Science.gov

Sample records for fibroblasts expressing active

  1. Tumor-produced, active Interleukin-1 {beta} regulates gene expression in carcinoma-associated fibroblasts

    SciTech Connect

    Dudas, Jozsef; Fullar, Alexandra; Bitsche, Mario; Schartinger, Volker; Kovalszky, Ilona; Sprinzl, Georg Mathias; Riechelmann, Herbert

    2011-09-10

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated with IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times in the

  2. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    PubMed

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-01-01

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment. PMID:26576741

  3. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    PubMed

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-11-18

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment.

  4. Cathepsin B Regulates Collagen Expression by Fibroblasts via Prolonging TLR2/NF-κB Activation

    PubMed Central

    Li, Xue; Ni, Junjun; Meng, Jie; Yu, Weixian; Nakanishi, Hiroshi

    2016-01-01

    Fibroblasts are essential for tissue repair due to producing collagens, and lysosomal proteinase cathepsin B (CatB) is involved in promoting chronic inflammation. We herein report that CatB regulates the expression of collagens III and IV by fibroblasts in response to a TLR2 agonist, lipopolysaccharide from Porphyromonas gingivalis (P.g. LPS). In cultured human BJ fibroblasts, mRNA expression of CatB was significantly increased, while that of collagens III and IV was significantly decreased at 24 h after challenge with P.g. LPS (1 μg/mL). The P.g. LPS-decreased collagen expression was completely inhibited by CA-074Me, the specific inhibitor of CatB. Surprisingly, expression of collagens III and IV was significantly increased in the primary fibroblasts from CatB-deficient mice after challenge with P.g. LPS. The increase of CatB was accompanied with an increase of 8-hydroxy-2′-deoxyguanosine (8-OHdG) and a decrease of IκBα. Furthermore, the P.g. LPS-increased 8-OHdG and decreased IκBα were restored by CA-074Me. Moreover, 87% of CatB and 86% of 8-OHdG were colocalized with gingival fibroblasts of chronic periodontitis patients. The findings indicate the critical role of CatB in regulating the expression of collagens III and IV by fibroblasts via prolonging TLR2/NF-κB activation and oxidative stress. CatB-specific inhibitors may therefore improve chronic inflammation-delayed tissue repair. PMID:27648120

  5. Cathepsin B Regulates Collagen Expression by Fibroblasts via Prolonging TLR2/NF-κB Activation

    PubMed Central

    Li, Xue; Ni, Junjun; Meng, Jie; Yu, Weixian; Nakanishi, Hiroshi

    2016-01-01

    Fibroblasts are essential for tissue repair due to producing collagens, and lysosomal proteinase cathepsin B (CatB) is involved in promoting chronic inflammation. We herein report that CatB regulates the expression of collagens III and IV by fibroblasts in response to a TLR2 agonist, lipopolysaccharide from Porphyromonas gingivalis (P.g. LPS). In cultured human BJ fibroblasts, mRNA expression of CatB was significantly increased, while that of collagens III and IV was significantly decreased at 24 h after challenge with P.g. LPS (1 μg/mL). The P.g. LPS-decreased collagen expression was completely inhibited by CA-074Me, the specific inhibitor of CatB. Surprisingly, expression of collagens III and IV was significantly increased in the primary fibroblasts from CatB-deficient mice after challenge with P.g. LPS. The increase of CatB was accompanied with an increase of 8-hydroxy-2′-deoxyguanosine (8-OHdG) and a decrease of IκBα. Furthermore, the P.g. LPS-increased 8-OHdG and decreased IκBα were restored by CA-074Me. Moreover, 87% of CatB and 86% of 8-OHdG were colocalized with gingival fibroblasts of chronic periodontitis patients. The findings indicate the critical role of CatB in regulating the expression of collagens III and IV by fibroblasts via prolonging TLR2/NF-κB activation and oxidative stress. CatB-specific inhibitors may therefore improve chronic inflammation-delayed tissue repair.

  6. Cathepsin B Regulates Collagen Expression by Fibroblasts via Prolonging TLR2/NF-κB Activation.

    PubMed

    Li, Xue; Wu, Zhou; Ni, Junjun; Liu, Yicong; Meng, Jie; Yu, Weixian; Nakanishi, Hiroshi; Zhou, Yanmin

    2016-01-01

    Fibroblasts are essential for tissue repair due to producing collagens, and lysosomal proteinase cathepsin B (CatB) is involved in promoting chronic inflammation. We herein report that CatB regulates the expression of collagens III and IV by fibroblasts in response to a TLR2 agonist, lipopolysaccharide from Porphyromonas gingivalis (P.g. LPS). In cultured human BJ fibroblasts, mRNA expression of CatB was significantly increased, while that of collagens III and IV was significantly decreased at 24 h after challenge with P.g. LPS (1 μg/mL). The P.g. LPS-decreased collagen expression was completely inhibited by CA-074Me, the specific inhibitor of CatB. Surprisingly, expression of collagens III and IV was significantly increased in the primary fibroblasts from CatB-deficient mice after challenge with P.g. LPS. The increase of CatB was accompanied with an increase of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and a decrease of IκBα. Furthermore, the P.g. LPS-increased 8-OHdG and decreased IκBα were restored by CA-074Me. Moreover, 87% of CatB and 86% of 8-OHdG were colocalized with gingival fibroblasts of chronic periodontitis patients. The findings indicate the critical role of CatB in regulating the expression of collagens III and IV by fibroblasts via prolonging TLR2/NF-κB activation and oxidative stress. CatB-specific inhibitors may therefore improve chronic inflammation-delayed tissue repair. PMID:27648120

  7. Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation.

    PubMed

    Doldi, Valentina; Callari, Maurizio; Giannoni, Elisa; D'Aiuto, Francesca; Maffezzini, Massimo; Valdagni, Riccardo; Chiarugi, Paola; Gandellini, Paolo; Zaffaroni, Nadia

    2015-10-13

    Tumor microenvironment coevolves with and simultaneously sustains cancer progression. In prostate carcinoma (PCa), cancer associated fibroblasts (CAF) have been shown to fuel tumor development and metastasis by mutually interacting with tumor cells. Molecular mechanisms leading to activation of CAFs from tissue-resident fibroblasts, circulating bone marrow-derived fibroblast progenitors or mesenchymal stem cells are largely unknown. Through integrated gene and microRNA expression profiling, we showed that PCa-derived CAF transcriptome strictly resembles that of normal fibroblasts stimulated in vitro with interleukin-6 (IL6), thus proving evidence, for the first time, that the cytokine is able per se to induce most of the transcriptional changes characteristic of patient-derived CAFs. Comparison with publicly available datasets, however, suggested that prostate CAFs may be alternatively characterized by IL6 and TGFβ-related signatures, indicating that either signal, depending on the context, may concur to fibroblast activation. Our analyses also highlighted novel pathways potentially relevant for induction of a reactive stroma. In addition, we revealed a role for muscle-specific miR-133b as a soluble factor secreted by activated fibroblasts to support paracrine activation of non-activated fibroblasts or promote tumor progression.Overall, we provided insights into the molecular mechanisms driving fibroblast activation in PCa, thus contributing to identify novel hits for the development of therapeutic strategies targeting the crucial interplay between tumor cells and their microenvironment.

  8. Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation

    PubMed Central

    Giannoni, Elisa; D'Aiuto, Francesca; Maffezzini, Massimo; Valdagni, Riccardo; Chiarugi, Paola; Gandellini, Paolo; Zaffaroni, Nadia

    2015-01-01

    Tumor microenvironment coevolves with and simultaneously sustains cancer progression. In prostate carcinoma (PCa), cancer associated fibroblasts (CAF) have been shown to fuel tumor development and metastasis by mutually interacting with tumor cells. Molecular mechanisms leading to activation of CAFs from tissue-resident fibroblasts, circulating bone marrow-derived fibroblast progenitors or mesenchymal stem cells are largely unknown. Through integrated gene and microRNA expression profiling, we showed that PCa-derived CAF transcriptome strictly resembles that of normal fibroblasts stimulated in vitro with interleukin-6 (IL6), thus proving evidence, for the first time, that the cytokine is able per se to induce most of the transcriptional changes characteristic of patient-derived CAFs. Comparison with publicly available datasets, however, suggested that prostate CAFs may be alternatively characterized by IL6 and TGFβ-related signatures, indicating that either signal, depending on the context, may concur to fibroblast activation. Our analyses also highlighted novel pathways potentially relevant for induction of a reactive stroma. In addition, we revealed a role for muscle-specific miR-133b as a soluble factor secreted by activated fibroblasts to support paracrine activation of non-activated fibroblasts or promote tumor progression. Overall, we provided insights into the molecular mechanisms driving fibroblast activation in PCa, thus contributing to identify novel hits for the development of therapeutic strategies targeting the crucial interplay between tumor cells and their microenvironment. PMID:26375444

  9. Distinctive gene expression signatures in rheumatoid arthritis synovial tissue fibroblast cells: correlates with disease activity.

    PubMed

    Galligan, C L; Baig, E; Bykerk, V; Keystone, E C; Fish, E N

    2007-09-01

    Gene expression profiling of rheumatoid arthritis (RA) and osteoarthritis (OA) joint tissue samples provides a unique insight into the gene signatures involved in disease development and progression. Fibroblast-like synovial (FLS) cells were obtained from RA, OA and control trauma joint tissues (non-RA, non-OA) and RNA was analyzed by Affymetrix microarray. Thirty-four genes specific to RA and OA FLS cells were identified (P<0.05). HOXD10, HOXD11, HOXD13, CCL8 and LIM homeobox 2 were highly and exclusively expressed in RA and CLU, sarcoglycan-gamma, GPR64, POU3F3, peroxisome proliferative activated receptor-gamma and tripartite motif-containing 2 were expressed only in OA. The data also revealed expression heterogeneity for patients with the same disease. To address disease heterogeneity in RA FLS cells, we examined the effects of clinical disease parameters (Health Assessment Questionnaire (HAQ) score, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), rheumatoid factor (RF)) and drug therapies (methotrexate/prednisone) on RA FLS cell gene expression. Eight specific and unique correlations were identified: human leukocyte antigen (HLA)-DQA2 with HAQ score; Clec12A with RF; MAB21L2, SIAT7E, HAPLN1 and BAIAP2L1 with CRP level; RGMB and OSAP with ESR. Signature RA FLS cell gene expression profiles may provide insights into disease pathogenesis and have utility in diagnosis, prognosis and drug responsiveness. PMID:17568789

  10. Fibroblast Activation Protein Expression by Stromal Cells and Tumor-Associated Macrophages in Human Breast Cancer

    PubMed Central

    Julia, Tchou; Zhang Paul, J; Yingtao, Bi; Celine, Satija; Rajrupa, Marjumdar; Stephen, TL; Lo, A; Haiying, Chen; Carolyn, Mies; June, Carl H; Jose, Conejo-Garcia; Ellen, Puré

    2013-01-01

    Summary Fibroblast activation protein (FAP) has long been known to be expressed in the stroma of breast cancer. However, very little is known if the magnitude of FAP expression within the stroma may have prognostic value and reflect the heterogeneous biology of the tumor cell. An earlier study had suggested that stromal FAP expression in breast cancer was inversely proportional to prognosis. We, therefore, hypothesized that stromal FAP expression may correlate with clinicopathologic variables and may serve as an adjunct prognostic factor in breast cancer. We evaluated the expression of FAP in a panel of breast cancer tissues (n=52) using a combination of immunostain analyses at the tissue and single cell level using freshly frozen or freshly digested human breast tumor samples respectively. Our results showed that FAP expression was abundantly expressed in the stroma across all breast cancer subtypes without significant correlation with clinicopathologic factors. We further identified a subset of FAP positive or FAP+ stromal cells that also expressed CD45, a pan-leukocyte marker. Using freshly dissociated human breast tumor specimens (n=5), we demonstrated that some of these FAP+ CD45+ cells were CD11b+CD14+MHC-II+ indicating that they were likely tumor associated macrophages (TAMs). Although FAP+CD45+ cells have been demonstrated in the mouse tumor stroma, our results demonstrating that human breast TAMs expressed FAP was novel and suggested that existing and future FAP directed therapy may have dual therapeutic benefits targeting both stromal mesenchymal cells and immune cells such as TAMs. More work is needed to explore the role of FAP as a potential targetable molecule in breast cancer treatment. PMID:24074532

  11. Myofibroblasts are distinguished from activated skin fibroblasts by the expression of AOC3 and other associated markers.

    PubMed

    Hsia, Lin-Ting; Ashley, Neil; Ouaret, Djamila; Wang, Lai Mun; Wilding, Jennifer; Bodmer, Walter F

    2016-04-12

    Pericryptal myofibroblasts in the colon and rectum play an important role in regulating the normal colorectal stem cell niche and facilitating tumor progression. Myofibroblasts previously have been distinguished from normal fibroblasts mostly by the expression of α smooth muscle actin (αSMA). We now have identified AOC3 (amine oxidase, copper containing 3), a surface monoamine oxidase, as a new marker of myofibroblasts by showing that it is the target protein of the myofibroblast-reacting mAb PR2D3. The normal and tumor tissue distribution and the cell line reactivity of AOC3 match that expected for myofibroblasts. We have shown that the surface expression of AOC3 is sensitive to digestion by trypsin and collagenase and that anti-AOC3 antibodies can be used for FACS sorting of myofibroblasts obtained by nonenzymatic procedures. Whole-genome microarray mRNA-expression profiles of myofibroblasts and skin fibroblasts revealed four additional genes that are significantly differentially expressed in these two cell types: NKX2-3 and LRRC17 in myofibroblasts and SHOX2 and TBX5 in skin fibroblasts. TGFβ substantially down-regulated AOC3 expression in myofibroblasts but in skin fibroblasts it dramatically increased the expression of αSMA. A knockdown of NKX2-3 in myofibroblasts caused a decrease of myofibroblast-related gene expression and increased expression of the fibroblast-associated gene SHOX2, suggesting that NKX2-3 is a key mediator for maintaining myofibroblast characteristics. Our results show that colorectal myofibroblasts, as defined by the expression of AOC3, NKX2-3, and other markers, are a distinctly different cell type from TGFβ-activated fibroblasts. PMID:27036009

  12. Myofibroblasts are distinguished from activated skin fibroblasts by the expression of AOC3 and other associated markers

    PubMed Central

    Hsia, Lin-ting; Ashley, Neil; Ouaret, Djamila; Wang, Lai Mun; Wilding, Jennifer; Bodmer, Walter F.

    2016-01-01

    Pericryptal myofibroblasts in the colon and rectum play an important role in regulating the normal colorectal stem cell niche and facilitating tumor progression. Myofibroblasts previously have been distinguished from normal fibroblasts mostly by the expression of α smooth muscle actin (αSMA). We now have identified AOC3 (amine oxidase, copper containing 3), a surface monoamine oxidase, as a new marker of myofibroblasts by showing that it is the target protein of the myofibroblast-reacting mAb PR2D3. The normal and tumor tissue distribution and the cell line reactivity of AOC3 match that expected for myofibroblasts. We have shown that the surface expression of AOC3 is sensitive to digestion by trypsin and collagenase and that anti-AOC3 antibodies can be used for FACS sorting of myofibroblasts obtained by nonenzymatic procedures. Whole-genome microarray mRNA-expression profiles of myofibroblasts and skin fibroblasts revealed four additional genes that are significantly differentially expressed in these two cell types: NKX2-3 and LRRC17 in myofibroblasts and SHOX2 and TBX5 in skin fibroblasts. TGFβ substantially down-regulated AOC3 expression in myofibroblasts but in skin fibroblasts it dramatically increased the expression of αSMA. A knockdown of NKX2-3 in myofibroblasts caused a decrease of myofibroblast-related gene expression and increased expression of the fibroblast-associated gene SHOX2, suggesting that NKX2-3 is a key mediator for maintaining myofibroblast characteristics. Our results show that colorectal myofibroblasts, as defined by the expression of AOC3, NKX2-3, and other markers, are a distinctly different cell type from TGFβ-activated fibroblasts. PMID:27036009

  13. B lymphocytes and B-cell activating factor promote collagen and profibrotic markers expression by dermal fibroblasts in systemic sclerosis

    PubMed Central

    2013-01-01

    Introduction B lymphocytes might play a pathogenic role in dermal fibrosis in systemic sclerosis (SSc). B-cell activating factor (BAFF), a key cytokine for B-cell activation, is increased in the serum and the skin of patients with SSc. However, the ability of B cells directly to stimulate dermal fibroblasts and the role of BAFF are not fully understood. We therefore investigated the involvement of B cells and BAFF in the expression of collagen and profibrotic markers by dermal fibroblasts. Methods Cocultures of blood B cells from healthy blood donors and normal or SSc dermal fibroblasts stimulated with anti-IgM and BAFF were performed. Alpha-SMA, TIMP1, MMP9, COL1A1, COL1A2, and COL3A1 mRNA expression were determined by quantitative RT-PCR. Soluble collagen, BAFF, IL-6, IL-1β, TGF-β1, and CCL2 protein secretion were assessed. Results Coculture of blood B cells and dermal fibroblasts isolated from SSc patients induced IL-6, TGF-β1, CCL2, and collagen secretion, as well as Alpha-SMA, TIMP1, and MMP9 expression in dermal fibroblasts. Transwell assays demonstrated that this induction was dependent on cell-cell contact. Addition of anti-IgM and BAFF to the coculture increased IL-6, CCL2, TGF-β1, and collagen secretion. B cell- and BAFF-induced collagen secretion was highly reduced by anti-TGF-β1 antibodies. Conclusions Our results showed for the first time a direct role of B cells on the production of collagen by dermal fibroblasts, which is further enhanced by BAFF. Thus, these results demonstrate a new pathogenic role of B cells and BAFF in fibrosis and systemic sclerosis. PMID:24289101

  14. Competence for collagenase gene expression by tissue fibroblasts requires activation of an interleukin 1 alpha autocrine loop.

    PubMed Central

    West-Mays, J A; Strissel, K J; Sadow, P M; Fini, M E

    1995-01-01

    The enzyme collagenase (EC 3.4.24.7), a key mediator in biological remodeling, can be induced in early-passage fibroblasts by a wide variety of agents and conditions. In contrast, at least some primary tissue fibroblasts are incompetent to synthesize collagenase in response to many of these stimulators. In this study, we investigate mechanisms controlling response to two of the conditions in question: (i) trypsin or cytochalasin B, which disrupt actin stress fibers, or (ii) phorbol 12-myristate 13-acetate (PMA), which activates growth factor signaling pathways. We demonstrate that collagenase expression stimulated by trypsin or cytochalasin B is regulated entirely through an autocrine cytokine, interleukin 1 alpha (IL-1 alpha). The IL-1 alpha intermediate also constitutes the major mechanism by which PMA stimulates collagenase expression, although a second signaling pathway(s) contributes to a minor extent. Elevation of the IL-1 alpha level in response to stimulators is found to be sustained by means of an autocrine feedback loop in early-passage fibroblast cultures. In contrast, fibroblasts freshly isolated from the tissue are incompetent to activate and sustain the IL-1 alpha feedback loop, even though they synthesize collagenase in response to exogenous IL-1. We conclude that this is the reason why tissue fibroblasts are limited, in comparison with subcultured fibroblasts, in their capacity to synthesize collagenase. Activation of the IL-1 alpha feedback loop, therefore, seems likely to be an important mechanism by which resident tissue cells adopt the remodeling phenotype. Images Fig. 1 Fig. 2 Fig. 3 PMID:7624317

  15. Hypoxia regulates iNOS expression in human normal peritoneal and adhesion fibroblasts through NF-κB activation mechanism

    PubMed Central

    Jiang, Zhong L.; Fletcher, Nicole M.; Diamond, Michael P.; Abu-Soud, Husam M.; Saed, Ghassan M.

    2009-01-01

    Objective To determine the mechanism by which hypoxia increases expression of iNOS in human normal peritoneal and adhesion fibroblasts. Design Prospective experimental study. Setting University medical center. Patient(s) Primary cultures of fibroblasts from normal peritoneum and adhesion tissues. Intervention(s) Hypoxia treated cells. Main Outcome Measure(s) We utilized real-time RT-PCR to quantify mRNA levels of iNOS and NF-κB. Western blots were used to determine iNOS, NF-κB, IκB-α and phospho-IκB expression levels in normal peritoneal and adhesion fibroblasts in response to hypoxia. Result(s) Hypoxia resulted in a significant increase in iNOS and NF-κB expression in normal and adhesion fibroblasts. Furthermore, both cell types manifested lower levels of NF-κB, cytoplasmic phospho-IκB-α, and iNOS proteins. In contrast, they manifested higher levels of cytoplasmic IκB-α and IκB-α/NF-κB ratios as well as phosphorylated-IκB-α/NF-κB ratio. Under hypoxic conditions, both cell types exhibited significantly decreased cytoplasmic NF-κB, IκB-α levels, and significantly increased cytoplasmic phospho-IκB-α, iNOS, and NF-κB protein levels. Conclusions Hypoxia increases iNOS expression by a mechanism involving activation of NF-κB. The ratio of IκB-α/NF-κB or IκB-α/p-IκB-α can be used to monitor activation. PMID:18281043

  16. Platelet-activating factor exerts mitogenic activity and stimulates expression of interleukin 6 and interleukin 8 in human lung fibroblasts via binding to its functional receptor

    PubMed Central

    1996-01-01

    Platelet-activating factor (PAF) is a potent proinflammatory phospholipid mediator of the lung. In this study, we demonstrate that PAF receptor mRNA and protein is expressed by human lung fibroblasts. Interaction of PAF with its specific receptor resulted in increases of tyrosine phosphorylation of several intracellular proteins, indicating that the PAF-receptor might be functionally active. PAF-induced transcription of protooncogenes c-fos and c-jun as well as of interleukin (IL)-6 and IL-8 genes in human fibroblasts. Transcription of the interleukins was followed by secretion of the respective proteins. Moreover, PAF enhanced proliferation of fibroblasts in a concentration-dependent manner. Using signaling inhibitors, we demonstrate that PAF-induced transcription of the c-fos, IL-6, and IL-8 genes, as well as proliferation, require activation of pertussis toxin- sensitive G proteins, tyrosine kinases, and protein kinase C (PKC). In contrast, transcription of c-jun was blocked by pertussis toxin, but not by inhibitors for tyrosine kinases or PKC. These data suggest that PAF stimulates distinct signaling pathways in human lung fibroblasts. In addition, the activation of human fibroblasts by PAF leads to enhanced proliferation and to the expression of proinflammatory cytokines, which may contribute to the pathophysiological changes in pulmonary inflammation. PMID:8691134

  17. Altered mitogen-activated protein kinase signal transduction in human skin fibroblasts during in vitro aging: differential expression of low-density lipoprotein receptor.

    PubMed

    Bose, Chhanda; Bhuvaneswaran, Chidambaram; Udupa, Kodetthoor B

    2004-02-01

    The purpose of the study was to investigate the correlation of low-density lipoprotein receptor (LDLr) and mitogen-activated protein kinases (MAPK) in fibroblasts after serial passage in vitro. We used early-passage ( approximately 20 mean population division, MPD) and late-passage ( approximately 60 MPD) human skin fibroblasts to study the LDLr expression and MAPK at basal and after interleukin-1beta (IL-1beta) stimulation. We found a reduced LDLr expression in late-passage fibroblasts in comparison with early-passage fibroblasts, and late-passage fibroblasts showed a delayed induction of MAPK after IL-1beta stimulation, confirmed by the delay in translocation of MAPK from cytoplasmic to nuclear fraction. Using two specific inhibitors of MAPK, we could show a reduced LDLr expression in early-passage fibroblasts, indicating a direct relationship between MAPK signaling and LDLr expression. We conclude that one of the reasons for reduced LDLr gene expression in late passage fibroblast is related to MAPK signaling.

  18. Abietic acid inhibits UVB-induced MMP-1 expression in human dermal fibroblast cells through PPARα/γ dual activation.

    PubMed

    Jeon, Youngsic; Jung, Yujung; Youm, Jong-Kyung; Kang, Ki Sung; Kim, Yong Kee; Kim, Su-Nam

    2015-02-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and consist of three isotypes: PPARα, PPARβ/δ and PPARγ. PPARs are expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, these receptors are highly studied in dermato-endocrine research, and their ligands are targets for the treatment of various skin disorders, such as photoageing and chronological ageing of skin. Intensive studies have revealed that PPARα/γ functions in photoageing and age-related inflammation by regulating matrix metalloproteinases (MMPs) via nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1). However, the detailed mechanism of PPARα/γ's role in photoageing has not yet been elucidated. In this study, we confirmed that abietic acid (AA) is a PPARα/γ dual ligand and significantly decreased UVB-induced MMP-1 expression by downregulating UVB-induced MAPK signalling and downstream transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in Hs68 human dermal fibroblast cells. Treatment of cells with AA and GW6471 or bisphenol A diglycidyl ether (BADGE), PPARα or PPARγ antagonists, respectively, reversed the effect on UVB-induced MMP-1 expression and inflammatory signalling pathway activation. Taken together, our data suggest that AA acts as a PPARα/γ dual activator to inhibit UVB-induced MMP-1 expression and age-related inflammation by suppressing NF-κB and the MAPK/AP-1 pathway and can be a useful agent for improving skin photoageing. PMID:25496486

  19. Activation of protease-activated receptors (PARs)-1 and -2 promotes alpha-smooth muscle actin expression and release of cytokines from human lung fibroblasts

    PubMed Central

    Asokananthan, Nithiananthan; Lan, Rommel S; Graham, Peter T; Bakker, Anthony J; Tokanović, Ana; Stewart, Geoffrey A

    2015-01-01

    Previous studies have shown that protease-activated receptors (PARs) play an important role in various physiological processes. In the present investigation, we determined the expression of PARs on human lung fibroblasts (HLF-1) and whether they were involved in cellular differentiation and pro-inflammatory cytokine and prostaglandin (PGE2) secretion. PAR-1, PAR-2, PAR-3, and PAR-4 were detected in fibroblasts using RT-PCR, immunocytochemistry, and flow cytometry. Increased expression of PAR-4, but not other PARs, was observed in fibroblasts stimulated with phorbol myristate acetate. The archetypical activators of PARs, namely, thrombin and trypsin, as well as PAR-1 and PAR-2 agonist peptides, stimulated transient increases in intracellular Ca2+, and promoted increased α-smooth muscle actin expression. The proteolytic and peptidic PAR activators also stimulated the release of IL-6 and IL-8, as well as PGE2, with a rank order of potency of PAR-1 > PAR-2. The combined stimulation of PAR-1 and PAR-2 resulted in an additive release of both IL-6 and IL-8. In contrast, PAR-3 and PAR-4 agonist peptides, as well as all the PAR control peptides examined, were inactive. These results suggest an important role for PARs associated with fibroblasts in the modulation of inflammation and remodeling in the airway. PMID:25663523

  20. Activation of protease-activated receptors (PARs)-1 and -2 promotes alpha-smooth muscle actin expression and release of cytokines from human lung fibroblasts.

    PubMed

    Asokananthan, Nithiananthan; Lan, Rommel S; Graham, Peter T; Bakker, Anthony J; Tokanović, Ana; Stewart, Geoffrey A

    2015-02-01

    Previous studies have shown that protease-activated receptors (PARs) play an important role in various physiological processes. In the present investigation, we determined the expression of PARs on human lung fibroblasts (HLF-1) and whether they were involved in cellular differentiation and pro-inflammatory cytokine and prostaglandin (PGE2) secretion. PAR-1, PAR-2, PAR-3, and PAR-4 were detected in fibroblasts using RT-PCR, immunocytochemistry, and flow cytometry. Increased expression of PAR-4, but not other PARs, was observed in fibroblasts stimulated with phorbol myristate acetate. The archetypical activators of PARs, namely, thrombin and trypsin, as well as PAR-1 and PAR-2 agonist peptides, stimulated transient increases in intracellular Ca(2+), and promoted increased α-smooth muscle actin expression. The proteolytic and peptidic PAR activators also stimulated the release of IL-6 and IL-8, as well as PGE2, with a rank order of potency of PAR-1 > PAR-2. The combined stimulation of PAR-1 and PAR-2 resulted in an additive release of both IL-6 and IL-8. In contrast, PAR-3 and PAR-4 agonist peptides, as well as all the PAR control peptides examined, were inactive. These results suggest an important role for PARs associated with fibroblasts in the modulation of inflammation and remodeling in the airway.

  1. AZD-4547 exerts potent cytostatic and cytotoxic activities against fibroblast growth factor receptor (FGFR)-expressing colorectal cancer cells.

    PubMed

    Yao, Ting-Jing; Zhu, Jin-Hai; Peng, De-Feng; Cui, Zhen; Zhang, Chao; Lu, Pei-hua

    2015-07-01

    Colorectal cancer (CRC) causes significant mortalities worldwide. Fibroblast growth factor (FGF) receptor (FGFR) signaling is frequently dysregulated and/or constitutively activated in CRCs, contributing to cancer carcinogenesis and progression. Here, we studied the activity of AZD-4547, a novel and potent FGFR kinase inhibitor, on CRC cells. AZD-4547 inhibited CRC cell growth in vitro, and its activity correlated with the FGFR-1/2 expression level. AZD-4547 was cytotoxic and pro-apoptotic in FGFR-1/2-expressed CRC cell lines (NCI-H716 and HCT-116), but not in FGFR-1/2 null HT-29 cells. Further, AZD-4547 inhibited cell cycle progression and attenuated the activation of FGFR1-FGFR substrate 2 (FRS-2), ERK/mitogen-activated protein kinase (MAPK), and AKT/mammalian target of rapamycin (AKT/mTOR) signalings in NCI-H716 and HCT-116 cells. In vivo, AZD-4547 oral administration at effective doses inhibited NCI-H716 (high FGFR-1/2 expression) xenograft growth in nude mice. Phosphorylation of FGFR-1, AKT, and ERK1/2 in xenograft specimens was also inhibited by AZD-4547 administration. Thus, our preclinical studies strongly support possible clinical investigations of AZD-4547 for the treatment of CRCs harboring deregulated FGFR signalings. PMID:25691251

  2. NF-κB Activation Limits Airway Branching through Inhibition of Sp1-Mediated Fibroblast Growth Factor-10 Expression

    PubMed Central

    Benjamin, John T.; Carver, Billy J.; Plosa, Erin J.; Yamamoto, Yasutoshi; Miller, J. Davin; Liu, Jin-Hua; van der Meer, Riet; Blackwell, Timothy S.; Prince, Lawrence S.

    2015-01-01

    Bronchopulmonary dysplasia (BPD) is a frequent complication of preterm birth. This chronic lung disease results from arrested saccular airway development and is most common in infants exposed to inflammatory stimuli. In experimental models, inflammation inhibits expression of fibroblast growth factor-10 (FGF-10) and impairs epithelial–mesenchymal interactions during lung development; however, the mechanisms connecting inflammatory signaling with reduced growth factor expression are not yet understood. In this study we found that soluble inflammatory mediators present in tracheal fluid from preterm infants can prevent saccular airway branching. In addition, LPS treatment led to local production of mediators that inhibited airway branching and FGF-10 expression in LPS-resistant C.C3-Tlr4Lpsd/J fetal mouse lung explants. Both direct NF-κB activation and inflammatory cytokines (IL-1β and TNF-α) that activate NF-κB reduced FGF-10 expression, whereas chemokines that signal via other inflammatory pathways had no effect. Mutational analysis of the FGF-10 promoter failed to identify genetic elements required for direct NF-κB–mediated FGF-10 inhibition. Instead, NF-κB activation appeared to interfere with the normal stimulation of FGF-10 expression by Sp1. Chromatin immunoprecipitation and nuclear coimmunoprecipitation studies demonstrated that the RelA subunit of NF-κB and Sp1 physically interact at the FGF-10 promoter. These findings indicate that inflammatory signaling through NF-κB disrupts the normal expression of FGF-10 in fetal lung mesenchyme by interfering with the transcriptional machinery critical for lung morphogenesis. PMID:20861353

  3. c-fos/c-jun expression and AP-1 activation in skin fibroblasts from centenarians.

    PubMed

    Grassilli, E; Bellesia, E; Salomoni, P; Croce, M A; Sikora, E; Radziszewska, E; Tesco, G; Vergelli, M; Latorraca, S; Barbieri, D; Fagiolo, U; Santacaterina, S; Amaducci, L; Tiozzo, R; Sorbi, S; Franceschi, C

    1996-09-13

    In vitro replicative senescence is characterized by an irreversible growth arrest due to the inability of the cell to induce some key regulators of cell cycle progression, such as c-fos and AP-1, in response to mitogenic stimuli. In vitro replicative senescence and in vivo aging have been assumed to be two related phenomena, likely controlled by overlapping or interacting genes. As a corollary, fibroblasts from centenarians, which have undergone a long process of senescence in vivo should have very limited proliferative capability. On the contrary, in a previous work we found that fibroblasts from centenarians exhibited the same capacity to respond to different mitogenic stimuli as fibroblasts from young donors. Here we provide evidences that the well preserved proliferative response is likely due to the fact that some pivotal regulators- c-fos, c-jun and AP-1-are still fully inducible, despite a long process of in vivo senescence. Our data therefore suggest that in vivo and in vitro aging are separate phenomena whose possible relationships, if any, have to be ascertained very carefully. PMID:8806666

  4. Inflammatory Gene Expression Upon TGF-β1-Induced p38 Activation in Primary Dupuytren's Disease Fibroblasts

    PubMed Central

    Bujak, Maro; Ratkaj, Ivana; Markova-Car, Elitza; Jurišić, Davor; Horvatić, Anita; Vučinić, Srđan; Lerga, Jonatan; Baus-Lončar, Mirela; Pavelić, Krešimir; Kraljević Pavelić, Sandra

    2015-01-01

    Objectives: Inflammation is an underlying mechanism behind fibrotic processes and differentiation of cells into myofibroblasts. Presented study therefore provides new data on activation of autoimmune and inflammatory immune response genes that accompany activation of p38 and cell differentiation in primary cells derived from Dupuytren's disease (DD) patients. Methods: Primary non-Dupuytren's disease cells (ND) were isolated from macroscopically unaffected palmar fascia adjacent to diseased tissue obtained from patients diagnosed with the last stage of DD and cultured in vitro. Gene expression, collagen gel contraction assay and analysis of secreted proteins were performed in ND cells treated with TGF-β1 and/or inhibitor of p38 phosphorylation. Results: During differentiation of ND fibroblasts, increased expression of immune response genes PAI-1, TIMP-1, CCL11, and IL-6 was found. These changes were accompanied by increased cell contractility and activation of p38 and its target kinase MK2. Inhibition of p38 phosphorylation reversed these processes in vitro. Conclusions: TGF-β1 induced p38 phosphorylation in ND cells grown from macroscopically unaffected palmar fascia adjacent to diseased tissue from DD patients. This was accompanied by activation of the cytokine genes CCL-11 and IL-6 and secretion of extracellular matrix regulatory proteins PAI-1 and TIMP-1. A combined approach directed toward inflammation and p38 MAPK-mediated processes in DD might be considered for improving management of DD patients and prevention of recurrence. PMID:26697433

  5. Fluorofenidone attenuates TGF-β1-induced lung fibroblast activation via restoring the expression of caveolin-1.

    PubMed

    Liu, Jingjing; Song, Cheng; Xiao, Qiming; Hu, Gaoyun; Tao, Lijian; Meng, Jie

    2015-02-01

    Caveolin-1 plays an important role in the pathogenesis of idiopathic pulmonary fibrosis. We previously showed that fluorofenidone (FD), a novel pyridine agent, can attenuate bleomycin-induced experimental pulmonary fibrosis and restore the production of caveolin-1. In this study, we explore mainly whether caveolin-1 plays a critical role in the anti-pulmonary fibrosis effects of FD in vitro. The normal human lung fibroblasts (NHLFs) were cultured with transforming growth factor-β1 (TGF-β1) and then were treated with FD. Subsequently, NHLFs transfected with cav-1-siRNA were treated with TGF-β1 and/or FD. The expressions of α-smooth muscle actin (α-SMA), fibronectin, collagen I, caveolin-1, phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated c-Jun N-terminal kinase (p-JNK), and phosphorylated P38 were measured by Western blot and/or real-time polymerase chain reaction. Fluorofenidone attenuated TGF-β1-induced expressions of α-SMA, fibronectin, and collagen I; inhibited phosphorylation of ERK, JNK, and P38; and restored caveolin-1 protein expression but cannot increase caveolin-1 mRNA level in vitro. After caveolin-1 was silenced, FD could not downregulate TGF-β1-induced expressions of α-SMA, fibronectin, and collagen I or phosphorylation of ERK, JNK, and P38. These studies demonstrate that FD, a potential antifibrotic agent, may attenuate TGF-β1-induced activation of NHLFs by restoring the expression of caveolin-1.

  6. PDGF-BB induces PRMT1 expression through ERK1/2 dependent STAT1 activation and regulates remodeling in primary human lung fibroblasts.

    PubMed

    Sun, Qingzhu; Liu, Li; Mandal, Jyotshna; Molino, Antonio; Stolz, Daiana; Tamm, Michael; Lu, Shemin; Roth, Michael

    2016-04-01

    Tissue remodeling of sub-epithelial mesenchymal cells is a major pathology occurring in chronic obstructive pulmonary disease (COPD) and asthma. Fibroblasts, as a major source of interstitial connective tissue extracellular matrix, contribute to the fibrotic and inflammatory changes in these airways diseases. Previously, we described that protein arginine methyltransferase-1 (PRMT1) participates in airway remodeling in a rat model of pulmonary inflammation. In this study we investigated the mechanism by which PDGF-BB regulates PRMT1 in primary lung fibroblasts, isolated from human lung biopsies. Fibroblasts were stimulated with PDGF-BB for up-to 48h and the regulatory and activation of signaling pathways controlling PRMT1 expression were determined. PRMT1 was localized by immuno-histochemistry in human lung tissue sections and by immunofluorescence in isolated fibroblasts. PRMT1 activity was suppressed by the pan-PRMT inhibitor AMI1. ERK1/2 mitogen activated protein kinase (MAPK) was blocked by PD98059, p38 MAPK by SB203580, and STAT1 by small interference (si) RNA treatment. The results showed that PDGF-BB significantly increased PRMT1 expression after 1h lasting over 48h, through ERK1/2 MAPK and STAT1 signaling. The inhibition of ERK1/2 MAPK or of PRMT1 activity decreased PDGF-BB induced fibroblast proliferation, COX2 production, collagen-1A1 secretion, and fibronectin production. These findings suggest that PRMT1 is a central regulator of tissue remodeling and that the signaling sequence controlling its expression in primary human lung fibroblast is PDGF-ERK-STAT1. Therefore, PRMT1 presents a novel therapeutic and diagnostic target for the control of airway wall remodeling in chronic lung diseases.

  7. Expression and function of microRNA-188-5p in activated rheumatoid arthritis synovial fibroblasts

    PubMed Central

    Ruedel, Anke; Dietrich, Peter; Schubert, Thomas; Hofmeister, Simone; Hellerbrand, Claus; Bosserhoff, Anja-Katrin

    2015-01-01

    Activated synovial fibroblasts in rheumatoid arthritis (RASF) play a critical role in the pathology of rheumatoid arthritis (RA). Recent studies suggested that deregulation of microRNAs (miRs) affects the development and progression of RA. Therefore, we aimed to identify de-regulated miRs in RASF and to identify target genes that may contribute to the aggressive phenotype of RASF. Quantitative real-time PCR revealed a marked downregulation of miR-188-5p in synovial tissue samples of RA patients as well as in RASF. Exposure to the cytokine interleukine-1β lead to a further downregulation of miR-188-5p expression levels compared to control cells. Re-expression of miR-188-5p in RASF by transient transfection significantly inhibited cell migration. However, miR-188-5p re-expression had no effects on glycosaminoglycan degradation or expression of repellent factors, which have been previously shown to affect the invasive behavior of RASF. In search for target genes of miR-188-5p in RASF we performed gene expression profiling in RASF and found a strong regulatory effect of miR-188-5p on the hyaluronan binding protein KIAA1199 as well as collagens COL1A1 and COL12A1, which was confirmed by qRT-PCR. In silico analysis revealed that KIAA1199 carries a 3’UTR binding site for miR-188-5p. COL1A1and COL12A1 showed no binding site in the mRNA region, suggesting an indirect regulation of these two genes by miR-188-5p. In summary, our study showed that miR-188-5p is down-regulated in RA in vitro and in vivo, most likely triggered by an inflammatory environment. MiR-188-5p expression is correlated to the activation state of RASF and inhibits migration of these cells. Furthermore, miR-188-5p is directly and indirectly regulating the expression of genes, which may play a role in extracellular matrix formation and destruction in RA. Herewith, this study identified potential novel therapeutic targets to inhibit the development and progression of RA. PMID:26191188

  8. Modulatory Effects of Connexin-43 Expression on Gap Junction Intercellular Communications with Mast Cells and Fibroblasts

    PubMed Central

    Pistorio, Ashey L.; Ehrlich, H. Paul

    2011-01-01

    The influence of mast cells upon aberrant wound repair and excessive fibrosis has supportive evidence, but the mechanism for these mast cell activities is unclear. It is proposed that heterocellular gap junctional intercellular communication (GJIC) between fibroblasts and mast cells directs some fibroblast activities. An in vitro model was used employing a rodent derived peritoneal mast cell line (RMC-1) and human dermal derived fibroblasts. The influence of the expression of the gap junction channel structural protein, connexin 43 (Cx-43) on heterocellular GJIC, the expression of microtubule β-tubulin and microfilament α smooth muscle actin (SMA) were investigated. The knockdown of Cx-43 by siRNA in RMC-1 cells completely blocked GJIC between RMC-1 cells. SiRNA knockdown of Cx-43 within fibroblasts only dampened GJIC between fibroblasts. It appears Cx-43 is the only expressed connexin in RMC-1 cells. Fibroblasts express other connexins that participate in GJIC between fibroblasts in the absence of Cx-43 expression. Heterocellular GJIC between RMC-1 cells and fibroblasts transformed fibroblasts into myofibroblasts, expressing α SMA within cytoplasmic stress fibers. The knockdown of Cx-43 in RMC-1 cells increased β-tubulin expression, but its knockdown in fibroblasts reduced β-tubulin expression. Knocking down the expression of Cx-43 in fibroblasts limited α SMA expression. Cx-43 participation is critical for heterocellular GJIC between mast cells and fibroblasts, which may herald a novel direction for controlling fibrosis. PMID:21328609

  9. Pulp Fibroblasts Control Nerve Regeneration through Complement Activation.

    PubMed

    Chmilewsky, F; About, I; Chung, S-H

    2016-07-01

    Dentin-pulp regeneration is closely linked to the presence of nerve fibers in the pulp and to the healing mechanism by sprouting of the nerve fiber's terminal branches beneath the carious injury site. However, little is known about the initial mechanisms regulating this process in carious teeth. It has been recently demonstrated that the complement system activation, which is one of the first immune responses, contributes to tissue regeneration through the local production of anaphylatoxins such as C5a. While few pulp fibroblasts in intact teeth and in untreated fibroblast cultures express the C5a receptor (C5aR), here we show that all dental pulp fibroblasts, localized beneath the carious injury site, do express this receptor. This observation is consistent with our in vitro results, which showed expression of C5aR in lipoteichoic acid-stimulated pulp fibroblasts. The interaction of C5a, produced after complement synthesis and activation from pulp fibroblasts, with the C5aR of these cells mediated the local brain-derived neurotropic factor (BDNF) secretion. Overall, this activation guided the neuronal growth toward the lipoteichoic acid-stimulated fibroblasts. Thus, our findings highlight a new mechanism in one of the initial steps of the dentin-pulp regeneration process, linking pulp fibroblasts to the nerve sprouting through the complement system activation. This may provide a useful future therapeutic tool in targeting the fibroblasts in the dentin-pulp regeneration process. PMID:27053117

  10. Compound K inhibits MMP-1 expression through suppression of c-Src-dependent ERK activation in TNF-α-stimulated dermal fibroblast.

    PubMed

    Lee, Chang Seok; Bae, Il-Hong; Han, Jiwon; Choi, Gye-young; Hwang, Kyung-Hwan; Kim, Dong-Hyun; Yeom, Myeong-Hun; Park, Young-Ho; Park, Miyoung

    2014-11-01

    Compound K (CK) is one of the major metabolites of ginsenosides exhibiting a variety of pharmacological properties such as anti-ageing, anti-oxidation and anti-inflammatory activities. However, the protective efficacy of CK in abnormal skin conditions with inflammatory responses was not examined. Here, we investigated the effects of CK on matrix metalloproteinase-1 (MMP-1) and type I procollagen production in tumor necrosis factor-α (TNF-α)-stimulated human skin fibroblasts HS68 cells and human skin equivalents. We found that CK suppressed MMP-1 secretion and increased the level of reduced type I procollagen secretion, caused by the inhibition of extracellular signal-regulated kinase (ERK) activation, but not p38 and c-Jun N-terminal kinase (JNK) activation in TNF-α-stimulated HS68 cells. Then, we focused on the involvement of the c-Src and epidermal growth factor receptor (EGFR) as upstream signalling molecules for ERK activation by TNF-α in HS68 cells. CK suppressed the phosphorylation of c-Src/EGFR by TNF-α, which led to the inactivation of downstream signalling molecules including AKT and MEK. In addition, CK suppressed AP-1 (c-jun and c-fos) phosphorylation as downstream transcription factors of active ERK for MMP-1 expression in TNFα-stimulated HS68 cells. These results showed novel mechanisms by which CK inhibits TNF-α-induced MMP-1 expression through the inactivation of c-Src/EGFR-dependent ERK/AP-1 signalling pathway, resulting in the inhibition of collagen degradation in human fibroblast cells. Therefore, CK may be a promising protective agent for the treatment of inflammatory skin conditions such as skin ageing and atopic dermatitis. PMID:25181017

  11. Fibroblast activation in cancer: when seed fertilizes soil.

    PubMed

    Kuzet, Sanya-Eduarda; Gaggioli, Cedric

    2016-09-01

    In solid cancers, activated fibroblasts acquire the capacity to provide fertile soil for tumor progression. Specifically, cancer-associated fibroblasts (CAFs) establish a strong relationship with cancer cells. This provides advantages to both cell types: whereas cancer cells initiate and sustain CAF activation, CAFs support cancer cell growth, motility and invasion. This results in tumor progression, metastasis and chemoresistance. Numerous studies have detailed the mechanisms involved in fibroblast activation and cancer progression, some of which are reviewed in this article. Cancer cells and CAFs are "partners in crime", and their interaction is supported by inflammation. An understanding of the enemy, the cancer cell population and its "allies" should provide novel opportunities for targeted-drug development. Graphical Abstract Molecular mechanism of fibroblast activation. a Normal fibroblasts are the most common cell type in the extracellular matrix and are responsible for the synthesis of collagens and fibrilar proteins. Under normal conditions, fibroblasts maintain tissue homeostasis and contribute to proper cell communication and function. Fibroblasts can be activated by a diverse set of factors secreted from cancer or immune cells. Not only growth factors such as TGF-β, PDGF, HGF and FGF but also interleukins, metalloproteinases and reactive oxygen species can promote activation. Likewise, transcriptional factors such as NF-κB and HSF-1 play an important role, as do the gene family of metalloproteinase inhibitors, Timp and the NF-κB subunit, p62. Interestingly, fibroblasts themselves can stimulate cancer cells to support activation further. b Once activated, fibroblasts undergo a phenotype switch and become cancer-associated fibroblasts (CAFs) expressing various markers such as α-SMA, FSP1, vimentin and periostatin. c Recently, the LIF/GP130/IL6-R pathway has been identified as a signaling cascade involved in fibroblast activation. Upon LIF stimulation

  12. Vocal Fold Fibroblasts Immunoregulate Activated Macrophage Phenotype

    PubMed Central

    King, Suzanne N.; Chen, Fei; Jetté, Marie E.; Thibeault, Susan L.

    2012-01-01

    Recent evidence suggests that fibroblasts play a critical role in regulating inflammation during wound healing because they express several inflammatory mediators in response to bacteria. The objective of this study was to analyze the effects of lipopolysaccaride (LPS) on the immunomodulatory properties of vocal fold fibroblasts (VFF) derived from polyps, scar and normal tissue co-cultured with macrophages, to provide insight into their interactions during the inflammatory process. Fibroblasts were co-cultured with CD14+ monocytes and after 7 days, wells were treated with LPS for 24 and 72 hours. Culture supernatants were collected and concentrations of TNF-α, IL-6, IL-8, IL-10, IL-12, IL-1β, and MCP-1 were quantified by ELISA. Normal VFF and CD14+ monocultures were used as controls. Twenty-four hours after LPS activation, macrophages co-cultured with polyp VFF had significantly increased expression of TNF-α, IL-1β, IL-12, and IL-10 compared to controls (p<0.0001). In contrast, macrophages co-cultured with scar VFF had significantly lower expression of TNF-α, IL-1β and IL-12 with significantly higher IL-10 compared to control (p<0.0001). After 72 hours, macrophages co-cultured with polyp VFF increased expression of TNF-α, IL-1β, IL-10, IL-6, IL-8, MCP-1 and TGF-β (p<0.01) and macrophages co-cultured with scar VFF significantly decreased their expression of IL-1β and IL-12 compared to control (p<0.0001). Scar VFF at both time points produced significantly lower levels of IL-8, MCP-1, IL-6 and TGF-β compared to controls (p<0.05). Based on our findings, VFF and macrophages secrete several inflammatory mediators that modify their diverse functions. Polyp and scar VFF may play a role in regulating abnormal inflammatory responses, which could result in excessive ECM deposition that disrupts the function of the vocal folds. PMID:23123198

  13. Dipeptides Increase Functional Activity of Human Skin Fibroblasts.

    PubMed

    Malinin, V V; Durnova, A O; Polyakova, V O; Kvetnoi, I M

    2015-05-01

    We analyzed the effect of dipeptide Glu-Trp and isovaleroyl-Glu-Trp in concentrations of 0.2, 2 and 20 μg/ml and Actovegin preparation on functional activity of human skin fibroblasts. Dipeptides, especially Glu-Trp, produce a stimulating effect on human skin fibroblasts and their effect is equivalent to that of Actovegin. Dipeptides stimulate cell renewal processes by activating synthesis of Ki-67 and reducing expression of caspase-9 and enhance antioxidant function of the cells by stimulating the expression of Hsp-90 and inducible NO-synthase. These findings suggest that dipeptides are promising candidates for preparations stimulating reparative processes.

  14. Peroxisome proliferator-activated receptor-γ agonist inhibits collagen synthesis in human keloid fibroblasts by suppression of early growth response-1 expression through upregulation of miR-543 expression

    PubMed Central

    Zhu, Hua-Yu; Bai, Wen-Dong; Wang, Hong-Tao; Xie, Song-Tao; Tao, Ke; Su, Lin-Lin; Liu, Jia-Qi; Yang, Xue-Kang; Li, Jun; Wang, Yun-Chuan; He, Ting; Han, Jun-Tao; Hu, Da-Hai

    2016-01-01

    A keloid is a benign skin tumor formed by an overgrowth of granulation tissue in affected patients. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists were reported to be able to regulate extracellular matrix production in human dermal fibroblasts. This study explored the underlying molecular mechanism of PPAR-γ agonist troglitazone treatment for fibroblasts obtained from keloid patients. The data revealed that troglitazone treatment of keloid fibroblasts (KFs) downregulated the expression of early growth response-1 (Egr1) and collagen-1 (Col1). Level of Egr1 were closely associated with KF-induced fibrosis. The miRNA profiling data revealed that miR-543 was transcriptionally activated after troglitazone treatment. Bioinformatic analysis and experimental data showed that miR-543 was able to target Egr1. ELISA data confirmed that Col1 protein in the supernatant were modulated by the feedback regulatory axis of PPAR-γ agonist-induced miR-543 to inhibit Egr1 expression, whereas PPAR-γ antagonist treatment abolished such effect on Col1 suppression in KFs. This study demonstrated that the PPAR-γ agonist-mediated miR-543 and Egr1 signaling plays an important role in the suppression of collagen synthesis in KFs. Future in vivo studies are needed to confirm these in vitro data. PMID:27429849

  15. Peroxisome proliferator-activated receptor-γ agonist inhibits collagen synthesis in human keloid fibroblasts by suppression of early growth response-1 expression through upregulation of miR-543 expression.

    PubMed

    Zhu, Hua-Yu; Bai, Wen-Dong; Wang, Hong-Tao; Xie, Song-Tao; Tao, Ke; Su, Lin-Lin; Liu, Jia-Qi; Yang, Xue-Kang; Li, Jun; Wang, Yun-Chuan; He, Ting; Han, Jun-Tao; Hu, Da-Hai

    2016-01-01

    A keloid is a benign skin tumor formed by an overgrowth of granulation tissue in affected patients. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists were reported to be able to regulate extracellular matrix production in human dermal fibroblasts. This study explored the underlying molecular mechanism of PPAR-γ agonist troglitazone treatment for fibroblasts obtained from keloid patients. The data revealed that troglitazone treatment of keloid fibroblasts (KFs) downregulated the expression of early growth response-1 (Egr1) and collagen-1 (Col1). Level of Egr1 were closely associated with KF-induced fibrosis. The miRNA profiling data revealed that miR-543 was transcriptionally activated after troglitazone treatment. Bioinformatic analysis and experimental data showed that miR-543 was able to target Egr1. ELISA data confirmed that Col1 protein in the supernatant were modulated by the feedback regulatory axis of PPAR-γ agonist-induced miR-543 to inhibit Egr1 expression, whereas PPAR-γ antagonist treatment abolished such effect on Col1 suppression in KFs. This study demonstrated that the PPAR-γ agonist-mediated miR-543 and Egr1 signaling plays an important role in the suppression of collagen synthesis in KFs. Future in vivo studies are needed to confirm these in vitro data. PMID:27429849

  16. Enhancement of fibroblast activation protein α-based vaccines and adenovirus boost immunity by cyclophosphamide through inhibiting IL-10 expression in 4T1 tumor bearing mice.

    PubMed

    Xia, Qiu; Geng, Fei; Zhang, Fang-Fang; Liu, Chen-Lu; Xu, Ping; Lu, Zhen-Zhen; Zhang, Hai-Hong; Kong, Wei; Yu, Xiang-Hui

    2016-08-31

    Fibroblast activation protein α (FAPα) is expressed in cancer-associated fibroblasts (CAFs) of more than 90% of malignant epithelia carcinomas. CAFs are the main type of cells in the tumor microenvironment which offer nutrition and protection to the tumor and regulate immunosuppression. To eliminate CAFs, a vaccine targeting FAPα may be used with a heterologous prime-boost strategy to enhance the FAPα-specific cellular immunity. Here, a FAP vaccine using a recombinant adenovirus (rAd) vector was constructed as well as a DNA vaccine reported in our previous work. Although the DNA prime-rAd boost strategy enhanced FAPα-specific immune responses, improvement of anti-tumor immunity effects was not observed. Examination of immunosuppressive factors revealed that high expression of the IL-10 cytokine was considered the main cause of the failure of the prime-boost strategy. However, heterologous vaccination in combination with a low-dose of cyclophosphamide (CY), which was reported to reduce IL-10 production and promote a shift from immunosuppression to immunopotentiation, resulted in enhanced effects in terms of numbers of effector T cells and tumor growth inhibition rates, compared to the CY alone or DNA alone group. Tumor growth was inhibited markedly when the prime-boost strategy was combined with CY in both the prophylactic and therapeutic settings and the survival time of 4T1 tumor bearing mice was also prolonged significantly. With the reduction of IL-10, enhancement of the anti-tumor effect by the prime-boost strategy was observed. These results suggest that FAPα-targeted rAd boosting in combination with CY is an attractive approach to overcoming immunosuppression in cancer vaccines. PMID:27498213

  17. EPAC expression and function in cardiac fibroblasts and myofibroblasts

    SciTech Connect

    Olmedo, Ivonne; Muñoz, Claudia; Guzmán, Nancy; Catalán, Mabel; Vivar, Raúl; Ayala, Pedro; Humeres, Claudio; Aránguiz, Pablo; García, Lorena; Velarde, Victoria; Díaz-Araya, Guillermo

    2013-10-15

    In the heart, cardiac fibroblasts (CF) and cardiac myofibroblasts (CMF) are the main cells responsible for wound healing after cardiac insult. Exchange protein activated by cAMP (EPAC) is a downstream effector of cAMP, and it has been not completely studied on CF. Moreover, in CMF, which are the main cells responsible for cardiac healing, EPAC expression and function are unknown. We evaluated in both CF and CMF the effect of transforming growth factor β1 (TGF-β1) on EPAC-1 expression. We also studied the EPAC involvement on collagen synthesis, adhesion, migration and collagen gel contraction. Method: Rat neonatal CF and CMF were treated with TGF-β1 at different times and concentrations. EPAC-1 protein levels and Rap1 activation were measured by western blot and pull down assay respectively. EPAC cellular functions were determined by adhesion, migration and collagen gel contraction assay; and collagen expression was determined by western blot. Results: TGF-β1 through Smad and JNK significantly reduced EPAC-1 expression in CF, while in CMF this cytokine increased EPAC-1 expression through ERK1/2, JNK, p38, AKT and Smad3. EPAC activation was able to induce higher Rap1-GTP levels in CMF than in CF. EPAC and PKA, both cAMP effectors, promoted CF and CMF adhesion on fibronectin, as well as CF migration; however, this effect was not observed in CMF. EPAC but not PKA activation mediated collagen gel contraction in CF, while in CMF both PKA and EPAC mediated collagen gel contraction. Finally, the EPAC and PKA activation reduced collagen synthesis in CF and CMF. Conclusion: TGF-β1 differentially regulates the expression of EPAC in CF and CMF; and EPAC regulates differentially CF and CMF functions associated with cardiac remodeling. - Highlights: • TGF-β1 regulates EPAC-1 expression in cardiac fibroblast and myofibroblast. • Rap-1GTP levels are higher in cardiac myofibroblast than fibroblast. • EPAC-1 controls adhesion, migration and collagen synthesis in cardiac

  18. The influence of resveratrol on the synovial expression of matrix metalloproteinases and receptor activator of NF-kappaB ligand in rheumatoid arthritis fibroblast-like synoviocytes.

    PubMed

    Glehr, Mathias; Breisach, Margherita; Walzer, Sonja; Lohberger, Birgit; Fürst, Florentine; Friesenbichler, Joerg; Rinner, Beate; Avian, Alexander; Windhager, Reinhard; Leithner, Andreas

    2013-01-01

    Medication of rheumatoid arthritis (RA) remains challenging and often controversial concerning side effects or long-term complications. We investigated the effect of resveratrol, a phytoalexin discussed for its chondro-protective and anti-inflammatory qualities, on the synovial expression of matrix-degrading enzymes like matrix metalloproteinases (MMPs) and bone-remodelling proteins in RA fibroblast-like synoviocytes (FLS). Interleukin-1beta-stimulated RA-FLS were treated with 100 microM resveratrol for 24 h. To evaluate the effect of resveratrol on the amount of bound/combined MMPs, a Luminex xMAP multiplexing technology was used. The alteration in expression of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegrin (OPG) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Resveratrol reduced the expression of MMP-1 (p = 0.022), MMP-3 (p = 0.021), and MMP-9 (p = 0.047). qRT-PCR showed a significant reduction in the relative abundance of the transcripts of OPG (p = 0.012) and RANKL (p = 0.018). Our in vitro findings indicate that resveratrol could be a new target for further pharmacological studies in the field of RA. In the future it could play a role as a possible substitute or supplement to currently used drugs against RA to prevent cartilage matrix degradation and pathological bone resorption due to inhibition of MMPs and RANKL.

  19. Constitutive Smad signaling and Smad-dependent collagen gene expression in mouse embryonic fibroblasts lacking peroxisome proliferator-activated receptor-{gamma}

    SciTech Connect

    Ghosh, Asish K Wei, Jun; Wu, Minghua; Varga, John

    2008-09-19

    Transforming growth factor-{beta} (TGF-{beta}), a potent inducer of collagen synthesis, is implicated in pathological fibrosis. Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is a nuclear hormone receptor that regulates adipogenesis and numerous other biological processes. Here, we demonstrate that collagen gene expression was markedly elevated in mouse embryonic fibroblasts (MEFs) lacking PPAR-{gamma} compared to heterozygous control MEFs. Treatment with the PPAR-{gamma} ligand 15d-PGJ{sub 2} failed to down-regulate collagen gene expression in PPAR-{gamma} null MEFs, whereas reconstitution of these cells with ectopic PPAR-{gamma} resulted in their normalization. Compared to control MEFs, PPAR-{gamma} null MEFs displayed elevated levels of the Type I TGF-{beta} receptor (T{beta}RI), and secreted more TGF-{beta}1 into the media. Furthermore, PPAR-{gamma} null MEFs showed constitutive phosphorylation of cellular Smad2 and Smad3, even in the absence of exogenous TGF-{beta}, which was abrogated by the ALK5 inhibitor SB431542. Constitutive Smad2/3 phosphorylation in PPAR-{gamma} null MEFs was associated with Smad3 binding to its cognate DNA recognition sequences, and interaction with coactivator p300 previously implicated in TGF-{beta} responses. Taken together, these results indicate that loss of PPAR-{gamma} in MEFs is associated with upregulation of collagen synthesis, and activation of intracellular Smad signal transduction, due, at least in part, to autocrine TGF-{beta} stimulation.

  20. Role of IGF-1 pathway in lung fibroblast activation

    PubMed Central

    2013-01-01

    Background IGF-1 is elevated in pulmonary fibrosis and acute lung injury, where fibroblast activation is a prominent feature. We previously demonstrated that blockade of IGF pathway in murine model of lung fibrosis improved outcome and decreased fibrosis. We now expand that study to examine effects of IGF pathway on lung fibroblast behaviors that could contribute to fibrosis. Methods We first examined mice that express αSMA promoter upstream of GFP reporter treated with A12, a blocking antibody to IGF-1 receptor, after bleomycin induced lung injury. We then examined the effect of IGF-1 alone, or in combination with the pro-fibrotic cytokine TGFβ on expression of markers of myofibroblast activation in vitro, including αSMA, collagen α1, type 1, collagen α1, type III, and TGFβ expression. Results After bleomycin injury, we found decreased number of αSMA-GFP + cells in A12 treated mice, validated by αSMA immunofluorescent staining. We found that IGF-1, alone or in combination with TGF-β, did not affect αSMA RNA expression, promoter activity, or protein levels when fibroblasts were cultured on stiff substrate. IGF-1 stimulated Col1a1 and Col3a1 expression on stiff substrate. In contrast, IGF-1 treatment on soft substrate resulted in upregulation of αSMA gene and protein expression, as well as Col1a1 and Col3a1 transcripts. In conclusion, IGF-1 stimulates differentiation of fibroblasts into a myofibroblast phenotype in a soft matrix environment and has a modest effect on αSMA stress fiber organization in mouse lung fibroblasts. PMID:24103846

  1. Quiescent Fibroblasts Exhibit High Metabolic Activity

    PubMed Central

    Lemons, Johanna M. S.; Feng, Xiao-Jiang; Bennett, Bryson D.; Legesse-Miller, Aster; Johnson, Elizabeth L.; Raitman, Irene; Pollina, Elizabeth A.; Rabitz, Herschel A.; Rabinowitz, Joshua D.; Coller, Hilary A.

    2010-01-01

    Many cells in mammals exist in the state of quiescence, which is characterized by reversible exit from the cell cycle. Quiescent cells are widely reported to exhibit reduced size, nucleotide synthesis, and metabolic activity. Much lower glycolytic rates have been reported in quiescent compared with proliferating lymphocytes. In contrast, we show here that primary human fibroblasts continue to exhibit high metabolic rates when induced into quiescence via contact inhibition. By monitoring isotope labeling through metabolic pathways and quantitatively identifying fluxes from the data, we show that contact-inhibited fibroblasts utilize glucose in all branches of central carbon metabolism at rates similar to those of proliferating cells, with greater overflow flux from the pentose phosphate pathway back to glycolysis. Inhibition of the pentose phosphate pathway resulted in apoptosis preferentially in quiescent fibroblasts. By feeding the cells labeled glutamine, we also detected a “backwards” flux in the tricarboxylic acid cycle from α-ketoglutarate to citrate that was enhanced in contact-inhibited fibroblasts; this flux likely contributes to shuttling of NADPH from the mitochondrion to cytosol for redox defense or fatty acid synthesis. The high metabolic activity of the fibroblasts was directed in part toward breakdown and resynthesis of protein and lipid, and in part toward excretion of extracellular matrix proteins. Thus, reduced metabolic activity is not a hallmark of the quiescent state. Quiescent fibroblasts, relieved of the biosynthetic requirements associated with generating progeny, direct their metabolic activity to preservation of self integrity and alternative functions beneficial to the organism as a whole. PMID:21049082

  2. Retrograde fibroblast growth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2) expression for activity-dependent synapse stabilization in the mammalian brain

    PubMed Central

    Terauchi, Akiko; Johnson-Venkatesh, Erin M; Bullock, Brenna; Lehtinen, Maria K; Umemori, Hisashi

    2016-01-01

    Communication between pre- and postsynaptic cells promotes the initial organization of synaptic specializations, but subsequent synaptic stabilization requires transcriptional regulation. Here we show that fibroblast growth factor 22 (FGF22), a target-derived presynaptic organizer in the mouse hippocampus, induces the expression of insulin-like growth factor 2 (IGF2) for the stabilization of presynaptic terminals. FGF22 is released from CA3 pyramidal neurons and organizes the differentiation of excitatory nerve terminals formed onto them. Local application of FGF22 on the axons of dentate granule cells (DGCs), which are presynaptic to CA3 pyramidal neurons, induces IGF2 in the DGCs. IGF2, in turn, localizes to DGC presynaptic terminals and stabilizes them in an activity-dependent manner. IGF2 application rescues presynaptic defects of Fgf22-/- cultures. IGF2 is dispensable for the initial presynaptic differentiation, but is required for the following presynaptic stabilization both in vitro and in vivo. These results reveal a novel feedback signal that is critical for the activity-dependent stabilization of presynaptic terminals in the mammalian hippocampus. DOI: http://dx.doi.org/10.7554/eLife.12151.001 PMID:27083047

  3. S100A4 expression is increased in stricture fibroblasts from patients with fibrostenosing Crohn's disease and promotes intestinal fibroblast migration.

    PubMed

    Cunningham, Michael F; Docherty, Neil G; Burke, John P; O'Connell, P Ronan

    2010-08-01

    Fibroblasts represent the key cell type in fibrostenosing Crohn's disease (FCD) pathogenesis. S100A4 is an EF-hand calcium-binding protein family member, implicated in epithelial-mesenchymal transition and as a marker of activated T lymphocytes and fibroblasts in chronic tissue remodeling. The aim of this study was to examine the expression profile of S100A4 in the resected ileum of patients with FCD. Mucosa, seromuscular explants, and transmural biopsies were harvested from diseased and proximal, macroscopically normal margins of ileocecal resections from patients with FCD. Samples were processed for histochemistry, immunohistochemistry, real-time RT-PCR, Western blotting, and transmission electron microscopy. Primary explant cultures of seromuscular fibroblasts were exposed to transforming growth factor (TGF)-beta1 (1 ng/ml), and S100A4 expression and scratch wound-healing activity were assessed at 24 h. CCD-18Co fibroblasts were transfected with S100A4 small interfering RNA, treated with TGF-beta1 (1 ng/ml) for 30 min or 24 h, and then assessed for S100A4 and Smad3 expression and scratch wound-healing activity. S100A4 expression was increased in stricture mucosa, in the lamina propria, and in CD3-positive intraepithelial CD3-positive T lymphocytes. Fibroblastic S100A4 staining was observed in seromuscular scar tissue. Stricture fibroblast explant culture showed significant upregulation of S100A4 expression. TGF-beta1 increased S100A4 expression in cultured ileal fibroblasts. In CCD-18Co fibroblasts, S100A4 small interfering RNA inhibited scratch wound healing and modestly inhibited Smad3 activation. S100A4 expression is increased in fibroblasts, as well as immune cells, in Crohn's disease stricture and induced by TGF-beta1. Results from knockdown experiments indicate a potential role for S100A4 in mediating intestinal fibroblast migration. PMID:20489045

  4. IMPACT OF AGE AND AUTOANTIBODY STATUS ON THE GENE EXPRESSION OF SCLERODERMA FIBROBLASTS IN RESPONSE TO SILICA STIMULATION.

    PubMed

    Yang, Y; Wei, P; Guo, X J; Zhou, D; Zhang, W Z; Assassi, S; Zhou, X D

    2013-09-01

    Environmental factors are believed to play an important role in the pathogenesis of systemic sclerosis (SSc). Silica exposure has been implicated as potentially hazardous in epidemiological studies of SSc. It can activate fibroblasts to express profibrotic genes at certain conditions. The aim of this study is to examine whether the fibroblasts of SSc patients respond to silica particles with specific gene expressions differentially from normal control fibroblasts. The fibroblasts obtained from skin biopsies of 96 SSc patients and 104 controls were examined. Silica particles were used to perturb the cultures of the fibroblasts in time-course and dose-response assays. The transcript levels of COL1A2, COL3A1, MIVIP1, MMP3, TIMP3 and CTGF genes of the fibroblasts were measured with quantitative RT-PCR. The results showed that the expressions of all six genes in SSc fibroblasts under silica perturbation appeared significantly different from normal control fibroblasts. In age stratified analysis, compared to control fibroblasts, SSc fibroblasts from patients at age 30-40 years and 50-60 years displayed significantly decreased expressions of MMP1 gene in all dosage assays and increased expression of COL3A1 genes started at low dosages perturbation of silica particles, respectively. In autoantibody stratified analysis, specific gene expression patterns were significantly associated with autoantibody-subgroups of fibroblasts. A common feature of SSc fibroblasts was unstable and a wide range of gene expression changes in response to silica perturbation. Our studies may suggest an altered intrinsic dynamic control in SSc fibroblasts. In addition, sensitivity and specificity of SSc fibroblasts to potentially hazardous environmental trigger is age and autoantibody-subgroup-dependent. The fibroblasts of SSc patients at age 30-60 years may be more sensitive to silica perturbation toward a profibrotic gene expression. PMID:25435887

  5. The control of ccn2 (ctgf) gene expression in normal and scleroderma fibroblasts.

    PubMed

    Leask, A; Sa, S; Holmes, A; Shiwen, X; Black, C M; Abraham, D J

    2001-06-01

    Although the role of transforming growth factor beta (TGFbeta) in initiating fibrosis is well established, the role that TGFbeta plays in maintaining fibrosis is unclear. The gene encoding connective tissue growth factor (ccn2; ctgf), which promotes fibrosis, is not normally expressed in dermal fibroblasts unless TGFbeta is present. However, in dermal fibroblasts cultured from lesional areas of scleroderma, ccn2 (ctgf) is expressed constitutively. The contribution of several elements in the ccn2 (ctgf) promoter to basal and TGFbeta induced ccn2 (ctgf) expression in normal and scleroderma fibroblasts has been investigated. A functional SMAD binding site in the ccn2 (ctgf) promoter that is necessary for the TGFbeta mediated induction of this gene has been identified. The previously termed TGFbeta responsive enhancer (TGFbetaRE) in the ccn2 (ctgf) promoter has been found to be necessary for basal promoter activity in normal fibroblasts. The SMAD element is not necessary for the high ccn2 (ctgf) promoter activity seen in scleroderma fibroblasts. However, mutation of the previously termed TGFbetaRE reduces ccn2 (ctgf) promoter activity in scleroderma fibroblasts to that seen in normal fibroblasts. Thus, the maintenance of the scleroderma phenotype, as assessed by a high degree of ccn2 (ctgf) promoter activity, appears to be relatively independent of SMAD action and seems to reflect increased basal promoter activity.

  6. Plasminogen activator inhibitor-1 suppresses profibrotic responses in fibroblasts from fibrotic lungs.

    PubMed

    Marudamuthu, Amarnath S; Shetty, Shwetha K; Bhandary, Yashodhar P; Karandashova, Sophia; Thompson, Michael; Sathish, Venkatachalem; Florova, Galina; Hogan, Taryn B; Pabelick, Christina M; Prakash, Y S; Tsukasaki, Yoshikazu; Fu, Jian; Ikebe, Mitsuo; Idell, Steven; Shetty, Sreerama

    2015-04-10

    Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive interstitial scarification. A hallmark morphological lesion is the accumulation of myofibroblasts or fibrotic lung fibroblasts (FL-fibroblasts) in areas called fibroblastic foci. We previously demonstrated that the expression of both urokinase-type plasminogen activator (uPA) and the uPA receptor are elevated in FL-fibroblasts from the lungs of patients with IPF. FL-fibroblasts isolated from human IPF lungs and from mice with bleomycin-induced pulmonary fibrosis showed an increased rate of proliferation compared with normal lung fibroblasts (NL-fibroblasts) derived from histologically "normal" lung. Basal expression of plasminogen activator inhibitor-1 (PAI-1) in human and murine FL-fibroblasts was reduced, whereas collagen-I and α-smooth muscle actin were markedly elevated. Conversely, alveolar type II epithelial cells surrounding the fibrotic foci in situ, as well as those isolated from IPF lungs, showed increased activation of caspase-3 and PAI-1 with a parallel reduction in uPA expression. Transduction of an adenovirus PAI-1 cDNA construct (Ad-PAI-1) suppressed expression of uPA and collagen-I and attenuated proliferation in FL-fibroblasts. On the contrary, inhibition of basal PAI-1 in NL-fibroblasts increased collagen-I and α-smooth muscle actin. Fibroblasts isolated from PAI-1-deficient mice without lung injury also showed increased collagen-I and uPA. These changes were associated with increased Akt/phosphatase and tensin homolog proliferation/survival signals in FL-fibroblasts, which were reversed by transduction with Ad-PAI-1. This study defines a new role of PAI-1 in the control of fibroblast activation and expansion and its role in the pathogenesis of fibrosing lung disease and, in particular, IPF.

  7. Mechanism underlying defective interferon gamma-induced IDO expression in non-obese diabetic mouse fibroblasts.

    PubMed

    Hosseini-Tabatabaei, Azadeh; Jalili, Reza Baradar; Li, Yunyuan; Kilani, Ruhangiz T; Moeen Rezakhanlou, Alireza; Ghahary, Aziz

    2012-01-01

    Indoleamine 2,3-dioxygenase (IDO) can locally suppress T cell-mediated immune responses. It has been shown that defective self-tolerance in early prediabetic female non-obese diabetic (NOD) mice can be attributed to the impaired interferon-gamma (IFN-γ)- induced IDO expression in dendritic cells of these animals. As IFN-γ can induce IDO in both dendritic cells and fibroblasts, we asked the question of whether there exists a similar defect in IFN-γ-induced IDO expression in NOD mice dermal fibroblasts. To this end, we examined the effect of IFN-γ on expression of IDO and its enzymatic activity in NOD dermal fibroblasts. The results showed that fibroblasts from either prediabetic (8 wks of age) female or male, and diabetic female or male (12 and 24 wks of age respectively) NOD mice failed to express IDO in response to IFN-γ treatment. To find underlying mechanisms, we scrutinized the IFN- γ signaling pathway and investigated expression of other IFN-γ-modulated factors including major histocompatibility complex class I (MHC-I) and type I collagen (COL-I). The findings revealed a defect of signal transducer and activator of transcription 1 (STAT1) phosphorylation in NOD cells relative to that of controls. Furthermore, we found an increase in MHC-I and suppression of COL-I expression in fibroblasts from both NOD and control mice following IFN-γ treatment; indicating that the impaired response to IFN-γ in NOD fibroblasts is specific to IDO gene. Finally, we showed that an IFN-γ-independent IDO expression pathway i.e. lipopolysaccharide (LPS)-mediated-c-Jun kinase is operative in NOD mice fibroblast. In conclusion, the findings of this study for the first time indicate that IFN-γ fails to induce IDO expression in NOD dermal fibroblasts; this may partially be due to defective STAT1 phosphorylation in IFN-γ-induced-IDO signaling pathway.

  8. Cytokine-mediated PGE2 expression in human colonic fibroblasts.

    PubMed

    Kim, E C; Zhu, Y; Andersen, V; Sciaky, D; Cao, H J; Meekins, H; Smith, T J; Lance, P

    1998-10-01

    We investigated prostanoid biogenesis in human colonic fibroblasts (CCD-18Co and 5 primary fibroblast cultures) and epithelial cell lines (NCM460, T84, HT-29, and LS 174T) and the effect of PGE2 on fibroblast morphology. Cytokine-stimulated PGE2 production was measured. PGH synthase-1 and -2 (PGHS-1 and -2) protein and mRNA expression were evaluated. Basal PGE2 levels were low in all cell types (0.15-6.47 ng/mg protein). Treatment for 24 h with interleukin-1beta (IL-1beta; 10 ng/ml) or tumor necrosis factor-alpha (50 ng/ml), respectively, elicited maximal 25- and 6-fold inductions of PGE2 synthesis in CCD-18Co cultures and similar results in primary fibroblast cultures; maximal inductions with IL-1beta in colonic epithelial cell lines were from zero to fivefold. Treatment of CCD-18Co fibroblasts with IL-1beta caused maximal 21- and 53-fold increases, respectively, in PGHS-2 protein and mRNA levels without altering PGHS-1 expression. PGE2 (0.1 micromol/l) elicited a dramatic shape change in selected fibroblasts. Colonic fibroblasts are potentially important as cytokine targets and a source of and target for colonic prostanoids in vivo. PMID:9755052

  9. Peroxisome proliferator-activated receptor-γ agonist troglitazone suppresses transforming growth factor-β1 signalling through miR-92b upregulation-inhibited Axl expression in human keloid fibroblasts in vitro

    PubMed Central

    Zhu, Hua-Yu; Bai, Wen-Dong; Li, Jun; Tao, Ke; Wang, Hong-Tao; Yang, Xue-Kang; Liu, Jia-Qi; Wang, Yun-Chuan; He, Ting; Xie, Song-Tao; Hu, Da-Hai

    2016-01-01

    Keloid, a skin benign tumor, is characterized by overgrowth of fibroblasts and the excessive deposition of extracellular matrix in wounded skin. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist was recently evaluated to inhibit fibrosis. This study explored the underlying mechanisms. Fibroblasts isolated from 25 keloid patients (KFs) and fibroblasts isolated from healthy controls (NSFBs) were also subjected to treatment with PPAR-γ agonist troglitazone and antagonist GW9662 or for transfection with miR-92 mimics or inhibitor, Axl siRNA, and miR-92b or Axl promoter constructs, as well as being subjected to qRT-PCR, ELISA, Western blot, protein array, luciferase, and ChIP assays. The data demonstrated that TGF-β1 and Axl proteins were significantly elevated in samples from keloid patients, while troglitazone treatment significantly reduced levels of TGF-β1 and Axl mRNA and proteins in KFs. Moreover, knockdown of Axl expression reduced expression of TGF-β1 and its pathway genes (such as α-SMA and Snail). PPAR-γ regulation of Axl expression was through transcriptional activation of miR-92b. miR-92b expression downregulated Axl expression at both mRNA and protein levels, whereas GW9662 completely reversed the inhibitory effects of miR-92b mimics on Axl expression. Gene ontology analysis of miR-92b targeting genes showed that TGF-β and Axl were both potential targets of miR-92b, as confirmed by luciferase assay. These findings demonstrated that PPAR-γ-induced miR-92b expression inhibited Axl expression and in turn reduced expression of TGF-β1 and the downstream genes in KFs, suggesting that targeting of this novel gene pathway may be useful for therapeutic control of fibrosis or keloid.

  10. Peroxisome proliferator-activated receptor-γ agonist troglitazone suppresses transforming growth factor-β1 signalling through miR-92b upregulation-inhibited Axl expression in human keloid fibroblasts in vitro.

    PubMed

    Zhu, Hua-Yu; Bai, Wen-Dong; Li, Jun; Tao, Ke; Wang, Hong-Tao; Yang, Xue-Kang; Liu, Jia-Qi; Wang, Yun-Chuan; He, Ting; Xie, Song-Tao; Hu, Da-Hai

    2016-01-01

    Keloid, a skin benign tumor, is characterized by overgrowth of fibroblasts and the excessive deposition of extracellular matrix in wounded skin. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist was recently evaluated to inhibit fibrosis. This study explored the underlying mechanisms. Fibroblasts isolated from 25 keloid patients (KFs) and fibroblasts isolated from healthy controls (NSFBs) were also subjected to treatment with PPAR-γ agonist troglitazone and antagonist GW9662 or for transfection with miR-92 mimics or inhibitor, Axl siRNA, and miR-92b or Axl promoter constructs, as well as being subjected to qRT-PCR, ELISA, Western blot, protein array, luciferase, and ChIP assays. The data demonstrated that TGF-β1 and Axl proteins were significantly elevated in samples from keloid patients, while troglitazone treatment significantly reduced levels of TGF-β1 and Axl mRNA and proteins in KFs. Moreover, knockdown of Axl expression reduced expression of TGF-β1 and its pathway genes (such as α-SMA and Snail). PPAR-γ regulation of Axl expression was through transcriptional activation of miR-92b. miR-92b expression downregulated Axl expression at both mRNA and protein levels, whereas GW9662 completely reversed the inhibitory effects of miR-92b mimics on Axl expression. Gene ontology analysis of miR-92b targeting genes showed that TGF-β and Axl were both potential targets of miR-92b, as confirmed by luciferase assay. These findings demonstrated that PPAR-γ-induced miR-92b expression inhibited Axl expression and in turn reduced expression of TGF-β1 and the downstream genes in KFs, suggesting that targeting of this novel gene pathway may be useful for therapeutic control of fibrosis or keloid. PMID:27648136

  11. Peroxisome proliferator-activated receptor-γ agonist troglitazone suppresses transforming growth factor-β1 signalling through miR-92b upregulation-inhibited Axl expression in human keloid fibroblasts in vitro

    PubMed Central

    Zhu, Hua-Yu; Bai, Wen-Dong; Li, Jun; Tao, Ke; Wang, Hong-Tao; Yang, Xue-Kang; Liu, Jia-Qi; Wang, Yun-Chuan; He, Ting; Xie, Song-Tao; Hu, Da-Hai

    2016-01-01

    Keloid, a skin benign tumor, is characterized by overgrowth of fibroblasts and the excessive deposition of extracellular matrix in wounded skin. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist was recently evaluated to inhibit fibrosis. This study explored the underlying mechanisms. Fibroblasts isolated from 25 keloid patients (KFs) and fibroblasts isolated from healthy controls (NSFBs) were also subjected to treatment with PPAR-γ agonist troglitazone and antagonist GW9662 or for transfection with miR-92 mimics or inhibitor, Axl siRNA, and miR-92b or Axl promoter constructs, as well as being subjected to qRT-PCR, ELISA, Western blot, protein array, luciferase, and ChIP assays. The data demonstrated that TGF-β1 and Axl proteins were significantly elevated in samples from keloid patients, while troglitazone treatment significantly reduced levels of TGF-β1 and Axl mRNA and proteins in KFs. Moreover, knockdown of Axl expression reduced expression of TGF-β1 and its pathway genes (such as α-SMA and Snail). PPAR-γ regulation of Axl expression was through transcriptional activation of miR-92b. miR-92b expression downregulated Axl expression at both mRNA and protein levels, whereas GW9662 completely reversed the inhibitory effects of miR-92b mimics on Axl expression. Gene ontology analysis of miR-92b targeting genes showed that TGF-β and Axl were both potential targets of miR-92b, as confirmed by luciferase assay. These findings demonstrated that PPAR-γ-induced miR-92b expression inhibited Axl expression and in turn reduced expression of TGF-β1 and the downstream genes in KFs, suggesting that targeting of this novel gene pathway may be useful for therapeutic control of fibrosis or keloid. PMID:27648136

  12. Hepatic Aryl Hydrocarbon Receptor Attenuates Fibroblast Growth Factor 21 Expression.

    PubMed

    Girer, Nathaniel G; Murray, Iain A; Omiecinski, Curtis J; Perdew, Gary H

    2016-07-15

    The Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in many physiological processes. Several studies indicate that AHR is also involved in energy homeostasis. Fibroblast growth factor 21 (FGF21) is an important regulator of the fasting and feeding responses. When administered to various genetic and diet-induced mouse models of obesity, FGF21 can attenuate obesity-associated morbidities. Here, we explore the role of AHR in hepatic Fgf21 expression through the use of a conditional, hepatocyte-targeted AHR knock-out mouse model (Cre(Alb)Ahr(Fx/Fx)). Compared with the congenic parental strain (Ahr(Fx/Fx)), non-fasted Cre(Alb)Ahr(Fx/Fx) mice exhibit a 4-fold increase in hepatic Fgf21 expression, as well as elevated expression of the FGF21-target gene Igfbp1 Furthermore, in vivo agonist activation of AHR reduces hepatic Fgf21 expression during a fast. The Fgf21 promoter contains several putative dioxin response elements (DREs). Using EMSA, we demonstrate that the AHR-ARNT heterodimer binds to a specific DRE that overlaps binding sequences for peroxisome proliferator-activated receptor α (PPARα), carbohydrate response element-binding protein (ChREBP), and cAMP response element-binding protein, hepatocyte specific (CREBH). In addition, we reveal that agonist-activated AHR impairs PPARα-, ChREBP-, and CREBH-mediated promoter activity in Hepa-1 cells. Accordingly, agonist treatment in Hepa-1 cells ablates potent ER stress-driven Fgf21 expression, and pre-treatment with AHR antagonist blocks this effect. Finally, we show that pre-treatment of primary human hepatocytes with AHR agonist diminishes PPARα-, glucose-, and ER stress-driven induction of FGF21 expression, indicating the effect is not mouse-specific. Together, our data show that AHR contributes to hepatic energy homeostasis, partly through the regulation of FGF21 expression and signaling. PMID:27226639

  13. CD44 and hyaluronan expression in human cutaneous scar fibroblasts.

    PubMed Central

    Messadi, D. V.; Bertolami, C. N.

    1993-01-01

    Fibrotic disorders of skin and other organs are typically associated with an abnormal accumulation of extracellular matrix. This study focuses on a matrix constituent, hyaluronan-which is known to be altered in fibrotic disorders of skin- and on CD44, a cell adhesion molecule and putative receptor for hyaluronan. Tissue samples were obtained from biopsies of human normal skin, normal cutaneous scar; and hypertrophic cutaneous scar. After culturing, cells were studied by single- and double-labeling immunohistochemistry using the two anti-CD44 monoclonal antibodies, BU-52 and J173, and a biotinylated hyaluronan binding complex probe, b-HABR. Certain cultures were pretreated with Streptomyces hyaluronidase to assess the dependency of CD44 expression on the presence of endogenous hyaluronan. CD44 expression, both in the presence and the absence of exogenous hyaluronan, was quantitated by radioimmunobinding assay. Overall glycosaminoglycan synthesis and identification of hyaluronan were accomplished by precursor incorporation assays and by quantitative cellulose acetate electrophoresis. CD44 was found to be a normal human adult fibroblastic antigen whose expression is markedly increased for hypertrophic scar fibroblasts compared with normal skin fibroblasts. Although hyaluronan was found to be the predominant glycosaminoglycan constituent of the pericellular matrix for these fibroblasts, CD44 attachment to the cell surface is neither mediated by hyaluronan nor is the presence of hyaluronan a prerequisite for CD44 expression. Exogenous hyaluronan induced a decline in measurable CD44 expression for normal skin fibroblasts but not for hypertrophic scar fibroblasts. These observations are compatible with current understanding of the way cells manage the hyaluronan economy of the extracellular matrix and emphasize phenotypic heterogeneities between fibroblasts derived from normal versus scar tissues. Images Figure 1 Figure 4 PMID:8475990

  14. Paracrine regulation of fibroblast aminopeptidase N/CD13 expression by keratinocyte-releasable stratifin.

    PubMed

    Lai, Amy; Ghaffari, Abdi; Li, Yunyuan; Ghahary, Aziz

    2011-12-01

    As wound healing proceeds into the tissue remodeling phase, cellular interactions become dominated by the interplay of keratinocytes with fibroblasts in the skin, which is largely mediated through paracrine signaling and greatly affects the molecular constitution of the extracellular matrix. We have recently identified aminopeptidase N (APN)/CD13 as a potential fibroblast receptor for 14-3-3 sigma (also known as stratifin), a keratinocyte-releasable protein with potent matrix metalloproteinase 1 (MMP1) stimulatory activity. The present study demonstrates that the expression of APN on dermal fibroblasts is regulated through paracrine signaling by keratinocyte-derived soluble factors. By using an in vitro keratinocyte-fibroblast co-culture system, we showed that APN expression in dermal fibroblasts is induced in the presence of keratinocytes or in response to keratinocyte-conditioned medium. Conditioned medium collected from differentiated keratinocytes further increases APN protein production, suggesting an amplified stimulatory effect by keratinocyte differentiation. Recombinant stratifin potently induces APN synthesis in a dose-dependent manner. A consistent correlation between the protein expression levels of APN and MMP1 was also observed. These results confirm paracrine regulation of APN expression in dermal fibroblasts by keratinocyte-derived stimuli, in particular stratifin, and provide evidence that APN may serve as a target in the regulation of MMP1 expression in epidermal-mesenchymal communication. PMID:21302309

  15. Neurotensin Decreases the Proinflammatory Status of Human Skin Fibroblasts and Increases Epidermal Growth Factor Expression

    PubMed Central

    Miguel Neves, Bruno; Cruz, Maria Teresa; Carvalho, Eugénia

    2014-01-01

    Fibroblasts colonization into injured areas during wound healing (WH) is responsible for skin remodelling and is also involved in the modulation of inflammation, as fibroblasts are immunologically active. Herein, we aimed to determine neurotensin effect on the immunomodulatory profile of fibroblasts, both in homeostatic and inflammatory conditions. Neurotensin mediated responses occurred through NTR1 or NTR3 receptors, while under inflammatory conditions NTR1 expression increase seemed to modulate neurotensin responses. Among different immunomodulatory genes, CCL11, IL-8, and IL-6 were the most expressed genes, while CCL4 and EGF were the less expressed genes. After neurotensin exposure, IL-8 mRNA expression was increased while CCL11 was decreased, suggesting a proinflammatory upregulation and chemoattractant ability downregulation of fibroblasts. Under inflammatory conditions, gene expression was significantly increased. After neurotensin exposure, CCL4 and IL-6 mRNA expression were decreased while CCL11 was increased, suggesting again a decrease in the chemoattractant capacity of fibroblasts and in their proinflammatory status. Furthermore, the expression of EGF, a crucial growth factor for skin cells proliferation and WH, was increased in all conditions. Overall, neurotensin, released by nerve fibers or skin cells, may be involved in the decrease of the chemotaxis and the proinflammatory status in the proliferation and remodelling phases of WH. PMID:25180119

  16. Neurotensin decreases the proinflammatory status of human skin fibroblasts and increases epidermal growth factor expression.

    PubMed

    Pereira da Silva, Lucília; Miguel Neves, Bruno; Moura, Liane; Cruz, Maria Teresa; Carvalho, Eugénia

    2014-01-01

    Fibroblasts colonization into injured areas during wound healing (WH) is responsible for skin remodelling and is also involved in the modulation of inflammation, as fibroblasts are immunologically active. Herein, we aimed to determine neurotensin effect on the immunomodulatory profile of fibroblasts, both in homeostatic and inflammatory conditions. Neurotensin mediated responses occurred through NTR1 or NTR3 receptors, while under inflammatory conditions NTR1 expression increase seemed to modulate neurotensin responses. Among different immunomodulatory genes, CCL11, IL-8, and IL-6 were the most expressed genes, while CCL4 and EGF were the less expressed genes. After neurotensin exposure, IL-8 mRNA expression was increased while CCL11 was decreased, suggesting a proinflammatory upregulation and chemoattractant ability downregulation of fibroblasts. Under inflammatory conditions, gene expression was significantly increased. After neurotensin exposure, CCL4 and IL-6 mRNA expression were decreased while CCL11 was increased, suggesting again a decrease in the chemoattractant capacity of fibroblasts and in their proinflammatory status. Furthermore, the expression of EGF, a crucial growth factor for skin cells proliferation and WH, was increased in all conditions. Overall, neurotensin, released by nerve fibers or skin cells, may be involved in the decrease of the chemotaxis and the proinflammatory status in the proliferation and remodelling phases of WH. PMID:25180119

  17. EGFR-mediated expression of aquaporin-3 is involved in human skin fibroblast migration

    PubMed Central

    Cao, Cong; Sun, Yun; Healey, Sarah; Bi, Zhigang; Hu, Gang; Wan, Shu; Kouttab, Nicola; Chu, Wenming; Wan, Yinsheng

    2006-01-01

    AQP3 (aquaporin-3), known as an integral membrane channel in epidermal keratinocytes, facilitates water and glycerol movement into and out of the skin. Here, we demonstrate that AQP3 is also expressed in cultured human skin fibroblasts, which under normal wound healing processes migrate from surrounding tissues to close the wound. EGF (epidermal growth factor), which induced fibroblast migration, also induced AQP3 expression in a time- and dose-dependent manner. CuSO4 and NiCl2, previously known as AQP3 water transport inhibitors, as well as two other bivalent heavy metals Mn2+ and Co2+, inhibited EGF-induced cell migration in human skin fibroblasts. AQP3 knockdown by small interfering RNA inhibited EGF-induced AQP3 expression and cell migration. Furthermore, an EGFR (EGF receptor) kinase inhibitor, PD153035, blocked EGF-induced AQP3 expression and cell migration. MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK inhibitor U0126 and PI3K (phosphoinositide 3-kinase) inhibitor LY294002 also inhibited EGF-induced AQP3 expression and cell migration. Collectively, our findings show for the first time that AQP3 is expressed in human skin fibroblasts and that EGF induces AQP3 expression via EGFR, PI3K and ERK signal transduction pathways. We have provided evidence for a novel role of AQP3 in human skin fibroblast cell migration, which occurs during normal wound healing. PMID:16848764

  18. Lipopolysaccharide activated TLR4/NF-κB signaling pathway of fibroblasts from uterine fibroids.

    PubMed

    Guo, Jing; Zheng, Lihua; Chen, Li; Luo, Ning; Yang, Weihong; Qu, Xiaoyan; Liu, Mingmin; Cheng, Zhongping

    2015-01-01

    Uterine fibroids (UF) are the most common benign tumor of the female reproductive tract. The aim of this study was to explore the role of lipopolysaccharide (LPS)-induced activation of TLR4/NF-κB signaling pathway on stromal fibroblasts in the pathogenesis of UF. Here, TLR4/NF-κB signaling pathway was more activated in UF, and UF cells (UFC) and UF derived fibroblasts (TAF) than in smooth muscle tissues, smooth muscle cell (SMC) and myometrial fibroblasts (fib) respectively. After lipopolysaccharide (LPS) stimulation, the activity of fib was enhanced, characterized by the increased expression of fibroblast activation protein (FAP), and increased secretion of collagen I and transforming growth factor-β (TGF-β). Moreover, TLR4 inhibitor (VIPER) and siTLR4 can represses LPS-activated fibroblasts and TLR4/NF-κB signaling transduction pathways in fib and UFC cells. Co-cultured with LPS-activated fibroblast enhanced fibroblast activation and TLR4/NF-κB signaling. In conclusion, LPS treatment activated TLR4/NF-κB signaling pathway on fibroblasts, which may involve in the development of UF. Our study indicated reproductive tract infection may be associated with fibroid pathogenesis through TLR4/NF-κB signaling. Targeting NF-κB with inhibitors may hold promises of treating uterine fibroid.

  19. Lipopolysaccharide activated TLR4/NF-κB signaling pathway of fibroblasts from uterine fibroids.

    PubMed

    Guo, Jing; Zheng, Lihua; Chen, Li; Luo, Ning; Yang, Weihong; Qu, Xiaoyan; Liu, Mingmin; Cheng, Zhongping

    2015-01-01

    Uterine fibroids (UF) are the most common benign tumor of the female reproductive tract. The aim of this study was to explore the role of lipopolysaccharide (LPS)-induced activation of TLR4/NF-κB signaling pathway on stromal fibroblasts in the pathogenesis of UF. Here, TLR4/NF-κB signaling pathway was more activated in UF, and UF cells (UFC) and UF derived fibroblasts (TAF) than in smooth muscle tissues, smooth muscle cell (SMC) and myometrial fibroblasts (fib) respectively. After lipopolysaccharide (LPS) stimulation, the activity of fib was enhanced, characterized by the increased expression of fibroblast activation protein (FAP), and increased secretion of collagen I and transforming growth factor-β (TGF-β). Moreover, TLR4 inhibitor (VIPER) and siTLR4 can represses LPS-activated fibroblasts and TLR4/NF-κB signaling transduction pathways in fib and UFC cells. Co-cultured with LPS-activated fibroblast enhanced fibroblast activation and TLR4/NF-κB signaling. In conclusion, LPS treatment activated TLR4/NF-κB signaling pathway on fibroblasts, which may involve in the development of UF. Our study indicated reproductive tract infection may be associated with fibroid pathogenesis through TLR4/NF-κB signaling. Targeting NF-κB with inhibitors may hold promises of treating uterine fibroid. PMID:26617709

  20. Lipopolysaccharide activated TLR4/NF-κB signaling pathway of fibroblasts from uterine fibroids

    PubMed Central

    Guo, Jing; Zheng, Lihua; Chen, Li; Luo, Ning; Yang, Weihong; Qu, Xiaoyan; Liu, Mingmin; Cheng, Zhongping

    2015-01-01

    Uterine fibroids (UF) are the most common benign tumor of the female reproductive tract. The aim of this study was to explore the role of lipopolysaccharide (LPS)-induced activation of TLR4/NF-κB signaling pathway on stromal fibroblasts in the pathogenesis of UF. Here, TLR4/NF-κB signaling pathway was more activated in UF, and UF cells (UFC) and UF derived fibroblasts (TAF) than in smooth muscle tissues, smooth muscle cell (SMC) and myometrial fibroblasts (fib) respectively. After lipopolysaccharide (LPS) stimulation, the activity of fib was enhanced, characterized by the increased expression of fibroblast activation protein (FAP), and increased secretion of collagen I and transforming growth factor-β (TGF-β). Moreover, TLR4 inhibitor (VIPER) and siTLR4 can represses LPS-activated fibroblasts and TLR4/NF-κB signaling transduction pathways in fib and UFC cells. Co-cultured with LPS-activated fibroblast enhanced fibroblast activation and TLR4/NF-κB signaling. In conclusion, LPS treatment activated TLR4/NF-κB signaling pathway on fibroblasts, which may involve in the development of UF. Our study indicated reproductive tract infection may be associated with fibroid pathogenesis through TLR4/NF-κB signaling. Targeting NF-κB with inhibitors may hold promises of treating uterine fibroid. PMID:26617709

  1. Ca2+ stimulates COX-2 expression through calcium-sensing receptor in fibroblasts.

    PubMed

    Ogata, Sachie; Kubota, Yasutaka; Satoh, Shinji; Ito, Shinich; Takeuchi, Hiroshi; Ashizuka, Megumi; Shirasuna, Kanemitsu

    2006-12-29

    Fibroblasts isolated from jaw cysts expressed calcium-sensing receptor (CasR). In the fibroblasts elevated extracellular Ca(2+) ([Ca(2+)](o)) increased fluo-3 fluorescence intensity, and the production of inositol(1,4,5)trisphosphate and active protein kinase C. Phospholipase C inhibitor U-73122 attenuated the Ca(2+)-induced increase in fluo-3 fluorescence intensity. Elevated [Ca(2+)](o) enhanced the expression of cyclooxygenase-2 (COX-2) mRNA and protein, and the secretion of prostaglandin E(2) in the fibroblasts. CasR activator neomycin also increased the expression of COX-2 mRNA, and U-73122 attenuated the Ca(2+)-induced expression of COX-2 mRNA. Elevated [Ca(2+)](o)-induced phosphorylation of extracellular signal-regulated protein kinase-1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK), and U-73122 inhibited the Ca(2+)-induced phosphorylation. The inhibitors for each kinase, PD98059, SB203580, and SP600125, attenuated the Ca(2+)-induced expression of COX-2 mRNA. These results suggest that in jaw cyst fibroblasts elevated extracellular Ca(2+) may enhance COX-2 expression via the activation of ERK1/2, p38 MAPK, and JNK through CasR.

  2. [Lysosomal glycosidase activity in cultured human fibroblasts].

    PubMed

    Beliaeva, I D; Ivleva, T S; Vidershaĭn, G Ia

    1984-11-01

    A study was made of the activity of 3 lysosomal glycosidases -beta-D-galactosidase (K. P. 3.2.1.23), alpha-L-fucosidase (K. P. 3.2.1.51), N-acetyl-beta-D-hexosoaminidase (K. P. 3.2.1.52) depending on the time after subcultivation and duration of the passage of human skin embryonal and postembryonal fibroblasts. It was established that changes in the specific activity of the enzymes should be calculated with reference to the cell rather than to protein whose amount might vary considerably. It was also found that for measuring the specific activity of enzymes, of great importance are the procedures of cell removal from the base layer (by mechanical scraping off or by trypsin solution) and the regimen of the homogenization of cell preparations.

  3. Toll-like receptors expressed by dermal fibroblasts contribute to hypertrophic scarring.

    PubMed

    Wang, JianFei; Hori, Keijiro; Ding, Jie; Huang, Yue; Kwan, Peter; Ladak, Adil; Tredget, Edward E

    2011-05-01

    Hypertrophic scar (HTS), a fibroproliferative disorder (FPD), complicates burn wound healing. Although the pathogenesis is not understood, prolonged inflammation is a known contributing factor. Emerging evidence suggests that fibroblasts regulate immune/inflammatory responses through toll-like receptor 4 (TLR4) activated by lipopolysaccharide (LPS) through adaptor molecules, leading to nuclear factor kappa-light-chain-enhancer of activated B cells and mitogen-activated protein kinases activation, cytokine gene transcription and co-stimulatory molecule expression resulting in inflammation. This study explored the possible role of TLR4 in HTS formation. Paired normal and HTS tissue from burn patients was collected and dermal fibroblasts isolated and cultured. Immunohistochemical analysis of tissues demonstrated increased TLR4 staining in HTS tissue. Quantitative RT-PCR of three pairs of fibroblasts demonstrated mRNA levels for TLR4 and its legend myeloid differentiation factor 88 (MyD88) in HTS fibroblasts were increased significantly compared with normal fibroblasts. Flow cytometry showed increased TLR4 expression in HTS fibroblasts compared with normal. ELISA demonstrated protein levels for prostaglandin E2, interleukin (IL)-6, IL-8 and monocyte chemotactic protein-1 (MCP-1) were significantly increased in HTS fibroblasts compared to normal. When paired normal and HTS fibroblasts were stimulated with LPS, significant increases in mRNA and protein levels for MyD88, IL-6, IL-8, and MCP-1 were detected. However, when transfected with MyD88 small interfering RNA (siRNA), then stimulated with LPS, a significant decrease in mRNA and protein levels for these molecules compared to only LPS-stimulated fibroblasts was detected. In comparison, a scramble siRNA transfection did not affect mRNA or protein levels for these molecules. Results demonstrate LPS stimulates proinflammatory cytokine expression in dermal fibroblasts and MyD88 siRNA eliminates the expression. Therefore

  4. Rapamycin increases CCN2 expression of lung fibroblasts via phosphoinositide 3-kinase.

    PubMed

    Xu, Xuefeng; Dai, Huaping; Geng, Jing; Wan, Xuan; Huang, Xiaoxi; Li, Fei; Jiang, Dianhua; Wang, Chen

    2015-08-01

    Excessive production of connective tissue growth factor (CTGF, CCN2) and increased motor ability of the activated fibroblast phenotype contribute to the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, molecules and signal pathways regulating CCN2 expression and migration of lung fibroblasts are still elusive. We hypothesize that rapamycin, via binding and blocking mammalian target of rapamycin (mTOR) complex (mTORC), affects CCN2 expression and migration of lung fibroblasts in vitro. Primary normal and fibrotic human lung fibroblasts were isolated from lung tissues of three patients with primary spontaneous pneumothorax and three with IPF. Cells were incubated with regular medium, or medium containing rapamycin, human recombinant transforming growth factor (TGF)-β1, or both. CCN2 and tissue inhibitor of metalloproteinase (TIMP)-1 expression in cells or supernatant was detected. Wound healing and migration assay was used to measure the migratory potential. TGF-β type I receptor (TβRI)/Smad inhibitor, SB431542 and phosphoinositide 3-kinase (PI3K) inhibitor, LY294002 were used to determine rapamycin's mechanism of action. We demonstrated that rapamycin amplified basal or TGF-β1-induced CCN2 mRNA and protein expression in normal or fibrotic fibroblasts by Smad-independent but PI3K-dependent pathway. Additionally, rapamycin also enhanced TIMP-1 expression as indicated by ELISA. However, wound healing and migrating assay showed rapamycin did not affect the mobility of fibroblasts. Collectively, this study implies a significant fibrogenic induction activity of rapamycin by activating AKT and inducing CCN2 expression in vitro and provides the possible mechanisms for the in vivo findings which previously showed no antifibrotic effect of rapamycin on lung fibrosis. PMID:26192087

  5. Tropoelastin regulates chemokine expression in fibroblasts in Costello syndrome

    SciTech Connect

    Tatano, Yutaka; Fujinawa, Reiko; Kozutsumi, Yasunori; Takahashi, Tsutomu; Tsuji, Daisuke; Takeuchi, Naohiro; Tsuta, Kohji; Takada, Goro; Sakuraba, Hitoshi; Itoh, Kohji

    2008-08-08

    Costello syndrome is a multiple congenital anomaly associated with growth and mental retardation, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Comprehensive expression analysis revealed remarkable up-regulation of several cytokines and chemokines including Gro family proteins, interleukin-1{beta} (IL-1{beta}), IL-8 and MCP-1 but down-regulation of extracellular matrix components including collagens and proteoglycans of skin fibroblasts derived from a Japanese Costello syndrome patient characterized by significantly reduced tropoelastin mRNA, impaired elastogenesis and enhanced cell proliferation. In contrast, decreases in these chemokines and IL-1{beta} expression were observed in Costello fibroblastic cell lines stably expressing the bovine tropoelastin (btEln) gene and in restored elastic fibers. These results strongly suggest that the human TE gene (ELN) transfer could be applicable for the gene therapy of a group of Costello syndrome patients with reduced ELN gene expression.

  6. Calcium pantothenate modulates gene expression in proliferating human dermal fibroblasts.

    PubMed

    Wiederholt, Tonio; Heise, Ruth; Skazik, Claudia; Marquardt, Yvonne; Joussen, Sylvia; Erdmann, Kati; Schröder, Henning; Merk, Hans F; Baron, Jens Malte

    2009-11-01

    Topical application of pantothenate is widely used in clinical practice for wound healing. Previous studies identified a positive effect of pantothenate on migration and proliferation of cultured fibroblasts. However, these studies were mainly descriptive with no molecular data supporting a possible model of its action. In this study, we first established conditions for an in vitro model of pantothenate wound healing and then analysed the molecular effects of pantothenate. To test the functional effect of pantothenate on dermal fibroblasts, cells were cultured and in vitro proliferation tests were performed using a standardized scratch test procedure. For all three donors analysed, a strong stimulatory effect of pantothenate at a concentration of 20 microg/ml on the proliferation of cultivated dermal fibroblasts was observed. To study the molecular mechanisms resulting in the proliferative effect of pantothenate, gene expression was analysed in dermal fibroblasts cultivated with 20 microg/ml of pantothenate compared with untreated cells using the GeneChip Human Exon 1.0 ST Array. A number of significantly regulated genes were identified including genes coding for interleukin (IL)-6, IL-8, Id1, HMOX-1, HspB7, CYP1B1 and MARCH-II. Regulation of these genes was subsequently verified by quantitative real-time polymerase chain reaction analysis. Induction of HMOX-1 expression by pantothenol and pantothenic acid in dermal cells was confirmed on the protein level using immunoblots. Functional studies revealed the enhanced suppression of free radical formation in skin fibroblasts cultured with panthenol. In conclusion, these studies provided new insight in the molecular mechanisms linked to the stimulatory effect of pantothenate and panthenol on the proliferation of dermal fibroblasts. PMID:19397697

  7. Pentadecapeptide BPC 157 enhances the growth hormone receptor expression in tendon fibroblasts.

    PubMed

    Chang, Chung-Hsun; Tsai, Wen-Chung; Hsu, Ya-Hui; Pang, Jong-Hwei Su

    2014-01-01

    BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon. PMID:25415472

  8. Respiratory activity and growth of human skin derma fibroblasts.

    PubMed

    Papa, F; Scacco, S; Vergari, R; Bucaria, V; Dioguardi, D; Papa, S

    1998-09-01

    A study has been made on the speed of growth and respiratory activity of fibroblast cultures from control derma, cheloid (hypertrophic) scar and stabilized scar taken from human skin. The speed of growth and the efficiency of plaque formation of fibroblasts from cheloid scar were greater in comparison with those of fibroblasts from stabilized scar and were stimulated by the addition to the culture medium of the exudate from post-traumatic ulcer. Measurement of the contents of cytochromes showed a decrease in the content of cytochromes b562 and c + c1 in the fibroblast culture from both cheloid and stabilized scar as compared to the fibroblast culture from control derma. Cytochrome aa3 content did not show significant difference among the three types of fibroblast cultures. The respiratory activities supported by pyruvate plus malate, succinate or ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine did not show, however, significant difference among the three fibroblast cultures. These observations show that the speed of growth of skin fibroblasts does not depend on the overall respiratory capacity. The exudate stimulated the activity of cytochrome c oxidase in fibroblasts from control derma, and cheloid scar. This effect and the accompanying stimulation of fibroblast growth might be correlated with the balance of oxygen free radicals.

  9. Caveolin-1 is a modulator of fibroblast activation and a potential biomarker for gastric cancer.

    PubMed

    Shen, Xiao-Jun; Zhang, Hao; Tang, Gu-Sheng; Wang, Xu-Dong; Zheng, Rui; Wang, Yang; Zhu, Yan; Xue, Xu-Chao; Bi, Jian-Wei

    2015-01-01

    Stromal fibroblasts play an important role in chronic cancer-related inflammation and the development as well as progression of malignant diseases. However, the difference and relationship between inflammation-associated fibroblasts (IAFs) and cancer-associated fibroblasts (CAFs) are poorly understood. In this study, gastric cancer-associated fibroblasts (GCAFs) and their corresponding inflammation-associated fibroblasts (GIAFs) were isolated from gastric cancer (GC) with chronic gastritis and cultured in vitro. These activated fibroblasts exhibited distinct secretion and tumor-promoting behaviors in vitro. Using proteomics and bioinformatics techniques, caveolin-1 (Cav-1) was identified as a major network-centric protein of a sub-network consisting of 121 differentially expressed proteins between GIAFs and GCAFs. Furthermore, immunohistochemistry in a GC cohort showed significant difference in Cav-1 expression score between GIAFs and GCAFs and among patients with different grades of chronic gastritis. Moreover, silencing of Cav-1 in GIAFs and GCAFs using small interfering RNA increased the production of pro-inflammatory and tumor-enhancing cytokines and chemokines in conditioned mediums that elevated cell proliferation and migration when added to GC cell lines AGS and MKN45 in vitro. In addition, Cav-1 status in GIAFs and GCAFs independently predicted the prognosis of GC. Our findings indicate that Cav-1 loss contributes to the distinct activation statuses of fibroblasts in GC microenvironment and gastritis mucosa, and Cav-1 expression in both GCAFs and GIAFs may serve as a potential biomarker for GC progression. PMID:25798057

  10. Fn14, a Downstream Target of the TGF-β Signaling Pathway, Regulates Fibroblast Activation

    PubMed Central

    Yang, Min; Lai, Wen; Ye, Litong; Chen, Jing; Hou, Xinghua; Ding, Hong; Zhang, Wenwei; Wu, Yueheng; Liu, Xiaoying; Huang, Shufang; Yu, Xiyong; Xiao, Dingzhang

    2015-01-01

    Fibrosis, the hallmark of human injuries and diseases such as serious burns, is characterized by excessive collagen synthesis and myofibroblast accumulation. Transforming growth factor-β (TGF-β), a potent inducer of collagen synthesis, has been implicated in fibrosis in animals. In addition to TGF-β, fibroblast growth factor-inducible molecule 14 (Fn14) has been reported to play an important role in fibrotic diseases, such as cardiac fibrosis. However, the function and detailed regulatory mechanism of Fn14 in fibrosis are unclear. Here, we investigated the effect of Fn14 on the activation of human dermal fibroblasts. In normal dermal fibroblasts, TGF-β signaling increased collagen production and Fn14 expression. Furthermore, Fn14 siRNA blocked extracellular matrix gene expression; even when TGF-β signaling was activated by TGF-β1, fibroblast activation remained blocked in the presence of Fn14 siRNA. Overexpressing Fn14 increased extracellular matrix gene expression. In determining the molecular regulatory mechanism, we discovered that SMAD4, an important TGF-β signaling co-mediator, bound to the Fn14 promoter and activated Fn14 transcription. Taken together, these results indicate that the TGF-β signaling pathway activates Fn14 expression through the transcription factor SMAD4 and that activated Fn14 expression increases extracellular matrix synthesis and fibroblast activation. Therefore, Fn14 may represent a promising approach to preventing the excessive accumulation of collagen or ECM in skin fibrosis. PMID:26625141

  11. Transformation phenotype of polyoma virus-transformed rat fibroblasts: plasminogen activator production is modulated by the growth state of the cells and regulated by the expression of an early viral gene function.

    PubMed Central

    Perbal, B

    1980-01-01

    The expression of two transformation parameters, namely, ability to grow in agar and plasminogen activator production, was studied in several rat fibroblasts transformed by either wild-type or thermo-sensitive (tsa and ts25) polyoma viruses. The production of plasminogen activator was found to be dependent upon the growth state of the infected cells during a period of several days after infection. The analysis of the transformed phenotype of 25 tsa transformants and of 19 ts25 transformants independently isolated under various growth conditions led to the conclusion that there is no correlation between the regulation processes involved in plasminogen activator production and ability to grow without anchorage. The results obtained also suggested that the production of plasminogen activator is under the control of a functional large T antigen. PMID:6255182

  12. Expression pattern of matrix metalloproteinase and TIMP genes in fibroblasts derived from Ets-1 knock-out mice compared to wild-type mouse fibroblasts.

    PubMed

    Hahne, Jens Claus; Fuchs, Tanja; El Mustapha, Haddouti; Okuducu, Ali Fuat; Bories, Jean Christophe; Wernert, Nicolas

    2006-07-01

    Matrix-degrading proteases play a key role in normal development, wound healing, many diseases such as rheumatoid arthritis and, in particular, tumour invasion. In invasive tumours, these enzymes are expressed by fibroblasts of the tumour stroma. Their expression and activity are tightly regulated at several levels, an important one being transcription. Previous in vitro and in vivo findings pointed to a major role of the Ets-1 transcription factor for this level of regulation. In the present study, we tried to prove this role in fibroblasts. We stimulated wild-type mouse fibroblasts with physiological doses of basic fibroblast growth factor (bFGF, known to induce different proteases and expressed by tumour cells) and compared the results to those obtained in Ets-1 -/- fibroblasts derived from Ets-1 knock-out mice. We found that basal Ets-1 levels are necessary not only for a fast induction of MMPs 2, 3 and 13 by bFGF but also for maintenance of the bFGF-induced expression of tissue inhibitors of metalloproteinases (TIMPs) 1, 2 and 3, which are known not only to inhibit but also participate as activators of certain pro-MMPs.

  13. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse

    SciTech Connect

    Xu Fang; Ji Jian; Li Li; Chen Rong; Hu Weicheng . E-mail: huweicheng@sdu.edu.cn

    2007-01-19

    The role of the adventitia in vascular function and vascular lesion formation has been largely ignored. This study observed the activation of the adventitia and specifically the fibroblasts in the development of atherosclerosis in the apoE(-/-) mouse. The results showed a gradual increase in expression of collagen types I and III after 2, 4, and 8 weeks of hyperlipidic diet. The earliest expression of monocyte chemoattractant protein-1 (MCP-1) protein and mRNA was detected in the adventitial fibroblast before the formation of intimal lesions. Proliferation, too, was first found in the adventitial fibroblasts. We hypothesize that the adventitial fibroblast is activated in the early stage of atherosclerosis. Adventitial inflammation may be an early event in the development of atherosclerotic lesions.

  14. Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts.

    PubMed

    Mendias, Christopher L; Gumucio, Jonathan P; Bakhurin, Konstantin I; Lynch, Evan B; Brooks, Susan V

    2012-04-01

    Scleraxis is a basic helix-loop-helix transcription factor that plays a central role in promoting fibroblast proliferation and matrix synthesis during the embryonic development of tendons. Mice with a targeted inactivation of scleraxis (Scx(-/-)) fail to properly form limb tendons, but the role that scleraxis has in regulating the growth and adaptation of tendons of adult organisms is unknown. To determine if scleraxis expression changes in response to a physiological growth stimulus to tendons, we subjected adult mice that express green fluorescent protein (GFP) under the control of the scleraxis promoter (ScxGFP) to a 6-week-treadmill training program designed to induce adaptive growth in Achilles tendons. Age matched sedentary ScxGFP mice were used as controls. Scleraxis expression was sparsely observed in the epitenon region of sedentary mice, but in response to treadmill training, scleraxis was robustly expressed in fibroblasts that appeared to be emerging from the epitenon and migrating into the superficial regions of tendon fascicles. Treadmill training also led to an increase in scleraxis, tenomodulin, and type I collagen gene expression as measured by qPCR. These results suggest that in addition to regulating the embryonic formation of limb tendons, scleraxis also appears to play an important role in the adaptation of adult tendons to physiological loading.

  15. Photodynamic molecular beacon triggered by fibroblast activation protein on cancer-associated fibroblasts for diagnosis and treatment of epithelial cancers.

    PubMed

    Lo, Pui-Chi; Chen, Juan; Stefflova, Klara; Warren, Michael S; Navab, Roya; Bandarchi, Bizhan; Mullins, Stefanie; Tsao, Ming; Cheng, Jonathan D; Zheng, Gang

    2009-01-22

    Fibroblast activation protein (FAP) is a cell-surface serine protease highly expressed on cancer-associated fibroblasts of human epithelial carcinomas but not on normal fibroblasts, normal tissues, and cancer cells. We report herein a novel FAP-triggered photodynamic molecular beacon (FAP-PPB) comprising a fluorescent photosensitizer and a black hole quencher 3 linked by a peptide sequence (TSGPNQEQK) specific to FAP. FAP-PPB was effectively cleaved by both human FAP and murine FAP. By use of the HEK293 transfected cells (HEK-mFAP, FAP(+); HEK-vector, FAP(-)), systematic in vitro and in vivo experiments validated the FAP-specific activation of FAP-PPB in cancer cells and mouse xenografts, respectively. FAP-PPB was cleaved by FAP, allowing fluorescence restoration in FAP-expressing cells while leaving non-expressing FAP cells undetectable. Moreover, FAP-PPB showed FAP-specific photocytotoxicity toward HEK-mFAP cells whereas it was non-cytotoxic toward HEK-Vector cells. This study suggests that the FAP-PPB is a potentially useful tool for epithelial cancer detection and treatment.

  16. Expression and Function of Aminopeptidase N/CD13 Produced by Fibroblast Like Synoviocytes in Rheumatoid Arthritis: Role of CD13 in Chemotaxis of Cytokine Activated T cells Independent of Enzymatic Activity

    PubMed Central

    Morgan, Rachel; Endres, Judith; Behbahani-Nejad, Nilofar; Phillips, Kristine; Ruth, Jeffrey H; Friday, Sean C; Edhayan, Gautam; Lanigan, Thomas; Urquhart, Andrew; Chung, Kevin C; Fox, David A

    2014-01-01

    Objective Aminopeptidase N (CD13, EC 3.4.11.2) is a metalloproteinase expressed by fibroblast like synoviocytes (FLS). It has been suggested that CD13 can act chemotactically for T cells in rheumatoid arthritis (RA). The goals of this study were to measure CD13 in vivo and in vitro-in RA samples, and to determine whether CD13 could play a role in homing of T cells to the RA joint. Methods IL-17 treated FLS were used to immunize mice, from which a novel anti-human CD13 monoclonal antibody (591.1D7.34) was developed. 1D7 and a second anti-CD13 monoclonal, WM15, were used to develop a novel ELISA for CD13, and CD13 enzymatic activity was measured in parallel. Chemotaxis of cytokine activated T cells (Tck) was measured by an under-agarose assay. Result We detected substantial amounts of CD13 in synovial fluids, sera, FLS lysates, and culture supernatants by ELISA, with a significant increase in CD13 in RA synovial fluids when compared to osteoarthritis (OA). CD13 accounted for most but not all of the CD13-like enzymatic activity in synovial fluid. Recombinant human CD13 was chemotactic for Tck through a G-protein-coupled-receptor and contributed to the chemotactic properties of synovial fluid independently of enzymatic activity. Conclusion CD13 is released from FLS into culture supernatants and is found in synovial fluid. CD13 induces chemotaxis of Tck, a T cell population similar to that found in RA synovium. This data suggest that CD13 could play an important role as a T cell chemoattractant, in a positive feedback loop that contributes to RA synovitis. PMID:25219368

  17. Manipulating Cx43 expression triggers gene reprogramming events in dermal fibroblasts from oculodentodigital dysplasia patients.

    PubMed

    Esseltine, Jessica L; Shao, Qing; Huang, Tao; Kelly, John J; Sampson, Jacinda; Laird, Dale W

    2015-11-15

    Oculodentodigital dysplasia (ODDD) is primarily an autosomal dominant disorder linked to over 70 GJA1 gene [connexin43 (Cx43)] mutations. For nearly a decade, our laboratory has been investigating the relationship between Cx43 and ODDD by expressing disease-linked mutants in reference cells, tissue-relevant cell lines, 3D organ cultures and by using genetically modified mouse models of human disease. Although salient features of Cx43 mutants have been revealed, these models do not necessarily reflect the complexity of the human context. To further overcome these limitations, we have acquired dermal fibroblasts from two ODDD-affected individuals harbouring D3N and V216L mutations in Cx43, along with familial controls. Using these ODDD patient dermal fibroblasts, which naturally produce less GJA1 gene product, along with RNAi and RNA activation (RNAa) approaches, we show that manipulating Cx43 expression triggers cellular gene reprogramming. Quantitative RT-PCR, Western blot and immunofluorescent analysis of ODDD patient fibroblasts show unusually high levels of extracellular matrix (ECM)-interacting proteins, including integrin α5β1, matrix metalloproteinases as well as secreted ECM proteins collagen-I and laminin. Cx43 knockdown in familial control cells produces similar effects on ECM expression, whereas Cx43 transcriptional up-regulation using RNAa decreases production of collagen-I. Interestingly, the enhanced levels of ECM-associated proteins in ODDD V216L fibroblasts is not only a consequence of increased ECM gene expression, but also due to an apparent deficit in collagen-I secretion which may further contribute to impaired collagen gel contraction in ODDD fibroblasts. These findings further illuminate the altered function of Cx43 in ODDD-affected individuals and highlight the impact of manipulating Cx43 expression in human cells. PMID:26349540

  18. Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation

    PubMed Central

    Procopio, Maria-Giuseppina; Laszlo, Csaba; Labban, Dania Al; Kim, Dong Eun; Bordignon, Pino; Jo, Seunghee; Goruppi, Sandro; Menietti, Elena; Ostano, Paola; Ala, Ugo; Provero, Paolo; Hoetzenecker, Wolfram; Neel, Victor; Kilarski, Witek; Swartz, Melody A.; Brisken, Cathrin; Lefort, Karine; Dotto, G. Paolo

    2015-01-01

    Stromal fibroblast senescence has been linked to aging-associated cancer risk. However, density and proliferation of cancer-associated fibroblasts (CAF) are frequently increased. Loss or down-modulation of the Notch effector CSL/RBP-Jκ in dermal fibroblasts is sufficient for CAF activation and ensuing keratinocyte-derived tumors. We report that CSL silencing induces senescence of primary fibroblasts from dermis, oral mucosa, breast and lung. CSL functions in these cells as direct repressor of multiple senescence- and CAF-effector genes. It also physically interacts with p53, repressing its activity. CSL is down-modulated in stromal fibroblasts of premalignant skin actinic keratosis lesions and squamous cell carcinomas (SCC), while p53 expression and function is down-modulated only in the latter, with paracrine FGF signaling as likely culprit. Concomitant loss of CSL and p53 overcomes fibroblast senescence, enhances expression of CAF effectors and promotes stromal and cancer cell expansion. The findings support a CAF activation/stromal co-evolution model under convergent CSL/p53 control. PMID:26302407

  19. Cellular retinol-binding protein-1 is transiently expressed in granulation tissue fibroblasts and differentially expressed in fibroblasts cultured from different organs.

    PubMed Central

    Xu, G.; Redard, M.; Gabbiani, G.; Neuville, P.

    1997-01-01

    We have reported that cellular retinol-binding protein-1 (CRBP-1) is transiently expressed by arterial smooth muscle cells during experimental intimal repair (P. Neuville, A. Geinoz, G. Benzonana, M. Redard, F. Gabbiani, P. Ropraz, G. Gabbiani: Am J Pathol 1997, 150:509-521). We have examined here the expression of CRBP-1 during wound healing after a full-thickness rat skin wound. CRBP-1 was transiently expressed by a significant proportion of fibroblastic cells including myofibroblasts. Expression started 4 days after wounding, reached a maximum at 12 days, and persisted up to 30 days when a scar was formed. After wound closure, most CRBP-1-containing fibroblastic cells underwent apoptosis. We have further investigated CRBP-1 expression in rat fibroblasts cultured from different organs. CRBP-1 was abundant in lung and heart fibroblasts and was detected in decreasing amounts in muscle, tendon, subcutaneous tissue, and granulation tissue fibroblasts. Dermis fibroblasts contained no detectable levels of CRBP-1. All-trans retinoic acid and transforming growth factor-beta1 inhibited cell proliferation and increased CRBP-1 expression in fibroblastic populations except dermis fibroblasts. We demonstrate that during granulation tissue formation a subpopulation of fibroblastic cells express CRBP-1 de novo. We also demonstrate that CRBP-1 expression by fibroblasts is regulated in vitro by retinoic acid and transforming growth factor-beta1. Our results suggest that CRBP-1 and possibly retinoic acid play a role in the evolution of granulation tissue. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 PMID:9403724

  20. Src inhibition blocks renal interstitial fibroblast activation and ameliorates renal fibrosis

    PubMed Central

    Yan, Yanli; Ma, Li; Zhou, Xiaoxu; Ponnusamy, Murugavel; Tang, Jinhua; Zhuang, Michelle A.; Tolbert, Evelyn; Bayliss, Georgia; Bai, Jianwen; Zhuang, Shougang

    2015-01-01

    Increased Src activity has been associated with the pathogenesis of renal tumors and some glomerular diseases, but its role in renal interstitial fibrosis remains elusive. To evaluate this, cultured renal interstitial fibroblasts (NRK-49F) were treated with PP1, a selective inhibitor of Src. This resulted in decreased expression of α-smooth muscle actin, fibronectin, and collagen I in response to serum, angiotension II, or transforming growth factor-β1 (TGF-β1). Silencing Src with siRNA also inhibited expression of those proteins. Furthermore, inhibition of Src activity blocked renal fibroblast proliferation. In a murine model of renal interstitial fibrosis induced by unilateral ureteral obstruction, the active form of Src (phopsho-Src Tyr416) was upregulated in both renal interstitial fibroblasts and renal tubular cells of the fibrotic kidney. Its inactivation reduced renal fibroblast activation and attenuated extracellular matrix protein deposition. Src inhibition also suppressed activation of TGF-β1 signaling, activation of the epidermal growth factor receptor and STAT3, and reduced the number of renal epithelial cells arrested at the G2/M phase of the cell cycle after ureteral obstruction. Thus, Src is an important mediator of renal interstitial fibroblast activation and renal fibrosis, and suggest that Src is a potential therapeutic target for treatment of chronic renal fibrosis. PMID:26444028

  1. Palladin Mediates Stiffness-Induced Fibroblast Activation in the Tumor Microenvironment

    PubMed Central

    McLane, Joshua S.; Ligon, Lee A.

    2015-01-01

    Mechanical properties of the tumor microenvironment have emerged as key factors in tumor progression. It has been proposed that increased tissue stiffness can transform stromal fibroblasts into carcinoma-associated fibroblasts. However, it is unclear whether the three to five times increase in stiffness seen in tumor-adjacent stroma is sufficient for fibroblast activation. In this study we developed a three-dimensional (3D) hydrogel model with precisely tunable stiffness and show that a physiologically relevant increase in stiffness is sufficient to lead to fibroblast activation. We found that soluble factors including CC-motif chemokine ligand (CCL) chemokines and fibronectin are necessary for this activation, and the combination of C-C chemokine receptor type 4 (CCR4) chemokine receptors and β1 and β3 integrins are necessary to transduce these chemomechanical signals. We then show that these chemomechanical signals lead to the gene expression changes associated with fibroblast activation via a network of intracellular signaling pathways that include focal adhesion kinase (FAK) and phosphoinositide 3-kinase (PI3K). Finally, we identify the actin-associated protein palladin as a key node in these signaling pathways that result in fibroblast activation. PMID:26200861

  2. Antiparasitic and antiproliferative effects of indoleamine 2,3-dioxygenase enzyme expression in human fibroblasts.

    PubMed Central

    Gupta, S L; Carlin, J M; Pyati, P; Dai, W; Pfefferkorn, E R; Murphy, M J

    1994-01-01

    Studies were carried out to evaluate the proposed role of indoleamine 2,3-dioxygenase (INDO) induction in the antimicrobial and antiproliferative effects of gamma interferon (IFN-gamma) in human fibroblasts. The INDO cDNA coding region was cloned in the pMEP4 expression vector, containing the metallothionein (MTII) promoter in the sense (+ve) or the antisense (-ve) orientation. Human fibroblasts (GM637) stably transfected with the sense construct expressed INDO activity after treatment with CdCl2 or ZnSO4, but cells transfected with the antisense construct did not. The growth of Chlamydia psittaci was strongly inhibited in INDO +ve cells but not in INDO -ve cells after treatment with Cd2+ or Zn2+. The inhibition correlated with the level of INDO activity induced and could be reversed by the addition of excess tryptophan to the medium. The growth of Toxoplasma gondii was also strongly inhibited in INDO +ve cells but not in INDO -ve cells after treatment with Cd2+. Expression of Cd(2+)-induced INDO activity also inhibited thymidine incorporation and led to cytotoxicity in INDO +ve cells but not in INDO -ve cells. Thus, the induction of INDO activity by IFN-gamma may be an important factor in the antimicrobial and antiproliferative effects of IFN-gamma in human fibroblasts. Images PMID:8188349

  3. From mechanotransduction to extracellular matrix gene expression in fibroblasts.

    PubMed

    Chiquet, Matthias; Gelman, Laurent; Lutz, Roman; Maier, Silke

    2009-05-01

    Tissue mechanics provide an important context for tissue growth, maintenance and function. On the level of organs, external mechanical forces largely influence the control of tissue homeostasis by endo- and paracrine factors. On the cellular level, it is well known that most normal cell types depend on physical interactions with their extracellular matrix in order to respond efficiently to growth factors. Fibroblasts and other adherent cells sense changes in physical parameters in their extracellular matrix environment, transduce mechanical into chemical information, and integrate these signals with growth factor derived stimuli to achieve specific changes in gene expression. For connective tissue cells, production of the extracellular matrix is a prominent response to changes in mechanical load. We will review the evidence that integrin-containing cell-matrix adhesion contacts are essential for force transmission from the extracellular matrix to the cytoskeleton, and describe novel experiments indicating that mechanotransduction in fibroblasts depends on focal adhesion adaptor proteins that might function as molecular springs. We will stress the importance of the contractile actin cytoskeleton in balancing external with internal forces, and describe new results linking force-controlled actin dynamics directly to the expression of specific genes, among them the extracellular matrix protein tenascin-C. As assembly lines for diverse signaling pathways, matrix adhesion contacts are now recognized as the major sites of crosstalk between mechanical and chemical stimuli, with important consequences for cell growth and differentiation.

  4. Follistatin-like 1 promotes cardiac fibroblast activation and protects the heart from rupture.

    PubMed

    Maruyama, Sonomi; Nakamura, Kazuto; Papanicolaou, Kyriakos N; Sano, Soichi; Shimizu, Ippei; Asaumi, Yasuhide; van den Hoff, Maurice J; Ouchi, Noriyuki; Recchia, Fabio A; Walsh, Kenneth

    2016-01-01

    Follistatin-like 1 (Fstl1) is a secreted protein that is acutely induced in heart following myocardial infarction (MI). In this study, we investigated cell type-specific regulation of Fstl1 and its function in a murine model of MI Fstl1 was robustly expressed in fibroblasts and myofibroblasts in the infarcted area compared to cardiac myocytes. The conditional ablation of Fstl1 in S100a4-expressing fibroblast lineage cells (Fstl1-cfKO mice) led to a reduction in injury-induced Fstl1 expression and increased mortality due to cardiac rupture during the acute phase. Cardiac rupture was associated with a diminished number of myofibroblasts and decreased expression of extracellular matrix proteins. The infarcts of Fstl1-cfKO mice displayed weaker birefringence, indicative of thin and loosely packed collagen. Mechanistically, the migratory and proliferative capabilities of cardiac fibroblasts were attenuated by endogenous Fstl1 ablation. The activation of cardiac fibroblasts by Fstl1 was mediated by ERK1/2 but not Smad2/3 signaling. This study reveals that Fstl1 is essential for the acute repair of the infarcted myocardium and that stimulation of early fibroblast activation is a novel function of Fstl1. PMID:27234440

  5. Lipopolysaccharide stimulates expression of osteoprotegerin and receptor activator of NF-kappa B ligand in periodontal ligament fibroblasts through the induction of interleukin-1 beta and tumor necrosis factor-alpha.

    PubMed

    Wada, Naohisa; Maeda, Hidefumi; Yoshimine, Yoshito; Akamine, Akifumi

    2004-09-01

    Our recent work showed that human periodontal ligament fibroblasts (HPLF) secrete bioactive osteoprotegerin (OPG), which inhibits osteoclastic differentiation and activity. However, it is unknown how HPLF regulate bone metabolism in the presence of lipopolysaccharide (LPS), which is a cell component of gram-negative bacteria and a pathogen in inflammatory bone diseases such as periodontitis. The present study examined the effects of Escherichia coli LPS on the gene expression of interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF-alpha), OPG, and receptor activator of NF-kappa B ligand (RANKL) in HPLF using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis. In HPLF cultured with LPS for 48 h, expression of both OPG and RANKL mRNA was up-regulated, whereas for up to 24 h of stimulation, such up-regulation was not observed. However, LPS increased expression of IL-1 beta and TNF-alpha mRNA within 6 h of treatment. Moreover, in HPLF cultured with IL-1 beta or TNF-alpha, OPG and RANKL expression was induced within 12 h of culture. The administration of neutralizing antibodies against human IL-1 beta or TNF-alpha to LPS-treated cultures of HPLF inhibited the induction of OPG and RANKL expression. These suggest that LPS stimulates both OPG and RANKL expression in HPLF by up-regulating IL-1 beta and TNF-alpha. In addition, administration of conditioned medium (CM) from HPLF (HPLF-CM) stimulated with LPS for 48 h to mouse bone marrow culture failed to induce osteoclast-like cell (OCL) formation. When mouse spleen cells were cocultured with HPLF in the presence of LPS, OCL formation was completely blocked. Taken together, our results indicate that human periodontal ligament cells stimulated with LPS inhibit osteoclastogenesis by producing more effective OPG than RANKL via the induction of IL-1 beta and TNF-alpha.

  6. JAK3/STAT6 Stimulates Bone Marrow-Derived Fibroblast Activation in Renal Fibrosis.

    PubMed

    Yan, Jingyin; Zhang, Zhengmao; Yang, Jun; Mitch, William E; Wang, Yanlin

    2015-12-01

    Renal fibrosis is a final common manifestation of CKD resulting in progressive loss of kidney function. Bone marrow-derived fibroblast precursors contribute significantly to the pathogenesis of renal fibrosis. However, the signaling mechanisms underlying the activation of bone marrow-derived fibroblast precursors in the kidney are not fully understood. In this study, we investigated the role of the Janus kinase 3 (JAK3)/signal transducer and activator of transcription (STAT6) signaling pathway in the activation of bone marrow-derived fibroblasts. In cultured mouse monocytes, IL-4 or IL-13 activated STAT6 and induced expression of α-smooth muscle actin and extracellular matrix proteins (fibronectin and collagen I), which was abolished by a JAK3 inhibitor (CP690,550) in a dose-dependent manner or blocked in the absence of STAT6. In vivo, STAT6 was activated in interstitial cells of the obstructed kidney, an effect that was abolished by CP690,550. Mice treated with CP690,550 accumulated fewer bone marrow-derived fibroblasts in the obstructed kidneys compared with vehicle-treated mice. Treatment with CP690,550 also significantly reduced myofibroblast transformation, matrix protein expression, fibrosis development, and apoptosis in obstructed kidneys. Furthermore, STAT6-deficient mice accumulated fewer bone marrow-derived fibroblasts in the obstructed kidneys, produced less extracellular matrix protein, and developed much less fibrosis. Finally, wild-type mice engrafted with STAT6(-/-) bone marrow cells displayed fewer bone marrow-derived fibroblasts in the obstructed kidneys and showed less severe renal fibrosis compared with wild-type mice engrafted with STAT6(+/+) bone marrow cells. Our results demonstrate that JAK3/STAT6 has an important role in bone marrow-derived fibroblast activation, extracellular matrix production, and interstitial fibrosis development.

  7. Biased Allelic Expression in Human Primary Fibroblast Single Cells

    PubMed Central

    Borel, Christelle; Ferreira, Pedro G.; Santoni, Federico; Delaneau, Olivier; Fort, Alexandre; Popadin, Konstantin Y.; Garieri, Marco; Falconnet, Emilie; Ribaux, Pascale; Guipponi, Michel; Padioleau, Ismael; Carninci, Piero; Dermitzakis, Emmanouil T.; Antonarakis, Stylianos E.

    2015-01-01

    The study of gene expression in mammalian single cells via genomic technologies now provides the possibility to investigate the patterns of allelic gene expression. We used single-cell RNA sequencing to detect the allele-specific mRNA level in 203 single human primary fibroblasts over 133,633 unique heterozygous single-nucleotide variants (hetSNVs). We observed that at the snapshot of analyses, each cell contained mostly transcripts from one allele from the majority of genes; indeed, 76.4% of the hetSNVs displayed stochastic monoallelic expression in single cells. Remarkably, adjacent hetSNVs exhibited a haplotype-consistent allelic ratio; in contrast, distant sites located in two different genes were independent of the haplotype structure. Moreover, the allele-specific expression in single cells correlated with the abundance of the cellular transcript. We observed that genes expressing both alleles in the majority of the single cells at a given time point were rare and enriched with highly expressed genes. The relative abundance of each allele in a cell was controlled by some regulatory mechanisms given that we observed related single-cell allelic profiles according to genes. Overall, these results have direct implications in cellular phenotypic variability. PMID:25557783

  8. Proteoglycan expression in bleomycin lung fibroblasts: role of transforming growth factor-beta(1) and interferon-gamma.

    PubMed

    Venkatesan, Narayanan; Roughley, Peter J; Ludwig, Mara S

    2002-10-01

    Bleomycin (BM)-induced pulmonary fibrosis involves excess production of proteoglycans (PGs). Because transforming growth factor-beta(1) (TGF-beta(1)) promotes fibrosis, and interferon-gamma (IFN-gamma) inhibits it, we hypothesized that TGF-beta(1) treatment would upregulate PG production in fibrotic lung fibroblasts, and IFN-gamma would abrogate this effect. Primary lung fibroblast cultures were established from rats 14 days after intratracheal instillation of saline (control) or BM (1.5 units). PGs were extracted and subjected to Western blot analysis. Bleomycin-exposed lung fibroblasts (BLF) exhibited increased production of versican (VS), heparan sulfate proteoglycan (HSPG), and biglycan (BG) compared with normal lung fibroblasts (NLF). Compared with NLF, BLF released significantly increased amounts of TGF-beta(1). TGF-beta(1) (5 ng/ml for 48 h) upregulated PG expression in both BLF and NLF. Incubation of BLF with anti-TGF-beta antibody (1, 5, and 10 microg/ml) inhibited PG expression in a dose-dependent manner. Treatment of BLF with IFN-gamma (500 U. ml(-1) x 48 h) reduced VS, HSPG, and BG expression. Furthermore, IFN-gamma inhibited TGF-beta(1)-induced increases in PG expression by these fibroblasts. Activation of fibroblasts by TGF-beta(1) promotes abnormal deposition of PGs in fibrotic lungs; downregulation of TGF-beta(1) by IFN-gamma may have potential therapeutic benefits in this disease. PMID:12225958

  9. IDO-Expressing Fibroblasts Protect Islet Beta Cells From Immunological Attack and Reverse Hyperglycemia in Non-Obese Diabetic Mice.

    PubMed

    Zhang, Yun; Jalili, Reza B; Kilani, Ruhangiz T; Elizei, Sanam Salimi; Farrokhi, Ali; Khosravi-Maharlooei, Mohsen; Warnock, Garth L; Ao, Ziliang; Marzban, Lucy; Ghahary, Aziz

    2016-09-01

    Indoleamine 2,3-dioxygenase (IDO) induces immunological tolerance in physiological and pathological conditions. Therefore, we used dermal fibroblasts with stable IDO expression as a cell therapy to: (i) Investigate the factors determining the efficacy of this cell therapy for autoimmune diabetes in non-obese diabetic (NOD) mice; (ii) Scrutinize the potential immunological mechanisms. Newly diabetic NOD mice were randomly injected with either 10 × 10(6) (10M) or 15 × 10(6) (15M) IDO-expressing dermal fibroblasts. Blood glucose levels (BGLs), body weight, plasma kynurenine levels, insulitis severity, islet beta cell function, autoreactive CD8(+) T cells, Th17 cells and regulatory T cells (Tregs) were then investigated in these mice. IL-1β and cleaved caspase-3 levels were assessed in islets co-cultured with IDO-expressing fibroblasts. BGLs in 83% mice treated with 15M IDO-expressing fibroblasts recovered to normal up to 120 days. However, only 17% mice treated with 10M IDO-expressing cells were reversed to normoglycemia. A 15M IDO-expressing fibroblasts significantly reduced infiltrated immune cells in islets and recovered the functionality of remaining islet beta cells in NOD mice. Additionally, they successfully inhibited autoreactive CD8(+) T cells and Th17 cells as well as increased Tregs in different organs of NOD mice. Islet beta cells co-cultured with IDO-expressing fibroblasts had reduced IL-1β levels and cell apoptosis. Both cell number and IDO enzymatic activity contributes to the efficiency of IDO cell therapy. Optimized IDO-expressing fibroblasts successfully reverse the progression of diabetes in NOD mice through induction of Tregs as well as inhibition of beta cell specific autoreactive CD8(+) T cells and Th17 cells. J. Cell. Physiol. 231: 1964-1973, 2016. © 2016 Wiley Periodicals, Inc.

  10. PDGFRβ expression and function in fibroblasts derived from pluripotent cells is linked to DNA demethylation

    PubMed Central

    Hewitt, Kyle J.; Shamis, Yulia; Knight, Elana; Smith, Avi; Maione, Anna; Alt-Holland, Addy; Sheridan, Steven D.; Haggarty, Stephen J.; Garlick, Jonathan A.

    2012-01-01

    Platelet-derived growth factor receptor-beta (PDGFRβ) is required for the development of mesenchymal cell types, and plays a diverse role in the function of fibroblasts in tissue homeostasis and regeneration. In this study, we characterized the expression of PDGFRβ in fibroblasts derived from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), and showed that this expression is important for cellular functions such as migration, extracellular matrix production and assembly in 3D self-assembled tissues. To determine potential regulatory regions predictive of expression of PDGFRβ following differentiation from ESCs and iPSCs, we analyzed the DNA methylation status of a region of the PDGFRB promoter that contains multiple CpG sites, before and after differentiation. We demonstrated that this promoter region is extensively demethylated following differentiation, and represents a developmentally regulated, differentially methylated region linked to PDGFRβ expression. Understanding the epigenetic regulation of genes such as PDGFRB, and identifying sites of active DNA demethylation, is essential for future applications of iPSC-derived fibroblasts for regenerative medicine. PMID:22344267

  11. Kinin B1 and B2 receptor expression in osteoblasts and fibroblasts is enhanced by interleukin-1 and tumour necrosis factor-alpha. Effects dependent on activation of NF-kappaB and MAP kinases.

    PubMed

    Brechter, Anna Bernhold; Persson, Emma; Lundgren, Inger; Lerner, Ulf H

    2008-07-01

    Pro-inflammatory mediators formed by the kallikrein-kinin system can stimulate bone resorption and synergistically potentiate bone resorption induced by IL-1 and TNF-alpha. We have shown that the effect is associated with synergistically enhanced RANKL expression and enhanced prostaglandin biosynthesis, due to increased cyclooxygenase-2 expression. In the present study, the effects of osteotropic cytokines and different kinins on the expression of receptor subtypes for bradykinin (BK), des-Arg10-Lys-BK (DALBK), IL-1beta and TNF-alpha have been investigated. IL-1beta and TNF-alpha enhanced kinin B1 and B2 receptor binding in the human osteoblastic cell line MG-63 and the mRNA expression of B1 and B2 receptors in MG-63 cells, human gingival fibroblasts and intact mouse calvarial bones. Kinins did not affect mRNA expression of IL-1 or TNF receptors. EMSA showed that IL-1beta and TNF-alpha activated NF-kappaB and AP-1 in MG-63 cells. IL-1beta stimulated NF-kappaB via a non-canonical pathway (p52/p65) and TNF-alpha via the canonical pathway (p50/p65). Activation of AP-1 involved c-Jun in both IL-1beta and TNF-alpha stimulated cells, but c-Fos only in TNF-alpha stimulated cells. Phospho-ELISA and Western blots showed that IL-1beta activated JNK and p38, but not ERK 1/2 MAP kinase. Pharmacological inhibitors showed that NF-kappaB, p38 and JNK were important for IL-1beta induced stimulation of B1 receptors, and NF-kappaB and p38 for B2 receptors. p38 and JNK were important for TNF-alpha induced stimulation of B1 receptors, whereas NF-kappaB, p38 and JNK were involved in TNF-alpha induced expression of B2 receptors. These data show that IL-1beta and TNF-alpha upregulate B1 and B2 receptor expression by mechanisms involving activation of both NF-kappaB and MAP kinase pathways, but that signal transduction pathways are different for IL-1beta and TNF-alpha. The enhanced kinin receptor expression induced by the pro-inflammatory cytokines IL-1beta and TNF-alpha might be one

  12. Cell proliferation in vitro modulates fibroblast collagenase activity

    SciTech Connect

    Lindblad, W.J.; Flood, L.

    1986-05-01

    Collagenase enzyme activity is regulated by numerous control mechanisms which prevent excessive release and activation of this protease. A primary mechanism for regulating enzyme extracellular activity may be linked to cell division, therefore they have examined the release of collagenase by fibroblasts in vitro in response to cellular proliferation. Studies were performed using fibroblasts derived from adult rat dermis maintained in DMEM containing 10% newborn calf serum, 25 mM tricine buffer, and antibiotics. Cells between subculture 10 and 19 were used with enzyme activity determined with a /sup 14/C-labelled soluble Type I collagen substrate with and without trypsin activation. Fibroblasts, trypsinized and plated at low density secreted 8.5 fold more enzyme than those cells at confluence (975 vs. 115 dpm/..mu..g DNA). This diminution occurred gradually as the cells went from logrithmic growth towards confluence. Confluent fibroblast monolayers were scraped in a grid arrangement, stimulating the remaining cells to divide, without exposure to trypsin. Within 24-48 hr postscraping enzyme levels had increased 260-400%, accompanied by enhanced incorporation of /sup 3/H-thymidine and /sup 3/H-uridine into cell macromolecules. The burst of enzyme release began to subside 12 hr later. These results support a close relationship between fibroblast proliferation and collagenase secretion.

  13. Irradiated fibroblasts promote epithelial–mesenchymal transition and HDGF expression of esophageal squamous cell carcinoma

    SciTech Connect

    Bao, Ci-Hang; Wang, Xin-Tong; Ma, Wei; Wang, Na-Na; Nesa, Effat un; Wang, Jian-Bo; Wang, Cong; Jia, Yi-Bin; Wang, Kai; Tian, Hui; Cheng, Yu-Feng

    2015-03-06

    Recent evidence suggested that nonirradiated cancer-associated fibroblasts (CAFs) promoted aggressive phenotypes of cancer cells through epithelial–mesenchymal transition (EMT). Hepatoma-derived growth factor (HDGF) is a radiosensitive gene of esophageal squamous cell carcinoma (ESCC). This study aimed to investigate the effect of irradiated fibroblasts on EMT and HDGF expression of ESCC. Our study demonstrated that coculture with nonirradiated fibroblasts significantly increased the invasive ability of ESCC cells and the increased invasiveness was further accelerated when they were cocultured with irradiated fibroblasts. Scattering of ESCC cells was also accelerated by the supernatant from irradiated fibroblasts. Exposure of ESCC cells to supernatant from irradiated fibroblasts resulted in decreased E-cadherin, increased vimentin in vitro and β-catenin was demonstrated to localize to the nucleus in tumor cells with irradiated fibroblasts in vivo models. The expression of HDGF and β-catenin were increased in both fibroblasts and ESCC cells of irradiated group in vitro and in vivo models. Interestingly, the tumor cells adjoining the stromal fibroblasts displayed strong nuclear HDGF immunoreactivity, which suggested the occurrence of a paracrine effect of fibroblasts on HDGF expression. These data suggested that irradiated fibroblasts promoted invasion, growth, EMT and HDGF expression of ESCC. - Highlights: • Irradiated CAFs accelerated invasiveness and scattering of ESCC cell lines. • Irradiated CAFs promoted EMT of ESCC cells. • Irradiated fibroblasts induced nuclear β-catenin relocalization in ESCC cells. • Irradiated fibroblasts increased HDGF expression in vitro and in vivo.

  14. Prostaglandin E₂ increases fibroblast gene-specific and global DNA methylation via increased DNA methyltransferase expression.

    PubMed

    Huang, Steven K; Scruggs, Anne M; Donaghy, Jake; McEachin, Richard C; Fisher, Aaron S; Richardson, Bruce C; Peters-Golden, Marc

    2012-09-01

    Although alterations in DNA methylation patterns have been associated with specific diseases and environmental exposures, the mediators and signaling pathways that direct these changes remain understudied. The bioactive lipid mediator prostaglandin E(2) (PGE(2)) has been shown to exert a myriad of effects on cell survival, proliferation, and differentiation. Here, we report that PGE(2) also signals to increase global DNA methylation and DNA methylation machinery in fibroblasts. HumanMethylation27 BeadChip array analysis of primary fetal (IMR-90) and adult lung fibroblasts identified multiple genes that were hypermethylated in response to PGE(2). PGE(2), compared with nontreated controls, increased expression and activity (EC(50)∼10(7) M) of one specific isoform of DNA methyltransferase, DNMT3a. Silencing of DNMT3a negated the ability of PGE(2) to increase DNMT activity. The increase in DNMT3a expression was mediated by PGE(2) signaling via its E prostanoid 2 receptor and the second messenger cAMP. PGE(2), compared with the untreated control, increased the expression and activity of Sp1 and Sp3 (EC(50)∼3×10(7) M), transcription factors known to increase DNMT3a expression, and inhibition of these transcription factors abrogated the PGE(2) increase of DNMT3a expression. These findings were specific to fibroblasts, as PGE(2) decreased DNMT1 and DNMT3a expression in RAW macrophages. Taken together, these findings establish that DNA methylation is regulated by a ubiquitous bioactive endogenous mediator. Given that PGE(2) biosynthesis is modulated by environmental toxins, various disease states, and commonly used pharmacological agents, these findings uncover a novel mechanism by which alterations in DNA methylation patterns may arise in association with disease and certain environmental exposures.

  15. Human skin fibroblast stromelysin: structure, glycosylation, substrate specificity, and differential expression in normal and tumorigenic cells

    SciTech Connect

    Wilhelm, S.M.; Collier, I.E.; Kronberger, A.; Eisen, A.Z.; Marmer, B.L.; Grant, G.A.; Bauer, E.A.; Goldberg, G.I.

    1987-10-01

    The authors have purified and determined the complete primary structure of human stromelysin, a secreted metalloprotease with a wide range of substrate specificities. Human stromelysin is synthesized in a preproenzyme form with a calculated size of 53,977 Da and a 17-amino acid long signal peptide. Prostromelysin is secreted in two forms, with apparent molecular masses on NaDodSO/sub 4//PAGE of 60 and 57 kDa. Human stromelysin is capable of degrading proteoglycan, fibronectin, laminin, and type IV collagen but not interstitial type I collagen. The enzyme is not capable of activating purified human fibroblast procollagenase. Analysis of its primary structure shows that stromelysin is in all likelihood the human analog of rat transin, which is an oncogene transformation-induced protease. The pattern of enzyme expression in normal and tumorigenic cells revealed that human skin fibroblasts in vitro secrete stromelysin constitutively. Human fetal lung fibroblasts transformed with simian virus 40, human bronchial epithelial cells transformed with the ras oncogene, fibrosarcoma cells (HT-1080), and a melanoma cell strain (A 2058), do not express this protease nor can the enzyme be induced in these cells by treatment with phorbol 12-myristate 13-acetate. The data indicate that the expression and the possible involvement of secreted metalloproteases in tumorigenesis result from a specific interaction between the transforming factor and the target cell, which may vary in different species.

  16. Activity of PLCε contributes to chemotaxis of fibroblasts towards PDGF.

    PubMed

    Martins, Marta; Warren, Sean; Kimberley, Christopher; Margineanu, Anca; Peschard, Pascal; McCarthy, Afshan; Yeo, Maggie; Marshall, Christopher J; Dunsby, Christopher; French, Paul M W; Katan, Matilda

    2012-12-01

    Cell chemotaxis, such as migration of fibroblasts towards growth factors during development and wound healing, requires precise spatial coordination of signalling events. Phosphoinositides and signalling enzymes involved in their generation and hydrolysis have been implicated in regulation of chemotaxis; however, the role and importance of specific components remain poorly understood. Here, we demonstrate that phospholipase C epsilon (PLCε) contributes to fibroblast chemotaxis towards platelet-derived growth factor (PDGF-BB). Using PLCe1 null fibroblasts we show that cells deficient in PLCε have greatly reduced directionality towards PDGF-BB without detrimental effect on their basal ability to migrate. Furthermore, we show that in intact fibroblasts, signalling events, such as activation of Rac, are spatially compromised by the absence of PLCε that affects the ability of cells to enlarge their protrusions in the direction of the chemoattractant. By further application of live cell imaging and the use of FRET-based biosensors, we show that generation of Ins(1,4,5)P(3) and recruitment of PLCε are most pronounced in protrusions responding to the PDGF-BB gradient. Furthermore, the phospholipase C activity of PLCε is critical for its role in chemotaxis, consistent with the importance of Ins(1,4,5)P(3) generation and sustained calcium responses in this process. As PLCε has extensive signalling connectivity, using transgenic fibroblasts we ruled out its activation by direct binding to Ras or Rap GTPases, and suggest instead new unexpected links for PLCε in the context of chemotaxis.

  17. Plasminogen activator inhibitor 1, fibroblast apoptosis resistance, and aging-related susceptibility to lung fibrosis.

    PubMed

    Huang, Wen-Tan; Akhter, Hasina; Jiang, Chunsun; MacEwen, Mark; Ding, Qiang; Antony, Veena; Thannickal, Victor John; Liu, Rui-Ming

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a fatal lung disorder with unknown cause and no effective treatment. The incidence of and mortality from IPF increase with age, suggesting that advanced age is a major risk factor for IPF. The mechanism underlying the increased susceptibility of the elderly to IPF, however, is unknown. In this study, we show for the first time that the protein level of plasminogen activator inhibitor 1 (PAI-1), a protease inhibitor which plays an essential role in the control of fibrinolysis, was significantly increased with age in mouse lung homogenate and lung fibroblasts. Upon bleomycin challenge, old mice experienced augmented PAI-1 induction and lung fibrosis as compared to young mice. Most interestingly, we show that fewer (myo)fibroblasts underwent apoptosis and more (myo)fibroblasts with increased level of PAI-1 accumulated in the lung of old than in young mice after bleomycin challenge. In vitro studies further demonstrate that fibroblasts isolated from lungs of old mice were resistant to H2O2 and tumor necrosis factor alpha-induced apoptosis and had augmented fibrotic responses to TGF-β1, compared to fibroblasts isolated from young mice. Inhibition of PAI-1 activity with a PAI-1 inhibitor, on the other hand, eliminated the aging-related apoptosis resistance and TGF-β1 sensitivity in isolated fibroblasts. Moreover, we show that knocking down PAI-1 in human lung fibroblasts with PAI-1 siRNA significantly increased their sensitivity to apoptosis and inhibited their responses to TGF-β1. Together, the results suggest that increased PAI-1 expression may underlie the aging-related sensitivity to lung fibrosis in part by protecting fibroblasts from apoptosis.

  18. Fibroblast activation protein α in tumor microenvironment: Recent progression and implications (Review)

    PubMed Central

    ZI, FUMING; HE, JINGSONG; HE, DONGHUA; LI, YI; YANG, LI; CAI, ZHEN

    2015-01-01

    Accumulated evidence has demonstrated that the microenvironment of a given tumor is important in determining its drug resistance, tumorigenesis, progression and metastasis. These microenvironments, like tumor cells, are vital targets for cancer therapy. The cross-talk between tumor cells and cancer-associated fibroblasts (CAFs, alternatively termed activated fibroblasts) is crucial in regulating the drug resistance, tumorigenesis, neoplastic progression, angiogenesis, invasion and metastasis of a tumor. Fibroblast activation protein α (FAPα) is a transmembrane serine protease and is highly expressed on CAFs present in >90% of human epithelial neoplasms. FAPα activity, alongside that of gelatinase and type I collagenase, has become increasingly important in cancer therapy due to its effectiveness in modulating tumor behavior. In this review, recent progression in the knowledge of the role of FAPα in tumor microenvironments is discussed. PMID:25593080

  19. Development of fibroblast culture in three-dimensional activated carbon fiber-based scaffold for wound healing.

    PubMed

    Huang, Wen-Ying; Yeh, Chia-Lin; Lin, Jui-Hsiang; Yang, Jai-Sing; Ko, Tse-Hao; Lin, Yu-Hsin

    2012-06-01

    This work developed a novel bi-layer wound dressing composed of 3D activated carbon fibers that allows facilitates fibroblast cell growth and migration to a wound site for tissue reconstruction, and the gentamicin is incorporated into a poly(γ-glutamic acid)/gelatin membrane to prevent bacterial infection. In an in vitro, field emission scanning electron microscopy shows that rat skin fibroblasts appeared and spread on the surface of activated carbon fibers, and penetrated the interior and exterior of the 3D activated carbon fiber construct to a depth of roughly 200 μm. An in vivo analysis shows that fibroblast cells containing the proposed 3D scaffold had the potential of a biologically functionalized dressing to accelerate wound closure. Additionally, fibroblasts migrated to the wound site in a bi-layer wound dressing containing fibroblasts, enhancing fibronectin and type I collagen expression, resulting in faster skin regeneration than that achieved with a Tegaderm™ hydrocolloid dressing or gauze.

  20. Rho A and the Rho kinase pathway regulate fibroblast contraction: Enhanced contraction in constitutively active Rho A fibroblast cells

    SciTech Connect

    Nobe, Koji; Nobe, Hiromi; Yoshida, Hiroko; Kolodney, Michael S.; Paul, Richard J.; Honda, Kazuo

    2010-08-20

    Research highlights: {yields} Mechanisms of fibroblast cell contraction in collagen matrix. {yields} Assessed an isometric force development using 3D-reconstituted-fibroblast fiber. {yields} Constitutively active Rho A induced the over-contraction of fibroblast cells. {yields} Rho A and Rho kinase pathway has a central role in fibroblast cell contraction. -- Abstract: Fibroblast cells play a central role in the proliferation phase of wound healing processes, contributing to force development. The intracellular signaling pathways regulating this non-muscle contraction are only partially understood. To study the relations between Rho A and contractile responses, constitutively active Rho A (CA-Rho A) fibroblast cells were reconstituted into fibers and the effects of calf serum (CS) on isometric force were studied. CS-induced force in CA-Rho A fibroblast fibers was twice as large as that in wild type (NIH 3T3) fibroblast fibers. During this response, the translocation of Rho A from the cytosol to the membrane was detected by Rho A activity assays and Western blot analysis. Pre-treatment with a Rho specific inhibitor (C3-exoenzyme) suppressed translocation as well as contraction. These results indicate that Rho A activation is essential for fibroblast contraction. The Rho kinase inhibitor ( (Y27632)) inhibited both NIH 3T3 and CA-Rho A fibroblast fiber contractions. Activation of Rho A is thus directly coupled with Rho kinase activity. We conclude that the translocation of Rho A from the cytosol to the membrane and the Rho kinase pathway can regulate wound healing processes mediated by fibroblast contraction.

  1. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    PubMed Central

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  2. Epidermal β-catenin activation remodels the dermis via paracrine signalling to distinct fibroblast lineages.

    PubMed

    Lichtenberger, Beate M; Mastrogiannaki, Maria; Watt, Fiona M

    2016-01-01

    Sustained epidermal Wnt/β-catenin signalling expands the stem cell compartment and induces ectopic hair follicles (EFs). This is accompanied by extensive fibroblast proliferation and extracellular matrix (ECM) remodelling in the underlying dermis. Here we show that epidermal Hedgehog (Hh) and Transforming growth factor-beta (TGF-β) signalling mediate the dermal changes. Pharmacological inhibition or genetic deletion of these pathways prevents β-catenin-induced dermal reprogramming and EF formation. Epidermal Shh stimulates proliferation of the papillary fibroblast lineage, whereas TGF-β2 controls proliferation, differentiation and ECM production by reticular fibroblasts. Hh inhibitors do not affect TGF-β target gene expression in reticular fibroblasts, and TGF-β inhibition does not prevent Hh target gene induction in papillary fibroblasts. However, when Hh signalling is inhibited the reticular dermis does not respond to epidermal β-catenin activation. We conclude that the dermal response to epidermal Wnt/β-catenin signalling depends on distinct fibroblast lineages responding to different paracrine signals. PMID:26837596

  3. Sirtuin 1 suppresses nuclear factor κB induced transactivation and pro-inflammatory cytokine expression in cat fibroblast cells

    PubMed Central

    ISHIKAWA, Shingo; TAKEMITSU, Hiroshi; HABARA, Makoto; MORI, Nobuko; YAMAMOTO, Ichiro; ARAI, Toshiro

    2015-01-01

    Nuclear factor κB (NF-κB) is a key factor in the development of chronic inflammation and is deeply involved in age-related and metabolic diseases development. These diseases have become a serious problem in cats. Sirtuin 1 (SIRT1) is associated with aging and metabolism through maintaining inflammation via NF-κB. In addition, fibroblasts are considered an important factor in the development of chronic inflammation. Therefore, we aimed to examine the effect of cat SIRT1 (cSIRT1) on NF-κB in cat fibroblast cells. The up-regulation of NF-κB transcriptional activity and pro-inflammatory cytokine mRNA expression by p65 subunit of NF-κB and lipopolysaccharide was suppressed by cSIRT1 in cat fibroblast cells. Our findings show that cSIRT1 is involved in the suppression of inflammation in cat fibroblast cells. PMID:26165138

  4. Centrifugal force induces human ligamentum flavum fibroblasts inflammation through activation of JNK and p38 pathways.

    PubMed

    Chao, Yuan-Hung; Tsuang, Yang-Hwei; Sun, Jui-Sheng; Sun, Man-Ger; Chen, Ming-Hong

    2012-01-01

    Inflammation has been proposed to be an important causative factor in ligamentum flavum hypertrophy. However, the mechanisms of mechanical load on inflammation of ligamentum flavum remain unclear. In this study, we used an in vitro model of human ligamentum flavum fibroblasts subjected to centrifugal force to elucidate the effects of mechanical load on cultured human ligamentum flavum fibroblasts; we further studied its molecular and biochemical mechanisms. Human ligamentum flavum fibroblasts were obtained from six patients undergoing lumbar spine surgery. Monolayer cultures of human ligamentum flavum fibroblasts were subjected to different magnitudes of centrifugal forces. Cell viability, cell death, biochemical response, and molecular response to centrifugal forces were analyzed. It was found that centrifugal stress significantly suppressed cell viability without inducing cell death. Centrifugal force at 67.1 g/cm(2) for 60 min significantly increases the production of prostaglandin E2 and nitric oxide as well as gene expression of proinflammatory cytokines, including interleukin (IL)-1α, IL-1β and IL-6, showed that centrifugal force-dependent induction of cyclooxygense-2 and inducible NO synthase required JNK and p38 mitogen-activated protein kinase, but not ERK 1/2 activities. This study suggested that centrifugal force does induce inflammatory responses in human ligamentum flavum fibroblasts. The activation of both JNK and p38 mitogen-activated protein kinase mechanotransduction cascades is a crucial intracellular mechanism that mediates cyclooxygense-2/prostaglandin E2 and inducible NO synthase/nitric oxide production.

  5. Expression of microRNAs in fibroblast of pterygium

    PubMed Central

    Lee, Joon H.; Jung, Sun-Ah; Kwon, Young-A; Chung, Jae-Lim; Kim, Ungsoo Samuel

    2016-01-01

    AIM To screen microRNAs (miRNAs) and set up target miRNAs in pterygium. METHODS Primary fibroblasts were isolated from pterygium and Tenon's capsule and cultured. Immunocytochemical analysis and Western blotting were performed to confirm the culture of fibroblasts. In all, 1733 miRNAs were screened in the first step by using GeneChip® miRNA3.0 Array. Specific miRNAs involved in the pathogenesis of pterygium were subsequently determined using the following criteria: 1) high reproducibility in a repetitive test; 2) base log value of >7.0 for both control and pterygial fibroblasts; and 3) log ratio of >1.0 between pterygial fibroblasts and control fibroblasts. RESULTS Primary screening showed that 887/1733 miRNAs were up-regulated and 846/1733 miRNAs were down-regulated in pterygial fibroblasts compared with those in control fibroblasts. Of the 1733 miRNAs screened, 4 miRNAs, namely, miRNA-143a-3p, miRNA-181a-2-3p, miRNA-377-5p and miRNA-411a-5p, met the above-mentioned criteria. Primary screening showed that these 4 miRNAs were up-regulated in pterygial fibroblasts compared with control fibroblasts and that miRNA-143a-3p had the highest mean ratio compared with the miRNAs in control fibroblasts. CONCLUSION miRNA-143a-3p, miRNA-181a-2-3p, miRNA-377-5p and miRNA-411a-5p are up-regulated in pterygial fibroblasts compared with control fibroblasts, suggesting their involvement in the pathogenesis of pterygium. PMID:27500101

  6. Regulation of matrix metalloproteinase-9 expression between gingival fibroblast cells from old and young rats

    SciTech Connect

    Kim, Su-Jung; Chung, Yong-Koo; Chung, Tae-Wook; Kim, Jeong-Ran; Moon, Sung-Kwon; Kim, Cheorl-Ho Park, Young-Guk

    2009-01-09

    Gingival fibroblast cells (rGF) from aged rats have an age-related decline in proliferative capacity compared with young rats. We investigated G1 phase cell cycle regulation and MMP-9 expression in both young and aged rGF. G1 cell cycle protein levels and activity were significantly reduced in response to interleukin-1{beta} (IL-1{beta}) stimulation with increasing in vitro age. Tumor necrosis factor-{alpha} (TNF-{alpha})-induced matrix metalloproteinase-9 (MMP-9) expression was also decreased in aged rGF in comparison with young rGF. Mutational analysis and gel shift assays demonstrated that the lower MMP-9 expression in aged rGF is associated with lower activities of transcription factors NF-{kappa}B and AP-1. These results suggest that cell cycle dysregulation and down-regulation of MMP-9 expression in rGF may play a role in gingival remodeling during in vitro aging.

  7. Effect of TERT and ATM on gene expression profiles in human fibroblasts.

    PubMed

    Baross, Agnes; Schertzer, Mike; Zuyderduyn, Scott D; Jones, Steven J M; Marra, Marco A; Lansdorp, Peter M

    2004-04-01

    Telomeres protect chromosomes from degradation, end-to-end fusion, and illegitimate recombination. Loss of telomeres may lead to cell death or senescence or may cause genomic instability, leading to tumor formation. Expression of human telomerase reverse transcriptase (TERT) in human fibroblast cells elongates their telomeres and extends their lifespan. Ataxia telangiectasia mutated (ATM) deficiency in A-T human fibroblasts results in accelerated telomere shortening, abnormal cell-cycle response to DNA damage, and early senescence. Gene expression profiling was performed by serial analysis of gene expression (SAGE) on BJ normal human skin fibroblasts, A-T cells, and BJ and A-T cells transduced with TERT cDNA and expressing telomerase activity. In the four SAGE libraries, 36,921 unique SAGE tags were detected. Pairwise comparisons between the libraries showed differential expression levels of 1%-8% of the tags. Transcripts affected by both TERT and ATM were identified according to expression patterns, making them good candidates for further studies of pathways affected by both TERT and ATM. These include MT2A, P4HB, LGALS1, CFL1, LDHA, S100A10, EIF3S8, RANBP9, and SEC63. These genes are involved in apoptosis or processes related to cell growth, and most have been found to be deregulated in cancer. Our results have provided further insight into the roles of TERT and ATM by identifying genes likely to be involved in their function. Supplementary material for this article can be found on the Genes, Chromosomes and Cancer website at http://www.interscience.wiley.com/jpages/1045-2257/suppmat/index.html. PMID:14978791

  8. Forced expression of chimeric human fibroblast tropomyosin mutants affects cytokinesis

    PubMed Central

    1995-01-01

    Human fibroblasts generate at least eight tropomyosin (TM) isoforms (hTM1, hTM2, hTM3, hTM4, hTM5, hTM5a, hTM5b, and hTMsm alpha) from four distinct genes, and we have previously demonstrated that bacterially produced chimera hTM5/3 exhibits an unusually high affinity for actin filaments and a loss of the salt dependence typical for TM-actin binding (Novy, R.E., J. R. Sellers, L.-F. Liu, and J.J.-C. Lin, 1993. Cell Motil. & Cytoskeleton. 26: 248-261). To examine the functional consequences of expressing this mutant TM isoform in vivo, we have transfected CHO cells with the full-length cDNA for hTM5/3 and compared them to cells transfected with hTM3 and hTM5. Immunofluorescence microscopy reveals that stably transfected CHO cells incorporate force- expressed hTM3 and hTM5 into stress fibers with no significant effect on general cell morphology, microfilament organization or cytokinesis. In stable lines expressing hTM5/3, however, cell division is slow and sometimes incomplete. The doubling time and the incidence of multinucleate cells in the stable hTM5/3 lines roughly parallel expression levels. A closely related chimeric isoform hTM5/2, which differs only in the internal, alternatively spliced exon also produces defects in cytokinesis, suggesting that normal TM function may involve coordination between the amino and carboxy terminal regions. This coordination may be prevented in the chimeric mutants. As bacterially produced hTM5/3 and hTM5/2 can displace hTM3 and hTM5 from actin filaments in vitro, it is likely that CHO-expressed hTM5/3 and hTM5/2 can displace endogenous TMs to act dominantly in vivo. These results support a role for nonmuscle TM isoforms in the fine tuning of microfilament organization during cytokinesis. Additionally, we find that overexpression of TM does not stabilize endogenous microfilaments, rather, the hTM-expressing cells are actually more sensitive to cytochalasin B. This suggests that regulation of microfilament integrity in vivo

  9. Hyaluronan Inhibits Tlr-4-Dependent RANKL Expression in Human Rheumatoid Arthritis Synovial Fibroblasts

    PubMed Central

    Hirabara, Shinya; Ishiguro, Naoki; Kojima, Toshihisa

    2016-01-01

    The Toll-like receptor (TLR) signaling pathway is activated in synovial fibroblast cells in patients with rheumatoid arthritis (RA). The receptor activator of nuclear factor-κB (RANK) and its ligand, RANKL, are key molecules involved in the differentiation of osteoclasts and joint destruction in RA. Hyaluronan (HA) is a major extracellular component and an important immune regulator. In this study, we show that lipopolysaccharide (LPS) stimulation significantly increases RANKL expression via a TLR-4 signaling pathway. We also demonstrate that HA suppresses LPS-induced RANKL expression, which is dependent on CD44, but not intercellular adhesion molecule-1 (ICAM-1). Our study provides evidence for HA-mediated suppression of TLR-4-dependent RANKL expression. This could present an alternative target for the treatment of destructed joint bones and cartilages in RA. PMID:27054952

  10. Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat.

    PubMed

    Yao, Rong; Cao, Yu; He, Ya-rong; Lau, Wayne Bond; Zeng, Zhi; Liang, Zong-an

    2015-01-01

    -dependent manner, via suppression of lung fibroblast activation. Functional AdipoR1 are expressed by human WI-38 lung fibroblasts, suggesting potential future clinical applicability of APN against pulmonary fibrosis.

  11. Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat.

    PubMed

    Yao, Rong; Cao, Yu; He, Ya-rong; Lau, Wayne Bond; Zeng, Zhi; Liang, Zong-an

    2015-01-01

    -dependent manner, via suppression of lung fibroblast activation. Functional AdipoR1 are expressed by human WI-38 lung fibroblasts, suggesting potential future clinical applicability of APN against pulmonary fibrosis. PMID:25945502

  12. Adiponectin Attenuates Lung Fibroblasts Activation and Pulmonary Fibrosis Induced by Paraquat

    PubMed Central

    He, Ya-rong; Lau, Wayne Bond; Zeng, Zhi; Liang, Zong-an

    2015-01-01

    -dependent manner, via suppression of lung fibroblast activation. Functional AdipoR1 are expressed by human WI-38 lung fibroblasts, suggesting potential future clinical applicability of APN against pulmonary fibrosis. PMID:25945502

  13. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    PubMed

    Brun, Paola; Pathak, Surajit; Castagliuolo, Ignazio; Palù, Giorgio; Brun, Paola; Zuin, Matteo; Cavazzana, Roberto; Martines, Emilio

    2014-01-01

    Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS) in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR)-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine) cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and can be considered a

  14. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    PubMed

    Brun, Paola; Pathak, Surajit; Castagliuolo, Ignazio; Palù, Giorgio; Brun, Paola; Zuin, Matteo; Cavazzana, Roberto; Martines, Emilio

    2014-01-01

    Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS) in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR)-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine) cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and can be considered a

  15. Transient Gene and miRNA Expression Profile Changes of Confluent Human Fibroblast Cells in Space

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lu, Tao; Wong, Michael; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Wang, Xiaoyu; Wu, Honglu

    2015-01-01

    Microgravity or an altered gravity environment from the static 1 gravitational constant has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of the cells. Whether non-dividing cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted on the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days for investigations of gene and miRNA (microRNA) expression profile changes in these cells. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly even though they were confluent, as measured by the expression of the protein Ki-67 positive cells, and the cells in space grew slightly faster. Gene and miRNA expression data indicated activation of NF(sub kappa)B (nuclear factor kappa-light-chain-enhancer of activated B cells) and other growth related pathways involving HGF and VEGF in the flown cells. On Day 14 when the cells were mostly non-dividing, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples in respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeleton changes by immunohistochemistry staining of the cells with antibodies for alpha-tubulin showed no difference between the flight and ground samples. Results of our study suggest that in true non-dividing human fibroblast cells, microgravity in

  16. A voltage-activated proton current in human cardiac fibroblasts

    SciTech Connect

    El Chemaly, Antoun; Guinamard, Romain; Demion, Marie; Fares, Nassim; Jebara, Victor; Faivre, Jean-Francois; Bois, Patrick . E-mail: patrick.bois@univ-poitiers.fr

    2006-02-10

    A voltage-activated proton current in human cardiac fibroblasts, measured using the whole-cell recording configuration of the patch-clamp technique, is reported. Increasing the pH of the bathing solution shifted the current activation threshold to more negative potentials and increased both the current amplitude and its rate of activation. Changing the pH gradient by one unit caused a 51 mV shift in the reversal potential of the current, demonstrating a high selectivity for protons of the channel carrying the current. Extracellularly applied Zn{sup 2+} reversibly inhibited the current. Activation of the current contributes to the resting membrane conductance under conditions of intracellular acidosis. It is proposed that this current in cardiac fibroblasts is involved in the regulation of the intracellular pH and the membrane potential under physiological conditions as well as in response to pathological conditions such as ischemia.

  17. Allele Specific Expression of MICA Variants in Human Fibroblasts Suggests a Pathogenic Mechanism.

    PubMed

    Shi, Chunhua; Li, Hongye; Couturier, Jacob P; Yang, Karen; Guo, Xinjian; He, Dongyi; Lewis, Dorothy E; Zhou, Xiaodong

    2015-01-01

    The major histocompatibility complex class I chain-related gene A (MICA) is involved in immune responses of both nature killer (NK) cells and subsets of T cells with its receptor NKG2D. MICA is highly polymorphic in sequence which leads to MICA protein variants with distinct features. Specific polymorphisms of MICA have been associated with inflammatory diseases, including ankylosing spondylitis (AS), ulcerative colitis (UC) and Behçet's disease. Studies herein characterize expression features of three MICA variants including MICA*008, a common variant in general population, and *MICA*007 and *019, which are associated with susceptibility to inflammatory diseases. MICA*019 was highly expressed on the surface of fibroblasts whereas expression of MICA*007 was the lowest in the culture supernatant. MICA*008 had low cell surface expression but was the only MICA allele in which exosomal material was detected. Surface or membrane-bound MICA activates NKG2D-mediated cytotoxicity, whereas soluble and exosomal MICAs down-regulate NKG2D. Therefore, comparisons of these three MICA variants in fibroblasts provides insight into understanding how MICA associated immune responses could be regulated to influence levels of inflammation.

  18. Transforming growth factor-β evokes Ca2+ waves and enhances gene expression in human pulmonary fibroblasts.

    PubMed

    Mukherjee, Subhendu; Kolb, Martin R J; Duan, Fuqin; Janssen, Luke J

    2012-06-01

    Fibroblasts maintain the structural framework of animal tissue by synthesizing extracellular matrix molecules. Chronic lung diseases are characterized in part by changes in fibroblast numbers, properties, and more. Fibroblasts respond to a variety of growth factors, cytokines, and proinflammatory mediators. However, the signaling mechanisms behind these responses have not been fully explored. We sought to determine the role of Ca(2+) waves in transforming growth factor-β (TGF-β)-mediated gene expression in human pulmonary fibroblasts. Primary human pulmonary fibroblasts were cultured and treated with TGF-β and different blockers under various conditions. Cells were then loaded with the Ca(2+) indicator dye Oregon green, and Ca(2+) waves were monitored by confocal [Ca(2+)](i) fluorimetry. Real-time PCR was used to probe gene expression. TGF-β (1 nM) evoked recurring Ca(2+) waves. A 30-minute pretreatment of SD 208, a TGF-β receptor-1 kinase inhibitor, prevented Ca(2+) waves from being evoked by TGF-β. The removal of external Ca(2+) completely occluded TGF-β-evoked Ca(2+) waves. Cyclopiazonic acid, an inhibitor of the internal Ca(2+) pump, evoked a relatively slowly developing rise in Ca(2+) waves compared with the rapid changes evoked by TGF-β, but the baseline fluorescence was increased. Ryanodine (10(-5) M) also blocked TGF-β-mediated Ca(2+) wave activity. Real-time PCR showed that TGF-β rapidly and dramatically increased the gene expression of collagen A1 and fibronectin. This increase was blocked by ryanodine treatment and cyclopiazonic acid. We conclude that, in human pulmonary fibroblasts, TGF-β acts on ryanodine-sensitive channels, leading to Ca(2+) wave activity, which in turn amplifies extracellular matrix gene expression.

  19. MicroRNA Expression Profiles in Cultured Human Fibroblasts in Space

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Lu, Tao; Jeevarajan, John; Rohde, Larry; Zhang, Ye

    2014-01-01

    Microgravity, or an altered gravity environment from the static 1g, has been shown to influence global gene expression patterns and protein levels in living organisms. However, it is unclear how these changes in gene and protein expressions are related to each other or are related to other factors regulating such changes. A different class of RNA, the small non-coding microRNA (miRNA), can have a broad effect on gene expression networks by mainly inhibiting the translation process. Previously, we investigated changes in the expression of miRNA and related genes under simulated microgravity conditions on the ground using the NASA invented bioreactor. In comparison to static 1 g, simulated microgravity altered a number of miRNAs in human lymphoblastoid cells. Pathway analysis with the altered miRNAs and RNA expressions revealed differential involvement of cell communication and catalytic activity, as well as immune response signaling and NGF activation of NF-kB pathways under simulated microgravity condition. The network analysis also identified several projected networks with c- Rel, ETS1 and Ubiquitin C as key factors. In a flight experiment on the International Space Station (ISS), we will investigate the effects of actual spaceflight on miRNA expressions in nondividing human fibroblast cells in mostly G1 phase of the cell cycle. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. In addition to miRNA expressions, we will investigate the effects of spaceflight on the cellular response to DNA damages from bleomycin treatment.

  20. Hepatocyte nuclear factor-4 prevents silencing of hepatocyte nuclear factor-1 expression in hepatoma x fibroblast cell hybrids.

    PubMed Central

    Bulla, G A

    1997-01-01

    Hepatocyte nuclear factors-1alpha (HNF1alpha) and -4 (HNF4) are components of a liver-enriched transcription activation pathway which is thought to play a critical role in hepatocyte-specific gene expression, including activation of alpha1-antitrypsin gene expression. HNF1alpha, HNF4 and alpha1-antitrypsin (alpha1AT) genes are extinguished in hepatoma/fibroblast somatic cell hybrids, suggesting that fibroblasts contain a repressor-like activity. To determine the molecular basis for silencing of these genes in cell hybrids, ectopic expression of HNF1alpha and HNF4 was used. Results show that constitutive expression of HNF4 prevents extinction of HNF1alpha gene expression in hepatoma/fibroblast hybrids. In contrast, forced HNF1alpha expression failed to prevent extinction of the HNF4 locus in cell hybrids. Likewise, the alpha1AT gene remained silent in the presence of both HNF1alpha and HNF4. These results suggest that extinction of HNF1alpha is a simple lack-of-activation phenotype, whereas extinction of HNF4 andalpha1AT loci is more complex, perhaps involving negative regulation. PMID:9171105

  1. Electrical Stimulation Modulates the Expression of Multiple Wound Healing Genes in Primary Human Dermal Fibroblasts.

    PubMed

    Park, Hyun Jin; Rouabhia, Mahmoud; Lavertu, Denis; Zhang, Ze

    2015-07-01

    This study profiled multiple human dermal fibroblast wound-healing genes in response to electrical stimulation (ES) by using an RT(2) profiler PCR-Array system. Primary human skin fibroblasts were seeded on heparin (HE)-bioactivated polypyrrole (PPy)/poly(l-lactic acid) (PLLA) conductive membranes, cultured, and subsequently exposed to ES of 50 or 200 mV/mm for 6 h. Following ES, the cells were used to extract RNA for gene profiling, and culture supernatants were used to measure the level of the different wound healing mediators. A total of 57 genes were affected (activated/repressed) by ES; among these, 49 were upregulated and 8 were downregulated. ES intensities at 50 and 200 mV/mm activated/repressed different genes. The ES-modulated genes are involved in cell adhesion, remodeling and spreading, cytoskeletal activity, extracellular matrix metabolism, production of inflammatory cytokines/chemokines and growth factors, as well as signal transduction. The expression of several genes was supported by protein production. Protein analyses showed that ES increased CCL7, KGF, and TIMP2, but reduced MMP2. This study demonstrated that ES modulates the expression of a variety of genes involved in the wound healing process, confirming that ES is a useful tool in regenerative medicine. PMID:25873313

  2. METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS

    EPA Science Inventory

    METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS. Geremy W. Knapp, Alan Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Protection Agency, Re...

  3. AGE-RELATED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS INDUCED BY MMS

    EPA Science Inventory

    Age-Related Gene Expression Changes In Human Skin Fibroblasts Induced By methyl methanesulfonate. Geremy W. Knapp, Alan H. Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Prote...

  4. Regulation of bradykinin receptor gene expression in human lung fibroblasts.

    PubMed

    Phagoo, S B; Yaqoob, M; Herrera-Martinez, E; McIntyre, P; Jones, C; Burgess, G M

    2000-06-01

    In WI-38 human fibroblasts, interleukin-1 beta and tumour necrosis factor-alpha (TNF-alpha) increased bradykinin B(1) receptor mRNA, which peaked between 2 and 4 h, remaining elevated for 20 h. Binding of the bradykinin B(1) receptor selective ligand [3H]des-Arg(10)-kallidin, also increased, peaking at 4 h and remaining elevated for 20 h. The B(max) value for [3H]des-Arg(10)-kallidin rose from 280+/-102 fmol/mg (n=3) to 701+/-147 fmol/mg (n=3), but the K(D) value remained unaltered (control, 1.04+/-0.33 nM (n=3); interleukin-1 beta, 0.88+/-0.41 nM (n=3)). The interleukin-1 beta-induced [3H]des-Arg(10)-kallidin binding sites were functional receptors, as bradykinin B(1) receptor agonist-induced responses increased in treated cells. Bradykinin B(2) receptor mRNA and [3H]bradykinin binding were upregulated by interleukin-1 beta, but not TNF-alpha. The effect of interleukin-1 beta on bradykinin B(2) receptors was smaller than for bradykinin B(1) receptors. Cycloheximide prevented interleukin-1 beta-mediated increases in B(1) and B(2) binding, but not mRNA suggesting that de novo synthesis of a transcriptional activator was unnecessary.

  5. DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts.

    PubMed

    Karouzakis, E; Rengel, Y; Jüngel, A; Kolling, C; Gay, R E; Michel, B A; Tak, P P; Gay, S; Neidhart, M; Ospelt, C

    2011-12-01

    In the search for specific genes regulated by DNA methylation in rheumatoid arthritis (RA), we investigated the expression of CXCL12 in synovial fibroblasts (SFs) and the methylation status of its promoter and determined its contribution to the expression of matrix metalloproteinases (MMPs). DNA was isolated from SFs and methylation was analyzed by bisulfite sequencing and McrBC assay. CXCL12 protein was quantified by enzyme-linked immunosorbent assay before and after treatment with 5-azacytidine. RASFs were transfected with CXCR7-siRNA and stimulated with CXCL12. Expression of MMPs was analyzed by real-time PCR. Basal expression of CXCL12 was higher in RASFs than osteoarthritis (OA) SFs. 5-azacytidine demethylation increased the expression of CXCL12 and reduced the methylation of CpG nucleotides. A lower percentage of CpG methylation was found in the CXCL12 promoter of RASFs compared with OASFs. Overall, we observed a significant correlation in the mRNA expression and the CXCL12 promoter DNA methylation. Stimulation of RASFs with CXCL12 increased the expression of MMPs. CXCR7 but not CXCR4 was expressed and functional in SFs. We show here that RASFs produce more CXCL12 than OASFs due to promoter methylation changes and that stimulation with CXCL12 activates MMPs via CXCR7 in SFs. Thereby we describe an endogenously activated pathway in RASFs, which promotes joint destruction. PMID:21753787

  6. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    SciTech Connect

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio . E-mail: harzate@servidor.unam.mx

    2007-07-06

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation.

  7. Increased fibronectin expression in sturge-weber syndrome fibroblasts and brain tissue.

    PubMed

    Comi, Anne M; Hunt, Piper; Vawter, Marquis P; Pardo, Carlos A; Becker, Kevin G; Pevsner, Jonathan

    2003-05-01

    Sturge-Weber syndrome (SWS) is a neurocutaneous disorder that presents with a facial port-wine stain and a leptomeningeal angioma. Fibronectin expression regulates angiogenesis and vasculogenesis and participates in brain tissue responses to ischemia and seizures. We therefore hypothesized that abnormal gene expression of fibronectin and other extracellular matrix genes would be found in SWS brain tissue and SWS port-wine skin fibroblasts. Fibronectin gene and protein expression from port-wine-derived fibroblasts were compared with that from normal skin-derived fibroblasts of four individuals with SWS using microarrays, reverse transcriptase-PCR, Western analysis, and immunocytochemistry. Fibronectin gene and/or protein expression from eight SWS surgical brain samples was compared with that in two surgical epilepsy brain samples and six postmortem brain samples using microarrays, reverse transcriptase-PCR, and Western analysis. The gene expression of fibronectin was significantly increased (p < 0.05) in the SWS port-wine-derived fibroblasts compared with that of fibroblasts from SWS normal skin. A trend for increased protein levels of fibronectin in port-wine fibroblasts was found by Western analysis. No difference in the pattern of fibronectin staining was detected. The gene expression of fibronectin was significantly increased (p < 0.05), and a trend for increased fibronectin protein expression was found in the SWS surgical brain samples compared with the postmortem controls. These results suggest a potential role for fibronectin in the pathogenesis of SWS and in the brain's response to chronic ischemic injury in SWS. The reproducible differences in fibronectin gene expression between the SWS port-wine-derived fibroblasts and the SWS normal skin-derived fibroblasts are consistent with the presence of a hypothesized somatic mutation underlying SWS. PMID:12621118

  8. Expression of TGF-β3 in isolated fibroblasts from foreskin

    PubMed Central

    Mahmoudi Rad, Mahnaz; Mahmoudi Rad, Niki; Mirdamadi, Yasaman

    2015-01-01

    Background: The multifunctional transforming growth factor beta (TGF-β) is a glycoprotein that exists in three isoforms. TGF-β3 expression increases in fetal wound healing and reduces fibronectin and collagen I and III deposition, and also improves the architecture of the neodermis which is a combination of blood vessels and connective tissue during wound healing. Fibroblasts are key cells in the wound healing process. TGF-β3 plays a critical role in scar-free wound healing and fibroblast actions in the wound healing process. The aim of this study was to express the TGF-β3 gene (tgf-b3) in human foreskin fibroblasts (HFF’s). Methods: We obtained HFF’s from a newborn and a primary fibroblast culture was prepared. The cells were transfected with TGF-β3-pCMV6-XL5 plasmid DNA by both lipofection and electroporation. Expression of TGF-β3 was measured by enzyme-linked immunosorbent assay (ELISA). Results: The highest TGF-β3 expression (8.3-fold greater than control) was obtained by lipofection after 72 hours using 3 µl of transfection reagent. Expression was 1.4-fold greater than control by electroporation. Conclusions: In this study, we successfully increased TGF-β3 expression in primary fibroblast cells. In the future, grafting these transfected fibroblasts onto wounds can help the healing process without scarring. PMID:26989741

  9. Expression of fibroblast growth factors (Fgfs) in murine tooth development.

    PubMed

    Porntaveetus, Thantrira; Otsuka-Tanaka, Yoko; Basson, M Albert; Moon, Anne M; Sharpe, Paul T; Ohazama, Atsushi

    2011-05-01

    Fgf signalling is known to play critical roles in tooth development. Twenty-two Fgf ligands have been identified in mammals, but expression of only 10 in molars and three in the incisor loop stem cell region have been documented in murine tooth development. Our understanding of Fgf signalling in tooth development thus remains incomplete and we therefore carried out comparative in situ hybridisation analysis of unexamined Fgf ligands (eight in molars and 15 in cervical loops of incisors; Fgf11-Fgf14 were excluded from this analysis because they are not secreted and do not activate Fgf receptors) during tooth development. To identify where Fgf signalling is activated, we also examined the expression of Etv4 and Etv5, considered to be transcriptional targets of the Fgf signalling pathway. In molar tooth development, the expression of Fgf15 and Fgf20 was restricted to the primary enamel knots, whereas Etv4 and Etv5 were expressed in cells surrounding the primary enamel knots. Fgf20 expression was observed in the secondary enamel knots, whereas Fgf15 showed localised expression in the adjacent mesenchyme. Fgf16, Etv4 and Etv5 were strongly expressed in the ameloblasts of molars. In the incisor cervical loop stem cell region, Fgf17, Fgf18, Etv4 and Etv5 showed a restricted expression pattern. These molecules thus show dynamic temporo-spatial expression in murine tooth development. We also analysed teeth in Fgf15(-/-) and Fgf15(-/-) ;Fgf8(+/-) mutant mice. Neither mutant showed significant abnormalities in tooth development, indicating likely functional redundancy.

  10. Alteration of Connective Tissue Growth Factor (CTGF) Expression in Orbital Fibroblasts from Patients with Graves’ Ophthalmopathy

    PubMed Central

    Chang, Pei-Chen; Wei, Yau-Huei

    2015-01-01

    Graves’ ophthalmopathy (GO) is a disfiguring and sometimes blinding disease, which is characterized by inflammation and swelling of orbital tissues, with fibrosis and adipogenesis being predominant features. The aim of this study is to investigate whether the expression levels of fibrosis-related genes, especially that of connective tissue growth factor (CTGF), are altered in orbital fibroblasts of patients with GO. The role of oxidative stress in the regulation of CTGF expression in GO orbital fibroblasts is also examined. By a SYBR Green-based real time quantitative PCR (RT-QPCR), we demonstrated that the mRNA expression levels of fibronectin, apolipoprotein J, and CTGF in cultured orbital fibroblasts from patients with GO were significantly higher than those of age-matched normal controls (p = 0.007, 0.037, and 0.002, respectively). In addition, the protein expression levels of fibronectin, apolipoprotein J, and CTGF analyzed by Western blot were also significantly higher in GO orbital fibroblasts (p = 0.046, 0.032, and 0.008, respectively) as compared with the control. Furthermore, after treatment of orbital fibroblasts with a sub-lethal dose of hydrogen peroxide (200 μM H2O2), we found that the H2O2-induced increase of CTGF expression was more pronounced in the GO orbital fibroblasts as compared with those in normal controls (20% vs. 7%, p = 0.007). Importantly, pre-incubation with antioxidants including N-acetylcysteine (NAC) and vitamin C, respectively, resulted in significant attenuation of the induction of CTGF in GO orbital fibroblasts in response to H2O2 (p = 0.004 and 0.015, respectively). Taken together, we suggest that oxidative stress plays a role in the alteration of the expression of CTGF in GO orbital fibroblasts that may contribute to the pathogenesis and progression of GO. Antioxidants may be used in combination with the therapeutic agents for effective treatment of GO. PMID:26599235

  11. Forced expression of OCT4 influences the expression of pluripotent genes in human mesenchymal stem cells and fibroblasts.

    PubMed

    Palma, C S; Tannous, M A; Malta, T M; Russo, E M S; Covas, D T; Picanço-Castro, V

    2013-04-02

    Genetic reprogramming of adult cells to generate induced pluripotent stem (iPS) cells is a new and important step in sidestepping some of the ethical issues and risks involved in the use of embryonic stem cells. iPS cells can be generated by introduction of transcription factors, such as OCT4, SOX2, KLF4, and CMYC. iPS cells resemble embryonic stem cells in their properties and differentiation potential. The mechanisms that lead to induced pluripotency and the effect of each transcription factor are not completely understood. We performed a critical evaluation of the effect of overexpressing OCT4 in mesenchymal stem cells and fibroblasts and found that OCT4 can activate the expression of other stemness genes, such as SOX2, NANOG, CMYC, FOXD3, KLF4, and βCATENIN, which are not normally or are very weakly expressed in mesenchymal stem cells. Transient expression of OCT4 was also performed to evaluate whether these genes are affected by its overexpression in the first 48 h. Transfected fibroblast cells expressed around 275-fold more OCT4 than non-transfected cells. In transient expression, in which cells were analyzed after 48 h, we detected only the up-regulation of FOXD3, SOX2, and KLF4 genes, suggesting that these genes are the earlier targets of OCT4 in this cellular type. We conclude that forced expression of OCT4 can alter cell status and activate the pluripotent network. Knowledge gained through study of these systems may help us to understand the kinetics and mechanism of cell reprogramming.

  12. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in space

    NASA Astrophysics Data System (ADS)

    Wu, Honglu; Story, Michael; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Lu, Tao

    2016-07-01

    Microgravity, or an altered gravity environment from the Earth1g, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of these cells. Whether non-proliferating cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted onboard the International Space Station (ISS), confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days, respectively, for investigations of gene and miRNA expression profile changes in these cells. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67 positive cells. Gene and miRNA expression data indicated activation of NFkB and other growth related pathways involving HGF and Vegf along with down regulation of the Let-7 miRNA family. On Day 14 when the cells were mostly non-proliferating, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples with respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for αa-tubulin and fibronectin showed no difference between flown and ground samples. Taken together, our study suggests that in true non-dividing human fibroblast cells in culture, microgravity experienced in space has little effect on the gene and miRNA expression profiles.

  13. Transient Gene and MicroRNA Expression Profile Changes of Confluent Human Fibroblast Cells in Space

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lu, Tao; Wong, Michael; Wang, Xiaoyu; Stodieck, Louis; Karouia, Fathi; Story, Michael; Wu, Honglu

    2016-01-01

    Microgravity, or an altered gravity environment from the Earth1g, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of these cells. Whether non-proliferating cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted onboard the International Space Station (ISS), confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days, respectively, for investigations of gene and miRNA expression profile changes in these cells. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67 positive cells. Gene and miRNA expression data indicated activation of NF(kappa)B and other growth related pathways involving HGF and Vegf along with down regulation of the Let-7 miRNA family. On Day 14 when the cells were mostly non-proliferating, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples with respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for alpha-tubulin and fibronectin showed no difference between flown and ground samples. Taken together, our study suggests that in true non-dividing human fibroblast cells in culture, microgravity experienced in space has little effect on the gene and miRNA expression profiles.

  14. Largazole, a class I histone deacetylase inhibitor, enhances TNF-α-induced ICAM-1 and VCAM-1 expression in rheumatoid arthritis synovial fibroblasts.

    PubMed

    Ahmed, Salahuddin; Riegsecker, Sharayah; Beamer, Maria; Rahman, Ayesha; Bellini, Joseph V; Bhansali, Pravin; Tillekeratne, L M Viranga

    2013-07-15

    In the present study, we evaluated the effect of largazole (LAR), a marine-derived class I HDAC inhibitor, on tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and matrix metalloproteinase-2 (MMP-2) activity. LAR (1-5 μM) had no adverse effect on the viability of RA synovial fibroblasts. Among the different class I HDACs screened, LAR (0.5-5 μM) inhibited the constitutive expression of HDAC1 (0-30%). Surprisingly, LAR increased class II HDAC [HDAC6] by ~220% with a concomitant decrease in HDAC5 [30-58%] expression in RA synovial fibroblasts. SAHA (5 μM), a pan-HDAC inhibitor, also induced HDAC6 expression in RA synovial fibroblasts. Pretreatment of RA synovial fibroblasts with LAR further enhanced TNF-α-induced ICAM-1 and VCAM-1 expression. However, LAR inhibited TNF-α-induced MMP-2 activity in RA synovial fibroblasts by 35% when compared to the TNF-α-treated group. Further, the addition of HDAC6 specific inhibitor Tubastatin A with LAR suppressed TNF-α+LAR-induced ICAM-1 and VCAM-1 expression and completely blocked MMP-2 activity, suggesting a role of HDAC6 in LAR-induced ICAM-1 and VCAM-1 expression. LAR also enhanced TNF-α-induced phospho-p38 and phospho-AKT expression, but inhibited the expression of phospho-JNK and nuclear translocation of NF-κBp65 in RA synovial fibroblasts. These results suggest that LAR activates p38 and Akt pathways and influences class II HDACs, in particular HDAC6, to enhance some of the detrimental effects of TNF-α in RA synovial fibroblasts. Understanding the exact role of different HDAC isoenzymes in RA pathogenesis is extremely important in order to develop highly effective HDAC inhibitors for the treatment of RA.

  15. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight.

    PubMed

    Zhang, Ye; Lu, Tao; Wong, Michael; Wang, Xiaoyu; Stodieck, Louis; Karouia, Fathi; Story, Michael; Wu, Honglu

    2016-06-01

    Microgravity, or an altered gravity environment different from the 1 g of the Earth, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies that have been conducted in space or by using simulated microgravity on the ground have focused on the growth or differentiation of these cells. It has not been specifically addressed whether nonproliferating cultured cells will sense the presence of microgravity in space. In an experiment conducted onboard the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 d, respectively, to investigate changes in gene and microRNA (miRNA) expression profiles in these cells. Results of the experiment showed that on d 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67(+) cells. Gene and miRNA expression data indicated activation of NF-κB and other growth-related pathways that involve hepatocyte growth factor and VEGF as well as the down-regulation of the Let-7 miRNA family. On d 14, when the cells were mostly nonproliferating, the gene and miRNA expression profile of the flight sample was indistinguishable from that of the ground sample. Comparison of gene and miRNA expressions in the d 3 samples, with respect to d 14, revealed that most of the changes observed on d 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for α-tubulin and fibronectin showed no difference between the flown and ground samples. Taken together, our study suggests that in true nondividing human fibroblast cells in culture, microgravity experienced in space has little effect on gene and miRNA expression profiles.-Zhang, Y., Lu, T., Wong, M., Wang, X., Stodieck, L., Karouia, F., Story, M., Wu, H. Transient gene and microRNA expression profile changes of

  16. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight.

    PubMed

    Zhang, Ye; Lu, Tao; Wong, Michael; Wang, Xiaoyu; Stodieck, Louis; Karouia, Fathi; Story, Michael; Wu, Honglu

    2016-06-01

    Microgravity, or an altered gravity environment different from the 1 g of the Earth, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies that have been conducted in space or by using simulated microgravity on the ground have focused on the growth or differentiation of these cells. It has not been specifically addressed whether nonproliferating cultured cells will sense the presence of microgravity in space. In an experiment conducted onboard the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 d, respectively, to investigate changes in gene and microRNA (miRNA) expression profiles in these cells. Results of the experiment showed that on d 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67(+) cells. Gene and miRNA expression data indicated activation of NF-κB and other growth-related pathways that involve hepatocyte growth factor and VEGF as well as the down-regulation of the Let-7 miRNA family. On d 14, when the cells were mostly nonproliferating, the gene and miRNA expression profile of the flight sample was indistinguishable from that of the ground sample. Comparison of gene and miRNA expressions in the d 3 samples, with respect to d 14, revealed that most of the changes observed on d 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for α-tubulin and fibronectin showed no difference between the flown and ground samples. Taken together, our study suggests that in true nondividing human fibroblast cells in culture, microgravity experienced in space has little effect on gene and miRNA expression profiles.-Zhang, Y., Lu, T., Wong, M., Wang, X., Stodieck, L., Karouia, F., Story, M., Wu, H. Transient gene and microRNA expression profile changes of

  17. Endogenous and ectopic expression of telomere regulating genes in chicken embryonic fibroblasts

    SciTech Connect

    Michailidis, Georgios; Saretzki, Gabriele; Hall, Judith , E-Mail: Judith.hall@ncl.ac.uk

    2005-09-16

    In this study, we compared the endogenous expression of genes encoding telomere regulating proteins in cultured chicken embryonic fibroblasts (CEFs) and 10-day-old chicken embryos. CEFs maintained in vitro senesced and senescence was accompanied by reduced telomere length, telomerase activity, and expression of the chicken (c) TRF1 gene. There was no change in TRF2 gene expression although the major TRF2 transcript identified in 10-day-old chicken embryos encoded a truncated TRF2 protein (TRF2'), containing an N-terminal dimerisation domain but lacking a myb-related DNA binding domain and nuclear localisation signal. Senescence of the CEFs in vitro was associated with the loss of the TRF2' transcript, indicative of a novel function for the encoded protein. Senescence was also coupled with decreased expression of RAD51, but increased RAD52 expression. These data support that RAD51 independent recombination mechanisms do not function in vitro to maintain chicken telomeres. To attempt to rescue the CEFs from replicative senescence, we stably transfected passage 3 CEFs with the human telomerase reverse transcriptase (hTERT) catalytic subunit. While hTERT expression was detected in the stable transfectants neither telomerase activity nor the stabilisation of telomere length was observed, and the transfectant cells senesced at the same passage number as the untransfected cells. These data indicate that the human TERT is incompatible with the avian telomere maintenance apparatus and suggest the functioning of a species specific telomere system in the avian.

  18. PGE2 reduces MMP-14 and increases plasminogen activator inhibitor-1 in cardiac fibroblasts.

    PubMed

    Kassem, Kamal M; Clevenger, Margarette H; Szandzik, David L; Peterson, Edward; Harding, Pamela

    2014-10-01

    Prostaglandin E2 (PGE2) is elevated during cardiac injury and we have previously shown that mice lacking the PGE2 EP4 receptor display dilated cardiomyopathy (DCM) with increased expression of the membrane type matrix metalloproteinase, MMP-14. We thus hypothesized that PGE2 regulates expression of MMP-14 and also affects fibroblast migration. Primary cultures of neonatal rat ventricular fibroblasts (NVFs) were used to test the effects of PGE2. Gene and protein expression was assessed by real time RT-PCR and Western blot, MMP activity was determined by zymography and migration of NVF was assessed by motility in a transwell system. PGE2 reduced expression of MMP-14 and these effects were antagonized by an EP4 antagonist. An EP4 agonist mimicked the effect of PGE2. PGE2 also increased mRNA and protein levels of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of MMP activation. However, PGE2-stimulation of PAI-1 was mediated by the EP1/EP3 receptor and not EP4. Migration of NVF was assessed by motility in a transwell system. Treatment of NVFs with PGE2 reduced the number of cells migrating toward 10% FCS. Treatment with the EP2 agonist also reduced migration but did not affect MMP-14 expression or PAI-1. Our results suggest that PGE2 utilizes different receptors and mechanisms to ultimately decrease MMP expression and NVF migration.

  19. Therapeutic transdifferentiation of human fibroblasts into endothelial cells using forced expression of lineage-specific transcription factors

    PubMed Central

    Wong, Wing Tak; Cooke, John P

    2016-01-01

    Transdifferentiation is the direct conversion from one somatic cell type into another desired somatic cell type. This reprogramming method offers an attractive approach for regenerative medicine. Here, we demonstrate that neonatal fibroblasts can be transdifferentiated into endothelial cells using only four endothelial transcription factors, namely, ETV2, FLI1, GATA2, and KLF4. We observed a significant up-regulation of endothelial genes including KDR, CD31, CD144, and vWF in human neonatal foreskin (BJ) fibroblasts infected with the lentiviral construct encoding the open reading frame of the four transcription factors. We observed morphological changes in BJ fibroblasts from the fibroblastic spindle shape into a more endothelial-like cobblestone structures. Fluorescence-activated cell sorting analysis revealed that ~16% of the infected cells with the lentiviral constructs encoding 4F expressed CD31. The sorted cells were allowed to expand for 2 weeks and these cells were immunostained and found to express endothelial markers CD31. The induced endothelial cells also incorporated fluorescence-labeled acetylated low-density lipoprotein and efficiently formed capillary-like networks when seeded on Matrigel. These results suggested that the induced endothelial cells were functional in vitro. Taken together, we successfully demonstrated the direct conversion of human neonatal fibroblasts into endothelial cells by transduction of lentiviral constructs encoding endothelial lineage-specific transcription factors ETV2, FLI1, GATA2, and KLF4. The directed differentiation of fibroblasts into endothelial cells may have significant utility in diseases characterized by fibrosis and loss of microvasculature. PMID:27081470

  20. Expression of molecules involved in B lymphocyte survival and differentiation by synovial fibroblasts.

    PubMed

    Edwards, J C; Leigh, R D; Cambridge, G

    1997-06-01

    The synovitis of rheumatoid arthritis (RA) is one of few pathological lesions in which B lymphocyte accumulation progresses to the extent of germinal centre formation. The present study was designed to assess the ability of synovial fibroblasts to express molecules implicated in B lymphocyte survival and differentiation, both in vivo, and in response to cytokines in vitro. Normal and diseased synovia were examined by indirect immunofluorescence. In all tissues synovial intimal fibroblasts showed co-expression of vascular cell adhesion molecule-1 (VCAM-1) and complement decay-accelerating factor (DAF) comparable to that of follicular dendritic cells (FDC), but not complement receptor 2 (CR2). In rheumatoid synovia, subintimal cells showed variable expression of VCAM-1 and DAF, with bright co-expression of VCAM-1, DAF and CR2 in lymphoid follicle centres. B lymphocytes, some of which were proliferating cell nuclear antigen-positive, were present in contact with subintimal cells expressing VCAM-1 with or without DAF or CR2. B lymphocytes were rarely present in the intimal layer, and, where present, showed fragmentation. In vitro, synovial fibroblasts exposed to tumour necrosis factor-alpha (TNF-alpha) in combination with interferon-gamma (IFN-gamma) showed enhanced expression of VCAM-1, in comparison with fibroblasts from skin and lung and, unlike skin and lung fibroblasts, also expressed DAF and CR2. These findings support the hypothesis that synovial targeting in RA involves an enhanced ability of synovial fibroblasts to support B lymphocyte survival. This appears to be dependent, not on the constitutive expression of VCAM-1 and DAF on intimal cells, but on the increased ability of subintimal cells to respond to proinflammatory cytokines, perhaps critically in the expression of VCAM-1.

  1. Expression of molecules involved in B lymphocyte survival and differentiation by synovial fibroblasts.

    PubMed

    Edwards, J C; Leigh, R D; Cambridge, G

    1997-06-01

    The synovitis of rheumatoid arthritis (RA) is one of few pathological lesions in which B lymphocyte accumulation progresses to the extent of germinal centre formation. The present study was designed to assess the ability of synovial fibroblasts to express molecules implicated in B lymphocyte survival and differentiation, both in vivo, and in response to cytokines in vitro. Normal and diseased synovia were examined by indirect immunofluorescence. In all tissues synovial intimal fibroblasts showed co-expression of vascular cell adhesion molecule-1 (VCAM-1) and complement decay-accelerating factor (DAF) comparable to that of follicular dendritic cells (FDC), but not complement receptor 2 (CR2). In rheumatoid synovia, subintimal cells showed variable expression of VCAM-1 and DAF, with bright co-expression of VCAM-1, DAF and CR2 in lymphoid follicle centres. B lymphocytes, some of which were proliferating cell nuclear antigen-positive, were present in contact with subintimal cells expressing VCAM-1 with or without DAF or CR2. B lymphocytes were rarely present in the intimal layer, and, where present, showed fragmentation. In vitro, synovial fibroblasts exposed to tumour necrosis factor-alpha (TNF-alpha) in combination with interferon-gamma (IFN-gamma) showed enhanced expression of VCAM-1, in comparison with fibroblasts from skin and lung and, unlike skin and lung fibroblasts, also expressed DAF and CR2. These findings support the hypothesis that synovial targeting in RA involves an enhanced ability of synovial fibroblasts to support B lymphocyte survival. This appears to be dependent, not on the constitutive expression of VCAM-1 and DAF on intimal cells, but on the increased ability of subintimal cells to respond to proinflammatory cytokines, perhaps critically in the expression of VCAM-1. PMID:9182884

  2. Fibroblast Growth Factor Receptors (FGFRs) in Human Sperm: Expression, Functionality and Involvement in Motility Regulation

    PubMed Central

    Saucedo, Lucía; Buffa, Gabriela N.; Rosso, Marina; Guillardoy, Tomás; Góngora, Adrian; Munuce, María J.

    2015-01-01

    Fibroblast growth factors receptors (FGFRs) have been widely characterized in somatic cells, but there is scarce evidence of their expression and function in mammalian gametes. The objective of the present study was to evaluate the expression of FGFRs in human male germ cells, to determine sperm FGFR activation by the FGF2 ligand and their participation in the regulation of sperm motility. The expression of FGFR1, 2, 3 and 4 mRNAs and proteins in human testis and localization of these receptors in germ cells of the seminiferous epithelium was demonstrated. In ejaculated sperm, FGFRs were localized to the acrosomal region and flagellum. Sperm exposure to FGF2 caused an increase in flagellar FGFR phosphorylation and activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB or Akt) signaling pathways. Incubation with FGF2 led to a significant increase in the percentage of total and progressive sperm motility, as well as in sperm kinematics. All responses were prevented by sperm preincubation with BGJ398, a specific inhibitor of FGFR tyrosine kinase activity. In addition to confirming the expression of FGFRs in germ cells of the human testis, our study describes for the first time the presence, localization and functionality of human sperm FGFRs, and provides evidence of the beneficial effect of FGF2 upon sperm motility. PMID:25970615

  3. Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis.

    PubMed

    Li, Jianzhong; Ren, Jiafa; Liu, Xin; Jiang, Lei; He, Weichun; Yuan, Weiping; Yang, Junwei; Dai, Chunsun

    2015-09-01

    The mammalian target of rapamycin (mTOR) was recently identified in two structurally distinct multiprotein complexes: mTORC1 and mTORC2. Previously, we found that Rictor/mTORC2 protects against cisplatin-induced acute kidney injury, but the role and mechanisms for Rictor/mTORC2 in TGFβ1-induced fibroblast activation and kidney fibrosis remains unknown. To study this, we initially treated NRK-49F cells with TGFβ1 and found that TGFβ1 could activate Rictor/mTORC2 signaling in cultured cells. Blocking Rictor/mTORC2 signaling with Rictor or Akt1 small interfering RNAs markedly inhibited TGFβ1-induced fibronection and α-smooth muscle actin expression. Ensuing western blotting or immunostaining results showed that Rictor/mTORC2 signaling was activated in kidney interstitial myofibroblasts from mice with unilateral ureteral obstruction. Next, a mouse model with fibroblast-specific deletion of Rictor was generated. These knockout mice were normal at birth and had no obvious kidney dysfunction or kidney morphological abnormality within 2 months of birth. Compared with control littermates, the kidneys of Rictor knockout mice developed less interstitial extracellular matrix deposition and inflammatory cell infiltration at 1 or 2 weeks after ureteral obstruction. Thus our study suggests that Rictor/mTORC2 signaling activation mediates TGFβ1-induced fibroblast activation and contributes to the development of kidney fibrosis. This may provide a therapeutic target for chronic kidney diseases.

  4. Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis

    PubMed Central

    Li, Jianzhong; Ren, Jiafa; Liu, Xin; Jiang, Lei; He, Weichun; Yuan, Weiping; Yang, Junwei; Dai, Chunsun

    2015-01-01

    The mammalian target of rapamycin (mTOR) was recently identified in two structurally distinct multiprotein complexes: mTORC1 and mTORC2. Previously, we found that Rictor/mTORC2 protects against cisplatin-induced acute kidney injury, but the role and mechanisms for Rictor/mTORC2 in TGFβ1-induced fibroblast activation and kidney fibrosis remains unknown. To study this, we initially treated NRK-49F cells with TGFβ1 and found that TGFβ1 could activate Rictor/mTORC2 signaling in cultured cells. Blocking Rictor/mTORC2 signaling with Rictor or Akt1 small interfering RNAs markedly inhibited TGFβ1-induced fibronection and α-smooth muscle actin expression. Ensuing western blotting or immunostaining results showed that Rictor/mTORC2 signaling was activated in kidney interstitial myofibroblasts from mice with unilateral ureteral obstruction. Next, a mouse model with fibroblast-specific deletion of Rictor was generated. These knockout mice were normal at birth and had no obvious kidney dysfunction or kidney morphological abnormality within 2 months of birth. Compared with control littermates, the kidneys of Rictor knockout mice developed less interstitial extracellular matrix deposition and inflammatory cell infiltration at 1 or 2 weeks after ureteral obstruction. Thus our study suggests that Rictor/mTORC2 signaling activation mediates TGFβ1-induced fibroblast activation and contributes to the development of kidney fibrosis. This may provide a therapeutic target for chronic kidney diseases. PMID:25970154

  5. Fibroblast growth factor 7 inhibits cholesterol 7{alpha}-hydroxylase gene expression in hepatocytes

    SciTech Connect

    Sun, Zhichao; Yu, Xuemei; Wu, Weibin; Jia, Dongwei; Chen, Yinle; Ji, Lingling; Liu, Xijun; Peng, Xiaomin; Li, Yintao; Yang, Lili; Ruan, Yuanyuan; Gu, Jianxin; Ren, Shifang; Zhang, Songwen

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer FGF7 strongly and rapidly down-regulates the expression of CYP7A1 in hepatocytes. Black-Right-Pointing-Pointer FGF7 suppresses the expression of CYP7A1 via FGFR2 and downstream JNK activation. Black-Right-Pointing-Pointer Blocking FGF7 abrogates HSC-induced inhibition of CYP7A1 expression in hepatocytes. -- Abstract: Cholesterol 7{alpha}-hydroxylase (CYP7A1) is the initial and rate-limiting enzyme for bile acid synthesis. Transcription of the CYP7A1 gene is regulated by bile acids, nuclear receptors and cytokines. Fibroblast growth factor 7 (FGF7) secreted from activated hepatic stellate cells (HSC) during chronic liver fibrosis regulates hepatocyte survival and liver regeneration. In the carbon tetrachloride (CCl{sub 4})-induced fibrotic mouse liver, we demonstrated that the expression of CYP7A1 was largely decreased while the expression of FGF7 was significantly increased. We further demonstrated that FGF7 inhibited CYP7A1 gene expression in hepatocytes. Knockdown study by short interfering RNA, kinase inhibition and phosphorylation assays revealed that the suppression of CYP7A1 expression by FGF7 was mediated by FGFR2 and its downstream JNK signaling cascade. The FGF7 neutralizing antibody restored CYP7A1 expression in Hep3B cells treated with conditioned medium from HSC. In summary, the data suggest that FGF7 is a novel regulator of CYP7A1 expression in hepatocytes and may prevent hepatocytes from accumulating toxic bile acids during liver injury and fibrosis.

  6. Activation of PPAR-γ inhibits PDGF-induced proliferation of mouse renal fibroblasts.

    PubMed

    Lu, Jiamei; Shi, Jianhua; Gui, Baosong; Yao, Ganglian; Wang, Li; Ou, Yan; Zhu, Dan; Ma, Liqun; Ge, Heng; Fu, Rongguo

    2016-10-15

    Recent studies have shown that activation of peroxisome proliferators activated receptor-γ (PPAR-γ) ameliorates renal interstitial fibrosis (RIF) in animal model. Yet, the underlying molecular mechanisms remain still largely unknown. Here, we investigated the hypothesis that activation of PPAR-γ regulates renal remodeling by modulating proliferation of primary cultured renal fibroblasts. In our present study, platelet-derived growth factor-AA (PDGF-AA), a key isoform of PDGF superfamily as mitogen in RIF, was applied to stimulate renal fibroblasts, the selective inhibitor or sequence specific siRNA of PI3K, skp2 or PPAR-γ was used to investigate the involvement of above molecular mediators in PDGF-AA-induced cell proliferation. Our results demonstrate that PDGF-AA induced proliferation of renal fibroblasts by activating PI3K/AKT signaling and resultant skp2 production. Pre-stimulation of cells with rosiglitazone or adenovirus carrying PPAR-γ cDNA (AdPPAR-γ) blocked PDGF-AA-stimulated cell proliferation, this effect was particularly coupled to PPAR-γ inhibition of AKT phosphorylation and skp2 expression. Inhibition of PPAR-γ by GW9662 restored the suppression of activated PPAR-γ on phosphorylation of AKT and subsequent skp2 production. Our results indicate that activation of PI3K/AKT signaling and resultant skp2 generation mediated PDGF-induced proliferation of renal fibroblasts. Activation of PPAR-γ inhibited cell proliferation by inhibition of AKT phosphorylation and its down-streams.

  7. CTGF increases vascular endothelial growth factor-dependent angiogenesis in human synovial fibroblasts by increasing miR-210 expression

    PubMed Central

    Liu, S-C; Chuang, S-M; Hsu, C-J; Tsai, C-H; Wang, S-W; Tang, C-H

    2014-01-01

    Connective tissue growth factor (CTGF, a.k.a. CCN2) is inflammatory mediator and abundantly expressed in osteoarthritis (OA). Angiogenesis is essential for OA progression. Here, we investigated the role of CTGF in vascular endothelial growth factor (VEGF) production and angiogenesis in OA synovial fibroblasts (OASFs). We showed that expression of CTGF and VEGF in synovial fluid were higher in OA patients than in controls. Directly applying CTGF to OASFs increased VEGF production then promoted endothelial progenitor cells tube formation and migration. CTGF induced VEGF by raising miR-210 expression via PI3K, AKT, ERK, and nuclear factor-κB (NF-κB)/ELK1 pathways. CTGF-mediating miR-210 upregulation repressed glycerol-3-phosphate dehydrogenase 1-like (GPD1L) expression and PHD activity and subsequently promoted hypoxia-inducible factor (HIF)-1α-dependent VEGF expression. Knockdown of CTGF decreased VEGF expression and abolished OASF-conditional medium-mediated angiogenesis in vitro as well as angiogenesis in chick chorioallantoic membrane and Matrigel-plug nude mice model in vivo. Taken together, our results suggest CTGF activates PI3K, AKT, ERK, and NF-κB/ELK1 pathway, leading to the upregulation of miR-210, contributing to inhibit GPD1L expression and prolyl hydroxylases 2 activity, promoting HIF-1α-dependent VEGF expression and angiogenesis in human synovial fibroblasts. PMID:25341039

  8. Targeting Inhibition of Fibroblast Activation Protein-α and Prolyl Oligopeptidase Activities on Cells Common to Metastatic Tumor Microenvironments1

    PubMed Central

    Christiansen, Victoria J; Jackson, Kenneth W; Lee, Kyung N; Downs, Tamyra D; McKee, Patrick A

    2013-01-01

    Fibroblast activation protein (FAP), a membrane prolyl-specific proteinase with both dipeptidase and endopeptidase activities, is overexpressed by reactive stromal fibroblasts during epithelial-derived cancer growth. FAP digests extracellular matrix as tissue is remodeled during cancer expansion and may also promote an immunotolerant tumor microenvironment. Recent studies suggest that nonspecific FAP inhibitors suppress human cancer xenografts in mouse models. Prolyl oligopeptidase (POP), another prolyl-specific serine proteinase, is also elevated in many cancers and may have a regulatory role in angiogenesis promotion. FAP and POP cell-associated activities may be targets for diagnosis and treatment of various cancers, but their accessibilities to highly effective specific inhibitors have not been shown for cells important to cancer growth. Despite their frequent simultaneous expression in many cancers and their overlapping activities toward commonly used substrates, precise, separate measurement of FAP or POP activity has largely been ignored. To distinguish each of the two activities, we synthesized highly specific substrates and inhibitors for FAP or POP based on amino acid sequences surrounding the scissile bonds of their respective putative substrates. We found varying amounts of FAP and POP protein and activities on activated fibroblasts, mesenchymal cells, normal breast cells, and one breast cancer cell line, with some cells exhibiting more POP than FAP activity. Replicating endothelial cells (ECs) expressed POP but not FAP until tubulogenesis began. Targeting FAP-positive cells, especially mesenchymal stem cells and cancer-associated fibroblasts for inactivation or destruction, and inhibiting POP-producing EC may abrogate stromal invasion and angiogenesis simultaneously and thereby diminish cancer growth. PMID:23555181

  9. Pancreatic fibroblasts smoothen their activities via AKT-GLI2-TGFα.

    PubMed

    Rustgi, Anil K

    2016-09-01

    Pancreatic stromal fibroblasts provide structural support. Activated fibroblasts are critical in the tumor microenvironment. In this issue of Genes & Development, Liu and colleagues (pp. 1943-1955) unravel the finding that depletion of Smoothened (Smo) in pancreatic stromal fibroblasts results in AKT activation and noncanonical GLI2 activation with subsequent TGFα secretion, activation of EGFR in pancreatic epithelial cells, and augmentation of acinar-ductal metaplasia. Additionally, Smo-mediated signaling has proproliferative effects on pancreatic tumor cells. PMID:27664234

  10. Design of vectors for efficient expression of human purine nucleoside phosphorylase in skin fibroblasts from enzyme-deficient humans

    SciTech Connect

    Osborne, W.R.A.; Miller, A.D.

    1988-09-01

    Purine nucleoside phosphorylase deficiency is an inherited disorder associated with a severe immune defect that is fatal. Enzyme replacement therapy is an attractive approach to treatment of this disease. To this aim the authors constructed retroviral vectors containing a human PNP cDNA and a selectable gene encoding neomycin phosphotransferase. PNP expression was controlled by either the early promoter from simian virus 40, the immediate early promoter from human cytomegalovirus, or the retroviral promoter. Cultured skin fibroblasts from two unrelated PNP-deficient patients that were infected with these vectors expressed mean PNP activities of 0.03, 0.74, and 5.9 /mu/mol/hr per mg of protein, respectively. The latter infectants had PNP activities eight times the level of 0.74 /mu/mol/hr per mg of protein observed in normal skin fibroblasts, enabling rapid metabolism of exogenous deoxyguanosine, the cytotoxic metabolite that accumulates in the plasma of PNP-deficient patients. These experiments indicate that viral long terminal repeat was the strongest promoter for expression of PNP and suggest the potential of human skin fibroblasts as vehicles for therapeutic gene expression.

  11. Individual Differences in the Expression of Conditioned Fear Are Associated with Endogenous Fibroblast Growth Factor 2

    ERIC Educational Resources Information Center

    Graham, Bronwyn M.; Richardson, Rick

    2016-01-01

    These experiments examined the relationship between the neurotrophic factor fibroblast growth factor 2 (FGF2) and individual differences in the expression of conditioned fear. Experiments 1 and 2 demonstrated that rats naturally expressing low levels of contextual or cued fear have higher levels of hippocampal FGF2 relative to rats that express…

  12. The correction of biochemical abnormalities in fibroblasts of a Zellweger patient by gene expression

    SciTech Connect

    Shimozawa, N.; Suzuki, Y.; Oril, T.

    1994-09-01

    Zellweger syndrome is a prototype of peroxisome-deficient disorders and a fatal autosomal recessive disease with no effective therapy. We identified nine genetic complementation groups of these disorders among several laboratories, and mutations in peroxisome assembly factor-1 (PAF-1) and the 70-kDa peroxisomal membrane protein (PMP70) genes have been described in Zellweger patients from our group F and Roscher`s group 1, respectively. We now succeed the permanent recovery of generalized peroxisomal abnormalities in fibroblasts of a Zellweger patient from the group F by the stable transfection of human cDNA encoding PAF-1. In the transfectants, a number of peroxisomal dysfunctions such as lignocelic acid oxidation, dihydroxyacetone phosphate acyltransferase activity and biogenesis of peroxisomal {beta}-oxidation enzymes were restored, as well as morphological absence of peroxisomes. These findings are useful for basic studies on gene therapy of peroxisomal disorders in the cultured cellular system. Further study on expression of human PMP70 cDNA in fibroblasts from Roscher`s group 1 will be also necessary to confirm whether the PMP70 is responsible for Zellweger syndrome.

  13. Fibroblasts behavior after N-acetylcysteine and amino acids exposure: extracellular matrix gene expression.

    PubMed

    Avantaggiato, Anna; Palmieri, Annalisa; Bertuzzi, Gianluigi; Carinci, Francesco

    2014-06-01

    Reactive oxygen species (ROS) are chemically reactive molecules with impaired electrons that make them unstable and able to react easily with a great variety of molecules. The main targets of ROS are DNA, proteins, and membrane phospholipids. In the skin, ROS are able to affect the production of collagen and elastin, the main components of the extracellular matrix (ECM). This action contributes to the skin's aging. N-Acetylcysteine (NAC) is an acetylated cysteine residue with excellent anti-oxidant activity that boosts glutathione (GSH) levels. This study evaluates the effect of a solution of NAC and amino acids, which is used in aesthetic medicine as an intra-dermal injective treatment, on fibroblast behavior. To this aim, the expression levels of some ECM-related genes (HAS1, HYAL1 ELN, ELANE, MMP2, MMP3, MMP13, COL1A1, COL3A1) were analyzed on cultured dermal fibroblasts using real-time reverse transcription polymerase chain reaction (RT-PCR). All but two collagen genes were up-regulated after 24 hr of treatment. PMID:24438160

  14. The expression of pregnancy-specific {beta}1-glycoprotein genes in Meckel-Gruber syndrome fibroblasts

    SciTech Connect

    Wu, Shao-Ming; Cham, Wai-Yee

    1994-09-01

    Meckel-Gruber syndrome (MS) is an autosomal recessive disorder with multiple congenital malformations. The only available prenatal diagnostic marker for this disorder is the amniotic fluid level of pregnancy-specific {beta}1-glycoprotein (PSG). PSG is a family of proteins which are expressed at high levels during pregnancy. Increasing maternal serum PSG levels correlate with the progression of pregnancy and can be used as indicators for pregnancy outcome and fetal well-being. The amniotic fluid PSG level is about one-tenth of that of the maternal serum level in normal pregnancy, but are elevated in all cases of MS examined so far. On the other hand, the maternal serum PSG level and third trimester placental PSG content are normal in most cases of MS. This study aims at comparing the expression of PSG in fibroblasts derived from a fetus afflicted with MS. Total cellular RNA was extracted from two MS cultured fibroblast lines (M3206 and GM7817) and four age- and sex-matched control fibroblast lines obtained from the Human Genetic Mutant Cell Repository, Camden, NJ. The expression of eight PSG genes namely, PSG1, PSG2, PSG3, PSG4, PSG5, PSG6, PSG9 and PSG11, were examined with reverse transcription-polymerase chain reaction (RT-PCR). All PSG transcripts present in the cell were first amplified using universal primers in a 28-cycle PCR. Specific PSG gene products were then amplified with PSG gene-specific primers. Results showed that there is no significant difference in PSG expression between control and disease fibroblasts. In both cases, the most abundant transcript was the type II transcript of PSG5 followed by the type I transcripts of PSG1 and PG4. PSG9, PSG11 and PSG 3 were expressed at very low levels or not expressed at all in MS as well as in normal control fibroblasts. These results showed that PSG gene expression was not altered in MS fibroblasts.

  15. Bilirubin glucuronidation by intact Gunn rat fibroblasts expressing bilirubin UDP-glucuronosyltransferase.

    PubMed Central

    Seppen, J; Tada, K; Hellwig, S; Bakker, C T; Prasad, V R; Roy Chowdhury, N; Roy Chowdhury, J; Bosma, P J; Oude Elferink, R P

    1996-01-01

    Crigler-Najjar (CN) disease is an inherited disorder of bilirubin metabolism. The disease is caused by a deficiency of the hepatic enzyme bilirubin UDP-glucuronosyltransferase (B-UGT). Patients with CN disease have high serum levels of the toxic compound, unconjugated bilirubin. The only defect in bilirubin metabolism of CN patients is the absence of B-UGT activity. The transplantation of cells able to glucuronidate bilirubin should therefore lower serum bilirubin levels. The Gunn rat is the animal model of CN disease. Primary Gunn rat fibroblasts (GURF) were transduced with a recombinant retrovirus, capable of transferring B-UGT cDNA. A cell line was obtained expressing B-UGT at a level comparable to hepatocytes. Bilirubin added to the culture medium of these cells was glucuronidated and excreted. The B-UGT activities of transduced GURF and freshly isolated Wistar hepatocytes were compared at different bilirubin concentrations. The specific B-UGT activities of these two cell types were comparable when physiological bilirubin concentrations (5-10 microM) were present in the culture media. At higher bilirubin concentrations (20-80 microM) the hepatocytes were more active than the transduced GURF. We conclude that with the addition of only one enzyme (B-UGT) fibroblasts can perform the complete set of reactions necessary for bilirubin glucuronidation. The difference in B-UGT activity between transduced GURF and hepatocytes at 20-80 microM bilirubin can be explained by lower UDP-glucuronic acid and glutathione S-transferase levels in GURF. Our findings also indicate that these cells could be used to develop extrahepatic gene therapy for CN disease. PMID:8670060

  16. Altered Gene Expression in Schizophrenia: Findings from Transcriptional Signatures in Fibroblasts and Blood

    PubMed Central

    Cattane, Nadia; Minelli, Alessandra; Milanesi, Elena; Maj, Carlo; Bignotti, Stefano; Bortolomasi, Marco; Chiavetto, Luisella Bocchio; Gennarelli, Massimo

    2015-01-01

    Background Whole-genome expression studies in the peripheral tissues of patients affected by schizophrenia (SCZ) can provide new insight into the molecular basis of the disorder and innovative biomarkers that may be of great utility in clinical practice. Recent evidence suggests that skin fibroblasts could represent a non-neural peripheral model useful for investigating molecular alterations in psychiatric disorders. Methods A microarray expression study was conducted comparing skin fibroblast transcriptomic profiles from 20 SCZ patients and 20 controls. All genes strongly differentially expressed were validated by real-time quantitative PCR (RT-qPCR) in fibroblasts and analyzed in a sample of peripheral blood cell (PBC) RNA from patients (n = 25) and controls (n = 22). To evaluate the specificity for SCZ, alterations in gene expression were tested in additional samples of fibroblasts and PBCs RNA from Major Depressive Disorder (MDD) (n = 16; n = 21, respectively) and Bipolar Disorder (BD) patients (n = 15; n = 20, respectively). Results Six genes (JUN, HIST2H2BE, FOSB, FOS, EGR1, TCF4) were significantly upregulated in SCZ compared to control fibroblasts. In blood, an increase in expression levels was confirmed only for EGR1, whereas JUN was downregulated; no significant differences were observed for the other genes. EGR1 upregulation was specific for SCZ compared to MDD and BD. Conclusions Our study reports the upregulation of JUN, HIST2H2BE, FOSB, FOS, EGR1 and TCF4 in the fibroblasts of SCZ patients. A significant alteration in EGR1 expression is also present in SCZ PBCs compared to controls and to MDD and BD patients, suggesting that this gene could be a specific biomarker helpful in the differential diagnosis of major psychoses. PMID:25658856

  17. c-Ski activates cancer-associated fibroblasts to regulate breast cancer cell invasion.

    PubMed

    Wang, Liyang; Hou, Yixuan; Sun, Yan; Zhao, Liuyang; Tang, Xi; Hu, Ping; Yang, Jiajia; Zeng, Zongyue; Yang, Guanglun; Cui, Xiaojiang; Liu, Manran

    2013-12-01

    Aberrant expression of c-Ski oncoprotein in some tumor cells has been shown to be associated with cancer development. However, the role of c-Ski in cancer-associated fibroblasts (CAFs) of tumor microenvironment has not been characterized. In the current study, we found that c-Ski is highly expressed in CAFs derived from breast carcinoma microenvironment and this CAF-associated c-Ski expression is associated with invasion and metastasis of human breast tumors. We showed that c-Ski overexpression in immortalized breast normal fibroblasts (NFs) induces conversion to breast CAFs by repressing p53 and thereby upregulating SDF-1 in NFs. SDF-1 treatment or p53 knockdown in NFs had similar effects on the activation of NFs as c-Ski overexpression. The c-Ski-activated CAFs show increased proliferation, migration, invasion and contraction compared with NFs. Furthermore, c-Ski-activated CAFs facilitated the migration and invasion of MDA-MB-231 breast cancer cells. Our data suggest that c-Ski is an important regulator in the activation of CAFs and may serve as a potential therapeutic target to block breast cancer progression.

  18. CD10 expressed by fibroblasts and melanoma cells degrades endothelin-1 secreted by human keratinocytes.

    PubMed

    Xie, Lining; Moroi, Yoichi; Takahara, Masakazu; Tsuji, Gaku; Oba, Junna; Hayashida, Sayaka; Takeuchi, Satoshi; Shan, Baoen; Uchi, Hiroshi; Furue, Masutaka

    2011-01-01

    Endothelin-1 (ET-1) is a potent multifunctional peptide linked to wound healing, pigmentation, carcinogenesis, and fibrosclerotic processes in the skin. Whereas ET-1 was thought to be digested by receptor-mediated endocytosis, it is also reported to be biochemically degraded by the neutral endopeptidase CD10 using kidney homogenates. Although keratinocytes (KC) and fibroblasts (Fb) are sources of both ET-1 and CD10, respectively, there is no report investigating the direct association between CD10 expression and its function in relation to ET-1 degradation in the skin. CD10 expression in melanoma cells is associated with clinical prognosis, suggesting an important role in the invasive and metastatic potential of melanoma cells. Here, cultured KC produced much higher amounts of ET-1 than did cultured Fb or melanoma cells. In contrast, KC and A375 melanoma cells did not express CD10, while Fb, SK-MEL-28 and G361 melanoma cells constitutively expressed CD10. KC-derived ET-1 was down-modulated by both CD10-positive Fb and CD10-positive melanoma cells, and the inhibition was partially reversed under substitution conditions using CD10-knockdown Fb or CD10-knockdown melanoma cells. This indicates that CD10 on cultured Fb and melanoma cells is biochemically active in the degradation or down-modulation of ET-1 secreted from KC. These findings may lead to better understanding of skin homeostasis and of the malignant potential of melanoma.

  19. Red blood cell lysate modulates the expression of extracellular matrix proteins in dermal fibroblasts.

    PubMed

    Akbari, Amir; Li, Yunyuan; Kilani, Ruhangiz T; Ghahary, Aziz

    2012-11-01

    During the early stage of wound healing process, blood clots can be served as a temporary extracellular matrix (ECM) to let skin cell migration and proliferation. The red blood cells are generally thought as inert bystanders in the early and inflammatory phase of wound healing. Here, we provide evidence that red blood cells (RBC) also play an important role in modulation of key ECM components such as type-I collagen, α-smooth muscle actin, fibronectin, and matrix metalloproteinases (MMPs). In this study, we used western blot analysis and showed a significant increase in the level of MMP-1, 2, 3. Furthermore, we found that RBC lysate significantly down-regulates type-I collagen and α-smooth muscle actin while up-regulates fibronectin expression in dermal fibroblasts. To further explore the mechanism by which RBC lysate modulates MMP-1 expression, the effect of inhibitors for three MAPK signaling pathways on RBC inducing MMP-1 expression by dermal fibroblasts were tested. The result showed that the inhibitor of ERK1/2 could abrogate the stimulatory effect of RBC lysate on MMP-1 expression in dermal fibroblasts. Consistently, RBC treatment results in an increase of ERK1/2 phosphorylation in dermal fibroblast. In conclusion, these findings suggest that RBC lysate can modulate the expression of MMPs and key ECM components which are important in healing process.

  20. Expression of osteoblastic phenotype in periodontal ligament fibroblasts cultured in three-dimensional collagen gel

    PubMed Central

    ALVES, Luciana Bastos; MARIGUELA, Viviane Casagrande; GRISI, Márcio Fernando de Moraes; de SOUZA, Sérgio Luiz Scaombatti; NOVAES, Arthur Belém; TABA, Mário; de OLIVEIRA, Paulo Tambasco; PALIOTO, Daniela Bazan

    2015-01-01

    Objective : To investigate the influence of a three-dimensional cell culture model on the expression of osteoblastic phenotype in human periodontal ligament fibroblast (hPDLF) cultures. Material and Methods : hPDLF were seeded on bi-dimensional (2D) and three-dimensional (3D) collagen type I (experimental groups) and and on a plastic coverslip (control) for up to 14 days. Cell viability and alkaline phosphatase (ALP) activity were performed. Also, cell morphology and immunolabeling for alkaline phosphatase (ALP) and osteopontin (OPN) were assessed by epifluorescence and confocal microscopy. The expression of osteogenic markers, including alkaline phosphatase, osteopontin, osteocalcin (OC), collagen I (COL I) and runt-related transcription factor 2 (RUNX2), were analyzed using real-time polymerase chain reaction (RT-PCR). Mineralized bone-like nodule formation was visualized by microscopy and calcium content was assessed quantitatively by alizarin red assay. Results : Experimental cultures produced an increase in cell proliferation. Immunolabeling for OPN and ALP in hPDLF were increased and ALP activity was inhibited by three-dimensional conditions. OPN and RUNX2 gene expression was significantly higher on 3D culture when compared with control surface. Moreover, ALP and COL I gene expression were significantly higher in three-dimensional collagen than in 2D cultures at 7 days. However, at 14 days, 3D cultures exhibited ALP and COL I gene expression significantly lower than the control, and the COL I gene expression was also significantly lower in 3D than in 2D cultures. Significant calcium mineralization was detected and quantified by alizarin red assay, and calcified nodule formation was not affected by tridimensionality. Conclusion : This study suggests that the 3D cultures are able to support hPDLF proliferation and favor the differentiation and mineralized matrix formation, which may be a potential periodontal regenerative therapy. PMID:26018313

  1. Resveratrol inhibits collagen I synthesis by suppressing IGF-1R activation in intestinal fibroblasts

    PubMed Central

    Li, Ping; Liang, Mei-Lan; Zhu, Ying; Gong, Yao-Yao; Wang, Yun; Heng, Ding; Lin, Lin

    2014-01-01

    I induced by IGF-1. Moreover, silencing SIRT1 restored collagen I expression in fibroblasts challenged with resveratrol. However, disruption of SIRT1 did not influence the anti-fibrotic effects of resveratrol and IGF-1-induced collagen I expression. Further analysis revealed that resveratrol significantly decreased phosphorylation of IGF-1R and its downstream signaling molecules by inhibiting IGF-1 binding to its receptor. CONCLUSION: Our data suggest that resveratrol effectively inhibits collagen I synthesis in IGF-1-stimulated fibroblasts, partly by inhibiting IGF-1R activation, and SIRT1 is also responsible for the process. PMID:24782617

  2. Bacillus Calmette Guerin Induces Fibroblast Activation Both Directly and through Macrophages in a Mouse Bladder Cancer Model

    PubMed Central

    Lodillinsky, Catalina; Langle, Yanina; Guionet, Ariel; Góngora, Adrián; Baldi, Alberto; Sandes, Eduardo O.; Casabé, Alberto; Eiján, Ana María

    2010-01-01

    Background Bacillus Calmette-Guerin (BCG) is the most effective treatment for non-muscle invasive bladder cancer. However, a failure in the initial response or relapse within the first five years of treatment has been observed in 20% of patients. We have previously observed that in vivo administration of an inhibitor of nitric oxide improved the response to BCG of bladder tumor bearing mice. It was described that this effect was due to a replacement of tumor tissue by collagen depots. The aim of the present work was to clarify the mechanism involved in this process. Methodology/Principal Findings We demonstrated that BCG induces NIH-3T3 fibroblast proliferation by activating the MAPK and PI3K signaling pathways and also differentiation determined by alpha-smooth muscle actin (alpha-SMA) expression. In vivo, intratumoral inoculation of BCG also increased alpha-SMA and collagen expression. Oral administration of L-NAME enhanced the pro-fibrotic effect of BCG. Peritoneal macrophages obtained from MB49 tumor-bearing mice treated in vivo with combined treatment of BCG with L-NAME also enhanced fibroblast proliferation. We observed that FGF-2 is one of the factors released by BCG-activated macrophages that is able to induce fibroblast proliferation. The involvement of FGF-2 was evidenced using an anti-FGF2 antibody. At the same time, this macrophage population improved wound healing rate in normal mice and FGF-2 expression was also increased in these wounds. Conclusions/Significance Our findings suggest that fibroblasts are targeted by BCG both directly and through activated macrophages in an immunotherapy context of a bladder murine model. We also described, for the first time, that FGF-2 is involved in a dialog between fibroblasts and macrophages induced after BCG treatment. The fact that L-NAME administration improves the BCG effect on fibroblasts, NO inhibition, might represent a new approach to add to the conventional BCG therapy. PMID:21042580

  3. Krüppel-Like Factor 4 Is a Regulator of Proinflammatory Signaling in Fibroblast-Like Synoviocytes through Increased IL-6 Expression

    PubMed Central

    Ruan, Jianwei; Xie, Jiangwen; Lv, Guoju

    2016-01-01

    Human fibroblast-like synoviocytes play a vital role in joint synovial inflammation in rheumatoid arthritis (RA). Proinflammatory cytokines induce fibroblast-like synoviocyte activation and dysfunction. The inflammatory mediator Krüppel-like factor 4 is upregulated during inflammation and plays an important role in endothelial and macrophage activation during inflammation. However, the role of Krüppel-like factor 4 in fibroblast-like synoviocyte activation and RA inflammation remains to be defined. In this study, we identify the notion that Krüppel-like factor 4 is higher expressed in synovial tissues and fibroblast-like synoviocytes from RA patients than those from osteoarthritis patients. In vitro, the expression of Krüppel-like factor 4 in RA fibroblast-like synoviocytes is induced by proinflammatory cytokine tumor necrosis factor-α. Overexpression of Krüppel-like factor 4 in RA fibroblast-like synoviocytes robustly induced interleukin-6 production in the presence or absence of tumor necrosis factor-α. Conversely, knockdown of Krüppel-like factor 4 markedly attenuated interleukin-6 production in the presence or absence of tumor necrosis factor-α. Krüppel-like factor 4 not only can bind to and activate the interleukin-6 promoter, but also may interact directly with nuclear factor-kappa B. These results suggest that Krüppel-like factor 4 may act as a transcription factor mediating the activation of fibroblast-like synoviocytes in RA by inducing interleukin-6 expression in response to tumor necrosis factor-α. PMID:27413250

  4. Largazole, a class I histone deacetylase inhibitor, enhances TNF-α-induced ICAM-1 and VCAM-1 expression in rheumatoid arthritis synovial fibroblasts

    SciTech Connect

    Ahmed, Salahuddin; Riegsecker, Sharayah; Beamer, Maria; Rahman, Ayesha; Bellini, Joseph V.; Bhansali, Pravin; Tillekeratne, L.M. Viranga

    2013-07-15

    In the present study, we evaluated the effect of largazole (LAR), a marine-derived class I HDAC inhibitor, on tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and matrix metalloproteinase-2 (MMP-2) activity. LAR (1–5 μM) had no adverse effect on the viability of RA synovial fibroblasts. Among the different class I HDACs screened, LAR (0.5–5 μM) inhibited the constitutive expression of HDAC1 (0–30%). Surprisingly, LAR increased class II HDAC [HDAC6] by ∼ 220% with a concomitant decrease in HDAC5 [30–58%] expression in RA synovial fibroblasts. SAHA (5 μM), a pan-HDAC inhibitor, also induced HDAC6 expression in RA synovial fibroblasts. Pretreatment of RA synovial fibroblasts with LAR further enhanced TNF-α-induced ICAM-1 and VCAM-1 expression. However, LAR inhibited TNF-α-induced MMP-2 activity in RA synovial fibroblasts by 35% when compared to the TNF-α-treated group. Further, the addition of HDAC6 specific inhibitor Tubastatin A with LAR suppressed TNF-α + LAR-induced ICAM-1 and VCAM-1 expression and completely blocked MMP-2 activity, suggesting a role of HDAC6 in LAR-induced ICAM-1 and VCAM-1 expression. LAR also enhanced TNF-α-induced phospho-p38 and phospho-AKT expression, but inhibited the expression of phospho-JNK and nuclear translocation of NF-κBp65 in RA synovial fibroblasts. These results suggest that LAR activates p38 and Akt pathways and influences class II HDACs, in particular HDAC6, to enhance some of the detrimental effects of TNF-α in RA synovial fibroblasts. Understanding the exact role of different HDAC isoenzymes in RA pathogenesis is extremely important in order to develop highly effective HDAC inhibitors for the treatment of RA. - Highlights: • Largazole enhances TNF-α-induced ICAM-1 and VCAM-1. • Largazole upregulates class II HDAC (HDAC6) in RA synovial fibroblasts. • Largazole also induces the expression of phospho-p38

  5. Genetic polymorphism directs IL-6 expression in fibroblasts but not selected other cell types.

    PubMed

    Noss, Erika H; Nguyen, Hung N; Chang, Sook Kyung; Watts, Gerald F M; Brenner, Michael B

    2015-12-01

    Interleukin (IL)-6 blockade is an effective treatment for rheumatoid arthritis (RA), and synovial fibroblasts are a major IL-6 producer in the inflamed joint. We found that human RA and osteoarthritis (OA) synovial fibroblasts derived from independent donors reproducibly segregated into low, medium, and high IL-6 producers, independent of stimulus, cell passage, or disease state. IL-6 expression pattern correlated strongly with total mRNA expression, not mRNA stability, suggesting transcriptional rather than posttranscriptional regulation. High-fibroblast IL-6 expression was significantly associated with the IL-6 proximal promoter single nucleotide polymorphism (SNP) rs1800795 minor allele (CC) genotype. In contrast, no association between this SNP and IL-6 production was detected in CD14(+) monocytes, another major producer of synovial IL-6. Luciferase expression assays confirmed that this SNP was associated with differential IL-6 expression in fibroblasts. To date, several association studies examining rs1800795 allele frequency and disease risk have reported seemingly conflicting results ranging from no association to association with either the major or minor allele across a spectrum of conditions, including cancer and autoimmune, cardiovascular, infectious, and metabolic diseases. This study points to a prominent contribution from promoter genetic variation in fibroblast IL-6 regulation, but not in other IL-6-producing cell types. We propose that some of the heterogeneity in these clinical studies likely reflects the cellular source of IL-6 in specific diseases, much of which may be produced by nonhematopoietic cells. These results highlight that functional analysis of disease-associated SNPs on gene expression and pathologic processes must consider variation in diverse cell types.

  6. Complete reduction of p53 expression by RNA interference following heterozygous knockout in porcine fibroblasts.

    PubMed

    Kim, Young June; Kim, Tae-Hyun; Kim, Minjeong; Kim, Min Ju; Kim, Hae-Won; Shim, Hosup

    2016-08-01

    Tumor suppressor p53 plays a critical role in the regulation of cell cycle and apoptosis in mammals. Mutations of p53 often cause various cancers. Murine models have improved our understanding on tumorigenesis associated with p53 mutations. However, mice and humans are different in many ways. For example, the short lifespans of mice limit the clinical application of the data obtained from this species. Porcine model could be an alternative as pigs share many anatomical and physiological similarities with humans. Here, we modified the expression levels of p53 messenger RNA (mRNA) and protein in porcine fetal fibroblasts using a combination of gene targeting and RNA interference. First, we disrupted the p53 gene to produce p53 knockout (KO) cells. Second, the p53 shRNA expression vector was introduced into fibroblasts to isolate p53 knockdown (KD) cells. We obtained p53 KO, KD, and KO + KD fibroblasts which involve p53 KO and KD either separately or simultaneously. The mRNA expression of p53 in p53 KO fibroblasts was similar to that in the wild-type control. However, the mRNA expression levels of p53 in KD and KO + KD cells were significantly decreased. The p53 protein level significant reduced in p53 KD. Interestingly, no p53 protein was detected in KO + KD, suggesting a complete reduction of the protein by synergistic effect of KO and KD. This study demonstrated that various expression levels of p53 in porcine fibroblasts could be achieved by gene targeting and RNA interference. Moreover, complete abolishment of protein expression is feasible using a combination of gene targeting and RNA interference.

  7. Complete reduction of p53 expression by RNA interference following heterozygous knockout in porcine fibroblasts.

    PubMed

    Kim, Young June; Kim, Tae-Hyun; Kim, Minjeong; Kim, Min Ju; Kim, Hae-Won; Shim, Hosup

    2016-08-01

    Tumor suppressor p53 plays a critical role in the regulation of cell cycle and apoptosis in mammals. Mutations of p53 often cause various cancers. Murine models have improved our understanding on tumorigenesis associated with p53 mutations. However, mice and humans are different in many ways. For example, the short lifespans of mice limit the clinical application of the data obtained from this species. Porcine model could be an alternative as pigs share many anatomical and physiological similarities with humans. Here, we modified the expression levels of p53 messenger RNA (mRNA) and protein in porcine fetal fibroblasts using a combination of gene targeting and RNA interference. First, we disrupted the p53 gene to produce p53 knockout (KO) cells. Second, the p53 shRNA expression vector was introduced into fibroblasts to isolate p53 knockdown (KD) cells. We obtained p53 KO, KD, and KO + KD fibroblasts which involve p53 KO and KD either separately or simultaneously. The mRNA expression of p53 in p53 KO fibroblasts was similar to that in the wild-type control. However, the mRNA expression levels of p53 in KD and KO + KD cells were significantly decreased. The p53 protein level significant reduced in p53 KD. Interestingly, no p53 protein was detected in KO + KD, suggesting a complete reduction of the protein by synergistic effect of KO and KD. This study demonstrated that various expression levels of p53 in porcine fibroblasts could be achieved by gene targeting and RNA interference. Moreover, complete abolishment of protein expression is feasible using a combination of gene targeting and RNA interference. PMID:27142766

  8. Problem-Based Test: The Effect of Fibroblast Growth Factor on Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    This paper shows the results of an experiment in which the effects of fibroblast growth factor (FGF), actinomycin D (Act D; an inhibitor of transcription), and cycloheximide (CHX; an inhibitor of translation) were studied on the expression of two genes: a gene called "Fnk" and the gene coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH).…

  9. Nifedipine induces periostin expression in gingival fibroblasts through TGF-beta.

    PubMed

    Kim, S S; Jackson-Boeters, L; Darling, M R; Rieder, M J; Hamilton, D W

    2013-11-01

    Gingival enlargement is a fibrotic condition that can arise from systemic administration of the dihydropyridine calcium channel blocker nifedipine. Periostin, a transforming growth factor-beta (TGF-β)-inducible matricellular protein, has been associated with fibrosis in numerous tissues, but its expression has never been examined in nifedipine-influenced gingival enlargement (NIGE). The objective of this study was to assess if periostin up-regulation is associated with NIGE and whether nifedipine induces periostin expression in gingival fibroblasts. In NIGE tissue (n = 6), periostin is overexpressed in the gingival connective tissue compared with healthy control tissue (n = 6). The transcription factor p-SMAD2/3, which is associated with canonical TGF-β signaling, localizes to the nuclei in both HGFs and oral epithelial cells in NIGE tissues, but not in control healthy tissue. In vitro culture of HGFs with 30 and 100 ng/mL of nifedipine significantly increased periostin mRNA and protein levels, which correlated with increased levels of active TGF-β and increased phosphorylation and nuclear localization of SMAD3. Blocking of canonical TGF-β signaling through inhibition of the TGF-β receptor I with SB431542 significantly reduced nifedipine-induced SMAD3 phosphorylation and periostin expression. Our results demonstrate that nifedipine up-regulates periostin in HGFs in a TGF-β-dependent manner.

  10. Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness.

    PubMed

    Giannoni, Elisa; Bianchini, Francesca; Masieri, Lorenzo; Serni, Sergio; Torre, Eugenio; Calorini, Lido; Chiarugi, Paola

    2010-09-01

    Although cancer-associated fibroblasts (CAF) are key determinants in the malignant progression of cancer, their functional contribution to this process is still unclear. Analysis of the mutual interplay between prostate carcinoma cells and CAFs revealed a mandatory role of carcinoma-derived interleukin-6 in fibroblast activation. In turn, activated fibroblasts through secretion of metalloproteinases elicit in cancer cells a clear epithelial-mesenchymal transition (EMT), as well as enhancement of tumor growth and development of spontaneous metastases. CAF-induced EMT leads prostate carcinoma cells to enhance expression of stem cell markers, as well as the ability to form prostaspheres and to self-renew. Hence, the paracrine interplay between CAFs and cancer cells leads to an EMT-driven gain of cancer stem cell properties associated with aggressiveness and metastatic spread.

  11. Transforming growth factor-1 promotes the transcriptional activation of plasminogen activator inhibitor type 1 in carcinoma-associated fibroblasts.

    PubMed

    Zhu, Yu; Yin, Wan-Le; Ba, Yu-Feng; Tian, Lin; Gu, Zhi-Qiang; Zhang, Ming-Sheng; Zhong, Chu-Nan

    2012-11-01

    Carcinoma-associated fibroblasts (CAFs) play a pivotal role in promoting the growth, invasion and metastasis of tumor cells. However, to date little is known about the oncogenic mechanisms of CAFs. This study aimed to identify the microenvironmental factors involved in tumor development and progression directed by CAFs in liver metastases. Tissue samples collected from 20 patients with colorectal liver metastases were used in this study. Histological and morphological characterization of the samples was performed using hybridization and immunohistological assays. The mRNA expression of α-smooth muscle actin (α-SMA) was measured by northern blotting. The expression of plasminogen activator inhibitor type 1 (PAI-1) was measured by enzyme-linked immunosorbent assay (ELISA). As a result, co-expression of Thy-1 (CD90) and α-SMA was identified in CAFs, while normal liver samples were negative for α-SMA and Thy-1. Compared with epidermal growth factor (EGF) and tumor necrosis factor (TNF) incubation, the expression of α-SMA increased significantly following transforming growth factor-1 (TGF-1) incubation (P<0.05), while platelet-derived growth factor (PDGF) caused a significant suppression of α-SMA expression (P<0.05). PAI-1 expression was significantly lower in unstimulated fibroblasts compared to TGF-1-treated fibroblasts (P<0.01). The levels of PAI-1 transcription were significantly higher in CAFs from the patient samples compared with the healthy controls. Taken together, our findings suggest that CAFs may be important in migration, matrix degradation, invasion and angiogenesis of tumors, and TGF-1 may promote the activation of PAI-1 transcription in CAFs.

  12. Angiotensin II increases CTGF expression via MAPKs/TGF-{beta}1/TRAF6 pathway in atrial fibroblasts

    SciTech Connect

    Gu, Jun; Liu, Xu; Wang, Quan-xing; Tan, Hong-wei; Guo, Meng; Jiang, Wei-feng; Zhou, Li

    2012-10-01

    The activation of transforming growth factor-{beta}1(TGF-{beta}1)/Smad signaling pathway and increased expression of connective tissue growth factor (CTGF) induced by angiotensin II (AngII) have been proposed as a mechanism for atrial fibrosis. However, whether TGF{beta}1/non-Smad signaling pathways involved in AngII-induced fibrogenetic factor expression remained unknown. Recently tumor necrosis factor receptor associated factor 6 (TRAF6)/TGF{beta}-associated kinase 1 (TAK1) has been shown to be crucial for the activation of TGF-{beta}1/non-Smad signaling pathways. In the present study, we explored the role of TGF-{beta}1/TRAF6 pathway in AngII-induced CTGF expression in cultured adult atrial fibroblasts. AngII (1 {mu}M) provoked the activation of P38 mitogen activated protein kinase (P38 MAPK), extracellular signal-regulated kinase 1/2(ERK1/2) and c-Jun NH(2)-terminal kinase (JNK). AngII (1 {mu}M) also promoted TGF{beta}1, TRAF6, CTGF expression and TAK1 phosphorylation, which were suppressed by angiotensin type I receptor antagonist (Losartan) as well as p38 MAPK inhibitor (SB202190), ERK1/2 inhibitor (PD98059) and JNK inhibitor (SP600125). Meanwhile, both TGF{beta}1 antibody and TRAF6 siRNA decreased the stimulatory effect of AngII on TRAF6, CTGF expression and TAK1 phosphorylation, which also attenuated AngII-induced atrial fibroblasts proliferation. In summary, the MAPKs/TGF{beta}1/TRAF6 pathway is an important signaling pathway in AngII-induced CTGF expression, and inhibition of TRAF6 may therefore represent a new target for reversing Ang II-induced atrial fibrosis. -- Highlights: Black-Right-Pointing-Pointer MAPKs/TGF{beta}1/TRAF6 participates in AngII-induced CTGF expression in atrial fibroblasts. Black-Right-Pointing-Pointer TGF{beta}1/TRAF6 participates in AngII-induced atrial fibroblasts proliferation. Black-Right-Pointing-Pointer TRAF6 may represent a new target for reversing Ang II-induced atrial fibrosis.

  13. Sustained activation of fibroblast transforming growth factor-beta/Smad signaling in a murine model of scleroderma.

    PubMed

    Takagawa, Shinsuke; Lakos, Gabriella; Mori, Yasuji; Yamamoto, Toshiyuki; Nishioka, Kiyoshi; Varga, John

    2003-07-01

    Transforming growth factor-beta is responsible for triggering a cascade of events leading to fibrosis in scleroderma. The Smads are intracellular signal transducers recently shown to mediate fibroblast activation and other profibrotic responses elicited by transforming growth factor-betain vitro. To understand better the involvement of Smads in the pathogenesis of fibrosis, we examined Smad expression and activation in situ in a murine model of scleroderma. Bleomycin injections induced striking dermal infiltration with macrophages by 3 d, and progressive fibrosis by 2 wk. Infiltrating macrophages and resident fibroblasts expressed Smad3, the positive mediator for transforming growth factor-beta responses. Importantly, in bleomycin-injected skin, fibroblasts showed predominantly nuclear localization of Smad3 and intense staining for phospho-Smad2/3. Furthermore, phosphorylated Smad2/3 in fibroblasts was detected even after the resolution of inflammation. Expression of Smad7, the endogenous inhibitor of transforming growth factor-beta/Smad signaling, was strongly induced in dermal cells by transforming growth factor-beta, but not by bleomycin injections. Collectively, these results indicate that bleomycin-induced murine scleroderma is associated with rapid and sustained induction of transforming growth factor-beta/Smad signaling in resident dermal fibroblasts. Despite apparent activation of the intracellular transforming growth factor-beta signaling pathway in the lesional dermis, the expression of transforming growth factor-beta-inducible Smad7 was not upregulated. In light of the critical function of Smad7 as an endogenous inhibitor of Smad signaling that restricts the duration and magnitude of transforming growth factor-beta responses, and as a mediator of apoptosis, relative Smad7 deficiency observed in the present studies may account for sustained activation of transforming growth factor-beta/Smad signaling in lesional tissues. These findings raise the

  14. Basic calcium phosphate crystal-induced Egr-1 expression stimulates mitogenesis in human fibroblasts

    SciTech Connect

    Zeng, Xiao R.; Sun Yubo; Wenger, Leonor; Cheung, Herman S. . E-mail: hcheung@med.miami.edu

    2005-05-13

    Previously, we have reported that basic calcium phosphate (BCP) crystals stimulate mitogenesis and synthesis of matrix metalloproteinases in cultured human foreskin and synovial fibroblasts. However, the detailed mechanisms involved are still unclear. In the present study, using RT-PCR and Egr-1 promoter analysis we showed that BCP crystals could stimulate early growth response gene Egr-1 transcription through a PKC{alpha}-dependent p44/p42 MAPK pathway. Using a retrovirus gene expression system (Clontech) to overexpress Egr-1 in human fibroblast BJ-1 cells resulted in promotion of mitogenesis measured either by MTT cell proliferation analysis or by direct cell counting. The results demonstrate that Egr-1 may play a key role in mediating BCP crystal-induced synovial fibroblast mitogenesis.

  15. Human lung parenchyma but not proximal bronchi produces fibroblasts with enhanced TGF-beta signaling and alpha-SMA expression.

    PubMed

    Pechkovsky, Dmitri V; Hackett, Tillie L; An, Steven S; Shaheen, Furquan; Murray, Lynne A; Knight, Darryl A

    2010-12-01

    Given the contribution various fibroblast subsets make to wound healing and tissue remodeling, the concept of lung fibroblast heterogeneity is of great interest. However, the mechanisms contributing to this heterogeneity are unknown. To this aim, we compared molecular and biophysical characteristics of fibroblasts concurrently isolated from normal human proximal bronchi (B-FBR) and distal lung parenchyma (P-FBR). Using quantitative RT-PCR, spontaneous expression of more than 30 genes related to repair and remodeling was analyzed. All P-FBR lines demonstrated significantly increased basal α-smooth muscle actin (α-SMA) mRNA and protein expression levels when compared with donor-matched B-FBR. These differences were not associated with sex, age, or disease history of lung tissue donors. In contrast to B-FBR, P-FBR displayed enhanced transforming growth factor (TGF)-β/Smad signaling at baseline, and inhibition of either ALK-5 or neutralization of endogenously produced and activated TGF-β substantially decreased basal α-SMA protein in P-FBR. Both B-FBR and P-FBR up-regulated α-SMA after stimulation with TGF-β1, and basal expression levels of TGF-β1, TGF-βRI, and TGF-βRII were not significantly different between fibroblast pairs. Blockade of metalloproteinase-dependent activation of endogenous TGF-β did not significantly modify α-SMA expression in P-FBR. However, resistance to mechanical tension of these cells was significantly higher in comparison with B-FBR, and added TGF-β1 significantly increased stiffness of both cell monolayers. Our data suggest that in contrast with human normal bronchial tissue explants, lung parenchyma produces mesenchymal cells with a myofibroblastic phenotype by intrinsic mechanisms of TGF-β activation in feed-forward manner. These results also offer a new insight into mechanisms of human fibroblast heterogeneity and their function in the airway and lung tissue repair and remodeling. PMID:20061511

  16. Circulating FGF21 proteolytic processing mediated by fibroblast activation protein

    PubMed Central

    Zhen, Eugene Y.; Jin, Zhaoyan; Ackermann, Bradley L.; Thomas, Melissa K.; Gutierrez, Jesus A.

    2015-01-01

    Fibroblast growth factor 21 (FGF21), a hormone implicated in the regulation of glucose homoeostasis, insulin sensitivity, lipid metabolism and body weight, is considered to be a promising therapeutic target for the treatment of metabolic disorders. Despite observations that FGF21 is rapidly proteolysed in circulation rending it potentially inactive, little is known regarding mechanisms by which FGF21 protein levels are regulated. We systematically investigated human FGF21 protein processing using mass spectrometry. In agreement with previous reports, circulating human FGF21 was found to be cleaved primarily after three proline residues at positions 2, 4 and 171. The extent of FGF21 processing was quantified in a small cohort of healthy human volunteers. Relative abundance of FGF21 proteins cleaved after Pro-2, Pro-4 and Pro-171 ranged from 16 to 30%, 10 to 25% and 10 to 34%, respectively. Dipeptidyl peptidase IV (DPP-IV) was found to be the primary protease responsible for N-terminal cleavages after residues Pro-2 and Pro-4. Importantly, fibroblast activation protein (FAP) was implicated as the protease responsible for C-terminal cleavage after Pro-171, rendering the protein inactive. The requirement of FAP for FGF21 proteolysis at the C-terminus was independently demonstrated by in vitro digestion, immunodepletion of FAP in human plasma, administration of an FAP-specific inhibitor and by human FGF21 protein processing patterns in FAP knockout mouse plasma. The discovery that FAP is responsible for FGF21 inactivation extends the FGF21 signalling pathway and may enable novel approaches to augment FGF21 actions for therapeutic applications. PMID:26635356

  17. Bezafibrate upregulates carnitine palmitoyltransferase II expression and promotes mitochondrial energy crisis dissipation in fibroblasts of patients with influenza-associated encephalopathy.

    PubMed

    Yao, Min; Yao, Dengbin; Yamaguchi, Miyoko; Chida, Junji; Yao, Dengfu; Kido, Hiroshi

    2011-11-01

    Influenza-associated encephalopathy (IAE) is characterized by persistently high fever, febrile convulsions, severe brain edema and high mortality. We reported previously that a large proportion of patients with disabling or fatal IAE exhibit a thermolabile phenotype of compound variants for [1055T>G/F352C] and [1102G>A/V368I] of carnitine palmitoyltransferase II (CPT II) and mitochondrial energy crisis during high fever. In the present study, we studied the effect of bezafibrate, a hypolipidemic pan-agonist of peroxisome proliferator-activated receptor (PPAR), on CPT II expression and mitochondrial energy metabolism in fibroblasts of IAE patients and wild type (WT) fibroblasts from a healthy volunteer at 37°C and 41°C. Although heat stress markedly upregulated CPT II, CPT IA and PPAR-δ mRNA expression levels, CPT II activity, β-oxidation and ATP levels in WT and IAE fibroblasts at 41°C were paradoxically downregulated probably due to the thermal instability of the corresponding enzymes. Bezafibrate significantly enhanced the expression levels of the above mRNAs and cellular functions of these enzymes in fibroblasts at 37°C. Bezafibrate-induced increase in CPT II activity also tended to restore the downregulated ATP levels, though moderately, and improved mitochondrial membrane potential even at 41°C to the levels at 37°C in fibroblasts of IAE patients. L-carnitine, a substrate of CPT II, boosted the effects of bezafibrate on cellular ATP levels in WT and IAE fibroblasts, even in severe IAE fibroblasts with thermolabile compound variations of F352C+V368I at 37°C and 41°C. The results suggest the potential usefulness of bezafibrate for the treatment of IAE.

  18. Phospholipase C/protein kinase C pathway mediates angiotensin II-dependent apoptosis in neonatal rat cardiac fibroblasts expressing AT1 receptor.

    PubMed

    Vivar, Raul; Soto, Cristian; Copaja, Miguel; Mateluna, Francisca; Aranguiz, Pablo; Muñoz, Juan Pablo; Chiong, Mario; Garcia, Lorena; Letelier, Alan; Thomas, Walter G; Lavandero, Sergio; Díaz-Araya, Guillermo

    2008-08-01

    Cardiac fibroblasts are the major non-myocyte cell constituent in the myocardium, and they are involved in heart remodeling. Angiotensin II type 1 receptor (AT1R) mediates the established actions of angiotensin II (Ang II), and changes in its expression have been reported in cardiac fibroblasts after myocardial infarction. However, the AT1R-dependent signaling pathways involved in cardiac fibroblast death remain unknown. Using adenovirus, we ectopically expressed AT1R in cultured neonatal rat cardiac fibroblasts and investigated the role of the phospholipase (PLC)/protein kinase C (PKC) pathway on Ang II-dependent death. Ang II induced cardiac fibroblast death characterized by an early loss of mitochondrial membrane potential, increased Bax/Bcl-2 ratio, caspase-3 activation, and DNA fragmentation. All these effects were prevented by the AT1R antagonist losartan, PLC inhibitor U73122, and PKC inhibitor Gö6976. We conclude that Ang II stimulates the intrinsic apoptotic pathway in cultured cardiac fibroblasts by the AT1R/PLC/PKC signaling pathway. PMID:18670360

  19. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    SciTech Connect

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  20. Requirement for active glycogen synthase kinase-3β in TGF-β1 upregulation of connective tissue growth factor (CCN2/CTGF) levels in human gingival fibroblasts

    PubMed Central

    Bahammam, Maha; Black, Samuel A.; Sume, Siddika Selva; Assaggaf, Mohammad A.; Faibish, Michael

    2013-01-01

    Connective tissue growth factor (CCN2/CTGF) mediates transforming growth factor-β (TGF-β)-induced fibrosis. Drug-induced gingival overgrowth is tissue specific. Here the role of the phosphoinositol 3-kinase (PI3K) pathway in mediating TGF-β1-stimulated CCN2/CTGF expression in primary human adult gingival fibroblasts and human adult lung fibroblasts was compared. Data indicate that PI3K inhibitors attenuate upregulation of TGF-β1-induced CCN2/CTGF expression in human gingival fibroblasts independent of reducing JNK MAP kinase activation. Pharmacologic inhibitors and small interfering (si)RNA-mediated knockdown studies indicate that calcium-dependent isoforms and an atypical isoform of protein kinase C (PKC-δ) do not mediate TGF-β1-stimulated CCN2/CTGF expression in gingival fibroblasts. As glycogen synthase kinase-3β (GSK-3β) can undergo phosphorylation by the PI3K/pathway, the effects of GSK-3β inhibitor kenpaullone and siRNA knockdown were investigated. Data in gingival fibroblasts indicate that kenpaullone attenuates TGF-β1-mediated CCN2/CTGF expression. Activation of the Wnt canonical pathways with Wnt3a, which inhibits GSK-3β, similarly inhibits TGF-β1-stimulated CCN2/CTGF expression. In contrast, inhibition of GSK-3β by Wnt3a does not inhibit, but modestly stimulates, CCN2/CTGF levels in primary human adult lung fibroblasts and is β-catenin dependent, consistent with previous studies performed in other cell models. These data identify a novel pathway in gingival fibroblasts in which inhibition of GSK-3β attenuates CCN2/CTGF expression. In adult lung fibroblasts inhibition of GSK-3β modestly stimulates TGF-β1-regulated CCN2/CTGF expression. These studies have potential clinical relevance to the tissue specificity of drug-induced gingival overgrowth. PMID:23824844

  1. Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway

    SciTech Connect

    White, Eric S.; Sagana, Rommel L.; Booth, Adam J.; Yan, Mei; Cornett, Ashley M.; Bloomheart, Christopher A.; Tsui, Jessica L.; Wilke, Carol A.; Moore, Bethany B.; Ritzenthaler, Jeffrey D.; Roman, Jesse; Muro, Andres F.

    2010-10-01

    Fibronectin (FN), a ubiquitous glycoprotein that plays critical roles in physiologic and pathologic conditions, undergoes alternative splicing which distinguishes plasma FN (pFN) from cellular FN (cFN). Although both pFN and cFN can be incorporated into the extracellular matrix, a distinguishing feature of cFN is the inclusion of an alternatively spliced exon termed EDA (for extra type III domain A). The molecular steps involved in EDA splicing are well-characterized, but pathways influencing EDA splicing are less clear. We have previously found an obligate role for inhibition of the tumor suppressor phosphatase and tensin homologue on chromosome 10 (PTEN), the primary regulator of the PI3K/Akt pathway, in fibroblast activation. Here we show TGF-{beta}, a potent inducer of both EDA splicing and fibroblast activation, inhibits PTEN expression and activity in mesenchymal cells, corresponding with enhanced PI3K/Akt signaling. In pten{sup -/-} fibroblasts, which resemble activated fibroblasts, inhibition of Akt attenuated FN production and decreased EDA alternative splicing. Moreover, inhibition of mammalian target of rapamycin (mTOR) in pten{sup -/-} cells also blocked FN production and EDA splicing. This effect was due to inhibition of Akt-mediated phosphorylation of the primary EDA splicing regulatory protein SF2/ASF. Importantly, FN silencing in pten{sup -/-} cells resulted in attenuated proliferation and migration. Thus, our results demonstrate that the PI3K/Akt/mTOR axis is instrumental in FN transcription and alternative splicing, which regulates cell behavior.

  2. Expression of the glucocorticoid receptor in breast cancer-associated fibroblasts

    PubMed Central

    Catteau, Xavier; Simon, Philippe; Buxant, Frédéric; Noël, Jean-Christophe

    2016-01-01

    Cancer- associated fibroblasts (CAFs) are actively involved in breast carcinoma. Our previous study demonstrated that the majority of these CAFs were smooth muscle actin (SMA) positive and were therefore termed peritumoral myofibroblast (PMY). Glucocorticoid, linked or not with its receptor (GR), has been postulated to serve a major role in normal breast and breast carcinoma; however, their role in CAFs remains poorly understood. The aim of the present study was to assess the presence of GR in breast CAFs and particularly in PMY in 56 cases of invasive breast carcinoma in correlation with clinicopathological parameters, by immunohistochemistry. GR was observed in CAFs in 51 cases (91%) and were more frequent in luminal A subtype (19/19 cases; 100%). The stromal expression was statistically correlated with the tumor grade (P=0.03), the Ki-67 index (P=0.003) and the presence of GR in the epithelial component (P=0.01). The demonstration of a frequent expression of GR in breast CAFs may serve as an interesting target for future therapeutics for the regulation of the tumoral breast microenvironment. PMID:27699028

  3. Expression of the glucocorticoid receptor in breast cancer-associated fibroblasts

    PubMed Central

    Catteau, Xavier; Simon, Philippe; Buxant, Frédéric; Noël, Jean-Christophe

    2016-01-01

    Cancer- associated fibroblasts (CAFs) are actively involved in breast carcinoma. Our previous study demonstrated that the majority of these CAFs were smooth muscle actin (SMA) positive and were therefore termed peritumoral myofibroblast (PMY). Glucocorticoid, linked or not with its receptor (GR), has been postulated to serve a major role in normal breast and breast carcinoma; however, their role in CAFs remains poorly understood. The aim of the present study was to assess the presence of GR in breast CAFs and particularly in PMY in 56 cases of invasive breast carcinoma in correlation with clinicopathological parameters, by immunohistochemistry. GR was observed in CAFs in 51 cases (91%) and were more frequent in luminal A subtype (19/19 cases; 100%). The stromal expression was statistically correlated with the tumor grade (P=0.03), the Ki-67 index (P=0.003) and the presence of GR in the epithelial component (P=0.01). The demonstration of a frequent expression of GR in breast CAFs may serve as an interesting target for future therapeutics for the regulation of the tumoral breast microenvironment.

  4. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    SciTech Connect

    Malpass, Gloria E.; Arimilli, Subhashini; Prasad, G.L.; Howlett, Allyn C.

    2014-09-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes.

  5. Changes in gene expression with iron loading and chelation in cardiac myocytes and non-myocytic fibroblasts.

    PubMed

    Parkes, J G; Liu, Y; Sirna, J B; Templeton, D M

    2000-02-01

    Iron overload is associated with long-term cardiac iron accumulation and tissue changes such as fibrosis. To determine short-term iron-dependent changes in expression of genes associated with iron homeostasis and fibrosis we measured mRNA on Northern blots prepared from cultured rat neonatal cardiomyocytes and non-myocytes (fibroblasts) as a function of iron loading and chelation. Transferrin receptor mRNA was reduced in myocytes exposed to various concentrations of iron for 3 days and this decline was associated with a 63% decline in iron-response element (IRE) binding of iron regulatory protein-1, indicating that myocytes utilize IRE-dependent mechanisms to modulate gene expression. In myocytes iron caused a dose-dependent decline in mRNAs coding for transforming growth factor- beta(1)(TGF- beta(1)), biglycan, and collagen type I while plasminogen activator inhibitor-1 mRNA was unaffected by iron loading and decorin mRNA doubled. Total TGF- beta bioactivity was also decreased by iron loading. Thus, the effects of iron loading on genes related to cardiac fibrosis are gene-specific. Addition of deferoxamine for 1 day did not have any significant effect on any of these genes. Parallel changes in gene expression were exhibited by non-myocytes (fibroblasts), where chelation also decreased TGF- beta(1)mRNA and activity, and mRNA for collagen type I and biglycan, and collagen synthesis. In addition to these changes in transcripts associated with matrix formation the mRNA of the metabolic enzyme glyceraldehyde-3-phosphate dehydrogenase was unaffected by iron loading but doubled in both cell types upon treatment with deferoxamine. These findings suggest that in both cardiac myocytes and non-myocyte fibroblasts gene expression is coupled to intracellular iron pools by gene-specific and IRE-dependent and idependent mechanisms. This linkage may influence matrix deposition, a significant component of cardiac injury.

  6. Apoptosis signal-regulating kinase 1 is mediated in TNF-α-induced CCL2 expression in human synovial fibroblasts.

    PubMed

    Tsou, Hsi-Kai; Chen, Hsien-Te; Chang, Chia-Hao; Yang, Wan-Yu; Tang, Chih-Hsin

    2012-11-01

    Tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine with a critical role in osteoarthritis (OA), was primarily produced by monocytes/macrophages and plays a crucial role in the inflammatory response. Here, we investigated the intracellular signaling pathways involved in TNF-α-induced monocyte chemoattractant protein 1 (MCP-1)/CCL2 expression in human synovial fibroblast cells. Stimulation of synovial fibroblasts (OASF) with TNF-α induced concentration- and time-dependent increases in CCL2 expression. TNF-α-mediated CCL2 production was attenuated by TNFR1 monoclonal antibody (Ab). Pretreatment with an apoptosis signal-regulating kinase 1 (ASK1) inhibitor (thioredoxin), JNK inhibitor (SP600125), p38 inhibitor (SB203580), or AP-1 inhibitor (curcumin or tanshinone IIA) also blocked the potentiating action of TNF-α. Stimulation of cells with TNF-α enhanced ASK1, JNK, and p38 activation. Treatment of OASF with TNF-α also increased the accumulation of phosphorylated c-Jun in the nucleus, AP-1-luciferase activity, and c-Jun binding to the AP-1 element on the CCL2 promoter. TNF-α-mediated AP-1-luciferase activity and c-Jun binding to the AP-1 element were inhibited by TNFR1 Ab, thioredoxin, SP600125, and SB203580. Our results suggest that the interaction between TNF-α and TNFR1 increases CCL2 expression in human synovial fibroblasts via the ASK1, JNK/p38, c-Jun, and AP-1 signaling pathway. PMID:22711527

  7. Normal Expression of a Rearranged and Mutated c-myc Oncogene after Transfection into Fibroblasts

    NASA Astrophysics Data System (ADS)

    Richman, Adam; Hayday, Adrian

    1989-10-01

    Expression of the c-myc oncogene is deregulated in a variety of malignancies. Rearrangement and mutation of the c-myc locus is a characteristic feature of human Burkitt's lymphoma. Whether deregulation is solely a result of mutation of c-myc or whether it is influenced by the transformed B cell context has not been determined. A translocated and mutated allele of c-myc was stably transfected into fibroblasts. The rearranged allele was expressed indistinguishably from a normal c-myc gene: it had serum-regulated expression, was transcribed with normal promoter preference, and was strongly attenuated. Thus mutations by themselves are insufficient to deregulate c-myc transcription.

  8. Disentangling the multifactorial contributions of fibronectin, collagen and cyclic strain on MMP expression and extracellular matrix remodeling by fibroblasts.

    PubMed

    Zhang, Yang; Lin, Zhe; Foolen, Jasper; Schoen, Ingmar; Santoro, Alberto; Zenobi-Wong, Marcy; Vogel, Viola

    2014-11-01

    Early wound healing is associated with fibroblasts assembling a provisional fibronectin-rich extracellular matrix (ECM), which is subsequently remodeled and interlaced by type I collagen. This exposes fibroblasts to time-variant sets of matrices during different stages of wound healing. Our goal was thus to gain insight into the ECM-driven functional regulation of human foreskin fibroblasts (HFFs) being either anchored to a fibronectin (Fn) or to a collagen-decorated matrix, in the absence or presence of cyclic mechanical strain. While the cells reoriented in response to the onset of uniaxial cyclic strain, cells assembled exogenously added Fn with a preferential Fn-fiber alignment along their new orientation. Exposure of HFFs to exogenous Fn resulted in an increase in matrix metalloproteinase (MMP) expression levels, i.e. MMP-15 (RT-qPCR), and MMP-9 activity (zymography), while subsequent exposure to collagen slightly reduced MMP-15 expression and MMP-9 activity compared to Fn-exposure alone. Cyclic strain upregulated Fn fibrillogenesis and actin stress fiber formation, but had comparatively little effect on MMP activity. We thus propose that the appearance of collagen might start to steer HFFs towards homeostasis, as it decreased both MMP secretion and the tension of Fn matrix fibrils as assessed by Fluorescence Resonance Energy Transfer. These results suggest that HFFs might have a high ECM remodeling or repair capacity in contact with Fn alone (early event), which is reduced in the presence of Col1 (later event), thereby down-tuning HFF activity, a processes which would be required in a tissue repair process to finally reach tissue homeostasis.

  9. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment

    PubMed Central

    Jeong, Su-Yeong; Lee, Ji-Hyun; Shin, Yoojin; Chung, Seok; Kuh, Hyo-Jeong

    2016-01-01

    Multicellular 3D culture and interaction with stromal components are considered essential elements in establishing a ‘more clinically relevant’ tumor model. Matrix-embedded 3D cultures using a microfluidic chip platform can recapitulate the microscale interaction within tumor microenvironments. As a major component of tumor microenvironment, cancer-associated fibroblasts (CAFs) play a role in cancer progression and drug resistance. Here, we present a microfluidic chip-based tumor tissue culture model that integrates 3D tumor spheroids (TSs) with CAF in proximity within a hydrogel scaffold. HT-29 human colorectal carcinoma cells grew into 3D TSs and the growth was stimulated when co-cultured with fibroblasts as shown by 1.5-folds increase of % changes in diameter over 5 days. TS cultured for 6 days showed a reduced expression of Ki-67 along with increased expression of fibronectin when co-cultured with fibroblasts compared to mono-cultured TSs. Fibroblasts were activated under co-culture conditions, as demonstrated by increases in α-SMA expression and migratory activity. When exposed to paclitaxel, a survival advantage was observed in TSs co-cultured with activated fibroblasts. Overall, we demonstrated the reciprocal interaction between TSs and fibroblasts in our 7-channel microfluidic chip. The co-culture of 3D TS-CAF in a collagen matrix-incorporated microfluidic chip may be useful to study the tumor microenvironment and for evaluation of drug screening and evaluation. PMID:27391808

  10. Induction of Stem Cell Gene Expression in Adult Human Fibroblasts without Transgenes

    PubMed Central

    Ambady, Sakthikumar; Holmes, William F.; Vilner, Lucy; Kole, Denis; Kashpur, Olga; Huntress, Victoria; Vojtic, Ina; Whitton, Holly; Dominko, Tanja

    2009-01-01

    Abstract Reprogramming of differentiated somatic cells into induced pluripotent stem (iPS) cells has potential for derivation of patient-specific cells for therapy as well as for development of models with which to study disease progression. Derivation of iPS cells from human somatic cells has been achieved by viral transduction of human fibroblasts with early developmental genes. Because forced expression of these genes by viral transduction results in transgene integration with unknown and unpredictable potential mutagenic effects, identification of cell culture conditions that can induce endogenous expression of these genes is desirable. Here we show that primary adult human fibroblasts have basal expression of mRNA for OCT4, SOX2, and NANOG. However, translation of these messages into detectable proteins and their subcellular localization depends on cell culture conditions. Manipulation of oxygen concentration and FGF2 supplementation can modulate expression of some pluripotency related genes at the transcriptional, translational, and cellular localization level. Changing cell culture condition parameters led to expression of REX1, potentiation of expression of LIN28, translation of OCT4, SOX2, and NANOG, and translocation of these transcription factors to the cell nucleus. We also show that culture conditions affect the in vitro lifespan of dermal fibroblasts, nearly doubling the number of population doublings before the cells reach replicative senescence. Our results suggest that it is possible to induce and manipulate endogenous expression of stem cell genes in somatic cells without genetic manipulation, but this short-term induction may not be sufficient for acquisition of true pluripotency. Further investigation of the factors involved in inducing this response could lead to discovery of defined culture conditions capable of altering cell fate in vitro. This would alleviate the need for forced expression by transgenesis, thus eliminating the risk of

  11. Heat shock protein 47 expression in aged normal human fibroblasts: modulation by Salix alba extract.

    PubMed

    Nizard, Carine; Noblesse, Emmanuelle; Boisdé, Cécille; Moreau, Marielle; Faussat, Anne-Marie; Schnebert, Sylvianne; Mahé, Christian

    2004-06-01

    Heat shock protein (HSP) 47 is a specific chaperone of procollagen. This heat shock protein is responsible for the correct three-dimensional organization of procollagen and its control-quality prior secretion. The aim of the study is to evaluate the level of HSP 47 in aged, photoaged, and senescent fibroblasts and its modulation by a plant extract (Salix alba). The level of HSP 47 and/or procollagen expression in fibroblasts was measured by real-time RT-PCR (mRNA transcripts) and by flow cytometry (immunochemistry technique for measurement of arbitrary fluorescence intensity). Immunochemistry techniques and confocal microscopy were used to visualize the cellular localization of HSP 47 and procollagen. These parameters were compared with different age donors, nonsenescent, and senescent fibroblasts. Fibroblasts were irradiated by a noncytotoxic dose of UVA (6 J/cm(2)), and HSP 47 level was evaluated. S. alba extract was tested for its capacity to modulate HSP 47 expression. Colocalization of HSP 47 and procollagen was shown by confocal microscopy, indicating that HSP 47 could play a role of procollagen molecular chaperone in the cellular model. It was also shown that the HSP 47 level is decreased in old-donor cells, senescent, and irradiated cells. This decrease can be modulated by a S. alba extract (polyphenols rich) in a dose-dependent manner. The evaluation of HSP 47 expression in the experimental conditions can lead to a new approach of aging and photoaging, pointing out the implication of this chaperone in these pathophysiologic phenomena. Modulation of HSP 47 expression by this family of molecules could be of cosmetic and/or dermatologic interest.

  12. Suppression of PAI-1 expression through inhibition of the EGFR-mediated signaling cascade in rat kidney fibroblast by ascofuranone.

    PubMed

    Cho, Hyun-Ji; Kang, Jeong-Han; Kim, Teoan; Park, Kwang-Kyun; Kim, Cheorl-Ho; Lee, In-Seon; Min, Kwan-Sik; Magae, Junji; Nakajima, Hiroo; Bae, Young-Seuk; Chang, Young-Chae

    2009-05-15

    Fibrosis in glomerulosclerosis causes progressive loss of renal function. Transforming growth factor (TGF)-beta, one of the major profibrotic cytokines, induces the synthesis of plasminogen activator inhibitor (PAI)-1, a factor that plays a crucial role in the development of fibrosis. Here, we found that an isoprenoid antibiotic, ascofuranone, suppresses expression of profibrotic factors including matrix proteins and PAI-1 induced by TGF-beta in renal fibroblasts. Ascofuranone selectively inhibits phosphorylation of epidermal growth factor receptor (EGFR), and downstream kinases such as Raf-1, MEK-1/2, and ERK-1/2. PAI-1 transcription also is suppressed by treatment with kinase inhibitors for MEK-1/2 or EGFR, and with small interfering RNA for EGFR. Ascofuranone inhibits cellular metalloproteinase activity, and an inhibitor of metalloproteinases suppresses EGFR phosphorylation and PAI-1 transcription. These results suggest that ascofuranone suppresses expression of profibrotic factors through the inhibition of an EGFR-dependent signal transduction pathway activated by metalloproteinases.

  13. Efficient inhibition of fibroblast proliferation and collagen expression by ERK2 siRNAs

    SciTech Connect

    Li, Fengfeng; Fan, Cunyi; Cheng, Tao; Jiang, Chaoyin; Zeng, Bingfang

    2009-05-01

    Transforming growth factor-{beta}1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which ERK2 is supposed to be crucial. Based on these assumptions, lentivirus (LV)-mediated small interfering RNAs (siRNAs) targeting ERK2 were used to suppress the proliferation and collagen expression of rat joint adhesion tissue fibroblasts (RJATFs). Among four siRNAs examined, siRNA1 caused an 84% reduction in ERK2 expression (p < 0.01) and was selected as the most efficient siRNA for use in this study. In subsequent experiments, significant downregulation of types I and III collagen were observed by quantitative RT-PCR and Western blot analyses. MTT assays and flow cytometry revealed marked inhibition of RJATF proliferation, but no apoptosis. In conclusion, LV-mediated ERK2 siRNAs may represent novel therapies or drug targets for preventing joint adhesion formation.

  14. TGF-β regulates TGFBIp expression in corneal fibroblasts via miR-21, miR-181a, and Smad signaling.

    PubMed

    Choi, Seung-Il; Jin, Jun-Yup; Maeng, Yong-Sun; Kim, Tae-Im; Kim, Eung Kweon

    2016-03-25

    Transforming growth factor-β (TGF-β)-induced gene (TGFBI) protein (TGFBIp) is associated with granular corneal dystrophy type 2 (GCD2). TGFBIp levels can affect GCD2 phenotypes, but the underlying molecular mechanisms have not been fully elucidated. We investigated the involvement of microRNA (miRNA) and TGF-β in the regulation of TGFBIp expression in corneal fibroblasts. Ectopic expression of miR-9, miR-21, and miR-181a significantly decreased TGFBIp levels. Conversely, expression of miR-21 and miR-181a was induced by TGF-β1. Expression of miR-21 was 10-fold higher than that of miR-9 and miR-181a in corneal fibroblasts. Additionally, TGF-β1 expression was significantly higher than that of TGF-β2 and TGF-β3 in corneal fibroblasts, whereas expression of all three TGF-β forms was not significantly different between wild-type (WT) and GCD2 homozygotes (HO) corneal fibroblasts. Taken together, these data indicate that TGFBIp expression is positively regulated by TGF-β, whereas TGF-β-induced miR-21 and miR-181a negatively regulate TGFBIp expression. In conclusion, TGFBIp levels in corneal fibroblasts are controlled via the coordinated activity of miR-21 and miR-181a and by Smad signaling. Pharmacologic modulation of these miRNAs and TGF-β signaling could have therapeutic potential for TGFBI-associated corneal dystrophy, including GCD2.

  15. Human lung fibroblasts express interleukin-6 in response to signaling after mast cell contact.

    PubMed

    Fitzgerald, S Matthew; Lee, Steven A; Hall, H Kenton; Chi, David S; Krishnaswamy, Guha

    2004-04-01

    Asthma is a chronic inflammatory disease of the airways. Mast cell-derived cytokines may mediate both airway inflammation and remodeling. It has also been shown that fibroblasts can be the source of proinflammatory cytokines. In the human airways, mast cell-fibroblast interactions may have pivotal effects on modulating inflammation. To study this further, we cocultured normal human lung fibroblasts (NHLF) with a human mast cell line (HMC-1) and assayed for production of interleukin (IL)-6, an important proinflammatory cytokine. When cultured together, NHLF/HMC-1 contact induced IL-6 secretion. Separation of HMC-1 and NHLF cells by a porous membrane inhibited this induction. HMC-1-derived cellular membranes caused an increase in IL-6 production in NHLF. Activation of p38 MAPK was also seen in cocultures by Western blot, whereas IL-6 production in cocultures was significantly inhibited by the p38 inhibitor SB203580. IL-6 production in cocultures was minimally inhibited by a chemical inhibitor of nuclear factor-kappaB (Bay11), indicating that nuclear factor-kappaB may have a minimal role in signaling IL-6 production in mast cell/fibroblasts cocultures. Blockade of inter-cellular adhesion molecule-1, tumor necrosis factor-RI, and surface IL-1beta with neutralizing antibodies failed to significantly decrease IL-6 production in our coculture, indicating that other receptor-ligand associations may be responsible for this activation. These novel studies reveal the importance of cell-cell interactions in the complex milieu of airway inflammation.

  16. The application of the fibroblast activation protein α-targeted immunotherapy strategy

    PubMed Central

    Du, Jun; Zhang, Kun-Shui; Zhang, Qiu-Gui; Wang, Xiao-Wei; Liu, Zhi-Gang; Liu, Shuang-Quan; Xie, Wan-Ying; Liu, Hui-Fang; Liu, Jing-Shi; Wu, Bai-Ping

    2016-01-01

    Cancer immunotherapy has primarily been focused on attacking tumor cells. However, given the close interaction between tumor cells and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME), CAF-targeted strategies could also contribute to an integrated cancer immunotherapy. Fibroblast activation protein α (FAP α) is not detectible in normal tissues, but is overexpressed by CAFs and is the predominant component of the stroma in most types of cancer. FAP α has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. When all FAP α-expressing cells (stromal and cancerous) are destroyed, tumors rapidly die. Furthermore, a FAP α antibody, FAP α vaccine, and modified vaccine all inhibit tumor growth and prolong survival in mouse models, suggesting FAP α is an adaptive tumor-associated antigen. This review highlights the role of FAP α in tumor development, explores the relationship between FAP α and immune suppression in the TME, and discusses FAP α as a potential immunotherapeutic target. PMID:26985769

  17. The application of the fibroblast activation protein α-targeted immunotherapy strategy.

    PubMed

    Jiang, Guan-Min; Xu, Wei; Du, Jun; Zhang, Kun-Shui; Zhang, Qiu-Gui; Wang, Xiao-Wei; Liu, Zhi-Gang; Liu, Shuang-Quan; Xie, Wan-Ying; Liu, Hui-Fang; Liu, Jing-Shi; Wu, Bai-Ping

    2016-05-31

    Cancer immunotherapy has primarily been focused on attacking tumor cells. However, given the close interaction between tumor cells and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME), CAF-targeted strategies could also contribute to an integrated cancer immunotherapy. Fibroblast activation protein α (FAP α) is not detectible in normal tissues, but is overexpressed by CAFs and is the predominant component of the stroma in most types of cancer. FAP α has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. When all FAP α-expressing cells (stromal and cancerous) are destroyed, tumors rapidly die. Furthermore, a FAP α antibody, FAP α vaccine, and modified vaccine all inhibit tumor growth and prolong survival in mouse models, suggesting FAP α is an adaptive tumor-associated antigen. This review highlights the role of FAP α in tumor development, explores the relationship between FAP α and immune suppression in the TME, and discusses FAP α as a potential immunotherapeutic target.

  18. IDO expressing fibroblasts promote the expansion of antigen specific regulatory T cells.

    PubMed

    Curran, Terry-Ann; Jalili, Reza Baradar; Farrokhi, Ali; Ghahary, Aziz

    2014-01-01

    Regulatory CD4(+)CD25(+)Foxp3(+) T cells (Tregs) can be induced and expanded by dendritic cells (DCs) in the presence of the enzyme indoleamine 2,3-dioxygenase (IDO). Here we report that a possible alternative to DCs are IDO expressing dermal fibroblasts (DFs), which are easier to isolate and sustain in culture compared to DCs. When mouse splenocytes were co-cultured with IDO expressing DFs, a significant increase in frequency and the number of Tregs was found compared to those of control group (13.16%±1.8 vs. 5.53%±1.2, p<0.05). Despite observing a higher total number of dead CD4(+) cells in the IDO group, there was a more abundant live CD4(+)CD25(+) subpopulation in this group. Further analysis reveales that these CD4(+) CD25(+) cells have the capacity to expand in the presence of IDO expressing DFs. Greater number of CTLA-4(+) cells and high expression of TGF-β and IL-10 were found in CD4(+) cells of the IDO group compared to those of the controls. This finding confirmed a suppressive functionality of the expanded Tregs. Furthermore, CD4(+) CD25(+) cells isolated from the IDO group showed an alloantigen specific suppressive effect in a mixed lymphocyte reaction assay. These results confirm that IDO expressing dermal fibroblasts can expand a population of suppressive antigen specific Tregs. In conclusion, IDO expressing dermal fibroblasts have the capacity to stimulate the expansion of a subset of Tregs which can be used to generate antigen-specific immune tolerance.

  19. A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes.

    PubMed

    Lyu, Linmao; Wang, Hui; Li, Bin; Qin, Qingyun; Qi, Lei; Nagarkatti, Mitzi; Nagarkatti, Prakash; Janicki, Joseph S; Wang, Xing Li; Cui, Taixing

    2015-12-01

    Chronic activation of the myocardial renin angiotensin system (RAS) elevates the local level of angiotensin II (Ang II) thereby inducing pathological cardiac hypertrophy, which contributes to heart failure. However, the precise underlying mechanisms have not been fully delineated. Herein we report a novel paracrine mechanism between cardiac fibroblasts (CF)s and cardiomyocytes whereby Ang II induces pathological cardiac hypertrophy. In cultured CFs, Ang II treatment enhanced exosome release via the activation of Ang II receptor types 1 (AT1R) and 2 (AT2R), whereas lipopolysaccharide, insulin, endothelin (ET)-1, transforming growth factor beta (TGFβ)1 or hydrogen peroxide did not. The CF-derived exosomes upregulated the expression of renin, angiotensinogen, AT1R, and AT2R, downregulated angiotensin-converting enzyme 2, and enhanced Ang II production in cultured cardiomyocytes. In addition, the CF exosome-induced cardiomyocyte hypertrophy was blocked by both AT1R and AT2R antagonists. Exosome inhibitors, GW4869 and dimethyl amiloride (DMA), inhibited CF-induced cardiomyocyte hypertrophy with little effect on Ang II-induced cardiomyocyte hypertrophy. Mechanistically, CF exosomes upregulated RAS in cardiomyocytes via the activation of mitogen-activated protein kinases (MAPKs) and Akt. Finally, Ang II-induced exosome release from cardiac fibroblasts and pathological cardiac hypertrophy were dramatically inhibited by GW4869 and DMA in mice. These findings demonstrate that Ang II stimulates CFs to release exosomes, which in turn increase Ang II production and its receptor expression in cardiomyocytes, thereby intensifying Ang II-induced pathological cardiac hypertrophy. Accordingly, specific targeting of Ang II-induced exosome release from CFs may serve as a novel therapeutic approach to treat cardiac pathological hypertrophy and heart failure.

  20. Transforming Growth Factor-β1 Downregulates Vascular Endothelial Growth Factor-D Expression in Human Lung Fibroblasts via the Jun NH2-Terminal Kinase Signaling Pathway

    PubMed Central

    Cui, Ye; Osorio, Juan C; Risquez, Cristobal; Wang, Hao; Shi, Ying; Gochuico, Bernadette R; Morse, Danielle; Rosas, Ivan O; El-Chemaly, Souheil

    2014-01-01

    Vascular endothelial growth factor (VEGF)-D, a member of the VEGF family, induces both angiogenesis and lymphangiogenesis by activating VEGF receptor-2 (VEGFR-2) and VEGFR-3 on the surface of endothelial cells. Transforming growth factor (TGF)-β1 has been shown to stimulate VEGF-A expression in human lung fibroblast via the Smad3 signaling pathway and to induce VEGF-C in human proximal tubular epithelial cells. However, the effects of TGF-β1 on VEGF-D regulation are unknown. To investigate the regulation of VEGF-D, human lung fibroblasts were studied under pro-fibrotic conditions in vitro and in idiopathic pulmonary fibrosis (IPF) lung tissue. We demonstrate that TGF-β1 downregulates VEGF-D expression in a dose- and time-dependent manner in human lung fibroblasts. This TGF-β1 effect can be abolished by inhibitors of TGF-β type I receptor kinase and Jun NH2-terminal kinase (JNK), but not by Smad3 knockdown. In addition, VEGF-D knockdown in human lung fibroblasts induces G1/S transition and promotes cell proliferation. Importantly, VEGF-D protein expression is decreased in lung homogenates from IPF patients compared with control lung. In IPF lung sections, fibroblastic foci show very weak VEGF-D immunoreactivity, whereas VEGF-D is abundantly expressed within alveolar interstitial cells in control lung. Taken together, our data identify a novel mechanism for downstream signal transduction induced by TGF-β1 in lung fibroblasts, through which they may mediate tissue remodeling in IPF. PMID:24515257

  1. Basic fibroblast growth factor induces VEGF expression in chondrosarcoma cells and subsequently promotes endothelial progenitor cell-primed angiogenesis.

    PubMed

    Tzeng, Huey-En; Chen, Po-Chun; Lin, Kai-Wei; Lin, Chih-Yang; Tsai, Chun-Hao; Han, Shao-Min; Teng, Chieh-Lin; Hwang, Wen-Li; Wang, Shih-Wei; Tang, Chih-Hsin

    2015-07-01

    Chondrosarcoma, a common malignant tumour, develops in bone. Effective adjuvant therapy remains inadequate for treatment, meaning poor prognosis. It is imperative to explore novel remedies. Angiogenesis is a rate-limiting step in progression that explains neovessel formation for blood supply in the tumour microenvironment. Numerous studies indicate that EPCs (endothelial progenitor cells) promote angiogenesis and contribute to tumour growth. bFGF (basic fibroblast growth factor), a secreted cytokine, regulates biological activity, including angiogenesis, and correlates with tumorigenesis. However, the role of bFGF in angiogenesis-related tumour progression by recruiting EPCs in human chondrosarcoma is rarely discussed. In the present study, we found that bFGF induced VEGF (vascular endothelial growth factor) expression via the FGFR1 (fibroblast growth factor receptor 1)/c-Src/p38/NF-κB (nuclear factor κB) signalling pathway in chondrosarcoma cells, thereby triggering angiogenesis of endothelial progenitor cells. Our in vivo data revealed that tumour-secreted bFGF promotes angiogenesis in both mouse plug and chick CAM (chorioallantoic membrane) assays. Xenograft mouse model data, due to bFGF-regulated angiogenesis, showed the bFGF regulates angiogenesis-linked tumour growth. Finally, bFGF was highly expressed in chondrosarcoma patients compared with normal cartilage, positively correlating with VEGF expression and tumour stage. The present study reveals a novel therapeutic target for chondrosarcoma progression.

  2. Stromal fibroblasts in the microenvironment of gastric carcinomas promote tumor metastasis via upregulating TAGLN expression

    PubMed Central

    2013-01-01

    Background Fibroblasts play a critical role in tumorigenesis, tumor progression and metastasis. However, their detailed molecular characteristics and clinical significance are still elusive. TAGLN is an actin-binding protein that plays an important role in tumorigenesis. Results We investigated the interaction between cancer cells and the tumor microenvironment to determine how the fibroblasts from human gastric carcinoma facilitate tumorigenesis through TAGLN. QRT-PCR and Western blot indicated that TAGLN expression was upregulated in gastric carcinoma-associated fibroblasts (CAFs) that promote gastric cancer cell migration and invasion. Using small interfering RNA (siRNA), we found that CAFs enhanced tumor metastasis through upregulated TAGLN in vitro and in vivo. The expression of matrix metalloproteinase-2 (MMP-2) was significantly lower after TAGLN knock-down by siRNA. TAGLN levels were elevated in human gastric cancer stroma than normal gastric stroma and associated with differentiation and lymph node metastasis of gastric cancer. Conclusion CAFs may promote gastric cancer cell migration and invasion via upregulating TAGLN and TAGLN induced MMP-2 production. PMID:23510049

  3. Tetrandrine inhibits migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes through down-regulating the expressions of Rac1, Cdc42, and RhoA GTPases and activation of the PI3K/Akt and JNK signaling pathways.

    PubMed

    Lv, Qi; Zhu, Xian-Yang; Xia, Yu-Feng; Dai, Yue; Wei, Zhi-Feng

    2015-11-01

    Tetrandrine (Tet), the main active constituent of Stephania tetrandra root, has been demonstrated to alleviate adjuvant-induced arthritis in rats. The present study was designed to investigate the effects of Tet on the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and explore the underlying mechanisms. By using cultures of primary FLS isolated from synoviums of RA patients and cell line MH7A, Tet (0.3, 1 μmol·L(-1)) was proven to significantly impede migration and invasion of RA-FLS, but not cell proliferation. Tet also greatly reduced the activation and expressions of matrix degrading enzymes MMP-2/9, the expression of F-actin and the activation of FAK, which controlled the morphologic changes in migration process of FLS. To identify the key signaling pathways by which Tet exerts anti-migration effect, the specific inhibitors of multiple signaling pathways LY294002, Triciribine, SP600125, U0126, SB203580, and PDTC (against PI3K, Akt, JNK, ERK, p38 MAPK and NF-κB-p65, respectively) were used. Among them, LY294002, Triciribine, and SP600125 were shown to obviously inhibit the migration of MH7A cells. Consistently, Tet was able to down-regulate the activation of Akt and JNK as demonstrated by Western blotting assay. Moreover, Tet could reduce the expressions of migration-related proteins Rho GTPases Rac1, Cdc42, and RhoA in MH7A cells. In conclusion, Tet can impede the migration and invasion of RA-FLS, which provides a plausible explanation for its protective effect on RA. The underlying mechanisms involve the reduction of the expressions of Rac1, Cdc42, and RhoA, inhibition of the activation of Akt and JNK, and subsequent down-regulation of activation and/or expressions of MMP-2/9, F-actin, and FAK.

  4. Tetrandrine inhibits migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes through down-regulating the expressions of Rac1, Cdc42, and RhoA GTPases and activation of the PI3K/Akt and JNK signaling pathways.

    PubMed

    Lv, Qi; Zhu, Xian-Yang; Xia, Yu-Feng; Dai, Yue; Wei, Zhi-Feng

    2015-11-01

    Tetrandrine (Tet), the main active constituent of Stephania tetrandra root, has been demonstrated to alleviate adjuvant-induced arthritis in rats. The present study was designed to investigate the effects of Tet on the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and explore the underlying mechanisms. By using cultures of primary FLS isolated from synoviums of RA patients and cell line MH7A, Tet (0.3, 1 μmol·L(-1)) was proven to significantly impede migration and invasion of RA-FLS, but not cell proliferation. Tet also greatly reduced the activation and expressions of matrix degrading enzymes MMP-2/9, the expression of F-actin and the activation of FAK, which controlled the morphologic changes in migration process of FLS. To identify the key signaling pathways by which Tet exerts anti-migration effect, the specific inhibitors of multiple signaling pathways LY294002, Triciribine, SP600125, U0126, SB203580, and PDTC (against PI3K, Akt, JNK, ERK, p38 MAPK and NF-κB-p65, respectively) were used. Among them, LY294002, Triciribine, and SP600125 were shown to obviously inhibit the migration of MH7A cells. Consistently, Tet was able to down-regulate the activation of Akt and JNK as demonstrated by Western blotting assay. Moreover, Tet could reduce the expressions of migration-related proteins Rho GTPases Rac1, Cdc42, and RhoA in MH7A cells. In conclusion, Tet can impede the migration and invasion of RA-FLS, which provides a plausible explanation for its protective effect on RA. The underlying mechanisms involve the reduction of the expressions of Rac1, Cdc42, and RhoA, inhibition of the activation of Akt and JNK, and subsequent down-regulation of activation and/or expressions of MMP-2/9, F-actin, and FAK. PMID:26614458

  5. Changes in tension regulates proliferation and migration of fibroblasts by remodeling expression of ECM proteins

    PubMed Central

    Jiang, Minmin; Qiu, Juhui; Zhang, Lingling; Lü, Dongyuan; Long, Mian; Chen, Li; Luo, Xiangdong

    2016-01-01

    Wound healing is a complicated but highly organized process in which cell migration and proliferation are actively involved. However, the process by which mechanical stretch regulates the proliferation and migration of human skin fibroblasts (HFs) and keratinocytes is poorly understood. Using a house built mechanical stretch device, we examined the HFs extracellular matrix (ECM) components changes under non-stretch, static stretch or cyclic stretch conditions. We further investigated the changes in ECM component protein expression levels in keratinocytes and analyzed the effects of individual ECM component on keratinocyte proliferation and migration. Particularly, the roles of calcium/calmodulin-dependent serine protein kinase (CASK) in the HF proliferation under cyclic stretch were investigated. Cyclic stretch suppressed HF proliferation compared with HFs without stretch or with static stretch. Cyclic stretch also led to a significant reduction in the levels of collagen I and a marked increase of fibronectin in HFs ECM. By contrast, collagen I levels increased and fibronectin levels decreased in response to non-stretch and static stretch conditions. After cyclic stretch, the proliferation of keratinocytes was inhibited by the cyclic stretch-induced ECM in HFs. The inoculation of keratinocytes with single ECM component suggested that collagen I was more capable of inducing cell proliferation than fibronectin, while it had less impact on cell migration compared with fibronectin. Furthermore, cyclic stretch induced by proliferation inhibition was associated with altered integrin β1-CASK signal pathway. The present results demonstrated the existence of HF-ECM-keratinocyte ‘cross-talk’ in cutaneous tissues. Thus, the integrin β1-CASK signal pathway in HFs may be involved in the outside-in signal transduction of extracellular stretch and the altered ECM component expression. PMID:27588075

  6. Celastrol inhibits IL-1β-induced inflammation in orbital fibroblasts through the suppression of NF-κB activity.

    PubMed

    Li, Hong; Yuan, Yifei; Zhang, Yali; He, Qianwen; Xu, Rongjuan; Ge, Fangfang; Wu, Chen

    2016-09-01

    Graves' disease is an autoimmune disease of the thyroid gland, which is characterized by hyperthyroidism, diffuse goiter and Graves' ophthalmopathy (GO). Although several therapeutic strategies for the treatment of GO have been developed, the effectiveness and the safety profile of these therapies remain to be fully elucidated. Therefore, examination of novel GO therapies remains an urgent requirement. Celastrol, a triterpenoid isolated from traditional Chinese medicine, is a promising drug for the treatment of various inflammatory and autoimmune diseases. CCK‑8 and apoptosis assays were performed to investigate cytotoxicity of celastrol and effect on apoptosis on orbital fibroblasts. Reverse transcription‑polymerase chain reaction, western blotting and ELISAs were performed to examine the effect of celastrol on interleukin (IL)‑1β‑induced inflammation in orbital fibroblasts from patients with GO. The results demonstrated that celastrol significantly attenuated the expression of IL‑6, IL‑8, cyclooxygenase (COX)‑2 and intercellular adhesion molecule‑1 (ICAM‑1), and inhibited IL‑1β‑induced increases in the expression of IL‑6, IL‑8, ICAM‑1 and COX‑2. The levels of prostaglandin E2 in orbital fibroblasts induced by IL‑1β were also suppressed by celastrol. Further investigation revealed that celastrol suppressed the IL‑1β‑induced inflammatory responses in orbital fibroblasts through inhibiting the activation of nuclear factor (NF)‑κB. Taken together, these results suggested that celastrol attenuated the IL‑1β‑induced pro‑inflammatory pathway in orbital fibroblasts from patients with GO, which was associated with the suppression of NF-κB activation. PMID:27484716

  7. Stromal fibroblast activation and their potential association with uterine fibroids (Review)

    PubMed Central

    ZHENG, LI-HUA; CAI, FENG-FENG; GE, ISABELL; BISKUP, EWELINA; CHENG, ZHONG-PING

    2014-01-01

    Uterine fibroids are the most common type of benign, gynecologic neoplasm and are the primary indication for performance of a hysterectomy, accounting for >200,000 hysterectomies annually in the USA. At present, females are younger and exhibit larger leiomyomas at the time of diagnosis. Cancer-associated fibroblasts in tumor microenvironments have emerged as an important target for cancer therapy. Repeated stimulation by infectious or non-infectious agents in the uterine tissues, including inflammation, mechanical forces or hypoxia, stimulate the resident fibroblasts to undergo specific activation and, thus, are significant in tumorigenesis. Furthermore, complex signaling pathways regulate the mechanisms of fibroblastic activation. The current review focuses on the molecular mechanisms of fibroblastic activation and the potential association with uterine leiomyoma pathogenesis, enabling an integrated pathogenic analysis for review of the therapeutic options. PMID:25013460

  8. Functional diversity of gro gene expression in human fibroblasts and mammary epithelial cells.

    PubMed Central

    Anisowicz, A; Zajchowski, D; Stenman, G; Sager, R

    1988-01-01

    Previous studies of gro and related genes that are overexpressed in transformed fibroblasts suggest that gro may encode a specific growth regulator. However, DNA and protein sequence comparisons reveal relatedness to platelet factor 4 and other proteins involved in the inflammatory response. In this paper, both growth-related and cytokine-induced responses in gro gene expression are described. Human foreskin fibroblasts are shown to express approximately 10-fold elevated gro, myc, and fos mRNAs in response to serum and to phorbol 12-myristate 13-acetate stimulation, with early response kinetics indicative of growth regulation. In response to interleukin 1, however, in growing cells gro mRNA is elevated at least 100-fold but myc remains constant and fos is not expressed, suggesting a second regulatory pathway. In normal cultured mammary epithelial cells, gro is constitutively expressed, and elevated mRNA levels are induced by phorbol 12-myristate 13-acetate, but not by interleukin 1. However, most carcinoma cell lines examined do not express gro mRNA, suggesting a third function of gro as a negative growth regulator in epithelial cells. Images PMID:3264403

  9. Activated FXR Inhibits Leptin Signaling and Counteracts Tumor-promoting Activities of Cancer-Associated Fibroblasts in Breast Malignancy.

    PubMed

    Giordano, Cinzia; Barone, Ines; Vircillo, Valentina; Panza, Salvatore; Malivindi, Rocco; Gelsomino, Luca; Pellegrino, Michele; Rago, Vittoria; Mauro, Loredana; Lanzino, Marilena; Panno, Maria Luisa; Bonofiglio, Daniela; Catalano, Stefania; Andò, Sebastiano

    2016-02-22

    Cancer-associated fibroblasts (CAFs), the principal components of the tumor stroma, play a central role in cancer development and progression. As an important regulator of the crosstalk between breast cancer cells and CAFs, the cytokine leptin has been associated to breast carcinogenesis. The nuclear Farnesoid X Receptor-(FXR) seems to exert an oncosuppressive role in different tumors, including breast cancer. Herein, we demonstrated, for the first time, that the synthetic FXR agonist GW4064, inhibiting leptin signaling, affects the tumor-promoting activities of CAFs in breast malignancy. GW4064 inhibited growth, motility and invasiveness induced by leptin as well as by CAF-conditioned media in different breast cancer cell lines. These effects rely on the ability of activated FXR to increase the expression of the suppressor of the cytokine signaling 3 (SOCS3) leading to inhibition of leptin-activated signaling and downregulation of leptin-target genes. In vivo xenograft studies, using MCF-7 cells alone or co-injected with CAFs, showed that GW4064 administration markedly reduced tumor growth. Interestingly, GW4064-treated tumors exhibited decreased levels of leptin-regulated proteins along with a strong staining intensity for SOCS3. Thus, FXR ligands might represent an emerging potential anti-cancer therapy able to block the tumor supportive role of activated fibroblasts within the breast microenvironment.

  10. Activated FXR Inhibits Leptin Signaling and Counteracts Tumor-promoting Activities of Cancer-Associated Fibroblasts in Breast Malignancy

    PubMed Central

    Giordano, Cinzia; Barone, Ines; Vircillo, Valentina; Panza, Salvatore; Malivindi, Rocco; Gelsomino, Luca; Pellegrino, Michele; Rago, Vittoria; Mauro, Loredana; Lanzino, Marilena; Panno, Maria Luisa; Bonofiglio, Daniela; Catalano, Stefania; Andò, Sebastiano

    2016-01-01

    Cancer-associated fibroblasts (CAFs), the principal components of the tumor stroma, play a central role in cancer development and progression. As an important regulator of the crosstalk between breast cancer cells and CAFs, the cytokine leptin has been associated to breast carcinogenesis. The nuclear Farnesoid X Receptor-(FXR) seems to exert an oncosuppressive role in different tumors, including breast cancer. Herein, we demonstrated, for the first time, that the synthetic FXR agonist GW4064, inhibiting leptin signaling, affects the tumor-promoting activities of CAFs in breast malignancy. GW4064 inhibited growth, motility and invasiveness induced by leptin as well as by CAF-conditioned media in different breast cancer cell lines. These effects rely on the ability of activated FXR to increase the expression of the suppressor of the cytokine signaling 3 (SOCS3) leading to inhibition of leptin-activated signaling and downregulation of leptin-target genes. In vivo xenograft studies, using MCF-7 cells alone or co-injected with CAFs, showed that GW4064 administration markedly reduced tumor growth. Interestingly, GW4064-treated tumors exhibited decreased levels of leptin-regulated proteins along with a strong staining intensity for SOCS3. Thus, FXR ligands might represent an emerging potential anti-cancer therapy able to block the tumor supportive role of activated fibroblasts within the breast microenvironment. PMID:26899873

  11. Recombinant N-Terminal Slit2 Inhibits TGF-β-Induced Fibroblast Activation and Renal Fibrosis.

    PubMed

    Yuen, Darren A; Huang, Yi-Wei; Liu, Guang-Ying; Patel, Sajedabanu; Fang, Fei; Zhou, Joyce; Thai, Kerri; Sidiqi, Ahmad; Szeto, Stephen G; Chan, Lauren; Lu, Mingliang; He, Xiaolin; John, Rohan; Gilbert, Richard E; Scholey, James W; Robinson, Lisa A

    2016-09-01

    Fibrosis and inflammation are closely intertwined injury pathways present in nearly all forms of CKD for which few safe and effective therapies exist. Slit glycoproteins signaling through Roundabout (Robo) receptors have been described to have anti-inflammatory effects through regulation of leukocyte cytoskeletal organization. Notably, cytoskeletal reorganization is also required for fibroblast responses to TGF-β Here, we examined whether Slit2 also controls TGF-β-induced renal fibrosis. In cultured renal fibroblasts, which we found to express Slit2 and Robo-1, the bioactive N-terminal fragment of Slit2 inhibited TGF-β-induced collagen synthesis, actin cytoskeletal reorganization, and Smad2/3 transcriptional activity, but the inactive C-terminal fragment of Slit2 did not. In mouse models of postischemic renal fibrosis and obstructive uropathy, treatment with N-terminal Slit2 before or after injury inhibited the development of renal fibrosis and preserved renal function, whereas the C-terminal Slit2 had no effect. Our data suggest that administration of recombinant Slit2 may be a new treatment strategy to arrest chronic injury progression after ischemic and obstructive renal insults by not only attenuating inflammation but also, directly inhibiting renal fibrosis.

  12. Identification of Selective and Potent Inhibitors of Fibroblast Activation Protein and Prolyl Oligopeptidase

    PubMed Central

    Poplawski, Sarah E.; Lai, Jack H.; Li, Youhua; Jin, Zhiping; Liu, Yuxin; Wu, Wengen; Wu, Yong; Zhou, Yuhong; Sudmeier, James L.; Sanford, David G.; Bachovchin, William W.

    2014-01-01

    Fibroblast activation protein (FAP) is a serine protease selectively expressed on reactive stromal fibroblasts of epithelial carcinomas. It is widely believed to play a role in tumor invasion and metastasis and therefore to represent a potential new drug target for cancer. Investigation into its biological function, however, has been hampered by the current unavailability of selective inhibitors. The challenge has been in identifying inhibitors that are selective for FAP over both the dipeptidyl peptidases (DPPs), with which it shares exopeptidase specificity, and prolyl oligopeptidase (PREP), with which it shares endopeptidase specificity. Here, we report the first potent FAP inhibitor with selectivity over both the DPPs and PREP, N-(pyridine-4-carbonyl)-d-Ala-boroPro (ARI-3099, 6). We also report a similarly potent and selective PREP inhibitor, N-(pyridine-3-carbonyl)-Val-boroPro (ARI-3531, 22). Both are boronic acid based inhibitors, demonstrating that high selectivity can be achieved using this electrophile. The inhibitors are stable, easy to synthesize, and should prove to be useful in helping to elucidate the biological functions of these two unique and interesting enzymes, as well as their potential as drug targets. PMID:23594271

  13. Mesenchymal stromal cells reverse hypoxia-mediated suppression of α-smooth muscle actin expression in human dermal fibroblasts

    SciTech Connect

    Faulknor, Renea A.; Olekson, Melissa A.; Nativ, Nir I.; Ghodbane, Mehdi; Gray, Andrea J.; Berthiaume, François

    2015-02-27

    During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived soluble factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. (SB431542), an inhibitor of transforming growth factor-β{sub 1} (TGF-β{sub 1})-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β{sub 1} at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β{sub 1} is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. - Highlights: • Fibroblasts were cultured in collagen lattices (FPCLs) as model contracting wounds. • Hypoxia decreased FPCL contraction and fibroblast α-smooth muscle actin expression. • Mesenchymal stromal cells (MSCs) restored function of hypoxic fibroblasts. • MSCs regulate fibroblast function mainly via secreted transforming growth factor-β{sub 1}.

  14. In vitro activation of human fibroblasts by retrieved titanium alloy wear debris.

    PubMed

    Manlapaz, M; Maloney, W J; Smith, R L

    1996-05-01

    Titanium-aluminum-vanadium wear particles isolated from the soft-issue membrane of a failed total hip arthroplasty were added to human fibroblasts in cell culture. The cellular response to particle challenge was determined by assaying for levels of interleukin-1 beta, interleukin-6, tumor necrosis factor-alpha, prostaglandin E2, basic fibroblast growth factor, platelet-derived growth factor-AB, and transforming growth factor-beta. Collagenase and gelatinase activities were analyzed by zymography and [3H]collagen degradation. Cell viability was assessed by measuring the uptake of [3H]thymidine. Over the range of particle concentrations tested, cell viability, as demonstrated by [3H]thymidine uptake, remained unaffected. Fibroblasts exhibited a dose-dependent release of interleukin-6 in response to exposure to titanium-aluminum-vanadium particles. At 6 and 48 hours, the highest concentration of titanium alloy particles (0.189% [vol/vol]) resulted in 7-fold and 16-fold increases in interleukin-6 release, respectively, when compared with negative controls. Neither interleukin-1 beta nor tumor necrosis factor-alpha was detected in the culture medium at any particle concentration tested for both dermal and foreskin fibroblasts. The pattern of prostaglandin E2 release by fibroblasts mirrored the pattern of interleukin-6 release. Fibroblasts exposed to the highest concentration of titanium alloy particles showed an increase in collagenase activity, starting at 12 hours. When medium samples were treated with amino phenylmercuric acetate to activate latent enzymes, a statistically significant increase in collagenase activity was observed as early as 6 hours (p < 0.001). Substrate gel analysis of medium from fibroblasts stimulated by high particle concentrations also showed an increase in gelatinolytic activity when compared with unstimulated controls. Analysis of medium samples for growth factors showed an increase in basic fibroblast growth factor at low particle

  15. DNA synthesis and Fos and Jun protein expression in mitotic and postmitotic WI-38 fibroblasts in vitro.

    PubMed

    Brenneisen, P; Gogol, J; Bayreuther, K

    1994-04-01

    Normal human embryonic lung fibroblasts WI-38 differentiate spontaneously along the cell lineage mitotic fibroblasts (MF) I, II, and III and postmitotic fibroblasts (PMF) IV, V, VI, and VII in the fibroblast stem cell system in vitro, when appropriate methods are applied. The mitotic fibroblasts can be induced to shift to postmitotic fibroblasts by two treatments with mitomycin C (2 x MMC) in a short period of time compared to spontaneous development. Mitotic and postmitotic fibroblast cell types have specific morphological and biochemical properties, e.g., [35S]methionine polypeptide markers in 2D PAGE. Spontaneously arisen and experimentally induced (2 x MMC) PMF have the same morphological and biochemical characteristics. Mitotic fibroblasts have 2n DNA and undergo DNA synthesis for reduplication. Postmitotic cells undergo, on average, two rounds of DNA synthesis for endoreduplication (polyploidization). Spontaneously arisen and experimentally induced postmitotic populations are composed of postmitotic fibroblasts PMF IV, V, and VI with 2n, 4n, and 8n DNA. DNA synthesis of mitotic and postmitotic WI-38 cell populations may be regulated by the expression of Fos and Jun proteins. The Fos level of MFs was higher by a factor of 15-24 and the Jun level of MFs by a factor of 4.2-6.3 than those of spontaneously arisen PMFs. In 2 x MMC-induced PMFs, the Fos level was about 4.4-7.5 times higher and the Jun level 1.7-3.3 times higher than that of spontaneously arisen PMFs. The down-regulation of these two parameters is a normal event in the development of mitotic to postmitotic WI-38 fibroblasts in the fibroblast stem cell system and is not related to cellular aging. PMID:7908266

  16. Anti-inflammatory activity of fisetin in human gingival fibroblasts treated with lipopolysaccharide.

    PubMed

    Gutiérrez-Venegas, Gloria; Contreras-Sánchez, Anabel; Ventura-Arroyo, Jairo Agustín

    2014-10-01

    Fisetin is an anti-inflammatory flavonoid; however, its anti-inflammatory mechanism is not yet understood. In this study, we evaluated the anti-inflammatory effect of fisetin and its association with mitogen-activated protein kinase (MAPK) and nuclear factor kappa-beta pathways in human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) obtained from Porphyromonas gingivalis. The cell signaling, cell viability, and cyclooxygenase-2 (COX-2) expression of HGFs treated with various concentrations (0, 1, 5, 10, and 15 μM) of fisetin were measured by cell viability assay (MTT), Western blotting, and reverse transcriptase polymerase chain reaction analysis on COX-2. We found that fisetin significantly reduced the synthesis and expression of prostaglandin E2 in HGFs treated with LPS. Activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK was suppressed consistently by fisetin in HGFs treated with LPS. The data indicate that fisetin inhibits MAPK activation and COX-2 expression without affecting cell viability. These findings may be valuable for understanding the mechanism of the effect of fisetin on periodontal disease.

  17. S100A8 and S100A9 Are Induced by Decreased Hydration in the Epidermis and Promote Fibroblast Activation and Fibrosis in the Dermis.

    PubMed

    Zhong, Aimei; Xu, Wei; Zhao, Jingling; Xie, Ping; Jia, Shengxian; Sun, Jiaming; Galiano, Robert D; Mustoe, Thomas A; Hong, Seok J

    2016-01-01

    The most critical function of the epidermis is to prevent water loss and maintain skin homeostasis. Disruption of the functional skin barrier causes delayed wound healing, hypertrophic scarring, and many skin diseases. Herein, we show that reduced hydration increases the expression of S100 protein family members, S100A8/S100A9, in stratified keratinocyte culture and human ex vivo skin culture. Immunohistological analyses show that S100A8/A9 are highly expressed in the epidermis of human hypertrophic scar and keloid tissues. Reduced hydration demonstrates activation of fibroblasts in the keratinocyte-fibroblast co-culture. In contrast, knockdown of S100A8 or S100A9 by RNA interference in keratinocytes failed to activate fibroblasts. Pretreatment with pharmacological blockers of S100A8/A9 receptors, Toll-like receptor 4 and receptor for advanced glycation end products, inhibits fibroblast activation induced by recombinant S100A8/A9 proteins. Moreover, we observe that local delivery of S100A8 protein results in a marked increase in hypertrophic scarring in the in vivo rabbit ear scar model. Our results indicate that hydration status promotes fibroblast activation and fibrosis by directly affecting the expression of inflammatory signaling in keratinocytes, thereby strongly suggesting S100A8/A9 to be novel targets in preventing scarring.

  18. S100A8 and S100A9 Are Induced by Decreased Hydration in the Epidermis and Promote Fibroblast Activation and Fibrosis in the Dermis.

    PubMed

    Zhong, Aimei; Xu, Wei; Zhao, Jingling; Xie, Ping; Jia, Shengxian; Sun, Jiaming; Galiano, Robert D; Mustoe, Thomas A; Hong, Seok J

    2016-01-01

    The most critical function of the epidermis is to prevent water loss and maintain skin homeostasis. Disruption of the functional skin barrier causes delayed wound healing, hypertrophic scarring, and many skin diseases. Herein, we show that reduced hydration increases the expression of S100 protein family members, S100A8/S100A9, in stratified keratinocyte culture and human ex vivo skin culture. Immunohistological analyses show that S100A8/A9 are highly expressed in the epidermis of human hypertrophic scar and keloid tissues. Reduced hydration demonstrates activation of fibroblasts in the keratinocyte-fibroblast co-culture. In contrast, knockdown of S100A8 or S100A9 by RNA interference in keratinocytes failed to activate fibroblasts. Pretreatment with pharmacological blockers of S100A8/A9 receptors, Toll-like receptor 4 and receptor for advanced glycation end products, inhibits fibroblast activation induced by recombinant S100A8/A9 proteins. Moreover, we observe that local delivery of S100A8 protein results in a marked increase in hypertrophic scarring in the in vivo rabbit ear scar model. Our results indicate that hydration status promotes fibroblast activation and fibrosis by directly affecting the expression of inflammatory signaling in keratinocytes, thereby strongly suggesting S100A8/A9 to be novel targets in preventing scarring. PMID:26597884

  19. Retrovirus-induced interference with collagen I gene expression in Mov13 fibroblasts is maintained in the absence of DNA methylation.

    PubMed Central

    Chan, H; Hartung, S; Breindl, M

    1991-01-01

    We have studied the role of DNA methylation in repression of the murine alpha 1 type I collagen (COL1A1) gene in Mov13 fibroblasts. In Mov13 mice, a retroviral provirus has inserted into the first intron of the COL1A1 gene and blocks its expression at the level of transcriptional initiation. We found that regulatory sequences in the COL1A1 promoter region that are involved in the tissue-specific regulation of the gene are unmethylated in collagen-expressing wild-type fibroblasts and methylated in Mov13 fibroblasts, confirming and extending earlier observations. To directly assess the role of DNA methylation in the repression of COL1A1 gene transcription, we treated Mov13 fibroblasts with the demethylating agent 5-azacytidine. This treatment resulted in a demethylation of the COL1A1 regulatory sequences but failed to activate transcription of the COL1A1 gene. Moreover, the 5-azacytidine treatment induced a transcription-competent chromatin structure in the retroviral sequences but not in the COL1A1 promoter. In DNA transfection and microinjection experiments, we found that the provirus interfered with transcriptional activity of the COL1A1 promoter in Mov13 fibroblasts but not in Xenopus laevis oocytes. In contrast, the wild-type COL1A1 promoter was transcriptionally active in Mov13 fibroblasts. These experiments showed that the COL1A1 promoter is potentially transcriptionally active in the presence of proviral sequences and that Mov13 fibroblasts contain the trans-acting factors required for efficient COL1A1 gene expression. Our results indicate that the provirus insertion in Mov13 can inactivate COL1A1 gene expression at several levels. It prevents the developmentally regulated establishment of a transcription-competent methylation pattern and chromatin structure of the COL1A1 domain and, in the absence of DNA methylation, appears to suppress the COL1A1 promoter in a cell-specific manner, presumably by assuming a dominant chromatin structure that may be

  20. The potential of a niacinamide dominated cosmeceutical formulation on fibroblast activity and wound healing in vitro.

    PubMed

    Wessels, Quenton; Pretorius, Etheresia; Smith, Celeste M; Nel, Hugo

    2014-04-01

    Knowledge on the intrinsic mechanisms involved in wound healing provides opportunity for various therapeutic strategies. The manipulation of dermal fibroblast proliferation and differentiation might prove to beneficially augment wound healing. This study evaluated the combined effects of niacinamide, L-carnosine, hesperidin and Biofactor HSP(®) on fibroblast activity. The effects on fibroblast collagen production, cellular proliferation, migration and terminal differentiation were assessed. In addition, the authors determined the effects on in vitro wound healing. The optimal concentrations of actives were determined in vitro. Testing parameters included microscopic morphological cell analysis, cell viability and proliferation determination, calorimetric collagen detection and in vitro wound healing dynamics. Results show that 0·31 mg/ml niacinamide, 0·10 mg/ml L-carnosine, 0·05 mg/ml hesperidin and 5·18 µg/ml Biofactor HSP® proved optimal in vitro. The results show that fibroblast collagen synthesis was increased alongside with cellular migration and proliferation.

  1. Genome-wide expression analysis in fibroblast cell lines from probands with Pallister Killian syndrome.

    PubMed

    Kaur, Maninder; Izumi, Kosuke; Wilkens, Alisha B; Chatfield, Kathryn C; Spinner, Nancy B; Conlin, Laura K; Zhang, Zhe; Krantz, Ian D

    2014-01-01

    Pallister Killian syndrome (OMIM: # 601803) is a rare multisystem disorder typically caused by tissue limited mosaic tetrasomy of chromosome 12p (isochromosome 12p). The clinical manifestations of Pallister Killian syndrome are variable with the most common findings including craniofacial dysmorphia, hypotonia, cognitive impairment, hearing loss, skin pigmentary differences and epilepsy. Isochromosome 12p is identified primarily in skin fibroblast cultures and in chorionic villus and amniotic fluid cell samples and may be identified in blood lymphocytes during the neonatal and early childhood period. We performed genomic expression profiling correlated with interphase fluorescent in situ hybridization and single nucleotide polymorphism array quantification of degree of mosaicism in fibroblasts from 17 Caucasian probands with Pallister Killian syndrome and 9 healthy age, gender and ethnicity matched controls. We identified a characteristic profile of 354 (180 up- and 174 down-regulated) differentially expressed genes in Pallister Killian syndrome probands and supportive evidence for a Pallister Killian syndrome critical region on 12p13.31. The differentially expressed genes were enriched for developmentally important genes such as homeobox genes. Among the differentially expressed genes, we identified several genes whose misexpression may be associated with the clinical phenotype of Pallister Killian syndrome such as downregulation of ZFPM2, GATA6 and SOX9, and overexpression of IGFBP2. PMID:25329894

  2. Genome-Wide Expression Analysis in Fibroblast Cell Lines from Probands with Pallister Killian Syndrome

    PubMed Central

    Wilkens, Alisha B.; Chatfield, Kathryn C.; Spinner, Nancy B.; Conlin, Laura K.; Zhang, Zhe; Krantz, Ian D.

    2014-01-01

    Pallister Killian syndrome (OMIM: # 601803) is a rare multisystem disorder typically caused by tissue limited mosaic tetrasomy of chromosome 12p (isochromosome 12p). The clinical manifestations of Pallister Killian syndrome are variable with the most common findings including craniofacial dysmorphia, hypotonia, cognitive impairment, hearing loss, skin pigmentary differences and epilepsy. Isochromosome 12p is identified primarily in skin fibroblast cultures and in chorionic villus and amniotic fluid cell samples and may be identified in blood lymphocytes during the neonatal and early childhood period. We performed genomic expression profiling correlated with interphase fluorescent in situ hybridization and single nucleotide polymorphism array quantification of degree of mosaicism in fibroblasts from 17 Caucasian probands with Pallister Killian syndrome and 9 healthy age, gender and ethnicity matched controls. We identified a characteristic profile of 354 (180 up- and 174 down-regulated) differentially expressed genes in Pallister Killian syndrome probands and supportive evidence for a Pallister Killian syndrome critical region on 12p13.31. The differentially expressed genes were enriched for developmentally important genes such as homeobox genes. Among the differentially expressed genes, we identified several genes whose misexpression may be associated with the clinical phenotype of Pallister Killian syndrome such as downregulation of ZFPM2, GATA6 and SOX9, and overexpression of IGFBP2. PMID:25329894

  3. Mesenchymal stem cells suppress fibroblast proliferation and reduce skin fibrosis through a TGF-β3-dependent activation.

    PubMed

    Wu, Yan; Peng, Yan; Gao, Dongyun; Feng, Changjiang; Yuan, Xiaohuan; Li, Houzhong; Wang, Ying; Yang, Lan; Huang, Sha; Fu, Xiaobing

    2015-03-01

    Recent studies showed that transplantation of mesenchymal stem cells (MSCs) significantly decreased tissue fibrosis; however, little attention has been paid to its efficacy on attenuating skin fibrosis, and the mechanism involved in its effect is poorly understood. In this work, we investigated the effects of MSCs on keloid fibroblasts and extracellular matrix deposition through paracrine actions and whether the antifibrotic properties of MSCs involved transforming growth factor-β (TGF-β)-dependent activation. In vitro experiments showed that conditioned media (CM) from MSCs decreased viability, a-smooth muscle actin expression, and collagen secretion of human keloid fibroblasts. In addition, TGF-β3 secreted by MSCs was expressed at high level under inflammatory environment, and blocking the activity of TGF-β3 apparently antagonized the suppressive activity of MSC CM, which demonstrated that TGF-β3 played a preponderant role in preventing collagen accumulation. In vivo studies showed that MSC CM infusion in a mouse dermal fibrosis model induced a significant decrease in skin fibrosis. Histological examination of tissue sections and immunohistochemical analysis for α-smooth muscle actin revealed that TGF-β3 of CM-mediated therapeutic effects could obviously attenuate matrix production and myofibroblast proliferation and differentiation. These findings suggest that TGF-β3 mediates the attenuating effect of MSCs on both the proliferation and extracellular matrix production of human keloid fibroblasts and decreases skin fibrosis of mouse model, thus providing new understanding and MSC-based therapeutic strategy for cutaneous scar treatment.

  4. Suppression of Tumor Growth in Mice by Rationally Designed Pseudopeptide Inhibitors of Fibroblast Activation Protein and Prolyl Oligopeptidase1

    PubMed Central

    Jackson, Kenneth W.; Christiansen, Victoria J.; Yadav, Vivek R.; Silasi-Mansat, Robert; Lupu, Florea; Awasthi, Vibhudutta; Zhang, Roy R.; McKee, Patrick A.

    2015-01-01

    Tumor microenvironments (TMEs) are composed of cancer cells, fibroblasts, extracellular matrix, microvessels, and endothelial cells. Two prolyl endopeptidases, fibroblast activation protein (FAP) and prolyl oligopeptidase (POP), are commonly overexpressed by epithelial-derived malignancies, with the specificity of FAP expression by cancer stromal fibroblasts suggesting FAP as a possible therapeutic target. Despite overexpression in most cancers and having a role in angiogenesis, inhibition of POP activity has received little attention as an approach to quench tumor growth. We developed two specific and highly effective pseudopeptide inhibitors, M83, which inhibits FAP and POP proteinase activities, and J94, which inhibits only POP. Both suppressed human colon cancer xenograft growth > 90% in mice. By immunohistochemical stains, M83- and J94-treated tumors had fewer microvessels, and apoptotic areas were apparent in both. In response to M83, but not J94, disordered collagen accumulations were observed. Neither M83- nor J94-treated mice manifested changes in behavior, weight, or gastrointestinal function. Tumor growth suppression was more extensive than noted with recently reported efforts by others to inhibit FAP proteinase function or reduce FAP expression. Diminished angiogenesis and the accompanying profound reduction in tumor growth suggest that inhibition of either FAP or POP may offer new therapeutic approaches that directly target TMEs. PMID:25622898

  5. Activation of the NLRP3/caspase-1 inflammasome in human dental pulp tissue and human dental pulp fibroblasts.

    PubMed

    Jiang, Wenkai; Lv, Haipeng; Wang, Haijing; Wang, Diya; Sun, Shukai; Jia, Qian; Wang, Peina; Song, Bing; Ni, Longxing

    2015-08-01

    The NLRP3/caspase-1 inflammasome pathway plays an important role in cellular immune defence against bacterial infection; however, its function in human dental pulp tissue and human dental pulp fibroblasts remains poorly understood. We demonstrate that NLRP3 protein expression occurs to a greater extent in pulp tissue with irreversible pulpitis than in normal pulp tissue and in tissue with reversible pulpitis. Caspase-1 is present in its active (cleaved) form only in pulp tissue with irreversible pulpitis. NLRP3 and caspase-1 are expressed in the odontoblast layers in normal human dental pulp tissue, whereas in inflamed pulp tissue, the odontoblast layers are disrupted and dental pulp cells are positive for NLRP3 and caspase-1. Additionally, we investigate the role of the NLRP3/caspase-1 inflammasome pathway in human dental pulp fibroblasts and show that ATP activates the P2X7 receptor on the cell membrane triggering K(+) efflux and inducing the gradual recruitment of the membrane pore pannexin-1. Extracellular lipopolysaccharide is able to penetrate the cytosol and activate NLRP3. Furthermore, the low intracellular K(+) concentration in the cytosol triggers reactive oxygen species generation, which also induces the NLRP3 inflammasome. Thus, the NLRP3/caspase-1 pathway has a biological role in the innate immune response mounted by human dental pulp fibroblasts.

  6. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    PubMed Central

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  7. Extinction of Oct-3/4 gene expression in embryonal carcinoma [times] fibroblast somatic cell hybrids is accompanied by changes in the methylation status, chromatin structure, and transcriptional activity of the Oct-3/4 upstream region

    SciTech Connect

    Ben-Shushan, E.; Pikarsky, E.; Klar, A.; Bergman, Y. )

    1993-02-01

    The OCT-3/4 gene provides an excellent model system with which to study the extinction phenomenon in somatic cell hybrids. The molecular mechanism that underlies the extinction of a tissue-specific transcription factor in somatic cell hybrides is evaluated and compared with its down-regulation in retinoic acid treated embryonal carcinoma cells. This study draws a connection between the shutdown of OCT-3/4 expression in retinoic acid (RA)-differentiated embryonal carcinoma (EC) cells and its extinction in hybrid cells. This repression of OCT-3/4 expression is achieved through changes in the methylation status, chromatin structure, and transcriptional activity of the OCT-3/4 upstream regulatory region. 59 refs.

  8. The stromal cell-surface protease fibroblast activation protein-α localizes to lipid rafts and is recruited to invadopodia.

    PubMed

    Knopf, Julia D; Tholen, Stefan; Koczorowska, Maria M; De Wever, Olivier; Biniossek, Martin L; Schilling, Oliver

    2015-10-01

    Fibroblast activation protein alpha (FAPα) is a cell surface protease expressed by cancer-associated fibroblasts in the microenvironment of most solid tumors. As there is increasing evidence for proteases having non-catalytic functions, we determined the FAPα interactome in cancer-associated fibroblasts using the quantitative immunoprecipitation combined with knockdown (QUICK) method. Complex formation with adenosin deaminase, erlin-2, stomatin, prohibitin, Thy-1 membrane glycoprotein, and caveolin-1 was further validated by immunoblotting. Co-immunoprecipitation (co-IP) of the known stoichiometric FAPα binding partner dipeptidyl-peptidase IV (DPPIV) corroborated the proteomic strategy. Reverse co-IPs validated the FAPα interaction with caveolin-1, erlin-2, and stomatin while co-IP upon RNA-interference mediated knock-down of DPPIV excluded adenosin deaminase as a direct FAPα interaction partner. Many newly identified FAPα interaction partners localize to lipid rafts, including caveolin-1, a widely-used marker for lipid raft localization. We hypothesized that this indicates a recruitment of FAPα to lipid raft structures. In density gradient centrifugation, FAPα co-fractionates with caveolin-1. Immunofluorescence optical sectioning microscopy of FAPα and lipid raft markers further corroborates recruitment of FAPα to lipid rafts and invadopodia. FAPα is therefore an integral component of stromal lipid rafts in solid tumors. In essence, we provide one of the first interactome analyses of a cell surface protease and translate these results into novel biological aspects of a marker protein for cancer-associated fibroblasts.

  9. Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR{sub 1} activation

    SciTech Connect

    Blanc-Brude, Olivier P. . E-mail: olivier.blanc-brude@larib.inserm.fr; Archer, Fabienne; Leoni, Patricia; Derian, Claudia; Bolsover, Steven; Laurent, Geoffrey J.; Chambers, Rachel C.

    2005-03-10

    Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR{sub 1}). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR{sub 1}-deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR{sub 1}-specific agonists and inhibitors were used to demonstrate that PAR{sub 1} mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR{sub 1} and not PAR{sub 2}. These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis.

  10. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    SciTech Connect

    Hecht, Emelia; Zago, Michela; Sarill, Miles; Rico de Souza, Angela; Gomez, Alvin; Matthews, Jason; Hamid, Qutayba; Eidelman, David H.; Baglole, Carolyn J.

    2014-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR{sup −/−}) and wild-type (AhR{sup +/+}) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR{sup −/−} cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR{sup −/−} compared to AhR{sup +/+} cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR{sup +/+} fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR{sup +/+} lung fibroblasts in response to serum, corresponding to a decrease in p27{sup KIP1} protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27{sup KIP1} in AhR{sup −/−} fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the

  11. Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3.

    PubMed

    Li, Huating; Gao, Zhanguo; Zhang, Jin; Ye, Xin; Xu, Aimin; Ye, Jianping; Jia, Weiping

    2012-04-01

    Fibroblast growth factor 21 (FGF21) stimulates fatty acid oxidation and ketone body production in animals. In this study, we investigated the role of FGF21 in the metabolic activity of sodium butyrate, a dietary histone deacetylase (HDAC) inhibitor. FGF21 expression was examined in serum and liver after injection of sodium butyrate into dietary obese C57BL/6J mice. The role of FGF21 was determined using antibody neutralization or knockout mice. FGF21 transcription was investigated in liver and HepG2 hepatocytes. Trichostatin A (TSA) was used in the control as an HDAC inhibitor. Butyrate was compared with bezafibrate and fenofibrate in the induction of FGF21 expression. Butyrate induced FGF21 in the serum, enhanced fatty acid oxidation in mice, and stimulated ketone body production in liver. The butyrate activity was significantly reduced by the FGF21 antibody or gene knockout. Butyrate induced FGF21 gene expression in liver and hepatocytes by inhibiting HDAC3, which suppresses peroxisome proliferator-activated receptor-α function. Butyrate enhanced bezafibrate activity in the induction of FGF21. TSA exhibited a similar set of activities to butyrate. FGF21 mediates the butyrate activity to increase fatty acid use and ketogenesis. Butyrate induces FGF21 transcription by inhibition of HDAC3.

  12. AP-2{alpha} suppresses skeletal myoblast proliferation and represses fibroblast growth factor receptor 1 promoter activity

    SciTech Connect

    Mitchell, Darrion L.; DiMario, Joseph X.

    2010-01-15

    Skeletal muscle development is partly characterized by myoblast proliferation and subsequent differentiation into postmitotic muscle fibers. Developmental regulation of expression of the fibroblast growth factor receptor 1 (FGFR1) gene is required for normal myoblast proliferation and muscle formation. As a result, FGFR1 promoter activity is controlled by multiple transcriptional regulatory proteins during both proliferation and differentiation of myogenic cells. The transcription factor AP-2{alpha} is present in nuclei of skeletal muscle cells and suppresses myoblast proliferation in vitro. Since FGFR1 gene expression is tightly linked to myoblast proliferation versus differentiation, the FGFR1 promoter was examined for candidate AP-2{alpha} binding sites. Mutagenesis studies indicated that a candidate binding site located at - 1035 bp functioned as a repressor cis-regulatory element. Furthermore, mutation of this site alleviated AP-2{alpha}-mediated repression of FGFR1 promoter activity. Chromatin immunoprecipitation studies demonstrated that AP-2{alpha} interacted with the FGFR1 promoter in both proliferating myoblasts and differentiated myotubes. In total, these results indicate that AP-2{alpha} is a transcriptional repressor of FGFR1 gene expression during skeletal myogenesis.

  13. Enzyme-Treated Asparagus Extract Attenuates Hydrogen Peroxide-Induced Matrix Metalloproteinase-9 Expression in Murine Skin Fibroblast L929 Cells.

    PubMed

    Shirato, Ken; Takanari, Jun; Ogasawara, Junetsu; Sakurai, Takuya; Imaizumi, Kazuhiko; Ohno, Hideki; Kizaki, Takako

    2016-05-01

    Enzyme-treated asparagus extract (ETAS) exerts a wide variety of beneficial biological actions including facilitating anti-cortisol stress and neurological anti-aging responses. However, the anti-skin aging effects of ETAS remain to be elucidated. Reactive oxygen species (ROS) play pivotal roles in skin aging. Increased ROS levels in fibroblasts in response to ultraviolet irradiation activate c-Jun N-terminal kinase (JNK) and its downstream transcription factor activator protein-1 (AP-1), and the resultant gene expression of matrix metalloproteinase (MMP) isoforms accelerates collagen breakdown in the dermis. Therefore, we explored whether ETAS has anti-skin aging effects by attenuating the oxidative stress responses in fibroblasts. Simultaneous treatment of murine skin L929 fibroblasts with hydrogen peroxide (H2O2) and either ETAS or dextrin showed that ETAS significantly suppressed H2O2-induced expression of MMP-9 mRNA as measured by real-time polymerase chain reaction. ETAS also clearly suppressed H2O2-stimulated phosphorylation of c-Jun (AP-1 subunit) and JNK as determined by Western blot. However, ETAS did not affect the increased amounts of carbonyl proteins in response to H2O2, also as determined by Western blotting. These results suggest that ETAS diminishes cellular responsiveness to ROS but does not scavenge ROS. Thus, ETAS has the potential to prevent skin aging through attenuating the oxidative stress responses in dermal fibroblasts. PMID:27319149

  14. Enzyme-Treated Asparagus Extract Attenuates Hydrogen Peroxide-Induced Matrix Metalloproteinase-9 Expression in Murine Skin Fibroblast L929 Cells.

    PubMed

    Shirato, Ken; Takanari, Jun; Ogasawara, Junetsu; Sakurai, Takuya; Imaizumi, Kazuhiko; Ohno, Hideki; Kizaki, Takako

    2016-05-01

    Enzyme-treated asparagus extract (ETAS) exerts a wide variety of beneficial biological actions including facilitating anti-cortisol stress and neurological anti-aging responses. However, the anti-skin aging effects of ETAS remain to be elucidated. Reactive oxygen species (ROS) play pivotal roles in skin aging. Increased ROS levels in fibroblasts in response to ultraviolet irradiation activate c-Jun N-terminal kinase (JNK) and its downstream transcription factor activator protein-1 (AP-1), and the resultant gene expression of matrix metalloproteinase (MMP) isoforms accelerates collagen breakdown in the dermis. Therefore, we explored whether ETAS has anti-skin aging effects by attenuating the oxidative stress responses in fibroblasts. Simultaneous treatment of murine skin L929 fibroblasts with hydrogen peroxide (H2O2) and either ETAS or dextrin showed that ETAS significantly suppressed H2O2-induced expression of MMP-9 mRNA as measured by real-time polymerase chain reaction. ETAS also clearly suppressed H2O2-stimulated phosphorylation of c-Jun (AP-1 subunit) and JNK as determined by Western blot. However, ETAS did not affect the increased amounts of carbonyl proteins in response to H2O2, also as determined by Western blotting. These results suggest that ETAS diminishes cellular responsiveness to ROS but does not scavenge ROS. Thus, ETAS has the potential to prevent skin aging through attenuating the oxidative stress responses in dermal fibroblasts.

  15. Gene expression differences in skin fibroblasts in identical twins discordant for type 1 diabetes.

    PubMed

    Caramori, M Luiza; Kim, Youngki; Moore, Jason H; Rich, Stephen S; Mychaleckyj, Josyf C; Kikyo, Nobuaki; Mauer, Michael

    2012-03-01

    Clinical studies suggest metabolic memory to hyperglycemia. We tested whether diabetes leads to persistent systematic in vitro gene expression alterations in patients with type 1 diabetes (T1D) compared with their monozygotic, nondiabetic twins. Microarray gene expression was determined in skin fibroblasts (SFs) of five twin pairs cultured in high glucose (HG) for ∼6 weeks. The Exploratory Visual Analysis System tested group differences in gene expression levels within KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. An overabundance of differentially expressed genes was found in eight pathways: arachidonic acid metabolism (P = 0.003849), transforming growth factor-β signaling (P = 0.009167), glutathione metabolism (P = 0.01281), glycosylphosphatidylinositol anchor (P = 0.01949), adherens junction (P = 0.03134), dorsal-ventral axis formation (P = 0.03695), proteasome (P = 0.04327), and complement and coagulation cascade (P = 0.04666). Several genes involved in epigenetic mechanisms were also differentially expressed. All differentially expressed pathways and all the epigenetically relevant differentially expressed genes have previously been related to HG in vitro or to diabetes and its complications in animal and human studies. However, this is the first in vitro study demonstrating diabetes-relevant gene expression differences between T1D-discordant identical twins. These SF gene expression differences, persistent despite the HG in vitro conditions, likely reflect "metabolic memory", and discordant identical twins thus represent an excellent model for studying diabetic epigenetic processes in humans. PMID:22315306

  16. Identification of stromally expressed molecules in the prostate by tag-profiling of cancer-associated fibroblasts, normal fibroblasts and fetal prostate

    PubMed Central

    Orr, B; Riddick, A C P; Stewart, G D; Anderson, R A; Franco, O E; Hayward, S W; Thomson, A A

    2012-01-01

    The stromal microenvironment has key roles in prostate development and cancer, and cancer-associated fibroblasts (CAFs) stimulate tumourigenesis via several mechanisms including the expression of pro-tumourigenic factors. Mesenchyme (embryonic stroma) controls prostate organogenesis, and in some circumstances can re-differentiate prostate tumours. We have applied next-generation Tag profiling to fetal human prostate, normal human prostate fibroblasts (NPFs) and CAFs to identify molecules expressed in prostatic stroma. Comparison of gene expression profiles of a patient-matched pair of NPFs vs CAFs identified 671 transcripts that were enriched in CAFs and 356 transcripts whose levels were decreased, relative to NPFs. Gene ontology analysis revealed that CAF-enriched transcripts were associated with prostate morphogenesis and CAF-depleted transcripts were associated with cell cycle. We selected mRNAs to follow-up by comparison of our data sets with published prostate cancer fibroblast microarray profiles as well as by focusing on transcripts encoding secreted and peripheral membrane proteins, as well as mesenchymal transcripts identified in a previous study from our group. We confirmed differential transcript expression between CAFs and NPFs using QrtPCR, and defined protein localization using immunohistochemistry in fetal prostate, adult prostate and prostate cancer. We demonstrated that ASPN, CAV1, CFH, CTSK, DCN, FBLN1, FHL1, FN, NKTR, OGN, PARVA, S100A6, SPARC, STC1 and ZEB1 proteins showed specific and varied expression patterns in fetal human prostate and in prostate cancer. Colocalization studies suggested that some stromally expressed molecules were also expressed in subsets of tumour epithelia, indicating that they may be novel markers of EMT. Additionally, two molecules (ASPN and STC1) marked overlapping and distinct subregions of stroma associated with tumour epithelia and may represent new CAF markers. PMID:21804603

  17. Extinction of expression of the genes encoding haematopoietic cell-restricted transcription factors in T-lymphoma × fibroblast cell hybrids

    PubMed Central

    Oikawa, Tsuneyuki; Yamada, Toshiyuki; Kondoh, Nobuo; Negishi-Kihara, Fumiko; Hitomi, Yoshiaki; Suzuki, Mitsuhiro; Teramoto, Sayaka

    2001-01-01

    We previously reported that expression of the T-cell receptor (TCR) α and lck genes is extinguished in hybrids between mouse T-lymphoma EL4 cells and mouse fibroblast B82 cells. In the present study, we found that the activities of the TCRα minimum enhancer and the lck promoter monitored by the luciferase or chloramphenicol acetyltransferase (CAT) assays were markedly inhibited in the hybrids. Expression of the TCF-1, LEF-1, GATA-3, Ikaros, c-myb and Fli-1 genes, which encode the haematopoietic cell-restricted transcription factors that appear to be responsible for the activities of the enhancer and the promoter, was fully extinguished or markedly suppressed in the hybrids. On the other hand, expression of the transcription factor genes observed in both parental cells, such as the AML1 and c-ets-1 genes, and that of the genes encoding ubiquitously expressed transcription factors, such as the E2A, CREB and c-ets-2 genes, was not significantly suppressed in the hybrids. These results suggest that the genes encoding haematopoietic cell-restricted transcription factors are targets for negative regulation in fibroblastic background and that the repression of these genes may consequently lead to suppression of the promoter and/or enhancer activities of several T-cell-specific structural genes in T-lymphoma × fibroblast cell hybrids. PMID:11683956

  18. Induction of cell cycle progression by hepatitis B virus HBx gene expression in quiescent mouse fibroblasts.

    PubMed Central

    Koike, K; Moriya, K; Yotsuyanagi, H; Iino, S; Kurokawa, K

    1994-01-01

    The HBx gene of hepatitis B virus has been shown to induce hepatic tumors in transgenic mice and is implicated in hepatocarcinogenesis in human hepatitis B virus infection. To further characterize the role of HBx gene in carcinogenesis, we established mouse fibroblast cell lines in which the expression of HBx gene could be controlled by glucocorticoid hormone and examined the effect of HBx gene expression on cell growth in vitro. Along with the expression of HBx gene, most cells in the G0/G1 phase moved into the S phase in 24 h, and the cell cycle progressed further toward 48 h. Induction of DNA synthesis was also demonstrated by bromo-deoxyuridine labeling analysis. These results indicate that HBx gene has a function to trigger the synthesis of cellular DNA and suggest that HBx gene may play a role in hepatocarcinogenesis in human infection by driving deregulated cell cycle progression. Images PMID:8040286

  19. CCN4 induces vascular cell adhesion molecule-1 expression in human synovial fibroblasts and promotes monocyte adhesion.

    PubMed

    Liu, Ju-Fang; Hou, Sheng-Mou; Tsai, Chun-Hao; Huang, Chun-Yin; Hsu, Chin-Jung; Tang, Chih-Hsin

    2013-05-01

    CCN4 is a cysteine-rich protein that belongs to the Cyr61, CTGF, Nov family of matricellular proteins. Here, we investigated the intracellular signaling pathways involved in CCN4-induced vascular cell adhesion molecule-1 expression in human osteoarthritis synovial fibroblasts. Stimulation of OASFs with CCN4 induced VCAM-1 expression. CCN4-induced VCAM-1 expression was attenuated by αvβ5 or α6β1 integrin antibody, Syk inhibitor, PKCδ inhibitor (rottlerin), JNK inhibitor (SP600125), and AP-1 inhibitors (curcumin and tanshinone). Stimulation of cells with CCN4 increased Syk, PKCδ, and JNK activation. Treatment of OASFs with CCN4 also increased c-Jun phosphorylation, AP-1-luciferase activity, and c-Jun binding to the AP-1 element in the VCAM-1 promoter. Moreover, up-regulation of VCAM-1 increased the adhesion of monocytes to OASF monolayers, and this adhesion was attenuated by transfection with a VCAM-1 siRNA. Our results suggest that CCN4 increases VCAM-1 expression in human OASFs via the Syk, PKCδ, JNK, c-Jun, and AP-1 signaling pathways. The CCN4-induced VCAM-1 expression promoted monocyte adhesion to human OASFs. PMID:23313051

  20. Activation of Notch1 signaling in stromal fibroblasts inhibits melanoma growth by upregulating WISP-1.

    PubMed

    Shao, H; Cai, L; Grichnik, J M; Livingstone, A S; Velazquez, O C; Liu, Z-J

    2011-10-20

    The tumor microenvironment is emerging as an important target for cancer therapy. Fibroblasts (Fbs) within the tumor stroma are critically involved in promoting tumor growth and angiogenesis through secretion of soluble factors, synthesis of extracellular matrix and direct cell-cell interaction. In this work, we aim to alter the biological activity of stromal Fbs by modulating the Notch1 signaling pathway. We show that Fbs engineered to constitutively activate the Notch1 pathway significantly inhibit melanoma growth and tumor angiogenesis. We determine that the inhibitory effect of 'Notch-engineered' Fbs is mediated by increased secretion of Wnt-induced secreted protein-1 (WISP-1) as the effects of Notch1 activation in Fbs are reversed by shRNA-mediated blockade of WISP-1. When 'Notch-engineered' Fbs are co-grafted with melanoma cells in SCID mice, shRNA-mediated blockade of WISP-1 reverses the tumor-suppressive phenotype of the 'Notch-engineered' Fbs, significantly increases melanoma growth and tumor angiogenesis. Consistent with these findings, supplement of recombinant WISP-1 protein inhibits melanoma cell growth in vitro. In addition, WISP-1 is modestly expressed in melanoma-activated Fbs but highly expressed in inactivated Fbs. Evaluation of human melanoma skin biopsies indicates that expression of WISP-1 is significantly lower in melanoma nests and surrounding areas filled with infiltrated immune cells than in the adjacent dermis unaffected by the melanoma. Overall, our study shows that constitutive activation of the Notch1 pathway confers Fbs with a suppressive phenotype to melanoma growth, partially through WISP-1. Thus, targeting tumor stromal Fbs by activating Notch signaling and/or increasing WISP-1 may represent a novel therapeutic approach to combat melanoma.

  1. The piggyBac Transposon-Mediated Expression of SV40 T Antigen Efficiently Immortalizes Mouse Embryonic Fibroblasts (MEFs)

    PubMed Central

    Cui, Jing; Zhang, Hongmei; Chen, Xiang; Li, Ruidong; Wu, Ningning; Chen, Xian; Wen, Sheng; Zhang, Junhui; Yin, Liangjun; Deng, Fang; Liao, Zhan; Zhang, Zhonglin; Zhang, Qian; Yan, Zhengjian; Liu, Wei; Ye, Jixing; Deng, Youlin; Wang, Zhongliang; Qiao, Min; Luu, Hue H.; Haydon, Rex C.; Shi, Lewis L.; Liang, Houjie; He, Tong-Chuan

    2014-01-01

    Mouse embryonic fibroblasts (MEFs) are mesenchymal stem cell (MSC)-like multipotent progenitor cells and can undergo self-renewal and differentiate into to multiple lineages, including bone, cartilage and adipose. Primary MEFs have limited life span in culture, which thus hampers MEFs’ basic research and translational applications. To overcome this challenge, we investigate if piggyBac transposon-mediated expression of SV40 T antigen can effectively immortalize mouse MEFs and that the immortalized MEFs can maintain long-term cell proliferation without compromising their multipotency. Using the piggyBac vector MPH86 which expresses SV40 T antigen flanked with flippase (FLP) recognition target (FRT) sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized. The immortalized MEFs (piMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by FLP recombinase. The piMEFs express most MEF markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages upon BMP9 stimulation in vitro. Stem cell implantation studies indicate that piMEFs can form bone, cartilage and adipose tissues upon BMP9 stimulation, whereas FLP-mediated removal of SV40 T antigen diminishes the ability of piMEFs to differentiate into these lineages, possibly due to the reduced expansion of progenitor populations. Our results demonstrate that piggyBac transposon-mediated expression of SV40 T can effectively immortalize MEFs and that the reversibly immortalized piMEFs not only maintain long-term cell proliferation but also retain their multipotency. Thus, the high transposition efficiency and the potential footprint-free natures may render piggyBac transposition an effective and safe strategy to immortalize progenitor cells isolated from limited tissue supplies, which is essential for basic and translational studies. PMID:24845466

  2. Transformable Peptide Nanocarriers for Expeditious Drug Release and Effective Cancer Therapy via Cancer‐Associated Fibroblast Activation

    PubMed Central

    Ji, Tianjiao; Zhao, Ying; Ding, Yanping; Wang, Jing; Zhao, Ruifang; Lang, Jiayan; Qin, Hao; Liu, Xiaoman; Shi, Jian; Tao, Ning; Qin, Zhihai; Nie, Guangjun

    2015-01-01

    Abstract A novel cleavable amphiphilic peptide (CAP) was designed to be specifically responsive to fibroblast activation protein‐α (FAP‐α), a protease specifically expressed on the surface of cancer‐associated fibroblasts. The CAP self‐assembled into fiber‐like nanostructures in solution, while the presence of hydrophobic chemotherapeutic drugs readily transformed the assemblies into drug‐loaded spherical nanoparticles. The disassembly of these nanoparticles (CAP‐NPs) upon FAP‐α cleavage resulted in rapid and efficient release of the encapsulated drugs specifically at tumor sites. This Transformers‐like drug delivery strategy could allow them to disrupt the stromal barrier and enhance local drug accumulation. Therapeutic results suggested that drug‐loaded CAP‐NPs hold promising tumor specificity and therapeutic efficacy for various solid tumor models, confirming its potential utility and versatility in antitumor therapy. PMID:26283097

  3. NPPB is a Novel Candidate Biomarker Expressed by Cancer-Associated Fibroblasts In Epithelial Ovarian Cancer

    PubMed Central

    Lawrenson, Kate; Grun, Barbara; Lee, Nathan; Mhawech-Fauceglia, Paulette; Kan, Jenny; Swenson, Steve; Lin, Yvonne G.; Pejovic, Tanja; Millstein, Joshua; Gayther, Simon A

    2014-01-01

    Most solid tumours contain cancer-associated fibroblasts (CAFs) that support tumourigenesis and malignant progression. However the cellular origins of CAFs in epithelial ovarian cancers (EOCs) remain poorly understood, and their utility as a source of clinical biomarkers for cancer diagnosis has not been explored in great depth. Here, we report establishing in vitro and in vivo models of CAFs in ovarian cancer development. Normal ovarian fibroblasts and mesenchymal stem cells cultured in the presence of EOC cells acquired a CAF-like phenotype, and promoted EOC cell migration in vitro. CAFs also promoted ovarian cancer growth in vivo in both subcutaneous and intraperitoneal murine xenograft assays. Molecular profiling of CAFs identified gene expression signatures that were highly enriched for extracellular and secreted proteins. We identified novel candidate CAF specific biomarkers for ovarian cancer including NPPB, which was expressed in the stroma of 60% primary ovarian cancer tissues (n=145) but not in the stroma of normal ovaries (n=4). NPPB is a secreted protein that was also elevated in the blood of 50% of women with ovarian cancer (n=8). Taken together these data suggest that the tumor stroma is a novel source of biomarkers, including NPPB, that may be of clinical utility for detection of EOC. PMID:25047817

  4. Fibroblast Circadian Rhythms of PER2 Expression Depend on Membrane Potential and Intracellular Calcium

    PubMed Central

    Noguchi, Takako; Wang, Connie W.; Pan, Haiyun

    2012-01-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus synchronizes circadian rhythms of cells and tissues throughout the body. In SCN neurons, rhythms of clock gene expression are suppressed by manipulations that hyperpolarize the plasma membrane or lower intracellular Ca2+. However, whether clocks in other cells also depend on membrane potential and calcium is unknown. In this study, we investigate the effects of membrane potential and intracellular calcium on circadian rhythms in mouse primary fibroblasts. Rhythms of clock gene expression were monitored using a PER2::LUC knockin reporter. We found that rhythms were lost or delayed at lower (hyperpolarizing) K+ concentrations. Bioluminescence imaging revealed that this loss of rhythmicity in cultures was due to loss of rhythmicity of single cells rather than desynchrony among cells. In lower Ca2+ concentrations, rhythms were advanced or had shorter periods. Buffering intracellular Ca2+ by the calcium chelator 1,2-Bis(2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM) or manipulation of IP3-sensitive intracellular calcium stores by thapsigargin delayed rhythms. These results suggest that the circadian clock in fibroblasts, as in SCN neurons, is regulated by membrane potential and Ca2+. Changes in intracellular Ca2+ may mediate the effects of membrane potential that we observed. PMID:22734566

  5. The effects of panduratin A isolated from Kaempferia pandurata on the expression of matrix metalloproteinase-1 and type-1 procollagen in human skin fibroblasts.

    PubMed

    Shim, Jae-Seok; Kwon, Yi-Young; Hwang, Jae-Kwan

    2008-02-01

    Exposure of ultraviolet (UV) light on the skin induces photoaging associated with up-regulated matrix metalloproteinase (MMP) activities and decreased collagen synthesis. We investigated the effects of panduratin A isolated from Kaempferia pandurata Roxb. on the expression of matrix metalloproteinase-1 (MMP-1) and type-1 procollagen in UV-irradiated human skin fibroblasts. Cultured human fibroblasts were irradiated with UV (20 mJ/cm (2)) and panduratin A was added into the medium of the fibroblast culture. The expressions of MMP-1 and type-1 procollagen levels were measured using Western blot analysis and RT-RCR. Panduratin A in the range of 0.001 - 0.1 microM significantly reduced the expression of MMP-1 and induced the expression of type-1 procollagen at the protein and mRNA gene levels. Panduratin A showed stronger activity than epigallocatechin 3- O-gallate (EGCG) known as a natural anti-aging agent. The results suggest that panduratin A can be a potential candidate for the prevention and treatment of skin aging brought about by UV.

  6. Enhanced Expression of Fibroblast Growth Factor Receptor 3 IIIc Promotes Human Esophageal Carcinoma Cell Proliferation.

    PubMed

    Ueno, Nobuhiro; Shimizu, Akio; Kanai, Michiyuki; Iwaya, Yugo; Ueda, Shugo; Nakayama, Jun; Seo, Misuzu Kurokawa

    2016-01-01

    Deregulated expression of fibroblast growth factor receptors (FGFRs) and their ligands plays critical roles in tumorigenesis. The gene expression of an alternatively spliced isoforms of FGFR3, FGFR3IIIc, was analyzed by RT-PCR in samples from patients with esophageal carcinoma (EC), including esophageal squamous cell carcinoma (ESCC) and adenocarcinoma (EAC). The incidence of FGFR3IIIc was higher in EC [12/16 (75%); p=0.073] than in non-cancerous mucosa (NCM) [6/16 (38%)]. Indeed, an immunohistochemical analysis of early-stage ESCC showed that carcinoma cells expressing FGFR3IIIc stained positively with SCC-112, a tumor marker, and Ki67, a cell proliferation marker, suggesting that the expression of FGFR3IIIc promotes cell proliferation. We used EC-GI-10 cells endogenously expressing FGFR3IIIc as a model of ESCC to provide mechanistic insight into the role of FGFR3IIIc in ESCC. The knockdown of endogenous FGFR3 using siRNA treatment significantly abrogated cell proliferation and the overexpression of FGFR3IIIc in cells with enhanced cell proliferation. EC-GI-10 cells and ESCC from patients with EC showed endogenous expression of FGF2, a specific ligand for FGFR3IIIc, suggesting that the upregulated expression of FGFR3IIIc may create autocrine FGF signaling in ESCC. Taken together, FGFR3IIIc may have the potential to be an early-stage tumor marker and a molecular target for ESCC therapy.

  7. Tetrandrine induces microRNA differential expression in human hypertrophic scar fibroblasts in vitro.

    PubMed

    Ning, P; Peng, Y; Liu, D W; Hu, Y H; Liu, Y; Liu, D M

    2016-01-01

    MicroRNAs (miRNAs) have recently been shown to play a role in normal wound healing process. miRNAs may be linked to pathologic wound healing and closely related to the formation of hypertrophic scars. This study aimed to explore the effects of tetrandrine on the miRNA expression profile in human hypertrophic scar fibroblasts (HSFs) in vitro. HSFs were randomly divided into two groups: the tetrandrine treatment group and the control group. The experimental and control groups were collected and analyzed by miRNA array after a 48-h culture. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to confirm the array results. The targets of differentially expressed miRNA were functionally annotated using bioinformatic approaches. miRNA microarray analysis identified 193 differentially expressed miRNAs and the expression of 186 miRNAs in the experimental group decreased while that of 7 miRNAs increased compared to the control group. The most significantly downregulated miRNA was hsa-miR-1246, and hsa-miR-27b had the highest expression level. Significant differentially expressed miRNAs were predicted to be related to several important signaling pathways related to scar wound healing. The differential miRNA expression identified in this study provides the experimental basis for further understanding the anti-fibrosis effect of tetrandrine. PMID:26909951

  8. Paclitaxel attenuates renal interstitial fibroblast activation and interstitial fibrosis by inhibiting STAT3 signaling

    PubMed Central

    Zhang, Lei; Xu, Xuan; Yang, Ruhao; Chen, Jingwen; Wang, Shixuan; Yang, Junqin; Xiang, Xudong; He, Zhibiao; Zhao, Yu; Dong, Zheng; Zhang, Dongshan

    2015-01-01

    Recent studies have demonstrated that paclitaxel might inhibit renal fibrosis. However, the underlying molecular mechanism remains unclear. In this study, we hypothesized that low-dose paclitaxel may block the STAT3 (signal transducer and activator of transcription 3) signaling to attenuate fibrosis in a mouse model with unilateral ureteral obstruction. Both NRK-49F cells and mice with unilateral ureteral obstruction were treated with paclitaxel. The results showed that paclitaxel treatment resulted in a dose- and time-dependent decrease in tyrosine-phosphorylated STAT3, and inhibited the expression of fibronectin, alpha-smooth muscle actin (α-SMA), and collagen I in cultured NRK-49F cells. S3I-201, an STAT3 inhibitor, also suppressed the expression of fibronectin, α-SMA, and collagen I in cultured NRK-49F cells. Mechanistically, paclitaxel treatment blocked the STAT3 activity by disrupting the association of STAT3 with tubulin and inhibiting STAT3 nucleus translocation. Furthermore, paclitaxel also ameliorated renal fibrosis by down-regulating the expression of fibronectin, α-SMA, and collagen I, and suppressed the infiltration of macrophages and production of TNF-α, IL-1β, TGF-β, and ICAM-1 (intercellular adhesion molecule 1) by inhibition of STAT3 activity in obstructive nephropathy. These results suggest that paclitaxel may block the STAT3 activity by disrupting the association of STAT3 with tubulin and inhibiting STAT3 nucleus translocation, consequently leading to the suppression of renal interstitial fibroblast activation and the development of renal fibrosis, and inhibition of proinflammatory cytokine production. PMID:25931810

  9. Hydrogel scaffolds as in vitro models to study fibroblast activation in wound healing and disease

    PubMed Central

    Smithmyer, Megan E.; Sawicki, Lisa A.

    2014-01-01

    Wound healing results from complex signaling between cells and their environment in response to injury. Fibroblasts residing within the extracellular matrix (ECM) of various connective tissues are critical for matrix synthesis and repair. Upon injury or chronic insult, these cells activate into wound-healing cells, called myofibroblasts, and repair the damaged tissue through enzyme and protein secretion. However, misregulation and persistence of myofibroblasts can lead to uncontrolled accumulation of matrix proteins, tissue stiffening, and ultimately disease. Extracellular cues are important regulators of fibroblast activation and have been implicated in their persistence. Hydrogel-based culture models have emerged as useful tools to examine fibroblast response to ECM cues presented during these complex processes. In this Mini-Review, we will provide an overview of these model systems, which are built upon naturally-derived or synthetic materials, and mimic relevant biophysical and biochemical properties of the native ECM with different levels of control. Additionally, we will discuss the application of these hydrogel-based systems for the examination of fibroblast function and fate, including adhesion, migration, and activation, as well as approaches for mimicking both static and temporal aspects of extracellular environments. Specifically, we will highlight hydrogels that have been used to investigate the effects of matrix rigidity, protein binding, and cytokine signaling on fibroblast activation. Last, we will describe future directions for the design of hydrogels to develop improved synthetic models that mimic the complex extracellular environment. PMID:25379176

  10. Intracellular Oxidant Activity, Antioxidant Enzyme Defense System, and Cell Senescence in Fibroblasts with Trisomy 21

    PubMed Central

    Rodríguez-Sureda, Víctor; Vilches, Ángel; Sánchez, Olga; Audí, Laura; Domínguez, Carmen

    2015-01-01

    Down's syndrome (DS) is characterized by a complex phenotype associated with chronic oxidative stress and mitochondrial dysfunction. Overexpression of genes on chromosome-21 is thought to underlie the pathogenesis of the major phenotypic features of DS, such as premature aging. Using cultured fibroblasts with trisomy 21 (T21F), this study aimed to ascertain whether an imbalance exists in activities, mRNA, and protein expression of the antioxidant enzymes SOD1, SOD2, glutathione-peroxidase, and catalase during the cell replication process in vitro. T21F had high SOD1 expression and activity which led to an interenzymatic imbalance in the antioxidant defense system, accentuated with replicative senescence. Intracellular ROS production and oxidized protein levels were significantly higher in T21F compared with control cells; furthermore, a significant decline in intracellular ATP content was detected in T21F. Cell senescence was found to appear prematurely in DS cells as shown by SA-β-Gal assay and p21 assessment, though not apoptosis, as neither p53 nor the proapoptotic proteins cytochrome c and caspase 9 were altered in T21F. These novel findings would point to a deleterious role of oxidatively modified molecules in early cell senescence of T21F, thereby linking replicative and stress-induced senescence in cultured cells to premature aging in DS. PMID:25852816

  11. Intracellular oxidant activity, antioxidant enzyme defense system, and cell senescence in fibroblasts with trisomy 21.

    PubMed

    Rodríguez-Sureda, Víctor; Vilches, Ángel; Sánchez, Olga; Audí, Laura; Domínguez, Carmen

    2015-01-01

    Down's syndrome (DS) is characterized by a complex phenotype associated with chronic oxidative stress and mitochondrial dysfunction. Overexpression of genes on chromosome-21 is thought to underlie the pathogenesis of the major phenotypic features of DS, such as premature aging. Using cultured fibroblasts with trisomy 21 (T21F), this study aimed to ascertain whether an imbalance exists in activities, mRNA, and protein expression of the antioxidant enzymes SOD1, SOD2, glutathione-peroxidase, and catalase during the cell replication process in vitro. T21F had high SOD1 expression and activity which led to an interenzymatic imbalance in the antioxidant defense system, accentuated with replicative senescence. Intracellular ROS production and oxidized protein levels were significantly higher in T21F compared with control cells; furthermore, a significant decline in intracellular ATP content was detected in T21F. Cell senescence was found to appear prematurely in DS cells as shown by SA-β-Gal assay and p21 assessment, though not apoptosis, as neither p53 nor the proapoptotic proteins cytochrome c and caspase 9 were altered in T21F. These novel findings would point to a deleterious role of oxidatively modified molecules in early cell senescence of T21F, thereby linking replicative and stress-induced senescence in cultured cells to premature aging in DS.

  12. Stable Expression of Basic Fibroblast Growth Factor in Chloroplasts of Tobacco.

    PubMed

    Wang, Yun-Peng; Wei, Zheng-Yi; Zhong, Xiao-Fang; Lin, Chun-Jing; Cai, Yu-Hong; Ma, Jian; Zhang, Yu-Ying; Liu, Yan-Zhi; Xing, Shao-Chen

    2015-12-23

    Basic fibroblast growth factor (bFGF) is a multifunctional factor in acceleration of cell proliferation, differentiation and transference, and therefore widely used in clinical applications. In this study, expression vector pWX-Nt03 harboring a codon-optimized bFGF gene was constructed and introduced into the tobacco chloroplasts by particle bombardment. After four rounds of selection, bFGF was proved to integrate into the chloroplast genome of regenerated plants and two of four transgenic plants were confirmed to be homoplastomic by PCR and Southern hybridization. ELISA assay indicated that bFGF represented approximately 0.1% of total soluble protein in the leaves of transplastomic tobacco plants. This is the first report of bFGF expression via chloroplast transformation in model plant, providing an additional option for the production of chloroplast-produced therapeutic proteins.

  13. Stable Expression of Basic Fibroblast Growth Factor in Chloroplasts of Tobacco

    PubMed Central

    Wang, Yun-Peng; Wei, Zheng-Yi; Zhong, Xiao-Fang; Lin, Chun-Jing; Cai, Yu-Hong; Ma, Jian; Zhang, Yu-Ying; Liu, Yan-Zhi; Xing, Shao-Chen

    2015-01-01

    Basic fibroblast growth factor (bFGF) is a multifunctional factor in acceleration of cell proliferation, differentiation and transference, and therefore widely used in clinical applications. In this study, expression vector pWX-Nt03 harboring a codon-optimized bFGF gene was constructed and introduced into the tobacco chloroplasts by particle bombardment. After four rounds of selection, bFGF was proved to integrate into the chloroplast genome of regenerated plants and two of four transgenic plants were confirmed to be homoplastomic by PCR and Southern hybridization. ELISA assay indicated that bFGF represented approximately 0.1% of total soluble protein in the leaves of transplastomic tobacco plants. This is the first report of bFGF expression via chloroplast transformation in model plant, providing an additional option for the production of chloroplast-produced therapeutic proteins. PMID:26703590

  14. Stable Expression of Basic Fibroblast Growth Factor in Chloroplasts of Tobacco.

    PubMed

    Wang, Yun-Peng; Wei, Zheng-Yi; Zhong, Xiao-Fang; Lin, Chun-Jing; Cai, Yu-Hong; Ma, Jian; Zhang, Yu-Ying; Liu, Yan-Zhi; Xing, Shao-Chen

    2016-01-01

    Basic fibroblast growth factor (bFGF) is a multifunctional factor in acceleration of cell proliferation, differentiation and transference, and therefore widely used in clinical applications. In this study, expression vector pWX-Nt03 harboring a codon-optimized bFGF gene was constructed and introduced into the tobacco chloroplasts by particle bombardment. After four rounds of selection, bFGF was proved to integrate into the chloroplast genome of regenerated plants and two of four transgenic plants were confirmed to be homoplastomic by PCR and Southern hybridization. ELISA assay indicated that bFGF represented approximately 0.1% of total soluble protein in the leaves of transplastomic tobacco plants. This is the first report of bFGF expression via chloroplast transformation in model plant, providing an additional option for the production of chloroplast-produced therapeutic proteins. PMID:26703590

  15. Loss of DLK expression in WI-38 human diploid fibroblasts induces a senescent-like proliferation arrest

    SciTech Connect

    Daviau, Alex; Couture, Jean-Philippe; Blouin, Richard

    2011-09-23

    Highlights: {yields} Role of DLK in cell proliferation. {yields} Modulation of DLK expression during cell cycle progression. {yields} DLK knockdown induces proliferation arrest and senescence. {yields} DLK-depleted cells display loss of cyclin D1 and up-regulation of p21. {yields} DLK participates in cell proliferation by modulating cell cycle regulator expression. -- Abstract: DLK, a serine/threonine kinase that functions as an upstream activator of the mitogen-activated protein kinase (MAPK) pathways, has been shown to play a role in development, cell differentiation, apoptosis and neuronal response to injury. Interestingly, recent studies have shown that DLK may also be required for cell proliferation, although little is known about its specific functions. To start addressing this issue, we studied how DLK expression is modulated during cell cycle progression and what effect DLK depletion has on cell proliferation in WI-38 fibroblasts. Our results indicate that DLK protein levels are low in serum-starved cells, but that serum addition markedly stimulated it. Moreover, RNA interference experiments demonstrate that DLK is required for ERK activity, expression of the cell cycle regulator cyclin D1 and proliferation of WI-38 cells. DLK-depleted cells also show a senescent phenotype as revealed by senescence-associated galactosidase activity and up-regulation of the senescence pathway proteins p53 and p21. Consistent with a role for p53 in this response, inhibition of p53 expression by RNA interference significantly alleviated senescence induced by DLK knockdown. Together, these findings indicate that DLK participates in cell proliferation and/or survival, at least in part, by modulating the expression of cell cycle regulatory proteins.

  16. Gene expression changes in normal human skin fibroblasts induced by HZE-particle radiation.

    PubMed

    Ding, Liang-Hao; Shingyoji, Masato; Chen, Fanqing; Chatterjee, Aloke; Kasai, Kiyomi-Eguchi; Chen, David J

    2005-10-01

    Studies have shown that radiation exposure affects global gene expression in mammalian cells. However, little is known about the effects of HZE particles on gene expression. To study these effects, human skin fibroblasts were irradiated with HZE particles of different energies and LETs. The data obtained from these experiments indicate that changes in gene expression are dependent on the energy of the radiation source. Particles with the highest energy, i.e. iron, induced the biggest expression changes in terms of numbers of genes and magnitudes of changes. Many genes were found to undergo significant expression changes after HZE-particle irradiation, including CDKN1A/p21, MDM2, TNFRSF6/fas, PCNA and RAD52. Unlike X rays, HZE particles expose cells to two types of radiation: primary ions and delta rays. We hypothesized that the biological effects of delta rays, which are secondary electron emissions, should resemble the effects of X rays. To explore this idea, gene expression changes between cells that had been irradiated with HZE particles and X rays were compared. The results support our hypothesis since the number of genes that commonly changed after exposure to both radiations increased as a function of particle energy. PMID:16187761

  17. ANT2-defective fibroblasts exhibit normal mitochondrial bioenergetics

    PubMed Central

    Prabhu, Dolly; Goldstein, Amy C.; El-Khoury, Riyad; Rak, Malgorzata; Edmunds, Lia; Rustin, Pierre; Vockley, Jerry; Schiff, Manuel

    2015-01-01

    Adenine nucleotide translocase 2 (ANT2) transports glycolytic ATP across the inner mitochondrial membrane. Patients with ANT2 deletion were recently reported. We aimed at characterizing mitochondrial functions in ANT2-defective fibroblasts. In spite of ANT2 expression in fibroblasts, we observed no difference between ANT2-defective and control fibroblasts for mitochondrial respiration, respiratory chain activities, mitochondrial membrane potential and intracellular ATP levels. This indicates that ANT2 insufficiency does not alter fibroblast basal mitochondrial bioenergetics. PMID:26000237

  18. Human cytomegalovirus transcriptome activity differs during replication in human fibroblast, epithelial and astrocyte cell lines

    PubMed Central

    Towler, James C.; Ebrahimi, Bahram; Lane, Brian; Davison, Andrew J.

    2012-01-01

    Broad cell tropism contributes to the pathogenesis of human cytomegalovirus (HCMV), but the extent to which cell type influences HCMV gene expression is unclear. A bespoke HCMV DNA microarray was used to monitor the transcriptome activity of the low passage Merlin strain of HCMV at 12, 24, 48 and 72 h post-infection, during a single round of replication in human fetal foreskin fibroblast cells (HFFF-2s), human retinal pigmented epithelial cells (RPE-1s) and human astrocytoma cells (U373MGs). In order to correlate transcriptome activity with concurrent biological responses, viral cytopathic effect, growth kinetics and genomic loads were examined in the three cell types. The temporal expression pattern of viral genes was broadly similar in HFFF-2s and RPE-1s, but dramatically different in U373MGs. Of the 165 known HCMV protein-coding genes, 41 and 48 were differentially regulated in RPE-1s and U373MGs, respectively, compared with HFFF-2s, and 22 of these were differentially regulated in both RPE-1s and U373MGs. In RPE-1s, all differentially regulated genes were downregulated, but, in U373MGs, some were down- and others upregulated. Differentially regulated genes were identified among the immediate-early, early, early late and true-late viral gene classes. Grouping of downregulated genes according to function at landmark stages of the replication cycle led to the identification of potential bottleneck stages (genome replication, virion assembly, and virion maturation and release) that may account for cell type-dependent viral growth kinetics. The possibility that cell type-specific differences in expressed cellular factors are responsible for modulation of viral gene expression is discussed. PMID:22258857

  19. Reversine Increases the Plasticity of Long-Term Cryopreserved Fibroblasts to Multipotent Progenitor Cells through Activation of Oct4

    PubMed Central

    Li, Xiangchen; Guo, Yu; Yao, Yaxin; Hua, Jinlian; Ma, Yuehui; Liu, Changqing; Guan, Weijun

    2016-01-01

    Reversine, a purine analog, had been evidenced that it could induce dedifferentiation of differentiated cells into multipotent progenitor cells. Here, we showed that reversine could increase the plasticity of long-term cryopreserved bovine fibroblasts, and reversine-treated cells achieved the ability to differentiate into all three germ layers cells, such as osteoblasts and adipocytes from mesoblast, neurocyte from ectoderm, hepatocytes and smooth muscle cells from endoderm. Moreover, treatment of reversine caused the grow arrest of fibroblasts at G2/M and distinct cell swelling resulting in the formation of polyploid cells. In parallel, reversine treatment induced a multipotency of fibroblasts might be attributed to the activation of histone modifications, especially the degression of DNA methylation. However, molecular and cellular experiments suggested that reversine treatment enhanced selectively the expression of pluripotent marker gene Oct4 and mesenchymal marker genes CD29, CD44 and CD73, but Sox2 and Nanog were not detected. Taken together, these results clearly demonstrate the ability of reversine to dedifferentiation of long-term cryopreserved somatic cells through activation of pluripotent gene Oct4. PMID:26722217

  20. HaloTag is an effective expression and solubilisation fusion partner for a range of fibroblast growth factors.

    PubMed

    Sun, Changye; Li, Yong; Taylor, Sarah E; Mao, Xianqing; Wilkinson, Mark C; Fernig, David G

    2015-01-01

    The production of recombinant proteins such as the fibroblast growth factors (FGFs) is the key to establishing their function in cell communication. The production of recombinant FGFs in E. coli is limited, however, due to expression and solubility problems. HaloTag has been used as a fusion protein to introduce a genetically-encoded means for chemical conjugation of probes. We have expressed 11 FGF proteins with an N-terminal HaloTag, followed by a tobacco etch virus (TEV) protease cleavage site to allow release of the FGF protein. These were purified by heparin-affinity chromatography, and in some instances by further ion-exchange chromatography. It was found that HaloTag did not adversely affect the expression of FGF1 and FGF10, both of which expressed well as soluble proteins. The N-terminal HaloTag fusion was found to enhance the expression and yield of FGF2, FGF3 and FGF7. Moreover, whereas FGF6, FGF8, FGF16, FGF17, FGF20 and FGF22 were only expressed as insoluble proteins, their N-terminal HaloTag fusion counterparts (Halo-FGFs) were soluble, and could be successfully purified. However, cleavage of Halo-FGF6, -FGF8 and -FGF22 with TEV resulted in aggregation of the FGF protein. Measurement of phosphorylation of p42/44 mitogen-activated protein kinase and of cell growth demonstrated that the HaloTag fusion proteins were biologically active. Thus, HaloTag provides a means to enhance the expression of soluble recombinant proteins, in addition to providing a chemical genetics route for covalent tagging of proteins.

  1. HaloTag is an effective expression and solubilisation fusion partner for a range of fibroblast growth factors

    PubMed Central

    Taylor, Sarah E.; Mao, Xianqing; Wilkinson, Mark C.

    2015-01-01

    The production of recombinant proteins such as the fibroblast growth factors (FGFs) is the key to establishing their function in cell communication. The production of recombinant FGFs in E. coli is limited, however, due to expression and solubility problems. HaloTag has been used as a fusion protein to introduce a genetically-encoded means for chemical conjugation of probes. We have expressed 11 FGF proteins with an N-terminal HaloTag, followed by a tobacco etch virus (TEV) protease cleavage site to allow release of the FGF protein. These were purified by heparin-affinity chromatography, and in some instances by further ion-exchange chromatography. It was found that HaloTag did not adversely affect the expression of FGF1 and FGF10, both of which expressed well as soluble proteins. The N-terminal HaloTag fusion was found to enhance the expression and yield of FGF2, FGF3 and FGF7. Moreover, whereas FGF6, FGF8, FGF16, FGF17, FGF20 and FGF22 were only expressed as insoluble proteins, their N-terminal HaloTag fusion counterparts (Halo-FGFs) were soluble, and could be successfully purified. However, cleavage of Halo-FGF6, -FGF8 and -FGF22 with TEV resulted in aggregation of the FGF protein. Measurement of phosphorylation of p42/44 mitogen-activated protein kinase and of cell growth demonstrated that the HaloTag fusion proteins were biologically active. Thus, HaloTag provides a means to enhance the expression of soluble recombinant proteins, in addition to providing a chemical genetics route for covalent tagging of proteins. PMID:26137434

  2. Induction of MAP kinase phosphatase 3 through Erk/MAP kinase activation in three oncogenic Ras (H-, K- and N-Ras)-expressing NIH/3T3 mouse embryonic fibroblast cell lines

    PubMed Central

    Koo, JaeHyung; Wang, Sen; Kang, NaNa; Hur, Sun Jin; Bahk, Young Yil

    2016-01-01

    Ras oncoproteins are small molecular weight GTPases known for their involvement in oncogenesis, which operate in a complex signaling network with multiple effectors. Approximately 25% of human tumors possess mutations in a member of this family. The Raf1/MEK/Erk1/2 pathway is one of the most intensively studied signaling mechanisms. Different levels of regulation account for the inactivation of MAP kinases by MAPK phosphatases in a cell type- and stimuli-dependent manner. In the present study, using three inducible Ras-expressing NIH/3T3 cell lines, we demonstrated that MKP3 upregulation requires the activation of the Erk1/2 pathway, which correlates with the shutdown of this pathway. We also demonstrated, by applying pharmacological inhibitors and effector mutants of Ras, that induction of MKP3 at the protein level is positively regulated by the oncogenic Ras/Raf/MEK/Erk1/2 signaling pathway. [BMB Reports 2016; 49(7): 370-375] PMID:26818088

  3. Proteolytic and non-proteolytic activation of keratinocyte-derived latent TGF-β1 induces fibroblast differentiation in a wound-healing model using rat skin.

    PubMed

    Hata, Shozaburo; Okamura, Kazuhiko; Hatta, Mitsutoki; Ishikawa, Hiroyuki; Yamazaki, Jun

    2014-01-01

    Transforming growth factor-β1 (TGF-β1) reportedly causes the differentiation of fibroblasts to myofibroblasts during wound healing. We investigated the mechanism underlying the activation of latent TGF-β1 released by keratinocytes in efforts to identify promising pharmacological approaches for the prevention of hypertrophic scar formation. A three-dimensional collagen gel matrix culture was prepared using rat keratinocytes and dermal fibroblasts. Stratified keratinocytes promoted the TGF receptor-dependent increase in α-smooth muscle actin (α-SMA) immunostaining and mRNA levels in fibroblasts. Latent TGF-β1 was found to be localized suprabasally and secreted. α-SMA expression was inhibited by an anti-αv-integrin antibody and a matrix metalloproteinase (MMP) inhibitor, GM6001. In a two-dimensional fibroblast culture, α-SMA expression depended on the production of endogenous TGF-β1 and required αv-integrin or MMP for the response to recombinant latent TGF-β1. In keratinocyte-conditioned medium, MMP-dependent latent TGF-β1 secretion was detected. Applying this medium to the fibroblast culture enhanced α-SMA production. This effect was decreased by GM6001, the anti-αv-integrin antibody, or the preabsorption of latent TGF-β1. These results indicate that keratinocytes secrete latent TGF-β1, which is liberated to fibroblasts over distance and is activated to produce α-SMA with the aid of a positive-feedback loop. MMP inhibition was effective for targeting both keratinocytes and fibroblasts in this model. PMID:24492413

  4. Similarities in Gene Expression Profiles during In Vitro Aging of Primary Human Embryonic Lung and Foreskin Fibroblasts

    PubMed Central

    Marthandan, Shiva; Priebe, Steffen; Baumgart, Mario; Groth, Marco; Cellerino, Alessandro; Guthke, Reinhard; Hemmerich, Peter; Diekmann, Stephan

    2015-01-01

    Replicative senescence is of fundamental importance for the process of cellular aging, since it is a property of most of our somatic cells. Here, we elucidated this process by comparing gene expression changes, measured by RNA-seq, in fibroblasts originating from two different tissues, embryonic lung (MRC-5) and foreskin (HFF), at five different time points during their transition into senescence. Although the expression patterns of both fibroblast cell lines can be clearly distinguished, the similar differential expression of an ensemble of genes was found to correlate well with their transition into senescence, with only a minority of genes being cell line specific. Clustering-based approaches further revealed common signatures between the cell lines. Investigation of the mRNA expression levels at various time points during the lifespan of either of the fibroblasts resulted in a number of monotonically up- and downregulated genes which clearly showed a novel strong link to aging and senescence related processes which might be functional. In terms of expression profiles of differentially expressed genes with age, common genes identified here have the potential to rule the transition into senescence of embryonic lung and foreskin fibroblasts irrespective of their different cellular origin. PMID:26339636

  5. Is Nox4 a key regulator of the activated state of fibroblasts in systemic sclerosis?

    PubMed

    Böhm, Markus; Dosoki, Heba; Kerkhoff, Claus

    2014-09-01

    The family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases consists of phagocytic gp91(phox) and six-related isoforms. Recent evidence indicates that the NADPH oxidase isoform Nox4 controls vascular, renal and pulmonary injury. We propose that Nox4 is an intrinsic regulator of the activated state of dermal fibroblasts in systemic sclerosis (SSc). Profibrotic cytokines on the one hand and antifibrogenic factors such as α-melanocyte-stimulating hormone on the other hand may target Nox4 as an intracellular nodal point. Via increased or decreased generation of reactive oxygen species and/or hydrogen peroxide, Nox4 could orchestrate collagen synthesis, differentiation of dermal fibroblasts into a profibrotic myofibroblast phenotype and thus dermal fibrosis. Confirmation of this hypothesis will have important consequences in our understanding of the activated state of dermal fibroblasts in SSc. Based on the availability of clinically useful Nox4 inhibitors, novel antifibrotic therapies of SSc can be envisioned. PMID:25040787

  6. Morphology, proliferation, and gene expression of gingival fibroblasts on Laser-Lok, titanium, and zirconia surfaces.

    PubMed

    Esfahanizadeh, Nasrin; Motalebi, Sara; Daneshparvar, Niloufar; Akhoundi, Nasrin; Bonakdar, Shahin

    2016-07-01

    Soft tissue seal plays a critical role in long-term success of dental implants, and the effects of implant surface treatments such as laser ablation have been a topic of particular interest in this respect. Considering the existing controversy regarding soft tissue behavior in contact with implant surfaces, this study sought to assess the morphology, proliferation, and gene expression of human gingival fibroblasts (HGFs) on different abutment surfaces. In this in vitro, experimental study, HGFs were cultured on 45 discs (Laser-Lok, titanium, and zirconia). Cell morphology, proliferation rate, and interleukin 10 (IL-10), tumor necrosis factor alpha (TNFα), fibronectin, and integrin gene expressions were assessed by electron microscopy, methyl thiazol tetrazolium (MTT) assay, and real-time polymerase chain reaction (PCR), respectively. Data were analyzed using ANOVA and the Kruskal-Wallis H test. Fibroblast attachment was noted in all the three groups. Spindle-shaped cells with pseudopod-like processes were more frequently seen in the Laser-Lok group. Cell proliferation was significantly higher in the Laser-Lok group compared to those in the other groups (P = 0.0002). Significant differences were found in the expression of IL-10, TNFα, fibronectin, and integrin genes among the groups (P < 0.01). Within the limitations of this study, HGFs on Laser-Lok surfaces had a more mature morphology and greater proliferation and differentiation as compared to those on zirconia and titanium surfaces. This indicates better attachment of these cells to laser-modified surfaces, creating a more efficient soft tissue seal around dental implants. PMID:27025859

  7. Role of WNT10A-expressing kidney fibroblasts in acute interstitial nephritis.

    PubMed

    Kuma, Akihiro; Yamada, Sohsuke; Wang, Ke-Yong; Kitamura, Noriaki; Yamaguchi, Takahiro; Iwai, Yoshiko; Izumi, Hiroto; Tamura, Masahito; Otsuji, Yutaka; Kohno, Kimitoshi

    2014-01-01

    WNT signaling mediates various physiological and pathological processes. We previously showed that WNT10A is a novel angio/stromagenic factor involved in such processes as tumor growth, wound healing and tissue fibrosis. In this study, we investigated the role of WNT10A in promoting the fibrosis that is central to the pathology of acute interstitial nephritis (AIN). We initially asked whether there is an association between kidney function (estimated glomerular filtration rate; eGFR) and WNT10A expression using kidney biopsies from 20 patients with AIN. Interestingly, patients with WNT10A expression had significantly lower eGFR than WNT10A-negative patients. However, changes in kidney function were not related to the level of expression of other WNT family members. Furthermore, there was positive correlation between WNT10A and α-SMA expression. We next investigated the involvement of WNT10A in kidney fibrosis processes using COS1 cells, a kidney fibroblast cell line. WNT10A overexpression increased the level of expression of fibronectin and peroxiredoxin 5. Furthermore, WNT10A overexpression renders cells resistant to apoptosis induced by hydrogen peroxide and high glucose. Collectively, WNT10A may induce kidney fibrosis and associate with kidney dysfunction in AIN. PMID:25054240

  8. Thromboxane A2 Regulates CXCL1 and CXCL8 Chemokine Expression in the Nasal Mucosa–Derived Fibroblasts of Chronic Rhinosinusitis Patients

    PubMed Central

    Tsai, Yih-Jeng; Hao, Sheng-Po; Chen, Chih-Li; Wu, Wen-Bin

    2016-01-01

    Background Chronic rhinosinusitis without nasal polyps (CRSsNP) is a common chronic disease and the etiology remains unclear. Thromboxane A2 (TXA2) participates in platelet aggregation and tissue inflammation. In this study, the CXCL1/8 chemokine and TXA2-TP receptor expression in the CRSsNP mucosa was investigated. Experimental Approach Immunohistochemistry, chemokine release assay by ELISA, RT-PCR, Real-time PCR, Western blotting, pharmacological and siRNA knockdown analysis were applied in the CRSsNP tissue specimen and cultured nasal mucosa-derived fibroblasts. Results The immunohistochemistry results indicated that CXCL1 and CXCL8 were highly expressed in the CRSsNP mucosa compared with the controls; however, the TP receptors were expressed in both mucosa. Therefore, U46619 and IBOP, a TXA2 analog and TP agonist, were used to explore the role of TP activation in CXCL1/8 expression; both of these induced CXCL1/8 mRNA and protein expression in CRSsNP mucosa-derived fibroblasts. U46619 phosphorylated PI-3K, cyclic AMP (cAMP)/PKA, PKC, and cAMP response element (CREB). Activation of cAMP/PKA, PKC, and CREB was the major pathway for cxcl1/8 gene transcription. Pharmacological and siRNA knockdown analyses revealed that activation of cAMP/PKA and PKCμ/PKD pathways were required for CREB phosphorylation and PKA/C crosstalked with the PI-3K pathway. Conclusion and Implications Our study provides the first evidence for abundant TP receptor and CXCL1/8 expression in human CRSsNP mucosa and for TXA2 stimulation inducing CXCL1/8 expression in nasal fibroblasts primarily through TP receptor, cAMP/PKA, PKCμ/PKD, and CREB-related pathways. PMID:27351369

  9. Elevated expression of NF-kappaB in oral submucous fibrosis--evidence for NF-kappaB induction by safrole in human buccal mucosal fibroblasts.

    PubMed

    Ni, Wei-Feng; Tsai, Chung-Hung; Yang, Shun-Fa; Chang, Yu-Chao

    2007-07-01

    Nuclear factor-kappa B (NF-kappaB) is considered to be important in many inflammatory and immune responses. The aim of this study was to compare NF-kappaB expression in normal human buccal mucosa and oral submucous fibrosis (OSF) specimens and further explore the potential mechanism that may lead to induction of NF-kappaB expression. Seventeen OSF and six normal buccal mucosa specimens were examined by immunohistochemistry. Primary human buccal mucosal fibroblasts (BMFs) were established and challenged with safrole, a major polyphenolic compound in the influorescence of Piper betel, by cytotoxicity and western blot assays. Furthermore, glutathione precursor N-acetyl-L-cysteine (NAC), extracellular signal-regulated protein kinase (ERK) inhibitor PD98059, cyclooxygenase-2 (COX-2) inhibitor NS-398, dexamethasone, and cyclosporin A were added to find the possible mechanism. NF-kappaB expression was significantly higher in OSF specimens and expressed mainly by fibroblasts, endothelial cells, and inflammatory cells. Safrole was cytotoxic to BMFs in a dose-dependent manner (p<0.05). Western blot demonstrated highly elevated NF-kappaB protein expression in BMFs stimulated by safrole (p<0.05). In addition, pretreatment with pharmacological agents markedly inhibited the safrole induced-NF-kappaB expression (p<0.05). The result suggests that chewing areca quid may activate NF-kappaB expression that may be involved in the pathogenesis of OSF. NF-kappaB expression induced by safrole in fibroblasts may be mediated by ERK activation and COX-2 signal transduction pathway.

  10. p21{sup WAF1} modulates NF-{kappa}B signaling and induces anti-apoptotic protein Bcl-2 in Tax-expressing rat fibroblast

    SciTech Connect

    Akita, Kazumasa; Kawata, Sanae; Shimotohno, Kunitada . E-mail: kshimoto@virus.kyoto-u.ac.jp

    2005-02-05

    Of the cell cycle-associated genes regulated by human T-cell leukemia virus type-1 (HTLV-1) Tax, cyclin-dependent kinase (CDK) inhibitor p21{sup WAF1} is upregulated in HTLV-1-infected cells. Previously, we reported that p21{sup WAF1} stimulated Tax-dependent NF-{kappa}B activation which influences a variety of cellular processes, including proliferation, differentiation, and apoptosis. In HTLV-1-infected cells, Tax is primarily involved in the constitutive activation of NF-{kappa}B signaling. Here, we demonstrate that p21{sup WAF1} affects Tax-dependent NF-{kappa}B signaling by inducing p100/52, an NF-{kappa}B-related protein. W4, a Tax-transformed rat fibroblast cell line, exhibits the constitutive activation of NF-{kappa}B signaling, potentially mediated by overexpression of RelB. Ectopic expression of p21{sup WAF1} in W4 cells, which lack endogenous expression due to methylation of the p21{sup WAF1} promoter, induces the expression of p100/52. Bcl-2 expression was also upregulated by ectopic p21{sup WAF1} in this cell line, suggesting that p21{sup WAF1} plays an important role in the regulation of apoptosis by modulating NF-{kappa}B signaling in Tax-expressing rat fibroblasts. We also address the expression of NF-{kappa}B-related proteins in HTLV-1-infected cells.

  11. Cancer-associated fibroblast suppresses killing activity of natural killer cells through downregulation of poliovirus receptor (PVR/CD155), a ligand of activating NK receptor

    PubMed Central

    Inoue, Tomoko; Adachi, Katsuyuki; Kawana, Kei; Taguchi, Ayumi; Nagamatsu, Takeshi; Fujimoto, Asaha; Tomio, Kensuke; Yamashita, Aki; Eguchi, Satoko; Nishida, Haruka; Nakamura, Hiroe; Sato, Masakazu; Yoshida, Mitsuyo; Arimoto, Takahide; Wada-Hiraike, Osamu; Oda, Katsutoshi; Osuga, Yutaka; Fujii, Tomoyuki

    2016-01-01

    Cancer-associated fibroblasts (CAFs) play an important role in cancer expansion and progression in tumor microenvironment (TME), via both direct and indirect interactions. Natural killer (NK) cells play a crucial role in anticancer immunity. We investigated the inhibitory effects of CAFs on NK cell activity. CAFs were isolated from endometrial cancer tissue, while normal endometrial fibroblasts (NEFs) were obtained from normal endometrium with no pathological abnormality. NK cells were obtained from allogenic healthy volunteers. CAFs or NEFs were co-cultured at an NK/fibroblast ratio of 1:1 with or without inserted membrane. For NK cell activity, K562 cells were cultured as target cells. NK cell-killing activity was determined by calculating the ratio of PI-positive K562 cells in the presence of NK cells co-cultured with fibroblasts versus NK cells alone. To examine whether NK cell activity was suppressed by IDO pathway, we inhibited IDO activity using the IDO inhibitor 1-MT. We demonstrated that CAFs derived from endometrial cancer induced greater suppression of the killing activity of allogenic NK cells compared with normal endometrial fibroblasts (NEFs). The suppression of NK cell activity by CAFs was inhibited when a membrane was inserted between the CAFs and NK cells, but not by 1-MT, an inhibitor of IDO. We focused on receptor-ligand interactions between CAFs and NK cell and found that cell-surface poliovirus receptor (PVR/CD155), a ligand of activating NK receptor DNAM-1, was downregulated in the CAFs compared with NEFs. To confirm whether PVR downregulation results in the decrease of NK cell-killing activity, PVR expression in NEFs was knocked down using siRNA against PVR (PVRsi). NK cell activity was suppressed by co-culture with PVR-knockdown NEFs, to a similar extent than CAF-induced suppression. CAFs showed increased suppression of NK cell-killing activity compared with NEFs, due to decreased PVR cell surface expression, a ligand of an NK activating

  12. Expression of biologically recombinant human acidic fibroblast growth factor in Arabidopsis thaliana seeds via oleosin fusion technology.

    PubMed

    Yang, Jing; Guan, Lili; Guo, Yongxin; Du, Linna; Wang, Fawei; Wang, Yanfang; Zhen, Lu; Wang, Qingman; Zou, Deyi; Chen, Wei; Yu, Lei; Li, Haiyan; Li, Xiaokun

    2015-07-15

    The potential of oleosins to act as carriers for recombinant foreign proteins in plant cells has been established. Using the oleosin fusion technology, the protein can be targeted to oil bodies in oilseeds by fusing it to the N- or C-terminus of oleosin. In this study, aFGF was expressed in Arabidopsis thaliana seeds via oleosin fusion technology. A plant-preferred aFGF gene was synthesized by optimizing codon usage and was fused to the C-terminus of the A. thaliana 18.5kDa oleosin gene. The fusion gene was driven by the phaseolin promoter to confer seed-specific expression of the human acidic fibroblast growth factor in A. thaliana. The T-DNA region of the recombinant plasmid pKO-aFGF was introduced into the genome of Arabidopsis thaliana by the floral dip method. The aFGF protein expression was confirmed by SDS-PAGE and western blotting. The biological activity showed that oil bodies fused to aFGF stimulated NIH/3T3 cell proliferation activity.

  13. The Transcriptomic Evolution of Mammalian Pregnancy: Gene Expression Innovations in Endometrial Stromal Fibroblasts

    PubMed Central

    Kin, Koryu; Maziarz, Jamie; Chavan, Arun R.; Kamat, Manasi; Vasudevan, Sreelakshmi; Birt, Alyssa; Emera, Deena; Lynch, Vincent J.; Ott, Troy L.; Pavlicev, Mihaela; Wagner, Günter P.

    2016-01-01

    The endometrial stromal fibroblast (ESF) is a cell type present in the uterine lining of therian mammals. In the stem lineage of eutherian mammals, ESF acquired the ability to differentiate into decidual cells in order to allow embryo implantation. We call the latter cell type “neo-ESF” in contrast to “paleo-ESF” which is homologous to eutherian ESF but is not able to decidualize. In this study, we compare the transcriptomes of ESF from six therian species: Opossum (Monodelphis domestica; paleo-ESF), mink, rat, rabbit, human (all neo-ESF), and cow (secondarily nondecidualizing neo-ESF). We find evidence for strong stabilizing selection on transcriptome composition suggesting that the expression of approximately 5,600 genes is maintained by natural selection. The evolution of neo-ESF from paleo-ESF involved the following gene expression changes: Loss of expression of genes related to inflammation and immune response, lower expression of genes opposing tissue invasion, increased markers for proliferation as well as the recruitment of FOXM1, a key gene transiently expressed during decidualization. Signaling pathways also evolve rapidly and continue to evolve within eutherian lineages. In the bovine lineage, where invasiveness and decidualization were secondarily lost, we see a re-expression of genes found in opossum, most prominently WISP2, and a loss of gene expression related to angiogenesis. The data from this and previous studies support a scenario, where the proinflammatory paleo-ESF was reprogrammed to express anti-inflammatory genes in response to the inflammatory stimulus coming from the implanting conceptus and thus paving the way for extended, trans-cyclic gestation. PMID:27401177

  14. The Transcriptomic Evolution of Mammalian Pregnancy: Gene Expression Innovations in Endometrial Stromal Fibroblasts.

    PubMed

    Kin, Koryu; Maziarz, Jamie; Chavan, Arun R; Kamat, Manasi; Vasudevan, Sreelakshmi; Birt, Alyssa; Emera, Deena; Lynch, Vincent J; Ott, Troy L; Pavlicev, Mihaela; Wagner, Günter P

    2016-01-01

    The endometrial stromal fibroblast (ESF) is a cell type present in the uterine lining of therian mammals. In the stem lineage of eutherian mammals, ESF acquired the ability to differentiate into decidual cells in order to allow embryo implantation. We call the latter cell type "neo-ESF" in contrast to "paleo-ESF" which is homologous to eutherian ESF but is not able to decidualize. In this study, we compare the transcriptomes of ESF from six therian species: Opossum (Monodelphis domestica; paleo-ESF), mink, rat, rabbit, human (all neo-ESF), and cow (secondarily nondecidualizing neo-ESF). We find evidence for strong stabilizing selection on transcriptome composition suggesting that the expression of approximately 5,600 genes is maintained by natural selection. The evolution of neo-ESF from paleo-ESF involved the following gene expression changes: Loss of expression of genes related to inflammation and immune response, lower expression of genes opposing tissue invasion, increased markers for proliferation as well as the recruitment of FOXM1, a key gene transiently expressed during decidualization. Signaling pathways also evolve rapidly and continue to evolve within eutherian lineages. In the bovine lineage, where invasiveness and decidualization were secondarily lost, we see a re-expression of genes found in opossum, most prominently WISP2, and a loss of gene expression related to angiogenesis. The data from this and previous studies support a scenario, where the proinflammatory paleo-ESF was reprogrammed to express anti-inflammatory genes in response to the inflammatory stimulus coming from the implanting conceptus and thus paving the way for extended, trans-cyclic gestation. PMID:27401177

  15. Sustained Release of Prostaglandin E2 in Fibroblasts Expressing Ectopically Cyclooxygenase 2 Impairs P2Y-Dependent Ca2+-Mobilization

    PubMed Central

    Pimentel-Santillana, María; Través, Paqui G.; Pérez-Sen, Raquel; Delicado, Esmerilda G.; Martín-Sanz, Paloma; Miras-Portugal, María Teresa; Boscá, Lisardo

    2014-01-01

    The nucleotide uridine trisphosphate (UTP) released to the extracellular milieu acts as a signaling molecule via activation of specific pyrimidine receptors (P2Y). P2Y receptors are G protein-coupled receptors expressed in many cell types. These receptors mediate several cell responses and they are involved in intracellular calcium mobilization. We investigated the role of the prostanoid PGE2 in P2Y signaling in mouse embryonic fibroblasts (MEFs), since these cells are involved in different ontogenic and physiopathological processes, among them is tissue repair following proinflammatory activation. Interestingly, Ca2+-mobilization induced by UTP-dependent P2Y activation was reduced by PGE2 when this prostanoid was produced by MEFs transfected with COX-2 or when PGE2 was added exogenously to the culture medium. This Ca2+-mobilization was important for the activation of different metabolic pathways in fibroblasts. Moreover, inhibition of COX-2 with selective coxibs prevented UTP-dependent P2Y activation in these cells. The inhibition of P2Y responses by PGE2 involves the activation of PKCs and PKD, a response that can be suppressed after pharmacological inhibition of these protein kinases. In addition to this, PGE2 reduces the fibroblast migration induced by P2Y-agonists such as UTP. Taken together, these data demonstrate that PGE2 is involved in the regulation of P2Y signaling in these cells. PMID:25214717

  16. Transfer of an expression YAC into goat fetal fibroblasts by cell fusion for mammary gland bioreactor

    SciTech Connect

    Zhang Xufeng; Wu Guoxiang; Chen, Jian-Quan; Zhang Aimin; Liu Siguo; Jiao Binghua . E-mail: jiaobh@uninet.com.cn; Cheng Guoxiang . E-mail: Chenggx@cngenon.com

    2005-07-22

    Yeast artificial chromosomes (YACs) as transgenes in transgenic animals are likely to ensure optimal expression levels. Microinjection of YACs is the exclusive technique used to produce YACs transgenic livestock so far. However, low efficiency and high cost are its critical restrictive factors. In this study, we presented a novel procedure to produce YACs transgenic livestock as mammary gland bioreactor. A targeting vector, containing the gene of interest-a human serum albumin minigene (intron 1, 2), yeast selectable marker (G418R), and mammalian cell resistance marker (neo{sup r}), replaced the {alpha}-lactalbumin gene in a 210 kb human {alpha}-lactalbumin YAC by homogeneous recombination in yeasts. The chimeric YAC was introduced into goat fetal fibroblasts using polyethylene glycol-mediated spheroplast fusion. PCR and Southern analysis showed that intact YAC was integrated in the genome of resistant cells. Perhaps, it may offer a cell-based route by nuclear transfer to produce YACs transgenic livestock.

  17. Genome-wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line

    PubMed Central

    2011-01-01

    Background When compared to primary chicken embryo fibroblast (CEF) cells, the immortal DF-1 CEF line exhibits enhanced growth rates and susceptibility to oxidative stress. Although genes responsible for cell cycle regulation and antioxidant functions have been identified, the genome-wide transcription profile of immortal DF-1 CEF cells has not been previously reported. Global gene expression in primary CEF and DF-1 cells was performed using a 4X44K chicken oligo microarray. Results A total of 3876 differentially expressed genes were identified with a 2 fold level cutoff that included 1706 up-regulated and 2170 down-regulated genes in DF-1 cells. Network and functional analyses using Ingenuity Pathways Analysis (IPA, Ingenuity® Systems, http://www.ingenuity.com) revealed that 902 of 3876 differentially expressed genes were classified into a number of functional groups including cellular growth and proliferation, cell cycle, cellular movement, cancer, genetic disorders, and cell death. Also, the top 5 gene networks with intermolecular connections were identified. Bioinformatic analyses suggested that DF-1 cells were characterized by enhanced molecular mechanisms for cell cycle progression and proliferation, suppressing cell death pathways, altered cellular morphogenesis, and accelerated capacity for molecule transport. Key molecules for these functions include E2F1, BRCA1, SRC, CASP3, and the peroxidases. Conclusions The global gene expression profiles provide insight into the cellular mechanisms that regulate the unique characteristics observed in immortal DF-1 CEF cells. PMID:22111699

  18. Fibroblast growth factor-2 promotes keratan sulfate proteoglycan expression by keratocytes in vitro

    NASA Technical Reports Server (NTRS)

    Long, C. J.; Roth, M. R.; Tasheva, E. S.; Funderburgh, M.; Smit, R.; Conrad, G. W.; Funderburgh, J. L.

    2000-01-01

    Keratocytes of the corneal stroma produce a specialized extracellular matrix responsible for corneal transparency. Corneal keratan sulfate proteoglycans (KSPG) are unique products of keratocytes that are down-regulated in corneal wounds and in vitro. This study used cultures of primary bovine keratocytes to define factors affecting KSPG expression in vitro. KSPG metabolically labeled with [(35)S]sulfate decreased during the initial 2-4 days of culture in quiescent cultures with low serum concentrations (0.1%). Addition of fetal bovine serum, fibroblast growth factor-2 (FGF-2), transforming growth factor beta, or platelet derived growth factor all stimulated cell division, but only FGF-2 stimulated KSPG secretion. Combined with serum, FGF-2 also prevented serum-induced KSPG down-regulation. KSPG secretion was lost during serial subculture with or without FGF-2. Expression of KSPG core proteins (lumican, mimecan, and keratocan) was stimulated by FGF-2, and steady state mRNA pools for these proteins, particularly keratocan, were significantly increased by FGF-2 treatment. KSPG expression therefore is supported by exogenous FGF-2 and eliminated by subculture of the cells in presence of serum. FGF-2 stimulates KSPG core protein expression primarily through an increase in mRNA pools.

  19. Expression of vascular endothelial growth factor and basic fibroblast growth factor in extramammary Paget disease

    PubMed Central

    Xu, Xiaoyun; Shao, Ning; Qiao, Di; Wang, Zengjun; Song, Ningjing; Song, Ninghong

    2015-01-01

    Extramammary Paget’s disease (EMPD) is a special type of cancers. The etiology of the disease is still unclear. We aimed to study the expression differences of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in EMPD tissues and corresponding adjacent normal tissues. The mRNA expression was detected by RT-PCR and the protein expression was explored by immunohistochemistry. Higher immunostaining signal scores of bFGF and VEGF in EMPD tissues had been found (z = -3.827, P < 0.001, z = -3.729, P < 0.001, respectively). In addition, the mRNA expression of bFGF and VEGF was higher in EMPD tissues, which had been validated by RT-PCR (t = 5.771, P < 0.001, t = 3.304, P = 0.004, respectively). The VEGF and bFGF might be the key signaling proteins in angiogenesis of EMPD. How to block the VEGF and bFGF in EMPD and to destroy the blood supply of the tumor cells becomes the focus of our future research. PMID:26045818

  20. Vibration Stimulates Vocal Mucosa-like Matrix Expression by Hydrogel-encapsulated Fibroblasts

    PubMed Central

    Kutty, Jaishankar K.; Webb, Ken

    2010-01-01

    The composition and organization of the vocal fold extracellular matrix (ECM) provide the viscoelastic mechanical properties that are required to sustain high frequency vibration during voice production. Although vocal injury and pathology are known to produce alterations in matrix physiology, the mechanisms responsible for the development and maintenance of vocal fold ECM are poorly understood. The objective of this study was to investigate the effect of physiologically-relevant vibratory stimulation on ECM gene expression and synthesis by fibroblasts encapsulated within hyaluronic acid hydrogels that approximate the viscoelastic properties of vocal mucosa. Relative to static controls, samples exposed to vibration exhibited significant increases in mRNA expression levels of HA synthase 2, decorin, fibromodulin, and MMP-1, while collagen and elastin expression were relatively unchanged. Expression levels exhibited a temporal response, with maximum increases observed after 3 and 5 days of vibratory stimulation and significant downregulation observed at 10 days. Quantitative assays of matrix accumulation confirmed significant increases in sulfated glycosaminoglycans and significant decreases in collagen after 5 and 10 days of vibratory culture relative to static controls. Cellular remodeling and hydrogel viscosity were affected by vibratory stimulation and were influenced by varying the encapsulated cell density. These results indicate that vibration is a critical epigenetic factor regulating vocal fold ECM and suggest that rapid restoration of the phonatory microenvironment may provide a basis for reducing vocal scarring, restoring native matrix composition, and improving vocal quality. PMID:19842110

  1. Arctiin induces an UVB protective effect in human dermal fibroblast cells through microRNA expression changes.

    PubMed

    Lee, Ghang Tai; Cha, Hwa Jun; Lee, Kwang Sik; Lee, Kun Kook; Hong, Jin Tae; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan; Bae, Seunghee

    2014-03-01

    Ultraviolet (UV) radiation induces severe alterations in the molecular and cellular components of normal human dermal fibroblast (NHDF) cells by disrupting many intracellular transduction cascades. Although UV responses have been well documented at the genome and proteome levels, UV protective effects have not been elucidated at these levels. The aim of the present study was to demonstrate that arctiin, a phytochemical isolated from the plant Arctium lappa, induced a protective effect against UVB radiation by changing microRNA (miRNA) expression profiles. Using flow cytometry, and water-soluble tetrazolium salt (WST-1)-based cell viability, wound healing, and DNA repair assays we showed that pretreatment with arctiin prior to UVB irradiation reduced UVB-induced apoptosis, cell migration defects, and DNA damage in NHDF cells. It was also found that arctiin‑induced UVB protection is associated with altered miRNA expression profiles. Bioinformatic analysis revealed that the deregulated miRNAs were functionally involved in mitogen-activated protein kinase (MAPK) signaling and cancer signaling pathways. The results suggest that arctiin acts as a UVB protective agent by altering specific miRNA expression in NHDF cells.

  2. Arctiin induces an UVB protective effect in human dermal fibroblast cells through microRNA expression changes.

    PubMed

    Lee, Ghang Tai; Cha, Hwa Jun; Lee, Kwang Sik; Lee, Kun Kook; Hong, Jin Tae; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan; Bae, Seunghee

    2014-03-01

    Ultraviolet (UV) radiation induces severe alterations in the molecular and cellular components of normal human dermal fibroblast (NHDF) cells by disrupting many intracellular transduction cascades. Although UV responses have been well documented at the genome and proteome levels, UV protective effects have not been elucidated at these levels. The aim of the present study was to demonstrate that arctiin, a phytochemical isolated from the plant Arctium lappa, induced a protective effect against UVB radiation by changing microRNA (miRNA) expression profiles. Using flow cytometry, and water-soluble tetrazolium salt (WST-1)-based cell viability, wound healing, and DNA repair assays we showed that pretreatment with arctiin prior to UVB irradiation reduced UVB-induced apoptosis, cell migration defects, and DNA damage in NHDF cells. It was also found that arctiin‑induced UVB protection is associated with altered miRNA expression profiles. Bioinformatic analysis revealed that the deregulated miRNAs were functionally involved in mitogen-activated protein kinase (MAPK) signaling and cancer signaling pathways. The results suggest that arctiin acts as a UVB protective agent by altering specific miRNA expression in NHDF cells. PMID:24398562

  3. Collagenase-3 (MMP-13) Expression in Chondrosarcoma Cells and Its Regulation by Basic Fibroblast Growth Factor

    PubMed Central

    Uría, José A.; Balbín, Milagros; López, José M.; Alvarez, Jesús; Vizoso, Francisco; Takigawa, Masaharu; López-Otín, Carlos

    1998-01-01

    Human collagenase-3 (MMP-13) is a member of the matrix metalloproteinase family of enzymes that was originally identified in breast carcinomas and subsequently detected during fetal ossification and in arthritic processes. In this work, we have found that collagenase-3 is produced by HCS-2/8 human chondrosarcoma cells. An analysis of the ability of different cytokines and growth factors to induce the expression of collagenase-3 in these cells revealed that basic fibroblast growth factor (bFGF or FGF-2) strongly up-regulated the expression of this gene. By contrast, other factors, including interleukin-1β and transforming growth factor-β, previously found to induce collagenase-3 expression in other cell types, did not exhibit any effect on the expression of this gene in chondrosarcoma cells. Further analysis of the bFGF-induced expression of collagenase-3 in human chondrosarcoma cells revealed that its effect was time and dose dependent, but independent of the de novo synthesis of proteins. Western blot analysis revealed that the up-regulatory effect of bFGF on collagenase-3 was also reflected at the protein level as demonstrated by the increase of immunoreactive protein in the conditioned medium of HCS-2/8 cells treated with bFGF. Immunohistochemical analysis of the presence of collagenase-3 in a series of 8 benign and 16 malignant cartilage-forming neoplasms revealed that all analyzed malignant chondrosarcomas stained positively for collagenase-3, whereas only 2 of 8 benign lesions produced this protease. In addition, the finding that bFGF was detected in all analyzed chondrosarcomas, together with the above in vitro studies on HCS-2/8 cells, suggest that this growth factor may be an in vivo modulator of collagenase-3 expression in these malignant tumors. These results extend the pattern of tumor types with ability to produce this matrix metalloproteinase and suggest that collagenase-3 up-regulation may contribute to the progression of human chondrosarcomas

  4. d-alpha-tocopherol inhibits collagen alpha 1(I) gene expression in cultured human fibroblasts. Modulation of constitutive collagen gene expression by lipid peroxidation.

    PubMed Central

    Houglum, K; Brenner, D A; Chojkier, M

    1991-01-01

    Ascorbic acid stimulates collagen gene transcription in cultured fibroblasts, and this effect is mediated through the induction of lipid peroxidation by ascorbic acid. Quiescent cultured fibroblasts in the absence of ascorbic acid have a high constitutive level of collagen production, but the mechanisms of collagen gene regulation in this unstimulated state are not known. Because lipid peroxidation also occurs in normal cells, we wondered if lipid peroxidation plays a role in the regulation of basal collagen gene expression. Inhibition of lipid peroxidation in cultured human fibroblasts with d-alpha-tocopherol or methylene blue decreased the synthesis of collagen, the steady-state levels of procollagen alpha 1(I) mRNA and the transcription of the procollagen alpha 1(I) gene. This effect on collagen gene expression was selective and not associated with cellular toxicity. Thus, these experiments suggest a role for lipid peroxidation in the modulation of constitutive collagen gene expression. Images PMID:2040703

  5. Aging decreases collagen IV expression in vivo in the dermo-epidermal junction and in vitro in dermal fibroblasts: possible involvement of TGF-β1.

    PubMed

    Feru, Jezabel; Delobbe, Etienne; Ramont, Laurent; Brassart, Bertrand; Terryn, Christine; Dupont-Deshorgue, Aurelie; Garbar, Christian; Monboisse, Jean-Claude; Maquart, Francois-Xavier; Brassart-Pasco, Sylvie

    2016-08-01

    Collagen IV is a major component of the dermo-epidermal junction (DEJ). To study expression of collagen IV upon aging in the DEJ and dermal fibroblasts isolated from the same patients. A model of senescent fibroblasts was developed in order to identify biological compounds that might restore the level of collagen IV. Skin fragments of women (30 to 70 years old) were collected. Localisation of collagen IV expression in the DEJ was studied by immunofluorescence. Fibroblast collagen IV expression was studied by real-time PCR, ELISA, and western blotting. Premature senescence was simulated by exposing fibroblasts to subcytotoxic H2O2 concentrations. Collagen IV decreased in the DEJ and fibroblasts relative to age. TGF-β1 treatment significantly increased collagen IV gene and protein expression in fibroblasts and restored expression in the model of senescence. Addition of TGF-β1-neutralizing antibody to fibroblast cultures decreased collagen IV expression. Taken together, the results suggest that the decrease in collagen IV in the DEJ, relative to age, could be due to a decrease in collagen IV expression by senescent dermal fibroblasts and may involve TGF-β1 signalling. PMID:27124123

  6. Interplay between selenium levels, selenoprotein expression, and replicative senescence in WI-38 human fibroblasts.

    PubMed

    Yona, Legrain; Zahia, Touat-Hamici; Laurent, Chavatte

    2014-10-01

    Selenium is an essential trace element, which is incorporated as selenocysteine into at least 25 selenoproteins using a unique translational UGA-recoding mechanism. Selenoproteins are important enzymes involved in antioxidant defense, redox homeostasis, and redox signaling pathways. Selenium levels decline during aging, and its deficiency is associated with a marked increase in mortality for people over 60 years of age. Here, we investigate the relationship between selenium levels in the culture medium, selenoprotein expression, and replicative life span of human embryonic lung fibroblast WI-38 cells. Selenium levels regulate the entry into replicative senescence and modify the cellular markers characteristic for senescent cells. Whereas selenium supplementation extends the number of population doublings, its deficiency impairs the proliferative capacity of WI-38 cells. We observe that the expression of several selenoproteins involved in antioxidant defense is specifically affected in response to cellular senescence. Their expression is selectively controlled by the modulation of mRNA levels and translational recoding efficiencies. Our data provide novel mechanistic insights into how selenium impacts the replicative life span of mammalian cells by identifying several selenoproteins as new targets of senescence. PMID:26461317

  7. Interplay between selenium levels, selenoprotein expression, and replicative senescence in WI-38 human fibroblasts.

    PubMed

    Legrain, Yona; Touat-Hamici, Zahia; Chavatte, Laurent

    2014-02-28

    Selenium is an essential trace element, which is incorporated as selenocysteine into at least 25 selenoproteins using a unique translational UGA-recoding mechanism. Selenoproteins are important enzymes involved in antioxidant defense, redox homeostasis, and redox signaling pathways. Selenium levels decline during aging, and its deficiency is associated with a marked increase in mortality for people over 60 years of age. Here, we investigate the relationship between selenium levels in the culture medium, selenoprotein expression, and replicative life span of human embryonic lung fibroblast WI-38 cells. Selenium levels regulate the entry into replicative senescence and modify the cellular markers characteristic for senescent cells. Whereas selenium supplementation extends the number of population doublings, its deficiency impairs the proliferative capacity of WI-38 cells. We observe that the expression of several selenoproteins involved in antioxidant defense is specifically affected in response to cellular senescence. Their expression is selectively controlled by the modulation of mRNA levels and translational recoding efficiencies. Our data provide novel mechanistic insights into how selenium impacts the replicative life span of mammalian cells by identifying several selenoproteins as new targets of senescence.

  8. Interplay between selenium levels, selenoprotein expression, and replicative senescence in WI-38 human fibroblasts.

    PubMed

    Yona, Legrain; Zahia, Touat-Hamici; Laurent, Chavatte

    2014-10-01

    Selenium is an essential trace element, which is incorporated as selenocysteine into at least 25 selenoproteins using a unique translational UGA-recoding mechanism. Selenoproteins are important enzymes involved in antioxidant defense, redox homeostasis, and redox signaling pathways. Selenium levels decline during aging, and its deficiency is associated with a marked increase in mortality for people over 60 years of age. Here, we investigate the relationship between selenium levels in the culture medium, selenoprotein expression, and replicative life span of human embryonic lung fibroblast WI-38 cells. Selenium levels regulate the entry into replicative senescence and modify the cellular markers characteristic for senescent cells. Whereas selenium supplementation extends the number of population doublings, its deficiency impairs the proliferative capacity of WI-38 cells. We observe that the expression of several selenoproteins involved in antioxidant defense is specifically affected in response to cellular senescence. Their expression is selectively controlled by the modulation of mRNA levels and translational recoding efficiencies. Our data provide novel mechanistic insights into how selenium impacts the replicative life span of mammalian cells by identifying several selenoproteins as new targets of senescence.

  9. Inflammatory cytokine gene expression in human periodontal ligament fibroblasts stimulated with bacterial lipopolysaccharides.

    PubMed Central

    Yamaji, Y; Kubota, T; Sasaguri, K; Sato, S; Suzuki, Y; Kumada, H; Umemoto, T

    1995-01-01

    The effects of Porphyromonas gingivalis lipopolysaccharide (P-LPS) and Escherichia coli lipopolysaccharide (E-LPS) on the gene expression and production of inflammatory cytokines of human periodontal ligament fibroblasts (HPLF) were examined by a Northern (RNA blot) assay and enzyme-linked immunosorbent assay, respectively. mRNAs for interleukin-6 (IL-6), IL-8, and transforming growth factor beta (TGF-beta) were detected in HPLF cells, but IL-1 alpha, IL-1 beta, tumor necrosis factor alpha, transforming growth factor alpha, and granulocyte-macrophage colony-stimulating factor were not detected by reverse transcription-PCR. The expression of TGF-beta mRNA was not influenced by either LPS. P-LPS (1 to 10 micrograms/ml) and E-LPS (100 micrograms/ml) markedly stimulated the expression of IL-6 and IL-8 mRNAs compared with the control. The synthesis of IL-6 and IL-8 was also stimulated by 10 and 100 micrograms of both LPSs per ml, but IL-8 synthesis was not stimulated with E-LPS at 1 microgram/ml. Secretion of IL-6 and IL-8 into the culture medium was detected at 6 and 3 h, respectively, after exposure to P-LPS (10 micrograms/ml). These findings suggested that P. gingivalis leads to periodontal tissue destruction and alveolar bone resorption through IL-6 and IL-8 released from HPLF cells stimulated with its LPS. PMID:7642293

  10. Rat embryo fibroblast cells expressing human papillomavirus 1a genes exhibit altered growth properties and tumorigenicity.

    PubMed Central

    Green, M; Brackmann, K H; Loewenstein, P M

    1986-01-01

    Human papillomavirus 1a (HPV1a) induces benign tumors (papillomas or warts) in humans under natural conditions of infection but has not been found to replicate significantly in cell culture or in experimental animals. To establish model systems to study the oncogenic properties and expression of HPV genes, we established cell lines by cotransfecting the 3Y1 rat fibroblast cell line with HPV1a DNA constructs containing an intact early gene region and the Tn5 neomycin resistance gene. Most cell lines selected for expression of the neomycin resistance gene by treatment with the antibiotic G-418 contained viral DNA in a high-molecular-weight form. The growth characteristics of several cell lines containing high copy numbers of HPV1a DNA were studied further. They were shown to differ from the parental cell line and from G-418-resistant cell lines that did not incorporate viral DNA in the following properties: morphological alteration, increased cell density at confluence, growth in 0.5% serum, efficient anchorage-independent growth in soft agar, and rapid formation of tumors in nude mice. Those cell lines that possessed altered growth properties and tumorigenicity were found to express abundant quantities of polyadenylated virus-specific RNA species in the cytoplasm. Images PMID:3023676

  11. Basic fibroblast growth factor promotes melanocyte migration via increased expression of p125(FAK) on melanocytes.

    PubMed

    Wu, Ching-Shuang; Lan, Cheng-Che E; Chiou, Min-Hsi; Yu, Hsin-Su

    2006-01-01

    Vitiligo is an acquired pigmentary disorder characterized by depigmentation of skin and hair. Melanocyte migration is an important event in re-pigmentation of vitiligo. We have demonstrated that narrow-band ultraviolet B (UVB) irradiation stimulated cultured keratinocytes to release a significant amount of basic fibroblast growth factor (bFGF). Furthermore, narrow-band UVB enhanced migration of melanocytes via increased expression of phosphorylated focal adhesion kinase (p125(FAK)) on melanocytes. The aim of this study was to investigate the effect of recombinant human bFGF (rhbFGF) on melanocyte migration. The relationship between the expression of p125(FAK) and melanocyte migration induced by rhbFGF was also studied. Our results demonstrated that rhbFGF significantly enhanced migration of melanocytes and p125(FAK) expression on melanocytes. Herbimycin A, a potent p125(FAK) inhibitor, effectively abolished rhbFGF-induced melanocyte migration. The combined results indicated that p125(FAK) plays an important role in the signal transduction pathway of melanocyte migration induced by bFGF.

  12. Effects of miR-223 on expression of IL-1β and IL-6 in human gingival fibroblasts.

    PubMed

    Matsui, Sari; Ogata, Yorimasa

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate post-transcriptional expression by translational inhibition or mRNA degradation. miRNAs bind to target mRNAs through partial complementarity, and can regulate many genes. In the present study, we investigated the effects of miR-223 on the expression of inflammatory cytokines in human gingival fibroblasts (HGF). To determine the effects of miR-223 on the expressions of interleukin-1β (IL-1β) and IL-6, HGF were stimulated by IL-1β (1 ng/mL) or tumor necrosis factor-α (TNF-α; 10 ng/mL) and transfected with a miR-223 expression plasmid. Levels of mRNA for IL-1β, IL-6, inhibitor of kappa-B kinase α (IKKα) and mitogen-activated protein kinase phosphatase-5 (MKP-5) were measured by real-time PCR, and levels IL-1β, IL-6 and IKKα protein were determined by enzyme-linked immunosorbent assay and Western blotting. Expression of IL-1β and IL-6 mRNAs was induced by IL-1β and TNF-α and further increased by miR-223 overexpression. IL-1β and TNF-α induced the expression of IL-1β and IL-6 mRNAs, and this was reduced by miR-223 inhibitor. Overexpression of miR-223 decreased the levels of IKKα protein and MKP-5 mRNA in HGF. These findings indicate that miR-223 might control the inflammatory response via IKKα and MKP-5 in periodontal tissue. (J Oral Sci 58, 101-108, 2016).

  13. Potential Wound Healing Activities of Galla Rhois in Human Fibroblasts and Keratinocytes.

    PubMed

    Park, Hyo-Hyun; Park, Na-Young; Kim, Sun-Gun; Jeong, Kyu-Tae; Lee, Eu-Jin; Lee, Eunkyung

    2015-01-01

    Wound healing is a complex process orchestrated by the regeneration of the epithelium and the remodeling of the extracellular matrix through processes like collagen deposition. Galla Rhois has been widely used in traditional Korean medicine for its various pharmacological effects, including an anticoccidial effect, however, little is known about its healing activity. The purpose of this study was to determine the effects of Galla Rhois ethanol extract (GRE) on wound healing activities, including H2O2-induced oxidative stress, cell migration, and lactate dehydrogenase (LDH) release assays using human keratinocyte (HaCaT) and dermal fibroblasts (CCD-986SK). In addition, total soluble collagen deposition and collagen gene expression for Type I and III collagen were evaluated in CCD-986SK. Total tannin and flavonoid contents for GRE were measured. GRE induced a significant increase in the number and migration of cells, along with a decrease in cell death and LDH release. In addition, it also induced the over-expression of collagen Type I and III mRNA and caused increased synthesis of total soluble collagen. The contents of total tannin and flavonoid for GRE were 55.7% ([Formula: see text][Formula: see text]mg/g) and 62.9% ([Formula: see text][Formula: see text]mg/g), respectively. The results suggest that GRE can cause accelerated wound healing by increasing cell survival, proliferation, migration, and collagen synthesis along with a potential anti-oxidant property. This evidence provides novel insight into natural therapy for tissue injury.

  14. Inhibition of HMGB1-induced angiogenesis by cilostazol via SIRT1 activation in synovial fibroblasts from rheumatoid arthritis.

    PubMed

    Kim, Hye Young; Park, So Youn; Lee, Sung Won; Lee, Hye Rin; Lee, Won Suk; Rhim, Byung Yong; Hong, Ki Whan; Kim, Chi Dae

    2014-01-01

    High mobility group box chromosomal protein 1 (HMGB-1) released from injured cells plays an important role in the development of arthritis. This study investigated the anti-angiogenic effects of cilostazol in collagen-induced arthritis (CIA) of mice, and the underlying mechanisms involved. The expressions of HIF-1α, VEGF, NF-κB p65 and SIRT1 in synovial fibroblasts obtained from rheumatoid arthritis (RA) patients were assessed by Western blotting, and in vitro and in vivo angiogenesis were analyzed. Tube formations by human microvascular endothelial cells (HMVECs) were significantly increased by direct exposure to HMGB1 or to conditioned medium derived from HMGB1-stimulated RA fibroblasts, and these increases were attenuated by cilostazol, the latter of which was blocked by sirtinol. HMGB1 increased the expression of HIF-1α and VEGF and concomitantly increased nuclear NF-κB p65 and DNA binding activity, but these effects of HMGB1 were inhibited by cilostazol. SIRT1 protein expression was time-dependently decreased (3-24 hr) by HMGB1, which was recovered by pretreatment with cilostazol (1-30 µM) or resveratrol, accompanying with increased SIRT1 deacetylase activity. In the tibiotarsal joint tissues of CIA mice treated with vehicle, HIF-1α- and VEGF-positive spots and CD31 staining were markedly exaggerated, whereas SIRT1 immunofluorescence was diminished. These variables were wholly reversed in cilostazol (30 mg/kg/day)-treated mice. Furthermore, number of blood vessels stained by von Willebrand factor antibody was significantly lower in cilostazol-treated CIA mice. Summarizing, cilostazol activated SIRT1 and inhibited NF-κB-mediated transcription, thereby suppressing the expression of HIF-1α and VEGF. In addition, cilostazol caused HIF-1α deacetylation by enhancing SIRT1 activity and reduced VEGF production, thereby had an anti-angiogenic effect in vitro studies and in CIA murine model.

  15. Inhibition of HMGB1-Induced Angiogenesis by Cilostazol via SIRT1 Activation in Synovial Fibroblasts from Rheumatoid Arthritis

    PubMed Central

    Lee, Sung Won; Lee, Hye Rin; Lee, Won Suk; Rhim, Byung Yong; Hong, Ki Whan; Kim, Chi Dae

    2014-01-01

    High mobility group box chromosomal protein 1 (HMGB-1) released from injured cells plays an important role in the development of arthritis. This study investigated the anti-angiogenic effects of cilostazol in collagen-induced arthritis (CIA) of mice, and the underlying mechanisms involved. The expressions of HIF-1α, VEGF, NF-κB p65 and SIRT1 in synovial fibroblasts obtained from rheumatoid arthritis (RA) patients were assessed by Western blotting, and in vitro and in vivo angiogenesis were analyzed. Tube formations by human microvascular endothelial cells (HMVECs) were significantly increased by direct exposure to HMGB1 or to conditioned medium derived from HMGB1-stimulated RA fibroblasts, and these increases were attenuated by cilostazol, the latter of which was blocked by sirtinol. HMGB1 increased the expression of HIF-1α and VEGF and concomitantly increased nuclear NF-κB p65 and DNA binding activity, but these effects of HMGB1 were inhibited by cilostazol. SIRT1 protein expression was time-dependently decreased (3–24 hr) by HMGB1, which was recovered by pretreatment with cilostazol (1–30 µM) or resveratrol, accompanying with increased SIRT1 deacetylase activity. In the tibiotarsal joint tissues of CIA mice treated with vehicle, HIF-1α- and VEGF-positive spots and CD31 staining were markedly exaggerated, whereas SIRT1 immunofluorescence was diminished. These variables were wholly reversed in cilostazol (30 mg/kg/day)-treated mice. Furthermore, number of blood vessels stained by von Willebrand factor antibody was significantly lower in cilostazol-treated CIA mice. Summarizing, cilostazol activated SIRT1 and inhibited NF-κB-mediated transcription, thereby suppressing the expression of HIF-1α and VEGF. In addition, cilostazol caused HIF-1α deacetylation by enhancing SIRT1 activity and reduced VEGF production, thereby had an anti-angiogenic effect in vitro studies and in CIA murine model. PMID:25126750

  16. Interleukin-1β induces fibroblast growth factor 2 expression and subsequently promotes endothelial progenitor cell angiogenesis in chondrocytes

    PubMed Central

    Chien, Szu-Yu; Huang, Chun-Yin; Tsai, Chun-Hao; Wang, Shih-Wei

    2016-01-01

    Arthritis is a process of chronic inflammation that results in joint damage. IL (interleukin)-1β is an inflammatory cytokine that acts as a key mediator of cartilage degradation, and is abundantly expressed in arthritis. Neovascularization is one of the pathological characteristics of arthritis. However, the role of IL-1β in the angiogenesis of chondrocytes remains unknown. In the present study, we demonstrate that stimulating chondrocytes (ATDC5) with IL-1β increased the expression of FGF (fibroblast growth factor)-2, a potent angiogenic inducer, and then promoted EPC (endothelial progenitor cell) tube formation and migration. In addition, FGF-2-neutralizing antibody abolished ATDC5-conditional medium-mediated angiogenesis in vitro, as well as its angiogenic effects in the CAM (chick chorioallantoic membrane) assay and Matrigel plug nude mice model in vivo. IHC (immunohistochemistry) staining from a CIA (collagen-induced arthritis) mouse model also demonstrates that arthritis increased the expression of IL-1β and FGF-2, as well as EPC homing in articular cartilage. Moreover, IL-1β-induced FGF-2 expression via IL-1RI (type-1 IL-1 receptor), ROS (reactive oxygen species) generation, AMPK (AMP-activated protein kinase), p38 and NF-κB (nuclear factor κB) pathway has been demonstrated. On the basis of these findings, we conclude that IL-1β promotes FGF-2 expression in chondrocytes through the ROS/AMPK/p38/NF-κB signalling pathway and subsequently increases EPC angiogenesis. Therefore IL-1β serves as a link between inflammation and angiogenesis during arthritis. PMID:26811540

  17. Age-Dependent Decrease of Mitochondrial Complex II Activity in Human Skin Fibroblasts.

    PubMed

    Bowman, Amy; Birch-Machin, Mark A

    2016-05-01

    The mitochondrial theory of aging remains one of the most widely accepted aging theories and implicates mitochondrial electron transport chain dysfunction with subsequent increasing free radical generation. Recently, complex II of the electron transport chain appears to be more important than previously thought in this process, suggested predominantly by nonhuman studies. We investigated the relationship between complex II and aging using human skin as a model tissue. The rate of complex II activity per unit of mitochondria was determined in fibroblasts and keratinocytes cultured from skin covering a wide age range. Complex II activity significantly decreased with age in fibroblasts (P = 0.015) but not in keratinocytes. This was associated with a significant decline in transcript expression (P = 0.008 and P = 0.001) and protein levels (P = 0.0006 and P = 0.005) of the succinate dehydrogenase complex subunit A and subunit B catalytic subunits of complex II, respectively. In addition, there was a significant decrease in complex II activity with age (P = 0.029) that was specific to senescent skin cells. There was no decrease in complex IV activity with increasing age, suggesting possible locality to complex II. PMID:26829036

  18. Attenuation of ribosomal protein S6 phosphatase activity in chicken embryo fibroblasts transformed by Rous sarcoma virus.

    PubMed Central

    Belandia, B; Brautigan, D; Martín-Pérez, J

    1994-01-01

    In chicken embryo fibroblasts, phosphorylation of the 40S ribosomal protein S6 increases during G1 but returns to basal level by mitosis. In contrast, in Rous sarcoma virus (RSV)-transformed fibroblasts, S6 remains highly phosphorylated throughout mitosis. This study investigated the mechanism by which RSV alters the pattern of S6 phosphorylation. Pulse-chase experiments demonstrate that phosphate turnover in S6 is rapid in normal cells and in cells infected with an RSV transformation-defective virus. In contrast, phosphate turnover in S6 is severely reduced in cells infected with temperature-sensitive RSV at a temperature permissive for transformation, indicating a diminished S6 phosphatase activity. Fractionation of cell lysates by DEAE chromatography showed an almost threefold lower S6 phosphatase activity in RSV-transformed versus normal cells. The S6 phosphatase was sensitive to inhibitor 2 and specifically recognized by an antibody to type 1 phosphatase (PP1). The S6 phosphatase activity recovered by immunoprecipitation of PP1 was threefold lower in transformed cells, but the steady-state level of expression and the rate of synthesis of PP1 were not altered by oncogenic transformation. Together, the results show that transformation by RSV reduced the S6-PP1 activity. Images PMID:8264587

  19. Fibroblast Growth Factor Receptor-2 Expression in Thyroid Tumor Progression: Potential Diagnostic Application

    PubMed Central

    Redler, Adriano; Di Rocco, Giorgio; Giannotti, Domenico; Frezzotti, Francesca; Bernieri, Maria Giulia; Ceccarelli, Simona; D’Amici, Sirio; Vescarelli, Enrica; Mitterhofer, Anna Paola; Angeloni, Antonio; Marchese, Cinzia

    2013-01-01

    Fibroblast growth factor receptor-2 (FGFR-2) plays an important role in tumorigenesis. In thyroid cancer it has been observed a FGFR-2 down-modulation, but the role of this receptor has not been yet clarified. Therefore, we decided to examine the expression of both FGFR-2 isoform, FGFR-2-IIIb and FGFR-2-IIIc, in different histological thyroid variants such as hyperplasia, follicular adenoma and papillary carcinoma. Immunohistochemistry and quantitative Real-Time PCR analyses were performed on samples of hyperplasia, follicular adenoma and papillary carcinoma, compared with normal thyroid tissue. Thyroid hyperplasia did not show statistically significant reduction in FGFR-2 protein and mRNA levels. Interestingly, in both follicular adenoma and papillary carcinoma samples we observed a strongly reduced expression of both FGFR-2 isoforms. We speculate that FGFR-2 down-modulation might be an early event in thyroid carcinogenesis. Furthermore, we suggest the potential use of FGFR-2 as an early marker for thyroid cancer diagnosis. PMID:23977259

  20. Fibroblast growth factor receptor-2 expression in thyroid tumor progression: potential diagnostic application.

    PubMed

    Redler, Adriano; Di Rocco, Giorgio; Giannotti, Domenico; Frezzotti, Francesca; Bernieri, Maria Giulia; Ceccarelli, Simona; D'Amici, Sirio; Vescarelli, Enrica; Mitterhofer, Anna Paola; Angeloni, Antonio; Marchese, Cinzia

    2013-01-01

    Fibroblast growth factor receptor-2 (FGFR-2) plays an important role in tumorigenesis. In thyroid cancer it has been observed a FGFR-2 down-modulation, but the role of this receptor has not been yet clarified. Therefore, we decided to examine the expression of both FGFR-2 isoform, FGFR-2-IIIb and FGFR-2-IIIc, in different histological thyroid variants such as hyperplasia, follicular adenoma and papillary carcinoma. Immunohistochemistry and quantitative Real-Time PCR analyses were performed on samples of hyperplasia, follicular adenoma and papillary carcinoma, compared with normal thyroid tissue. Thyroid hyperplasia did not show statistically significant reduction in FGFR-2 protein and mRNA levels. Interestingly, in both follicular adenoma and papillary carcinoma samples we observed a strongly reduced expression of both FGFR-2 isoforms. We speculate that FGFR-2 down-modulation might be an early event in thyroid carcinogenesis. Furthermore, we suggest the potential use of FGFR-2 as an early marker for thyroid cancer diagnosis. PMID:23977259

  1. Enhancing structural support of the dermal microenvironment activates fibroblasts, endothelial cells, and keratinocytes in aged human skin in vivo.

    PubMed

    Quan, Taihao; Wang, Frank; Shao, Yuan; Rittié, Laure; Xia, Wei; Orringer, Jeffrey S; Voorhees, John J; Fisher, Gary J

    2013-03-01

    The dermal extracellular matrix (ECM) provides strength and resiliency to skin. The ECM consists mostly of type I collagen fibrils, which are produced by fibroblasts. Binding of fibroblasts to collagen fibrils generates mechanical forces, which regulate cellular morphology and function. With aging, collagen fragmentation reduces fibroblast-ECM binding and mechanical forces, resulting in fibroblast shrinkage and reduced function, including collagen production. Here, we report that these age-related alterations are largely reversed by enhancing the structural support of the ECM. Injection of dermal filler, cross-linked hyaluronic acid, into the skin of individuals over 70 years of age stimulates fibroblasts to produce type I collagen. This stimulation is associated with localized increase in mechanical forces, indicated by fibroblast elongation/spreading, and mediated by upregulation of type II TGF-β receptor and connective tissue growth factor. Interestingly, enhanced mechanical support of the ECM also stimulates fibroblast proliferation, expands vasculature, and increases epidermal thickness. Consistent with our observations in human skin, injection of filler into dermal equivalent cultures causes elongation of fibroblasts, coupled with type I collagen synthesis, which is dependent on the TGF-β signaling pathway. Thus, fibroblasts in aged human skin retain their capacity for functional activation, which is restored by enhancing structural support of the ECM.

  2. Construction of the mammalian expressing vector pEGFP-N1-P53 and its expression successful in chicken fibroblast cells and blastoderm.

    PubMed

    Song, Z; Li, Z H; Lei, X Q; Xu, T S; Zhang, X H; Li, Y J; Zhang, G M; Xi, S M; Yang, Y B; Wei, Z G

    2015-02-02

    The enhanced green fluorescent protein (EGFP) pEGFP-N1-P53 eukaryotic expression vector, which contains the human tumor suppressor p53, was constructed and transfected into chicken fibroblast cells and stage-X blastoderm to analyze the transfection efficiency. The complementary DNA of the human p53 gene was cloned by reverse transcription-polymerase chain reaction from human peripheral blood and inserted into the pEGFP-N1 vector by HindIII and BamHI double digestion. The pEGFP-N1-P53 vector was transfected into chicken embryo fibroblasts by Lipofectamine 2000 liposomes, and the transfection efficiency was analyzed by fluorescence microscope after 36 h of transfection. The stage-X blastoderm was also transfected by blastoderm injection using Lipofectamine 2000 liposomes at room temperature after 12-24 h; then hatching occurred until seventh day, and the transfection efficiency was analyzed by fluorescence microscope in the dead embryo. A total of 90 hatching eggs were transfected by the pEGFP-N1-P53 vector, and 20 chicken embryos expressed the reporter gene, which indicated that recombinant pEGFP-N1-P53 could be transfected and expressed in stage-X blastoderm by liposomes. Chicken embryo fibroblasts were transfected and expressed the reporter gene. The pEGFP-N1-P53 vector was constructed successfully and could be transfected and expressed in chicken embryo fibroblasts and stage-X blastoderms efficiently.

  3. DNA damage and altered gene expression in cultured human skin fibroblasts exposed to 193-nm excimer laser radiation

    NASA Astrophysics Data System (ADS)

    Samid, Dvorit; Flessate, Denise M.; Miller, Alexandra C.; Rimoldi, Donata

    1990-06-01

    Tissue ablation using 193nm excimer lasers is being considered for a variety of surgical procedures, yet little is known regarding the potential mutagenic risk to human cells. The effects of sublethal doses of radiation on cellular DNA and gene expression have been examined in cultured human skin fibroblasts. Northern blot analysis of mRNA revealed an increase in the levels of the c-f. proto-oncogene, interstitial collagenase, and metallothionein transcripts after laser radiation at either 193nm or 248nm. Similar changes in gene expression have been previously observed in cells treated with different carcinogens, including classical UV light (254nm) and phorbol esters. In contrast to the conventional UV light or laser radiation at 248nm, the 193nm radiation did not cause significant pyrimidine dimer formation, as determined by measurements of unscheduled DNA synthesis. However, both 193nm and 248nm radiation induced micronuclei formation, indicative of chromosome breakage. These data indicate that exposure of actively replicating human skin cells to sublethal doses of 193nm laser radiation may result in molecular changes associated with carcinogenesis.

  4. Expression of c-myc and induction of DNA synthesis by platelet-poor plasma in human diploid fibroblasts

    SciTech Connect

    Ferrari, S.; Calabretta, B.; Battini, R.; Cosenza, S.C.; Owen, T.A.; Soprano, K.J.; Baserga, R. )

    1988-01-01

    When WI-38 human diploid fibroblasts become confluent, they stop synthesizing DNA and dividing. Addition of serum causes the quiescent cell to reenter the cell cycle. Prolonged quiescence after confluence decreases and delays the response to serum. For a few days after reaching confluence. WI-38 cells also respond to platelet-poor plasma. During this period, although not cycling, WI-38 cells still express c-myc and other growth-regulated genes, as measured by steady-state RNA levels. If the quiescence is prolonged further, c-myc expression (and that of two other growth-regulated genes) is no longer detectable, and its disappearance coincides with a loss of response to platelet-poor plasma. These results suggest that, also under physiological conditions, the expression of c-myc and other growth-regulated genes can cooperate with platelet-poor plasma in inducing cellular DNA synthesis in human diploid fibroblasts.

  5. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice.

    PubMed

    Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua; Ra, Hyun-Jeong; Majumdar, Sonali; Gulick, Dexter L; Jerome, Jacob A; Madsen, Daniel H; Christofidou-Solomidou, Melpo; Speicher, David W; Bachovchin, William W; Feghali-Bostwick, Carol; Puré, Ellen

    2016-04-01

    Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2-4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent within vitrostudies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP's protective effects in the lung.

  6. Conditionally Immortalized Mouse Embryonic Fibroblasts Retain Proliferative Activity without Compromising Multipotent Differentiation Potential

    PubMed Central

    Huang, Enyi; Bi, Yang; Jiang, Wei; Luo, Xiaoji; Yang, Ke; Gao, Jian-Li; Gao, Yanhong; Luo, Qing; Shi, Qiong; Kim, Stephanie H.; Liu, Xing; Li, Mi; Hu, Ning; Liu, Hong; Cui, Jing; Zhang, Wenwen; Li, Ruidong; Chen, Xiang; Shen, Jikun; Kong, Yuhan; Zhang, Jiye; Wang, Jinhua; Luo, Jinyong; He, Bai-Cheng; Wang, Huicong; Reid, Russell R.; Luu, Hue H.; Haydon, Rex C.; Yang, Li; He, Tong-Chuan

    2012-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells which reside in many tissues and can give rise to multiple lineages including bone, cartilage and adipose. Although MSCs have attracted significant attention for basic and translational research, primary MSCs have limited life span in culture which hampers MSCs' broader applications. Here, we investigate if mouse mesenchymal progenitors can be conditionally immortalized with SV40 large T antigen and maintain long-term cell proliferation without compromising their multipotency. Using the system which expresses SV40 large T antigen flanked with Cre/loxP sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized by SV40 large T antigen. The conditionally immortalized MEFs (iMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by Cre recombinase. The iMEFs express most MSC markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages under appropriate differentiation conditions in vitro and in vivo. The removal of SV40 large T reduces the differentiation potential of iMEFs possibly due to the decreased progenitor expansion. Furthermore, the iMEFs are apparently not tumorigenic when they are subcutaneously injected into athymic nude mice. Thus, the conditionally immortalized iMEFs not only maintain long-term cell proliferation but also retain the ability to differentiate into multiple lineages. Our results suggest that the reversible immortalization strategy using SV40 large T antigen may be an efficient and safe approach to establishing long-term cell culture of primary mesenchymal progenitors for basic and translational research, as well as for potential clinical applications. PMID:22384246

  7. FRAG1, a gene that potently activates fibroblast growth factor receptor by C-terminal fusion through chromosomal rearrangement.

    PubMed Central

    Lorenzi, M V; Horii, Y; Yamanaka, R; Sakaguchi, K; Miki, T

    1996-01-01

    A constitutively active form of fibroblast growth factor 2 (FGFR2) was identified in rat osteosarcoma (ROS) cells by an expression cloning strategy. Unlike other tyrosine kinase receptors activated by N-terminal truncation in tumors, this receptor, FGFR2-ROS, contains an altered C terminus generated from chromosomal rearrangement with a novel gene, designated FGFR activating gene 1 (FRAG1). While the removal of the C terminus slightly activates FGFR2, the presence of the FRAG1 sequence drastically stimulates the transforming activity and autophosphorylation of the receptor. FGFR2-ROS is expressed as a unusually large protein and is highly phosphorylated in NIH 3T3 transfectants. FRAG1 is ubiquitously expressed and encodes a predicted protein of 28 kDa lacking significant structural similarity to known proteins. Epitope-tagged FRAG1 protein showed a perinuclear localization by immunofluorescence staining. The highly activated state of FGFR2-ROS appears to be attributed to constitutive dimer formation and higher phosphorylation level as well as possibly altered subcellular localization. These results indicate a unique mechanism of receptor activation by a C terminus alteration through a chromosomal fusion with FRAG1. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6 PMID:8799135

  8. Cancer-associated fibroblast-secreted CXCL16 attracts monocytes to promote stroma activation in triple-negative breast cancers

    PubMed Central

    Allaoui, Roni; Bergenfelz, Caroline; Mohlin, Sofie; Hagerling, Catharina; Salari, Kiarash; Werb, Zena; Anderson, Robin L.; Ethier, Stephen P.; Jirström, Karin; Påhlman, Sven; Bexell, Daniel; Tahin, Balázs; Johansson, Martin E.; Larsson, Christer; Leandersson, Karin

    2016-01-01

    Triple-negative (TN) breast cancers (ER−PR−HER2−) are highly metastatic and associated with poor prognosis. Within this subtype, invasive, stroma-rich tumours with infiltration of inflammatory cells are even more aggressive. The effect of myeloid cells on reactive stroma formation in TN breast cancer is largely unknown. Here, we show that primary human monocytes have a survival advantage, proliferate in vivo and develop into immunosuppressive myeloid cells expressing the myeloid-derived suppressor cell marker S100A9 only in a TN breast cancer environment. This results in activation of cancer-associated fibroblasts and expression of CXCL16, which we show to be a monocyte chemoattractant. We propose that this migratory feedback loop amplifies the formation of a reactive stroma, contributing to the aggressive phenotype of TN breast tumours. These insights could help select more suitable therapies targeting the stromal component of these tumours, and could aid prediction of drug resistance. PMID:27725631

  9. Fibroblast growth factor-2 induces osteogenic differentiation through a Runx2 activation in vascular smooth muscle cells

    SciTech Connect

    Nakahara, Takehiro; Sato, Hiroko; Shimizu, Takehisa; Tanaka, Toru; Matsui, Hiroki; Kawai-Kowase, Keiko; Sato, Mahito; Iso, Tatsuya; Arai, Masashi; Kurabayashi, Masahiko

    2010-04-02

    Expression of bone-associated proteins and osteoblastic transcription factor Runx2 in arterial cells has been implicated in the development of vascular calcification. However, the signaling upstream of the Runx2-mediated activation of osteoblastic program in vascular smooth muscle cells (VSMC) is poorly understood. We examined the effects of fibroblast growth factor-2 (FGF-2), an important regulator of bone formation, on osteoblastic differentiation of VSMC. Stimulation of cultured rat aortic SMC (RASMC) with FGF-2 induced the expression of the osteoblastic markers osteopontin (OPN) and osteocalcin. Luciferase assays showed that FGF-2 induced osteocyte-specific element (OSE)-dependent transcription. Downregulation of Runx2 by siRNA repressed the basal and FGF-2-stimulated expression of the OPN gene in RASMC. FGF-2 produced hydrogen peroxide in RASMC, as evaluated by fluorescent probe. Induction of OPN expression by FGF-2 was inhibited not only by PD98059 (MEK1 inhibitor) and PP1 (c-Src inhibitor), but also by an antioxidant, N-acetyl cysteine. Nuclear extracts from FGF-2-treated RASMC exhibited increased DNA-binding of Runx2 to its target sequence. Immunohistochemistry of human coronary atherectomy specimens and calcified aortic tissues showed that expression of FGF receptor-1 and Runx2 was colocalized. In conclusion, these results suggest that FGF-2 plays a role in inducing osteoblastic differentiation of VSMC by activating Runx2 through mitogen-activated protein kinase (MAPK)-dependent- and oxidative stress-sensitive-signaling pathways.

  10. Dose-dependent microRNA expression in human fibroblasts after LET irradiation

    NASA Astrophysics Data System (ADS)

    Maes, Olivier Charles; An, Jin; Wu, Honglu; Wang, Eugenia; Sarojini, Harshini

    Humans are exposed to various levels of radiation during spaceflight voyages. In cells, exposure to linear energy transfer (LET) radiation causes cellular damage and triggers responses controlled by unique gene-directed signaling pathways. MicroRNAs (miRNAs) are small ( 22- nucleotide) non-coding RNAs, which regulate gene expression generally by either degrading the messager RNA or inhibiting translation. Their implication in specific cellular response pathways is largely unknown. Here, we investigated the role of radiation-dependent changes in miRNA expression patterns after low (0.1 Gy) and high (2.0 Gy) doses of X-ray exposure in human fibroblasts, and correlated their predicted targets with the cells' genomics and proteomics profiles. A differential miRNA expression pattern was observed between low and high doses of irradiation, with early (0.5 and 2 hrs) significant changes mostly after a high dose and, late (6 and 24 hrs) significant changes after both low and high doses of irradiation. The results suggest that miRNAs may act as ‘hub' regulators of signaling pathways initially to derepress their target genes for cellular responses such as DNA repair, followed by up-regulation to suppress apoptosis, and finally down-regulation to reestablish cellular normalcy. Functional attributions are made to key microRNAs, potentially regulating known radiation biomarkers as well as radiation-responsive mechanisms of cell cycle checkpoint, proliferation and apoptosis. In summary, radiation-responsive miRNAs may have functional roles in the regulation of cell death or survival, and may become biodosimeters for radiation dose exposure. Specific microRNAs may exert a hormetic effect after low-dose radiation, and prove useful in future applications for radiation adaptive therapy and in the prevention and treatment of radiation-induced damage. The confirmation of specific miRNAs as biodosimetry markers with therapeutic applications will be necessary in future functional

  11. Protein expression profile changes in human fibroblasts induced by low dose energetic protons

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Clement, Jade Q.; Gridley, Daila S.; Rodhe, Larry H.; Wu, Honglu

    2009-12-01

    Extrapolation of known radiation risks to the risks from low dose and low dose-rate exposures of human population, especially prolonged exposures of astronauts in the space radiation environment, relies in part on the mechanistic understanding of radiation induced biological consequences at the molecular level. While some genomic data at the mRNA level are available for cells or animals exposed to radiation, the data at the protein level are still lacking. Here, we studied protein expression profile changes using Panorama antibody microarray chips that contain antibodies to 224 proteins (or their phosphorylated forms) involved in cell signaling that included mostly apoptosis, cytoskeleton, cell cycle and signal transduction. Normal human fibroblasts were cultured until fully confluent and then exposed to 2 cGy of 150 MeV protons at high-dose rate. The proteins were isolated at 2 or 6 h after exposure and labeled with Cy3 for the irradiated cells and with Cy5 for the control samples before loading onto the protein microarray chips. The intensities of the protein spots were analyzed using ScanAlyze software and normalized by the summed fluorescence intensities and the housekeeping proteins. The results showed that low dose protons altered the expression of more than 10% of the proteins listed in the microarray analysis in various protein functional groups. Cell cycle (24%) related proteins were induced by protons and most of them were regulators of G1/S-transition phase. Comparison of the overall protein expression profiles, cell cycle related proteins, cytoskeleton and signal transduction protein groups showed significantly more changes induced by protons compared with other protein functional groups.

  12. Astragalus saponin attenuates the expression of fibrosis-related molecules in irradiated cardiac fibroblasts.

    PubMed

    Gu, Jing; Liu, Kai; Li, Hailong; Wang, Xiaogang; Yang, Kehu

    2014-06-01

    The main pathological change of radiation-induced heart disease is fibrosis. Emerging evidence has indicated that Astragalus membranaceus and its extractant, Astragalus saponin (AST), were used for treating fibrosis diseases. In the present study, the effects of AST on fibrosis damage induced by irradiation were determined. After being irradiated with 1 or 2-Gy X-rays, obvious changes of endoplasmic reticulum morphology were observed in cardiac fibroblasts (CFs), suggesting that its protein processing function was imbalanced, which indirectly indicated that fibrosis damage was caused by irradiating CFs. The expression levels of TGF-β1 and collagen I (Col-1) were increased at 48-h post-irradiation. Administration of 20 μg/ml AST reduced the production of reactive oxygen species in irradiated CFs and decreased the expression of Col-1, TGF-β1, and p-Smad2/3. Polymerase chain reaction (PCR)-array analysis showed that there were ~30 genes which were mainly classified into extracellular matrix, remodeling enzymes, inflammatory cytokines/chemokines, and TGF-β superfamily, were up-regulated after treatment with 1-Gy X-ray, whereas most of these genes were down-regulated when pretreated with 20 μg/ml of AST. In addition, TIMP1 and Smad7 genes that were down-regulated after treatment with 1-Gy X-ray were up-regulated when pretreated with 20 μg/ml of AST. In conclusion, radiation-induced fibrosis damage was observed at a cellular level. AST attenuated this fibrosis damage effect in irradiated CFs and this anti-fibrosis effect may be closely related to its antioxidant action. The involvement of fibrosis-related molecules in irradiated CFs was systematically demonstrated by a PCR array for the first time. AST reversed the expression of the majority of genes changed by irradiation, which further confirmed its anti-fibrosis effect.

  13. Cell behavior observation and gene expression analysis of melanoma associated with stromal fibroblasts in a three-dimensional magnetic cell culture array.

    PubMed

    Okochi, Mina; Matsumura, Taku; Yamamoto, And Shuhei; Nakayama, Eiichi; Jimbow, Kowichi; Honda, Hiroyuki

    2013-01-01

    A three-dimensional (3D) multicellular tumor spheroid culture array has been fabricated using a magnetic force-based cell patterning method, analyzing the effect of stromal fibroblast on the invasive capacity of melanoma. Formation of spheroids was observed when array-like multicellular patterns of melanoma were developed using a pin-holder device made of magnetic soft iron and an external magnet, which enables the assembly of the magnetically labeled cells on the collagen gel-coated surface as array-like cell patterns. The interaction of fibroblast on the invasion of melanoma was investigated using three types of cell interaction models: (i) fibroblasts were magnetically labeled and patterned together in array with melanoma spheroids (direct-interaction model), (ii) fibroblasts coexisting in the upper collagen gel (indirect-interaction model) of melanoma spheroids, and (iii) fibroblast-sheets coexisting under melanoma spheroids (fibroblast-sheet model). The fibroblast-sheet model has largely increased the invasive capacity of melanoma, and the promotion of adhesion, migration, and invasion were also observed. In the fibroblast-sheet model, the expression of IL-8 and MMP-2 increased by 24-fold and 2-fold, respectively, in real time RT-PCR compared to the absence of fibroblasts. The results presented in this study demonstrate the importance of fibroblast interaction to invasive capacity of melanoma in the 3D in vitro bioengineered tumor microenvironment.

  14. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells.

    PubMed

    Berndt, Alexander; Büttner, Robert; Gühne, Stefanie; Gleinig, Anna; Richter, Petra; Chen, Yuan; Franz, Marcus; Liebmann, Claus

    2014-04-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients' outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCMTGF, FCMPDGF) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCMB). FCMTGF stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCMTGF≫FCMPDGF induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCMTGF>FCMPDGF) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. PMID:24394543

  15. Keratinocyte-releasable factors increased the expression of MMP1 and MMP3 in co-cultured fibroblasts under both 2D and 3D culture conditions.

    PubMed

    Li, Min; Moeen Rezakhanlou, Alireza; Chavez-Munoz, Claudia; Lai, Amy; Ghahary, Aziz

    2009-12-01

    Matrix metalloproteinases (MMPs) are key elements in extracellular matrix (ECM) degradation and scar remodeling during the wound-healing process. Our previous data revealed that keratinocyte-releasable factors significantly increased the expression of fibroblast MMPs in monolayer-cultured fibroblasts. In this study, we analyzed the differences in the MMP expressions of fibroblasts in a three-dimensional fibroblast-populated collagen gel (3D FPCG) from that in a two-dimensional monolayer-cultured fibroblasts when both co-cultured with keratinocytes. Differential mRNA and protein expression of fibroblasts were examined by microarray, RT-PCR, and western blot. Our results showed that fibroblasts co-cultured with keratinocytes in a 3D FPCG expressed significantly higher MMP1 and MMP3 at the gene and protein levels. Due to the physiological advantages of a 3D FPCG model to a 2D system, we concluded that the 3D FPCG model may provide a better means of understanding the fibroblast-keratinocyte cross-talk during the wound-healing process. PMID:19521668

  16. Necrotic Myocardial Cells Release Damage-Associated Molecular Patterns That Provoke Fibroblast Activation In Vitro and Trigger Myocardial Inflammation and Fibrosis In Vivo

    PubMed Central

    Zhang, Weili; Lavine, Kory J; Epelman, Slava; Evans, Sarah A; Weinheimer, Carla J; Barger, Philip M; Mann, Douglas L

    2015-01-01

    Background Tissue injury triggers inflammatory responses that promote tissue fibrosis; however, the mechanisms that couple tissue injury, inflammation, and fibroblast activation are not known. Given that dying cells release proinflammatory “damage-associated molecular patterns” (DAMPs), we asked whether proteins released by necrotic myocardial cells (NMCs) were sufficient to activate fibroblasts in vitro by examining fibroblast activation after stimulation with proteins released by necrotic myocardial tissue, as well as in vivo by injecting proteins released by necrotic myocardial tissue into the hearts of mice and determining the extent of myocardial inflammation and fibrosis at 72 hours. Methods and Results The freeze–thaw technique was used to induce myocardial necrosis in freshly excised mouse hearts. Supernatants from NMCs contained multiple DAMPs, including high mobility group box-1 (HMGB1), galectin-3, S100β, S100A8, S100A9, and interleukin-1α. NMCs provoked a significant increase in fibroblast proliferation, α–smooth muscle actin activation, and collagen 1A1 and 3A1 mRNA expression and significantly increased fibroblast motility in a cell-wounding assay in a Toll-like receptor 4 (TLR4)- and receptor for advanced glycation end products–dependent manner. NMC stimulation resulted in a significant 3- to 4-fold activation of Akt and Erk, whereas pretreatment with Akt (A6730) and Erk (U0126) inhibitors decreased NMC-induced fibroblast proliferation dose-dependently. The effects of NMCs on cell proliferation and collagen gene expression were mimicked by several recombinant DAMPs, including HMGB1 and galectin-3. Moreover, immunodepletion of HMGB1 in NMC supernatants abrogated NMC-induced cell proliferation. Finally, injection of NMC supernatants or recombinant HMGB1 into the heart provoked increased myocardial inflammation and fibrosis in wild-type mice but not in TLR4-deficient mice. Conclusions These studies constitute the initial demonstration that

  17. The Epithelial Danger Signal IL-1α Is a Potent Activator of Fibroblasts and Reactivator of Intestinal Inflammation

    PubMed Central

    Scarpa, Melania; Kessler, Sean; Sadler, Tammy; West, Gail; Homer, Craig; McDonald, Christine; de la Motte, Carol; Fiocchi, Claudio; Stylianou, Eleni

    2016-01-01

    Intestinal epithelial cell (IEC) death is typical of inflammatory bowel disease (IBD). We investigated: i) whether IEC–released necrotic cell products (proinflammatory mediators) amplify mucosal inflammation, ii) the capacity of necrotic cell lysates from HT29 cells or human IECs to induce human intestinal fibroblasts' (HIF) production of IL-6 and IL-8, and iii) whether IL-1α, released by injured colonocytes, exacerbated experimental IBD. Necrotic cell lysates potently induced HIF IL-6 and IL-8 production independent of Toll-like receptors 2 and 4, receptor for advanced glycation end-products, high-mobility group box 1, uric acid, IL-33, or inflammasome activation. IL-1α was the key IEC-derived necrotic cell product involved in HIF cytokine production. IL-1α–positive cells were identified in the epithelium in human IBD and dextran sulfate sodium (DSS)-induced colitis. IL-1α was detected in the stool of colitic mice before IL-1β. IL-1α enemas reactivated inflammation after DSS colitis recovery, induced IL-1 receptor expression in subepithelial fibroblasts, and activated de novo inflammation even in mice without overt colitis, after the administration of low-dose DSS. IL-1α amplifies gut inflammation by inducing cytokine production by mesenchymal cells. IL-1α–mediated IEC–fibroblast interaction may be involved in amplifying and perpetuating inflammation, even without obvious intestinal damage. IL-1α may be a target for treating early IBD or preventing the reactivation of IBD. PMID:25864926

  18. Ixora coccinea Enhances Cutaneous Wound Healing by Upregulating the Expression of Collagen and Basic Fibroblast Growth Factor.

    PubMed

    Upadhyay, Aadesh; Chattopadhyay, Pronobesh; Goyary, Danswrang; Mitra Mazumder, Papiya; Veer, Vijay

    2014-01-01

    Background. Ixora coccinea L. (Rubiaceae) has been documented for traditional use in hypertension, menstrual irregularities, sprain, chronic ulcer, and skin diseases. In the present study, I. coccinea was subjected to in vitro and in vivo wound healing investigation. Methods. Petroleum ether, chloroform, methanol, and water sequential I. coccinea leaves extracts were evaluated for in vitro antioxidant, antimicrobial, and fibroblast proliferation activities. The promising I. coccinea methanol extract (IxME) was screened for in vivo wound healing activity in Wistar rat using circular excision model. Wound contraction measurement, hydroxyproline quantification, and western blot for collagen type III (COL3A1), basic fibroblast growth factor (bFGF), and Smad-2, -3, -4, and -7 was performed with 7-day postoperative wound granulation tissue. Gentamicin sulfate (0.01% w/w) hydrogel was used as reference standard. Results. IxME showed the potent antimicrobial, antioxidant activities, with significant fibroblast proliferation inducing activity, as compared to all other extracts. In vivo study confirmed the wound healing accelerating potential of IxME, as evidenced by faster wound contraction, higher hydroxyproline content, and improved histopathology of granulation tissue. Western blot analysis revealed that the topical application of I. coccinea methanol extract stimulates the fibroblast growth factor and Smad mediated collagen production in wound tissue. PMID:24624303

  19. A Synthetic Transcriptional Activator of Genes Associated with the Retina in Human Dermal Fibroblasts.

    PubMed

    Syed, Junetha; Chandran, Anandhakumar; Pandian, Ganesh N; Taniguchi, Junichi; Sato, Shinsuke; Hashiya, Kaori; Kashiwazaki, Gengo; Bando, Toshikazu; Sugiyama, Hiroshi

    2015-07-01

    Small molecules capable of modulating epigenetic signatures can activate the transcription of tissue-restricted genes in a totally unrelated cell type and have potential use in epigenetic therapy. To provide an example for an initial approach, we report here on one synthetic small-molecule compound-termed "SAHA-PIP X"-from our library of conjugates. This compound triggered histone acetylation accompanied by the transcription of retinal-tissue-related genes in human dermal fibroblasts (HDFs).

  20. Activation of fibroblast and papilla cells by glycolipid biosurfactants, mannosylerythritol lipids.

    PubMed

    Morita, Tomotake; Kitagawa, Masaru; Yamamoto, Shuhei; Suzuki, Michiko; Sogabe, Atsushi; Imura, Tomohiro; Fukuoka, Tokuma; Kitamoto, Dai

    2010-01-01

    Mannosylerythritol lipids (MELs), the extracellular glycolipids produced from feedstock by yeasts belonging to the genus Pseudozyma, are the most promising biosurfactants known due to its versatile interfacial and biochemical actions. In order to broaden the application in cosmetics, the cell activating property of MELs was investigated using cultured fibroblast and papilla cells, and a three-dimensional cultured human skin model. The di-acetylated MEL (MEL-A) produced from soybean oil significantly increased the viability of the fibroblast cells over 150% compared with that of control cells. On the other hand, no cell activation was observed by the treatment with MEL-A produced from olive oil. The mono-acetylated MEL (MEL-B) hardly increased the cell viability. The viability of the fibroblast cells decreased with the addition of more than 1 microg/L of MELs, whereas the cultured human skin cells showed high viability with 5 microg/L of MELs. Interestingly, the papilla cells were dramatically activated with 0.001 microg/L of MEL-A produced from soybean oil: the cell viability reached at 150% compared with that of control cells. Consequently, the present MEL-A produced from soybean oil should have a potential as a new hair growth agent stimulating the papilla cells. PMID:20625237

  1. Activation of Robo1 signaling of breast cancer cells by Slit2 from stromal fibroblast restrains tumorigenesis via blocking PI3K/Akt/β-catenin pathway.

    PubMed

    Chang, Po-Hao; Hwang-Verslues, Wendy W; Chang, Yi-Cheng; Chen, Chun-Chin; Hsiao, Michael; Jeng, Yung-Ming; Chang, King-Jen; Lee, Eva Y-H P; Shew, Jin-Yuh; Lee, Wen-Hwa

    2012-09-15

    Tumor microenvironment plays a critical role in regulating tumor progression by secreting factors that mediate cancer cell growth. Stromal fibroblasts can promote tumor growth through paracrine factors; however, restraint of malignant carcinoma progression by the microenvironment also has been observed. The mechanisms that underlie this paradox remain unknown. Here, we report that the tumorigenic potential of breast cancer cells is determined by an interaction between the Robo1 receptor and its ligand Slit2, which is secreted by stromal fibroblasts. The presence of an active Slit2/Robo1 signal blocks the translocation of β-catenin into nucleus, leading to downregulation of c-myc and cyclin D1 via the phosphoinositide 3-kinase (PI3K)/Akt pathway. Clinically, high Robo1 expression in the breast cancer cells correlates with increased survival in patients with breast cancer, and low Slit2 expression in the stromal fibroblasts is associated with lymph node metastasis. Together, our findings explain how a specific tumor microenvironment can restrain a given type of cancer cell from progression and show that both stromal fibroblasts and tumor cell heterogeneity affect breast cancer outcomes.

  2. Luteolin prevents solar radiation-induced matrix metalloproteinase-1 activation in human fibroblasts: a role for p38 mitogen-activated protein kinase and interleukin-20 released from keratinocytes.

    PubMed

    Wölfle, Ute; Heinemann, Anja; Esser, Philipp R; Haarhaus, Birgit; Martin, Stefan F; Schempp, Christoph M

    2012-10-01

    Human skin is continuously exposed to solar radiation, which can result in photoaging, a process involving both dermal and, to a lesser extent, epidermal structures. Previously, we have shown that the flavonoid luteolin protects the epidermis from ultraviolet (UV)-induced damage by a combination of UV-absorbing, antioxidant, and antiinflammatory properties. The aim of the present study was to determine direct and indirect effects of luteolin on dermal fibroblasts as major targets of photoaging. Stimulation of fibroblasts with UVA light or the proinflammatory cytokine interleukin-20 (IL-20) is associated with wrinkled skin, increased IL-6 secretion, matrix metalloproteinase (MMP-1) expression, and hyaluronidase activity. All of these targets were inhibited by luteolin via interference with the p38 mitogen-activated protein kinase (MAPK) pathway. Next, we assessed the role of conditioned supernatants from keratinocytes irradiated with solar-simulated radiation (SSR) on nonirradiated dermal fibroblasts. In keratinocytes, luteolin inhibited SSR-induced production of IL-20, also via interference with the p38 MAPK pathway. Similarly, keratinocyte supernatant-induced IL-6 and MMP-1 expression in fibroblasts was reduced by pretreatment of keratinocytes with luteolin. Finally, these results were confirmed ex vivo on skin explants treated with luteolin before UV irradiation. Our results suggest that SSR-mediated production of soluble factors in keratinocytes is modulated by luteolin and may attenuate photoaging in dermal fibroblasts. PMID:23004935

  3. Genome-wide identification, phylogeny, and expression of fibroblast growth genes in common carp.

    PubMed

    Jiang, Likun; Zhang, Songhao; Dong, Chuanju; Chen, Baohua; Feng, Jingyan; Peng, Wenzhu; Mahboob, Shahid; Al-Ghanim, Khalid A; Xu, Peng

    2016-03-10

    Fibroblast growth factors (FGFs) are a large family of polypeptide growth factors, which are found in organisms ranging from nematodes to humans. In vertebrates, a number of FGFs have been shown to play important roles in developing embryos and adult organisms. Among the vertebrate species, FGFs are highly conserved in both gene structure and amino-acid sequence. However, studies on teleost FGFs are mainly limited to model species, hence we investigated FGFs in the common carp genome. We identified 35 FGFs in the common carp genome. Phylogenetic analysis revealed that most of the FGFs are highly conserved, though recent gene duplication and gene losses do exist. By examining the copy number of FGFs in several vertebrate genomes, we found that eight FGFs in common carp have undergone gene duplications, including FGF6a, FGF6b, FGF7, FGF8b, FGF10a, FGF11b, FGF13a, and FGF18b. The expression patterns of all FGFs were examined in various tissues, including the blood, brain, gill, heart, intestine, muscle, skin, spleen and kidney, showing that most of the FGFs were ubiquitously expressed, indicating their critical role in common carp. To some extent, examination of gene families with detailed phylogenetic or orthology analysis verified the authenticity and accuracy of assembly and annotation of the recently published common carp whole genome sequences. Gene families are also considered as a unique source for evolutionary studies. Moreover, the whole set of common carp FGF gene family provides an important genomic resource for future biochemical, physiological, and phylogenetic studies on FGFs in teleosts.

  4. Syndecan-2 enhances E-cadherin shedding and fibroblast-like morphological changes by inducing MMP-7 expression in colon cancer cells.

    PubMed

    Jang, Bohee; Jung, Hyejung; Chung, Heesung; Moon, Byung-In; Oh, Eok-Soo

    2016-08-12

    E-cadherin plays a mechanical role in mediating cell-cell interactions and maintaining epithelial tissue integrity, and the loss of E-cadherin function has been implicated in cancer progression and metastasis. Syndecan-2, a cell-surface heparan sulfate proteoglycan, is upregulated during the development of colon cancer. Here, we assessed the functional relationship between E-cadherin and syndecan-2. We found that stable overexpression of syndecan-2 in a human colorectal adenocarcinoma cell line (HT29) enhanced the proteolytic shedding of E-cadherin to conditioned-media. Either knockdown of matrix metalloproteinase 7 (MMP-7) or inhibition of MMP-7 activity using GM6001 significantly reduced the extracellular shedding of E-cadherin, suggesting that syndecan-2 mediates E-cadherin shedding via MMP-7. Consistent with this notion, enhancement of MMP-7 expression by interleukin-1α treatment increased the shedding of E-cadherin. Conversely, the specific reduction of either syndecan-2 or MMP-7 reduced the shedding of E-cadherin. HT29 cells overexpressing syndecan-2 showed significantly lower cell-surface expression of E-cadherin, decreased cell-cell contact, a more fibroblastic cell morphology, and increased expression levels of ZEB-1. Taken together, these data suggest that syndecan-2 induces extracellular shedding of E-cadherin and supports the acquisition of a fibroblast-like morphology by regulating MMP-7 expression in a colon cancer cell line.

  5. Pseudomonas aeruginosa quorum-sensing signaling molecule N-3-oxododecanoyl homoserine lactone induces matrix metalloproteinase 9 expression via the AP1 pathway in rat fibroblasts.

    PubMed

    Nakagami, Gojiro; Minematsu, Takeo; Morohoshi, Tomohiro; Yamane, Takumi; Kanazawa, Toshiki; Huang, Lijuan; Asada, Mayumi; Nagase, Takashi; Ikeda, Shin-ichi; Ikeda, Tsukasa; Sanada, Hiromi

    2015-01-01

    Quorum sensing is a cell-to-cell communication mechanism, which is responsible for regulating a number of bacterial virulence factors and biofilm maturation and therefore plays an important role for establishing wound infection. Quorum-sensing signals may induce inflammation and predispose wounds to infection by Pseudomonas aeruginosa; however, the interaction has not been well investigated. We examined the effects of the P. aeruginosa las quorum-sensing signal, N-3-oxo-dodecanoyl homoserine lactone (3OC12-HSL), on matrix metalloproteinase (MMP) 9 expression in Rat-1 fibroblasts. 3OC12-HSL upregulated the expression of the MMP9 gene bearing an activator protein-1 (AP-1) binding site in the promoter region. We further investigated the mechanism underlying this effect. c-Fos gene expression increased rapidly after exposure to 3OC12-HSL, and nuclear translocation of c-Fos protein was observed; both effects were reduced by pretreatment with an AP-1 inhibitor. These results suggest that 3OC12-HSL can alter MMP9 gene expression in fibroblasts via the AP-1 signaling pathway.

  6. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    SciTech Connect

    Berndt, Alexander; Büttner, Robert; Gühne, Stefanie; Gleinig, Anna; Richter, Petra; Chen, Yuan; Franz, Marcus; Liebmann, Claus

    2014-04-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM{sub TGF}, FCM{sub PDGF}) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCM{sub B}). FCM{sub TGF} stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM{sub TGF}≫FCM{sub PDGF} induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM{sub TGF}>FCM{sub PDGF}) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin

  7. Effects of macelignan isolated from Myristica fragrans (Nutmeg) on expression of matrix metalloproteinase-1 and type I procollagen in UVB-irradiated human skin fibroblasts.

    PubMed

    Lee, Kyung-Eun; Mun, Sukyeong; Pyun, Hee-Bong; Kim, Myung-Suk; Hwang, Jae-Kwan

    2012-01-01

    Exposure to ultraviolet (UV) light causes premature skin aging that is associated with upregulated matrix metalloproteinases (MMPs) and decreased collagen synthesis. Macelignan, a natural lignan compound isolated from Myristica fragrans HOUTT. (nutmeg), has been reported to possess antioxidant and antiinflammatory activities. This study assessed the effects of macelignan on photoaging and investigated its mechanisms of action in UV-irradiated human skin fibroblasts (Hs68) by reverse transcription-polymerase chain reaction, Western blot analysis, 2',7'-dichlorofluorescein diacetate assay, and enzyme-linked immunosorbent assay. Our results show that macelignan attenuated UV-induced MMP-1 expression by suppressing phosphorylation of mitogen-activated protein kinases (MAPKs) induced by reactive oxygen species. Macelignan also increased type I procollagen expression and secretion through transforming growth factor β (TGF-β)/Smad signaling. These findings indicate that macelignan regulates the expression of MMP-1 and type I procollagen in UV-irradiated human skin fibroblasts by modulating MAPK and TGF-β/Smad signaling, suggesting its potential as an efficacious antiphotoaging agent.

  8. Genome-wide co-localization of Polycomb orthologs and their effects on gene expression in human fibroblasts

    PubMed Central

    2014-01-01

    Background Polycomb group proteins form multicomponent complexes that are important for establishing lineage-specific patterns of gene expression. Mammalian cells encode multiple permutations of the prototypic Polycomb repressive complex 1 (PRC1) with little evidence for functional specialization. An aim of this study is to determine whether the multiple orthologs that are co-expressed in human fibroblasts act on different target genes and whether their genomic location changes during cellular senescence. Results Deep sequencing of chromatin immunoprecipitated with antibodies against CBX6, CBX7, CBX8, RING1 and RING2 reveals that the orthologs co-localize at multiple sites. PCR-based validation at representative loci suggests that a further six PRC1 proteins have similar binding patterns. Importantly, sequential chromatin immunoprecipitation with antibodies against different orthologs implies that multiple variants of PRC1 associate with the same DNA. At many loci, the binding profiles have a distinctive architecture that is preserved in two different types of fibroblast. Conversely, there are several hundred loci at which PRC1 binding is cell type-specific and, contrary to expectations, the presence of PRC1 does not necessarily equate with transcriptional silencing. Interestingly, the PRC1 binding profiles are preserved in senescent cells despite changes in gene expression. Conclusions The multiple permutations of PRC1 in human fibroblasts congregate at common rather than specific sites in the genome and with overlapping but distinctive binding profiles in different fibroblasts. The data imply that the effects of PRC1 complexes on gene expression are more subtle than simply repressing the loci at which they bind. PMID:24485159

  9. The tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+ stimulates matrix metalloproteinase-2 expression by fibroblast cultures.

    PubMed

    Siméon, A; Emonard, H; Hornebeck, W; Maquart, F X

    2000-09-22

    Glycyl-histidyl-lysine-Cu2+ (GHK-Cu) is a tripeptide-copper complex known to be a potent wound healing agent. We previously showed its ability to stimulate in vitro and in vivo the synthesis of extracellular matrix components. The aim of this study was to determine the effects of GHK-Cu on MMP-2 synthesis by dermal fibroblasts in culture. We showed that GHK-Cu increased MMP-2 levels in conditioned media of cultured fibroblasts. This effect was reproduced by copper ions but not by the tripeptide GHK alone. This stimulation was accompanied by an increase of MMP-2 mRNA level. We also showed that GHK-Cu increased the secretion of the tissue inhibitors of metalloproteinases, TIMP-1 and TIMP-2. Taken together, our results underline that GHK-Cu is not only an activator of connective tissue production but also of the remodeling of the extracellular matrix. It is able to modulate MMP expression by acting directly on wound fibroblasts. PMID:11045606

  10. Th1-Induced CD106 Expression Mediates Leukocytes Adhesion on Synovial Fibroblasts from Juvenile Idiopathic Arthritis Patients

    PubMed Central

    Luciani, Cristina; Capone, Manuela; Rossi, Maria Caterina; Chillà, Anastasia; Santarlasci, Veronica; Mazzoni, Alessio; Cimaz, Rolando; Liotta, Francesco; Maggi, Enrico; Cosmi, Lorenzo; Del Rosso, Mario; Annunziato, Francesco

    2016-01-01

    This study tested the hypothesis that subsets of human T helper cells can orchestrate leukocyte adhesion to synovial fibroblasts (SFbs), thus regulating the retention of leukocytes in the joints of juvenile idiopathic arthritis (JIA) patients. Several cell types, such as monocytes/macrophages, granulocytes, T and B lymphocytes, SFbs and osteoclasts participate in joint tissue damage JIA. Among T cells, an enrichment of classic and non-classic Th1 subsets, has been found in JIA synovial fluid (SF), compared to peripheral blood (PB). Moreover, it has been shown that IL-12 in the SF of inflamed joints mediates the shift of Th17 lymphocytes towards the non-classic Th1 subset. Culture supernatants of Th17, classic and non-classic Th1 clones, have been tested for their ability to stimulate proliferation, and to induce expression of adhesion molecules on SFbs, obtained from healthy donors. Culture supernatants of both classic and non-classic Th1, but not of Th17, clones, were able to induce CD106 (VCAM-1) up-regulation on SFbs. This effect, mediated by tumor necrosis factor (TNF)-α, was crucial for the adhesion of circulating leukocytes on SFbs. Finally, we found that SFbs derived from SF of JIA patients expressed higher levels of CD106 than those from healthy donors, resembling the phenotype of SFbs activated in vitro with Th1-clones supernatants. On the basis of these findings, we conclude that classic and non-classic Th1 cells induce CD106 expression on SFbs through TNF-α, an effect that could play a role in leukocytes retention in inflamed joints. PMID:27123929

  11. Expression of a synthetic gene encoding human insulin-like growth factor I in cultured mouse fibroblasts

    SciTech Connect

    Bayne, M.L.; Cascieri, M.A.; Kelder, B.; Applebaum, J.; Chicchi, G.; Shapiro, J.A.; Pasleau, F.; Kopchick, J.J.

    1987-05-01

    A synthetic gene encoding human insulin-like growth factor I (hIGF-I) was assembled and inserted into an expression vector containing the cytomegalovirus immediate early (CMV-IE) transcriptional regulatory region and portions of the bovine growth hormone gene. The recombinant plasmid encodes a 97 amino acid fusion protein containing the first 27 amino acids of the bovine growth hormone precursor and the 70 amino acids of hIGF-I. This plasmid, when transiently introduced into cultured mouse fibroblasts, directs synthesis of the fusion protein, subsequent proteolytic removal of the bovine growth hormone signal peptide, and secretion of hIGF-I into the culture medium. Conditioned medium from transfected cells inhibits binding of /sup 125/I-labeled IGF-I to type I IGF receptors on human placental membranes and to acid-stable human serum carrier proteins. The recombinant hIGF-I produced is biologically active, as monitored by the stimulation of DNA synthesis in vascular smooth muscle cells.

  12. Type III interferon gene expression in response to influenza virus infection in chicken and duck embryonic fibroblasts.

    PubMed

    Zhang, Zhijie; Zou, Tingting; Hu, Xiaotong; Jin, Hong

    2015-12-01

    Type III interferons (IFN-λs) comprise a group of newly identified antiviral cytokines that are functionally similar to type I IFNs and elicit first-line antiviral responses. Recently, type III IFNs were identified in several species; however, little information is available about type III IFNs in ducks. We compared the expression of type III IFNs and their receptor in chicken embryonic fibroblasts (CEFs) and duck embryonic fibroblasts (DEFs) in response to influenza virus infection. The results showed that the expression of type III IFNs was upregulated in both DEFs and CEFs following infection with H1N1 influenza virus or treatment with poly (I:C), and expression levels were significantly higher in CEFs than in DEFs at each time point. The expression of the receptor for type III IFNs (IL-28Rα) was also upregulated following infection with H1N1 virus or treatment with poly (I:C) and was significantly higher in CEFs than in DEFs at each time point. The expression of the receptor for type III IFNs occurred from 8 hpi and remained at similar levels until 36 hpi in CEFs, but the expression level was elevated from 36 hpi in DEFs. These findings revealed the existence of distinct expression patterns for type III IFNs in chickens and ducks in response to influenza virus infection. The provided data are fundamentally useful in furthering our understanding of type III IFNs and innate antiviral responses in different species.

  13. Type III interferon gene expression in response to influenza virus infection in chicken and duck embryonic fibroblasts.

    PubMed

    Zhang, Zhijie; Zou, Tingting; Hu, Xiaotong; Jin, Hong

    2015-12-01

    Type III interferons (IFN-λs) comprise a group of newly identified antiviral cytokines that are functionally similar to type I IFNs and elicit first-line antiviral responses. Recently, type III IFNs were identified in several species; however, little information is available about type III IFNs in ducks. We compared the expression of type III IFNs and their receptor in chicken embryonic fibroblasts (CEFs) and duck embryonic fibroblasts (DEFs) in response to influenza virus infection. The results showed that the expression of type III IFNs was upregulated in both DEFs and CEFs following infection with H1N1 influenza virus or treatment with poly (I:C), and expression levels were significantly higher in CEFs than in DEFs at each time point. The expression of the receptor for type III IFNs (IL-28Rα) was also upregulated following infection with H1N1 virus or treatment with poly (I:C) and was significantly higher in CEFs than in DEFs at each time point. The expression of the receptor for type III IFNs occurred from 8 hpi and remained at similar levels until 36 hpi in CEFs, but the expression level was elevated from 36 hpi in DEFs. These findings revealed the existence of distinct expression patterns for type III IFNs in chickens and ducks in response to influenza virus infection. The provided data are fundamentally useful in furthering our understanding of type III IFNs and innate antiviral responses in different species. PMID:26598110

  14. Thrombin Activates Latent TGFβ1 via Integrin αvβ1 in Gingival Fibroblasts.

    PubMed

    Yang, W H; Deng, Y T; Hsieh, Y P; Wu, K J; Kuo, M Y P

    2016-07-01

    Transforming growth factor β (TGFβ) regulates cell proliferation, differentiation, migration, apoptosis, and extracellular matrix production. It also plays a pivotal role in the pathogenesis of gingival overgrowth. Thrombin is a key player in tissue repair, remodeling, and fibrosis after an injury, and it exerts profibrotic effects by activating protease-activated receptors. Connective tissue growth factor (CTGF or CCN2) modulates cell adhesion, migration, proliferation, matrix production, and wound healing. It is overexpressed in many fibrotic disorders, including gingival overgrowth, and it is positively associated with the degree of fibrosis in gingival overgrowth. In human gingival fibroblasts, we previously found that TGFβ1 induced CCN2 protein synthesis through c-jun N-terminal kinase and Smad3 activation. Thrombin stimulates CCN2 synthesis through protease-activated receptor 1 and c-jun N-terminal kinase signaling. Curcumin inhibited TGFβ1- and thrombin-induced CCN2 synthesis. In this study, we demonstrated that thrombin and protease-activated receptor 1 agonist SFLLRN induced latent TGFβ1 activation and Smad3 phosphorylation in human gingival fibroblasts. Pretreatment with a TGFβ-neutralizing antibody, TGFβ type I receptor inhibitor SB431542, and Smad3 inhibitor SIS3 inhibited approximately 86%, 94%, and 100% of thrombin-induced CCN2 synthesis, respectively. Furthermore, blocking integrin subunits αv and β1 with antibodies effectively inhibited SFLLRN-induced Smad3 phosphorylation and CCN2 synthesis and increased activated TGFβ1 levels; however, similar effects were not observed for integrins αvβ3 and αvβ5. These results suggest that protease-activated receptor 1-induced CCN2 synthesis in human gingival fibroblasts is mediated through integrin αvβ1-induced latent TGFβ1 activation and subsequent TGFβ1 signaling. Moreover, curcumin dose dependently decreased thrombin-induced activated TGFβ1 levels. Curcumin-inhibited thrombin-induced CCN2

  15. Tissue inhibitor of metalloproteinase-3 is up-regulated by transforming growth factor-beta1 in vitro and expressed in fibroblastic foci in vivo in idiopathic pulmonary fibrosis.

    PubMed

    García-Alvarez, Jorge; Ramirez, Remedios; Checa, Marco; Nuttall, Robert K; Sampieri, Clara L; Edwards, Dylan R; Selman, Moisés; Pardo, Annie

    2006-05-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by fibroblast expansion and extracellular matrix accumulation. However, the mechanisms involved in matrix remodeling have not been elucidated. In this study, the authors aimed to evaluate the expression of the tissue inhibitors of matrix metalloproteinases (TIMPs) in human fibroblasts and whole tissues from IPF and normal lungs. They also determined the role of mitogen-activated protein kinase (MAPK) in TIMP3 expression. TIMP1, TIMP2, and TIMP3 were highly expressed in lung fibroblasts. Transforming growth factor (TGF)-beta1, a profibrotic mediator, induced strong up-regulation of TIMP3 at the mRNA and protein levels. The authors examined whether the MAPK pathway was involved in TGF-beta1-induced TIMP3 expression. TGF-beta1 induced the phosphorylation of p38 and extracellular signal-regulated kinase (ERK)1/2. Biochemical blockade of p38 by SB203580, but not of the ERK MAPK pathway, inhibited the effect of this factor. The effect was also blocked by the tyrosine kinase inhibitor genistein and by antagonizing TGF-beta1 receptor type I (activin-linked kinase [ALK5]). In IPF tissues TIMP3 gene expression was significantly increased and the protein was localized to fibroblastic foci and extracellular matrix. Our findings suggest that TGF-beta1-induced TIMP3 may be an important mediator in lung fibrogenesis.

  16. Tamarind seed coat extract restores reactive oxygen species through attenuation of glutathione level and antioxidant enzyme expression in human skin fibroblasts in response to oxidative stress

    PubMed Central

    Nakchat, Oranuch; Nalinratana, Nonthaneth; Meksuriyen, Duangdeun; Pongsamart, Sunanta

    2014-01-01

    Objective To investigate the role and mechanism of tamarind seed coat extract (TSCE) on normal human skin fibroblast CCD-1064Sk cells under normal and oxidative stress conditions induced by hydrogen peroxide (H2O2). Methods Tamarind seed coats were extracted with boiling water and then partitioned with ethyl acetate before the cell analysis. Effect of TSCE on intracellular reactive oxygen species (ROS), glutathione (GSH) level, antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase activity including antioxidant protein expression was investigated. Results TSCE significantly attenuated intracellular ROS in the absence and presence of H2O2 by increasing GSH level. In the absence of H2O2, TSCE significantly enhanced SOD and catalase activity but did not affected on GPx. Meanwhile, TSCE significantly increased the protein expression of SOD and GPx in H2O2-treated cells. Conclusions TSCE exhibited antioxidant activities by scavenging ROS, attenuating GSH level that could protect human skin fibroblast cells from oxidative stress. Our results highlight the antioxidant mechanism of tamarind seed coat through an antioxidant enzyme system, the extract potentially benefits for health food and cosmeceutical application of tamarind seed coat. PMID:25182723

  17. TGF-β in jaw tumor fluids induces RANKL expression in stromal fibroblasts

    PubMed Central

    Yamada, Chiaki; Aikawa, Tomonao; Okuno, Emi; Miyagawa, Kazuaki; Amano, Katsuhiko; Takahata, Sosuke; Kimata, Masaaki; Okura, Masaya; Iida, Seiji; Kogo, Mikihiko

    2016-01-01

    Odontogenic tumors and cysts, arising in the jawbones, grow by resorption and destruction of the jawbones. However, mechanisms underlying bone resorption by odontogenic tumors/cysts remain unclear. Odontogenic tumors/cysts comprise odontogenic epithelial cells and stromal fibroblasts, which originate from the developing tooth germ. It has been demonstrated that odontogenic epithelial cells of the developing tooth germ induce osteoclastogenesis to prevent the tooth germ from invading the developing bone to maintain its structure in developing bones. Thus, we hypothesized that odontogenic epithelial cells of odontogenic tumors/cysts induce osteoclast formation, which plays potential roles in tumor/cyst outgrowth into the jawbone. The purpose of this study was to examine osteoclastogenesis by cytokines, focusing on transforming growth factor-β (TGF-β), produced by odontogenic epithelial cells. We observed two pathways for receptor activator of NF-κB ligand (RANKL) induction by keratocystic odontogenic tumor fluid: the cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) pathway through interleukin-1α (IL-1α) signaling and non-COX-2/PGE2 pathway through TGF-β receptor signaling. TGF-β1 and IL-1α produced by odontogenic tumors/cysts induced osteoclastogenesis directly in the osteoclast precursor cells and indirectly via increased RANKL induction in the stroma. PMID:27279422

  18. Expression of TNF-α, VEGF, and MMP-3 mRNAs in synovial tissues and their roles in fibroblast-mediated osteogenesis in ankylosing spondylitis.

    PubMed

    Liu, K G; He, Q H; Tan, J W; Liao, G J

    2015-06-18

    The aim of this study was to explore the mRNA levels of tumor necrosis factor-α (TNF-α), vessel endothelial growth factor (VEGF), and matrix metalloproteinase-3 (MMP-3) in synovial tissues in ankylosing spondylitis (AS), and to analyze the functions of these proteins in the differentiation of AS synovial tissue fibroblasts into osteoblasts (OB) and osteoclasts. Synovial tissue samples from 22 AS patients and 22 normal individuals were collected. In situ hybridization was utilized to detect TNF-α, VEGF, and MMP-3 transcripts. After counting numbers of positive cells, Spearman analysis was used to determine the correlation between transcriptional levels of the three mRNAs and the AS disease activity index (BASDAI) and the C-response protein (CRP) levels. With the addition of TNF-α, VEGF, or both factors into cultured normal synovial fibroblasts, osteocalcin (bone gla protein, BGP) secretion levels were compared. We found that expression of TNF-α, VEGF, and MMP-3 was identified exclusively in the disease group. mRNA levels were significantly positively correlated with BASDAI (r = 0.42, 0.38, and 0.47, respectively; P < 0.05) and CRP (r = 0.44, 0.34, and 0.47 respectively; P < 0.05) scores. The secretion level of BGP in normal synovial fibroblasts increased progressively with increasing concentrations of VEGF or TNF-α (P < 0.01 compared to levels before treatment). Furthermore, co-incubation using both VEGF and TNF-α significantly elevated BGP levels compared to the single addition of VEGF or TNF-α (P < 0.01). These results suggest TNF-α, VEGF, and MMP-3 might directly participate in the differentiation of fibroblasts into OBs.

  19. Camphor Induces Proliferative and Anti-senescence Activities in Human Primary Dermal Fibroblasts and Inhibits UV-Induced Wrinkle Formation in Mouse Skin.

    PubMed

    Tran, Thao Anh; Ho, Manh Tin; Song, Yeon Woo; Cho, Moonjae; Cho, Somi Kim

    2015-12-01

    Camphor ((1R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one), a bicyclic monoterpene, is one of the major constituents of essential oils from various herbs such as rosemary, lavender, and sage. In this study, we investigated the beneficial effects of camphor as a botanical ingredient in cosmetics. Camphor induced the proliferation of human primary dermal fibroblasts in a dose-dependent manner via the PI3K/AKT and ERK signaling pathways. Camphor attenuated the elevation of senescence associated with β-galactosidase (SA-β-gal) activity. Elastase activity decreased, while the total amount of collagen increased, in a dose- and time-dependent manner in human primary dermal fibroblasts treated with camphor. Camphor induced the expression of collagen IA, collagen IIIA, collagen IVA, and elastin in human primary dermal fibroblasts. In addition, posttreatment with 26 and 52 mM camphor for 2 weeks led to a significant reduction in the expression of MMP1 but increases in the expression of collagen IA, IIIA, and elastin in mouse skin exposed to UV for 4 weeks. These posttreatments also reduced the depths of the epidermis and subcutaneous fat layer in UV-exposed mouse skin. Taken together, these findings suggest camphor to be a potent wound healing and antiwrinkle agent with considerable potential for use in cosmeceuticals. PMID:26458283

  20. Caffeine inhibits TGFβ activation in epithelial cells, interrupts fibroblast responses to TGFβ, and reduces established fibrosis in ex vivo precision-cut lung slices.

    PubMed

    Tatler, Amanda L; Barnes, Josephine; Habgood, Anthony; Goodwin, Amanda; McAnulty, Robin J; Jenkins, Gisli

    2016-06-01

    Caffeine is a commonly used food additive found naturally in many products. In addition to potently stimulating the central nervous system caffeine is able to affect various systems within the body including the cardiovascular and respiratory systems. Importantly, caffeine is used clinically to treat apnoea and bronchopulmonary dysplasia in premature babies. Recently, caffeine has been shown to exhibit antifibrotic effects in the liver in part through reducing collagen expression and deposition, and reducing expression of the profibrotic cytokine TGFβ. The potential antifibrotic effects of caffeine in the lung have not previously been investigated. Using a combined in vitro and ex vivo approach we have demonstrated that caffeine can act as an antifibrotic agent in the lung by acting on two distinct cell types, namely epithelial cells and fibroblasts. Caffeine inhibited TGFβ activation by lung epithelial cells in a concentration-dependent manner but had no effect on TGFβ activation in fibroblasts. Importantly, however, caffeine abrogated profibrotic responses to TGFβ in lung fibroblasts. It inhibited basal expression of the α-smooth muscle actin gene and reduced TGFβ-induced increases in profibrotic genes. Finally, caffeine reduced established bleomycin-induced fibrosis after 5 days treatment in an ex vivo precision-cut lung slice model. Together, these findings suggest that there is merit in further investigating the potential use of caffeine, or its analogues, as antifibrotic agents in the lung. PMID:26911575

  1. Inhibitory effect of panduratin A on UV-induced activation of mitogen-activated protein kinases (MAPKs) in dermal fibroblast cells.

    PubMed

    Shim, Jae-Seok; Kwon, Yi-Young; Han, Young-Sun; Hwang, Jae-Kwan

    2008-10-01

    Exposure of the skin to ultraviolet (UV) induces photoaging associated with up-regulated matrix metalloproteinases (MMPs) activities and decreased collagen synthesis. We previously reported that panduratin A, a chalcone compound isolated from KAEMPFERIA PANDURATA Roxb ., decreased MMP-1 expression in UV-irradiated human skin fibroblasts. Here, we have investigated the effect of panduratin A on UV-induced activation of mitogen-activated protein kinases (MAPKs) signaling modules such as extracellular-regulated protein kinase (ERK), Jun-N-terminal kinase (JNK) and p38 kinase. Treatment with panduratin A in the range of 0.001 - 0.1 microM significantly inhibited UV-induced ERK, JNK and p38 activation. Moreover, inhibition of ERK, JNK and p38 by panduratin A resulted in decreased c-Fos expression and c-Jun phosphorylation induced by UV, which led to inhibition of activator protein-1 (AP-1) DNA binding activity. Panduratin A showed stronger activity than epigallocatechin 3- O-gallate (EGCG) known as a natural anti-aging agent. The results suggest that panduratin A can down-regulate UV-induced MMP-1 expression by inhibiting the MAPKs pathways and AP-1 activation. AP-1:activator protein-1 EGCG:epigallocatechin 3- O-gallate ERK:extracellular-regulated protein kinase JNK:c-Jun N-terminal kinase MAPK:mitogen-activated protein kinase MMP:matrix metalloproteinase UV:ultraviolet.

  2. Cyclic mechanical deformation stimulates human lung fibroblast proliferation and autocrine growth factor activity.

    PubMed

    Bishop, J E; Mitchell, J J; Absher, P M; Baldor, L; Geller, H A; Woodcock-Mitchell, J; Hamblin, M J; Vacek, P; Low, R B

    1993-08-01

    Cellular hypertrophy and hyperplasia and increased extracellular matrix deposition are features of tissue hypertrophy resulting from increased work load. It is known, for example, that mechanical forces play a critical role in lung development, cardiovascular remodeling following pressure overload, and skeletal muscle growth. The mechanisms involved in these processes, however, remain unclear. Here we examined the effect of mechanical deformation on fibroblast function in vitro. IMR-90 human fetal lung fibroblasts grown on collagen-coated silastic membranes were subjected to cyclical mechanical deformation (10% increase in culture surface area; 1 Hz) for up to 5 days. Cell number was increased by 39% after 2 days of deformation (1.43 +/- .01 x 10(5) cells/membrane compared with control, 1.03 +/- 0.02 x 10(5) cells; mean +/- SEM; P < 0.02) increasing to 163% above control by 4 days (2.16 +/- 0.16 x 10(5) cells compared with 0.82 +/- 0.03 x 10(5) cells; P < 0.001). The medium from mechanically deformed cells was mitogenic for IMR-90 cells, with maximal activity in the medium from cells mechanically deformed for 2 days (stimulating cell replication by 35% compared with media control; P < 0.002). These data suggest that mechanical deformation stimulates human lung fibroblast replication and that this effect is mediated by the release of autocrine growth factors.

  3. Basic fibroblast growth factor as a selective inducer of matrix Gla protein gene expression in proliferative chondrocytes.

    PubMed Central

    Stheneur, Chantal; Dumontier, Marie-France; Guedes, Claudie; Fulchignoni-Lataud, Marie-Claude; Tahiri, Khadija; Karsenty, Gerard; Corvol, Marie Thérèse

    2003-01-01

    Matrix Gla protein (MGP) is a member of the vitamin K-dependent gamma carboxylase protein family expressed in cartilage. Insulin-like growth factor I (IGF1) stimulates chondrocyte differentiation, whereas basic fibroblast growth factor (FGF2) acts in an opposite manner. We explored the differential expression and regulation by IGF1 and FGF2 of the MGP gene during chondrocyte differentiation. We used a primary culture system of rabbit epiphyseal chondrocytes to show that MGP mRNA is mainly expressed during serum-induced proliferation. Much lower MGP mRNA content is observed in post-mitotic chondrocytes, which newly express alpha 1X procollagen mRNA, a marker of late-differentiated cells. From studies of a series of growth factors, it was shown that IGF1 decreased chondrocyte MGP transcripts, whereas FGF2 had the opposite effect. FGF2 stimulated chondrocyte MGP production in a dose- and time-dependent manner at the mRNA and protein levels. FGF2 acted in a dose- and time-dependent manner, reaching a maximum at 10 ng/ml at 20 h. The protein synthesis inhibitor cycloheximide did not modify FGF2 action, in agreement with a direct effect. Actinomycin D abolished FGF2-induced stimulation, strongly suggesting that FGF2 modulated MGP gene transcription. We transiently transfected chondrocytes with a construct containing the mouse MGP promoter from -5000 to -168 base pairs, relative to the transcription start site of the gene linked to the luciferase gene (MGP-Luc). In transfected cells, FGF2 stimulated luciferase activity up to sevenfold while IGF1 had no effect. Hence, FGF2 induces transcription of the MGP gene via the 5'-flanking region of the gene. Using a series of deleted MGP-Luc constructs, we identified a sequence of 748 base pairs which was sufficient for transcriptional activation by FGF2. These results led us to postulate that the inhibitory chondrogenic action of FGF2 involves a mechanism whereby MGP gene transcription and protein are induced. PMID:12230429

  4. NF-κB accumulation associated with COL1A1 transactivators defects during chronological aging represses type I collagen expression through a -112/-61-bp region of the COL1A1 promoter in human skin fibroblasts.

    PubMed

    Bigot, Nicolas; Beauchef, Gallic; Hervieu, Magalie; Oddos, Thierry; Demoor, Magali; Boumediene, Karim; Galéra, Philippe

    2012-10-01

    The aging process, especially of the skin, is governed by changes in the epidermal, dermo-epidermal, and dermal compartments. Type I collagen, which is the major component of dermis extracellular matrix (ECM), constitutes a prime target for intrinsic and extrinsic aging-related alterations. In addition, under the aging process, pro-inflammatory signals are involved and collagens are fragmented owing to enhanced matrix metalloproteinase activities, and fibroblasts are no longer able to properly synthesize collagen fibrils. Here, we demonstrated that low levels of type I collagen detected in aged skin fibroblasts are attributable to an inhibition of COL1A1 transcription. Indeed, on one hand, we observed decreased binding activities of specific proteins 1 and 3, CCAAT-binding factor, and human collagen-Krüppel box, which are well-known COL1A1 transactivators acting through the -112/-61-bp promoter sequence. On the other hand, the aging process was accompanied by elevated amounts and binding activities of NF-κB (p65 and p50 subunits), together with an increased number of senescent cells. The forced expression of NF-κB performed in young fibroblasts was able to establish an old-like phenotype by repressing COL1A1 expression through the short -112/-61-bp COL1A1 promoter and by elevating the senescent cell distribution. The concomitant decrease of transactivator functions and increase of transinhibitor activity is responsible for ECM dysfunction, leading to aging/senescence in dermal fibroblasts.

  5. Expression of infectious woodchuck hepatitis virus in murine and avian fibroblasts.

    PubMed Central

    Seeger, C; Baldwin, B; Tennant, B C

    1989-01-01

    The liver is the primary site for replication of the hepadnavirus genome. We asked whether the posttranscriptional phase of the viral replication cycle would depend on hepatocyte-specific functions. For this purpose, we assayed a previously constructed chimera between sequences of the cytomegalovirus immediate-early promoter-enhancer region and woodchuck hepatitis virus (WHV) (C. Seeger and J. Maragos, J. Virol. 63:1907-1915, 1989) for its ability to direct the synthesis of infectious WHV in hepatoma cells and in murine and avian fibroblast cells. Viruslike particles containing WHV DNA were produced transiently in transfected hepatoma cells and in fibroblasts. Inoculation of woodchucks with culture medium from hepatoma cells or fibroblasts transfected with viral DNA led to productive WHV infection, as observed following infection of woodchucks with serum from WHV-infected animals. These results demonstrate that posttranscriptional events of the hepadnavirus replication cycle are not dependent on hepatocyte-specific functions. Images PMID:2795716

  6. Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts.

    PubMed

    Pandian, Ganesh N; Taniguchi, Junichi; Junetha, Syed; Sato, Shinsuke; Han, Le; Saha, Abhijit; AnandhaKumar, Chandran; Bando, Toshikazu; Nagase, Hiroki; Vaijayanthi, Thangavel; Taylor, Rhys D; Sugiyama, Hiroshi

    2014-01-24

    The influential role of the epigenome in orchestrating genome-wide transcriptional activation instigates the demand for the artificial genetic switches with distinct DNA sequence recognition. Recently, we developed a novel class of epigenetically active small molecules called SAHA-PIPs by conjugating selective DNA binding pyrrole-imidazole polyamides (PIPs) with the histone deacetylase inhibitor SAHA. Screening studies revealed that certain SAHA-PIPs trigger targeted transcriptional activation of pluripotency and germ cell genes in mouse and human fibroblasts, respectively. Through microarray studies and functional analysis, here we demonstrate for the first time the remarkable ability of thirty-two different SAHA-PIPs to trigger the transcriptional activation of exclusive clusters of genes and noncoding RNAs. QRT-PCR validated the microarray data, and some SAHA-PIPs activated therapeutically significant genes like KSR2. Based on the aforementioned results, we propose the potential use of SAHA-PIPs as reagents capable of targeted transcriptional activation.

  7. Aryl Hydrocarbon Receptor Antagonism Attenuates Growth Factor Expression, Proliferation, and Migration in Fibroblast-Like Synoviocytes from Patients with Rheumatoid Arthritis

    PubMed Central

    Lahoti, Tejas S.; Hughes, Jarod M.; Kusnadi, Ann; John, Kaarthik; Zhu, Bokai; Murray, Iain A.; Gowda, Krishne; Peters, Jeffrey M.; Amin, Shantu G.

    2014-01-01

    Rheumatoid arthritis (RA) is a chronic autoimmune disease with high morbidity and mortality. Within the inflammatory milieu, resident fibroblast-like synoviocytes (FLS) in the synovial tissue undergo hyperplasia, which leads to joint destruction. Epidemiologic studies and our previous research suggest that activation of the aryl hydrocarbon receptor (AHR) pathway plays an instrumental role in the inflammatory and destructive RA phenotype. In addition, our recent studies implicate the AHR in the regulation of the expression of several growth factors in established tumor cell lines. Thus, under inflammatory conditions, we hypothesized that the AHR is involved in the constitutive and inducible expression of several growth factors, FLS proliferation and migration, along with protease-dependent invasion in FLS from patients with RA (RA-FLS). Treatment with the AHR antagonist GNF351 inhibits cytokine-induced expression of vascular endothelial growth factor-A (VEGF-A), epiregulin, amphiregulin, and basic fibroblast growth factor mRNA through an AHR-dependent mechanism in both RA-FLS and FLS. Secretion of VEGF-A and epiregulin from RA-FLS was also inhibited upon GNF351 treatment. RA-FLS cell migration, along with cytokine-induced RA-FLS cell proliferation, was significantly attenuated by GNF351 exposure. Treatment of RA-FLS with GNF351 mitigated cytokine-mediated expression of matrix metalloproteinase-2 and -9 mRNA and diminished the RA-FLS invasive phenotype. These findings indicate that inhibition of AHR activity may be a viable therapeutic target in amelioration of disease progression in RA by attenuating growth factor release; FLS proliferation, migration, and invasion; and inflammatory activity. PMID:24309559

  8. Matrix metalloproteinase-1 inhibitory activities of Morinda citrifolia seed extract and its constituents in UVA-irradiated human dermal fibroblasts.

    PubMed

    Masuda, Megumi; Murata, Kazuya; Naruto, Shunsuke; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2012-01-01

    The objective of this study was to examine whether a 50% ethanolic extract (MCS-ext) of the seeds of Morinda citrifolia (noni) and its constituents have matrix metalloproteinase-1 (MMP-1) inhibitory activity in UVA-irradiated normal human dermal fibroblasts (NHDFs). The MCS-ext (10 μg/mL) inhibited MMP-1 secretion from UVA-irradiated NHDFs, without cytotoxic effects, at 48 h after UV exposure. The ethyl acetate-soluble fraction of MCS-ext was the most potent inhibitor of MMP-1 secretion. Among the constituents of the fraction, a lignan, 3,3'-bisdemethylpinoresinol (1), inhibited the MMP-1 secretion at a concentration of 0.3 μM without cytotoxic effects. Furthermore, 1 (0.3 μM) reduced the level of intracellular MMP-1 expression. Other constituents, namely americanin A (2), quercetin (3) and ursolic acid (4), were inactive. To elucidate inhibition mechanisms of MMP-1 expression and secretion, the effect of 1 on mitogen-activated protein kinases (MAPKs) phosphorylation was examined. Western blot analysis revealed that 1 (0.3 μM) reduced the phosphorylations of p38 and c-Jun-N-terminal kinase (JNK). These results suggested that 1 suppresses intracellular MMP-1 expression, and consequent secretion from UVA-irradiated NHDFs, by down-regulation of MAPKs phosphorylation.

  9. Comparison of the metabolic activation of environmental carcinogens in mouse embryonic stem cells and mouse embryonic fibroblasts

    PubMed Central

    Krais, Annette M.; Mühlbauer, Karl-Rudolf; Kucab, Jill E.; Chinbuah, Helena; Cornelius, Michael G.; Wei, Quan-Xiang; Hollstein, Monica; Phillips, David H.; Arlt, Volker M.; Schmeiser, Heinz H.

    2015-01-01

    We compared mouse embryonic stem (ES) cells and fibroblasts (MEFs) for their ability to metabolically activate the environmental carcinogens benzo[a]pyrene (BaP), 3-nitrobenzanthrone (3-NBA) and aristolochic acid I (AAI), measuring DNA adduct formation by 32P-postlabelling and expression of xenobiotic-metabolism genes by quantitative real-time PCR. At 2 μM, BaP induced Cyp1a1 expression in MEFs to a much greater extent than in ES cells and formed 45 times more adducts. Nqo1 mRNA expression was increased by 3-NBA in both cell types but induction was higher in MEFs, as was adduct formation. For AAI, DNA binding was over 450 times higher in MEFs than in ES cells, although Nqo1 and Cyp1a1 transcriptional levels did not explain this difference. We found higher global methylation of DNA in ES cells than in MEFs, which suggests higher chromatin density and lower accessibility of the DNA to DNA damaging agents in ES cells. However, AAI treatment did not alter DNA methylation. Thus mouse ES cells and MEFs have the metabolic competence to activate a number of environmental carcinogens, but MEFs have lower global DNA methylation and higher metabolic capacity than mouse ES cells. PMID:25230394

  10. N-acetyl-L-cysteine increases MnSOD activity and enhances the recruitment of quiescent human fibroblasts to the proliferation cycle during wound healing.

    PubMed

    Mao, Gaowei; Goswami, Monali; Kalen, Amanda L; Goswami, Prabhat C; Sarsour, Ehab H

    2016-01-01

    The rebuilding of the connective tissue during wound healing requires the recruitment of fibroblasts to the wound area as well as reentry of quiescent fibroblasts to the proliferative cycle. Whether this process can be modulated by a small molecular weight thiol antioxidant N-acetyl-L-cysteine (NAC) was tested in normal human skin fibroblasts (NHFs) using a uni-directional wound healing assay. NAC treated cells demonstrated a decreased migration rate but increased number of proliferating cells recruited into the wound area post wounding. Fifteen day quiescent control and NAC treated NHFs were re-plated at a lower density and cell numbers counted at different days post-plating. Interestingly, NAC treated cells exhibited increased cellular proliferation indicated by both decreased cell population doubling time and increased S phase cells. NAC treated cells demonstrated decreased steady state levels of reactive oxygen species as well as increased protein and activity levels of manganese superoxide dismutase (MnSOD). NAC treatment failed to induce proliferation in quiescent cells lacking MnSOD expression. These results demonstrate that NAC enhanced the recruitment of quiescent NHFs into proliferation cycle during wound healing. Our results also suggest that the wound healing properties of NAC might be due to its ability to induce and enhance MnSOD expression and activity. Altogether, these findings suggest NAC might be potentially developed as a dietary intervention to improve tissue injury in animals and humans.

  11. Generation of porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene by somatic cell nuclear transfer.

    PubMed

    Liu, Guoqian; Liu, Kai; Wei, Hengxi; Li, Li; Zhang, Shouquan

    2016-09-01

    Cas9 endonuclease, from so-called clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems of Streptococcus pyogenes, type II functions as an RNA-guided endonuclease and edits the genomes of prokaryotic and eukaryotic organisms, including deletion and insertion by DNA double‑stranded break repair mechanisms. In previous studies, it was observed that Cas9, with a genome‑scale lentiviral single‑guide RNA library, could be applied to a loss‑of‑function genetic screen, although the loss‑of‑function genes have yet to be verified in vitro and this approach has not been used in porcine cells. Based on these observations, lentiviral Cas9 was used to infect porcine primary fibroblasts to achieve cell colonies carrying Cas9 endonuclease. Subsequently, porcine fetal fibroblasts expressing the tetracycline‑inducible Cas9 gene were generated by somatic cell nuclear transfer, and three 30 day transgenic porcine fetal fibroblasts (PFFs) were obtained. Polymerase chain reaction (PCR), reverse transcription‑PCR and western blot analysis indicated that the PFFs were Cas9‑positive. In addition, one of the three integrations was located near to known functional genes in the PFF1 cell line, whereas neither of the integrations was located in the PFF1 or PFF2 cell lines. It was hypothesized that these transgenic PFFs may be useful for conditional genomic editing in pigs, and for generating ideal modified porcine models. PMID:27430306

  12. Generation of porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene by somatic cell nuclear transfer

    PubMed Central

    Liu, Guoqian; Liu, Kai; Wei, Hengxi; Li, Li; Zhang, Shouquan

    2016-01-01

    Cas9 endonuclease, from so-called clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems of Streptococcus pyogenes, type II functions as an RNA-guided endonuclease and edits the genomes of prokaryotic and eukaryotic organisms, including deletion and insertion by DNA double-stranded break repair mechanisms. In previous studies, it was observed that Cas9, with a genome-scale lentiviral single-guide RNA library, could be applied to a loss-of-function genetic screen, although the loss-of-function genes have yet to be verified in vitro and this approach has not been used in porcine cells. Based on these observations, lentiviral Cas9 was used to infect porcine primary fibroblasts to achieve cell colonies carrying Cas9 endonuclease. Subsequently, porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene were generated by somatic cell nuclear transfer, and three 30 day transgenic porcine fetal fibroblasts (PFFs) were obtained. Polymerase chain reaction (PCR), reverse transcription-PCR and western blot analysis indicated that the PFFs were Cas9-positive. In addition, one of the three integrations was located near to known functional genes in the PFF1 cell line, whereas neither of the integrations was located in the PFF1 or PFF2 cell lines. It was hypothesized that these transgenic PFFs may be useful for conditional genomic editing in pigs, and for generating ideal modified porcine models. PMID:27430306

  13. ER Stress Mediates TiAl6V4 Particle-Induced Peri-Implant Osteolysis by Promoting RANKL Expression in Fibroblasts

    PubMed Central

    Wang, Zhenheng; Liu, Naicheng; Shi, Tongguo; Zhou, Gang; Wang, Zhenzhen; Gan, Jingjing; Guo, Ting; Qian, Hongbo; Bao, Nirong; Zhao, Jianning

    2015-01-01

    Wear particle-induced osteolysis is a major cause of aseptic loosening, which is one of the most common reasons for total hip arthroplasty (THA) failure. Previous studies have shown that the synovial fibroblasts present in the periprosthetic membrane are important targets of wear debris during osteolysis. However, the interaction mechanisms between the wear debris and fibroblasts remain largely unknown. In the present study, we investigated the effect of ER (endoplasmic reticulum) stress induced by TiAl6V4 particles (TiPs) in human synovial fibroblasts and calvarial resorption animal models. The expression of ER stress markers, including IRE1-α, GRP78/Bip and CHOP, were determined by western blot in fibroblasts that had been treated with TiPs for various times and concentration. To address whether ER stress was involved in the expression of RANKL, the effects of ER stress blockers (including 4-PBA and TUDCA) on the expression of RANKL in TiPs-treated fibroblasts were examined by real-time PCR, western blot and ELISA. Osteoclastogenesis was assessed by tartrate resistant acid phosphatase (TRAP) staining. Our study demonstrated that ER stress markers were markedly upregulated in TiPs-treated fibroblasts. Blocking ER stress significantly reduced the TiPs-induced expression of RANKL both in vitro and in vivo. Moreover, the inhibition of ER stress ameliorated wear particle-induced osteolysis in animal models. Taken together, these results suggested that the expression of RANKL induced by TiPs was mediated by ER stress in fibroblasts. Therefore, down regulating the ER stress of fibroblasts represents a potential therapeutic approach for wear particle-induced periprosthetic osteolysis. PMID:26366858

  14. Dynamic Assessment of Fibroblast Mechanical Activity during Rac-induced Cell Spreading in 3-D Culture

    PubMed Central

    Petroll, W. Matthew; Ma, Lisha; Kim, Areum; Ly, Linda; Vishwanath, Mridula

    2009-01-01

    The goal of this study was to determine the morphological and sub-cellular mechanical effects of Rac activation on fibroblasts within 3-D collagen matrices. Corneal fibroblasts were plated at low density inside 100 μm thick fibrillar collagen matrices and cultured for 1 to 2 days in serum-free media. Time-lapse imaging was then performed using Nomarski DIC. After an acclimation period, perfusion was switched to media containing PDGF. In some experiments, Y-27632 or blebbistatin were used to inhibit Rho-kinase (ROCK) or myosin II, respectively. PDGF activated Rac and induced cell spreading, which resulted in an increase in cell length, cell area, and the number of pseudopodial processes. Tractional forces were generated by extending pseudopodia, as indicated by centripetal displacement and realignment of collagen fibrils. Interestingly, the pattern of pseudopodial extension and local collagen fibril realignment was highly dependent upon the initial orientation of fibrils at the leading edge. Following ROCK or myosin II inhibition, significant ECM relaxation was observed, but small displacements of collagen fibrils continued to be detected at the tips of pseudopodia. Taken together, the data suggests that during Rac-induced cell spreading within 3-D matrices, there is a shift in the distribution of forces from the center to the periphery of corneal fibroblasts. ROCK mediates the generation of large myosin II-based tractional forces during cell spreading within 3-D collagen matrices, however residual forces can be generated at the tips of extending pseudopodia that are both ROCK and myosin II-independent. PMID:18452153

  15. CXCL12 induces connective tissue growth factor expression in human lung fibroblasts through the Rac1/ERK, JNK, and AP-1 pathways.

    PubMed

    Lin, Chien-Huang; Shih, Chung-Huang; Tseng, Chih-Chieh; Yu, Chung-Chi; Tsai, Yuan-Jhih; Bien, Mauo-Ying; Chen, Bing-Chang

    2014-01-01

    CXCL12 (stromal cell-derived factor-1, SDF-1) is a potent chemokine for homing of CXCR4+ fibrocytes to injury sites of lung tissue, which contributes to pulmonary fibrosis. Overexpression of connective tissue growth factor (CTGF) plays a critical role in pulmonary fibrosis. In this study, we investigated the roles of Rac1, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CXCL12-induced CTGF expression in human lung fibroblasts. CXCL12 caused concentration- and time-dependent increases in CTGF expression and CTGF-luciferase activity. CXCL12-induced CTGF expression was inhibited by a CXCR4 antagonist (AMD3100), small interfering RNA of CXCR4 (CXCR4 siRNA), a dominant negative mutant of Rac1 (RacN17), a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor (PD98059), a JNK inhibitor (SP600125), a p21-activated kinase inhibitor (PAK18), c-Jun siRNA, and an AP-1 inhibitor (curcumin). Treatment of cells with CXCL12 caused activations of Rac1, Rho, ERK, and c-Jun. The CXCL12-induced increase in ERK phosphorylation was inhibited by RacN17. Treatment of cells with PD98059 and SP600125 both inhibited CXCL12-induced c-Jun phosphorylation. CXCL12 caused the recruitment of c-Jun and c-Fos binding to the CTGF promoter. Furthermore, CXCL12 induced an increase in α-smooth muscle actin (α-SMA) expression, a myofibroblastic phenotype, and actin stress fiber formation. CXCL12-induced actin stress fiber formation and α-SMA expression were respectively inhibited by AMD3100 and CTGF siRNA. Taken together, our results suggest that CXCL12, acting through CXCR4, activates the Rac/ERK and JNK signaling pathways, which in turn initiates c-Jun phosphorylation, and recruits c-Jun and c-Fos to the CTGF promoter and ultimately induces CTGF expression in human lung fibroblasts. Moreover, overexpression of CTGF mediates CXCL12-induced α-SMA expression. PMID:25121739

  16. Emodin ameliorates bleomycin-induced pulmonary fibrosis in rats by suppressing epithelial-mesenchymal transition and fibroblast activation

    PubMed Central

    Guan, Ruijuan; Wang, Xia; Zhao, Xiaomei; Song, Nana; Zhu, Jimin; Wang, Jijiang; Wang, Jin; Xia, Chunmei; Chen, Yonghua; Zhu, Danian; Shen, Linlin

    2016-01-01

    Aberrant activation of TGF-β1 is frequently encountered and promotes epithelial-mesenchymal transition (EMT) and fibroblast activation in pulmonary fibrosis. The present study investigated whether emodin mediates its effect via suppressing TGF-β1-induced EMT and fibroblast activation in bleomycin (BLM)-induced pulmonary fibrosis in rats. Here, we found that emodin induced apoptosis and inhibited cellular proliferation, migration and differentiation in TGF-β1-stimulated human embryonic lung fibroblasts (HELFs). Emodin suppressed TGF-β1-induced EMT in a dose- and time-dependent manner in alveolar epithelial A549 cells. Emodin also inhibited TGF-β1-induced Smad2, Smad3 and Erk1/2 activation, suggesting that Smad2/3 and Erk1/2 inactivation mediated the emodin-induced effects on TGF-β1-induced EMT. Additionally, we provided in vivo evidence suggesting that emodin apparently alleviated BLM-induced pulmonary fibrosis and improved pulmonary function by inhibiting TGF-β1 signaling and subsequently repressing EMT, fibroblast activation and extracellular matrix (ECM) deposition. Taken together, our data suggest that emodin mediates its effects mainly via inhibition of EMT and fibroblast activation and thus has a potential for the treatment of pulmonary fibrosis. PMID:27774992

  17. Adenoviral overexpression and small interfering RNA suppression demonstrate that plasminogen activator inhibitor-1 produces elevated collagen accumulation in normal and keloid fibroblasts.

    PubMed

    Tuan, Tai-Lan; Hwu, Paul; Ho, Wendy; Yiu, Peter; Chang, Richard; Wysocki, Annette; Benya, Paul D

    2008-11-01

    Keloids are tumor-like skin scars that grow as a result of the aberrant healing of skin injuries, with no effective treatment. We provide new evidence that both overexpression of plasminogen activator inhibitor-1 (PAI-1) and elevated collagen accumulation are intrinsic features of keloid fibroblasts and that these characteristics are causally linked. Using seven strains each of early passage normal and keloid fibroblasts, the keloid strains exhibited inherently elevated collagen accumulation and PAI-1 expression in serum-free, 0.1% ITS+ culture; larger increases in these parameters occurred when cells were cultured in 3% serum. To demonstrate a causal relationship between PAI-1 overexpression and collagen accumulation, normal fibroblasts were infected with PAI-1-expressing adenovirus. Such cells exhibited a two- to fourfold increase in the accumulation of newly synthesized collagen in a viral dose-dependent fashion in both monolayers and fibrin gel, provisional matrix-like cultures. Three different PAI-1-targeted small interfering RNAs, alone or in combination, produced greater than an 80% PAI-1 knockdown and reduced collagen accumulation in PAI-1-overexpressing normal or keloid fibroblasts. A vitronectin-binding mutant of PAI-1 was equipotent with wild-type PAI-1 in inducing collagen accumulation, whereas a complete protease inhibitor mutant retained approximately 50% activity. Thus, PAI-1 may use more than its protease inhibitory activity to control keloid collagen accumulation. PAI-1-targeted interventions, such as small interfering RNA and lentiviral short hairpin RNA-containing microRNA sequence suppression reported here, may have therapeutic utility in the prevention of keloid scarring.

  18. RhoD activated by fibroblast growth factor induces cytoneme-like cellular protrusions through mDia3C

    PubMed Central

    Koizumi, Kazuhisa; Takano, Kazunori; Kaneyasu, Akiko; Watanabe-Takano, Haruko; Tokuda, Emi; Abe, Tomoyuki; Watanabe, Naoki; Takenawa, Tadaomi; Endo, Takeshi

    2012-01-01

    The small GTPase RhoD regulates actin cytoskeleton to collapse actin stress fibers and focal adhesions, resulting in suppression of cell migration and cytokinesis. It also induces alignment of early endosomes along actin filaments and reduces their motility. We show here that a constitutively activated RhoD generated two types of actin-containing thin peripheral cellular protrusions distinct from Cdc42-induced filopodia. One was longer, almost straight, immotile, and sensitive to fixation, whereas the other was shorter, undulating, motile, and resistant to fixation. Moreover, cells expressing wild-type RhoD extended protrusions toward fibroblast growth factor (FGF) 2/4/8–coated beads. Stimulation of wild-type RhoD-expressing cells with these FGFs also caused formation of cellular protrusions. Nodules moved through the RhoD-induced longer protrusions, mainly toward the cell body. Exogenously expressed FGF receptor was associated with these moving nodules containing endosome-like vesicles. These results suggest that the protrusions are responsible for intercellular communication mediated by FGF and its receptor. Accordingly, the protrusions are morphologically and functionally equivalent to cytonemes. RhoD was activated by FGF2/4/8. Knockdown of RhoD interfered with FGF-induced protrusion formation. Activated RhoD specifically bound to mDia3C and facilitated actin polymerization together with mDia3C. mDia3C was localized to the tips or stems of the protrusions. In addition, constitutively activated mDia3C formed protrusions without RhoD or FGF stimulation. Knockdown of mDia3 obstructed RhoD-induced protrusion formation. These results imply that RhoD activated by FGF signaling forms cytoneme-like protrusions through activation of mDia3C, which induces actin filament formation. PMID:23034183

  19. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exposure of normal human dermal fibroblasts results in AhR-dependent and -independent changes in gene expression

    SciTech Connect

    Akintobi, A.M.; Villano, C.M.; White, L.A. . E-mail: lawhite@aesop.rutgers.edu

    2007-04-01

    Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) results in a variety of lesions in mammals including severe skin lesions. The majority of TCDD's biological effects are mediated through activation of the aryl hydrocarbon receptor (AhR). We have chosen to examine the effect of TCDD and the AhR pathway on dermal fibroblasts because this cell type plays an integral role in skin homeostasis through the production of cytokines and other factors that regulate epidermal proliferation and differentiation. Our data show that normal human dermal fibroblasts (NHDFs) are responsive to TCDD, as demonstrated by induction of cytochrome p450 1B1 (CYP1B1) expression. Further, our data demonstrate that TCDD treatment of NHDFs results in significant (75-90%) decrease in expression of Id-1 and Id-3, proteins that are involved in regulation of cell proliferation and differentiation. The Id (Inhibitor of DNA binding) proteins are transcriptional inhibitors that function by forming inactive heterodimers with other HLH proteins. TCDD-repression of Id-1 and -3 is independent of de novo protein synthesis; co-treatment with cycloheximide has no effect on TCDD inhibition of Id-1 and Id-3. Co-treatment with the AhR antagonist {alpha}-naphthoflavone also does not block inhibition of Id-1 and Id-3 by TCDD, suggesting that TCDD inhibition of Id-1 and Id-3 is, at least in part, mediated independently of the AhR pathway. Our data also show that TCDD inhibits expression of the cell cycle regulatory gene p16{sup ink4a}, which is often linked to Id expression. TCDD-induced reduction of p16{sup ink4a} expression is also independent of protein synthesis and the AhR pathway.

  20. Towards predicting the lung fibrogenic activity of nanomaterials: experimental validation of an in vitro fibroblast proliferation assay

    PubMed Central

    2013-01-01

    Background Carbon nanotubes (CNT) can induce lung inflammation and fibrosis in rodents. Several studies have identified the capacity of CNT to stimulate the proliferation of fibroblasts. We developed and validated experimentally here a simple and rapid in vitro assay to evaluate the capacity of a nanomaterial to exert a direct pro-fibrotic effect on fibroblasts. Methods The activity of several multi-wall (MW)CNT samples (NM400, the crushed form of NM400 named NM400c, NM402 and MWCNTg 2400) and asbestos (crocidolite) was investigated in vitro and in vivo. The proliferative response to MWCNT was assessed on mouse primary lung fibroblasts, human fetal lung fibroblasts (HFL-1), mouse embryonic fibroblasts (BALB-3T3) and mouse lung fibroblasts (MLg) by using different assays (cell counting, WST-1 assay and propidium iodide PI staining) and dispersion media (fetal bovine serum, FBS and bovine serum albumin, BSA). C57BL/6 mice were pharyngeally aspirated with the same materials and lung fibrosis was assessed after 2 months by histopathology, quantification of total collagen lung content and pro-fibrotic cytokines in broncho-alveolar lavage fluid (BALF). Results MWCNT (NM400 and NM402) directly stimulated fibroblast proliferation in vitro in a dose-dependent manner and induced lung fibrosis in vivo. NM400 stimulated the proliferation of all tested fibroblast types, independently of FBS- or BSA- dispersion. Results obtained by WST1 cell activity were confirmed with cell counting and cell cycle (PI staining) assays. Crocidolite also stimulated fibroblast proliferation and induced pulmonary fibrosis, although to a lesser extent than NM400 and NM402. In contrast, shorter CNT (NM400c and MWCNTg 2400) did not induce any fibroblast proliferation or collagen accumulation in vivo, supporting the idea that CNT structure is an important parameter for inducing lung fibrosis. Conclusions In this study, an optimized proliferation assay using BSA as a dispersant, MLg cells as targets

  1. Regulatory role of NADPH oxidase in glycated LDL-induced upregulation of plasminogen activator inhibitor-1 and heat shock factor-1 in mouse embryo fibroblasts and diabetic mice.

    PubMed

    Zhao, Ruozhi; Le, Khuong; Moghadasian, Mohammed H; Shen, Garry X

    2013-08-01

    Cardiovascular disease is the predominant cause of death in diabetic patients. Fibroblasts are one of the major types of cells in the heart or vascular wall. Increased levels of glycated low-density lipoprotein (glyLDL) were detected in diabetic patients. Previous studies in our group demonstrated that oxidized LDL increased the amounts of NADPH oxidase (NOX), plasminogen activator inhibitor-1 (PAI-1), and heat shock factor-1 (HSF1) in fibroblasts. This study examined the expression of NOX, PAI-1, and HSF1 in glyLDL-treated wild-type or HSF1-deficient mouse embryo fibroblasts (MEFs) and in leptin receptor-knockout (db/db) diabetic mice. Treatment with physiologically relevant levels of glyLDL increased superoxide and H2O2 release and the levels of NOX4 and p22phox (an essential component of multiple NOX complexes) in wild-type or HSF1-deficient MEFs. The levels of HSF1 and PAI-1 were increased by glyLDL in wild-type MEFs, but not in HSF1-deficient MEFs. Diphenyleneiodonium (a nonspecific NOX inhibitor) or small interfering RNA for p22phox prevented glyLDL-induced increases in the levels of NOX4, HSF1, or PAI-1 in MEFs. The amounts of NOX4, HSF1, and PAI-1 were elevated in hearts of db/db diabetic mice compared to wild-type mice. The results suggest that glyLDL increased the abundance of NOX4 or p22phox via an HSF1-independent pathway, but that of PAI-1 via an HSF1-dependent manner. NOX4 plays a crucial role in glyLDL-induced expression of HSF1 and PAI-1 in mouse fibroblasts. Increased expression of NOX4, HSF1, and PAI-1 was detected in cardiovascular tissue of diabetic mice.

  2. Inhibitory activities of omega-3 Fatty acids and traditional african remedies on keloid fibroblasts.

    PubMed

    Olaitan, Peter B; Chen, I-Ping; Norris, James E C; Feinn, Richard; Oluwatosin, Odunayo M; Reichenberger, Ernst J

    2011-04-01

    Keloids develop when scar tissue responds to skin trauma with proliferative fibrous growths that extend beyond the boundaries of the original wound and progress for several months or years. Keloids most frequently occur in individuals of indigenous sub-Saharan African origin. The etiology for keloids is still unknown and treatment can be problematic as patients respond differently to various treatment modalities. Keloids have a high rate of recurrence following surgical excision. Some West African patients claim to have had successful outcomes with traditional African remedies-boa constrictor oil (BCO) and shea butter-leading the authors to investigate their effects on cultured fibroblasts. The effects of emulsions of BCO, fish oil, isolated omega-3 fatty acids, and shea butter were tested in comparison to triamcinolone regarding inhibition of cell growth in keloid and control fibroblast cultures. In a series of controlled studies, it was observed that fish oil and BCO were more effective than triamcinolone, and that cis-5, 8, 11, 14, 17-eicosapentaenoic acid was more effective than -linolenic acid. While cell counts in control cultures continuously decreased over a period of 5 days, cell counts in keloid cultures consistently declined between day 1 and day 3, and then increased between day 3 and day 5 for all tested reagents except for fish oil. These results suggest that oils rich in omega-3 fatty acids may be effective in reducing actively proliferating keloid fibroblasts. Additional studies are warranted to investigate whether oils rich in omega-3 fatty acids offer effective and affordable treatment for some keloid patients, especially in the developing world.

  3. Inhibitory effects of C-type natriuretic peptide on the differentiation of cardiac fibroblasts, and secretion of monocyte chemoattractant protein-1 and plasminogen activator inhibitor-1.

    PubMed

    Li, Zhi-Qiang; Liu, Ying-Long; Li, Gang; Li, Bin; Liu, Yang; Li, Xiao-Feng; Liu, Ai-Jun

    2015-01-01

    The present study aimed to investigate the effect of C-type natriuretic peptide (CNP) on the function of cardiac fibroblasts (CFs). Western blotting was used to investigate the expression of myofibroblast marker proteins: α-smooth muscle actin (α-SMA), extra domain-A fibronectin, collagen I and collagen III, and the activity of extracellular signal-regulated kinase 1/2 (ERK1/2). Immunofluorescence was used to examine the morphological changes; a transwell assay was used to analyze migration, and reverse transcription-quantitative polymerase chain reaction and ELISA were employed to determine the mRNA expression and protein secretion of monocyte chemoattractant protein-1 (MCP-1) and plasminogen activator inhibitor-1 (PAI-1). The results demonstrated that CNP significantly reduced the protein expression of α-SMA, fibronectin, collagen I and collagen III, and suppressed the migratory ability of CFs. Additionally, the mRNA and protein expression of MCP-1 and PAI-1 was inhibited under the CNP treatment; and this effect was mediated by the inhibition of the ERK1/2 activity. In conclusion, CNP inhibited cardiac fibroblast differentiation and migration, and reduced the secretion of MCP-1 and PAI-1, which demonstrates novel mechanisms to explain the antifibrotic effect of CNP.

  4. Prevention of experimental autoimmune encephalomyelitis in DA rats by grafting primary skin fibroblasts engineered to express transforming growth factor-beta1.

    PubMed

    Zargarova, T; Kulakova, O; Prassolov, V; Zharmukhamedova, T; Tsyganova, V; Turobov, V; Ivanov, D; Parfenov, M; Sudomoina, M; Chernajovsky, Y; Favorova, O

    2004-08-01

    To determine whether primary fibroblasts producing latent transforming growth factor beta1 (TGF-beta1) are capable of down-regulating experimental autoimmune encephalomyelitis (EAE), a retroviral vector TGF-beta1-pBabe-neo (-5'UTR) was used for efficient gene transfer into primary skin fibroblasts of DA rats. After heat activation, conditioned medium from the transduced fibroblasts was found to inhibit significantly in vitro proliferation of lymphocytes from lymph nodes of DA rats with EAE. Intraperitoneal administration of TGF-beta1-transduced fibroblasts into DA rats during the priming phase of EAE resulted in a significant reduction in mortality and in the mean clinical and EAE scores versus the control immunized animals treated with non-transduced fibroblasts.

  5. Prevention of experimental autoimmune encephalomyelitis in DA rats by grafting primary skin fibroblasts engineered to express transforming growth factor-β1

    PubMed Central

    Zargarova, T; Kulakova, O; Prassolov, V; Zharmukhamedova, T; Tsyganova, V; Turobov, V; Ivanov, D; Parfenov, M; Sudomoina, M; Chernajovsky, Y; Favorova, O

    2004-01-01

    To determine whether primary fibroblasts producing latent transforming growth factor β1 (TGF-β1) are capable of down-regulating experimental autoimmune encephalomyelitis (EAE), a retroviral vector TGF-β1-pBabe-neo (−5′UTR) was used for efficient gene transfer into primary skin fibroblasts of DA rats. After heat activation, conditioned medium from the transduced fibroblasts was found to inhibit significantly in vitro proliferation of lymphocytes from lymph nodes of DA rats with EAE. Intraperitoneal administration of TGF-β1-transduced fibroblasts into DA rats during the priming phase of EAE resulted in a significant reduction in mortality and in the mean clinical and EAE scores versus the control immunized animals treated with non-transduced fibroblasts. PMID:15270848

  6. Allele-Specific Reduction of the Mutant Huntingtin Allele Using Transcription Activator-Like Effectors in Human Huntington's Disease Fibroblasts.

    PubMed

    Fink, Kyle D; Deng, Peter; Gutierrez, Josh; Anderson, Joseph S; Torrest, Audrey; Komarla, Anvita; Kalomoiris, Stefanos; Cary, Whitney; Anderson, Johnathon D; Gruenloh, William; Duffy, Alexandra; Tempkin, Teresa; Annett, Geralyn; Wheelock, Vicki; Segal, David J; Nolta, Jan A

    2016-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an abnormal expansion of CAG repeats. Although pathogenesis has been attributed to this polyglutamine expansion, the underlying mechanisms through which the huntingtin protein functions have yet to be elucidated. It has been suggested that postnatal reduction of mutant huntingtin through protein interference or conditional gene knockout could prove to be an effective therapy for patients suffering from HD. For allele-specific targeting, transcription activator-like effectors (TALE) were designed to target single-nucleotide polymorphisms (SNP) in the mutant allele and packaged into a vector backbone containing KRAB to promote transcriptional repression of the disease-associated allele. Additional TALEs were packaged into a vector backbone containing heterodimeric FokI and were designed to be used as nucleases (TALEN) to cause a CAG-collapse in the mutant allele. Human HD fibroblasts were treated with each TALE-SNP or TALEN. Allele-expression was measured using a SNP-genotyping assay and mutant protein aggregation was quantified with Western blots for anti-ubiquitin. The TALE-SNP and TALEN significantly reduced mutant allele expression (p < 0.05) when compared to control transfections while not affecting expression of the nondisease allele. This study demonstrates the potential of allele-specific gene modification using TALE proteins, and provides a foundation for targeted treatment for individuals suffering from Huntington's or other genetically linked diseases. PMID:26850319

  7. Expression of Wnt/β-Catenin Signaling Pathway and Its Regulatory Role in Type I Collagen with TGF-β1 in Scleral Fibroblasts from an Experimentally Induced Myopia Guinea Pig Model

    PubMed Central

    Li, Min; Yuan, Ying; Chen, Qingzhong; Me, Rao; Gu, Qing; Yu, Yunjie; Sheng, Minjie; Ke, Bilian

    2016-01-01

    Background. To investigate Wnt/β-catenin signaling pathway expression and its regulation of type I collagen by TGF-β1 in scleral fibroblasts from form-deprivation myopia (FDM) guinea pig model. Methods. Wnt isoforms were examined using genome microarrays. Scleral fibroblasts from FDM group and self-control (SC) group were cultured. Wnt isoforms, β-catenin, TGF-β1, and type I collagen expression levels were examined in the two groups with or without DKK-1 or TGF-β1 neutralizing antibody. Results. For genome microarrays, the expression of Wnt3 in FDM group was significantly greater as confirmed in retinal and scleral tissue. The expression of Wnt3 and β-catenin significantly increased in FDM group and decreased significantly with DKK-1. TGF-β1 expression level decreased significantly in FDM group and increased significantly with DKK-1. Along with morphological misalignment inside and outside cells, the amount of type I collagen decreased in FDM group. Furthermore, type I collagen increased and became regular in DKK-1 intervention group, whereas it decreased and rearranged more disorder in TGF-β1 neutralizing antibody intervention group. Conclusions. The activation of Wnt3/β-catenin signaling pathway was demonstrated in primary scleral fibroblasts in FDM. This pathway further reduced the expression of type I collagen by TGF-β1, which ultimately played a role in scleral remodeling during myopia development. PMID:27247798

  8. Pristane primed rat T cells enhance TLR3 expression of fibroblast-like synoviocytes via TNF-α initiated p38 MAPK and NF-κB pathways.

    PubMed

    Zhu, Wenhua; Jiang, Congshan; Xu, Jing; Geng, Manman; Wu, Xiaoying; Sun, Jian; Ma, Jie; Holmdahl, Rikard; Meng, Liesu; Lu, Shemin

    2015-02-01

    Based on pristane-induced arthritis (PIA), we found that T cells mediate TLR3 overexpression in fibroblast-like synoviocytes (FLS). The aim of this study is to determine key factors by which T cells induce TLR3 expression. Rat FLS were co-cultured with pristane primed T cell conditioned medium (PPT medium), and TLR3 expression of FLS was significantly induced. TNF-α, IFN-γ and IL-17 were dominantly expressed in PIA T cells. The overexpression of TLR3 and its related genes in FLS co-cultured with PPT medium could be reduced through blocking TNF-α pathway. CD4(+) T cells from spleen of PIA rats showed increase of TNF-α secretion. P38 MAPK and NF-κB were activated in FLS by PPT medium, and their inhibitors decreased TLR3 upregulation significantly. Finally, TNF-α induced TLR3 expression was confirmed in human synovial cells. Summarily, TNF-α derived from pristane primed T cells induced TLR3 expression of FLS through activating p38 MAPK and NF-κB pathways. PMID:25533241

  9. Pristane primed rat T cells enhance TLR3 expression of fibroblast-like synoviocytes via TNF-α initiated p38 MAPK and NF-κB pathways.

    PubMed

    Zhu, Wenhua; Jiang, Congshan; Xu, Jing; Geng, Manman; Wu, Xiaoying; Sun, Jian; Ma, Jie; Holmdahl, Rikard; Meng, Liesu; Lu, Shemin

    2015-02-01

    Based on pristane-induced arthritis (PIA), we found that T cells mediate TLR3 overexpression in fibroblast-like synoviocytes (FLS). The aim of this study is to determine key factors by which T cells induce TLR3 expression. Rat FLS were co-cultured with pristane primed T cell conditioned medium (PPT medium), and TLR3 expression of FLS was significantly induced. TNF-α, IFN-γ and IL-17 were dominantly expressed in PIA T cells. The overexpression of TLR3 and its related genes in FLS co-cultured with PPT medium could be reduced through blocking TNF-α pathway. CD4(+) T cells from spleen of PIA rats showed increase of TNF-α secretion. P38 MAPK and NF-κB were activated in FLS by PPT medium, and their inhibitors decreased TLR3 upregulation significantly. Finally, TNF-α induced TLR3 expression was confirmed in human synovial cells. Summarily, TNF-α derived from pristane primed T cells induced TLR3 expression of FLS through activating p38 MAPK and NF-κB pathways.

  10. Hsc70 facilitates TGF-β-induced activation of Smad2/3 in fibroblastic NRK-49F cells.

    PubMed

    Ikezaki, Midori; Higashimoto, Natsuki; Matsumura, Ko; Ihara, Yoshito

    2016-08-26

    Heat-shock cognate protein 70 (Hsc70), a molecular chaperone constitutively expressed in the cell, is involved in the regulation of several cellular signaling pathways. In this study, we found that TGF-β-induced phosphorylation and nuclear translocation of Smad2/3 were suppressed in fibroblastic NRK-49F cells treated with small interfering RNA (siRNA) for Hsc70. In the cells underexpressing Hsc70, transcriptional induction of connective tissue growth factor (CTGF), a target gene of the TGF-β signaling, was also suppressed in the early phase of TGF-β stimulation. Upon stimulation with TGF-β, Hsc70 interacted with Smad2/3, suggesting functional interactions of Hsc70 and Smad2/3 for the activation of TGF-β-induced Smad signaling. Although the expression of heat-shock protein 70 (Hsp70) was upregulated in the cells treated with Hsc70 siRNA, TGF-β-induced Smad activation was not affected in the cells overexpressing Hsp70. Collectively, these results indicate that Hsc70, but not Hsp70, supportively regulates TGF-β-induced Smad signaling in NRK-49F cells.

  11. Differential expression of extracellular matrix proteins in senescent and young human fibroblasts: a comparative proteomics and microarray study.

    PubMed

    Yang, Kyeong Eun; Kwon, Joseph; Rhim, Ji-Heon; Choi, Jong Soon; Kim, Seung Il; Lee, Seung-Hoon; Park, Junsoo; Jang, Ik-Soon

    2011-07-01

    The extracellular matrix (ECM) provides an essential structural framework for cell attachment, proliferation, and differentiation, and undergoes progressive changes during senescence. To investigate changes in protein expression in the extracellular matrix between young and senescent fibroblasts, we compared proteomic data (LTQ-FT) with cDNA microarray results. The peptide counts from the proteomics analysis were used to evaluate the level of ECM protein expression by young cells and senescent cells, and ECM protein expression data were compared with the microarray data. After completing the comparative analysis, we grouped the genes into four categories. Class I included genes with increased expression levels in both analyses, while class IV contained genes with reduced expression in both analyses. Class II and Class III contained genes with an inconsistent expression pattern. Finally, we validated the comparative analysis results by examining the expression level of the specific gene from each category using Western blot analysis and semiquantitative RT-PCR. Our results demonstrate that comparative analysis can be used to identify differentially expressed genes.

  12. Increase in S-adenosyl-L-methionine decarboxylase activity during the transformation of chick embroy fibroblasts by Rous sarcoma virus.

    PubMed

    Bachrach, U; Weiner, H

    1980-07-15

    The increase in S-adenosyl-L-methionine decarboxylase activity in chick embryo fibroblasts after infection with Rous sarcoma virus has been studied. It has been shown that enzyme levels in transformed cells were two or three times higher than those of the non-infected controls. The activity of this enzyme was not elevated in chick embryo fibroblasts infected with a temperature sensitive mutant of Rous sarcoma virus (RSV-T5) at 42 degrees C, the non-permissive temperature. When the temperature of these infected cultures was shifted from 42 degrees C to 37 degrees C a two- or three-fold increase in decarboxlase activity was detected after 10 to 12 h. The half-live of S-adenosyl-L-methionine decarboxylase was practically identical in normal and RSV-transformed fibroblasts.

  13. Electrical consequences of cardiac myocyte: fibroblast coupling.

    PubMed

    McArthur, Lisa; Chilton, Lisa; Smith, Godfrey L; Nicklin, Stuart A

    2015-06-01

    Gap junctions are channels which allow electrical signals to propagate through the heart from the sinoatrial node and through the atria, conduction system and onwards to the ventricles, and hence are essential for co-ordinated cardiac contraction. Twelve connexin (Cx) proteins make up one gap junction channel, of which there are three main subtypes in the heart; Cx40, Cx43 and Cx45. In the cardiac myocyte, gap junctions are present mainly at the intercalated discs between neighbouring myocytes, and assist in rapid electrical conduction throughout the ventricular myocardium. Fibroblasts provide the structural skeleton of the myocardium and fibroblast numbers significantly increase in heart disease. Fibroblasts also express connexins and this may facilitate heterocellular electrical coupling between myocytes and fibroblasts in the setting of cardiac disease. Interestingly, cardiac fibroblasts have been demonstrated to increase Cx43 expression in experimental models of myocardial infarction and functional gap junctions between myocytes and fibroblasts have been reported. Therefore, in the setting of heart disease enhanced cardiac myocyte: fibroblast coupling may influence the electrical activity of the myocyte and contribute to arrhythmias.

  14. Adipose-derived stem cells promote human dermal fibroblast function and increase senescence-associated β‑galactosidase mRNA expression through paracrine effects.

    PubMed

    Shen, Xiao; Du, Yunpeng; Shen, Weimin; Xue, Bin; Zhao, Yu

    2014-12-01

    Adipose‑derived stem cells (ADSCs) are known to secrete various cytokines, which affect fibroblast function through paracrine effects. In the present study, the paracrine effects of ADSCs on the function and senescence of young and aged human dermal fibroblasts (HDFs) were investigated in vitro. ADSCs and HDFs were isolated from healthy donors and flow cytometry was used for immunophenotype identification. ADSCs were co‑cultured with young or aged human dermal fibroblasts in Transwell plates, and control groups were established accordingly. Cellular proliferation was measured by an MTT assay. Type I collagen, matrix metalloproteinase‑1 (MMP‑1) and senescence-associated β‑galactosidase (SA‑β‑GAL) mRNA expression were measured by quantitative polymerase chain reaction. It was identified that ADSCs promoted proliferation of co‑cultured HDFs and induced increased expression of type I collagen and decreased expression of MMP‑1. The co‑cultured HDFs exhibited increased expression of SA‑β‑GAL. These results demonstrated that ADSCs improve fibroblast function through paracrine effects. The increased expression of SA‑β‑GAL indicated an accelerated aging process. It is proposed that ADSCs may improve fibroblast function, but not reverse the age status in vitro.

  15. Screening of plants acting against Heterometrus laoticus scorpion venom activity on fibroblast cell lysis.

    PubMed

    Uawonggul, Nunthawun; Chaveerach, Arunrat; Thammasirirak, Sompong; Arkaravichien, Tarinee; Chuachan, Chattong; Daduang, Sakda

    2006-01-16

    The aqueous extracts of 64 plant species, listed as animal- or insect-bite antidotes in old Thai drug recipes were screened for their activity against fibroblast cell lysis after Heterometrus laoticus scorpion venom treatment. The venom was preincubated with plant extract for 30 min and furthered treated to confluent fibroblast cells for 30 min. More than 40% efficiency (test/control) was obtained from cell treatment with venom preincubated with extracts of Andrographis paniculata Nees (Acanthaceae), Barringtonia acutangula (L.) Gaertn. (Lecythidaceae), Calamus sp. (Palmae), Clinacanthus nutans Lindau (Acanthaceae), Euphorbia neriifolia L. (Euphorbiaceae), Ipomoea aquatica Forssk (Convolvulaceae), Mesua ferrea L. (Guttiferae), Passiflora laurifolia L. (Passifloraceae), Plectranthus amboinicus (Lour.) Spreng. (Labiatae), Ricinus communis L. (Euphorbiaceae), Rumex sp. (Polygonaceae) and Sapindus rarak DC. (Sapindaceae), indicating that they had a tendency to be scorpion venom antidotes. However, only Andrographis paniculata and Barringtonia acutangula extracts provided around 50% viable cells from extract treatments without venom preincubation. These two plant extracts are expected to be scorpion venom antidotes with low cytotoxicity. PMID:16169172

  16. Screening of plants acting against Heterometrus laoticus scorpion venom activity on fibroblast cell lysis.

    PubMed

    Uawonggul, Nunthawun; Chaveerach, Arunrat; Thammasirirak, Sompong; Arkaravichien, Tarinee; Chuachan, Chattong; Daduang, Sakda

    2006-01-16

    The aqueous extracts of 64 plant species, listed as animal- or insect-bite antidotes in old Thai drug recipes were screened for their activity against fibroblast cell lysis after Heterometrus laoticus scorpion venom treatment. The venom was preincubated with plant extract for 30 min and furthered treated to confluent fibroblast cells for 30 min. More than 40% efficiency (test/control) was obtained from cell treatment with venom preincubated with extracts of Andrographis paniculata Nees (Acanthaceae), Barringtonia acutangula (L.) Gaertn. (Lecythidaceae), Calamus sp. (Palmae), Clinacanthus nutans Lindau (Acanthaceae), Euphorbia neriifolia L. (Euphorbiaceae), Ipomoea aquatica Forssk (Convolvulaceae), Mesua ferrea L. (Guttiferae), Passiflora laurifolia L. (Passifloraceae), Plectranthus amboinicus (Lour.) Spreng. (Labiatae), Ricinus communis L. (Euphorbiaceae), Rumex sp. (Polygonaceae) and Sapindus rarak DC. (Sapindaceae), indicating that they had a tendency to be scorpion venom antidotes. However, only Andrographis paniculata and Barringtonia acutangula extracts provided around 50% viable cells from extract treatments without venom preincubation. These two plant extracts are expected to be scorpion venom antidotes with low cytotoxicity.

  17. Cell competition in mouse NIH3T3 embryonic fibroblasts is controlled by the activity of Tead family proteins and Myc.

    PubMed

    Mamada, Hiroshi; Sato, Takashi; Ota, Mitsunori; Sasaki, Hiroshi

    2015-02-15

    Cell competition is a short-range communication originally observed in Drosophila. Relatively little is known about cell competition in mammals or in non-epithelial cells. Hippo signaling and its downstream transcription factors of the Tead family, control cell proliferation and apoptosis. Here, we established an in vitro model system that shows cell competition in mouse NIH3T3 embryo fibroblast cells. Co-culture of Tead-activity-manipulated cells with normal (wild-type) cells caused cell competition. Cells with reduced Tead activity became losers, whereas cells with increased Tead activity became super-competitors. Tead directly regulated Myc RNA expression, and cells with increased Myc expression also became super-competitors. At low cell density, cell proliferation required both Tead activity and Myc. At high cell density, however, reduction of either Tead activity or Myc was compensated for by an increase in the other, and this increase was sufficient to confer 'winner' activity. Collectively, NIH3T3 cells have cell competition mechanisms similar to those regulated by Yki and Myc in Drosophila. Establishment of this in vitro model system should be useful for analyses of the mechanisms of cell competition in mammals and in fibroblasts.

  18. Gene expression profiling of cholangiocarcinoma-derived fibroblast reveals alterations related to tumor progression and indicates periostin as a poor prognostic marker

    PubMed Central

    2010-01-01

    Background Fibroblasts play important roles in several cancers. It was hypothesized that cholangiocarcinoma (CCA)-associated fibroblasts (Cfs) differ from non-tumorigenic liver fibroblasts (Lfs) in their gene expression profiles resulting in the capability to promote cancer. Periostin (PN) is a multi-functional protein and has emerged as a promising marker for tumor progression. The role of PN in CCA, however, has not yet been explored. Results In this study, the gene expression profile of Cfs in comparison to Lfs was performed using oligonucleotide microarrays. The common- and unique-expressed genes in Cfs and the promising roles in cancer promotion and progression were determined. PN was markedly over-expressed in Cfs confirmed by real time RT-PCR and western blot analysis. Immunohistochemistry examination of a number of patients with intrahepatic CCA showed the expression of PN solely in stromal fibroblasts, but was expressed neither in cancer cells nor immune cells. Low to no expression of PN was observed in tissues of benign liver disease and hepatocellular carcinoma. CCA patients with high levels of PN had significantly shorter survival time than those with low levels (P = 0.026). Multivariate analysis revealed high levels of PN (P = 0.045) and presence of lymph node metastasis (P = 0.002) as independent poor prognostic factors. The in vitro study revealed that recombinant PN induced CCA cell proliferation and invasion. Interestingly, interference RNA against integrin α5 significantly reduced the cellular response to PN-stimulated proliferation and invasion. Conclusion The gene expression profile of fibroblasts in CCA is apparently explored for the first time and has determined the genes involving in induction of this cancer progression. High PN can be used to distinguish CCA from other related liver diseases and is proposed as a prognostic factor of poor survival. Regulation of fibroblast-derived PN in CCA proliferation and invasion may be considered as an

  19. The enforced expression of c-Myc in pig fibroblasts triggers mesenchymal-epithelial transition (MET) via F-actin reorganization and RhoA/Rock pathway inactivation.

    PubMed

    Shi, Jun-Wen; Liu, Wei; Zhang, Ting-Ting; Wang, Sheng-Chun; Lin, Xiao-Lin; Li, Jing; Jia, Jun-Shuang; Sheng, Hong-Fen; Yao, Zhi-Fang; Zhao, Wen-Tao; Zhao, Zun-Lan; Xie, Rao-Ying; Yang, Sheng; Gao, Fei; Fan, Quan-Rong; Zhang, Meng-Ya; Yue, Min; Yuan, Jin; Gu, Wei-Wang; Yao, Kai-Tai; Xiao, Dong

    2013-04-01

    In previous studies from other labs it has been well demonstrated that the ectopic expression of c-Myc in mammary epithelial cells can induce epithelial-mesenchymal transition (EMT), whereas in our pilot experiment, epithelial-like morphological changes were unexpectedly observed in c-Myc-expressing pig fibroblasts [i.e., porcine embryonic fibroblasts (PEFs) and porcine dermal fibroblasts (PDFs)] and pig mesenchymal stem cells, suggesting that the same c-Myc gene is entitled to trigger EMT in epithelial cells and mesenchymal-epithelial transition (MET) in fibroblasts. This prompted us to characterize the existence of a MET in c-Myc-expressing PEFs and PDFs at the molecular level. qRT-PCR, immunofluorescence and western blot analysis illustrated that epithelial-like morphological changes were accompanied by the increased expression of epithelial markers [such as cell adhesion proteins (E-cadherin, α-catenin and Bves), tight junction protein occludin and cytokeratins (Krt8 and Krt18)], the reduced expression of mesenchymal markers [vimentin, fibronectin 1 (FN1), snail1, collagen family of proteins (COL1A1, COL5A2) and matrix metalloproteinase (MMP) family (MMP12 and MMP14)] and the decreased cell motility and increased cell adhesion in c-Myc-expressing PEFs and PDFs. Furthermore, the ectopic expression of c-Myc in pig fibroblasts disrupted the stress fiber network, suppressed the formation of filopodia and lamellipodia, and resulted in RhoA/Rock pathway inactivation, which finally participates in epithelial-like morphological conversion. Taken together, these findings demonstrate, for the first time, that the enforced expression of c-Myc in fibroblasts can trigger MET, to which cytoskeleton depolymerization and RhoA/Rock pathway inactivation contribute.

  20. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts.

    PubMed

    Lu, Jing; Guo, Jia-Hui; Tu, Xue-Liang; Zhang, Chao; Zhao, Mei; Zhang, Quan-Wu; Gao, Feng-Hou

    2016-01-01

    Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS) scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP)-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB)-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP)-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced. PMID:27486852

  1. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts

    PubMed Central

    Zhang, Chao; Zhao, Mei; Zhang, Quan-Wu; Gao, Feng-Hou

    2016-01-01

    Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS) scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP)-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB)-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP)-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced. PMID:27486852

  2. Alterations in TNF- and IL-related gene expression in space-flown WI38 human fibroblasts.

    PubMed

    Semov, Alexandre; Semova, Nathalia; Lacelle, Chantale; Marcotte, Richard; Petroulakis, Emmanuel; Proestou, Gregory; Wang, Eugenia

    2002-06-01

    Spaceflight, just like aging, causes profound changes in musculoskeletal parameters, which result in decreased bone density and muscular weakness. As these conditions decrease our ability to conduct long-term manned space missions, and increase bone frailty in the elderly, the identification of genes responsible for the apparition of these physiological changes will be of great benefit. Thus, we developed and implemented a new microarray approach to investigate the changes in normal WI38 human fibroblast gene expression that arise as a consequence of space flight. Using our microarray, we identified changes in the level of expression of 10 genes, belonging to either the tumor necrosis factor- (TNF) or interleukin- (IL) related gene families in fibroblasts when WI38 cells exposed to microgravity during the STS-93 Space Shuttle mission were compared with ground controls. The genes included two ligands from the TNF superfamily, TWEAK and TNFSF15; two TNF receptor-associated proteins, NSMAF and PTPN13; three TNF-inducible genes, ABC50, PTX3, and SCYA13; TNF-alpha converting enzyme, IL-1 receptor antagonist, and IL-15 receptor alpha chain. Most of these are involved in either the regulation of bone density, and as such the development of spaceflight osteopenia, or in the development of proinflammatory status. PMID:12039873

  3. Alterations in TNF- and IL-related gene expression in space-flown WI38 human fibroblasts

    NASA Technical Reports Server (NTRS)

    Semov, Alexandre; Semova, Nathalia; Lacelle, Chantale; Marcotte, Richard; Petroulakis, Emmanuel; Proestou, Gregory; Wang, Eugenia

    2002-01-01

    Spaceflight, just like aging, causes profound changes in musculoskeletal parameters, which result in decreased bone density and muscular weakness. As these conditions decrease our ability to conduct long-term manned space missions, and increase bone frailty in the elderly, the identification of genes responsible for the apparition of these physiological changes will be of great benefit. Thus, we developed and implemented a new microarray approach to investigate the changes in normal WI38 human fibroblast gene expression that arise as a consequence of space flight. Using our microarray, we identified changes in the level of expression of 10 genes, belonging to either the tumor necrosis factor- (TNF) or interleukin- (IL) related gene families in fibroblasts when WI38 cells exposed to microgravity during the STS-93 Space Shuttle mission were compared with ground controls. The genes included two ligands from the TNF superfamily, TWEAK and TNFSF15; two TNF receptor-associated proteins, NSMAF and PTPN13; three TNF-inducible genes, ABC50, PTX3, and SCYA13; TNF-alpha converting enzyme, IL-1 receptor antagonist, and IL-15 receptor alpha chain. Most of these are involved in either the regulation of bone density, and as such the development of spaceflight osteopenia, or in the development of proinflammatory status.

  4. Cytogenetic responses to ionizing radiation exposure of human fibroblasts with knocked-down expressions of various DNA damage signaling genes

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Rohde, Larry; Wu, Honglu

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have demonstrated that genes with up-regulated expression induced by IR may play important roles in DNA damage sensing, cell cycle checkpoint and chromosomal repair, the relationship between the regulation of gene expression by IR and its impact on cytogenetic responses to ionizing radiation has not been systematically studied. Here, the expression of 25 genes selected based on their transcriptional changes in response to IR or from their known DNA repair roles were individually knocked down by siRNA transfection in human fibroblast cells. Chromosome aberrations (CA) and micronuclei (MN) formation were measured as the cytogenetic endpoints. Our results showed that the yields of MN and/or CA formation were significantly increased by suppressed expression of some of the selected genes in DSB and other DNA repair pathways. Knocked-down expression of other genes showed significant impact on cell cycle progression, possibly because of severe impairment of DNA damage repair. Of these 11 genes that affected the cytogenetic response, 9 were up-regulated in the cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulating the biological consequences after IR. Failure to express these IR-responsive genes, such as by gene mutation, could seriously change the outcome of the post IR scenario and lead to carcinogenesis.

  5. Correlation of vascular endothelial growth factor expression with fibroblast growth factor-8 expression and clinico-pathologic parameters in human prostate cancer

    PubMed Central

    West, A F; O'Donnell, M; Charlton, R G; Neal, D E; Leung, H Y

    2001-01-01

    Vascular endothelial growth factor (VEGF) mediates neo-angiogenesis during tumour progression and is known to cooperate with the fibroblast growth factor (FGF) system to facilitate angiogenesis in a synergistic manner. In view of this, we have investigated VEGF expression in 67 cases of prostate cancer previously characterized for fibroblast growth factor-8 (FGF-8) expression. Cytoplasmic VEGF staining was detected in malignant cells in 45 out of 67 cases. Cytoplasmic staining was found in adjacent stromal cells in 32 cases, being particularly strong around nests of invasive tumour. Positive VEGF immunoreactivity in benign glands was restricted to basal epithelium. A significant association was observed between tumour VEGF and FGF-8 expression (P = 0.004). We identified increased VEGF immunoreactivity in both malignant epithelium and adjacent stroma and both were found to be significantly associated with high tumour stage (P = 0.0047 and P = 0.0002, respectively). VEGF expression also correlated with increased serum PSA levels (P = 0.01). Among positively stained tumours, VEGF expression showed a significant association with Gleason score (P = 0.04). Cases showing positive VEGF immunoreactivity in the stroma had a significantly reduced survival rate compared to those with negative staining (P = 0.037). Cases with tumours expressing both FGF-8 in the malignant epithelium and VEGF in the adjacent stroma had a significantly worse survival rate than those with tumours negative for both, or only expressing one of the two growth factors (P = 0.029). Cox multivariate regression analysis of survival demonstrated that stromal VEGF and tumour stage were the most significant independent predictors of survival. In conclusion, we report for the first time a correlation of both tumour and stromal VEGF expression in prostate cancer with clinical parameters as well as its correlation to FGF-8 expression. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11506499

  6. Expression of pro-inflammatory markers by human dermal fibroblasts in a three-dimensional culture model is mediated by an autocrine interleukin-1 loop.

    PubMed Central

    Kessler-Becker, Daniela; Krieg, Thomas; Eckes, Beate

    2004-01-01

    In vivo, fibroblasts reside in connective tissues, with which they communicate in a reciprocal way. Such cell--extracellular matrix interactions can be studied in vitro by seeding fibroblasts in collagen lattices. Depending upon the mechanical properties of the system, fibroblasts are activated to assume defined phenotypes. In the present study, we examined a transcriptional profile of primary human dermal fibroblasts cultured in a relaxed collagen environment and found relative induction (>2-fold) of 393 out of approx. 7100 transcripts when compared with the same system under mechanical tension. Despite down-regulated proliferation and matrix synthesis, cells did not become generally quiescent, since they induced transcription of numerous other genes including matrix metalloproteinases (MMPs) and growth factors/cytokines. Of particular interest was the induction of gene transcripts encoding pro-inflammatory mediators, e.g. cyclo-oxygenase-2 (COX-2), and interleukins (ILs)-1 and -6. These are apparently regulated in a hierarchical fashion, since the addition of IL-1 receptor antagonist prevented induction of COX-2, IL-1 and IL-6, but not that of MMP-1 or keratinocyte growth factor (KGF). Our results suggest strongly that skin fibroblasts are versatile cells, which adapt to their extracellular environment by displaying specific phenotypes. One such phenotype, induced by a mechanically relaxed collagen environment, is the 'pro-inflammatory' fibroblast. We propose that fibroblasts that are embedded in a matrix environment can actively participate in the regulation of inflammatory processes. PMID:14686880

  7. [Active ingredients in rhubarb with anti-proliferative effects on scar fibroblasts].

    PubMed

    Wang, Qian; Zhang, Nan-Nan; Li, Hong-Yan; Jiang, Min; Gao, Jie; Bai, Gang

    2012-12-01

    This study is to explore the active ingredients of traditional Chinese medicine rhubarb with antiproliferative activity on hypertrophic scar fibroblasts (HSF). Rhubarb was extracted with Soxhlet extraction method by different polar solvents. MTS method was used to screen rhubarb solvent extracts (25 microg x mL(-1)) with anti-proliferative activity on HSF, and flow cytometry was used to detect their influences on cell cycle. Then, the active ingredients were analyzed by HPLC. The components with high activity were identified by UPLC-Q/TOF and verified by HE staining. The results showed that the ethyl acetate extract of rhubarb had higher anti-proliferative activity (P < 0.01), increased significantly the proportion of cells in G0/G1 phase (P < 0.01), and reduced the proliferation index (PI) (P < 0.01). The main active ingredients were anthraquinones. The results of confirming experiment showed that emodin, rhein and gallic acid could inhibit cell proliferation in a dose-dependent manner. In conclusion, the ethyl acetate extract of rhubarb showed anti-proliferative activity on HSF, and the anti-proliferative ingredients might be anthraquinones.

  8. Transforming growth factor (TGF)beta, fibroblast growth factor (FGF) and retinoid signalling pathways promote pancreatic exocrine gene expression in mouse embryonic stem cells.

    PubMed Central

    Skoudy, Anouchka; Rovira, Meritxell; Savatier, Pierre; Martin, Franz; León-Quinto, Trinidad; Soria, Bernat; Real, Francisco X

    2004-01-01

    Extracellular signalling cues play a major role in the activation of differentiation programmes. Mouse embryonic stem (ES) cells are pluripotent and can differentiate into a wide variety of specialized cells. Recently, protocols designed to induce endocrine pancreatic differentiation in vitro have been designed but little information is currently available concerning the potential of ES cells to differentiate into acinar pancreatic cells. By using conditioned media of cultured foetal pancreatic rudiments, we demonstrate that ES cells can respond in vitro to signalling pathways involved in exocrine development and differentiation. In particular, modulation of the hedgehog, transforming growth factor beta, retinoid, and fibroblast growth factor pathways in ES cell-derived embryoid bodies (EB) resulted in increased levels of transcripts encoding pancreatic transcription factors and cytodifferentiation markers, as demonstrated by RT-PCR. In EB undergoing spontaneous differentiation, expression of the majority of the acinar genes (i.e. amylase, carboxypeptidase A and elastase) was induced after the expression of endocrine genes, as occurs in vivo during development. These data indicate that ES cells can undergo exocrine pancreatic differentiation with a kinetic pattern of expression reminiscent of pancreas development in vivo and that ES cells can be coaxed to express an acinar phenotype by activation of signalling pathways known to play a role in pancreatic development and differentiation. PMID:14733613

  9. Exogenous Expression of Human Protamine 1 (hPrm1) Remodels Fibroblast Nuclei into Spermatid-like Structures

    PubMed Central

    Iuso, Domenico; Czernik, Marta; Toschi, Paola; Fidanza, Antonella; Zacchini, Federica; Feil, Robert; Curtet, Sandrine; Buchou, Thierry; Shiota, Hitoshi; Khochbin, Saadi; Ptak, Grazyna Ewa; Loi, Pasqualino

    2015-01-01

    Summary Protamines confer a compact structure to the genome of male gametes. Here, we find that somatic cells can be remodeled by transient expression of protamine 1 (Prm1). Ectopically expressed Prm1 forms scattered foci in the nuclei of fibroblasts, which coalescence into spermatid-like structures, concomitant with a loss of histones and a reprogramming barrier, H3 lysine 9 methylation. Protaminized nuclei injected into enucleated oocytes efficiently underwent protamine to maternal histone TH2B exchange and developed into normal blastocyst stage embryos in vitro. Altogether, our findings present a model to study male-specific chromatin remodeling, which can be exploited for the improvement of somatic cell nuclear transfer. PMID:26628361

  10. The hypoxia-inducible factor-1α activates ectopic production of fibroblast growth factor 23 in tumor-induced osteomalacia

    PubMed Central

    Zhang, Qian; Doucet, Michele; Tomlinson, Ryan E; Han, Xiaobin; Quarles, L Darryl; Collins, Michael T; Clemens, Thomas L

    2016-01-01

    Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome in which ectopic production of fibroblast growth factor 23 (FGF23) by non-malignant mesenchymal tumors causes phosphate wasting and bone fractures. Recent studies have implicated the hypoxia-inducible factor-1α (HIF-1α) in other phosphate wasting disorders caused by elevated FGF23, including X-linked hypophosphatemic rickets and autosomal dominant hypophosphatemia. Here we provide evidence that HIF-1α mediates aberrant FGF23 in TIO by transcriptionally activating its promoter. Immunohistochemical studies in phosphaturic mesenchymal tumors resected from patients with documented TIO showed that HIF-1α and FGF23 were co-localized in spindle-shaped cells adjacent to blood vessels. Cultured tumor tissue produced high levels of intact FGF23 and demonstrated increased expression of HIF-1α protein. Transfection of MC3T3-E1 and Saos-2 cells with a HIF-1α expression construct induced the activity of a FGF23 reporter construct. Prior treatment of tumor organ cultures with HIF-1α inhibitors decreased HIF-1α and FGF23 protein accumulation and inhibited HIF-1α-induced luciferase reporter activity in transfected cells. Chromatin immunoprecipitation assays confirmed binding to a HIF-1α consensus sequence within the proximal FGF23 promoter, which was eliminated by treatment with a HIF-1α inhibitor. These results show for the first time that HIF-1α is a direct transcriptional activator of FGF23 and suggest that upregulation of HIF-1α activity in TIO contributes to the aberrant FGF23 production in these patients. PMID:27468359

  11. Expression of WNT5A in Idiopathic Pulmonary Fibrosis and Its Control by TGF-β and WNT7B in Human Lung Fibroblasts.

    PubMed

    Newman, Donna R; Sills, W Shane; Hanrahan, Katherine; Ziegler, Amanda; Tidd, Kathleen McGinnis; Cook, Elizabeth; Sannes, Philip L

    2016-02-01

    The wingless (Wnt) family of signaling ligands contributes significantly to lung development and is highly expressed in patients with usual interstitial pneumonia (UIP). We sought to define the cellular distribution of Wnt5A in the lung tissue of patients with idiopathic pulmonary fibrosis (IPF) and the signaling ligands that control its expression in human lung fibroblasts and IPF myofibroblasts. Tissue sections from 40 patients diagnosed with IPF or UIP were probed for the immunolocalization of Wnt5A. Further, isolated lung fibroblasts from normal or IPF human lungs, adenovirally transduced for the overexpression or silencing of Wnt7B or treated with TGF-β1 or its inhibitor, were analyzed for Wnt5A protein expression. Wnt5A was expressed in IPF lungs by airway and alveolar epithelium, smooth muscle cells, endothelium, and myofibroblasts of fibroblastic foci and throughout the interstitium. Forced overexpression of Wnt7B with or without TGF-β1 treatment significantly increased Wnt5A protein expression in normal human smooth muscle cells and fibroblasts but not in IPF myofibroblasts where Wnt5A was already highly expressed. The results demonstrate a wide distribution of Wnt5A expression in cells of the IPF lung and reveal that it is significantly increased by Wnt7B and TGF-β1, which, in combination, could represent key signaling pathways that modulate the pathogenesis of IPF.

  12. Expression of transforming growth factor β and fibroblast growth factor 2 in the lens epithelium of Morioka cataract mice.

    PubMed

    Kondo, Tomohiro; Ishiga-Hashimoto, Naoko; Nagai, Hiroaki; Takeshita, Ai; Mino, Masaki; Morioka, Hiroshi; Kusakabe, Ken Takeshi; Okada, Toshiya

    2014-05-01

    In the Morioka cataract (MCT) mice, lens opacity appears at 6 to 8 weeks of age, and swollen lens fiber is electron-microscopically observed at 3 weeks after birth. The present study was designed to characterize the expression of transforming growth factor β (TGFβ) and fibroblast growth factor 2 (FGF2) in the lens epithelium of the MCT mice. Immunohistochemical analysis showed that the expression of TGFβ in the lens epithelium of the MCT mice was stronger than that of the wild-type ddY mice at 2 and 4 weeks after birth. The expression of TGFβ receptors (TGFβRI and TGFβRII) and FGF2 in the lens epithelium of the MCT mice was stronger than that of the wild-type ddY mice at 4 weeks and weaker than that of the wild-type ddY mice at 15 weeks after birth. Using real time polymerase chain reaction (PCR), quantitative RT-PCR analysis showed that expression of TGFβ1 and TGFβ2 mRNA in the lens of 2-week-old MCT mice was significantly higher compared to age-matched wild-type ddY mice. These findings indicate that the lens epithelium of MCT mice has increased expression of TGFβ before cataract affection and that changes in the expression of FGF2 as well as TGFβ may contribute to the progression of the cataract in the mice.

  13. The effect of sativan from Viola verecunda A. Gray on the expressions of matrix metalloproteinase-1 caused by ultraviolet irradiated cultured primary human skin fibroblasts.

    PubMed

    Moon, Hyung-In; Kim, Eun Ju; Lee, Joongku; Lee, Hyeong-Kyu; Chung, Jin Ho

    2006-03-01

    Matrix metalloproteinases (MMPs) are a family of enzymes whose main function is degradation of the extracellular matrix. Matrix metalloproteinase-1 (MMP-1) degrades type I procollagen constituting the major structural component of the basement membrane and extra cellular membrane. The enzymatic activity is found to be elevated in photoaging. With the aim of finding novel MMP-1 inhibitors from natural products, 15 extracts of the Viola taxa, which are used as prescriptions for skin eruption treatment in traditional medicine, were screened for their inhibitory activities towards MMP-1. Among the 15 tested materials, the methanol extracts of Viola hondoensis W. BECKER et H. BOISS, Viola ibukiana MAKINO, Viola lactiflora NAKAI and Viola verecunda A. GRAY were potential inhibitory to MMP-1, and other Viola taxa showed a weak inhibitory effect at a concentration of 100 microg/ml. We investigated the effect of MMP-1 inhibitory of the solvent fractions of the same plants (Viola hondoensis, Viola ibukiana and Viola verecunda). Therefore, a strong inhibition was found in the ethylacetate fractions of Viola verecunda with inhibitory activity (>90%) at a concentration of 10 microg/ml. Here we investigated the effect of sativan isolated from the ethylacetate fractions of Viola verecunda on the expression of MMPs in UV-irradiated human skin fibroblasts in vitro. Sativan markedly reduced UV-induced MMP-1 expression at the protein levels in a dose-dependent manner. Our report is the first description for the ability of sativan to regulate UV-induced MMP-1 expression.

  14. Activation of the cAMP cascade in human fibroblast cultures rescues the activity of oxidatively damaged complex I.

    PubMed

    De Rasmo, Domenico; Signorile, Anna; Larizza, Maria; Pacelli, Consiglia; Cocco, Tiziana; Papa, Sergio

    2012-02-15

    A study of the relationship between cAMP/PKA-dependent phosphorylation and oxidative damage of subunits of complex I of the mitochondrial respiratory chain is presented. It is shown that, in fibroblast cultures, PKA-mediated phosphorylation of the NDUFS4 subunit of complex I rescues the activity of the oxidatively damaged complex. Evidence is presented showing that this effect is mediated by phosphorylation-dependent exchange of carbonylated NDUFS4 subunit in the assembled complex with the de novo synthesized subunit. These results indicate a potential use for β-adrenoceptor agonists in preventing/reversing the detrimental effects of oxidative stress in the mitochondrial respiratory system.

  15. TCDD and a putative endogenous AhR ligand, ITE, elicit the same immediate changes in gene expression in mouse lung fibroblasts.

    PubMed

    Henry, Ellen C; Welle, Stephen L; Gasiewicz, Thomas A

    2010-03-01

    The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, mediates toxicity of several classes of xenobiotics and also has important physiological roles in differentiation, reproduction, and immunity, although the endogenous ligand(s) mediating these functions is/are as yet unidentified. One candidate endogenous ligand, 2-(1'H-indolo-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), is a potent AhR agonist in vitro, activates the murine AhR in vivo, but does not induce toxicity. We hypothesized that ITE and the toxic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), may modify transcription of different sets of genes to account for their different toxicity. To test this hypothesis, primary mouse lung fibroblasts were exposed to 0.5muM ITE, 0.2nM TCDD, or vehicle for 4 h, and total gene expression was evaluated using microarrays. After this short-term and low-dose treatment, several hundred genes were changed significantly, and the response to ITE and TCDD was remarkably similar, both qualitatively and quantitatively. Induced gene sets included the expected battery of AhR-dependent xenobiotic-metabolizing enzymes, as well as several sets that reflect the inflammatory role of lung fibroblasts. Real time quantitative RT-qPCR assay of several selected genes confirmed these microarray data and further suggested that there may be kinetic differences in expression between ligands. These data suggest that ITE and TCDD elicit an analogous change in AhR conformation such that the initial transcription response is the same. Furthermore, if the difference in toxicity between TCDD and ITE is mediated by differences in gene expression, then it is likely that secondary changes enabled by the persistent TCDD, but not by the shorter lived ITE, are responsible.

  16. Scleroderma fibroblasts show increased responsiveness to endothelial cell-derived IL-1 and bFGF.

    PubMed

    Denton, C P; Xu, S; Black, C M; Pearson, J D

    1997-03-01

    Fibroblasts cultured from lesional skin in scleroderma (systemic sclerosis) demonstrate an activated phenotype that may be important in pathogenesis. Endothelial cell-derived cytokines can modulate fibroblast properties, and endothelial cell changes occur early in scleroderma. Thus, endothelial cell and fibroblast dysfunction may be linked through the paracrine activity of soluble endothelial cell products. We have explored endothelial cell-fibroblast interactions in vitro by investigating the modulation of scleroderma and control fibroblast properties by endothelial cell-conditioned medium (EC-CM). EC-CM caused a concentration-dependent stimulation of fibroblast DNA and protein synthesis and upregulation of cell surface ICAM-1 expression. Scleroderma fibroblasts showed consistently greater responses than control cells. Medium conditioned by mechanically wounded endothelial cells had a greater effect than that from resting endothelial cells. Pre-incubation of EC-CM with anti-bFGF significantly reduced the promotion of fibroblast thymidine incorporation but did not affect endothelial cell-induced leucine incorporation. Conversely, anti-IL-1 antibodies abrogated EC-CM-induced leucine incorporation and ICAM-1 expression but did not diminish thymidine incorporation. Recombinant bFGF or IL-1 modulated fibroblast properties similarly. These data demonstrate that endothelial cell-derived IL-1 and bFGF modulate fibroblast properties independently and that lesional scleroderma strains are more responsive than control fibroblasts to endothelial cell-induced modulation, which supports the hypothesis that altered endothelial cell-fibroblast communication may be involved in the pathogenesis of scleroderma.

  17. Differential activation of mitogen-activated protein kinase in response to basic fibroblast growth factor in skeletal muscle cells.

    PubMed Central

    Campbell, J S; Wenderoth, M P; Hauschka, S D; Krebs, E G

    1995-01-01

    In the MM14 mouse myoblast cell line, fibroblast growth factor (FGF) stimulates proliferation and represses differentiation. However, the intracellular signaling pathways used by FGF to affect these cellular processes are unknown. The predominant FGF receptor present on MM14 cells, FGFR1, is a receptor tyrosine kinase capable of activating the mitogen-activated protein kinase (MAPK) cascade in fibroblast and neuronal cell lines. To determine whether the FGF signal is mediated via the MAPK cascade in myoblasts, MM14 cells were stimulated with basic FGF (bFGF) and activities of the various kinases were measured. After withdrawal from serum and bFGF for 3 hr, bFGF stimulated MAPK kinase (MAPKK) activity, but MAPK and S6 peptide kinase activities were not detected. In contrast, when serum and bFGF were withdrawn for 10 hr, the activities of MAPKK, MAPK, and S6 peptide kinase were all stimulated by bFGF treatment. The inability of bFGF to stimulate MAPK after 3 hr of withdrawal may be due, in part, to the presence of a MAPK phosphatase activity that was detected in MM14 cell extracts. This dephosphorylating activity diminishes during commitment to terminal differentiation and is inhibited by sodium orthovanadate. Thus, the ability of bFGF to stimulate MAPK in MM14 cells is correlated with the loss of a MAPK phosphatase activity. These results show that although bFGF activates MAPKK in proliferating myoblasts, the mitogenic signal does not progress to the downstream kinases, providing a physiological example of an uncoupling of the MAPK cascade. Images Fig. 4 Fig. 5 PMID:7846069

  18. Bispecific single-chain diabody-immunoliposomes targeting endoglin (CD105) and fibroblast activation protein (FAP) simultaneously.

    PubMed

    Rabenhold, Markus; Steiniger, Frank; Fahr, Alfred; Kontermann, Roland E; Rüger, Ronny

    2015-03-10

    Liposomes are well-established drug delivery systems with cancer chemotherapy as main focus. To increase the cellular drug delivery, liposomes can be endowed with ligands, e.g. recombinant antibody fragments, which ensure specific cell interaction. Multispecific immunoliposomes can be prepared to improve the liposome to cell interaction by targeting multiple different targets at the same time, for instance by coupling two or more different ligands to the liposomal surface, resulting in a synergistic or additive increase in binding. An alternative approach is the use of bispecific ligands to address at least two different targets. For this purpose we cloned a single-chain diabody fragment (scDb`), a bispecific molecule targeting two antigens, endoglin (CD105) and fibroblast activation protein (FAP), expressed on cells of the tumor microenvironment. As model cell system, a human fibrosarcoma cell line was used expressing endoglin and FAP simultaneously. Monospecific immunoliposomes directed either against endoglin or FAP were compared in vitro for cell binding and cytotoxic activity with bispecific dual-targeted scFv`-IL (bispecific scFv`FAP/CD105-IL) and bispecific single-chain diabody`-IL (scDb`CD105/FAP-IL) targeting endoglin and FAP simultaneously. In the underlying study, bispecific scFv`FAP/CD105-IL interacted stronger with cells expressing FAP and endoglin (both targets simultaneously) compared to the monospecific immunoliposomes. Furthermore, bispecific scDb`-immunoliposomes increased the cell interaction massively and showed enhanced cytotoxicity against target cells using doxorubicin-loaded immunoliposomes. The use of recombinant bispecific ligands as scDb`-molecules facilitates the generation of bispecific immunoliposomes by using the established post-insertion technique, enabling an extension of the ligand specificity spectrum via genetic modification.

  19. Transcriptome-Wide Expression Profiling in Skin Fibroblasts of Patients with Joint Hypermobility Syndrome/Ehlers-Danlos Syndrome Hypermobility Type.

    PubMed

    Chiarelli, Nicola; Carini, Giulia; Zoppi, Nicoletta; Dordoni, Chiara; Ritelli, Marco; Venturini, Marina; Castori, Marco; Colombi, Marina

    2016-01-01

    Joint hypermobility syndrome/Ehlers-Danlos syndrome hypermobility type (JHS/EDS-HT), is likely the most common systemic heritable connective tissue disorder, and is mostly recognized by generalized joint hypermobility, joint instability complications, minor skin changes and a wide range of satellite features. JHS/EDS-HT is considered an autosomal dominant trait but is still without a defined molecular basis. The absence of (a) causative gene(s) for JHS/EDS-HT is likely attributable to marked genetic heterogeneity and/or interaction of multiple loci. In order to help in deciphering such a complex molecular background, we carried out a comprehensive immunofluorescence analysis and gene expression profiling in cultured skin fibroblasts from five women affected with JHS/EDS-HT. Protein study revealed disarray of several matrix structural components such as fibrillins, tenascins, elastin, collagens, fibronectin, and their integrin receptors. Transcriptome analysis indicated perturbation of different signaling cascades that are required for homeostatic regulation either during development or in adult tissues as well as altered expression of several genes involved in maintenance of extracellular matrix architecture and homeostasis (e.g., SPON2, TGM2, MMP16, GPC4, SULF1), cell-cell adhesion (e.g., CDH2, CHD10, PCDH9, CLDN11, FLG, DSP), immune/inflammatory/pain responses (e.g., CFD, AQP9, COLEC12, KCNQ5, PRLR), and essential for redox balance (e.g., ADH1C, AKR1C2, AKR1C3, MAOB, GSTM5). Our findings provide a picture of the gene expression profile and dysregulated pathways in JHS/EDS-HT skin fibroblasts that correlate well with the systemic phenotype of the patients. PMID:27518164

  20. The role of photobiomodulation on gene expression of cell adhesion molecules in diabetic wounded fibroblasts in vitro.

    PubMed

    Ayuk, Sandra M; Abrahamse, Heidi; Houreld, Nicolette N

    2016-08-01

    Cell adhesion molecules (CAMs) are cell surface glycoproteins that facilitate cell-cell contacts and adhesion with the extracellular matrix (ECM). Cellular adhesion is affected by various disease conditions, such as diabetes mellitus (DM) and inflammation. Photobiomodulation (PBM) stimulates biological processes and expression of these cellular molecules. The aim of this experimental work was to demonstrate the role of PBM at 830nm on CAMs in diabetic wounded fibroblast cells. Isolated human skin fibroblast cells were used. Normal (N-) and diabetic wounded (DW-) cells were irradiated with a continuous wave diode laser at 830nm with an energy density of 5J/cm(2). Real time reverse transcriptase polymerase chain reaction (RT-PCR) was used to determine the relative gene expression of 39 CAMs 48h post-irradiation. Normalized expression levels from irradiated cells were calculated relative to non-irradiated control cells according to the 2^(-ΔΔCt) method. Thirty-one genes were significantly regulated in N-cells (28 were genes up-regulated and three genes down-regulated), and 22 genes in DW-cells (five genes were up-regulated and 17 genes down-regulated). PBM induced a stimulatory effect on various CAMs namely cadherins, integrins, selectins and immunoglobulins, and hence may be used as a complementary therapy in advancing treatment of non-healing diabetic ulcers. The regulation of CAMs as well as evaluating the role of PBM on the molecular effects of these genes may expand knowledge and prompt further research into the cellular mechanisms in diabetic wound healing that may lead to valuable clinical outcomes. PMID:27295416

  1. Transcriptome-Wide Expression Profiling in Skin Fibroblasts of Patients with Joint Hypermobility Syndrome/Ehlers-Danlos Syndrome Hypermobility Type

    PubMed Central

    Chiarelli, Nicola; Carini, Giulia; Zoppi, Nicoletta; Dordoni, Chiara; Ritelli, Marco; Venturini, Marina; Castori, Marco; Colombi, Marina

    2016-01-01

    Joint hypermobility syndrome/Ehlers–Danlos syndrome hypermobility type (JHS/EDS-HT), is likely the most common systemic heritable connective tissue disorder, and is mostly recognized by generalized joint hypermobility, joint instability complications, minor skin changes and a wide range of satellite features. JHS/EDS-HT is considered an autosomal dominant trait but is still without a defined molecular basis. The absence of (a) causative gene(s) for JHS/EDS-HT is likely attributable to marked genetic heterogeneity and/or interaction of multiple loci. In order to help in deciphering such a complex molecular background, we carried out a comprehensive immunofluorescence analysis and gene expression profiling in cultured skin fibroblasts from five women affected with JHS/EDS-HT. Protein study revealed disarray of several matrix structural components such as fibrillins, tenascins, elastin, collagens, fibronectin, and their integrin receptors. Transcriptome analysis indicated perturbation of different signaling cascades that are required for homeostatic regulation either during development or in adult tissues as well as altered expression of several genes involved in maintenance of extracellular matrix architecture and homeostasis (e.g., SPON2, TGM2, MMP16, GPC4, SULF1), cell-cell adhesion (e.g., CDH2, CHD10, PCDH9, CLDN11, FLG, DSP), immune/inflammatory/pain responses (e.g., CFD, AQP9, COLEC12, KCNQ5, PRLR), and essential for redox balance (e.g., ADH1C, AKR1C2, AKR1C3, MAOB, GSTM5). Our findings provide a picture of the gene expression profile and dysregulated pathways in JHS/EDS-HT skin fibroblasts that correlate well with the systemic phenotype of the patients. PMID:27518164

  2. Stable transfection and identification of a hair follicle-specific expression vector of IGFBP-5 in goat fetal fibroblasts.

    PubMed

    Wang, X J; Su, H M; Liang, Y; Wang, Y F; Guo, X D; Wang, Z G; Liu, D J

    2014-03-17

    The insulin-like growth factor-binding protein-5 (IGFBP-5) is one of the 6 members of the IGFBP family and is involved in the regulation of cell growth, apoptosis, and other IGF-stimulated signaling pathways. To determine the significance of IGFBP-5 in the Inner Mongolia Cashmere goat (Capra hircus), a hair follicle-specific expression vector of IGFBP-5, pCDsRed2-K-IGFBP5 (6.7 kb), was constructed by cloning IGFBP-5 downstream of the keratin-association protein (KAP)6-1 promoter and inserting this fragment into pCDsRed2, which contains a red fluorescent protein (DsRed) expression unit. Inner Mongolia Cashmere goat fetal fibroblast (GFb) cells were transfected with the expression vector by using Lipofectamine(TM) 2000. Cell clones that stably expressed red fluorescence were obtained after selection with Geneticin (G418). The transgene in the cell clones was examined by polymerase chain reaction to verify that exogenous DNA (pKAP6-1 and IGFBP-5) had integrated stably into GFb cells. These data suggest that this method can be used for the construction of a hair follicle-specific expression vector for functional genetic analyses and for obtaining stable transfection donor cells for nuclear transfer.

  3. Microarray analysis of E-box binding-related gene expression in young and replicatively senescent human fibroblasts.

    PubMed

    Semov, Alexandre; Marcotte, Richard; Semova, Natalie; Ye, Xiangyun; Wang, Eugenia

    2002-03-01

    An E-box (CACGTG) designer microarray was developed to monitor a group of genes whose expressions share a particular regulatory mode. Sensitivity and specificity of microarray hybridization, as well as variability of microarray data, were evaluated. This designer microarray was used to generate expression profiles of E-box binding-related genes in WI-38 fibroblast cultures at three different growth states: low-passage replicating, low-passage contact-inhibited quiescent, and replicatively senescent. Microarray gene screening reveals that quiescent and senescent cells, in comparison with replicating ones, are characterized by downregulation of Pam, a protein associated with c-Myc, and upregulation of Mad family genes, Max dimerization proteins. Moreover, quiescence and senescence can be distinguished by increased expression of Irlb, c-Myc transcription factor, and Miz-1, c-Myc-interacting Zn finger protein 1, only in the former state. Senescence is characterized by downregulation of Id4, inhibitor of DNA binding 4, and Mitf, microphthalmia-associated transcription factor, in comparison with young replicating and quiescent states. Differential expression of genes detected by microarray hybridization was independently confirmed by reverse transcription polymerase chain reaction technique. Alterations in the expression of E-box-binding transcription factors and c-Myc-binding proteins demonstrate the importance of these genes in establishing the contact-inhibited quiescent or senescent phenotypes.

  4. Altered expression of TPP1 in fibroblast-like synovial cells might be involved in the pathogenesis of rheumatoid arthritis.

    PubMed

    Qing, Yu-Feng; Zhou, Jing-Guo; Zhao, Ming-Cai; Xie, Wen-Guang; Yang, Qi-Bin; Xing, Yan; Zeng, Sheng-Ping; Jiang, Hong

    2012-08-01

    We undertook this study to determine whether the altered expression of telomeric proteins TPP1 and POT1 in fibroblast-like synovial cells (FLS) could provide insights into the pathogenesis of rheumatoid arthritis (RA). FLS were isolated from patients with RA, osteoarthritis (OA) and traumatic joint disease, and cultured in vitro. TPP1 and POT1 mRNA level of FLS were measured using real-time quantitative polymerase chain reaction (RT-qPCR) in 42 RA, 23 OA and 13 healthy cases. Immunofluorescence staining and Western blot were used to detect the expression of TPP1 and POT1 protein. Expression of TPP1 and POT1 mRNA was significantly reduced in RA cases (P < 0.001, respectively), and no significant difference was observed between OA and healthy cases (P > 0.05, respectively). Confocal microscopy images showed TPP1 and POT1 proteins mainly located in nucleus of FLS. Western blot demonstrated that TPP1 protein level was significantly reduced in RA cases (P < 0.001), and POT1 protein expression was not statistical significance among RA, OA patients and healthy cases (P > 0.05). Significant negative correlation was observed between level of TPP1 mRNA and titers of anti-CCP antibody (P < 0.001), RF (P < 0.01). Altered expression of TPP1 might contribute to persistent proliferation of FLS in RA, further study on functions of telomeric proteins in RA would be needed.

  5. Fibroblast growth factor 16 and 18 are expressed in human cardiovascular tissues and induce on endothelial cells migration but not proliferation

    SciTech Connect

    Antoine, M.; Wirz, W.; Tag, C.G.; Gressner, A.M.; Wycislo, M.; Mueller, R.; Kiefer, P. . E-mail: pkiefer@ukaachen.de

    2006-07-21

    Endothelial cells line the blood vessel and precursor endothelial cells appear to have a pivotal effect on the organ formation of the heart, the embryonic development of the kidney, and the liver. Several growth factors including the fibroblast growth factors (FGF) seem to be involved in these processes. Ligands such as basic FGF produced and secreted by endothelial cells may also coordinate cellular migration, differentiation, and proliferation under pathological conditions including wound healing, tumorgenesis, and fibrogenesis in the adult. Recently we demonstrated the expression of two secreted FGFs, FGF16, and FGF18, in HUVEC and in rat aortic tissue. In the present report, we confirmed by RT-PCR analysis that FGF18 is wildly expressed in the cardiovascular tissue, while FGF16 showed a more restricted expression pattern. HUVEC clearly demonstrated chemotaxis towards FGF16 and FGF18. Both FGFs also enhanced cell migration in response to mechanical damage. However, recombinant FGF16 and FGF18 failed to induce endothelial cell proliferation or sprouting in a three-dimensional in vitro angiogenesis assay. Fgf18 expression was earlier reported in the liver, and we detected FGF18 expression in liver vascular and liver sinusoidal endothelial cells (LSECs), but not in hepatic parenchymal cells. Recombinant FGF18 stimulated DNA synthesis in primary hepatocytes, suggesting, that endothelial FGF18 might have a paracrine function in promoting growth of the parenchymal tissue. Interestingly, FGF2, which is mitogenic on endothelial cells and hepatocytes stimulates a sustained MAPK activation in both cell types, while FGF18 causes a short transient activation of the MAPK pathway in endothelial cells but a sustained activation in hepatocytes. Therefore, the difference in the time course of MAPK activation by the different FGFs appears to be the cause for the different cellular responses.

  6. MMP-3 expression and release by rheumatoid arthritis fibroblast-like synoviocytes induced with a bacterial ligand of integrin α5β1

    PubMed Central

    Zeisel, Mirjam B; Druet, Vanessa A; Wachsmann, Dominique; Sibilia, Jean

    2005-01-01

    Fibroblast-like synoviocytes (FLSs) play a major role in the pathogenesis of rheumatoid arthritis (RA) by secreting effector molecules that promote inflammation and joint destruction. How these cells become and remain activated is still elusive. Both genetic and environmental factors probably play a role in transforming FLSs into inflammatory matrix-degrading cells. As bacterial products have been detected in the joint and shown to trigger joint inflammation, this study was undertaken to investigate whether a bacterial ligand of integrin α5β1, protein I/II, could contribute to the aggressive behavior of RA FLSs. Protein I/II is a pathogen-associated molecular pattern (PAMP) isolated from oral streptococci that have been identified in the joints of RA patients. The response of RA and osteoarthritis FLSs to protein I/II was analyzed using human cancer cDNA expression arrays. RT-PCR and pro-MMP-3 (pro-matrix metalloproteinase) assays were then performed to confirm the up-regulation of gene expression. Protein I/II modulated about 6% of all profiled genes. Three of these, those encoding IL-6, leukemia inhibitory factor, and MMP-3, showed a high expression level in all RA FLSs tested, whereas the expression of genes encoding other members of the cytokine or MMP-family was not affected. Furthermore, the up-regulation of MMP-3 gene expression was followed by an increase of pro-MMP-3 release. The expression of interferon regulatory factor 1 and fibroblast growth factor-5 was also up-regulated, although the expression levels were lower. Only one gene, that for insulin-like growth factor binding protein-4, was down-regulated in all RA FLSs. In contrast, in osteoarthritis FLSs only one gene, that for IL-6, was modulated. These results suggest that a bacterial ligand of integrin α5β1 may contribute to the aggressive behavior of RA FLSs by inducing the release of pro-inflammatory cytokines and a cartilage-degrading enzyme, such as IL-6 and MMP-3, respectively. PMID:15642131

  7. Removal of selectable marker gene from fibroblast cells in transgenic cloned cattle by transient expression of Cre recombinase and subsequent effects on recloned embryo development.

    PubMed

    Wang, S; Sun, X; Ding, F; Zhang, K; Zhao, R; Li, S; Li, R; Tang, B; Zhang, L; Liu, Y; Li, J; Gao, F; Wang, H; Wang, L; Dai, Y; Li, N

    2009-09-01

    Introduction of selectable marker genes to transgenic animals could create an inconvenience to further research and may exaggerate public concerns regarding biological safety. The objective of the current study was to excise loxP flanked neo(R) in transgenic cloned cattle by transient expression of Cre recombinase. Green fluorescent protein gene (GFP) was incorporated to monitor Cre expression; therefore, Cre-expressed cells could be selected indirectly by fluorescence-activated cell sorting (FACS). The neo(R) was removed and Cre expressed transiently in GFP-positive colonies; excision of neo(R) was confirmed by single-blastocyst PCR in recloned blastocysts, with neo(R)-free fibroblast cells as donors. There was no difference (P>0.05) in rates of cleavage (76.0% vs. 68.8%) or blastocyst formation (56.6% vs. 52.9%) between recloned embryos with neo(R)-free or neo(R)-included donors. The differential staining of recloned blastocysts were similar (P >0.05) in terms of total cell number (124 vs. 122) and the ratio of ICM (Inner Cell Mass) to the total cell number (38.1% vs. 38.2%). Furthermore, pregnancy and calving rates were not different (P>0.05) from those of the control. In conclusion, we successfully excised neo(R) from transgenic cloned cattle; the manipulation did not affect the developmental competence of recloned preimplantation embryos. This approach should benefit bioreactor and transgenic research in livestock.

  8. Altered miRNA expression profiles are involved in the protective effects of troxerutin against ultraviolet B radiation in normal human dermal fibroblasts.

    PubMed

    Cha, Hwa Jun; Lee, Kwang Sik; Lee, Ghang Tai; Lee, Kun Kook; Hong, Jin Tae; Lee, Sung Nae; Jang, Hyun Hee; Lee, Jae Ho; Park, In-Chul; Kim, Yu Ri; Ahn, Kyu Joong; Kwon, Seung Bin; An, In-Sook; An, Sungkwan; Bae, Seunghee

    2014-04-01

    The aim of this study was to investigate the mechanisms by which troxerutin protects cells against ultraviolet B (UVB) radiation. First, we demonstrate that pre-treatment with troxerutin protects normal human dermal fibroblasts (nHDFs) against UVB-induced cytotoxicity. As shown by migration assay and DNA repair analysis, troxerutin increased cell migration and DNA repair activity in the nHDFs. Subsequently, we analyzed microRNA (miRNA) expression profiles in the nHDFs. miRNAs are 19- to 24-nucleotide (nt) non-coding RNA molecules that regulate the translation of target genes through RNA interference. In UVB-exposed cells, miRNAs act on crucial functions, such as apoptosis and cellular senescence. miRNA expression is significantly altered during the protective process induced by phytochemicals. Therefore, understanding changes that occur in miRNA expression profiles may help to elucidate the protective mechanisms of troxerutin. We identified 11 miRNAs that were significantly (>2-fold) upregulated and 12 that were significantly downregulated (>2-fold) following treatment of the nHDFs with troxerutin. In addition, we investigated the biological functions of these miRNAs through the prediction of miRNA targets and Gene Ontology analysis of the putative targets. Overall, our findings indicate that pre-treatment with troxerutin increases the viability of UVB-exposed nHDFs through the alteration of the miRNA expression profiles.

  9. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice.

    PubMed

    Perwad, Farzana; Azam, Nasreen; Zhang, Martin Y H; Yamashita, Takeyoshi; Tenenhouse, Harriet S; Portale, Anthony A

    2005-12-01

    Fibroblast growth factor-23 (FGF-23) is a novel circulating peptide that regulates phosphorus (Pi) and vitamin D metabolism, but the mechanisms by which circulating FGF-23 itself is regulated are unknown. To determine whether the serum FGF-23 concentration is regulated by dietary intake of Pi, we fed wild-type (WT), Npt2a gene-ablated (Npt2a(-/-)), and Hyp mice diets containing varying Pi contents (0.02-1.65%). In WT mice, increases in dietary Pi intake from 0.02-1.65% induced a 7-fold increase in serum FGF-23 and a 3-fold increase in serum Pi concentrations. Across the range of dietary Pi, serum FGF-23 concentrations varied directly with serum Pi concentrations (r(2) = 0.72; P < 0.001). In Npt2a(-/-) mice, serum FGF-23 concentrations were significantly lower than in WT mice, and these differences could be accounted for by the lower serum Pi levels in Npt2a(-/-) mice. The serum concentrations of FGF-23 in Hyp mice were 5- to 25-fold higher than values in WT mice, and the values varied with dietary Pi intake. Fgf-23 mRNA abundance in calvaria was significantly higher in Hyp mice than in WT mice on the 1% Pi diet; in both groups of mice, fgf-23 mRNA abundance in calvarial bone was suppressed by 85% on the low (0.02%) Pi diet. In WT mice fed the low (0.02%) Pi diet, renal mitochondrial 1alpha-hydroxylase activity and renal 1alpha-hydroxylase (P450c1alpha) mRNA abundance were significantly higher than in mice fed the higher Pi diets and varied inversely with serum FGF-23 concentrations (r(2) = 0.86 and r(2) = 0.64; P < 0.001, respectively). The present data demonstrate that dietary Pi regulates the serum FGF-23 concentration in mice, and such regulation is independent of phex function. The data suggest that genotype-dependent and dietary Pi-induced changes in the serum FGF-23 concentration reflect changes in fgf-23 gene expression in bone.

  10. Versican V1 Overexpression Induces a Myofibroblast-Like Phenotype in Cultured Fibroblasts

    PubMed Central

    Carthy, Jon M.; Meredith, Anna J.; Boroomand, Seti; Abraham, Thomas; Luo, Zongshu; Knight, Darryl; McManus, Bruce M.

    2015-01-01

    Background Versican, a chondroitin sulphate proteoglycan, is one of the key components of the provisional extracellular matrix expressed after injury. The current study evaluated the hypothesis that a versican-rich matrix alters the phenotype of cultured fibroblasts. Methods and Results The full-length cDNA for the V1 isoform of human versican was cloned and the recombinant proteoglycan was expressed in murine fibroblasts. Versican expression induced a marked change in fibroblast phenotype. Functionally, the versican-expressing fibroblasts proliferated faster and displayed enhanced cell adhesion, but migrated slower than control cells. These changes in cell function were associated with greater N-cadherin and integrin β1 expression, along with increased FAK phosphorylation. The versican-expressing fibroblasts also displayed expression of smooth muscle α-actin, a marker of myofibroblast differentiation. Consistent with this observation, the versican fibroblasts displayed increased synthetic activity, as measured by collagen III mRNA expression, as well as a greater capacity to contract a collagen lattice. These changes appear to be mediated, at least in part, by an increase in active TGF-β signaling in the versican expressing fibroblasts, and this was measured by phosphorylation and nuclear accumulation of SMAD2. Conclusions Collectively, these data indicate versican expression induces a myofibroblast-like phenotype in cultured fibroblasts. PMID:26176948

  11. Expression of vascular endothelial growth factor and basic fibroblast growth factor in acute rejection reaction following rat orthotopic liver transplantation.

    PubMed

    Zhang, Changsong; Yang, Guangshun; Lu, Dewen; Ling, Yang; Chen, Guihua; Zhou, Tianbao

    2014-08-01

    The aim of the present study was to investigate the expression levels of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in acute rejection reaction (ARR) following orthotopic liver transplantation in a rat model. Serum VEGF and bFGF levels were detected using ELISA, and their expression levels in liver and spleen tissues were determined using immunohistochemistry. The mRNA expression levels of VEGF and bFGF were detected by conducting a quantitative polymerase chain reaction during the ARR following orthotopic liver transplantation. The expression levels of VEGF and bFGF in the serum 3 days following liver transplantation were significantly higher compared with those in the other groups (1 and 7 days following transplantation; P<0.01). In addition, the numbers of cells in the liver tissue that were shown to be positive for the expression VEGF and bFGF using immunohistochemistry were significantly higher 3 days following transplantation than at the other time points (P<0.0001). Furthermore, the numbers of cells positive for VEGF and bFGF expression in the spleen detected 3 days following the transplantation surgery were also significantly higher compared with those at the other time points (P<0.01). VEGF and bFGF mRNA expression levels were also increased from 1 day following the surgery and reached a peak at day 3, prior to declining gradually and remaining at a relatively high level. VEGF and bFGF mRNA expression levels changed dynamically, by peaking and then declining, in ARR following orthotopic liver transplantation. These changes may have an important impact on angiogenesis and the inflammatory reaction, and the identification of these changes increases the current understanding of ARR following orthotopic liver transplantation.

  12. Antioxidant and anti-lipid peroxidation activities of Tamarindus indica seed coat in human fibroblast cells.

    PubMed

    Nakchat, Oranuch; Meksuriyen, Duangdeun; Pongsamart, Sunanta

    2014-02-01

    Antioxidant activity and total phenolic content of tamarind seed coat extracts (TSCEs) were compared between the two extracts using boiling-water (TSCE-W) and 70% ethanol (TSCE-E) for extraction. TSCE-W, consisting of the highest phenolic content, possessed 2,2-diphenyl-1 -picrylhydrazyl (DPPH) radical scavenging and anti-lipid peroxidation activities much higher than TSCE-E and Trolox. Additionally, both TSCEs also exhibited superoxide anion and hydrogen peroxide scavenging activities higher than Trolox and BHA. Anti-lipid peroxidation and cytotoxicity of TSCE-W were also studied in human foreskin fibroblast CCD-1064Sk cells. Cytotoxic effect was not observed when exposed to TSCE-W up to 1 mg/mL for 12-48 h. However, TSCE-W significantly attenuated lipid peroxidation in H202-damaged cells. HPLC analysis showed the presence of (+)-catechin, (-)-epicatechin, and procyanidin B2 in TSCE-W, which could be responsible for antioxidant and anti-lipid peroxidation activities. The results suggest that an inexpensive and simple boiling-water extraction of TSCE-W may provide a valuable natural antioxidant source having anti-lipid peroxidation for health food additives, nutraceuticals as well as cosmeceuticals.

  13. Electrically Activated Primary Human Fibroblasts Improve In Vitro and In Vivo Skin Regeneration.

    PubMed

    Rouabhia, Mahmoud; Park, Hyun Jin; Zhang, Ze

    2016-08-01

    Electrical stimulation (ES) changes cellular behaviors and thus constitutes a potential strategy to promote wound healing. However, well-controlled in vitro findings have yet to be translated to in vivo trials. This study was to demonstrate the feasibility and advantages of transplanting electrically activated cells (E-Cells) to help wound healing. Primary human skin fibroblasts were activated through well defined ES and cultured with keratinocytes to generate engineered human skin (EHS), which were transplanted to nu/nu mice. The electrically activated EHS grafts were analyzed at 20 and 30 days post-grafting, showing faster wound closure, thick epidermis, vasculature, and functional basement membrane containing laminin and type IV collagen that were totally produced by the implanted human cells. Because a variety of cells can be electrically activated, E-Cells may become a new cell source and the transplantation of E-Cells may represent a new strategy in wound healing and tissue engineering. J. Cell. Physiol. 231: 1814-1821, 2016. © 2015 Wiley Periodicals, Inc. PMID:26661681

  14. Electrically Activated Primary Human Fibroblasts Improve In Vitro and In Vivo Skin Regeneration.

    PubMed

    Rouabhia, Mahmoud; Park, Hyun Jin; Zhang, Ze

    2016-08-01

    Electrical stimulation (ES) changes cellular behaviors and thus constitutes a potential strategy to promote wound healing. However, well-controlled in vitro findings have yet to be translated to in vivo trials. This study was to demonstrate the feasibility and advantages of transplanting electrically activated cells (E-Cells) to help wound healing. Primary human skin fibroblasts were activated through well defined ES and cultured with keratinocytes to generate engineered human skin (EHS), which were transplanted to nu/nu mice. The electrically activated EHS grafts were analyzed at 20 and 30 days post-grafting, showing faster wound closure, thick epidermis, vasculature, and functional basement membrane containing laminin and type IV collagen that were totally produced by the implanted human cells. Because a variety of cells can be electrically activated, E-Cells may become a new cell source and the transplantation of E-Cells may represent a new strategy in wound healing and tissue engineering. J. Cell. Physiol. 231: 1814-1821, 2016. © 2015 Wiley Periodicals, Inc.

  15. Antioxidant and anti-lipid peroxidation activities of Tamarindus indica seed coat in human fibroblast cells.

    PubMed

    Nakchat, Oranuch; Meksuriyen, Duangdeun; Pongsamart, Sunanta

    2014-02-01

    Antioxidant activity and total phenolic content of tamarind seed coat extracts (TSCEs) were compared between the two extracts using boiling-water (TSCE-W) and 70% ethanol (TSCE-E) for extraction. TSCE-W, consisting of the highest phenolic content, possessed 2,2-diphenyl-1 -picrylhydrazyl (DPPH) radical scavenging and anti-lipid peroxidation activities much higher than TSCE-E and Trolox. Additionally, both TSCEs also exhibited superoxide anion and hydrogen peroxide scavenging activities higher than Trolox and BHA. Anti-lipid peroxidation and cytotoxicity of TSCE-W were also studied in human foreskin fibroblast CCD-1064Sk cells. Cytotoxic effect was not observed when exposed to TSCE-W up to 1 mg/mL for 12-48 h. However, TSCE-W significantly attenuated lipid peroxidation in H202-damaged cells. HPLC analysis showed the presence of (+)-catechin, (-)-epicatechin, and procyanidin B2 in TSCE-W, which could be responsible for antioxidant and anti-lipid peroxidation activities. The results suggest that an inexpensive and simple boiling-water extraction of TSCE-W may provide a valuable natural antioxidant source having anti-lipid peroxidation for health food additives, nutraceuticals as well as cosmeceuticals. PMID:24597144

  16. Asiaticoside suppresses collagen expression and TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts.

    PubMed

    Tang, Bing; Zhu, Bin; Liang, Yueying; Bi, Liangkuan; Hu, Zhicheng; Chen, Bin; Zhang, Kai; Zhu, Jiayuan

    2011-10-01

    Asiaticoside (ATS) isolated from the leaves of Centella asiatica possesses strong wound-healing properties and reduces scar formation. However, the specific effects of asiaticoside on the formation of keloidal scars remain unknown. In the present study, we evaluated the in vitro effects of asiaticoside on the proliferation, collagen expression, and transforming growth factor (TGF)-β/Smad signaling of keloid-derived fibroblasts. Fibroblasts isolated from keloid tissue and normal skin tissues were treated with asiaticoside at different concentrations. Afterwards, they were subjected to RT-PCR and Western blot analyses. The inhibitory effects of asiaticoside on fibroblast viability were assayed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Asiaticoside decreased fibroblast proliferation in a time- and dose-dependent manner. It also inhibited type I and type III collagen protein and mRNA expressions. In addition, asiaticoside reduced the expression of both TGF-βRI and TGF-βRII at the transcriptional and translational level. Moreover, it increased the expression of Smad7 protein and mRNA. However, asiaticoside did not influence the expression of Smad2, Smad3, Smad4, phosphorylated Smad2, and phosphorylated Smad3. Taken together, these results suggest that asiaticoside could be of potential use in the treatment and/or prevention of hypertrophic scars and keloids.

  17. Reversible, interrelated mRNA and miRNA expression patterns in the transcriptome of Rasless fibroblasts: functional and mechanistic implications

    PubMed Central

    2013-01-01

    Background 4-Hydroxy-tamoxifen (4OHT) triggers Cre-mediated K-Ras removal in [H-Ras-/-;N-Ras-/-;K-Raslox/lox;RERTert/ert] fibroblasts, generating growth-arrested “Rasless” MEFs which are able to recover their proliferative ability after ectopic expression of Ras oncoproteins or constitutively active BRAF or MEK1. Results Comparison of the transcriptional profiles of Rasless fibroblasts with those of MEFs lacking only H-Ras and N-Ras identified a series of differentially expressed mRNAs and microRNAs specifically linked to the disappearance of K-Ras from these cells. The rescue of cell cycle progression in Rasless cells by activated BRAF or MEK1 resulted in the reversal of most such transcriptional mRNA and microRNA alterations. Functional analysis of the differentially expressed mRNAs uncovered a significant enrichment in the components of pathways regulating cell division, DNA/RNA processing and response to DNA damage. Consistent with G1/S blockade, Rasless cells displayed repression of a series of cell cycle-related genes, including Cyclins, Cyclin-dependent kinases, Myc and E2F transcription targets, and upregulation of Cyclin-dependent kinase inhibitors. The profile of differentially expressed microRNAs included a specific set of oncomiR families and clusters (repressed miR-17 ~ 92, miR-106a ~ 363, miR-106b ~ 25, miR-212 ~ 132, miR-183 ~ 182, and upregulated miR-335) known for their ability to target a specific set of cellular regulators and checkpoint sensors (including Rb, E2F and Cdkns) able to modulate the interplay between the pro- and anti-proliferative or stress-response pathways that are reversibly altered in Rasless cells. Conclusions Our data suggest that the reversible proliferation phenotype of Rasless cells is the pleiotropic result of interplay among distinct pro- and anti-proliferative, and stress-response pathways modulated by a regulatory circuitry constituted by a specific set of differentially expressed mRNAs and micro

  18. Suppression of fibroblast proliferation by activated macrophages: involvement of H2O2 and a non-prostaglandin E product of the cyclooxygenase pathway.

    PubMed

    Metzger, Z; Hoffeld, J T; Oppenheim, J J

    1986-07-01

    Macrophages are considered promoters of fibroblast proliferation; however, suppression by activated macrophages may outweigh this effect. Activated murine peritoneal macrophages obtained by in vivo exposure to C. parvum or by in vitro LPS-activation of thioglycollate-induced macrophages, were tested for their effect on normal syngeneic dermal fibroblasts. C. parvum-activated macrophages, but not resident peritoneal macrophages suppressed fibroblast proliferation. Similarly, macrophages activated in vitro by LPS, but not those unexposed to LPS, suppressed fibroblast proliferation. Catalase partially protected fibroblasts from suppression by either activated macrophage population, suggesting involvement of H2O2 in the suppression. The effect of cyclooxygenase inhibitors on the suppression was also tested. Indomethacin, acetylsalicyclic acid, or eicosatetraynoic acid, all partially protected the fibroblasts from macrophage-mediated suppression. Prostaglandins E2, E1, and F2 alpha, added exogenously at concentrations as high as 10(-6) M, failed to suppress the proliferation of the fibroblasts. These findings suggest that a non-prostaglandin product of the cyclooxygenase pathway is involved in macrophage-mediated suppression of fibroblast proliferation.

  19. AhR-dependent secretion of PDGF-BB by human classically activated macrophages exposed to DEP extracts stimulates lung fibroblast proliferation

    SciTech Connect

    Jaguin, Marie; Fardel, Olivier; Lecureur, Valérie

    2015-06-15

    Lung diseases are aggravated by exposure to diesel exhaust particles (DEPs) found in air pollution. Macrophages are thought to play a crucial role in lung immune response to these pollutants, even if the mechanisms involved remain incompletely characterized. In the present study, we demonstrated that classically and alternative human macrophages (MΦ) exhibited increased secretion of PDGF-B in response to DEP extract (DEPe). This occurred via aryl hydrocarbon receptor (AhR)-activation because DEPe-induced PDGF-B overexpression was abrogated after AhR expression knock-down by RNA interference, in both M1 and M2 polarizing MΦ. In addition, TCDD and benzo(a)pyrene, two potent AhR ligands, also significantly increased mRNA expression of PDGF-B in M1 MΦ, whereas some weak ligands of AhR did not. We next evaluated the impact of conditioned media (CM) from MΦ culture exposed to DEPe or of recombinant PDGF-B onto lung fibroblast proliferation. The tyrosine kinase inhibitor, AG-1295, prevents phosphorylations of PDGF-Rβ, AKT and ERK1/2 and the proliferation of MRC-5 fibroblasts induced by recombinant PDGF-B and by CM from M1 polarizing MΦ, strongly suggesting that the PDGF-BB secreted by DEPe-exposed MΦ is sufficient to activate the PDGF-Rβ pathway of human lung fibroblasts. In conclusion, we demonstrated that human MΦ, whatever their polarization status, secrete PDGF-B in response to DEPe and that PDGF-B is a target gene of AhR. Therefore, induction of PDGF-B by DEP may participate in the deleterious effects towards human health triggered by such environmental urban contaminants. - Highlights: • PDGF-B expression and secretion are increased by DEPe exposure in human M1 and M2 MΦ. • DEPe-induced PDGF-B expression is aryl-hydrocarbon-dependent. • DEPe-exposed M1 MΦ secrete sufficient PDGF-B to increase lung fibroblast proliferation.

  20. Slow growth and unstable ribosomal RNA lacking pseudouridine in mouse embryonic fibroblast cells expressing catalytically inactive dyskerin

    PubMed Central

    Gu, Bai-Wei; Ge, Jingping; Fan, Jian-Meng; Bessler, Monica; Mason, Philip J.

    2013-01-01

    Pseudouridine is the most abundant modified nucleotide in ribosomal RNA throughout eukaryotes and archaea but its role is not known. Here we produced mouse embryonic fibroblast cells expressing only catalytically inactive dyskerin, the pseudouridine synthase that converts uridine to pseudouridine in ribosomal RNA. The mutant dyskerin protein, D125A, was extremely unstable but cells were able to divide and grow very slowly. Abnormalities in ribosome RNA synthesis were apparent but mature cytoplasmic RNAs lacking pseudouridine were produced and were very unstable. We conclude that pseudouridine is required to stabilize the secondary structure of ribosomal RNA that is essential for its function. Structured summary of protein interactions∷ fibrillarin and Dkc1 colocalize by fluorescence microscopy (View interaction) PMID:23726835

  1. Expression of Fibroblast Growth Factor Receptor 3 in the Recurrence of Non-Muscle-Invasive Urothelial Carcinoma of the Bladder

    PubMed Central

    Maeng, Young-Hee; Eun, Su-Yong

    2010-01-01

    Purpose The fibroblast growth factor receptor 3 (FGFR3) gene is known to be frequently mutated in noninvasive urothelial carcinomas of the bladder. In this study, we investigated the expression of FGFR3, Ki-67, and p53 in bladder cancers and the effects of expression on tumor recurrence. Materials and Methods Fifty-five cases of primary bladder cancer were examined by immunohistochemistry. The relationship of these markers with various clinicopathological factors, including recurrence, was assessed. Results Positivity for cytoplasmic FGFR3 (FGFR3-c) was associated with a lower cancer grade (p=0.022) and stage (p=0.011). Recurrence was more frequent in patients with a higher stage, negative FGFR3-c, and high Ki-67 expression. According to univariate analysis, predictors of recurrence-free survival included the following: age, stage, FGFR-c, Ki-67, and p53. However, none of these was independent from the other parameters in multivariate studies. Conclusions The immunohistochemical expression of FGFR3 is not only one of the characteristic features of lower-grade and lower-stage urothelial carcinoma but also a possible marker in predicting disease recurrence. PMID:20414420

  2. Comparative effect of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction on antioxidant enzymes activity in cellular ageing of human diploid fibroblasts

    PubMed Central

    2013-01-01

    Background Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by determining the activity of antioxidant enzymes viz.; catalase, superoxide dismutase (SOD) and glutathione peroxidase. Methods Different passages of HDFs were treated with P. betle, C. vulgaris and TRF for 24 h prior to enzymes activity determination. Senescence-associated beta-galactosidase (SA β-gal) expression was assayed to validate cellular ageing. Results In cellular ageing of HDFs, catalase and glutathione peroxidase activities were reduced, but SOD activity was heightened during pre-senescence. P. betle exhibited the strongest antioxidant activity by reducing SA β-gal expression, catalase activities in all age groups, and SOD activity. TRF exhibited a strong antioxidant activity by reducing SA β-gal expression, and SOD activity in senescent HDFs. C. vulgaris extract managed to reduce SOD activity in senescent HDFs. Conclusion P. betle, C. vulgaris, and TRF have the potential as anti-ageing entities which compensated the role of antioxidant enzymes in cellular ageing of HDFs. PMID:23948056

  3. Stability and biological activity evaluations of PEGylated human basic fibroblast growth factor

    PubMed Central

    Hadadian, Shahin; Shamassebi, Dariush Norouzian; Mirzahoseini, Hasan; Shokrgozar, Mohamad Ali; Bouzari, Saeid; Sepahi, Mina

    2015-01-01

    Background: Human basic fibroblast growth factor (hBFGF) is a heparin-binding growth factor and stimulates the proliferation of a wide variety of cells and tissues causing survival properties and its stability and biological activity improvements have received much attention. Materials and Methods: In the present work, hBFGF produced by engineered Escherichia coli and purified by cation exchange and heparin affinity chromatography, was PEGylated under appropriate condition employing 10 kD polyethylene glycol. The PEGylated form was separated by size exclusion chromatography. Structural, biological activity, and stability evaluations were performed using Fourier transform infrared (FITR) spectroscopy, 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay and effect denaturing agent, respectively. Results: FITR spectroscopy revealed that both PEGylated and native forms had the same structures. MTT assay showed that PEGyalated form had a 30% reduced biological activity. Fluorescence spectrophotometry indicated that the PEGylated form denatured at higher concentrations of guanidine HCl (1.2 M) compared with native, which denatured at 0.8 M guanidine HCl. Conclusions: PEGylation of hBFGF makes it more stable against denaturing agent but reduces its bioactivity up to 30%. PMID:26605215

  4. Phagocytic activity and hyperpolarizing responses in L-strain mouse fibroblasts.

    PubMed Central

    Okada, Y; Tsuchiya, W; Yada, T; Yano, J; Yawo, H

    1981-01-01

    1. Fibroblastic L cells not only respond with a slow hyperpolarizing potential change to a mechanical or electrical stimulus but also show spontaneous, repetitive hyperpolarizations (i.e. membrane potential oscillation). 2. Almost all the cells can actively take up latex beads whose surfaces were treated by U.V. irradiation. 3. Non-phagocytic L cells hardly showed hyperpolarizing responses, while hyperpolarizing responses were obtained in all the phagocytic L cells. The exposure of the cell surface to beads, however, did not trigger the generation of hyperpolarizing responses. 4. Metabolic inhibitors, low temperature and cytochalasin B inhibited both the uptake of beads and the hyperpolarizing responses. 5. Increasing the external concentration of Ca2+ induced a remarkable stimulation of the phagocytosis of beads. Mg2+ and Ba2+, which inhibited hyperpolarizing responses due to competition for Ca2+ sites on the outer surface of the membrane, significantly suppressed the uptake of beads. 6. Verapamil, a Ca2+ channel blocker, inhibited not only hyperpolarizing membrane responses but also ingestion of beads. 7. It is concluded that the Ca2+ inflow on the hyperpolarizing membrane responses is closely associated with the phagocytic activity in L cells, probably through activation of the microfilament assembly. Images Plate 1 PMID:7024506

  5. Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy.

    PubMed