MAPK in MM14 cells is correlated with the loss of a MAPK phosphatase activity. These results show that although bFGF activates MAPKK in proliferating myoblasts, the mitogenic signal does not progress to the downstream kinases, providing a physiological example of an uncoupling of the MAPK cascade. Images Fig. 4 Fig. 5 PMID:7846069

  19. Essential roles of the interaction between cancer cell-derived chemokine, CCL4, and intra-bone CCR5-expressing fibroblasts in breast cancer bone metastasis.

    PubMed

    Sasaki, Soichiro; Baba, Tomohisa; Nishimura, Tatsunori; Hayakawa, Yoshihiro; Hashimoto, Shin-Ichi; Gotoh, Noriko; Mukaida, Naofumi

    2016-08-01

    From a murine breast cancer cell line, 4T1, we established a subclone, 4T1.3, which consistently metastasizes to bone upon its injection into the mammary fat pad. 4T1.3 clone exhibited similar proliferation rate and migration capacity as the parental clone. However, the intra-bone injection of 4T1.3 clone caused larger tumors than that of the parental cells, accompanied with increases in fibroblast, but not osteoclast or osteoblast numbers. 4T1.3 clone displayed an enhanced expression of a chemokine, CCL4, but not its specific receptor, CCR5. CCL4 shRNA-transfection of 4T1.3 clone had few effects on its in vitro properties, but reduced the tumorigenicity arising from the intra-bone injection. Moreover, intra-bone injection of 4T1.3 clone caused smaller tumors in mice deficient in CCR5 or those receiving CCR5 antagonist than in wild-type mice. The reduced tumor formation was associated with attenuated accumulation of CCR5-positive fibroblasts expressing connective tissue growth factor (CTGF)/CCN2. Tumor cell-derived CCL4 could induce fibroblasts to express CTGF/CCN2, which could support 4T1.3 clone proliferation under hypoxic culture conditions. Thus, the CCL4-CCR5 axis can contribute to breast cancer metastasis to bone by mediating the interaction between cancer cells and fibroblasts in bone cavity.

  20. Red blood cell lysate modulates the expression of extracellular matrix proteins in dermal fibroblasts.

    PubMed

    Akbari, Amir; Li, Yunyuan; Kilani, Ruhangiz T; Ghahary, Aziz

    2012-11-01

    During the early stage of wound healing process, blood clots can be served as a temporary extracellular matrix (ECM) to let skin cell migration and proliferation. The red blood cells are generally thought as inert bystanders in the early and inflammatory phase of wound healing. Here, we provide evidence that red blood cells (RBC) also play an important role in modulation of key ECM components such as type-I collagen, α-smooth muscle actin, fibronectin, and matrix metalloproteinases (MMPs). In this study, we used western blot analysis and showed a significant increase in the level of MMP-1, 2, 3. Furthermore, we found that RBC lysate significantly down-regulates type-I collagen and α-smooth muscle actin while up-regulates fibronectin expression in dermal fibroblasts. To further explore the mechanism by which RBC lysate modulates MMP-1 expression, the effect of inhibitors for three MAPK signaling pathways on RBC inducing MMP-1 expression by dermal fibroblasts were tested. The result showed that the inhibitor of ERK1/2 could abrogate the stimulatory effect of RBC lysate on MMP-1 expression in dermal fibroblasts. Consistently, RBC treatment results in an increase of ERK1/2 phosphorylation in dermal fibroblast. In conclusion, these findings suggest that RBC lysate can modulate the expression of MMPs and key ECM components which are important in healing process.

  1. Maximizing Fibroblast Adhesion on Protein-Coated Surfaces Using Microfluidic Cell Printing

    PubMed Central

    Davidoff, S.N.; Au, D.; Gale, B.K.; Brooks, B.D.; Brooks, A.E.

    2015-01-01

    translation of in vitro cell based assays to in vivo cellular response is imprecise at best. The advent of three-dimensional cell cultures in addition to bioreactor type microfluidics has improved the situation. However, these technical advances cannot be easily combined due to practical limitations. Development of a vertical microfluidic cell printer overcomes this obstacle, providing the ability to more closely recapitulate complex cellular environments and responses. As a proof of concept, we investigated the adhesion of fibroblasts under flow on protein-coated surfaces using a novel vertical microfluidic print head to isolate and manipulate both mechanical and biological factors as a model of fibroblast behavior during the foreign body response following implant insertion. A low flow rate with larger microfluidic channels onto a serum-coated surface has been determined to allow the highest density of viable fibroblasts to attach to the surface. While these insights into fibroblast surface attachment may lead to better material designs, the methods developed herein will certainly be useful as a biomaterials testing platform. PMID:26989480

  2. The renal (myo-)fibroblast: a heterogeneous group of cells.

    PubMed

    Boor, Peter; Floege, Jürgen

    2012-08-01

    Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cells, resulting in a horizontal transfer of mRNA, microRNA and proteins. MVs, released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, are now recognized as being an integral component of the intercellular microenvironment. By acting as vehicles for information transfer, MVs play a pivotal role in cell-to-cell communication. This exchange of information between the injured cells and stem cells has the potential to be bi-directional. Thus, MVs may either transfer transcripts from injured cells to stem cells, resulting in reprogramming of their phenotype to acquire specific features of the tissue, or conversely, transcripts could be transferred from stem cells to injured cells, restraining tissue injury and inducing cell cycle re-entry of resident cells, leading to tissue self-repair. Upon administration with a therapeutic regimen, MVs mimic the effect of mesenchymal stem cells in various experimental models by inhibiting apoptosis and stimulating cell proliferation. In this review, we discuss whether MVs released from mesenchymal stem cells have the potential to be exploited in novel therapeutic approaches in regenerative medicine to repair damaged tissues, as an alternative to stem cell-based therapy. PMID:22851626

  3. Contribution of Fibroblast and Mast Cell (Afferent) and Tumor (Efferent) IL-6 Effects within the Tumor Microenvironment.

    PubMed

    Hugo, Honor J; Lebret, Stephanie; Tomaskovic-Crook, Eva; Ahmed, Nuzhat; Blick, Tony; Newgreen, Donald F; Thompson, Erik W; Ackland, M Leigh

    2012-04-01

    Hyperactive inflammatory responses following cancer initiation have led to cancer being described as a 'wound that never heals'. These inflammatory responses elicit signals via NFκB leading to IL-6 production, and IL-6 in turn has been shown to induce epithelial to mesenchymal transition in breast cancer cells in vitro, implicating a role for this cytokine in cancer cell invasion. We previously have shown that conditioned medium derived from cancer-associated fibroblasts induced an Epithelial to Mesenchymal transition (EMT) in PMC42-LA breast cancer cells and we have now identify IL-6 as present in this medium. We further show that IL-6 is expressed approximately 100 fold higher in a cancer-associated fibroblast line compared to normal fibroblasts. Comparison of mouse-specific (stroma) and human-specific (tumor) IL-6 mRNA expression from MCF-7, MDA MB 468 and MDA MB 231 xenografts also indicated the stroma rather than tumor as a significantly higher source of IL-6 expression. Mast cells (MCs) feature in inflammatory cancer-associated stroma, and activated MCs secrete IL-6. We observed a higher MC index (average number of mast cells per xenograft section/average tumor size) in MDA MB 468 compared to MDA MB 231 xenografts, where all MC were observed to be active (degranulating). This higher MC index correlated with greater mouse-specific IL-6 expression in the MDA MB 468 xenografts, implicating MC as an important source of stromal IL-6. Furthermore, immunohistochemistry on these xenografts for pSTAT3, which lies downstream of the IL-6 receptor indicated frequent correlations between pSTAT3 and mast cell positive cells. Analysis of publically available databases for IL-6 expression in patient tissue revealed higher IL-6 in laser capture microdissected stroma compared to adjacent tissue epithelium from patients with inflammatory breast cancer (IBC) and invasive non-inflammatory breast cancer (non-IBC) and we show that IL-6 expression was significantly higher in Basal

  4. Formation of bipolar spindles with two centrosomes in tetraploid cells established from normal human fibroblasts.

    PubMed

    Ohshima, Susumu; Seyama, Atsushi

    2012-09-01

    Tetraploid cells with unstable chromosomes frequently arise as an early step in tumorigenesis and lead to the formation of aneuploid cells. The mechanisms responsible for the chromosome instability of polyploid cells are not fully understood, although the supernumerary centrosomes in polyploid cells have been considered the major cause of chromosomal instability. The aim of this study was to examine the integrity of mitotic spindles and centrosomes in proliferative polyploid cells established from normal human fibroblasts. TIG-1 human fibroblasts were treated with demecolcine (DC) for 4 days to induce polyploidy, and the change in DNA content was monitored. Localization of centrosomes and mitotic spindles in polyploid mitotic cells was examined by immunohistochemistry and laser scanning cytometry. TIG-1 cells treated with DC became almost completely tetraploid at 2 weeks after treatment and grew at the same rate as untreated diploid cells. Most mitotic cells with 8C DNA content had only two centrosomes with bipolar spindles in established tetraploid cells, although they had four or more centrosomes with multipolar spindles at 3 days after DC treatment. The frequency of aneuploid cells increased as established tetraploid cells were propagated. These results indicate that tetraploid cells that form bipolar spindles with two centrosomes in mitosis can proliferate as diploid cells. These cells may serve as a useful model for studying the chromosome instability of polyploid cells. PMID:22696268

  5. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative

    SciTech Connect

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-08-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. The gaps may represent single-strand breaks. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or beta-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives.

  6. Molluscan cells in culture: primary cell cultures and cell lines

    PubMed Central

    Yoshino, T. P.; Bickham, U.; Bayne, C. J.

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436

  7. Genetic polymorphism directs IL-6 expression in fibroblasts but not selected other cell types.

    PubMed

    Noss, Erika H; Nguyen, Hung N; Chang, Sook Kyung; Watts, Gerald F M; Brenner, Michael B

    2015-12-01

    Interleukin (IL)-6 blockade is an effective treatment for rheumatoid arthritis (RA), and synovial fibroblasts are a major IL-6 producer in the inflamed joint. We found that human RA and osteoarthritis (OA) synovial fibroblasts derived from independent donors reproducibly segregated into low, medium, and high IL-6 producers, independent of stimulus, cell passage, or disease state. IL-6 expression pattern correlated strongly with total mRNA expression, not mRNA stability, suggesting transcriptional rather than posttranscriptional regulation. High-fibroblast IL-6 expression was significantly associated with the IL-6 proximal promoter single nucleotide polymorphism (SNP) rs1800795 minor allele (CC) genotype. In contrast, no association between this SNP and IL-6 production was detected in CD14(+) monocytes, another major producer of synovial IL-6. Luciferase expression assays confirmed that this SNP was associated with differential IL-6 expression in fibroblasts. To date, several association studies examining rs1800795 allele frequency and disease risk have reported seemingly conflicting results ranging from no association to association with either the major or minor allele across a spectrum of conditions, including cancer and autoimmune, cardiovascular, infectious, and metabolic diseases. This study points to a prominent contribution from promoter genetic variation in fibroblast IL-6 regulation, but not in other IL-6-producing cell types. We propose that some of the heterogeneity in these clinical studies likely reflects the cellular source of IL-6 in specific diseases, much of which may be produced by nonhematopoietic cells. These results highlight that functional analysis of disease-associated SNPs on gene expression and pathologic processes must consider variation in diverse cell types.

  8. The morphogenesis of herpes simplex virus type 1 in infected parental mouse L fibroblasts and mutant gro29 cells.

    PubMed

    Jensen, Helle Lone; Norrild, Bodil

    2003-11-01

    Mutants of cell lines and viruses are important biological tools. The pathway of herpesvirus particle maturation and egress are contentious issues. The mutant gro29 line of mouse L cells is defective for egress of herpes simplex virus type 1 (HSV-1) virions, and a candidate for studies of virus-cell interactions. The properties of uninfected and HSV-1-infected L fibroblasts and gro29 cells investigated by protein assay, immunoblot, titration assay, immunofluorescence light microscopy and immunogold cryosection electron microscopy are reported. The ultrastructure of both HSV-1-infected L and gro29 cells confirmed primary envelopment of virions at the nuclear membranes followed by maturing multiple de-envelopments and re-envelopments in the endoplasmic reticulum and in the Golgi complex. The gro29 cells presented changed cytoskeleton, abolished egress of virions, and were defective in the trafficking of glycoproteins, giving rise to accumulation of viral particles and glycoproteins in the endoplasmic reticulum and the Golgi complex. The results suggest that gro29 cells harbour a causal underlying defect of the cytoskeleton in addition to the HSV-1-induced cytoskeletal changes.

  9. Epigenetic characterization of the FMR1 promoter in induced pluripotent stem cells from human fibroblasts carrying an unmethylated full mutation.

    PubMed

    de Esch, Celine E F; Ghazvini, Mehrnaz; Loos, Friedemann; Schelling-Kazaryan, Nune; Widagdo, W; Munshi, Shashini T; van der Wal, Erik; Douben, Hannie; Gunhanlar, Nilhan; Kushner, Steven A; Pijnappel, W W M Pim; de Vrij, Femke M S; Geijsen, Niels; Gribnau, Joost; Willemsen, Rob

    2014-10-14

    Silencing of the FMR1 gene leads to fragile X syndrome, the most common cause of inherited intellectual disability. To study the epigenetic modifications of the FMR1 gene during silencing in time, we used fibroblasts and induced pluripotent stem cells (iPSCs) of an unmethylated full mutation (uFM) individual with normal intelligence. The uFM fibroblast line carried an unmethylated FMR1 promoter region and expressed normal to slightly increased FMR1 mRNA levels. The FMR1 expression in the uFM line corresponds with the increased H3 acetylation and H3K4 methylation in combination with a reduced H3K9 methylation. After reprogramming, the FMR1 promoter region was methylated in all uFM iPSC clones. Two clones were analyzed further and showed a lack of FMR1 expression, whereas the presence of specific histone modifications also indicated a repressed FMR1 promoter. In conclusion, these findings demonstrate that the standard reprogramming procedure leads to epigenetic silencing of the fully mutated FMR1 gene. PMID:25358783

  10. Epigenetic Characterization of the FMR1 Promoter in Induced Pluripotent Stem Cells from Human Fibroblasts Carrying an Unmethylated Full Mutation

    PubMed Central

    de Esch, Celine E.F.; Ghazvini, Mehrnaz; Loos, Friedemann; Schelling-Kazaryan, Nune; Widagdo, W.; Munshi, Shashini T.; van der Wal, Erik; Douben, Hannie; Gunhanlar, Nilhan; Kushner, Steven A.; Pijnappel, W.W.M. Pim; de Vrij, Femke M.S.; Geijsen, Niels; Gribnau, Joost; Willemsen, Rob

    2014-01-01

    Summary Silencing of the FMR1 gene leads to fragile X syndrome, the most common cause of inherited intellectual disability. To study the epigenetic modifications of the FMR1 gene during silencing in time, we used fibroblasts and induced pluripotent stem cells (iPSCs) of an unmethylated full mutation (uFM) individual with normal intelligence. The uFM fibroblast line carried an unmethylated FMR1 promoter region and expressed normal to slightly increased FMR1 mRNA levels. The FMR1 expression in the uFM line corresponds with the increased H3 acetylation and H3K4 methylation in combination with a reduced H3K9 methylation. After reprogramming, the FMR1 promoter region was methylated in all uFM iPSC clones. Two clones were analyzed further and showed a lack of FMR1 expression, whereas the presence of specific histone modifications also indicated a repressed FMR1 promoter. In conclusion, these findings demonstrate that the standard reprogramming procedure leads to epigenetic silencing of the fully mutated FMR1 gene. PMID:25358783

  11. Roughness threshold for cell attachment and proliferation on plasma micro-nanotextured polymeric surfaces: the case of primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts

    NASA Astrophysics Data System (ADS)

    Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.

    2016-08-01

    Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.

  12. Alterations in cell migration and cell viability of wounded human skin fibroblasts following visible red light exposure

    NASA Astrophysics Data System (ADS)

    Prabhu, Vijendra; Rao, Bola Sadashiva S.; Mahato, Krishna Kishore

    2014-02-01

    The present study intended to examine the effect of visible red light on structural and cellular parameters on wounded skin fibroblast cells. To achieve the stated objective, uniform scratch was created on confluent monolayered human skin fibroblast cells, and were exposed to single dose of He-Ne laser (15 mm spot, 6.6808 mWcm-2) at 1, 2, 3, 4, 5, 6 and 7 Jcm-2 in the presence and absence of 10% fetal bovine serum (FBS). Beam profile measurements of the expanded laser beam were conducted to ensure the beam uniformity. The influence of laser dose on the change in temperature was recorded using sensitive temperature probe. Additionally, following laser exposure cell migration and cell survival were documented at different time intervals on wounded human skin fibroblast cells grown in vitro. Beam profile measurements indicated more or less uniform power distribution over the whole beam area. Temperature monitoring of sham irradiated control and laser treatment groups displayed negligible temperature change indicating the absence of thermal effect at the tested laser doses. In the absence of 10% FBS, single exposure of different laser doses failed to produce any significant effects on cell migration or cell survival. However, in the presence of serum single exposure of 5 J/cm2 on wounded skin fibroblasts significantly enhanced the cell migration (P<0.05) compared to the other tested doses (1, 2, 3, 4, 6 and 7 J/cm2) and sham irradiated controls. In conclusion, the LLLT acts by improving cell migration and cell proliferation to produce measurable changes in wounded fibroblast cells.

  13. Human amniotic epithelial cells are reprogrammed more efficiently by induced pluripotency than adult fibroblasts.

    PubMed

    Easley, Charles A; Miki, Toshio; Castro, Carlos A; Ozolek, John A; Minervini, Crescenzio F; Ben-Yehudah, Ahmi; Schatten, Gerald P

    2012-06-01

    Cellular reprogramming from adult somatic cells into an embryonic cell-like state, termed induced pluripotency, has been achieved in several cell types. However, the ability to reprogram human amniotic epithelial cells (hAECs), an abundant cell source derived from discarded placental tissue, has only recently been investigated. Here we show that not only are hAECs easily reprogrammed into induced pluripotent stem cells (AE-iPSCs), but hAECs reprogram faster and more efficiently than adult and neonatal somatic dermal fibroblasts. Furthermore, AE-iPSCs express higher levels of NANOG and OCT4 compared to human foreskin fibroblast iPSCs (HFF1-iPSCs) and express decreased levels of genes associated with differentiation, including NEUROD1 and SOX17, markers of neuronal differentiation. To elucidate the mechanism behind the higher reprogramming efficiency of hAECs, we analyzed global DNA methylation, global histone acetylation, and the mitochondrial DNA A3243G point mutation. Whereas hAECs show no differences in global histone acetylation or mitochondrial point mutation accumulation compared to adult and neonatal dermal fibroblasts, hAECs demonstrate a decreased global DNA methylation compared to dermal fibroblasts. Likewise, quantitative gene expression analyses show that hAECs endogenously express OCT4, SOX2, KLF4, and c-MYC, all four factors used in cellular reprogramming. Thus, hAECs represent an ideal cell type for testing novel approaches for generating clinically viable iPSCs and offer significant advantages over postnatal cells that more likely may be contaminated by environmental exposures and infectious agents. PMID:22686477

  14. Cell line: 2004-2014.

    PubMed

    2014-11-20

    2014 marks Cell's 40th anniversary, and over the year we have looked back at how discoveries of the last four decades have molded our understanding of biology. The final decade of the Cell Line features a selection of the exceptional scientific work-both landmark papers and essential reviews. Select entries can be read as an "Annotated Classic," which includes the original paper and accompanying reflections of a leading scientist, considering the work from our current vantage point. Our last installment includes a harbinger of the interplay between microbiota and mammalian hosts in 2004, revolutionary papers in 2006 and 2007 unlocking cellular reprogramming, the discovery of beige adipocytes in 2012, and the first example of CRISPR-based genome editing in a nonhuman primate in 2014. In addition to landmark publications, there were innovative developments at the journal in this decade, with the complete redesign of the print journal and the creation of Leading Edge in late 2005 and the restructuring of the online display of the article in 2010. Keeping pace with the changing nature of biological research, over the decade Cell added new article types, introduced guidelines for the organization of supplementary material, and expanded the journal's web-based content to bring editors' and authors' excitement and perspective on individual papers to the readership. An interactive version of the timeline, with links to the papers, full author lists, and Annotated Classics, is available at http://dx.doi.org/10.1016/j.cell.2014.11.004. PMID:25416957

  15. Silibinin prevents prostate cancer cell-mediated differentiation of naïve fibroblasts into cancer-associated fibroblast phenotype by targeting TGF β2.

    PubMed

    Ting, Harold J; Deep, Gagan; Jain, Anil K; Cimic, Adela; Sirintrapun, Joseph; Romero, Lina M; Cramer, Scott D; Agarwal, Chapla; Agarwal, Rajesh

    2015-09-01

    Tumor microenvironment (TM) is an essential element in prostate cancer (PCA), offering unique opportunities for its prevention. TM includes naïve fibroblasts that are recruited by nascent neoplastic lesion and altered into 'cancer-associated fibroblasts' (CAFs) that promote PCA. A better understanding and targeting of interaction between PCA cells and fibroblasts and inhibiting CAF phenotype through non-toxic agents are novel approaches to prevent PCA progression. One well-studied cancer chemopreventive agent is silibinin, and thus, we examined its efficacy against PCA cells-mediated differentiation of naïve fibroblasts into a myofibroblastic-phenotype similar to that found in CAFs. Silibinin's direct inhibitory effect on the phenotype of CAFs derived directly from PCA patients was also assessed. Human prostate stromal cells (PrSCs) exposed to control conditioned media (CCM) from human PCA PC3 cells showed more invasiveness, with increased alpha-smooth muscle actin (α-SMA) and vimentin expression, and differentiation into a phenotype we identified in CAFs. Importantly, silibinin (at physiologically achievable concentrations) inhibited α-SMA expression and invasiveness in differentiated fibroblasts and prostate CAFs directly, as well as indirectly by targeting PCA cells. The observed increase in α-SMA and CAF-like phenotype was transforming growth factor (TGF) β2 dependent, which was strongly inhibited by silibinin. Furthermore, induction of α-SMA and CAF phenotype by CCM were also strongly inhibited by a TGFβ2-neutralizing antibody. The inhibitory effect of silibinin on TGFβ2 expression and CAF-like biomarkers was also observed in PC3 tumors. Together, these findings highlight the potential usefulness of silibinin in PCA prevention through targeting the CAF phenotype in the prostate TM.

  16. Human Dermal Stem/Progenitor Cell-Derived Conditioned Medium Improves Senescent Human Dermal Fibroblasts.

    PubMed

    Jung, Ji-Yong; Shim, Joong Hyun; Choi, Hyun; Lee, Tae Ryong; Shin, Dong Wook

    2015-08-13

    Adult skin stem cells are recognized as potential therapeutics to rejuvenate aged skin. We previously demonstrated that human dermal stem/progenitor cells (hDSPCs) with multipotent capacity could be enriched from human dermal fibroblasts using collagen type IV. However, the effects of hDSPCs on cellular senescence remain to be elucidated. In the present study, we investigated whether conditioned medium (CM) collected from hDSPC cultures (hDSPC-CM) exhibits beneficial effects on senescent fibroblasts. We found that hDSPC-CM promoted proliferation and decreased the expression level of senescence-associated β-galactosidase in senescent fibroblasts. In addition, p53 phosphorylation and p21 expression were significantly reduced in senescent fibroblasts treated with hDSPC-CM. hDSPC-CM restored the expression levels of collagen type I, collagen type III, and tissue inhibitor of metalloproteinase, and antagonized the increase of matrix metalloproteinase 1 expression. Finally, we demonstrated that hDSPC-CM significantly reduced reactive oxygen species levels by specifically up-regulating the expression level of superoxide dismutase 2. Taken together, these data suggest that hDSPC-CM can be applied as a potential therapeutic agent for improving human aged skin.

  17. Human skin fibroblast stromelysin: structure, glycosylation, substrate specificity, and differential expression in normal and tumorigenic cells

    SciTech Connect

    Wilhelm, S.M.; Collier, I.E.; Kronberger, A.; Eisen, A.Z.; Marmer, B.L.; Grant, G.A.; Bauer, E.A.; Goldberg, G.I.

    1987-10-01

    The authors have purified and determined the complete primary structure of human stromelysin, a secreted metalloprotease with a wide range of substrate specificities. Human stromelysin is synthesized in a preproenzyme form with a calculated size of 53,977 Da and a 17-amino acid long signal peptide. Prostromelysin is secreted in two forms, with apparent molecular masses on NaDodSO/sub 4//PAGE of 60 and 57 kDa. Human stromelysin is capable of degrading proteoglycan, fibronectin, laminin, and type IV collagen but not interstitial type I collagen. The enzyme is not capable of activating purified human fibroblast procollagenase. Analysis of its primary structure shows that stromelysin is in all likelihood the human analog of rat transin, which is an oncogene transformation-induced protease. The pattern of enzyme expression in normal and tumorigenic cells revealed that human skin fibroblasts in vitro secrete stromelysin constitutively. Human fetal lung fibroblasts transformed with simian virus 40, human bronchial epithelial cells transformed with the ras oncogene, fibrosarcoma cells (HT-1080), and a melanoma cell strain (A 2058), do not express this protease nor can the enzyme be induced in these cells by treatment with phorbol 12-myristate 13-acetate. The data indicate that the expression and the possible involvement of secreted metalloproteases in tumorigenesis result from a specific interaction between the transforming factor and the target cell, which may vary in different species.

  18. Dual role of acetaminophen in promoting hepatoma cell apoptosis and kidney fibroblast proliferation

    PubMed Central

    YU, YUNG-LUEN; YIANG, GIOU-TENG; CHOU, PEI-LUN; TSENG, HSU-HUNG; WU, TSAI-KUN; HUNG, YU-TING; LIN, PEI-SHIUAN; LIN, SHU-YU; LIU, HSIAO-CHUN; CHANG, WEI-JUNG; WEI, CHYOU-WEI

    2014-01-01

    Acetaminophen (APAP), is a safe analgesic and antipyretic drug at therapeutic dose, and is widely used in the clinic. However, high doses of APAP can induce hepatotoxicity and nephrotoxicity. Most studies have focused on high-dose APAP-induced acute liver and kidney injury. So far, few studies have investigated the effects of the therapeutic dose (1/10 of the high dose) or of the low dose (1/100 of the high dose) of APAP on the cells. The aim of this study was to investigate the cellular effects of therapeutic- or low-dose APAP treatment on hepatoma cells and kidney fibroblasts. As expected, high-dose APAP treatment inhibited while therapeutic and low-dose treatment did not inhibit cell survival of kidney tubular epithelial cells. In addition, therapeutic-dose treatment induced an increase in the H2O2 level, activated the caspase-9/-3 cascade, and induced cell apoptosis of hepatoma cells. Notably, APAP promoted fibroblast proliferation, even at low doses. This study demonstrates that different cellular effects are exerted upon treatment with different APAP concentrations. Our results indicate that treatment with the therapeutic dose of APAP may exert an antitumor activity on hepatoma, while low-dose treatment may be harmful for patients with fibrosis, since it may cause proliferation of fibroblasts. PMID:24682227

  19. [Radioprotective effect of helium-neon laser radiation for fibroblast cells].

    PubMed

    Voskanian, K Sh; Mitsyn, G V; Gaevskiĭ, V N

    2007-01-01

    Effects of combined exposure to 633-nm laser waves and gamma-radiation, and laser waves and protons with the energy of 150 MeV on survivablilty of mice fibroblast cells C3H10T1/2 were compared. Cell suspension (1 - 5 x 10(5) cells/ml) was distributed in 2-ml plastic vials with 1 cm in diameter time interval between two exposures in a combination was no more than 60 s. immediately after exposure a required quantity of cells was inoculated in special vials for survivability assessment. Based on results of the experiment, preliminary and repeated laser treatment was favorable to survivability of fibroblast cells subjected to gamma- or proton irradiation (dose variation factor was within 1.3 to 2.2). Simultaneous exposure of C3H10T1/2 cells to the laser and proton beams also increased their survivability. The radioprotective effect of the helium-neon laser on fibroblasts earlier exposed to ionizing radiation is of chief interest, as most of the present-day radioprotectors are effective only if introduced into organism prior to exposure.

  20. Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling.

    PubMed

    Ramachandra, Rashmi; Namburi, Ramesh B; Ortega-Martinez, Olga; Shi, Xiaofeng; Zaia, Joseph; Dupont, Sam T; Thorndyke, Michael C; Lindahl, Ulf; Spillmann, Dorothe

    2014-02-01

    Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates.

  1. Fibroblast cluster formation on 3D collagen matrices requires cell contraction dependent fibronectin matrix organization.

    PubMed

    da Rocha-Azevedo, Bruno; Ho, Chin-Han; Grinnell, Frederick

    2013-02-15

    Fibroblasts incubated on 3D collagen matrices in serum or lysophosphatidic acid (LPA)-containing medium self-organize into clusters through a mechanism that requires cell contraction. However, in platelet-derived growth factor (PDGF)-containing medium, cells migrate as individuals and do not form clusters even though they constantly encounter each other. Here, we present evidence that a required function of cell contraction in clustering is formation of fibronectin (FN) fibrillar matrix. We found that in serum or LPA but not in PDGF or basal medium, cells organized FN (both serum and cellular) into a fibrillar, detergent-insoluble matrix. Cell clusters developed concomitant with FN matrix formation. FN fibrils accumulated beneath cells and along the borders of cell clusters in regions of cell-matrix tension. Blocking Rho kinase or myosin II activity prevented FN matrix assembly and cell clustering. Using siRNA silencing and function-blocking antibodies and peptides, we found that cell clustering and FN matrix assembly required α5β1 integrins and fibronectin. Cells were still able to exert contractile force and compact the collagen matrix under the latter conditions, which showed that contraction was not sufficient for cell clustering to occur. Our findings provide new insights into how procontractile (serum/LPA) and promigratory (PDGF) growth factor environments can differentially regulate FN matrix assembly by fibroblasts interacting with collagen matrices and thereby influence mesenchymal cell morphogenetic behavior under physiologic circumstances such as wound repair, morphogenesis and malignancy. PMID:23117111

  2. IDO-Expressing Fibroblasts Protect Islet Beta Cells From Immunological Attack and Reverse Hyperglycemia in Non-Obese Diabetic Mice.

    PubMed

    Zhang, Yun; Jalili, Reza B; Kilani, Ruhangiz T; Elizei, Sanam Salimi; Farrokhi, Ali; Khosravi-Maharlooei, Mohsen; Warnock, Garth L; Ao, Ziliang; Marzban, Lucy; Ghahary, Aziz

    2016-09-01

    Indoleamine 2,3-dioxygenase (IDO) induces immunological tolerance in physiological and pathological conditions. Therefore, we used dermal fibroblasts with stable IDO expression as a cell therapy to: (i) Investigate the factors determining the efficacy of this cell therapy for autoimmune diabetes in non-obese diabetic (NOD) mice; (ii) Scrutinize the potential immunological mechanisms. Newly diabetic NOD mice were randomly injected with either 10 × 10(6) (10M) or 15 × 10(6) (15M) IDO-expressing dermal fibroblasts. Blood glucose levels (BGLs), body weight, plasma kynurenine levels, insulitis severity, islet beta cell function, autoreactive CD8(+) T cells, Th17 cells and regulatory T cells (Tregs) were then investigated in these mice. IL-1β and cleaved caspase-3 levels were assessed in islets co-cultured with IDO-expressing fibroblasts. BGLs in 83% mice treated with 15M IDO-expressing fibroblasts recovered to normal up to 120 days. However, only 17% mice treated with 10M IDO-expressing cells were reversed to normoglycemia. A 15M IDO-expressing fibroblasts significantly reduced infiltrated immune cells in islets and recovered the functionality of remaining islet beta cells in NOD mice. Additionally, they successfully inhibited autoreactive CD8(+) T cells and Th17 cells as well as increased Tregs in different organs of NOD mice. Islet beta cells co-cultured with IDO-expressing fibroblasts had reduced IL-1β levels and cell apoptosis. Both cell number and IDO enzymatic activity contributes to the efficiency of IDO cell therapy. Optimized IDO-expressing fibroblasts successfully reverse the progression of diabetes in NOD mice through induction of Tregs as well as inhibition of beta cell specific autoreactive CD8(+) T cells and Th17 cells. J. Cell. Physiol. 231: 1964-1973, 2016. © 2016 Wiley Periodicals, Inc.

  3. Severe hypoxia and malnutrition collectively contribute to scar fibroblast inhibition and cell apoptosis.

    PubMed

    Lynam, Emily C; Xie, Yan; Dawson, Rebecca; Mcgovern, Jacqui; Upton, Zee; Wang, XiQiao

    2015-09-01

    This study aims to investigate whether severe hypoxia and malnutrition in scar tissue play key roles to induce hypertrophic scar regression. And scar-derived fibroblasts were treated with moderate/severe hypoxia and malnutrition to model condition of proliferative and regressive scar (5%O2 +5%FCS and 0.5%O2  + 0.5%FCS), and normoxia with well nutrition as control (10%O2  + 10%FCS). Our results demonstrated that severe hypoxia and malnutrition resulted in significantly reduced cell viability and collagen production, as well as HIF-1, VEGF, TGF-β1, and Bcl-2 protein expression when compared with control, and cell apoptosis occurred. Therefore, the severe hypoxia and malnutrition in scar tissue contribute to fibroblast inhibition and cell apoptosis, which is correlated with scar regression.

  4. Induction of Stem Cell Gene Expression in Adult Human Fibroblasts without Transgenes

    PubMed Central

    Ambady, Sakthikumar; Holmes, William F.; Vilner, Lucy; Kole, Denis; Kashpur, Olga; Huntress, Victoria; Vojtic, Ina; Whitton, Holly; Dominko, Tanja

    2009-01-01

    Abstract Reprogramming of differentiated somatic cells into induced pluripotent stem (iPS) cells has potential for derivation of patient-specific cells for therapy as well as for development of models with which to study disease progression. Derivation of iPS cells from human somatic cells has been achieved by viral transduction of human fibroblasts with early developmental genes. Because forced expression of these genes by viral transduction results in transgene integration with unknown and unpredictable potential mutagenic effects, identification of cell culture conditions that can induce endogenous expression of these genes is desirable. Here we show that primary adult human fibroblasts have basal expression of mRNA for OCT4, SOX2, and NANOG. However, translation of these messages into detectable proteins and their subcellular localization depends on cell culture conditions. Manipulation of oxygen concentration and FGF2 supplementation can modulate expression of some pluripotency related genes at the transcriptional, translational, and cellular localization level. Changing cell culture condition parameters led to expression of REX1, potentiation of expression of LIN28, translation of OCT4, SOX2, and NANOG, and translocation of these transcription factors to the cell nucleus. We also show that culture conditions affect the in vitro lifespan of dermal fibroblasts, nearly doubling the number of population doublings before the cells reach replicative senescence. Our results suggest that it is possible to induce and manipulate endogenous expression of stem cell genes in somatic cells without genetic manipulation, but this short-term induction may not be sufficient for acquisition of true pluripotency. Further investigation of the factors involved in inducing this response could lead to discovery of defined culture conditions capable of altering cell fate in vitro. This would alleviate the need for forced expression by transgenesis, thus eliminating the risk of

  5. Cell behavior observation and gene expression analysis of melanoma associated with stromal fibroblasts in a three-dimensional magnetic cell culture array.

    PubMed

    Okochi, Mina; Matsumura, Taku; Yamamoto, And Shuhei; Nakayama, Eiichi; Jimbow, Kowichi; Honda, Hiroyuki

    2013-01-01

    A three-dimensional (3D) multicellular tumor spheroid culture array has been fabricated using a magnetic force-based cell patterning method, analyzing the effect of stromal fibroblast on the invasive capacity of melanoma. Formation of spheroids was observed when array-like multicellular patterns of melanoma were developed using a pin-holder device made of magnetic soft iron and an external magnet, which enables the assembly of the magnetically labeled cells on the collagen gel-coated surface as array-like cell patterns. The interaction of fibroblast on the invasion of melanoma was investigated using three types of cell interaction models: (i) fibroblasts were magnetically labeled and patterned together in array with melanoma spheroids (direct-interaction model), (ii) fibroblasts coexisting in the upper collagen gel (indirect-interaction model) of melanoma spheroids, and (iii) fibroblast-sheets coexisting under melanoma spheroids (fibroblast-sheet model). The fibroblast-sheet model has largely increased the invasive capacity of melanoma, and the promotion of adhesion, migration, and invasion were also observed. In the fibroblast-sheet model, the expression of IL-8 and MMP-2 increased by 24-fold and 2-fold, respectively, in real time RT-PCR compared to the absence of fibroblasts. The results presented in this study demonstrate the importance of fibroblast interaction to invasive capacity of melanoma in the 3D in vitro bioengineered tumor microenvironment.

  6. Hematopoietic progenitor cells grow on 3T3 fibroblast monolayers that overexpress growth arrest-specific gene-6 (GAS6).

    PubMed

    Dormady, S P; Zhang, X M; Basch, R S

    2000-10-24

    Pluripotential hematopoietic stem cells grow in close association with bone marrow stromal cells, which play a critical role in sustaining hematopoiesis in long-term bone marrow cultures. The mechanisms through which stromal cells act to support pluripotential hematopoietic stem cells are largely unknown. This study demonstrates that growth arrest-specific gene-6 (GAS6) plays an important role in this process. GAS6 is a ligand for the Axl (Ufo/Ark), Sky (Dtk/Tyro3/Rse/Brt/Tif), and Mer (Eyk) family of tyrosine kinase receptors and binds to these receptors via tandem G domains at its C terminus. After translation, GAS6 moves to the lumen of the endoplasmic reticulum, where it is extensively gamma-carboxylated. The carboxylation process is vitamin K dependent, and current evidence suggests that GAS6 must be gamma-carboxylated to bind and activate any of the cognate tyrosine kinase receptors. Here, we show that expression of GAS6 is highly correlated with the capacity of bone marrow stromal cells to support hematopoiesis in culture. Nonsupportive stromal cell lines express little to no GAS6, whereas supportive cell lines express high levels of GAS6. Transfection of the cDNA encoding GAS6 into 3T3 fibroblasts is sufficient to render this previously nonsupportive cell line capable of supporting long-term hematopoietic cultures. 3T3 cells, genetically engineered to stably express GAS6 (GAS6-3T3), produce a stromal layer that supports the generation of colony-forming units in culture (CFU-c) for up to 6 wk. Hematopoietic support by genetically engineered 3T3 is not vitamin K dependent, and soluble recombinant GAS6 does not substitute for coculturing the hematopoietic progenitors with genetically modified 3T3 cells. PMID:11050245

  7. Viability of fibroblasts in cell culture after treatment with different chemical retraction agents.

    PubMed

    Kopac, I; Batista, U; Cvetko, E; Marion, L

    2002-01-01

    Prior to fixed prosthodontic impression procedures, temporary horizontal retraction of the free gingival tissue should be accomplished apically to the preparation finishing line. The mechanical-chemical method using cotton retraction cords of various sizes impregnated with various retraction chemicals is the most commonly employed retraction technique. Most retraction agents have pH values from 0.8 to 0.3, and are therefore hazardous to the cut dentine and periodontal tissues. Sympathomimetic vasoconstrictors introduced recently have a pH of 5.6, and are free of systemic side-effects. The present study using the dye exclusion test, colony forming ability test and colorimetric assay was undertaken to evaluate cytotoxic effects of four chemical retraction agents on cultured V-79 fibroblasts, and the dependence of cytotoxicity on the agent concentration and time of exposure. Original concentrations of retraction agents produced stronger cytotoxic effects than dilutions of 1:1 and 1:10. The most aggressive agent, 25% aluminium chloride, took only 1 min to damage all cell cultures. The proportion of cells damaged after 10 min of exposure to tetrahydrozoline was 60%, which was significantly less compared with other chemicals tested. With the colony forming ability test using retraction agents diluted to 1:10 the greatest number of colonies emerged in samples treated with tetrahydrozoline (statistical significance: P < 0.01). The colorimetric assay showed equal cytotoxic effects for 25% aluminium sulphate and tetrahydrozoline. The colorimetric test used in the study has proved an ergonomic, accurate and reliable test for cytotoxicity determination. PMID:11844038

  8. Viability of fibroblasts in cell culture after treatment with different chemical retraction agents.

    PubMed

    Kopac, I; Batista, U; Cvetko, E; Marion, L

    2002-01-01

    Prior to fixed prosthodontic impression procedures, temporary horizontal retraction of the free gingival tissue should be accomplished apically to the preparation finishing line. The mechanical-chemical method using cotton retraction cords of various sizes impregnated with various retraction chemicals is the most commonly employed retraction technique. Most retraction agents have pH values from 0.8 to 0.3, and are therefore hazardous to the cut dentine and periodontal tissues. Sympathomimetic vasoconstrictors introduced recently have a pH of 5.6, and are free of systemic side-effects. The present study using the dye exclusion test, colony forming ability test and colorimetric assay was undertaken to evaluate cytotoxic effects of four chemical retraction agents on cultured V-79 fibroblasts, and the dependence of cytotoxicity on the agent concentration and time of exposure. Original concentrations of retraction agents produced stronger cytotoxic effects than dilutions of 1:1 and 1:10. The most aggressive agent, 25% aluminium chloride, took only 1 min to damage all cell cultures. The proportion of cells damaged after 10 min of exposure to tetrahydrozoline was 60%, which was significantly less compared with other chemicals tested. With the colony forming ability test using retraction agents diluted to 1:10 the greatest number of colonies emerged in samples treated with tetrahydrozoline (statistical significance: P < 0.01). The colorimetric assay showed equal cytotoxic effects for 25% aluminium sulphate and tetrahydrozoline. The colorimetric test used in the study has proved an ergonomic, accurate and reliable test for cytotoxicity determination.

  9. Impurity of Stem Cell Graft by Murine Embryonic Fibroblasts – Implications for Cell-Based Therapy of the Central Nervous System

    PubMed Central

    Molcanyi, Marek; Mehrjardi, Narges Zare; Schäfer, Ute; Haj-Yasein, Nadia Nabil; Brockmann, Michael; Penner, Marina; Riess, Peter; Reinshagen, Clemens; Rieger, Bernhard; Hannes, Tobias; Hescheler, Jürgen; Bosche, Bert

    2014-01-01

    Stem cells have been demonstrated to possess a therapeutic potential in experimental models of various central nervous system disorders, including stroke. The types of implanted cells appear to play a crucial role. Previously, groups of the stem cell network NRW implemented a feeder-based cell line within the scope of their projects, examining the implantation of stem cells after ischemic stroke and traumatic brain injury. Retrospective evaluation indicated the presence of spindle-shaped cells in several grafts implanted in injured animals, which indicated potential contamination by co-cultured feeder cells (murine embryonic fibroblasts – MEFs). Because feeder-based cell lines have been previously exposed to a justified criticism with regard to contamination by animal glycans, we aimed to evaluate the effects of stem cell/MEF co-transplantation. MEFs accounted for 5.3 ± 2.8% of all cells in the primary FACS-evaluated co-culture. Depending on the culture conditions and subsequent purification procedure, the MEF-fraction ranged from 0.9 to 9.9% of the cell suspensions in vitro. MEF survival and related formation of extracellular substances in vivo were observed after implantation into the uninjured rat brain. Impurity of the stem cell graft by MEFs interferes with translational strategies, which represents a threat to the potential recipient and may affect the graft microenvironment. The implications of these findings are critically discussed. PMID:25249934

  10. Inhibition of cancer cell epithelial mesenchymal transition by normal fibroblasts via production of 5-methoxytryptophan

    PubMed Central

    Chiang, Li-Yi; Chen, Hua-Ling; Kuo, Cheng-Chin; Wu, Kenneth K.

    2016-01-01

    We reported previously that human fibroblasts release 5-methoxytryptophan (5-MTP) which inhibits cancer cell COX-2 overexpression and suppresses cancer cell migration and metastasis. To determine whether fibroblasts block cancer cell epithelial mesenchymal transition (EMT) via 5-MTP, we evaluated the effect of Hs68 fibroblasts (HsFb) on A549 cancer cell EMT in a two-chamber system. Co-incubation of A549 with HsFb prevented TGF-β1-induced reduction of E-cadherin and increase in Snail and N-cadherin. Transfection of HsFb with tryptophan hydroxylase-1 siRNA, which inhibited tryptophan hydroxylase-1 protein expression and 5-MTP release in HsFb abrogated the effect of HsFb on A549 EMT. Direct addition of pure 5-MTP to cultured A549 cells followed by TGF-β1 prevented TGF-β1-induced reduction of E-cadherin, and elevation of Snail, vimentin and matrix metalloproteinase 9. Administration of 5-MTP to a murine xenograft tumor model reduced vimentin protein expression in the tumor tissues compared to vehicle control which was correlated with reduction of metastasis in the 5-MTP treated mice. Our experimental data suggest that 5-MTP exerted its anti-EMT actions through inhibition of p38 MAPK activation, p65/p50 NF-κB nuclear translocation and transactivation without the involvement of COX-2 or p300 histone acetyltransferase. Our findings indicate that fibroblasts release a tryptophan metabolite, 5-MTP, to reduce cancer cell EMT, migration, invasion and metastasis. PMID:27145282

  11. Functional melanocytes are readily reprogrammable from multilineage-differentiating stress-enduring (muse) cells, distinct stem cells in human fibroblasts.

    PubMed

    Tsuchiyama, Kenichiro; Wakao, Shohei; Kuroda, Yasumasa; Ogura, Fumitaka; Nojima, Makoto; Sawaya, Natsue; Yamasaki, Kenshi; Aiba, Setsuya; Dezawa, Mari

    2013-10-01

    The induction of melanocytes from easily accessible stem cells has attracted attention for the treatment of melanocyte dysfunctions. We found that multilineage-differentiating stress-enduring (Muse) cells, a distinct stem cell type among human dermal fibroblasts, can be readily reprogrammed into functional melanocytes, whereas the remainder of the fibroblasts do not contribute to melanocyte differentiation. Muse cells can be isolated as cells positive for stage-specific embryonic antigen-3, a marker for undifferentiated human embryonic stem cells, and differentiate into cells representative of all three germ layers from a single cell, while also being nontumorigenic. The use of certain combinations of factors induces Muse cells to express melanocyte markers such as tyrosinase and microphthalmia-associated transcription factor and to show positivity for the 3,4-dihydroxy-L-phenylalanine reaction. When Muse cell-derived melanocytes were incorporated into three-dimensional (3D) cultured skin models, they localized themselves in the basal layer of the epidermis and produced melanin in the same manner as authentic melanocytes. They also maintained their melanin production even after the 3D cultured skin was transplanted to immunodeficient mice. This technique may be applicable to the efficient production of melanocytes from accessible human fibroblasts by using Muse cells, thereby contributing to autologous transplantation for melanocyte dysfunctions, such as vitiligo.

  12. Syndecan-2 enhances E-cadherin shedding and fibroblast-like morphological changes by inducing MMP-7 expression in colon cancer cells.

    PubMed

    Jang, Bohee; Jung, Hyejung; Chung, Heesung; Moon, Byung-In; Oh, Eok-Soo

    2016-08-12

    E-cadherin plays a mechanical role in mediating cell-cell interactions and maintaining epithelial tissue integrity, and the loss of E-cadherin function has been implicated in cancer progression and metastasis. Syndecan-2, a cell-surface heparan sulfate proteoglycan, is upregulated during the development of colon cancer. Here, we assessed the functional relationship between E-cadherin and syndecan-2. We found that stable overexpression of syndecan-2 in a human colorectal adenocarcinoma cell line (HT29) enhanced the proteolytic shedding of E-cadherin to conditioned-media. Either knockdown of matrix metalloproteinase 7 (MMP-7) or inhibition of MMP-7 activity using GM6001 significantly reduced the extracellular shedding of E-cadherin, suggesting that syndecan-2 mediates E-cadherin shedding via MMP-7. Consistent with this notion, enhancement of MMP-7 expression by interleukin-1α treatment increased the shedding of E-cadherin. Conversely, the specific reduction of either syndecan-2 or MMP-7 reduced the shedding of E-cadherin. HT29 cells overexpressing syndecan-2 showed significantly lower cell-surface expression of E-cadherin, decreased cell-cell contact, a more fibroblastic cell morphology, and increased expression levels of ZEB-1. Taken together, these data suggest that syndecan-2 induces extracellular shedding of E-cadherin and supports the acquisition of a fibroblast-like morphology by regulating MMP-7 expression in a colon cancer cell line.

  13. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts.

    PubMed

    Nakagawa, Masato; Koyanagi, Michiyo; Tanabe, Koji; Takahashi, Kazutoshi; Ichisaka, Tomoko; Aoi, Takashi; Okita, Keisuke; Mochiduki, Yuji; Takizawa, Nanako; Yamanaka, Shinya

    2008-01-01

    Direct reprogramming of somatic cells provides an opportunity to generate patient- or disease-specific pluripotent stem cells. Such induced pluripotent stem (iPS) cells were generated from mouse fibroblasts by retroviral transduction of four transcription factors: Oct3/4, Sox2, Klf4 and c-Myc. Mouse iPS cells are indistinguishable from embryonic stem (ES) cells in many respects and produce germline-competent chimeras. Reactivation of the c-Myc retrovirus, however, increases tumorigenicity in the chimeras and progeny mice, hindering clinical applications. Here we describe a modified protocol for the generation of iPS cells that does not require the Myc retrovirus. With this protocol, we obtained significantly fewer non-iPS background cells, and the iPS cells generated were consistently of high quality. Mice derived from Myc(-) iPS cells did not develop tumors during the study period. The protocol also enabled efficient isolation of iPS cells without drug selection. Furthermore, we generated human iPS cells from adult dermal fibroblasts without MYC.

  14. In vitro generation of pancreatic endocrine cells from human adult fibroblast-like limbal stem cells.

    PubMed

    Criscimanna, Angela; Zito, Giovanni; Taddeo, Annalisa; Richiusa, Pierina; Pitrone, Maria; Morreale, Daniele; Lodato, Gaetano; Pizzolanti, Giuseppe; Citarrella, Roberto; Galluzzo, Aldo; Giordano, Carla

    2012-01-01

    Stem cells might provide unlimited supply of transplantable cells for β-cell replacement therapy in diabetes. The human limbus is a highly specialized region hosting a well-recognized population of epithelial stem cells, which sustain the continuous renewal of the cornea, and the recently identified stromal fibroblast-like stem cells (f-LSCs), with apparent broader plasticity. However, the lack of specific molecular markers for the identification of the multipotent limbal subpopulation has so far limited the investigation of their differentiation potential. In this study we show that the human limbus contains uncommitted cells that could be potentially harnessed for the treatment of diabetes. Fourteen limbal biopsies were obtained from patients undergoing surgery for ocular diseases not involving the conjunctiva or corneal surface. We identified a subpopulation of f-LSCs characterized by robust proliferative capacity, expressing several pluripotent stem cell markers and exhibiting self-renewal ability. We then demonstrated the potential of f-LSCs to differentiate in vitro into functional insulin-secreting cells by developing a four-step differentiation protocol that efficiently directed f-LSCs towards the pancreatic endocrine cell fate. The expression of specific endodermal, pancreatic, islet, and β-cell markers, as well as functional properties of f-LSC-derived insulin-producing cells, were evaluated during differentiation. With our stage-specific approach, up to 77% of f-LSCs eventually differentiated into cells expressing insulin (also assessed as C-peptide) and exhibited phenotypic features of mature β-cells, such as expression of critical transcription factors and presence of secretory granules. Although insulin content was about 160-fold lower than what observed in adult islets, differentiated cells processed ∼98% of their proinsulin content, similar to mature β-cells. Moreover, they responded in vitro in a regulated manner to multiple secretory stimuli

  15. Hemolin triggers cell survival on fibroblasts in response to serum deprivation by inhibition of apoptosis.

    PubMed

    Bosch, Rosemary Viola; Alvarez-Flores, Miryam Paola; Maria, Durvanei Augusto; Chudzinski-Tavassi, Ana Marisa

    2016-08-01

    Fibroblasts are the main cellular component of connective tissues and play important roles in health and disease through the production of collagen, fibronectin and growth factors. Under certain conditions, such as wound healing, fibroblasts intensify their metabolic demand, while the restriction of nutrients affect matrix composition, cell metabolism and behavior. In lepidopterans, wound healing is regulated by ecdysteroid hormones, which upregulate multifunctional proteins such as hemolin. However, the role of hemolin in cell proliferation and wound healing is not clear. rLosac is a recombinant hemolin from the caterpillar Lonomia obliqua whose proliferative and cytoprotective effects on endothelial cells have been described. Here, we show that rLosac induces a marked cell survival effect on fibroblast submitted to serum deprivation, which is observable as early as 24h, as demonstrated through the MTT assay, as well as an increase in migration of human dermal fibroblasts (HDF). No effects on cell proliferation or cell cycle distribution of fibroblasts in normal conditions were observed, suggesting that rLosac induces an effect in stressful conditions such serum deprivation but not when nutrient are sufficient. By flow cytometry, rLosac caused an apparent dose-dependent increase in cells in the S phase of the cell cycle and a significant reduction of cells with fragmented DNA. Furthermore, treatment with rLosac results in a significant decrease in the production of reactive oxygen species and in the loss of mitochondrial membrane potential, indicating that a reduction in oxidative stress is involved in rLosac-mediated cytoprotection. Our results also show an up-regulation of Bcl-2 and a down-regulation of Bax protein levels, inhibition of cytochrome c release and a reduction in caspase-3 levels, all considered critical factors for apoptosis. Moreover, rLosac treatment reduces the morphological changes induced by prolonged serum deprivation including the emergence

  16. Trichomonas vaginalis and Tritrichomonas foetus: interaction with fibroblasts and muscle cells - new insights into parasite-mediated host cell cytotoxicity.

    PubMed

    Vilela, Ricardo Chaves; Benchimol, Marlene

    2012-09-01

    Trichomonas vaginalis and Tritrichomonas foetus are parasitic, flagellated protists that inhabit the urogenital tract of humans and bovines, respectively. T. vaginalis causes the most prevalent non-viral sexually transmitted disease worldwide and has been associated with an increased risk for human immunodeficiency virus-1 infection in humans. Infections by T. foetus cause significant losses to the beef industry worldwide due to infertility and spontaneous abortion in cows. Several studies have shown a close association between trichomonads and the epithelium of the urogenital tract. However, little is known concerning the interaction of trichomonads with cells from deeper tissues, such as fibroblasts and muscle cells. Published parasite-host cell interaction studies have reported contradictory results regarding the ability of T. foetus and T. vaginalis to interact with and damage cells of different tissues. In this study, parasite-host cell interactions were examined by culturing primary human fibroblasts obtained from abdominal biopsies performed during plastic surgeries with trichomonads. In addition, mouse 3T3 fibroblasts, primary chick embryo myogenic cells and L6 muscle cells were also used as models of target cells. The parasite-host cell cultures were processed for scanning and transmission electron microscopy and were tested for cell viability and cell death. JC-1 staining, which measures mitochondrial membrane potential, was used to determine whether the parasites induced target cell damage. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling staining was used as an indicator of chromatin damage. The colorimetric crystal violet assay was performed to ana-lyse the cytotoxicity induced by the parasite. The results showed that T. foetus and T. vaginalis adhered to and were cytotoxic to both fibroblasts and muscle cells, indicating that trichomonas infection of the connective and muscle tissues is likely to occur; such infections could cause

  17. Glial cell and fibroblast cytotoxicity study on 4026-cyclotene photosensitive benzocyclobutene (BCB) polymer films.

    PubMed

    Ehteshami, Gholamreza; Singh, Amarjit; Coryell, Gene; Massia, Stephen; He, Jiping; Raupp, Gregory

    2003-01-01

    Photosensitive benzocyclobutene (photo-BCB) is a class of polymers with the trade name Cyclotene. The photoimagable property of Cyclotene makes it suitable for the manufacture of microelectronic devices. The motivation behind this study is that we see an exciting application of photo-BCB as substrates in implantable microelectronic biomedical devices due to several desirable properties distinctive from other polymer materials. To our knowledge, however, photo-BCB has never been tested for biomedical implant applications, as evidenced by the lack reported data on its biocompatibility. This study takes the first step towards assessing photo-BCB biocompatibility by evaluating the cytotoxicity and cell adhesion behavior of Cyclotene 4026 coatings exposed to monolayers of glial and fibroblast cells in vitro. It can be concluded from these studies that photo-BCB films deposited on silicon wafers using microfabrication processes did not adversely affect 3T3 fibroblast and T98-G glial cell function in vitro. We also successfully rendered photo-BCB films non-adhesive (no significant fibroblast or glial cell adhesion) with surface immobilized dextran using methods developed for other biomaterials and applications. Future work will further develop prototype photo-BCB microelectrode devices for chronic neural implant applications. PMID:14661882

  18. Effect of Cold Plasma on Cell Viability and Collagen Synthesis in Cultured Murine Fibroblasts

    NASA Astrophysics Data System (ADS)

    Shi, Xingmin; Cai, Jingfen; Xu, Guimin; Ren, Hongbin; Chen, Sile; Chang, Zhengshi; Liu, Jinren; Huang, Chongya; Zhang, Guanjun; Wu, Xili

    2016-04-01

    An argon atmospheric pressure plasma jet was employed to treat L929 murine fibroblasts cultured in vitro. Experimental results showed that, compared with the control cells, the treatment of fibroblasts with 15 s of plasma led to a significant increase of cell viability and collagen synthesis, while the treatment of 25 s plasma resulted in a remarkable decrease. Exploration of related mechanisms suggested that cold plasma could up-regulate CyclinD1 gene expression and down-regulate p27 gene expression at a low dose, while it could down-regulate CyclinD1 expression and up-regulate p27 expression at a higher dose, thus altering the cell cycle progression, and then affecting cell viability and collagen synthesis of fibroblasts. supported partly by National Natural Science Foundation of China (Nos. 81372076, 51307133 and 51221005), China National Funds for Distinguished Young Scientists (No. 51125029), the Sci-Tech Project of Shaanxi Province of China (No. 2010K16-04), and the Fundamental Research Funds for the Central Universities of China (No. xkjc2013004)

  19. Bovine viral diarrhea virus (BVDV) in cell lines used for somatic cell cloning.

    PubMed

    Stringfellow, David A; Riddell, Kay P; Givens, M Daniel; Galik, Patricia K; Sullivan, Eddie; Dykstra, Christine C; Robl, James; Kasinathan, Poothapillai

    2005-03-01

    Culture of cell lines from fetuses or postnatal animals is an essential part of somatic cell cloning. Fetal bovine serum (FBS) is commonly used in media for propagation of these cells. Unfortunately, bovine fetuses and postnatal animals as well as FBS are all possible sources of non-cytopathic bovine viral diarrhea virus (BVDV) which is widely distributed among cattle. This study was prompted when screening of samples sent to veterinary diagnostic labs revealed that 15 of 39 fetal fibroblast cell lines used in cloning research were positive for BVDV as determined by various assays including reverse transcription-polymerase chain reaction (RT-PCR). Goals of the research were to use both virus isolation and reverse transcription-nested polymerase chain reaction (RT-nPCR) to confirm which of the cell lines were actually infected with BVDV and to assay samples of media, FBS and the earliest available passages of each cell line in an attempt to determine the source of the viral infections. Sequence analysis of amplified cDNA from all isolates was performed to provide a definitive link between possible sources of virus and infected cell lines. Only 5 of the 39 cell lines were actually infected with BVDV. Three of these five lines were not infected at the earliest cryopreserved passage, leading to the conclusion that they likely became infected after culture in media containing contaminated FBS. In fact, sequence comparison of the amplified cDNA from one lot of FBS confirmed that it was the source of infection for one of these cell lines. Since BVDV was isolated from the remaining two cell lines at the earliest available passage, the fetuses from which they were established could not be ruled out as the source of the virus.

  20. Cu,Zn Superoxide Dismutase is a Peroxisomal Enzyme in Human Fibroblast and Hepatoma Cells

    NASA Astrophysics Data System (ADS)

    Keller, Gilbert-Andre; Warner, Thomas G.; Steimer, Kathelyn S.; Hallewell, Robert A.

    1991-08-01

    The intracellular localization of Cu,Zn superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) has been examined by immunofluorescence using four monoclonal anti-Cu,Zn superoxide dismutase antibodies raised against a recombinant human Cu,Zn superoxide dismutase derivative produced and purified from Escherichia coli. Colocalization with catalase, a peroxisomal matrix enzyme, was used to demonstrate the peroxisomal localization of Cu,Zn superoxide dismutase in human fibroblasts and hepatoma cells. In the fibroblasts of Zellweger syndrome patients, the enzyme is not transported to the peroxisomal ghosts but, like catalase, remains in the cytoplasm. In addition, immunocryoelectron microscopy of yeast cells expressing human Cu,Zn superoxide dismutase showed that the enzyme is translocated to the peroxisomes.

  1. Autocrine release of TGF-beta by portal fibroblasts regulates cell growth.

    PubMed

    Wells, Rebecca G; Kruglov, Emma; Dranoff, Jonathan A

    2004-02-13

    Portal fibroblasts (PF) are a newly isolated population of fibrogenic cells in the liver postulated to play a significant role in early biliary fibrosis. Because transforming growth factor-beta (TGF)-beta is a key growth factor in fibrosis, we characterized the response of PF to TGF-beta. We demonstrate that PF produce significant amounts of TGF-beta2 and, unlike activated hepatic stellate cells (HSC), express all three TGF-beta receptors and are growth inhibited by TGF-beta1 and TGF-beta2. Fibroblast growth factor (FGF)-2, but not platelet derived growth factor (PDGF), causes PF proliferation. These data suggest a mechanism whereby HSC eclipse PF as the dominant myofibroblast population in biliary fibrosis.

  2. Binding, internalization, and degradation of basic fibroblast growth factor in human microvascular endothelial cells

    SciTech Connect

    Bikfalvi, A.; Dupuy, E.; Inyang, A.L.; Tobelem, G. ); Fayein, N.; Courtois, Y. ); Leseche, G. )

    1989-03-01

    The binding, internalization, and degradation of basic fibroblast growth factor (bFGF) in human omental microvascular endothelial cells (HOME cells) were investigated. Binding studies of bFGF in human endothelial cells have not yet been reported. Basic FGF bound to HOME cells. The number of low-affinity binding sites was found to be variable. Washing the cells with 2 M phosphate-buffered saline removed completely {sup 125}I-bFGF bound to low-affinity binding sites but decreased also the high-affinity binding. The majority of the surface-bound {sup 125}I-bFGF was removed by washing the cells with acetic acid buffer at pH 3. At this temperature, degradation of the internalized ligand was followed after 1 hour by the appearance of three major bands of 15,000 10,000, and 8,000 Da and was inhibited by chloroquine. These results demonstrated two classes of binding sites for bFGF in HOME cells; the number of high-affinity binding sites being larger than the number reported for bovine capillary endothelial cells. The intracellular processing of bFGF in HOME cells seems to be different from that of heparin binding growth factor-1 in murine lung capillary endothelial cells and of eye-derived growth factor-1 in Chinese hamster fibroblasts.

  3. 3D culture model of fibroblast-mediated collagen creep to identify abnormal cell behaviour.

    PubMed

    Kureshi, A K; Afoke, A; Wohlert, S; Barker, S; Brown, R A

    2015-11-01

    Native collagen gels are important biomimetic cell support scaffolds, and a plastic compression process can now be used to rapidly remove fluid to any required collagen density, producing strong 3D tissue-like models. This study aimed to measure the mechanical creep properties of such scaffolds and to quantify any enhanced creep occurring in the presence of cells (cell-mediated creep). The test rig developed applies constant creep tension during culture and measures real-time extension due to cell action. This was used to model extracellular matrix creep, implicated in the transversalis fascia (TF) in inguinal hernia. Experiments showed that at an applied tension equivalent to 15% break strength, cell-mediated creep over 24-h culture periods was identified at creep rates of 0.46 and 0.38%/h for normal TF and human dermal fibroblasts, respectively. However, hernia TF fibroblasts produced negligible cell-mediated creep levels under the same conditions. Raising the cell culture temperature from 4 to 37 °C was used to demonstrate live cell dependence of this creep. This represents the first in vitro demonstration of TF cell-mediated collagen creep and to our knowledge the first demonstration of a functional, hernia-related cell abnormality. PMID:25862069

  4. Blood cell induction in Xenopus animal cap explants: effects of fibroblast growth factor, bone morphogenetic proteins, and activin.

    PubMed

    Miyanaga, Y; Shiurba, R; Asashima, M

    1999-02-01

    Cultures of Xenopus blastula animal caps were used to explore the haematopoietic effects of three candidate inducers of mesoderm: basic fibroblast growth factor (bFGF), bone morphogenetic proteins (BMPs) and activin A. In response to either bFGF or activin A, explants expanded into egg-shaped structures, and beneath an outer layer of epidermis, a ventral mesodermal lining surrounded a fluid-filled cavity containing "blood-like cells". Immunocytochemistry identified some of these cells as early leukocytes, but erythrocytes were rare. BMP-2 or BMP-4 induced primitive erythrocytes as well as leukocytes, and a high concentration was required for these cells to differentiate in only a small proportion of explants. BMP-2 but not BMP-4 induced ventral mesoderm concomitantly. High concentrations of activin A dorsalized explants, which contained infrequent leukocytes, and an optimal combination of activin A and bFGF caused differentiation of muscle with few blood cells. By contrast, BMP-2 or BMP-4 plus activin A synergistically increased the numbers of both leukocytes and erythrocytes. Explants treated with BMPs plus activin contained a well organized cell mass in which yolk-rich cells mixed with blood cells and pigmented cells did not. BMP-2 plus bFGF also induced numerous leukocytes and fewer erythrocytes, but BMP-4 antagonized the leukopoietic effect of bFGF. The data suggest that the signalling pathways these three factors use to induce leukopoiesis overlap and that erythropoiesis may be activated when inducers are present in combination.

  5. Survival of different cell lines in alginate-agarose microcapsules.

    PubMed

    Orive, G; Hernández, R M; Gascón, A R; Igartua, M; Pedraz, J L

    2003-01-01

    Cell microencapsulation has emerged as a promising therapeutic strategy to treat a wide range of diseases. The optimisation of this technology depends on several critical issues such as the careful selection of the cell line, the controlled manufacture of microcapsules and the suitable adaptation of the construct design to the selected cell line. In this work, we studied the behavior of hybridoma cells once enclosed in solid and liquefied core alginate-agarose beads. Results show that hybridoma cells presented a better growing pattern and improved their viability and antibody production within liquefied beads. However, when these beads were evaluated with a compression resistance study, they were found to be mechanically more fragile than solid ones. To address this problem, we entrapped non-autologous cells (BHK fibroblast and C2C12 myoblast) in solid alginate-agarose beads and observed that they showed an improved growing profile and prolonged their viability up to 70 days in comparison to the 15 days seen for the hybridoma cells.

  6. FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells

    PubMed Central

    2011-01-01

    Background Alterations towards a permissive stromal microenvironment provide important cues for tumor growth, invasion, and metastasis. In this study, Fibroblast activation protein (FAP), a serine protease selectively produced by tumor-associated fibroblasts in over 90% of epithelial tumors, was used as a platform for studying tumor-stromal interactions. We tested the hypothesis that FAP enzymatic activity locally modifies stromal ECM (extracellular matrix) components thus facilitating the formation of a permissive microenvironment promoting tumor invasion in human pancreatic cancer. Methods We generated a tetracycline-inducible FAP overexpressing fibroblastic cell line to synthesize an in vivo-like 3-dimensional (3D) matrix system which was utilized as a stromal landscape for studying matrix-induced cancer cell behaviors. A FAP-dependent topographical and compositional alteration of the ECM was characterized by measuring the relative orientation angles of fibronectin fibers and by Western blot analyses. The role of FAP in the matrix-induced permissive tumor behavior was assessed in Panc-1 cells in assorted matrices by time-lapse acquisition assays. Also, FAP+ matrix-induced regulatory molecules in cancer cells were determined by Western blot analyses. Results We observed that FAP remodels the ECM through modulating protein levels, as well as through increasing levels of fibronectin and collagen fiber organization. FAP-dependent architectural/compositional alterations of the ECM promote tumor invasion along characteristic parallel fiber orientations, as demonstrated by enhanced directionality and velocity of pancreatic cancer cells on FAP+ matrices. This phenotype can be reversed by inhibition of FAP enzymatic activity during matrix production resulting in the disorganization of the ECM and impeded tumor invasion. We also report that the FAP+ matrix-induced tumor invasion phenotype is β1-integrin/FAK mediated. Conclusion Cancer cell invasiveness can be affected by

  7. Generation of Footprint-Free Induced Pluripotent Stem Cells from Human Fibroblasts Using Episomal Plasmid Vectors.

    PubMed

    Ovchinnikov, Dmitry A; Sun, Jane; Wolvetang, Ernst J

    2015-01-01

    Human induced pluripotent stem cells (hiPSCs) have provided novel insights into the etiology of disease and are set to transform regenerative medicine and drug screening over the next decade. The generation of human iPSCs free of a genetic footprint of the reprogramming process is crucial for the realization of these potential uses. Here we describe in detail the generation of human iPSC from control and disease-carrying individuals' fibroblasts using episomal plasmids.

  8. Raman spectroscopy: a powerful tool for the non-contact discrimination of bone marrow mesenchymal stem cells and fibroblasts

    NASA Astrophysics Data System (ADS)

    Pudlas, Marieke; Koch, Steffen; Bolwien, Carsten; Hirth, Thomas; Walles, Heike; Schenke-Layland, Katja

    2011-03-01

    Bone-marrow mesenchymal stem cells (BM-MSCs) are a promising cell source for regenerative medicine. However, it is challenging to determine whether isolated BM-MSC populations are free of fibroblasts. We employed traditional methods and Raman spectroscopy to distinguish BM-MSCs and human dermal fibroblasts (hDFs). Although in vitro differentiation assays revealed the multipotent character of BM-MSCs, long culture periods are a major disadvantage. Using Raman spectroscopy, we could quickly distinguish between BM-MSCs and hDFs. Therefore we conclude that this method is sufficient for the rapid detection of fibroblastic contaminations in BM-MSC cultures.

  9. Whole cell mechanics of contractile fibroblasts: relations between effective cellular and extracellular matrix moduli

    PubMed Central

    Marquez, J. Pablo; Elson, Elliot L.; Genin, Guy M.

    2010-01-01

    While much is known about the subcellular structures responsible for the mechanical functioning of a contractile fibroblast, debate exists about how these components combine to endow a cell with its form and mechanical function. We present an analysis of mechanical characterization experiments performed on bio-artificial tissue constructs, which we believe serve as a more realistic testing environment than two-dimensional cell culture. These model tissues capture many features of real tissues with the advantage that they can be engineered to model different physiological and pathological characteristics. We study here a model tissue consisting of reconstituted type I collagen and varying concentrations of activated contractile fibroblasts that is relevant to modelling different stages of wound healing. We applied this system to assess how cell and extracellular matrix (ECM) mechanics vary with cell concentration. Short-term and long-term moduli of the ECM were estimated through analytical and numerical analysis of two-phase elastic solids containing cell-shaped voids. The relative properties of cells were then deduced from the results of numerical analyses of two-phase elastic solids containing mechanically isotropic cells of varying modulus. With increasing cell concentration, the short-term and long-term tangent moduli of the reconstituted collagen ECM increased sharply from a baseline value, while those of the cells decreased monotonically. PMID:20047943

  10. Role of non-genomic androgen signalling in suppressing proliferation of fibroblasts and fibrosarcoma cells.

    PubMed

    Castoria, G; Giovannelli, P; Di Donato, M; Ciociola, A; Hayashi, R; Bernal, F; Appella, E; Auricchio, F; Migliaccio, A

    2014-12-04

    The functions of androgen receptor (AR) in stromal cells are still debated in spite of the demonstrated importance of these cells in organ development and diseases. Here, we show that physiological androgen concentration (10 nM R1881 or DHT) fails to induce DNA synthesis, while it consistently stimulates cell migration in mesenchymal and transformed mesenchymal cells. Ten nanomolar R1881 triggers p27 Ser10 phosphorylation and its stabilization in NIH3T3 fibroblasts. Activation of Rac and its downstream effector DYRK 1B is responsible for p27 Ser10 phosphorylation and cell quiescence. Ten nanomolar androgen also inhibits transformation induced by oncogenic Ras in NIH3T3 fibroblasts. Overexpression of an AR mutant unable to interact with filamin A, use of a small peptide displacing AR/filamin A interaction, and filamin A knockdown indicate that the androgen-triggered AR/filamin A complex regulates the pathway leading to p27 Ser10 phosphorylation and cell cycle arrest. As the AR/filamin A complex is also responsible for migration stimulated by 10 nM androgen, our report shows that the androgen-triggered AR/filamin A complex controls, through Rac 1, the decision of cells to halt cell cycle and migration. This study reveals a new and unexpected role of androgen/AR signalling in coordinating stromal cell functions.

  11. PDGFRβ expression and function in fibroblasts derived from pluripotent cells is linked to DNA demethylation

    PubMed Central

    Hewitt, Kyle J.; Shamis, Yulia; Knight, Elana; Smith, Avi; Maione, Anna; Alt-Holland, Addy; Sheridan, Steven D.; Haggarty, Stephen J.; Garlick, Jonathan A.

    2012-01-01

    Platelet-derived growth factor receptor-beta (PDGFRβ) is required for the development of mesenchymal cell types, and plays a diverse role in the function of fibroblasts in tissue homeostasis and regeneration. In this study, we characterized the expression of PDGFRβ in fibroblasts derived from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), and showed that this expression is important for cellular functions such as migration, extracellular matrix production and assembly in 3D self-assembled tissues. To determine potential regulatory regions predictive of expression of PDGFRβ following differentiation from ESCs and iPSCs, we analyzed the DNA methylation status of a region of the PDGFRB promoter that contains multiple CpG sites, before and after differentiation. We demonstrated that this promoter region is extensively demethylated following differentiation, and represents a developmentally regulated, differentially methylated region linked to PDGFRβ expression. Understanding the epigenetic regulation of genes such as PDGFRB, and identifying sites of active DNA demethylation, is essential for future applications of iPSC-derived fibroblasts for regenerative medicine. PMID:22344267

  12. Analysis of Chromosomal Aberrations after Low and High Dose Rate Gamma Irradiation in ATM or NBS Suppressed Human Fibroblast Cells

    NASA Technical Reports Server (NTRS)

    Hada, M.; Huff, J. L.; Patel, Z.; Pluth, J. M.; George, K. A.; Cucinotta, F. A.

    2009-01-01

    A detailed understanding of the biological effects of heavy nuclei is needed for space radiation protection and for cancer therapy. High-LET radiation produces more complex DNA lesions that may be non-repairable or that may require additional processing steps compared to endogenous DSBs, increasing the possibility of misrepair. Interplay between radiation sensitivity, dose, and radiation quality has not been studied extensively. Previously we studied chromosome aberrations induced by low- and high- LET radiation in several cell lines deficient in ATM (ataxia telangactasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. We found that the yields of both simple and complex chromosomal aberrations were significantly increased in the DSB repair defective cells compared to normal cells. The increased aberrations observed for the ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher in NBS cells only for simple exchanges. These results point to the importance of the functions of ATM and NBS in chromatin modifications that function to facilitate correct DSB repair and minimize aberration formation. To further understand the sensitivity differences that were observed in ATM and NBS deficient cells, in this study, chromosomal aberration analysis was performed in normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, or Mirin, an MRN complex inhibitor involved in activation of ATM. We are also testing siRNA knockdown of these proteins. Normal and ATM or NBS suppressed cells were irradiated with gamma-rays and chromosomes were collected with a premature chromosome

  13. Generation of KCL034 clinical grade human embryonic stem cell line

    PubMed Central

    Devito, Liani; Jacquet, Laureen; Petrova, Anastasia; Miere, Cristian; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Stephenson, Emma; Ilic, Dusko

    2016-01-01

    The KCL034 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards. Pluripotent state and differentiation potential were confirmed by in vitro assays. The line was also validated for sterility, specific and non-specific human pathogens. PMID:27345810

  14. Generation of KCL033 clinical grade human embryonic stem cell line

    PubMed Central

    Devito, Liani; Petrova, Anastasia; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Stephenson, Emma; Ilic, Dusko

    2016-01-01

    The KCL033 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards. Pluripotent state and differentiation potential were confirmed by in vitro assays. The line was also validated for sterility and specific and non-specific human pathogens. PMID:27345988

  15. Stromal fibroblasts support dendritic cells to maintain IL-23/Th17 responses after exposure to ionizing radiation

    PubMed Central

    Malecka, Anna; Wang, Qunwei; Shah, Sabaria; Sutavani, Ruhcha V.; Spendlove, Ian; Ramage, Judith M.; Greensmith, Julie; Franks, Hester A.; Gough, Michael J.; Saalbach, Anja; Patel, Poulam M.; Jackson, Andrew M.

    2016-01-01

    Dendritic cell function is modulated by stromal cells, including fibroblasts. Although poorly understood, the signals delivered through this crosstalk substantially alter dendritic cell biology. This is well illustrated with release of TNF-α/IL-1β from activated dendritic cells, promoting PGE2 secretion from stromal fibroblasts. This instructs dendritic cells to up-regulate IL-23, a key Th17-polarizing cytokine. We previously showed that ionizing radiation inhibited IL-23 production by human dendritic cells in vitro. In the present study, we investigated the hypothesis that dendritic cell-fibroblast crosstalk overcomes the suppressive effect of ionizing radiation to support appropriately polarized Th17 responses. Radiation (1–6 Gy) markedly suppressed IL-23 secretion by activated dendritic cells (P < 0.0001) without adversely impacting their viability and consequently, inhibited the generation of Th17 responses. Cytokine suppression by ionizing radiation was selective, as there was no effect on IL-1β, -6, -10, and -27 or TNF-α and only a modest (11%) decrease in IL-12p70 secretion. Coculture with fibroblasts augmented IL-23 secretion by irradiated dendritic cells and increased Th17 responses. Importantly, in contrast to dendritic cells, irradiated fibroblasts maintained their capacity to respond to TNF-α/IL-1β and produce PGE2, thus providing the key intermediary signals for successful dendritic cell-fibroblasts crosstalk. In summary, stromal fibroblasts support Th17-polarizing cytokine production by dendritic cells that would otherwise be suppressed in an irradiated microenvironment. This has potential ramifications for understanding the immune response to local radiotherapy. These findings underscore the need to account for the impact of microenvironmental factors, including stromal cells, in understanding the control of immunity. PMID:27049023

  16. Silibinin Prevents Prostate Cancer Cell-Mediated Differentiation of Naïve Fibroblasts into Cancer-Associated Fibroblast Phenotype by Targeting TGF β2

    PubMed Central

    Ting, Harold; Deep, Gagan; Jain, Anil K.; Cimic, Adela; Sirintrapun, Joseph; Romero, Lina M.; Cramer, Scott D.; Agarwal, Chapla; Agarwal, Rajesh

    2014-01-01

    Tumor microenvironment is an essential element in prostate cancer (PCA), offering unique opportunities for its prevention. Tumor microenvironment includes naïve fibroblasts that are recruited by nascent neoplastic lesion and altered into ‘cancer-associated fibroblasts’ (CAFs) that promote PCA. A better understanding and targeting of interaction between PCA cells and fibroblasts and inhibiting CAF phenotype through non-toxic agents are novel approaches to prevent PCA progression. One well-studied cancer chemopreventive agent is silibinin, and thus, we examined its efficacy against PCA cells-mediated differentiation of naïve fibroblasts into a myofibroblastic-phenotype similar to that found in CAFs. Silibinin’s direct inhibitory effect on the phenotype of CAFs derived directly from PCA patients was also assessed. Human prostate stromal cells (PrSCs) exposed to control conditioned media (CCM) from human PCA PC3 cells showed more invasiveness, with increased α-SMA (alpha-smooth muscle actin) and vimentin expression, and differentiation into a phenotype we identified in CAFs. Importantly, silibinin (at physiologically-achievable concentrations) inhibited α-SMA expression and invasiveness in differentiated fibroblasts and prostate CAFs directly, as well as indirectly by targeting PCA cells. The observed increase in α-SMA and CAF-like phenotype was transforming growth factor (TGF) β2 dependent, which was strongly inhibited by silibinin. Furthermore, induction of ±-SMA and CAF phenotype by CCM were also strongly inhibited by a TGFβ2-neutralizing antibody. The inhibitory effect of silibinin on TGFβ2 expression and CAF-like biomarkers was also observed in PC3 tumors. Together, these findings highlight the potential usefulness of silibinin in PCA prevention through targeting the CAF phenotype in the prostate tumor microenvironment. PMID:24615813

  17. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    SciTech Connect

    Dong, Yan; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  18. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells.

    PubMed

    Mehalick, Leslie A; Poulsen, Christopher; Fischer, Carol L; Lanzel, Emily A; Bates, Amber M; Walters, Katherine S; Cavanaugh, Joseph E; Guthmiller, Janet M; Johnson, Georgia K; Wertz, Philip W; Brogden, Kim A

    2015-12-01

    Long-chain bases, found in the oral cavity, have potent antimicrobial activity against oral pathogens. In an article associated with this dataset, Poulson and colleagues determined the cytotoxicities of long-chain bases (sphingosine, dihydrosphingosine, and phytosphingosine) for human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), dendritic cells (DC), and squamous cell carcinoma (SCC) cell lines [1]. Poulson and colleagues found that GE keratinocytes were more resistant to long-chain bases as compared to GF, DC, and SCC cell lines [1]. In this study, we assess the susceptibility of DC to lower concentrations of long chain bases. 0.2-10.0 µM long-chain bases and GML were not cytotoxic to DC; 40.0-80.0 µM long-chain bases, but not GML, were cytotoxic for DC; and 80.0 µM long-chain bases were cytotoxic to DC and induced cellular damage and death in less than 20 mins. Overall, the LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections.

  19. miR-205 Hinders the Malignant Interplay Between Prostate Cancer Cells and Associated Fibroblasts

    PubMed Central

    Gandellini, Paolo; Giannoni, Elisa; Casamichele, Anna; Taddei, Maria Letizia; Callari, Maurizio; Piovan, Claudia; Valdagni, Riccardo; Pierotti, Marco Alessandro

    2014-01-01

    Abstract Aims: Tumor microenvironment is a strong determinant for the acquisition of metastatic potential of cancer cells. We have recently demonstrated that cancer-associated fibroblasts (CAFs) elicit a redox-dependent epithelial-mesenchymal transition (EMT) in prostate cancer (PCa) cells, driven by cycloxygenase-2/hypoxia-inducible factor-1 (HIF-1)/nuclear factor-κB pathway and enhancing tumor aggressiveness. Here, we investigated the involvement of microRNAs (miRNAs) in tumor-stroma interplay to identify possible tools to counteract oxidative stress and metastasis dissemination. Results: We found that miR-205 is the most downmodulated miRNA in PCa cells upon CAF stimulation, due to direct transcriptional repression by HIF-1, a known redox-sensitive transcription factor. Rescue experiments demonstrated that ectopic miR-205 overexpression in PCa cells counteracts CAF-induced EMT, thus impairing enhancement of cell invasion, acquisition of stem cell traits, tumorigenicity, and metastatic dissemination. In addition, miR-205 blocks tumor-driven activation of surrounding fibroblasts by reducing pro-inflammatory cytokine secretion. Innovation: Overall, such findings suggest miR-205 as a brake against PCa metastasis by blocking both the afferent and efferent arms of the circuit between tumor cells and associated fibroblasts, thus interrupting the pro-oxidant and pro-inflammatory circuitries engaged by reactive stroma. Conclusion: The evidence that miR-205 replacement in PCa cells is able not only to prevent but also to revert the oxidative/pro-inflammatory axis leading to EMT induced by CAFs sets the rationale for developing miRNA-based approaches to prevent and treat metastatic disease. Antioxid. Redox Signal. 20, 1045–1059. PMID:23924028

  20. Periodontal Specific Differentiation of Dental Follicle Stem Cells into Osteoblast, Fibroblast, and Cementoblast.

    PubMed

    Sowmya, S; Chennazhi, K P; Arzate, Higinio; Jayachandran, P; Nair, Shantikumar V; Jayakumar, R

    2015-10-01

    The dental follicle is a source of dental follicle stem cells (DFCs), which have the potential to differentiate into the periodontal lineage. DFCs therefore are of value in dental tissue engineering. The purpose of this study was to evaluate the effect of growth factor type and concentration on DFC differentiation into periodontal specific lineages. DFCs were isolated from the human dental follicle and characterized for the expression of mesenchymal markers. The cells were positive for CD-73, CD-44, and CD-90; and negative for CD-33, CD-34, and CD-45. The expression of CD-29 and CD-31 was almost negligible. The cells also expressed periodontal ligament and cementum markers such as periodontal ligament-associated protein-1 (PLAP-1), fibroblast growth factor-2 (FGF-2), and cementum protein-1 (CEMP-1), however, the expression of osteoblast markers was absent. Further, the DFCs were cultured in three different induction medium to analyze the osteoblastic, fibroblastic, and cementoblastic differentiation. Runt-related transcription factor 2 (RUNX-2), alkaline phosphatase (ALP) activity, alizarin staining, calcium quantification, collagen type-1 (Col-1), and osteopontin (OPN) expression confirmed the osteoblastic differentiation of DFCs. DFCs cultured in recombinant human FGF-2 (rhFGF-2) containing medium showed enhanced PLAP-1, FGF-2, and COL-1 expression with increasing concentration of rhFGF-2 which thereby confirmed periodontal ligament fibroblastic differentiation. Similarly, DFCs cultured in recombinant human cementum protein-1 (rhCEMP-1) containing medium showed enhanced bone sialoprotein-2 (BSP-2), CEMP-1, and COL-1 expression with respect to rhCEMP-1 which confirmed cementoblastic differentiation. The expression of osteoblast, fibroblast, and cementoblast-related genes of DFCs cultured in induction medium was enhanced in comparison to DFCs cultured in noninduction medium. Thus, growth factor-dependent differentiation of DFCs into periodontal specific lineages

  1. Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq.

    PubMed

    Treutlein, Barbara; Lee, Qian Yi; Camp, J Gray; Mall, Moritz; Koh, Winston; Shariati, Seyed Ali Mohammad; Sim, Sopheak; Neff, Norma F; Skotheim, Jan M; Wernig, Marius; Quake, Stephen R

    2016-06-16

    Direct lineage reprogramming represents a remarkable conversion of cellular and transcriptome states. However, the intermediate stages through which individual cells progress during reprogramming are largely undefined. Here we use single-cell RNA sequencing at multiple time points to dissect direct reprogramming from mouse embryonic fibroblasts to induced neuronal cells. By deconstructing heterogeneity at each time point and ordering cells by transcriptome similarity, we find that the molecular reprogramming path is remarkably continuous. Overexpression of the proneural pioneer factor Ascl1 results in a well-defined initialization, causing cells to exit the cell cycle and re-focus gene expression through distinct neural transcription factors. The initial transcriptional response is relatively homogeneous among fibroblasts, suggesting that the early steps are not limiting for productive reprogramming. Instead, the later emergence of a competing myogenic program and variable transgene dynamics over time appear to be the major efficiency limits of direct reprogramming. Moreover, a transcriptional state, distinct from donor and target cell programs, is transiently induced in cells undergoing productive reprogramming. Our data provide a high-resolution approach for understanding transcriptome states during lineage differentiation. PMID:27281220

  2. Transient Gene and miRNA Expression Profile Changes of Confluent Human Fibroblast Cells in Space

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lu, Tao; Wong, Michael; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Wang, Xiaoyu; Wu, Honglu

    2015-01-01

    Microgravity or an altered gravity environment from the static 1 gravitational constant has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of the cells. Whether non-dividing cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted on the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days for investigations of gene and miRNA (microRNA) expression profile changes in these cells. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly even though they were confluent, as measured by the expression of the protein Ki-67 positive cells, and the cells in space grew slightly faster. Gene and miRNA expression data indicated activation of NF(sub kappa)B (nuclear factor kappa-light-chain-enhancer of activated B cells) and other growth related pathways involving HGF and VEGF in the flown cells. On Day 14 when the cells were mostly non-dividing, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples in respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeleton changes by immunohistochemistry staining of the cells with antibodies for alpha-tubulin showed no difference between the flight and ground samples. Results of our study suggest that in true non-dividing human fibroblast cells, microgravity in

  3. Primed Pluripotent Cell Lines Derived from Various Embryonic Origins and Somatic Cells in Pig

    PubMed Central

    Park, Jin-Kyu; Kim, Hye-Sun; Uh, Kyung-Jun; Choi, Kwang-Hwan; Kim, Hyeong-Min; Lee, Taeheon; Yang, Byung-Chul; Kim, Hyun-Jong; Ka, Hak-Hyun; Kim, Heebal; Lee, Chang-Kyu

    2013-01-01

    Since pluripotent embryonic stem cell (ESC) lines were first derived from the mouse, tremendous efforts have been made to establish ESC lines in several domestic species including the pig; however, authentic porcine ESCs have not yet been established. It has proven difficult to maintain an ESC-like state in pluripotent porcine cell lines due to the frequent occurrence of spontaneous differentiation into an epiblast stem cell (EpiSC)-like state during culture. We have been able to derive EpiSC-like porcine ESC (pESC) lines from blastocyst stage porcine embryos of various origins, including in vitro fertilized (IVF), in vivo derived, IVF aggregated, and parthenogenetic embryos. In addition, we have generated induced pluripotent stem cells (piPSCs) via plasmid transfection of reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) into porcine fibroblast cells. In this study, we analyzed characteristics such as marker expression, pluripotency and the X chromosome inactivation status in female of our EpiSC-like pESC lines along with our piPSC line. Our results show that these cell lines demonstrate the expression of genes associated with the Activin/Nodal and FGF2 pathways along with the expression of pluripotent markers Oct4, Sox2, Nanog, SSEA4, TRA 1–60 and TRA 1–81. Furthermore all of these cell lines showed in vitro differentiation potential, the X chromosome inactivation in female and a normal karyotype. Here we suggest that the porcine species undergoes reprogramming into a primed state during the establishment of pluripotent stem cell lines. PMID:23326334

  4. Mesenchymal stromal cells reverse hypoxia-mediated suppression of α-smooth muscle actin expression in human dermal fibroblasts

    SciTech Connect

    Faulknor, Renea A.; Olekson, Melissa A.; Nativ, Nir I.; Ghodbane, Mehdi; Gray, Andrea J.; Berthiaume, François

    2015-02-27

    During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived soluble factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. (SB431542), an inhibitor of transforming growth factor-β{sub 1} (TGF-β{sub 1})-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β{sub 1} at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β{sub 1} is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. - Highlights: • Fibroblasts were cultured in collagen lattices (FPCLs) as model contracting wounds. • Hypoxia decreased FPCL contraction and fibroblast α-smooth muscle actin expression. • Mesenchymal stromal cells (MSCs) restored function of hypoxic fibroblasts. • MSCs regulate fibroblast function mainly via secreted transforming growth factor-β{sub 1}.

  5. Defining the Diversity of Phenotypic Respecification Using Multiple Cell Lines and Reprogramming Regimens

    PubMed Central

    Alicea, Bradly; Murthy, Shashanka; Keaton, Sarah A.; Cobbett, Peter; Cibelli, Jose B.

    2013-01-01

    To better understand the basis of variation in cellular reprogramming, we performed experiments with two primary objectives: first, to determine the degree of difference, if any, in reprogramming efficiency among cells lines of a similar type after accounting for technical variables, and second, to compare the efficiency of conversion of multiple similar cell lines to two separate reprogramming regimens–induced neurons and induced skeletal muscle. Using two reprogramming regimens, it could be determined whether converted cells are likely derived from a distinct subpopulation that is generally susceptible to reprogramming or are derived from cells with an independent capacity for respecification to a given phenotype. Our results indicated that when technical components of the reprogramming regimen were accounted for, reprogramming efficiency was reproducible within a given primary fibroblast line but varied dramatically between lines. The disparity in reprogramming efficiency between lines was of sufficient magnitude to account for some discrepancies in published results. We also found that the efficiency of conversion to one phenotype was not predictive of reprogramming to the alternate phenotype, suggesting that the capacity for reprogramming does not arise from a specific subpopulation with a generally “weak grip” on cellular identity. Our findings suggest that parallel testing of multiple cell lines from several sources may be needed to accurately assess the efficiency of direct reprogramming procedures, and that testing a larger number of fibroblast lines—even lines with similar origins—is likely the most direct means of improving reprogramming efficiency. PMID:23672680

  6. Generation of human induced pluripotent stem cell line from a patient with a long QT syndrome type 2.

    PubMed

    Fatima, Azra; Ivanyuk, Dina; Herms, Stefan; Heilmann-Heimbach, Stefanie; O'Shea, Orla; Chapman, Charlotte; Izsvák, Zsuszanna; Farr, Martin; Hescheler, Jürgen; Šarić, Tomo

    2016-03-01

    We report here the generation of human iPS cell line UKKi009-A from dermal fibroblasts of a patient carrying heterozygous mutation c.3035-3045delTCCCTCGATGC, p.Leu1012Pro (fs*55) in KCNH2 gene leading to long QT syndrome type 2 (LQT2). We used the Sleeping Beauty transposon-based plasmids expressing OSKM along with microRNAs 307/367 to reprogram the fibroblasts. The iPS cells possess pluripotent stem cell characteristics and differentiate to cell lineages of all three germ layers. This cell line can serve as a source for in vitro modeling of LQT2. This cell line is distributed by the European Collection of Authenticated Cell Cultures (ECACC). PMID:27345990

  7. Dickkopf-1 has an Inhibitory Effect on Mesenchymal Stem Cells to Fibroblast Differentiation

    PubMed Central

    Li, Yan; Qiu, Sang-Sang; Shao, Yan; Song, Hong-Huan; Li, Gu-Li; Lu, Wei; Zhu, Li-Mei

    2016-01-01

    Background: Mesenchymal stem cells (MSCs) are bone marrow stem cells which play an important role in tissue repair. The treatment with MSCs will be likely to aggravate the degree of fibrosis. The Wnt/β-catenin signaling pathway is involved in developmental and physiological processes, such as fibrosis. Dickkopfs (DKKs) are considered as an antagonist to block Wnt/β-catenin signaling pathway by binding the receptor of receptor-related protein (LRP5/6). DKK1 was chosen in attempt to inhibit fibrosis of MSCs by lowering activity of Wnt/β-catenin signaling pathway. Methods: Stable MSCs were randomly divided into four groups: MSCs control, MSCs + transforming growth factor-β (TGF-β), MSCs + DKK1, and MSCs + TGF-β + DKK1. Flow cytometry was used to identify MSCs. Cell viability was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide test. Immunofluorescence was used to detect protein expression in the Wnt/β-catenin signaling pathways. Western blotting analysis was employed to test expression of fibroblast surface markers and, finally, real-time reverse transcription polymerase chain reaction was employed to test mRNA expression of fibroblast surface markers and Wnt/β-catenin signaling proteins. Results: Cultivated MSCs were found to conform to the characteristics of standard MSCs: expression of cluster of differentiation (CD) 73, 90, and 105, not expression of 34, 45, and 79. We found that DKK1 could maintain the normal cell morphology of MSCs. Western blotting analysis showed that fibroblast surface markers were expressed in high quantities in the group MSCs + TGF-β. However, the expression was lower in the MSCs + TGF-β + DKK1. Immunofluorescence showed high expression of all Wnt/β-catnin molecules in the MSCs + TGF-β group but expressed in lower quantities in MSCs + TGF-β + DKK1 group. Finally, mRNA expression of fibroblast markers vimentin, α-smooth muscle actin and Wnt/β-catenin signaling proteins β-catenin, T-cell factor

  8. IDO expressing fibroblasts promote the expansion of antigen specific regulatory T cells.

    PubMed

    Curran, Terry-Ann; Jalili, Reza Baradar; Farrokhi, Ali; Ghahary, Aziz

    2014-01-01

    Regulatory CD4(+)CD25(+)Foxp3(+) T cells (Tregs) can be induced and expanded by dendritic cells (DCs) in the presence of the enzyme indoleamine 2,3-dioxygenase (IDO). Here we report that a possible alternative to DCs are IDO expressing dermal fibroblasts (DFs), which are easier to isolate and sustain in culture compared to DCs. When mouse splenocytes were co-cultured with IDO expressing DFs, a significant increase in frequency and the number of Tregs was found compared to those of control group (13.16%±1.8 vs. 5.53%±1.2, p<0.05). Despite observing a higher total number of dead CD4(+) cells in the IDO group, there was a more abundant live CD4(+)CD25(+) subpopulation in this group. Further analysis reveales that these CD4(+) CD25(+) cells have the capacity to expand in the presence of IDO expressing DFs. Greater number of CTLA-4(+) cells and high expression of TGF-β and IL-10 were found in CD4(+) cells of the IDO group compared to those of the controls. This finding confirmed a suppressive functionality of the expanded Tregs. Furthermore, CD4(+) CD25(+) cells isolated from the IDO group showed an alloantigen specific suppressive effect in a mixed lymphocyte reaction assay. These results confirm that IDO expressing dermal fibroblasts can expand a population of suppressive antigen specific Tregs. In conclusion, IDO expressing dermal fibroblasts have the capacity to stimulate the expansion of a subset of Tregs which can be used to generate antigen-specific immune tolerance.

  9. Sirtuin 1 suppresses nuclear factor κB induced transactivation and pro-inflammatory cytokine expression in cat fibroblast cells

    PubMed Central

    ISHIKAWA, Shingo; TAKEMITSU, Hiroshi; HABARA, Makoto; MORI, Nobuko; YAMAMOTO, Ichiro; ARAI, Toshiro

    2015-01-01

    Nuclear factor κB (NF-κB) is a key factor in the development of chronic inflammation and is deeply involved in age-related and metabolic diseases development. These diseases have become a serious problem in cats. Sirtuin 1 (SIRT1) is associated with aging and metabolism through maintaining inflammation via NF-κB. In addition, fibroblasts are considered an important factor in the development of chronic inflammation. Therefore, we aimed to examine the effect of cat SIRT1 (cSIRT1) on NF-κB in cat fibroblast cells. The up-regulation of NF-κB transcriptional activity and pro-inflammatory cytokine mRNA expression by p65 subunit of NF-κB and lipopolysaccharide was suppressed by cSIRT1 in cat fibroblast cells. Our findings show that cSIRT1 is involved in the suppression of inflammation in cat fibroblast cells. PMID:26165138

  10. Cytoskeletal architecture and cell motility remain unperturbed in mouse embryonic fibroblasts from Plk3 knockout mice

    PubMed Central

    Michel, Daniel R; Mun, Kyu-Shik; Ho, Chia-Chi

    2016-01-01

    Polo-like kinase 3 (Plk3) is best known for its involvement in cell cycle checkpoint regulation following exposure to cytotoxicants or induction of DNA damage. Yet, Plk3 has also been implicated in roles beyond those of cellular responses to DNA damage. Here, we have investigated the proposition, suggested by the Plk literature, that Plk3 regulates cytoskeletal architecture and cell functions mediated by the cytoskeleton. To this end, we have assayed mouse embryonic fibroblasts (MEFs) generated from both Plk3 knockout and wild-type mice. In particular, we asked whether Plk3 is involved in actin fiber and microtubule integrity, cell migration, cell attachment, and/or cell invasion. Our results demonstrate that functional Plk3 is not critical for the regulation of cytoskeletal integrity, cell morphology, cell adhesion, or motility in MEFs. PMID:26843517

  11. Fibroblastic Reticular Cells: Organization and Regulation of the T Lymphocyte Life Cycle1

    PubMed Central

    Brown, Flavian D.; Turley, Shannon J.

    2014-01-01

    The connective tissue of any organ in the body is generally referred to as stroma. This complex network is commonly composed of leukocytes, extracellular matrix components, mesenchymal cells and a collection of nerves, blood and lymphoid vessels. Once viewed primarily as a structural entity, stromal cells of mesenchymal origin are now being intensely examined for their ability to directly regulate various components of immune cell function. There is particular interest in the ability of stromal cells to influence the homeostasis, activation and proliferation of T lymphocytes. One example of this regulation occurs in the lymph node (LN) where fibroblastic reticular cells (FRCs) support the maintenance of naïve T cells, induce antigen-specific tolerance and restrict the expansion of newly activated T cells. In an effort to highlight the varied immunoregulatory properties of FRCs, we have reviewed the most recent advances in this field and provide some insights into potential future directions. PMID:25663676

  12. Establishment, characterization, and toxicological application of loggerhead sea turtle (Caretta caretta) primary skin fibroblast cell cultures.

    PubMed

    Webb, Sarah J; Zychowski, Gregory V; Bauman, Sandy W; Higgins, Benjamin M; Raudsepp, Terje; Gollahon, Lauren S; Wooten, Kimberly J; Cole, Jennifer M; Godard-Codding, Céline

    2014-12-16

    Pollution is a well-known threat to sea turtles but its impact is poorly understood. In vitro toxicity testing presents a promising avenue to assess and monitor the effects of environmental pollutants in these animals within the legal constraints of their endangered status. Reptilian cell cultures are rare and, in sea turtles, largely derived from animals affected by tumors. Here we describe the full characterization of primary skin fibroblast cell cultures derived from biopsies of multiple healthy loggerhead sea turtles (Caretta caretta), and the subsequent optimization of traditional in vitro toxicity assays to reptilian cells. Characterization included validating fibroblast cells by morphology and immunocytochemistry, and optimizing culture conditions by use of growth curve assays with a fractional factorial experimental design. Two cell viability assays, MTT and lactate dehydrogenase (LDH), and an assay measuring cytochrome P4501A (CYP1A) expression by quantitative PCR were optimized in the characterized cells. MTT and LDH assays confirmed cytotoxicity of perfluorooctanoic acid at 500 μM following 72 and 96 h exposures while CYP1A5 induction was detected after 72 h exposure to 0.1-10 μM benzo[a]pyrene. This research demonstrates the validity of in vitro toxicity testing in sea turtles and highlights the need to optimize mammalian assays to reptilian cells.

  13. Mouse bone marrow-derived mast cells (BMMC) change their phenotype when cultured with fibroblasts

    SciTech Connect

    Levi-Schaffer, F.; Austen, K.F.; Stevens, R.L.

    1986-03-05

    The heparin-containing mast cells (HP-MC) that reside in the connective tissues of the mouse, but not the chondroitin sulfate containing mast cells in the gastrointestinal mucosa, stain with safranin when exposed to alcian blue/safranin. Mouse BMMC (the presumptive in vitro counterpart of the in vivo differentiated mucosal mast cell) were cultured for 2-14 days with confluent skin-derived 3T3 fibroblasts in RPMI-1640 containing 10% fetal calf serum and 50% WEHI-3 conditioned medium. Although the BMMC adhered to the fibroblast monolayer, they continued to divide, probably due to the presence of interleukin-3 in the conditioned medium. The mast cells remained viable throughout the period of co-culture, since they failed to release LDG and because they increased their histamine content per cell approx.15-fold. After 8-9 days of co-culture, >50% of the BMMC changed histochemically becoming safranin positive. At this time, 30-50% of the (/sup 35/S)glycosaminoglycans on the proteoglycans synthesized by these co-cultured mass cells were heparin, whereas the initial BMMC synthesized proteoglycans containing only chondroitin sulfate E. That interleukin 3-dependent mouse BMMC can be induced to undergo a phenotypic change so as to express characteristics of a HP-MC suggests that the tissue microenvironment determines the differentiated characteristics of these cells.

  14. Establishment, characterization, and toxicological application of loggerhead sea turtle (Caretta caretta) primary skin fibroblast cell cultures.

    PubMed

    Webb, Sarah J; Zychowski, Gregory V; Bauman, Sandy W; Higgins, Benjamin M; Raudsepp, Terje; Gollahon, Lauren S; Wooten, Kimberly J; Cole, Jennifer M; Godard-Codding, Céline

    2014-12-16

    Pollution is a well-known threat to sea turtles but its impact is poorly understood. In vitro toxicity testing presents a promising avenue to assess and monitor the effects of environmental pollutants in these animals within the legal constraints of their endangered status. Reptilian cell cultures are rare and, in sea turtles, largely derived from animals affected by tumors. Here we describe the full characterization of primary skin fibroblast cell cultures derived from biopsies of multiple healthy loggerhead sea turtles (Caretta caretta), and the subsequent optimization of traditional in vitro toxicity assays to reptilian cells. Characterization included validating fibroblast cells by morphology and immunocytochemistry, and optimizing culture conditions by use of growth curve assays with a fractional factorial experimental design. Two cell viability assays, MTT and lactate dehydrogenase (LDH), and an assay measuring cytochrome P4501A (CYP1A) expression by quantitative PCR were optimized in the characterized cells. MTT and LDH assays confirmed cytotoxicity of perfluorooctanoic acid at 500 μM following 72 and 96 h exposures while CYP1A5 induction was detected after 72 h exposure to 0.1-10 μM benzo[a]pyrene. This research demonstrates the validity of in vitro toxicity testing in sea turtles and highlights the need to optimize mammalian assays to reptilian cells. PMID:25384208

  15. Investigation of the phototoxic effect of ZnO nanorods on fibroblasts and melanoma human cells

    NASA Astrophysics Data System (ADS)

    Kishwar, S.; Siddique, M.; Israr-Qadir, M.; Nur, O.; Willander, M.; Öllinger, K.

    2014-11-01

    Photocytotoxic effects of as-grown and zinc oxide (ZnO) nanorods coated with 5-aminolevulinic acid (ALA) have been studied on human cells, i.e. melanoma and foreskin fibroblast, under dark and ultraviolet light exposures. Zinc oxide nanorods have been grown on the very sharp tip (diameter = 700 nm) of borosilicate glass pipettes and then were coated by the photosensitizer for targeted investigations inside human cells. The coated glass pipette’s tip with photosensitizer has been inserted inside the cells with the help of a micro-manipulator and irradiated through ultraviolet light (UVA), which reduces the membrane potential of the mitochondria leading to cell death. Cell viability loss has been detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay when exposed to the dissolved ZnO nanorods and the production of the reactive oxygen species (ROS) has been detected along with the enhanced cytotoxic effect under UVA irradiation. Additionally, the influence of the lipid soluble antioxidant vitamin E and water-soluble N-acetyl-cysteine toward the enhancement or reduction of the toxicity has been investigated. A comparative analysis of the toxic nature of ZnO nanorods has been drawn between normal human fibroblast and melanoma cells, which can be favorable for understanding the clinical setting for killing tumor cells.

  16. HLA expression in hepatocellular carcinoma cell lines.

    PubMed

    Wadee, A A; Paterson, A; Coplan, K A; Reddy, S G

    1994-08-01

    The present study undertook to investigate the biological significance of human leucocyte antigen expression in hepatocellular carcinoma and to elucidate the role of potential modulating agents on human leucocyte antigen expression. These studies used several hepatic tumour-derived cell lines as in vitro model systems. The cell lines included PLC/PRF/5 (Alexander cell line), Hep3B, HepG2, TONG PHC, HA22T/VGH, HA59T/VGH and Mahlavu. The cell lines K562 and Raji were used as negative and positive controls, respectively. K562, a B lymphoid-derived cell line, was shown to express negligible amounts of human leucocyte antigens, while Raji, an erythromyeloid-derived cell line, expressed both class I and class II human leucocyte antigens as well as their respective invariant chains, beta 2-microglobulin and Ii. Using an ELISA, experiments performed on these cell lines confirmed the natural expression of class I and class II antigens by the HA22T/VGH and HA59T/VGH cell lines, whereas PLC/PRF/5 displayed class II surface antigens only. The effects of modulating agents such as interferon-gamma sodium butyrate and clofazimine on human leucocyte antigen expression were investigated using the HA22T/VGH, HA59T/VGH and TONG PHC cell lines. These agents increased class II and class II human leucocyte antigen expression on HA22T/VGH and TONG PHC cells, but had no effect on the HA59T/VGH cell line. The results suggest a potential use for these agents as modulators of human leucocyte antigen expression by human heptocellular cell lines.

  17. AZD-4547 exerts potent cytostatic and cytotoxic activities against fibroblast growth factor receptor (FGFR)-expressing colorectal cancer cells.

    PubMed

    Yao, Ting-Jing; Zhu, Jin-Hai; Peng, De-Feng; Cui, Zhen; Zhang, Chao; Lu, Pei-hua

    2015-07-01

    Colorectal cancer (CRC) causes significant mortalities worldwide. Fibroblast growth factor (FGF) receptor (FGFR) signaling is frequently dysregulated and/or constitutively activated in CRCs, contributing to cancer carcinogenesis and progression. Here, we studied the activity of AZD-4547, a novel and potent FGFR kinase inhibitor, on CRC cells. AZD-4547 inhibited CRC cell growth in vitro, and its activity correlated with the FGFR-1/2 expression level. AZD-4547 was cytotoxic and pro-apoptotic in FGFR-1/2-expressed CRC cell lines (NCI-H716 and HCT-116), but not in FGFR-1/2 null HT-29 cells. Further, AZD-4547 inhibited cell cycle progression and attenuated the activation of FGFR1-FGFR substrate 2 (FRS-2), ERK/mitogen-activated protein kinase (MAPK), and AKT/mammalian target of rapamycin (AKT/mTOR) signalings in NCI-H716 and HCT-116 cells. In vivo, AZD-4547 oral administration at effective doses inhibited NCI-H716 (high FGFR-1/2 expression) xenograft growth in nude mice. Phosphorylation of FGFR-1, AKT, and ERK1/2 in xenograft specimens was also inhibited by AZD-4547 administration. Thus, our preclinical studies strongly support possible clinical investigations of AZD-4547 for the treatment of CRCs harboring deregulated FGFR signalings. PMID:25691251

  18. Establishment and characterization of an ovarian cell line from Southern catfish (Silurus meridionalis).

    PubMed

    Wei, Jing; Qi, WenChuang; Zhou, Yujie; Zhang, Xiaoping; Dong, Ranran; Zhou, Linyan; Wang, Deshou

    2014-10-01

    An ovarian cell line was successfully developed from the juvenile ovary of Southern catfish (SCO1) (Silurus meridionalis), which was designated as SCO1. The cell line multiplied preferentially in L-15 medium with 15 % fetal bovine serum at 28 °C for more than 70 passages over a period of 420 days. SCO1 showed fibroblast-like morphology and predominantly retained a diploid karyotype of 58 chromosomes. From the gene expression patterns, SCO1 showed a characteristic of ovarian granulosa cells. After the cells were transfected with the green fluorescent protein expression vector, bright fluorescent signals could be observed in approximately 30 % cells. This cell line may be valuable for the evaluation of endocrine disruptors and studying interactions between somatic cells and germ cells. PMID:24671650

  19. Uncoupling between Phenotypic Senescence and Cell Cycle Arrest in Aging p21-Deficient Fibroblasts

    PubMed Central

    Dulić, Vjekoslav; Beney, Georges-Edouard; Frebourg, Guillaume; Drullinger, Linda F.; Stein, Gretchen H.

    2000-01-01

    Irreversible G1 arrest in senescent human fibroblasts is mediated by two inhibitors of cyclin-dependent kinases (Cdks), p21Cip1/SDI1/WAF1 and p16Ink4A. To determine the physiological and molecular events that specifically require p21, we studied senescence in human diploid fibroblasts expressing the human papillomavirus type 16 E6 oncogene, which confers low p21 levels via enhanced p53 degradation. We show that in late-passage E6 cells, high Cdk activity drives the cell cycle, but population expansion is slowed down by crisis-like events, probably owing to defective cell cycle checkpoints. At the end of lifespan, terminal-passage E6 cells exhibited several aspects of the senescent phenotype and accumulated unphosphorylated pRb and p16. However, both replication and cyclin-Cdk2 kinase activity were still not blocked, demonstrating that phenotypic and replicative senescence are uncoupled in the absence of normal p21 levels. At this stage, E6 cells also failed to upregulate p27 and inactivate cyclin-Cdk complexes in response to serum deprivation. Eventually, irreversible G1 arrest occurred coincident with inactivation of cyclin E-Cdk2 owing to association with p21. Similarly, when p21−/− mouse embryo fibroblasts reached the end of their lifespan, they had the appearance of senescent cells yet, in contrast to their wild-type counterparts, they were deficient in downregulating bromodeoxyuridine incorporation, cyclin E- and cyclin A-Cdk2 activity, and inhibiting pRb hyperphosphorylation. These data support the model that the critical event ensuring G1 arrest in senescence is p21-dependent Cdk inactivation, while other aspects of senescent phenotype appear to occur independently of p21. PMID:10958672

  20. Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells with Sleeping Beauty Transposon-Based Stable Gene Delivery.

    PubMed

    Sebe, Attila; Ivics, Zoltán

    2016-01-01

    Human induced pluripotent stem (iPS) cells are a source of patient-specific pluripotent stem cells and resemble human embryonic stem (ES) cells in gene expression profiles, morphology, pluripotency, and in vitro differentiation potential. iPS cells are applied in disease modeling, drug screenings, toxicology screenings, and autologous cell therapy. In this protocol, we describe how to derive human iPS cells from fibroblasts by Sleeping Beauty (SB) transposon-mediated gene transfer of reprogramming factors. First, the components of the non-viral Sleeping Beauty transposon system, namely a transposon vector encoding reprogramming transcription factors and a helper plasmid expressing the SB transposase, are electroporated into human fibroblasts. The reprogramming cassette undergoes transposition from the transfected plasmids into the fibroblast genome, thereby resulting in stable delivery of the reprogramming factors. Reprogramming by using this protocol takes ~4 weeks, after which the iPS cells are isolated and clonally propagated.

  1. Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells with Sleeping Beauty Transposon-Based Stable Gene Delivery.

    PubMed

    Sebe, Attila; Ivics, Zoltán

    2016-01-01

    Human induced pluripotent stem (iPS) cells are a source of patient-specific pluripotent stem cells and resemble human embryonic stem (ES) cells in gene expression profiles, morphology, pluripotency, and in vitro differentiation potential. iPS cells are applied in disease modeling, drug screenings, toxicology screenings, and autologous cell therapy. In this protocol, we describe how to derive human iPS cells from fibroblasts by Sleeping Beauty (SB) transposon-mediated gene transfer of reprogramming factors. First, the components of the non-viral Sleeping Beauty transposon system, namely a transposon vector encoding reprogramming transcription factors and a helper plasmid expressing the SB transposase, are electroporated into human fibroblasts. The reprogramming cassette undergoes transposition from the transfected plasmids into the fibroblast genome, thereby resulting in stable delivery of the reprogramming factors. Reprogramming by using this protocol takes ~4 weeks, after which the iPS cells are isolated and clonally propagated. PMID:26895068

  2. Direct Reprogramming of Mouse Fibroblasts to Neural Stem Cells by Small Molecules

    PubMed Central

    Han, Yan-Chuang; Lim, Yoon; Duffieldl, Michael D.; Li, Hua; Liu, Jia; Abdul Manaph, Nimshitha Pavathuparambil; Yang, Miao; Keating, Damien J.; Zhou, Xin-Fu

    2016-01-01

    Although it is possible to generate neural stem cells (NSC) from somatic cells by reprogramming technologies with transcription factors, clinical utilization of patient-specific NSC for the treatment of human diseases remains elusive. The risk hurdles are associated with viral transduction vectors induced mutagenesis, tumor formation from undifferentiated stem cells, and transcription factors-induced genomic instability. Here we describe a viral vector-free and more efficient method to induce mouse fibroblasts into NSC using small molecules. The small molecule-induced neural stem (SMINS) cells closely resemble NSC in morphology, gene expression patterns, self-renewal, excitability, and multipotency. Furthermore, the SMINS cells are able to differentiate into astrocytes, functional neurons, and oligodendrocytes in vitro and in vivo. Thus, we have established a novel way to efficiently induce neural stem cells (iNSC) from fibroblasts using only small molecules without altering the genome. Such chemical induction removes the risks associated with current techniques such as the use of viral vectors or the induction of oncogenic factors. This technique may, therefore, enable NSC to be utilized in various applications within clinical medicine. PMID:26788068

  3. Soy milk as a storage medium to preserve human fibroblast cell viability: an in vitro study.

    PubMed

    Moura, Camilla Christian Gomes; Soares, Priscilla Barbosa Ferreira; Reis, Manuella Verdinelli de Paula; Fernandes Neto, Alfredo Júlio; Soares, Carlos José

    2012-01-01

    Soy milk (SM) is widely consumed worldwide as a substitute for cow milk. It is a source of vitamins, carbohydrates and sugars, but its capacity to preserve cell viability has not been evaluated. The purpose of the present study was to investigate the efficacy of SM to maintain the viability of human fibroblasts at short periods compared with different cow milks. Human mouth fibroblasts were cultured and stored in the following media at room temperature: 10% Dulbecco's Modified Eagle Medium (DMEM) (positive control group); long shelf-life ultra-high temperature whole cow milk (WM); long shelf-life ultra-high temperature skim cow milk (SKM); powdered cow milk (PM); and soy milk (SM). After 5, 15, 30 and 45 min, cell viability was analyzed using the MTT assay. Data were analyzed statistically by the Kruskal-Wallis test with post-analysis using the Dunn's method (α=0.05). SKM showed the lowest capacity to maintain cell viability in all analyzed times (p<0.05). At 30 and 45 min, the absorbance levels in control group (DMEM) and SM were significantly higher than in SKM (p<0.05). Cell viability decreased along the time (5-45 min). The results indicate that SM can be used as a more adequate storage medium for avulsed teeth. SKM was not as effective in preserving cell viability as the cell culture medium and SM.

  4. Epigenetic conversion of adult dog skin fibroblasts into insulin-secreting cells.

    PubMed

    Brevini, T A L; Pennarossa, G; Acocella, F; Brizzola, S; Zenobi, A; Gandolfi, F

    2016-05-01

    Diabetes is among the most frequently diagnosed endocrine disorder in dogs and its prevalence continues to increase. Medical management of this pathology is lifelong and challenging because of the numerous serious complications. A therapy based on the use of autologous viable insulin-producing cells to replace the lost β cell mass would be very advantageous. A protocol to enable the epigenetic conversion of canine dermal fibroblasts, obtained from a skin biopsy, into insulin-producing cells (EpiCC) is described in the present manuscript. Cells were briefly exposed to the DNA methyltransferase inhibitor 5-azacytidine (5-aza-CR) in order to increase their plasticity. This was followed by a three-step differentiation protocol that directed the cells towards the pancreatic lineage. After 36 days, 38 ± 6.1% of the treated fibroblasts were converted into EpiCC that expressed insulin mRNA and protein. Furthermore, EpiCC were able to release insulin into the medium in response to an increased glucose concentration. This is the first evidence that generating a renewable autologous, functional source of insulin-secreting cells is possible in the dog. This procedure represents a novel and promising potential therapy for diabetes in dogs. PMID:27033591

  5. [Cell growth and motility in culture (in vitro) under microgravity conditions. The Fibroblast Experiment].

    PubMed

    Tairbekov, M G; Margolis, L B; Baĭbakov, B A; Gabova, A V; Dergacheva, G B

    1994-01-01

    The experiment "Fibroblast" was performed in 1992 on biosatellite "Cosmos-2229" in onboard device "Biobox" designed by the order of European Space Agency. The main objective was elucidation of the mechanisms responsible for the effect of space flight factors, mostly microgravity, on cell culture. We studied time-related changes in growth, motility and some morphological characteristics of the cells in monolayer cultures on a solid substrate and in three-dimensional cultures supported by sponge gels. Studies were carried out on connective tissue cells isolated from the mouse embryos. Comparative after-flight analysis of the cell cultures exposed to space flight and of those under the normal gravity conditions (1 g) on the Earth has revealed some differences. The space flight conditions, mainly microgravity, induced marked changes in morphological characteristics and functional activity of the cultured fibroblasts: changes in the nucleus size and shape, retardation of cell growth and division rate. We believe that these changes may be due to weakening of intercellular contacts and cell adhesion to the substrate. These findings are important both for general biology and space medicine, specifically for the problems of tissue regeneration and wound healing under the conditions of long-term space flight.

  6. Repair of chromosome damage induced by X-irradiation during G/sub 2/ phase in a line of normal human fibroblasts and its malignant derivative

    SciTech Connect

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-08-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G/sub 2/ phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or ..beta..-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G/sub 2/ phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, which destroys H/sub 2/O/sub 2/, or mannitol, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G/sub 2/ phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives.

  7. Establishment and characterization of a testicular Sertoli cell line from olive flounder Paralichthys olivaceus

    NASA Astrophysics Data System (ADS)

    Peng, Limin; Zheng, Yuan; You, Feng; Wu, Zhihao; Zou, Yuxia; Zhang, Peijun

    2016-09-01

    The culture of Sertoli cells has become an indispensable resource in studying spermatogenesis. A new Sertoli cell line (POSC) that consisted predominantly of fibroblast-like cells was derived from the testis of the olive flounder Paralichthys olivaceus and sub-cultured for 48 passages. Analysis of the mtDNA COI gene partial sequence confirmed that the cell line was from P. olivaceus. Cells were optimally maintained at 25°C in DMEM/F12 medium supplemented with fetal bovine serum, basic fibroblast growth factor, and epidermal growth factor. The growth curve of POSC showed a typical "S" shape. Chromosome analysis revealed that the cell line possessed the normal P. olivaceus diploid karyotype of 2n=48t. POSC expressed dmrt1 but not vasa, which was detected using RT-PCR and sequencing. Immunocytochemistry revealed that the cells exhibited the testicular Sertoli cell marker FasL. Therefore, POSC appeared to consist of testicular Sertoli cells. Bright fluorescent signals were observed after the cells were transfected with pEGFP-N3 plasmid, with the transfection efficiency reaching 10%. This research not only offers an ideal model for further gene expression and regulation studies on P. olivaceus, but also serves as valuable material in studying fish spermatogenesis, Sertoli cell-germ cell interactions, and the mechanism of growth and development of testis.

  8. Adhesion and morphology of fibroblastic cells cultured on different polymeric biomaterials.

    PubMed

    Lombello, C B; Santos, A R; Malmonge, S M; Barbanti, S H; Wada, M L F; Duek, E A R

    2002-09-01

    Cell adhesion is influenced by the physical and chemical characteristics of the materials used as substrate for cell culturing. In this work, we evaluated the influence of the morphological and chemical characteristics of different polymeric substrates on the adhesion and morphology of fibroblastic cells. Cell growth on poly (L-lactic acid) [PLLA] membranes and poly(2-hydroxy ethyl methacrylate) [polyHEMA], poly(2-hydroxy ethyl methacrylate)-cellulose acetate [polyHEMA-CA] and poly(2-hydroxy ethyl methacrylate)-poly(methyl methacrylate-co-acrylic acid) [polyHEMA-poly(MMA-co-AA)] hydrogels of different densities and pore diameters was examined. Cells adhered preferentially to more negatively charged substrates, with polyHEMA hydrogels being more adhesive than the other substractes. The pores present in PLLA membranes did not interfere with adhesion, but the cells showed a distinctive morphology on each membrane.

  9. Rapid preparation of plasma membranes from avian lymphoid cells and fibroblasts for virus binding studies.

    PubMed

    Nieper, H; Müller, H

    1998-06-01

    A simple and rapid protocol for the preparation of plasma membranes from chicken embryo fibroblasts and chicken lymphoid cells was developed. Characterization of the preparations by morphological, biochemical and serological methods indicated the specific enrichment of the plasma membranes as well as cell surface proteins. Binding of infectious bursal disease virus (IBDV) particles was demonstrated after immobilization of the plasma membranes, and cell type-specific differences were observed. Although the results of these studies reflect the interaction between IBDV and isolated cells only partially, the advantages of these plasma membrane preparations, the specific enrichment of cell surface proteins, their constant quality and the possibility to store aliquots over several months, make them a useful tool for virus binding studies with avian cells. PMID:9694323

  10. Dynamic Assessment of Fibroblast Mechanical Activity during Rac-induced Cell Spreading in 3-D Culture

    PubMed Central

    Petroll, W. Matthew; Ma, Lisha; Kim, Areum; Ly, Linda; Vishwanath, Mridula

    2009-01-01

    The goal of this study was to determine the morphological and sub-cellular mechanical effects of Rac activation on fibroblasts within 3-D collagen matrices. Corneal fibroblasts were plated at low density inside 100 μm thick fibrillar collagen matrices and cultured for 1 to 2 days in serum-free media. Time-lapse imaging was then performed using Nomarski DIC. After an acclimation period, perfusion was switched to media containing PDGF. In some experiments, Y-27632 or blebbistatin were used to inhibit Rho-kinase (ROCK) or myosin II, respectively. PDGF activated Rac and induced cell spreading, which resulted in an increase in cell length, cell area, and the number of pseudopodial processes. Tractional forces were generated by extending pseudopodia, as indicated by centripetal displacement and realignment of collagen fibrils. Interestingly, the pattern of pseudopodial extension and local collagen fibril realignment was highly dependent upon the initial orientation of fibrils at the leading edge. Following ROCK or myosin II inhibition, significant ECM relaxation was observed, but small displacements of collagen fibrils continued to be detected at the tips of pseudopodia. Taken together, the data suggests that during Rac-induced cell spreading within 3-D matrices, there is a shift in the distribution of forces from the center to the periphery of corneal fibroblasts. ROCK mediates the generation of large myosin II-based tractional forces during cell spreading within 3-D collagen matrices, however residual forces can be generated at the tips of extending pseudopodia that are both ROCK and myosin II-independent. PMID:18452153

  11. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in space

    NASA Astrophysics Data System (ADS)

    Wu, Honglu; Story, Michael; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Lu, Tao

    2016-07-01

    Microgravity, or an altered gravity environment from the Earth1g, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of these cells. Whether non-proliferating cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted onboard the International Space Station (ISS), confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days, respectively, for investigations of gene and miRNA expression profile changes in these cells. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67 positive cells. Gene and miRNA expression data indicated activation of NFkB and other growth related pathways involving HGF and Vegf along with down regulation of the Let-7 miRNA family. On Day 14 when the cells were mostly non-proliferating, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples with respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for αa-tubulin and fibronectin showed no difference between flown and ground samples. Taken together, our study suggests that in true non-dividing human fibroblast cells in culture, microgravity experienced in space has little effect on the gene and miRNA expression profiles.

  12. Transient Gene and MicroRNA Expression Profile Changes of Confluent Human Fibroblast Cells in Space

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lu, Tao; Wong, Michael; Wang, Xiaoyu; Stodieck, Louis; Karouia, Fathi; Story, Michael; Wu, Honglu

    2016-01-01

    Microgravity, or an altered gravity environment from the Earth1g, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of these cells. Whether non-proliferating cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted onboard the International Space Station (ISS), confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days, respectively, for investigations of gene and miRNA expression profile changes in these cells. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67 positive cells. Gene and miRNA expression data indicated activation of NF(kappa)B and other growth related pathways involving HGF and Vegf along with down regulation of the Let-7 miRNA family. On Day 14 when the cells were mostly non-proliferating, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples with respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for alpha-tubulin and fibronectin showed no difference between flown and ground samples. Taken together, our study suggests that in true non-dividing human fibroblast cells in culture, microgravity experienced in space has little effect on the gene and miRNA expression profiles.

  13. Characterization of a novel fibroblast growth factor 10 (Fgf10) knock-in mouse line to target mesenchymal progenitors during embryonic development.

    PubMed

    El Agha, Elie; Al Alam, Denise; Carraro, Gianni; MacKenzie, Breanne; Goth, Kerstin; De Langhe, Stijn P; Voswinckel, Robert; Hajihosseini, Mohammad K; Rehan, Virender K; Bellusci, Saverio

    2012-01-01

    Fibroblast growth factor 10 (Fgf10) is a key regulator of diverse organogenetic programs during mouse development, particularly branching morphogenesis. Fgf10-null mice suffer from lung and limb agenesis as well as cecal and colonic atresia and are thus not viable. To date, the Mlcv1v-nLacZ-24 transgenic mouse strain (referred to as Fgf10(LacZ)), which carries a LacZ insertion 114 kb upstream of exon 1 of Fgf10 gene, has been the only strain to allow transient lineage tracing of Fgf10-positive cells. Here, we describe a novel Fgf10(Cre-ERT2) knock-in line (Fgf10(iCre)) in which a Cre-ERT2-IRES-YFP cassette has been introduced in frame with the ATG of exon 1 of Fgf10 gene. Our studies show that Cre-ERT2 insertion disrupts Fgf10 function. However, administration of tamoxifen to Fgf10(iCre); Tomato(flox) double transgenic embryos or adult mice results in specific labeling of Fgf10-positive cells, which can be lineage-traced temporally and spatially. Moreover, we show that the Fgf10(iCre) line can be used for conditional gene inactivation in an inducible fashion during early developmental stages. We also provide evidence that transcription factors located in the first intron of Fgf10 gene are critical for maintaining Fgf10 expression over time. Thus, the Fgf10(iCre) line should serve as a powerful tool to explore the functions of Fgf10 in a controlled and stage-specific manner. PMID:22719891

  14. Zinc and propolis reduces cytotoxicity and proliferation in skin fibroblast cell culture: total polyphenol content and antioxidant capacity of propolis.

    PubMed

    Tyszka-Czochara, Małgorzata; Paśko, Paweł; Reczyński, Witold; Szlósarczyk, Marek; Bystrowska, Beata; Opoka, Włodzimierz

    2014-07-01

    It has been demonstrated that zinc exerts its beneficial influence on skin fibroblasts. Propolis, a complex mixture of plant-derived and bees' products, was reported to stimulate cicatrization processes in skin and prevent infections. The aim of this study was to find out how zinc and propolis influence human skin fibroblasts in cell culture and to compare the effect of individual compounds to the effect of a mixture of zinc and propolis. In this study, zinc, as zinc aspartate, at a concentration of 16 μM, increased human fibroblasts proliferation in cell culture, whereas propolis at a concentration of 0.01% (w/v) revealed antiproliferative and cytotoxic action followed by mild cell necrosis. In culture, zinc was effectively transported into fibroblasts, and propolis inhibited the amount of zinc incorporated into the cells. An addition of propolis to the medium caused a decrease in the Zn(II) amount incorporated into fibroblasts. The obtained results also indicate an appreciable antioxidant property of propolis and revealed its potential as a supplement when applied at doses lower than 0.01% (w/v). In conclusion, the present study showed that zinc had a protective effect on human cultured fibroblasts' viability, although propolis revealed its antiproliferative action and caused mild necrosis.

  15. Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos

    PubMed Central

    Geens, Mieke; Mateizel, Ileana; Sermon, Karen; De Rycke, Martine; Spits, Claudia; Cauffman, Greet; Devroey, Paul; Tournaye, Herman; Liebaers, Inge; Van de Velde, Hilde

    2009-01-01

    BACKGROUND Recently, we demonstrated that single blastomeres of a 4-cell stage human embryo are able to develop into blastocysts with inner cell mass and trophectoderm. To further investigate potency at the 4-cell stage, we aimed to derive pluripotent human embryonic stem cells (hESC) from single blastomeres. METHODS Four 4-cell stage embryos were split on Day 2 of preimplantation development and the 16 blastomeres were individually cultured in sequential medium. On Day 3 or 4, the blastomere-derived embryos were plated on inactivated mouse embryonic fibroblasts (MEFs). RESULTS Ten out of sixteen blastomere-derived morulae attached to the MEFs, and two produced an outgrowth. They were mechanically passaged onto fresh MEFs as described for blastocyst ICM-derived hESC, and shown to express the typical stemness markers by immunocytochemistry and/or RT–PCR. In vivo pluripotency was confirmed by the presence of all three germ layers in the teratoma obtained after injection in immunodeficient mice. The first hESC line displays a mosaic normal/abnormal 46, XX, dup(7)(q33qter), del(18)(q23qter) karyotype. The second hESC line displays a normal 46, XY karyotype. CONCLUSION We report the successful derivation and characterization of two hESC lines from single blastomeres of four split 4-cell stage human embryos. These two hESC lines were derived from distinct embryos, proving that at least one of the 4-cell stage blastomeres is pluripotent. PMID:19633307

  16. Host cell reactivation of sunlamp-exposed adenovirus in fibroblasts from patients with Bloom's syndrome, ataxia telangiectasia, and Huntington's disease

    SciTech Connect

    Rainbow, A.J. )

    1991-01-01

    In this study, a sensitive host cell reactivation (HCR) technique was used to examine the repair capacity for DNA damaged by sunlamp exposure in fibroblast strains derived from 5 normal individuals and 8 patients representing three different diseases associated with DNA repair deficiencies. Adenovirus type 2 (Ad 2) was exposed to radiation from a GE 275 W sunlamp and subsequently used to infect fibroblast monolayers. At 48 hr after infection, cells were scored for the presence of viral structural antigens (Vag) using indirect immunofluorescent staining. Previous reports using this technique showed a substantial reduction in the HCR of sunlamp-exposed Ad 2 for infection of excision repair deficient fibroblasts from patients with xeroderma pigmentosum. In contrast, the HCR of Vag synthesis for sunlamp-exposed Ad 2 was in the normal range for the three ataxia telangiectasia, three Bloom's syndrome, and two Huntington's disease fibroblasts strains.

  17. Disruption of the p53-mediated G{sub 1}/S cell cycle checkpoint results in elevated rates of spontaneous genetic recombination in human fibroblasts

    SciTech Connect

    Strasfeld, L.; Brainerd, E.; Meyn, M.S.

    1994-09-01

    A key feature of the cancer-prone inherited disease ataxia-telangiectasia (A-T) is genetic instability. We recently demonstrated that one aspect of genetic instability in A-T is a marked elevation in the spontaneous rates of intrachromosomal mitotic recombination. We have proposed a model for A-T that attributes these high recombination rates to a lack of DNA damage-sensitive cell cycle checkpoints. One prediction of this model is that disrupting p53 function in normal cells should increase their spontaneous rates of recombination by interfering with their p53-dependent G{sub 1}/S cell cycle checkpoint. To test this prediction, we transfected control and A-T fibroblast lines that each harbor a single integrated copy of lacZ-based recombination vector (pLrec) with derivatives of a eukaryotic expression vector (pRep5) that contain either a dominant-negative p53 mutant (143{sup val{yields}ala}) or a human papilloma virus E6 gene (HPV18 E6). Expression of either of these genes results in loss of p53 function and abolition of the G{sub 1}/S cell cycle checkpoint. Four independent p53{sup 143ala} transformants of the control line showed 25-80 fold elevations in spontaneous recombination rates when compared to their parent cell line. Elevations in spontaneous recombination rates were also detected following transfection with the HPV18 E6 gene. In contrast, four independent p53{sup 143ala} transformants of the A-T cell line showed no significant changes in their already high spontaneous recombination rates. We are now extending these observations to additional normal human fibroblast lines and carrying out molecular analyses of the products of these recombinational events. Our results support our hypothesis that the lack of a p53-dependent G{sub 1}/S cell cycle checkpoint contributes to the hyperrecombination seen in A-T.

  18. Fibroblast-Like Cells Differentiated from Adipose-Derived Mesenchymal Stem Cells for Vocal Fold Wound Healing

    PubMed Central

    Hu, Rong; Ling, Wei; Xu, Wen; Han, Demin

    2014-01-01

    Tissue engineering has revealed the potential to regenerate injured vocal folds, and identification of the most suitable seed cells has remained a hot topic of research. The aim of this study was to implant fibroblast-like cells differentiated from adipose-derived mesenchymal stem cells (ADSCs) in a canine acute vocal fold wound model. We then sought to characterize changes in the extracellular matrix (ECM) proteins of vocal fold lamina propria. For this purpose, ADSCs were induced to differentiate into fibroblasts under the regulation of connective tissue growth factor in vitro. Cell surface proteins were identified by immunofluorescence staining. Thirty vocal folds of 17 canines were injured by localized resection and injected with fibroblast-like cells (differentiated ADSCs, dADSCs), ADSCs or vocal fold fibroblasts (VFFs). The morphology of vocal folds was observed, and the characteristics of ECM protein components (collagen, elastin, hyaluronic acid, decorin and fibronectin) were evaluated by immunofluorescence staining from 15 days to 6 months following implantation. The results showed that in vitro, the dADSCs showed morphology and cell surface protein expression similar to those of VFFs. After implantation in vivo, the surfaces of the recipient vocal folds became almost smooth in the dADSCs and ADSCs groups at 6 months but remained slightly concave and stiff in the VFFs group. The elastin fluorescence intensity increased significantly and was maintained at a high level in the dADSCs group. The collagen fluorescence intensity increased slightly in the dADSCs and ADSCs groups, whereas it demonstrated a more irregular arrangement in the VFFs group. The fluorescence intensity of hyaluronic acid, decorin and fibronectin was similar between the three implanted groups. These results indicated that dADSCs may confer an advantage for vocal fold wound healing. Furthermore, dADSCs have the ability to secrete ECM components in vivo, particularly elastin, which may be

  19. Fibroblast-like cells differentiated from adipose-derived mesenchymal stem cells for vocal fold wound healing.

    PubMed

    Hu, Rong; Ling, Wei; Xu, Wen; Han, Demin

    2014-01-01

    Tissue engineering has revealed the potential to regenerate injured vocal folds, and identification of the most suitable seed cells has remained a hot topic of research. The aim of this study was to implant fibroblast-like cells differentiated from adipose-derived mesenchymal stem cells (ADSCs) in a canine acute vocal fold wound model. We then sought to characterize changes in the extracellular matrix (ECM) proteins of vocal fold lamina propria. For this purpose, ADSCs were induced to differentiate into fibroblasts under the regulation of connective tissue growth factor in vitro. Cell surface proteins were identified by immunofluorescence staining. Thirty vocal folds of 17 canines were injured by localized resection and injected with fibroblast-like cells (differentiated ADSCs, dADSCs), ADSCs or vocal fold fibroblasts (VFFs). The morphology of vocal folds was observed, and the characteristics of ECM protein components (collagen, elastin, hyaluronic acid, decorin and fibronectin) were evaluated by immunofluorescence staining from 15 days to 6 months following implantation. The results showed that in vitro, the dADSCs showed morphology and cell surface protein expression similar to those of VFFs. After implantation in vivo, the surfaces of the recipient vocal folds became almost smooth in the dADSCs and ADSCs groups at 6 months but remained slightly concave and stiff in the VFFs group. The elastin fluorescence intensity increased significantly and was maintained at a high level in the dADSCs group. The collagen fluorescence intensity increased slightly in the dADSCs and ADSCs groups, whereas it demonstrated a more irregular arrangement in the VFFs group. The fluorescence intensity of hyaluronic acid, decorin and fibronectin was similar between the three implanted groups. These results indicated that dADSCs may confer an advantage for vocal fold wound healing. Furthermore, dADSCs have the ability to secrete ECM components in vivo, particularly elastin, which may be

  20. Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness.

    PubMed

    Giannoni, Elisa; Bianchini, Francesca; Masieri, Lorenzo; Serni, Sergio; Torre, Eugenio; Calorini, Lido; Chiarugi, Paola

    2010-09-01

    Although cancer-associated fibroblasts (CAF) are key determinants in the malignant progression of cancer, their functional contribution to this process is still unclear. Analysis of the mutual interplay between prostate carcinoma cells and CAFs revealed a mandatory role of carcinoma-derived interleukin-6 in fibroblast activation. In turn, activated fibroblasts through secretion of metalloproteinases elicit in cancer cells a clear epithelial-mesenchymal transition (EMT), as well as enhancement of tumor growth and development of spontaneous metastases. CAF-induced EMT leads prostate carcinoma cells to enhance expression of stem cell markers, as well as the ability to form prostaspheres and to self-renew. Hence, the paracrine interplay between CAFs and cancer cells leads to an EMT-driven gain of cancer stem cell properties associated with aggressiveness and metastatic spread.

  1. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight.

    PubMed

    Zhang, Ye; Lu, Tao; Wong, Michael; Wang, Xiaoyu; Stodieck, Louis; Karouia, Fathi; Story, Michael; Wu, Honglu

    2016-06-01

    Microgravity, or an altered gravity environment different from the 1 g of the Earth, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies that have been conducted in space or by using simulated microgravity on the ground have focused on the growth or differentiation of these cells. It has not been specifically addressed whether nonproliferating cultured cells will sense the presence of microgravity in space. In an experiment conducted onboard the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 d, respectively, to investigate changes in gene and microRNA (miRNA) expression profiles in these cells. Results of the experiment showed that on d 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67(+) cells. Gene and miRNA expression data indicated activation of NF-κB and other growth-related pathways that involve hepatocyte growth factor and VEGF as well as the down-regulation of the Let-7 miRNA family. On d 14, when the cells were mostly nonproliferating, the gene and miRNA expression profile of the flight sample was indistinguishable from that of the ground sample. Comparison of gene and miRNA expressions in the d 3 samples, with respect to d 14, revealed that most of the changes observed on d 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for α-tubulin and fibronectin showed no difference between the flown and ground samples. Taken together, our study suggests that in true nondividing human fibroblast cells in culture, microgravity experienced in space has little effect on gene and miRNA expression profiles.-Zhang, Y., Lu, T., Wong, M., Wang, X., Stodieck, L., Karouia, F., Story, M., Wu, H. Transient gene and microRNA expression profile changes of

  2. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight.

    PubMed

    Zhang, Ye; Lu, Tao; Wong, Michael; Wang, Xiaoyu; Stodieck, Louis; Karouia, Fathi; Story, Michael; Wu, Honglu

    2016-06-01

    Microgravity, or an altered gravity environment different from the 1 g of the Earth, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies that have been conducted in space or by using simulated microgravity on the ground have focused on the growth or differentiation of these cells. It has not been specifically addressed whether nonproliferating cultured cells will sense the presence of microgravity in space. In an experiment conducted onboard the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 d, respectively, to investigate changes in gene and microRNA (miRNA) expression profiles in these cells. Results of the experiment showed that on d 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67(+) cells. Gene and miRNA expression data indicated activation of NF-κB and other growth-related pathways that involve hepatocyte growth factor and VEGF as well as the down-regulation of the Let-7 miRNA family. On d 14, when the cells were mostly nonproliferating, the gene and miRNA expression profile of the flight sample was indistinguishable from that of the ground sample. Comparison of gene and miRNA expressions in the d 3 samples, with respect to d 14, revealed that most of the changes observed on d 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for α-tubulin and fibronectin showed no difference between the flown and ground samples. Taken together, our study suggests that in true nondividing human fibroblast cells in culture, microgravity experienced in space has little effect on gene and miRNA expression profiles.-Zhang, Y., Lu, T., Wong, M., Wang, X., Stodieck, L., Karouia, F., Story, M., Wu, H. Transient gene and microRNA expression profile changes of

  3. A Comparison of Epithelial Cells, Fibroblasts, and Osteoblasts in Dental Implant Titanium Topographies

    PubMed Central

    Teng, Fu-Yuan; Ko, Chia-Ling; Kuo, Hsien-Nan; Hu, Jin-Jia; Lin, Jia-Horng; Lou, Ching-Wen; Hung, Chun-Cheng; Wang, Yin-Lai; Cheng, Cheng-Yi; Chen, Wen-Cheng

    2012-01-01

    The major challenge for dental implants is achieving optimal esthetic appearance and a concept to fulfill this criterion is evaluated. The key to an esthetically pleasing appearance lies in the properly manage the soft tissue profile around dental implants. A novel implant restoration technique on the surface was proposed as a way to augment both soft- and hard-tissue profiles at potential implant sites. Different levels of roughness can be attained by sandblasting and acid etching, and a tetracalcium phosphate was used to supply the ions. In particular, the early stage attaching and repopulating abilities of bone cell osteoblasts (MC3T3-E1), fibroblasts (NIH 3T3), and epithelial cells (XB-2) were evaluated. The results showed that XB-2 cell adhesive qualities of a smooth surface were better than those of the roughened surfaces, the proliferative properties were reversed. The effects of roughness on the characteristics of 3T3 cells were opposite to the result for XB-2 cells. E1 proliferative ability did not differ with any statistical significance. These results suggest that a rougher surface which provided calcium and phosphate ions have the ability to enhance the proliferation of osteoblast and the inhibition of fibroblast growth that enhance implant success ratios. PMID:22287942

  4. The cytotoxic effect of ajoene, a natural product from garlic, investigated with different cell lines.

    PubMed

    Scharfenberg, K; Wagner, R; Wagner, K G

    1990-09-01

    The sulfur-containing compound ajoene (4,5,9-trithiadodeca-1,6,11-triene-9-oxide) which arises from alliin, a cysteine derivative stored in garlic bulbs, was produced synthetically by decomposition of allicin. Its cytotoxic effect was tested using human primary fibroblasts (FS4), a permanent, non-tumorgenic cell line derived from baby hamster kidney cells (BHK21) and a tumorgenic lymphoid cell line derived from a Burkitt lymphoma (BJA-B). The cytotoxic action was in the range 2-50 micrograms/ml depending on the cell density. ED50 values, estimated on the basis of fmol ajoene/cell, revealed slightly higher doses for the primary cell (FS4) than the permanent line (BHK), whereas the tumorgenic BJA-B cells were most sensitive.

  5. Locomotory invasion of human cervical epithelium and avian fibroblasts by HeLa cells in vitro.

    PubMed

    Stephenson, E M

    1982-10-01

    The locomotory invasive ability of HeLa cells was tested against: (a) embryonic chick heart fibroblasts (CHF); and (b) normal epithelial cells from human cervix (HCE) in explant confrontations. Data for analyses were obtained from replicate cultures fixed 24 h after junction and from 24-h time-lapse films. The mean invasion index for HeLa versus CHF did not indicate significant obstruction but analyses of hourly radial advance and orientation frequencies showed that obstruction eventually developed as postjunctional incubation time increased. Early contacts between HeLa and CHF demonstrated non-reciprocity of type I contact inhibition of locomotion by the tumour cells, which continued moving in their original direction to underlap contact-inhibited fibroblasts and eventually to occupy spaces vacated by them. When CHF population density increased and free space diminished, HeLa cells displayed directional and probably substrate-dependent contact inhibition. The high invasion index of HeLa versus HCE was largely due to occupation of previous HCE territory by tumour cells and only occasionally to actual infiltration of the epithelial sheet. After contact with HeLa, ruffling substrate-adherent marginal epithelial cells displayed contractile, type I contact inhibition of locomotion. After orientation changes, they gradually retreated. Against HCE, HeLa cells exhibited non-reciprocity of type I contact inhibition and continued radially forward, following the retreating epithelial margin. They did not move onto exposed upper surfaces of epithelial cells and did not underlap marginal cells firmly adherent to the substratum. Invasion of the epithelial sheet was seen only when initial access beneath a cell with a non-adherent margin was available. The contact relationships of isolated invading HeLa cells with their epithelial neighbours suggested successive non-reciprocal contact inhibition reactions.

  6. Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients

    PubMed Central

    Kim, Deok-Ho; Han, Karam; Gupta, Kshitiz; Kwon, Keon Woo

    2009-01-01

    In this report, we describe using ultraviolet (UV)-assisted capillary force lithography (CFL) to create a model substratum of anisotropic micro- and nanotopographic pattern arrays with variable local density for the analysis of cell-substratum interactions. A single cell adhesion substratum with the constant ridge width (1 µm), and depth (400 nm) and variable groove widths (1 µm to 9.1 µm) allowed us to characterize the dependence of cellular responses, including cell shape, orientation, and migration, on the anisotropy and local density of the variable micro- and nanotopographic pattern. We found that fibroblasts adhering to the denser pattern areas aligned and elongated more strongly along the direction of ridges, vs. those on the sparser areas, exhibiting a biphasic dependence of the migration speed on the pattern density. In addition, cells responded to local variations in topography by altering morphology and migrating along the direction of grooves biased by the direction of pattern orientation (short term) and pattern density (long term). Molecular dynamic live cell imaging and immunocytochemical analysis of focal adhesions and actin cytoskeleton suggest that variable substratum topography can result in distinct types of cytoskeleton reorganization. We also demonstrate that fibroblasts cultured as monolayers on the same substratum retain most of the properties displayed by single cells. This result, in addition to demonstrating a more sophisticated method to study aspects of wound healing processes, strongly suggests that even in the presence of considerable cell-cell interactions, the cues provided by the underlying substratum topography continue to exercise substantial influence on cell behavior. The described experimental platform might not only further our understanding of biomechanical regulation of cell-matrix interactions, but also contribute to bioengineering of devices with the optimally structured design of cell-material interface. PMID:19595452

  7. Tumor-specific cytotoxicity and type of cell death induced by gefitinib in oral squamous cell carcinoma cell lines.

    PubMed

    Chu, Qing; Amano, Osamu; Kanda, Yumiko; Kunii, Shiro; Wang, Qintao; Sakagami, Hiroshi

    2009-12-01

    Gefitinib is an orally active, selective epidermal growth factor receptor-tyrosine kinase inhibitor. The present study was aimed at evaluating the antitumor activity of gefitinib alone or in combination with other antitumor agents. Gefitinib showed higher cytotoxicity against five human tumor cell lines (HSC-2, HSC-3, HSC-4, T98G and U87MG) than against three human normal oral cells (gingival fibroblast HGF, pulp cell HPC and periodontal ligament fibroblast HPLF). Gefitinib showed little or no growth stimulation effects at lower concentrations (so-called hormetic effect). Non-cytotoxic concentration of gefitinib effectively enhanced the cytotoxicity of docetaxel against HSC-2 and T98G cell, but failed to enhance the cytotoxicity of other antitumor agents (mitoxantrone, doxorubicin, methotrexate, cisplatin, sodium ascorbate, sodium fluoride) or herbal extracts (Drynaria baronii, Angelica sinensis and Cornus officinalis Sieb. et Zucc). Gefitinib alone and combined with docetaxel induced internucleosomal DNA fragmentation and caspase-3 activation in human promyelocytic leukemia HL-60 cells, but not in HSC-2 or T98G cells. Combination treatment with gefitinib and docetaxel induced the formation of acidic organelles (stained with acridine orange) and mitochondrial shrinkage, vacuolization and production of autophagosome and the loss of cell surface microvilli, without destruction of cell surface and nuclear membranes in HSC-2 and T98G cells (demonstrated by transmission electron microscopy), suggesting the induction of autophagy in HSC-2 and T98G cells. PMID:20044612

  8. Quantitative differences in host cell reactivation of ultraviolet-damaged virus in human skin fibroblasts and epidermal keratinocytes cultured from the same foreskin biopsy

    SciTech Connect

    Tyrrell, R.M.; Pidoux, M.

    1986-06-01

    Repair efficiency of cultured cells may be estimated by measuring the ability of a particular cell type to support virus damaged by an appropriate agent. In this study we have compared the inactivation of ultraviolet (254 nm)-damaged herpes simplex virus in human fibroblast and epidermal keratinocyte cell lines derived from the same foreskin biopsy and found the epithelial cells to be a factor of 3 times less efficient in supporting the damaged virus. The two different cell types show comparable ultraviolet inactivation of clone-forming ability, indicating that the difference is specific to viral host cell reactivation. This study required the development of a quantitative infectious centers assay for the measurement of viral titer in human epithelial cells, a system which may be of more general application in studies of potential human carcinogens.

  9. Proliferative effects of angiotensin II and endothelin-1 on guinea pig gingival fibroblast cells in culture.

    PubMed

    Ohuchi, Nozomi; Koike, Katsuo; Sano, Masakazu; Kusama, Tadashi; Kizawa, Yasuo; Hayashi, Kazuhiko; Taniguchi, Yumiko; Ohsawa, Masami; Iwamoto, Keishi; Murakami, Hajime

    2002-08-01

    We investigated whether phenytoin (PHT) and nifedipine (NIF) induce angiotensin II (Ang II) and endothelin-1 (ET-1) generation by cultured gingival fibroblasts derived from guinea pigs and whether Ang II and ET-1 induce proliferation of these cells. Immunohistochemical experiments showed that PHT (250 nM) and NIF (250 nM) increased the immunostaining intensities of immunoreactive Ang II and ET-1 (IRET-1) in these cells. Captopril (3 microM), an angiotensin-converting enzyme inhibitor, reduced these enhanced intensities to control levels. Ang II (100 nM) enhanced the immunostaining intensity of IRET-1. PHT (250 nM) and NIF (250 nM)-induced cell proliferation. Both PHT- and NIF-induced proliferation was inhibited by captopril (3 microM). Ang II (100 nM) and ET-1 (100 nM) also induced cell proliferation. Ang II-induced proliferation was inhibited by CV11974 (1 microM), an AT(1) receptor antagonist and saralasin (1 microM), an AT(1)/AT(2) receptor antagonist, but not by PD123,319 (1 microM), an AT(2) receptor antagonist. ET-1-induced proliferation was inhibited by BQ123 (10 microM), an ET(A) receptor antagonist, but not by BQ788 (1 microM), an ET(B) receptor antagonist. These findings suggest that PHT- and NIF-induced gingival fibroblast proliferation is mediated indirectly through the induction of Ang II and ET-1 and probably mediated through AT(1) and ET(A) receptors present in or on gingival fibroblasts. PMID:12223201

  10. Topological Small-World Organization of the Fibroblastic Reticular Cell Network Determines Lymph Node Functionality

    PubMed Central

    Abe, Jun; Bomze, David; Cremasco, Viviana; Scandella, Elke; Stein, Jens V.; Turley, Shannon J.; Ludewig, Burkhard

    2016-01-01

    Fibroblastic reticular cells (FRCs) form the cellular scaffold of lymph nodes (LNs) and establish distinct microenvironmental niches to provide key molecules that drive innate and adaptive immune responses and control immune regulatory processes. Here, we have used a graph theory-based systems biology approach to determine topological properties and robustness of the LN FRC network in mice. We found that the FRC network exhibits an imprinted small-world topology that is fully regenerated within 4 wk after complete FRC ablation. Moreover, in silico perturbation analysis and in vivo validation revealed that LNs can tolerate a loss of approximately 50% of their FRCs without substantial impairment of immune cell recruitment, intranodal T cell migration, and dendritic cell-mediated activation of antiviral CD8+ T cells. Overall, our study reveals the high topological robustness of the FRC network and the critical role of the network integrity for the activation of adaptive immune responses. PMID:27415420

  11. Topological Small-World Organization of the Fibroblastic Reticular Cell Network Determines Lymph Node Functionality.

    PubMed

    Novkovic, Mario; Onder, Lucas; Cupovic, Jovana; Abe, Jun; Bomze, David; Cremasco, Viviana; Scandella, Elke; Stein, Jens V; Bocharov, Gennady; Turley, Shannon J; Ludewig, Burkhard

    2016-07-01

    Fibroblastic reticular cells (FRCs) form the cellular scaffold of lymph nodes (LNs) and establish distinct microenvironmental niches to provide key molecules that drive innate and adaptive immune responses and control immune regulatory processes. Here, we have used a graph theory-based systems biology approach to determine topological properties and robustness of the LN FRC network in mice. We found that the FRC network exhibits an imprinted small-world topology that is fully regenerated within 4 wk after complete FRC ablation. Moreover, in silico perturbation analysis and in vivo validation revealed that LNs can tolerate a loss of approximately 50% of their FRCs without substantial impairment of immune cell recruitment, intranodal T cell migration, and dendritic cell-mediated activation of antiviral CD8+ T cells. Overall, our study reveals the high topological robustness of the FRC network and the critical role of the network integrity for the activation of adaptive immune responses.

  12. Topological Small-World Organization of the Fibroblastic Reticular Cell Network Determines Lymph Node Functionality.

    PubMed

    Novkovic, Mario; Onder, Lucas; Cupovic, Jovana; Abe, Jun; Bomze, David; Cremasco, Viviana; Scandella, Elke; Stein, Jens V; Bocharov, Gennady; Turley, Shannon J; Ludewig, Burkhard

    2016-07-01

    Fibroblastic reticular cells (FRCs) form the cellular scaffold of lymph nodes (LNs) and establish distinct microenvironmental niches to provide key molecules that drive innate and adaptive immune responses and control immune regulatory processes. Here, we have used a graph theory-based systems biology approach to determine topological properties and robustness of the LN FRC network in mice. We found that the FRC network exhibits an imprinted small-world topology that is fully regenerated within 4 wk after complete FRC ablation. Moreover, in silico perturbation analysis and in vivo validation revealed that LNs can tolerate a loss of approximately 50% of their FRCs without substantial impairment of immune cell recruitment, intranodal T cell migration, and dendritic cell-mediated activation of antiviral CD8+ T cells. Overall, our study reveals the high topological robustness of the FRC network and the critical role of the network integrity for the activation of adaptive immune responses. PMID:27415420

  13. Development and characterization of cell lines derived from rohu, Labeo rohita (Hamilton), and catla, Catla catla (Hamilton).

    PubMed

    Ahmed, V P Ishaq; Chandra, V; Sudhakaran, R; Kumar, S Rajesh; Sarathi, M; Babu, V Sarath; Ramesh, B; Hameed, A S Sahul

    2009-03-01

    Two new cell lines, designated RE and CB, were derived from the eye of rohu, Labeo rohita, and the brain of catla, Catla catla, respectively. The cell lines were maintained in Leibovitz's L-15 supplemented with 20% foetal bovine serum. The RE cell line was sub-cultured for more than 70 passages and the CB cell line for more than 35 passages. The RE cells are rounded and consist predominantly of epithelial cells. The CB cell line consists of predominantly fibroblastic-like cells. Both cell lines are able to grow at temperatures between 25 and 32 degrees C with an optimum of 28 degrees C. The growth rate of the cells increased as the foetal bovine serum concentration increased from 2% to 20% at 28 degrees C, with optimum growth at concentrations of 15% or 20% foetal bovine serum. The cells were successfully cryopreserved and revived at different passage levels. The cell lines were not susceptible to four marine fish viruses. Extracellular products from Aeromonas sp. were toxic to the cell lines. When the cells were transfected with plasmid eukaryotic green fluorescent protein (pEGFP [Clontech, Carlsbad, CA, USA]) vector DNA, a significant fluorescent signal was observed suggesting that these cell lines could be a useful tool for transgenic and genetic manipulation studies. Polymerase chain reaction amplification of mitochondrial 12S rRNA from rohu and catla confirmed that the cell lines originated from these fish species. The cell lines were further characterized by immunocytochemistry using confocal laser scanning microscopy. PMID:19236559

  14. Generation of KCL035 research grade human embryonic stem cell line carrying a mutation in HBB gene.

    PubMed

    Hewitson, Heema; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Stephenson, Emma; Ilic, Dusko

    2016-03-01

    The KCL035 human embryonic stem cell line was derived from an embryo donated for research that carried a mutation in the HBB gene, which is linked to the β-thalassemia syndrome. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays. PMID:27345970

  15. Generation of KCL035 research grade human embryonic stem cell line carrying a mutation in HBB gene

    PubMed Central

    Hewitson, Heema; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Stephenson, Emma; Ilic, Dusko

    2016-01-01

    The KCL035 human embryonic stem cell line was derived from an embryo donated for research that carried a mutation in the HBB gene, which is linked to the β-thalassemia syndrome. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays. PMID:27345970

  16. Immortalization of Werner syndrome and progeria fibroblasts

    SciTech Connect

    Saito, H.; Moses, R.E. )

    1991-02-01

    Human fibroblast cells from two different progeroid syndromes, Werner syndrome (WS) and progeria, were established as immortalized cell lines by transfection with plasmid DNA containing the SV40 early region. The lineage of each immortalized cell line was confirmed by VNTR analysis. Each of the immortalized cell lines maintained its original phenotype of slow growth. DNA repair ability of these cells was also studied by measuring sensitivity to killing by uv or the DNA-damaging drugs methyl methansulfonate, bleomycin, and cis-dichlorodiamine platinum. The results showed that both WS and progeria cells have normal sensitivity to these agents.

  17. Therapeutic transdifferentiation of human fibroblasts into endothelial cells using forced expression of lineage-specific transcription factors

    PubMed Central

    Wong, Wing Tak; Cooke, John P

    2016-01-01

    Transdifferentiation is the direct conversion from one somatic cell type into another desired somatic cell type. This reprogramming method offers an attractive approach for regenerative medicine. Here, we demonstrate that neonatal fibroblasts can be transdifferentiated into endothelial cells using only four endothelial transcription factors, namely, ETV2, FLI1, GATA2, and KLF4. We observed a significant up-regulation of endothelial genes including KDR, CD31, CD144, and vWF in human neonatal foreskin (BJ) fibroblasts infected with the lentiviral construct encoding the open reading frame of the four transcription factors. We observed morphological changes in BJ fibroblasts from the fibroblastic spindle shape into a more endothelial-like cobblestone structures. Fluorescence-activated cell sorting analysis revealed that ~16% of the infected cells with the lentiviral constructs encoding 4F expressed CD31. The sorted cells were allowed to expand for 2 weeks and these cells were immunostained and found to express endothelial markers CD31. The induced endothelial cells also incorporated fluorescence-labeled acetylated low-density lipoprotein and efficiently formed capillary-like networks when seeded on Matrigel. These results suggested that the induced endothelial cells were functional in vitro. Taken together, we successfully demonstrated the direct conversion of human neonatal fibroblasts into endothelial cells by transduction of lentiviral constructs encoding endothelial lineage-specific transcription factors ETV2, FLI1, GATA2, and KLF4. The directed differentiation of fibroblasts into endothelial cells may have significant utility in diseases characterized by fibrosis and loss of microvasculature. PMID:27081470

  18. The Role of Thrombin and Cell Contractility in Regulating Clustering and Collective Migration of Corneal Fibroblasts in Different ECM Environments

    PubMed Central

    Miron-Mendoza, Miguel; Graham, Eric; Kivanany, Pouriska; Quiring, Jonathan; Petroll, W. Matthew

    2015-01-01

    Purpose. We previously reported that extracellular matrix composition (fibrin versus collagen) modulates the pattern of corneal fibroblast spreading and migration in 3-D culture. In this study, we investigate the role of thrombin and cell contractility in mediating these differences in cell behavior. Methods. To assess cell spreading, corneal fibroblasts were plated on top of fibrillar collagen and fibrin matrices. To assess 3-dimensional cell migration, compacted collagen matrices seeded with corneal fibroblasts were embedded inside acellular collagen or fibrin matrices. Constructs were cultured in serum-free media containing platelet-derived growth factor (PDGF), with or without thrombin, the Rho kinase inhibitor Y-27632, and/or the myosin II inhibitor blebbistatin. We used 3-dimensional and 4-dimensional imaging to assess cell mechanical behavior, connectivity and cytoskeletal organization. Results. Thrombin stimulated increased contractility of corneal fibroblasts. Thrombin also induced Rho kinase–dependent clustering of cells plated on top of compliant collagen matrices, but not on rigid substrates. In contrast, cells on fibrin matrices coalesced into clusters even when Rho kinase was inhibited. In nested matrices, cells always migrated independently through collagen, even in the presence of thrombin. In contrast, cells migrating into fibrin formed an interconnected network. Both Y-27632 and blebbistatin reduced the migration rate in fibrin, but cells continued to migrate collectively. Conclusions. The results suggest that while thrombin-induced actomyosin contraction can induce clustering of fibroblasts plated on top of compliant collagen matrices, it does not induce collective cell migration inside 3-D collagen constructs. Furthermore, increased contractility is not required for clustering or collective migration of corneal fibroblasts interacting with fibin. PMID:25736789

  19. B lymphocytes and B-cell activating factor promote collagen and profibrotic markers expression by dermal fibroblasts in systemic sclerosis

    PubMed Central

    2013-01-01

    Introduction B lymphocytes might play a pathogenic role in dermal fibrosis in systemic sclerosis (SSc). B-cell activating factor (BAFF), a key cytokine for B-cell activation, is increased in the serum and the skin of patients with SSc. However, the ability of B cells directly to stimulate dermal fibroblasts and the role of BAFF are not fully understood. We therefore investigated the involvement of B cells and BAFF in the expression of collagen and profibrotic markers by dermal fibroblasts. Methods Cocultures of blood B cells from healthy blood donors and normal or SSc dermal fibroblasts stimulated with anti-IgM and BAFF were performed. Alpha-SMA, TIMP1, MMP9, COL1A1, COL1A2, and COL3A1 mRNA expression were determined by quantitative RT-PCR. Soluble collagen, BAFF, IL-6, IL-1β, TGF-β1, and CCL2 protein secretion were assessed. Results Coculture of blood B cells and dermal fibroblasts isolated from SSc patients induced IL-6, TGF-β1, CCL2, and collagen secretion, as well as Alpha-SMA, TIMP1, and MMP9 expression in dermal fibroblasts. Transwell assays demonstrated that this induction was dependent on cell-cell contact. Addition of anti-IgM and BAFF to the coculture increased IL-6, CCL2, TGF-β1, and collagen secretion. B cell- and BAFF-induced collagen secretion was highly reduced by anti-TGF-β1 antibodies. Conclusions Our results showed for the first time a direct role of B cells on the production of collagen by dermal fibroblasts, which is further enhanced by BAFF. Thus, these results demonstrate a new pathogenic role of B cells and BAFF in fibrosis and systemic sclerosis. PMID:24289101

  20. Short and prolonged exposure to hyperglycaemia in human fibroblasts and endothelial cells: metabolic and osmotic effects.

    PubMed

    Moruzzi, Noah; Del Sole, Marianna; Fato, Romana; Gerdes, Jantje M; Berggren, Per-Olof; Bergamini, Christian; Brismar, Kerstin

    2014-08-01

    High blood glucose levels are the main feature of diabetes. However, the underlying mechanism linking high glucose concentration to diabetic complications is still not fully elucidated, particularly with regard to human physiology. Excess of glucose is likely to trigger a metabolic response depending on the cell features, activating deleterious pathways involved in the complications of diabetes. In this study, we aim to elucidate how acute and prolonged hyperglycaemia alters the biology and metabolism in human fibroblasts and endothelial cells. We found that hyperglycaemia triggers a metabolic switch from oxidative phosphorylation to glycolysis that is maintained over prolonged time. Moreover, osmotic pressure is a major factor in the early metabolic response, decreasing both mitochondrial transmembrane potential and cellular proliferation. After prolonged exposure to hyperglycaemia we observed decreased mitochondrial steady-state and uncoupled respiration, together with a reduced ATP/ADP ratio. At the same time, we could not detect major changes in mitochondrial transmembrane potential and reactive oxygen species. We suggest that the physiological and metabolic alterations observed in healthy human primary fibroblasts and endothelial cells are an adaptive response to hyperglycaemia. The severity of metabolic and bioenergetics impairment associated with diabetic complications may occur after longer glucose exposure or due to interactions with cell types more sensitive to hyperglycaemia.

  1. Screening of plants acting against Heterometrus laoticus scorpion venom activity on fibroblast cell lysis.

    PubMed

    Uawonggul, Nunthawun; Chaveerach, Arunrat; Thammasirirak, Sompong; Arkaravichien, Tarinee; Chuachan, Chattong; Daduang, Sakda

    2006-01-16

    The aqueous extracts of 64 plant species, listed as animal- or insect-bite antidotes in old Thai drug recipes were screened for their activity against fibroblast cell lysis after Heterometrus laoticus scorpion venom treatment. The venom was preincubated with plant extract for 30 min and furthered treated to confluent fibroblast cells for 30 min. More than 40% efficiency (test/control) was obtained from cell treatment with venom preincubated with extracts of Andrographis paniculata Nees (Acanthaceae), Barringtonia acutangula (L.) Gaertn. (Lecythidaceae), Calamus sp. (Palmae), Clinacanthus nutans Lindau (Acanthaceae), Euphorbia neriifolia L. (Euphorbiaceae), Ipomoea aquatica Forssk (Convolvulaceae), Mesua ferrea L. (Guttiferae), Passiflora laurifolia L. (Passifloraceae), Plectranthus amboinicus (Lour.) Spreng. (Labiatae), Ricinus communis L. (Euphorbiaceae), Rumex sp. (Polygonaceae) and Sapindus rarak DC. (Sapindaceae), indicating that they had a tendency to be scorpion venom antidotes. However, only Andrographis paniculata and Barringtonia acutangula extracts provided around 50% viable cells from extract treatments without venom preincubation. These two plant extracts are expected to be scorpion venom antidotes with low cytotoxicity. PMID:16169172

  2. Screening of plants acting against Heterometrus laoticus scorpion venom activity on fibroblast cell lysis.

    PubMed

    Uawonggul, Nunthawun; Chaveerach, Arunrat; Thammasirirak, Sompong; Arkaravichien, Tarinee; Chuachan, Chattong; Daduang, Sakda

    2006-01-16

    The aqueous extracts of 64 plant species, listed as animal- or insect-bite antidotes in old Thai drug recipes were screened for their activity against fibroblast cell lysis after Heterometrus laoticus scorpion venom treatment. The venom was preincubated with plant extract for 30 min and furthered treated to confluent fibroblast cells for 30 min. More than 40% efficiency (test/control) was obtained from cell treatment with venom preincubated with extracts of Andrographis paniculata Nees (Acanthaceae), Barringtonia acutangula (L.) Gaertn. (Lecythidaceae), Calamus sp. (Palmae), Clinacanthus nutans Lindau (Acanthaceae), Euphorbia neriifolia L. (Euphorbiaceae), Ipomoea aquatica Forssk (Convolvulaceae), Mesua ferrea L. (Guttiferae), Passiflora laurifolia L. (Passifloraceae), Plectranthus amboinicus (Lour.) Spreng. (Labiatae), Ricinus communis L. (Euphorbiaceae), Rumex sp. (Polygonaceae) and Sapindus rarak DC. (Sapindaceae), indicating that they had a tendency to be scorpion venom antidotes. However, only Andrographis paniculata and Barringtonia acutangula extracts provided around 50% viable cells from extract treatments without venom preincubation. These two plant extracts are expected to be scorpion venom antidotes with low cytotoxicity.

  3. Cell cycle and p53 gate the direct conversion of human fibroblasts to dopaminergic neurons.

    PubMed

    Jiang, Houbo; Xu, Zhimin; Zhong, Ping; Ren, Yong; Liang, Gaoyang; Schilling, Haley A; Hu, Zihua; Zhang, Yi; Wang, Xiaomin; Chen, Shengdi; Yan, Zhen; Feng, Jian

    2015-01-01

    The direct conversion of fibroblasts to induced dopaminergic (iDA) neurons and other cell types demonstrates the plasticity of cell fate. The low efficiency of these relatively fast conversions suggests that kinetic barriers exist to safeguard cell-type identity. Here we show that suppression of p53, in conjunction with cell cycle arrest at G1 and appropriate extracellular environment, markedly increase the efficiency in the transdifferentiation of human fibroblasts to iDA neurons by Ascl1, Nurr1, Lmx1a and miR124. The conversion is dependent on Tet1, as G1 arrest, p53 knockdown or expression of the reprogramming factors induces Tet1 synergistically. Tet1 knockdown abolishes the transdifferentiation while its overexpression enhances the conversion. The iDA neurons express markers for midbrain DA neurons and have active dopaminergic transmission. Our results suggest that overcoming these kinetic barriers may enable highly efficient epigenetic reprogramming in general and will generate patient-specific midbrain DA neurons for Parkinson's disease research and therapy. PMID:26639555

  4. Phagocytosis and solubilization of fixed cells by metastatic hamster embryo fibroblasts, Nil2C2

    SciTech Connect

    Sakiyama, H.; Nishino, Y.; Nishimura, K.; Noda, Y.; Otsu, H.

    1984-05-01

    When Nil2C2, a metastatic clone derived from hamster embryo fibroblasts (Nil), was inoculated over (/sup 3/H)leucine-labeled fixed cells, Nil2C2 cells solubilized and phagocytosed fixed cells, and the radioactivity was released into the culture medium as trichloroacetic acid-soluble fragments. The solubilization of fixed cells was dependent on both the time of incubation of living cells with fixed cells and the number of living cells inoculated. Nil2C2 cells were shown by autoradiographic and electron microscopic studies to peel off fixed cells and ingest them as large fragments. The solubilization of fixed cells was significantly decreased when plasminogen was depleted from the culture medium. Protease inhibitors such as leupeptin, epsilon-aminocaproic acid, and soybean trypsin inhibitor partially inhibited the proteolysis and phagocytosis of Nil2C2 cells. Mouse peritoneal macrophages activated by Salmonella typhimurium solubilized fixed cells after the addition of 12-O-tetradecanoylphorbol-13-acetate. However, they did not phagocytose fixed cells as large fragments.

  5. Cytotoxic effects of new MTA-based cement formulations on fibroblast-like MDPL-20 cells.

    PubMed

    Garcia, Lucas da Fonseca Roberti; Santos, Alailson Domingos dos; Moraes, João Carlos Silos; Costa, Carlos Alberto de Souza

    2016-01-01

    The present study aimed at evaluating the cytotoxic effects of a novel cement called CER on periodontal fibroblast-like cells of mice (MDPL-20), in comparison with different formulations of Mineral Trioxide Aggregate (MTA), by means of the cell viability test (MTT) and cell morphology analysis. Thirty-two round-shaped samples were fabricated with the following cements: white MTA, white and gray CER and experimental white MTA. The samples were immersed in serum-free culture medium for 24 hours or 7 days (n = 16). The extracts (culture medium + components released from the cements) were applied for 24 hours to previously cultured cells (40.000 cells/cm2) in the wells of 24-well plates. Cells seeded in complete culture medium were used as a negative control. Cell viability was assessed using the MTT assay. Two samples of each cement were used for cell morphology analysis by Scanning Electron Microscopy (SEM). The extracts obtained at the 7-day period presented higher cytotoxicity compared with the 24-hour period (p < 0.05). The gray CER obtained at 24 hours presented the highest cytotoxic effect, whereas the experimental white MTA presented the lowest, similar to the control (p > 0.05). However, at the 7-day period, the experimental white MTA presented no significant difference in comparison with the other cements (p > 0.05). At the 7-day period, CER cement presented cytotoxic effects on fibroblast-like cells, similar to different MTA formulations. However, the immersion period in the culture medium influenced the cytotoxicity of the cements, which was greater for CER cement at 24 hours.

  6. Generation and characterization of LIF-dependent canine induced pluripotent stem cells from adult dermal fibroblasts.

    PubMed

    Whitworth, Deanne J; Ovchinnikov, Dmitry A; Wolvetang, Ernst J

    2012-08-10

    Dogs provide a more clinically relevant model of human disease than rodents, particularly with respect to hereditary diseases. Thus, the availability of canine stem cells will greatly facilitate the use of the dog in the development of stem cell-based gene therapies and regenerative medicine. In this study we describe the production of canine induced pluripotent stem cells (ciPSCs) from adult dermal fibroblasts. These cells have a morphology resembling previously described canine embryonic stem cells, a normal karyotype, and express pluripotency markers including alkaline phosphatase, Nanog, Oct4, Telomerase, SSEA1, SSEA4, TRA1-60, TRA1-81, and Rex1. Furthermore, the inactive X chromosome is reactivated indicating a ground-state pluripotency. In culture they readily form embryoid bodies, which in turn give rise to cell types from all 3 embryonic germ layers, as indicated by expression of the definitive endoderm markers Cxcr4 and α-fetoprotein, mesoderm markers Collagen IIA and Gata2, and ectoderm markers βIII-tubulin, Enolase, and Nestin. Of particular significance is the observation that these ciPSCs are dependent only on leukemia inhibitory factor (LIF), making them similar to mouse and canine embryonic stem cells, but strikingly unlike the ciPSCs recently described in two other studies, which were dependent on both basic fibroblast growth factor and LIF in order to maintain their pluripotency. Thus, our ciPSCs closely resemble mouse ESCs derived from the inner cell mass of preimplantation embryos, while the previously described ciPSCs appear to be more representative of cells from the epiblast of mouse postimplantation embryos.

  7. A small library of synthetic di-substituted 1, 4-naphthoquinones induces ROS-mediated cell death in murine fibroblasts.

    PubMed

    Ramirez, Oscar; Motta-Mena, Laura B; Cordova, Amanda; Estrada, Abril; Li, Qingyi; Martinez, Luis; Garza, Kristine M

    2014-01-01

    Synthesis of compound libraries and their concurrent assessment as selective reagents for probing and modulating biological function continues to be an active area of chemical biology. Microwave-assisted solid-phase Dötz benzannulation reactions have been used to inexpensively synthesize 2, 3-disubstituted-1, 4-naphthoquinone derivatives. Herein, we report the biological testing of a small library of such compounds using a murine fibroblast cell line (L929). Assessment of cellular viability identified three categories of cytotoxic compounds: no toxicity, low/intermediate toxicity and high toxicity. Increased levels of Annexin-V-positive staining and of caspase 3 activity confirmed that low, intermediate, and highly toxic compounds promote cell death. The compounds varied in their ability to induce mitochondrial depolarization and formation of reactive oxygen species (ROS). Both cytotoxic and non-cytotoxic compounds triggered mitochondrial depolarization, while one highly cytotoxic compound did not. In addition, all cytotoxic compounds promoted increased intracellular ROS but the cells were only partially protected from compound-induced apoptosis when in the presence of superoxide dismutase, catalase, or ascorbic acid suggesting utilization of additional pro-death mechanisms. In summary, nine of twelve (75%) 1, 4-naphthoquinone synthetic compounds were cytotoxic. Although the mitochondria did not appear to be a central target for induction of cell death, all of the cytotoxic compounds induced ROS formation. Thus, the data demonstrate that the synthesis regime effectively created cytotoxic compounds highlighting the potential use of the regime and its products for the identification of biologically relevant reagents. PMID:25197824

  8. A small library of synthetic di-substituted 1, 4-naphthoquinones induces ROS-mediated cell death in murine fibroblasts.

    PubMed

    Ramirez, Oscar; Motta-Mena, Laura B; Cordova, Amanda; Estrada, Abril; Li, Qingyi; Martinez, Luis; Garza, Kristine M

    2014-01-01

    Synthesis of compound libraries and their concurrent assessment as selective reagents for probing and modulating biological function continues to be an active area of chemical biology. Microwave-assisted solid-phase Dötz benzannulation reactions have been used to inexpensively synthesize 2, 3-disubstituted-1, 4-naphthoquinone derivatives. Herein, we report the biological testing of a small library of such compounds using a murine fibroblast cell line (L929). Assessment of cellular viability identified three categories of cytotoxic compounds: no toxicity, low/intermediate toxicity and high toxicity. Increased levels of Annexin-V-positive staining and of caspase 3 activity confirmed that low, intermediate, and highly toxic compounds promote cell death. The compounds varied in their ability to induce mitochondrial depolarization and formation of reactive oxygen species (ROS). Both cytotoxic and non-cytotoxic compounds triggered mitochondrial depolarization, while one highly cytotoxic compound did not. In addition, all cytotoxic compounds promoted increased intracellular ROS but the cells were only partially protected from compound-induced apoptosis when in the presence of superoxide dismutase, catalase, or ascorbic acid suggesting utilization of additional pro-death mechanisms. In summary, nine of twelve (75%) 1, 4-naphthoquinone synthetic compounds were cytotoxic. Although the mitochondria did not appear to be a central target for induction of cell death, all of the cytotoxic compounds induced ROS formation. Thus, the data demonstrate that the synthesis regime effectively created cytotoxic compounds highlighting the potential use of the regime and its products for the identification of biologically relevant reagents.

  9. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays

    SciTech Connect

    Walter, M.N.M.; Wright, K.T.; Fuller, H.R.; MacNeil, S.; Johnson, W.E.B.

    2010-04-15

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-{beta}1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.

  10. Acellular porcine corneal matrix as a carrier scaffold for cultivating human corneal epithelial cells and fibroblasts in vitro

    PubMed Central

    Zhang, Ju; Zhang, Can-Wei; Du, Li-Qun; Wu, Xin-Yi

    2016-01-01

    AIM To investigate the feasibility of corneal anterior lamellar reconstruction with human corneal epithelial cells and fibroblasts, and an acellular porcine cornea matrix (APCM) in vitro. METHODS The scaffold was prepared from fresh porcine corneas which were treated with 0.5% sodium dodecyl sulfate (SDS) solution and the complete removal of corneal cells was confirmed by hematoxylin-eosin (HE) staining and 4′, 6-diamidino-2-phenylindole (DAPI) staining. Human corneal fibroblasts and epithelial cells were cultured with leaching liquid extracted from APCM, and then cell proliferative ability was evaluated by MTT assay. To construct a human corneal anterior lamellar replacement, corneal fibroblasts were injected into the APCM and cultured for 3d, followed by culturing corneal epithelial cells on the stroma construction surface for another 10d. The corneal replacement was analyzed by HE staining, and immunofluorescence staining. RESULTS Histological examination indicated that there were no cells in the APCM by HE staining, and DAPI staining did not detect any residual DNA. The leaching liquid from APCM had little influence on the proliferation ability of human corneal fibroblasts and epithelial cells. At 10d, a continuous 3 to 5 layers of human corneal epithelial cells covering the surface of the APCM was observed, and the injected corneal fibroblasts distributed within the scaffold. The phenotype of the construction was similar to normal human corneas, with high expression of cytokeratin 12 in the epithelial cell layer and high expression of vimentin in the stroma. CONCLUSION Corneal anterior lamellar replacement can be reconstructed in vitro by cultivating human corneal epithelial cells and fibroblasts with an acellular porcine cornea matrix. This laid the foundation for the further transplantation in vivo. PMID:26949602

  11. The Protozoan Neospora caninum Directly Triggers Bovine NK Cells To Produce Gamma Interferon and To Kill Infected Fibroblasts

    PubMed Central

    Boysen, Preben; Klevar, Siv; Olsen, Ingrid; Storset, Anne K.

    2006-01-01

    Natural killer (NK) cells are considered to be key players in the early innate responses to protozoan infections, primarily indirectly by producing gamma interferon (IFN-γ) in response to cytokines, like interleukin 12 (IL-12). We demonstrate that live, as well as heat-inactivated, tachyzoites of Neospora caninum, a Toxoplasma-like protozoan, directly trigger production of IFN-γ from purified, IL-2-activated bovine NK cells. This response occurred independently of IL-12 but was increased by the addition of the cytokine. A similar IFN-γ response was measured in cocultures of NK cells and N. caninum-infected autologous fibroblasts. However, no NK cell-derived IFN-γ response was detected when cells were cultured with soluble antigens from the organism, indicating that intact tachyzoites or nonsoluble components are necessary for NK cell triggering. Furthermore, N. caninum-infected autologous fibroblasts had increased susceptibility to NK cell cytotoxicity compared to uninfected fibroblasts. This cytotoxicity was largely mediated by a perforin-mediated mechanism. The activating receptor NKp46 was involved in cytotoxicity against fibroblasts but could not explain the increased cytotoxicity against infected targets. Interestingly, N. caninum tachyzoites were able to infect cultured NK cells, in which tachyzoites proliferated inside parasitophorous vacuoles. Together, these findings underscore the role of NK cells as primary responders during a protozoan infection, describe intracellular protozoan infection of NK cells in vitro for the first time, and represent the first functional study of purified bovine NK cells in response to infection. PMID:16428740

  12. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells.

    PubMed

    Liu, Xinjian; Li, Fang; Stubblefield, Elizabeth A; Blanchard, Barbara; Richards, Toni L; Larson, Gaynor A; He, Yujun; Huang, Qian; Tan, Aik-Choon; Zhang, Dabing; Benke, Timothy A; Sladek, John R; Zahniser, Nancy R; Li, Chuan-Yuan

    2012-02-01

    Transplantation of exogenous dopaminergic neuron (DA neurons) is a promising approach for treating Parkinson's disease (PD). However, a major stumbling block has been the lack of a reliable source of donor DA neurons. Here we show that a combination of five transcriptional factors Mash1, Ngn2, Sox2, Nurr1, and Pitx3 can directly and effectively reprogram human fibroblasts into DA neuron-like cells. The reprogrammed cells stained positive for various markers for DA neurons. They also showed characteristic DA uptake and production properties. Moreover, they exhibited DA neuron-specific electrophysiological profiles. Finally, they provided symptomatic relief in a rat PD model. Therefore, our directly reprogrammed DA neuron-like cells are a promising source of cell-replacement therapy for PD. PMID:22105488

  13. Regulation of matrix metalloproteinase-9 expression between gingival fibroblast cells from old and young rats

    SciTech Connect

    Kim, Su-Jung; Chung, Yong-Koo; Chung, Tae-Wook; Kim, Jeong-Ran; Moon, Sung-Kwon; Kim, Cheorl-Ho Park, Young-Guk

    2009-01-09

    Gingival fibroblast cells (rGF) from aged rats have an age-related decline in proliferative capacity compared with young rats. We investigated G1 phase cell cycle regulation and MMP-9 expression in both young and aged rGF. G1 cell cycle protein levels and activity were significantly reduced in response to interleukin-1{beta} (IL-1{beta}) stimulation with increasing in vitro age. Tumor necrosis factor-{alpha} (TNF-{alpha})-induced matrix metalloproteinase-9 (MMP-9) expression was also decreased in aged rGF in comparison with young rGF. Mutational analysis and gel shift assays demonstrated that the lower MMP-9 expression in aged rGF is associated with lower activities of transcription factors NF-{kappa}B and AP-1. These results suggest that cell cycle dysregulation and down-regulation of MMP-9 expression in rGF may play a role in gingival remodeling during in vitro aging.

  14. The CLEC-2–podoplanin axis controls fibroblastic reticular cell contractility and lymph node microarchitecture

    PubMed Central

    Astarita, Jillian L.; Cremasco, Viviana; Fu, Jianxin; Darnell, Max C.; Peck, James R.; Nieves-Bonilla, Janice M.; Song, Kai; Woodruff, Matthew C.; Gogineni, Alvin; Onder, Lucas; Ludewig, Burkhard; Weimer, Robby M.; Carroll, Michael C.; Mooney, David J.; Xia, Lijun; Turley, Shannon J.

    2014-01-01

    In lymph nodes, fibroblastic reticular cells (FRCs) form a collagen-based reticular network that supports migratory dendritic cells (DCs) and T cells and transports lymph. A hallmark of FRCs is their propensity to contract collagen, yet this function is poorly understood. Here, we demonstrate that podoplanin (PDPN) regulated actomyosin contractility in FRCs. Under resting conditions, when FRCs are unlikely to encounter mature DCs expressing the PDPN receptor, CLEC-2, PDPN endowed FRCs with contractile function and exerted tension within the reticulum. Upon inflammation, CLEC-2 on mature DCs potently attenuated PDPN-mediated contractility, resulting in FRC relaxation and reduced tissue stiffness. Disrupting PDPN function altered the homeostasis and spacing of FRCs and T cells, resulting in an expanded reticular network and enhanced immunity. PMID:25347465

  15. Nuclear transfer with apoptotic bovine fibroblasts: can programmed cell death be reprogrammed?

    PubMed

    Miranda, Moyses dos Santos; Bressan, Fabiana Fernandes; De Bem, Tiago Henrique Camara; Merighe, Giovana Krempel Fonseca; Ohashi, Otávio Mitio; King, William Alan; Meirelles, Flavio Viera

    2012-06-01

    Cell death by apoptosis is considered to be irreversible. However, reports have indicated that its reversibility is possible if the cells have not yet reached the "point of no return." In order to add new information about this topic, we used cells at different moments of apoptotic process as nuclear donors in somatic cell nuclear transfer (SCNT) in order to test if programmed cell death can be reversed. Adult bovine fibroblasts were treated with 10 μM of staurosporine (STP) for 3 h and analyzed for phosphatidylserine externalization (Annexin assay) and presence of active caspase-9. Annexin-positive (Anx+) and Caspase-9-positive (Casp-9+) cells were isolated by FACS and immediately transferred into enucleated in vitro matured bovine oocytes. After STP treatment, 89.9% of cells were Anx+ (4.6% in control cells; p<0.01) and 24.9% were Casp-9+ (2.4% in control cells; p<0.01). Fusion and cleavage were not affected by the use apoptotic cells (p>0.05). Also, the use of Anx+ cells did not affect blastocyst production compared to control (26.4% vs. 22.9%, respectively; p>0.05). However, blastocyst formation was affected by the use of Casp-9+ cells (12.3%; p<0.05). These findings contribute to the idea of that apoptosis is reversible only at early stages. Additionally, we hypothesize that the "point of no return" for apoptosis may be located around activation of Caspase-9.

  16. [Characteristics of quantitative karyotypic variability in cell line of kidney from rat kangaroo (Potorous tridactylis)].

    PubMed

    Polianskaia, G G; Samokish, V A

    1999-01-01

    The numerical regulations of karyotypic variability in cell line of rat kangaroo kidney, NBL-3-11, has been investigated. These regulations are similar with ones found for cell lines of the Indian muntjac skin fibroblasts (M, MT, M2). In particular the balanced karyotypic structure of cell population in vitro is determined by correlations of the structural variants of the karyotype (SVK). These correlations depend on the following regulations 1) nonrandom character of cell distribution according to the number of chromosomal deviations from MSVK; 2) specific character of deviations of each chromosome from MSVK; 3) presence of significant connections between separate chromosomes with simultaneous numeral deviations some differences in the character of significant connections between the individual chromosomes. These connections have either single directed character, mainly (+) direction, or differently directed one by deviations of each chromosome mainly in one direction in cell line NBL-3-11. At the same time single directed character of simultaneous deviations is observed in cell lines of the Indian muntjac skin fibroblasts (M, MT, M2) either in (+) or (-) direction. Represented results confirm and extend considerably the known ideas of the regulations of karyotypic variability in cell populations in vitro.

  17. Irradiated Human Dermal Fibroblasts Are as Efficient as Mouse Fibroblasts as a Feeder Layer to Improve Human Epidermal Cell Culture Lifespan

    PubMed Central

    Bisson, Francis; Rochefort, Éloise; Lavoie, Amélie; Larouche, Danielle; Zaniolo, Karine; Simard-Bisson, Carolyne; Damour, Odile; Auger, François A.; Guérin, Sylvain L.; Germain, Lucie

    2013-01-01

    A fibroblast feeder layer is currently the best option for large scale expansion of autologous skin keratinocytes that are to be used for the treatment of severely burned patients. In a clinical context, using a human rather than a mouse feeder layer is desirable to reduce the risk of introducing animal antigens and unknown viruses. This study was designed to evaluate if irradiated human fibroblasts can be used in keratinocyte cultures without affecting their morphological and physiological properties. Keratinocytes were grown either with or without a feeder layer in serum-containing medium. Our results showed that keratinocytes grown either on an irradiated human feeder layer or irradiated 3T3 cells (i3T3) can be cultured for a comparable number of passages. The average epithelial cell size and morphology were also similar. On the other hand, keratinocytes grown without a feeder layer showed heavily bloated cells at early passages and stop proliferating after only a few passages. On the molecular aspect, the expression level of the transcription factor Sp1, a useful marker of keratinocytes lifespan, was maintained and stabilized for a high number of passages in keratinocytes grown with feeder layers whereas Sp1 expression dropped quickly without a feeder layer. Furthermore, gene profiling on microarrays identified potential target genes whose expression is differentially regulated in the absence or presence of an i3T3 feeder layer and which may contribute at preserving the growth characteristics of these cells. Irradiated human dermal fibroblasts therefore provide a good human feeder layer for an effective expansion of keratinocytes in vitro that are to be used for clinical purposes. PMID:23443166

  18. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts.

    PubMed

    Paggetti, Jerome; Haderk, Franziska; Seiffert, Martina; Janji, Bassam; Distler, Ute; Ammerlaan, Wim; Kim, Yeoun Jin; Adam, Julien; Lichter, Peter; Solary, Eric; Berchem, Guy; Moussay, Etienne

    2015-08-27

    Exosomes derived from solid tumor cells are involved in immune suppression, angiogenesis, and metastasis, but the role of leukemia-derived exosomes has been less investigated. The pathogenesis of chronic lymphocytic leukemia (CLL) is stringently associated with a tumor-supportive microenvironment and a dysfunctional immune system. Here, we explore the role of CLL-derived exosomes in the cellular and molecular mechanisms by which malignant cells create this favorable surrounding. We show that CLL-derived exosomes are actively incorporated by endothelial and mesenchymal stem cells ex vivo and in vivo and that the transfer of exosomal protein and microRNA induces an inflammatory phenotype in the target cells, which resembles the phenotype of cancer-associated fibroblasts (CAFs). As a result, stromal cells show enhanced proliferation, migration, and secretion of inflammatory cytokines, contributing to a tumor-supportive microenvironment. Exosome uptake by endothelial cells increased angiogenesis ex vivo and in vivo, and coinjection of CLL-derived exosomes and CLL cells promoted tumor growth in immunodeficient mice. Finally, we detected α-smooth actin-positive stromal cells in lymph nodes of CLL patients. These findings demonstrate that CLL-derived exosomes actively promote disease progression by modulating several functions of surrounding stromal cells that acquire features of cancer-associated fibroblasts.

  19. Comparison of transformation and T antigen induction in human cell lines.

    PubMed

    Potter, C W; Potter, A M; Oxford, J S

    1970-03-01

    Skin fibroblast cultures were established from eight individuals. These cell cultures, together with WI-38 cells, were examined for susceptibility to transformation by SV40 virus. Four transformation-susceptible cell lines (TS), established from patients with Down's syndrome, were found to be three to four times more susceptible to transformation than transformation-resistant cell lines (TR) from normal individuals. TR and TS cell lines were compared for their susceptibility to induction of SV40 T antigen. For dividing cells T antigen was detected in a higher percentage of TS cells than TR cells. For nondividing cells, the reverse was found; T antigen was detected in 10-fold more cells of the TR lines than in cells of the TS lines. Similar results were obtained after infection of cells with CELO virus. Titration of vaccinia virus and influenza virus A2/Scotland/49/57 indicated that TR and TS cells were equally sensitive to the former virus, but TR cells were three to five times more sensitive to influenza virus A2/Scotland/49/57 than were TS cells.

  20. Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Jessup, J. M.; Wolf, D. A.

    1992-01-01

    A new low shear stress microcarrier culture system has been developed at NASA's Johnson Space Center that permits three-dimensional tissue culture. Two established human colon adenocarcinoma cell lines, HT-29, an undifferentiated, and HT-29KM, a stable, moderately differentiated subline of HT-29, were grown in new tissue culture bioreactors called Rotating-Wall Vessels (RWVs). RWVs are used in conjunction with multicellular cocultivation to develop a unique in vitro tissue modeling system. Cells were cultivated on Cytodex-3 microcarrier beads, with and without mixed normal human colonic fibroblasts, which served as the mesenchymal layer. Culture of the tumor lines in the absence of fibroblasts produced spheroidlike growth and minimal differentiation. In contrast, when tumor lines were co-cultivated with normal colonic fibroblasts, initial growth was confined to the fibroblast population until the microcarriers were covered. The tumor cells then commenced proliferation at an accelerated rate, organizing themselves into three-dimensional tissue masses that achieved 1.0- to 1.5-cm diameters. The masses displayed glandular structures, apical and internal glandular microvilli, tight intercellular junctions, desmosomes, cellular polarity, sinusoid development, internalized mucin, and structural organization akin to normal colon crypt development. Differentiated samples were subjected to transmission and scanning electron microscopy and histologic analysis, revealing embryoniclike mesenchymal cells lining the areas around the growth matrices. Necrosis was minimal throughout the tissue masses. These data suggest that the RWV affords a new model for investigation and isolation of growth, regulatory, and structural processes within neoplastic and normal tissue.

  1. Adenosine signaling inhibits CIITA-mediated MHC class II transactivation in lung fibroblast cells.

    PubMed

    Fang, Mingming; Xia, Jun; Wu, Xiaoyan; Kong, Hui; Wang, Hong; Xie, Weiping; Xu, Yong

    2013-08-01

    Efficient antigen presentation by major histocompatibility complex (MHC) molecules represents a critical process in adaptive immunity. Class II transactivator (CIITA) is considered the master regulator of MHC class II (MHC II) transcription. Previously, we have shown that CIITA expression is upregulated in smooth muscle cells deficient in A2b adenosine receptor. Here, we report that treatment with the adenosine receptor agonist adenosine-5'N-ethylcarboxamide (NECA) attenuated MHC II transcription in lung fibro-blast cells as a result of CIITA repression. Further analysis revealed that NECA preferentially abrogated CIITA transcription through promoters III and IV. Blockade with a selective A2b receptor antagonist MRS-1754 restored CIITA-dependent MHC II transactivation. Forskolin, an adenylyl cyclase activator, achieved the same effect as NECA. A2b signaling repressed CIITA transcription by altering histone modifications and recruitment of key factors on the CIITA promoters in a STAT1-dependent manner. MRS-1754 blocked the antagonism of transforming growth factor beta (TGF-β) in CIITA induction by interferon gamma (IFN-γ), alluding to a potential dialogue between TGF-β and adenosine signaling pathways. Finally, A2b signaling attenuated STAT1 phosphorylation and stimulated TGF-β synthesis. In conclusion, we have identified an adenosine-A2b receptor-adenylyl cyclase axis that influences CIITA-mediated MHC II transactivation in lung fibroblast cells and as such have provided invaluable insights into the development of novel immune-modulatory strategies.

  2. Morphologies of fibroblast cells cultured on surfaces of PHB films implanted by hydroxyl ions.

    PubMed

    Hou, T; Zhang, J Z; Kong, L J; Zhang, X E; Hu, P; Zhang, D M; Li, N

    2006-01-01

    Polyhydroxybutyrate (PHB) films were implanted with 40 keV hydroxyl ions with fluences ranging from 1 x 10(12) to 1 x 10(15) ions/cm2, respectively. The as-implanted PHB films were characterized by scanning electron microscopy (SEM), electron spectroscopy for chemical analysis (ESCA) and water contact angle measurements. The surface structures and properties of the as-implanted PHB films were closely related with hydroxyl ion fluence. They were further investigated by inoculating 3T6 fibroblasts cells on their surfaces. Morphologies of the 3T6 fibroblast cells cultured on surfaces of the as-implanted PHB films were observed by SEM. Characterization of the cultural 3T6 cells was analyzed qualitatively. The preliminary experimental results reveal that the bioactivity of the PHB films modified by hydroxyl ion implantation was improved at different levels, and the fluence of 1 x 10(13) ions/cm2 is optimal for PHB film. PMID:16909942

  3. [Comparison of fibroblastic cell compatibility of type I collagen-immobilized titanium between electrodeposition and immersion].

    PubMed

    Kyuragi, Takeru

    2014-03-01

    Titanium is widely used for medical implants. While many techniques for surface modification have been studied for optimizing its biocompatibility with hard tissues, little work has been undertaken to explore ways of maximizing its biocompatibility with soft tissues. We investigated cell attachment to titanium surfaces modified with bovine Type I collagen immobilized by either electrodeposition or a conventional immersion technique. The apparent thickness and durability of the immobilized collagen layer were evaluated prior to incubation of the collagen-immobilized titanium surfaces with NIH/3T3 mouse embryonic fibroblasts. The initial cell attachment and expression of actin and vinculin were evaluated. We determined that the immobilized collagen layer was much thicker and more durable when placed using the electrodeposition technique than the immersion technique. Both protocols produced materials that promoted better cell attachment, growth and structural protein expression than titanium alone. However, electrodeposition was ultimately superior to immersion because it is quicker to perform and produces a more durable collagen coating. We conclude that electrodeposition is an effective technique for immobilizing type I collagen on titanium surfaces, thus improving their cytocompatibility with fibroblasts.

  4. Generation of Dopamine Neurons from Rodent Fibroblasts through the Expandable Neural Precursor Cell Stage*

    PubMed Central

    Lim, Mi-Sun; Chang, Mi-Yoon; Kim, Sang-Mi; Yi, Sang-Hoon; Suh-Kim, Haeyoung; Jung, Sung Jun; Kim, Min Jung; Kim, Jin Hyuk; Lee, Yong-Sung; Lee, Soo Young; Kim, Dong-Wook; Lee, Sang-Hun; Park, Chang-Hwan

    2015-01-01

    Recent groundbreaking work has demonstrated that combined expression of the transcription factors Brn2, Ascl1, and Myt1L (BAM; also known as Wernig factors) convert mouse fibroblasts into postmitotic neuronal cells. However, questions remain regarding whether trans-conversion is achieved directly or involves an intermediary precursor stage. Trans-conversion toward expandable neural precursor cells (NPCs) is more useful than direct one-step neuron formation with respect to yielding a sufficient number of cells and the feasibility of manipulating NPC differentiation toward certain neuron subtypes. Here, we show that co-expression of Wernig factors and Bcl-xL induces fibroblast conversion into NPCs (induced NPCs (iNPCs)) that are highly expandable for >100 passages. Gene expression analyses showed that the iNPCs exhibited high expression of common NPC genes but not genes specific to defined embryonic brain regions. This finding indicated that a regional identity of iNPCs was not established. Upon induction, iNPCs predominantly differentiated into astrocytes. However, the differentiation potential was not fixed and could be efficiently manipulated into general or specific subtypes of neurons by expression of additional genes. Specifically, overexpression of Nurr1 and Foxa2, transcription factors specific for midbrain dopamine neuron development, drove iNPCs to yield mature midbrain dopamine neurons equipped with presynaptic DA neuronal functions. We further assessed the therapeutic potential of iNPCs in Parkinson disease model rats. PMID:26023233

  5. NOVEL SPLICED VARIANTS OF IONOTROPIC GLUTAMATE RECEPTOR GLUR6 IN NORMAL HUMAN FIBROBLAST AND BRAIN CELLS ARE TRANSCRIBED BY TISSUE SPECIFIC PROMOTERS

    PubMed Central

    Zhawar, Vikramjit K.; Kaur, Gurpreet; deRiel, Jon K.; Kaur, G. Pal; Kandpal, Raj P.; Athwal, Raghbir S.

    2010-01-01

    The members of the ionotropic glutamate receptor family, namely, a-amino-3-hydroxy-S-methyl-4-isoxazole propionate (AMPA), kainate, and N-methyl-D-aspartate (NMDA) receptors, are important mediators of the rapid synaptic transmission in the central nervous system. We have investigated the splicing pattern and expression of the kainate receptor subunit GluR6 in human fibroblast cell lines and brain tissue. We demonstrate the expression of GluR6A variant specifically in brain, and four variants, namely, GluR6B, GluR6C, GluR6D and GluR6E in fibroblast cell lines. The variants GluR6D and GluR6E have not been described before, and appear to be specific for non-neuronal cells. Genomic analysis and cloning of the sequence preceding the transcribed region led to the identification of two tissue specific promoters designated as neuronal promoter PN and non-neuronal promoter PNN. We have used RNA ligase mediated RACE and in silico analyses to locate two sets of transcription start sites, and confirmed specific transcripts initiated by PN and PNN in brain cells and fibroblasts, respectively. The domain structure of variants GluR6D and GluR6E revealed the absence of three transmembrane domains. The lack of these domains suggests that the mature receptors arising from these variant subunits may not function as active channels. Based on these structural features in GluR6D and GluR6E, and the observations that GluR6B, GluR6C, GluR6D and GluR6E are exclusively expressed in non-neuronal cells, it is likely that these receptor subunits function as non-channel signaling proteins. PMID:20230879

  6. Effect of basic fibroblast growth factor in mouse embryonic stem cell culture and osteogenic differentiation.

    PubMed

    Rose, Laura C; Fitzsimmons, Ross; Lee, Poh; Krawetz, Roman; Rancourt, Derrick E; Uludağ, Hasan

    2013-05-01

    Embryonic stem cells are actively explored as a cell source in tissue engineering and regenerative medicine involving bone repair. Basic fibroblast growth factor (bFGF) has been a valuable growth factor to support the culture of human stem cells as well as their osteogenic differentiation, but the influence of bFGF on mouse embryonic stem (mES) cells is not known. Towards this goal, D3 cells were treated with bFGF during maintenance conditions and during spontaneous and osteogenic differentiation. In feeder-free monolayers, up to 40 ng/ml of exogenous bFGF did not support self-renewal of mES without LIF during cell expansion. During spontaneous differentiation in high-density cultures, bFGF stimulated cell proliferation under certain conditions but did not influence differentiation, as judged by stage-specific embryonic antigen-1 expression. The addition of bFGF reduced the alkaline phosphatase (ALP) activity associated with osteoblast activity during differentiation induced by osteogenic supplements, although the extent of mineralization was unaffected by bFGF. The bFGF increased the mesenchymal stem cell marker Sca-1 in an mES cell population and led to an enhanced increase in osteocalcin and runx2 expression in combination with BMP-2. These results suggest that bFGF could be utilized to expand the cell population in high-density cultures in addition to enriching the BMP-2 responsiveness of mES cells. PMID:22674886

  7. The effect of platelet-derived growth factor on cell division and glycosaminoglycan synthesis by human skin and scar fibroblasts.

    PubMed

    Savage, K; Siebert, E; Swann, D

    1987-07-01

    The effect of platelet-derived growth factor (PDGF) on cell division and glycosaminoglycan (GAG) synthesis by fibroblasts isolated from skin and scar was measured. We found that PDGF stimulates cell division more efficiently in normal skin fibroblasts than in scar fibroblasts and decreases GAG synthesis in skin and scar fibroblasts. Using a 4-h pulse label with [3H]thymidine ([3H]Thd) following a 20-h incubation of confluent monolayer cultures with 0-5 units PDGF/ml Dulbecco's modified Eagle's medium, we found a concentration-dependent increase in [3H]Thd incorporation. After incubation of fibroblasts with [3H]glucosamine and 35SO4 in the presence or absence of PDGF, labeled constituents were isolated from the extracellular, pericellular, and cellular fractions by pronase digestion and column chromatography on Sepharose CL4B or DEAE-cellulose and analyzed by cellulose acetate electrophoresis. The presence of PDGF decreased the total amount of 35S incorporated into macromolecules by skin and scar fibroblasts and resulted in an altered distribution of labeled GAGs. Dermal fibroblasts exposed to PDGF for 24 h incorporated a greater percentage of radiolabeled 35S into dermatan sulfate prime (DS') and less into dermatan sulfate (DS) in the extracellular fractions and a greater percentage of 35S into heparan sulfate (HS) in the pericellular fractions than did parallel cultures grown in the absence of PDGF. It is thought than PDGF may have an effect on scar formation by increasing the fibroblast population in the wound tissue and by affecting the total amount and types of matrix components synthesized.

  8. The Anti-hypertensive Drug Prazosin Induces Apoptosis in the Medullary Thyroid Carcinoma Cell Line TT

    PubMed Central

    STRACKE, ANIKA; MEIER-ALLARD, NATHALIE; ABSENGER, MARKUS; INGOLIC, ELISABETH; HAAS, HELGA SUSANNE; PFRAGNER, ROSWITHA; SADJAK, ANTON

    2015-01-01

    Background/Aim Medullary thyroid carcinoma (MTC) is a tumor associated with poor prognosis since it exhibits high resistance against conventional cancer therapy. Recent studies have shown that quinazolines exhibit a pro-apoptotic effect on malignant cells. The aim of the present study was to elucidate whether MTC cells are affected by quinazolines, in particular prazosin. Materials and Methods Proliferation, apoptosis and cell morphology of the MTC cell line TT were analyzed by WST-1 assay, caspase 3/7 activation tests and microscopy. Fibroblasts were used as control for non-malignant cells. Results Prazosin potently inhibited the growth of TT cells, induced apoptosis and caused vacuolization, as well as needle-like filopodia. Fibroblasts were affected by prazosin in the same way as MTC cells. Conclusion MTC cells are responsive to prazosin treatment similar to other malignancies. The fact that fibroblasts also respond to prazosin further highlights the importance to identify the unknown pro-apoptotic target of quinazolines. PMID:25550532

  9. Substrate stiffness-regulated matrix metalloproteinase output in myocardial cells and cardiac fibroblasts: implications for myocardial fibrosis.

    PubMed

    Xie, Jing; Zhang, Quanyou; Zhu, Ting; Zhang, Yanyan; Liu, Bailin; Xu, Jianwen; Zhao, Hucheng

    2014-06-01

    Cardiac fibrosis, an important pathological feature of structural remodeling, contributes to ventricular stiffness, diastolic dysfunction, arrhythmia and may even lead to sudden death. Matrix stiffness, one of the many mechanical factors acting on cells, is increasingly appreciated as an important mediator of myocardial cell behavior. Polydimethylsiloxane (PDMS) substrates were fabricated with different stiffnesses to mimic physiological and pathological heart tissues, and the way in which the elastic modulus of the substrate regulated matrix-degrading gelatinases in myocardial cells and cardiac fibroblasts was explored. Initially, an increase in cell spreading area was observed, concomitant with the increase in PDMS stiffness in both cells. Later, it was demonstrated that the MMP-2 gene expression and protein activity in myocardial cells and cardiac fibroblasts can be enhanced with an increase in PDMS substrate stiffness and, moreover, such gene- and protein-related increases had a significant linear correlation with the elastic modulus. In comparison, the MMP-9 gene and protein expressions were up-regulated in cardiac fibroblasts only, not in myocardial cells. These results implied that myocardial cells and cardiac fibroblasts in the myocardium could sense the stiffness in pathological fibrosis and showed a differential but positive response in the expression of matrix-degrading gelatinases when exposed to an increased stiffening of the matrix in the microenvironment. The phenomenon of cells sensing pathological matrix stiffness can help to increase understanding of the mechanism underlying myocardial fibrosis and may ultimately lead to planning cure strategies.

  10. Transient in vitro epigenetic reprogramming of skin fibroblasts into multipotent cells

    PubMed Central

    Zhu, Xiang-Qing; Pan, Xing-Hua; Wang, Weibo; Chen, Qiang; Pang, Rong-Qing; Cai, Xue-Min; Hoffman, Andrew R.; Hu, Ji-Fan

    2009-01-01

    Multipotent stem cells have the potential to establish a new field of promising regenerative medicine to treat tissue damage, genetic disorders, and degenerative diseases. However, limited resource of stem cells has turned to be an evitable obstacle in clinical applications. We utilized a simple in vitro epigenetic reprogramming approach to convert skin fibroblasts into multipotent cells. After transient reprogramming, stem cell markers, including Oct4 and Nanog, became activated in the treated cells. The reprogrammed cells were multipotent as demonstrated by their ability to differentiate into a variety of cells and to form teratomas. Genomic imprinting of insulin-like growth factor II (Igf2) and H19 was not affected by this short period of cell reprogramming. This study may provide an alternative strategy to efficiently generate patient-specific stem cells for basic and clinical research, solving major hurdles of virally-induced pluripotent stem (iPS) cells that entail the potential risks of mutation, gene instability, and malignancy. PMID:20044135

  11. Transfer of an expression YAC into goat fetal fibroblasts by cell fusion for mammary gland bioreactor

    SciTech Connect

    Zhang Xufeng; Wu Guoxiang; Chen, Jian-Quan; Zhang Aimin; Liu Siguo; Jiao Binghua . E-mail: jiaobh@uninet.com.cn; Cheng Guoxiang . E-mail: Chenggx@cngenon.com

    2005-07-22

    Yeast artificial chromosomes (YACs) as transgenes in transgenic animals are likely to ensure optimal expression levels. Microinjection of YACs is the exclusive technique used to produce YACs transgenic livestock so far. However, low efficiency and high cost are its critical restrictive factors. In this study, we presented a novel procedure to produce YACs transgenic livestock as mammary gland bioreactor. A targeting vector, containing the gene of interest-a human serum albumin minigene (intron 1, 2), yeast selectable marker (G418R), and mammalian cell resistance marker (neo{sup r}), replaced the {alpha}-lactalbumin gene in a 210 kb human {alpha}-lactalbumin YAC by homogeneous recombination in yeasts. The chimeric YAC was introduced into goat fetal fibroblasts using polyethylene glycol-mediated spheroplast fusion. PCR and Southern analysis showed that intact YAC was integrated in the genome of resistant cells. Perhaps, it may offer a cell-based route by nuclear transfer to produce YACs transgenic livestock.

  12. Fibroblast growth factor 8 increases breast cancer cell growth by promoting cell cycle progression and by protecting against cell death

    SciTech Connect

    Nilsson, Emeli M.; Brokken, Leon J.S.; Haerkoenen, Pirkko L.

    2010-03-10

    Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death.

  13. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells

    PubMed Central

    Palazzolo, Giacomo; Quattrocelli, Mattia; Toelen, Jaan; Dominici, Roberto; Tettamenti, Guido; Barthelemy, Inès; Blot, Stephane; Gijsbers, Rik; Cassano, Marco

    2016-01-01

    The Duchenne and Becker muscular dystrophies are caused by mutation of dystrophin gene and primarily affect skeletal and cardiac muscles. Cardiac involvement in dystrophic GRMD dogs has been demonstrated by electrocardiographic studies with the onset of a progressive cardiomyopathy similar to the cardiac disease in DMD patients. In this respect, GRMD is a useful model to explore cardiac and skeletal muscle pathogenesis and for developing new therapeutic protocols. Here we describe a protocol to convert GRMD canine fibroblasts isolated from heart and skin into induced cardiac-like myocytes (ciCLMs). We used a mix of transcription factors (GATA4, HAND2, TBX5, and MEF2C), known to be able to differentiate mouse and human somatic cells into ciCLMs. Exogenous gene expression was obtained using four lentiviral vectors carrying transcription factor genes and different resistance genes. Our data demonstrate a direct switch from fibroblast into ciCLMs with no activation of early cardiac genes. ciCLMs were unable to contract spontaneously, suggesting, differently from mouse and human cells, an incomplete differentiation process. However, when transplanted in neonatal hearts of SCID/Beige mice, ciCLMs participate in cardiac myogenesis. PMID:26681949

  14. c-Ski activates cancer-associated fibroblasts to regulate breast cancer cell invasion.

    PubMed

    Wang, Liyang; Hou, Yixuan; Sun, Yan; Zhao, Liuyang; Tang, Xi; Hu, Ping; Yang, Jiajia; Zeng, Zongyue; Yang, Guanglun; Cui, Xiaojiang; Liu, Manran

    2013-12-01

    Aberrant expression of c-Ski oncoprotein in some tumor cells has been shown to be associated with cancer development. However, the role of c-Ski in cancer-associated fibroblasts (CAFs) of tumor microenvironment has not been characterized. In the current study, we found that c-Ski is highly expressed in CAFs derived from breast carcinoma microenvironment and this CAF-associated c-Ski expression is associated with invasion and metastasis of human breast tumors. We showed that c-Ski overexpression in immortalized breast normal fibroblasts (NFs) induces conversion to breast CAFs by repressing p53 and thereby upregulating SDF-1 in NFs. SDF-1 treatment or p53 knockdown in NFs had similar effects on the activation of NFs as c-Ski overexpression. The c-Ski-activated CAFs show increased proliferation, migration, invasion and contraction compared with NFs. Furthermore, c-Ski-activated CAFs facilitated the migration and invasion of MDA-MB-231 breast cancer cells. Our data suggest that c-Ski is an important regulator in the activation of CAFs and may serve as a potential therapeutic target to block breast cancer progression.

  15. Vitamin D Attenuates Kidney Fibrosis via Reducing Fibroblast Expansion, Inflammation, and Epithelial Cell Apoptosis.

    PubMed

    Arfian, Nur; Muflikhah, Khusnul; Soeyono, Sri Kadarsih; Sari, Dwi Cahyani Ratna; Tranggono, Untung; Anggorowati, Nungki; Romi, Muhammad Mansyur

    2016-01-01

    Kidney fibrosis is the common final pathway of chronic kidney diseases (CKD). It is characterized by myofibroblast formation, inflammation, and epithelial architecture damage. Vitamin D is known as a renoprotective agent, although the precise mechanism is not well understood. This study aimed to elucidate the effect of vitamin D in fibroblast expansion, inflammation, and apoptosis in kidney fibrosis. We performed unilateral ureteral obstruction (UUO) in male Swiss-Webster background mice (3 months, 30-40 grams) to induce kidney fibrosis. The mice (n=25) were divided into five groups: UUO, 3 groups treated with different oral vitamin D doses (0.125 µg/kg (UUO+VD1), 0.25 µg/kg (UUO+VD2), and 0.5 µg/kg (UUO+VD3), and a Sham operation (SO) group with ethanol 0.2% supplementation. We sacrificed the mice on day14 after the operation and harvested the kidney. We made paraffin sections for histological analysis. Tubular injury and fibrosis were quantified based on periodic acid-Schiff (PAS) and Sirius Red (SR) staining. Immunostaining was done for examination of myofibroblasts (αSMA), fibroblasts (PDGFRβ), TLR4, and apoptosis (TUNEL). We did RNA extraction and cDNA for Reverse transcriptase PCR (RT-PCR) experiment for measuring MCP-1, ICAM-1, TLR4, and collagen 1 expression. TGFβ1 level was quantified using ELISA. We observed a significantly lower levels of fibrosis (p<0.001), tubular injury scores (p<0.001), and myofibroblast areas (p<0.001) in the groups treated with vitamin D compared with the UUO group. The TGFβ1 levels and the fibroblast quantifications were also significantly lower in the former group. However, we did not find any significant difference among the various vitamin D-treated groups. Concerning the dose-independent effect, we only compared the UUO+VD-1 group with SO group and found by TUNEL assay that UUO+VD-1 had a significantly lower epithelial cell apoptosis. RT-PCR analysis showed lower expression of collagen1, as well as inflammation

  16. Comparison between fibroblast wound healing and cell random migration assays in vitro.

    PubMed

    Ascione, Flora; Vasaturo, Angela; Caserta, Sergio; D'Esposito, Vittoria; Formisano, Pietro; Guido, Stefano

    2016-09-10

    Cell migration plays a key role in many biological processes, including cancer growth and invasion, embryogenesis, angiogenesis, inflammatory response, and tissue repair. In this work, we compare two well-established experimental approaches for the investigation of cell motility in vitro: the cell random migration (CRM) and the wound healing (WH) assay. In the former, extensive tracking of individual live cells trajectories by time-lapse microscopy and elaborate data processing are used to calculate two intrinsic motility parameters of the cell population under investigation, i.e. the diffusion coefficient and the persistence time. In the WH assay, a scratch is made in a confluent cell monolayer and the closure time of the exposed area is taken as an easy-to-measure, empirical estimate of cell migration. To compare WH and CRM we applied the two assays to investigate the motility of skin fibroblasts isolated from wild type and transgenic mice (TgPED) overexpressing the protein PED/PEA-15, which is highly expressed in patients with type 2 diabetes. Our main result is that the cell motility parameters derived from CRM can be also estimated from a time-resolved analysis of the WH assay, thus showing that the latter is also amenable to a quantitative analysis for the characterization of cell migration. To our knowledge this is the first quantitative comparison of these two widely used techniques. PMID:27475838

  17. Comparison between fibroblast wound healing and cell random migration assays in vitro.

    PubMed

    Ascione, Flora; Vasaturo, Angela; Caserta, Sergio; D'Esposito, Vittoria; Formisano, Pietro; Guido, Stefano

    2016-09-10

    Cell migration plays a key role in many biological processes, including cancer growth and invasion, embryogenesis, angiogenesis, inflammatory response, and tissue repair. In this work, we compare two well-established experimental approaches for the investigation of cell motility in vitro: the cell random migration (CRM) and the wound healing (WH) assay. In the former, extensive tracking of individual live cells trajectories by time-lapse microscopy and elaborate data processing are used to calculate two intrinsic motility parameters of the cell population under investigation, i.e. the diffusion coefficient and the persistence time. In the WH assay, a scratch is made in a confluent cell monolayer and the closure time of the exposed area is taken as an easy-to-measure, empirical estimate of cell migration. To compare WH and CRM we applied the two assays to investigate the motility of skin fibroblasts isolated from wild type and transgenic mice (TgPED) overexpressing the protein PED/PEA-15, which is highly expressed in patients with type 2 diabetes. Our main result is that the cell motility parameters derived from CRM can be also estimated from a time-resolved analysis of the WH assay, thus showing that the latter is also amenable to a quantitative analysis for the characterization of cell migration. To our knowledge this is the first quantitative comparison of these two widely used techniques.

  18. Enhanced Expression of Fibroblast Growth Factor Receptor 3 IIIc Promotes Human Esophageal Carcinoma Cell Proliferation.

    PubMed

    Ueno, Nobuhiro; Shimizu, Akio; Kanai, Michiyuki; Iwaya, Yugo; Ueda, Shugo; Nakayama, Jun; Seo, Misuzu Kurokawa

    2016-01-01

    Deregulated expression of fibroblast growth factor receptors (FGFRs) and their ligands plays critical roles in tumorigenesis. The gene expression of an alternatively spliced isoforms of FGFR3, FGFR3IIIc, was analyzed by RT-PCR in samples from patients with esophageal carcinoma (EC), including esophageal squamous cell carcinoma (ESCC) and adenocarcinoma (EAC). The incidence of FGFR3IIIc was higher in EC [12/16 (75%); p=0.073] than in non-cancerous mucosa (NCM) [6/16 (38%)]. Indeed, an immunohistochemical analysis of early-stage ESCC showed that carcinoma cells expressing FGFR3IIIc stained positively with SCC-112, a tumor marker, and Ki67, a cell proliferation marker, suggesting that the expression of FGFR3IIIc promotes cell proliferation. We used EC-GI-10 cells endogenously expressing FGFR3IIIc as a model of ESCC to provide mechanistic insight into the role of FGFR3IIIc in ESCC. The knockdown of endogenous FGFR3 using siRNA treatment significantly abrogated cell proliferation and the overexpression of FGFR3IIIc in cells with enhanced cell proliferation. EC-GI-10 cells and ESCC from patients with EC showed endogenous expression of FGF2, a specific ligand for FGFR3IIIc, suggesting that the upregulated expression of FGFR3IIIc may create autocrine FGF signaling in ESCC. Taken together, FGFR3IIIc may have the potential to be an early-stage tumor marker and a molecular target for ESCC therapy.

  19. CD34+ fibroblast-like cells in the interstitial infiltrates in glomerulonephritis - an immunohistochemical observation.

    PubMed

    Gluhovschi, Cristina; Potencz, Elena; Lazar, Elena; Petrica, Ligia; Bozdog, Gheorghe; Gadalean, Florica; Bob, Flaviu; Gluhovschi, Adrian; Cioca, Daniel; Velciov, Silvia

    2012-12-01

    CD34 cells in the interstitial infiltrates in glomerulonephritis (GN) could be the turning point between regenerative processes and interstitial fibrosis. The aim of our study was to assess the presence of CD34+ cells in the interstitial infiltrates in GN. A cross-sectional study of 33 patients with glomerulonephritis, mean age: 43.3 ±11.31 years, 20 male and 13 female, was conducted. Conventional stains, as well as immunohistochemistry for the CD34 antigen were employed on kidney biopsies. Strength of immunohistochemical reaction was assessed semi-quantitatively. Regarding the percentage of cases with CD34+ cells in the interstitial infiltrates out of 33 patients: cells of interstitial infiltrates were 27.3% positive. The percentage of cases showing CD34+ cells at the level of interstitial infiltrates was: 44.4% in FSGS, 14.3% in membranoproliferative GN, 28.6% in membranous nephropathy, 20% in mesangial proliferative GN, 0% in minimal change disease, and 50% in crescentic GN. With the exception of minimal change disease, CD34+ cells were found in the interstitial infiltrates in all histopathological forms of GN. Some of these cells were spindle-shaped fibroblast-like cells. As inflammation in the tubulointerstitial compartment either resolves or proceeds to fibrosis, aims at reversing this process will benefit from analyses of the interstitial infiltrates harboring CD34+ cells. PMID:23359197

  20. Mechanics regulates ATP-stimulated collective calcium response in fibroblast cells

    PubMed Central

    Lembong, Josephine; Sabass, Benedikt; Sun, Bo; Rogers, Matthew E.; Stone, Howard A.

    2015-01-01

    Cells constantly sense their chemical and mechanical environments. We study the effect of mechanics on the ATP-induced collective calcium response of fibroblast cells in experiments that mimic various tissue environments. We find that closely packed two-dimensional cell cultures on a soft polyacrylamide gel (Young's modulus E = 690 Pa) contain more cells exhibiting calcium oscillations than cultures on a rigid substrate (E = 36 000 Pa). Calcium responses of cells on soft substrates show a slower decay of calcium level relative to those on rigid substrates. Actin enhancement and disruption experiments for the cell cultures allow us to conclude that actin filaments determine the collective Ca2+ oscillatory behaviour in the culture. Inhibition of gap junctions results in a decrease of the oscillation period and reduced correlation of calcium responses, which suggests additional complexity of signalling upon cell–cell contact. Moreover, the frequency of calcium oscillations is independent of the rigidity of the substrate but depends on ATP concentration. We compare our results with those from similar experiments on individual cells. Overall, our observations show that collective chemical signalling in cell cultures via calcium depends critically on the mechanical environment. PMID:26063818

  1. Enhancing the efficiency of direct reprogramming of human primary fibroblasts into dopaminergic neuron-like cells through p53 suppression.

    PubMed

    Liu, XinJian; Huang, Qian; Li, Fang; Li, Chuan-Yuan

    2014-09-01

    Dopaminergic (DA) neuron-like cells obtained through direct reprogramming of primary human fibroblasts offer exciting opportunities for treatment of Parkinson's disease. A significant obstacle is the low efficiency of conversion during the reprogramming process. Here, we demonstrate that the suppression of p53 significantly enhances the efficiency of transcription factor-mediated conversion of human fibroblasts into functional dopaminergic neurons. In particular, blocking p53 activity using a dominant-negative p53 (p53-DN) in IMR90 cells increases the conversion efficiency by 5-20 fold. The induced DA neuron-like cells exhibit dopamine neuron-specific gene expression, significant dopamine uptake and production capacities, and enables symptomatic relief in a rat Parkinson's disease model. Taken together, our findings suggest that p53 is a critical barrier in direct reprogramming of fibroblast into dopaminergic neurons. PMID:25129808