Science.gov

Sample records for fibroblasts expressing active

  1. Increased KGF expression promotes fibroblast activation in a double paracrine manner resulting in cutaneous fibrosis.

    PubMed

    Canady, Johanna; Arndt, Stephanie; Karrer, Sigrid; Bosserhoff, Anja K

    2013-03-01

    Fibrotic disorders of the skin share the characteristic features of increased production and deposition of extracellular matrix components by activated fibroblasts. Their clinical course ranges from benign with localized cutaneous involvement to a systemic, life-threatening disease. The molecular cause for fibroblast activation remains unknown, yet epithelial-mesenchymal interactions draw mounting attention in the research field of fibrogenesis. We examined keratinocyte growth factor (KGF), a crucial molecule in fibroblast-keratinocyte cross talk, exemplarily in keloid and scleroderma, and found its expression to be increased in disease-derived fibroblasts and tissues compared with healthy controls. This overexpression induces fibroblast activation through a double paracrine mode of action. Upon KGF stimulation, the keratinocytes produced and secreted OSM (oncostatin M). Fibroblasts were in turn activated by OSM reacting with the increased expression of collagen type I-α1, fibroblast activation protein, and enhanced migration. The observed increase in collagen expression and fibroblast migration can be traced back to OSM-regulated STAT3 phosphorylation, leading to enhanced urokinase plasminogen activator expression. Hence, we propose a causative loop in the pathogenesis of fibrosing disorders of the skin mediated by the overexpression of KGF in mesenchymal cells.

  2. Tumor-produced, active Interleukin-1 {beta} regulates gene expression in carcinoma-associated fibroblasts

    SciTech Connect

    Dudas, Jozsef; Fullar, Alexandra; Bitsche, Mario; Schartinger, Volker; Kovalszky, Ilona; Sprinzl, Georg Mathias; Riechelmann, Herbert

    2011-09-10

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated with IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times in the

  3. Altered Expression of MicroRNA-203 in Rheumatoid Arthritis Synovial Fibroblasts and Its Role in Fibroblast Activation

    PubMed Central

    Stanczyk, Joanna; Ospelt, Caroline; Karouzakis, Emmanuel; Filer, Andrew; Raza, Karim; Kolling, Christoph; Gay, Renate; Buckley, Christopher D.; Tak, Paul P.; Gay, Steffen; Kyburz, Diego

    2011-01-01

    Objective MicroRNA (miRNA) are recognized as important regulators of a variety of fundamental biologic processes. Previously, we described increased expression of miR-155 and miR-146a in rheumatoid arthritis (RA) and showed a repressive effect of miR-155 on matrix metalloproteinase (MMP) expression in RA synovial fibroblasts (RASFs). The present study was undertaken to examine alterations in expression of miR-203 in RASFs and analyze its role in fibroblast activation. Methods Differentially expressed miRNA in RASFs versus osteoarthritis synovial fibroblasts (OASFs) were identified by real-time polymerase chain reaction (PCR)–based screening of 260 individual miRNA. Transfection of miR-203 precursor was used to analyze the function of miR-203 in RASFs. Levels of interleukin-6 (IL-6) and MMPs were measured by real-time PCR and enzyme-linked immunosorbent assay. RASFs were stimulated with IL-1β, tumor necrosis factor α (TNFα), lipopolysaccharide (LPS), and 5-azacytidine (5-azaC). Activity of IκB kinase 2 was inhibited with SC-514. Results Expression of miR-203 was higher in RASFs than in OASFs or fibroblasts from healthy donors. Levels of miR-203 did not change upon stimulation with IL-1β, TNFα, or LPS; however, DNA demethylation with 5-azaC increased the expression of miR-203. Enforced expression of miR-203 led to significantly increased levels of MMP-1 and IL-6. Induction of IL-6 by miR-203 overexpression was inhibited by blocking of the NF-κB pathway. Basal expression levels of IL-6 correlated with basal expression levels of miR-203. Conclusion The current results demonstrate methylation-dependent regulation of miR-203 expression in RASFs. Importantly, they also show that elevated levels of miR-203 lead to increased secretion of MMP-1 and IL-6 via the NF-κB pathway and thereby contribute to the activated phenotype of synovial fibroblasts in RA. PMID:21279994

  4. Fibroblast activation protein is expressed by rheumatoid myofibroblast-like synoviocytes

    PubMed Central

    Bauer, Stefan; Jendro, Michael C; Wadle, Andreas; Kleber, Sascha; Stenner, Frank; Dinser, Robert; Reich, Anja; Faccin, Erica; Gödde, Stefan; Dinges, Harald; Müller-Ladner, Ulf; Renner, Christoph

    2006-01-01

    Fibroblast activation protein (FAP), as described so far, is a type II cell surface serine protease expressed by fibroblastic cells in areas of active tissue remodelling such as tumour stroma or healing wounds. We investigated the expression of FAP by fibroblast-like synoviocytes (FLSs) and compared the synovial expression pattern in rheumatoid arthritis (RA) and osteoarthritis (OA) patients. Synovial tissue from diseased joints of 20 patients, 10 patients with refractory RA and 10 patients with end-stage OA, was collected during routine surgery. As a result, FLSs from intensively inflamed synovial tissues of refractory RA expressed FAP at high density. Moreover, FAP expression was co-localised with matrix metalloproteinases (MMP-1 and MMP-13) and CD44 splice variants v3 and v7/8 known to play a major role in the concert of extracellular matrix degradation. The pattern of signals appeared to constitute a characteristic feature of FLSs involved in rheumatoid arthritic joint-destructive processes. These FAP-expressing FLSs with a phenotype of smooth muscle actin-positive myofibroblasts were located in the lining layer of the synovium and differ distinctly from Thy-1-expressing and non-proliferating fibroblasts of the articular matrix. The intensity of FAP-specific staining in synovial tissue from patients with RA was found to be different when compared with end-stage OA. Because expression of FAP by RA FLSs has not been described before, the findings of this study highlight a novel element in cartilage and bone destruction of arthritic joints. Moreover, the specific expression pattern qualifies FAP as a therapeutic target for inhibiting the destructive potential of fibroblast-like synovial cells. PMID:17105646

  5. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis

    PubMed Central

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-01-01

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment. PMID:26576741

  6. Hypoxic regulation of plasminogen activator inhibitor-1 expression in human buccal mucosa fibroblasts stimulated with arecoline.

    PubMed

    Tsai, Chung-Hung; Lee, Shiuan-Shinn; Chang, Yu-Chao

    2015-10-01

    Oral submucous fibrosis (OSF) is regarded as a pre-cancerous condition with fibrosis in oral subepithelial connective tissue. Hypoxia-inducible factor (HIF)-1α regulates a wide variety of profibrogenic genes, which are closely associated with tissue fibrosis. The aim of this study was to compare HIF-1α expression in normal buccal mucosa tissues and OSF specimens and further explore the potential mechanisms that may lead to the induction of HIF-1α expression. Twenty-five OSF specimens and six normal buccal mucosa were examined by immunohistochemistry. The expression of HIF-1α from fibroblasts cultured from OSF and normal buccal mucosa was measured by Western blot. Arecoline, a major areca nut alkaloid, was challenged to normal buccal mucosa fibroblasts (BMFs) to elucidate whether HIF-1α expression could affect by arecoline. In addition, the effects of arecoline on plasminogen activator inhibitor (PAI)-1 expression were evaluated in environmental hypoxia. HIF-1α expression was significantly higher in OSF specimens and expressed mainly by fibroblasts, epithelial cells, and inflammatory cells. Fibroblasts derived from OSF were found to exhibit higher HIF-1α protein expression than BMFs (P < 0.05). Arecoline was found to upregulate HIF-1α protein in a dose-dependent manner (P < 0.05). Hypoxia increased arecoline-induced PAI-1 protein expression than normoxic conditions (P < 0.05). These results suggest that HIF-1α expression is significantly upregulated in OSF tissues from areca quid chewers, implying a potential role as a biomarker for local tissue hypoxia. The activation of HIF-1α may promote fibrogenesis by an increase of PAI-1 expression and a subsequent elevation of extracellular matrix production in oral submucosa leading to fibrosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. EGCG inhibits CTGF expression via blocking NF-κB activation in cardiac fibroblast.

    PubMed

    Cai, Yi; Yu, Shan-Shan; Chen, Ting-Ting; Gao, Si; Geng, Biao; Yu, Yang; Ye, Jian-Tao; Liu, Pei-Qing

    2013-01-15

    Connective tissue growth factor (CTGF) has been reported to play an important role in tissue fibrosis and presents a promising therapeutic target for fibrotic diseases. In heart, inappropriate increase in level of CTGF promotes fibroblast proliferation and extracellular matrix (ECM) accumulation, thereby exacerbating cardiac hypertrophy and subsequent failure. Epigallocatechin-3-gallate (EGCG), the major polyphenol found in green tea, possesses multiple protective effects on the cardiovascular system including cardiac fibrosis. However, the molecular mechanism by which EGCG exerts its anti-fibrotic effects has not been well investigated. In this study, we found that EGCG could significantly reduce collagen synthesis, fibronectin (FN) expression and cell proliferation in rat cardiac fibroblasts stimulated with angiotensinII (AngII). It also ameliorated cardiac fibrosis in rats submitted to abdominal aortic constriction (AAC). Moreover, EGCG attenuated the excessive expression of CTGF induced by AAC or AngII, and reduced the nuclear translocation of NF-κB p65 subunit and degradation of IκB-α. Subsequently, we demonstrated that in cardiac fibroblasts NF-κB inhibition could suppress AngII-induced CTGF expression. Taken together, these findings provide the first evidence that the effect of EGCG against cardiac fibrosis may be attributed to its inhibition on NF-κB activation and subsequent CTGF overexpression, suggesting the therapeutic potential of EGCG on the prevention of cardiac remodeling in patients with pressure overload hypertrophy.

  8. Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21.

    PubMed

    Cyphert, Holly A; Ge, Xuemei; Kohan, Alison B; Salati, Lisa M; Zhang, Yanqiao; Hillgartner, F Bradley

    2012-07-20

    Previous studies have shown that starvation or consumption of a high fat, low carbohydrate (HF-LC) ketogenic diet induces hepatic fibroblast growth factor 21 (FGF21) gene expression in part by activating the peroxisome proliferator-activated receptor-α (PPARα). Using primary hepatocyte cultures to screen for endogenous signals that mediate the nutritional regulation of FGF21 expression, we identified two sources of PPARα activators (i.e. nonesterified unsaturated fatty acids and chylomicron remnants) that induced FGF21 gene expression. In addition, we discovered that natural (i.e. bile acids) and synthetic (i.e. GW4064) activators of the farnesoid X receptor (FXR) increased FGF21 gene expression and secretion. The effects of bile acids were additive with the effects of nonesterified unsaturated fatty acids in regulating FGF21 expression. FXR activation of FGF21 gene transcription was mediated by an FXR/retinoid X receptor binding site in the 5'-flanking region of the FGF21 gene. FGF19, a gut hormone whose expression and secretion is induced by intestinal bile acids, also increased hepatic FGF21 secretion. Deletion of FXR in mice suppressed the ability of an HF-LC ketogenic diet to induce hepatic FGF21 gene expression. The results of this study identify FXR as a new signaling pathway activating FGF21 expression and provide evidence that FXR activators work in combination with PPARα activators to mediate the stimulatory effect of an HF-LC ketogenic diet on FGF21 expression. We propose that the enhanced enterohepatic flux of bile acids during HF-LC consumption leads to activation of hepatic FXR and FGF19 signaling activity and an increase in FGF21 gene expression and secretion.

  9. Regulation of protease-activated receptor-1 expression in human buccal fibroblasts stimulated with arecoline.

    PubMed

    Tsai, Chung-Hung; Lee, Shiuan-Shinn; Huang, Fu-Mei; Chang, Yu-Chao

    2013-09-01

    The purpose of this study was to compare the major thrombin receptor protease-activated receptor-1 (PAR-1) expression in normal human buccal mucosa and oral submucous fibrosis (OSF) specimens and further explore the potential mechanisms that may lead to induce PAR-1 expression. Thirty OSF and 10 normal buccal mucosa specimens were examined by immunohistochemistry. Buccal mucosal fibroblasts (BMFs) were challenged with arecoline by using Western blot analysis. N-acetyl-L-cysteine (NAC), LY294002, herbimycin A, NS-398, and PD98059 were added to find the possible regulatory mechanisms. PAR-1 expression was significantly higher in OSF specimens (p < .05). Arecoline was found to elevate PAR-1 expression in a dose-dependent and time-dependent manner (p < .05). The addition of NAC, LY294002, herbimycin A, NS398, and PD98059 markedly inhibited the arecoline-induced PAR-1 expression (p < .05). PAR-1 expression is significantly upregulated in areca quid chewing-associated OSF. Arecoline-induced PAR-1 expression was downregulated by NAC, LY294002, herbimycin A, NS398, and PD98059. Copyright © 2012 Wiley Periodicals, Inc.

  10. Modulation of the expression of peroxisome proliferators-activated receptors in human fibroblasts.

    PubMed

    Diamond, Michael P; Saed, Ghassan

    2007-03-01

    To determine the levels of peroxisome proliferators-activated receptors (PPARs) in normal and adhesion fibroblasts, we utilized real-time reverse transcription-polymerase chain reaction to measure messenger RNA (mRNA) levels in fibroblasts from normal peritoneum and adhesions from five patients in both the presence or absence of dichloroacetic acid (DCA) and a cyclooxygenase-2 (COX-2) inhibitor, NS-398. Peroxisome proliferators-activated receptor alpha, PPARbeta, PPARgamma1, and PPARgamma2 mRNA are all present in normal peritoneal and adhesion fibroblasts, and selectively rose in response to hypoxia and either DCA or NS-398.

  11. TGFβ1 Controls PPARγ Expression, Transcriptional Potential, and Activity, in Part, through Smad3 Signaling in Murine Lung Fibroblasts

    PubMed Central

    Ramirez, Allan; Ballard, Erin N.; Roman, Jesse

    2012-01-01

    Transforming growth factor β1 (TGFβ1) promotes fibrosis by, among other mechanisms, activating quiescent fibroblasts into myofibroblasts and increasing the expression of extracellular matrices. Recent work suggests that peroxisome proliferator-activated receptor γ (PPARγ) is a negative regulator of TGFβ1-induced fibrotic events. We, however, hypothesized that antifibrotic pathways mediated by PPARγ are influenced by TGFβ1, causing an imbalance towards fibrogenesis. Consistent with this, primary murine primary lung fibroblasts responded to TGFβ1 with a sustained downregulation of PPARγ transcripts. This effect was dampened in lung fibroblasts deficient in Smad3, a transcription factor that mediates many of the effects of TGFβ1. Paradoxically, TGFβ1 stimulated the activation of the PPARγ gene promoter and induced the phosphorylation of PPARγ in primary lung fibroblasts. The ability of TGFβ1 to modulate the transcriptional activity of PPARγ was then tested in NIH/3T3 fibroblasts containing a PPARγ-responsive luciferase reporter. In these cells, stimulation of TGFβ1 signals with a constitutively active TGFβ1 receptor transgene blunted PPARγ-dependent reporter expression induced by troglitazone, a PPARγ activator. Overexpression of PPARγ prevented TGFβ1 repression of troglitazone-induced PPARγ-dependent gene transcription, whereas coexpression of PPARγ and Smad3 transgenes recapitulated the TGFβ1 effects. We conclude that modulation of PPARγ is controlled by TGFβ1, in part through Smad3 signals, involving regulation of PPARγ expression and transcriptional potential. PMID:22997505

  12. Ultraviolet A Enhances Cathepsin L Expression and Activity via JNK Pathway in Human Dermal Fibroblasts

    PubMed Central

    Xu, Qing-Fang; Zheng, Yue; Chen, Jian; Xu, Xin-Ya; Gong, Zi-Jian; Huang, Yun-Fen; Lu, Chun; Maibach, Howard I; Lai, Wei

    2016-01-01

    Background: Cathepsin L (CatL) is a cysteine protease with strong matrix degradation activity that contributes to photoaging. Mannose phosphate-independent sorting pathways mediate ultraviolet A (UVA)-induced alternate trafficking of CatL. Little is known about signaling pathways involved in the regulation of UVA-induced CatL expression and activity. This study aims to investigate whether a single UVA irradiation affects CatL expression and activity and whether mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) pathway is involved in the regulation of UVA-induced CatL expression and activity in human dermal fibroblasts (HDFs). Methods: Primary HDFs were exposed to UVA. Cell proliferation was determined by a cell counting kit. UVA-induced CatL production and activity were studied with quantitative real-time reverse transcription polymerase chain reaction (RT-PCR), Western blotting, and fluorimetric assay in cell lysates collected on three consecutive days after irradiation. Time courses of UVA-activated JNK and p38MAPK signaling were examined by Western blotting. Effects of MAPK inhibitors and knockdown of Jun and Fos on UVA-induced CatL expression and activity were investigated by RT-PCR, Western blotting, and fluorimetric assay. Data were analyzed by one-way analysis of variance. Results: UVA significantly increased CatL gene expression, protein abundance, and enzymatic activity for three consecutive days after irradiation (F = 83.11, 56.14, and 71.19, respectively; all P < 0.05). Further investigation demonstrated phosphorylation of JNK and p38MAPK activated by UVA. Importantly, inactivation of JNK pathway significantly decreased UVA-induced CatL expression and activity, which were not affected by p38MAPK inhibition. Moreover, knockdown of Jun and Fos significantly attenuated basal and UVA-induced CatL expression and activity. Conclusions: UVA enhances CatL production and activity in HDFs, probably by activating JNK and downstreaming AP-1. These

  13. Vitamin D Inhibits Expression and Activity of Matrix Metalloproteinase in Human Lung Fibroblasts (HFL-1) Cells

    PubMed Central

    Kim, Seo Hwa; Baek, Moon Seong; Yoon, Dong Sik; Park, Jong Seol; Yoon, Byoung Wook; Oh, Byoung Su; Park, Jinkyeong

    2014-01-01

    Background Low levels of serum vitamin D is associated with several lung diseases. The production and activation of matrix metalloproteinases (MMPs) may play an important role in the pathogenesis of emphysema. The aim of the current study therefore is to investigate if vitamin D modulates the expression and activation of MMP-2 and MMP-9 in human lung fibroblasts (HFL-1) cells. Methods HFL-1 cells were cast into three-dimensional collagen gels and stimulated with or without interleukin-1β (IL-1β) in the presence or absence of 100 nM 25-hydroxyvitamin D (25(OH)D) or 1,25-dihydroxyvitamin D (1,25(OH)2D) for 48 hours. Trypsin was then added into the culture medium in order to activate MMPs. To investigate the activity of MMP-2 and MMP-9, gelatin zymography was performed. The expression of the tissue inhibitor of metalloproteinase (TIMP-1, TIMP-2) was measured by enzyme-linked immunosorbent assay. Expression of MMP-9 mRNA and TIMP-1, TIMP-2 mRNA was quantified by real time reverse transcription polymerase chain reaction. Results IL-1β significantly stimulated MMP-9 production and mRNA expression. Trypsin converted latent MMP-2 and MMP-9 into their active forms of MMP-2 (66 kDa) and MMP-9 (82 kDa) within 24 hours. This conversion was significantly inhibited by 25(OH)D (100 nM) and 1,25(OH)2D (100 nM). The expression of MMP-9 mRNA was also significantly inhibited by 25(OH)D and 1,25(OH)2D. Conclusion Vitamin D, 25(OH)D, and 1,25(OH)2D play a role in regulating human lung fibroblast functions in wound repair and tissue remodeling through not only inhibiting IL-1β stimulated MMP-9 production and conversion to its active form but also inhibiting IL-1β inhibition on TIMP-1 and TIMP-2 production. PMID:25237378

  14. Expression of Fibroblast Activating Protein and Correlation with Histological Grade, Mitotic Index and Ki67 Expression in Canine Mast Cell Tumours.

    PubMed

    Giuliano, A; Dos Santos Horta, R; Constantino-Casas, F; Hoather, T; Dobson, J

    2017-01-01

    Fibroblast activating protein (FAP) is a membrane serine protease expressed by activated fibroblasts, particularly tumour associated fibroblasts (TAFs). FAP expression has not been reported in canine mast cell tumours (MCTs). The objective of this study was to evaluate the expression of FAP in TAFs and its correlation with histological grade, mitotic index and Ki67 expression in canine MCTs. FAP expression was evaluated by immunohistochemistry (IHC) in 30 canine MCTs. Twenty-eight (90%) of the MCTs expressed FAP in the stroma, 16 cases showed low to intermediate FAP score and 14 cases had a high FAP score. FAP was correlated positively with both Patnaik (P = 0.007) and Kiupel (P = 0.008) grading systems, mitotic index (P = 0.0008) and Ki67 expression (P = 0.009). High stromal FAP expression could be a potential negative prognostic factor in canine MCTs.

  15. Activated Human T Lymphocytes Express Cyclooxygenase-2 and Produce Proadipogenic Prostaglandins that Drive Human Orbital Fibroblast Differentiation to Adipocytes

    PubMed Central

    Feldon, Steven E.; O’Loughlin, Charles W.; Ray, Denise M.; Landskroner-Eiger, Shira; Seweryniak, Kathryn E.; Phipps, Richard P.

    2006-01-01

    The differentiation of preadipocyte fibroblasts to adipocytes is a crucial process to many disease states including obesity, cardiovascular, and autoimmune diseases. In Graves’ disease, the orbit of the eye can become severely inflamed and infiltrated with T lymphocytes as part of the autoimmune process. The orbital fibroblasts convert to fat-like cells causing the eye to protrude, which is disfiguring and can lead to blindness. Recently, the transcription factor peroxisome proliferator activated receptor (PPAR)-γ and its natural (15d-PGJ2) and synthetic (thiazolidinedione-type) PPAR-γ agonists have been shown to be crucial to the in vitro differentiation of preadipocyte fibroblasts to adipocytes. We show herein several novel findings. First, that activated T lymphocytes from Graves’ patients drive the differentiation of PPAR-γ-expressing orbital fibroblasts to adipocytes. Second, this adipogenic differentiation is blocked by nonselective small molecule cyclooxygenase (Cox)-1/Cox-2 inhibitors and by Cox-2 selective inhibitors. Third, activated, but not naïve, human T cells highly express Cox-2 and synthesize prostaglandin D2 and related prostaglandins that are PPAR-γ ligands. These provocative new findings provide evidence for how activated T lymphocytes, through production of PPAR-γ ligands, profoundly influence human fibroblast differentiation to adipocytes. They also suggest the possibility that, in addition to the orbit, T lymphocytes influence the deposition of fat in other tissues. PMID:17003477

  16. The Expression of Fibroblast Activation Protein in Clear Cell Renal Cell Carcinomas Is Associated with Synchronous Lymph Node Metastases

    PubMed Central

    Errarte, Peio; Guarch, Rosa; Pulido, Rafael; Blanco, Lorena; Nunes-Xavier, Caroline E.; Beitia, Maider; Gil, Javier; Angulo, Javier C.; López, José I.; Larrinaga, Gorka

    2016-01-01

    Clear cell renal cell carcinoma (CCRCC) is a heterogeneous and complex disease that frequently develops distant metastases. Fibroblast activation protein (FAP) is a serine peptidase the expression of which in cancer-associated fibroblasts has been associated with higher risk of metastases and poor survival. The objective of this study was to evaluate the role of FAP in metastatic CCRCC (mCCRCC). A series of 59 mCCRCC retrospectively collected was included in the study. Metastases developed either synchronous (n = 14) or metachronous to renal disease (n = 45). Tumor specimens were obtained from both primary lesion (n = 59) and metastases (n = 54) and FAP expression was immunohistochemically analyzed. FAP expression in fibroblasts from primary tumors correlated with FAP expression in the corresponding metastatic lesions. Also, primary and metastatic FAP expression was correlated with large tumor diameter (>7cm), high grade (G3/4), high stage (pT3/4), tumor necrosis and sarcomatoid transformation. The expression of FAP in primary tumors and in their metastases was associated both with synchronous metastases and also with metastases to the lymph nodes. FAP expression in the primary tumor was correlated with worse 10-year overall survival. Immunohistochemical detection of FAP in the stromal tumor fibroblasts could be a biomarker of early lymph node metastatic status and therefore could account for the poor prognosis of FAP positive CCRCC. PMID:28033421

  17. Activation of endogenous opioid gene expression in human keratinocytes and fibroblasts by pulsed radiofrequency energy fields

    PubMed Central

    Moffett, John; Fray, Linley M; Kubat, Nicole J

    2012-01-01

    Background Pulsed radiofrequency energy (PRFE) fields are being used increasingly for the treatment of pain arising from dermal trauma. However, despite their increased use, little is known about the biological and molecular mechanism(s) responsible for PRFE-mediated analgesia. In general, current therapeutics used for analgesia target either endogenous factors involved in inflammation, or act on endogenous opioid pathways. Methods and Results Using cultured human dermal fibroblasts (HDF) and human epidermal keratinocytes (HEK), we investigated the effect of PRFE treatment on factors, which are involved in modulating peripheral analgesia in vivo. We found that PRFE treatment did not inhibit cyclooxygenase enzyme activity, but instead had a positive effect on levels of endogenous opioid precursor mRNA (proenkephalin, pro-opiomelanocortin, prodynorphin) and corresponding opioid peptide. In HEK cells, increases in opioid mRNA were dependent, at least in part, on endothelin-1. In HDF cells, additional pathways also appear to be involved. PRFE treatment was also followed by changes in endogenous expression of several cytokines, including increased levels of interleukin-10 mRNA and decreased levels of interleukin-1β mRNA in both cell types. Conclusion These findings provide a new insight into the molecular mechanism underlying PRFE-mediated analgesia reported in the clinical setting. PMID:23055776

  18. Activation of endogenous opioid gene expression in human keratinocytes and fibroblasts by pulsed radiofrequency energy fields.

    PubMed

    Moffett, John; Fray, Linley M; Kubat, Nicole J

    2012-01-01

    Pulsed radiofrequency energy (PRFE) fields are being used increasingly for the treatment of pain arising from dermal trauma. However, despite their increased use, little is known about the biological and molecular mechanism(s) responsible for PRFE-mediated analgesia. In general, current therapeutics used for analgesia target either endogenous factors involved in inflammation, or act on endogenous opioid pathways. Using cultured human dermal fibroblasts (HDF) and human epidermal keratinocytes (HEK), we investigated the effect of PRFE treatment on factors, which are involved in modulating peripheral analgesia in vivo. We found that PRFE treatment did not inhibit cyclooxygenase enzyme activity, but instead had a positive effect on levels of endogenous opioid precursor mRNA (proenkephalin, pro-opiomelanocortin, prodynorphin) and corresponding opioid peptide. In HEK cells, increases in opioid mRNA were dependent, at least in part, on endothelin-1. In HDF cells, additional pathways also appear to be involved. PRFE treatment was also followed by changes in endogenous expression of several cytokines, including increased levels of interleukin-10 mRNA and decreased levels of interleukin-1β mRNA in both cell types. These findings provide a new insight into the molecular mechanism underlying PRFE-mediated analgesia reported in the clinical setting.

  19. Expression of the Saccharomyces cerevisiae glycoprotein invertase in mouse fibroblasts: glycosylation, secretion, and enzymatic activity

    SciTech Connect

    Bergh, M.L.E.; Cepko, C.L.; Wolf, D.; Robbins, P.W.

    1987-06-01

    Oligosaccharide processing is controlled by host- and protein-dependent factors. To increase our understanding of the relative contribution of those factors the authors studied the glycosylation of yeast invertase expressed in a heterologous system. Invertase synthesized in psi-2 cells (an NIH 3T3-derived packaging line) is secreted efficiently, enzymatically active, and heavily glycosylated. It was estimated that the protein contains 8 or 9 carbohydrate chains. Two classes can be observed, of an approximate size of 100-110 kDa and 115-130 kDa, respectively. The size differences are due to differences in glycosylation. The smaller class contains two high-mannose carbohydrate chains; the remainder is of the complex type, sialylated and most likely tri- or tetraantennary. This profile parallels the situation observed with invertase glycosylation in yeast, where 2 of 9 or 10 chains remain unprocessed. The larger size class of invertase expressed in mouse fibroblasts has a different profile, since it contains probably only complex-type glycans. There are no apparent differences, however, in the size of the protein backbone between the two size classes. When invertase is synthesized in the presence of the mannosidase inhibitor 1-deoxymannojirimycin, processing is blocked completely. The glucosidase inhibitor 1-deoxynojirimycin does not inhibit processing completely. The glycosylation inhibitor tunicamycin prevents secretion of invertase completely when cells are cultured at 37/sup 0/C. At 26/sup 0/C, however, nonglycosylated invertase can be detected in the medium. These data suggest that glycosylation of invertase seems to be essential for the early steps of the secretory pathway but is less critical for later events.

  20. Hypoxia-induced ADAM 17 expression is mediated by RSK1-dependent C/EBPβ activation in human lung fibroblasts.

    PubMed

    Chen, Jing-Yun; Lin, Chien-Huang; Chen, Bing-Chang

    2017-08-01

    Hypoxia was identified as a mediator of lung fibrosis in patients with chronic obstructive asthma (COA). Overexpression of a disintegrin and metalloproteinase 17 (ADAM 17) and connective tissue growth factor (CTGF) leads to development of tissue fibrosis. However, the signaling pathway in hypoxia-induced ADAM 17 expression remains poorly defined. In this study, we investigated the roles that ribosomal S-6 kinase 1 (RSK1)/CCAAT/enhancer-binding protein β (C/EBPβ)-dependent ADAM 17 expression plays in hypoxia-induced CTGF expression in human lung fibroblasts. We observed that hypoxia caused increases in ADAM 17 expression and ADAM 17-luciferase activity in WI-38 cells. Hypoxia-induced CTGF-luciferase activity and CTGF expression were reduced in cells transfected with small interfering (si)RNA of ADAM 17 in WI-38 cells. Moreover, hypoxia-induced ADAM 17 expression was reduced by RSK1 siRNA and C/EBPβ siRNA. Hypoxia caused time-dependent increases in RSK1 phosphorylation at Thr359/Ser363. Exposure of cells to hypoxia resulted in increased C/EBPβ phosphorylation at Thr266 and C/EBPβ-luciferase activity in time-dependent manners, and these effects were suppressed by RSK1 siRNA. Hypoxia induced recruitment of C/EBPβ to the ADAM 17 promoter. Furthermore, CTGF-luciferase activity induced by hypoxia was attenuated by RSK1 siRNA and C/EBPβ siRNA. These results suggest that hypoxia instigates the RSK1-dependent C/EBPβ signaling pathway, which in turn initiates binding of C/EBPβ to the ADAM 17 promoter and ultimately induces ADAM 17 expression in human lung fibroblasts. Moreover, RSK1/C/EBPβ-dependent ADAM 17 expression is involved in hypoxia-induced CTGF expression. Our results suggest possible therapeutic approaches for treating hypoxia-mediated lung fibrosis in COA. Copyright © 2017. Published by Elsevier Ltd.

  1. Response of periodontal ligament fibroblasts and gingival fibroblasts to pulsating fluid flow: nitric oxide and prostaglandin E2 release and expression of tissue non-specific alkaline phosphatase activity.

    PubMed

    van der Pauw, M T; Klein-Nulend, J; van den Bos, T; Burger, E H; Everts, V; Beertsen, W

    2000-12-01

    The capacity of the periodontal ligament to alter its structure and mass in response to mechanical loading has long been recognized. However, the mechanism by which periodontal cells can detect physical forces and respond to them is largely unknown. Besides transmission of forces via cell-matrix or cell-cell interactions, the strain-derived flow of interstitial fluid through the periodontal ligament may mechanically activate the periodontal cells, as well as ensure transport of cell signaling molecules, nutrients and waste products. Mechanosensory cells, such as endothelial and bone cells, are reported to respond to a flow of fluid with stimulated prostaglandin E2 (PGE2) and nitric oxide production. Therefore, we examined the PGE2 and nitric oxide response of human periodontal ligament and gingival fibroblasts to pulsating fluid flow and assessed the expression of tissue non-specific alkaline phosphatase activity. Periodontal ligament and gingival fibroblasts were subjected to a pulsating fluid flow (0.7 +/- 0.02 Pa, 5 Hz) for 60 min. PGE2 and nitric oxide concentrations were determined in the conditioned medium after 5, 10, 30 and 60 min of flowing. After fluid flow the cells were cultured for another 60 min without mechanical stress. Periodontal ligament fibroblasts, but not gingival fibroblasts, responded to fluid flow with significantly elevated release of nitric oxide and decreased expression of tissue non-specific alkaline phosphatase activity. In both periodontal ligament and gingival fibroblasts, PGE2 production was significantly increased after 60 min of flowing. Periodontal ligament fibroblasts, but not gingival fibroblasts, produced significantly higher levels of PGE2 during the postflow culture period. We conclude that human periodontal ligament fibroblasts are more responsive to pulsating fluid flow than gingival fibroblasts. The similarity of the early nitric oxide and PGE2 responses to fluid flow in periodontal fibroblasts with bone cells and

  2. Differential expression of protease-activated receptors-1 and -2 in stromal fibroblasts of normal, benign, and malignant human tissues.

    PubMed

    D'Andrea, M R; Derian, C K; Santulli, R J; Andrade-Gordon, P

    2001-06-01

    The serine proteases thrombin and trypsin are among many factors that malignant cells secrete into the extracellular space to mediate metastatic processes such as cellular invasion, extracellular matrix degradation, angiogenesis, and tissue remodeling. The degree of protease secretion from malignant cells has been correlated to their metastatic potential. Protease activated receptors (PAR)-1 and -2, which are activated by thrombin and trypsin respectively, have not been extensively characterized in human tumors in situ. We investigated the presence of PAR-1 and PAR-2 in human normal, benign and malignant tissues using immunohistochemistry and in situ hybridization. Our results demonstrate PAR-1 and PAR-2 expression in the tumor cells, mast cells, macrophages, endothelial cells, and vascular smooth muscle cells of the metastatic tumor microenvironment. Most notably, an up-regulation of PAR-1 and PAR-2 observed in proliferating, smooth muscle actin (SMA)-positive stromal fibroblasts surrounding the carcinoma cells was not observed in normal or benign conditions. Furthermore, in vitro studies using proliferating, SMA-positive, human dermal fibroblasts, and scrape-wounded human dermal fibroblasts demonstrated the presence of PAR-1 and PAR-2 not detected in quiescent, SMA-negative cultures. PAR-1 and PAR-2 in the cells forming the tumor microenvironment suggest that these receptors mediate the signaling of secreted thrombin and trypsin in the processes of cellular metastasis.

  3. Gene expression profile in the activation of subperitoneal fibroblasts reflects prognosis of patients with colon cancer.

    PubMed

    Yokota, Mitsuru; Kojima, Motohiro; Higuchi, Youichi; Nishizawa, Yuji; Kobayashi, Akihiro; Ito, Masaaki; Saito, Norio; Ochiai, Atsushi

    2016-03-15

    Tumors can create a heterogenetic tumor microenvironment. We recently identified the pathologically unique cancer microenvironment formed by peritoneal invasion (CMPI), and revealed that subperitoneal fibroblasts (SPFs) within peritoneal tissue play a crucial role in tumor progression through their interaction with cancer cells. Therefore, the genes in SPFs altered by cancer stimulation may include some biologically important factors associated with patient prognosis. In this study, we aimed to identify new biomarkers using genes specifically upregulated in SPFs by cancer-cell-conditioned medium (CCCM) stimulation (SPFs CCCM response genes; SCR genes) in colon cancer (CC). We constructed two frameworks using SCR gene data: a publicly released microarray dataset, and validation cases with freshly frozen CC samples to identify genes related to short recurrence-free survival (RFS). In the first framework, we selected differentially expressed genes between the high and low SCR gene expression groups. In the second framework, genes significantly related to short RFS were selected by univariate analysis using all SCR genes, and multivariate analysis was performed to select robust genes associated with short RFS. We identified CTGF, CALD1, INHBA and TAGLN in the first framework, and PDLIM5, MAGI1, SPTBN1 and TAGLN in the second framework. Among these seven genes, high expression of three genes (CALD1, TAGLN and SPTBN1) showed a poor prognosis in our validation cases. In a public microarray dataset, SCR gene expression was associated with the expression of ECM component, EMT, and M2-macrophage associated genes, which was concordant with the pathological features of CMPI. Thus, we successfully identified new prognostic factors.

  4. Expression of catalytically active Matrix Metalloproteinase-1 in dermal fibroblasts induces collagen fragmentation and functional alterations that resemble aged human skin

    PubMed Central

    Xia, Wei; Hammerberg, Craig; Li, Yong; He, Tianyuan; Quan, Taihao; Voorhees, John J; Fisher, Gary J

    2013-01-01

    Summary Increased expression of matrix metalloproteinase-1 (MMP-1) and reduced production of type I collagen by dermal fibroblasts are prominent features of aged human skin. We have proposed that MMP-1-mediated collagen fibril fragmentation is a key driver of age-related decline of skin function. To investigate this hypothesis, we constructed, characterized, and expressed constitutively active MMP-1 mutant (MMP-1 V94G) in adult human skin in organ culture and fibroblasts in three dimensional collagen lattice cultures. Expression of MMP-1 V94G in young skin in organ culture caused fragmentation and ultrastructural alterations of collagen fibrils similar to those observed in aged human skin in vivo. Expression of MMP-1 V94G in dermal fibroblasts cultured in three-dimensional collagen lattices caused substantial collagen fragmentation, which was markedly reduced by MMP-1 siRNA-mediated knockdown or MMP inhibitor MMI270. Importantly, fibroblasts cultured in MMP-1 V94G-fragmented collagen lattices displayed many alterations observed in fibroblasts in aged human skin, including reduced cytoplasmic area, disassembled actin cytoskeleton, impaired TGF-β pathway, and reduced collagen production. These results support the concept that MMP-1-mediated fragmentation of dermal collagen fibrils alters the morphology and function of dermal fibroblasts, and provide a foundation for understanding specific mechanisms that link collagen fibril fragmentation to age-related decline of fibroblast function. PMID:23601157

  5. AZD-4547 exerts potent cytostatic and cytotoxic activities against fibroblast growth factor receptor (FGFR)-expressing colorectal cancer cells.

    PubMed

    Yao, Ting-Jing; Zhu, Jin-Hai; Peng, De-Feng; Cui, Zhen; Zhang, Chao; Lu, Pei-hua

    2015-07-01

    Colorectal cancer (CRC) causes significant mortalities worldwide. Fibroblast growth factor (FGF) receptor (FGFR) signaling is frequently dysregulated and/or constitutively activated in CRCs, contributing to cancer carcinogenesis and progression. Here, we studied the activity of AZD-4547, a novel and potent FGFR kinase inhibitor, on CRC cells. AZD-4547 inhibited CRC cell growth in vitro, and its activity correlated with the FGFR-1/2 expression level. AZD-4547 was cytotoxic and pro-apoptotic in FGFR-1/2-expressed CRC cell lines (NCI-H716 and HCT-116), but not in FGFR-1/2 null HT-29 cells. Further, AZD-4547 inhibited cell cycle progression and attenuated the activation of FGFR1-FGFR substrate 2 (FRS-2), ERK/mitogen-activated protein kinase (MAPK), and AKT/mammalian target of rapamycin (AKT/mTOR) signalings in NCI-H716 and HCT-116 cells. In vivo, AZD-4547 oral administration at effective doses inhibited NCI-H716 (high FGFR-1/2 expression) xenograft growth in nude mice. Phosphorylation of FGFR-1, AKT, and ERK1/2 in xenograft specimens was also inhibited by AZD-4547 administration. Thus, our preclinical studies strongly support possible clinical investigations of AZD-4547 for the treatment of CRCs harboring deregulated FGFR signalings.

  6. JNK activation is essential for activation of MEK/ERK signaling in IL-1β-induced COX-2 expression in synovial fibroblasts

    PubMed Central

    Kitanaka, Taku; Nakano, Rei; Kitanaka, Nanako; Kimura, Taro; Okabayashi, Ken; Narita, Takanori; Sugiya, Hiroshi

    2017-01-01

    The proinflammatory cytokine interleukin 1β (IL-1β) induces prostaglandin E2 (PGE2) production via upregulation of cyclooxygenase-2 (COX-2) expression in synovial fibroblasts. This effect of IL-1β is involved in osteoarthritis. We investigated MAPK signaling pathways in IL-1β-induced COX-2 expression in feline synovial fibroblasts. In the presence of MAPK inhibitors, IL-1β-induced COX-2 expression and PGE2 release were both attenuated. IL-1β induced the phosphorylation of p38, JNK, MEK, and ERK1/2. A JNK inhibitor prevented not only JNK phosphorylation but also MEK and ERK1/2 phosphorylation in IL-1β-stimulated cells, but MEK and ERK1/2 inhibitors had no effect on JNK phosphorylation. A p38 inhibitor prevented p38 phosphorylation, but had no effect on MEK, ERK1/2, and JNK phosphorylation. MEK, ERK1/2, and JNK inhibitors had no effect on p38 phosphorylation. We also observed that in IL-1β-treated cells, phosphorylated MEK, ERK1/2, and JNK were co-precipitated with anti-phospho-MEK, ERK1/2, and JNK antibodies. The silencing of JNK1 in siRNA-transfected fibroblasts prevented IL-1β to induce phosphorylation of MEK and ERK1/2 and COX-2 mRNA expression. These observations suggest that JNK1 phosphorylation is necessary for the activation of the MEK/ERK1/2 pathway and the subsequent COX-2 expression for PGE2 release, and p38 independently contributes to the IL-1β effect in synovial fibroblasts. PMID:28054591

  7. Activating the expression of human K-rasG12D stimulates oncogenic transformation in transgenic goat fetal fibroblast cells.

    PubMed

    Gong, Jianhua; Wang, Zhongde; Polejaeva, Irina; Salgia, Ravi; Kao, Chien-Min; Chen, Chin-Tu; Chen, Guangchun; Chen, Liaohai

    2014-01-01

    Humane use of preclinical large animal cancer models plays a critical role in understanding cancer biology and developing therapeutic treatments. Among the large animal candidates, goats have great potentials as sustainable sources for large animal cancer model development. Goats are easier to handle and cheaper to raise. The genome of the goats has been sequenced recently. It has been known that goats develop skin, adrenal cortex, breast and other types of cancers. Technically, goats are subject to somatic cell nuclear transfer more efficiently and exhibit better viability through the cloning process. Towards the development of a goat cancer model, we created a transgenic goat fetal fibroblast (GFF) cell as the donor cell for SCNT. Human mutated K-ras (hK-rasG12D) was chosen as the transgene, as it is present in 20% of cancers. Both hK-rasG12D and a herpes simplex viral thymidine kinase (HSV1-tk) reporter genes, flanked by a pair of LoxP sites, were knocked in the GFF endogenous K-ras locus through homologous recombination. Following Cre-mediated activation (with a 95% activation efficiency), hK-rasG12D and HSV1-tk were expressed in the transgenic GFF cells, evidently through the presence of corresponding mRNAs, and confirmed by HSV1-tk protein function assay. The hK-rasG12D expressing GFF cells exhibited enhanced proliferation rates and an anchorage-independent growth behavior. They were able to initiate tumor growth in athymic nude mice. In conclusion, after activating hK-rasG12D gene expression, hK-rasG12D transgenic GFF cells were transformed into tumorgenesis cells. Transgenic goats via SCNT using the above-motioned cells as the donor cells have been established.

  8. Activating the Expression of Human K-rasG12D Stimulates Oncogenic Transformation in Transgenic Goat Fetal Fibroblast Cells

    PubMed Central

    Gong, Jianhua; Wang, Zhongde; Polejaeva, Irina; Salgia, Ravi; Kao, Chien-Min; Chen, Chin-Tu; Chen, Guangchun; Chen, Liaohai

    2014-01-01

    Humane use of preclinical large animal cancer models plays a critical role in understanding cancer biology and developing therapeutic treatments. Among the large animal candidates, goats have great potentials as sustainable sources for large animal cancer model development. Goats are easier to handle and cheaper to raise. The genome of the goats has been sequenced recently. It has been known that goats develop skin, adrenal cortex, breast and other types of cancers. Technically, goats are subject to somatic cell nuclear transfer more efficiently and exhibit better viability through the cloning process. Towards the development of a goat cancer model, we created a transgenic goat fetal fibroblast (GFF) cell as the donor cell for SCNT. Human mutated K-ras (hK-rasG12D) was chosen as the transgene, as it is present in 20% of cancers. Both hK-rasG12D and a herpes simplex viral thymidine kinase (HSV1-tk) reporter genes, flanked by a pair of LoxP sites, were knocked in the GFF endogenous K-ras locus through homologous recombination. Following Cre-mediated activation (with a 95% activation efficiency), hK-rasG12D and HSV1-tk were expressed in the transgenic GFF cells, evidently through the presence of corresponding mRNAs, and confirmed by HSV1-tk protein function assay. The hK-rasG12D expressing GFF cells exhibited enhanced proliferation rates and an anchorage-independent growth behavior. They were able to initiate tumor growth in athymic nude mice. In conclusion, after activating hK-rasG12D gene expression, hK-rasG12D transgenic GFF cells were transformed into tumorgenesis cells. Transgenic goats via SCNT using the above-motioned cells as the donor cells have been established. PMID:24594684

  9. Ceramide inhibits CCN2 expression in fibroblasts

    PubMed Central

    Kennedy, Laura; Parapuram, Sunil; Greenspoon, Jill

    2008-01-01

    Connective tissue growth factor (CTGF, CCN2) is induced in response to TGFβ in fibroblasts. In this report, we show that C2 ceramide reduced the ability of TGFβ to induce CCN2 protein, mRNA and promoter activity in fibroblasts. C2 ceramide reduced the ability of TGFβ to induce the generic Smad responsive promoter/reporter construct SBE-luciferase. These results suggest that C2 ceramide reduces the action of TGFβ in fibroblasts via Smad antagonism. PMID:18649016

  10. Expression and function of microRNA-188-5p in activated rheumatoid arthritis synovial fibroblasts.

    PubMed

    Ruedel, Anke; Dietrich, Peter; Schubert, Thomas; Hofmeister, Simone; Hellerbrand, Claus; Bosserhoff, Anja-Katrin

    2015-01-01

    Activated synovial fibroblasts in rheumatoid arthritis (RASF) play a critical role in the pathology of rheumatoid arthritis (RA). Recent studies suggested that deregulation of microRNAs (miRs) affects the development and progression of RA. Therefore, we aimed to identify de-regulated miRs in RASF and to identify target genes that may contribute to the aggressive phenotype of RASF. Quantitative real-time PCR revealed a marked downregulation of miR-188-5p in synovial tissue samples of RA patients as well as in RASF. Exposure to the cytokine interleukine-1β lead to a further downregulation of miR-188-5p expression levels compared to control cells. Re-expression of miR-188-5p in RASF by transient transfection significantly inhibited cell migration. However, miR-188-5p re-expression had no effects on glycosaminoglycan degradation or expression of repellent factors, which have been previously shown to affect the invasive behavior of RASF. In search for target genes of miR-188-5p in RASF we performed gene expression profiling in RASF and found a strong regulatory effect of miR-188-5p on the hyaluronan binding protein KIAA1199 as well as collagens COL1A1 and COL12A1, which was confirmed by qRT-PCR. In silico analysis revealed that KIAA1199 carries a 3'UTR binding site for miR-188-5p. COL1A1and COL12A1 showed no binding site in the mRNA region, suggesting an indirect regulation of these two genes by miR-188-5p. In summary, our study showed that miR-188-5p is down-regulated in RA in vitro and in vivo, most likely triggered by an inflammatory environment. MiR-188-5p expression is correlated to the activation state of RASF and inhibits migration of these cells. Furthermore, miR-188-5p is directly and indirectly regulating the expression of genes, which may play a role in extracellular matrix formation and destruction in RA. Herewith, this study identified potential novel therapeutic targets to inhibit the development and progression of RA.

  11. Epigenetic Regulation of Caveolin-1 Gene Expression in Lung Fibroblasts.

    PubMed

    Sanders, Yan Y; Liu, Hui; Scruggs, Anne M; Duncan, Steven R; Huang, Steven K; Thannickal, Victor J

    2017-01-01

    Fibrotic disorders are associated with tissue accumulation of fibroblasts. We recently showed that caveolin (Cav)-1 gene suppression by a profibrotic cytokine, transforming growth factor (TGF)-β1, contributes to fibroblast proliferation and apoptosis resistance. Cav-1 has been shown to be constitutively suppressed in idiopathic pulmonary fibrosis (IPF), but mechanisms for this suppression are incompletely understood. We hypothesized that epigenetic processes contribute to Cav-1 down-regulation in IPF lung fibroblasts, and after fibrogenic stimuli. Cav-1 expression levels, DNA methylation status, and histone modifications associated with the Cav-1 promoter were examined by PCR, Western blots, pyrosequencing, or chromatin immunoprecipitation assays in IPF lung fibroblasts, normal fibroblasts after TGF-β1 stimulation, or in murine lung fibroblasts after bleomycin injury. Methylation-specific PCR demonstrated methylated and unmethylated Cav-1 DNA copies in all groups. Despite significant changes in Cav-1 expression, no changes in DNA methylation were observed in CpG islands or CpG island shores of the Cav-1 promoter by pyrosequencing of lung fibroblasts from IPF lungs, in response to TGF-β1, or after bleomycin-induced murine lung injury, when compared with respective controls. In contrast, the association of Cav-1 promoter with the active histone modification mark, H3 lysine 4 trimethylation, correlated with Cav-1 down-regulation in activated/fibrotic lung fibroblasts. Our data indicate that Cav-1 gene silencing in lung fibroblasts is actively regulated by epigenetic mechanisms that involve histone modifications, in particular H3 lysine 4 trimethylation, whereas DNA methylation does not appear to be a primary mechanism. These findings support therapeutic strategies that target histone modifications to restore Cav-1 expression in fibroblasts participating in pathogenic tissue remodeling.

  12. Asiatic acid isolated from Centella asiatica inhibits TGF-β1-induced collagen expression in human keloid fibroblasts via PPAR-γ activation.

    PubMed

    Bian, Difei; Zhang, Jizhou; Wu, Xin; Dou, Yannong; Yang, Yan; Tan, Qian; Xia, Yufeng; Gong, Zhunan; Dai, Yue

    2013-01-01

    Keloids are fibroproliferative disorders characterized by exuberant extracellular matrix deposition and transforming growth factor (TGF)-β/Smad pathway plays a pivotal role in keloid pathogenesis. Centella asiatica extract has been applied in scar management for ages. As one of its major components, asiatic acid (AA) has been recently reported to inhibit liver fibrosis by blocking TGF-β/Smad pathway. However, its effect on keloid remains unknown. In order to investigate the effects of AA on cell proliferation, invasion and collagen synthesis, normal and keloid fibroblasts were exposed to TGF-β1 with or without AA. Relevant experiments including 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, 5-ethynyl-2-deoxyuridine (EdU) incorporation assay, Transwell invasion assay, enzyme-linked immunosorbent assay, Western blot, quantitative polymerase chain reaction and RNA interference assay were conducted. As a result, keloid fibroblasts showed higher responsiveness to TGF-β1 stimulation than normal fibroblasts in terms of invasion and collagen synthesis. AA could suppress TGF-β1-induced expression of collagen type I, inhibit Smad 2/3 phosphorylation and plasminogen activator inhibitor-1 (PAI-1) expression, while elevate Smad 7 protein level. Noteworthy, the effects of AA on keloid fibroblasts could be abrogated by PPAR-γ antagonist GW9662 and by silencing of PPAR-γ. The present study demonstrated that AA inhibited TGF-β1-induced collagen and PAI-1 expression in keloid fibroblasts through PPAR-γ activation, which suggested that AA was one of the active constituents of C. asiatica responsible for keloid management, and could be included in the arsenal for combating against keloid.

  13. Asiatic Acid Isolated From Centella Asiatica Inhibits TGF-β1-induced Collagen Expression in Human Keloid Fibroblasts via PPAR-γ Activation

    PubMed Central

    Bian, Difei; Zhang, Jizhou; Wu, Xin; Dou, Yannong; Yang, Yan; Tan, Qian; Xia, Yufeng; Gong, Zhunan; Dai, Yue

    2013-01-01

    Keloids are fibroproliferative disorders characterized by exuberant extracellular matrix deposition and transforming growth factor (TGF)-β/Smad pathway plays a pivotal role in keloid pathogenesis. Centella asiatica extract has been applied in scar management for ages. As one of its major components, asiatic acid (AA) has been recently reported to inhibit liver fibrosis by blocking TGF-β/Smad pathway. However, its effect on keloid remains unknown. In order to investigate the effects of AA on cell proliferation, invasion and collagen synthesis, normal and keloid fibroblasts were exposed to TGF-β1 with or without AA. Relevant experiments including 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, 5-ethynyl-2-deoxyuridine (EdU) incorporation assay, Transwell invasion assay, enzyme-linked immunosorbent assay, Western blot, quantitative polymerase chain reaction and RNA interference assay were conducted. As a result, keloid fibroblasts showed higher responsiveness to TGF-β1 stimulation than normal fibroblasts in terms of invasion and collagen synthesis. AA could suppress TGF-β1-induced expression of collagen type I, inhibit Smad 2/3 phosphorylation and plasminogen activator inhibitor-1 (PAI-1) expression, while elevate Smad 7 protein level. Noteworthy, the effects of AA on keloid fibroblasts could be abrogated by PPAR-γ antagonist GW9662 and by silencing of PPAR-γ. The present study demonstrated that AA inhibited TGF-β1-induced collagen and PAI-1 expression in keloid fibroblasts through PPAR-γ activation, which suggested that AA was one of the active constituents of C. asiatica responsible for keloid management, and could be included in the arsenal for combating against keloid. PMID:24250248

  14. A soluble factor from Trypanosoma cruzi inhibits transforming growth factor-ß-induced MAP kinase activation and gene expression in dermal fibroblasts.

    PubMed

    Mott, G Adam; Costales, Jaime A; Burleigh, Barbara A

    2011-01-01

    The protozoan parasite Trypanosoma cruzi, which causes human Chagas' disease, exerts a variety of effects on host extracellular matrix (ECM) including proteolytic degradation of collagens and dampening of ECM gene expression. Exposure of primary human dermal fibroblasts to live infective T. cruzi trypomastigotes or their shed/secreted products results in a rapid down-regulation of the fibrogenic genes collagenIα1, fibronectin and connective tissue growth factor (CTGF/CCN2). Here we demonstrate the ability of a secreted/released T. cruzi factor to antagonize ctgf/ccn2 expression in dermal fibroblasts in response to TGF-ß, lysophosphatidic acid or serum, where agonist-induced phosphorylation of the mitogen-activated protein (MAP) kinases Erk1/2, p38 and JNK was also inhibited. Global analysis of gene expression in dermal fibroblasts identified a discrete subset of TGF-ß-inducible genes involved in cell proliferation, wound repair, and immune regulation that are inhibited by T. cruzi secreted/released factors, where the genes exhibiting the highest sensitivity to T. cruzi are known to be regulated by MAP kinase-activated transcription factors. Consistent with this observation, the Ets-family transcription factor binding site in the proximal promoter region of the ctgf/ccn2 gene (-91 bp to -84 bp) was shown to be required for T. cruzi-mediated down-regulation of ctgf/ccn2 reporter expression. The cumulative data suggest a model in which T. cruzi-derived molecules secreted/released early in the infective process dampen MAP kinase signaling and the activation of transcription factors that regulate expression of fibroblast genes involved in wound repair and tissue remodelling, including ctgf/ccn2. These findings have broader implications for local modulation of ECM synthesis/remodelling by T. cruzi during the early establishment of infection in the mammalian host and highlight the potential for pathogen-derived molecules to be exploited as tools to modulate the

  15. Temperature-sensitive polymer-conjugated IFN-gamma induces the expression of IDO mRNA and activity by fibroblasts populated in collagen gel (FPCG).

    PubMed

    Sarkhosh, Kourosh; Tredget, Edward E; Uludag, Hasan; Kilani, Ruhangiz T; Karami, Ali; Li, Yunyuan; Iwashina, Takashi; Ghahary, Aziz

    2004-10-01

    Indoleamine 2,3-dioxygenase (IDO) is an intracellular tryptophan-catabolizing enzyme possessing various immunosuppressive properties. Here, we report the use of this enzyme to suppress the proliferation of peripheral blood mononuclear cells (PBMC) co-cultured with IDO-expressing fibroblasts of an allogeneic skin substitute in vitro. Fetal foreskin fibroblasts populated within collagen gel (FPCG) were treated with interferon-gamma (IFN-gamma) conjugated with a temperature-sensitive polymer to induce the expression of IDO mRNA and protein. SDS-PAGE showed successful conjugation of IFN-gamma with the temperature-sensitive polymer. Expression of IDO mRNA was evaluated by Northern analysis. IDO enzyme activity was evaluated by the measurement of kynurenine levels. The results of Northern blot analysis showed an induction of IDO mRNA expression when treated with polymer-conjugated IFN-gamma. Kynurenine levels, as a measure of IDO bioactivity, were significantly higher in IFN-gamma-treated fibroblasts than in controls (P < 0.001). In a lasting effect experiment, the expression of IDO mRNA in FPCG treated with polymer-conjugated IFN-gamma was significantly longer than in those treated with free (non-conjugated) IFN-gamma (P < 0.001). IFN-gamma radiolabeling showed a prolonged retention of IFN-gamma within collagen gel in its polymer-conjugated form, compared to its free form. Presence of IDO protein in FPCG was demonstrated by Western analysis even 16 days after removal of the conditioned medium (containing released IFN-gamma). To demonstrate the immunosuppressive effects of IDO on the proliferation of PBMC, IDO-expressing FPCG treated with polymer-conjugated IFN-gamma were co-cultured with PBMC for a period of 5 days. The results showed a significant reduction in proliferation of PBMC co-cultured with IFN-gamma-treated IDO-expressing fibroblasts, compared to those co-cultured with non-IDO-expressing fibroblasts (P < 0.001). The addition of an IDO inhibitor (1-methyl

  16. Low intensity 635 nm diode laser irradiation inhibits fibroblast-myofibroblast transition reducing TRPC1 channel expression/activity: New perspectives for tissue fibrosis treatment.

    PubMed

    Sassoli, Chiara; Chellini, Flaminia; Squecco, Roberta; Tani, Alessia; Idrizaj, Eglantina; Nosi, Daniele; Giannelli, Marco; Zecchi-Orlandini, Sandra

    2016-03-01

    Low-level laser therapy (LLLT) or photobiomodulation therapy is emerging as a promising new therapeutic option for fibrosis in different damaged and/or diseased organs. However, the anti-fibrotic potential of this treatment needs to be elucidated and the cellular and molecular targets of the laser clarified. Here, we investigated the effects of a low intensity 635 ± 5 nm diode laser irradiation on fibroblast-myofibroblast transition, a key event in the onset of fibrosis, and elucidated some of the underlying molecular mechanisms. NIH/3T3 fibroblasts were cultured in a low serum medium in the presence of transforming growth factor (TGF)-β1 and irradiated with a 635 ± 5 nm diode laser (continuous wave, 89 mW, 0.3 J/cm(2) ). Fibroblast-myofibroblast differentiation was assayed by morphological, biochemical, and electrophysiological approaches. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 and of Tissue inhibitor of MMPs, namely TIMP-1 and TIMP-2, after laser exposure was also evaluated by confocal immunofluorescence analyses. Moreover, the effect of the diode laser on transient receptor potential canonical channel (TRPC) 1/stretch-activated channel (SAC) expression and activity and on TGF-β1/Smad3 signaling was investigated. Diode laser treatment inhibited TGF-β1-induced fibroblast-myofibroblast transition as judged by reduction of stress fibers formation, α-smooth muscle actin (sma) and type-1 collagen expression and by changes in electrophysiological properties such as resting membrane potential, cell capacitance and inwardly rectifying K(+) currents. In addition, the irradiation up-regulated the expression of MMP-2 and MMP-9 and downregulated that of TIMP-1 and TIMP-2 in TGF-β1-treated cells. This laser effect was shown to involve TRPC1/SAC channel functionality. Finally, diode laser stimulation and TRPC1 functionality negatively affected fibroblast-myofibroblast transition by interfering with TGF-β1 signaling, namely reducing the

  17. Mechanoregulation of gene expression in fibroblasts

    PubMed Central

    Wang, James H.-C.; Thampatty, Bhavani P.; Lin, Jeen-Shang; Im, Hee-Jeong

    2010-01-01

    Mechanical loads placed on connective tissues alter gene expression in fibroblasts through mechanotransduction mechanisms by which cells convert mechanical signals into cellular biological events, such as gene expression of extracellular matrix components (e.g., collagen). This mechanical regulation of ECM gene expression affords maintenance of connective tissue homeostasis. However, mechanical loads can also interfere with homeostatic cellular gene expression and consequently cause the pathogenesis of connective tissue diseases such as tendinopathy and osteoarthritis. Therefore, the regulation of gene expression by mechanical loads is closely related to connective tissue physiology and pathology. This article reviews the effects of various mechanical loading conditions on gene regulation in fibroblasts and discusses several mechanotransduction mechanisms. Future research directions in mechanoregulation of gene expression are also suggested. PMID:17331678

  18. Acid fibroblast growth factor and peripheral nerve grafts regulate Th2 cytokine expression, macrophage activation, polyamine synthesis, and neurotrophin expression in transected rat spinal cords.

    PubMed

    Kuo, Huai-Sheng; Tsai, May-Jywan; Huang, Ming-Chao; Chiu, Chuan-Wen; Tsai, Ching-Yi; Lee, Meng-Jen; Huang, Wen-Cheng; Lin, Yi-Lo; Kuo, Wen-Chun; Cheng, Henrich

    2011-03-16

    Spinal cord injury elicits an inflammatory response that recruits macrophages to the injured spinal cord. Quantitative real-time PCR results have shown that a repair strategy combining peripheral nerve grafts with acidic fibroblast growth factor (aFGF) induced higher interleukin-4 (IL-4), IL-10, and IL-13 levels in the graft areas of rat spinal cords compared with transected spinal cords at 10 and 14 d. This led to higher arginase I-positive alternatively activated macrophage (M2 macrophage) responses. The gene expression of several enzymes involved in polyamine biosynthesis pathways was also upregulated in the graft areas of repaired spinal cords. The treatment induced a twofold upregulation of polyamine levels at 14 d, as confirmed by HPLC. Polyamines are important for the repair process, as demonstrated by the observation that treatment with inhibitors of arginase I and ornithine decarboxylase attenuates the functional recoveries of repaired rats. After 14 d, the treatment also induced the expression of neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), as well as M2 macrophages within grafted nerves expressing BDNF. IL-4 was upregulated in the injury sites of transected rats that received aFGF alone compared with those that received nerve grafts alone at 10 d. Conversely, nerve graft treatment induced NGF and BDNF expression at 14 d. Macrophages expressing polyamines and BDNF may benefit axonal regeneration at 14 d. These results indicate that aFGF and nerve grafts regulate different macrophage responses, and M2 macrophages may play an important role in axonal regeneration after spinal cord injury in rats.

  19. Hsp90 regulation of fibroblast activation in pulmonary fibrosis

    PubMed Central

    Sontake, Vishwaraj; Wang, Yunguan; Kasam, Rajesh K.; Sinner, Debora; Reddy, Geereddy B.; Naren, Anjaparavanda P.; McCormack, Francis X.; Jegga, Anil G.; Madala, Satish K.

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a severe fibrotic lung disease associated with fibroblast activation that includes excessive proliferation, tissue invasiveness, myofibroblast transformation, and extracellular matrix (ECM) production. To identify inhibitors that can attenuate fibroblast activation, we queried IPF gene signatures against a library of small-molecule-induced gene-expression profiles and identified Hsp90 inhibitors as potential therapeutic agents that can suppress fibroblast activation in IPF. Although Hsp90 is a molecular chaperone that regulates multiple processes involved in fibroblast activation, it has not been previously proposed as a molecular target in IPF. Here, we found elevated Hsp90 staining in lung biopsies of patients with IPF. Notably, fibroblasts isolated from fibrotic lesions showed heightened Hsp90 ATPase activity compared with normal fibroblasts. 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), a small-molecule inhibitor of Hsp90 ATPase activity, attenuated fibroblast activation and also TGF-β–driven effects on fibroblast to myofibroblast transformation. The loss of the Hsp90AB, but not the Hsp90AA isoform, resulted in reduced fibroblast proliferation, myofibroblast transformation, and ECM production. Finally, in vivo therapy with 17-AAG attenuated progression of established and ongoing fibrosis in a mouse model of pulmonary fibrosis, suggesting that targeting Hsp90 represents an effective strategy for the treatment of fibrotic lung disease. PMID:28239659

  20. Ligand-activated PPARδ upregulates α-smooth muscle actin expression in human dermal fibroblasts: A potential role for PPARδ in wound healing.

    PubMed

    Ham, Sun Ah; Hwang, Jung Seok; Yoo, Taesik; Lee, Won Jin; Paek, Kyung Shin; Oh, Jae-Wook; Park, Chan-Kyu; Kim, Jin-Hoi; Do, Jung Tae; Kim, Jae-Hwan; Seo, Han Geuk

    2015-12-01

    The phenotypic changes that accompany differentiation of resident fibroblasts into myofibroblasts are important aspects of the wound healing process. Recent studies showed that peroxisome proliferator-activated receptor (PPAR) δ plays a critical role in wound healing. To determine whether the nuclear receptor PPARδ can modulate the differentiation of human dermal fibroblasts (HDFs) into myofibroblasts. These studies were undertaken in primary HDFs using Western blot analyses, small interfering (si)RNA-mediated gene silencing, reporter gene assays, chromatin immunoprecipitation (ChIP), migration assays, collagen gel contraction assays, and real-time PCR. Activation of PPARδ by GW501516, a specific ligand of PPARδ, specifically upregulated the myofibroblast marker α-smooth muscle actin (α-SMA) in a time- and concentration-dependent manner. This induction was significantly inhibited by the presence of siRNA against PPARδ, indicating that PPARδ is involved in myofibroblast transdifferentiation of HDFs. Ligand-activated PPARδ increased α-SMA promoter activity in a dual mode by directly binding a direct repeat-1 (DR1) site in the α-SMA promoter, and by inducing expression of transforming growth factor (TGF)-β, whose downstream effector Smad3 interacts with a Smad-binding element (SBE) in another region of the promoter. Mutations in these cis-elements totally abrogated transcriptional activation of the α-SMA gene by the PPARδ ligand; thus both sites represent novel types of PPARδ response elements. GW501516-activated PPARδ also increased the migration and contractile properties of HDFs, as demonstrated by Transwell and collagen lattice contraction assays, respectively. In addition, PPARδ-mediated upregulation of α-SMA was correlated with elevated expression of myofibroblast markers such as collagen I and fibronectin, with a concomitant reduction in expression of the epithelial marker E-cadherin. PPARδ plays pivotal roles in wound healing by promoting

  1. A Murine Fibroblast Growth Factor (FGF) Receptor Expressed in CHO Cells is Activated by Basic FGF and Kaposi FGF

    NASA Astrophysics Data System (ADS)

    Mansukhani, Alka; Moscatelli, David; Talarico, Daniela; Levytska, Vera; Basilico, Claudio

    1990-06-01

    We have cloned a murine cDNA encoding a tyrosine kinase receptor with about 90% similarity to the chicken fibroblast growth factor (FGF) receptor and the human fms-like gene (FLG) tyrosine kinase. This mouse receptor lacks 88 amino acids in the extracellular portion, leaving only two immunoglobulin-like domains compared to three in the chicken FGF receptor. The cDNA was cloned into an expression vector and transfected into receptor-negative CHO cells. We show that cells expressing the receptor can bind both basic FGF and Kaposi FGF. Although the receptor binds basic FGF with a 15- to 20-fold higher affinity, Kaposi FGF is able to induce down-regulation of the receptor to the same extent as basic FGF. The receptor is phosphorylated upon stimulation with both FGFs, DNA synthesis is stimulated, and a proliferative response is produced in cells expressing the receptor, whereas cells expressing the cDNA in the antisense orientation show none of these responses to basic FGF or Kaposi FGF. Thus this receptor can functionally interact with two growth factors of the FGF family.

  2. All-trans retinoic acid suppresses interleukin-6 expression in interleukin-1-stimulated synovial fibroblasts by inhibition of ERK1/2 pathway independently of RAR activation

    PubMed Central

    Kirchmeyer, Mélanie; Koufany, Meriem; Sebillaud, Sylvie; Netter, Patrick; Jouzeau, Jean-Yves; Bianchi, Arnaud

    2008-01-01

    Introduction Interleukin-6 (IL-6) is thought to play a pathogenic role in rheumatoid arthritis and synovium is a major source of IL-6 release. We investigated the ability of retinoids to suppress IL-6 expression in IL-1-stimulated synovial fibroblasts, with special care to the contribution of retinoic acid receptor (RAR) and retinoid X receptor (RXR) subtypes, and the implication of the mitogen-activated protein kinase (MAPK) pathway. Methods RAR-α, -β, and -γ and RXR-α, -β, and -γ levels were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) or Western blot in rat synovial fibroblasts stimulated with 10 ng/mL of IL-1β. Stimulated levels of IL-6 were assessed by RT-qPCR or immunoassays in the presence or absence of 1 μM all-trans retinoic acid (ATRA) (RAR agonist) or 0.3 μM BMS-649 (RXR agonist). The contribution of RAR subtypes was checked with selective agonists or small interfering RNAs. The effect of ATRA on upstream MAPK (p38 MAPK, c-Jun N-terminal kinase [JNK], and extracellularly regulated kinase 1/2 [ERK1/2]) was assessed by Western blot, and the contribution of the ERK1/2 pathway to the activation of pro-inflammatory transcription factors was studied by TransAm™ assays. Results Synovial fibroblasts expressed all RAR and RXR subtypes except RXR-γ. In IL-1-stimulated cells, ATRA, but not BMS-649, reduced IL-6 expression whereas selective RAR agonists were inactive. The inhibitory effect of ATRA on IL-6 was not affected by the silencing of RAR subtypes. ATRA also reduced the phosphorylation of ERK1/2, but not of p38 MAPK or of JNK. The suppressive effect of ATRA on the activation of activator protein-1 (AP-1) and nuclear factor-IL-6 (NF-IL-6) was reproduced by the MEK1 (mitogen-activated protein extracellularly regulated kinase kinase 1) inhibitor PD-98059, whereas ATRA and PD-98059 had no effect on NF-κB activation. Conclusions Among RAR and RXR agonists, only ATRA inhibited IL-1-induced IL-6 expression in rat

  3. All-trans retinoic acid suppresses interleukin-6 expression in interleukin-1-stimulated synovial fibroblasts by inhibition of ERK1/2 pathway independently of RAR activation.

    PubMed

    Kirchmeyer, Mélanie; Koufany, Meriem; Sebillaud, Sylvie; Netter, Patrick; Jouzeau, Jean-Yves; Bianchi, Arnaud

    2008-01-01

    Interleukin-6 (IL-6) is thought to play a pathogenic role in rheumatoid arthritis and synovium is a major source of IL-6 release. We investigated the ability of retinoids to suppress IL-6 expression in IL-1-stimulated synovial fibroblasts, with special care to the contribution of retinoic acid receptor (RAR) and retinoid X receptor (RXR) subtypes, and the implication of the mitogen-activated protein kinase (MAPK) pathway. RAR-alpha, -beta, and -gamma and RXR-alpha, -beta, and -gamma levels were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) or Western blot in rat synovial fibroblasts stimulated with 10 ng/mL of IL-1beta. Stimulated levels of IL-6 were assessed by RT-qPCR or immunoassays in the presence or absence of 1 microM all-trans retinoic acid (ATRA) (RAR agonist) or 0.3 microM BMS-649 (RXR agonist). The contribution of RAR subtypes was checked with selective agonists or small interfering RNAs. The effect of ATRA on upstream MAPK (p38 MAPK, c-Jun N-terminal kinase [JNK], and extracellularly regulated kinase 1/2 [ERK1/2]) was assessed by Western blot, and the contribution of the ERK1/2 pathway to the activation of pro-inflammatory transcription factors was studied by TransAm assays. Synovial fibroblasts expressed all RAR and RXR subtypes except RXR-gamma. In IL-1-stimulated cells, ATRA, but not BMS-649, reduced IL-6 expression whereas selective RAR agonists were inactive. The inhibitory effect of ATRA on IL-6 was not affected by the silencing of RAR subtypes. ATRA also reduced the phosphorylation of ERK1/2, but not of p38 MAPK or of JNK. The suppressive effect of ATRA on the activation of activator protein-1 (AP-1) and nuclear factor-IL-6 (NF-IL-6) was reproduced by the MEK1 (mitogen-activated protein extracellularly regulated kinase kinase 1) inhibitor PD-98059, whereas ATRA and PD-98059 had no effect on NF-kappaB activation. Among RAR and RXR agonists, only ATRA inhibited IL-1-induced IL-6 expression in rat synovial

  4. Tumor-secreted LOXL2 Activates Fibroblasts Through FAK Signaling

    PubMed Central

    Barker, Holly E.; Bird, Demelza; Lang, Georgina; Erler, Janine T.

    2013-01-01

    Cancer-associated fibroblasts enhance cancer progression when activated by tumor cells through mechanisms not yet fully understood. Blocking mammary tumor cell-derived lysyl oxidase-like 2 (LOXL2) significantly inhibited mammary tumor cell invasion and metastasis in transgenic and orthotopic mouse models. Here we discovered that tumor-derived LOXL2 directly activated stromal fibroblasts in the tumor microenvironment. Genetic manipulation or antibody inhibition of LOXL2 in orthotopically grown mammary tumors reduced the expression of α-smooth muscle actin (α-SMA). Using a marker for reticular fibroblasts, it was determined that expression of α-SMA was localized to fibroblasts recruited from the host tissue. This marker also revealed that the matrix present in tumors with reduced levels of LOXL2 was more scattered compared to control tumors which exhibited matrices with dense, parallel alignments. Importantly, in vitro assays revealed that tumor-derived LOXL2 and a recombinant LOXL2 protein induced fibroblast branching on collagen matrices, as well as increased fibroblast-mediated collagen contraction and invasion of fibroblasts through extracellular matrix (ECM). Moreover, LOXL2 induced the expression of α-SMA in fibroblasts grown on collagen matrices. Mechanistically, it was determined that LOXL2 activated fibroblasts through integrin-mediated FAK activation. These results indicate that inhibition of LOXL2 in tumors not only reduces tumor cell invasion but also attenuates the activation of host cells in the tumor microenvironment. Implications: These findings reveal new insight into the mechanisms of fibroblast activation, a novel function of LOXL2, and further highlight the importance of generating LOXL2-targeted therapies for the prevention of tumor progression and metastasis. PMID:24008674

  5. Upregulated expression of CCR3 in rheumatoid arthritis and CCR3-dependent activation of fibroblast-like synoviocytes.

    PubMed

    Liu, Xin; Zhang, Huiyun; Chang, Xin; Shen, Jirong; Zheng, Wenjiao; Xu, Yanan; Wang, Junling; Gao, Wei; He, Shaoheng

    2017-02-01

    It is recognized that CC chemokine receptor 3 (CCR3) is associated with numerous inflammatory conditions and fibroblast-like synoviocyte (FLS) invasiveness correlates with articular damage in rheumatoid arthritis (RA). However, little is known of the expression and action of CCR3 on FLS in RA. In the present study, we investigated the expression of CCR3 on dispersed synovial tissue and peripheral blood cells in RA and influence of eotaxin-1 on FLS functions by using flow cytometry analysis, FLS challenge, and real-time PCR techniques. The results showed that approximately 7.0 % dispersed synovial cells are CCR3+ cells. Among those CCR3+ cells, 38.1, 23.8, and 20.6 % cells are CD90+CD14-CD3- (representing FLS), CD14+, and CD8+ cells, respectively, indicating that FLS is one of the major populations of CCR3+ cells in the synovial tissue of RA. In peripheral blood, CD14+ CCR3+ cells are elevated, but CD8+CCR3+ cells are reduced in RA. It was found that eotaxin-1 induced upregulated expression of CCR3 and matrix metalloproteinase (MMP)-9 messenger RNAs (mRNAs) in FLS. Since an antagonist of CCR3 suppressed the action of eotaxin-1, the event appeared CCR3 dependent. Moreover, we observed that interleukin (IL)-1β induced markedly enhanced eotaxin-1 release from FLS, but TNF-α reduced eotaxin-1 release at 12 and 24 h following incubation. In conclusion, enhanced expression of CCR3 on synovial cells and increased levels of eotaxin-1 in plasma and synovial fluid (SF) of RA indicate that CCR3-mediated mechanisms may play an important role in RA. Blockage of eotaxin-1 provoked CCR3 and MMP-9 expression in FLS by antagonist of CCR3, implicating that anti-CCR3 agents may have therapeutic use for RA.

  6. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis

    PubMed Central

    Liu, Fei; Lagares, David; Choi, Kyoung Moo; Stopfer, Lauren; Marinković, Aleksandar; Vrbanac, Vladimir; Probst, Clemens K.; Hiemer, Samantha E.; Sisson, Thomas H.; Horowitz, Jeffrey C.; Rosas, Ivan O.; Fredenburgh, Laura E.; Feghali-Bostwick, Carol; Varelas, Xaralabos; Tager, Andrew M.

    2014-01-01

    Pathological fibrosis is driven by a feedback loop in which the fibrotic extracellular matrix is both a cause and consequence of fibroblast activation. However, the molecular mechanisms underlying this process remain poorly understood. Here we identify yes-associated protein (YAP) (homolog of drosophila Yki) and transcriptional coactivator with PDZ-binding motif (TAZ) (also known as Wwtr1), transcriptional effectors of the Hippo pathway, as key matrix stiffness-regulated coordinators of fibroblast activation and matrix synthesis. YAP and TAZ are prominently expressed in fibrotic but not healthy lung tissue, with particularly pronounced nuclear expression of TAZ in spindle-shaped fibroblastic cells. In culture, both YAP and TAZ accumulate in the nuclei of fibroblasts grown on pathologically stiff matrices but not physiologically compliant matrices. Knockdown of YAP and TAZ together in vitro attenuates key fibroblast functions, including matrix synthesis, contraction, and proliferation, and does so exclusively on pathologically stiff matrices. Profibrotic effects of YAP and TAZ operate, in part, through their transcriptional target plasminogen activator inhibitor-1, which is regulated by matrix stiffness independent of transforming growth factor-β signaling. Immortalized fibroblasts conditionally expressing active YAP or TAZ mutant proteins overcome soft matrix limitations on growth and promote fibrosis when adoptively transferred to the murine lung, demonstrating the ability of fibroblast YAP/TAZ activation to drive a profibrotic response in vivo. Together, these results identify YAP and TAZ as mechanoactivated coordinators of the matrix-driven feedback loop that amplifies and sustains fibrosis. PMID:25502501

  7. Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice

    PubMed Central

    Elkabets, Moshe; Gifford, Ann M.; Scheel, Christina; Nilsson, Bjorn; Reinhardt, Ferenc; Bray, Mark-Anthony; Carpenter, Anne E.; Jirström, Karin; Magnusson, Kristina; Ebert, Benjamin L.; Pontén, Fredrik; Weinberg, Robert A.; McAllister, Sandra S.

    2011-01-01

    Systemic instigation is a process by which endocrine signals sent from certain tumors (instigators) stimulate BM cells (BMCs), which are mobilized into the circulation and subsequently foster the growth of otherwise indolent carcinoma cells (responders) residing at distant anatomical sites. The identity of the BMCs and their specific contribution or contributions to responder tumor growth have been elusive. Here, we have demonstrated that Sca1+cKit– hematopoietic BMCs of mouse hosts bearing instigating tumors promote the growth of responding tumors that form with a myofibroblast-rich, desmoplastic stroma. Such stroma is almost always observed in malignant human adenocarcinomas and is an indicator of poor prognosis. We then identified granulin (GRN) as the most upregulated gene in instigating Sca1+cKit– BMCs relative to counterpart control cells. The GRN+ BMCs that were recruited to the responding tumors induced resident tissue fibroblasts to express genes that promoted malignant tumor progression; indeed, treatment with recombinant GRN alone was sufficient to promote desmoplastic responding tumor growth. Further, analysis of tumor tissues from a cohort of breast cancer patients revealed that high GRN expression correlated with the most aggressive triple-negative, basal-like tumor subtype and reduced patient survival. Our data suggest that GRN and the unique hematopoietic BMCs that produce it might serve as novel therapeutic targets. PMID:21266779

  8. Increased Expression of CCN2, Epithelial Membrane Antigen, and Fibroblast Activation Protein in Hepatocellular Carcinoma with Fibrous Stroma Showing Aggressive Behavior

    PubMed Central

    Yoo, Jeong Eun; Ko, Jung Eun; Lee, Jee San; Kim, Hyunki; Choi, Jin Sub; Park, Young Nyun

    2014-01-01

    Tumor behavior is affected by the tumor microenvironment, composed of cancer-associated fibroblasts (CAFs). Meanwhile, hepatocellular carcinomas (HCC) with fibrous stroma reportedly exhibit aggressive behavior suggestive of tumor-stroma interaction. However, evidence of the crosstalk remains unclear. In this study, CCN2, epithelial membrane antigen (EMA), fibroblast activation protein (FAP), and keratin 19 (K19) expression was studied in 314 HCCs (cohort 1), 42 scirrhous HCCs (cohort 2), and 36 chronic hepatitis/cirrhosis specimens by immunohistochemistry. Clinicopathological parameters were analyzed according to the expressions of these markers. In tumor epithelial cells from cohort 1, CCN2 and EMA were expressed in 15.3% and 17.2%, respectively, and their expressions were more frequent in HCCs with fibrous stroma (≥5% of tumor area) than those without (P<0.05 for all); CCN2 expression was well correlated with K19 and EMA expression. In tumor stromal cells, FAP expression was found in 6.7%. In cohort 2, CCN2, EMA, and FAP expression was noted in 40.5%, 40.5%, and 66.7%, respectively, which was more frequent than that in cohort 1 (P<0.05 for all). Additionally, EMA expression was associated with the expression of K19, CCN2, and FAP (P<0.05 for all); EMA expressing tumor epithelial cells showed a topographic closeness to FAP-expressing CAFs. Analysis of disease-free survival revealed CCN2 expression to be a worse prognostic factor in both cohort 1 (P = 0.005) and cohort 2 (P = 0.023), as well as EMA as a worse prognostic factor in cohort 2 (P = 0.048). In conclusion, expression of CCN2, EMA, and FAP may be involved in the activation of CAFs in HCC, giving rise to aggressive behavior. Significant correlation between EMA-expressing tumor cells and FAP-expressing CAFs and their topographic closeness suggests possible cross-talk between tumor epithelial cells and stromal cells in the tumor microenvironment of HCC. PMID:25126747

  9. Glucagon and Insulin Cooperatively Stimulate Fibroblast Growth Factor 21 Gene Transcription by Increasing the Expression of Activating Transcription Factor 4.

    PubMed

    Alonge, Kimberly M; Meares, Gordon P; Hillgartner, F Bradley

    2017-03-31

    Previous studies have shown that glucagon cooperatively interacts with insulin to stimulate hepatic FGF21 gene expression. Here we investigated the mechanism by which glucagon and insulin increased FGF21 gene transcription in primary hepatocyte cultures. Transfection analyses demonstrated that glucagon plus insulin induction of FGF21 transcription was conferred by two activating transcription factor 4 (ATF4) binding sites in the FGF21 gene. Glucagon plus insulin stimulated a 5-fold increase in ATF4 protein abundance, and knockdown of ATF4 expression suppressed the ability of glucagon plus insulin to increase FGF21 expression. In hepatocytes incubated in the presence of insulin, treatment with a PKA-selective agonist mimicked the ability of glucagon to stimulate ATF4 and FGF21 expression. Inhibition of PKA, PI3K, Akt, and mammalian target of rapamycin complex 1 (mTORC1) suppressed the ability of glucagon plus insulin to stimulate ATF4 and FGF21 expression. Additional analyses demonstrated that chenodeoxycholic acid (CDCA) induced a 6-fold increase in ATF4 expression and that knockdown of ATF4 expression suppressed the ability of CDCA to increase FGF21 gene expression. CDCA increased the phosphorylation of eIF2α, and inhibition of eIF2α signaling activity suppressed CDCA regulation of ATF4 and FGF21 expression. These results demonstrate that glucagon plus insulin increases FGF21 transcription by stimulating ATF4 expression and that activation of cAMP/PKA and PI3K/Akt/mTORC1 mediates the effect of glucagon plus insulin on ATF4 expression. These results also demonstrate that CDCA regulation of FGF21 transcription is mediated at least partially by an eIF2α-dependent increase in ATF4 expression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The Cytolethal Distending Toxin Induces Receptor Activator of NF-κB Ligand Expression in Human Gingival Fibroblasts and Periodontal Ligament Cells

    PubMed Central

    Belibasakis, G. N.; Johansson, A.; Wang, Y.; Chen, C.; Kalfas, S.; Lerner, U. H.

    2005-01-01

    Actinobacillus actinomycetemcomitans is associated with localized aggressive periodontitis, a disease characterized by rapid loss of the alveolar bone surrounding the teeth. Receptor activator of NF-κB Ligand (RANKL) and osteoprotegerin (OPG) are two molecules that regulate osteoclast formation and bone resorption. RANKL induces osteoclast differentiation and activation, whereas OPG blocks this process by acting as a decoy receptor for RANKL. The purpose of this study was to investigate the effect of A. actinomycetemcomitans on the expression of RANKL and OPG in human gingival fibroblasts and periodontal ligament cells. RANKL mRNA expression was induced in both cell types challenged by A. actinomycetemcomitans extract, whereas OPG mRNA expression remained unaffected. Cell surface RANKL protein was also induced by A. actinomycetemcomitans, whereas there was no change in OPG protein secretion. A cytolethal distending toxin (Cdt) gene-knockout strain of A. actinomycetemcomitans did not induce RANKL expression, in contrast to its wild-type strain. Purified Cdt from Haemophilus ducreyi alone, or in combination with extract from the A. actinomycetemcomitans cdt mutant strain, induced RANKL expression. Pretreatment of A. actinomycetemcomitans wild-type extract with Cdt antiserum abolished RANKL expression. In conclusion, A. actinomycetemcomitans induces RANKL expression in periodontal connective tissue cells. Cdt is crucial for this induction and may therefore be involved in the pathological bone resorption during the process of localized aggressive periodontitis. PMID:15618171

  11. Alkaline phosphatase expression/activity and multilineage differentiation potential are the differences between fibroblasts and orbital fat-derived stem cells--a study in animal serum-free culture conditions.

    PubMed

    Martins, Thaís Maria da Mata; de Paula, Ana Cláudia Chagas; Gomes, Dawidson Assis; Goes, Alfredo Miranda

    2014-10-01

    Human orbital fat tissues are a potential source to isolate stem cells for the development of regenerative medicine therapies. For future safe clinical application of these cells, it is critical to establish animal component-free culture conditions as well as to clearly define the stem cell population characteristics differentiating them from other cell types, such as fibroblasts. Therefore, the present study aimed to compare phenotypic and functional characteristics of orbital fat-derived stem cells (OFSCs) and fibroblasts resident in the eyelid skin in donor-matched samples grown in culture medium supplemented with pooled allogeneic human serum (HS) replacing fetal bovine serum (FBS). We first investigated the proliferative effects of OFSCs on HS, and then we compared the alkaline phosphatase (AP) expression and activity, immunophenotypic profile, and in vitro multilineage differentiation potential of OFSCs side-by-side with fibroblasts. The results showed that HS enhanced OFSCs proliferation without compromising their immunophenotype, AP activity, and osteogenic, adipogenic, and chondrogenic differentiation capacities. In contrast to OFSCs, the fibroblasts did not exhibit AP expression and activity and did not have multilineage differentiation potential. The results enabled us to successfully distinguish OFSCs from fibroblasts populations, suggesting that AP expression/activity and multilineage differentiation assays can be used reliably to discriminate mesenchymal stem cells from fibroblasts. Our findings also support the feasibility of pooled allogeneic HS as a safer and more effective alternative to FBS for clinical applications.

  12. Gastrointestinal Fibroblasts Have Specialized, Diverse Transcriptional Phenotypes: A Comprehensive Gene Expression Analysis of Human Fibroblasts

    PubMed Central

    Ishii, Genichiro; Aoyagi, Kazuhiko; Sasaki, Hiroki; Ochiai, Atsushi

    2015-01-01

    Background Fibroblasts are the principal stromal cells that exist in whole organs and play vital roles in many biological processes. Although the functional diversity of fibroblasts has been estimated, a comprehensive analysis of fibroblasts from the whole body has not been performed and their transcriptional diversity has not been sufficiently explored. The aim of this study was to elucidate the transcriptional diversity of human fibroblasts within the whole body. Methods Global gene expression analysis was performed on 63 human primary fibroblasts from 13 organs. Of these, 32 fibroblasts from gastrointestinal organs (gastrointestinal fibroblasts: GIFs) were obtained from a pair of 2 anatomical sites: the submucosal layer (submucosal fibroblasts: SMFs) and the subperitoneal layer (subperitoneal fibroblasts: SPFs). Using hierarchical clustering analysis, we elucidated identifiable subgroups of fibroblasts and analyzed the transcriptional character of each subgroup. Results In unsupervised clustering, 2 major clusters that separate GIFs and non-GIFs were observed. Organ- and anatomical site-dependent clusters within GIFs were also observed. The signature genes that discriminated GIFs from non-GIFs, SMFs from SPFs, and the fibroblasts of one organ from another organ consisted of genes associated with transcriptional regulation, signaling ligands, and extracellular matrix remodeling. Conclusions GIFs are characteristic fibroblasts with specific gene expressions from transcriptional regulation, signaling ligands, and extracellular matrix remodeling related genes. In addition, the anatomical site- and organ-dependent diversity of GIFs was also discovered. These features of GIFs contribute to their specific physiological function and homeostatic maintenance, and create a functional diversity of the gastrointestinal tract. PMID:26046848

  13. Expression of the endocannabinoid system in fibroblasts and myofascial tissues.

    PubMed

    McPartland, John M

    2008-04-01

    The endocannabinoid (eCB) system, like the better-known endorphin system, consists of cell membrane receptors, endogenous ligands and ligand-metabolizing enzymes. Two cannabinoid receptors are known: CB(1) is principally located in the nervous system, whereas CB(2) is primarily associated with the immune system. Two eCB ligands, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are mimicked by cannabis plant compounds. The first purpose of this paper was to review the eCB system in detail, highlighting aspects of interest to bodyworkers, especially eCB modulation of pain and inflammation. Evidence suggests the eCB system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, expression of the eCB system in myofascial tissues has not been established. The second purpose of this paper was to investigate the eCB system in fibroblasts and other fascia-related cells. The investigation used a bioinformatics approach, obtaining microarray data via the GEO database (www.ncbi.nlm.nih.gov/geo/). GEO data mining revealed that fibroblasts, myofibroblasts, chondrocytes and synoviocytes expressed CB(1), CB(2) and eCB ligand-metabolizing enzymes. Fibroblast CB(1) levels nearly equalled levels expressed by adipocytes. CB(1) levels upregulated after exposure to inflammatory cytokines and equiaxial stretching of fibroblasts. The eCB system affects fibroblast remodeling through lipid rafts associated with focal adhesions and dampens cartilage destruction by decreasing fibroblast-secreted metalloproteinase enzymes. In conclusion, the eCB system helps shape biodynamic embryological development, diminishes nociception and pain, reduces inflammation in myofascial tissues and plays a role in fascial reorganization. Practitioners wield several tools that upregulate eCB activity, including myofascial manipulation, diet and lifestyle modifications, and pharmaceutical approaches.

  14. The fibroblast surface markers FAP, anti-fibroblast, and FSP are expressed by cells of epithelial origin and may be altered during epithelial-to-mesenchymal transition.

    PubMed

    Kahounová, Zuzana; Kurfürstová, Daniela; Bouchal, Jan; Kharaishvili, Gvantsa; Navrátil, Jiří; Remšík, Ján; Šimečková, Šárka; Študent, Vladimír; Kozubík, Alois; Souček, Karel

    2017-04-06

    The identification of fibroblasts and cancer-associated fibroblasts from human cancer tissue using surface markers is difficult, especially because the markers used currently are usually not expressed solely by fibroblasts, and the identification of fibroblast-specific surface molecules is still under investigation. It was aimed to compare three commercially available antibodies in the detection of different surface epitopes of fibroblasts (anti-fibroblast, fibroblast activation protein α, and fibroblast surface protein). The specificity of their expression, employing fibroblast cell lines and tumor-derived fibroblasts from breast and prostate tissues was investigated. Both the established fibroblast cell line HFF-1 and ex vivo primary fibroblasts isolated from breast and prostate cancer tissues expressed the tested surface markers to different degrees. Surprisingly, those markers were expressed also by permanent cell lines of epithelial origin, both benign and cancer-derived (breast-cell lines MCF 10A, HMLE and prostate-cell lines BPH-1, DU 145, and PC-3). The expression of fibroblast activation protein α increased on the surface of previously described models of epithelial cells undergoing epithelial-to-mesenchymal transition in response to treatment with TGF-β1. To prove the co-expression of the fibroblast markers on cells of epithelial origin, we used freshly dissociated human prostate and breast cancer tissues. The results confirmed the co-expression of anti-fibroblast and fibroblast surface protein on CD31/CD45-negative/EpCAM-positive epithelial cells. In summary, our data support the findings that the tested fibroblast markers are not fibroblast specific and may be expressed also by cells of epithelial origin (e.g., cells undergoing EMT). Therefore, the expression of these markers should be interpreted with caution, and the combination of several epitopes for both positive (anti-fibroblast or fibroblast activation protein α) and negative (Ep

  15. Physiologically activated mammary fibroblasts promote postpartum mammary cancer

    PubMed Central

    Guo, Qiuchen; Burchard, Julja; Spellman, Paul

    2017-01-01

    Women diagnosed with breast cancer within 5 years of childbirth have poorer prognosis than nulliparous or pregnant women. Weaning-induced breast involution is implicated, as the collagen-rich, immunosuppressive microenvironment of the involuting mammary gland is tumor promotional in mice. To investigate the role of mammary fibroblasts, isolated mammary PDGFRα+ cells from nulliparous and postweaning mice were assessed for activation phenotype and protumorigenic function. Fibroblast activation during involution was evident by increased expression of fibrillar collagens, lysyl oxidase, Tgfb1, and Cxcl12 genes. The ability of mammary tumors to grow in an isogenic, orthotopic transplant model was increased when tumor cells were coinjected with involution-derived compared with nulliparous-derived mammary fibroblasts. Mammary tumors in the involution-fibroblast group had increased Ly6C+ monocytes at the tumor border, and decreased CD8+ T cell infiltration and tumor cell death. Ibuprofen treatment suppressed involution-fibroblast activation and tumor promotional capacity, concurrent with decreases in tumor Ly6C+ monocytes, and increases in intratumoral CD8+ T cell infiltration, granzyme levels, and tumor cell death. In total, our data identify a COX/prostaglandin E2 (PGE2)–dependent activated mammary fibroblast within the involuting mammary gland that displays protumorigenic, immunosuppressive activity, identifying fibroblasts as potential targets for the prevention and treatment of postpartum breast cancer. PMID:28352652

  16. Compound K inhibits MMP-1 expression through suppression of c-Src-dependent ERK activation in TNF-α-stimulated dermal fibroblast.

    PubMed

    Lee, Chang Seok; Bae, Il-Hong; Han, Jiwon; Choi, Gye-young; Hwang, Kyung-Hwan; Kim, Dong-Hyun; Yeom, Myeong-Hun; Park, Young-Ho; Park, Miyoung

    2014-11-01

    Compound K (CK) is one of the major metabolites of ginsenosides exhibiting a variety of pharmacological properties such as anti-ageing, anti-oxidation and anti-inflammatory activities. However, the protective efficacy of CK in abnormal skin conditions with inflammatory responses was not examined. Here, we investigated the effects of CK on matrix metalloproteinase-1 (MMP-1) and type I procollagen production in tumor necrosis factor-α (TNF-α)-stimulated human skin fibroblasts HS68 cells and human skin equivalents. We found that CK suppressed MMP-1 secretion and increased the level of reduced type I procollagen secretion, caused by the inhibition of extracellular signal-regulated kinase (ERK) activation, but not p38 and c-Jun N-terminal kinase (JNK) activation in TNF-α-stimulated HS68 cells. Then, we focused on the involvement of the c-Src and epidermal growth factor receptor (EGFR) as upstream signalling molecules for ERK activation by TNF-α in HS68 cells. CK suppressed the phosphorylation of c-Src/EGFR by TNF-α, which led to the inactivation of downstream signalling molecules including AKT and MEK. In addition, CK suppressed AP-1 (c-jun and c-fos) phosphorylation as downstream transcription factors of active ERK for MMP-1 expression in TNFα-stimulated HS68 cells. These results showed novel mechanisms by which CK inhibits TNF-α-induced MMP-1 expression through the inactivation of c-Src/EGFR-dependent ERK/AP-1 signalling pathway, resulting in the inhibition of collagen degradation in human fibroblast cells. Therefore, CK may be a promising protective agent for the treatment of inflammatory skin conditions such as skin ageing and atopic dermatitis.

  17. Interleukin-18 stimulates fibronectin expression in primary human cardiac fibroblasts via PI3K-Akt-dependent NF-kappaB activation.

    PubMed

    Reddy, Venkatapuram Seenu; Harskamp, Ralf Egan; van Ginkel, Margreet Willie; Calhoon, John; Baisden, Clinton Eugene; Kim, In-San; Valente, Anthony J; Chandrasekar, Bysani

    2008-06-01

    Fibronectin (FN), a key component of the extracellular matrix, is upregulated in cardiac tissue during myocardial hypertrophy and failure. Here we show that interleukin (IL)-18, a proinflammatory and pro-hypertrophic cytokine, stimulates FN expression in adult human cardiac fibroblasts (HCF), an effect blocked by either the IL-18BP:Fc chimera or IL-18 neutralizing antibodies. IL-18 stimulated FN promoter-reporter activity in HCF, a response attenuated by mutation of an NF-kappaB binding site in the FN promoter. Overexpression of p65 stimulated FN transcription. IL-18 stimulated in vitro (p65, p50) and in vivo NF-kappaB DNA binding activities, and induced kappaB-dependent reporter gene activity. These effects were inhibited by adenoviral transduction of dominant negative (dn) p65 (Ad.dnp65) and dnIKK2 (Ad.dnIKK2). Investigation of signaling intermediates revealed that IL-18 stimulated PI3 kinase activity (blocked by wortmannin, LY294002, or Ad.dnPI3Kp85), and Akt phosphorylation and kinase activity (blocked by SH-5 or Ad.dnAkt). Furthermore, targeting MyD88, IRAK1, TRAF6, PI3K, Akt, and NF-kappaB by RNA interference or dn expression vectors blunted IL-18 mediated FN transcription and mRNA expression. Conversely, FN stimulated IL-18 expression. These data provide the first evidence that IL-18 and FN stimulate each other's expression in HCF, and suggest a role for IL-18, FN and their crosstalk in myocardial hypertrophy and remodeling, disease states characterized by enhanced FN expression and fibrosis. (c) 2007 Wiley-Liss, Inc.

  18. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21.

    PubMed

    Kurosu, Hiroshi; Choi, Mihwa; Ogawa, Yasushi; Dickson, Addie S; Goetz, Regina; Eliseenkova, Anna V; Mohammadi, Moosa; Rosenblatt, Kevin P; Kliewer, Steven A; Kuro-o, Makoto

    2007-09-14

    The fibroblast growth factor (FGF) 19 subfamily of ligands, FGF19, FGF21, and FGF23, function as hormones that regulate bile acid, fatty acid, glucose, and phosphate metabolism in target organs through activating FGF receptors (FGFR1-4). We demonstrated that Klotho and betaKlotho, homologous single-pass transmembrane proteins that bind to FGFRs, are required for metabolic activity of FGF23 and FGF21, respectively. Here we show that, like FGF21, FGF19 also requires betaKlotho. Both FGF19 and FGF21 can signal through FGFR1-3 bound by betaKlotho and increase glucose uptake in adipocytes expressing FGFR1. Additionally, both FGF19 and FGF21 bind to the betaKlotho-FGFR4 complex; however, only FGF19 signals efficiently through FGFR4. Accordingly, FGF19, but not FGF21, activates FGF signaling in hepatocytes that primarily express FGFR4 and reduces transcription of CYP7A1 that encodes the rate-limiting enzyme for bile acid synthesis. We conclude that the expression of betaKlotho, in combination with particular FGFR isoforms, determines the tissue-specific metabolic activities of FGF19 and FGF21.

  19. Isolation of Fibroblast-Activation Protein-Specific Cancer-Associated Fibroblasts

    PubMed Central

    Zhou, Sufang; Huang, Yong; Zheng, Duo; Mao, Qiqi; He, Jian; Wang, Yiwei; Xue, Dabing; Lu, Xiaoling; Yang, Nuo

    2017-01-01

    The current study is to develop a gentle and efficient method for purification of fibroblast-activation protein positive (FAP+) cancer-associated fibroblasts (CAFs) from tumor tissues. Fresh tissues were isolated from BALB/c-Nude mice bearing human liver cancer cell line (HepG2), fully minced and separated into three parts, and digested with trypsin digestion and then treated with collagenase type IV once, twice, or thrice, respectively. Finally, the cells were purified by using FAP magnetic beads. The isolated CAFs were grown in culture medium and detected for the surface expression of fibroblast-activation protein (FAP). The number of adherent cells which were obtained by digestion process with twice collagenase type IV digestion was (5.99 ± 0.18) × 104, much more than that with the only once collagenase type IV digestion (2.58 ± 0.41) × 104 (P < 0.0001) and similar to thrice collagenase type IV digestion. The percentage of FAP+ CAFs with twice collagenase type IV digestion (38.5%) was higher than that with the only once collagenase type IV digestion (20.0%) and little higher than thrice collagenase type IV digestion (37.5%). The FAP expression of CAFs was quite different from normal fibroblasts (NFs). The fibroblasts isolated by the innovation are with high purity and being in wonderful condition and display the features of CAFs. PMID:28890895

  20. Expression of Six Proteins Causes Reprogramming of Porcine Fibroblasts Into Induced Pluripotent Stem Cells With Both Active X Chromosomes.

    PubMed

    Fukuda, Tomokazu; Tani, Tetsuya; Haraguchi, Seiki; Donai, Kenichiro; Nakajima, Nobuyoshi; Uenishi, Hirohide; Eitsuka, Takahiro; Miyagawa, Makoto; Song, Sanghoun; Onuma, Manabu; Hoshino, Yumi; Sato, Eimei; Honda, Arata

    2017-03-01

    In this study, we created porcine-induced pluripotent stem (iPS) cells with the expression of six reprogramming factors (Oct3/4, Klf4, Sox2, c-Myc, Lin28, and Nanog). The resulting cells showed growth dependent on LIF (leukemia inhibitory factor) and expression of multiple stem cell markers. Furthermore, the iPS cells caused teratoma formation with three layers of differentiation and had both active X chromosomes (XaXa). Our iPS cells satisfied the both of important characteristics of stem cells: teratoma formation and activation of both X chromosomes. Injection of these iPS cells into morula stage embryos showed that these cells participate in the early stage of porcine embryogenesis. Furthermore, the RNA-Seq analysis detected that expression levels of endogenous pluripotent related genes, NANOG, SOX2, ZFP42, OCT3/4, ESRRB, and ERAS were much higher in iPS with six factors than that with four reprogramming factors. We can conclude that the expression of six reprogramming factors enables the creation of porcine iPS cells, which is partially close to naive iPS state. J. Cell. Biochem. 118: 537-553, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Dipeptides Increase Functional Activity of Human Skin Fibroblasts.

    PubMed

    Malinin, V V; Durnova, A O; Polyakova, V O; Kvetnoi, I M

    2015-05-01

    We analyzed the effect of dipeptide Glu-Trp and isovaleroyl-Glu-Trp in concentrations of 0.2, 2 and 20 μg/ml and Actovegin preparation on functional activity of human skin fibroblasts. Dipeptides, especially Glu-Trp, produce a stimulating effect on human skin fibroblasts and their effect is equivalent to that of Actovegin. Dipeptides stimulate cell renewal processes by activating synthesis of Ki-67 and reducing expression of caspase-9 and enhance antioxidant function of the cells by stimulating the expression of Hsp-90 and inducible NO-synthase. These findings suggest that dipeptides are promising candidates for preparations stimulating reparative processes.

  2. The effects of retinoic acid on alkaline phosphatase activity and tissue-non-specific alkaline phosphatase gene expression in human periodontal ligament cells and gingival fibroblasts.

    PubMed

    San Miguel, S M; Goseki-Sone, M; Sugiyama, E; Watanabe, H; Yanagishita, M; Ishikawa, I

    1998-10-01

    Alkaline phosphatase (ALP) in human periodontal ligament (HPDL) cells is classified as a tissue-non-specific alkaline phosphatase (TNSALP) by its enzymatic and immunological properties. Since retinoic acid (RA) has been shown as a potent inducer of TNSALP expression in various osteoblastic and fibroblastic cells, we investigated the effects of RA on the level of ALP activity and expression of TNSALP mRNAs in HPDL cells. Cultured cells were treated with desired RA concentrations (0, 10(-7), 10(-6), 10(-5) M) in medium containing 1% bovine serum albumin without serum. ALP activity was determined by the rate of hydrolysis of p-nitrophenyl phosphate and was also assayed in the presence of specific inhibitors. In order to identify the TNSALP mRNA type expressed by HPDL, a set of oligonucleotide primers corresponding to 2 types of human TNSALP mRNA (i.e. bone-type and liver-type) were designed, and mRNA isolated from HPDL was amplified by means of reverse transcription-polymerase chain reaction (RT-PCR). After treatment with RA (10(-6) M) for 4 d, there was a significant increase in the ALP activity of HPDL cells. The use of inhibitors and thermal inactivation experiments showed that the increased ALP activity had properties of the TNSALP type. RT-PCR analysis revealed that bone-type mRNA was highly stimulated in HPDL cells by RA treatment, but the expression of liver-type mRNA was not detected. These results indicated that the upregulation of ALP activity in HPDL cells by RA was due to the increased transcription of bone-type mRNA of the TNSALP gene.

  3. Active compound of Zingiber cassumunar Roxb. down-regulates the expression of genes involved in joint erosion in a human synovial fibroblast cell line.

    PubMed

    Chaiwongsa, Rujirek; Ongchai, Siriwan; Boonsing, Phorani; Kongtawelert, Prachya; Panthong, Ampai; Reutrakul, Vichai

    2012-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease of the synovium. It is involved in up-regulation of pro-inflammatory cytokines and matrix metalloproteinases (MMPs), resulting in joint inflammation and erosion. Zingiber cassumunar Roxb. has long been used to reduce joint pain and inflammation. This study aimed to investigate the inhibitory activities of an active compound of Z. cassumunar, (E)-4-(3',4'-dimethoxyphenyl)but-3-en-1-ol (compound D), against cytokine-induced up-regulation of catabolic genes involved in cartilage degradation in RA. Synovial fibroblast cell line, SW982, was cultured in media containing interleukin-1β (IL-1β), in the presence or absence of compound D at the concentration range of 1 to 100 µM. After 24 hours, the cells were analyzed for the expressions of MMPs, IL-1β and interleukin-1β-converting enzyme (ICE) by RT-PCR. MMPs activities in the culture media were analyzed by zymographic techniques. Dexamethasone was used as the positive control. It was found that compound D at the concentration of 10 - 100 µM significantly decreased the mRNA expressions of MMP-1, -2, -3, and -13 which was induced by IL-1β (P<0.05) concomitantly with a decrease in activities of these MMPs in the culture media. An increase in the mRNA expression of IL-1β and ICE was also suppressed by compound D. The results suggest that the potent activities of this compound may be involved in the reduction of IL-1β protein synthesis in both pro-form and active form which played an important role in up-regulation of MMPs. This study first revealed the chondroprotective activity of Z. cassumunar in the transcriptional level by suppressing cytokine-induced catabolic genes which caused cartilage erosion in RA.

  4. The effects of diallyl sulfide upon Porphyromonas gingivalis lipopolysaccharide stimulated proinflammatory cytokine expressions and nuclear factor-kappa B activation in human gingival fibroblasts.

    PubMed

    Fu, E; Tsai, M-C; Chin, Y-T; Tu, H-P; Fu, M M; Chiang, C-Y; Chiu, H-C

    2015-06-01

    Diallyl sulfide (DAS), a flavor compound from garlic, has varied potential therapeutic activities. Periodontitis is a disease that develops because of host-mediated inflammation to periodontal pathogens. In this study, the effects of DAS on the common proinflammatory cytokines and nuclear factor-kappa B (NF-κB) in human gingival fibroblasts (HGFs) being stimulated with lipopolysaccharide from Porphyromonas gingivalis, a potent periodontal pathogen, were evaluated. Cytotoxicities of DAS and lipopolysaccharide on HGFs were measured with MTS assay. The mRNA and protein expressions of proinflammatory cytokines, including interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α, from the HGFs treated with lipopolysaccharide with and without DAS were examined with reverse transcription-polymerase chain reaction and immunocytochemistry, respectively. In addition, the activation and nuclear translocation of NF-κB with and without DAS were compared. DAS and lipopolysaccharide treatments within 3 mm and 10 μg/mL, respectively, did not affect the survival rate of HGFs. Lipopolysaccharide (1 μg/mL) significantly increased the mRNA expressions of IL-1β, IL-6 and TNF-α; however, DAS (1 mm) inhibited these expressions. The protein expressions of TNF-α, IL-1β, as well as the NF-κB nuclear translocation were increased after lipopolysaccharide treatment, but decreased when there was a DAS pretreatment. DAS diminished P. gingivalis lipopolysaccharide-stimulated cytokine expression and NF-κB activation in HGFs; we therefore suggest DAS may be beneficial on periodontal inflammation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. EPAC expression and function in cardiac fibroblasts and myofibroblasts

    SciTech Connect

    Olmedo, Ivonne; Muñoz, Claudia; Guzmán, Nancy; Catalán, Mabel; Vivar, Raúl; Ayala, Pedro; Humeres, Claudio; Aránguiz, Pablo; García, Lorena; Velarde, Victoria; Díaz-Araya, Guillermo

    2013-10-15

    In the heart, cardiac fibroblasts (CF) and cardiac myofibroblasts (CMF) are the main cells responsible for wound healing after cardiac insult. Exchange protein activated by cAMP (EPAC) is a downstream effector of cAMP, and it has been not completely studied on CF. Moreover, in CMF, which are the main cells responsible for cardiac healing, EPAC expression and function are unknown. We evaluated in both CF and CMF the effect of transforming growth factor β1 (TGF-β1) on EPAC-1 expression. We also studied the EPAC involvement on collagen synthesis, adhesion, migration and collagen gel contraction. Method: Rat neonatal CF and CMF were treated with TGF-β1 at different times and concentrations. EPAC-1 protein levels and Rap1 activation were measured by western blot and pull down assay respectively. EPAC cellular functions were determined by adhesion, migration and collagen gel contraction assay; and collagen expression was determined by western blot. Results: TGF-β1 through Smad and JNK significantly reduced EPAC-1 expression in CF, while in CMF this cytokine increased EPAC-1 expression through ERK1/2, JNK, p38, AKT and Smad3. EPAC activation was able to induce higher Rap1-GTP levels in CMF than in CF. EPAC and PKA, both cAMP effectors, promoted CF and CMF adhesion on fibronectin, as well as CF migration; however, this effect was not observed in CMF. EPAC but not PKA activation mediated collagen gel contraction in CF, while in CMF both PKA and EPAC mediated collagen gel contraction. Finally, the EPAC and PKA activation reduced collagen synthesis in CF and CMF. Conclusion: TGF-β1 differentially regulates the expression of EPAC in CF and CMF; and EPAC regulates differentially CF and CMF functions associated with cardiac remodeling. - Highlights: • TGF-β1 regulates EPAC-1 expression in cardiac fibroblast and myofibroblast. • Rap-1GTP levels are higher in cardiac myofibroblast than fibroblast. • EPAC-1 controls adhesion, migration and collagen synthesis in cardiac

  6. Parathyroid Hormone Receptor Type 1/Indian Hedgehog Expression Is Preserved in the Growth Plate of Human Fetuses Affected with Fibroblast Growth Factor Receptor Type 3 Activating Mutations

    PubMed Central

    Cormier, Sarah; Delezoide, Anne-Lise; Benoist-Lasselin, Catherine; Legeai-Mallet, Laurence; Bonaventure, Jacky; Silve, Caroline

    2002-01-01

    The fibroblast growth factor receptor type 3 (FGFR3) and Indian hedgehog (IHH)/parathyroid hormone (PTH)/PTH-related peptide receptor type 1 (PTHR1) systems are both essential regulators of endochondral ossification. Based on mouse models, activation of the FGFR3 system is suggested to regulate the IHH/PTHR1 pathway. To challenge this possible interaction in humans, we analyzed the femoral growth plates from fetuses carrying activating FGFR3 mutations (9 achondroplasia, 21 and 8 thanatophoric dysplasia types 1 and 2, respectively) and 14 age-matched controls by histological techniques and in situ hybridization using riboprobes for human IHH, PTHR1, type 10 and type 1 collagen transcripts. We show that bone-perichondrial ring enlargement and growth plate increased vascularization in FGFR3-mutated fetuses correlate with the phenotypic severity of the disease. PTHR1 and IHH expression in growth plates, bone-perichondrial rings and vascular canals is not affected by FGFR3 mutations, irrespective of the mutant genotype and age, and is in keeping with cell phenotypes. These results indicate that in humans, FGFR3 signaling does not down-regulate the main players of the IHH/PTHR1 pathway. Furthermore, we show that cells within the bone-perichondrial ring in controls and patients express IHH, PTHR1, and type 10 and type 1 collagen transcripts, suggesting that bone-perichondrial ring formation involves cells of both chondrocytic and osteoblastic phenotypes. PMID:12368206

  7. Constitutive Smad signaling and Smad-dependent collagen gene expression in mouse embryonic fibroblasts lacking peroxisome proliferator-activated receptor-{gamma}

    SciTech Connect

    Ghosh, Asish K Wei, Jun; Wu, Minghua; Varga, John

    2008-09-19

    Transforming growth factor-{beta} (TGF-{beta}), a potent inducer of collagen synthesis, is implicated in pathological fibrosis. Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is a nuclear hormone receptor that regulates adipogenesis and numerous other biological processes. Here, we demonstrate that collagen gene expression was markedly elevated in mouse embryonic fibroblasts (MEFs) lacking PPAR-{gamma} compared to heterozygous control MEFs. Treatment with the PPAR-{gamma} ligand 15d-PGJ{sub 2} failed to down-regulate collagen gene expression in PPAR-{gamma} null MEFs, whereas reconstitution of these cells with ectopic PPAR-{gamma} resulted in their normalization. Compared to control MEFs, PPAR-{gamma} null MEFs displayed elevated levels of the Type I TGF-{beta} receptor (T{beta}RI), and secreted more TGF-{beta}1 into the media. Furthermore, PPAR-{gamma} null MEFs showed constitutive phosphorylation of cellular Smad2 and Smad3, even in the absence of exogenous TGF-{beta}, which was abrogated by the ALK5 inhibitor SB431542. Constitutive Smad2/3 phosphorylation in PPAR-{gamma} null MEFs was associated with Smad3 binding to its cognate DNA recognition sequences, and interaction with coactivator p300 previously implicated in TGF-{beta} responses. Taken together, these results indicate that loss of PPAR-{gamma} in MEFs is associated with upregulation of collagen synthesis, and activation of intracellular Smad signal transduction, due, at least in part, to autocrine TGF-{beta} stimulation.

  8. Expression and activation of toll-like receptor 3 and toll-like receptor 4 on human corneal epithelial and conjunctival fibroblasts

    PubMed Central

    2014-01-01

    Background Toll-like receptors (TLRs) are recognized as important contributors to the initiation and modulation of the inflammatory response in the eye. This study investigated the precise expression patterns and functionality of TLRs in human corneal epithelial cells (HCE) and in conjunctival fibroblasts (HCF). Methods The cell surface expression of TLRs 2-4, TLR7 and TLR9 in HCE and HCF was examined by flow cytometry with or without stimulation with lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly I:C). The mRNA expression of the TLRs was determined by real-time PCR. The protein content levels of interleukin (IL)-6, IL-8, IL-1β and tumor necrosis factor-α (TNF-α) were measured in HCE and HCF using multiplex fluorescent bead immunoassay (FBI). Results The surface expression of TLR3 and TLR4 was detected on both HCE and HCF. Following incubation with LPS, the percentage of HCE cells staining for TLR4 decreased from 10.18% to 0.62% (P < 0.001). Incubation with poly I:C lowered the percentage of HCE cells positive for TLR3 from 10.44% to 2.84% (P < 0.001). The mRNA expression of TLRs2, 4, 7 and 9 was detected in HCE only. Activation of HCE with LPS complex elicited protein secretion up to 4.51 ± 0.85-fold higher levels of IL-6 (P < 0.05), 2.5 ± 0.36-fold IL-8 (P > 0.05), 4.35 ± 1.12-fold IL-1β (P > 0.05) and 29.35 ± 2.3-fold TNFα (P < 0.05) compared to cells incubated in medium. Conclusions HCF and HCE both express TLRs that respond to specific ligands by increasing cytokine expression. Following activation, the surface expression of TLR3 and TLR4 on HCE is decreased, thus creating a negative feedback loop, mitigating the effect of TLR activation. PMID:24491080

  9. Recombinant human endostatin inhibits TNF-alpha-induced receptor activator of NF-κB ligand expression in fibroblast-like synoviocytes in mice with adjuvant arthritis.

    PubMed

    Gao, Qiu-Fang; Zhang, Xiu-Hong; Yuan, Feng-Lai; Zhao, Ming-Dong; Li, Xia

    2016-12-01

    Bone loss is a critical pathology responsible for the functional disability in patients with rheumatoid arthritis (RA). It is well known that receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL) plays a crucial role in bone loss in RA. The purpose of this study was to determine whether recombinant human endostatin (rh-endostatin) mediates bone erosion in RA by regulation of RANKL expression in an experimental model of RA, consisting of mice with adjuvant-induced arthritis (AA). Cultured AA fibroblast-like synoviocytes (FLSs) obtained from these mice were induced by tumor necrosis factor-α (TNF-α) combined with or without rh-endostatin. The levels of RANKL and osteoprotegerin (OPG) mRNA, soluble and membrane-bound proteins were assessed by real-time PCR, ELISA, and Western blotting. Western blotting and the luciferase reporter assay were used to study related signaling pathways. Rh-endostatin inhibited RANKL mRNA expression, soluble and membrane-bound protein expression in AA FLSs but not in CD4+ T cells. However, OPG expression and secretion was not affected by rh-endostatin in AA FLSs. Molecular analysis demonstrated that rh-endostatin significantly inhibited TNF-α-induced MAPK and AP-1 signaling pathways. Moreover, rh-endostatin attenuated TNF-α-induced NF-κB signaling by suppressing the phosphorylation level of inhibitor kappaBα (IκBα) and nuclear translocation of NF-κB p65 in FLSs from mice with AA. These results provide the first evidence that rh-endostatin inhibits TNF-α-induced RANKL expression in AA FLSs.

  10. Effects of Enterococcus faecalis lipoteichoic acid on receptor activator of nuclear factor-κB ligand and osteoprotegerin expression in periodontal ligament fibroblasts.

    PubMed

    Zhao, L; Chen, J; Cheng, L; Wang, X; Du, J; Wang, F; Peng, Z

    2014-02-01

    To investigate the influence of Enterococcus faecalis lipoteichoic acid (LTA) on the key bone resorption-regulating proteins, receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) in human periodontal ligament fibroblasts (PDL cells). Periodontal ligament cells were subjected to various concentrations of LTA. Cell viability was then determined by methyl thiazolyl tetrazolium (MTT) assay, whilst the expression levels of RANKL and OPG were investigated by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The effect of the inhibitors [IL-1 receptor-associated kinase (IRAK)-1/4, p38 mitogen-activated protein kinase (MAPK) (SB203580)] on LTA-stimulated RANKL/OPG activation was examined. Cell viability and RANKL/OPG ratio in PDL cells were also analysed by MTT assay and Western blotting. Data were analysed using one-way anova or t-test at a significance level of P = 0.05. Cell viability was reduced significantly in the LTA group in a dose-dependent fashion (P < 0.05). In addition, LTA was found to upregulate the protein expression of RANKL, OPG and their relative ratio in PDL cells (P < 0.05). The optimal concentration of LTA used in PDL cells was determined to be 10 μg mL(-1) . Following IRAK1/4 and p38MAPK inhibition, LTA-stimulated increases of RANKL/OPG ratio were significantly reduced (P < 0.05). Enterococcus faecalis LTA could upregulate the expression of RANKL and OPG at different rates, suggesting a potential role for LTA in the bone resorption process of refractory apical periodontitis through the regulation of RANKL and OPG. In addition, IRAK1/4 and p38MAPK signalling involving RANKL/OPG may contribute to inflammatory responses from PDL cells. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. Glutamine deprivation induces interleukin-8 expression in ataxia telangiectasia fibroblasts.

    PubMed

    Kim, Min-Hyun; Kim, Aryung; Yu, Ji Hoon; Lim, Joo Weon; Kim, Hyeyoung

    2014-05-01

    To investigate whether glutamine deprivation induces expression of inflammatory cytokine interleukin-8 (IL-8) by determining NF-κB activity and levels of oxidative indices (ROS, reactive oxygen species; hydrogen peroxide; GSH, glutathione) in fibroblasts isolated from patients with ataxia telangiectasia (A-T). We used A-T fibroblasts stably transfected with empty vector (Mock) or with human full-length ataxia telangiectasia mutated (ATM) cDNA (YZ5) and mouse embryonic fibroblasts (MEFs) transiently transfected with ATM small interfering RNA (siRNA) or with non-specific control siRNA. The cells were cultured with or without glutamine or GSH. ROS levels were determined using a fluorescence reader and confocal microscopy. IL-8 or murine IL-8 homolog, keratinocyte chemoattractant (KC), and hydrogen peroxide levels in the medium were determined by enzyme-linked immunosorbent assay and colorimetric assay. GSH level was assessed by enzymatic assay, while IL-8 (KC) mRNA level was measured by reverse transcription-polymerase chain reaction (RT-PCR) and/or quantitative real-time PCR. NF-κB DNA-binding activity was determined by electrophoretic mobility shift assay. Catalase activity and ATM protein levels were determined by O2 generation and Western blotting. While glutamine deprivation induced IL-8 expression and increased NF-κB DNA-binding activity in Mock cells, both processes were decreased by treatment of cells with glutamine or GSH or both glutamine and GSH. Glutamine deprivation had no effect on IL-8 expression or NF-κB DNA-binding activity in YZ5 cells. Glutamine-deprived Mock cells had higher oxidative stress indices (increases in ROS and hydrogen peroxide, reduction in GSH) than glutamine-deprived YZ5 cells. In Mock cells, glutamine deprivation-induced oxidative stress indices were suppressed by treatment with glutamine or GSH or both glutamine and GSH. GSH levels and catalase activity were lower in Mock cells than YZ5 cells. MEFs transfected with ATM siRNA and

  12. Peroxisome proliferator-activated receptor δ modulates MMP-2 secretion and elastin expression in human dermal fibroblasts exposed to ultraviolet B radiation.

    PubMed

    Ham, Sun Ah; Yoo, Taesik; Hwang, Jung Seok; Kang, Eun Sil; Paek, Kyung Shin; Park, Chankyu; Kim, Jin-Hoi; Do, Jeong Tae; Seo, Han Geuk

    2014-10-01

    Changes in skin connective tissues mediated by ultraviolet (UV) radiation have been suggested to cause the skin wrinkling normally associated with premature aging of the skin. Recent investigations have shown that peroxisome proliferator-activated receptor (PPAR) δ plays multiple biological roles in skin homeostasis. We attempted to investigate whether PPARδ modulates elastin protein levels and secretion of matrix metalloproteinase (MMP)-2 in UVB-irradiated human dermal fibroblasts (HDFs) and mouse skin. These studies were undertaken in primary HDFs or HR-1 hairless mice using Western blot analyses, small interfering (si)RNA-mediated gene silencing, and Fluorescence microscopy. In HDFs, UVB irradiation induced increased secretion of MMP-2 and reduced levels of elastin. Activation of PPARδ by GW501516, a ligand specific for PPARδ, markedly attenuated UVB-induced MMP-2 secretion with a concomitant increase in the level of elastin. These effects were reduced by the presence of siRNAs against PPARδ or treatment with GSK0660, a specific inhibitor of PPARδ. Furthermore, GW501516 elicited a dose- and time-dependent increase in the expression of elastin. Modulation of MMP-2 secretion and elastin levels by GW501516 was associated with a reduction in reactive oxygen species (ROS) production in HDFs exposed to UVB. Finally, in HR-1 hairless mice, administration of GW501516 significantly reduced UVB-induced MMP-2 expression with a concomitant increase in elastin levels, and these effects were significantly reduced by the presence of GSK0660. Our results suggest that PPARδ-mediated modulation of MMP-2 secretion and elastin expression may contribute to the maintenance of skin integrity by inhibiting ROS generation. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Retrograde fibroblast growth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2) expression for activity-dependent synapse stabilization in the mammalian brain

    PubMed Central

    Terauchi, Akiko; Johnson-Venkatesh, Erin M; Bullock, Brenna; Lehtinen, Maria K; Umemori, Hisashi

    2016-01-01

    Communication between pre- and postsynaptic cells promotes the initial organization of synaptic specializations, but subsequent synaptic stabilization requires transcriptional regulation. Here we show that fibroblast growth factor 22 (FGF22), a target-derived presynaptic organizer in the mouse hippocampus, induces the expression of insulin-like growth factor 2 (IGF2) for the stabilization of presynaptic terminals. FGF22 is released from CA3 pyramidal neurons and organizes the differentiation of excitatory nerve terminals formed onto them. Local application of FGF22 on the axons of dentate granule cells (DGCs), which are presynaptic to CA3 pyramidal neurons, induces IGF2 in the DGCs. IGF2, in turn, localizes to DGC presynaptic terminals and stabilizes them in an activity-dependent manner. IGF2 application rescues presynaptic defects of Fgf22-/- cultures. IGF2 is dispensable for the initial presynaptic differentiation, but is required for the following presynaptic stabilization both in vitro and in vivo. These results reveal a novel feedback signal that is critical for the activity-dependent stabilization of presynaptic terminals in the mammalian hippocampus. DOI: http://dx.doi.org/10.7554/eLife.12151.001 PMID:27083047

  14. [Influence of puerarin on proliferative activity of human fetal scleral fibroblasts and expression of collagen type I and matrix metalloproteinase-2 in power frequency electromagnetic field].

    PubMed

    Su, Q; Yang, L

    2016-06-20

    To investigate the influence of puerarin on the proliferative activity of human fetal scleral fibroblasts (HFSFs) and the expression of collagen type I and matrix metalloproteinase-2 (MMP-2) in HFSFs in the power frequency electromagnetic field. HFSFs were cultured and divided into four radiation groups (0.2 mT, 50 Hz) and control group. Puerarin at concentrations of 0.0, 1.0, 5.0, and 10.0 μmol/L was added to the four radiation groups, respectively. The methyl thiazolyl tetrazolium colorimetry was used to measure the influence on the proliferative activity of HFSFs, Western blot and RT-qPCR were used to measure the protein and mRNA expression of collagen type I and MMP-2 induced by puerarin in the power frequency electromagnetic field. The radiation groups and control group showed significant increases in the proliferative activity of HFSFs over the culture time (F= 959.472 and 279.468, both P<0.01). At 24 and 48 hours, the radiation groups showed significantly lower proliferative activity than the control group (0.432±0.038/0.591±0.017 vs 0.536±0.034/0.801±0.020, both P<0.01). With the increasing concentration of puerarin (0.0, 1.0, 5.0, and 10.0 μmol/L) , the proliferative activity of HFSFs significantly increased, with A values of 0.598±0.031, 0.809±0.041, 0.910±0.037, and 0.983±0.054, respectively (P<0.05). After exposure for 24 hours, the radiation groups showed significantly lower protein expression of collagen type I and significantly higher protein expression of MMP-2 (t=7.917 and 7.831, both P<0.01) ; compared with the 0.0 μmol/L puerarin group, the 1.0, 5.0, and 10.0 μmol/L puerarin groups showed significant increases in the protein expression of collagen type I and significant reductions in the protein expression of MMP-2 (all P<0.01). Compared with the control group, the radiation groups showed significant reductions in the mRNA expression of collagen type I and MMP-2 (t=17.293 and 16.378, both P<0.01) ; compared with the 0.0

  15. SIRT-1 regulates TGF-β-induced dermal fibroblast migration via modulation of Cyr61 expression.

    PubMed

    Kwon, Eun-Jeong; Park, Eun-Jung; Yu, Hyeran; Huh, Jung-Sik; Kim, Jinseok; Cho, Moonjae

    2017-07-27

    SIRT1 is a NAD-dependent protein deacetylase that participates in cellular regulation. The increased migration of fibroblasts is an important phenotype in fibroblast activation. The role of SIRT1 in cell migration remains controversial as to whether SIRT1 acts as an activator or suppressor of cell migration. Therefore, we have established the role of SIRT1 in the migration of human dermal fibroblasts and explored targets of SIRT1 during dermal fibroblast migration. SIRT1 and Cyr61 were expressed in human dermal fibroblasts and the stimulation with TGF-β further induced their expression. Treatment with resveratrol (RSV), a SIRT1 agonist, or overexpression of SIRT1 also promoted the expression Cyr61 in human dermal fibroblasts, whereas the inhibition of SIRT1 activity by nicotinamide or knockdown of SIRT1 decreased the level of Cyr61, as well as TGF-β or RSV-induced Cyr61 expression. Blocking of ERK signaling by PD98509 reduced the expression of Cyr61 induced by TGF-β or RSV. TGF-β, RSV, or SIRT1 overexpression enhanced β-catenin as well as Cyr61 expression. This stimulation was reduced by the Wnt inhibitor XAV939. RSV increased migration and nicotinamide attenuated RSV-induced migration of human dermal fibroblasts. Furthermore, SIRT1 overexpression promoted cell migration, whereas blocking Cyr61 attenuated SIRT1-stimulated migration of human dermal fibroblasts. SIRT1 increased cell migration by stimulating Cyr61 expression and the ERK and Wnt/β-catenin signaling. SIRT1-induced Cyr61 activity is very important for human dermal fibroblasts migration.

  16. IL-1 receptor antagonist attenuates MAP kinase/AP-1 activation and MMP1 expression in UVA-irradiated human fibroblasts induced by culture medium from UVB-irradiated human skin keratinocytes.

    PubMed

    Wang, Xiaoyong; Bi, Zhigang; Chu, Wenming; Wan, Yinsheng

    2005-12-01

    Solar UV light comprises UVB wavelengths (290-320 nm) and UVA wavelengths (320-400 nm). UVB radiation reaches the epidermis and, to a lesser extent, the upper part of the dermis, while UVA radiation penetrates more deeply into human skin. Existing studies have demonstrated that UV-irradiated epidermal keratinocytes release cytokines that indirectly promote MMP-1 production in dermal fibroblasts. In this study, we first investigated the effect of IL-1 on MAPK activity, c-Jun and c-Fos mRNA expression, and MMP-1 and MMP-2 production in UVA-irradiated human dermal fibroblasts. The results showed that UVA irradiation dose-dependently increased MMP-1 but not MMP-2 production in human skin fibroblasts. IL-1alpha and IL-1beta promoted MMP-1 but not MMP-2 production in UVA-irradiated fibroblasts. Both IL-1alpha and IL-1beta activated MAP kinase, significantly elevating c-Jun and c-Fos mRNA expression. We then investigated the indirect effect of UVB-irradiated keratinocyte culture medium on MMP-1 production in UVA-irradiated primary cultured human dermal fibroblasts and the effect of IL-1Ra. The results showed that cell culture medium from UVB-irradiated keratinocytes increased MMP-1 production in UVA-irradiated fibroblasts, and IL-1Ra dose-dependently inhibited MMP-1 production. IL-1Ra dose-dependently inhibited c-Jun mRNA expression of fibroblasts with no significant effect on c-Fos mRNA expression. These results demonstrate that UVB-irradiated keratinocytes promoted MMP-1 production in UVA-irradiated fibroblasts in a paracrine manner while IL-1Ra reduced MMP-1 production through inhibiting c-Jun mRNA expression. Collectively, our data suggest that IL-1 plays an important role in the dermal collagen degradation associated with UV-induced premature aging of the skin and IL-1Ra may be applied for the prevention and treatment of photoaging.

  17. Inhibition of Intermediate-Conductance Calcium-Activated K Channel (KCa3.1) and Fibroblast Mitogenesis by α-Linolenic Acid and Alterations of Channel Expression in the Lysosomal Storage Disorders, Fabry Disease, and Niemann Pick C

    PubMed Central

    Oliván-Viguera, Aida; Lozano-Gerona, Javier; López de Frutos, Laura; Cebolla, Jorge J.; Irún, Pilar; Abarca-Lachen, Edgar; García-Malinis, Ana J.; García-Otín, Ángel Luis; Gilaberte, Yolanda; Giraldo, Pilar; Köhler, Ralf

    2017-01-01

    The calcium/calmodulin-gated KCa3.1 channel regulates normal and abnormal mitogenesis by controlling K+-efflux, cell volume, and membrane hyperpolarization-driven calcium-entry. Recent studies suggest modulation of KCa3.1 by omega-3 fatty acids as negative modulators and impaired KCa3.1 functions in the inherited lysosomal storage disorder (LSD), Fabry disease (FD). In the first part of present study, we characterize KCa3.1 in murine and human fibroblasts and test the impact of omega-3 fatty acids on fibroblast proliferation. In the second, we study whether KCa3.1 is altered in the LSDs, FD, and Niemann-Pick disease type C (NPC). Our patch-clamp and mRNA-expression studies on murine and human fibroblasts show functional expression of KCa3.1. KCa currents display the typical pharmacological fingerprint of KCa3.1: Ca2+-activation, potentiation by the positive-gating modulators, SKA-31 and SKA-121, and inhibition by TRAM-34, Senicapoc (ICA-17043), and the negative-gating modulator, 13b. Considering modulation by omega-3 fatty acids we found that α-linolenic acid (α-LA) and docosahexanenoic acid (DHA) inhibit KCa3.1 currents and strongly reduce fibroblast growth. The α-LA-rich linseed oil and γ-LA-rich borage oil at 0.5% produce channel inhibition while α-LA/γ-LA-low oils has no anti-proliferative effect. Concerning KCa3.1 in LSD, mRNA expression studies, and patch-clamp on primary fibroblasts from FD and NPC patients reveal lower KCa3.1-gene expression and membrane expression than in control fibroblasts. In conclusion, the omega-3 fatty acid, α-LA, and α-LA/γ-LA-rich plant oils, inhibit fibroblast KCa3.1 channels and mitogenesis. Reduced fibroblast KCa3.1 functions are a feature and possible biomarker of cell dysfunction in FD and NPC and supports the concept that biased lipid metabolism is capable of negatively modulating KCa3.1 expression. PMID:28197106

  18. Inhibition of Intermediate-Conductance Calcium-Activated K Channel (KCa3.1) and Fibroblast Mitogenesis by α-Linolenic Acid and Alterations of Channel Expression in the Lysosomal Storage Disorders, Fabry Disease, and Niemann Pick C.

    PubMed

    Oliván-Viguera, Aida; Lozano-Gerona, Javier; López de Frutos, Laura; Cebolla, Jorge J; Irún, Pilar; Abarca-Lachen, Edgar; García-Malinis, Ana J; García-Otín, Ángel Luis; Gilaberte, Yolanda; Giraldo, Pilar; Köhler, Ralf

    2017-01-01

    The calcium/calmodulin-gated KCa3.1 channel regulates normal and abnormal mitogenesis by controlling K(+)-efflux, cell volume, and membrane hyperpolarization-driven calcium-entry. Recent studies suggest modulation of KCa3.1 by omega-3 fatty acids as negative modulators and impaired KCa3.1 functions in the inherited lysosomal storage disorder (LSD), Fabry disease (FD). In the first part of present study, we characterize KCa3.1 in murine and human fibroblasts and test the impact of omega-3 fatty acids on fibroblast proliferation. In the second, we study whether KCa3.1 is altered in the LSDs, FD, and Niemann-Pick disease type C (NPC). Our patch-clamp and mRNA-expression studies on murine and human fibroblasts show functional expression of KCa3.1. KCa currents display the typical pharmacological fingerprint of KCa3.1: Ca(2+)-activation, potentiation by the positive-gating modulators, SKA-31 and SKA-121, and inhibition by TRAM-34, Senicapoc (ICA-17043), and the negative-gating modulator, 13b. Considering modulation by omega-3 fatty acids we found that α-linolenic acid (α-LA) and docosahexanenoic acid (DHA) inhibit KCa3.1 currents and strongly reduce fibroblast growth. The α-LA-rich linseed oil and γ-LA-rich borage oil at 0.5% produce channel inhibition while α-LA/γ-LA-low oils has no anti-proliferative effect. Concerning KCa3.1 in LSD, mRNA expression studies, and patch-clamp on primary fibroblasts from FD and NPC patients reveal lower KCa3.1-gene expression and membrane expression than in control fibroblasts. In conclusion, the omega-3 fatty acid, α-LA, and α-LA/γ-LA-rich plant oils, inhibit fibroblast KCa3.1 channels and mitogenesis. Reduced fibroblast KCa3.1 functions are a feature and possible biomarker of cell dysfunction in FD and NPC and supports the concept that biased lipid metabolism is capable of negatively modulating KCa3.1 expression.

  19. CRH stimulates POMC activity and corticosterone production in dermal fibroblasts.

    PubMed

    Slominski, Andrzej; Zbytek, Blazej; Semak, Igor; Sweatman, Trevor; Wortsman, Jacobo

    2005-05-01

    It has been previously documented that human skin cells including epidermal keratinocytes and dermal fibroblasts produce and process proopiomelanocortin (POMC), corticotropin releasing hormone (CRH), and express functional CRH receptors type-1 (CRH-R1). The skin also has corticosteroidogenic activity, suggesting a functional connection between these elements. In the current study, we found that human dermal fibroblasts (but not normal epidermal keratinocytes) respond to CRH with stimulation of cAMP, with POMC gene and protein expression, and ACTH production and release. Furthermore, CRH and ACTH stimulate production of corticosterone in fibroblasts, with ACTH being more potent. Although cortisol-immunoreactivity accumulation/production in fibroblasts has been detected by ELISA, it appears to be constitutive (not affected by CRH or ACTH). These effects are absent in keratinocytes. Therefore, we propose that fibroblasts but not keratinocytes display a functional CRH-POMC-corticosteroid axis organized similarly to the hypothalamus-pituitary-adrenal (HPA) axis. However, it diverges from the HPA organization in its distal step, where CRH and ACTH stimulate production of corticosterone, instead of cortisol.

  20. Ultraviolet B Inhibits IL-17A/TNF-α-Stimulated Activation of Human Dermal Fibroblasts by Decreasing the Expression of IL-17RA and IL-17RC on Fibroblasts.

    PubMed

    Yin, Li; Hu, YingYing; Xu, JiaLi; Guo, Jing; Tu, Jie; Yin, ZhiQiang

    2017-01-01

    Psoriasis is a chronic immune-mediated inflammatory disease, and a mixed Th1/Th17 cytokine environment plays a critical role in the pathogenesis of psoriasis. Dermal fibroblasts secrete certain cytokines such as IL-6, IL-8, and CXCL-1, contributing to the hyperproliferative state of the epidermis in psoriatic skin. Ultraviolet B (UVB) phototherapy is one of the most commonly used treatments in psoriasis but the influence of UVB on human dermal fibroblasts (HDFs) in psoriasis treatment is not completely understood. We conducted this study to mimic a psoriatic microenvironment in order to investigate and illustrate the combined effects of UVB, IL-17A, and TNF-α on HDFs. The cultured HDFs were obtained from foreskin samples and divided into four groups, as follows: control; IL-17A/TNF-α; UVB; and IL-17A/TNF-α + UVB. Cultured HDFs were irradiated with 30 mJ/cm(2) UVB followed by addition of IL-17A/TNF-α and incubated for 24 h. We used real-time quantitative PCR, Western blot, ELISA analysis, and flow cytometry to examine gene and protein expression of related pro-inflammatory cytokines and chemokines and receptors. HDFs produced significant IL-6, IL-8, and CXCL-1 in response to IL-17A/TNF-α stimulation and UVB irradiation but UVB irradiation inhibited IL-17A/TNF-α-induced IL-6, IL-8, and CXCL-1 expression and downregulated the expression of IL-17RA and IL-17RC at both gene and protein levels. Additionally, UVB irradiation induced significant TGF-β1 protein secretion and expression of Smad3 mRNA and protein by HDFs. TGF-β1 significantly induced the expression of Smad3 mRNA and downregulated the IL-17RA and IL-17RC expression on HDFs. UVB irradiation inhibits IL-17A/TNF-α-induced IL-6, IL-8, and CXCL-1 production in HDFs by decreasing the expression of IL-17RA and IL-17RC on fibroblasts through TGF-β1/Smad3 signaling pathway, which reveals a new mechanism of the therapeutic action of UVB on psoriasis.

  1. Plasminogen Activator Inhibitor-1 Suppresses Profibrotic Responses in Fibroblasts from Fibrotic Lungs*

    PubMed Central

    Marudamuthu, Amarnath S.; Shetty, Shwetha K.; Bhandary, Yashodhar P.; Karandashova, Sophia; Thompson, Michael; Sathish, Venkatachalem; Florova, Galina; Hogan, Taryn B.; Pabelick, Christina M.; Prakash, Y. S.; Tsukasaki, Yoshikazu; Fu, Jian; Ikebe, Mitsuo; Idell, Steven; Shetty, Sreerama

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive interstitial scarification. A hallmark morphological lesion is the accumulation of myofibroblasts or fibrotic lung fibroblasts (FL-fibroblasts) in areas called fibroblastic foci. We previously demonstrated that the expression of both urokinase-type plasminogen activator (uPA) and the uPA receptor are elevated in FL-fibroblasts from the lungs of patients with IPF. FL-fibroblasts isolated from human IPF lungs and from mice with bleomycin-induced pulmonary fibrosis showed an increased rate of proliferation compared with normal lung fibroblasts (NL-fibroblasts) derived from histologically “normal” lung. Basal expression of plasminogen activator inhibitor-1 (PAI-1) in human and murine FL-fibroblasts was reduced, whereas collagen-I and α-smooth muscle actin were markedly elevated. Conversely, alveolar type II epithelial cells surrounding the fibrotic foci in situ, as well as those isolated from IPF lungs, showed increased activation of caspase-3 and PAI-1 with a parallel reduction in uPA expression. Transduction of an adenovirus PAI-1 cDNA construct (Ad-PAI-1) suppressed expression of uPA and collagen-I and attenuated proliferation in FL-fibroblasts. On the contrary, inhibition of basal PAI-1 in NL-fibroblasts increased collagen-I and α-smooth muscle actin. Fibroblasts isolated from PAI-1-deficient mice without lung injury also showed increased collagen-I and uPA. These changes were associated with increased Akt/phosphatase and tensin homolog proliferation/survival signals in FL-fibroblasts, which were reversed by transduction with Ad-PAI-1. This study defines a new role of PAI-1 in the control of fibroblast activation and expansion and its role in the pathogenesis of fibrosing lung disease and, in particular, IPF. PMID:25648892

  2. Basic fibroblast growth factor activates β-catenin/RhoA signaling in pulmonary fibroblasts with chronic obstructive pulmonary disease in rats.

    PubMed

    Ge, Zhengxing; Li, Bo; Zhou, Xun; Yang, Yi; Zhang, Jun

    2016-12-01

    Chronic obstructive pulmonary disease (COPD) is featured by aberrant extracellular matrix (ECM) deposition. Trigger of the β-catenin/RhoA pathway has been involved in aberrant ECM deposition in several diseases. We investigated WNT signaling activation in primary pulmonary fibroblasts of rats with and without COPD and the function of WNT signaling in pulmonary fibroblast. We evaluated the expression of WNT signaling and the role of β-catenin, using MRC-5 fibroblasts and primary lung fibroblasts of rats with and without COPD. Lung fibroblasts highly expressed mRNA of genes associated with WNT signaling. Treatment of MRC-5 fibroblasts using basic fibroblast growth factor (bFGF), a composition of the mucus in COPD patients, enhanced β-catenin, Wnt5a and RhoA expression. The expression in β-catenin, Wnt5a and RhoA induced by bFGF was higher in fibroblasts of rats with COPD than without COPD, whereas the basal expression was similar. bFGF also activated transcriptionally active and increased total β-catenin protein expression. Moreover, bFGF enhanced the expression of α-sm-actin and fibronectin, which was abrogated by β-catenin, Wnt5a and RhoA-specific adenovirus siRNA. The induction of active β-catenin and then fibronectin turnover in response to bFGF were markedly increased in pulmonary fibroblasts from rat with COPD. β-Catenin/RhoA pathway results in ECM deposition in lung fibroblasts and myofibroblasts differentiation. β-catenin/RhoA signaling induced by bFGF is promoted in lung fibroblasts from rats with COPD. The study indicated a crucial role of the WNT signaling in mediating fibroblast morphology and function in COPD.

  3. Bradykinin promotes TLR2 expression in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Arreguín-Cano, Juan Antonio

    2011-12-01

    Bradykinin (BK) is implicated in the sensation of pain, vasodilation, increases in vascular permeability and pathogenic processes associated with inflammation. Studies have shown that BK promotes the intracellular movement of calcium in human gingival fibroblasts by binding to the B2 receptor. In this study we investigated the effect of BK on regulation of Toll-like receptor 2 (TLR2) expression. Our results show that BK stimulates TLR2 receptor transcription and translation by activation of protein kinase C as well as AKT. Our study contributes important information on the regulation and expression of molecules that promote chronic inflammatory processes, which lead to periodontitis and consequently to loss of the dental organ. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Gene Expression Profiling of IL-17A-Treated Synovial Fibroblasts from the Human Temporomandibular Joint

    PubMed Central

    Hattori, Toshio; Ogura, Naomi; Akutsu, Miwa; Kawashima, Mutsumi; Watanabe, Suguru; Ito, Ko; Kondoh, Toshirou

    2015-01-01

    Synovial fibroblasts contribute to the inflammatory temporomandibular joint under pathogenic stimuli. Synovial fibroblasts and T cells participate in the perpetuation of joint inflammation in a mutual activation feedback, via secretion of cytokines and chemokines that stimulate each other. IL-17 is an inflammatory cytokine produced primarily by Th17 cells which plays critical role in the pathogenesis of numerous autoimmune and inflammatory diseases. Here, we investigated the roles of IL-17A in temporomandibular joint disorders (TMD) using genome-wide analysis of synovial fibroblasts isolated from patients with TMD. IL-17 receptors were expressed in synovial fibroblasts as assessed using real-time PCR. Microarray analysis indicated that IL-17A treatment of synovial fibroblasts upregulated the expression of IL-6 and chemokines. Real-time PCR analysis showed that the gene expression of IL-6, CXCL1, IL-8, and CCL20 was significantly higher in IL-17A-treated synovial fibroblasts compared to nontreated controls. IL-6 protein production was increased by IL-17A in a time- and a dose-dependent manner. Additionally, IL-17A simulated IL-6 protein production in synovial fibroblasts samples isolated from three patients. Furthermore, signal inhibitor experiments indicated that IL-17-mediated induction of IL-6 was transduced via activation of NFκB and phosphatidylinositol 3-kinase/Akt. These results suggest that IL-17A is associated with the inflammatory progression of TMD. PMID:26839464

  5. LTB4 activates pulmonary artery adventitial fibroblasts in pulmonary hypertension

    PubMed Central

    Jiang, Xinguo; Tamosiuniene, Rasa; Sung, Yon K.; Shuffle, Eric M.; Tu, Allen B.; Valenzuela, Antonia; Jiang, Shirley; Zamanian, Roham T.; Fiorentino, David F.; Voelkel, Norbert F.; Peters-Golden, Marc; Stenmark, Kurt R.; Chung, Lorinda; Rabinovitch, Marlene; Nicolls, Mark R.

    2015-01-01

    A recent study demonstrated a significant role for leukotriene B4 (LTB4) causing pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). LTB4 was found to directly injure luminal endothelial cells and promote growth of the smooth muscle cell layer of pulmonary arterioles. The purpose of the current study was to determine the effects of LTB4 on the pulmonary adventitial layer, largely composed of fibroblasts. Here, we demonstrate that LTB4 enhanced human pulmonary artery adventitial fibroblast (HPAAF) proliferation, migration and differentiation in a dose-dependent manner through its cognate G-protein coupled receptor, BLT1. LTB4 activated HPAAF by up-regulating p38 MAPK as well as Nox4 signaling pathways. In an autoimmune model of PH, inhibition of these pathways blocked perivascular inflammation, decreased Nox4 expression, reduced reactive oxygen species production, reversed arteriolar adventitial fibroblast activation and attenuated PH development. This study uncovers a novel mechanism by which LTB4 further promotes PAH pathogenesis, beyond its established effects on endothelial and smooth muscle cells, by activating adventitial fibroblasts. PMID:26558820

  6. CD44 and hyaluronan expression in human cutaneous scar fibroblasts.

    PubMed Central

    Messadi, D. V.; Bertolami, C. N.

    1993-01-01

    Fibrotic disorders of skin and other organs are typically associated with an abnormal accumulation of extracellular matrix. This study focuses on a matrix constituent, hyaluronan-which is known to be altered in fibrotic disorders of skin- and on CD44, a cell adhesion molecule and putative receptor for hyaluronan. Tissue samples were obtained from biopsies of human normal skin, normal cutaneous scar; and hypertrophic cutaneous scar. After culturing, cells were studied by single- and double-labeling immunohistochemistry using the two anti-CD44 monoclonal antibodies, BU-52 and J173, and a biotinylated hyaluronan binding complex probe, b-HABR. Certain cultures were pretreated with Streptomyces hyaluronidase to assess the dependency of CD44 expression on the presence of endogenous hyaluronan. CD44 expression, both in the presence and the absence of exogenous hyaluronan, was quantitated by radioimmunobinding assay. Overall glycosaminoglycan synthesis and identification of hyaluronan were accomplished by precursor incorporation assays and by quantitative cellulose acetate electrophoresis. CD44 was found to be a normal human adult fibroblastic antigen whose expression is markedly increased for hypertrophic scar fibroblasts compared with normal skin fibroblasts. Although hyaluronan was found to be the predominant glycosaminoglycan constituent of the pericellular matrix for these fibroblasts, CD44 attachment to the cell surface is neither mediated by hyaluronan nor is the presence of hyaluronan a prerequisite for CD44 expression. Exogenous hyaluronan induced a decline in measurable CD44 expression for normal skin fibroblasts but not for hypertrophic scar fibroblasts. These observations are compatible with current understanding of the way cells manage the hyaluronan economy of the extracellular matrix and emphasize phenotypic heterogeneities between fibroblasts derived from normal versus scar tissues. Images Figure 1 Figure 4 PMID:8475990

  7. High inorganic phosphate causes DNMT1 phosphorylation and subsequent fibrotic fibroblast activation

    SciTech Connect

    Tan, Xiaoying; Xu, Xingbo; Zeisberg, Elisabeth M.; Zeisberg, Michael

    2016-04-08

    Phosphate is an essential constituent of critical cellular functions including energy metabolism, nucleic acid synthesis and phosphorylation-dependent cell signaling. Increased plasma phosphate levels are an independent risk factor for lowered life-expectancy as well as for heart and kidney failure. Nevertheless, direct cellular effects of elevated phosphate concentrations within the microenvironment are poorly understood and have been largely neglected in favor of phosphor-regulatory hormones. Because interstitial fibrosis is the common determinant of chronic progressive kidney disease, and because fibroblasts are major mediators of fibrogenesis, we here explored the effect of high extracellular phosphate levels on renal fibroblasts. We demonstrate that high inorganic phosphate directly induces fibrotic fibroblast activation associated with increased proliferative activity, increased expression of α-smooth muscle actin and increased synthesis of type I collagen. We further demonstrate that such fibroblast activation is dependent on phosphate influx, aberrant phosphorylation of DNA methyltransferase DNMT1 and aberrant CpG island promoter methylation. In summary, our studies demonstrate that elevated phosphate concentrations induce pro-fibrotic fibroblast activation independent of phospho-regulatory hormones. - Highlights: • We exposed human kidney fibroblasts to media containing 1 mM or 3 mM phosphate. • Increased phosphate influx causes phosphorylation of DNA methyltransferase Dnmt1. • Phosphorylated Dnmt1 causes promoter methylation and transcriptional silencing of RASAL1. • Depletion of RASAL1 causes increased intrinsic Ras-GTP activity and fibroblast activation. • Inorganic phosphate causes fibroblast activation independent of phospho-regulatory hormones.

  8. Tropoelastin regulates chemokine expression in fibroblasts in Costello syndrome

    SciTech Connect

    Tatano, Yutaka; Fujinawa, Reiko; Kozutsumi, Yasunori; Takahashi, Tsutomu; Tsuji, Daisuke; Takeuchi, Naohiro; Tsuta, Kohji; Takada, Goro; Sakuraba, Hitoshi; Itoh, Kohji

    2008-08-08

    Costello syndrome is a multiple congenital anomaly associated with growth and mental retardation, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Comprehensive expression analysis revealed remarkable up-regulation of several cytokines and chemokines including Gro family proteins, interleukin-1{beta} (IL-1{beta}), IL-8 and MCP-1 but down-regulation of extracellular matrix components including collagens and proteoglycans of skin fibroblasts derived from a Japanese Costello syndrome patient characterized by significantly reduced tropoelastin mRNA, impaired elastogenesis and enhanced cell proliferation. In contrast, decreases in these chemokines and IL-1{beta} expression were observed in Costello fibroblastic cell lines stably expressing the bovine tropoelastin (btEln) gene and in restored elastic fibers. These results strongly suggest that the human TE gene (ELN) transfer could be applicable for the gene therapy of a group of Costello syndrome patients with reduced ELN gene expression.

  9. Staphylococcus aureus induces TGF-β1 and bFGF expression through the activation of AP-1 and NF-κB transcription factors in bovine mammary gland fibroblasts.

    PubMed

    Wu, Jianmei; Ding, Yulin; Bi, Yannan; Wang, Yi; Zhi, Yu; Wang, Jinling; Wang, Fenglong

    2016-06-01

    Staphylococcus aureus is a common Gram-positive pathogen that causes bovine mastitis, a persistent infection of the bovine mammary gland. To better understand the importance of bovine mammary fibroblasts (BMFBs) and the roles of the TLR-NF-κB and TLR-AP-1 signaling pathways in the regulation of S. aureus-associated mastitis and mammary fibosis, BMFBs cultured in vitro were stimulated with different concentrations of heat-inactivated S. aureus to analyze the gene and protein expression of toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4), transforming growth factor beta 1 (TGF-β1), basic fibroblast growth factor (bFGF) as well as the protein expression of nuclear factor-kappa B (NF-κB) and activation protein-1 (AP-1) by means of quantitative polymerase chain reaction (qPCR) and western blotting, respectively. Specific NF-κB and AP-1 inhibitors were also used to investigate their effects on the regulation of TGF-β1 and bFGF expression. The results indicated that, in addition to increasing mRNA and protein expression of TLR2 and TLR4, S. aureus could also upregulate TGF-β1 and bFGF mRNA expression and secretion through the activation of NF-κB and AP-1. The increase in TGF-β1 and bFGF expression was shown to be inhibited by AP-1- and NF-κB-specific inhibitors. Taken together, S. aureus induces TGF-β1 and bFGF expression through the activation of AP-1 and NF-κB in BMFBs. This information offers new potential targets for the treatment of bovine mammary fibrosis.

  10. Calcium pantothenate modulates gene expression in proliferating human dermal fibroblasts.

    PubMed

    Wiederholt, Tonio; Heise, Ruth; Skazik, Claudia; Marquardt, Yvonne; Joussen, Sylvia; Erdmann, Kati; Schröder, Henning; Merk, Hans F; Baron, Jens Malte

    2009-11-01

    Topical application of pantothenate is widely used in clinical practice for wound healing. Previous studies identified a positive effect of pantothenate on migration and proliferation of cultured fibroblasts. However, these studies were mainly descriptive with no molecular data supporting a possible model of its action. In this study, we first established conditions for an in vitro model of pantothenate wound healing and then analysed the molecular effects of pantothenate. To test the functional effect of pantothenate on dermal fibroblasts, cells were cultured and in vitro proliferation tests were performed using a standardized scratch test procedure. For all three donors analysed, a strong stimulatory effect of pantothenate at a concentration of 20 microg/ml on the proliferation of cultivated dermal fibroblasts was observed. To study the molecular mechanisms resulting in the proliferative effect of pantothenate, gene expression was analysed in dermal fibroblasts cultivated with 20 microg/ml of pantothenate compared with untreated cells using the GeneChip Human Exon 1.0 ST Array. A number of significantly regulated genes were identified including genes coding for interleukin (IL)-6, IL-8, Id1, HMOX-1, HspB7, CYP1B1 and MARCH-II. Regulation of these genes was subsequently verified by quantitative real-time polymerase chain reaction analysis. Induction of HMOX-1 expression by pantothenol and pantothenic acid in dermal cells was confirmed on the protein level using immunoblots. Functional studies revealed the enhanced suppression of free radical formation in skin fibroblasts cultured with panthenol. In conclusion, these studies provided new insight in the molecular mechanisms linked to the stimulatory effect of pantothenate and panthenol on the proliferation of dermal fibroblasts.

  11. Pentadecapeptide BPC 157 enhances the growth hormone receptor expression in tendon fibroblasts.

    PubMed

    Chang, Chung-Hsun; Tsai, Wen-Chung; Hsu, Ya-Hui; Pang, Jong-Hwei Su

    2014-11-19

    BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  12. Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation.

    PubMed

    Ali, Shah R; Ranjbarvaziri, Sara; Talkhabi, Mahmood; Zhao, Peng; Subat, Ali; Hojjat, Armin; Kamran, Paniz; Müller, Antonia M S; Volz, Katharina S; Tang, Zhaoyi; Red-Horse, Kristy; Ardehali, Reza

    2014-09-12

    Fibrosis is mediated partly by extracellular matrix-depositing fibroblasts in the heart. Although these mesenchymal cells are reported to have multiple embryonic origins, the functional consequence of this heterogeneity is unknown. We sought to validate a panel of surface markers to prospectively identify cardiac fibroblasts. We elucidated the developmental origins of cardiac fibroblasts and characterized their corresponding phenotypes. We also determined proliferation rates of each developmental subset of fibroblasts after pressure overload injury. We showed that Thy1(+)CD45(-)CD31(-)CD11b(-)Ter119(-) cells constitute the majority of cardiac fibroblasts. We characterized these cells using flow cytometry, epifluorescence and confocal microscopy, and transcriptional profiling (using reverse transcription polymerase chain reaction and RNA-seq). We used lineage tracing, transplantation studies, and parabiosis to show that most adult cardiac fibroblasts derive from the epicardium, a minority arises from endothelial cells, and a small fraction from Pax3-expressing cells. We did not detect generation of cardiac fibroblasts by bone marrow or circulating cells. Interestingly, proliferation rates of fibroblast subsets on injury were identical, and the relative abundance of each lineage remained the same after injury. The anatomic distribution of fibroblast lineages also remained unchanged after pressure overload. Furthermore, RNA-seq analysis demonstrated that Tie2-derived and Tbx18-derived fibroblasts within each operation group exhibit similar gene expression profiles. The cellular expansion of cardiac fibroblasts after transaortic constriction surgery was not restricted to any single developmental subset. The parallel proliferation and activation of a heterogeneous population of fibroblasts on pressure overload could suggest that common signaling mechanisms stimulate their pathological response. © 2014 American Heart Association, Inc.

  13. FGF2 Overrides TGFβ1-Driven Integrin ITGA11 Expression in Human Dermal Fibroblasts.

    PubMed

    Grella, Alexandra; Kole, Denis; Holmes, William; Dominko, Tanja

    2016-04-01

    Deposition of collagen-based extracellular matrix by fibroblasts during wound healing leads to scar formation--a typical outcome of the healing process in soft tissue wounds. The process can, however, be skewed in favor of tissue regeneration by manipulation of wound environment. Low oxygen conditions and supplementation with FGF2 provide extracellular cues that drive wound fibroblasts towards a pro-regenerative phenotype. Under these conditions, fibroblasts dramatically alter expression of many genes among which the most significantly deregulated are extracellular matrix and adhesion molecules. Here we investigate the mechanism of a collagen I binding integrin α11 (ITGA11) deregulation in response to low oxygen-mediated FGF2 effects in dermal fibroblasts. Using RT-PCR, qRT-PCR, Western blotting, and immunocytochemistry, we describe significant down-regulation of ITGA11. Decrease in ITGA11 is associated with its loss from focal adhesions. We show that loss of ITGA11 requires FGF2 induced ERK1/2 activity and in the presence of FGF2, ITGA11 expression cannot be rescued by TGFβ1, a potent activator of ITGA11. Our results indicate that FGF2 may be redirecting fibroblasts towards an anti-fibrotic phenotype by overriding TGFβ1 mediated ITGA11 expression. © 2015 Wiley Periodicals, Inc.

  14. Transforming growth factor Beta 1 stimulates profibrotic activities of luteal fibroblasts in cows.

    PubMed

    Maroni, Dulce; Davis, John S

    2012-11-01

    Luteolysis is characterized by angioregression, luteal cell apoptosis, and remodeling of the extracellular matrix characterized by deposition of collagen 1. Transforming growth factor beta 1 (TGFB1) is a potent mediator of wound healing and fibrotic processes through stimulation of the synthesis of extracellular matrix components. We hypothesized that TGFB1 stimulates profibrotic activities of luteal fibroblasts. We examined the actions of TGFB1 on luteal fibroblast proliferation, extracellular matrix production, floating gel contraction, and chemotaxis. Fibroblasts were isolated from the bovine corpus luteum. Western blot analysis showed that luteal fibroblasts expressed collagen 1 and prolyl 4-hydroxylase but did not express markers of endothelial or steroidogenic cells. Treatment of fibroblasts with TGFB1 stimulated the phosphorylation of SMAD2 and SMAD3. [(3)H]thymidine incorporation studies showed that TGFB1 caused concentration-dependent reductions in DNA synthesis in luteal fibroblasts and significantly (P < 0.05) reduced the proliferative effect of FGF2 and fetal calf serum. However, TGFB1 did not reduce the viability of luteal fibroblasts. Treatment of luteal fibroblasts with TGFB1 induced the expression of laminin, collagen 1, and matrix metalloproteinase 1 as determined by Western blot analysis and gelatin zymography of conditioned medium. TGFB1 increased the chemotaxis of luteal fibroblasts toward fibronectin in a transwell system. Furthermore, TGFB1 increased the fibroblast-mediated contraction of floating bovine collagen 1 gels. These results suggest that TGFB1 contributes to the structural regression of the corpus luteum by stimulating luteal fibroblasts to remodel and contract the extracellular matrix.

  15. Feedback Activation of Basic Fibroblast Growth Factor Signaling via the Wnt/β-Catenin Pathway in Skin Fibroblasts

    PubMed Central

    Wang, Xu; Zhu, Yuting; Sun, Congcong; Wang, Tao; Shen, Yingjie; Cai, Wanhui; Sun, Jia; Chi, Lisha; Wang, Haijun; Song, Na; Niu, Chao; Shen, Jiayi; Cong, Weitao; Zhu, Zhongxin; Xuan, Yuanhu; Li, Xiaokun; Jin, Litai

    2017-01-01

    Skin wound healing is a complex process requiring the coordinated behavior of many cell types, especially in the proliferation and migration of fibroblasts. Basic fibroblast growth factor (bFGF) is a member of the FGF family that promotes fibroblast migration, but the underlying molecular mechanism remains elusive. The present RNA sequencing study showed that the expression levels of several canonical Wnt pathway genes, including Wnt2b, Wnt3, Wnt11, T-cell factor 7 (TCF7), and Frizzled 8 (FZD8) were modified by bFGF stimulation in fibroblasts. Enzyme-linked immunosorbent assay (ELISA) analysis also showed that Wnt pathway was activated under bFGF treatment. Furthermore, treatment of fibroblasts with lithium chloride or IWR-1, an inducer and inhibitor of the Wnt signaling pathway, respectively, promoted and inhibited cell migration. Also, levels of cytosolic glycogen synthase kinase 3 beta phosphorylated at serine9 (pGSK3β Ser9) and nuclear β-catenin were increased upon exposure to bFGF. Molecular and biochemical assays indicated that phosphoinositide 3-kinase (PI3K) signaling activated the GSK3β/β-catenin/Wnt signaling pathway via activation of c-Jun N-terminal kinase (JNK), suggesting that PI3K and JNK act at the upstream of β-catenin. In contrast, knock-down of β-catenin delayed fibroblast cell migration even under bFGF stimulation. RNA sequencing analysis of β-catenin knock-down fibroblasts demonstrated that β-catenin positively regulated the transcription of bFGF and FGF21. Moreover, FGF21 treatment activated AKT and JNK, and accelerated fibroblast migration to a similar extent as bFGF does. In addition, ELISA analysis demonstrated that both of bFGF and FGF21 were auto secretion factor and be regulated by Wnt pathway stimulators. Taken together, our analyses define a feedback regulatory loop between bFGF (FGF21) and Wnt signaling acting through β-catenin in skin fibroblasts. PMID:28217097

  16. Feedback Activation of Basic Fibroblast Growth Factor Signaling via the Wnt/β-Catenin Pathway in Skin Fibroblasts.

    PubMed

    Wang, Xu; Zhu, Yuting; Sun, Congcong; Wang, Tao; Shen, Yingjie; Cai, Wanhui; Sun, Jia; Chi, Lisha; Wang, Haijun; Song, Na; Niu, Chao; Shen, Jiayi; Cong, Weitao; Zhu, Zhongxin; Xuan, Yuanhu; Li, Xiaokun; Jin, Litai

    2017-01-01

    Skin wound healing is a complex process requiring the coordinated behavior of many cell types, especially in the proliferation and migration of fibroblasts. Basic fibroblast growth factor (bFGF) is a member of the FGF family that promotes fibroblast migration, but the underlying molecular mechanism remains elusive. The present RNA sequencing study showed that the expression levels of several canonical Wnt pathway genes, including Wnt2b, Wnt3, Wnt11, T-cell factor 7 (TCF7), and Frizzled 8 (FZD8) were modified by bFGF stimulation in fibroblasts. Enzyme-linked immunosorbent assay (ELISA) analysis also showed that Wnt pathway was activated under bFGF treatment. Furthermore, treatment of fibroblasts with lithium chloride or IWR-1, an inducer and inhibitor of the Wnt signaling pathway, respectively, promoted and inhibited cell migration. Also, levels of cytosolic glycogen synthase kinase 3 beta phosphorylated at serine(9) (pGSK3β Ser(9)) and nuclear β-catenin were increased upon exposure to bFGF. Molecular and biochemical assays indicated that phosphoinositide 3-kinase (PI3K) signaling activated the GSK3β/β-catenin/Wnt signaling pathway via activation of c-Jun N-terminal kinase (JNK), suggesting that PI3K and JNK act at the upstream of β-catenin. In contrast, knock-down of β-catenin delayed fibroblast cell migration even under bFGF stimulation. RNA sequencing analysis of β-catenin knock-down fibroblasts demonstrated that β-catenin positively regulated the transcription of bFGF and FGF21. Moreover, FGF21 treatment activated AKT and JNK, and accelerated fibroblast migration to a similar extent as bFGF does. In addition, ELISA analysis demonstrated that both of bFGF and FGF21 were auto secretion factor and be regulated by Wnt pathway stimulators. Taken together, our analyses define a feedback regulatory loop between bFGF (FGF21) and Wnt signaling acting through β-catenin in skin fibroblasts.

  17. Interaction between human lung fibroblasts and T-lymphocytes prevents activation of CD4+ cells

    PubMed Central

    Vancheri, Carlo; Mastruzzo, Claudio; Trovato-Salinaro, Elisa; Gili, Elisa; Lo Furno, Debora; Pistorio, Maria P; Caruso, Massimo; La Rosa, Cristina; Crimi, Claudia; Failla, Marco; Crimi, Nunzio

    2005-01-01

    Background T lymphocytes are demonstrated to play an important role in several chronic pulmonary inflammatory diseases. In this study we provide evidence that human lung fibroblasts are capable of mutually interacting with T-lymphocytes leading to functionally significant responses by T-cells and fibroblasts. Methods Human lung fibroblast were co-cultured with PMA-ionomycin activated T-CD4 lymphocytes for 36 hours. Surface as well as intracellular proteins expression, relevant to fibroblasts and lymphocytes activation, were evaluated by means of flow cytometry and RT-PCR. Proliferative responses of T lymphocytes to concanavalin A were evaluated by the MTT assay. Results In lung fibroblasts, activated lymphocytes promote an increase of expression of cyclooxygenase-2 and ICAM-1, expressed as mean fluorescence intensity (MFI), from 5.4 ± 0.9 and 0.7 ± 0.15 to 9.1 ± 1.5 and 38.6 ± 7.8, respectively. Fibroblasts, in turn, induce a significant reduction of transcription and protein expression of CD69, LFA-1 and CD28 in activated lymphocytes and CD3 in resting lymphocytes. In activated T lymphocytes, LFA-1, CD28 and CD69 expression was 16.6 ± 0.7, 18.9 ± 1.9 and 6.6 ± 1.3, respectively, and was significantly reduced by fibroblasts to 9.4 ± 0.7, 9.4 ± 1.4 and 3.5 ± 1.0. CD3 expression in resting lymphocytes was 11.9 ± 1.4 and was significantly reduced by fibroblasts to 6.4 ± 1.1. Intracellular cytokines, TNF-alpha and IL-10, were evaluated in T lymphocytes. Co-incubation with fibroblasts reduced the number of TNF-alpha positive lymphocytes from 54,4% ± 6.12 to 30.8 ± 2.8, while IL-10 positive cells were unaffected. Finally, co-culture with fibroblasts significantly reduced Con A proliferative response of T lymphocytes, measured as MTT absorbance, from 0.24 ± 0.02 nm to 0.16 ± 0.02 nm. Interestingly, while the activation of fibroblasts is mediated by a soluble factor, a cognate interaction ICAM-1 mediated was demonstrated to be responsible for the modulation

  18. Rheb/mTORC1 Signaling Promotes Kidney Fibroblast Activation and Fibrosis

    PubMed Central

    Jiang, Lei; Xu, Lingling; Mao, Junhua; Li, Jianzhong; Fang, Li; Zhou, Yang; Liu, Wei; He, Weichun; Zhao, Allan Zijian

    2013-01-01

    Ras homolog enriched in brain (Rheb) is a small GTPase that regulates cell growth, differentiation, and survival by upregulating mammalian target of rapamycin complex 1 (mTORC1) signaling. The role of Rheb/mTORC1 signaling in the activation of kidney fibroblasts and the development of kidney fibrosis remains largely unknown. In this study, we found that Rheb/mTORC1 signaling was activated in interstitial myofibroblasts from fibrotic kidneys. Treatment of rat kidney interstitial fibroblasts (NRK-49F cell line) with TGFβ1 also activated Rheb/mTORC1 signaling. Blocking Rheb/mTORC1 signaling with rapamycin or Rheb small interfering RNA abolished TGFβ1-induced fibroblast activation. In a transgenic mouse, ectopic expression of Rheb activated kidney fibroblasts. These Rheb transgenic mice exhibited increased activation of mTORC1 signaling in both kidney tubular and interstitial cells as well as progressive interstitial renal fibrosis; rapamycin inhibited these effects. Similarly, mice with fibroblast-specific deletion of Tsc1, a negative regulator of Rheb, exhibited activated mTORC1 signaling in kidney interstitial fibroblasts and increased renal fibrosis, both of which rapamycin abolished. Taken together, these results suggest that Rheb/mTORC1 signaling promotes the activation of kidney fibroblasts and contributes to the development of interstitial fibrosis, possibly providing a therapeutic target for progressive renal disease. PMID:23661807

  19. Overexpression of phospholipid-hydroperoxide glutathione peroxidase in human dermal fibroblasts abrogates UVA irradiation-induced expression of interstitial collagenase/matrix metalloproteinase-1 by suppression of phosphatidylcholine hydroperoxide-mediated NFkappaB activation and interleukin-6 release.

    PubMed

    Wenk, Jutta; Schüller, Jutta; Hinrichs, Christina; Syrovets, Tatjana; Azoitei, Ninel; Podda, Maurizio; Wlaschek, Meinhard; Brenneisen, Peter; Schneider, Lars-A; Sabiwalsky, Andrea; Peters, Thorsten; Sulyok, Silke; Dissemond, Joachim; Schauen, Matthias; Krieg, Thomas; Wirth, Thomas; Simmet, Thomas; Scharffetter-Kochanek, Karin

    2004-10-29

    Phospholipid-hydroperoxide glutathione peroxidase (PHGPx) exhibits high specific activity in reducing phosphatidylcholine hydroperoxides (PCOOHs) and thus may play a central role in protecting the skin against UV irradiation-triggered detrimental long term effects like cancer formation and premature skin aging. Here we addressed the role of PHGPx in the protection against UV irradiation-induced expression of matrix metalloproteinase-1 (MMP-1). For this purpose, we created human dermal fibroblast cell lines overexpressing human PHGPx. Overexpression led to a significant increase in PHGPx activity. In contrast to a maximal 4.5-fold induction of specific MMP-1 mRNA levels in vector-transfected cells at 24 h after UVA irradiation, no MMP-1 induction occurred at any studied time point after UVA treatment of PHGPx-overexpressing fibroblasts. As interleukin-6 (IL-6) was earlier shown to mediate the UVA induction of MMP-1, we studied whether PHGPx overexpression might interfere with the NFkappaB-mediated IL-6 induction and downstream signaling. Using transient transfections of IL-6 promoter constructs containing NFkappaB binding sites, we observed a high induction of the reporter gene luciferase in vector-transfected control cells and a significantly lower induction in PHGPx-overexpressing fibroblasts following UVA irradiation. Consistently both UVA irradiation and treatment of fibroblasts with PCOOHs led to phosphorylation and nuclear translocation of the p65 subunit, whereas cells overexpressing PHGPx exhibited impaired NFkappaB activation, p65 phosphorylation, and nuclear translocation. In line with this, the PHGPx-overexpressing fibroblasts showed a reduced constitutive and UVA irradiation-induced IL-6 release. After incubating PHGPx-overexpressing cells with PCOOHs a reduced induction of IL-6 was observed. This together with the suppression of UVA irradiation-induced IL-6 release in the presence of Trolox, a chain breaker of PCOOH-initiated lipid peroxidation

  20. Endoglin haploinsufficiency promotes fibroblast accumulation during wound healing through Akt activation.

    PubMed

    Pericacho, Miguel; Velasco, Soraya; Prieto, Marta; Llano, Elena; López-Novoa, José M; Rodríguez-Barbero, Alicia

    2013-01-01

    Accurate regulation of dermal fibroblast function plays a crucial role in wound healing. Many fibrotic diseases are characterized by a failure to conclude normal tissue repair and the persistence of fibroblasts inside lesions. In the present study we demonstrate that endoglin haploinsufficiency promotes fibroblast accumulation during wound healing. Moreover, scars from endoglin-heterozygous (Eng(+/-)) mice show persisting fibroblasts 12 days after wounding, which could lead to a fibrotic scar. Endoglin haploinsufficiency results in increased proliferation and migration of primary cultured murine dermal fibroblasts (MDFs). Moreover, Eng(+/-) MDF have diminished responses to apoptotic signals compared with control cells. Altogether, these modifications could explain the augmented presence of fibroblasts in Eng(+/-) mice wounds. We demonstrate that endoglin expression regulates Akt phosphorylation and that PI3K inhibition abolishes the differences in proliferation between endoglin haploinsufficient and control cells. Finally, persistent fibroblasts in Eng(+/-) mice wound co-localize with a greater degree of Akt phosphorylation. Thus, endoglin haploinsufficiency seems to promote fibroblast accumulation during wound healing through the activation of the PI3K/Akt pathway. These studies open new non-Smad signaling pathway for endoglin regulating fibroblast cell function during wound healing, as new therapeutic opportunities for the treatment of fibrotic wounds.

  1. Endoglin Haploinsufficiency Promotes Fibroblast Accumulation during Wound Healing through Akt Activation

    PubMed Central

    Pericacho, Miguel; Velasco, Soraya; Prieto, Marta; Llano, Elena; López-Novoa, José M.; Rodríguez-Barbero, Alicia

    2013-01-01

    Accurate regulation of dermal fibroblast function plays a crucial role in wound healing. Many fibrotic diseases are characterized by a failure to conclude normal tissue repair and the persistence of fibroblasts inside lesions. In the present study we demonstrate that endoglin haploinsufficiency promotes fibroblast accumulation during wound healing. Moreover, scars from endoglin-heterozygous (Eng+/−) mice show persisting fibroblasts 12 days after wounding, which could lead to a fibrotic scar. Endoglin haploinsufficiency results in increased proliferation and migration of primary cultured murine dermal fibroblasts (MDFs). Moreover, Eng+/− MDF have diminished responses to apoptotic signals compared with control cells. Altogether, these modifications could explain the augmented presence of fibroblasts in Eng+/− mice wounds. We demonstrate that endoglin expression regulates Akt phosphorylation and that PI3K inhibition abolishes the differences in proliferation between endoglin haploinsufficient and control cells. Finally, persistent fibroblasts in Eng+/− mice wound co-localize with a greater degree of Akt phosphorylation. Thus, endoglin haploinsufficiency seems to promote fibroblast accumulation during wound healing through the activation of the PI3K/Akt pathway. These studies open new non-Smad signaling pathway for endoglin regulating fibroblast cell function during wound healing, as new therapeutic opportunities for the treatment of fibrotic wounds. PMID:23349951

  2. Genome-wide analysis of AR binding and comparison with transcript expression in primary human fetal prostate fibroblasts and cancer associated fibroblasts.

    PubMed

    Nash, Claire; Boufaied, Nadia; Mills, Ian G; Franco, Omar E; Hayward, Simon W; Thomson, Axel A

    2017-05-05

    The androgen receptor (AR) is a transcription factor, and key regulator of prostate development and cancer, which has discrete functions in stromal versus epithelial cells. AR expressed in mesenchyme is necessary and sufficient for prostate development while loss of stromal AR is predictive of prostate cancer progression. Many studies have characterized genome-wide binding of AR in prostate tumour cells but none have used primary mesenchyme or stroma. We applied ChIPseq to identify genomic AR binding sites in primary human fetal prostate fibroblasts and patient derived cancer associated fibroblasts, as well as the WPMY1 cell line overexpressing AR. We identified AR binding sites that were specific to fetal prostate fibroblasts (7534), cancer fibroblasts (629), WPMY1-AR (2561) as well as those common among all (783). Primary fibroblasts had a distinct AR binding profile versus prostate cancer cell lines and tissue, and showed a localisation to gene promoter binding sites 1 kb upstream of the transcriptional start site, as well as non-classical AR binding sequence motifs. We used RNAseq to define transcribed genes associated with AR binding sites and derived cistromes for embryonic and cancer fibroblasts as well as a cistrome common to both. These were compared to several in vivo ChIPseq and transcript expression datasets; which identified subsets of AR targets that were expressed in vivo and regulated by androgens. This analysis enabled us to deconvolute stromal AR targets active in stroma within tumour samples. Taken together, our data suggest that the AR shows significantly different genomic binding site locations in primary prostate fibroblasts compared to that observed in tumour cells. Validation of our AR binding site data with transcript expression in vitro and in vivo suggests that the AR target genes we have identified in primary fibroblasts may contribute to clinically significant and biologically important AR-regulated changes in prostate tissue

  3. Caveolin-1 is a Modulator of Fibroblast Activation and a Potential Biomarker for Gastric Cancer

    PubMed Central

    Shen, Xiao-Jun; Zhang, Hao; Tang, Gu-Sheng; Wang, Xu-Dong; Zheng, Rui; Wang, Yang; Zhu, Yan; Xue, Xu-Chao; Bi, Jian-Wei

    2015-01-01

    Stromal fibroblasts play an important role in chronic cancer-related inflammation and the development as well as progression of malignant diseases. However, the difference and relationship between inflammation-associated fibroblasts (IAFs) and cancer-associated fibroblasts (CAFs) are poorly understood. In this study, gastric cancer-associated fibroblasts (GCAFs) and their corresponding inflammation-associated fibroblasts (GIAFs) were isolated from gastric cancer (GC) with chronic gastritis and cultured in vitro. These activated fibroblasts exhibited distinct secretion and tumor-promoting behaviors in vitro. Using proteomics and bioinformatics techniques, caveolin-1 (Cav-1) was identified as a major network-centric protein of a sub-network consisting of 121 differentially expressed proteins between GIAFs and GCAFs. Furthermore, immunohistochemistry in a GC cohort showed significant difference in Cav-1 expression score between GIAFs and GCAFs and among patients with different grades of chronic gastritis. Moreover, silencing of Cav-1 in GIAFs and GCAFs using small interfering RNA increased the production of pro-inflammatory and tumor-enhancing cytokines and chemokines in conditioned mediums that elevated cell proliferation and migration when added to GC cell lines AGS and MKN45 in vitro. In addition, Cav-1 status in GIAFs and GCAFs independently predicted the prognosis of GC. Our findings indicate that Cav-1 loss contributes to the distinct activation statuses of fibroblasts in GC microenvironment and gastritis mucosa, and Cav-1 expression in both GCAFs and GIAFs may serve as a potential biomarker for GC progression. PMID:25798057

  4. Snail1-Dependent Activation of Cancer-Associated Fibroblast Controls Epithelial Tumor Cell Invasion and Metastasis.

    PubMed

    Alba-Castellón, Lorena; Olivera-Salguero, Rubén; Mestre-Farrera, Aida; Peña, Raúl; Herrera, Mercedes; Bonilla, Félix; Casal, J Ignacio; Baulida, Josep; Peña, Cristina; García de Herreros, Antonio

    2016-11-01

    Snail1 transcriptional factor is essential for triggering epithelial-to-mesenchymal transition (EMT) and inducing tumor cell invasion. We report here an EMT-independent action of Snail1 on tumor invasion, as it is required for the activation of cancer-associated fibroblasts (CAF). Snail1 expression in fibroblasts requires signals derived from tumor cells, such as TGFβ; reciprocally, in fibroblasts, Snail1 organizes a complex program that stimulates invasion of epithelial cells independent of the expression of Snail1 in these cells. Epithelial cell invasion is stimulated by the secretion by fibroblast of diffusible signaling molecules, such as prostaglandin E2 The capability of human or murine CAFs to promote tumor invasion is dependent on Snail1 expression. Inducible Snail1 depletion in mice decreases the invasion of breast tumors; moreover, epithelial tumor cells coxenografted with Snail1-depleted fibroblasts originated tumors with lower invasion than those transplanted with control fibroblasts. Therefore, these results demonstrate that the role of Snail1 in tumor invasion is not limited to EMT, but it is also dependent on its activity in stromal fibroblasts, where it orchestrates the cross-talk with epithelial tumor cells. Cancer Res; 76(21); 6205-17. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. A Marfan syndrome gene expression phenotype in cultured skin fibroblasts

    PubMed Central

    Yao, Zizhen; Jaeger, Jochen C; Ruzzo, Walter L; Morale, Cecile Z; Emond, Mary; Francke, Uta; Milewicz, Dianna M; Schwartz, Stephen M; Mulvihill, Eileen R

    2007-01-01

    Background Marfan syndrome (MFS) is a heritable connective tissue disorder caused by mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms. Results We used spotted membrane DNA macroarrays to identify genes whose altered expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes identified a subset with significant expression differences between skin fibroblast cultures from unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations. Subsequently, 10 genes were chosen for validation by quantitative RT-PCR. Conclusion Differential expression of many of the validated genes was associated with MFS samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value < 3 × 10-6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by MFS status). An unexpected observation was the range of individual gene expression. In unaffected control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater. PMID:17850668

  6. Emdogain-regulated gene expression in palatal fibroblasts requires TGF-βRI kinase signaling.

    PubMed

    Stähli, Alexandra; Bosshardt, Dieter; Sculean, Anton; Gruber, Reinhard

    2014-01-01

    Genome-wide microarrays have suggested that Emdogain regulates TGF-β target genes in gingival and palatal fibroblasts. However, definitive support for this contention and the extent to which TGF-β signaling contributes to the effects of Emdogain has remained elusive. We therefore studied the role of the TGF-β receptor I (TGF-βRI) kinase to mediate the effect of Emdogain on palatal fibroblasts. Palatal fibroblasts were exposed to Emdogain with and without the inhibitor for TGF-βRI kinase, SB431542. Emdogain caused 39 coding genes to be differentially expressed in palatal fibroblasts by microarray analysis (p<0.05; >10-fold). Importantly, in the presence of the TGF-βRI kinase inhibitor SB431542, Emdogain failed to cause any significant changes in gene expression. Consistent with this mechanism, three independent TGF-βRI kinase inhibitors and a TGF-β neutralizing antibody abrogated the increased expression of IL-11, a selected Emdogain target gene. The MAPK inhibitors SB203580 and U0126 lowered the impact of Emdogain on IL-11 expression. The data support that TGF-βRI kinase activity is necessary to mediate the effects of Emdogain on gene expression in vitro.

  7. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse

    SciTech Connect

    Xu Fang; Ji Jian; Li Li; Chen Rong; Hu Weicheng . E-mail: huweicheng@sdu.edu.cn

    2007-01-19

    The role of the adventitia in vascular function and vascular lesion formation has been largely ignored. This study observed the activation of the adventitia and specifically the fibroblasts in the development of atherosclerosis in the apoE(-/-) mouse. The results showed a gradual increase in expression of collagen types I and III after 2, 4, and 8 weeks of hyperlipidic diet. The earliest expression of monocyte chemoattractant protein-1 (MCP-1) protein and mRNA was detected in the adventitial fibroblast before the formation of intimal lesions. Proliferation, too, was first found in the adventitial fibroblasts. We hypothesize that the adventitial fibroblast is activated in the early stage of atherosclerosis. Adventitial inflammation may be an early event in the development of atherosclerotic lesions.

  8. Regulation of fibronectin gene expression in cardiac fibroblasts by scleraxis.

    PubMed

    Bagchi, Rushita A; Lin, Justin; Wang, Ryan; Czubryt, Michael P

    2016-11-01

    The glycoprotein fibronectin is a key component of the extracellular matrix. By interacting with numerous matrix and cell surface proteins, fibronectin plays important roles in cell adhesion, migration and intracellular signaling. Up-regulation of fibronectin occurs in tissue fibrosis, and previous studies have identified the pro-fibrotic factor TGFβ as an inducer of fibronectin expression, although the mechanism responsible remains unknown. We have previously shown that a key downstream effector of TGFβ signaling in cardiac fibroblasts is the transcription factor scleraxis, which in turn regulates the expression of a wide variety of extracellular matrix genes. We noted that fibronectin expression tracked closely with scleraxis expression, but it was unclear whether scleraxis directly regulated the fibronectin gene. Here, we report that scleraxis acts via two E-box binding sites in the proximal human fibronectin promoter to govern fibronectin expression, with the second E-box being both sufficient and necessary for scleraxis-mediated fibronectin expression to occur. A combination of electrophoretic mobility shift and chromatin immunoprecipitation assays indicated that scleraxis interacted to a greater degree with the second E-box. Over-expression or knockdown of scleraxis resulted in increased or decreased fibronectin expression, respectively, and scleraxis null mice presented with dramatically decreased immunolabeling for fibronectin in cardiac tissue sections compared to wild-type controls. Furthermore, scleraxis was required for TGFβ-induced fibronectin expression: TGFβ lost its ability to induce fibronectin expression following scleraxis knockdown. Together, these results demonstrate a novel and required role for scleraxis in the regulation of cardiac fibroblast fibronectin gene expression basally or in response to TGFβ.

  9. Relaxin Modulates the Expression of MMPs and TIMPs in Fibroblasts of Patients with Carpal Tunnel Syndrome

    PubMed Central

    Kang, Young-Mi; Lee, Hwan-Mo; Moon, Seong-Hwan; Kang, Ho

    2017-01-01

    Purpose The aim of this study was to investigate the anti-fibrotic effect of relaxin in subsynovial fibroblasts activated by transforming growth factor beta (TGF-β). Materials and Methods To test the anti-fibrotic effect of an adenovirus-relaxin construct (Ad-RLN) on subsynovial fibroblasts in vitro, cells from subsynovial connective tissue of patients with carpal tunnel syndrome were activated with TGF-β1 and exposed to Ad-RLN (as a therapeutic gene) or adenovirus-lacZ construct (as a marker gene) for four hours. Subsynovial fibroblast cultures without adenoviral exposure served as controls. Results We observed induction of gene expressions of collagen I, III and IV, as well as the abatement of alpha-smooth muscle actin (a-SMA) synthesis, Smad2 phosphorylation, and fibronectin at the protein level, in comparison to controls. In addition, protein expressions of matrix metalloproteinase (MMP) I was significantly induced, whereas the protein expressions of tissue inhibitor of metalloproteinases (TIMP) I and IV were reduced due to relaxin expression. Conclusion RLN prevents excessive synthesis of extracellular matrix by reducing the expressions of its components, such as fibronectin, a-SMA, and phosphorylated Smad2, by increasing the expression of MMPs; and by decreasing the expression of TIMPs. PMID:28120574

  10. Monoamine oxidase activity in cultured human skin fibroblasts.

    PubMed

    Groshong, R; Gibson, D A; Baldessarini, R J

    1977-10-01

    Skin fibroblast cultures were prepared from 21 men, and found to contain types A and B activity of monoamine oxidase, with a possible slight predominance of type A, as evaluated by substrate preferences and differential inhibition by clorgyline and deprenyl. Three women had similar activities. There was a close correlation of activities with different substrates, but there was no quantitative correlation between fibroblast and blood platelet enzyme (type B) activities. The fibroblasts also contained catechol-O-methyltransferase activity exceeding, but poorly correlated with, that in erythrocytes. Fibroblasts may be advantageous in studies of monoamine oxidase in man by providing both types of enzyme as found, for example, in the central nervous system, and by providing a means of removing many in vivo chemical influences from the cells in culture. Nevertheless, great caution must be exercised in generalizing results of this "model" to other tissues, since activities of both enzymes correlated poorly with those in blood cells of the same individuals.

  11. Expression and phosphorylation of delta-CaM kinase II in cultured Alzheimer fibroblasts.

    PubMed

    Cavazzin, Chiara; Bonvicini, Cristian; Nocera, Annachiara; Racchi, Marco; Kasahara, Jiro; Tardito, Daniela; Gennarelli, Massimo; Govoni, Stefano; Racagni, Giorgio; Popoli, Maurizio

    2004-10-01

    Dysregulation of calcium homeostasis is among the major cellular alterations in Alzheimer's disease (AD). We studied Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II), one of the major effectors regulating neuronal responses to changes in calcium fluxes, in cultured skin fibroblasts from subjects with sporadic AD. We found, by using PCR and Western analysis, that human fibroblasts express the delta-isoform of this kinase, and that CaM kinase II is the major Ca(2+)/calmodulin-dependent kinase in these cells. Protein expression level of the kinase was not significantly different in AD fibroblasts. However, the total activity of the kinase (stimulated by Ca(2+)/calmodulin) was significantly reduced in AD cell lines, whereas Ca(2+)-independent activity was significantly enhanced. The percent autonomy of the kinase (%Ca(2+)-independent/Ca(2+)-dependent activity) in AD cell lines was 62.8%, three-fold the corresponding percentage in control fibroblasts. The abnormal calcium-independent activity was not due to enhanced basal autophosphorylation of Thr(287). The observed abnormalities, if present in brain tissue, may be implicated either in dysfunction of neuroplasticity and cognitive functions or in dysregulation of cell cycle.

  12. DNA methyltransferase 3a and mitogen-activated protein kinase signaling regulate the expression of fibroblast growth factor-inducible 14 (Fn14) during denervation-induced skeletal muscle atrophy.

    PubMed

    Tajrishi, Marjan M; Shin, Jonghyun; Hetman, Michal; Kumar, Ashok

    2014-07-18

    The TWEAK-fibroblast growth factor-inducible 14 (Fn14) system is a critical regulator of denervation-induced skeletal muscle atrophy. Although the expression of Fn14 is a rate-limiting step in muscle atrophy on denervation, mechanisms regulating gene expression of Fn14 remain unknown. Methylation of CpG sites within promoter region is an important epigenetic mechanism for gene silencing. Our study demonstrates that Fn14 promoter contains a CpG island close to transcription start site. Fn14 promoter also contains multiple consensus DNA sequence for transcription factors activator protein 1 (AP1) and specificity protein 1 (SP1). Denervation diminishes overall genomic DNA methylation and causes hypomethylation at specific CpG sites in Fn14 promoter leading to the increased gene expression of Fn14 in skeletal muscle. Abundance of DNA methyltransferase 3a (Dnmt3a) and its interaction with Fn14 promoter are repressed in denervated skeletal muscle of mice. Overexpression of Dnmt3a inhibits the gene expression of Fn14 and attenuates skeletal muscle atrophy upon denervation. Denervation also causes the activation of ERK1/2, JNK1/2, and ERK5 MAPKs and AP1 and SP1, which stimulate the expression of Fn14 in skeletal muscle. Collectively, our study provides novel evidence that Dnmt3a and MAPK signaling regulate the levels of Fn14 in skeletal muscle on denervation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. ALK5 inhibition blocks TGFβ-induced CCN1 expression in human foreskin fibroblasts.

    PubMed

    Thompson, Katherine; Murphy-Marshman, Hannah; Leask, Andrew

    2014-03-01

    The potent profibrotic cytokine TGFβ induces connective tissue growth factor (CCN2/CTGF) is induced in fibroblasts in a fashion sensitive to SB-431542, a specific pharmacological inhibitor of TGFβ type I receptor (ALK5). In several cell types, TGFβ induces CCN1 but suppresses CCN3, which opposes CCN1/CCN2 activities. However, whether SB-431542 alters TGFβ-induced CCN1 or CCN3 in human foreskin fibroblasts in unclear. Here we show that TGFβ induces CCN1 but suppresses CCN3 expression in human foreskin fibroblasts in a SB-431542-sensitive fashion. These results emphasize that CCN1/CCN2 and CCN3 are reciprocally regulated and support the notion that blocking ALK5 or addition of CCN3 may be useful anti-fibrotic approaches.

  14. Eosinophil activation of fibroblasts from chronic allergen-induced disease utilizes stem cell factor for phenotypic changes.

    PubMed

    Dolgachev, Vladislav; Berlin, Aaron A; Lukacs, Nicholas W

    2008-01-01

    In the present studies the role of stem cell factor (SCF) in mediating eosinophil and fibroblast activation during their interaction was investigated. SCF was significantly higher in fibroblasts grown from lungs of chronic allergen-challenged mice compared to fibroblasts grown from normal mice. When eosinophils were layered onto fibroblasts from allergic mice, a significant increase in SCF was detected compared to fibroblasts from nonallergic mice. The interaction of fibroblasts with eosinophils also increased the production of asthma-associated chemokines, CCL5 and CCL6, was dependent on cell-to-cell interaction, and was observed only with fibroblasts derived from lungs of chronic allergen-challenged mice and not from those derived from unchallenged normal mice. Chemokine production was significantly decreased when anti-SCF antibodies were added during eosinophil-fibroblast interaction. The interaction of fibroblasts from chronic allergen-challenged mice with eosinophils also increased alpha-smooth muscle cell actin and procollagen I expression as well as induced transforming growth factor-beta. The changes in myofibroblast activation were dependent on SCF-mediated pathways because anti-SCF antibody treatment reduced the expression of all three of these latter fibrosis-associated markers. Thus, our data suggest that SCF mediates an important activation pathway for fibroblasts during chronic allergic responses on interaction with recruited eosinophils and suggest a potential mechanism of airway remodeling during chronic disease.

  15. Chemokine expression of oral fibroblasts and epithelial cells in response to artificial saliva.

    PubMed

    Müller, Heinz-Dieter; Cvikl, Barbara; Lussi, Adrian; Gruber, Reinhard

    2016-06-01

    Artificial saliva is widely used to overcome reduced natural salivary flow. Natural saliva provokes the expression of chemokines in oral fibroblasts in vitro. However, if artificial saliva changes the expression of chemokines remains unknown. Here, we investigated the ability of Saliva Orthana®, Aldiamed®, Glandosane®, and Saliva Natura® to change the expression of chemokines in human oral fibroblasts and the human oral epithelial cell line HSC-2 by means of reverse transcription polymerase chain reaction and immunoassays. Mucins isolated from bovine submaxillary glands and recombinant human mucin 1 were included in the bioassay. Formazan formation and LIVE/DEAD® staining determined the impact of artificial saliva on cell viability. The involvement of signaling pathways was determined by pharmacologic inhibitors and Western blotting. In gingival fibroblasts, Saliva Orthana®-containing mucins provoked a significantly increased expression of CXC ligand 8 (CXCL8, or interleukin 8), CXCL1, and CXCL2. Immunoassays for CXCL8 and CXCL1 confirmed the translation at the protein level. The respective dilution of artificial saliva had no impact on formazan formation and LIVE/DEAD® staining. Mucins isolated from bovine submaxillary glands also increased the panel of chemokine expression in gingival fibroblasts. BAY 11-7082, a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibitor, but also TAK-242, an inhibitor of toll-like receptor 4 signaling, blocked chemokine expression of Saliva Orthana® and bovine mucins. In HSC-2 cells, Glandosane® significantly increased CXCL8 expression. Saliva Orthana® stimulated chemokine expression in gingival fibroblasts. Mammalian mucins, but also possible contaminations with endotoxins, might contribute to the respective changes in gene expression. Epithelial cells have a differential response to artificial saliva with Glandosane® changing CXCL8 expression. Artificial saliva can incite a cellular response

  16. miR-29a-3p attenuates hypoxic pulmonary hypertension by inhibiting pulmonary adventitial fibroblast activation.

    PubMed

    Luo, Ying; Dong, Hai-Ying; Zhang, Bo; Feng, Zhao; Liu, Yi; Gao, Yu-Qi; Dong, Ming-Qing; Li, Zhi-Chao

    2015-02-01

    Activation of pulmonary adventitial fibroblasts plays a key role in the pulmonary vascular remodeling in hypoxic pulmonary hypertension. Previous studies showed that miRNAs participated in the regulation of fibroblast activation. This study explored the role of miR-29 in the activation of pulmonary adventitial fibroblasts and the therapeutic potential in hypoxic pulmonary hypertension. We found that hypoxia-induced pulmonary adventitial fibroblasts activation was accompanied with a drastic decrease of miR-29a-3p expression. Knockdown of hypoxia-inducible factor-1 α or Smad3 reversed the hypoxia-induced decrease of miR-29-3p in cultured pulmonary adventitial fibroblasts. In vitro, miR-29a-3p mimic inhibited the hypoxia-induced proliferation, migration, and secretion of pulmonary adventitial fibroblasts, suppressed the hypoxia-induced expression of α-smooth muscle actin and extracellular matrix collagen in pulmonary adventitial fibroblasts; however, miR-29a-3p inhibitor mimicked the effect of hypoxia on the activation of pulmonary adventitial fibroblasts. Further studies revealed that preventative or therapeutic administration of miR-29a-3p significantly decreased pulmonary artery pressure and right ventricle hypertrophy index and ameliorated pulmonary vascular remodeling in hypoxic pulmonary hypertension rats. These findings suggest that miR-29a-3p regulates the activation and phenotype of pulmonary adventitial fibroblasts in hypoxia and has preventative and therapeutic potential in hypoxic pulmonary hypertension.

  17. Differences of cell surface marker expression between bone marrow- and kidney-derived murine mesenchymal stromal cells and fibroblasts.

    PubMed

    Cakiroglu, F; Osbahr, J W; Kramer, J; Rohwedel, J

    2016-10-31

    Mesenchymal stromal cells (MSC) are undifferentiated, multipotent adult cells with regenerative properties. They are particularly relevant for therapeutic approaches due to the simplicity of their isolation and cultivation. Since MSC show an expression pattern of cell surface marker, which is almost identical to fibroblasts, many attempts have been made to address the similarities and differences between MSC and fibroblasts. In this study we aimed to isolate murine MSC from bone marrow (BM) and kidney to characterize them in comparison to fibroblasts. Cells were isolated from murine kidney, BM and abdominal skin by plastic adherence and subsequently characterized by analysing their capability to build colony-forming unit-fibroblasts (CFU-F), their morphology, their proliferation, expression of telomerase activity and cell surface antigens as well as their differentiation capacity. Plastic adherent cells from the 3 mouse tissues showed similar morphology, proliferation profiles and CFU-F building capacities. However, while MSC from BM and kidney differentiated into the adipogenic, chondrogenic and osteogenic direction, fibroblasts were not able to do so efficiently. In addition, a tendency for lower expression of telomerase was found in the fibroblast population. Proliferating cells from kidney and BM expressed the MSC-specific cell surface markers CD105 and Sca-1 on a significantly higher and CD117 on a significantly lower level compared to fibroblasts and were thereby distinguishable from fibroblasts. Furthermore, we found that certain CD markers were specifically expressed on a higher level, either in BM-derived cells or fibroblasts. This study demonstrates that murine MSC isolated from different organs express certain specific markers, which enable their discrimination.

  18. Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation

    PubMed Central

    Procopio, Maria-Giuseppina; Laszlo, Csaba; Labban, Dania Al; Kim, Dong Eun; Bordignon, Pino; Jo, Seunghee; Goruppi, Sandro; Menietti, Elena; Ostano, Paola; Ala, Ugo; Provero, Paolo; Hoetzenecker, Wolfram; Neel, Victor; Kilarski, Witek; Swartz, Melody A.; Brisken, Cathrin; Lefort, Karine; Dotto, G. Paolo

    2015-01-01

    Stromal fibroblast senescence has been linked to aging-associated cancer risk. However, density and proliferation of cancer-associated fibroblasts (CAF) are frequently increased. Loss or down-modulation of the Notch effector CSL/RBP-Jκ in dermal fibroblasts is sufficient for CAF activation and ensuing keratinocyte-derived tumors. We report that CSL silencing induces senescence of primary fibroblasts from dermis, oral mucosa, breast and lung. CSL functions in these cells as direct repressor of multiple senescence- and CAF-effector genes. It also physically interacts with p53, repressing its activity. CSL is down-modulated in stromal fibroblasts of premalignant skin actinic keratosis lesions and squamous cell carcinomas (SCC), while p53 expression and function is down-modulated only in the latter, with paracrine FGF signaling as likely culprit. Concomitant loss of CSL and p53 overcomes fibroblast senescence, enhances expression of CAF effectors and promotes stromal and cancer cell expansion. The findings support a CAF activation/stromal co-evolution model under convergent CSL/p53 control. PMID:26302407

  19. Antifibrotic effect by activation of peroxisome proliferator-activated receptor-gamma in corneal fibroblasts.

    PubMed

    Pan, Hongwei; Chen, Jiansu; Xu, Jintang; Chen, Miaojiao; Ma, Rong

    2009-11-10

    The transformation of quiescent keratocytes to active phenotypes and the ensuing fibrotic response play important roles in corneal scar formation. This study aims to observe the antifibrotic effect of peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist on corneal fibroblasts cultured in vitro, and to explore the potential application of peroxisome proliferator-activated receptor agonist to the prevention of corneal opacity following wound repair. Rabbit corneal keratocytes were cultured in a medium containing 10% serum to induce their transformation to fibroblasts and myofibroblasts, which are similar to those that repair corneas. After incubation with the PPARgamma agonist pioglitazone at different concentrations, the effect of pioglitazone on the migration, contractility, and viability of corneal fibroblasts was examined. The secretion of matrix metalloproteinase-2 and matrix metalloproteinase-9 was determined by gelatin zymography, and the synthesis of collagen I and fibronectin was investigated by western blotting. Treatment with pioglitazone at concentrations ranging from 1 to 10 mum significantly decreased corneal fibroblast migration, as determined by scrape-wound assay, inhibited corneal fibroblast-induced collagen lattice contraction, and reduced MMP-2 and MMP-9 secretion into the supernatant of cell cultures in a dose-dependent manner. The expression of fibronectin was significantly decreased, while the expression of collagen I was only decreased when treated with 10 mum pioglitazone. Cell viability was not evidently changed compared to the control. This in vitro study demonstrated the anti-fibrotic effect of pioglitazone, suggesting that activation of PPARgamma may be a new approach for the treatment of corneal opacity and scar formation in the corneal wound healing process.

  20. Cellular retinol-binding protein-1 is transiently expressed in granulation tissue fibroblasts and differentially expressed in fibroblasts cultured from different organs.

    PubMed Central

    Xu, G.; Redard, M.; Gabbiani, G.; Neuville, P.

    1997-01-01

    We have reported that cellular retinol-binding protein-1 (CRBP-1) is transiently expressed by arterial smooth muscle cells during experimental intimal repair (P. Neuville, A. Geinoz, G. Benzonana, M. Redard, F. Gabbiani, P. Ropraz, G. Gabbiani: Am J Pathol 1997, 150:509-521). We have examined here the expression of CRBP-1 during wound healing after a full-thickness rat skin wound. CRBP-1 was transiently expressed by a significant proportion of fibroblastic cells including myofibroblasts. Expression started 4 days after wounding, reached a maximum at 12 days, and persisted up to 30 days when a scar was formed. After wound closure, most CRBP-1-containing fibroblastic cells underwent apoptosis. We have further investigated CRBP-1 expression in rat fibroblasts cultured from different organs. CRBP-1 was abundant in lung and heart fibroblasts and was detected in decreasing amounts in muscle, tendon, subcutaneous tissue, and granulation tissue fibroblasts. Dermis fibroblasts contained no detectable levels of CRBP-1. All-trans retinoic acid and transforming growth factor-beta1 inhibited cell proliferation and increased CRBP-1 expression in fibroblastic populations except dermis fibroblasts. We demonstrate that during granulation tissue formation a subpopulation of fibroblastic cells express CRBP-1 de novo. We also demonstrate that CRBP-1 expression by fibroblasts is regulated in vitro by retinoic acid and transforming growth factor-beta1. Our results suggest that CRBP-1 and possibly retinoic acid play a role in the evolution of granulation tissue. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 PMID:9403724

  1. Enhanced expression of heat shock protein 70 (hsp70) and heat shock factor 1 (HSF1) activation in rheumatoid arthritis synovial tissue. Differential regulation of hsp70 expression and hsf1 activation in synovial fibroblasts by proinflammatory cytokines, shear stress, and antiinflammatory drugs.

    PubMed Central

    Schett, G; Redlich, K; Xu, Q; Bizan, P; Gröger, M; Tohidast-Akrad, M; Kiener, H; Smolen, J; Steiner, G

    1998-01-01

    Heat shock proteins (hsp) have been repeatedly implicated to participate in the pathogenesis of rheumatoid arthritis (RA). Herein, we investigated the regulation of synovial hsp70 expression by analyzing the DNA-binding activity of heat shock transcription factor 1 (HSF1) as well as inducible hsp70 expression. Experiments were performed both on synovial tissue and on synovial fibroblast-like cells (SFC). Gel mobility shift analysis revealed increased HSF1 activation, and Western blotting and immunohistochemistry revealed increased hsp70 expression in RA synovial tissue, but not in synovial tissue derived from patients with osteoarthritis. Proinflammatory cytokines (TNF-alpha, IL-1alpha, IL-6), but not IFN-gamma or TGF-beta, induced activation of HSF1-DNA binding and hsp70 expression in cultivated SFC. Activation of HSF1 in SFC was accompanied by hyperphosphorylation and nuclear translocation of HSF1. Furthermore, shear stress also induced a complete heat shock response in cultivated synovial cells. In contrast, nonsteroidal antiinflammatory drugs triggered only an incomplete heat shock response, with HSF1 activation but not hsp70 induction, whereas steroids and immunosuppressive drugs did not affect the heat shock response at all. In summary, these data suggest that induction of hsp70 expression in rheumatoid synovial tissue is based on transcriptional activation of HSF1 due to the presence of proinflammatory cytokines (and possibly also shear stress). PMID:9664071

  2. The transcription factor ST18 regulates proapoptotic and proinflammatory gene expression in fibroblasts

    PubMed Central

    Yang, Julia; Siqueira, Michelle F.; Behl, Yugal; Alikhani, Mani; Graves, Dana T.

    2008-01-01

    Suppression of tumorigenicity 18 (ST18) and the homologues neural zinc-finger protein-3 (NZF3) and myelin transcription factor 3 (Myt3) are transcription factors with unknown function. Previous studies have established that they repress transcription of a synthetic reporter construct consisting of the consensus sequence AAAGTTT linked to the thymidine kinase promoter. In addition, ST18 exhibits significantly reduced expression in breast cancer and breast cancer cell lines. We report here for the first time evidence that ST18 mediates tumor necrosis factor (TNF) -α induced mRNA levels of proapoptotic and proinflammatory genes in fibroblasts by mRNA profiling and silencing with ST18 small interfering RNA (siRNA). Gene set enrichment analysis and mRNA profiling support this conclusion by identifying several apoptotic and inflammatory pathways that are down-regulated by ST18 siRNA. In addition, ST18 siRNA reduces TNF-induced fibroblast apoptosis and caspase-3/7 activity. Fibroblasts that overexpress ST18 by transient transfection exhibit significantly increased apoptosis and increased expression of TNF-α, interleukin (IL) -1α, and IL-6. In addition, cotransfection of ST18 and a TNF-α or IL-1α reporter construct demonstrates that ST18 overexpression in fibroblasts significantly enhanced promoter activity of these genes. Taken together, these studies demonstrate that the transcription factor ST18/NZF3 regulates the mRNA levels of proapoptotic and proinflammatory genes in revealing a previously unrecognized function.—Yang, J., Siqueira, M. F., Behl, Y., Alikhani, M., and Graves, D. T. The transcription factor ST18 regulates proapoptotic and proinflammatory gene expression in fibroblasts. PMID:18676404

  3. Tubule-Derived Wnts Are Required for Fibroblast Activation and Kidney Fibrosis.

    PubMed

    Zhou, Dong; Fu, Haiyan; Zhang, Lu; Zhang, Ke; Min, Yali; Xiao, Liangxiang; Lin, Lin; Bastacky, Sheldon I; Liu, Youhua

    2017-08-01

    Cell-cell communication via Wnt ligands is necessary in regulating embryonic development and has been implicated in CKD. Because Wnt ligands are ubiquitously expressed, the exact cellular source of the Wnts involved in CKD remains undefined. To address this issue, we generated two conditional knockout mouse lines in which Wntless (Wls), a dedicated cargo receptor that is obligatory for Wnt secretion, was selectively ablated in tubular epithelial cells or interstitial fibroblasts. Blockade of Wnt secretion by genetic deletion of Wls in renal tubules markedly inhibited myofibroblast activation and reduced renal fibrosis after unilateral ureteral obstruction. This effect associated with decreased activation of β-catenin and downstream gene expression and preserved tubular epithelial integrity. In contrast, fibroblast-specific deletion of Wls exhibited little effect on the severity of renal fibrosis after obstructive or ischemia-reperfusion injury. In vitro, incubation of normal rat kidney fibroblasts with tubule-derived Wnts promoted fibroblast proliferation and activation. Furthermore, compared with kidney specimens from patients without CKD, biopsy specimens from patients with CKD also displayed increased expression of multiple Wnt proteins, predominantly in renal tubular epithelium. These results illustrate that tubule-derived Wnts have an essential role in promoting fibroblast activation and kidney fibrosis via epithelial-mesenchymal communication. Copyright © 2017 by the American Society of Nephrology.

  4. PDGF-D expression is down-regulated by TGFβ in fibroblasts.

    PubMed

    Charni Chaabane, Saima; Coomans de Brachène, Alexandra; Essaghir, Ahmed; Velghe, Amélie; Lo Re, Sandra; Stockis, Julie; Lucas, Sophie; Khachigian, Levon M; Huaux, François; Demoulin, Jean-Baptiste

    2014-01-01

    Transforming growth factor-β (TGFβ) is a key mediator of fibrogenesis. TGFβ is overexpressed and activated in fibrotic diseases, regulates fibroblast differentiation into myofibroblasts and induces extracellular matrix deposition. Platelet-derived growth factor (PDGF) is also a regulator of fibrogenesis. Some studies showed a link between TGFβ and PDGF in certain fibrotic diseases. TGFβ induces PDGF receptor alpha expression in scleroderma fibroblasts. PDGF-C and -D are the most recently discovered ligands and also play a role in fibrosis. In this study, we report the first link between TGFβ and PDGF-D and -C ligands. In normal fibroblasts, TGFβ down-regulated PDGF-D expression and up-regulated PDGF-C expression at the mRNA and protein levels. This phenomenon is not limited to TGFβ since other growth factors implicated in fibrosis, such as FGF, EGF and PDGF-B, also regulated PDGF-D and PDGF-C expression. Among different kinase inhibitors, only TGFβ receptor inhibitors and the IκB kinase (IKK) inhibitor BMS-345541 blocked the effect of TGFβ. However, activation of the classical NF-κB pathway was not involved. Interestingly, in a model of lung fibrosis induced by either bleomycin or silica, PDGF-D was down-regulated, which correlates with the production of TGFβ and other fibrotic growth factors. In conclusion, the down-regulation of PDGF-D by TGFβ and other growth factors may serve as a negative feedback in the network of cytokines that control fibrosis.

  5. Electrical Stimulation Promotes Wound Healing by Enhancing Dermal Fibroblast Activity and Promoting Myofibroblast Transdifferentiation

    PubMed Central

    Rouabhia, Mahmoud; Park, Hyunjin; Meng, Shiyun; Derbali, Habib; Zhang, Ze

    2013-01-01

    Electrical stimulation (ES) has long been used as an alternative clinical treatment and an effective approach to modulate cellular behaviours. In this work we investigated the effects of ES on human skin fibroblast activity, myofibroblast transdifferentiation and the consequence on wound healing. Normal human fibroblasts were seeded on heparin-bioactivated PPy/PLLA conductive membranes, cultured for 24 h, and then exposed to ES of 50 or 200 mV/mm for 2, 4, or 6 h. Following ES, the cells were either subjected to various analyses or re-seeded to investigate their healing capacity. Our findings show that ES had no cytotoxic effect on the fibroblasts, as demonstrated by the similar LDH activity levels in the ES-exposed and non-exposed cultures, and by the comparable cell viability under both conditions. Furthermore, the number of viable fibroblasts was higher following exposure to 6 h of ES than in the non-exposed culture. This enhanced cell growth was likely due to the ES up-regulated secretion of FGF-1 and FGF-2. In an in vitro scratch-wound assay where cell monolayer was used as a healing model, the electrically stimulated dermal fibroblasts migrated faster following exposure to ES and recorded a high contractile behaviour toward the collagen gel matrix. This enhanced contraction was supported by the high level of α-smooth muscle actin expressed by the fibroblasts following exposure to ES, indicating the characteristics of myofibroblasts. Remarkably, the modulation of fibroblast growth continued long after ES. In conclusion, this work demonstrates for the first time that exposure to ES promoted skin fibroblast growth and migration, increased growth factor secretion, and promoted fibroblast to myofibroblast transdifferentiation, thus promoting wound healing. PMID:23990967

  6. Discoidin domain receptor 2 is associated with the increased expression of matrix metalloproteinase-13 in synovial fibroblasts of rheumatoid arthritis.

    PubMed

    Su, Jin; Yu, Jiangtian; Ren, Tingting; Zhang, Wei; Zhang, Yuanqiang; Liu, Xinping; Sun, Tiezheng; Lu, Houshan; Miyazawa, Keiji; Yao, Libo

    2009-10-01

    Regulation of matrix metalloproteinase-13 (MMP-13) by collagen matrix in the synovial fibroblasts of rheumatoid arthritis (RA) is critical event in the progressive joint destruction. Our previous study indicated that a collagen receptor, discoidin receptor 2 (DDR2), was highly expressed in the synovial fibroblasts of RA. However, the functional role of DDR2 in the regulation of MMP-13 production in synovial fibroblasts has not been elucidated. In this study, we initially demonstrated that the DDR2 and MMP-13 proteins are both highly expressed in the synovial lining layer of RA. MMP-13 mRNA and protein in synovial fibroblasts of RA were preferentially induced by collagen type II compared with MMP-1. Furthermore, stable overexpression of wild type DDR2 in murine synoviocytes dramatically augments the production of MMP-13. The activation of DDR2 also mediates the up-regulation of MMP-13 promoter activity in 293T cells. Inhibitor specific for extracellular signal-regulated kinase mitogen-activated protein kinase (ERK MAPK) cascade was shown to decrease MMP-13 level induced by collagen II in RA synovial fibroblasts and DDR2-induced MMP-13 promoter activity. Runx2 and activator protein-1 (AP-1) binding sites in MMP-13 promoter region are required for DDR2-induced transcription. The data in this study suggest that DDR2-mediated MMP-13 induction by collagen matrix in synovial fibroblasts of RA contributed to articular cartilage destruction.

  7. Alpinia galanga extracts downregulate interleukin-1β-induced matrix metalloproteinases expression in human synovial fibroblasts.

    PubMed

    Pothacharoen, Peraphan; Choocheep, Kanyamas; Phitak, Thanyaluck; Pompimon, Wilart; Kongtawelert, Prachya

    2011-03-01

    Alpinia galanga has been used as alternative medicine for anti-rheumatic activities. However, the precise action of the extract on arthritic diseases is not yet fully understood. In this study, we investigated the effects of A. galanga extracts on the expression of genes involved in catabolic activities in an interleukin-1β (IL-1β)-induced human synovial fibroblast as an inflammatory model. Confluent primary human synovial fibroblasts were treated for 24 h with A. galanga hexane extracts in the presence of recombinant human IL-1β. MMPs in the culture medium were monitored by gelatin zymography. Total RNA was isolated from the cell lysate and analyzed via semi-quantitative RT-PCR. After treatment with A. galanga extracts, MMP-2 activity in the culture medium was significantly reduced. In addition, MMP-1, MMP-3, MMP-13, and Cox-2 expression were downregulated. These data suggest that the decrease of gene expression and production of MMPs in synovial fibroblasts against inflammatory stimuli could be due to the effects of the A. galanga extracts. Therefore, A. galanga extracts might be a promising therapeutic agent for arthritis.

  8. Smad gene expression in pulmonary fibroblasts: indications for defective ECM repair in COPD

    PubMed Central

    Zandvoort, Andre; Postma, Dirkje S; Jonker, Marnix R; Noordhoek, Jacobien A; Vos, Johannes TWM; Timens, Wim

    2008-01-01

    Background Chronic Obstructive Pulmonary Disease (COPD) is characterized by defective extracellular matrix (ECM) turnover as a result of prolonged cigarette smoking. Fibroblasts have a central role in ECM turnover. The TGFβ induced Smad pathway provides intracellular signals to regulate ECM production. We address the following hypothesis: fibroblasts have abnormal expression of genes in the Smad pathway in COPD, resulting in abnormal proteoglycan modulation, the ground substance of ECM. Methods We compared gene expression of the Smad pathway at different time points after stimulation with TGFβ, TNF or cigarette smoke extract (CSE) in pulmonary fibroblasts of GOLD stage II and IV COPD patients, and controls. Results Without stimulation, all genes were similarly expressed in control and COPD fibroblasts. TGFβ stimulation: downregulation of Smad3 and upregulation of Smad7 occurred in COPD and control fibroblasts, indicating a negative feedback loop upon TGFβ stimulation. CSE hardly influenced gene expression of the TGFβ-Smad pathway in control fibroblasts, whereas it reduced Smad3 and enhanced Smad7 gene expression in COPD fibroblasts. Furthermore, decorin gene expression decreased by all stimulations in COPD but not in control fibroblasts. Conclusion Fibroblasts of COPD patients and controls differ in their regulation of the Smad pathway, the contrast being most pronounced under CSE exposure. This aberrant responsiveness of COPD fibroblasts to CSE might result in an impaired tissue repair capability and is likely important with regard to the question why only a subset of smokers demonstrates an excess ECM destruction under influence of cigarette smoking. PMID:19087346

  9. JAK3/STAT6 Stimulates Bone Marrow-Derived Fibroblast Activation in Renal Fibrosis.

    PubMed

    Yan, Jingyin; Zhang, Zhengmao; Yang, Jun; Mitch, William E; Wang, Yanlin

    2015-12-01

    Renal fibrosis is a final common manifestation of CKD resulting in progressive loss of kidney function. Bone marrow-derived fibroblast precursors contribute significantly to the pathogenesis of renal fibrosis. However, the signaling mechanisms underlying the activation of bone marrow-derived fibroblast precursors in the kidney are not fully understood. In this study, we investigated the role of the Janus kinase 3 (JAK3)/signal transducer and activator of transcription (STAT6) signaling pathway in the activation of bone marrow-derived fibroblasts. In cultured mouse monocytes, IL-4 or IL-13 activated STAT6 and induced expression of α-smooth muscle actin and extracellular matrix proteins (fibronectin and collagen I), which was abolished by a JAK3 inhibitor (CP690,550) in a dose-dependent manner or blocked in the absence of STAT6. In vivo, STAT6 was activated in interstitial cells of the obstructed kidney, an effect that was abolished by CP690,550. Mice treated with CP690,550 accumulated fewer bone marrow-derived fibroblasts in the obstructed kidneys compared with vehicle-treated mice. Treatment with CP690,550 also significantly reduced myofibroblast transformation, matrix protein expression, fibrosis development, and apoptosis in obstructed kidneys. Furthermore, STAT6-deficient mice accumulated fewer bone marrow-derived fibroblasts in the obstructed kidneys, produced less extracellular matrix protein, and developed much less fibrosis. Finally, wild-type mice engrafted with STAT6(-/-) bone marrow cells displayed fewer bone marrow-derived fibroblasts in the obstructed kidneys and showed less severe renal fibrosis compared with wild-type mice engrafted with STAT6(+/+) bone marrow cells. Our results demonstrate that JAK3/STAT6 has an important role in bone marrow-derived fibroblast activation, extracellular matrix production, and interstitial fibrosis development.

  10. Scleroderma keratinocytes promote fibroblast activation independent of transforming growth factor beta.

    PubMed

    McCoy, Sara S; Reed, Tamra J; Berthier, Celine C; Tsou, Pei-Suen; Liu, Jianhua; Gudjonsson, Johann E; Khanna, Dinesh; Kahlenberg, J Michelle

    2017-08-10

    SSc is a devastating disease that results in fibrosis of the skin and other organs. Fibroblasts are a key driver of the fibrotic process through deposition of extracellular matrix. The mechanisms by which fibroblasts are induced to become pro-fibrotic remain unclear. Thus, we examined the ability of SSc keratinocytes to promote fibroblast activation and the source of this effect. Keratinocytes were isolated from skin biopsies of 9 lcSSc, 10 dcSSc and 13 control patients. Conditioned media was saved from the cultures. Normal fresh primary fibroblasts were exposed to healthy control and SSc keratinocyte conditioned media in the presence or absence of neutralizing antibodies for TGF-β. Gene expression was assessed by microarrays and real-time PCR. Immunocytochemistry was performed for α-smooth muscle actin (α-SMA), collagen type 1 (COL1A1) and CCL5 expression. SSc keratinocyte conditioned media promoted fibroblast activation, characterized by increased α-SMA and COL1A1 mRNA and protein expression. This effect was independent of TGF-β. Microarray analysis identified upregulation of nuclear factor κB (NF-κB) and downregulation of peroxisome proliferator-activated receptor γ (PPAR-γ) pathways in both SSc subtypes. Scleroderma keratinocytes exhibited increased expression of NF-κB-regulated cytokines and chemokines and lesional skin staining confirmed upregulation of CCL5 in basal keratinocytes. Scleroderma keratinocytes promote the activation of fibroblasts in a TGF-β-independent manner and demonstrate an imbalance in NF-κB1 and PPAR-γ expression leading to increased cytokine and CCL5 production. Further study of keratinocyte mediators of fibrosis, including CCL5, may provide novel targets for skin fibrosis therapy.

  11. Dynamic regulation of platelet-derived growth factor receptor α expression in alveolar fibroblasts during realveolarization.

    PubMed

    Chen, Leiling; Acciani, Thomas; Le Cras, Tim; Lutzko, Carolyn; Perl, Anne-Karina T

    2012-10-01

    Although the importance of platelet-derived growth factor receptor (PDGFR)-α signaling during normal alveogenesis is known, it is unclear whether this signaling pathway can regulate realveolarization in the adult lung. During alveolar development, PDGFR-α-expressing cells induce α smooth muscle actin (α-SMA) and differentiate to interstitial myofibroblasts. Fibroblast growth factor (FGF) signaling regulates myofibroblast differentiation during alveolarization, whereas peroxisome proliferator-activated receptor (PPAR)-γ activation antagonizes myofibroblast differentiation in lung fibrosis. Using left lung pneumonectomy, the roles of FGF and PPAR-γ signaling in differentiation of myofibroblasts from PDGFR-α-positive precursors during compensatory lung growth were assessed. FGF receptor (FGFR) signaling was inhibited by conditionally activating a soluble dominant-negative FGFR2 transgene. PPAR-γ signaling was activated by administration of rosiglitazone. Changes in α-SMA and PDGFR-α protein expression were assessed in PDGFR-α-green fluorescent protein (GFP) reporter mice using immunohistochemistry, flow cytometry, and real-time PCR. Immunohistochemistry and flow cytometry demonstrated that the cell ratio and expression levels of PDGFR-α-GFP changed dynamically during alveolar regeneration and that α-SMA expression was induced in a subset of PDGFR-α-GFP cells. Expression of a dominant-negative FGFR2 and administration of rosiglitazone inhibited induction of α-SMA in PDGFR-α-positive fibroblasts and formation of new septae. Changes in gene expression of epithelial and mesenchymal signaling molecules were assessed after left lobe pneumonectomy, and results demonstrated that inhibition of FGFR2 signaling and increase in PPAR-γ signaling altered the expression of Shh, FGF, Wnt, and Bmp4, genes that are also important for epithelial-mesenchymal crosstalk during early lung development. Our data demonstrate for the first time that a comparable epithelial

  12. Global expression analysis of the fibroblast transcriptional response to TGFbeta.

    PubMed

    Gardner, H; Strehlow, D; Bradley, L; Widom, R; Farina, A; de Fougerolles, A; Peyman, J; Koteliansky, V; Korn, J H

    2004-01-01

    Transforming Growth Factor-beta (TGFbeta) is the predominant cytokine in all forms of fibrotic reactions. As well as being secreted by immune modulators of fibrosis such as macrophages, it is involved in an autocrine feedback loop of fibroblast stimulation whose regulation is still poorly understood. We wished to gain some insight into the mechanisms of the fibroblast response to TGFbeta. We undertook an exhaustive transcript profiling experiment using a widely validated restriction enzyme based method for identifying differentially expressed genes (GeneCalling). Transcriptional responses throughout a 24-hour time course were examined at multiple time points and classified. By 24 hours of TGF treatment over 1000 bands, representing a large number of transcripts, were down- or upregulated greater than 2-fold. All of the known genes responsive to TGFbeta, such as collagen and connective tissue growth factor, were upregulated. This encyclopedic method revealed many unknown transcriptional responses to TGFbeta including the upregulation of a variety of less expected cytoskeletal and matrix components, as well as interactions between the TGFbeta and tumor necrosis factor (TNF) pathways and alterations in cell death-related pathways. These may in part explain the idiosyncratic responses of mesenchymal cells to TGFbeta.

  13. MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart.

    PubMed

    Jazbutyte, Virginija; Fiedler, Jan; Kneitz, Susanne; Galuppo, Paolo; Just, Annette; Holzmann, Angelika; Bauersachs, Johann; Thum, Thomas

    2013-06-01

    MicroRNAs (miRs) are small non- coding RNA molecules controlling a plethora of biological processes such as development, cellular survival and senescence. We here determined miRs differentially regulated during cardiac postnatal development and aging. Cardiac function, morphology and miR expression profiles were determined in neonatal, 4 weeks, 6 months and 19 months old normotensive male healthy C57/Bl6N mice. MiR-22 was most prominently upregulated during cardiac aging. Cardiac expression of its bioinformatically predicted target mimecan (osteoglycin, OGN) was gradually decreased with advanced age. Luciferase reporter assays validated mimecan as a bona fide miR-22 target. Both, miR-22 and its target mimecan were co- expressed in cardiac fibroblasts and smooth muscle cells. Functionally, miR-22 overexpression induced cellular senescence and promoted migratory activity of cardiac fibroblasts. Small interference RNA-mediated silencing of mimecan in cardiac fibroblasts mimicked the miR-22-mediated effects. Rescue experiments revealed that the effects of miR-22 on cardiac fibroblasts were only partially mediated by mimecan. In conclusion, miR-22 upregulation in the aging heart contributed at least partly to accelerated cardiac fibroblast senescence and increased migratory activity. Our results suggest an involvement of miR-22 in age-associated cardiac changes, such as cardiac fibrosis.

  14. Irradiated fibroblasts promote epithelial–mesenchymal transition and HDGF expression of esophageal squamous cell carcinoma

    SciTech Connect

    Bao, Ci-Hang; Wang, Xin-Tong; Ma, Wei; Wang, Na-Na; Nesa, Effat un; Wang, Jian-Bo; Wang, Cong; Jia, Yi-Bin; Wang, Kai; Tian, Hui; Cheng, Yu-Feng

    2015-03-06

    Recent evidence suggested that nonirradiated cancer-associated fibroblasts (CAFs) promoted aggressive phenotypes of cancer cells through epithelial–mesenchymal transition (EMT). Hepatoma-derived growth factor (HDGF) is a radiosensitive gene of esophageal squamous cell carcinoma (ESCC). This study aimed to investigate the effect of irradiated fibroblasts on EMT and HDGF expression of ESCC. Our study demonstrated that coculture with nonirradiated fibroblasts significantly increased the invasive ability of ESCC cells and the increased invasiveness was further accelerated when they were cocultured with irradiated fibroblasts. Scattering of ESCC cells was also accelerated by the supernatant from irradiated fibroblasts. Exposure of ESCC cells to supernatant from irradiated fibroblasts resulted in decreased E-cadherin, increased vimentin in vitro and β-catenin was demonstrated to localize to the nucleus in tumor cells with irradiated fibroblasts in vivo models. The expression of HDGF and β-catenin were increased in both fibroblasts and ESCC cells of irradiated group in vitro and in vivo models. Interestingly, the tumor cells adjoining the stromal fibroblasts displayed strong nuclear HDGF immunoreactivity, which suggested the occurrence of a paracrine effect of fibroblasts on HDGF expression. These data suggested that irradiated fibroblasts promoted invasion, growth, EMT and HDGF expression of ESCC. - Highlights: • Irradiated CAFs accelerated invasiveness and scattering of ESCC cell lines. • Irradiated CAFs promoted EMT of ESCC cells. • Irradiated fibroblasts induced nuclear β-catenin relocalization in ESCC cells. • Irradiated fibroblasts increased HDGF expression in vitro and in vivo.

  15. Activity of PLCε contributes to chemotaxis of fibroblasts towards PDGF

    PubMed Central

    Martins, Marta; Warren, Sean; Kimberley, Christopher; Margineanu, Anca; Peschard, Pascal; McCarthy, Afshan; Yeo, Maggie; Marshall, Christopher J.; Dunsby, Christopher; French, Paul M. W.; Katan, Matilda

    2012-01-01

    Summary Cell chemotaxis, such as migration of fibroblasts towards growth factors during development and wound healing, requires precise spatial coordination of signalling events. Phosphoinositides and signalling enzymes involved in their generation and hydrolysis have been implicated in regulation of chemotaxis; however, the role and importance of specific components remain poorly understood. Here, we demonstrate that phospholipase C epsilon (PLCε) contributes to fibroblast chemotaxis towards platelet-derived growth factor (PDGF-BB). Using PLCe1 null fibroblasts we show that cells deficient in PLCε have greatly reduced directionality towards PDGF-BB without detrimental effect on their basal ability to migrate. Furthermore, we show that in intact fibroblasts, signalling events, such as activation of Rac, are spatially compromised by the absence of PLCε that affects the ability of cells to enlarge their protrusions in the direction of the chemoattractant. By further application of live cell imaging and the use of FRET-based biosensors, we show that generation of Ins(1,4,5)P3 and recruitment of PLCε are most pronounced in protrusions responding to the PDGF-BB gradient. Furthermore, the phospholipase C activity of PLCε is critical for its role in chemotaxis, consistent with the importance of Ins(1,4,5)P3 generation and sustained calcium responses in this process. As PLCε has extensive signalling connectivity, using transgenic fibroblasts we ruled out its activation by direct binding to Ras or Rap GTPases, and suggest instead new unexpected links for PLCε in the context of chemotaxis. PMID:22992460

  16. Activation of AMPK by metformin inhibits TGF-β-induced collagen production in mouse renal fibroblasts.

    PubMed

    Lu, Jiamei; Shi, Jianhua; Li, Manxiang; Gui, Baosong; Fu, Rongguo; Yao, Ganglian; Duan, Zhaoyang; Lv, Zhian; Yang, Yanyan; Chen, Zhao; Jia, Lining; Tian, Lifang

    2015-04-15

    To clarify whether activation of adenosine monophosphate-activated protein kinase (AMPK) by metformin inhibits transforming growth factor beta (TGF-β)-induced collagen production in primary cultured mouse renal fibroblasts and further to address the molecular mechanisms. Primary cultured mouse renal fibroblasts were stimulated with TGF-β1 and the sequence specific siRNA of Smad3 or connective tissue growth factor (CTGF) was applied to investigate the involvement of these molecular mediators in TGF-β1-induced collagen type I production. Cells were pre-incubated with AMPK agonist metformin or co-incubated with AMPK agonist metformin and AMPK inhibitor Compound C before TGF-β1 stimulation to clarify whether activation of AMPK inhibition of TGF-β1-induced renal fibroblast collagen type I expression. Our results demonstrate that TGF-β1 time- and dose-dependently induced renal fibroblast collagen type I production; TGF-β1 also stimulated Smad3-dependent CTGF expression and caused collagen type I generation; this effect was blocked by knockdown of Smad3 or CTGF. Activation of AMPK by metformin reduced TGF-β1-induced collagen type I production by suppression of Smad3-driven CTGF expression. This study suggests that activation of AMPK might be a novel strategy for the treatment of chronic kidney disease (CKD) partially by inhibition of renal interstitial fibrosis (RIF). Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Connexin43 expression levels influence intercellular coupling and cell proliferation of native murine cardiac fibroblasts.

    PubMed

    Zhang, Yan; Kanter, Evelyn M; Laing, James G; Aprhys, Colette; Johns, David C; Kardami, Elissavet; Yamada, Kathryn A

    2008-09-01

    Little is known about connexin expression and function in murine cardiac fibroblasts. The authors isolated native ventricular fibroblasts from adult mice and determined that although they expressed both connexin43 (Cx43) and connexin45 (Cx45), the relative abundance of Cx45 was greater than that of Cx43 in fibroblasts compared to myocytes, and the electrophoretic mobility of both Cx43 and Cx45 differed in fibroblasts and in myocytes. Increasing Cx43 expression by adenoviral infection increased intercellular coupling, whereas decreasing Cx43 expression by genetic ablation decreased coupling. Interestingly, increasing Cx43 expression reduced fibroblast proliferation, whereas decreasing Cx43 expression increased proliferation. These data demonstrate that native fibroblasts isolated from the mouse heart exhibit intercellular coupling via gap junctions containing both Cx43 and Cx45. Fibroblast proliferation is inversely related to the expression level of Cx43. Thus, connexin expression and remodeling is likely to alter fibroblast function, maintenance of the extracellular matrix, and ventricular remodeling in both normal and diseased hearts.

  18. Plasminogen activator inhibitor 1, fibroblast apoptosis resistance, and aging-related susceptibility to lung fibrosis.

    PubMed

    Huang, Wen-Tan; Akhter, Hasina; Jiang, Chunsun; MacEwen, Mark; Ding, Qiang; Antony, Veena; Thannickal, Victor John; Liu, Rui-Ming

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a fatal lung disorder with unknown cause and no effective treatment. The incidence of and mortality from IPF increase with age, suggesting that advanced age is a major risk factor for IPF. The mechanism underlying the increased susceptibility of the elderly to IPF, however, is unknown. In this study, we show for the first time that the protein level of plasminogen activator inhibitor 1 (PAI-1), a protease inhibitor which plays an essential role in the control of fibrinolysis, was significantly increased with age in mouse lung homogenate and lung fibroblasts. Upon bleomycin challenge, old mice experienced augmented PAI-1 induction and lung fibrosis as compared to young mice. Most interestingly, we show that fewer (myo)fibroblasts underwent apoptosis and more (myo)fibroblasts with increased level of PAI-1 accumulated in the lung of old than in young mice after bleomycin challenge. In vitro studies further demonstrate that fibroblasts isolated from lungs of old mice were resistant to H2O2 and tumor necrosis factor alpha-induced apoptosis and had augmented fibrotic responses to TGF-β1, compared to fibroblasts isolated from young mice. Inhibition of PAI-1 activity with a PAI-1 inhibitor, on the other hand, eliminated the aging-related apoptosis resistance and TGF-β1 sensitivity in isolated fibroblasts. Moreover, we show that knocking down PAI-1 in human lung fibroblasts with PAI-1 siRNA significantly increased their sensitivity to apoptosis and inhibited their responses to TGF-β1. Together, the results suggest that increased PAI-1 expression may underlie the aging-related sensitivity to lung fibrosis in part by protecting fibroblasts from apoptosis. Published by Elsevier Inc.

  19. Fibroblast activation protein α in tumor microenvironment: Recent progression and implications (Review)

    PubMed Central

    ZI, FUMING; HE, JINGSONG; HE, DONGHUA; LI, YI; YANG, LI; CAI, ZHEN

    2015-01-01

    Accumulated evidence has demonstrated that the microenvironment of a given tumor is important in determining its drug resistance, tumorigenesis, progression and metastasis. These microenvironments, like tumor cells, are vital targets for cancer therapy. The cross-talk between tumor cells and cancer-associated fibroblasts (CAFs, alternatively termed activated fibroblasts) is crucial in regulating the drug resistance, tumorigenesis, neoplastic progression, angiogenesis, invasion and metastasis of a tumor. Fibroblast activation protein α (FAPα) is a transmembrane serine protease and is highly expressed on CAFs present in >90% of human epithelial neoplasms. FAPα activity, alongside that of gelatinase and type I collagenase, has become increasingly important in cancer therapy due to its effectiveness in modulating tumor behavior. In this review, recent progression in the knowledge of the role of FAPα in tumor microenvironments is discussed. PMID:25593080

  20. Rho A and the Rho kinase pathway regulate fibroblast contraction: Enhanced contraction in constitutively active Rho A fibroblast cells

    SciTech Connect

    Nobe, Koji; Nobe, Hiromi; Yoshida, Hiroko; Kolodney, Michael S.; Paul, Richard J.; Honda, Kazuo

    2010-08-20

    Research highlights: {yields} Mechanisms of fibroblast cell contraction in collagen matrix. {yields} Assessed an isometric force development using 3D-reconstituted-fibroblast fiber. {yields} Constitutively active Rho A induced the over-contraction of fibroblast cells. {yields} Rho A and Rho kinase pathway has a central role in fibroblast cell contraction. -- Abstract: Fibroblast cells play a central role in the proliferation phase of wound healing processes, contributing to force development. The intracellular signaling pathways regulating this non-muscle contraction are only partially understood. To study the relations between Rho A and contractile responses, constitutively active Rho A (CA-Rho A) fibroblast cells were reconstituted into fibers and the effects of calf serum (CS) on isometric force were studied. CS-induced force in CA-Rho A fibroblast fibers was twice as large as that in wild type (NIH 3T3) fibroblast fibers. During this response, the translocation of Rho A from the cytosol to the membrane was detected by Rho A activity assays and Western blot analysis. Pre-treatment with a Rho specific inhibitor (C3-exoenzyme) suppressed translocation as well as contraction. These results indicate that Rho A activation is essential for fibroblast contraction. The Rho kinase inhibitor ( (Y27632)) inhibited both NIH 3T3 and CA-Rho A fibroblast fiber contractions. Activation of Rho A is thus directly coupled with Rho kinase activity. We conclude that the translocation of Rho A from the cytosol to the membrane and the Rho kinase pathway can regulate wound healing processes mediated by fibroblast contraction.

  1. Development of fibroblast culture in three-dimensional activated carbon fiber-based scaffold for wound healing.

    PubMed

    Huang, Wen-Ying; Yeh, Chia-Lin; Lin, Jui-Hsiang; Yang, Jai-Sing; Ko, Tse-Hao; Lin, Yu-Hsin

    2012-06-01

    This work developed a novel bi-layer wound dressing composed of 3D activated carbon fibers that allows facilitates fibroblast cell growth and migration to a wound site for tissue reconstruction, and the gentamicin is incorporated into a poly(γ-glutamic acid)/gelatin membrane to prevent bacterial infection. In an in vitro, field emission scanning electron microscopy shows that rat skin fibroblasts appeared and spread on the surface of activated carbon fibers, and penetrated the interior and exterior of the 3D activated carbon fiber construct to a depth of roughly 200 μm. An in vivo analysis shows that fibroblast cells containing the proposed 3D scaffold had the potential of a biologically functionalized dressing to accelerate wound closure. Additionally, fibroblasts migrated to the wound site in a bi-layer wound dressing containing fibroblasts, enhancing fibronectin and type I collagen expression, resulting in faster skin regeneration than that achieved with a Tegaderm™ hydrocolloid dressing or gauze.

  2. Paradoxical stimulation of cyclooxygenase-2 expression by glucocorticoids via a cyclic AMP response element in human amnion fibroblasts.

    PubMed

    Zhu, X O; Yang, Z; Guo, C M; Ni, X T; Li, J N; Ge, Y C; Myatt, L; Sun, K

    2009-11-01

    Human amnion fibroblasts produce abundant prostaglandins toward the end of gestation, which is one of the major events leading to parturition. In marked contrast to its well-described antiinflammatory effect, glucocorticoids have been shown to up-regulate cyclooxygenase-2 (COX-2) expression in human amnion fibroblasts. The mechanisms underlying this paradoxical induction of COX-2 by glucocorticoids have not been resolved. Using cultured human amnion fibroblasts, we found that the induction of COX-2 mRNA expression by cortisol was a glucocorticoid receptor (GR)-dependent process requiring ongoing transcription. Upon transfection of a COX-2 promoter-driven reporter gene into the amnion fibroblasts, cortisol stimulated the COX-2 promoter activity. This was abolished by mutagenesis of a cAMP response element (CRE) at -53 to approximately -59bp as well as by cotransfection of a plasmid expressing dominant-negative CRE-binding protein (CREB). The phosphorylation level of CREB-1 was significantly increased by cortisol treatment of the amnion fibroblasts, whereas the effect was attenuated either by the protein kinase A inhibitor H89 or the p38 -MAPK inhibitor SB203580. The induction of the COX-2 promoter activity and the phosphorylation of CREB-1 were also blocked by the GR antagonist RU486. Chromatin immunoprecipitation (ChIP) assay revealed that the binding of CREB-1 to the CRE of the COX-2 promoter was increased by cortisol treatment of the amnion fibroblasts. In conclusion, cortisol, via binding to GR, stimulated COX-2 expression by increasing phosphorylated CREB-1 binding to the CRE of the COX-2 gene. Cortisol may phosphorylate CREB-1 by activating either protein kinase A or p38-MAPK in the amnion fibroblasts.

  3. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    PubMed Central

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  4. Epidermal β-catenin activation remodels the dermis via paracrine signalling to distinct fibroblast lineages

    PubMed Central

    Lichtenberger, Beate M.; Mastrogiannaki, Maria; Watt, Fiona M.

    2016-01-01

    Sustained epidermal Wnt/β-catenin signalling expands the stem cell compartment and induces ectopic hair follicles (EFs). This is accompanied by extensive fibroblast proliferation and extracellular matrix (ECM) remodelling in the underlying dermis. Here we show that epidermal Hedgehog (Hh) and Transforming growth factor-beta (TGF-β) signalling mediate the dermal changes. Pharmacological inhibition or genetic deletion of these pathways prevents β-catenin-induced dermal reprogramming and EF formation. Epidermal Shh stimulates proliferation of the papillary fibroblast lineage, whereas TGF-β2 controls proliferation, differentiation and ECM production by reticular fibroblasts. Hh inhibitors do not affect TGF-β target gene expression in reticular fibroblasts, and TGF-β inhibition does not prevent Hh target gene induction in papillary fibroblasts. However, when Hh signalling is inhibited the reticular dermis does not respond to epidermal β-catenin activation. We conclude that the dermal response to epidermal Wnt/β-catenin signalling depends on distinct fibroblast lineages responding to different paracrine signals. PMID:26837596

  5. Oleic, linoleic and linolenic acids increase ros production by fibroblasts via NADPH oxidase activation.

    PubMed

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47 (phox) phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47 (phox) mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts.

  6. High inorganic phosphate causes DNMT1 phosphorylation and subsequent fibrotic fibroblast activation.

    PubMed

    Tan, Xiaoying; Xu, Xingbo; Zeisberg, Elisabeth M; Zeisberg, Michael

    2016-04-08

    Phosphate is an essential constituent of critical cellular functions including energy metabolism, nucleic acid synthesis and phosphorylation-dependent cell signaling. Increased plasma phosphate levels are an independent risk factor for lowered life-expectancy as well as for heart and kidney failure. Nevertheless, direct cellular effects of elevated phosphate concentrations within the microenvironment are poorly understood and have been largely neglected in favor of phosphor-regulatory hormones. Because interstitial fibrosis is the common determinant of chronic progressive kidney disease, and because fibroblasts are major mediators of fibrogenesis, we here explored the effect of high extracellular phosphate levels on renal fibroblasts. We demonstrate that high inorganic phosphate directly induces fibrotic fibroblast activation associated with increased proliferative activity, increased expression of α-smooth muscle actin and increased synthesis of type I collagen. We further demonstrate that such fibroblast activation is dependent on phosphate influx, aberrant phosphorylation of DNA methyltransferase DNMT1 and aberrant CpG island promoter methylation. In summary, our studies demonstrate that elevated phosphate concentrations induce pro-fibrotic fibroblast activation independent of phospho-regulatory hormones. Copyright © 2016. Published by Elsevier Inc.

  7. Constitutive expression of lymphoma-associated NFKB-2/Lyt-10 proteins is tumorigenic in murine fibroblasts.

    PubMed

    Ciana, P; Neri, A; Cappellini, C; Cavallo, F; Pomati, M; Chang, C C; Maiolo, A T; Lombardi, L

    1997-04-17

    The NFKB-2 (Lyt-10) gene codes for an NF-kappaB-related transcription factor containing rel-polyG-ankyrin domains. Rearrangements of the NFKB-2 locus leading to the production of 3' truncated NFKB-2 proteins are recurrently found in lymphoid neoplasms, particularly cutaneous lymphomas. Such mutant NFKB-2 proteins have lost the ability to repress transcription that is typical of NFKB-2 subunit p52, and function as constitutive transcriptional activators. To verify whether the expression of abnormal NFKB-2 proteins can lead to malignant transformations in mammalian cells, we transfected human lymphoblastoid cell lines and murine fibroblasts (Balb/3T3) with expression vectors carrying the cDNAs coding for normal NFKB-2p52, Lyt-10C alpha or LB40 proteins, which are representative of the abnormal types found in lymphoma cases. The expression of both normal and mutant NFKB-2 proteins has a lethal effect on lymphoblastoid cells and a cytotoxic effect was also observed in murine fibroblasts. The fibroblast cell lines expressing Lyt-10C alpha or LB40, but not those expressing normal NFKB-2p52, were capable of forming colonies in soft agar. The analysis of individual clones revealed that cloning efficiency correlated with the expression levels of the abnormal proteins. Injection of the Lyt-10C alpha-transfected Balb cells in SCID mice led to tumor formation in all of the animals, whereas no tumors were observed in the mice injected with control or NFKB-2p52-transfected cells, thus indicating that abnormal NFKB-2 protein expression is tumorigenic in vivo. Our results show that mutant NFKB-2 proteins can lead to the transformed phenotype, and support the hypothesis that alterations in NFKB-2 genes may play a role in lymphomagenesis.

  8. The upregulation of heat shock protein 47 expression in human buccal fibroblasts stimulated with arecoline.

    PubMed

    Yang, Shun-Fa; Tsai, Chung-Hung; Chang, Yu-Chao

    2008-04-01

    Heat shock protein (HSP) 47, a collagen-specific molecular chaperone, is involved in the processing and/or secretion of procollagen. HSP47 is consistently and dramatically upregulated in a variety of fibrotic diseases. The aim of this study was to compare HSP47 expression in normal human buccal mucosa and oral submucous fibrosis (OSF) specimens and further to explore the potential mechanisms that may lead to induce HSP47 expression. The mRNA levels of HSP47 from fibroblasts cultured from 20 OSF and 10 normal buccal mucosal fibroblasts (BMFs) were evaluated by reverse transcription polymerase chain reaction. The effect of arecoline, the major areca nut alkaloid, was added to explore the potential mechanisms that may lead to induce HSP47 expression. Furthermore, mitogen-activated protein kinase kinase (MEK) inhibitor U0126, phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, p38 inhibitor SB203580, cyclo-oxygenase-2 (COX-2) inhibitor NS-398, and glutathione precursor N-acetyl-l-cysteine were added to find the possible mechanisms. OSF demonstrated significantly higher HSP47 mRNA expression than BMFs (P < 0.001). Arecoline was also found to elevate HSP47 mRNA expression in a dose-dependent manner (P < 0.05). The amount of HSP47 was about 3.7-fold at a concentration level of 80 microg/ml arecoline when compared with control (P < 0.05). In addition, pre-treatment with pharmacologic agents markedly inhibited the arecoline-induced HSP47 mRNA expression (P < 0.05). Taken together, HSP47 is significantly upregulated in OSF from areca quid chewers and HSP47 expression induced by arecoline in fibroblasts may be mediated by MEK, PI3K, and COX-2 signal transduction pathways.

  9. Novel anti-adipogenic activity produced by human fibroblasts

    PubMed Central

    Lehmann, Geniece M.; Woeller, Collynn F.; Pollock, Stephen J.; O'Loughlin, Charles W.; Gupta, Shikha; Feldon, Steven E.

    2010-01-01

    Fatty tissue is generally found in distinct “depots” distributed throughout the human body. Adipocytes from each of the various depots differ in their metabolic capacities and their responses to environmental stimuli. Although a general understanding of the factors responsible for adipogenic transformation has been achieved, much is not understood about the mechanisms of adipose tissue deposition and the phenotypes of the adipocytes found within each depot. A clue to the factors regulating fat deposition may come from studies of adipogenesis using primary human orbital fibroblasts from patients with thyroid eye disease, a condition in which intense inflammation leads to expansion of orbital adipose tissue via differentiation of fibroblasts to adipocytes. We have previously demonstrated that adipogenesis of orbital fibroblasts is negatively correlated with cellular expression of the Thy-1 surface marker. In this study, we developed a novel imaging flow cytometric approach for the assessment of adipogenesis to test the hypothetical dependence of adipogenic potential on lack of Thy-1 expression. Using this technique, we learned that Thy-1-positive fibroblasts are, in fact, capable of differentiating into adipocytes but are less likely to do so because they secrete a paracrine anti-adipogenic factor. It is possible that such a factor plays an important role in the prevention of excess fat deposition in the normal orbit and may even be exploited as a therapy for the treatment of obesity, a major worldwide health concern. PMID:20554910

  10. Induction of fibroblast apolipoprotein E expression during apoptosis, starvation-induced growth arrest and mitosis.

    PubMed Central

    Quinn, Carmel M; Kågedal, Katarina; Terman, Alexei; Stroikin, Uri; Brunk, Ulf T; Jessup, Wendy; Garner, Brett

    2004-01-01

    Apolipoprotein E (apoE) mediates the hepatic clearance of plasma lipoproteins, facilitates cholesterol efflux from macrophages and aids neuronal lipid transport. ApoE is expressed at high levels in hepatocytes, macrophages and astrocytes. In the present study, we identify nuclear and cytosolic pools of apoE in human fibroblasts. Fibroblast apoE mRNA and protein levels were up-regulated during staurosporine-induced apoptosis and this was correlated with increased caspase-3 activity and apoptotic morphological alterations. Because the transcription of apoE and specific pro-apoptotic genes is regulated by the nuclear receptor LXR (liver X receptor) alpha, we analysed LXRalpha mRNA expression by quantitative real-time PCR and found it to be increased before apoE mRNA induction. The expression of ABCA1 (ATP-binding cassette transporter A1) mRNA, which is also regulated by LXRalpha, was increased in parallel with apoE mRNA, indicating that LXRalpha probably promotes apoE and ABCA1 transcription during apoptosis. Fibroblast apoE levels were increased under conditions of serum-starvation-induced growth arrest and hyperoxia-induced senescence. In both cases, an increased nuclear apoE level was observed, particularly in cells that accumulated lipofuscin. Nuclear apoE was translocated to the cytosol when mitotic nuclear disassembly occurred and this was associated with an increase in total cellular apoE levels. ApoE amino acid sequence analysis indicated several potential sites for phosphorylation. In vivo studies, using 32P-labelling and immunoprecipitation, revealed that fibroblast apoE can be phosphorylated. These studies reveal novel associations and potential roles for apoE in fundamental cellular processes. PMID:14656220

  11. Regulation of matrix metalloproteinase-9 expression between gingival fibroblast cells from old and young rats

    SciTech Connect

    Kim, Su-Jung; Chung, Yong-Koo; Chung, Tae-Wook; Kim, Jeong-Ran; Moon, Sung-Kwon; Kim, Cheorl-Ho Park, Young-Guk

    2009-01-09

    Gingival fibroblast cells (rGF) from aged rats have an age-related decline in proliferative capacity compared with young rats. We investigated G1 phase cell cycle regulation and MMP-9 expression in both young and aged rGF. G1 cell cycle protein levels and activity were significantly reduced in response to interleukin-1{beta} (IL-1{beta}) stimulation with increasing in vitro age. Tumor necrosis factor-{alpha} (TNF-{alpha})-induced matrix metalloproteinase-9 (MMP-9) expression was also decreased in aged rGF in comparison with young rGF. Mutational analysis and gel shift assays demonstrated that the lower MMP-9 expression in aged rGF is associated with lower activities of transcription factors NF-{kappa}B and AP-1. These results suggest that cell cycle dysregulation and down-regulation of MMP-9 expression in rGF may play a role in gingival remodeling during in vitro aging.

  12. Role of the c-fos gene expression on the mitogenic response in EL2 rat fibroblasts.

    PubMed

    Di Francesco, P; Liboi, E

    1988-01-01

    Stimulation of the growth of quiescent fibroblasts by polypeptide growth factors is accompanied by the rapid induction of the c-fos proto-oncogene. To investigate whether there exists a relationship between mitogenic activity and c-fos expression, we analysed cellular responses (DNA synthesis and cell growth) and c-fos gene induction (mRNA and proteins) in a rat embryo fibroblast line (EL2) stimulated with epidermal growth factor (EGF), fibroblast growth factor (FGF), 12-O-tetradodecanoyl phorbol-13-acetate (TPA) and transforming growth factor beta (TGF beta). Our results suggest that the susceptibility of EL2 cells to a growth factor could be predicted as a function of the c-fos expression caused by the same growth factor. These also indicate that the c-fos gene expression may have contributed to moving our cells out of the quiescent state, but it is not the only essential event required to effect EL2 cell growth.

  13. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis.

    PubMed

    Ding, Hao; Jiang, Lei; Xu, Jing; Bai, Feng; Zhou, Yang; Yuan, Qi; Luo, Jing; Zen, Ke; Yang, Junwei

    2017-09-01

    Chronic kidney diseases generally lead to renal fibrosis. Despite great progress having been made in identifying molecular mediators of fibrosis, the mechanism that governs renal fibrosis remains unclear, and so far no effective therapeutic antifibrosis strategy is available. Here we demonstrated that a switch of metabolism from oxidative phosphorylation to aerobic glycolysis (Warburg effect) in renal fibroblasts was the primary feature of fibroblast activation during renal fibrosis and that suppressing renal fibroblast aerobic glycolysis could significantly reduce renal fibrosis. Both gene and protein assay showed that the expression of glycolysis enzymes was upregulated in mouse kidneys with unilateral ureter obstruction (UUO) surgery or in transforming growth factor-β1 (TGF-β1)-treated renal interstitial fibroblasts. Aerobic glycolysis flux, indicated by glucose uptake and lactate production, was increased in mouse kidney with UUO nephropathy or TGF-β1-treated renal interstitial fibroblasts and positively correlated with fibrosis process. In line with this, we found that increasing aerobic glycolysis can remarkably induce myofibroblast activation while aerobic glycolysis inhibitors shikonin and 2-deoxyglucose attenuate UUO-induced mouse renal fibrosis and TGF-β1-stimulated myofibroblast activation. Furthermore, mechanistic study indicated that shikonin inhibits renal aerobic glycolysis via reducing phosphorylation of pyruvate kinase type M2, a rate-limiting glycolytic enzyme associated with cell reliance on aerobic glycolysis. In conclusion, our findings demonstrate the critical role of aerobic glycolysis in renal fibrosis and support treatment with aerobic glycolysis inhibitors as a potential antifibrotic strategy. Copyright © 2017 the American Physiological Society.

  14. Effect of TERT and ATM on gene expression profiles in human fibroblasts.

    PubMed

    Baross, Agnes; Schertzer, Mike; Zuyderduyn, Scott D; Jones, Steven J M; Marra, Marco A; Lansdorp, Peter M

    2004-04-01

    Telomeres protect chromosomes from degradation, end-to-end fusion, and illegitimate recombination. Loss of telomeres may lead to cell death or senescence or may cause genomic instability, leading to tumor formation. Expression of human telomerase reverse transcriptase (TERT) in human fibroblast cells elongates their telomeres and extends their lifespan. Ataxia telangiectasia mutated (ATM) deficiency in A-T human fibroblasts results in accelerated telomere shortening, abnormal cell-cycle response to DNA damage, and early senescence. Gene expression profiling was performed by serial analysis of gene expression (SAGE) on BJ normal human skin fibroblasts, A-T cells, and BJ and A-T cells transduced with TERT cDNA and expressing telomerase activity. In the four SAGE libraries, 36,921 unique SAGE tags were detected. Pairwise comparisons between the libraries showed differential expression levels of 1%-8% of the tags. Transcripts affected by both TERT and ATM were identified according to expression patterns, making them good candidates for further studies of pathways affected by both TERT and ATM. These include MT2A, P4HB, LGALS1, CFL1, LDHA, S100A10, EIF3S8, RANBP9, and SEC63. These genes are involved in apoptosis or processes related to cell growth, and most have been found to be deregulated in cancer. Our results have provided further insight into the roles of TERT and ATM by identifying genes likely to be involved in their function. Supplementary material for this article can be found on the Genes, Chromosomes and Cancer website at http://www.interscience.wiley.com/jpages/1045-2257/suppmat/index.html. Copyright 2004 Wiley-Liss, Inc.

  15. Differential expression of wound fibrotic factors between facial and trunk dermal fibroblasts.

    PubMed

    Kurita, Masakazu; Okazaki, Mutsumi; Kaminishi-Tanikawa, Akiko; Niikura, Mamoru; Takushima, Akihiko; Harii, Kiyonori

    2012-01-01

    Clinically, wounds on the face tend to heal with less scarring than those on the trunk, but the causes of this difference have not been clarified. Fibroblasts obtained from different parts of the body are known to show different properties. To investigate whether the characteristic properties of facial and trunk wound healing are caused by differences in local fibroblasts, we comparatively analyzed the functional properties of superficial and deep dermal fibroblasts obtained from the facial and trunk skin of seven individuals, with an emphasis on tendency for fibrosis. Proliferation kinetics and mRNA and protein expression of 11 fibrosis-associated factors were investigated. The proliferation kinetics of facial and trunk fibroblasts were identical, but the expression and production levels of profibrotic factors, such as extracellular matrix, transforming growth factor-β1, and connective tissue growth factor mRNA, were lower in facial fibroblasts when compared with trunk fibroblasts, while the expression of antifibrotic factors, such as collagenase, basic fibroblast growth factor, and hepatocyte growth factor, showed no clear trends. The differences in functional properties of facial and trunk dermal fibroblasts were consistent with the clinical tendencies of healing of facial and trunk wounds. Thus, the differences between facial and trunk scarring are at least partly related to the intrinsic nature of the local dermal fibroblasts.

  16. Differential Expression of Wound Fibrotic Factors between Facial and Trunk Dermal Fibroblasts

    PubMed Central

    Kurita, Masakazu; Okazaki, Mutsumi; Kaminishi-Tanikawa, Akiko; Niikura, Mamoru; Takushima, Akihiko; Harii, Kiyonori

    2012-01-01

    Clinically, wounds on the face tend to heal with less scarring than those on the trunk, but the causes of this difference have not been clarified. Fibroblasts obtained from different parts of the body are known to show different properties. To investigate whether the characteristic properties of facial and trunk wound healing are caused by differences in local fibroblasts, we comparatively analyzed the functional properties of superficial and deep dermal fibroblasts obtained from the facial and trunk skin of seven individuals, with an emphasis on tendency for fibrosis. Proliferation kinetics and mRNA and protein expression of 11 fibrosis-associated factors were investigated. The proliferation kinetics of facial and trunk fibroblasts were identical, but the expression and production levels of profibrotic factors, such as extracellular matrix, transforming growth factor-β1, and connective tissue growth factor mRNA, were lower in facial fibroblasts when compared with trunk fibro-blasts, while the expression of antifibrotic factors, such as collagenase, basic fibroblast growth factor, and hepatocyte growth factor, showed no clear trends. The differences in functional properties of facial and trunk dermal fibroblasts were consistent with the clinical tendencies of healing of facial and trunk wounds. Thus, the differences between facial and trunk scarring are at least partly related to the intrinsic nature of the local dermal fibroblasts. PMID:22260504

  17. Collagen expression in fibroblasts with a novel LMNA mutation

    SciTech Connect

    Nguyen, Desiree; Leistritz, Dru F.; Turner, Lesley; MacGregor, David; Ohson, Kamal; Dancey, Paul; Martin, George M.; Oshima, Junko . E-mail: picard@u.washington.edu

    2007-01-19

    Laminopathies are a group of genetic disorders caused by LMNA mutations; they include muscular dystrophies, lipodystrophies, and progeroid syndromes. We identified a novel heterozygous LMNA mutation, L59R, in a patient with the general appearance of mandibuloacral dysplasia and progeroid features. Examination of the nuclei of dermal fibroblasts revealed the irregular morphology characteristic of LMNA mutant cells. The nuclear morphological abnormalities of LMNA mutant lymphoblastoid cell lines were less prominent compared to those of primary fibroblasts. Since it has been reported that progeroid features are associated with increased extracellular matrix in dermal tissues, we compared a subset of these components in fibroblast cultures from LMNA mutants with those of control fibroblasts. There was no evidence of intracellular accumulation or altered mobility of collagen chains, or altered conversion of procollagen to collagen, suggesting that skin fibroblast-mediated matrix production may not play a significant role in the pathogenesis of this particular laminopathy.

  18. Collagen Expression in Fibroblasts with a Novel LMNA Mutation

    PubMed Central

    Nguyen, Desiree; Leistritz, Dru F.; Turner, Lesley; MacGregor, David; Ohson, Kamal; Dancey, Paul; Martin, George M.; Oshima, Junko

    2007-01-01

    Laminopathies are a group of genetic disorders caused by LMNA mutations; they include muscular dystrophies, lipodystrophies and progeroid syndromes. We identified a novel heterozygous LMNA mutation, L59R, in a patient with the general appearance of mandibuloacral dysplasia and progeroid features. Examination of the nuclei of dermal fibroblasts revealed the irregular morphology characteristic of LMNA mutant cells. The nuclear morphological abnormalities of LMNA mutant lymphoblastoid cell lines were less prominent compared to those of primary fibroblasts. Since it has been reported that progeroid features are associated with increased extracellular matrix in dermal tissues, we compared a subset of these components in fibroblast cultures from LMNA mutants with those of control fibroblasts. There was no evidence of intracellular accumulation or altered mobility of collagen chains, or altered conversion of procollagen to collagen, suggesting that skin fibroblast-mediated matrix production may not play a significant role in the pathogenesis of this particular laminopathy. PMID:17150192

  19. Expression of fibroblast growth factor 23 by canine soft tissue sarcomas.

    PubMed

    Hardcastle, M R; Dittmer, K E

    2016-09-01

    Tumour-induced osteomalacia (TIO) is a rare paraneoplastic syndrome of humans. Some mesenchymal tumours (often resembling haemangiopericytomas) express molecules that normally regulate phosphorus metabolism; most frequently, fibroblast growth factor 23. Patients develop renal phosphate wasting and inappropriately low serum concentrations of 1, 25 (OH)2 vitamin D3 , leading to osteomalacia. Surgical removal of the tumour is curative. The authors examined expression of canine fibroblast growth factor 23 in 49 soft tissue sarcomas, and control tissues from normal adult dogs. RNA extracted from bone or formalin-fixed, paraffin-embedded tissues was analysed by end point and quantitative reverse transcriptase-polymerase chain reaction. Fibroblast growth factor 23 expression was detected in bone, lung, kidney, lymph node and thymus. Fifteen of 49 sarcomas (31%) expressed fibroblast growth factor 23, three of these had high relative expression and some features resembling phosphatonin-expressing mesenchymal tumours of humans. Further work is required to determine whether TIO may occur in dogs.

  20. Absence of Thy-1 results in TGF-β induced MMP-9 expression and confers a profibrotic phenotype to human lung fibroblasts.

    PubMed

    Ramírez, Gustavo; Hagood, James S; Sanders, Yan; Ramírez, Remedios; Becerril, Carina; Segura, Lourdes; Barrera, Lourdes; Selman, Moisés; Pardo, Annie

    2011-08-01

    Fibroblasts differ in a variety of phenotypic features, including the expression of Thy-1 a glycophosphatidylinositol-linked glycoprotein. Fibroblasts in idiopathic pulmonary fibrosis (IPF) are Thy-1 negative, whereas most fibroblasts from normal lungs are Thy-1 positive. However, the functional consequences of the absence of Thy-1 are not fully understood. We analyzed the expression of Thy-1 in several primary fibroblasts lines derived from IPF, hypersensitivity pneumonitis (HP), and normal human lungs. We found that a high proportion, independently of their origin, expressed Thy-1 in vitro. We identified a primary culture of HP fibroblasts, which did not express Thy-1, and compared several functional activities between Thy-1 (-) and Thy-1 (+) fibroblasts. Thy-1 (-) fibroblasts were smaller (length: 41.3±20.8 μ versus 83.1±40 μ), showed increased proliferative capacity and enhanced PDGF-induced transmigration through collagen I (59.9% versus 42.2% over control under basal conditions, P<0.01). Likewise, Thy-1 (-) fibroblasts either spontaneously or after TGF-β stimulation demonstrated stronger contraction of collagen matrices (eg, 0.17±0.03 versus 0.6±0.05 cm² after TGF-β stimulation at 24 h; P<0.01). Thy-1 (-) lung fibroblasts stimulated with TGF-β1 expressed MMP-9, an enzyme that is usually not produced by lung fibroblasts. TGFβ-induced MMP-9 expression was reversible upon re-expression of Thy-1 after transfection with full-length Thy-1. β-glycan, a TGF-β receptor antagonist abolished MMP-9 expression. TGF-β1-induced MMP-9 in Thy-1 (-) fibroblasts depended on the activation of ERK1/2 signaling pathway. Finally, we demonstrated that fibroblasts from IPF fibroblastic foci, which do not express Thy-1 exhibit strong staining for immunoreactive MMP-9 protein in vivo. These findings indicate that loss of Thy-1 in human lung fibroblasts induces a fibrogenic phenotype.

  1. Ets-1 targeted by microrna-221 regulates angiotensin II-induced renal fibroblast activation and fibrosis.

    PubMed

    Di, Jia; Jiang, Lei; Zhou, Yang; Cao, Hongdi; Fang, Li; Wen, Ping; Li, Xiurong; Dai, Chunsun; Yang, Junwei

    2014-01-01

    Fibroblast activation is one of the most important mechanisms for Angiotensin II (Ang II) in promoting renal fibrosis. Transcription factor Ets-1 is recognized to play a key role in kidney diseases. However, the role and mechanisms of Ets-1 in Ang-II induced fibroblast activation and kidney fibrosis are not fully understood. Mice were treated with Ang II via osmotic mini-pumps or Ang II expression plasmid (pAng II). Cultured normal rat kidney interstitial fibroblast (NRK-49F) cells were incubated with Ang II. Role of Ets-1 in renal fibrosis and fibroblast activation were assessed by Western blot, Immunohistochemical staining'MTT, Boyden chamber and Immunofluorescence staining. Effects of miR-221 on Ets-1 and fibroblast activation were investigated by MTT, Boyden chamber, Western blot and Q-PCR. We found that Ets-1 was up-regulated in fibrotic kidneys. Similarly, Ang II could activate NRK-49F cells as demonstrated by up-regulated α-SMA and fibronectin(FN) expression and enhanced cell proliferation and migration. Ang II also induced Ets-1 expression in NRK-49F cells in a dose and time dependent manner. Knock-down of Ets-1 by RNA interference attenuated Ang II-induced activation of NRK-49F cells. Ets-1 was previously reported as a target of microRNA-221 (miR-221). In Ang II-induced fibrotic kidney, miR-221 was down-regulated. Similar results were observed in Ang II treated NRK-49F cells. Ectopic expression of miR-221 mimic attenuated the up-regulation of Ets-1 by Ang II in NRK-49F cells, which further prevented the activation of NRK-49F cells. However, the inhibitor of miR-221 aggravated Ang II induced Ets-1 expression and NRK-49F cells activation. Our study suggests that miR-221/Ets-1 axis takes an important role in mediating AngII induced interstitial fibroblast activation and renal fibrosis. © 2014 S. Karger AG, Basel.

  2. [Cloning and characterization of genes differentially expressed in human dental pulp cells and gingival fibroblasts].

    PubMed

    Wang, Zhong-dong; Wu, Ji-nan; Zhou, Lin; Ling, Jun-qi; Guo, Xi-min; Xiao, Ming-zhen; Zhu, Feng; Pu, Qin; Chai, Yu-bo; Zhao, Zhong-liang

    2007-02-01

    To study the biological properties of human dental pulp cells (HDPC) by cloning and analysis of genes differentially expressed in HDPC in comparison with human gingival fibroblasts (HGF). HDPC and HGF were cultured and identified by immunocytochemistry. HPDC and HGF subtractive cDNA library was established by PCR-based modified subtractive hybridization, genes differentially expressed by HPDC were cloned, sequenced and compared to find homogeneous sequence in GenBank by BLAST. Cloning and sequencing analysis indicate 12 genes differentially expressed were obtained, in which two were unknown genes. Among the 10 known genes, 4 were related to signal transduction, 2 were related to trans-membrane transportation (both cell membrane and nuclear membrane), and 2 were related to RNA splicing mechanisms. The biological properties of HPDC are determined by the differential expression of some genes and the growth and differentiation of HPDC are associated to the dynamic protein synthesis and secretion activities of the cell.

  3. Differential Thy-1 expression by splenic fibroblasts defines functionally distinct subsets.

    PubMed

    Borrello, M A; Phipps, R P

    1996-11-01

    Fibroblasts have an important structural role in the spleen, as they provide a scaffold of extracellular matrix in which cells of the immune system reside. Aside from their vague recognition as "stromal" or "reticular" components of the spleen, these cells have not been characterized. In this study, normal fibroblast lines from mouse [B6D2(F1)] spleen were established. The fibroblast phenotype of these lines was confirmed by their morphology, expression of vimentin, as well as their lack of epithelial and endothelial cell markers, their failure to display the hematopoietic marker CD45, and their inability to phagocytize. Interestingly, 50-65% of the splenic fibroblasts expressed the Thy-1 antigen, while a subpopulation of Thy-1-negative fibroblasts existed. FACS on the basis of Thy-1, as well as limiting dilution cloning, yielded stable lines and clones of Thy-1+ and Thy-1- splenic fibroblasts. Phenotypic characterization revealed that both subsets synthesized collagen and expressed class I MHC, ICAM-1, VCAM-1, and CD44 constitutively. However, intriguing differences existed between the fibroblast subpopulations. Thy-1+ splenic fibroblasts produced significantly greater levels of IL-6 than did their Thy-1- counterparts. After treatment with IFN-gamma (150 U/ml, 72 hr), Thy-1-, but not Thy-1+, splenic fibroblasts expressed class II MHC and presented antigen to an I-A(b)-restricted T cell line. This suggests that the Thy-1- fibroblasts may present antigen to T lymphocytes in vivo under inflammatory conditions. Thus, splenic fibroblasts are a heterogeneous and dynamic cell type poised in an immunologically relevant location to interact with bone marrow-derived cells under normal and fibrotic conditions.

  4. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    PubMed

    Brun, Paola; Pathak, Surajit; Castagliuolo, Ignazio; Palù, Giorgio; Brun, Paola; Zuin, Matteo; Cavazzana, Roberto; Martines, Emilio

    2014-01-01

    Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS) in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR)-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine) cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and can be considered a

  5. Helium Generated Cold Plasma Finely Regulates Activation of Human Fibroblast-Like Primary Cells

    PubMed Central

    Brun, Paola; Pathak, Surajit; Castagliuolo, Ignazio; Palù, Giorgio; Brun, Paola; Zuin, Matteo; Cavazzana, Roberto; Martines, Emilio

    2014-01-01

    Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS) in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2′,7′-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR)-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine) cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and can be

  6. Piper betel leaves induces wound healing activity via proliferation of fibroblasts and reducing 11β hydroxysteriod dehydrogenase-1 expression in diabetic rat.

    PubMed

    Ghazali, Nur Amalina; Elmy, Azree; Yuen, Lee Chee; Sani, Nurul Zaidah; Das, Srijit; Suhaimi, Farihah; Yusof, Rafizul; Yusoff, Nurul Huda; Thent, Zar Chi

    Increased oxidative stress and stress enzyme 11β hydroxysteriod dehydrogenase-1 (11β HSD-1) served as the major contributing factors for delayed wound healing in diabetes mellitus (DM). Piper betel (PB) leaves are reported to possess anti-diabetic, anti-oxidant and anti-microbial properties. The objective was to investigate the effectiveness of topical application of PB leaves extract on oxidative stress and 11β hydroxysteriod dehydrogenase-1 (11β HSD-1) expression in diabetic wounds. A total 64 male Sprague-Dawley rats were randomly chosen. The experimental rats received a single intramuscular injection of streptozotocin (45 mg/kg). Four full thickness (6 mm) wounds were created on the dorsum of each rat. The animals were equally divided (n = 8) into four groups based on the days of treatment (i.e. days 3 and 7): Control (Ctrl), diabetic untreated (DM-Ctrl), diabetic treated with 1% silver nitrate cream (DM-SN) and diabetic treated with 50 mg/kg of P. betel leaves extract (DM-PB). The rats were sacrificed on day 3 and 7 of post wound creations. Following day 7 wound creation, topical application of PB extract showed significant increase in hydroxyproline content, superoxide dismutase (SOD) level and decreased malondialdehyde (MDA) level, 11β-HSD-1 enzyme expression in the diabetic wounds compared to untreated diabetic wounds. The results were supported by the observations based on histological and ultrastructural features of the wound tissue applied with PB extract. PB leaves extract improved the delayed wound healing in diabetes mellitus by decreasing the oxidative stress markers and 11β HSD-1 expression. Copyright © 2016 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  7. Prevalent expression of fibroblast growth factor (FGF) receptors and FGF2 in human tumor cell lines.

    PubMed

    Chandler, L A; Sosnowski, B A; Greenlees, L; Aukerman, S L; Baird, A; Pierce, G F

    1999-05-05

    Basic fibroblast growth factor (FGF2) has potent mitogenic and angiogenic activities that have been implicated in tumor development and malignant progression. The biological effects of FGF2 and other members of the FGF ligand family are mediated by 4 transmembrane tyrosine kinase receptors (FGFRs). To better understand the roles of FGFRs in cancer, the expression of FGF2 and each of the 4 FGFRs was assessed by RNase protection analysis of 60 human tumor cell lines, representing 9 tumor types. Expression of at least one FGFR isoform was detected in 90% and FGF2 mRNA in 35% of the cell lines. Our comprehensive analysis of FGF2 and FGFR expression in human tumor cell lines provides evidence that FGF signaling pathways are active in a majority of human tumor cell lines, and lends support to the development of anti-tumor strategies that target FGFRs.

  8. A voltage-activated proton current in human cardiac fibroblasts

    SciTech Connect

    El Chemaly, Antoun; Guinamard, Romain; Demion, Marie; Fares, Nassim; Jebara, Victor; Faivre, Jean-Francois; Bois, Patrick . E-mail: patrick.bois@univ-poitiers.fr

    2006-02-10

    A voltage-activated proton current in human cardiac fibroblasts, measured using the whole-cell recording configuration of the patch-clamp technique, is reported. Increasing the pH of the bathing solution shifted the current activation threshold to more negative potentials and increased both the current amplitude and its rate of activation. Changing the pH gradient by one unit caused a 51 mV shift in the reversal potential of the current, demonstrating a high selectivity for protons of the channel carrying the current. Extracellularly applied Zn{sup 2+} reversibly inhibited the current. Activation of the current contributes to the resting membrane conductance under conditions of intracellular acidosis. It is proposed that this current in cardiac fibroblasts is involved in the regulation of the intracellular pH and the membrane potential under physiological conditions as well as in response to pathological conditions such as ischemia.

  9. Pterocarpus santalinus L. Regulated Ultraviolet B Irradiation-induced Procollagen Reduction and Matrix Metalloproteinases Expression Through Activation of TGF-β/Smad and Inhibition of the MAPK/AP-1 Pathway in Normal Human Dermal Fibroblasts.

    PubMed

    Gao, Wei; Lin, Pei; Hwang, Eunson; Wang, Yushuai; Yan, Zhengfei; Ngo, Hien T T; Yi, Tae-Hoo

    2017-08-31

    Ultraviolet light-induced reactive oxygen species (ROS) damage human skin and prematurely cause aging. A growing body of research is focusing on considering plants and plant-derived compounds as anti-photoaging therapeutic material. Pterocarpus santalinus L., as an Indian traditional medicine, possesses antidiabetic, anti-inflammatory and antioxidative effects. Here, we studied the anti-photoaging effects of ethanolic extract of P. santalinus L. heartwood (EPS) on ultraviolet radiation B (UVB)-irradiated normal human dermal fibroblasts (NHDFs). Results showed that EPS significantly inhibited the upregulation of matrix metalloproteinases and IL-6 caused by UVB irradiation, and suppressed UVB-induced phosphorylation of extracellular signal-regulated kinase, Jun N-terminal kinase, and p38, as well as the activation of AP-1 transcription factors. Further study indicated that UVB-induced production of MMP-1 and IL-6 could be inhibit by PD 98059 (an ERK inhibitor) and SP600125 (A JNK inhibitor), implied that EPS inhibited UVB-induced MMP-1 and IL-6 secretion by inactivating MAPK signaling pathway. In addition, EPS possessed an excellent antioxidant activity, which could increase cytoprotective antioxidants such as HO-1, NQ-O1 expression by facilitating the nuclear accumulation of Nrf2. Treatment of NHDFs with EPS also recovered UVB-induced procollagen type I reduction by activating TGF-β/Smad pathway. These findings demonstrated that EPS had a potential effect against UVB-induced skin photoaging. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Vitamin D receptor expression and associated gene signature in tumour stromal fibroblasts predict clinical outcome in colorectal cancer

    PubMed Central

    Ferrer-Mayorga, Gemma; Gómez-López, Gonzalo; Barbáchano, Antonio; Fernández-Barral, Asunción; Peña, Cristina; Pisano, David G; Cantero, Ramón; Rojo, Federico; Muñoz, Alberto; Larriba, María Jesús

    2017-01-01

    Objective Colorectal cancer (CRC) is a major health concern. Vitamin D deficiency is associated with high CRC incidence and mortality, suggesting a protective effect of vitamin D against this disease. Given the strong influence of tumour stroma on cancer progression, we investigated the potential effects of the active vitamin D metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) on CRC stroma. Design Expression of vitamin D receptor (VDR) and two 1,25(OH)2D3 target genes was analysed in 658 patients with CRC with prolonged clinical follow-up. 1,25(OH)2D3 effects on primary cultures of patient-derived colon normal fibroblasts (NFs) and cancer-associated fibroblasts (CAFs) were studied using collagen gel contraction and migration assays and global gene expression analyses. Publicly available data sets (n=877) were used to correlate the 1,25(OH)2D3-associated gene signature in CAFs with CRC outcome. Results High VDR expression in tumour stromal fibroblasts was associated with better overall survival (OS) and progression-free survival in CRC, independently of its expression in carcinoma cells. 1,25(OH)2D3 inhibited the protumoural activation of NFs and CAFs and imposed in CAFs a 1,25(OH)2D3-associated gene signature that correlated with longer OS and disease-free survival in CRC. Furthermore, expression of two genes from the signature, CD82 and S100A4, correlated with stromal VDR expression and clinical outcome in our cohort of patients with CRC. Conclusions 1,25(OH)2D3 has protective effects against CRC through the regulation of stromal fibroblasts. Accordingly, expression of VDR and 1,25(OH)2D3-associated gene signature in stromal fibroblasts predicts a favourable clinical outcome in CRC. Therefore, treatment of patients with CRC with VDR agonists could be explored even in the absence of VDR expression in carcinoma cells. PMID:27053631

  11. Transient Gene and miRNA Expression Profile Changes of Confluent Human Fibroblast Cells in Space

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lu, Tao; Wong, Michael; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Wang, Xiaoyu; Wu, Honglu

    2015-01-01

    Microgravity or an altered gravity environment from the static 1 gravitational constant has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of the cells. Whether non-dividing cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted on the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days for investigations of gene and miRNA (microRNA) expression profile changes in these cells. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly even though they were confluent, as measured by the expression of the protein Ki-67 positive cells, and the cells in space grew slightly faster. Gene and miRNA expression data indicated activation of NF(sub kappa)B (nuclear factor kappa-light-chain-enhancer of activated B cells) and other growth related pathways involving HGF and VEGF in the flown cells. On Day 14 when the cells were mostly non-dividing, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples in respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeleton changes by immunohistochemistry staining of the cells with antibodies for alpha-tubulin showed no difference between the flight and ground samples. Results of our study suggest that in true non-dividing human fibroblast cells, microgravity in

  12. A distinct de novo expression of Nav1.5 sodium channels in human atrial fibroblasts differentiated into myofibroblasts.

    PubMed

    Chatelier, Aurélien; Mercier, Aurélie; Tremblier, Boris; Thériault, Olivier; Moubarak, Majed; Benamer, Najate; Corbi, Pierre; Bois, Patrick; Chahine, Mohamed; Faivre, Jean François

    2012-09-01

    Fibroblasts play a major role in heart physiology. They are at the origin of the extracellular matrix renewal and production of various paracrine and autocrine factors. In pathological conditions, fibroblasts proliferate, migrate and differentiate into myofibroblasts leading to cardiac fibrosis. This differentiated status is associated with changes in expression profile leading to neo-expression of proteins such as ionic channels. The present study investigates further electrophysiological changes associated with fibroblast differentiation focusing on the activity of voltage-gated sodium channels in human atrial fibroblasts and myofibroblasts. Using the patch clamp technique we show that human atrial myofibroblasts display a fast inward voltage gated sodium current with a density of 13.28 ± 2.88 pA pF(-1) whereas no current was detectable in non-differentiated fibroblasts. Quantitative RT-PCR reveals a large amount of transcripts encoding the Na(v)1.5 α-subunit with a fourfold increased expression level in myofibroblasts when compared to fibroblasts. Accordingly, half of the current was blocked by 1 μm of tetrodotoxin and immunocytochemistry experiments reveal the presence of Na(v)1.5 proteins. Overall, this current exhibits similar biophysical characteristics to sodium currents found in cardiac myocytes except for the window current that is enlarged for potentials between -100 and -20 mV. Since fibrosis is one of the fundamental mechanisms implicated in atrial fibrillation, it is of great interest to investigate how this current could influence myofibroblast properties. Moreover, since several Na(v)1.5 mutations are related to cardiac pathologies, this study offers a new avenue on the fibroblasts involvement of these mutations.

  13. Autotaxin expression from synovial fibroblasts is essential for the pathogenesis of modeled arthritis

    PubMed Central

    Nikitopoulou, Ioanna; Oikonomou, Nikos; Karouzakis, Emmanuel; Sevastou, Ioanna; Nikolaidou-Katsaridou, Nefeli; Zhao, Zhenwen; Mersinias, Vassilis; Armaka, Maria; Xu, Yan; Masu, Masayuki; Mills, Gordon B.; Gay, Steffen; Kollias, George

    2012-01-01

    Rheumatoid arthritis is a destructive arthropathy characterized by chronic synovial inflammation that imposes a substantial socioeconomic burden. Under the influence of the proinflammatory milieu, synovial fibroblasts (SFs), the main effector cells in disease pathogenesis, become activated and hyperplastic, releasing proinflammatory factors and tissue-remodeling enzymes. This study shows that activated arthritic SFs from human patients and animal models express significant quantities of autotaxin (ATX; ENPP2), a lysophospholipase D that catalyzes the conversion of lysophosphatidylcholine to lysophosphatidic acid (LPA). ATX expression from SFs was induced by TNF, and LPA induced SF activation and effector functions in synergy with TNF. Conditional genetic ablation of ATX in mesenchymal cells, including SFs, resulted in disease attenuation in animal models of arthritis, establishing the ATX/LPA axis as a novel player in chronic inflammation and the pathogenesis of arthritis and a promising therapeutic target. PMID:22493518

  14. Effects of Hypoxia, Surrounding Fibroblasts, and p16 Expression on Breast Cancer Cell Migration and Invasion.

    PubMed

    Zhang, Jun; Li, Liyuan; Lu, Yi

    2015-01-01

    Cancer cell migration and invasion play essential roles in the metastatic cascade that transforms the local, noninvasive confined tumor cells to the motile, metastatic cancer cells moving through the extracellular matrix and basement into the circulation. Accumulated evidences suggest that intratumoral hypoxia, a characteristic of fast-growing solid tumors, promotes cancer cell motile and invasive abilities. In this study, we investigated the effects of hypoxia, surrounding fibroblasts, and p16 expression on the migration and invasion of breast cancer cells. We found that hypoxia promoted breast cancer cell migration and invasion, and cocultured fibroblasts stimulated invasiveness of breast cancer cells. Moreover, by using a Tet-on inducible system, we found that p16 is capable of inhibiting hypoxia-induced cell migration and invasion of breast cancer cells, and suppressing cocultured fibroblast-stimulated invasiveness of breast cancer cells. These results suggest that p16, in addition to its well-known anti-tumor proliferation function, has novel anti-cancer properties capable of suppressing hypoxia-mediated cancer cell migration and invasion. This study may provide important validation for p16-mediated cancer therapy either by gene therapy or pharmacological activation of internal p16 gene that is usually inactive due to hypermethylation in the tumor cells.

  15. Effects of Hypoxia, Surrounding Fibroblasts, and p16 Expression on Breast Cancer Cell Migration and Invasion

    PubMed Central

    Zhang, Jun; Li, Liyuan; Lu, Yi

    2015-01-01

    Cancer cell migration and invasion play essential roles in the metastatic cascade that transforms the local, noninvasive confined tumor cells to the motile, metastatic cancer cells moving through the extracellular matrix and basement into the circulation. Accumulated evidences suggest that intratumoral hypoxia, a characteristic of fast-growing solid tumors, promotes cancer cell motile and invasive abilities. In this study, we investigated the effects of hypoxia, surrounding fibroblasts, and p16 expression on the migration and invasion of breast cancer cells. We found that hypoxia promoted breast cancer cell migration and invasion, and cocultured fibroblasts stimulated invasiveness of breast cancer cells. Moreover, by using a Tet-on inducible system, we found that p16 is capable of inhibiting hypoxia-induced cell migration and invasion of breast cancer cells, and suppressing cocultured fibroblast-stimulated invasiveness of breast cancer cells. These results suggest that p16, in addition to its well-known anti-tumor proliferation function, has novel anti-cancer properties capable of suppressing hypoxia-mediated cancer cell migration and invasion. This study may provide important validation for p16-mediated cancer therapy either by gene therapy or pharmacological activation of internal p16 gene that is usually inactive due to hypermethylation in the tumor cells. PMID:25874006

  16. Transforming growth factor-β evokes Ca2+ waves and enhances gene expression in human pulmonary fibroblasts.

    PubMed

    Mukherjee, Subhendu; Kolb, Martin R J; Duan, Fuqin; Janssen, Luke J

    2012-06-01

    Fibroblasts maintain the structural framework of animal tissue by synthesizing extracellular matrix molecules. Chronic lung diseases are characterized in part by changes in fibroblast numbers, properties, and more. Fibroblasts respond to a variety of growth factors, cytokines, and proinflammatory mediators. However, the signaling mechanisms behind these responses have not been fully explored. We sought to determine the role of Ca(2+) waves in transforming growth factor-β (TGF-β)-mediated gene expression in human pulmonary fibroblasts. Primary human pulmonary fibroblasts were cultured and treated with TGF-β and different blockers under various conditions. Cells were then loaded with the Ca(2+) indicator dye Oregon green, and Ca(2+) waves were monitored by confocal [Ca(2+)](i) fluorimetry. Real-time PCR was used to probe gene expression. TGF-β (1 nM) evoked recurring Ca(2+) waves. A 30-minute pretreatment of SD 208, a TGF-β receptor-1 kinase inhibitor, prevented Ca(2+) waves from being evoked by TGF-β. The removal of external Ca(2+) completely occluded TGF-β-evoked Ca(2+) waves. Cyclopiazonic acid, an inhibitor of the internal Ca(2+) pump, evoked a relatively slowly developing rise in Ca(2+) waves compared with the rapid changes evoked by TGF-β, but the baseline fluorescence was increased. Ryanodine (10(-5) M) also blocked TGF-β-mediated Ca(2+) wave activity. Real-time PCR showed that TGF-β rapidly and dramatically increased the gene expression of collagen A1 and fibronectin. This increase was blocked by ryanodine treatment and cyclopiazonic acid. We conclude that, in human pulmonary fibroblasts, TGF-β acts on ryanodine-sensitive channels, leading to Ca(2+) wave activity, which in turn amplifies extracellular matrix gene expression.

  17. MicroRNA Expression Profiles in Cultured Human Fibroblasts in Space

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Lu, Tao; Jeevarajan, John; Rohde, Larry; Zhang, Ye

    2014-01-01

    Microgravity, or an altered gravity environment from the static 1g, has been shown to influence global gene expression patterns and protein levels in living organisms. However, it is unclear how these changes in gene and protein expressions are related to each other or are related to other factors regulating such changes. A different class of RNA, the small non-coding microRNA (miRNA), can have a broad effect on gene expression networks by mainly inhibiting the translation process. Previously, we investigated changes in the expression of miRNA and related genes under simulated microgravity conditions on the ground using the NASA invented bioreactor. In comparison to static 1 g, simulated microgravity altered a number of miRNAs in human lymphoblastoid cells. Pathway analysis with the altered miRNAs and RNA expressions revealed differential involvement of cell communication and catalytic activity, as well as immune response signaling and NGF activation of NF-kB pathways under simulated microgravity condition. The network analysis also identified several projected networks with c- Rel, ETS1 and Ubiquitin C as key factors. In a flight experiment on the International Space Station (ISS), we will investigate the effects of actual spaceflight on miRNA expressions in nondividing human fibroblast cells in mostly G1 phase of the cell cycle. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. In addition to miRNA expressions, we will investigate the effects of spaceflight on the cellular response to DNA damages from bleomycin treatment.

  18. Interferon Regulatory Factor 4 Contributes to Transformation of v-Rel-Expressing Fibroblasts

    PubMed Central

    Hrdličková, Radmila; Nehyba, Jiří; Bose, Henry R.

    2001-01-01

    The avian homologue of the interferon regulatory factor 4 (IRF-4) and a novel splice variant lacking exon 6, IRF-4ΔE6, were isolated and characterized. Chicken IRF-4 is expressed in lymphoid organs, less in small intestine, and lungs. IRF-4ΔE6 mRNA, though less abundant than full-length IRF-4, was detected in lymphoid tissues, with the highest levels observed in thymic cells. IRF-4 is highly expressed in v-Rel-transformed lymphocytes, and the expression of IRF-4 is increased in v-Rel- and c-Rel-transformed fibroblasts relative to control cells. The expression of IRF-4 from retrovirus vectors morphologically transformed primary fibroblasts, increased their saturation density, proliferation, and life span, and promoted their growth in soft agar. IRF-4 and v-Rel cooperated synergistically to transform fibroblasts. The expression of IRF-4 antisense RNA eliminated formation of soft agar colonies by v-Rel and reduced the proliferation of v-Rel-transformed cells. v-Rel-transformed fibroblasts produced interferon 1 (IFN1), which inhibits fibroblast proliferation. Infection of fibroblasts with retroviruses expressing v-Rel resulted in an increase in the mRNA levels of IFN1, the IFN receptor, STAT1, JAK1, and 2′,5′-oligo(A) synthetase. The exogenous expression of IRF-4 in v-Rel-transformed fibroblasts decreased the production of IFN1 and suppressed the expression of several genes in the IFN transduction pathway. These results suggest that induction of IRF-4 expression by v-Rel likely facilitates transformation of fibroblasts by decreasing the induction of this antiproliferative pathway. PMID:11533227

  19. Increased fibroblast proliferation and activity after applying intense pulsed light 800-1200 nm.

    PubMed

    Cuerda-Galindo, E; Díaz-Gil, G; Palomar-Gallego, M A; Linares-GarcíaValdecasas, R

    2015-03-01

    Light devices emitting near infrared have been shown to be highly effective for the skin rejuvenation but biochemical and molecular mechanism or optimum dose treatment are not well-known. In our study we try to elucidate why systems emitting near infrared produce skin improvement such as fibroblasts proliferation, increase in gene expression or extracellular matrix (ECM) protein production. 1BR3G human skin fibroblasts were used to test the effects of an intense pulsed light device emitting with an 800-1200 nm filter (MiniSilk FT manufactured by Deka(®)). In our protocol, fibroblasts were irradiated twice successively with a 10 Hz frequency, with a total fluence up to 60 J/cm(2) for 15s each pass. After incubating for 48 h, fibroblasts were harvested from the culture plates to test cell proliferation by flow cytometer. To determine changes in gene expression (mRNA levels for collagen types I and III and metalloproteinase 1 (MMP-1)) and protein production (hyaluronic acid, versican and decorin) tests were performed after irradiation. After 48 h irradiation, 1BR3G human skin fibroblasts were observed to proliferate at a fast rate. The study of ECM macromolecules production using ELISA showed an increase of hyaluronic acid and versican production but no changes were observed for decorin. With RT-PCR assays, an increase in mRNA for collagen type I, type III and MMP-1 were observed. Intense pulsed light emitting near infrared applied in vitro cultured cells increases fibroblasts proliferation and activity, which can be a possible mechanism of action for these devices in aging skin treatment. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Anti-proliferative activities of finasteride in benign prostate epithelial cells require stromal fibroblasts and c-Jun gene.

    PubMed

    Wang, Kai; Jin, Song; Fan, Dongdong; Wang, Mingshuai; Xing, Nianzeng; Niu, Yinong

    2017-01-01

    This study aimed to identify the role of mouse fibroblast-mediated c-Jun and IGF-1 signaling in the therapeutic effect of finasteride on benign prostatic epithelial cells. BPH-1 cells, alone or with fibroblasts (c-Jun+/+ or c-Jun-/-), were implanted subcutaneously in male nude mice who were then treated with finasteride. The degrees of cell proliferation, apoptosis, and sizes of the xenografts were determined. BPH-1 cells were grown alone or co-cultured with mouse fibroblasts in the presence of finasteride and the level of IGF-1 secreted into the medium by the fibroblasts was determined. The proliferation-associated signaling pathway in BPH-1 cells was also evaluated. Fibroblasts and c-Jun promoted xenograft growth, stimulated Ki-67 expression, and inhibited BPH-1 apoptosis. Finasteride did not induce the shrinkage of xenografts in the combined-grafted groups despite repressing Ki-67 expression and inducing cell apoptosis. The addition of c-Jun-/- fibroblasts did not promote xenograft growth. In the absence of c-Jun and fibroblasts, finasteride did not alter xenograft growth, Ki-67 expression, or cell apoptosis. The in vitro results demonstrated that when BPH-1 cells were grown in monoculture, treatment with finasteride did not induce cell death and stimulated the expression of pro-proliferative signaling molecules, while in the presence of fibroblasts containing c-Jun, finasteride treatment repressed epithelial cell proliferation, the level of IGF-1 in the medium, and the activation of downstream pro-proliferative signaling pathways. Taken together, our results suggest that fibroblasts, c-Jun, and IGF-1 play key roles in mediating stromal-epithelial interactions that are required for the therapeutic effects of finasteride in benign prostate epithelial cells.

  1. Anti-proliferative activities of finasteride in benign prostate epithelial cells require stromal fibroblasts and c-Jun gene

    PubMed Central

    Fan, Dongdong; Wang, Mingshuai; Xing, Nianzeng; Niu, Yinong

    2017-01-01

    This study aimed to identify the role of mouse fibroblast-mediated c-Jun and IGF-1 signaling in the therapeutic effect of finasteride on benign prostatic epithelial cells. BPH-1 cells, alone or with fibroblasts (c-Jun+/+ or c-Jun-/-), were implanted subcutaneously in male nude mice who were then treated with finasteride. The degrees of cell proliferation, apoptosis, and sizes of the xenografts were determined. BPH-1 cells were grown alone or co-cultured with mouse fibroblasts in the presence of finasteride and the level of IGF-1 secreted into the medium by the fibroblasts was determined. The proliferation-associated signaling pathway in BPH-1 cells was also evaluated. Fibroblasts and c-Jun promoted xenograft growth, stimulated Ki-67 expression, and inhibited BPH-1 apoptosis. Finasteride did not induce the shrinkage of xenografts in the combined-grafted groups despite repressing Ki-67 expression and inducing cell apoptosis. The addition of c-Jun-/- fibroblasts did not promote xenograft growth. In the absence of c-Jun and fibroblasts, finasteride did not alter xenograft growth, Ki-67 expression, or cell apoptosis. The in vitro results demonstrated that when BPH-1 cells were grown in monoculture, treatment with finasteride did not induce cell death and stimulated the expression of pro-proliferative signaling molecules, while in the presence of fibroblasts containing c-Jun, finasteride treatment repressed epithelial cell proliferation, the level of IGF-1 in the medium, and the activation of downstream pro-proliferative signaling pathways. Taken together, our results suggest that fibroblasts, c-Jun, and IGF-1 play key roles in mediating stromal-epithelial interactions that are required for the therapeutic effects of finasteride in benign prostate epithelial cells. PMID:28196103

  2. METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS

    EPA Science Inventory

    METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS. Geremy W. Knapp, Alan Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Protection Agency, Re...

  3. AGE-RELATED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS INDUCED BY MMS

    EPA Science Inventory

    Age-Related Gene Expression Changes In Human Skin Fibroblasts Induced By methyl methanesulfonate. Geremy W. Knapp, Alan H. Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Prote...

  4. AGE-RELATED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS INDUCED BY MMS

    EPA Science Inventory

    Age-Related Gene Expression Changes In Human Skin Fibroblasts Induced By methyl methanesulfonate. Geremy W. Knapp, Alan H. Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Prote...

  5. METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS

    EPA Science Inventory

    METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS. Geremy W. Knapp, Alan Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Protection Agency, Re...

  6. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts.

    PubMed

    Carmona-Rodríguez, Bruno; Alvarez-Pérez, Marco Antonio; Narayanan, A Sampath; Zeichner-David, Margarita; Reyes-Gasga, José; Molina-Guarneros, Juan; García-Hernández, Ana Lilia; Suárez-Franco, José Luis; Chavarría, Ivet Gil; Villarreal-Ramírez, Eduardo; Arzate, Higinio

    2007-07-06

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation.

  7. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    SciTech Connect

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio . E-mail: harzate@servidor.unam.mx

    2007-07-06

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation.

  8. Reduced superoxide dismutase activity in xeroderma pigmentosum fibroblasts

    SciTech Connect

    Nishigori, C.; Miyachi, Y.; Imamura, S.; Takebe, H. )

    1989-10-01

    This study was performed in order to assess the possible protective effect of superoxide dismutase (SOD) on ultraviolet (UV) damage in xeroderma pigmentosum (XP) fibroblasts. SOD activity in fibroblasts originating from seven xeroderma pigmentosum (XP) patients was significantly lower than that in normal cells (p less than 0.005). Average SOD activity in XP cells belonging to complementation group A was 3.68 +/- 0.54 (n = 7) and that in normal human cells was 5.79 +/- 1.59 (n = 6). Addition of SOD before and during UV irradiation (UVB and UVC) to the cells caused no change in the amount of unscheduled DNA synthesis and UV survival. A possible involvement of reduced SOD in XP and a possible protective effect by SOD on UV damage is discussed.

  9. Hernia fibroblasts lack β-estradiol induced alterations of collagen gene expression

    PubMed Central

    2006-01-01

    Background Estrogens are reported to increase type I and type III collagen deposition and to regulate Metalloproteinase 2 (MMP-2) expression. These proteins are reported to be dysregulated in incisional hernia formation resulting in a significantly decreased type I to III ratio. We aimed to evaluate the β-estradiol mediated regulation of type I and type III collagen genes as well as MMP-2 gene expression in fibroblasts derived from patients with or without history of recurrent incisional hernia disease. We compared primary fibroblast cultures from male/female subjects without/without incisional hernia disease. Results Incisional hernia fibroblasts (IHFs) revealed a decreased type I/III collagen mRNA ratio. Whereas fibroblasts from healthy female donors responded to β-estradiol, type I and type III gene transcription is not affected in fibroblasts from males or affected females. Furthermore β-estradiol had no influence on the impaired type I to III collagen ratio in fibroblasts from recurrent hernia patients. Conclusion Our results suggest that β-estradiol does not restore the imbaired balance of type I/III collagen in incisional hernia fibroblasts. Furthermore, the individual was identified as an independent factor for the β-estradiol induced alterations of collagen gene expression. The observation of gender specific β-estradiol-dependent changes of collagen gene expression in vitro is of significance for future studies of cellular response. PMID:17010202

  10. Myricetin blocks lipoteichoic acid-induced COX-2 expression in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Luna, Oscar Alonso; Arreguín-Cano, Juan Antonio; Hernández-Bermúdez, Cristina

    2014-03-01

    Periodontitis is an infectious disease caused by microorganisms present in dental bacterial plaque. Lipoteichoic acid (LTA) is a component of the external membrane of Gram-positive bacteria. It causes septic shock. Ingested flavonoids have been reported to directly affect the regulation of cyclooxygenase-2 (COX-2) expression induced by bacterial toxins. In this study, we examined the effects of four flavonoids (luteolin, fisetin, morin and myricetin) on the activation of ERK1/2, p38 and AKT, and on the synthesis of COX-2 in human gingival fibroblasts treated with LTA from Streptococcus sanguinis. We found that luteolin and myricetin blocked AKT and p38 activation and that myricetin blocked LTA-induced COX-2 expression. The results of our study are important for elucidating the mechanism of action of flavonoid regulation of inflammatory responses.

  11. WT1 expression induces features of renal epithelial differentiation in mesenchymal fibroblasts.

    PubMed

    Hosono, S; Luo, X; Hyink, D P; Schnapp, L M; Wilson, P D; Burrow, C R; Reddy, J C; Atweh, G F; Licht, J D

    1999-01-14

    The WT1 tumor suppressor gene, implicated in hereditofamilial and sporadic Wilms' tumor, is required for normal renal development and is up-regulated during the mesenchymal-epithelial transition. NIH3T3 fibroblasts overexpressing WT1 were less proliferative, larger in size and more firmly attached to tissue culture plastic, suggesting an alteration of their state of differentiation. These cells were studied in vivo by subcutaneous injection into nude mice. The resulting tumors exhibited epithelioid histopathology and formed desmosome-like structures. Molecular analyses of these WT1 expressing fibroblasts grown in culture and in nude mice revealed significant alterations in the expression of many kidney epithelial markers. These studies indicate that WT1 expression can initiate features of a program of epithelial differentiation consistent with a prominent role for WT1 in the mesenchymal epithelial transition that occurs during renal development. Through this work we identified a number of novel target genes for the WT1 transcription factor, including uvomorulin, integrin alpha8 and perlecan, and suggest that WTI may activate the IGF-II gene, also implicated in the development of Wilms' tumor.

  12. TGFbeta isoforms and decorin gene expression are modified in fibroblasts obtained from non-syndromic cleft lip and palate subjects.

    PubMed

    Bodo, M; Baroni, T; Carinci, F; Becchetti, E; Bellucci, C; Pezzetti, F; Conte, C; Evangelisti, R; Carinci, P

    1999-12-01

    Interaction between extracellular matrix (ECM) and cytokines is thought to be crucial for palatal development. The localization of transforming growth factors (TGFalpha and TGFbeta isoforms) in craniofacial tissues suggests that they carry out multiple functions during development. In the present report, we studied TGFalpha, TGFbeta1, and TGFbeta3 expressions and their effects on ECM macromolecule production of normal and cleft palatal fibroblasts in vitro, to investigate the mechanisms by which the phenotypic modulation of fibroblasts occurs during the cleft palate process. The results indicated that, while TGFalpha mRNA was not evidenced in CLP or normal fibroblasts, a reduced TGFbeta1 hybridization signal was detected in CLP fibroblasts. In addition, these secreted more active TGFbeta3 than TGFbeta1, as evaluated in a biological assay. The CLP phenotype, which differed from the normal one because of its higher PG decorin expression and greater production of GAG and collagen, was further modified by the addition of growth factors. In fact, in CLP fibroblasts, TGFalpha and TGFbeta1 down-regulated PG decorin transcript, TGFbeta1 increased collagen and GAG in both cellular and extracellular compartments, and TGFbeta3 promoted secretory processes of cells. In conclusion, the data represent the first report in a human model in vitro that TGFbeta1 and beta3 are differently expressed and are correlated to the CLP phenotype. Thus, strength is given to the hypothesis that TGFbeta isoforms are the potential inducers of phenotypic expression in palatal fibroblasts during development and that an autocrine growth factor production mechanism may be responsible for the phenotypic modifications.

  13. Expression of fibroblast growth factors (Fgfs) in murine tooth development.

    PubMed

    Porntaveetus, Thantrira; Otsuka-Tanaka, Yoko; Basson, M Albert; Moon, Anne M; Sharpe, Paul T; Ohazama, Atsushi

    2011-05-01

    Fgf signalling is known to play critical roles in tooth development. Twenty-two Fgf ligands have been identified in mammals, but expression of only 10 in molars and three in the incisor loop stem cell region have been documented in murine tooth development. Our understanding of Fgf signalling in tooth development thus remains incomplete and we therefore carried out comparative in situ hybridisation analysis of unexamined Fgf ligands (eight in molars and 15 in cervical loops of incisors; Fgf11-Fgf14 were excluded from this analysis because they are not secreted and do not activate Fgf receptors) during tooth development. To identify where Fgf signalling is activated, we also examined the expression of Etv4 and Etv5, considered to be transcriptional targets of the Fgf signalling pathway. In molar tooth development, the expression of Fgf15 and Fgf20 was restricted to the primary enamel knots, whereas Etv4 and Etv5 were expressed in cells surrounding the primary enamel knots. Fgf20 expression was observed in the secondary enamel knots, whereas Fgf15 showed localised expression in the adjacent mesenchyme. Fgf16, Etv4 and Etv5 were strongly expressed in the ameloblasts of molars. In the incisor cervical loop stem cell region, Fgf17, Fgf18, Etv4 and Etv5 showed a restricted expression pattern. These molecules thus show dynamic temporo-spatial expression in murine tooth development. We also analysed teeth in Fgf15(-/-) and Fgf15(-/-) ;Fgf8(+/-) mutant mice. Neither mutant showed significant abnormalities in tooth development, indicating likely functional redundancy. © 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.

  14. Expression of fibroblast growth factors (Fgfs) in murine tooth development

    PubMed Central

    Porntaveetus, Thantrira; Otsuka-Tanaka, Yoko; Albert Basson, M; Moon, Anne M; Sharpe, Paul T; Ohazama, Atsushi

    2011-01-01

    Fgf signalling is known to play critical roles in tooth development. Twenty-two Fgf ligands have been identified in mammals, but expression of only 10 in molars and three in the incisor loop stem cell region have been documented in murine tooth development. Our understanding of Fgf signalling in tooth development thus remains incomplete and we therefore carried out comparative in situ hybridisation analysis of unexamined Fgf ligands (eight in molars and 15 in cervical loops of incisors; Fgf11–Fgf14 were excluded from this analysis because they are not secreted and do not activate Fgf receptors) during tooth development. To identify where Fgf signalling is activated, we also examined the expression of Etv4 and Etv5, considered to be transcriptional targets of the Fgf signalling pathway. In molar tooth development, the expression of Fgf15 and Fgf20 was restricted to the primary enamel knots, whereas Etv4 and Etv5 were expressed in cells surrounding the primary enamel knots. Fgf20 expression was observed in the secondary enamel knots, whereas Fgf15 showed localised expression in the adjacent mesenchyme. Fgf16, Etv4 and Etv5 were strongly expressed in the ameloblasts of molars. In the incisor cervical loop stem cell region, Fgf17, Fgf18, Etv4 and Etv5 showed a restricted expression pattern. These molecules thus show dynamic temporo-spatial expression in murine tooth development. We also analysed teeth in Fgf15−/− and Fgf15−/−;Fgf8+/− mutant mice. Neither mutant showed significant abnormalities in tooth development, indicating likely functional redundancy. PMID:21332717

  15. Pyruvate Dehydrogenase Complex Activity in Normal and Deficient Fibroblasts

    PubMed Central

    Sheu, Kwan-Fu Rex; Hu, Chii-Whei C.; Utter, Merton F.

    1981-01-01

    Pyruvate dehydrogenase complex (PDC) activity in human skin fibroblasts appears to be regulated by a phosphorylation-dephosphorylation mechanism, as is the case with other animal cells. The enzyme can be activated by pretreating the cells with dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase, before they are disrupted for measurement of PDC activity. With such treatment, the activity reaches 5-6 nmol/min per mg of protein at 37°C with fibroblasts from infants. Such values represent an activation of about 5-20-fold over those observed with untreated cells. That this assay, based on [1-14C]pyruvate decarboxylation, represents a valid measurement of the overall PDC reaction is shown by the dependence of 14CO2 production on the presence of thiamin-PP, coenzyme A (CoA), Mg++, and NAD+. Also, it has been shown that acetyl-CoA and 14CO2 are formed in a 1:1 ratio. A similar degree of activation of PDC can also be achieved by adding purified pyruvate dehydrogenase phosphatase and high concentrations of Mg++ and Ca++, or in some cases by adding the metal ions alone to the cell homogenate after disruption. These results strongly suggest that activation is due to dephosphorylation. Addition of NaF, which inhibits dephosphorylation, leads to almost complete loss of PDC activity. Assays of completely activated PDC were performed on two cell lines originating from patients reported to be deficient in this enzyme (Blass, J. P., J. Avigan, and B. W. Ublendorf. 1970. J. Clin. Invest. 49: 423-432; Blass, J. P., J. D. Schuman, D. S. Young, and E. Ham. 1972. J. Clin. Invest. 51: 1545-1551). Even after activation with DCA, fibroblasts from the patients showed values of only 0.1 and 0.3 nmol/min per mg of protein. A familial study of one of these patients showed that both parents exhibited activity in fully activated cells about half that of normal values, whereas cells from a sibling appeared normal. These results demonstrate the inheritance nature of PDC deficiency

  16. Assay to evaluate BAL Fluid regulation of Fibroblast α-SMA Expression

    PubMed Central

    Larson-Casey, Jennifer L.; Carter, A. Brent

    2016-01-01

    Because transforming growth factor-β (TGF-β1) induces differentiation of fibroblasts to myofibroblasts, we developed a protocol to evaluate alveolar macrophage-derived TGF-β1 regulation of lung fibroblast differentiation (Larson-Casey et al., 2016). The protocol allows evaluating the ability of mouse bronchoalveolar lavage (BAL) fluid to alter fibroblast differentiation. Fibroblast differentiation was measured by the expression of α-smooth muscle actin (α-SMA). Background Alveolar macrophages play an integral role in pulmonary fibrosis development by increasing the expression of TGF-β1 (He et al., 2011). Our prior data demonstrate that alveolar macrophages are a critical source of TGF-β1 as mice harboring a conditional deletion of TGF-β1 in macrophages were protected from pulmonary fibrosis (Larson-Casey et al., 2016). The expression of α-SMA is a defining feature of myofibroblasts, and TGF-β1 is a well-characterized pro-fibrotic mediator that induces transformation of fibroblasts to myofibroblasts both in vitro (Desmoulière et al., 1993) and in vivo (Sime et al., 1997). Prior studies exposed fibroblasts to recombinant TGF-β1 to show its effect on differentiation and function (Horowitz et al., 2007). Here we have developed a protocol for determining the ability of mouse BAL fluid to alter the differentiation of human lung fibroblasts to myofibroblasts, the cells that produce extracellular matrix proteins. PMID:28239621

  17. Enhanced expression of MYF5 and MYOD1 in fibroblast cells via the forced expression of bos taurus MYF5.

    PubMed

    Nie, Yong Wei; Ding, Xiang Bin; Ge, Xiu Guo; Fan, Han Lu; Liu, Zhong Wei; Guo, Hong

    2013-09-01

    The formation of vertebrate skeletal muscles widely thought to be under the control of hierarchy of regulatory genes. MYF5 is one of the myogenic determination gene expressed in the developing mouse dermomyotome which control skeletal muscle differentiation. In the current work, we had obtained the cDNA sequence including the full coding region of the bos taurus myogenic factor MYF5 by reverse transcription polymerase chain reaction. Furthermore, we examined whether fibroblast cell derived from mouse and bos taurus can be transduced using plasmid vectors carrying bos taurus MYF5. Bos taurus MYF5 activates MYF5 and MYOD1 expression after 1 day culture. The concerted upregulation of the myogenic regulatory factors enhanced myosin (skeletal fast) expression. These observation show that MYF5 is essential for myogenic differentiation and provides candidates for regulation bos taurus skeletal muscle development. © 2013 International Federation for Cell Biology.

  18. S100A12 Induced in the Epidermis by Reduced Hydration Activates Dermal Fibroblasts and Causes Dermal Fibrosis.

    PubMed

    Zhao, Jingling; Zhong, Aimei; Friedrich, Emily E; Jia, Shengxian; Xie, Ping; Galiano, Robert D; Mustoe, Thomas A; Hong, Seok Jong

    2017-03-01

    Disruption of the barrier function of skin increases transepidermal water loss and up-regulates inflammatory pathways in the epidermis. Consequently, sustained expression of proinflammatory cytokines from the epidermis is associated with dermal scarring. We found increased expression of S100A12 in the epidermis of human hypertrophic and keloid scar. Exposing a stratified keratinocyte culture to a reduced-hydration environment increased the expression and secretion of S100A12 by nearly 70%, which in turn activated dermal fibroblasts in vitro. Direct treatment of fibroblasts with conditioned medium collected from stratified keratinocyte culture under reduced-hydration conditions activated fibroblasts, shown by up-regulation of α-smooth muscle actin, pro-collagen 1, and F-actin expression. However, this fibroblast activation was not found when S100A12 was knocked down by RNA interference in keratinocytes. Pharmacological blockade of S100A12 receptors, RAGE, or TLR4 inhibited S100A12-induced fibroblast activation. Local delivery of S100A12 resulted in a marked hypertrophic scar formation in a validated rabbit hypertrophic scar model compared with saline control. Our findings indicate that S100A12 functions as a proinflammatory cytokine and suggest that S100A12 is a potential therapeutic target for dermal scarring. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Thyroid Hormone Regulates Hepatic Expression of Fibroblast Growth Factor 21 in a PPARα-dependent Manner*

    PubMed Central

    Adams, Andrew C.; Astapova, Inna; Fisher, ffolliott M.; Badman, Michael K.; Kurgansky, Katherine E.; Flier, Jeffrey S.; Hollenberg, Anthony N.; Maratos-Flier, Eleftheria

    2010-01-01

    Thyroid hormone has profound and diverse effects on liver metabolism. Here we show that tri-iodothyronine (T3) treatment in mice acutely and specifically induces hepatic expression of the metabolic regulator fibroblast growth factor 21 (FGF21). Mice treated with T3 showed a dose-dependent increase in hepatic FGF21 expression with significant induction at doses as low as 100 μg/kg. Time course studies determined that induction is seen as early as 4 h after treatment with a further increase in expression at 6 h after injection. As FGF21 expression is downstream of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα), we treated PPARα knock-out mice with T3 and found no increase in expression, indicating that hepatic regulation of FGF21 by T3 in liver is via a PPARα-dependent mechanism. In contrast, in white adipose tissue, FGF21 expression was suppressed by T3 treatment, with other T3 targets unaffected. In cell culture studies with an FGF21 reporter construct, we determined that three transcription factors are required for induction of FGF21 expression: thyroid hormone receptor β (TRβ), retinoid X receptor (RXR), and PPARα. These findings indicate a novel regulatory pathway whereby T3 positively regulates hepatic FGF21 expression, presenting a novel therapeutic target for diseases such as non-alcoholic fatty liver disease. PMID:20236931

  20. Increased expression of fibroblast growth factors in a rabbit skeletal muscle model of exercise conditioning.

    PubMed Central

    Morrow, N G; Kraus, W E; Moore, J W; Williams, R S; Swain, J L

    1990-01-01

    Increased tonic contractile activity from exercise or electrical stimulation induces a variety of changes in skeletal muscle, including vascular growth, myoblast proliferation, and fast to slow fiber type conversion. Little is known about the cellular control of such changes, but pleiotropic biochemical modulators such as fibroblast growth factors (FGFs) may be involved in this response and thus may be regulated in response to such stimuli. We examined the regulation of FGF expression in an in vivo model of exercise conditioning previously shown to exhibit vascular growth and fast to slow fiber conversion. FGFs were extracted by heparin-affinity chromatography from extensor digitorum longus muscles of adult rabbits subjected to chronic motor nerve stimulation at 10 Hz. Growth factor activity (expressed in growth factor units [GFUs]) of muscle stimulated for 3 and 21 d was assayed by [3H]thymidine incorporation in 3T3 fibroblasts and compared with that present in the contralateral unstimulated muscle. A small increase in heparin-binding mitogenic activity was observed as early as 3 d of stimulation, and by 21 d mitogenic activity increased significantly when normalized to either wet weight (stimulated, 287 +/- 61 GFU/g; unstimulated, 145 +/- 39 GFU/g) or to protein (stimulated, 5.3 +/- 1.1 GFU/mg; unstimulated, 2.2 +/- 0.6 GFU/mg) (+/- SE, P less than 0.05). Western analysis demonstrated increased amounts of peptides with immunological identity to acidic and basic FGFs in stimulated muscle. The increase in FGF content observed in this study is synchronous with neovascularization, myoblast proliferation, and fast to slow fiber type conversion previously shown in this model. These results demonstrate that increased expression of FGFs is associated with motor nerve stimulation and increased tonic contractile activity of skeletal muscle, and suggests that these proteins may play a regulatory role in the cellular changes that occur during exercise conditioning. Images

  1. Forced expression of OCT4 influences the expression of pluripotent genes in human mesenchymal stem cells and fibroblasts.

    PubMed

    Palma, C S; Tannous, M A; Malta, T M; Russo, E M S; Covas, D T; Picanço-Castro, V

    2013-04-02

    Genetic reprogramming of adult cells to generate induced pluripotent stem (iPS) cells is a new and important step in sidestepping some of the ethical issues and risks involved in the use of embryonic stem cells. iPS cells can be generated by introduction of transcription factors, such as OCT4, SOX2, KLF4, and CMYC. iPS cells resemble embryonic stem cells in their properties and differentiation potential. The mechanisms that lead to induced pluripotency and the effect of each transcription factor are not completely understood. We performed a critical evaluation of the effect of overexpressing OCT4 in mesenchymal stem cells and fibroblasts and found that OCT4 can activate the expression of other stemness genes, such as SOX2, NANOG, CMYC, FOXD3, KLF4, and βCATENIN, which are not normally or are very weakly expressed in mesenchymal stem cells. Transient expression of OCT4 was also performed to evaluate whether these genes are affected by its overexpression in the first 48 h. Transfected fibroblast cells expressed around 275-fold more OCT4 than non-transfected cells. In transient expression, in which cells were analyzed after 48 h, we detected only the up-regulation of FOXD3, SOX2, and KLF4 genes, suggesting that these genes are the earlier targets of OCT4 in this cellular type. We conclude that forced expression of OCT4 can alter cell status and activate the pluripotent network. Knowledge gained through study of these systems may help us to understand the kinetics and mechanism of cell reprogramming.

  2. Alteration of Connective Tissue Growth Factor (CTGF) Expression in Orbital Fibroblasts from Patients with Graves' Ophthalmopathy.

    PubMed

    Tsai, Chieh-Chih; Wu, Shi-Bei; Chang, Pei-Chen; Wei, Yau-Huei

    2015-01-01

    Graves' ophthalmopathy (GO) is a disfiguring and sometimes blinding disease, which is characterized by inflammation and swelling of orbital tissues, with fibrosis and adipogenesis being predominant features. The aim of this study is to investigate whether the expression levels of fibrosis-related genes, especially that of connective tissue growth factor (CTGF), are altered in orbital fibroblasts of patients with GO. The role of oxidative stress in the regulation of CTGF expression in GO orbital fibroblasts is also examined. By a SYBR Green-based real time quantitative PCR (RT-QPCR), we demonstrated that the mRNA expression levels of fibronectin, apolipoprotein J, and CTGF in cultured orbital fibroblasts from patients with GO were significantly higher than those of age-matched normal controls (p = 0.007, 0.037, and 0.002, respectively). In addition, the protein expression levels of fibronectin, apolipoprotein J, and CTGF analyzed by Western blot were also significantly higher in GO orbital fibroblasts (p = 0.046, 0.032, and 0.008, respectively) as compared with the control. Furthermore, after treatment of orbital fibroblasts with a sub-lethal dose of hydrogen peroxide (200 μM H2O2), we found that the H2O2-induced increase of CTGF expression was more pronounced in the GO orbital fibroblasts as compared with those in normal controls (20% vs. 7%, p = 0.007). Importantly, pre-incubation with antioxidants including N-acetylcysteine (NAC) and vitamin C, respectively, resulted in significant attenuation of the induction of CTGF in GO orbital fibroblasts in response to H2O2 (p = 0.004 and 0.015, respectively). Taken together, we suggest that oxidative stress plays a role in the alteration of the expression of CTGF in GO orbital fibroblasts that may contribute to the pathogenesis and progression of GO. Antioxidants may be used in combination with the therapeutic agents for effective treatment of GO.

  3. Alteration of Connective Tissue Growth Factor (CTGF) Expression in Orbital Fibroblasts from Patients with Graves’ Ophthalmopathy

    PubMed Central

    Chang, Pei-Chen; Wei, Yau-Huei

    2015-01-01

    Graves’ ophthalmopathy (GO) is a disfiguring and sometimes blinding disease, which is characterized by inflammation and swelling of orbital tissues, with fibrosis and adipogenesis being predominant features. The aim of this study is to investigate whether the expression levels of fibrosis-related genes, especially that of connective tissue growth factor (CTGF), are altered in orbital fibroblasts of patients with GO. The role of oxidative stress in the regulation of CTGF expression in GO orbital fibroblasts is also examined. By a SYBR Green-based real time quantitative PCR (RT-QPCR), we demonstrated that the mRNA expression levels of fibronectin, apolipoprotein J, and CTGF in cultured orbital fibroblasts from patients with GO were significantly higher than those of age-matched normal controls (p = 0.007, 0.037, and 0.002, respectively). In addition, the protein expression levels of fibronectin, apolipoprotein J, and CTGF analyzed by Western blot were also significantly higher in GO orbital fibroblasts (p = 0.046, 0.032, and 0.008, respectively) as compared with the control. Furthermore, after treatment of orbital fibroblasts with a sub-lethal dose of hydrogen peroxide (200 μM H2O2), we found that the H2O2-induced increase of CTGF expression was more pronounced in the GO orbital fibroblasts as compared with those in normal controls (20% vs. 7%, p = 0.007). Importantly, pre-incubation with antioxidants including N-acetylcysteine (NAC) and vitamin C, respectively, resulted in significant attenuation of the induction of CTGF in GO orbital fibroblasts in response to H2O2 (p = 0.004 and 0.015, respectively). Taken together, we suggest that oxidative stress plays a role in the alteration of the expression of CTGF in GO orbital fibroblasts that may contribute to the pathogenesis and progression of GO. Antioxidants may be used in combination with the therapeutic agents for effective treatment of GO. PMID:26599235

  4. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in space

    NASA Astrophysics Data System (ADS)

    Wu, Honglu; Story, Michael; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Lu, Tao

    2016-07-01

    Microgravity, or an altered gravity environment from the Earth1g, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of these cells. Whether non-proliferating cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted onboard the International Space Station (ISS), confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days, respectively, for investigations of gene and miRNA expression profile changes in these cells. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67 positive cells. Gene and miRNA expression data indicated activation of NFkB and other growth related pathways involving HGF and Vegf along with down regulation of the Let-7 miRNA family. On Day 14 when the cells were mostly non-proliferating, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples with respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for αa-tubulin and fibronectin showed no difference between flown and ground samples. Taken together, our study suggests that in true non-dividing human fibroblast cells in culture, microgravity experienced in space has little effect on the gene and miRNA expression profiles.

  5. Normal Human Fibroblasts Express Pattern Recognition Receptors for Fungal (1→3)-β-d-Glucans

    PubMed Central

    Kougias, Panagiotis; Wei, Duo; Rice, Peter J.; Ensley, Harry E.; Kalbfleisch, John; Williams, David L.; Browder, I. William

    2001-01-01

    Fungal cell wall glucans nonspecifically stimulate various aspects of innate immunity. Glucans are thought to mediate their effects via interaction with membrane receptors on macrophages, neutrophils, and NK cells. There have been no reports of glucan receptors on nonimmune cells. We investigated the binding of a water-soluble glucan in primary cultures of normal human dermal fibroblasts (NHDF). Membranes from NHDF exhibited saturable binding with an apparent dissociation constant (KD) of 8.9 ± 1.9 μg of protein per ml and a maximum binding of 100 ± 8 resonance units. Competition studies demonstrated the presence of at least two glucan binding sites on NHDF. Glucan phosphate competed for all binding sites, with a KD of 5.6 μM (95% confidence interval [CI], 3.0 to 11 μM), while laminarin competed for 69% ± 6% of binding sites, with a KD of 3.7 μM (95% CI, 1.9 to 7.3 μM). Glucan (1 μg/ml) stimulated fibroblast NF-κB nuclear binding activity and interleukin 6 (IL-6) gene expression in a time-dependent manner. NF-κB was activated at 4, 8, and 12 h, while IL-6 mRNA levels were increased by 48% at 8 h. This is the first report of pattern recognition receptors for glucan on human fibroblasts and the first demonstration of glucan binding sites on cells other than leukocytes. It also provides the first evidence that glucans can directly modulate the functional activity of NHDF. These results provide new insights into the mechanisms by which the host recognizes and responds to fungal (1→3)-β-d-glucans and suggests that the response to glucans may not be confined to cells of the immune system. PMID:11349061

  6. Discoidin domain receptor 2-microRNA 196a-mediated negative feedback against excess type I collagen expression is impaired in scleroderma dermal fibroblasts.

    PubMed

    Makino, Katsunari; Jinnin, Masatoshi; Aoi, Jun; Hirano, Ayaka; Kajihara, Ikko; Makino, Takamitsu; Sakai, Keisuke; Fukushima, Satoshi; Inoue, Yuji; Ihn, Hironobu

    2013-01-01

    Systemic sclerosis (SSc) is characterized by excess collagen deposition in the skin, due to intrinsic transforming growth factor-β (TGF-β) activation. We tried to determine the expression and the role of discoidin domain receptor 2 (DDR2) in SSc. The expression of DDR2 mRNA and protein was significantly decreased in SSc dermal fibroblasts, which was recovered by knocking down TGF-β. The knockdown of DDR2 in normal fibroblasts induced microRNA-196a expression, which led to type I collagen downregulation, indicating that DDR2 itself has a negative effect on microRNA-196a expression and inducible effect on collagen expression. In SSc fibroblasts, however, the DDR2 knockdown did not affect TGF-β signaling and microRNA-196a expression. The microRNA-196a levels were significantly decreased in normal fibroblasts treated with TGF-β and in SSc fibroblasts. Taken together our data indicate that, in SSc fibroblasts, intrinsic TGF-β stimulation induces type I collagen expression, and also downregulates DDR2 expression. This probably acts as a negative feedback mechanism against excess collagen expression, as a decreased DDR2 expression is supposed to stimulate the microRNA-196a expression and further change the collagen expression. However, in SSc fibroblasts the microRNA-196a expression was downregulated by TGF-β signaling. DDR2-microRNA-196a pathway may be a previously unreported negative feedback system, and its impairment may be involved in the pathogenesis of SSc.

  7. Cleavage of Type I Collagen by Fibroblast Activation Protein-α Enhances Class A Scavenger Receptor Mediated Macrophage Adhesion.

    PubMed

    Mazur, Anna; Holthoff, Emily; Vadali, Shanthi; Kelly, Thomas; Post, Steven R

    2016-01-01

    Pathophysiological conditions such as fibrosis, inflammation, and tumor progression are associated with modification of the extracellular matrix (ECM). These modifications create ligands that differentially interact with cells to promote responses that drive pathological processes. Within the tumor stroma, fibroblasts are activated and increase the expression of type I collagen. In addition, activated fibroblasts specifically express fibroblast activation protein-α (FAP), a post-prolyl peptidase. Although FAP reportedly cleaves type I collagen and contributes to tumor progression, the specific pathophysiologic role of FAP is not clear. In this study, the possibility that FAP-mediated cleavage of type I collagen modulates macrophage interaction with collagen was examined using macrophage adhesion assays. Our results demonstrate that FAP selectively cleaves type I collagen resulting in increased macrophage adhesion. Increased macrophage adhesion to FAP-cleaved collagen was not affected by inhibiting integrin-mediated interactions, but was abolished in macrophages lacking the class A scavenger receptor (SR-A/CD204). Further, SR-A expressing macrophages localize with activated fibroblasts in breast tumors of MMTV-PyMT mice. Together, these results demonstrate that FAP-cleaved collagen is a substrate for SR-A-dependent macrophage adhesion, and suggest that by modifying the ECM, FAP plays a novel role in mediating communication between activated fibroblasts and macrophages.

  8. Endogenous and ectopic expression of telomere regulating genes in chicken embryonic fibroblasts

    SciTech Connect

    Michailidis, Georgios; Saretzki, Gabriele; Hall, Judith , E-Mail: Judith.hall@ncl.ac.uk

    2005-09-16

    In this study, we compared the endogenous expression of genes encoding telomere regulating proteins in cultured chicken embryonic fibroblasts (CEFs) and 10-day-old chicken embryos. CEFs maintained in vitro senesced and senescence was accompanied by reduced telomere length, telomerase activity, and expression of the chicken (c) TRF1 gene. There was no change in TRF2 gene expression although the major TRF2 transcript identified in 10-day-old chicken embryos encoded a truncated TRF2 protein (TRF2'), containing an N-terminal dimerisation domain but lacking a myb-related DNA binding domain and nuclear localisation signal. Senescence of the CEFs in vitro was associated with the loss of the TRF2' transcript, indicative of a novel function for the encoded protein. Senescence was also coupled with decreased expression of RAD51, but increased RAD52 expression. These data support that RAD51 independent recombination mechanisms do not function in vitro to maintain chicken telomeres. To attempt to rescue the CEFs from replicative senescence, we stably transfected passage 3 CEFs with the human telomerase reverse transcriptase (hTERT) catalytic subunit. While hTERT expression was detected in the stable transfectants neither telomerase activity nor the stabilisation of telomere length was observed, and the transfectant cells senesced at the same passage number as the untransfected cells. These data indicate that the human TERT is incompatible with the avian telomere maintenance apparatus and suggest the functioning of a species specific telomere system in the avian.

  9. Vascular endothelial growth factor receptor-1 (VEGFR-1) expression in human corneal fibroblast decreased with age

    PubMed Central

    Berthaut, Alexandre; Mirshahi, Pezhman; Benabbou, Nadia; Azzazene, Dalel; Bordu, Camille; Therwath, Amu; Legeais, Jean-marc

    2009-01-01

    Purpose Mechanisms by which fibroblast networks between stromal lamellae are laid in the corneal stroma are far from clear. We have investigated the role of vascular endothelial growth factor receptors (VEGFRs) by in vitro studies in the human corneal network formation obtained from donors whose ages ranged from 19 to 89 years. Methods Corneal fibroblasts were prepared from cornea donations. The functional properties of these cells to form networks were analyzed using a semi solid matrix (substratum) of Matrigel™. The presence of VEGF receptor-1 (VEGFR-1) and the functionality in these fibroblasts were investigated using immunofluorescence, molecular analysis (gene microarray, reverse transcription polymerase chain reaction [RT–PCR] and VEGFR siRNA transfections), and cell culture. Results Corneal fibroblasts from 61 donors were classified into two groups according to whether they formed (82%) a reticulum on Matrigel™ or not (18%). By RT–PCR and immunofluorescence analysis, we showed that corneal fibroblasts expressed VEGFR-1 (mRNA and protein). Further, cell culture analysis revealed that only the network (reticulum) forming corneal fibroblast expressed VEGFR-1 in contrast to non network-forming fibroblasts. Use of inhibitors such as VEGFR-1 siRNA transfection or neutralizing antibody (Avastin™) indicated that VEGFR-1 was essential to the formation of the corneal network in vitro. Conclusions The cell reticulum formation seemed to be directly related to the expression of VEGFR-1 in the corneal fibroblast, and this expression decreased with age. The decrease in VEGFR-1 expression is probably related to the diminution of autocrine functions, which may alter the overall tissular homeostasis. This may culminate in the gradual development of poor vision, which is observed in certain pathologies and in aging individuals. PMID:19816604

  10. Differential expression of collagenase by human fibroblasts and bone marrow stromal cells.

    PubMed

    Takahashi, G W; Moran, D; Andrews, D F; Singer, J W

    1994-02-01

    The bone marrow stroma, represented in long-term marrow culture by cells of the adherent layer, is composed of a heterogenous mixture of macrophages and mesenchymal cells, including fibroblasts, endothelial cells and adipocytes, in association with a proteoglycan matrix. This matrix, which is synthesized by the stroma, is capable of binding hematopoietic growth factors, and likely plays a major role in hematopoietic regulation. Clonally-derived non-transformed bone marrow stromal cells, propagated in the presence of basic fibroblast growth factor, were studied for expression of collagenase, an enzyme whose substrate, collagen, is a major component of the extracellular matrix. Expression of steady-state collagenase mRNA was undetectable in both unstimulated dermal fibroblasts and non-transformed marrow stromal cells. However, stimulation with interleukin 1 alpha (10 U/ml) for 24 h resulted in marked accumulation of collagenase mRNA in dermal fibroblast cells, yet failed to elicit a similar response in bone marrow stromal cells. Both marrow stromal cells and dermal fibroblasts constitutively expressed transcripts of collagen I, and rhIL-1 alpha upregulated transcripts of interleukin 6 in both these cells as well. Although similar in morphology, these data indicate that bone marrow stromal cells differ from fibroblasts in their response to IL-1. In the marrow microenvironment, where IL-1 may be secreted by a variety of cell types, such suppression of collagenase expression may serve to prevent unwanted mobilization of collagen from the glycoprotein matrix by marrow stromal cells.

  11. TGF-β1–Containing Exosomes from Injured Epithelial Cells Activate Fibroblasts to Initiate Tissue Regenerative Responses and Fibrosis

    PubMed Central

    Borges, Fernanda T.; Melo, Sonia A.; Özdemir, Berna C.; Kato, Noritoshi; Revuelta, Ignacio; Miller, Caroline A.; Gattone, Vincent H.; LeBleu, Valerie S.

    2013-01-01

    Hypoxia is associated with tissue injury and fibrosis but its functional role in fibroblast activation and tissue repair/regeneration is unknown. Using kidney injury as a model system, we demonstrate that injured epithelial cells produce an increased number of exosomes with defined genetic information to activate fibroblasts. Exosomes released by injured epithelial cells promote proliferation, α-smooth muscle actin expression, F-actin expression, and type I collagen production in fibroblasts. Fibroblast activation is dependent on exosomes delivering TGF-β1 mRNA among other yet to be identified moieties. This study suggests that TGF-β1 mRNA transported by exosomes constitutes a rapid response to initiate tissue repair/regenerative responses and activation of fibroblasts when resident parenchyma is injured. The results also inform potential utility of exosome-targeted therapies to control tissue fibrosis. PMID:23274427

  12. Adenosine monophosphate-activated protein kinase activation and suppression of inflammatory response by cell stretching in rabbit synovial fibroblasts.

    PubMed

    Kunanusornchai, Wanlop; Muanprasat, Chatchai; Chatsudthipong, Varanuj

    2016-12-01

    Joint mobilization is known to be beneficial in osteoarthritis (OA) patients. This study aimed to investigate the effect of stretching on adenosine monophosphate-activated protein kinase (AMPK) activity and its role in modulating inflammation in rabbit synovial fibroblasts. Uniaxial stretching of isolated rabbit synovial fibroblasts for ten min was performed. Stretching-induced AMPK activation, its underlying mechanism, and its anti-inflammatory effect were investigated using Western blot. Static stretching at 20 % of initial length resulted in AMPK activation characterized by expression of phosphorylated AMPK and phosphorylated acetyl-Co A carboxylase. AMP-activated protein kinase phosphorylation peaked 1 h after stretching and declined toward resting activity. Using cell viability assays, static stretching did not appear to cause cellular damage. Activation of AMPK involves Ca(2+) influx via a mechanosensitive L-type Ca(2+) channel, which subsequently raises intracellular Ca(2+) and activates AMPK via Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ). Interestingly, stretching suppressed TNFα-induced expression of COX-2, iNOS, and phosphorylated NF-κB. These effects were prevented by pretreatment with compound C, an AMPK inhibitor. These results suggest that mechanical stretching suppressed inflammatory responses in synovial fibroblasts via a L-type Ca(2+)-channel-CaMKKβ-AMPK-dependent pathway which may underlie joint mobilization's ability to alleviate OA symptoms.

  13. PGE2 Reduces MMP-14 and Increases Plasminogen Activator Inhibitor-1 in Cardiac Fibroblasts

    PubMed Central

    Kassem, Kamal M.; Clevenger, Margarette H.; Szandzik, David L.; Peterson, Edward; Harding, Pamela

    2014-01-01

    Prostaglandin E2 (PGE2) is elevated during cardiac injury and we have previously shown that mice lacking the PGE EP4 receptor display dilated cardiomyopathy (DCM) with increased expression of the membrane type matrix metalloproteinase, MMP-14. We thus hypothesized that PGE2 regulates expression of MMP-14 and also affects fibroblast migration. Primary cultures of neonatal rat ventricular fibroblasts (NVFs) were used to test the effects of PGE2. Gene and protein expression was assessed by real time RT-PCR and Western blot, MMP activity was determined by zymography and migration of NVF was assessed by motility in a transwell system. PGE2 reduced expression of MMP-14 and these effects were antagonized by an EP4 antagonist. An EP4 agonist mimicked the effect of PGE2. PGE2 also increased mRNA and protein levels of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of MMP activation. However, PGE2-stimulation of PAI-1 was mediated by the EP1/EP3 receptor and not EP4. Migration of NVF was assessed by motility in a transwell system. Treatment of NVFs with PGE2 reduced the number of cells migrating towards 10% FCS. Treatment with the EP2 agonist also reduced migration but did not affect MMP-14 expression or PAI-1. Our results suggest that PGE2 utilizes different receptors and mechanisms to ultimately decrease MMP expression and NVF migration. PMID:25263346

  14. PGE2 reduces MMP-14 and increases plasminogen activator inhibitor-1 in cardiac fibroblasts.

    PubMed

    Kassem, Kamal M; Clevenger, Margarette H; Szandzik, David L; Peterson, Edward; Harding, Pamela

    2014-10-01

    Prostaglandin E2 (PGE2) is elevated during cardiac injury and we have previously shown that mice lacking the PGE2 EP4 receptor display dilated cardiomyopathy (DCM) with increased expression of the membrane type matrix metalloproteinase, MMP-14. We thus hypothesized that PGE2 regulates expression of MMP-14 and also affects fibroblast migration. Primary cultures of neonatal rat ventricular fibroblasts (NVFs) were used to test the effects of PGE2. Gene and protein expression was assessed by real time RT-PCR and Western blot, MMP activity was determined by zymography and migration of NVF was assessed by motility in a transwell system. PGE2 reduced expression of MMP-14 and these effects were antagonized by an EP4 antagonist. An EP4 agonist mimicked the effect of PGE2. PGE2 also increased mRNA and protein levels of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of MMP activation. However, PGE2-stimulation of PAI-1 was mediated by the EP1/EP3 receptor and not EP4. Migration of NVF was assessed by motility in a transwell system. Treatment of NVFs with PGE2 reduced the number of cells migrating toward 10% FCS. Treatment with the EP2 agonist also reduced migration but did not affect MMP-14 expression or PAI-1. Our results suggest that PGE2 utilizes different receptors and mechanisms to ultimately decrease MMP expression and NVF migration. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Fibroblasts from phenotypically normal palmar fascia exhibit molecular profiles highly similar to fibroblasts from active disease in Dupuytren's Contracture

    PubMed Central

    2012-01-01

    Background Dupuytren's contracture (DC) is a fibroproliferative disorder characterized by the progressive development of a scar-like collagen-rich cord that affects the palmar fascia of the hand and leads to digital flexion contractures. DC is most commonly treated by surgical resection of the diseased tissue, but has a high reported recurrence rate ranging from 27% to 80%. We sought to determine if the transcriptomic profiles of fibroblasts derived from DC-affected palmar fascia, adjacent phenotypically normal palmar fascia, and non-DC palmar fascial tissues might provide mechanistic clues to understanding the puzzle of disease predisposition and recurrence in DC. Methods To achieve this, total RNA was obtained from fibroblasts derived from primary DC-affected palmar fascia, patient-matched unaffected palmar fascia, and palmar fascia from non-DC patients undergoing carpal tunnel release (6 patients in each group). These cells were grown on a type-1 collagen substrate (to better mimic their in vivo environments). Microarray analyses were subsequently performed using Illumina BeadChip arrays to compare the transcriptomic profiles of these three cell populations. Data were analyzed using Significance Analysis of Microarrays (SAM v3.02), hierarchical clustering, concordance mapping and Venn diagram. Results We found that the transcriptomic profiles of DC-disease fibroblasts and fibroblasts from unaffected fascia of DC patients exhibited a much greater overlap than fibroblasts derived from the palmar fascia of patients undergoing carpal tunnel release. Quantitative real time RT-PCR confirmed the differential expression of select genes validating the microarray data analyses. These data are consistent with the hypothesis that predisposition and recurrence in DC may stem, at least in part, from intrinsic similarities in the basal gene expression of diseased and phenotypically unaffected palmar fascia fibroblasts. These data also demonstrate that a collagen

  16. Diphenylhydantoin plays a role in gene expression related to cytoskeleton and protein adhesion in human normal palate fibroblasts.

    PubMed

    Pezzetti, Furio; Carinci, Francesco; Palmieri, Annalisa; Vizzotto, Laura; Moscheni, Claudia; Vertemati, Maurizio; Calastrini, Carla; Pellati, Agnese; Stabellini, Giordano

    2009-01-01

    Morphogenetic processes during palate development are related to extracellular matrix composition. The cell-extracellular matrix relation plays a role in cell activity and in gene expression. We studied the effect of diphenylhydantoin, a teratogen known to induce cleft palate in human newborns, on extracellular matrix production. We investigated whether diphenylhydantoin treatment caused any differences in glycosaminoglycans, collagen synthesis and gene expression in human normal palate fibroblasts. Human palate fibroblasts were maintained for 24 hours in serum-free 199 medium containing 5 microg/mL (3)H-glucosamine or (3)H proline hydrochloride. Collagen and glycosaminoglycan classes were then measured using biochemical methods, gene expression with microarray analysis and cytoskeleton components with immunofluorescent antibodies and computer analysis. In normal fibroblasts diphenylhydantoin reduced collagen and glycosaminoglycan synthesis with a marked effect on sulphated glycosaminoglycans. There were also substantial decreases in tubulin, vimentin and alpha-actin staining and an increase of vinculin compared to controls. Diphenylhydantoin acted on several genes related to the synthesis of cytoskeleton and adhesion membrane proteins. It inhibited caderin, caveolin, RTK and alpha-actin, and increased nectin, cytoplasmatic FRG vinculin, ITGA, ITGB extracellular matrix ligand and EDG2 gene expression. DNA binding gene expression, which plays a role in cell growth and senescence, was activated. Since cell activity is dependent on the cell morphology and extracellular matrix composition, these findings indicate that in human normal palate fibroblasts diphenylhydantoin can modify cytoskeletal components and extracellular matrix-cell adhesion, with consequent effects on gene expression. These changes might be related to anomalous palate development.

  17. Myocyte-Derived Hsp90 Modulates Collagen Upregulation via Biphasic Activation of STAT-3 in Fibroblasts during Cardiac Hypertrophy.

    PubMed

    Datta, Ritwik; Bansal, Trisha; Rana, Santanu; Datta, Kaberi; Datta Chaudhuri, Ratul; Chawla-Sarkar, Mamta; Sarkar, Sagartirtha

    2017-03-15

    Signal transducer and activator of transcription 3 (STAT-3)-mediated signaling in relation to upregulated collagen expression in fibroblasts during cardiac hypertrophy is well defined. Our recent findings have identified heat shock protein 90 (Hsp90) to be a critical modulator of fibrotic signaling in cardiac fibroblasts in this disease milieu. The present study was therefore intended to analyze the role of Hsp90 in the STAT-3-mediated collagen upregulation process. Our data revealed a significant difference between in vivo and in vitro results, pointing to a possible involvement of myocyte-fibroblast cross talk in this process. Cardiomyocyte-targeted knockdown of Hsp90 in rats (Rattus norvegicus) in which the renal artery was ligated showed downregulated collagen synthesis. Furthermore, the results obtained with cardiac fibroblasts conditioned with Hsp90-inhibited hypertrophied myocyte supernatant pointed toward cardiomyocytes' role in the regulation of collagen expression in fibroblasts during hypertrophy. Our study also revealed a novel signaling mechanism where myocyte-derived Hsp90 orchestrates not only p65-mediated interleukin-6 (IL-6) synthesis but also its release in exosomal vesicles. Such myocyte-derived exosomes and myocyte-secreted IL-6 are responsible in unison for the biphasic activation of STAT-3 signaling in cardiac fibroblasts that culminates in excess collagen synthesis, leading to severely compromised cardiac function during cardiac hypertrophy.

  18. Protective influence of hyaluronic acid on focal adhesion kinase activity in human skin fibroblasts exposed to ethanol.

    PubMed

    Donejko, Magdalena; Rysiak, Edyta; Galicka, Elżbieta; Terlikowski, Robert; Głażewska, Edyta Katarzyna; Przylipiak, Andrzej

    2017-01-01

    The aim of this study was to evaluate the effect of ethanol and hyaluronic acid (HA) on cell survival and apoptosis in cultured human skin fibroblasts. Regarding the mechanism of ethanol action on human skin fibroblasts, we investigated cell viability and apoptosis, expression of focal adhesion kinase (FAK), and the influence of HA on those processes. Studies were conducted in confluent human skin fibroblast cultures that were treated with 25 mM, 50 mM, and 100 mM ethanol or with ethanol and 500 µg/mL HA. Cell viability was examined using methyl thiazolyl tetrazolium (MTT) assay and NC-300 Nucleo-Counter. Imaging of the cells using a fluorescence microscope Pathway 855 was performed to measure FAK expression. Depending on the dosage, ethanol decreased cell viability and activated the process of apoptosis in human skin fibroblasts. HA prevented the negative influence of ethanol on cell viability and prevented apoptosis. The analysis of fluorescence imaging using BD Pathway 855 High-Content Bioimager showed the inhibition of FAK migration to the cell nucleus, depending on the increasing concentration of ethanol. This study proves that downregulation of signaling pathway of FAK is involved in ethanol-induced apoptosis in human skin fibroblasts. The work also indicates a protective influence of HA on FAK activity in human skin fibroblasts exposed to ethanol.

  19. Protective influence of hyaluronic acid on focal adhesion kinase activity in human skin fibroblasts exposed to ethanol

    PubMed Central

    Donejko, Magdalena; Rysiak, Edyta; Galicka, Elżbieta; Terlikowski, Robert; Głażewska, Edyta Katarzyna; Przylipiak, Andrzej

    2017-01-01

    Aim The aim of this study was to evaluate the effect of ethanol and hyaluronic acid (HA) on cell survival and apoptosis in cultured human skin fibroblasts. Regarding the mechanism of ethanol action on human skin fibroblasts, we investigated cell viability and apoptosis, expression of focal adhesion kinase (FAK), and the influence of HA on those processes. Materials and methods Studies were conducted in confluent human skin fibroblast cultures that were treated with 25 mM, 50 mM, and 100 mM ethanol or with ethanol and 500 µg/mL HA. Cell viability was examined using methyl thiazolyl tetrazolium (MTT) assay and NC-300 Nucleo-Counter. Imaging of the cells using a fluorescence microscope Pathway 855 was performed to measure FAK expression. Results Depending on the dosage, ethanol decreased cell viability and activated the process of apoptosis in human skin fibroblasts. HA prevented the negative influence of ethanol on cell viability and prevented apoptosis. The analysis of fluorescence imaging using BD Pathway 855 High-Content Bioimager showed the inhibition of FAK migration to the cell nucleus, depending on the increasing concentration of ethanol. Conclusion This study proves that downregulation of signaling pathway of FAK is involved in ethanol-induced apoptosis in human skin fibroblasts. The work also indicates a protective influence of HA on FAK activity in human skin fibroblasts exposed to ethanol. PMID:28293103

  20. Phenotypic differences in matrix metalloproteinase 2 activity between fibroblasts from 3 bovine muscles.

    PubMed

    Archile-Contreras, A C; Mandell, I B; Purslow, P P

    2010-12-01

    Different muscles in a beef carcass are known to respond differently to the same stimulus or animal growth pattern or both. This may complicate the search by the meat industry for production methods to render meat tender. One of the major differences between muscles in the same carcass is in the expression of intramuscular connective tissue. Current study investigates the existence of a phenotypic difference among fibroblasts from 3 bovine skeletal muscles as exemplified by the expression of matrix metalloproteinases (MMP) the main enzymes responsible for connective tissue turnover. The sensitivity of phenotypic differences to cell culture conditions (passage number, presence of growth factors from fetal serum) was also examined. Fibroblasts, the main cells responsible for the production and turnover of collagen were isolated from LM, semitendinosus (STN), and sternomandibularis (SMD) muscles from a bull calf and grown in DMEM, 10% fetal bovine serum, and 5% CO(2). Cell doubling times, survival time, resting expression, and activity of MMP and the effect of serum withdrawal in the culture media on MMP expression and activity were determined for each cell line during 15 passages. Fibroblasts isolated from the 3 muscles had different growth potentials. The shortest (P < 0.0001) cell doubling times for almost every passage were found in cells from STN muscle. Cells from the LM had a shorter (P < 0.0001) survival time in comparison with STN and SMD. Cells derived from the STN had greater values (P > 0.05) of MMP-2 activity in comparison with LM and SMD cells until passage 4. At passage 15, no activity was detected for any cell line. Serum withdrawal generally reduced MMP-2 activation but did not eliminate differences in activity between fibroblasts from the 3 muscles. These results suggest that fibroblasts from different locations are phenotypically different and may respond differently to the same growth or nutritional stimulus in vitro. This may be related to in vivo

  1. Spatially and temporally distinct expression of fibroblast connexins after sheep ventricular infarction.

    PubMed

    Camelliti, Patrizia; Devlin, Gerard P; Matthews, Kenneth G; Kohl, Peter; Green, Colin R

    2004-05-01

    Myocardial infarction leads to extensive changes in the organization of cardiac myocytes and fibroblasts, and changes in gap junction protein expression. In the immediate period following ischemia, reperfusion causes hypercontraction, spreading the necrotic lesion. Further progressive infarction continues over several weeks. In reperfusion injury, the nonspecific gap junction channel uncoupler heptanol limits necrosis. We hypothesize that gap junction coupling and fibroblast invasion provide a substrate for progressive infarction via a gap junction mediated bystander effect. A sheep coronary occlusion infarct model was used with samples collected at 12, 24 and 48 h, and 6, 12 and 30 d (days) post-infarction. Immunohistochemical labelling of gap junction connexins Cx40, Cx43, and Cx45 was combined with cell-specific markers for fibroblasts (anti-vimentin) and myocytes (anti-myomesin). Double and triple immunolabelling and confocal microscopy were used to follow changes in cardiac myocyte morphology, fibroblast content and gap junction expression after myocardial infarction. Gap junction protein levels and fibroblast numbers were quantified. Within 12 h of ischemia, myocyte viability is impaired within small islands in the ischemic region. These islands spread and fuse into larger infarct zones until 12 d post-infarction. Thereafter, surviving myocytes within the infarct and in the border-zone appear to become stabilized. Distant from the infarct, continuing myocyte disruption is regularly observed, even after 30 d. Cx43 becomes redistributed from intercalated discs to the lateral surface of structurally compromised myocytes within 12 d. Cx45 expressing fibroblasts infiltrate the damaged region within 24 h, becoming most numerous at 6-12 d post-infarction, with peak Cx45 levels at 6 d. Later, Cx43 expressing fibroblasts are observed, and the related Cx43 label increases over the 30 d observation period, even though fibroblast numbers decline after 12 d. Cx40 was only

  2. Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts.

    PubMed

    Volonte, Daniela; Zhang, Kun; Lisanti, Michael P; Galbiati, Ferruccio

    2002-07-01

    Caveolae are vesicular invaginations of the plasma membrane. Caveolin-1 is the principal structural component of caveolae in vivo. Several lines of evidence are consistent with the idea that caveolin-1 functions as a "transformation suppressor" protein. In fact, caveolin-1 mRNA and protein expression are lost or reduced during cell transformation by activated oncogenes. Interestingly, the human caveolin-1 gene is localized to a suspected tumor suppressor locus (7q31.1). We have previously demonstrated that overexpression of caveolin-1 arrests mouse embryonic fibroblasts in the G(0)/G(1) phase of the cell cycle through activation of a p53/p21-dependent pathway, indicating a role of caveolin-1 in mediating growth arrest. However, it remains unknown whether overexpression of caveolin-1 promotes cellular senescence in vivo. Here, we demonstrate that mouse embryonic fibroblasts transgenically overexpressing caveolin-1 show: 1) a reduced proliferative lifespan; 2) senescence-like cell morphology; and 3) a senescence-associated increase in beta-galactosidase activity. These results indicate for the first time that the expression of caveolin-1 in vivo is sufficient to promote and maintain the senescent phenotype. Subcytotoxic oxidative stress is known to induce premature senescence in diploid fibroblasts. Interestingly, we show that subcytotoxic level of hydrogen peroxide induces premature senescence in NIH 3T3 cells and increases endogenous caveolin-1 expression. Importantly, quercetin and vitamin E, two antioxidant agents, successfully prevent the premature senescent phenotype and the up-regulation of caveolin-1 induced by hydrogen peroxide. Also, we demonstrate that hydrogen peroxide alone, but not in combination with quercetin, stimulates the caveolin-1 promoter activity. Interestingly, premature senescence induced by hydrogen peroxide is greatly reduced in NIH 3T3 cells harboring antisense caveolin-1. Importantly, induction of premature senescence is recovered when

  3. Expression of Caveolin-1 Induces Premature Cellular Senescence in Primary Cultures of Murine Fibroblasts

    PubMed Central

    Volonte, Daniela; Zhang, Kun; Lisanti, Michael P.; Galbiati, Ferruccio

    2002-01-01

    Caveolae are vesicular invaginations of the plasma membrane. Caveolin-1 is the principal structural component of caveolae in vivo. Several lines of evidence are consistent with the idea that caveolin-1 functions as a “transformation suppressor” protein. In fact, caveolin-1 mRNA and protein expression are lost or reduced during cell transformation by activated oncogenes. Interestingly, the human caveolin-1 gene is localized to a suspected tumor suppressor locus (7q31.1). We have previously demonstrated that overexpression of caveolin-1 arrests mouse embryonic fibroblasts in the G0/G1 phase of the cell cycle through activation of a p53/p21-dependent pathway, indicating a role of caveolin-1 in mediating growth arrest. However, it remains unknown whether overexpression of caveolin-1 promotes cellular senescence in vivo. Here, we demonstrate that mouse embryonic fibroblasts transgenically overexpressing caveolin-1 show: 1) a reduced proliferative lifespan; 2) senescence-like cell morphology; and 3) a senescence-associated increase in β-galactosidase activity. These results indicate for the first time that the expression of caveolin-1 in vivo is sufficient to promote and maintain the senescent phenotype. Subcytotoxic oxidative stress is known to induce premature senescence in diploid fibroblasts. Interestingly, we show that subcytotoxic level of hydrogen peroxide induces premature senescence in NIH 3T3 cells and increases endogenous caveolin-1 expression. Importantly, quercetin and vitamin E, two antioxidant agents, successfully prevent the premature senescent phenotype and the up-regulation of caveolin-1 induced by hydrogen peroxide. Also, we demonstrate that hydrogen peroxide alone, but not in combination with quercetin, stimulates the caveolin-1 promoter activity. Interestingly, premature senescence induced by hydrogen peroxide is greatly reduced in NIH 3T3 cells harboring antisense caveolin-1. Importantly, induction of premature senescence is recovered when

  4. Therapeutic transdifferentiation of human fibroblasts into endothelial cells using forced expression of lineage-specific transcription factors.

    PubMed

    Wong, Wing Tak; Cooke, John P

    2016-01-01

    Transdifferentiation is the direct conversion from one somatic cell type into another desired somatic cell type. This reprogramming method offers an attractive approach for regenerative medicine. Here, we demonstrate that neonatal fibroblasts can be transdifferentiated into endothelial cells using only four endothelial transcription factors, namely, ETV2, FLI1, GATA2, and KLF4. We observed a significant up-regulation of endothelial genes including KDR, CD31, CD144, and vWF in human neonatal foreskin (BJ) fibroblasts infected with the lentiviral construct encoding the open reading frame of the four transcription factors. We observed morphological changes in BJ fibroblasts from the fibroblastic spindle shape into a more endothelial-like cobblestone structures. Fluorescence-activated cell sorting analysis revealed that ~16% of the infected cells with the lentiviral constructs encoding 4F expressed CD31. The sorted cells were allowed to expand for 2 weeks and these cells were immunostained and found to express endothelial markers CD31. The induced endothelial cells also incorporated fluorescence-labeled acetylated low-density lipoprotein and efficiently formed capillary-like networks when seeded on Matrigel. These results suggested that the induced endothelial cells were functional in vitro. Taken together, we successfully demonstrated the direct conversion of human neonatal fibroblasts into endothelial cells by transduction of lentiviral constructs encoding endothelial lineage-specific transcription factors ETV2, FLI1, GATA2, and KLF4. The directed differentiation of fibroblasts into endothelial cells may have significant utility in diseases characterized by fibrosis and loss of microvasculature.

  5. Gene expression in response to cyclic mechanical stretch in primary human dermal fibroblasts.

    PubMed

    Reichenbach, Maria; Reimann, Kerstin; Reuter, Hendrik

    2014-12-01

    The human dermal skin is permanently exposed to mechanical stress, for instance during facial expression, which might cause wrinkles with age. Cyclic mechanical stretching of cells results in cellular and cytoskeleton alignment perpendicular to the stretch direction regulating cellular response. With gene expression profiling it was aimed to identify the differentially expressed genes associated with the regulation of the cytoskeleton to investigate the stretch-induced cell alignment mechanism. Here, the transcription activity of the genome in response to cyclic mechanical stress was measured using DNA microarray technology with Agilent SurePrint G3 Human GE 8x60k Microarrays, based on the overall measurement of the mRNA. Gene expression was measured at the beginning of the alignment process showing first reoriented cells after 5 h stretching and at the end after 24 h, where nearly all cells are aligned. Gene expression data of control vs. stretched primary human dermal fibroblasts after 5 h and 24 h demonstrated the regulation of differentially expressed genes associated with metabolism, differentiation and morphology and were deposited at http://www.ncbi.nlm.nih.gov/geo with the accession number GSE58389.

  6. Hydroxylamine acutely activates glucose uptake in L929 fibroblast cells.

    PubMed

    Louters, Larry L; Scripture, Jared P; Kuipers, David P; Gunnink, Stephen M; Kuiper, Benjamin D; Alabi, Ola D

    2013-04-01

    Nitroxyl (HNO) has a unique, but varied, set of biological properties including beneficial effects on cardiac contractility and stimulation of glucose uptake by GLUT1. These biological effects are largely initiated by HNO's reaction with cysteine residues of key proteins. The intracellular production of HNO has not yet been demonstrated, but the small molecule, hydroxylamine (HA), has been suggested as possible intracellular source. We examined the effects of this molecule on glucose uptake in L929 fibroblast cells. HA activates glucose uptake from 2 to 5-fold within two minutes. Prior treatment with thiol-active compounds, such as iodoacetamide (IA), cinnamaldehyde (CA), or phenylarsine oxide (PAO) blocks HA-activation of glucose uptake. Incubation of HA with the peroxidase inhibitor, sodium azide, also blocks the stimulatory effects of HA. This suggests that HA is oxidized to HNO by L929 fibroblast cells, which then reacts with cysteine residues to exert its stimulatory effects. The data suggest that GLUT1 is acutely activated in L929 cells by modification of cysteine residues, possibly the formation of a disulfide bond within GLUT1 itself. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. Fibroblast Growth Factor Receptors (FGFRs) in Human Sperm: Expression, Functionality and Involvement in Motility Regulation

    PubMed Central

    Saucedo, Lucía; Buffa, Gabriela N.; Rosso, Marina; Guillardoy, Tomás; Góngora, Adrian; Munuce, María J.

    2015-01-01

    Fibroblast growth factors receptors (FGFRs) have been widely characterized in somatic cells, but there is scarce evidence of their expression and function in mammalian gametes. The objective of the present study was to evaluate the expression of FGFRs in human male germ cells, to determine sperm FGFR activation by the FGF2 ligand and their participation in the regulation of sperm motility. The expression of FGFR1, 2, 3 and 4 mRNAs and proteins in human testis and localization of these receptors in germ cells of the seminiferous epithelium was demonstrated. In ejaculated sperm, FGFRs were localized to the acrosomal region and flagellum. Sperm exposure to FGF2 caused an increase in flagellar FGFR phosphorylation and activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB or Akt) signaling pathways. Incubation with FGF2 led to a significant increase in the percentage of total and progressive sperm motility, as well as in sperm kinematics. All responses were prevented by sperm preincubation with BGJ398, a specific inhibitor of FGFR tyrosine kinase activity. In addition to confirming the expression of FGFRs in germ cells of the human testis, our study describes for the first time the presence, localization and functionality of human sperm FGFRs, and provides evidence of the beneficial effect of FGF2 upon sperm motility. PMID:25970615

  8. Fibroblast Growth Factor Receptors (FGFRs) in Human Sperm: Expression, Functionality and Involvement in Motility Regulation.

    PubMed

    Saucedo, Lucía; Buffa, Gabriela N; Rosso, Marina; Guillardoy, Tomás; Góngora, Adrian; Munuce, María J; Vazquez-Levin, Mónica H; Marín-Briggiler, Clara

    2015-01-01

    Fibroblast growth factors receptors (FGFRs) have been widely characterized in somatic cells, but there is scarce evidence of their expression and function in mammalian gametes. The objective of the present study was to evaluate the expression of FGFRs in human male germ cells, to determine sperm FGFR activation by the FGF2 ligand and their participation in the regulation of sperm motility. The expression of FGFR1, 2, 3 and 4 mRNAs and proteins in human testis and localization of these receptors in germ cells of the seminiferous epithelium was demonstrated. In ejaculated sperm, FGFRs were localized to the acrosomal region and flagellum. Sperm exposure to FGF2 caused an increase in flagellar FGFR phosphorylation and activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB or Akt) signaling pathways. Incubation with FGF2 led to a significant increase in the percentage of total and progressive sperm motility, as well as in sperm kinematics. All responses were prevented by sperm preincubation with BGJ398, a specific inhibitor of FGFR tyrosine kinase activity. In addition to confirming the expression of FGFRs in germ cells of the human testis, our study describes for the first time the presence, localization and functionality of human sperm FGFRs, and provides evidence of the beneficial effect of FGF2 upon sperm motility.

  9. Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis

    PubMed Central

    Li, Jianzhong; Ren, Jiafa; Liu, Xin; Jiang, Lei; He, Weichun; Yuan, Weiping; Yang, Junwei; Dai, Chunsun

    2015-01-01

    The mammalian target of rapamycin (mTOR) was recently identified in two structurally distinct multiprotein complexes: mTORC1 and mTORC2. Previously, we found that Rictor/mTORC2 protects against cisplatin-induced acute kidney injury, but the role and mechanisms for Rictor/mTORC2 in TGFβ1-induced fibroblast activation and kidney fibrosis remains unknown. To study this, we initially treated NRK-49F cells with TGFβ1 and found that TGFβ1 could activate Rictor/mTORC2 signaling in cultured cells. Blocking Rictor/mTORC2 signaling with Rictor or Akt1 small interfering RNAs markedly inhibited TGFβ1-induced fibronection and α-smooth muscle actin expression. Ensuing western blotting or immunostaining results showed that Rictor/mTORC2 signaling was activated in kidney interstitial myofibroblasts from mice with unilateral ureteral obstruction. Next, a mouse model with fibroblast-specific deletion of Rictor was generated. These knockout mice were normal at birth and had no obvious kidney dysfunction or kidney morphological abnormality within 2 months of birth. Compared with control littermates, the kidneys of Rictor knockout mice developed less interstitial extracellular matrix deposition and inflammatory cell infiltration at 1 or 2 weeks after ureteral obstruction. Thus our study suggests that Rictor/mTORC2 signaling activation mediates TGFβ1-induced fibroblast activation and contributes to the development of kidney fibrosis. This may provide a therapeutic target for chronic kidney diseases. PMID:25970154

  10. Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis.

    PubMed

    Li, Jianzhong; Ren, Jiafa; Liu, Xin; Jiang, Lei; He, Weichun; Yuan, Weiping; Yang, Junwei; Dai, Chunsun

    2015-09-01

    The mammalian target of rapamycin (mTOR) was recently identified in two structurally distinct multiprotein complexes: mTORC1 and mTORC2. Previously, we found that Rictor/mTORC2 protects against cisplatin-induced acute kidney injury, but the role and mechanisms for Rictor/mTORC2 in TGFβ1-induced fibroblast activation and kidney fibrosis remains unknown. To study this, we initially treated NRK-49F cells with TGFβ1 and found that TGFβ1 could activate Rictor/mTORC2 signaling in cultured cells. Blocking Rictor/mTORC2 signaling with Rictor or Akt1 small interfering RNAs markedly inhibited TGFβ1-induced fibronection and α-smooth muscle actin expression. Ensuing western blotting or immunostaining results showed that Rictor/mTORC2 signaling was activated in kidney interstitial myofibroblasts from mice with unilateral ureteral obstruction. Next, a mouse model with fibroblast-specific deletion of Rictor was generated. These knockout mice were normal at birth and had no obvious kidney dysfunction or kidney morphological abnormality within 2 months of birth. Compared with control littermates, the kidneys of Rictor knockout mice developed less interstitial extracellular matrix deposition and inflammatory cell infiltration at 1 or 2 weeks after ureteral obstruction. Thus our study suggests that Rictor/mTORC2 signaling activation mediates TGFβ1-induced fibroblast activation and contributes to the development of kidney fibrosis. This may provide a therapeutic target for chronic kidney diseases.

  11. Activation of PPAR-γ inhibits PDGF-induced proliferation of mouse renal fibroblasts.

    PubMed

    Lu, Jiamei; Shi, Jianhua; Gui, Baosong; Yao, Ganglian; Wang, Li; Ou, Yan; Zhu, Dan; Ma, Liqun; Ge, Heng; Fu, Rongguo

    2016-10-15

    Recent studies have shown that activation of peroxisome proliferators activated receptor-γ (PPAR-γ) ameliorates renal interstitial fibrosis (RIF) in animal model. Yet, the underlying molecular mechanisms remain still largely unknown. Here, we investigated the hypothesis that activation of PPAR-γ regulates renal remodeling by modulating proliferation of primary cultured renal fibroblasts. In our present study, platelet-derived growth factor-AA (PDGF-AA), a key isoform of PDGF superfamily as mitogen in RIF, was applied to stimulate renal fibroblasts, the selective inhibitor or sequence specific siRNA of PI3K, skp2 or PPAR-γ was used to investigate the involvement of above molecular mediators in PDGF-AA-induced cell proliferation. Our results demonstrate that PDGF-AA induced proliferation of renal fibroblasts by activating PI3K/AKT signaling and resultant skp2 production. Pre-stimulation of cells with rosiglitazone or adenovirus carrying PPAR-γ cDNA (AdPPAR-γ) blocked PDGF-AA-stimulated cell proliferation, this effect was particularly coupled to PPAR-γ inhibition of AKT phosphorylation and skp2 expression. Inhibition of PPAR-γ by GW9662 restored the suppression of activated PPAR-γ on phosphorylation of AKT and subsequent skp2 production. Our results indicate that activation of PI3K/AKT signaling and resultant skp2 generation mediated PDGF-induced proliferation of renal fibroblasts. Activation of PPAR-γ inhibited cell proliferation by inhibition of AKT phosphorylation and its down-streams.

  12. 18ß-glycyrrhetinic acid derivative promotes proliferation, migration and aquaporin-3 expression in human dermal fibroblasts.

    PubMed

    Hung, Chi-Feng; Hsiao, Chien-Yu; Hsieh, Wen-Hao; Li, Hsin-Ju; Tsai, Yi-Ju; Lin, Chun-Nan; Chang, Hsun-Hsien; Wu, Nan-Lin

    2017-01-01

    Licorice (Glycyrrhiza) species have been widely used as a traditional medicine and a natural sweetener in foods. The 18β-glycyrrhetinic acid (18β-GA) is a bioactive compound in licorice that exhibits potential anti-cancer, anti-inflammatory, and anti-microbial activities. Many synthesized derivatives of 18β-GA have been reported to be cytotoxic and suggested for the treatment of malignant diseases. In this study, we explored the possible pharmacological roles of an 18β-GA derivative in skin biology using primary human dermal fibroblasts and HaCaT keratinocytes as cell models. We found that this 18β-GA derivative did not cause cell death, but significantly enhanced the proliferation of dermal fibroblasts and HaCaT keratinocytes. A scratch wound healing assay revealed that the 18β-GA derivative promoted the migration of fibroblasts. Due to the important role of aquaporin-3 in cell migration and proliferation, we also investigated the expression of aquaporin-3 and found this compound up-regulated the expression of aquaporin-3 in dermal fibroblasts and HaCaT keratinocytes. In dermal fibroblasts, the 18β-GA derivative induced the phosphorylation of Akt, ERK, and p38. The inhibitor of Akt predominantly suppressed the 18β-GA derivative-induced expression of aquaporin-3. Collectively, this compound had a positive effect on the proliferation, migration, and aquaporin-3 expression of skin cells, implying its potential role in the treatment of skin diseases characterized by impaired wound healing or dermal defects.

  13. TAZ contributes to pulmonary fibrosis by activating profibrotic functions of lung fibroblasts

    PubMed Central

    Noguchi, Satoshi; Saito, Akira; Mikami, Yu; Urushiyama, Hirokazu; Horie, Masafumi; Matsuzaki, Hirotaka; Takeshima, Hideyuki; Makita, Kosuke; Miyashita, Naoya; Mitani, Akihisa; Jo, Taisuke; Yamauchi, Yasuhiro; Terasaki, Yasuhiro; Nagase, Takahide

    2017-01-01

    Transcriptional coactivator with PDZ-binding motif (TAZ) regulates a variety of biological processes. Nuclear translocation and activation of TAZ are regulated by multiple mechanisms, including actin cytoskeleton and mechanical forces. TAZ is involved in lung alveolarization during lung development and Taz-heterozygous mice are resistant to bleomycin-induced lung fibrosis. In this study, we explored the roles of TAZ in the pathogenesis of idiopathic pulmonary fibrosis (IPF) through histological analyses of human lung tissues and cell culture experiments. TAZ was highly expressed in the fibroblastic foci of lungs from patients with IPF. TAZ controlled myofibroblast marker expression, proliferation, migration, and matrix contraction in cultured lung fibroblasts. Importantly, actin stress fibers and nuclear accumulation of TAZ were more evident when cultured on a stiff matrix, suggesting a feedback mechanism to accelerate fibrotic responses. Gene expression profiling revealed TAZ-mediated regulation of connective tissue growth factor (CTGF) and type I collagen. Clinical relevance of TAZ-regulated gene signature was further assessed using publicly available transcriptome data. These findings suggest that TAZ is involved in the pathogenesis of IPF through multifaceted effects on lung fibroblasts. PMID:28195168

  14. Immunization of stromal cell targeting fibroblast activation protein providing immunotherapy to breast cancer mouse model.

    PubMed

    Meng, Mingyao; Wang, Wenju; Yan, Jun; Tan, Jing; Liao, Liwei; Shi, Jianlin; Wei, Chuanyu; Xie, Yanhua; Jin, Xingfang; Yang, Li; Jin, Qing; Zhu, Huirong; Tan, Weiwei; Yang, Fang; Hou, Zongliu

    2016-08-01

    Unlike heterogeneous tumor cells, cancer-associated fibroblasts (CAF) are genetically more stable which serve as a reliable target for tumor immunotherapy. Fibroblast activation protein (FAP) which is restrictively expressed in tumor cells and CAF in vivo and plays a prominent role in tumor initiation, progression, and metastasis can function as a tumor rejection antigen. In the current study, we have constructed artificial FAP(+) stromal cells which mimicked the FAP(+) CAF in vivo. We immunized a breast cancer mouse model with FAP(+) stromal cells to perform immunotherapy against FAP(+) cells in the tumor microenvironment. By forced expression of FAP, we have obtained FAP(+) stromal cells whose phenotype was CD11b(+)/CD34(+)/Sca-1(+)/FSP-1(+)/MHC class I(+). Interestingly, proliferation capacity of the fibroblasts was significantly enhanced by FAP. In the breast cancer-bearing mouse model, vaccination with FAP(+) stromal cells has significantly inhibited the growth of allograft tumor and reduced lung metastasis indeed. Depletion of T cell assays has suggested that both CD4(+) and CD8(+) T cells were involved in the tumor cytotoxic immune response. Furthermore, tumor tissue from FAP-immunized mice revealed that targeting FAP(+) CAF has induced apoptosis and decreased collagen type I and CD31 expression in the tumor microenvironment. These results implicated that immunization with FAP(+) stromal cells led to the disruption of the tumor microenvironment. Our study may provide a novel strategy for immunotherapy of a broad range of cancer.

  15. APN/CD13 Is Over-expressed by Psoriatic Fibroblasts and Is Modulated by CGRP and IL-4 But not by Retinoic Acid Treatment.

    PubMed

    Gerbaud, Pascale; Guibourdenche, Jean; Jarray, Rafika; Conti, Marc; Palmic, Patricia; Leclerc-Mercier, Stéphanie; Bruneau, Julie; Hermine, Olivier; Lepelletier, Yves; Raynaud, Françoise

    2017-04-07

    Psoriasis vulgaris is a common skin inflammatory disease characterized by recurrent flare episodes associated with scaly well-demarcated skin plaques. Skin biopsies from psoriatic patients with high PASI score (22.67 ± 8.67) and from HD were used to study APN/CD13. APN/CD13 is over-expressed in LP and nLP compare to HD skins and fibroblasts. This over-expression is positively correlated with specific enzymatic activity enhancement. However, discrepancies between APN/CD13 expression in LP and nLP prompt us to focus our study on APN/CD13 modulation. Calcitonin Gene Related Peptide (CGRP), a neuropeptide, positively modulated expression and activity of APN/CD13. CGRP consistently induced IL4 secretion, which is also involved in the increase of APN/CD13 expression and activity, which is significantly reversed using IL-4 blocking antibody. Surprisingly, retinoic acid altered the APN/CD13 enzymatic activity only in nLP fibroblasts without modification of APN/CD13 expression. APN/CD13 is over-expressed on psoriatic fibroblasts and exerted high level of activity compare to HD fibroblasts. Taken together, several factors such as CGRP and IL-4 acted on positive regulation of APN/CD13 expression and activity. This study highlighted the interest of APN/CD13 as a new potential target, which should be investigated in psoriasis. This article is protected by copyright. All rights reserved.

  16. Ergosterol peroxide from Cordyceps cicadae ameliorates TGF-β1-induced activation of kidney fibroblasts.

    PubMed

    Zhu, Rong; Zheng, Rong; Deng, Yueyi; Chen, Yiping; Zhang, Shuwei

    2014-02-15

    Chronic kidney disease is a growing public health problem with an urgent need for new pharmacological agents. Ergosterol peroxide (EP) is the major sterol produced by Cordyceps cicadae Shing (C. cicadae), a widely used traditional Chinese medicine. C. cicadae has been used to treat many kinds of diseases and has a potential benefit on renoprotection. This study aimed to investigate the anti-fibrotic effects of EP as well as the underlying mechanisms. A normal rat kidney fibroblast cell line (NRK-49F) was stimulated to undergo fibroblast activation by transforming growth factor-β1 (TGF-β1) and EP treatment was applied to explore its potential anti-fibrotic effects. Cell proliferation was investigated using MTT analysis. Fibrosis-associated protein expression was analyzed using immunohistochemistry and/or Western blotting. EP treatment attenuated TGF-β1-induced renal fibroblast proliferation, expression of cytoskeleton protein and CTGF, as well as ECM production. Additionally, EP blocked TGF-β1-stimulated phosphorylation of ERK1/2, p38 and JNK pathway. Moreover, the TGF-β1-induced expression of fibronectin was attenuated by either inhibition of MAPKs or by EP treatment. In conclusion, our findings demonstrate that EP is able to suppress TGF-β1-induced fibroblasts activation in NRK-49F. This new information provides a line of theoretical evidence supporting the use of C. cicadae in the intervention of kidney disease and suggests that EP has the potential to be developed as a therapeutic agent to prevent renal fibrosis.

  17. ALK1 heterozygosity increases extracellular matrix protein expression, proliferation and migration in fibroblasts.

    PubMed

    Muñoz-Félix, José M; Perretta-Tejedor, Nuria; Eleno, Nélida; López-Novoa, José M; Martínez-Salgado, Carlos

    2014-06-01

    Fibrosis is a pathological situation in which excessive amounts of extracellular matrix (ECM) are deposited in the tissue. Myofibroblasts play a crucial role in the development and progress of fibrosis as they actively synthesize ECM components such as collagen I, fibronectin and connective tissue growth factor (CTGF) and cause organ fibrosis. Transforming growth factor beta 1 (TGF-β1) plays a major role in tissue fibrosis. Activin receptor-like kinase 1 (ALK1) is a type I receptor of TGF-β1 with an important role in angiogenesis whose function in cellular biology and TGF-β signaling is well known in endothelial cells, but its role in fibroblast biology and its contribution to fibrosis is poorly studied. We have recently demonstrated that ALK1 regulates ECM protein expression in a mouse model of obstructive nephropathy. Our aim was to evaluate the role of ALK1 in several processes involved in fibrosis such as ECM protein expression, proliferation and migration in ALK1(+/+) and ALK1(+/-) mouse embryonic fibroblasts (MEFs) after TGF-β1 stimulations and inhibitors. ALK1 heterozygous MEFs show increased expression of ECM proteins (collagen I, fibronectin and CTGF/CCN2), cell proliferation and migration due to an alteration of TGF-β/Smad signaling. ALK1 heterozygous disruption shows an increase of Smad2 and Smad3 phosphorylation that explains the increases in CTGF/CCN2, fibronectin and collagen I, proliferation and cell motility observed in these cells. Therefore, we suggest that ALK1 plays an important role in the regulation of ECM protein expression, proliferation and migration.

  18. Fibroblast growth factor 7 inhibits cholesterol 7{alpha}-hydroxylase gene expression in hepatocytes

    SciTech Connect

    Sun, Zhichao; Yu, Xuemei; Wu, Weibin; Jia, Dongwei; Chen, Yinle; Ji, Lingling; Liu, Xijun; Peng, Xiaomin; Li, Yintao; Yang, Lili; Ruan, Yuanyuan; Gu, Jianxin; Ren, Shifang; Zhang, Songwen

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer FGF7 strongly and rapidly down-regulates the expression of CYP7A1 in hepatocytes. Black-Right-Pointing-Pointer FGF7 suppresses the expression of CYP7A1 via FGFR2 and downstream JNK activation. Black-Right-Pointing-Pointer Blocking FGF7 abrogates HSC-induced inhibition of CYP7A1 expression in hepatocytes. -- Abstract: Cholesterol 7{alpha}-hydroxylase (CYP7A1) is the initial and rate-limiting enzyme for bile acid synthesis. Transcription of the CYP7A1 gene is regulated by bile acids, nuclear receptors and cytokines. Fibroblast growth factor 7 (FGF7) secreted from activated hepatic stellate cells (HSC) during chronic liver fibrosis regulates hepatocyte survival and liver regeneration. In the carbon tetrachloride (CCl{sub 4})-induced fibrotic mouse liver, we demonstrated that the expression of CYP7A1 was largely decreased while the expression of FGF7 was significantly increased. We further demonstrated that FGF7 inhibited CYP7A1 gene expression in hepatocytes. Knockdown study by short interfering RNA, kinase inhibition and phosphorylation assays revealed that the suppression of CYP7A1 expression by FGF7 was mediated by FGFR2 and its downstream JNK signaling cascade. The FGF7 neutralizing antibody restored CYP7A1 expression in Hep3B cells treated with conditioned medium from HSC. In summary, the data suggest that FGF7 is a novel regulator of CYP7A1 expression in hepatocytes and may prevent hepatocytes from accumulating toxic bile acids during liver injury and fibrosis.

  19. Expression of fibroblast growth factor 19 is associated with recurrence and poor prognosis of hepatocellular carcinoma.

    PubMed

    Hyeon, Jiyeon; Ahn, Soomin; Lee, Jae Jun; Song, Dae Hyun; Park, Cheol-Keun

    2013-07-01

    Fibroblast growth factor 19 (FGF19)-mediated activation of mitogen-activated protein kinase and the β-catenin pathway may be involved in the development and progression of hepatocellular carcinoma. This study aimed to elucidate the prognostic significance of FGF19 protein expression in hepatocellular carcinoma patients. By immunohistochemistry, we investigated the expression of FGF19 protein in tumor tissue from 281 hepatocellular carcinoma patients who underwent curative hepatectomy. Univariate and multivariate analyses were performed to evaluate its predictive value for tumor recurrence and survival of patients. The median follow-up period was 75.6 months. FGF19 protein expression was observed in 135 (48.0 %) of the 281 hepatocellular carcinomas. FGF19 expression was significantly associated with larger tumor size (P < 0.001), and higher BCLC stage (P = 0.001). FGF19 expression was correlated with the early recurrence (P < 0.001), but not with the late recurrence (P = 0.582). FGF19 expression (P = 0.002), viral etiology (P = 0.028), and intrahepatic metastasis (P < 0.001) were independent predictors of early recurrence. Multivariate analyses of survival revealed that FGF19 expression (P < 0.001), intrahepatic metastasis (P < 0.001), and liver cirrhosis (P = 0.019) were independent predictors of shorter disease-free survival. FGF19 expression (P = 0.005), larger tumor size (P = 0.038), major portal vein invasion (P = 0.048), intrahepatic metastasis (P < 0.001), lower albumin level (P = 0.024), and liver cirrhosis (P = 0.031) were independent predictors of shorter disease-specific survival. FGF19 protein expression might be an effective predictor of early recurrence and a marker for poor prognosis of hepatocellular carcinoma after curative hepatectomy, indicating that FGF19 might be a potential preventive target in hepatocellular carcinoma patients.

  20. Pancreatic fibroblasts smoothen their activities via AKT–GLI2–TGFα

    PubMed Central

    Rustgi, Anil K.

    2016-01-01

    Pancreatic stromal fibroblasts provide structural support. Activated fibroblasts are critical in the tumor microenvironment. In this issue of Genes & Development, Liu and colleagues (pp. 1943–1955) unravel the finding that depletion of Smoothened (Smo) in pancreatic stromal fibroblasts results in AKT activation and noncanonical GLI2 activation with subsequent TGFα secretion, activation of EGFR in pancreatic epithelial cells, and augmentation of acinar–ductal metaplasia. Additionally, Smo-mediated signaling has proproliferative effects on pancreatic tumor cells. PMID:27664234

  1. Individual Differences in the Expression of Conditioned Fear Are Associated with Endogenous Fibroblast Growth Factor 2

    ERIC Educational Resources Information Center

    Graham, Bronwyn M.; Richardson, Rick

    2016-01-01

    These experiments examined the relationship between the neurotrophic factor fibroblast growth factor 2 (FGF2) and individual differences in the expression of conditioned fear. Experiments 1 and 2 demonstrated that rats naturally expressing low levels of contextual or cued fear have higher levels of hippocampal FGF2 relative to rats that express…

  2. Individual Differences in the Expression of Conditioned Fear Are Associated with Endogenous Fibroblast Growth Factor 2

    ERIC Educational Resources Information Center

    Graham, Bronwyn M.; Richardson, Rick

    2016-01-01

    These experiments examined the relationship between the neurotrophic factor fibroblast growth factor 2 (FGF2) and individual differences in the expression of conditioned fear. Experiments 1 and 2 demonstrated that rats naturally expressing low levels of contextual or cued fear have higher levels of hippocampal FGF2 relative to rats that express…

  3. Immune cell proliferation is suppressed by the interferon-gamma-induced indoleamine 2,3-dioxygenase expression of fibroblasts populated in collagen gel (FPCG).

    PubMed

    Sarkhosh, Kourosh; Tredget, Edward E; Karami, Ali; Uludag, Hasan; Iwashina, Takashi; Kilani, Ruhangiz T; Ghahary, Aziz

    2003-09-01

    Indoleamine 2,3-dioxygenase (IDO), a tryptophan-catabolizing enzyme, is an intracellular enzyme possessing various immunosuppressive properties. Here, we report the possible use of this enzyme to suppress proliferation of immune cells cocultured with IDO-expressing fibroblasts of an allogenic skin substitute. Fetal skin fibroblasts embedded within bovine collagen were treated with cytokine interferon-gamma (IFN-gamma) to induce expression of IDO mRNA and protein. Expression of IDO mRNA was evaluated by Northern analysis. IDO enzyme activity was evaluated by measurement of kynurenine and tryptophan levels in the IFN-gamma untreated and treated fibroblasts. The results of Northern analysis showed a dose-dependent increase in expression of IDO mRNA in response to various concentrations of IFN-gamma used. The levels of kynurenine and tryptophan measured, as the bioactivity of IDO, were significantly different in the IFN-gamma treated fibroblasts, compared to those of controls (P < 0.001). In a lasting effect experiment, the expression of IDO mRNA was gradually reduced to an undetectable level within 32 h of IFN-gamma removal. The results of Western blot analysis, however, revealed a significantly longer (192 h) lasting effect of IFN-gamma on IDO protein level, relative to that of mRNA expression. To demonstrate immunosuppressive effects of IDO on proliferation of immune cells, IDO-expressing fibroblasts were cocultured with peripheral blood mononuclear cells (PBMC) for a period of 5 days. The results of (3)H-thymidine incorporation showed a significant reduction in proliferation of PBMC when cocultured with IDO-expressing fibroblasts, compared to those cocultured with non-IDO-expressing fibroblasts (P < 0.001). Furthermore, addition of IDO-inhibitor (1-methyl-d-tryptophan) reversed the suppressive effects of IDO on PBMC proliferation in a dose-dependant fashion. To test the viability of immune cells cocultured with IDO-expressing fibroblasts, FACS analysis of the PI

  4. Lentiviral Engineered Fibroblasts Expressing Codon-Optimized COL7A1 Restore Anchoring Fibrils in RDEB

    PubMed Central

    Georgiadis, Christos; Syed, Farhatullah; Petrova, Anastasia; Abdul-Wahab, Alya; Lwin, Su M.; Farzaneh, Farzin; Chan, Lucas; Ghani, Sumera; Fleck, Roland A.; Glover, Leanne; McMillan, James R.; Chen, Mei; Thrasher, Adrian J.; McGrath, John A.; Di, Wei-Li; Qasim, Waseem

    2016-01-01

    Cells therapies, engineered to secrete replacement proteins, are being developed to ameliorate otherwise debilitating diseases. Recessive dystrophic epidermolysis bullosa (RDEB) is caused by defects of type VII collagen, a protein essential for anchoring fibril formation at the dermal-epidermal junction. Whereas allogeneic fibroblasts injected directly into the dermis can mediate transient disease modulation, autologous gene-modified fibroblasts should evade immunological rejection and support sustained delivery of type VII collagen at the dermal-epidermal junction. We demonstrate the feasibility of such an approach using a therapeutic grade, self-inactivating-lentiviral vector, encoding codon-optimized COL7A1, to transduce RDEB fibroblasts under conditions suitable for clinical application. Expression and secretion of type VII collagen was confirmed with transduced cells exhibiting supranormal levels of protein expression, and ex vivo migration of fibroblasts was restored in functional assays. Gene-modified RDEB fibroblasts also deposited type VII collagen at the dermal-epidermal junction of human RDEB skin xenografts placed on NOD-scid IL2Rgammanull recipients, with reconstruction of human epidermal structure and regeneration of anchoring fibrils at the dermal-epidermal junction. Fibroblast-mediated restoration of protein and structural defects in this RDEB model strongly supports proposed therapeutic applications in man. PMID:26763448

  5. Paracrine effects of uterine leucocytes on gene expression of human uterine stromal fibroblasts.

    PubMed

    Germeyer, Ariane; Sharkey, Andrew Mark; Prasadajudio, Mirari; Sherwin, Robert; Moffett, Ashley; Bieback, Karen; Clausmeyer, Susanne; Masters, Leanne; Popovici, Roxana Maria; Hess, Alexandra Petra; Strowitzki, Thomas; von Wolff, Michael

    2009-01-01

    The endometrium contains a distinct population of immune cells that undergo cyclic changes during the menstrual cycle and implantation. The majority of these leucocytes are uterine NK (uNK) cells, however how these cells interact with uterine stromal fibroblasts remains unclear. We therefore investigated the paracrine effect of medium conditioned by uterine decidual leucocytes (which are enriched for uNK cells) on the gene expression profile of endometrial stromal fibroblasts in vitro using a cDNA microarray. Our results, verified by real-time PCR, ELISA and FACS analysis, reveal that soluble factors from uterine leucocytes substantially alter endometrial stromal fibroblast gene expression. The largest group of up-regulated genes found was chemokines and cytokines. These include IL-8, CCL8 and CXCL1, which have also been shown to be stimulated by contact of stromal fibroblasts with trophoblast, suggesting that uNK cells work synergistically to support trophoblast migration during implantation. The decidual leucocytes also up-regulated IL-15 and IL-15Ralpha in stromal fibroblasts which could produce a niche for uNK cells allowing proliferation within and recruitment into the uterus, as seen in bone marrow. Overall this study demonstrates, for the first time, the paracrine communication between uterine leucocytes and uterine stromal fibroblasts, and adds to the understanding of how the uterine immune system contributes to the changes seen within the cycling endometrium.

  6. The correction of biochemical abnormalities in fibroblasts of a Zellweger patient by gene expression

    SciTech Connect

    Shimozawa, N.; Suzuki, Y.; Oril, T.

    1994-09-01

    Zellweger syndrome is a prototype of peroxisome-deficient disorders and a fatal autosomal recessive disease with no effective therapy. We identified nine genetic complementation groups of these disorders among several laboratories, and mutations in peroxisome assembly factor-1 (PAF-1) and the 70-kDa peroxisomal membrane protein (PMP70) genes have been described in Zellweger patients from our group F and Roscher`s group 1, respectively. We now succeed the permanent recovery of generalized peroxisomal abnormalities in fibroblasts of a Zellweger patient from the group F by the stable transfection of human cDNA encoding PAF-1. In the transfectants, a number of peroxisomal dysfunctions such as lignocelic acid oxidation, dihydroxyacetone phosphate acyltransferase activity and biogenesis of peroxisomal {beta}-oxidation enzymes were restored, as well as morphological absence of peroxisomes. These findings are useful for basic studies on gene therapy of peroxisomal disorders in the cultured cellular system. Further study on expression of human PMP70 cDNA in fibroblasts from Roscher`s group 1 will be also necessary to confirm whether the PMP70 is responsible for Zellweger syndrome.

  7. Oncogenic K-Ras and Basic Fibroblast Growth Factor Prevent FAS-Mediated Apoptosis in Fibroblasts through Activation of Mitogen-Activated Protein Kinase

    PubMed Central

    Kazama, Hirotaka; Yonehara, Shin

    2000-01-01

    By an expression cloning method using Fas-transgenic Balb3T3 cells, we tried to obtain inhibitory genes against Fas-mediated apoptosis and identified proto-oncogene c-K-ras. Transient expression of K-Ras mutants revealed that oncogenic mutant K-Ras (RasV12) strongly inhibited, whereas dominant-inhibitory mutant K-Ras (RasN17) enhanced, Fas-mediated apoptosis by inhibiting Fas-triggered activation of caspases without affecting an expression level of Fas. Among the target molecules of Ras, including Raf (mitogen-activated protein kinase kinase kinase [MAPKKK]), phosphatidylinositol 3 (PI-3) kinase, and Ral guanine nucleotide exchange factor (RalGDS), only the constitutively active form of Raf (Raf-CAAX) could inhibit Fas-mediated apoptosis. In addition, the constitutively active form of MAPKK (SDSE-MAPKK) suppressed Fas-mediated apoptosis, and MKP-1, a phosphatase specific for classical MAPK, canceled the protective activity of oncogenic K-Ras (K-RasV12), Raf-CAAX, and SDSE-MAPKK. Furthermore, physiological activation of Ras by basic fibroblast growth factor (bFGF) protected Fas-transgenic Balb3T3 cells from Fas-mediated apoptosis. bFGF protection was also dependent on the activation of the MAPK pathway through Ras. All the results indicate that the activation of MAPK through Ras inhibits Fas-mediated apoptosis in Balb3T3 cells, which may play a role in oncogenesis. PMID:10662780

  8. Towards Scarless Wound Healing: A Comparison of Protein Expression between Human, Adult and Foetal Fibroblasts

    PubMed Central

    Ho, Sonia; Marçal, Helder; Foster, Leslie John Ray

    2014-01-01

    Proteins from human adult and foetal fibroblast cell lines were compared, focusing on those involved in wound healing. Proteins were separated through two-dimensional gel electrophoresis (2DE). Differences in protein spot intensity between the lineages were quantified through 3D gel scanning densitometry. Selected protein spots were excised, subjected to tryptic digests, prior to separation using HPLC with a linear ion trap mass spectrometer, and identified. Protein maps representing the proteomes from adult and foetal fibroblasts showed similar distributions but revealed differences in expression levels. Heat shock cognate 71 kDA protein, Tubulin alpha-1A chain, actin cytoplasmic-1, and neuron cytoplasmic protein were all expressed in significantly higher concentrations by foetal fibroblasts, nearly double those observed for their adult counterparts. Fructose bisphosphate aldolase A, Cofilin-1, Peroxiredoxin-1, Lactotransferrin Galectin-1, Profilin-1, and Calreticulin were expressed at comparatively higher concentrations by the adult fibroblasts. Significant differences in the expression levels of some proteins in human adult and foetal fibroblasts correlated with known differences in wound healing behaviour. This data may assist in the development of technologies to promote scarless wound healing and better functional tissue repair and regeneration. PMID:24605334

  9. Towards scarless wound healing: a comparison of protein expression between human, adult and foetal fibroblasts.

    PubMed

    Ho, Sonia; Marçal, Helder; Foster, Leslie John Ray

    2014-01-01

    Proteins from human adult and foetal fibroblast cell lines were compared, focusing on those involved in wound healing. Proteins were separated through two-dimensional gel electrophoresis (2DE). Differences in protein spot intensity between the lineages were quantified through 3D gel scanning densitometry. Selected protein spots were excised, subjected to tryptic digests, prior to separation using HPLC with a linear ion trap mass spectrometer, and identified. Protein maps representing the proteomes from adult and foetal fibroblasts showed similar distributions but revealed differences in expression levels. Heat shock cognate 71 kDA protein, Tubulin alpha-1A chain, actin cytoplasmic-1, and neuron cytoplasmic protein were all expressed in significantly higher concentrations by foetal fibroblasts, nearly double those observed for their adult counterparts. Fructose bisphosphate aldolase A, Cofilin-1, Peroxiredoxin-1, Lactotransferrin Galectin-1, Profilin-1, and Calreticulin were expressed at comparatively higher concentrations by the adult fibroblasts. Significant differences in the expression levels of some proteins in human adult and foetal fibroblasts correlated with known differences in wound healing behaviour. This data may assist in the development of technologies to promote scarless wound healing and better functional tissue repair and regeneration.

  10. Opposing effects of protein kinase Calpha and protein kinase Cepsilon on collagen expression by human lung fibroblasts are mediated via MEK/ERK and caveolin-1 signaling.

    PubMed

    Tourkina, Elena; Gooz, Pal; Pannu, Jaspreet; Bonner, Michael; Scholz, Dimitri; Hacker, Sharon; Silver, Richard M; Trojanowska, Maria; Hoffman, Stanley

    2005-04-08

    The roles of MEK, ERK, the epsilon and alpha isoforms of protein kinase C (PKC), and caveolin-1 in regulating collagen expression were studied in normal lung fibroblasts. Knocking down caveolin-1 gave particularly striking results. A 70% decrease caused a 5-fold increase in MEK/ERK activation and collagen expression. The combined data reveal a branched signaling pathway. In its central portion MEK activates ERK, leading to increased collagen expression. Two branches converge on MEK/ERK. In one, increased PKCepsilon leads to MEK/ERK activation. In another, increased PKCalpha induces caveolin-1 expression, which in turn inhibits MEK/ERK activation and collagen expression. Lung fibroblasts from scleroderma patients with pulmonary fibrosis showed altered signaling. Consistent with their overexpression of collagen, scleroderma lung fibroblasts contain more activated MEK/ERK and less caveolin-1 than normal lung fibroblasts. Because cutaneous fibrosis is the hallmark of scleroderma, we also studied dermal fibroblasts. As in lung, there was more activated MEK/ERK in cells from scleroderma patients than in control cells, and MEK inhibition decreased collagen expression. However, the distinctive levels of PKCepsilon, PKCalpha, and caveolin-1 in lung and dermal fibroblasts from scleroderma patients and control subjects indicate that the links between these signaling proteins and MEK/ERK must function differently in the four cell types. Finally, we confirmed the relevance of these signaling cascades in vivo. The combined results demonstrate that a branched signaling pathway involving MEK, ERK, PKCepsilon, PKCalpha, and caveolin-1 regulates collagen expression in normal lung tissue and is perturbed during fibrosis.

  11. PDCD4 is a CSL associated protein with a transcription repressive function in cancer associated fibroblast activation

    PubMed Central

    Jo, Seung-Hee; Kim, Dong Eun; Clocchiatti, Andrea; Dotto, G. Paolo

    2016-01-01

    The Notch/CSL pathway plays an important role in skin homeostasis and carcinogenesis. CSL, the key effector of canonical Notch signaling endowed with an intrinsic transcription repressive function, suppresses stromal fibroblast senescence and Cancer Associated Fibroblast (CAF) activation through direct down-modulation of key effector genes. Interacting proteins that participate with CSL in this context are as yet to be identified. We report here that Programmed Cell Death 4 (PDCD4), a nuclear/cytoplasmic shuttling protein with multiple functions, associates with CSL and plays a similar role in suppressing dermal fibroblast senescence and CAF activation. Like CSL, PDCD4 is down-regulated in stromal fibroblasts of premalignant skin actinic keratosis (AKs) lesions and squamous cell carcinoma (SCC). While devoid of intrinsic DNA binding capability, PDCD4 is present at CSL binding sites of CAF marker genes as well as canonical Notch/CSL targets and suppresses expression of these genes in a fibroblast-specific manner. Thus, we propose that PDCD4 is part of the CSL repressive complex involved in negative control of stromal fibroblasts conversion into CAFs. PMID:27542230

  12. Reduced lysyl oxidase activity in skin fibroblasts from patients with Menkes' syndrome.

    PubMed Central

    Royce, P M; Camakaris, J; Danks, D M

    1980-01-01

    Lysyl oxidase activity against both collagen and elastin substrates has been examined in the culture medium of skin fibroblasts derived from unrelated patients with Menkes' syndrome and from control subjects. The medium of three Menkes' fibroblast lines showed 3--30% of the activity present in the medium of control fibroblasts, against a purified collagen substrate. Lysyl oxidase activity in the culture medium of two of the Menkes' fibroblast lines was also examined by using a crude aortic-elastin substrate and was similarly decreased in comparison with that in the medium of control fibroblasts. Lysyl oxidase activity in the medium of a fourth fibroblast line, derived from a foetus with Menkes' syndrome, was 42% of that in the medium of control fibroblasts derived from a 1-day-old baby against a collagen substrate, and 26% of that in control fibroblast medium against an elastin substrate. The copper content of the cell layers of the Menkes' fibroblast cultures was elevated in comparison with normal fibroblast cultures, as has previously been reported to be characteristic of such cells. It is suggested that the decrease in lysyl oxidase activity would help to explain the connective tissue defects observed in Menkes' syndrome, and that this reduction, in conjunction with the elevated concentrations of cellular copper, would support the hypothesis that a functional intracellular copper deficiency exists in Menkes' syndrome. PMID:6112984

  13. Adiponectin Enhances Intercellular Adhesion Molecule-1 Expression and Promotes Monocyte Adhesion in Human Synovial Fibroblasts

    PubMed Central

    Chen, Hsien-Te; Tsou, Hsi-Kai; Chen, Jui-Chieh; Shih, James Meng-Kun; Chen, Yen-Jen; Tang, Chih-Hsin

    2014-01-01

    Adiponectin is a protein hormone secreted predominantly by differentiated adipocytes and is involved in energy homeostasis. Adiponectin expression is significantly high in the synovial fluid of patients with osteoarthritis (OA). Intercellular adhesion molecule-1 (ICAM-1) is an important adhesion molecule that mediates monocyte adhesion and infiltration during OA pathogenesis. Adiponectin-induced expression of ICAM-1 in human OA synovial fibroblasts (OASFs) was examined by using qPCR, flow cytometry and western blotting. The intracellular signaling pathways were investigated by pretreated with inhibitors or transfection with siRNA. The monocyte THP-1 cell line was used for an adhesion assay with OASFs. Stimulation of OASFs with adiponectin induced ICAM-1 expression. Pretreatment with AMP-activated protein kinase (AMPK) inhibitors (AraA and compound C) or transfection with siRNA against AMPKα1 and two AMPK upstream activator- liver kinase B1 (LKB1) and calmodulin-dependent protein kinase II (CaMKII) diminished the adiponectin-induced ICAM-1 expression. Stimulation of OASFs with adiponectin increased phosphorylation of LKB1, CaMKII, AMPK, and c-Jun, resulting in c-Jun binding to AP-1 element of ICAM-1 promoter. In addition, adiponectin-induced activation of the LKB1/CaMKII, AMPK, and AP-1 pathway increased the adhesion of monocytes to the OASF monolayer. Our results suggest that adiponectin increases ICAM-1 expression in human OASFs via the LKB1/CaMKII, AMPK, c-Jun, and AP-1 signaling pathway. Adiponectin-induced ICAM-1 expression promoted the adhesion of monocytes to human OASFs. These findings may provide a better understanding of the pathogenesis of OA and can utilize this knowledge to design a new therapeutic strategy. PMID:24667577

  14. Toll-like receptor 4 signalling is specifically TGF-beta-activated kinase 1 independent in synovial fibroblasts.

    PubMed

    Geurts, Jeroen; van den Brand, Ben T; Wolf, Alexander; Abdollahi-Roodsaz, Shahla; Arntz, Onno J; Kracht, Michael; van den Berg, Wim B; van de Loo, Fons A J

    2011-07-01

    Activated synovial fibroblasts are key players in the pathogenesis of RA by driving inflammation and joint destruction. Numerous molecules including cytokines and Toll-like receptor (TLR) ligands induce pro-inflammatory signalling and gene expression through a hierarchical network of kinases. Upstream mitogen-activated protein kinase kinase kinases (MAP3Ks) represent an attractive target for RA treatment. In this study, we sought to determine the role of the MAP3K TGF-β-activated kinase 1 (TAK1) in cytokine and TLR-mediated signalling. TAK1 activity was inhibited using either a small molecule inhibitor or lentivirally overexpressed kinase-inactive TAK1-K63W mutant in murine embryonic and human dermal and synovial fibroblasts. Fibroblasts were stimulated with IL-1, TNF, TLR2 or TLR4 agonists and responses were evaluated using transcriptional reporters, western blotting and analysis of gene expression of collagenases (MMP3 and MMP13), cytokines (IL-1β and IL-6) and chemokines (IL-8 and MCP-1). TAK1 inhibition abrogated cytokine- and TLR-induced nuclear factor-κB (NF-κB) and Saa3-promoter reporter activation in murine and human dermal fibroblasts. In synovial fibroblasts, TAK1 regulated IL-1 and TNF-mediated NF-κB, but not Saa3-promoter reporter activation. Inducible mRNA expression of cytokines, collagenases and chemokines, except MCP-1, was TAK1 dependent for IL-1, TNF and TLR2 signalling. Unexpectedly, TLR4-mediated NF-κB reporter activation and inducible mRNA expression was fully TAK1 independent. Accordingly, NF-κB p65 and p38 MAPK phosphorylation was unaffected by TAK1 inhibition. In general, TAK1 crucially regulates IL-1 and TNF signalling in fibroblasts. Interestingly, TLR4 signalling is specifically TAK1 independent in synovial fibroblasts. Consequently, therapeutic TAK1 inhibition in arthropathies may not dampen the damage-associated molecular pattern-mediated TLR4 activation of synovial fibroblasts.

  15. Demonstration of adenosine deaminase activity in human fibroblast lysosomes.

    PubMed Central

    Lindley, E R; Pisoni, R L

    1993-01-01

    Human fibroblast lysosomes, purified on Percoll density gradients, contain an adenosine deaminase (ADA) activity that accounts for approximately 10% of the total ADA activity in GM0010A human fibroblasts. In assays of lysosomal ADA, the conversion of [3H]adenosine into [3H]inosine was proportional to incubation time and the amount of lysosomal material added to reaction mixtures. Maximal activity was observed between pH 7 and 8, and lysosomal ADA displayed a Km of 37 microM for adenosine at 25 degrees C and pH 5.5. Lysosomal ADA was completely inhibited by 2.5 mM Cu2+ or Hg2+ salts, but not by other bivalent cations (Ba2+, Cd2+, Ca2+, Fe2+, Mg2+, Mn2+ and Zn2+). Coformycin (2.5 mM), deoxycoformycin (0.02 mM), 2'-deoxyadenosine (2.5 mM), 6-methylaminopurine riboside (2.5 mM), 2'-3'-isopropylidene-adenosine (2.5 mM) and erythro-9-(2-hydroxy-3-nonyl)adenine (0.2 mM) inhibited lysosomal ADA by > 97%. In contrast, 2.5 mM S-adenosyl-L-homocysteine and cytosine were poor inhibitors. Nearly all lysosomal ADA activity is eluted as a high-molecular-mass protein (> 200 kDa) just after the void volume on a Sephacryl S-200 column, and is very heat-stable, retaining 70% of its activity after incubation at 65 degrees C for 80 min. We speculate that compartmentalization of ADA within lysosomes would allow deamination of adenosine to occur without competition by adenosine kinase, which could assist in maintaining cellular energy requirements under conditions of nutritional deprivation. PMID:8452534

  16. Interleukin 1 stimulates phosphatidylinositol kinase activity in human fibroblasts.

    PubMed Central

    Ballou, L R; Barker, S C; Postlethwaite, A E; Kang, A H

    1991-01-01

    IL-1 mediates multiple cellular immune and inflammatory responses, but little is known of the intracellular biochemical mechanisms involved in IL-1 actions. We studied the effects of IL-1 on phosphatidylinositol (PtdIns) metabolism and confirmed reports indicating that IL-1 does not stimulate increased PtdIns turnover; however, we observed the accumulation of PtdIns-4-phosphate (PtdInsP) in response to IL-1. Using a fibroblast membrane preparation, we were able to detect stimulated PtdInsP accumulation within 10 s of IL-1 addition. Increased PtdInsP accumulation was due to stimulated PtdIns kinase activity, not the inhibition of PtdInsP hydrolysis by phospholipase(s). PtdIns kinase activity was magnesium dependent, increased as a function of IL-1 concentration, and specifically phosphorylated the D4 position of inositol. Stimulated PtdIns kinase activity could be detected at 10(-12) M IL-1 in fibroblast membranes, a concentration within the physiological range for IL-1 action; half-maximal activity was reached at approximately 10(-10) M IL-1. Heat denaturation of IL-1 or treatment of IL-1 with anti-IL-1 antibody abrogated the IL-1 effect. These findings demonstrate the direct, IL-1-mediated, stimulation of PtdIns kinase. IL-1-stimulated PtdIns kinase activity represents an important physiological regulatory effect by IL-1 as it could control the synthesis and/or maintenance of phosphorylated derivatives of PtdIns which comprise only a very small pool of substrates for the generation of the second messengers inositol 1,4,5-triphosphate and diacylglycerol. PMID:1845871

  17. Increased gene expression of Alzheimer disease beta-amyloid precursor protein in senescent cultured fibroblasts.

    PubMed

    Adler, M J; Coronel, C; Shelton, E; Seegmiller, J E; Dewji, N N

    1991-01-01

    The pathological hallmark of Alzheimer disease is the accumulation of neurofibrillary tangles and neuritic plaques in the brains of patients. Plaque cores contain a 4- to 5-kDa amyloid beta-protein fragment which is also found in the cerebral blood vessels of affected individuals. Since amyloid deposition in the brain increases with age even in normal people, we sought to establish whether the disease state bears a direct relationship with normal aging processes. As a model for biological aging, the process of cellular senescence in vitro was used. mRNA levels of beta-amyloid precursor protein associated with Alzheimer disease were compared in human fibroblasts in culture at early passage and when the same fibroblasts were grown to senescence after more than 52 population doublings. A dramatic increase in mRNA was observed in senescent IMR-90 fibroblasts compared with early-passage cells. Hybridization of mRNA from senescent and early proliferating fibroblasts with oligonucleotide probes specific for the three alternatively spliced transcripts of the gene gave similar results, indicating an increase during senescence of all three forms. A similar, though more modest, increase in message levels was also observed in early-passage fibroblasts made quiescent by serum deprivation; with repletion of serum, however, the expression returned to previous low levels. ELISAs were performed on cell extracts from senescent, early proliferating, and quiescent fibroblasts, and quiescent fibroblasts repleted with serum for over 48 hr, using polyclonal antibodies to a synthetic peptide of the beta-amyloid precursor. The results confirmed that the differences in mRNA expression were partially reflected at the protein level. Regulated expression of beta-amyloid precursor protein may be an important determinant of growth and metabolic responses to serum and growth factors under physiological as well as pathological conditions.

  18. Differential gene expression in human fibroblasts after alpha-particle emitter (211)At compared with (60)Co irradiation.

    PubMed

    Danielsson, Anna; Claesson, Kristina; Parris, Toshima Z; Helou, Khalil; Nemes, Szilárd; Elmroth, Kecke; Elgqvist, Jörgen; Jensen, Holger; Hultborn, Ragnar

    2013-04-01

    The aim of this study was to identify gene expression profiles distinguishing alpha-particle (211)At and (60)Co irradiation. Gene expression microarray profiling was performed using total RNA from confluent human fibroblasts 5 hours after exposure to (211)At labeled trastuzumab monoclonal antibody (0.25, 0.5, and 1 Gy) and (60)Co (1, 2, and 3 Gy). We report gene expression profiles that distinguish the effect different radiation qualities and absorbed doses have on cellular functions in human fibroblasts. In addition, we identified commonly expressed transcripts between (211)At and (60)Co irradiation. A greater number of transcripts were modulated by (211)At than (60)Co irradiation. In addition, down-regulation was more prevalent than up-regulation following (211)At irradiation. Several biological processes were enriched for both irradiation qualities such as transcription, cell cycle regulation, and cell cycle arrest, whereas mitosis, spindle assembly checkpoint, and apoptotic chromosome condensation were uniquely enriched for alpha particle irradiation. LET-dependent transcriptional modulations were observed in human fibroblasts 5 hours after irradiation exposure. These findings suggest that in comparison with (60)Co, (211)At has the clearest influence on both tumor protein p53-activated and repressed genes, which impose a greater overall burden to the cell following alpha particle irradiation.

  19. c-Ski activates cancer-associated fibroblasts to regulate breast cancer cell invasion.

    PubMed

    Wang, Liyang; Hou, Yixuan; Sun, Yan; Zhao, Liuyang; Tang, Xi; Hu, Ping; Yang, Jiajia; Zeng, Zongyue; Yang, Guanglun; Cui, Xiaojiang; Liu, Manran

    2013-12-01

    Aberrant expression of c-Ski oncoprotein in some tumor cells has been shown to be associated with cancer development. However, the role of c-Ski in cancer-associated fibroblasts (CAFs) of tumor microenvironment has not been characterized. In the current study, we found that c-Ski is highly expressed in CAFs derived from breast carcinoma microenvironment and this CAF-associated c-Ski expression is associated with invasion and metastasis of human breast tumors. We showed that c-Ski overexpression in immortalized breast normal fibroblasts (NFs) induces conversion to breast CAFs by repressing p53 and thereby upregulating SDF-1 in NFs. SDF-1 treatment or p53 knockdown in NFs had similar effects on the activation of NFs as c-Ski overexpression. The c-Ski-activated CAFs show increased proliferation, migration, invasion and contraction compared with NFs. Furthermore, c-Ski-activated CAFs facilitated the migration and invasion of MDA-MB-231 breast cancer cells. Our data suggest that c-Ski is an important regulator in the activation of CAFs and may serve as a potential therapeutic target to block breast cancer progression.

  20. PPARγ downregulation by TGFß in fibroblast and impaired expression and function in systemic sclerosis: a novel mechanism for progressive fibrogenesis.

    PubMed

    Wei, Jun; Ghosh, Asish K; Sargent, Jennifer L; Komura, Kazuhiro; Wu, Minghua; Huang, Qi-Quan; Jain, Manu; Whitfield, Michael L; Feghali-Bostwick, Carol; Varga, John

    2010-11-02

    The nuclear orphan receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ) is expressed in multiple cell types in addition to adipocytes. Upon its activation by natural ligands such as fatty acids and eicosanoids, or by synthetic agonists such as rosiglitazone, PPAR-γ regulates adipogenesis, glucose uptake and inflammatory responses. Recent studies establish a novel role for PPAR-γ signaling as an endogenous mechanism for regulating transforming growth factor-ß (TGF-ß)-dependent fibrogenesis. Here, we sought to characterize PPAR-γ function in the prototypic fibrosing disorder systemic sclerosis (SSc), and delineate the factors governing PPAR-γ expression. We report that PPAR-γ levels were markedly diminished in skin and lung biopsies from patients with SSc, and in fibroblasts explanted from the lesional skin. In normal fibroblasts, treatment with TGF-ß resulted in a time- and dose-dependent down-regulation of PPAR-γ expression. Inhibition occurred at the transcriptional level and was mediated via canonical Smad signal transduction. Genome-wide expression profiling of SSc skin biopsies revealed a marked attenuation of PPAR-γ levels and transcriptional activity in a subset of patients with diffuse cutaneous SSc, which was correlated with the presence of a "TGF-ß responsive gene signature" in these biopsies. Together, these results demonstrate that the expression and function of PPAR-γ are impaired in SSc, and reveal the existence of a reciprocal inhibitory cross-talk between TGF-ß activation and PPAR-γ signaling in the context of fibrogenesis. In light of the potent anti-fibrotic effects attributed to PPAR-γ, these observations lead us to propose that excessive TGF-ß activity in SSc accounts for impaired PPAR-γ function, which in turn contributes to unchecked fibroblast activation and progressive fibrosis.

  1. Complete artificial saliva alters expression of proinflammatory cytokines in human dermal fibroblasts.

    PubMed

    Malpass, Gloria E; Arimilli, Subhashini; Prasad, Gaddamanugu L; Howlett, Allyn C

    2013-07-01

    Complete artificial saliva (CAS) is a saliva substitute often used as a vehicle for test articles, including smokeless tobacco products. In the course of a study employing normal adult human dermal fibroblasts (HDFa) as a model in vitro, we discovered that CAS as a vehicle introduced a significant change in the expression of proinflammatory cytokines. To determine the effects of CAS on gene expression, real-time quantitative reverse-transcriptase PCR gene array analysis was used. Results indicate that robust changes in the expression of the proinflammatory cytokine interleukin 8 (IL8) and the vascular cell adhesion molecule 1 (VCAM1) occur within 5h of exposure to CAS. To determine whether CAS also alters cytokine release into the culture media, cytometric bead array assays for human inflammatory cytokines were performed. Analysis shows that CAS induced the release of IL8 and IL6. This study focused on determining which components in CAS were responsible for the proinflammatory response in HDFa. The following components were investigated: α-amylase, lysozyme, acid phosphatase, and urea. Results demonstrated that enzymatically active α-amylase induced gene expression for proinflammatory cytokines IL8, IL6, tumor necrosis factor-α, and IL1α and for VCAM1. Therefore, it is important to carefully evaluate the "vehicle effects" of CAS and its components in in vitro toxicology research.

  2. Identification of a murine TEF-1-related gene expressed after mitogenic stimulation of quiescent fibroblasts and during myogenic differentiation.

    PubMed

    Hsu, D K; Guo, Y; Alberts, G F; Copeland, N G; Gilbert, D J; Jenkins, N A; Peifley, K A; Winkles, J A

    1996-06-07

    Fibroblast growth factor (FGF)-1 binding to cell surface receptors stimulates an intracellular signaling pathway that ultimately promotes the transcriptional activation of specific genes. We have used a mRNA differential display method to identify FGF-1-inducible genes in mouse NIH 3T3 fibroblasts. Here, we report that one of these genes, FGF-regulated (FR)-19, is predicted to encode a member of the transcriptional enhancer factor (TEF)-1 family of structurally related DNA-binding proteins. Specifically, the deduced FR-19 amino acid sequence has approximately89, 77, and 68% overall identity to chicken TEF-1A, mouse TEF-1, and mouse embryonic TEA domain-containing factor, respectively. Gel mobility shift experiments indicate that FR-19, like TEF-1, can bind the GT-IIC motif found in the SV40 enhancer. The FR-19 gene maps in the distal region of mouse chromosome 6, and analysis of several FR-19 cDNA clones indicates that at least two FR-19 isoforms may be expressed from this locus. FGF-1 induction of FR-19 mRNA expression in mouse fibroblasts is first detectable at 4 h after FGF-1 addition and is dependent on de novo RNA and protein synthesis. FGF-2, calf serum, platelet-derived growth factor-BB, and phorbol 12-myristate 13-acetate can also induce FR-19 mRNA levels. We have also found that FR-19 mRNA expression increases during mouse C2C12 myoblast differentiation in vitro. The FR-19 gene is expressed in vivo in a tissue-specific manner, with a relatively high level detected in lung. These results indicate that increased expression of a TEF-1-related protein may be important for both mitogen-stimulated fibroblast proliferation and skeletal muscle cell differentiation.

  3. Stimulatory effect of Aggregatibacter actinomycetemcomitans DNA on proinflammatory cytokine expression by human gingival fibroblasts.

    PubMed

    Soto-Barreras, Uriel; Cortés-Sandoval, Gabriela; Dominguez-Perez, Ruben; Loyola-Leyva, Alejandra; Martinez-Rodriguez, Panfilo-Raymundo; Loyola-Rodriguez, Juan Pablo

    2017-10-01

    While different virulence factors have been reported of Aggregatibacter actinomycetemcomitans (Aa), there is little information about the stimulatory effect of its DNA. The main purpose of this study was to assess the inflammatory response of human gingival fibroblasts (HGFs) stimulated with A. actinomycetemcomitans DNA. Cytokine levels of IL-6, IL-1α and TNF-α were measured on the supernatant of HGFs activated with 10, 25, 50 and 100μg/ml DNA of Aa during 24h. Primary cultures of HGFs were infected with Aa and its DNA at different times and concentrations to compare its cytotoxic effect. Cell damage and adhesion of Aa to HGFs were evaluated under light microscopy and Scanning electron microscopy respectively. There was a statistical difference (p<0.05) in cytokine expression in HGFs activated by bacterial DNA with a dose dependent on IL-6 expression and a significantly elevated expression of IL-1α and TNF-α compared to Human DNA negative control. Substantial morphological alterations were observed after infection of A. actinomycetemcomitans in HGFs but not with bDNA exposure. Aggregatibacter actinomycetemcomitans showed a high rate of adhesion and cell damage to HGFs after 30min. Genomic DNA of A. actinomycetemcomitans could be a factor in the pathogenesis of periodontitis that might play a major role in the inflammatory response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Targeting of NADPH oxidase in vitro and in vivo suppresses fibroblast activation and experimental skin fibrosis.

    PubMed

    Dosoki, Heba; Stegemann, Agatha; Taha, Muna; Schnittler, Hans; Luger, Thomas A; Schröder, Katrin; Distler, Jörg H W; Kerkhoff, Claus; Böhm, Markus

    2017-01-01

    Although there is increasing evidence that oxidative stress is involved in collagen synthesis and myofibroblast activation, the NADPH oxidase (Nox) system is incompletely investigated in the context of human dermal fibroblasts (HDFs) and skin fibrosis. Using the pan-Nox inhibitor diphenyleneiodonium (DPI) as an initial tool, we show that gene expression of collagen type I, α-smooth muscle actin (α-SMA) and fibronectin 1 is suppressed in HDFs. Detailed expression analysis of all Nox isoforms and adaptors revealed expression of RNA and protein expression of Nox4, p22(phox) and Poldip2 but neither Nox1 nor Nox2. Nox4 could be immunolocalized to the endoplasmic reticulum. Importantly, TGF-β1 had a dose- and time-dependent upregulating effect on NADH activity and Nox4 gene expression in HDFs. Genetic silencing of Nox4 as demonstrated by siRNA in HDFs as well as in murine fibroblasts established from Nox4 knockout mice confirmed that TGF-β1 -mediated collagen type I gene, α-SMA and fibronectin 1 gene expressions were Nox4-dependent. This TGF-β1 effect was mediated by Smad3 as shown by in silico promoter analysis, pharmacological inhibition and gene silencing of Smad3. The relevance of these findings is highlighted in the bleomycin-induced scleroderma mouse model. DPI treatment attenuated skin fibrosis and myofibroblast activation. Moreover, Nox4 knockdown by siRNA reduced skin collagen synthesis, α-SMA and fibronectin 1 expression in vivo. Finally, analyses of HDFs from patients with systemic sclerosis confirmed the expression of Nox4 and its adaptors, whereas Nox1 and Nox2 were not detectable. Our findings indicate that Nox4 targeting is a promising future treatment for fibrotic skin diseases. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Differential activation of human T cells to allogeneic endothelial cells, epithelial cells and fibroblasts in vitro

    PubMed Central

    2012-01-01

    Background In the direct pathway, T cells recognize intact donor major histocompatability complexes and allogeneic peptide on the surface of donor antigen presenting cells (APCs). Indirect allorecognition results from the recognition of processed alloantigen by self MHC complexes on self APCs. In this study, we wished to evaluate the relative contribution of different intragraft cells to the alloactivation of nave and memory T cells though the direct and the indirect pathway of allorecognition. Methods The processing of membrane fragments from IFN-treated single donor endothelial cells (EC), fibroblasts or renal epithelial cells (RPTEC) was evaluated by DiOC labeling of each cell type and flow cytometry following interaction with PBMC. Direct pathway activation of nave CD45RA+ or memory CD45RO+ CD4+ T cells was evaluated following coculture with IFN-treated and MHC class II-expressing EC, fibroblasts or RPTEC. Indirect pathway activation was assessed using CD45RA+ or CD45RO+ CD4+ T cells cocultured with autologous irradiated APCs in the absence or presence of sonicates derived from IFN-treated allogeneic EC, fibroblasts or RPTEC. Activation of T cells was assessed by [3H]thymidine incorporation and by ELISpot assays. Results We find that CD14+ APCs readily acquire membrane fragments from fibroblasts and RPTEC, but fail to acquire membrane fragments from intact EC. However, APCs process membranes from EC undergoing apoptosis.There was a notable direct pathway alloproliferative response of CD45RO+ CD4+ T cells to IFN-treated EC, but not to fibroblasts or RPTEC. Also, there was a minimal direct pathway response of CD45RA+ CD4+ T cells to all cell types. In contrast, we found that both CD45RA+ and CD45RO+ CD4+ T cells proliferated following coculture with autologous APCs in the presence of sonicates derived from IFN-treated EC, fibroblasts or RPTEC. By ELISpot, we found that these T cells stimulated via the indirect pathway also produced the cytokines IFN, IL-2, IL-4

  6. Differential activation of human T cells to allogeneic endothelial cells, epithelial cells and fibroblasts in vitro.

    PubMed

    Samsonov, Dmitry; Geehan, Christopher; Woda, Craig B; Briscoe, David M

    2012-04-24

    In the direct pathway, T cells recognize intact donor major histocompatability complexes and allogeneic peptide on the surface of donor antigen presenting cells (APCs). Indirect allorecognition results from the recognition of processed alloantigen by self MHC complexes on self APCs. In this study, we wished to evaluate the relative contribution of different intragraft cells to the alloactivation of nave and memory T cells though the direct and the indirect pathway of allorecognition. The processing of membrane fragments from IFN-treated single donor endothelial cells (EC), fibroblasts or renal epithelial cells (RPTEC) was evaluated by DiOC labeling of each cell type and flow cytometry following interaction with PBMC. Direct pathway activation of nave CD45RA+ or memory CD45RO+ CD4+ T cells was evaluated following coculture with IFN-treated and MHC class II-expressing EC, fibroblasts or RPTEC. Indirect pathway activation was assessed using CD45RA+ or CD45RO+ CD4+ T cells cocultured with autologous irradiated APCs in the absence or presence of sonicates derived from IFN-treated allogeneic EC, fibroblasts or RPTEC. Activation of T cells was assessed by [3H]thymidine incorporation and by ELISpot assays. We find that CD14+ APCs readily acquire membrane fragments from fibroblasts and RPTEC, but fail to acquire membrane fragments from intact EC. However, APCs process membranes from EC undergoing apoptosis.There was a notable direct pathway alloproliferative response of CD45RO+ CD4+ T cells to IFN-treated EC, but not to fibroblasts or RPTEC. Also, there was a minimal direct pathway response of CD45RA+ CD4+ T cells to all cell types. In contrast, we found that both CD45RA+ and CD45RO+ CD4+ T cells proliferated following coculture with autologous APCs in the presence of sonicates derived from IFN-treated EC, fibroblasts or RPTEC. By ELISpot, we found that these T cells stimulated via the indirect pathway also produced the cytokines IFN, IL-2, IL-4 and IL-5. Recipient APCs may

  7. Hydroxychloroquine modulates metabolic activity and proliferation and induces autophagic cell death of human dermal fibroblasts.

    PubMed

    Ramser, Bettina; Kokot, Agatha; Metze, Dieter; Weiss, Nina; Luger, Thomas A; Böhm, Markus

    2009-10-01

    Hydroxychloroquine (HCQ) is a commonly used therapeutic agent in skin disorders. Some reports also suggest that HCQ can be useful in fibroblastic diseases of the skin. Here, we investigated the effects of HCQ in human dermal fibroblasts (HDFs). HCQ significantly reduced the metabolic activity and suppressed cell proliferation (IC(50) = approximately 30 microM) of HDFs. The antiproliferative effect of HCQ was associated with decreased activation of the extracellular signal-regulated kinases 1/2 but not with inhibition of the mammalian target of the rapamycin pathway or with dephosphorylation of Akt. HCQ induced a distinct type of cell death in HDFs, characterized by surface exposure of phosphatidylserine but a lack of morphological signs of apoptosis and absence of DNA fragmentation. The HCQ-treated HDFs instead showed autophagic vacuoles with double membranes and digested organelle content. These vacuoles showed light-chain 3 immunostaining, in accordance with increased protein amounts of this autophagy marker. Induction of autophagic cell death by HCQ was also paralleled by increased expression of Beclin-1, a key regulator of autophagy. Our findings indicate that HDFs are target cells of HCQ and form a rationale on the basis of which the in vivo effects of antimalarials can be studied in patients with aberrant fibroblast function.

  8. Omega-3 Polyunsaturated Fatty Acids Attenuate Fibroblast Activation and Kidney Fibrosis Involving MTORC2 Signaling Suppression.

    PubMed

    Zeng, Zhifeng; Yang, Haiyuan; Wang, Ying; Ren, Jiafa; Dai, Yifan; Dai, Chunsun

    2017-04-10

    Epidemiologic studies showed the correlation between the deficiency of omega-3 polyunsaturated fatty acids (n-3 PUFAs) and the progression of chronic kidney diseases (CKD), however, the role and mechanisms for n-3 PUFAs in protecting against kidney fibrosis remain obscure. In this study, NRK-49F cells, a rat kidney interstitial fibroblast cell line, were stimulated with TGFβ1. A Caenorhabditis elegans fat-1 transgenic mouse model in which n-3 PUFAs are endogenously produced from n-6 PUFAs owing to the expression of n-3 fatty acid desaturase were deployed. Docosahexaenoic acid (DHA), one member of n-3 PUFAs family, could suppress TGFβ1-induced fibroblast activation at a dose and time dependent manner. Additionally, DHA could largely inhibit TGFβ1-stimulated Akt but not S6 or Smad3 phosphorylation at a time dependent manner. To decipher the role for n-3 PUFAs in protecting against kidney fibrosis, fat-1 transgenic mice were operated with unilateral ureter obstruction (UUO). Compared to the wild types, fat-1 transgenics developed much less kidney fibrosis and inflammatory cell accumulation accompanied by less p-Akt (Ser473), p-Akt (Thr308), p-S6 and p-Smad3 in kidney tissues at day 7 after UUO. Thus, n-3 PUFAs can attenuate fibroblast activation and kidney fibrosis, which may be associated with the inhibition of mTORC2 signaling.

  9. Omega-3 Polyunsaturated Fatty Acids Attenuate Fibroblast Activation and Kidney Fibrosis Involving MTORC2 Signaling Suppression

    PubMed Central

    Zeng, Zhifeng; Yang, Haiyuan; Wang, Ying; Ren, Jiafa; Dai, Yifan; Dai, Chunsun

    2017-01-01

    Epidemiologic studies showed the correlation between the deficiency of omega-3 polyunsaturated fatty acids (n-3 PUFAs) and the progression of chronic kidney diseases (CKD), however, the role and mechanisms for n-3 PUFAs in protecting against kidney fibrosis remain obscure. In this study, NRK-49F cells, a rat kidney interstitial fibroblast cell line, were stimulated with TGFβ1. A Caenorhabditis elegans fat-1 transgenic mouse model in which n-3 PUFAs are endogenously produced from n-6 PUFAs owing to the expression of n-3 fatty acid desaturase were deployed. Docosahexaenoic acid (DHA), one member of n-3 PUFAs family, could suppress TGFβ1-induced fibroblast activation at a dose and time dependent manner. Additionally, DHA could largely inhibit TGFβ1-stimulated Akt but not S6 or Smad3 phosphorylation at a time dependent manner. To decipher the role for n-3 PUFAs in protecting against kidney fibrosis, fat-1 transgenic mice were operated with unilateral ureter obstruction (UUO). Compared to the wild types, fat-1 transgenics developed much less kidney fibrosis and inflammatory cell accumulation accompanied by less p-Akt (Ser473), p-Akt (Thr308), p-S6 and p-Smad3 in kidney tissues at day 7 after UUO. Thus, n-3 PUFAs can attenuate fibroblast activation and kidney fibrosis, which may be associated with the inhibition of mTORC2 signaling. PMID:28393852

  10. Expression of osteoblastic phenotype in periodontal ligament fibroblasts cultured in three-dimensional collagen gel

    PubMed Central

    ALVES, Luciana Bastos; MARIGUELA, Viviane Casagrande; GRISI, Márcio Fernando de Moraes; de SOUZA, Sérgio Luiz Scaombatti; NOVAES, Arthur Belém; TABA, Mário; de OLIVEIRA, Paulo Tambasco; PALIOTO, Daniela Bazan

    2015-01-01

    Objective : To investigate the influence of a three-dimensional cell culture model on the expression of osteoblastic phenotype in human periodontal ligament fibroblast (hPDLF) cultures. Material and Methods : hPDLF were seeded on bi-dimensional (2D) and three-dimensional (3D) collagen type I (experimental groups) and and on a plastic coverslip (control) for up to 14 days. Cell viability and alkaline phosphatase (ALP) activity were performed. Also, cell morphology and immunolabeling for alkaline phosphatase (ALP) and osteopontin (OPN) were assessed by epifluorescence and confocal microscopy. The expression of osteogenic markers, including alkaline phosphatase, osteopontin, osteocalcin (OC), collagen I (COL I) and runt-related transcription factor 2 (RUNX2), were analyzed using real-time polymerase chain reaction (RT-PCR). Mineralized bone-like nodule formation was visualized by microscopy and calcium content was assessed quantitatively by alizarin red assay. Results : Experimental cultures produced an increase in cell proliferation. Immunolabeling for OPN and ALP in hPDLF were increased and ALP activity was inhibited by three-dimensional conditions. OPN and RUNX2 gene expression was significantly higher on 3D culture when compared with control surface. Moreover, ALP and COL I gene expression were significantly higher in three-dimensional collagen than in 2D cultures at 7 days. However, at 14 days, 3D cultures exhibited ALP and COL I gene expression significantly lower than the control, and the COL I gene expression was also significantly lower in 3D than in 2D cultures. Significant calcium mineralization was detected and quantified by alizarin red assay, and calcified nodule formation was not affected by tridimensionality. Conclusion : This study suggests that the 3D cultures are able to support hPDLF proliferation and favor the differentiation and mineralized matrix formation, which may be a potential periodontal regenerative therapy. PMID:26018313

  11. Postnatal regulation of fibroblast growth factor ligand and receptor gene expression in rat thoracic aorta.

    PubMed

    Winkles, J A; Alberts, G F; Peifley, K A; Nomoto, K; Liau, G; Majesky, M W

    1996-12-01

    Fibroblast growth factor (FGF)-1 and FGF-2 are potent angiogenic factors and vascular smooth muscle cell (SMC) mitogens in vivo. They function via binding to a family of structurally related cell surface receptors that possess intrinsic tyrosine kinase activity. Several studies have indicated that increased FGF and/or FGF receptor (FGFR) expression may correlate with adult SMC proliferation in vivo. In this study, we used Northern blot hybridization and reverse transcription-polymerase chain reaction assays to compare the FGF and FGFR mRNA levels in newborn rat aorta, where SMCs have a high replication index, to those in adult rat aorta, where SMCs are relatively quiescent. We found that FGF-2 and FGFR-2 mRNA expression was elevated 8.2- and 5.6-fold, respectively, in adult aorta. Increased FGF-2 protein expression in the adult aorta was confirmed by Western blot analysis. We also examined FGF and FGFR mRNA expression levels in SMC cultures derived from newborn or adult rat aorta. FGF-1 transcripts were more abundant in newborn SMCs whereas FGF-2 and FGFR-1 mRNA expression was higher in adult SMCs. Furthermore, FGF-1 and FGF-2 mRNA expression levels were altered by cell culture density and by serum treatment. We conclude that elevated FGF ligand and receptor expression does not always correlate with a high SMC proliferative index, that FGF-1 or FGF-2 may not be the primary mitogens responsible for newborn SMC growth in vivo, and that FGF-1 and FGF-2 may serve nonmitogenic functions within the mature, adult vessel wall.

  12. Ultraviolet A-induced cathepsin K expression is mediated via MAPK/AP-1 pathway in human dermal fibroblasts.

    PubMed

    Xu, Qingfang; Hou, Wei; Zheng, Yue; Liu, Chen; Gong, Zijian; Lu, Chun; Lai, Wei; Maibach, Howard I

    2014-01-01

    Cathepsin K (CatK), a cysteine protease with the potent elastolytic activity, plays a predominant role in intracellular elastin degradation in human dermal fibroblasts (HDFs), and contributes to solar elastosis. In previous studies, CatK expression was downregulated in photoaged skin and fibroblasts, but upregulated in acute UVA-irradiated skin and fibroblasts. The underlying mechanisms regulating UVA-induced CatK expression remain elusive. This study investigates mechanisms involved in the regulation of UVA-induced CatK expression in HDFs. Primary HDFs were exposed to UVA. Cell proliferation was analyzed using a colorimetric assay of relative cell number. Quantitative real-time RT-PCR and Western blot were performed to detect CatK expression in HDFs on three consecutive days after 10 J/cm2 UVA irradiation, or cells treated with increasing UVA doses. UVA-activated MAPK/AP-1 pathway was examined by Western blot. Effects of inhibition of MAPK pathway and knockdown of Jun and Fos on UVA-induced CatK expression were also measured by real-time RT-PCR and Western blot. UVA significantly increased CatK mRNA and protein expression in a dose-dependent manner. UVA-induced CatK expression occurred along with UVA-activated phosphorylation of JNK, p38 and Jun, UVA-increased expression of Fos. Inactivation of JNK and p38MAPK pathways both remarkably decreased UVA-induced CatK expression, which was suppressed more by inhibition of JNK pathway. Furthermore, knockdown of Jun and Fos significantly attenuated basal and UVA-induced CatK expression. UVA is capable of increasing CatK expression in HDFs, most likely by activation of MAPK pathway and of AP-1, which has been shown to be the case for matrix metalloproteinases. As current strategies for selecting anti-photoaging agents focus on their ability to decrease MMPs' expression through inhibiting UV- activated MAPK pathway, future strategies should also consider their effect on CatK expression.

  13. Resveratrol inhibits collagen I synthesis by suppressing IGF-1R activation in intestinal fibroblasts

    PubMed Central

    Li, Ping; Liang, Mei-Lan; Zhu, Ying; Gong, Yao-Yao; Wang, Yun; Heng, Ding; Lin, Lin

    2014-01-01

    I induced by IGF-1. Moreover, silencing SIRT1 restored collagen I expression in fibroblasts challenged with resveratrol. However, disruption of SIRT1 did not influence the anti-fibrotic effects of resveratrol and IGF-1-induced collagen I expression. Further analysis revealed that resveratrol significantly decreased phosphorylation of IGF-1R and its downstream signaling molecules by inhibiting IGF-1 binding to its receptor. CONCLUSION: Our data suggest that resveratrol effectively inhibits collagen I synthesis in IGF-1-stimulated fibroblasts, partly by inhibiting IGF-1R activation, and SIRT1 is also responsible for the process. PMID:24782617

  14. Long-term exposure of human gingival fibroblasts to cigarette smoke condensate reduces cell growth by modulating Bax, caspase-3 and p53 expression.

    PubMed

    Alamri, A; Semlali, A; Jacques, É; Alanazi, M; Zakrzewski, A; Chmielewski, W; Rouabhia, M

    2015-08-01

    Smoking cigarettes increases the risk of oral tissue damage leading to periodontal disease. Gingival fibroblasts, the predominant cell type inhabiting gingival connective tissue, play a critical role in remodeling and maintaining gingival structure. The objective of this study was to investigate the effect of long-term exposure to cigarette smoke on human gingival fibroblast survival/apoptosis and the molecular pathways involved in these cell responses. Human gingival fibroblasts were extracted from healthy non-smokers and cultured in the presence of cigarette smoke condensate (CSC). At the end of each time point, cell growth was evaluated by means of MTT assay. Apoptotic and necrotic gene's expression was investigated by polymerase chain reaction array and by annexin V/propidium iodide staining and cell cycle assays. Western blot was used to investigate Bax and p53 proteins. These tests were supported by caspase 3 activity analyses. High levels of CSC decreased cell growth and deregulated cell cycle progression by increasing the G(0)/G(1) and reducing the S and G(2)/M phases of the gingival fibroblasts. Polymerase chain reaction arrays revealed the activation of several apoptotic genes by CSC, including TNF receptors, caspases, Bax and p53. This was supported by increases in the Bax and p53 protein levels as well as by an elevated activity of caspase-3 in the CSC-exposed cells. Immunofluorescence staining demonstrated that both Bax and caspase-3 displayed a cytosolic and mitochondrial distribution in the CSC-exposed gingival fibroblasts, compared to controls. The damaging effect of CSC on gingival fibroblast growth was also supported by the decrease in interleukin 6 and 8 secretion by the gingival fibroblasts. These results suggest that CSC may contribute to deregulating fibroblast functions. This can compromise fibroblast-epithelial cell interactions, which ultimately increases the risk of gingival tissue damage and the onset of periodontitis. © 2014 John Wiley

  15. Reactive oxygen species-mediated switching expression of MMP-3 in stromal fibroblasts and cancer cells during prostate cancer progression.

    PubMed

    Hsieh, Chia-Ling; Liu, Che-Ming; Chen, Hsin-An; Yang, Shun-Tai; Shigemura, Katsumi; Kitagawa, Koichi; Yamamichi, Fukashi; Fujisawa, Masato; Liu, Yun-Ru; Lee, Wei-Hua; Chen, Kuan-Chou; Shen, Chia-Ning; Lin, Cheng-Chieh; Chung, Leland W K; Sung, Shian-Ying

    2017-08-22

    Studies on the aberrant control of extracellular matrices (ECMs) have mainly focused on the role of malignant cells but less on that of stromal fibroblasts during cancer development. Herein, by using paired normal and prostate cancer-associated stromal fibroblasts (CAFs) derived from a coculture cell model and clinical patient samples, we demonstrated that although CAFs promoted prostate cancer growth, matrix metalloproteinase-3 (MMP-3) was lower in CAFs but elevated in prostate cancer cells relative to their normal counterparts. Furthermore, hydrogen peroxide was characterized as the central modulator for altered MMP-3 expression in prostate cancer cells and CAFs, but through different regulatory mechanisms. Treatment of CAFs but not prostate cancer cells with hydrogen peroxide directly inhibited mmp-3 promoter activity with concomitant nuclear translocation of nuclear factor-κB (NF-κB), indicating that NF-κB is the downstream pathway for the transcriptional repression of MMP-3 in CAFs. Hydrogen peroxide reduced thrombospondin 2 (an MMP-3 suppressor) expression in prostate cancer cells by upregulating microRNA-128. To the best of our knowledge, this is the first study to demonstrate the crucial role of reactive oxygen species in the switching expression of MMP-3 in stromal fibroblasts and prostate cancer cells during tumor progression, clarifying how the tumor microenvironment modulates ECM homeostasis control.

  16. Bacillus Calmette Guerin Induces Fibroblast Activation Both Directly and through Macrophages in a Mouse Bladder Cancer Model

    PubMed Central

    Lodillinsky, Catalina; Langle, Yanina; Guionet, Ariel; Góngora, Adrián; Baldi, Alberto; Sandes, Eduardo O.; Casabé, Alberto; Eiján, Ana María

    2010-01-01

    Background Bacillus Calmette-Guerin (BCG) is the most effective treatment for non-muscle invasive bladder cancer. However, a failure in the initial response or relapse within the first five years of treatment has been observed in 20% of patients. We have previously observed that in vivo administration of an inhibitor of nitric oxide improved the response to BCG of bladder tumor bearing mice. It was described that this effect was due to a replacement of tumor tissue by collagen depots. The aim of the present work was to clarify the mechanism involved in this process. Methodology/Principal Findings We demonstrated that BCG induces NIH-3T3 fibroblast proliferation by activating the MAPK and PI3K signaling pathways and also differentiation determined by alpha-smooth muscle actin (alpha-SMA) expression. In vivo, intratumoral inoculation of BCG also increased alpha-SMA and collagen expression. Oral administration of L-NAME enhanced the pro-fibrotic effect of BCG. Peritoneal macrophages obtained from MB49 tumor-bearing mice treated in vivo with combined treatment of BCG with L-NAME also enhanced fibroblast proliferation. We observed that FGF-2 is one of the factors released by BCG-activated macrophages that is able to induce fibroblast proliferation. The involvement of FGF-2 was evidenced using an anti-FGF2 antibody. At the same time, this macrophage population improved wound healing rate in normal mice and FGF-2 expression was also increased in these wounds. Conclusions/Significance Our findings suggest that fibroblasts are targeted by BCG both directly and through activated macrophages in an immunotherapy context of a bladder murine model. We also described, for the first time, that FGF-2 is involved in a dialog between fibroblasts and macrophages induced after BCG treatment. The fact that L-NAME administration improves the BCG effect on fibroblasts, NO inhibition, might represent a new approach to add to the conventional BCG therapy. PMID:21042580

  17. p38 mitogen-activated protein kinase is crucial for bovine papillomavirus type-1 transformation of equine fibroblasts.

    PubMed

    Yuan, ZhengQiang; Gault, Elizabeth A; Campo, M Saveria; Nasir, Lubna

    2011-08-01

    Equine sarcoids represent the most common skin tumours in equids worldwide, characterized by extensive invasion and infiltration of lymphatics, rare regression and high recurrence after surgical intervention. Bovine papillomavirus type-1 (BPV-1) and less commonly BPV-2 are the causative agents of the diseases. It has been demonstrated that BPV-1 viral gene expression is necessary for maintaining the transformation phenotype. However, the underlying mechanism for BPV-1 transformation remains largely unknown, and the cellular factors involved in transformation are not fully understood. Previously mitogen-activated protein kinase (MAPK) signalling pathway has been shown to be important for cellular transformation. This study investigated the role of p38 MAPK (p38) in the transformation of equine fibroblasts by BPV-1. Elevated expression of phosphorylated p38 was observed in BPV-1 expressing fibroblasts due to the expression of BPV-1 E5 and E6. The phosphorylation of the MK2 kinase, a substrate of p38, was also enhanced. Inhibition of p38 activity by its selective inhibitor SB203580 changed cell morphology, reduced the proliferation of sarcoid fibroblasts and inhibited cellular invasiveness, indicating the indispensable role of p38 in BPV-1 transformation of equine fibroblasts. These findings provide new insights into the pathogenesis of equine sarcoids and suggest that p38 could be a potential target for equine sarcoid therapy.

  18. Anti-inflammatory changes of gene expression by Artemisia iwayomogi in the LPS-stimulated human gingival fibroblast: microarray analysis.

    PubMed

    Choi, Yeong-Gon; Yeo, Sujung; Kim, Sung-Hoon; Lim, Sabina

    2012-03-01

    The leaves and stems of Asteraceae Artemisia iwayomogi (Ai) for a long time have been known to inhibit inflammatory cytokine production and allergic reactions, and have been used to treat liver diseases. It needs to be elucidated in terms of global gene expression whether Ai has an influence as an anti-inflammatory agent on the cultured human gingival fibroblast stimulated with lipopolysaccharide (LPS). This study investigated the anti-inflammatory changes of the genes by Ai using the Affymetrix genechip human gene 1.0 ST array when the cultured human gingival fibroblast was treated with LPS. It was observed that the inflammation- and immune response-related genes were activated by LPS challenge in the cultured human gingival fibroblast. The array analysis showed that 65 of the 344 genes up-regulated by LPS stimulation, when compared to the control, were down-regulated by the Ai treatment. A number of inflammation- and immune response-related genes of the 65 genes were found. In addition, 78 of the 164 genes down-regulated by the LPS, when compared to the control, were up-regulated by the Ai treatment. The regulatory patterns of the representative genes were correlated with the real-time RT-PCR analysis. The Ai extract and its specific components, scopolin and scopoletin, significantly hindered the production of inflammatory mediators such as IL-6, TNF-α and nitrite in the LPS-challenged fibroblast. This study suggests that Ai can comprehensively inhibit the activation of the inflammation- and immune response-related genes and the inflammatory mediators in the human gingival fibroblast.

  19. Krüppel-Like Factor 4 Is a Regulator of Proinflammatory Signaling in Fibroblast-Like Synoviocytes through Increased IL-6 Expression

    PubMed Central

    Ruan, Jianwei; Xie, Jiangwen; Lv, Guoju

    2016-01-01

    Human fibroblast-like synoviocytes play a vital role in joint synovial inflammation in rheumatoid arthritis (RA). Proinflammatory cytokines induce fibroblast-like synoviocyte activation and dysfunction. The inflammatory mediator Krüppel-like factor 4 is upregulated during inflammation and plays an important role in endothelial and macrophage activation during inflammation. However, the role of Krüppel-like factor 4 in fibroblast-like synoviocyte activation and RA inflammation remains to be defined. In this study, we identify the notion that Krüppel-like factor 4 is higher expressed in synovial tissues and fibroblast-like synoviocytes from RA patients than those from osteoarthritis patients. In vitro, the expression of Krüppel-like factor 4 in RA fibroblast-like synoviocytes is induced by proinflammatory cytokine tumor necrosis factor-α. Overexpression of Krüppel-like factor 4 in RA fibroblast-like synoviocytes robustly induced interleukin-6 production in the presence or absence of tumor necrosis factor-α. Conversely, knockdown of Krüppel-like factor 4 markedly attenuated interleukin-6 production in the presence or absence of tumor necrosis factor-α. Krüppel-like factor 4 not only can bind to and activate the interleukin-6 promoter, but also may interact directly with nuclear factor-kappa B. These results suggest that Krüppel-like factor 4 may act as a transcription factor mediating the activation of fibroblast-like synoviocytes in RA by inducing interleukin-6 expression in response to tumor necrosis factor-α. PMID:27413250

  20. Expression of fibulin-6 in failing hearts and its role for cardiac fibroblast migration.

    PubMed

    Chowdhury, Arpita; Herzog, Christine; Hasselbach, Lisa; Khouzani, Houra Loghmani; Zhang, Jinli; Hammerschmidt, Matthias; Rudat, Carsten; Kispert, Andreas; Gaestel, Matthias; Menon, Manoj B; Tudorache, Igor; Hilfiker-Kleiner, Denise; Mühlfeld, Christian; Schmitto, Jan Dieter; Müller, Martin; Theilmeier, Gregor

    2014-09-01

    The cardiac extracellular matrix (ECM) undergoes a dynamic transition following myocardial infarction. Fibulin-6 is expressed in cell junctions particularly in tissues subjected to significant mechanical stress. Fibulin-6 deficiency results in defective cell migration in nematodes and early embryonic lethality in mice. The role of fibulin-6 in healthy and failing myocardium is unknown. We have examined the expression and distribution pattern of fibulin-6 during myocardial remodelling (MR) and detailed its effect on the migratory function of cardiac fibroblasts (CFs) in response to TGF-β1. In healthy murine myocardium, fibulin-6 expression is largely confined to larger coronary arteries. It is induced during the early and the late phase of remodelling after infarction in murine hearts predominantly in the scar-muscle junction. Similar results are obtained in human ischaemic cardiomyopathy. Fibulin-6 is mostly expressed in close vicinity to vimentin-positive cells and is also abundantly expressed in vitro in cultured neonatal CF. TGF-β1 does not induce smooth muscle actin in fibroblasts deficient of fibulin-6, which also compromised their migration. Cells that had migrated expressed more fibulin-6 compared with stationary cells. Plated on fibulin-6-depleted matrix, stress fibre induction in fibroblast in response to TGF-β1 was impaired. In ex vivo explant cultures from post-infarct myocardium, the number of emigrating fibroblasts was also significantly reduced by fibulin-6 siRNA knockdown. Fibulin-6, a fibroblast-released ECM protein, may play an important role during MR by imparting an effect on CF migration in close and complementary interplay with TGF-β1 signalling. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  1. Genetic polymorphism directs IL-6 expression in fibroblasts but not selected other cell types.

    PubMed

    Noss, Erika H; Nguyen, Hung N; Chang, Sook Kyung; Watts, Gerald F M; Brenner, Michael B

    2015-12-01

    Interleukin (IL)-6 blockade is an effective treatment for rheumatoid arthritis (RA), and synovial fibroblasts are a major IL-6 producer in the inflamed joint. We found that human RA and osteoarthritis (OA) synovial fibroblasts derived from independent donors reproducibly segregated into low, medium, and high IL-6 producers, independent of stimulus, cell passage, or disease state. IL-6 expression pattern correlated strongly with total mRNA expression, not mRNA stability, suggesting transcriptional rather than posttranscriptional regulation. High-fibroblast IL-6 expression was significantly associated with the IL-6 proximal promoter single nucleotide polymorphism (SNP) rs1800795 minor allele (CC) genotype. In contrast, no association between this SNP and IL-6 production was detected in CD14(+) monocytes, another major producer of synovial IL-6. Luciferase expression assays confirmed that this SNP was associated with differential IL-6 expression in fibroblasts. To date, several association studies examining rs1800795 allele frequency and disease risk have reported seemingly conflicting results ranging from no association to association with either the major or minor allele across a spectrum of conditions, including cancer and autoimmune, cardiovascular, infectious, and metabolic diseases. This study points to a prominent contribution from promoter genetic variation in fibroblast IL-6 regulation, but not in other IL-6-producing cell types. We propose that some of the heterogeneity in these clinical studies likely reflects the cellular source of IL-6 in specific diseases, much of which may be produced by nonhematopoietic cells. These results highlight that functional analysis of disease-associated SNPs on gene expression and pathologic processes must consider variation in diverse cell types.

  2. Largazole, a class I histone deacetylase inhibitor, enhances TNF-α-induced ICAM-1 and VCAM-1 expression in rheumatoid arthritis synovial fibroblasts

    SciTech Connect

    Ahmed, Salahuddin; Riegsecker, Sharayah; Beamer, Maria; Rahman, Ayesha; Bellini, Joseph V.; Bhansali, Pravin; Tillekeratne, L.M. Viranga

    2013-07-15

    In the present study, we evaluated the effect of largazole (LAR), a marine-derived class I HDAC inhibitor, on tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and matrix metalloproteinase-2 (MMP-2) activity. LAR (1–5 μM) had no adverse effect on the viability of RA synovial fibroblasts. Among the different class I HDACs screened, LAR (0.5–5 μM) inhibited the constitutive expression of HDAC1 (0–30%). Surprisingly, LAR increased class II HDAC [HDAC6] by ∼ 220% with a concomitant decrease in HDAC5 [30–58%] expression in RA synovial fibroblasts. SAHA (5 μM), a pan-HDAC inhibitor, also induced HDAC6 expression in RA synovial fibroblasts. Pretreatment of RA synovial fibroblasts with LAR further enhanced TNF-α-induced ICAM-1 and VCAM-1 expression. However, LAR inhibited TNF-α-induced MMP-2 activity in RA synovial fibroblasts by 35% when compared to the TNF-α-treated group. Further, the addition of HDAC6 specific inhibitor Tubastatin A with LAR suppressed TNF-α + LAR-induced ICAM-1 and VCAM-1 expression and completely blocked MMP-2 activity, suggesting a role of HDAC6 in LAR-induced ICAM-1 and VCAM-1 expression. LAR also enhanced TNF-α-induced phospho-p38 and phospho-AKT expression, but inhibited the expression of phospho-JNK and nuclear translocation of NF-κBp65 in RA synovial fibroblasts. These results suggest that LAR activates p38 and Akt pathways and influences class II HDACs, in particular HDAC6, to enhance some of the detrimental effects of TNF-α in RA synovial fibroblasts. Understanding the exact role of different HDAC isoenzymes in RA pathogenesis is extremely important in order to develop highly effective HDAC inhibitors for the treatment of RA. - Highlights: • Largazole enhances TNF-α-induced ICAM-1 and VCAM-1. • Largazole upregulates class II HDAC (HDAC6) in RA synovial fibroblasts. • Largazole also induces the expression of phospho-p38

  3. Problem-Based Test: The Effect of Fibroblast Growth Factor on Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    This paper shows the results of an experiment in which the effects of fibroblast growth factor (FGF), actinomycin D (Act D; an inhibitor of transcription), and cycloheximide (CHX; an inhibitor of translation) were studied on the expression of two genes: a gene called "Fnk" and the gene coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH).…

  4. Problem-Based Test: The Effect of Fibroblast Growth Factor on Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    This paper shows the results of an experiment in which the effects of fibroblast growth factor (FGF), actinomycin D (Act D; an inhibitor of transcription), and cycloheximide (CHX; an inhibitor of translation) were studied on the expression of two genes: a gene called "Fnk" and the gene coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH).…

  5. Molecular cloning and characterization of plastin, a human leukocyte protein expressed in transformed human fibroblasts.

    PubMed Central

    Lin, C S; Aebersold, R H; Kent, S B; Varma, M; Leavitt, J

    1988-01-01

    The phosphoprotein plastin was originally identified as an abundant transformation-induced polypeptide of chemically transformed neoplastic human fibroblasts. This abundant protein is normally expressed only in leukocytes, suggesting that it may play a role in hemopoietic cell differentiation. Protein microsequencing of plastin purified from leukemic T lymphocytes by high-resolution two-dimensional gel electrophoresis produced eight internal oligopeptide sequences. An oligodeoxynucleotide probe corresponding to one of the oligopeptides was used to clone cDNAs from transformed human fibroblasts that encoded the seven other oligopeptides predicted for human plastin. Sequencing and characterization of two cloned cDNAs revealed the existence of two distinct, but closely related, isoforms of plastin--l-plastin, which is expressed in leukocytes and transformed fibroblasts, and t-plastin, which is expressed in normal cells of solid tissues and transformed fibroblasts. The leukocyte isoform l-plastin is expressed in a diverse variety of human tumor cell lines, suggesting that it may be involved in the neoplastic process of some solid human tumors. Images PMID:3211125

  6. Nifedipine induces periostin expression in gingival fibroblasts through TGF-beta.

    PubMed

    Kim, S S; Jackson-Boeters, L; Darling, M R; Rieder, M J; Hamilton, D W

    2013-11-01

    Gingival enlargement is a fibrotic condition that can arise from systemic administration of the dihydropyridine calcium channel blocker nifedipine. Periostin, a transforming growth factor-beta (TGF-β)-inducible matricellular protein, has been associated with fibrosis in numerous tissues, but its expression has never been examined in nifedipine-influenced gingival enlargement (NIGE). The objective of this study was to assess if periostin up-regulation is associated with NIGE and whether nifedipine induces periostin expression in gingival fibroblasts. In NIGE tissue (n = 6), periostin is overexpressed in the gingival connective tissue compared with healthy control tissue (n = 6). The transcription factor p-SMAD2/3, which is associated with canonical TGF-β signaling, localizes to the nuclei in both HGFs and oral epithelial cells in NIGE tissues, but not in control healthy tissue. In vitro culture of HGFs with 30 and 100 ng/mL of nifedipine significantly increased periostin mRNA and protein levels, which correlated with increased levels of active TGF-β and increased phosphorylation and nuclear localization of SMAD3. Blocking of canonical TGF-β signaling through inhibition of the TGF-β receptor I with SB431542 significantly reduced nifedipine-induced SMAD3 phosphorylation and periostin expression. Our results demonstrate that nifedipine up-regulates periostin in HGFs in a TGF-β-dependent manner.

  7. ATP released from cardiac fibroblasts via connexin hemichannels activates profibrotic P2Y2 receptors

    PubMed Central

    Lu, David; Soleymani, Sahar; Madakshire, Rohit; Insel, Paul A.

    2012-01-01

    Cardiac fibroblasts (CFs) play an essential role in remodeling of the cardiac extracellular matrix. Extracellular nucleotide signaling may provoke a profibrotic response in CFs. We tested the hypothesis that physical perturbations release ATP from CFs and that ATP participates in profibrotic signaling. ATP release was abolished by the channel inhibitor carbenoxolone and inhibited by knockdown of either connexin (Cx)43 or Cx45 (47 and 35%, respectively), implying that hypotonic stimulation induces ATP release via Cx43 and Cx45 hemichannels, although pannexin 1 may also play a role. ATP released by hypotonic stimulation rapidly (<10 min) increased phosphorylated ERK by 5-8 fold, an effect largely eliminated by P2Y2 receptor knockdown or ATP hydrolysis with apyrase. ATP stimulation of P2Y2 receptors increased α-smooth muscle actin (α-SMA) production, and in an ERK-dependent manner, ATP increased collagen accumulation by 60% and mRNA expression of profibrotic markers: plasminogen activator inhibitor-1 and monocyte chemotactic protein-1 by 4.5- and 4.0-fold, respectively. Apyrase treatment substantially reduced the basal profibrotic phenotype, decreasing collagen and α-SMA content and increasing matrix metalloproteinase expression. Thus, ATP release activates P2Y2 receptors to mediate profibrotic responses in CFs, implying that nucleotide release under both basal and activated states is likely an important mechanism for fibroblast homeostasis.—Lu, D., Soleymani, S., Madakshire, R., Insel, P. A. ATP released from cardiac fibroblasts via connexin hemichannels activates profibrotic P2Y2 receptors. PMID:22415310

  8. A three-dimensional human model of the fibroblast activation that accompanies bronchopulmonary dysplasia identifies Notch-mediated pathophysiology.

    PubMed

    Sucre, Jennifer M S; Wilkinson, Dan; Vijayaraj, Preethi; Paul, Manash; Dunn, Bruce; Alva-Ornelas, Jackelyn A; Gomperts, Brigitte N

    2016-05-15

    Bronchopulmonary dysplasia (BPD) is a leading complication of premature birth and occurs primarily in infants delivered during the saccular stage of lung development. Histopathology shows decreased alveolarization and a pattern of fibroblast proliferation and differentiation to the myofibroblast phenotype. Little is known about the molecular pathways and cellular mechanisms that define BPD pathophysiology and progression. We have developed a novel three-dimensional human model of the fibroblast activation associated with BPD, and using this model we have identified the Notch pathway as a key driver of fibroblast activation and proliferation in response to changes in oxygen. Fetal lung fibroblasts were cultured on sodium alginate beads to generate lung organoids. After exposure to alternating hypoxia and hyperoxia, the organoids developed a phenotypic response characterized by increased α-smooth muscle actin (α-SMA) expression and other genes known to be upregulated in BPD and also demonstrated increased expression of downstream effectors of the Notch pathway. Inhibition of Notch with a γ-secretase inhibitor prevented the development of the pattern of cellular proliferation and α-SMA expression in our model. Analysis of human autopsy tissue from the lungs of infants who expired with BPD demonstrated evidence of Notch activation within fibrotic areas of the alveolar septae, suggesting that Notch may be a key driver of BPD pathophysiology.

  9. Inhibition of Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway in rheumatoid synovial fibroblasts using small molecule compounds.

    PubMed

    Migita, K; Izumi, Y; Torigoshi, T; Satomura, K; Izumi, M; Nishino, Y; Jiuchi, Y; Nakamura, M; Kozuru, H; Nonaka, F; Eguchi, K; Kawakami, A; Motokawa, S

    2013-12-01

    Janus kinase (JAK) inhibitors have been developed as anti-inflammatory agents and have demonstrated clinical efficacy in rheumatoid arthritis (RA). We investigated if JAK-3-selective inhibition alone could disrupt cytokine signalling in rheumatoid synovial fibroblasts. In-vitro studies were performed using synovial fibroblasts isolated from patients with RA. Levels of activated JAK and signal transducer and activator of transcription (STAT) proteins were detected by immunoblot analysis. Target-gene expression levels were measured by reverse transcription-polymerase chain reaction (RT-PCR) or real-time PCR. The JAK inhibitors CP-690,550 and INCB028050 both suppressed activation of JAK-1/-2/-3 and downstream STAT-1/-3/-5, as well as the expression levels of target proinflammatory genes (MCP-I, SAA1/2) in oncostatin-M (OSM)-stimulated rheumatoid synovial fibroblasts. In contrast, the JAK-3-selective inhibitor, PF-956980, suppressed STAT-1/-5 activation but did not affect STAT-3 activation in OSM-stimulated rheumatoid synovial fibroblasts. In addition, PF-956980 significantly suppressed MCP-1 gene expression, but did not block SAA1/2 gene expression in OSM-stimulated rheumatoid synovial fibroblasts. These data suggest that JAK-3-selective inhibition alone is insufficient to control STAT-3-dependent signalling in rheumatoid synovial fibroblasts, and inhibition of JAKs, including JAK-1/-2, is needed to control the proinflammatory cascade in RA. © 2013 British Society for Immunology.

  10. Inhibition of Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway in rheumatoid synovial fibroblasts using small molecule compounds

    PubMed Central

    Migita, K; Izumi, Y; Torigoshi, T; Satomura, K; Izumi, M; Nishino, Y; Jiuchi, Y; Nakamura, M; Kozuru, H; Nonaka, F; Eguchi, K; Kawakami, A; Motokawa, S

    2013-01-01

    Janus kinase (JAK) inhibitors have been developed as anti-inflammatory agents and have demonstrated clinical efficacy in rheumatoid arthritis (RA). We investigated if JAK-3-selective inhibition alone could disrupt cytokine signalling in rheumatoid synovial fibroblasts. In-vitro studies were performed using synovial fibroblasts isolated from patients with RA. Levels of activated JAK and signal transducer and activator of transcription (STAT) proteins were detected by immunoblot analysis. Target-gene expression levels were measured by reverse transcription–polymerase chain reaction (RT–PCR) or real-time PCR. The JAK inhibitors CP-690,550 and INCB028050 both suppressed activation of JAK-1/-2/-3 and downstream STAT-1/-3/-5, as well as the expression levels of target proinflammatory genes (MCP-I, SAA1/2) in oncostatin-M (OSM)-stimulated rheumatoid synovial fibroblasts. In contrast, the JAK-3-selective inhibitor, PF-956980, suppressed STAT-1/-5 activation but did not affect STAT-3 activation in OSM-stimulated rheumatoid synovial fibroblasts. In addition, PF-956980 significantly suppressed MCP-1 gene expression, but did not block SAA1/2 gene expression in OSM-stimulated rheumatoid synovial fibroblasts. These data suggest that JAK-3-selective inhibition alone is insufficient to control STAT-3-dependent signalling in rheumatoid synovial fibroblasts, and inhibition of JAKs, including JAK-1/-2, is needed to control the proinflammatory cascade in RA. PMID:23968543

  11. Targeting Mll1 H3K4 methyltransferase activity to guide cardiac lineage specific reprogramming of fibroblasts.

    PubMed

    Liu, Liu; Lei, Ienglam; Karatas, Hacer; Li, Yangbing; Wang, Li; Gnatovskiy, Leonid; Dou, Yali; Wang, Shaomeng; Qian, Li; Wang, Zhong

    2016-01-01

    Generation of induced cardiomyocytes (iCMs) directly from fibroblasts offers a great opportunity for cardiac disease modeling and cardiac regeneration. A major challenge of iCM generation is the low conversion rate. To address this issue, we attempted to identify small molecules that could potentiate the reprogramming ability towards cardiac fate by removing inhibitory roadblocks. Using mouse embryonic fibroblasts as the starting cell source, we first screened 47 cardiac development related epigenetic and transcription factors, and identified an unexpected role of H3K4 methyltransferase Mll1 and related factor Men1 in inhibiting iCM reprogramming. We then applied small molecules (MM408 and MI503) of Mll1 pathway inhibitors and observed an improved efficiency in converting embryonic fibroblasts and cardiac fibroblasts into functional cardiomyocyte-like cells. We further observed that these inhibitors directly suppressed the expression of Mll1 target gene Ebf1 involved in adipocyte differentiation. Consequently, Mll1 inhibition significantly decreased the formation of adipocytes during iCM induction. Therefore, Mll1 inhibitors likely increased iCM efficiency by suppressing alternative lineage gene expression. Our studies show that targeting Mll1 dependent H3K4 methyltransferase activity provides specificity in the process of cardiac reprogramming. These findings shed new light on the molecular mechanisms underlying cardiac conversion of fibroblasts and provide novel targets and small molecules to improve iCM reprogramming for clinical applications.

  12. Activation of Ras in vitro and in intact fibroblasts by the Vav guanine nucleotide exchange protein.

    PubMed Central

    Gulbins, E; Coggeshall, K M; Langlet, C; Baier, G; Bonnefoy-Berard, N; Burn, P; Wittinghofer, A; Katzav, S; Altman, A

    1994-01-01

    We recently identified Vav, the product of the vav proto-oncogene, as a guanine nucleotide exchange factor (GEF) for Ras. Vav is enzymatically activated by lymphocyte antigen receptor-coupled protein tyrosine kinases or independently by diglycerides. To further evaluate the physiological role of Vav, we assessed its GDP-GTP exchange activity against several Ras-related proteins in vitro and determined whether Vav activation in transfected NIH 3T3 fibroblasts correlates with the activity status of Ras and mitogen-activated protein (MAP) kinases. In vitro translated purified Vav activated by phorbol myristate acetate (PMA) or phosphorylation with recombinant p56lck displayed GEF activity against Ras but not against recombinant RacI, RacII, Ral, or RhoA proteins. Expression of vav or proto-vav in stably transfected NIH 3T3 cells led to a approximately 10-fold increase in basal or PMA-stimulated Ras exchange activity, respectively, in total-cell lysates and Vav immunoprecipitates. Elevated GEF activity was paralleled in each case by a significant increase in the proportion of active, GTP-bound Ras. PMA had a minimal effect on the low Ras. GTP level in untransfected control fibroblasts but increased it from 20 to 37% in proto-vav-transfected cells. vav-transfected cells displayed a constitutively elevated Ras. GTP level (35%), which was not increased further by PMA treatment. MAP kinases, known downstream intermediates in Ras-dependent signaling pathways, similarly exhibited increased basal or PMA-stimulated activity in Vav-expressing cells by comparison with normal NIH 3T3 cells. These results demonstrate a physiologic interaction between Vav and its target, Ras, leading to MAP kinase activation. Images PMID:8289830

  13. Ethanol extract of peanut sprout induces Nrf2 activation and expression of antioxidant and detoxifying enzymes in human dermal fibroblasts: implication for its protection against UVB-irradiated oxidative stress.

    PubMed

    Choi, Jee-Young; Choi, Da-In; Lee, Jee-Bum; Yun, Suk-Jung; Lee, Dong-Ho; Eun, Jong-Bang; Lee, Seung-Chul

    2013-01-01

    A peanut sprout is known to contain a significant level of resveratrol, which was reported to have beneficial effects in our body due to its antioxidant activities. The purpose of this study was to evaluate the cytoprotective activity of ethanol extract of peanut sprout (EPS) from ultraviolet B (UVB)-induced oxidative stress in human dermal fibroblasts (HDF). EPS was revealed to contain 54.2 μg g(-1) of trans-resveratrol. The DCF-DA-positive reactive oxygen species level was increased by 50 mJ cm(-2) of UVB irradiation (2150 ± 450% of nonirradiated control), which was markedly suppressed by EPS treatment (180 ± 42% of control). Annexin V-positive apoptotic cell death induced by UVB irradiation (16.4 ± 4.5%) was also significantly inhibited by EPS treatment (6.7 ± 2.5%). EPS induced up-regulation and nuclear translocation of Nrf2, a transcription factor for antioxidant and detoxifying enzymes, in HDF as a dose-dependent manner. UVB irradiation up-regulated Nrf2-dependent enzymes of heme oxygenase-1, NAD(P)H:quinine oxidoreductase-1 and glutathione-S-transferase pi, and they were further stimulated by EPS treatment. Taken together, EPS is an efficient cytoprotective agent against UVB-induced oxidative stress by activation of Nrf2 and upregulation of Nrf2-relating antioxidant and detoxifying enzymes in HDF.

  14. Angiotensin II increases CTGF expression via MAPKs/TGF-{beta}1/TRAF6 pathway in atrial fibroblasts

    SciTech Connect

    Gu, Jun; Liu, Xu; Wang, Quan-xing; Tan, Hong-wei; Guo, Meng; Jiang, Wei-feng; Zhou, Li

    2012-10-01

    The activation of transforming growth factor-{beta}1(TGF-{beta}1)/Smad signaling pathway and increased expression of connective tissue growth factor (CTGF) induced by angiotensin II (AngII) have been proposed as a mechanism for atrial fibrosis. However, whether TGF{beta}1/non-Smad signaling pathways involved in AngII-induced fibrogenetic factor expression remained unknown. Recently tumor necrosis factor receptor associated factor 6 (TRAF6)/TGF{beta}-associated kinase 1 (TAK1) has been shown to be crucial for the activation of TGF-{beta}1/non-Smad signaling pathways. In the present study, we explored the role of TGF-{beta}1/TRAF6 pathway in AngII-induced CTGF expression in cultured adult atrial fibroblasts. AngII (1 {mu}M) provoked the activation of P38 mitogen activated protein kinase (P38 MAPK), extracellular signal-regulated kinase 1/2(ERK1/2) and c-Jun NH(2)-terminal kinase (JNK). AngII (1 {mu}M) also promoted TGF{beta}1, TRAF6, CTGF expression and TAK1 phosphorylation, which were suppressed by angiotensin type I receptor antagonist (Losartan) as well as p38 MAPK inhibitor (SB202190), ERK1/2 inhibitor (PD98059) and JNK inhibitor (SP600125). Meanwhile, both TGF{beta}1 antibody and TRAF6 siRNA decreased the stimulatory effect of AngII on TRAF6, CTGF expression and TAK1 phosphorylation, which also attenuated AngII-induced atrial fibroblasts proliferation. In summary, the MAPKs/TGF{beta}1/TRAF6 pathway is an important signaling pathway in AngII-induced CTGF expression, and inhibition of TRAF6 may therefore represent a new target for reversing Ang II-induced atrial fibrosis. -- Highlights: Black-Right-Pointing-Pointer MAPKs/TGF{beta}1/TRAF6 participates in AngII-induced CTGF expression in atrial fibroblasts. Black-Right-Pointing-Pointer TGF{beta}1/TRAF6 participates in AngII-induced atrial fibroblasts proliferation. Black-Right-Pointing-Pointer TRAF6 may represent a new target for reversing Ang II-induced atrial fibrosis.

  15. IL-36R signalling activates intestinal epithelial cells and fibroblasts and promotes mucosal healing in vivo.

    PubMed

    Scheibe, Kristina; Backert, Ingo; Wirtz, Stefan; Hueber, Axel; Schett, Georg; Vieth, Michael; Probst, Hans Christian; Bopp, Tobias; Neurath, Markus F; Neufert, Clemens

    2017-05-01

    Interleukin (IL)-36R signalling plays a proinflammatory role in different organs including the skin, but the expression of IL-36R ligands and their molecular function in intestinal inflammation are largely unknown. We studied the characteristics of IL-36R ligand expression in IBDs and experimental colitis. The functional role of IL-36R signalling in the intestine was addressed in experimental colitis and wound healing models in vivo by using mice with defective IL-36R signalling (IL-36R-/-) or Myd88, neutralising anti-IL-36R antibodies, recombinant IL-36R ligands and RNA-seq genome expression analysis. Expression of IL-36α and IL-36γ was significantly elevated in active human IBD and experimental colitis. While IL-36γ was predominantly detected in nuclei of the intestinal epithelium, IL-36α was mainly found in the cytoplasm of CD14(+) inflammatory macrophages. Functional studies showed that defective IL-36R signalling causes high susceptibility to acute dextran sodium sulfate colitis and impairs wound healing. Mechanistically, IL-36R ligands released upon mucosal damage activated IL-36R(+) colonic fibroblasts via Myd88 thereby inducing expression of chemokines, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-6. Moreover, they induced proliferation of intestinal epithelial cells (IECs) and expression of the antimicrobial protein lipocalin 2. Finally, treatment of experimental intestinal wounds with IL-36R ligands significantly accelerated mucosal healing in vivo. IL-36R signalling is activated upon intestinal damage, stimulates IECs and fibroblasts and drives mucosal healing. Modulation of the IL-36R pathway emerges as a potential therapeutic strategy for induction of mucosal healing in IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Bradykinin promotes Toll like receptor-4 expression in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Arreguín-Cano, Juan Antonio; Hernández-Bermúdez, Cristina

    2012-12-01

    Bacterial infections are a potent mechanism for enzymatic generation of kinins such as bradykinin (BK), a universal mediator for inducing inflammatory reaction by associating with the B2 receptor and stimulating liberation of arachidonic acid and synthesis of prostaglandin E2 (PGE2). In this study we evaluate the role of bradykinin in regulating the expression of TLR4 receptor in human gingival fibroblasts. We examine the ability of bradykinin to modulate inflammatory response of human gingival fibroblasts to Gram-negative components and evaluated the role of Toll-like receptors (TLR)-4 in the co-operation between bradykinin and bacterial pathogens. We show that treatment with bradykinin promotes TLR4 receptor expression in human gingival fibroblasts (HGF) and amplifies inflammatory responses to the bacterial components of Gram-negative bacteria. The TLR4 expression induced by bradykinin was blocked with Hoe 140, a B2R antagonist. When HGF cells were incubated with BK resulted of an increased in cyclooxygenase-2 (COX-2) expression and prostaglandin E2 synthesis. Bradykinin and lipopolysaccharide, a specific TLR4 ligand stimulated COX-2 expression. In other series of experiments we found that ERK, phosphatidylinositol-3 kinase, protein kinase C and NFkB are involved in BK promoted-increased in TLR4 expression. The results demonstrate that bradykinin up-regulates the expression of TLR4 and promotes an additive increase in inflammatory responses to lipopolysaccharides.

  17. Effects of biomaterial-derived fibroblast conditioned medium on the α-amylase expression of parotid gland acinar cells.

    PubMed

    Chou, Ya-Shuan; Young, Tai-Horng; Lou, Pei-Jen

    2015-11-01

    Salivary gland cells are surrounded by a complex stromal environment, in which fibroblasts are the main cells in proximity to the gland cells. In this study, the interaction between parotid gland acinar cells (PGACs), fibroblasts, and biomaterials was investigated. We prepared different biomaterials, including chitosan, polyvinyl alcohol (PVA), poly (ethylene-co-vinyl alcohol) (EVAL), polyvinylidene fluoride (PVDF), and tissue culture polystyrene (TCPS) to culture fibroblasts and then collect their conditioned media to culture PGACs. We observed no difference in AQP3, AQP5, and E-cadherin expression among different fibroblast conditioned medium treatments. Interestingly, α-amylase expression was obviously enhanced in PGACs cultured in the presence of conditioned medium from fibroblasts cultured on PVDF. Higher neurotrophin-4 (NT-4) expression was observed in PVDF-derived fibroblast conditioned medium using a growth factor protein array assay. In addition, directly adding NT-4 into the culture medium significantly promoted α-amylase expression by PGACs. Finally, nestin and βIII-tubulin expression by fibroblasts cultured on PVDF was also enhanced. Together, these results suggest that PVDF could promote α-amylase expression by PGACs via the NT-4 produced by fibroblasts. To date, there is no effective therapy for patients with dry mouth with persistent salivary hypofunction. The study made use of different biomaterials to culture fibroblasts and then collect their conditioned media to culture PGACs. It was found that the effect of fibroblast conditioned medium from PVDF on the α-amylase expression of PGACs was obviously enhanced and higher neurotrophin-4 (NT-4) expression was found in PVDF-derived fibroblast conditioned medium. In addition, directly adding NT-4 into the culture medium significantly promoted the expression of α-amylase by PGACs and the expression of nestin and βIII-tubulin of fibroblasts after being cultured on PVDF was enhanced. Therefore, the

  18. Conformation and activity of recombinant human fibroblast interferon-beta.

    PubMed

    Boublik, M; Moschera, J A; Wei, C; Kung, H F

    1990-04-01

    Conformation of highly purified recombinant human fibroblast interferon-beta (rHuIFN-beta) was correlated with its biological activity. The extent of ordered secondary structure was determined by circular dichroic (CD) spectroscopy in various buffer conditions to establish conditions of protein stability and its potential for helix formation. The highest "helicity" (about 50 +/- 5% of alpha-helices) and the highest antiviral activities (4-10 x 10(7) units/mg) were found in 50% ethylene glycol, 1 M NaCl and 0.05 M Na3PO4, pH 7.2 (Buffer I); 80 mM citric acid, 20 mM Na2HPO4, pH 2.9 (Buffer II); and 25 mM NH4OAc, 125 mM NaCl, pH 5.1 (Buffer III). Both helicity and antiviral activity of the IFN-beta decrease in parallel with denaturation by urea, heat, and/or by repeated cycles of freezing and thawing. Low pH (pH 2.9 Buffer II) exhibits a distinct stabilizing effect on the structure and antiviral activity of IFN-beta against heat denaturation.

  19. Basic calcium phosphate crystal-induced Egr-1 expression stimulates mitogenesis in human fibroblasts

    SciTech Connect

    Zeng, Xiao R.; Sun Yubo; Wenger, Leonor; Cheung, Herman S. . E-mail: hcheung@med.miami.edu

    2005-05-13

    Previously, we have reported that basic calcium phosphate (BCP) crystals stimulate mitogenesis and synthesis of matrix metalloproteinases in cultured human foreskin and synovial fibroblasts. However, the detailed mechanisms involved are still unclear. In the present study, using RT-PCR and Egr-1 promoter analysis we showed that BCP crystals could stimulate early growth response gene Egr-1 transcription through a PKC{alpha}-dependent p44/p42 MAPK pathway. Using a retrovirus gene expression system (Clontech) to overexpress Egr-1 in human fibroblast BJ-1 cells resulted in promotion of mitogenesis measured either by MTT cell proliferation analysis or by direct cell counting. The results demonstrate that Egr-1 may play a key role in mediating BCP crystal-induced synovial fibroblast mitogenesis.

  20. ATP released from cardiac fibroblasts via connexin hemichannels activates profibrotic P2Y2 receptors.

    PubMed

    Lu, David; Soleymani, Sahar; Madakshire, Rohit; Insel, Paul A

    2012-06-01

    Cardiac fibroblasts (CFs) play an essential role in remodeling of the cardiac extracellular matrix. Extracellular nucleotide signaling may provoke a profibrotic response in CFs. We tested the hypothesis that physical perturbations release ATP from CFs and that ATP participates in profibrotic signaling. ATP release was abolished by the channel inhibitor carbenoxolone and inhibited by knockdown of either connexin (Cx)43 or Cx45 (47 and 35%, respectively), implying that hypotonic stimulation induces ATP release via Cx43 and Cx45 hemichannels, although pannexin 1 may also play a role. ATP released by hypotonic stimulation rapidly (<10 min) increased phosphorylated ERK by 5-8 fold, an effect largely eliminated by P2Y(2) receptor knockdown or ATP hydrolysis with apyrase. ATP stimulation of P2Y(2) receptors increased α-smooth muscle actin (α-SMA) production, and in an ERK-dependent manner, ATP increased collagen accumulation by 60% and mRNA expression of profibrotic markers: plasminogen activator inhibitor-1 and monocyte chemotactic protein-1 by 4.5- and 4.0-fold, respectively. Apyrase treatment substantially reduced the basal profibrotic phenotype, decreasing collagen and α-SMA content and increasing matrix metalloproteinase expression. Thus, ATP release activates P2Y(2) receptors to mediate profibrotic responses in CFs, implying that nucleotide release under both basal and activated states is likely an important mechanism for fibroblast homeostasis.

  1. Fibroblast activation protein is induced by inflammation and degrades type I collagen in thin-cap fibroatheromata

    PubMed Central

    Brokopp, Chad E.; Schoenauer, Roman; Richards, Peter; Bauer, Stefan; Lohmann, Christine; Emmert, Maximilian Y.; Weber, Benedikt; Winnik, Stephan; Aikawa, Elena; Graves, Kirk; Genoni, Michele; Vogt, Peter; Lüscher, Thomas F.; Renner, Christoph; Hoerstrup, Simon P.; Matter, Christian M.

    2011-01-01

    Aims Collagen degradation in atherosclerotic plaques with thin fibrous caps renders them more prone to rupture. Fibroblast activation protein (FAP) plays a role in arthritis and tumour formation through its collagenase activity. However, the significance of FAP in thin-cap human fibroatheromata remains unknown. Methods and results We detected enhanced FAP expression in type IV–V human aortic atheromata (n = 12), compared with type II–III lesions (n = 9; P < 0.01) and healthy aortae (n = 8; P < 0.01) by immunostaining and western blot analyses. Fibroblast activation protein was also increased in thin-cap (<65 µm) vs. thick-cap (≥65 µm) human coronary fibroatheromata (n = 12; P < 0.01). Fibroblast activation protein was expressed by human aortic smooth muscle cells (HASMC) as shown by colocalization on immunofluorescent aortic plaque stainings (n = 10; P < 0.01) and by flow cytometry in cell culture. Although macrophages did not express FAP, macrophage burden in human aortic plaques correlated with FAP expression (n = 12; R2= 0.763; P < 0.05). Enzyme-linked immunosorbent assays showed a time- and dose-dependent up-regulation of FAP in response to human tumour necrosis factor α (TNFα) in HASMC (n = 6; P < 0.01). Moreover, supernatants from peripheral blood-derived macrophages induced FAP expression in cultured HASMC (n = 6; P < 0.01), an effect abolished by blocking TNFα (n = 6; P < 0.01). Fibroblast activation protein associated with collagen-poor regions in human coronary fibrous caps and digested type I collagen and gelatin in vitro (n = 6; P < 0.01). Zymography revealed that FAP-mediated collagenase activity was neutralized by an antibody directed against the FAP catalytic domain both in HASMC (n = 6; P < 0.01) and in fibrous caps of atherosclerotic plaques (n = 10; P < 0.01). Conclusion Fibroblast activation protein expression in HASMC is induced by macrophage-derived TNFα. Fibroblast activation protein associates with thin-cap human coronary

  2. Coculturing human endometrial epithelial cells and stromal fibroblasts alters cell-specific gene expression and cytokine production

    PubMed Central

    Chen, Joseph C.; Erikson, David W.; Piltonen, Terhi T.; Meyer, Michelle R.; Barragan, Fatima; McIntire, Ramsey H.; Tamaresis, John S.; Vo, Kim Chi; Giudice, Linda C.; Irwin, Juan C.

    2013-01-01

    Objective To determine the effects of coculturing endometrial epithelial cells (eEC) with paired endometrial stromal fibroblasts (eSF) on cell-specific gene expression and cytokine secretion patterns. Design In vitro study. Setting University research laboratory. Patient(s) Endometrial biopsies were obtained from premenopausal women. Intervention(s) Polarized eEC and subject-paired eSF were cultured for 12.5 hours alone (monoculture) or combined in a two-chamber coculture system without cell-cell contact. Cells and conditioned media were analyzed for global gene expression and cytokine secretion, respectively. Purified, endometrial tissue-derived eEC and eSF isolated by fluorescent activated cell sorting (FACS) were used as noncultured controls. Main Outcome Measure(s) Cell-specific global gene expression profiling and analysis of secreted cytokines in eEC/eSF cocultures and respective monocultures. Result(s) Transepithelial resistance, diffusible tracer exclusion, expression of tight junction proteins, and apical/basolateral vectorial secretion confirmed eEC structural and functional polarization. Distinct transcriptomes of eEC and eSF were consistent with their respective lineages and their endometrial origin. Coculture of eEC with eSF resulted in altered cell-specific gene expression and cytokine secretion. Conclusion(s) This coculture model provides evidence that interactions between endometrial functionally polarized epithelium and stromal fibroblasts affect cell-specific gene expression and cytokine secretion underscoring their relevance when modeling endometrium in vitro. PMID:23849844

  3. Downregulated gene expression in human palate fibroblasts after cyclosporin A treatment.

    PubMed

    Stabellini, Giordano; Carinci, Francesco; Gagliano, Nicoletta; Palmieri, Annalisa; Moscheni, Claudia; Brunelli, Giorgio; Torri, Carlo; Calastrini, Carla; Lumare, Eleonara; Pezzetti, Furio

    2007-10-01

    Cyclosporin A is a powerful immunosuppressive drug with considerable impact on transplants and is able to modify extracellular matrix (ECM) composition. It has recently been demonstrated that cyclosporin A stimulates the production of the cytokine family. Cytokines such as interleukin, transforming growth factor beta(1), and bone morphogenetic protein induce the deposition of glycosaminoglycans (GAGs), proteoglycans, and collagen fibers in the connective ECM. ECM composition is very important for normal tissue development and function. In this work, we examine the effects caused by cyclosporin A on cultures of normal human palate fibroblasts in order to evaluate interleukin, transforming growth factor beta II, and bone morphogenetic protein II membrane receptor induction and extracellular GAG changes such as hyaluronic acid, heparin sulfate, and chondroitin sulfate. Palate fibroblasts were maintained for 24 h in serum-free 199 medium containing 5 microg/mL (3)H glucosamine hydrochloride. After this time, TGF II and BMP II receptors were determined by microarray analysis and GAG classes by the biochemical method. The results show that TGFbeta(1) II and BMP II membrane receptors are significantly inhibited in cyclosporin A-treated cultures as compared to controls, whereas IL-1R2 membrane receptors are stimulated. The behavior of total intra- and extracellular GAGs is significantly increased in cyclosporin A-treated cultures, whereas the ratio between non-sulfated/sulfated GAGs decreases (p expression and modulates growth factor activities, GAG changes are related to modification of ECM functions. Our data show that cyclosporin A causes biochemical changes to ECM through alterations in cytokines and respective membrane receptor linkages.

  4. Prostaglandin E2 increases fibroblast gene-specific and global DNA methylation via increased DNA methyltransferase expression

    PubMed Central

    Huang, Steven K.; Scruggs, Anne M.; Donaghy, Jake; McEachin, Richard C.; Fisher, Aaron S.; Richardson, Bruce C.; Peters-Golden, Marc

    2012-01-01

    Although alterations in DNA methylation patterns have been associated with specific diseases and environmental exposures, the mediators and signaling pathways that direct these changes remain understudied. The bioactive lipid mediator prostaglandin E2 (PGE2) has been shown to exert a myriad of effects on cell survival, proliferation, and differentiation. Here, we report that PGE2 also signals to increase global DNA methylation and DNA methylation machinery in fibroblasts. HumanMethylation27 BeadChip array analysis of primary fetal (IMR-90) and adult lung fibroblasts identified multiple genes that were hypermethylated in response to PGE2. PGE2, compared with nontreated controls, increased expression and activity (EC50∼107 M) of one specific isoform of DNA methyltransferase, DNMT3a. Silencing of DNMT3a negated the ability of PGE2 to increase DNMT activity. The increase in DNMT3a expression was mediated by PGE2 signaling via its E prostanoid 2 receptor and the second messenger cAMP. PGE2, compared with the untreated control, increased the expression and activity of Sp1 and Sp3 (EC50∼3×107 M), transcription factors known to increase DNMT3a expression, and inhibition of these transcription factors abrogated the PGE2 increase of DNMT3a expression. These findings were specific to fibroblasts, as PGE2 decreased DNMT1 and DNMT3a expression in RAW macrophages. Taken together, these findings establish that DNA methylation is regulated by a ubiquitous bioactive endogenous mediator. Given that PGE2 biosynthesis is modulated by environmental toxins, various disease states, and commonly used pharmacological agents, these findings uncover a novel mechanism by which alterations in DNA methylation patterns may arise in association with disease and certain environmental exposures.—Huang, S. K., Scruggs, A. M., Donaghy, J., McEachin, R. C., Fisher, A. S., Richardson, B. C., Peters-Golden, M. Prostaglandin E2 increases fibroblast gene-specific and global DNA methylation via

  5. TIMP1 promotes multi-walled carbon nanotube-induced lung fibrosis by stimulating fibroblast activation and proliferation.

    PubMed

    Dong, Jie; Ma, Qiang

    2017-02-01

    Pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) may cause fibrosing lesions in animal lungs, raising health concerns about such exposure in humans. The mechanisms underlying fibrosis development remain unclear, but they are believed to involve the dysfunction of fibroblasts and myofibroblasts. Using a mouse model of MWCNT exposure, we found that the tissue inhibitor of metalloproteinase 1 (Timp1) gene was rapidly and highly induced in the lungs by MWCNTs in a time- and dose-dependent manner. Concomitantly, a pronounced elevation of secreted TIMP1 was observed in the bronchoalveolar lavage (BAL) fluid and serum. Knockout (KO) of Timp1 in mice caused a significant reduction in fibrotic focus formation, collagen fiber deposition, recruitment of fibroblasts and differentiation of fibroblasts into myofibroblasts in the lungs, indicating that TIMP1 plays a critical role in the pulmonary fibrotic response to MWCNTs. At the molecular level, MWCNT exposure significantly increased the expression of the cell proliferation markers Ki-67 and PCNA and a panel of cell cycle-controlling genes in the lungs in a TIMP1-dependent manner. MWCNT-stimulated cell proliferation was most prominent in fibroblasts but not myofibroblasts. Furthermore, MWCNTs elicited a significant induction of CD63 and integrin β1 in lung fibroblasts, leading to the formation of a TIMP1/CD63/integrin β1 complex on the surface of fibroblasts in vivo and in vitro, which triggered the phosphorylation and activation of Erk1/2. Our study uncovers a new pathway through which induced TIMP1 critically modulates the pulmonary fibrotic response to MWCNTs by promoting fibroblast activation and proliferation via the TIMP1/CD63/integrin β1 axis and ERK signaling.

  6. microRNA-92a expression in the sera and dermal fibroblasts increases in patients with scleroderma.

    PubMed

    Sing, Takaomi; Jinnin, Masatoshi; Yamane, Keitaro; Honda, Norihito; Makino, Kastunari; Kajihara, Ikko; Makino, Takamitsu; Sakai, Keisuke; Masuguchi, Shinichi; Fukushima, Satoshi; Ihn, Hironobu

    2012-09-01

    microRNAs (miRNAs) play a part in various cellular activities. However, the role of miRNA in SSc is not fully understood. This study investigated the expression and role of miR-92a in SSc patients and evaluated the possibility that miR-92a is involved in the pathogenesis of this disease. Serum samples were obtained from 61 SSc patients. mRNAs were purified from serum and levels of miR-92a and miR-135 were measured with quantitative real-time PCR. miR-92a expression in dermal fibroblasts was also determined by quantitative real-time PCR. Immunoblotting was performed to detect MMP-1 protein. The median serum levels of miR-92a, not miR-135, were significantly higher in SSc patients than normal subjects. The constitutive up-regulated miR-92a expression was also found in cultured dermal fibroblasts from SSc skin, which was decreased by the transfection with siRNA of TGF-β. Furthermore, the forced overexpression of miR-92a in normal dermal fibroblasts using miR-92a mimic resulted in the down-regulation of MMP-1 expression. The increase of miR-92a in SSc may be due to the stimulation of intrinsic TGF-β activation seen in this disease. There is also a possibility that MMP-1 is the target of miR-92a and that increased miR-92a expression therefore plays a role in excessive collagen accumulation in SSc via the down-regulation of MMP-1. Clarifying the role of miRNAs in SSc may result in a better understanding of this disease and the development of new therapeutic approaches.

  7. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    SciTech Connect

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  8. Bezafibrate upregulates carnitine palmitoyltransferase II expression and promotes mitochondrial energy crisis dissipation in fibroblasts of patients with influenza-associated encephalopathy.

    PubMed

    Yao, Min; Yao, Dengbin; Yamaguchi, Miyoko; Chida, Junji; Yao, Dengfu; Kido, Hiroshi

    2011-11-01

    Influenza-associated encephalopathy (IAE) is characterized by persistently high fever, febrile convulsions, severe brain edema and high mortality. We reported previously that a large proportion of patients with disabling or fatal IAE exhibit a thermolabile phenotype of compound variants for [1055T>G/F352C] and [1102G>A/V368I] of carnitine palmitoyltransferase II (CPT II) and mitochondrial energy crisis during high fever. In the present study, we studied the effect of bezafibrate, a hypolipidemic pan-agonist of peroxisome proliferator-activated receptor (PPAR), on CPT II expression and mitochondrial energy metabolism in fibroblasts of IAE patients and wild type (WT) fibroblasts from a healthy volunteer at 37°C and 41°C. Although heat stress markedly upregulated CPT II, CPT IA and PPAR-δ mRNA expression levels, CPT II activity, β-oxidation and ATP levels in WT and IAE fibroblasts at 41°C were paradoxically downregulated probably due to the thermal instability of the corresponding enzymes. Bezafibrate significantly enhanced the expression levels of the above mRNAs and cellular functions of these enzymes in fibroblasts at 37°C. Bezafibrate-induced increase in CPT II activity also tended to restore the downregulated ATP levels, though moderately, and improved mitochondrial membrane potential even at 41°C to the levels at 37°C in fibroblasts of IAE patients. L-carnitine, a substrate of CPT II, boosted the effects of bezafibrate on cellular ATP levels in WT and IAE fibroblasts, even in severe IAE fibroblasts with thermolabile compound variations of F352C+V368I at 37°C and 41°C. The results suggest the potential usefulness of bezafibrate for the treatment of IAE. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury.

    PubMed

    Kawaguchi, Masanori; Takahashi, Masafumi; Hata, Takeki; Kashima, Yuichiro; Usui, Fumitake; Morimoto, Hajime; Izawa, Atsushi; Takahashi, Yasuko; Masumoto, Junya; Koyama, Jun; Hongo, Minoru; Noda, Tetsuo; Nakayama, Jun; Sagara, Junji; Taniguchi, Shun'ichiro; Ikeda, Uichi

    2011-02-15

    Background- Inflammation plays a key role in the pathophysiology of myocardial ischemia/reperfusion (I/R) injury; however, the mechanism by which myocardial I/R induces inflammation remains unclear. Recent evidence indicates that a sterile inflammatory response triggered by tissue damage is mediated through a multiple-protein complex called the inflammasome. Therefore, we hypothesized that the inflammasome is an initial sensor for danger signal(s) in myocardial I/R injury. Methods and Results- We demonstrate that inflammasome activation in cardiac fibroblasts, but not in cardiomyocytes, is crucially involved in the initial inflammatory response after myocardial I/R injury. We found that inflammasomes are formed by I/R and that its subsequent activation of inflammasomes leads to interleukin-1β production, resulting in inflammatory responses such as inflammatory cell infiltration and cytokine expression in the heart. In mice deficient for apoptosis-associated speck-like adaptor protein and caspase-1, these inflammatory responses and subsequent injuries, including infarct development and myocardial fibrosis and dysfunction, were markedly diminished. Bone marrow transplantation experiments with apoptosis-associated speck-like adaptor protein-deficient mice revealed that inflammasome activation in bone marrow cells and myocardial resident cells such as cardiomyocytes or cardiac fibroblasts plays an important role in myocardial I/R injury. In vitro experiments revealed that hypoxia/reoxygenation stimulated inflammasome activation in cardiac fibroblasts, but not in cardiomyocytes, and that hypoxia/reoxygenation-induced activation was mediated through reactive oxygen species production and potassium efflux. Conclusions- Our results demonstrate the molecular basis for the initial inflammatory response after I/R and suggest that the inflammasome is a potential novel therapeutic target for preventing myocardial I/R injury.

  10. Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway

    SciTech Connect

    White, Eric S.; Sagana, Rommel L.; Booth, Adam J.; Yan, Mei; Cornett, Ashley M.; Bloomheart, Christopher A.; Tsui, Jessica L.; Wilke, Carol A.; Moore, Bethany B.; Ritzenthaler, Jeffrey D.; Roman, Jesse; Muro, Andres F.

    2010-10-01

    Fibronectin (FN), a ubiquitous glycoprotein that plays critical roles in physiologic and pathologic conditions, undergoes alternative splicing which distinguishes plasma FN (pFN) from cellular FN (cFN). Although both pFN and cFN can be incorporated into the extracellular matrix, a distinguishing feature of cFN is the inclusion of an alternatively spliced exon termed EDA (for extra type III domain A). The molecular steps involved in EDA splicing are well-characterized, but pathways influencing EDA splicing are less clear. We have previously found an obligate role for inhibition of the tumor suppressor phosphatase and tensin homologue on chromosome 10 (PTEN), the primary regulator of the PI3K/Akt pathway, in fibroblast activation. Here we show TGF-{beta}, a potent inducer of both EDA splicing and fibroblast activation, inhibits PTEN expression and activity in mesenchymal cells, corresponding with enhanced PI3K/Akt signaling. In pten{sup -/-} fibroblasts, which resemble activated fibroblasts, inhibition of Akt attenuated FN production and decreased EDA alternative splicing. Moreover, inhibition of mammalian target of rapamycin (mTOR) in pten{sup -/-} cells also blocked FN production and EDA splicing. This effect was due to inhibition of Akt-mediated phosphorylation of the primary EDA splicing regulatory protein SF2/ASF. Importantly, FN silencing in pten{sup -/-} cells resulted in attenuated proliferation and migration. Thus, our results demonstrate that the PI3K/Akt/mTOR axis is instrumental in FN transcription and alternative splicing, which regulates cell behavior.

  11. Fucoidan is the active component of fucus vesiculosus that promotes contraction of fibroblast-populated collagen gels.

    PubMed

    Fujimura, T; Shibuya, Y; Moriwaki, S; Tsukahara, K; Kitahara, T; Sano, T; Nishizawa, Y; Takema, Y

    2000-10-01

    The fibroblast-populated collagen gel culture method has been evaluated as a dermal model of wound contraction and granulation in tissues during the wound healing process and as an in vitro model of dermal tissue. We previously reported that an extract of Fucus vesiculosus promoted fibroblast-populated collagen gel contraction and that the promotion of the gel contraction was due to the increased expression of integrin alpha2beta1 on the surface of the fibroblasts. In this study, we investigated the active component of the extract of this alga using extraction and fractionation techniques. Water extraction of the alga was followed by precipitation with excess ethanol and then gel filtration with the boundary molecular weight of 30,000. The high molecular weight fraction obtained from gel filtration was fractionated by ion exchange chromatography on diethylaminoethyl cellulose column to give active fractions that have more polar properties. These polar, high molecular weight fractions which contained molecules with fucose and sulfate groups showed significant gel contraction-promoting activity and integrin expression-enhancing activity, and were estimated to be the sulfated-polysaccharide fucoidan. Commercially available fucoidan showed similar activities to the above-described fraction of this alga. Although it remains necessary to precisely identify the specific active component, the above results indicate that fucoidan is the active component which promotes collagen gel contraction, and also indicate the possibility that it dose so by enhancing the integrin alpha2beta1 expression.

  12. High levels of expression of fibroblast growth factor 21 in transgenic tobacco (Nicotiana benthamiana).

    PubMed

    Fu, Hongqi; Pang, Shifeng; Xue, Ping; Yang, Jing; Liu, Xiuming; Wang, Yanfang; Li, Tingting; Li, Haiyan; Li, Xiaokun

    2011-09-01

    Fibroblast growth factor-21 (FGF21) is a hepatic hormone that plays a critical role in metabolism, stimulating fatty acid oxidation in the liver and glucose uptake in adipose tissue. In this study, we produced tobacco plants expressing human recombinant FGF21 (hFGF21) via Agrobacterium-mediated transformation using a potato virus X (PVX)-based vector (pgR107). The vector contained the sequence encoding the human FGF21 gene fused with green florescence protein and a histidine tag. The recombinant plasmid was introduced into leaf cells of Nicotiana benthamiana (a wild Australian tobacco) via Agrobacterium-mediated agroinfiltration. As determined by fluorescence and Western blot of leaf extracts, the hFGF21 gene was correctly translated in tobacco plants. Seven days after agroinfection, the recombinant hFGF21 had accumulated to levels as high as 450 μg g(-1) fresh weight in leaves of agroinfected plants. The recombinant hFGF21 was purified from plant tissues by Ni-NTA affinity chromatography, and the purified hFGF21 stimulated glucose uptake in 3T3/L1 cells. This indicated that the recombinant hFGF21 expressed via the PVX viral vector in N. benthamiana was biologically active.

  13. Human cleft lip and palate fibroblasts and normal nicotine-treated fibroblasts show altered in vitro expressions of genes related to molecular signaling pathways and extracellular matrix metabolism.

    PubMed

    Baroni, Tiziano; Bellucci, Catia; Lilli, Cinzia; Pezzetti, Furio; Carinci, Francesco; Lumare, Eleonora; Palmieri, Annalisa; Stabellini, Giordano; Bodo, Maria

    2010-03-01

    Nonsyndromic cleft lip with or without cleft palate (CLP) is a frequent craniofacial malformation caused by both genetic and environmental factors. Maternal smoking during pregnancy is a known risk factor, due to the teratogenic role of nicotine. To assess and compare the impact of CLP and nicotine, we studied the quantitative expression of genes involved in signaling pathways and extracellular matrix (ECM) metabolism in human normal nicotine-treated (NicN) and CLP fibroblasts compared to normal control (CTRL) cells. Palatal fibroblast cultures from seven CLP children and seven age-matched CTRL subjects were established and subconfluent cells incubated for 24 h without (CTRL and CLP fibroblasts) or with (NicN fibroblasts) 0.6 mM nicotine. Gene expressions were analyzed by real-time quantitative PCR. For the first time, a regulated cholinergic signaling in our human fibroblasts in vitro was demonstrated. Members of TGF-beta, retinoic acid (RA), and GABA-ergic signaling systems were also differently regulated. Among the ECM genes, fibronectin, syndecan, integrin alpha2, and MMP13 genes were concordantly modulated, while integrin beta5, and decorin genes were discordantly modulated. Interestingly, nicotine treatment regulated gene expressions of CD44 and CLPTM1, two candidate genes for CLP. Our findings show a positive association between nicotine treatment and CLP phenotype. Results suggest that nicotine deranges normal palate development, which might contribute to the development of a CLP malformative phenotype, through the impairment of some important signaling systems and ECM composition.

  14. Expression of integrins by human periodontal ligament and gingival fibroblasts and their involvement in fibroblast adhesion to enamel matrix-derived proteins.

    PubMed

    van der Pauw, M T M; Everts, V; Beertsen, W

    2002-10-01

    We showed recently that human periodontal ligament (PDL) and gingival fibroblasts adhere and spread on enamel matrix protein (EMP) coatings. In the present study, we investigated whether this interaction can be attributed to integrin expression. Human PDL and gingival fibroblasts were cultured for periods up to 24 h on EMP coatings, in the presence of synthetic RGD-containing peptide or an antibody against the beta1 integrin subunit. The cells were first cultured for 24 h under serum-free conditions and then cultured on EMP coatings for 48 h. Integrin expression levels were assessed by flow cytometry analysis. It was found that attachment and spreading on EMP was inhibited by the synthetic RGD-containing peptide, but not by a synthetic RGE-peptide. Both PDL and gingival fibroblasts showed expression of the integrin subunits, alpha2, alpha5, beta1, and the integrin, alphavbeta3. Incubation with an antibody against the beta1 subunit significantly inhibited the attachment and spreading of PDL and gingival fibroblasts on EMP coatings. We conclude that integrins are involved in the interaction of PDL and gingival fibroblasts with EMP.

  15. Fibroblast activation protein is dispensable in the anti-influenza immune response in mice

    PubMed Central

    Chowdhury, Sumaiya; Polak, Natasa

    2017-01-01

    Fibroblast activation protein alpha (FAP) is a unique dual peptidase of the S9B serine protease family, being capable of both dipeptidyl peptidase and endopeptidase activities. FAP is expressed at low level in healthy adult organs including the pancreas, cervix, uterus, submaxillary gland and the skin, and highly upregulated in embryogenesis, chronic inflammation and tissue remodelling. It is also expressed by cancer-associated stromal fibroblasts in more than 90% of epithelial tumours. FAP has enzymatic and non-enzymatic functions in the growth, immunosuppression, invasion and cell signalling of tumour cells. FAP deficient mice are fertile and viable with no gross abnormality, but little data exist on the role of FAP in the immune system. FAP is upregulated in association with microbial stimulation and chronic inflammation, but its function in infection remains unknown. We showed that major populations of immune cells including CD4+ and CD8+ T cells, B cells, dendritic cells and neutrophils are generated and maintained normally in FAP knockout mice. Upon intranasal challenge with influenza virus, FAP mRNA was increased in the lungs and lung-draining lymph nodes. Nonetheless, FAP deficient mice showed similar pathologic kinetics to wildtype controls, and were capable of supporting normal anti-influenza T and B cell responses. There was no evidence of compensatory upregulation of other DPP4 family members in influenza-infected FAP-deficient mice. FAP appears to be dispensable in anti-influenza adaptive immunity. PMID:28158223

  16. Elevated expression of basic fibroblast growth factor in an immortalized rabbit smooth muscle cell line.

    PubMed

    Winkles, J A; Friesel, R; Alberts, G F; Janat, M F; Liau, G

    1993-08-01

    Intimal smooth muscle cell accumulation is regarded as an important component of atherosclerotic plaque formation, angioplasty-induced restenosis, and vascular graft occlusion. Vascular smooth muscle cells can both express and respond to acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF); therefore, under certain conditions these polypeptides may regulate smooth muscle cell growth in an autocrine manner. Previous studies using smooth muscle cells cultured in vitro have identified factors that can enhance aFGF and bFGF gene expression. In this study, we assayed fibroblast growth factor gene expression in a spontaneously immortalized rabbit smooth muscle cell line. In contrast to "normal" rabbit smooth muscle cells, these immortalized cells acquire an altered morphology and enhanced proliferative rate during; cell passaging in vitro. Both "normal" and immortalized rabbit smooth muscle cells express bFGF but not aFGF transcripts. RNA gel blot hybridization, reverse transcription/polymerase chain reaction amplification, and Western blotting techniques demonstrate that bFGF expression in the immortalized smooth muscle cell line increases as a function of passage level. This continuous cell line should prove valuable for studying both the regulation of bFGF synthesis and the control of vascular smooth muscle cell proliferation.

  17. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    SciTech Connect

    Malpass, Gloria E.; Arimilli, Subhashini; Prasad, G.L.; Howlett, Allyn C.

    2014-09-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes.

  18. Dietary moderately oxidized oil induces expression of fibroblast growth factor 21 in the liver of pigs

    PubMed Central

    2012-01-01

    Background Fibroblast growth factor 21 (FGF21), whose expression is induced by peroxisome proliferator-activated receptor α (PPARα), has been recently identified as a novel metabolic regulator which plays a crucial role in glucose homeostasis, lipid metabolism, insulin sensitivity and obesity. Previous studies have shown that administration of oxidized fats leads to an activation of PPARα in the liver. Therefore, the present study investigated the hypothesis that feeding of oxidized fats causes an induction of FGF21 in the liver. Methods Twenty four crossbred pigs were allocated to two groups of 12 pigs each and fed nutritionally adequate diets with either fresh rapeseed oil or oxidized rapeseed oil prepared by heating at a temperature of 175°C for 72 h. Results In pigs fed the oxidized fat mRNA abundance and protein concentrations of FGF21 in liver were significantly increased (P < 0.05), and the protein concentrations of FGF21 in plasma tended to be increased (P < 0.1) in comparison to control pigs. Moreover, pigs fed the oxidized fat had increased transcript levels of the PPARα target genes acyl-CoA oxidase, carnitine palmitoyltransferase-1 and novel organic cation transporter 2 in the liver (P < 0.05), indicative of PPARα activation. Conclusion The present study shows for the first time that administration of an oxidized fat induces the expression of FGF21 in the liver, probably mediated by activation of PPARα. Induction of FGF21 could be involved in several effects observed in animals administered an oxidized fat. PMID:22394566

  19. A green tea component suppresses posttranslational expression of basic fibroblast growth factor in colorectal cancer.

    PubMed

    Sukhthankar, Mugdha; Yamaguchi, Kiyoshi; Lee, Seong-Ho; McEntee, Michael F; Eling, Thomas E; Hara, Yukihiko; Baek, Seung Joon

    2008-06-01

    Green tea catechins are known to have anticarcinogenic effects. Epigallocatechin-3-gallate (EGCG) accounts for almost 50% of the total catechin content in green tea extract and has very potent antioxidant effects. EGCG also inhibits angiogenesis, possibly through the inhibition of proangiogenic factors including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which in turn, inhibits tumor growth and metastasis. However, the exact molecular mechanism by which EGCG suppresses bFGF expression is not known. Our objective was to elucidate the molecular mechanisms by which EGCG inhibits bFGF expression in colorectal cancer. We examined posttranslational regulation of bFGF by EGCG in human colorectal cancer cells. We also examined bFGF in intestinal tumor formation of APC(Min/+) mice with and without catechin treatment. The bFGF protein was quickly degraded in the presence of EGCG, but a proteasome inhibitor suppressed this degradation. EGCG was also found to increase ubiquitination of bFGF and trypsin-like activity of the 20S proteasome, thereby resulting in the degradation of bFGF protein. Furthermore, EGCG suppressed tumor formation in APC(Min/+) mice, compared with vehicle-treated mice, in association with reduced bFGF expression. The ubiquitin-proteasome degradation pathway contributes significantly to down-regulation of bFGF expression by EGCG. Catechin compounds have fewer adverse effects than chemotherapeutic agents and hence can be used as proof-of-concept in cancer therapeutics to suppress growth and metastasis by targeting proteins such as bFGF.

  20. A Green Tea Component Suppresses Posttranslational Expression of Basic Fibroblast Growth Factor in Colorectal Cancer

    PubMed Central

    SUKHTHANKAR, MUGDHA; YAMAGUCHI, KIYOSHI; LEE, SEONG-HO; MCENTEE, MICHAEL F.; ELING, THOMAS E.; HARA, YUKIHIKO; BAEK, SEUNG JOON

    2008-01-01

    Background & Aims Green tea catechins are known to have anticarcinogenic effects. Epigallocatechin-3-gallate (EGCG) accounts for almost 50% of the total catechin content in green tea extract and has very potent antioxidant effects. EGCG also inhibits angiogenesis, possibly through the inhibition of proangiogenic factors including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which in turn, inhibits tumor growth and metastasis. However, the exact molecular mechanism by which EGCG suppresses bFGF expression is not known. Our objective was to elucidate the molecular mechanisms by which EGCG inhibits bFGF expression in colorectal cancer. Methods We examined posttranslational regulation of bFGF by EGCG in human colorectal cancer cells. We also examined bFGF in intestinal tumor formation of APCMin/+ mice with and without catechin treatment. Results The bFGF protein was quickly degraded in the presence of EGCG, but a proteasome inhibitor suppressed this degradation. EGCG was also found to increase ubiquitination of bFGF and trypsin-like activity of the 20S proteasome, thereby resulting in the degradation of bFGF protein. Furthermore, EGCG suppressed tumor formation in APCMin/+ mice, compared with vehicle-treated mice, in association with reduced bFGF expression. Conclusions The ubiquitin-proteasome degradation pathway contributes significantly to down-regulation of bFGF expression by EGCG. Catechin compounds have fewer adverse effects than chemotherapeutic agents and hence can be used as proof-of-concept in cancer therapeutics to suppress growth and metastasis by targeting proteins such as bFGF. PMID:18549879

  1. An Activatable Near Infrared Fluorescent Probe for In Vivo Imaging of Fibroblast Activation Protein-alpha

    PubMed Central

    Li, Jinbo; Chen, Kai; Liu, Hongguang; Cheng, Kai; Yang, Meng; Zhang, Jiping; Cheng, Jonathan D.; Zhang, Yan; Cheng, Zhen

    2012-01-01

    Fibroblast activation protein-alpha (FAPα) is a cell surface glycoprotein which is selectively expressed by tumor-associated fibroblasts in malignant tumors but rarely on normal tissues. FAPα has also been reported to promote tumor growth and invasion and therefore has been of increasing interest as a promising target for designing tumor-targeted drugs and imaging agents. Although medicinal study on FAPα inhibitors has led to the discovery of many FAPα-targeting inhibitors including a drug candidate in a phase II clinical trial, the development of imaging probes to monitor the expression and activity of FAPα in vivo has largely lagged behind. Herein we report an activatable near infrared (NIR) fluorescent probe (ANPFAP) for in vivo optical imaging of FAPα. The ANPFAP consists of a NIR dye (Cy5.5) and a quencher dye (QSY21) which are linked together by a short peptide sequence (KGPGPNQC) specific for FAPα cleavage. Because of the efficient fluorescence resonance energy transfer (FRET) between Cy5.5 and QSY21 in ANPFAP, high contrast on the NIR fluorescence signal can be achieved after the cleavage of the peptide sequence by FAPα both in vitro and in vivo. In vitro assay on ANPFAP indicated the specificity of the probe to FAPα. The in vivo optical imaging using ANPFAP showed fast tumor uptake as well as high tumor to background contrast on U87MG tumor models with FAPα expression, while much lower signal and tumor contrast were observed in the C6 tumor without FAPα expression, demonstrating the in vivo targeting specificity of the ANPFAP. Ex vivo imaging also demonstrated ANPFAP had high tumor uptake at 4 h post injection. Collectively, these results indicated that ANPFAP could serve as a useful NIR optical probe for early detection of FAPα expressing tumors. PMID:22812530

  2. Changes in gene expression of matrix constituents with respect to passage of ligament and tendon fibroblasts.

    PubMed

    Almarza, Alejandro J; Augustine, Serena M; Woo, Savio L-Y

    2008-12-01

    Trauma to the knee joint often results in injury to one or more supporting soft tissue structures, such as the medial collateral (MCL) and anterior cruciate (ACL) ligaments. Also, a portion of the patellar tendon (PT) is frequently used as a replacement graft for the ACL, resulting in a PT defect. The healing responses of these tissues are dramatically different and range from spontaneous healing to little or no healing. Studies have suggested that native cell behavior could be responsible for differences in healing potential. However, it is difficult to make comparisons as the reported results are based on different cellular passages which could have a dramatic effect on their potential to form healing tissues. Therefore, the objective of this study was to quantify the gene expression of collagen and other matrix constituents of fibroblasts from the MCL, ACL, and PT to document how they change with cell passage. We hypothesized that MCL fibroblasts would possess higher potential for matrix production through passages than ACL and PT cells because the MCL mounts a robust healing response unlike the ACL and PT. These differences in matrix expression would be dependent on passage because at earlier passages all cells would mostly be proliferating while at later passages they would tend to become senescent. Cells were isolated from the MCL, ACL, and PT of three rats and passaged a total of five times (Passage 1 to Passage 5). Using real time RT-PCR, expression of all genes of interest (Collagen Type I (ligament/tendon's main matrix constituent), Collagen Type III, Fibronectin, Metalloprotease-13 [MMP-13], and Tissue Inhibitor of Metallopreotease-1 [TIMP-1]) were quantitatively assessed. It was found that cell number for all three fibroblast types remained high from Passage 1 to Passage 5. There was a statistically significant increase in Collagen Type I of rat MCL fibroblasts throughout passage (p < 0.05). This was evident in the higher relative abundance (to GAPDH

  3. Macrophage Infiltration is a Causative Factor for Ligamentum Flavum Hypertrophy through the Activation of Collagen Production in Fibroblasts.

    PubMed

    Saito, Takeyuki; Hara, Masamitsu; Kumamaru, Hiromi; Kobayakawa, Kazu; Yokota, Kazuya; Kijima, Ken; Yoshizaki, Shingo; Harimaya, Katsumi; Matsumoto, Yoshihiro; Kawaguchi, Kenichi; Hayashida, Mitsumasa; Inagaki, Yutaka; Shiba, Keiichiro; Nakashima, Yasuharu; Okada, Seiji

    2017-09-18

    Ligamentum flavum (LF) hypertrophy causes lumbar spinal canal stenosis, leading to leg pain and disability in activities of daily living in elderly individuals. Although there have been previous studies on LF hypertrophy, its pathomechanisms have not been fully elucidated. In this study, we demonstrated that infiltrating macrophages were a causative factor for LF hypertrophy. Induction of macrophages into the mouse LF by applying a micro-injury resulted in LF hypertrophy along with collagen accumulation and fibroblasts proliferation at the injured site, which were very similar to the characteristics observed in the severely hypertrophied LF of human. However, we found that macrophage depletion by injecting clodronate-containing liposomes counteracted LF hypertrophy even with micro-injury. For identification of fibroblasts in the LF, we utilized collagen type 1 alpha 2 linked to green fluorescent protein (COL1a2-GFP) transgenic mice, and selectively isolated GFP-positive fibroblasts from the micro-injured LF using laser microdissection (LMD). A quantitative RT-PCR on LMD samples showed that the gene expression of collagen markedly increased in the fibroblasts at the injured site with infiltrating macrophages compared to the uninjured location. These results suggested that macrophage infiltration was crucial for LF hypertrophy by stimulating collagen production in fibroblasts, providing better understanding the pathophysiology of LF hypertrophy. Copyright © 2017. Published by Elsevier Inc.

  4. Disruption of transforming growth factor beta signaling and profibrotic responses in normal skin fibroblasts by peroxisome proliferator-activated receptor gamma.

    PubMed

    Ghosh, Asish K; Bhattacharyya, Swati; Lakos, Gabriella; Chen, Shu-Jen; Mori, Yasuji; Varga, John

    2004-04-01

    In fibroblasts, transforming growth factor beta (TGF beta) stimulates collagen synthesis and myofibroblast transdifferentiation through the Smad intracellular signal transduction pathway. TGF beta-mediated fibroblast activation is the hallmark of scleroderma and related fibrotic conditions, and disrupting the intracellular TGF beta/Smad signaling may provide a novel approach to controlling fibrosis. Because of its potential role in modulating inflammatory and fibrotic responses, we examined the expression of the nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPAR gamma) in normal skin fibroblasts and its effect on TGF beta-induced cellular responses. The expression and activity of PPAR gamma in normal dermal fibroblasts were examined by Northern and Western blot analyses, immunocytochemistry, flow cytometry, and transient transfections with reporter constructs. The same approaches were used to evaluate the effects of PPAR gamma activation by naturally occurring and synthetic ligands on collagen synthesis and alpha-smooth muscle actin (alpha-SMA) expression. Modulation of Smad-mediated transcriptional responses was examined by transient transfection assays using wild-type and dominant-negative PPAR gamma expression constructs. The PPAR gamma receptor was expressed and fully functional in quiescent normal skin fibroblasts. Whereas ligand activation of cellular PPAR gamma resulted in modest suppression of basal collagen gene expression, it abrogated TGF beta-induced stimulation in a concentration-dependent manner. This response was mimicked by overexpressing PPAR gamma in fibroblasts, and was blocked by a selective antagonist of PPAR gamma signaling or by transfection of fibroblasts with dominant-negative PPAR gamma constructs. Furthermore, PPAR gamma ligands abrogated TGF beta-induced expression of alpha-SMA, a marker of myofibroblasts. Stimulation of Smad-dependent transcriptional responses by TGF beta was suppressed by PPAR gamma despite

  5. Expression of tissue transglutaminase in Balb-C 3T3 fibroblasts: effects on cellular morphology and adhesion

    PubMed Central

    1992-01-01

    Tissue transglutaminase is a cytosolic enzyme whose primary function is to catalyze the covalent cross-linking of proteins. To investigate the functions of this enzyme in physiological systems, we have established lines of Balb-C 3T3 fibroblasts stably transfected with a constitutive tissue transglutaminase expression plasmid. Several cell lines expressing high levels of catalytically active tissue transglutaminase have been isolated and characterized. Transglutaminase-transfected cells showed morphologic features quite distinct from their nontransfected counterparts. Many of the cells showed an extended and very flattened morphology that reflected increased adhesion of the cells to the substratum. Other cells, particularly those showing the highest levels of intracellular transglutaminase expression, showed extensive membrane blebbing and cellular fragmentation. The results of these experiments suggest that the induction and activation of tissue transglutaminase may contribute both to changes in cellular morphology and adhesiveness. PMID:1356992

  6. Asthmatic airway epithelial cells differentially regulate fibroblast expression of extracellular matrix components

    PubMed Central

    Reeves, Stephen R.; Kolstad, Tessa; Lien, Tin-Yu; Elliott, Molly; Ziegler, Steven F.; Wight, Thomas N.; Debley, Jason S.

    2014-01-01

    Background Airway remodeling may explain lung function decline among asthmatic children. Extracellular matrix (ECM) deposition by human lung fibroblasts (HLFs) is implicated in airway remodeling. Airway epithelial cell (AEC) signaling may regulate HLF ECM expression. Objectives Determine whether AECs from asthmatic children differentially regulate HLF expression of ECM constituents. Methods Primary AECs were obtained from well-characterized atopic-asthmatic (N=10) and healthy children (N=10) intubated under anesthesia for an elective surgical procedure. AECs were differentiated at an air-liquid interface (ALI) for 3 weeks, then co-cultured with HLFs from a healthy child for 96 hours. Collagen I (COL1A1), collagen III (COL3A1), hyaluronan synthase 2 (HAS2), and fibronectin (FNDC) expression by HLFs and prostaglandin E2 synthase (PGE2S) expression by AECs was assessed by RT-PCR. TGFb1&2 concentrations in media were measured by ELISA. Results COL1A1 and COL3A1 expression by HLFs co-cultured with asthmatic AECs was greater than HLFs co-cultured with healthy AECs (2.2 fold, p<0.02; 10.8 fold, p<0.02). HAS2 expression by HLFs co-cultured with asthmatic AECs was 2.5-fold higher than by HLFs co-cultured with healthy AECs (p<0.002). FNDC expression by HLFs co-cultured with asthmatic AECs was significantly greater than by HLFs alone. TGFb2 activity was elevated in asthmatic AEC-HLF co-cultures (p<0.05) while PGES2 was down regulated in AEC-HLF co-cultures (2.2 fold, p<0.006). Conclusions HLFs co-cultured with asthmatic AECs showed differential expression of ECM constituents COL1A1 & COL3A1, and HAS2 compared to HLFs co-cultured with healthy AECs. These findings support a role for altered ECM production in asthmatic airway remodeling, possibly regulated by unbalanced AEC signaling. PMID:24875618

  7. Expression and Function of Connexin 43 in Human Gingival Wound Healing and Fibroblasts

    PubMed Central

    Tarzemany, Rana; Jiang, Guoqiao; Larjava, Hannu; Häkkinen, Lari

    2015-01-01

    Connexins (C×s) are a family of transmembrane proteins that form hemichannels and gap junctions (GJs) on the cell membranes, and transfer small signaling molecules between the cytoplasm and extracellular space and between connecting cells, respectively. Among C×s, suppressing C×43 expression or function promotes skin wound closure and granulation tissue formation, and may alleviate scarring, but the mechanisms are not well understood. Oral mucosal gingiva is characterized by faster wound closure and scarless wound healing outcome as compared to skin wounds. Therefore, we hypothesized that C×43 function is down regulated during human gingival wound healing, which in fibroblasts promotes expression of genes conducive for fast and scarless wound healing. Cultured gingival fibroblasts expressed C×43 as their major connexin. Immunostaining of unwounded human gingiva showed that C×43 was abundantly present in the epithelium, and in connective tissue formed large C×43 plaques in fibroblasts. At the early stages of wound healing, C×43 was strongly down regulated in wound epithelial cells and fibroblasts, returning to the level of normal tissue by day 60 post-wounding. Blocking of C×43 function by C×43 mimetic peptide Gap27 suppressed GJ-mediated dye transfer, promoted migration, and caused significant changes in the expression of wound healing-associated genes in gingival fibroblasts. In particular, out of 54 genes analyzed, several MMPs and TGF-β1, involved in regulation of inflammation and extracellular matrix (ECM) turnover, and VEGF-A, involved in angiogenesis, were significantly upregulated while pro-fibrotic ECM molecules, including Collagen type I, and cell contractility-related molecules were significantly down regulated. These responses involved MAPK, GSK3α/β and TGF-β signaling pathways, and AP1 and SP1 transcription factors. Thus, suppressed function of C×43 in fibroblasts promotes their migration, and regulates expression of wound healing

  8. Expression and function of connexin 43 in human gingival wound healing and fibroblasts.

    PubMed

    Tarzemany, Rana; Jiang, Guoqiao; Larjava, Hannu; Häkkinen, Lari

    2015-01-01

    Connexins (C×s) are a family of transmembrane proteins that form hemichannels and gap junctions (GJs) on the cell membranes, and transfer small signaling molecules between the cytoplasm and extracellular space and between connecting cells, respectively. Among C×s, suppressing C×43 expression or function promotes skin wound closure and granulation tissue formation, and may alleviate scarring, but the mechanisms are not well understood. Oral mucosal gingiva is characterized by faster wound closure and scarless wound healing outcome as compared to skin wounds. Therefore, we hypothesized that C×43 function is down regulated during human gingival wound healing, which in fibroblasts promotes expression of genes conducive for fast and scarless wound healing. Cultured gingival fibroblasts expressed C×43 as their major connexin. Immunostaining of unwounded human gingiva showed that C×43 was abundantly present in the epithelium, and in connective tissue formed large C×43 plaques in fibroblasts. At the early stages of wound healing, C×43 was strongly down regulated in wound epithelial cells and fibroblasts, returning to the level of normal tissue by day 60 post-wounding. Blocking of C×43 function by C×43 mimetic peptide Gap27 suppressed GJ-mediated dye transfer, promoted migration, and caused significant changes in the expression of wound healing-associated genes in gingival fibroblasts. In particular, out of 54 genes analyzed, several MMPs and TGF-β1, involved in regulation of inflammation and extracellular matrix (ECM) turnover, and VEGF-A, involved in angiogenesis, were significantly upregulated while pro-fibrotic ECM molecules, including Collagen type I, and cell contractility-related molecules were significantly down regulated. These responses involved MAPK, GSK3α/β and TGF-β signaling pathways, and AP1 and SP1 transcription factors. Thus, suppressed function of C×43 in fibroblasts promotes their migration, and regulates expression of wound healing

  9. Expression of mutant and wild-type TIMP3 in primary gingival fibroblasts from Sorsby's fundus dystrophy patients.

    PubMed

    Arris, Christine E; Bevitt, Debra J; Mohamed, Jeseem; Li, Zheng; Langton, Kevin P; Barker, Michael D; Clarke, Michael P; McKie, Norman

    2003-05-20

    Gingival fibroblast cell lines were derived from Sorsby's fundus dystrophy (SFD) patients carrying the S181C TIMP3 and the E139X TIMP3 mutations. These cell lines were grown in culture to study expression of the wild-type and mutant tissue inhibitor of metalloproteinase 3 (TIMP3) alleles from a normal diploid cell type. Firstly, patient cells were found to co-express the wild-type and mutant TIMP3 alleles, S181C TIMP3 or E139X TIMP3, at the mRNA level using restriction fragment length polymorphism (RFLP) analysis. A SpeI RFLP for E139X TIMP3 is described. Low levels of endogenous TIMP3 protein expression were elevated using the natural polysaccharide calcium pentosan polysulfate (CaPPs) in combination with the cytokine IL-1alpha. Immunoblotting detected protein expression from both wild-type and mutant alleles, S181C TIMP3 or E139X TIMP3. S181C TIMP3 from these cells was found to dimerise and retain MMP2 inhibitory activity. To facilitate studies of the E139X TIMP3 protein, the allele was expressed using HighFive insect cells. In this cell type, the E139X TIMP3 was synthesised as a mixture of monomer and dimer. Both monomeric and dimeric E139X TIMP3 protein retained MMP2 inhibitory activity in gelatin zymography. Expression of mutant E139X or S181C TIMP3 protein from a normal diploid patient-derived fibroblast cell had no effect on either MMP2 or MMP9 expression or activation whilst transcribed from their normal promoter context.

  10. Glycosides from Stevia rebaudiana Bertoni Possess Insulin-Mimetic and Antioxidant Activities in Rat Cardiac Fibroblasts

    PubMed Central

    Prata, Cecilia; Zambonin, Laura; Rizzo, Benedetta; Vieceli Dalla Sega, Francesco

    2017-01-01

    Stevia rebaudiana Bertoni is a shrub having a high content of sweet diterpenoid glycosides in its leaves, mainly stevioside and rebaudioside A, which are used as noncaloric, natural sweeteners. The aim of this study was to deepen the knowledge about the insulin-mimetic effect exerted by four different mixtures of steviol glycosides, rich in stevioside and rebaudioside A, in neonatal rat cardiac fibroblasts. The potential antioxidant activity of these steviol glycosides was also assessed, as oxidative stress is associated with diabetes. Likewise the insulin effect, steviol glycosides caused an increase in glucose uptake into rat fibroblasts by activating the PI3K/Akt pathway, thus inducing Glut4 translocation to the plasma membrane. The presence of S961, an insulin antagonist, completely abolished these effects, allowing to hypothesize that steviol glycosides could act as ligands of the same receptor engaged by insulin. Moreover, steviol glycosides counteracted oxidative stress by increasing reduced glutathione intracellular levels and upregulating expression and activity of the two antioxidant enzymes superoxide dismutase and catalase. The present work unravels the insulin-mimetic effect and the antioxidant property exerted by steviol glycosides, suggesting their potential beneficial role in the cotreatment of diabetes and in health maintenance.

  11. The beta 2-adrenergic receptor activates pro-migratory and pro-proliferative pathways in dermal fibroblasts via divergent mechanisms.

    PubMed

    Pullar, Christine E; Isseroff, R Rivkah

    2006-02-01

    Dermal fibroblasts are required for skin wound repair; they migrate into the wound bed, proliferate, synthesize extracellular matrix components and contract the wound. Although fibroblasts express beta2-adrenergic receptors (beta2-AR) and cutaneous keratinocytes can synthesize beta-AR agonists (catecholamines), the functional significance of this hormonal mediator network in the skin has not been addressed. Emerging studies from our laboratory demonstrate that beta2-AR activation modulates keratinocyte migration, essential for wound re-epithelialization. Here we describe an investigation of the effects of beta2-AR activation on the dermal component of wound healing. We examined beta2-AR-mediated regulation of biological processes in dermal fibroblasts that are critical for wound repair: migration, proliferation, contractile ability and cytoskeletal conformation. We provide evidence for the activation of at least two divergent beta2-AR-mediated signaling pathways in dermal fibroblasts, a Src-dependent pro-migratory pathway, transduced through the epidermal growth factor receptor and extracellular signal-regulated kinase, and a PKA-dependent pro-proliferative pathway. beta2-AR activation attenuates collagen gel contraction and alters the actin cytoskeleton and focal adhesion distribution through PKA-dependent mechanisms. Our work uncovers a previously unrecognized role for the adrenergic hormonal mediator network in the cutaneous wound repair process. Exploiting these divergent beta2-AR agonist responses in cutaneous cells may generate novel therapeutic approaches for the control of wound healing.

  12. Spread of tumor microenvironment contributes to colonic obstruction through subperitoneal fibroblast activation in colon cancer

    PubMed Central

    Yokota, Mitsuru; Kojima, Motohiro; Higuchi, Youichi; Nishizawa, Yuji; Kobayashi, Akihiro; Ito, Masaaki; Saito, Norio; Ochiai, Atsushi

    2015-01-01

    We evaluated the influence of the cancer microenvironment formed by peritoneal invasion (CMPI) on clinical findings in colon cancer patients. In addition to the association with poor prognosis, we discovered a relationship with bowel obstruction. Detailed analysis revealed that clinical findings related to bowel obstruction occurred more frequently in patients with an elevated type tumor, which had peritoneal elastic laminal elevation to the tumor surface, compared to those with non-elevated type tumors among those with elastic laminal invasion (ELI). Lateral tumor spread and increase of tumor annularity rate in ELI-positive elevated type cases suggested the morphological progression from ELI-positive non-elevated type to elevated type. In addition, α-smooth muscle actin expression was the highest in ELI-positive elevated type, and prominent expressions were found not only in the deep tumor area but also in the shallow tumor area. Furthermore, contraction assays revealed the robust contractile ability of subperitoneal fibroblasts stimulated by cancer cell-conditioned medium. Our findings suggest that CMPI spread into the luminal side of the colonic wall along with tumor progression, which caused bowel obstruction through the activation of subperitoneal fibroblasts. However, although the clinical outcome was not different between the two types, the clinical findings were affected by the spread of CMPI. We are the first to explore how the alteration of the tumor-promoting microenvironment, along with tumor progression, contributes to the development of clinical findings. PMID:25613547

  13. Individual differences in the expression of conditioned fear are associated with endogenous fibroblast growth factor 2

    PubMed Central

    Richardson, Rick

    2016-01-01

    These experiments examined the relationship between the neurotrophic factor fibroblast growth factor 2 (FGF2) and individual differences in the expression of conditioned fear. Experiments 1 and 2 demonstrated that rats naturally expressing low levels of contextual or cued fear have higher levels of hippocampal FGF2 relative to rats that express high levels of conditioned fear and nonconditioned rats. Experiment 3 demonstrated that hippocampal FGF2 is not increased in rats that exhibit pharmacological-induced amnesia of conditioned fear. Together, these experiments provide evidence that FGF2 may be an endogenous regulator of fear responses to conditioned stimuli. PMID:26670186

  14. Normal Expression of a Rearranged and Mutated c-myc Oncogene after Transfection into Fibroblasts

    NASA Astrophysics Data System (ADS)

    Richman, Adam; Hayday, Adrian

    1989-10-01

    Expression of the c-myc oncogene is deregulated in a variety of malignancies. Rearrangement and mutation of the c-myc locus is a characteristic feature of human Burkitt's lymphoma. Whether deregulation is solely a result of mutation of c-myc or whether it is influenced by the transformed B cell context has not been determined. A translocated and mutated allele of c-myc was stably transfected into fibroblasts. The rearranged allele was expressed indistinguishably from a normal c-myc gene: it had serum-regulated expression, was transcribed with normal promoter preference, and was strongly attenuated. Thus mutations by themselves are insufficient to deregulate c-myc transcription.

  15. Rapid flow cytometric method for measuring senescence associated beta-galactosidase activity in human fibroblasts.

    PubMed

    Noppe, Gerard; Dekker, Pim; de Koning-Treurniet, Corine; Blom, Joke; van Heemst, Diana; Dirks, Roeland W; Tanke, Hans J; Westendorp, Rudi G J; Maier, Andrea B

    2009-11-01

    Senescence associated-beta-galactosidase (SA-beta-gal) activity is a widely used marker for cellular senenescence. SA-beta-gal activity is routinely detected cytochemically, manually discriminating negative from positive cells. This method is time-consuming, subjective and therefore prone to operator-error. We aimed to optimize a flow cytometric method described by other workers using endothelial cells to better differentiate between populations of fibroblasts in degrees of SA-beta-gal activity. Skin fibroblasts were isolated from young (mean age +/- SD: 25.5 +/- 1.8) and very old (age 90.2 +/- 0.3) subjects. Different pH modulators were tested for toxicity. To induce stress-induced senescence, fibroblasts were exposed to rotenone. Senescence was assessed measuring SA-beta-gal activity by cytochemistry (X-gal) and by flow cytometry (C(12)FDG). The pH modulator Bafilomycin A1 (Baf A1) was found to be least toxic for fibroblasts and to differentiate best between nonstressed and stressed fibroblast populations. Under nonstressed conditions, fibroblasts from very old subjects showed higher SA-beta-gal activity than fibroblasts from young subjects. This difference was found for both the flow cytometric and cytochemical methods (P = 0.013 and P = 0.056 respectively). Under stress-induced conditions the flow cytometric method but not the cytochemical method revealed significant higher SA-beta-gal activity in fibroblasts from very old compared to young subjects (P = 0.004 and P = 0.635 respectively). We found the modified flow cytometric method measuring SA-beta-gal activity superior in discriminating between degrees of senescence in different populations of fibroblasts. Copyright 2009 International Society for Advancement of Cytometry.

  16. Interferon induction of fibroblast proteins with guanylate binding activity.

    PubMed

    Cheng, Y S; Colonno, R J; Yin, F H

    1983-06-25

    Treatment of human diploid fibroblastic cells with interferon induces the synthesis of two guanylate binding proteins (GBP) with molecular weights of 67,000 and 56,000. The Mr = 67,000 protein (67K GBP) is synthesized upon treatment with either alpha-, beta-, or gamma-interferon. Among these interferons, gamma-interferon induces a higher level of 67K GBP synthesis. The 67K GBP synthesized in either beta- or gamma-interferon-treated cells has two charge forms with isoelectric points of 6.0 and 5.8, respectively. The synthesis of the Mr = 56,000 protein is induced by the treatment using either alpha- or beta-interferon, but its synthesis in gamma-interferon-treated cells is undetectable. The amounts of the radioactive GBPs synthesized in human fibroblasts are proportional to the amounts of the purified beta-interferon used for the inductions. Syntheses of GBPs require the transcription of cellular genes because their syntheses are completely blocked by actinomycin D treatments. The mRNA for the 67K GBP is found in fibroblasts that are treated by either alpha-, beta-, or gamma-interferon, but it is not detected in untreated cells. More 67K GBP mRNA is accumulated in the gamma-interferon-treated than in alpha- or beta-interferon-treated fibroblasts. This is consistent with more 67K GBP synthesis found in gamma-interferon-treated fibroblasts.

  17. WT1 expression is increased in primary fibroblasts derived from Dupuytren's disease tissues.

    PubMed

    Crawford, Justin; Raykha, Christina; Charles, Daevina; Gan, Bing Siang; O'Gorman, David B

    2015-12-01

    Dupuytren's disease (DD) is a fibroproliferative and contractile fibrosis of the palmar fascia that, like all other heritable fibroses, is currently incurable. While DD is invariably benign, it exhibits some molecular similarities to malignant tumours, including increased levels of ß-catenin, onco-fetal fibronectin, periostin and insulin-like growth factor (IGF)-II. To gain additional insights into the pathogenesis of DD, we have assessed the expression of WT1, encoding Wilm's tumour 1, an established tumour biomarker that is syntenic with IGF2, the gene encoding IGF-II in humans. We found that WT1 expression is robustly and consistently up regulated in primary fibroblasts derived from the fibrotic palmar fascia of patients with DD (DD cells), whereas syngeneic fibroblasts derived from the macroscopically unaffected palmar fascia in these patients and allogeneic fibroblasts derived from normal palmar fascia exhibited very low or undetectable WT1 transcript levels. WT1 immunoreactivity was evident in a subset of cells in the fibrotic palmar fascia of patients with DD, but not in macroscopically unaffected palmar fascia. These findings identify WT1 expression as a novel biomarker of fibrotic palmar fascia and are consistent with the hypothesis that the pathogeneses of DD and malignant tumours have molecular similarities.

  18. Gene profiling of keloid fibroblasts shows altered expression in multiple fibrosis-associated pathways

    PubMed Central

    Smith, Joan C.; Boone, Braden E.; Opalenik, Susan R.; Williams, Scott M.; Russell, Shirley B.

    2010-01-01

    Keloids are benign tumors of the dermis that form during a protracted wound healing process. Susceptibility to keloid formation occurs predominantly in people of African and Asian descent. The key alteration(s) responsible for keloid formation has not been identified and there is no satisfactory treatment for this disorder. The altered regulatory mechanism is limited to dermal wound healing, although several diseases characterized by an exaggerated response to injury are prevalent in individuals of African ancestry. We have observed a complex pattern of phenotypic differences in keloid fibroblasts grown in standard culture medium or induced by hydrocortisone. In this study Affymetrix-based microarray was performed on RNA obtained from fibroblasts cultured from normal scars and keloids grown in the absence and presence of hydrocortisone. We observed differential regulation of approximately 500 genes of the 38,000 represented on the Affymetrix chip. Of particular interest was increased expression of several IGF-binding and IGF-binding related proteins and decreased expression of a subset of Wnt pathway inhibitors and multiple IL-1-inducible genes. Increased expression of CTGF and IGFBP-3 was observed in keloid fibroblasts only in the presence of hydrocortisone. These findings support a role for multiple fibrosis-related pathways in the pathogenesis of keloids. PMID:17989729

  19. Efficient inhibition of fibroblast proliferation and collagen expression by ERK2 siRNAs

    SciTech Connect

    Li, Fengfeng; Fan, Cunyi; Cheng, Tao; Jiang, Chaoyin; Zeng, Bingfang

    2009-05-01

    Transforming growth factor-{beta}1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which ERK2 is supposed to be crucial. Based on these assumptions, lentivirus (LV)-mediated small interfering RNAs (siRNAs) targeting ERK2 were used to suppress the proliferation and collagen expression of rat joint adhesion tissue fibroblasts (RJATFs). Among four siRNAs examined, siRNA1 caused an 84% reduction in ERK2 expression (p < 0.01) and was selected as the most efficient siRNA for use in this study. In subsequent experiments, significant downregulation of types I and III collagen were observed by quantitative RT-PCR and Western blot analyses. MTT assays and flow cytometry revealed marked inhibition of RJATF proliferation, but no apoptosis. In conclusion, LV-mediated ERK2 siRNAs may represent novel therapies or drug targets for preventing joint adhesion formation.

  20. VIP and CRF reduce ADAMTS expression and function in osteoarthritis synovial fibroblasts.

    PubMed

    Pérez-García, Selene; Carrión, Mar; Gutiérrez-Cañas, Irene; González-Álvaro, Isidoro; Gomariz, Rosa P; Juarranz, Yasmina

    2016-04-01

    ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family is known to play an important role in the pathogenesis of osteoarthritis (OA), working on aggrecan degradation or altering the integrity of extracellular matrix (ECM). Thus, the main purpose of our study was to define the role of vasoactive intestinal peptide (VIP) and corticotrophin-releasing factor (CRF), as immunoregulatory neuropeptides, on ADAMTS production in synovial fibroblasts (SF) from OA patients and healthy donors (HD). OA- and HD-SF were stimulated with pro-inflammatory mediators and treated with VIP or CRF. Both neuropeptides decreased ADAMTS-4, -5, -7 and -12 expressions, aggrecanase activity, glycosaminoglycans (GAG), and cartilage oligomeric matrix protein (COMP) degradation after stimulation with fibronectin fragments (Fn-fs) in OA-SF. After stimulation with interleukin-1β, VIP reduced ADAMTS-4 and -5, and both neuropeptides decreased ADAMTS-7 production and COMP degradation. Moreover, VIP and CRF reduced Runx2 and β-catenin activation in OA-SF. Our data suggest that the role of VIP and CRF on ADAMTS expression and cartilage degradation could be related to the OA pathology since scarce effects were produced in HD-SF. In addition, their effects might be greater when a degradation loop has been established, given that they were higher after stimulation with Fn-fs. Our results point to novel OA therapies based on the use of neuropeptides, since VIP and CRF are able to stop the first critical step, the loss of cartilage aggrecan and the ECM destabilization during joint degradation.

  1. Expression profiles are different in carbon ion-irradiated normal human fibroblasts and their bystander cells.

    PubMed

    Iwakawa, Mayumi; Hamada, Nobuyuki; Imadome, Kaori; Funayama, Tomoo; Sakashita, Testuya; Kobayashi, Yasuhiko; Imai, Takashi

    2008-07-03

    Evidence has accumulated that ionizing radiation induces biological effects in non-irradiated bystander cells having received signals from directly irradiated cells; however, energetic heavy ion-induced bystander response is incompletely characterized. Here we performed microarray analysis of irradiated and bystander fibroblasts in confluent cultures. To see the effects in bystander cells, each of 1, 5 and 25 sites was targeted with 10 particles of carbon ions (18.3 MeV/u, 103 keV/microm) using microbeams, where particles traversed 0.00026, 0.0013 and 0.0066% of cells, respectively. diated cells, cultures were exposed to 10% survival dose (D), 0.1D and 0.01D of corresponding broadbeams (108 keV/microm). Irrespective of the target numbers (1, 5 or 25 sites) and the time (2 or 6h postirradiation), similar expression changes were observed in bystander cells. Among 874 probes that showed more than 1.5-fold changes in bystander cells, 25% were upregulated and the remainder downregulated. These included genes related to cell communication (PIK3C2A, GNA13, FN1, ANXA1 and IL1RAP), stress response (RAD23B, ATF4 and EIF2AK4) and cell cycle (MYCN, RBBP4 and NEUROG1). Pathway analysis revealed serial bystander activation of G protein/PI-3 kinase pathways. Instead, genes related to cell cycle or death (CDKN1A, GADD45A, NOTCH1 and BCL2L1), and cell communication (IL1B, TCF7 and ID1) were upregulated in irradiated cells, but not in bystander cells. Our results indicate different expression profiles in irradiated and bystander cells, and imply that intercellular signaling between irradiated and bystander cells activate intracellular signaling, leading to the transcriptional stress response in bystander cells.

  2. Glucocorticoid coordinate regulation of type I procollagen gene expression and procollagen DNA-binding proteins in chick skin fibroblasts

    SciTech Connect

    Cockayne, D.; Cutroneo, K.R.

    1988-04-19

    Nuclei were isolated from control and dexamethasone-treated (2 h) embryonic chick skin fibroblasts and transcribed in vitro. Nuclei isolated from dexamethasone-treated fibroblasts transcribed less pro..cap alpha..1(I) and pro..cap alpha..2(I) mRNAs but not ..beta..-actin mRNA. Fibroblasts receiving dexamethasone and (5,6-/sup 3/H)uridine also demonstrated decreased synthesis of nuclear type I procollagen mRNAs but not ..beta..-actin mRNA. In fibroblasts treated with cycloheximide the newly synthesized nuclear type I procollagen mRNA species were markedly decreased. An enhanced inhibitory effect was observed when fibroblasts were treated with cycloheximide plus dexamethasone. Since the studies above demonstrate that active protein synthesis is required to maintain the constitutive expression of the type I procollagen genes, the authors determined if glucocorticoids regulate DNA-binding proteins with sequence specificity for the ..cap alpha..2(I) procollagen gene. Nuclear protein blots were probed with the /sup 32/P-end-labeled pBR322 vector DNA and /sup 32/P-end-labeled ..cap alpha..2(I) procollagen promoter containing DNA. Nonhistone proteins remained bound to labeled DNA at stringency washes of 0.05 and 0.1 M NaCl. As the ionic strength was increased to 0.2 and 0.3 M NaCl, the nonhistone-protein DNA binding was preferentially lost. Only the low molecular weight proteins remained bound to labeled DNA at the highest ionic strength, indicating nonspecific binding of these nuclear proteins. Dexamethasone treatment resulted in an increase of binding of nonhistone proteins to vector- and promoter-labeled DNAs over that observed in control fibroblasts at stringency washes of 0.05 and 0.1 M NaCl and to a lesser extent at 0.2 M NaCl. The binding specificities of nonhistone proteins for the ..cap alpha..2(I) procollagen promoter containing DNA were calculated.

  3. Antiproliferative, Apoptotic, and Autophagic Activity of Ranibizumab, Bevacizumab, Pegaptanib, and Aflibercept on Fibroblasts: Implication for Choroidal Neovascularization

    PubMed Central

    Lytvynchuk, Lyubomyr; Sergienko, Andrii; Lavrenchuk, Galina; Petrovski, Goran

    2015-01-01

    Purpose. Choroidal neovascularization (CNV) is one of the most common complications of retinal diseases accompanied by elevated secretion of vascular endothelial growth factor (VEGF). Intravitreal anti-VEGFs (ranibizumab, bevacizumab, pegaptanib, and aflibercept) can suppress neovascularization, decrease vascular permeability and CNV size, and, thereby, improve visual function. The antiproliferative, apoptotic, and autophagic effect of anti-VEGF drugs on fibroblasts found in CNVs has not been yet explored. Methods. Concentration-dependent cellular effects of the four anti-VEGFs were examined in L929 fibroblasts over a 5-day period. The cell survival, mitotic and polykaryocytic indices, the level of apoptosis and autophagy, and the cellular growth kinetics were all assessed. Results. The anti-VEGFs could inhibit the survival, mitotic activity, and proliferation as well as increase the cellular heterogeneity, apoptosis, and autophagy of the fibroblasts in a dose-dependent manner. Cellular growth kinetics showed ranibizumab to be less aggressive, but three other anti-VEGFs showed higher antiproliferative and apoptotic activity and expressed negative cellular growth kinetics. Conclusions. The antiproliferative, apoptotic, and autophagic activity of anti-VEGFs upon fibroblasts may explain the cellular response and the etiology of CNV involution in vivo and serve as a good study model for CNV in vitro. PMID:26491557

  4. Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles

    PubMed Central

    2012-01-01

    Background Breast cancer is a heterogeneous disease for which prognosis and treatment strategies are largely governed by the receptor status (estrogen, progesterone and Her2) of the tumor cells. Gene expression profiling of whole breast tumors further stratifies breast cancer into several molecular subtypes which also co-segregate with the receptor status of the tumor cells. We postulated that cancer associated fibroblasts (CAFs) within the tumor stroma may exhibit subtype specific gene expression profiles and thus contribute to the biology of the disease in a subtype specific manner. Several studies have reported gene expression profile differences between CAFs and normal breast fibroblasts but in none of these studies were the results stratified based on tumor subtypes. Methods To address whether gene expression in breast cancer associated fibroblasts varies between breast cancer subtypes, we compared the gene expression profiles of early passage primary CAFs isolated from twenty human breast cancer samples representing three main subtypes; seven ER+, seven triple negative (TNBC) and six Her2+. Results We observed significant expression differences between CAFs derived from Her2+ breast cancer and CAFs from TNBC and ER + cancers, particularly in pathways associated with cytoskeleton and integrin signaling. In the case of Her2+ breast cancer, the signaling pathways found to be selectively up regulated in CAFs likely contribute to the enhanced migration of breast cancer cells in transwell assays and may contribute to the unfavorable prognosis of Her2+ breast cancer. Conclusions These data demonstrate that in addition to the distinct molecular profiles that characterize the neoplastic cells, CAF gene expression is also differentially regulated in distinct subtypes of breast cancer. PMID:22954256

  5. The enzyme Cyp26b1 mediates inhibition of mast cell activation by fibroblasts to maintain skin-barrier homeostasis.

    PubMed

    Kurashima, Yosuke; Amiya, Takeaki; Fujisawa, Kumiko; Shibata, Naoko; Suzuki, Yuji; Kogure, Yuta; Hashimoto, Eri; Otsuka, Atsushi; Kabashima, Kenji; Sato, Shintaro; Sato, Takeshi; Kubo, Masato; Akira, Shizuo; Miyake, Kensuke; Kunisawa, Jun; Kiyono, Hiroshi

    2014-04-17

    Mast cells (MCs) mature locally, thus possessing tissue-dependent phenotypes for their critical roles in both protective immunity against pathogens and the development of allergy or inflammation. We previously reported that MCs highly express P2X7, a receptor for extracellular ATP, in the colon but not in the skin. The ATP-P2X7 pathway induces MC activation and consequently exacerbates the inflammation. Here, we identified the mechanisms by which P2X7 expression on MCs is reduced by fibroblasts in the skin, but not in the other tissues. The retinoic-acid-degrading enzyme Cyp26b1 is highly expressed in skin fibroblasts, and its inhibition resulted in the upregulation of P2X7 on MCs. We also noted the increased expression of P2X7 on skin MCs and consequent P2X7- and MC-dependent dermatitis (so-called retinoid dermatitis) in the presence of excessive amounts of retinoic acid. These results demonstrate a unique skin-barrier homeostatic network operating through Cyp26b1-mediated inhibition of ATP-dependent MC activation by fibroblasts. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. [Tumor Associated Fibroblasts Promote PD-L1 Expression in Lung Cancer Cells].

    PubMed

    He, Haiyang; Qi, Luyu; Xiao, Yongsheng; Hou, Yiling

    2017-05-20

    Tumor-associated fibroblasts (TAF) is an important part of TME, which inhibits the function of immune cells. CD8+ T cells play a significant role in tumor immunity. T-cell membrane possesses a distinct type of molecule with a negative regulatory function. Upon interaction with its corresponding ligand [programmed death factor ligand 1 (PD-L1)], programmed death factor 1 (PD-1) is activated and thus inhibits the kinase activity of T cells. This study aims to explore the possible effects of TAF on PD-L1 expression in lung cancer cells. Lung cancer cell lines H1975 and H520 were co-cultured with (experiment) or without TAF (control) via Transwell assay for through 48 hours under the same culture condition. H1975 and H520 cells were counted using a microscope. The protein and mRNA expression levels of PD-L1 were detected by FCM assay and PCR analysis, respectively. The numbers of lung cancer cells in 100 μm2 for H1975 and H520 cells are (46±21) and (38±10) in the experiment group, respectively, and (16±5) and (12±5) in the control group, respectively (P<0.05). The expression levels of the PD-L1 protein in H1975 and H520 cells are (20.93%±3.54%) and (19.26%±3.04%) in the experiment group, respectively, and (12.58%±2.52%) and (11.60%±2.65%) in the control group, respectively (P<0.05). The mRNA expression levels in H1975 and H520 cells are (16.45±1.25) and (15.38±2.02) pg/mL in the experiment group, respectively, and (7.78±1.27) and (7.20±1.58) pg/mL (P<0.05) in the control group, respectively (P<0.05). TAF promotes the growth and increases the expression of PD-L1 in H1975 and H520 cells.
.

  7. Expression and function of fibroblast growth factor (FGF) 9 in hepatic stellate cells and its role in toxic liver injury

    SciTech Connect

    Antoine, Marianne; Wirz, Werner; Tag, Carmen G.; Gressner, Axel M.; Marvituna, Meltem; Wycislo, Mathias; Hellerbrand, Claus; Kiefer, Paul . E-mail: paul.kiefer@klinik.uni-regensburg.de

    2007-09-21

    Hepatic injury and regeneration of the liver are associated with activation of hepatic stellate cells (HSC). Fibroblast growth factors (FGFs) and their receptors are important regulators of repair in various tissues. HSC express FGFR3IIIc as well as FGFGR4 and different spliced FGFR1IIIc and FGFR2IIIc isoforms which differ in the presence or absence of the acid box and of the first Ig-like domain. Expression of FGF9, known to be capable to activate the HSC FGFR2/3-isoforms, was increased in HSC in liver slice cultures after exposition to carbon tetrachloride, as an acute liver injury model. FGF9 significantly stimulated 3-H thymidine incorporation of hepatocytes, but failed to induce DNA synthesis in HSC despite the fact that FGF9 induced a sustained activation of extracellular signal-related kinases (ERK) 1/2. FGF9 induced an increased phosphorylation of Tyr436 of the fibroblast growth factor receptor substrate (FRS) 2, while phosphorylation of Tyr196 which is required for efficient Grb2 recruitment remained unchanged. Our findings suggest that HSC FGF9 provide a paracrine mitogenic signal to hepatocytes during acute liver injury, while the autocrine FGF9 signaling appears to be not sufficient to induce cell proliferation.

  8. Characteristic Gene Expression Profiles of Human Fibroblasts and Breast Cancer Cells in a Newly Developed Bilateral Coculture System

    PubMed Central

    Ueno, Takayuki; Utsumi, Jun; Toi, Masakazu; Shimizu, Kazuharu

    2015-01-01

    The microenvironment of cancer cells has been implicated in cancer development and progression. Cancer-associated fibroblast constitutes a major stromal component of the microenvironment. To analyze interaction between cancer cells and fibroblasts, we have developed a new bilateral coculture system using a two-sided microporous collagen membrane. Human normal skin fibroblasts were cocultured with three different human breast cancer cell lines: MCF-7, SK-BR-3, and HCC1937. After coculture, mRNA was extracted separately from cancer cells and fibroblasts and applied to transcriptomic analysis with microarray. Top 500 commonly up- or downregulated genes were characterized by enrichment functional analysis using MetaCore Functional Analysis. Most of the genes upregulated in cancer cells were downregulated in fibroblasts while most of the genes downregulated in cancer cells were upregulated in fibroblasts, indicating that changing patterns of mRNA expression were reciprocal between cancer cells and fibroblasts. In coculture, breast cancer cells commonly increased genes related to mitotic response and TCA pathway while fibroblasts increased genes related to carbohydrate metabolism including glycolysis, glycogenesis, and glucose transport, indicating that fibroblasts support cancer cell proliferation by supplying energy sources. We propose that the bilateral coculture system using collagen membrane is useful to study interactions between cancer cells and stromal cells by mimicking in vivo tumor microenvironment. PMID:26171396

  9. Characteristic Gene Expression Profiles of Human Fibroblasts and Breast Cancer Cells in a Newly Developed Bilateral Coculture System.

    PubMed

    Ueno, Takayuki; Utsumi, Jun; Toi, Masakazu; Shimizu, Kazuharu

    2015-01-01

    The microenvironment of cancer cells has been implicated in cancer development and progression. Cancer-associated fibroblast constitutes a major stromal component of the microenvironment. To analyze interaction between cancer cells and fibroblasts, we have developed a new bilateral coculture system using a two-sided microporous collagen membrane. Human normal skin fibroblasts were cocultured with three different human breast cancer cell lines: MCF-7, SK-BR-3, and HCC1937. After coculture, mRNA was extracted separately from cancer cells and fibroblasts and applied to transcriptomic analysis with microarray. Top 500 commonly up- or downregulated genes were characterized by enrichment functional analysis using MetaCore Functional Analysis. Most of the genes upregulated in cancer cells were downregulated in fibroblasts while most of the genes downregulated in cancer cells were upregulated in fibroblasts, indicating that changing patterns of mRNA expression were reciprocal between cancer cells and fibroblasts. In coculture, breast cancer cells commonly increased genes related to mitotic response and TCA pathway while fibroblasts increased genes related to carbohydrate metabolism including glycolysis, glycogenesis, and glucose transport, indicating that fibroblasts support cancer cell proliferation by supplying energy sources. We propose that the bilateral coculture system using collagen membrane is useful to study interactions between cancer cells and stromal cells by mimicking in vivo tumor microenvironment.

  10. Ethanol and Cancer Induce Similar Changes on Protein Expression Pattern of Human Fibroblast Cell

    PubMed Central

    Zamanian–Azodi, Mona; Rezaei-Tavirani, Mostafa; Rahmati-Rad, Sara; Rezaei Tavirani, Majid

    2016-01-01

    Ethanol has a vast consumption around the world. Many researches confirmed some adverse effect of this component on human health. In addition, recent studies showed significant alteration in both cellular population, and protein profile of human foreskin fibroblast cell line (HFFF2) in the specific dosage of ethanol. Here, the role and interaction of some proteins (characterized by significant alteration in expression due to ethanol effect) analyzed by proteomics and evaluated by considering cancerous case. 2D-electrophoresis findings of comparison of normal fibroblast cells and treated fibroblast with 270 mM dosage of ethanol analyzed by using SameSpots software, R software, and Cytoscape for protein-protein interaction (PPI) investigation. Six proteins with significantly altered expression associated with fundamental properties in a cell identified in ethanol-treated sample. These include AnnexinA5, Heterogeneous nuclear ribonucleoprotein A1, Rho-GDP dissociation inhibitor, Cathepsin L, Cu/Zn-SOD, Rho-GDP dissociation inhibitor, and Serpin peptidase inhibitor. Surprisingly, all these proteins were down-regulated and this pattern is similar to nasopharyngeal carcinoma-associated stromal fibroblast sample. Additionally, protein-protein interaction (PPI) indicates that HNRNPA1, SERPINE1 are hub proteins. Once their expression alters, it can impose vast changes on other molecular function. Based on this approach, ethanol may target same pathways that are related to cancer onset. In addition, some epidemiologic studies proved that ethanol consumption is related to increment of cancer risk. Therefore, more investigation is required in this regard to elicit the feasible relationship. PMID:28228815

  11. Differential gene expression and regulation of the bone morphogenetic protein antagonists follistatin and gremlin in normal and osteoarthritic human chondrocytes and synovial fibroblasts.

    PubMed

    Tardif, Ginette; Hum, David; Pelletier, Jean-Pierre; Boileau, Christelle; Ranger, Pierre; Martel-Pelletier, Johanne

    2004-08-01

    To compare gene expression in normal and osteoarthritic (OA) human chondrocytes using microarray technology. Of the novel genes identified, we selected follistatin, a bone morphogenetic protein (BMP) antagonist, and investigated its expression/regulation as well as that of 3 other antagonists, gremlin, chordin, and noggin, in normal and OA chondrocytes and synovial fibroblasts. Basal and induced gene expression were determined using real-time polymerase chain reaction. Gene regulation was monitored following treatment with inflammatory, antiinflammatory, growth, and developmental factors. Follistatin protein production was measured using a specific enzyme-linked immunosorbent assay, and localization of follistatin and gremlin in cartilage was determined by immunohistochemical analysis. All BMP antagonists except noggin were expressed in chondrocytes and synovial fibroblasts. Follistatin and gremlin were significantly up-regulated in OA chondrocytes but not in OA synovial fibroblasts. Chordin was weakly expressed in normal and OA cells. Production of follistatin protein paralleled the gene expression pattern. Follistatin and gremlin were expressed preferentially by the chondrocytes at the superficial layers of cartilage. Tumor necrosis factor alpha and interferon-gamma significantly stimulated follistatin expression but down-regulated expression of gremlin. Interleukin-1beta (IL-1beta) had no effect on follistatin but reduced gremlin expression. Conversely, BMP-2 and BMP-4 significantly stimulated expression of gremlin but down-regulated that of follistatin. IL-13, dexamethasone, transforming growth factor beta1, basic fibroblast growth factor, platelet-derived growth factor type BB, and endothelial cell growth factor down-regulated the expression of both antagonists. This study is the first to show the possible involvement of follistatin and gremlin in OA pathophysiology. The increased activin/BMP-binding activities of these antagonists could affect tissue

  12. Influence of flavonoids and vitamins on the MMP- and TIMP-expression of human dermal fibroblasts after UVA irradiation.

    PubMed

    Hantke, Bernd; Lahmann, Christine; Venzke, Kirsten; Fischer, Tim; Kocourek, Andreas; Windsor, L Jack; Bergemann, Jörg; Stäb, Franz; Tschesche, Harald

    2002-10-01

    UV irradiation leads to distinct changes in skin connective tissue by degradation of collagen, for example. Many of these alterations in the extracellular matrix are mediated by MMPs (matrix metalloproteinases) with reduced content of their antagonist TIMPs (tissue inhibitors of metalloproteinases). Potential candidates to reduce MMP activity in the skin after solar stimulation were examined. The influence of vitamin C, vitamin E and the flavonoids AGR (alpha-glucosylrutin) and 8-prenylnaringenine on the MMP and TIMP expression was investigated. Human dermal fibroblasts were incubated with these additives and irradiated with UVA [10 J cm(-2)]. The gene expression of MMP-1 (collagenase-1) and TIMP-1, the protein expression of MMP-1, MMP-2 (gelatinase-A), TIMP-1 and TIMP-2 as well as the enzyme activity of MMP-1 and MMP-2 were examined. AGR and vitamins C and E were shown to reduce MMP expression and activity, whereas 8-prenylnaringenine appeared to be responsible for the opposite effect. None of the substances considerably influenced the TIMP levels. AGR represented the most effective additive in reducing the collagenase protein expression to 60% and may be useful to level out the MMP activity in the skin after sun exposure. Furthermore, no protein expression of MMP-8, MMP-9, MMP-12 and MMP-13 could be detected.

  13. Differential microRNA expression in cultured palatal fibroblasts from infants with cleft palate and controls.

    PubMed

    Schoen, Christian; Glennon, Jeffrey C; Abghari, Shaghayegh; Bloemen, Marjon; Aschrafi, Armaz; Carels, Carine E L; Von den Hoff, Johannes W

    2017-05-09

    The role of microRNAs (miRNAs) in animal models of palatogenesis has been shown, but only limited research has been carried out in humans. To date, no miRNA expression study on tissues or cells from cleft palate patients has been published. We compared miRNA expression in palatal fibroblasts from cleft palate patients and age-matched controls. Cultured palatal fibroblasts from 10 non-syndromic cleft lip and palate patients (nsCLP; mean age: 18 ± 2 months), 5 non-syndromic cleft palate only patients (nsCPO; mean age: 17 ± 2 months), and 10 controls (mean age: 24 ± 5 months) were analysed with next-generation small RNA sequencing. All subjects are from Western European descent. Sequence reads were bioinformatically processed and the differentially expressed miRNAs were technically validated using quantitative reverse-transcription polymerase chain reaction (RT-qPCR). Using RNA sequencing, three miRNAs (hsa-miR-93-5p, hsa-miR-18a-5p, and hsa-miR-92a-3p) were up-regulated and six (hsa-miR-29c-5p, hsa-miR-549a, hsa-miR-3182, hsa-miR-181a-5p, hsa-miR-451a, and hsa-miR-92b-5p) were down-regulated in nsCPO fibroblasts. One miRNA (hsa-miR-505-3p) was down-regulated in nsCLP fibroblasts. Of these, hsa-miR-505-3p, hsa-miR-92a, hsa-miR-181a, and hsa-miR-451a were also differentially expressed using RT-PCR with a higher fold change than in RNAseq. The small sample size may limit the value of the data. In addition, interpretation of the data is complicated by the fact that biopsy samples are taken after birth, while the origin of the cleft lies in the embryonic period. This, together with possible effects of the culture medium, implies that only cell-autonomous genetic and epigenetic differences might be detected. For the first time, we have shown that several miRNAs appear to be dysregulated in palatal fibroblasts from patients with nsCLP and nsCPO. Furthermore, large-scale genomic and expression studies are needed to validate these findings.

  14. A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes.

    PubMed

    Lyu, Linmao; Wang, Hui; Li, Bin; Qin, Qingyun; Qi, Lei; Nagarkatti, Mitzi; Nagarkatti, Prakash; Janicki, Joseph S; Wang, Xing Li; Cui, Taixing

    2015-12-01

    Chronic activation of the myocardial renin angiotensin system (RAS) elevates the local level of angiotensin II (Ang II) thereby inducing pathological cardiac hypertrophy, which contributes to heart failure. However, the precise underlying mechanisms have not been fully delineated. Herein we report a novel paracrine mechanism between cardiac fibroblasts (CF)s and cardiomyocytes whereby Ang II induces pathological cardiac hypertrophy. In cultured CFs, Ang II treatment enhanced exosome release via the activation of Ang II receptor types 1 (AT1R) and 2 (AT2R), whereas lipopolysaccharide, insulin, endothelin (ET)-1, transforming growth factor beta (TGFβ)1 or hydrogen peroxide did not. The CF-derived exosomes upregulated the expression of renin, angiotensinogen, AT1R, and AT2R, downregulated angiotensin-converting enzyme 2, and enhanced Ang II production in cultured cardiomyocytes. In addition, the CF exosome-induced cardiomyocyte hypertrophy was blocked by both AT1R and AT2R antagonists. Exosome inhibitors, GW4869 and dimethyl amiloride (DMA), inhibited CF-induced cardiomyocyte hypertrophy with little effect on Ang II-induced cardiomyocyte hypertrophy. Mechanistically, CF exosomes upregulated RAS in cardiomyocytes via the activation of mitogen-activated protein kinases (MAPKs) and Akt. Finally, Ang II-induced exosome release from cardiac fibroblasts and pathological cardiac hypertrophy were dramatically inhibited by GW4869 and DMA in mice. These findings demonstrate that Ang II stimulates CFs to release exosomes, which in turn increase Ang II production and its receptor expression in cardiomyocytes, thereby intensifying Ang II-induced pathological cardiac hypertrophy. Accordingly, specific targeting of Ang II-induced exosome release from CFs may serve as a novel therapeutic approach to treat cardiac pathological hypertrophy and heart failure.

  15. Differential gene expression in primary fibroblasts induced by proton and cobalt-60 beam irradiation.

    PubMed

    Nielsen, Steffen; Bassler, Niels; Grzanka, Leszek; Swakon, Jan; Olko, Pawel; Andreassen, Christian Nicolaj; Overgaard, Jens; Alsner, Jan; Sørensen, Brita Singers

    2017-09-08

    Proton beam therapy delivers a more conformal dose distribution than conventional radiotherapy, thus improving normal tissue sparring. Increasing linear energy transfer (LET) along the proton track increases the relative biological effectiveness (RBE) near the distal edge of the Spread-out Bragg peak (SOBP). The severity of normal tissue side effects following photon beam radiotherapy vary considerably between patients. The dual study aim was to identify gene expression patterns specific to radiation type and proton beam position, and to assess whether individual radiation sensitivity influences gene expression levels in fibroblast cultures irradiated in vitro. The study includes 30 primary fibroblast cell cultures from patients previously classified as either radiosensitive or radioresistant. Cells were irradiated at three different positions in the proton beam profile: entrance, mid-SOBP and at the SOBP distal edge. Dose was delivered in three fractions × 3.5 Gy(RBE) (RBE 1.1). Cobalt-60 (Co-60) irradiation was used as reference. Real-time qPCR was performed to determine gene expression levels for 17 genes associated with inflammation response, fibrosis and angiogenesis. Differences in median gene expression levels were observed for multiple genes such as IL6, IL8 and CXCL12. Median IL6 expression was 30%, 24% and 47% lower in entrance, mid-SOBP and SOBP distal edge groups than in Co-60 irradiated cells. No genes were found to be oppositely regulated by different radiation qualities. Radiosensitive patient samples had the strongest regulation of gene expression; irrespective of radiation type. Our findings indicate that the increased LET at the SOBP distal edge position did not generally lead to increased transcriptive response in primary fibroblast cultures. Inflammatory factors were generally less extensively upregulated by proton irradiation compared with Co-60 photon irradiation. These effects may possibly influence the development of normal tissue

  16. Telomere-associated factor expression in replicative senescence of human embryonic lung fibroblasts.

    PubMed

    Du, H; Yang, L; Xu, X-Y; Hai, L; Han, Y-Q; Shi, Y-X

    2015-08-10

    The objective of this study was to find the key regulatory molecules in the cell senescence process through observing the expression of telomere-associated factor during the normal cell replicative senescence process. Based on the established cell replicative senescence model, reverse transcription-polymerase chain reaction and western blot analyses were used to detect telomere-associated factor expression at the mRNA and protein levels, including that of human telomere binding protein 1, tankyrase 1, telomerase RNA, telomere protection protein 1 (POT1), and p53 during the process of human embryonic lung fibroblast replicative senescence. The results showed that transcription of human telomere binding protein 1 did not change with cell senescence, whereas the protein expression of human telomere binding protein 1 increased gradually and then decreased rapidly; there was no change in the mRNA and protein expression of POT1; with the replicative senescence of human embryonic lung fibroblasts, expression of POT1 decreased gradually; TRF1 showed an increasing trend with cell senescence; and p53 protein expression did not change. Together, the results from this study suggest that human telomere binding protein 1, POT1, and TRF1 played important roles in cell senescence.

  17. Tetrandrine inhibits migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes through down-regulating the expressions of Rac1, Cdc42, and RhoA GTPases and activation of the PI3K/Akt and JNK signaling pathways.

    PubMed

    Lv, Qi; Zhu, Xian-Yang; Xia, Yu-Feng; Dai, Yue; Wei, Zhi-Feng

    2015-11-01

    Tetrandrine (Tet), the main active constituent of Stephania tetrandra root, has been demonstrated to alleviate adjuvant-induced arthritis in rats. The present study was designed to investigate the effects of Tet on the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and explore the underlying mechanisms. By using cultures of primary FLS isolated from synoviums of RA patients and cell line MH7A, Tet (0.3, 1 μmol·L(-1)) was proven to significantly impede migration and invasion of RA-FLS, but not cell proliferation. Tet also greatly reduced the activation and expressions of matrix degrading enzymes MMP-2/9, the expression of F-actin and the activation of FAK, which controlled the morphologic changes in migration process of FLS. To identify the key signaling pathways by which Tet exerts anti-migration effect, the specific inhibitors of multiple signaling pathways LY294002, Triciribine, SP600125, U0126, SB203580, and PDTC (against PI3K, Akt, JNK, ERK, p38 MAPK and NF-κB-p65, respectively) were used. Among them, LY294002, Triciribine, and SP600125 were shown to obviously inhibit the migration of MH7A cells. Consistently, Tet was able to down-regulate the activation of Akt and JNK as demonstrated by Western blotting assay. Moreover, Tet could reduce the expressions of migration-related proteins Rho GTPases Rac1, Cdc42, and RhoA in MH7A cells. In conclusion, Tet can impede the migration and invasion of RA-FLS, which provides a plausible explanation for its protective effect on RA. The underlying mechanisms involve the reduction of the expressions of Rac1, Cdc42, and RhoA, inhibition of the activation of Akt and JNK, and subsequent down-regulation of activation and/or expressions of MMP-2/9, F-actin, and FAK.

  18. Fibroblastic activities post implantation of cobalt chromium alloy and pure germanium in rabbits.

    PubMed

    Carter, J M; Natiella, J R; Baier, R E; Natiella, R R

    1984-02-01

    Different preimplantation surface finishes were applied to surgical vitallium discs and germanium prisms implanted for 20 days within the back muscles of adult rabbits. Histopathologic analysis of the numbers of nuclei of active fibroblasts immediately adjacent to the implants was carried out. The mean apparent volume fractions (MAVF) for the subdermal implant sites were found to depend on the surface cleanliness of the implant, the cleanest or highest-surface-energy surfaces giving the highest MAVF values for active fibroblasts.

  19. Transforming Growth Factor-β1 Downregulates Vascular Endothelial Growth Factor-D Expression in Human Lung Fibroblasts via the Jun NH2-Terminal Kinase Signaling Pathway

    PubMed Central

    Cui, Ye; Osorio, Juan C; Risquez, Cristobal; Wang, Hao; Shi, Ying; Gochuico, Bernadette R; Morse, Danielle; Rosas, Ivan O; El-Chemaly, Souheil

    2014-01-01

    Vascular endothelial growth factor (VEGF)-D, a member of the VEGF family, induces both angiogenesis and lymphangiogenesis by activating VEGF receptor-2 (VEGFR-2) and VEGFR-3 on the surface of endothelial cells. Transforming growth factor (TGF)-β1 has been shown to stimulate VEGF-A expression in human lung fibroblast via the Smad3 signaling pathway and to induce VEGF-C in human proximal tubular epithelial cells. However, the effects of TGF-β1 on VEGF-D regulation are unknown. To investigate the regulation of VEGF-D, human lung fibroblasts were studied under pro-fibrotic conditions in vitro and in idiopathic pulmonary fibrosis (IPF) lung tissue. We demonstrate that TGF-β1 downregulates VEGF-D expression in a dose- and time-dependent manner in human lung fibroblasts. This TGF-β1 effect can be abolished by inhibitors of TGF-β type I receptor kinase and Jun NH2-terminal kinase (JNK), but not by Smad3 knockdown. In addition, VEGF-D knockdown in human lung fibroblasts induces G1/S transition and promotes cell proliferation. Importantly, VEGF-D protein expression is decreased in lung homogenates from IPF patients compared with control lung. In IPF lung sections, fibroblastic foci show very weak VEGF-D immunoreactivity, whereas VEGF-D is abundantly expressed within alveolar interstitial cells in control lung. Taken together, our data identify a novel mechanism for downstream signal transduction induced by TGF-β1 in lung fibroblasts, through which they may mediate tissue remodeling in IPF. PMID:24515257

  20. Extracellular low pH affects circadian rhythm expression in human primary fibroblasts.

    PubMed

    Lee, Sang Kil; Achieng, Elsie; Maddox, Connie; Chen, Suephy C; Iuvone, P Michael; Fukuhara, Chiaki

    2011-12-16

    Circadian rhythm is a fundamental biological system involved in the regulation of various physiological functions. However, little is known about a nature or function of circadian clock in human primary cells. In the present study, we have applied in vitro real time circadian rhythm monitoring to study human clock properties using primary skin fibroblasts. Among factors that affect human physiology, slightly lower extracellular pH was chosen to test its effects on circadian rhythm expression. We established human primary fibroblast cultures obtained from three healthy subjects, stably delivered a circadian reporter gene Bmal1-luciferase, and recorded circadian rhythms in the culture medium at pH 7.2 and 6.7. At pH 7.2, robust and sustained circadian rhythms were observed with average period length 24.47 ± 0.03 h. Such rhythms were also found at pH 6.7; however, period length was significantly shortened to 22.60 ± 0.20, amplitude was increased, and damping rate was decreased. The effect of exposure to low pH on the period length was reversible. The shortened period was unlikely caused by factors affecting cell viability because cell morphology and MTT assay showed no significant difference between the two conditions. In summary, our results showed that the circadian rhythm expression is affected at pH 6.7 in human primary fibroblasts without affecting cell viability. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Proliferative response and oncogene expression induced by epidermal growth factor in EL2 rat fibroblasts.

    PubMed

    Liboi, E; Pelosi, E; Testa, U; Peschle, C; Rossi, G B

    1986-06-01

    Extensive evidence supports a two-step model for the control of fibroblast growth, which includes first the action of a competence factor (e.g., platelet-derived growth factor) followed by the stimulus of a progression factor (e.g., epidermal growth factor [EGF]). We investigated whether this model may be applied to the euploid EL2 fibroblast line recently isolated from rat embryos (E. Liboi, M. Caruso, and C. Basilico, Mol. Cell. Biol. 4:2925-2928, 1984). Our results clearly show that EGF alone leads EL2 cells to proliferate in serum-free conditions at a rate corresponding to 50 to 60% of that observed in the presence of 10% calf serum. It is of interest that, when resting EL2 cells were exposed to EGF, transcription of both c-myc and c-fos was markedly induced. Altogether, these observations suggest that, in contrast with the model of fibroblast growth mentioned above, EL2 cells require the presence of a single growth factor (EGF) for induction of DNA synthesis, and the expression of myc and fos proto-oncogenes may represent an obligatory step in the pathway of commitment of EL2 cells to proliferation. In addition, we showed that EGF may induce EL2 cells to acquire some properties of transformed cells, such as growth in agar and loss of contact inhibition. This suggests that the particular response to EGF of the EL2 line may be strictly connected with the expression of a transformed phenotype.

  2. Zoledronic acid and geranylgeraniol regulate cellular behaviour and angiogenic gene expression in human gingival fibroblasts.

    PubMed

    Zafar, S; Coates, D E; Cullinan, M P; Drummond, B K; Milne, T; Seymour, G J

    2014-10-01

    The mevalonate pathway (MVP) and the anti-angiogenic effect of bisphosphonates have been shown to play a role in the pathogenesis of bisphosphonate-related osteonecrosis of the jaw (BRONJ). This study determined the effect of the bisphosphonate, zoledronic acid and the replenishment of the MVP by geranylgeraniol on human gingival fibroblasts. Cell viability, apoptosis, morphological analysis using transmission electron microscopy, and gene expression for vascular endothelial growth factor A, bone morphogenic protein 2, ras homologue gene family member B, epiregulin and interferon-alpha were conducted. Results showed cellular viability was decreased in the presence of zoledronic acid and the co-addition of zoledronic acid with geranylgeraniol restored cell viability to control levels. Caspase 3/7 was detected in zoledronic-acid-treated cells indicating apoptosis. Transmission electron microscopy revealed dilation of the rough endoplasmic reticulum with zoledronic acid and the appearance of multiple lipid-like vesicles following the addition of geranylgeraniol. Zoledronic acid significantly (P < 0.05, FR > ± 2) up-regulated vascular endothelial growth factor A, bone morphogenic protein 2, ras homologue gene family member B and epiregulin at one or more time points but not interferon-alpha. Addition of geranylgeraniol resulted in a reduction in the expression of all five genes compared with zoledronic-acid-treated human gingival fibroblasts. The study concluded geranylgeraniol partially reversed the effects of zoledronic acid in human gingival fibroblasts both at the cellular and genetic levels, suggesting the regulation of these genes is mediated via the mevalonate pathway.

  3. Aggrecan expression is substantially and abnormally upregulated in Hutchinson-Gilford Progeria Syndrome dermal fibroblasts.

    PubMed

    Lemire, Joan M; Patis, Carrie; Gordon, Leslie B; Sandy, John D; Toole, Bryan P; Weiss, Anthony S

    2006-08-01

    Hutchinson-Gilford Progeria syndrome (HGPS) is a rare genetic disorder that displays features of segmental aging. It is manifested predominantly in connective tissue, with most prominent histological changes occurring in the skin, cartilage, bone and cardiovascular tissues. Detailed quantitative real time reverse-transcription polymerase chain reaction studies confirmed the previous observation that platelet-derived growth factor A-chain transcripts are consistently elevated 11+/-2- to 13+/-2-fold in two HGPS dermal fibroblast lines compared with age-matched controls. Furthermore, we identified two additional genes with substantially altered transcript levels. Nucleotide pyrophosphatase transcription was virtually shut down with decreased expression of 13+/-3- to 59+/-3-fold in HGPS, whereas aggrecan mRNA was elevated to 24+/-5 times to 41+/-4 times that of chronologically age-matched controls. Aggrecan, normally a component of cartilage and not always detectable in normal fibroblasts cultures, was secreted by HGPS fibroblast lines and was produced as a proteoglycan. This demonstrates that elevated aggrecan expression and its secretion are aberrant features of HGPS. We conclude that HGPS cells can display massively altered transcript levels leading to the secretion of inappropriate protein species.

  4. Human collagen Krox up-regulates type I collagen expression in normal and scleroderma fibroblasts through interaction with Sp1 and Sp3 transcription factors.

    PubMed

    Kypriotou, Magdalini; Beauchef, Gallic; Chadjichristos, Christos; Widom, Russell; Renard, Emmanuelle; Jimenez, Sergio A; Korn, Joseph; Maquart, François-Xavier; Oddos, Thierry; Von Stetten, Otto; Pujol, Jean-Pierre; Galéra, Philippe

    2007-11-02

    Despite several investigations, the transcriptional mechanisms that regulate the expression of both type I collagen genes (COL1A1 and COL1A2) in either physiological or pathological situations, such as scleroderma, are not completely known. We have investigated the role of hc-Krox transcription factor on type I collagen expression by human dermal fibroblasts. hc-Krox exerted a stimulating effect on type I collagen protein synthesis and enhanced the corresponding mRNA steady-state levels of COL1A1 and COL1A2 in foreskin fibroblasts (FF), adult normal fibroblasts (ANF), and scleroderma fibroblasts (SF). Forced hc-Krox expression was found to up-regulate COL1A1 transcription through a -112/-61-bp sequence in FF, ANF, and SF. Knockdown of hc-Krox by short interfering RNA and decoy strategies confirmed the transactivating effect of hc-Krox and decreased substantially COL1A1 transcription levels in all fibro-blast types. The -112/-61-bp sequence bound specifically hc-Krox but also Sp1 and CBF. Attempts to elucidate the potential interactions between hc-Krox, Sp1, and Sp3 revealed that all of them co-immunoprecipitate from FF cellular extracts when a c-Krox antibody was used and bind to the COL1A1 promoter in chromatin immunoprecipitation assays. Moreover, hc-Krox DNA binding activity to its COL1A1-responsive element is increased in SF, cells producing higher amounts of type I collagen compared with ANF and FF. These data suggest that the regulation of COL1A1 gene transcription in human dermal fibroblasts involves a complex machinery that implicates at least three transcription proteins, hc-Krox, Sp1, and Sp3, which could act in concert to up-regulate COL1A1 transcriptional activity and provide evidence for a pro-fibrotic role of hc-Krox.

  5. Changes in tension regulates proliferation and migration of fibroblasts by remodeling expression of ECM proteins

    PubMed Central

    Jiang, Minmin; Qiu, Juhui; Zhang, Lingling; Lü, Dongyuan; Long, Mian; Chen, Li; Luo, Xiangdong

    2016-01-01

    Wound healing is a complicated but highly organized process in which cell migration and proliferation are actively involved. However, the process by which mechanical stretch regulates the proliferation and migration of human skin fibroblasts (HFs) and keratinocytes is poorly understood. Using a house built mechanical stretch device, we examined the HFs extracellular matrix (ECM) components changes under non-stretch, static stretch or cyclic stretch conditions. We further investigated the changes in ECM component protein expression levels in keratinocytes and analyzed the effects of individual ECM component on keratinocyte proliferation and migration. Particularly, the roles of calcium/calmodulin-dependent serine protein kinase (CASK) in the HF proliferation under cyclic stretch were investigated. Cyclic stretch suppressed HF proliferation compared with HFs without stretch or with static stretch. Cyclic stretch also led to a significant reduction in the levels of collagen I and a marked increase of fibronectin in HFs ECM. By contrast, collagen I levels increased and fibronectin levels decreased in response to non-stretch and static stretch conditions. After cyclic stretch, the proliferation of keratinocytes was inhibited by the cyclic stretch-induced ECM in HFs. The inoculation of keratinocytes with single ECM component suggested that collagen I was more capable of inducing cell proliferation than fibronectin, while it had less impact on cell migration compared with fibronectin. Furthermore, cyclic stretch induced by proliferation inhibition was associated with altered integrin β1-CASK signal pathway. The present results demonstrated the existence of HF-ECM-keratinocyte ‘cross-talk’ in cutaneous tissues. Thus, the integrin β1-CASK signal pathway in HFs may be involved in the outside-in signal transduction of extracellular stretch and the altered ECM component expression. PMID:27588075

  6. Changes in tension regulates proliferation and migration of fibroblasts by remodeling expression of ECM proteins.

    PubMed

    Jiang, Minmin; Qiu, Juhui; Zhang, Lingling; Lü, Dongyuan; Long, Mian; Chen, Li; Luo, Xiangdong

    2016-09-01

    Wound healing is a complicated but highly organized process in which cell migration and proliferation are actively involved. However, the process by which mechanical stretch regulates the proliferation and migration of human skin fibroblasts (HFs) and keratinocytes is poorly understood. Using a house built mechanical stretch device, we examined the HFs extracellular matrix (ECM) components changes under non-stretch, static stretch or cyclic stretch conditions. We further investigated the changes in ECM component protein expression levels in keratinocytes and analyzed the effects of individual ECM component on keratinocyte proliferation and migration. Particularly, the roles of calcium/calmodulin-dependent serine protein kinase (CASK) in the HF proliferation under cyclic stretch were investigated. Cyclic stretch suppressed HF proliferation compared with HFs without stretch or with static stretch. Cyclic stretch also led to a significant reduction in the levels of collagen I and a marked increase of fibronectin in HFs ECM. By contrast, collagen I levels increased and fibronectin levels decreased in response to non-stretch and static stretch conditions. After cyclic stretch, the proliferation of keratinocytes was inhibited by the cyclic stretch-induced ECM in HFs. The inoculation of keratinocytes with single ECM component suggested that collagen I was more capable of inducing cell proliferation than fibronectin, while it had less impact on cell migration compared with fibronectin. Furthermore, cyclic stretch induced by proliferation inhibition was associated with altered integrin β1-CASK signal pathway. The present results demonstrated the existence of HF-ECM-keratinocyte 'cross-talk' in cutaneous tissues. Thus, the integrin β1-CASK signal pathway in HFs may be involved in the outside-in signal transduction of extracellular stretch and the altered ECM component expression.

  7. Stromal fibroblast activation and their potential association with uterine fibroids (Review)

    PubMed Central

    ZHENG, LI-HUA; CAI, FENG-FENG; GE, ISABELL; BISKUP, EWELINA; CHENG, ZHONG-PING

    2014-01-01

    Uterine fibroids are the most common type of benign, gynecologic neoplasm and are the primary indication for performance of a hysterectomy, accounting for >200,000 hysterectomies annually in the USA. At present, females are younger and exhibit larger leiomyomas at the time of diagnosis. Cancer-associated fibroblasts in tumor microenvironments have emerged as an important target for cancer therapy. Repeated stimulation by infectious or non-infectious agents in the uterine tissues, including inflammation, mechanical forces or hypoxia, stimulate the resident fibroblasts to undergo specific activation and, thus, are significant in tumorigenesis. Furthermore, complex signaling pathways regulate the mechanisms of fibroblastic activation. The current review focuses on the molecular mechanisms of fibroblastic activation and the potential association with uterine leiomyoma pathogenesis, enabling an integrated pathogenic analysis for review of the therapeutic options. PMID:25013460

  8. Activated FXR Inhibits Leptin Signaling and Counteracts Tumor-promoting Activities of Cancer-Associated Fibroblasts in Breast Malignancy

    PubMed Central

    Giordano, Cinzia; Barone, Ines; Vircillo, Valentina; Panza, Salvatore; Malivindi, Rocco; Gelsomino, Luca; Pellegrino, Michele; Rago, Vittoria; Mauro, Loredana; Lanzino, Marilena; Panno, Maria Luisa; Bonofiglio, Daniela; Catalano, Stefania; Andò, Sebastiano

    2016-01-01

    Cancer-associated fibroblasts (CAFs), the principal components of the tumor stroma, play a central role in cancer development and progression. As an important regulator of the crosstalk between breast cancer cells and CAFs, the cytokine leptin has been associated to breast carcinogenesis. The nuclear Farnesoid X Receptor-(FXR) seems to exert an oncosuppressive role in different tumors, including breast cancer. Herein, we demonstrated, for the first time, that the synthetic FXR agonist GW4064, inhibiting leptin signaling, affects the tumor-promoting activities of CAFs in breast malignancy. GW4064 inhibited growth, motility and invasiveness induced by leptin as well as by CAF-conditioned media in different breast cancer cell lines. These effects rely on the ability of activated FXR to increase the expression of the suppressor of the cytokine signaling 3 (SOCS3) leading to inhibition of leptin-activated signaling and downregulation of leptin-target genes. In vivo xenograft studies, using MCF-7 cells alone or co-injected with CAFs, showed that GW4064 administration markedly reduced tumor growth. Interestingly, GW4064-treated tumors exhibited decreased levels of leptin-regulated proteins along with a strong staining intensity for SOCS3. Thus, FXR ligands might represent an emerging potential anti-cancer therapy able to block the tumor supportive role of activated fibroblasts within the breast microenvironment. PMID:26899873

  9. Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells

    PubMed Central

    Cushing, Melinda C.; Mariner, Peter D.; Liao, Jo-Tsu; Sims, Evan A.; Anseth, Kristi S.

    2008-01-01

    This study aimed to identify signaling pathways that oppose connective tissue fibrosis in the aortic valve. Using valvular interstitial cells (VICs) isolated from porcine aortic valve leaflets, we show that basic fibroblast growth factor (FGF-2) effectively blocks transforming growth factor-β1 (TGF-β1)-mediated myofibroblast activation. FGF-2 prevents the induction of α-smooth muscle actin (αSMA) expression and the exit of VICs from the cell cycle, both of which are hallmarks of myofibroblast activation. By blocking the activity of the Smad transcription factors that serve as the downstream nuclear effectors of TGF-β1, FGF-2 treatment inhibits fibrosis in VICs. Using an exogenous Smad-responsive transcriptional promoter reporter, we show that Smad activity is repressed by FGF-2, likely an effect of the fact that FGF-2 treatment prevents the nuclear localization of Smads in these cells. This appears to be a direct effect of FGF signaling through mitogen-activated protein kinase (MAPK) cascades as the treatment of VICs with the MAPK/extracellular regulated kinase (MEK) inhibitor U0126 acted to induce fibrosis and blocked the ability of FGF-2 to inhibit TGF-β1 signaling. Furthermore, FGF-2 treatment of VICs blocks the development of pathological contractile and calcifying phenotypes, suggesting that these pathways may be utilized in the engineering of effective treatments for valvular disease.—Cushing, M. C., Mariner, P. D., Liao, J. T., Sims, E. A., Anseth, K. S. Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells. PMID:18218921

  10. Spatiotemporal expression of fibroblast growth factor 10 in human hindgut and anorectal development.

    PubMed

    Yin, Shui Jing; Tang, Xiao Bing; Li, Fei Fei; Zhang, Tao; Yuan, Zheng Wei; Wang, Wei Lin; Bai, Yu Zuo

    2013-01-01

    As fibroblast growth factor 10 (FGF-10) gene expression may have a role in anorectal duct formation, this study aimed to assess the spatiotemporal expression pattern of FGF-10 during development of the rectum and hindgut in human embryos. FGF-10 expression was evaluated in human embryos (n = 85) at 3-8 weeks of gestation after immunohistochemical evaluation using antibodies specific for FGF-10. From weeks 4 to 7 of gestation, FGF-10 expression was observed primarily in the apical epithelium of the dorsal urorectal septum, the cloacal membrane (CM) and the hindgut. Following CM rupture (week 7), the epithelium of the anal canal was negative for FGF-10; however, it was present within the urothelium through week 7. FGF-10 expression during the development of the human hindgut and anorectum suggests that it may play a role in hindgut and anorectal morphogenesis. Copyright © 2013 S. Karger AG, Basel.

  11. Patterns of gene expressions induced by arsenic trioxide in cultured human fibroblasts.

    PubMed

    Burnichon, Vanina; Jean, Séverine; Bellon, Laurence; Maraninchi, Marie; Bideau, Chantal; Orsière, Thierry; Margotat, Alain; Gérolami, Victoria; Botta, Alain; Bergé-Lefranc, Jean Louis

    2003-07-20

    Arsenic exposure is associated with several human diseases and particularly, with neoplasia. Although the mechanism of arsenic toxicity is not fully understood, several recent works pointed out the involvement of oxidative stress in arsenic-induced DNA damage that, in living cells, correlates with changes in gene expressions. In cultured human fibroblasts exposed for 24 h to micromolar arsenic concentrations, we studied, using real-time RT-PCR, the expression profile of a limited number of genes: genes coding for a stress protein (HSP70), transcription factors (cJUN, cFOS, ETR103, ETR101 and TTP) and cell cycle or DNA repair proteins (P21, GADD153). We observed that the expression profile of genes followed individual different patterns that can be summed up in early-transient gene expression by contrast to delayed gene expression.

  12. Differential regulation of acidic and basic fibroblast growth factor gene expression in fibroblast growth factor-treated rat aortic smooth muscle cells.

    PubMed

    Alberts, G F; Hsu, D K; Peifley, K A; Winkles, J A

    1994-08-01

    The acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF) proteins are potent vascular smooth muscle cell (SMC) mitogens that are expressed by endothelial cells and SMCs in vivo. Overexpression of these proteins in transfected cell lines can result in autocrine transformation; therefore, the precise control of fibroblast growth factor gene expression in the vessel wall may be an important mechanism regulating vascular cell growth. In the present study, we demonstrate that bFGF can induce bFGF mRNA expression, but not aFGF mRNA expression, in serum-starved rat aortic SMCs. bFGF autoinduction is maximal at 4 hours, requires de novo RNA and protein synthesis, and is mediated predominantly by a protein kinase C-dependent signaling pathway. Furthermore, aFGF treatment of rat SMCs also increases bFGF mRNA and protein expression; however, aFGF mRNA levels are only slightly modulated. These results suggest that the local release of aFGF or bFGF within the vessel wall could promote a prolonged period of elevated bFGF synthesis. This, in turn, could be of importance in the SMC hyperplasia that occurs in response to vascular injury and during atherosclerotic plaque formation.

  13. Recombinant N-Terminal Slit2 Inhibits TGF-β-Induced Fibroblast Activation and Renal Fibrosis.

    PubMed

    Yuen, Darren A; Huang, Yi-Wei; Liu, Guang-Ying; Patel, Sajedabanu; Fang, Fei; Zhou, Joyce; Thai, Kerri; Sidiqi, Ahmad; Szeto, Stephen G; Chan, Lauren; Lu, Mingliang; He, Xiaolin; John, Rohan; Gilbert, Richard E; Scholey, James W; Robinson, Lisa A

    2016-09-01

    Fibrosis and inflammation are closely intertwined injury pathways present in nearly all forms of CKD for which few safe and effective therapies exist. Slit glycoproteins signaling through Roundabout (Robo) receptors have been described to have anti-inflammatory effects through regulation of leukocyte cytoskeletal organization. Notably, cytoskeletal reorganization is also required for fibroblast responses to TGF-β Here, we examined whether Slit2 also controls TGF-β-induced renal fibrosis. In cultured renal fibroblasts, which we found to express Slit2 and Robo-1, the bioactive N-terminal fragment of Slit2 inhibited TGF-β-induced collagen synthesis, actin cytoskeletal reorganization, and Smad2/3 transcriptional activity, but the inactive C-terminal fragment of Slit2 did not. In mouse models of postischemic renal fibrosis and obstructive uropathy, treatment with N-terminal Slit2 before or after injury inhibited the development of renal fibrosis and preserved renal function, whereas the C-terminal Slit2 had no effect. Our data suggest that administration of recombinant Slit2 may be a new treatment strategy to arrest chronic injury progression after ischemic and obstructive renal insults by not only attenuating inflammation but also, directly inhibiting renal fibrosis. Copyright © 2016 by the American Society of Nephrology.

  14. Cell surface expression of hepatitis B surface and core antigens in transfected rat fibroblast cell lines.

    PubMed

    Gholson, C F; Siddiqui, A; Vierling, J M

    1990-04-01

    Hepatocellular necrosis during hepatitis B virus infection is hypothesized to result from host immune responses against either hepatitis B surface antigen or hepatitis B core antigen expressed on the surface membrane of infected hepatocytes. To study the capacity of hepatitis B deoxyribonucleic acid to induce membrane expression of either hepatitis B surface antigen or hepatitis B core antigen in vitro, we assessed transfected rat fibroblast cell lines by indirect immunofluorescence. Rat fibroblasts were transfected with plasmid vectors containing the natural promoters, native enhancer, and uninterrupted sequences of either the Pre S/S gene or core gene. Resulting cell lines produced hepatitis B surface antigen and hepatitis B core antigen/hepatitis B e antigen, respectively. Immunofluorescence microscopy or flow cytometry showed that hepatitis B surface antigen and hepatitis B core antigen were expressed in a granular pattern in the surface membrane of transfected cells. We conclude that surface membrane expression of both hepatitis B surface antigen and hepatitis B core antigen is an intrinsic consequence of expression of either the Pre S/S or core gene.

  15. Differential expression of insulin like growth factor I and other fibroblast mitogens in porcine colostrum and milk

    SciTech Connect

    Tan, T.J.; Simmen, R.C.M.; Simmen, F.A.

    1987-05-01

    Sow mammary secretions contain at least 3 distinct growth factor activities, distinguished by their size and relative abundance in colostrum or later milk. Gel filtration of colostrum in Sephadex G-200 columns, followed by acid-ethanol extraction and radioimmunoassay (RIA) for insulin like growth factor I (IGF-I) revealed high levels of this factor in the 150K and 50K MW regions, characteristic of IGF-I: binding protein complexes. Acid treatment of these fractions yielded free IGF-I peptide (7.5K). Parallel mitogen assays with a fibroblast cell line (AKR-2B) demonstrated a predominant peak of high MW activity (sow colostral growth factor-I, SCGF-I) eluting near the column void volume (MW > 150K). Treatment of SCGF-I with 1M acetic acid resulted in a size reduction of the mitogenic activity (MW < 10K), suggesting association of SCGF-I with a binding protein. The SCGF-I peptide was noncompetitive in IGF-I RIA, was distinct in MW from free IGF-I, and was not mitogenic for chick embryo fibroblasts. Sow milk contains less IGF-I and SCGF-I but does display a predominant peak of small MW (approx. 3K) AKR-2B activity. The changes in expression of these growth factors during lactation may reflect differing roles in lactogenesis and/or neonatal growth and development.

  16. Cysteine-rich protein 61 (CCN1) domain-specific stimulation of matrix metalloproteinase-1 expression through αVβ3 integrin in human skin fibroblasts.

    PubMed

    Qin, Zhaoping; Fisher, Gary J; Quan, Taihao

    2013-04-26

    Human skin largely comprises collagenous extracellular matrix. The hallmark of skin aging is fragmentation of collagen fibrils. Matrix metalloproteinases (MMPs) are largely responsible for collagen degradation. MMP-1, principally derived from dermal fibroblasts, is the major protease capable of initiating degradation of native fibrillar collagens. Presently, we report that CCN1, a secreted and extracellular matrix-associated protein, is elevated in aged human skin dermal fibroblasts in vivo and stimulates MMP-1 expression through functional interaction with αVβ3 integrin in human dermal fibroblasts. CCN1 contains four conserved structural domains. Our results indicate that the three N-terminal domains (IGFBP, VWC, and TSP1), but not the C-terminal CT domain, are required for CCN1 to stimulate MMP-1 expression. This stimulation is dependent on interaction between the active structural domains and αVβ3 integrin. The interaction of VWC domain with integrin αVβ3 is necessary and requires functional cooperation with adjacent IGFBP and TSP1 domains to stimulate MMP-1 expression. Finally, induction of MMP-1 expression in dermal fibroblasts by CCN1 N-terminal domains resulted in fragmentation of type I collagen fibrils in a three-dimensional collagen lattice model. These data suggest that domain-specific interactions of CCN1 with αVβ3 integrin contribute to human skin aging by stimulating MMP-1-mediated collagen fibril fragmentation.

  17. p38 mitogen-activated protein kinase activation by ultraviolet A radiation in human dermal fibroblasts.

    PubMed

    Le Panse, Rozen; Dubertret, Louis; Coulomb, Bernard

    2003-08-01

    UVA radiation penetrates deeply into the skin reaching both the epidermis and the dermis. We thus investigated the effects of naturally occurring doses of UVA radiation on mitogen-activated protein kinase (MAPK) activities in human dermal fibroblasts. We demonstrated that UVA selectively activates p38 MAPK with no effect on extracellular-regulated kinases (ERK1-ERK2) or JNK-SAPK (cJun NH2-terminal kinase-stress-activated protein kinase) activities. We then investigated the signaling pathway used by UVA to activate p38 MAPK. L-Histidine and sodium azide had an inhibitory effect on UVA activation of p38 MAPK, pointing to a role of singlet oxygen in transduction of the UVA effect. Afterward, using prolonged cell treatments with growth factors to desensitize their signaling pathways or suramin to block growth factor receptors, we demonstrated that UVA signaling pathways shared elements with growth factor signaling pathways. In addition, using emetine (a translation inhibitor altering ribosome functioning) we detected the involvement of ribotoxic stress in p38 MAPK activation by UVA. Our observations suggest that p38 activation by UVA in dermal fibroblasts involves singlet oxygen-dependent activation of ligand-receptor signaling pathways or ribotoxic stress mechanism (or both). Despite the activation of these two distinct signaling mechanisms, the selective activation of p38 MAPK suggests a critical role of this kinase in the effects of UVA radiation.

  18. Ablation of the mitochondrial complex IV assembly protein Surf1 leads to increased expression of the UPR(MT) and increased resistance to oxidative stress in primary cultures of fibroblasts.

    PubMed

    Pharaoh, Gavin; Pulliam, Daniel; Hill, Shauna; Sataranatarajan, Kavithalakshmi; Van Remmen, Holly

    2016-08-01

    Mice deficient in the electron transport chain (ETC) complex IV assembly protein SURF1 have reduced assembly and activity of cytochrome c oxidase that is associated with an upregulation of components of the mitochondrial unfolded protein response (UPR(MT)) and increased mitochondrial number. We hypothesized that the upregulation of proteins associated with the UPR(MT) in response to reduced cytochrome c oxidase activity in Surf1(-/-) mice might contribute to increased stress resistance. To test this hypothesis we asked whether primary cultures of fibroblasts from Surf1(-/-) mice exhibit enhanced resistance to stressors compared to wild-type fibroblasts. Here we show that primary dermal fibroblasts isolated from Surf1(-/-) mice have increased expression of UPR(MT) components ClpP and Hsp60, and increased expression of Lon protease. Fibroblasts from Surf1(-/-) mice are significantly more resistant to cell death caused by oxidative stress induced by paraquat or tert-Butyl hydroperoxide compared to cells from wild-type mice. In contrast, Surf1(-/-) fibroblasts show no difference in sensitivity to hydrogen peroxide stress. The enhanced cell survival in response to paraquat or tert-Butyl hydroperoxide in Surf1(-/-) fibroblasts compared to wild-type fibroblasts is associated with induced expression of Lon, ClpP, and Hsp60, increased maximal respiration, and increased reserve capacity as measured using the Seahorse Extracellular Flux Analyzer. Overall these data support a protective role for the activation of the UPR(MT) in cell survival. Published by Elsevier B.V.

  19. Mesenchymal stromal cells reverse hypoxia-mediated suppression of α-smooth muscle actin expression in human dermal fibroblasts

    SciTech Connect

    Faulknor, Renea A.; Olekson, Melissa A.; Nativ, Nir I.; Ghodbane, Mehdi; Gray, Andrea J.; Berthiaume, François

    2015-02-27

    During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived soluble factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. (SB431542), an inhibitor of transforming growth factor-β{sub 1} (TGF-β{sub 1})-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β{sub 1} at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β{sub 1} is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. - Highlights: • Fibroblasts were cultured in collagen lattices (FPCLs) as model contracting wounds. • Hypoxia decreased FPCL contraction and fibroblast α-smooth muscle actin expression. • Mesenchymal stromal cells (MSCs) restored function of hypoxic fibroblasts. • MSCs regulate fibroblast function mainly via secreted transforming growth factor-β{sub 1}.

  20. Fibroblasts, glial, and neuronal cells are involved in extravascular prothrombin activation.

    PubMed

    Yamazaki, Y; Shikamoto, Y; Fukudome, K; Kimoto, M; Morita, T

    1999-10-01

    A membrane-associated prothrombin activator (MAPA) was found on various cultured cells derived from non-hematopoietic cells [Sekiya, F. et al. (1994) J. Biol. Chem. 269, 32441-32445]. In this study, we investigated the enzymatic properties of this enzyme using protease inhibitors. While the metalloproteinase inhibitor, o-phenanthroline, had no effect, some Kunitz type serine protease inhibitors attenuated MAPA activity. Recombinant tissue factor pathway inhibitor (rTFPI) also markedly reduced the activity (IC(50), 1. 3+/-0.6 x 10(-10) M). MAPA activity is, therefore, most likely to be due to factor Xa. We evaluated the effect of exogenous factor Xa on MAPA activity. Factor Xa-dependent prothrombin activation was observed on fibroblast cells (apparent K(d), 1.47+/-0.72 nM). Activation was also observed on glial and neuronal cells, which expressed MAPA activity. These results imply that membrane-bound factor Xa results in MAPA activity on these cells. Therefore, we considered the involvement of factor Va, a component of prothrombinase, in this activity. We examined whether or not the prothrombinase complex is assembled on these cells. Prothrombin was activated in a manner dependent on both exogenous factor Xa and factor Va (apparent K(d) of 0.51-1.81 nM for factor Va). These results indicate that the prothrombinase complex forms specifically on various extravascular cells. Although the prothrombinase complex can be assembled on monocytes and lymphocytes, it is not known why these cells can activate prothrombin specifically. These cells which have the capacity for prothrombin activator activity could also activate factor X; i.e. cells with factor X activation activity were able to convert prothrombin. These observations suggest that thrombin was generated via two procoagulant activities; factor X activation and subsequent prothrombinase complex formation on the surface of these cells. This mechanism may explain the various pathological states involving or resulting

  1. Anti-inflammatory activity of fisetin in human gingival fibroblasts treated with lipopolysaccharide.

    PubMed

    Gutiérrez-Venegas, Gloria; Contreras-Sánchez, Anabel; Ventura-Arroyo, Jairo Agustín

    2014-10-01

    Fisetin is an anti-inflammatory flavonoid; however, its anti-inflammatory mechanism is not yet understood. In this study, we evaluated the anti-inflammatory effect of fisetin and its association with mitogen-activated protein kinase (MAPK) and nuclear factor kappa-beta pathways in human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) obtained from Porphyromonas gingivalis. The cell signaling, cell viability, and cyclooxygenase-2 (COX-2) expression of HGFs treated with various concentrations (0, 1, 5, 10, and 15 μM) of fisetin were measured by cell viability assay (MTT), Western blotting, and reverse transcriptase polymerase chain reaction analysis on COX-2. We found that fisetin significantly reduced the synthesis and expression of prostaglandin E2 in HGFs treated with LPS. Activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK was suppressed consistently by fisetin in HGFs treated with LPS. The data indicate that fisetin inhibits MAPK activation and COX-2 expression without affecting cell viability. These findings may be valuable for understanding the mechanism of the effect of fisetin on periodontal disease.

  2. Botulinum Toxin Type A Inhibits α-Smooth Muscle Actin and Myosin II Expression in Fibroblasts Derived From Scar Contracture.

    PubMed

    Chen, Minliang; Yan, Tongtong; Ma, Kui; Lai, Linying; Liu, Chang; Liang, Liming; Fu, Xiaobing

    2016-09-01

    Scar contracture (SC) is one of the most common complications resulting from major burn injuries. Numerous treatments are currently available but they do not always yield excellent therapeutic results. Recent reports suggest that botulinum toxin type A (BTXA) is effective at reducing SC clinically, but the molecular mechanism for this action is unknown. α-Smooth muscle actin (α-SMA) and myosin II are the main components of stress fibers, which are the contractile structures of fibroblasts. The effects of BTXA on α-SMA and myosin II in SC are still unknown. This study aimed to explore the effect of BTXA on α-SMA and myosin II expression in fibroblasts derived from SC and to elucidate its actual mechanism further. Fibroblasts were isolated from tissue specimens of SC. Fibroblasts were cultured in Dulbecco modified Eagle medium with different concentrations of BTXA and their proliferation was analyzed through the tetrazolium-based colorimetric method at 1, 4, and 7 days. Proteins of α-SMA and myosin II were checked using Western blot in fibroblasts treated with different concentrations of BTXA at 1, 4, and 7 days. Fibroblasts without BTXA treatment had a higher proliferation than that in other groups, which indicated that the proliferation of fibroblasts was significantly inhibited by BTXA (P < 0.05). Proteins of α-SMA and myosin II between fibroblasts with BTXA and fibroblasts without BTXA are statistically significant (P < 0.05). These results suggest that BTXA effectively inhibited the growth of fibroblasts derived from SC and reduced the expression of α-SMA and myosin II, which provided theoretical support for the application of BTXA to control SC.

  3. Inhibitory effects of antioxidant constituents from Melothria heterophylla on matrix metalloproteinase-1 expression in UVA-irradiated human dermal fibroblasts.

    PubMed

    Cho, Y H; Kim, J H; Sim, G S; Lee, B C; Pyo, H B; Park, H D

    2006-01-01

    Matrix metalloproteinases (MMPs) are known to play an important role in photoaging by mediating the degradation of extracellular matrix proteins. To develop a new anti-aging agent for cosmetics from natural products, Melothria heterophylla (Lour.) Cogn. was selected for its antioxidant activity and inhibitory effect on expression of MMP-1 in UVA-irradiated human skin fibroblasts. Two compounds (compounds 1 and 2 ) were isolated from an ethyl acetate soluble fraction of the ethanolic extracts; they were identified as 1,2,4,6-tetra-O-galloyl-beta-(D)-glucopyranose (1) and 3,4,5-trihydroxybenzoic acid (2). These compounds were found to scavenge radicals and reactive oxygen species (ROS) and were measured to have SC50 values of 3.9 microM and 13.3 microM against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and values of 4.3 microM and 4.0 microM against superoxide radicals in the xanthine/xanthine oxidase system, respectively. Compounds 1 and 2 showed a dose-dependent inhibitory effect on the expression and activity of MMP-1 in UVA-induced human skin fibroblasts, but no inhibition of MMP-1 mRNA expression. Therefore, we concluded that compounds 1 and 2 significantly inhibited MMP-1 expression at the protein level. Also, these compounds were determined to have a potent antioxidant activity. From these results, we suggest that these compounds might be useful as a new anti-aging agent for photodamaged skin, but the in vitro findings must be verified in in vivo studies.

  4. The potential of a niacinamide dominated cosmeceutical formulation on fibroblast activity and wound healing in vitro.

    PubMed

    Wessels, Quenton; Pretorius, Etheresia; Smith, Celeste M; Nel, Hugo

    2014-04-01

    Knowledge on the intrinsic mechanisms involved in wound healing provides opportunity for various therapeutic strategies. The manipulation of dermal fibroblast proliferation and differentiation might prove to beneficially augment wound healing. This study evaluated the combined effects of niacinamide, L-carnosine, hesperidin and Biofactor HSP(®) on fibroblast activity. The effects on fibroblast collagen production, cellular proliferation, migration and terminal differentiation were assessed. In addition, the authors determined the effects on in vitro wound healing. The optimal concentrations of actives were determined in vitro. Testing parameters included microscopic morphological cell analysis, cell viability and proliferation determination, calorimetric collagen detection and in vitro wound healing dynamics. Results show that 0·31 mg/ml niacinamide, 0·10 mg/ml L-carnosine, 0·05 mg/ml hesperidin and 5·18 µg/ml Biofactor HSP® proved optimal in vitro. The results show that fibroblast collagen synthesis was increased alongside with cellular migration and proliferation.

  5. Extinction of Oct-3/4 gene expression in embryonal carcinoma [times] fibroblast somatic cell hybrids is accompanied by changes in the methylation status, chromatin structure, and transcriptional activity of the Oct-3/4 upstream region

    SciTech Connect

    Ben-Shushan, E.; Pikarsky, E.; Klar, A.; Bergman, Y. )

    1993-02-01

    The OCT-3/4 gene provides an excellent model system with which to study the extinction phenomenon in somatic cell hybrids. The molecular mechanism that underlies the extinction of a tissue-specific transcription factor in somatic cell hybrides is evaluated and compared with its down-regulation in retinoic acid treated embryonal carcinoma cells. This study draws a connection between the shutdown of OCT-3/4 expression in retinoic acid (RA)-differentiated embryonal carcinoma (EC) cells and its extinction in hybrid cells. This repression of OCT-3/4 expression is achieved through changes in the methylation status, chromatin structure, and transcriptional activity of the OCT-3/4 upstream regulatory region. 59 refs.

  6. Adaptive response to l-serine deficiency is mediated by p38 MAPK activation via 1-deoxysphinganine in normal fibroblasts.

    PubMed

    Sayano, Tomoko; Kawano, Yuki; Kusada, Wataru; Arimoto, Yashiho; Esaki, Kayoko; Hamano, Momoko; Udono, Miyako; Katakura, Yoshinori; Ogawa, Takuya; Kato, Hisanori; Hirabayashi, Yoshio; Furuya, Shigeki

    2016-04-01

    Reduced availability of l-serine limits cell proliferation and leads to an adaptation to l-serine-deficient environment, the underlying molecular mechanism of which remain largely unexplored. Genetic ablation of 3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step of de novo l-serine synthesis, led to diminished cell proliferation and the activation of p38 MAPK and stress-activated protein kinase/Jun amino-terminal kinase in mouse embryonic fibroblasts under l-serine depletion. The resultant l-serine deficiency induced cyclin-dependent kinase inhibitor 1a (Cdkn1a; p21) expression, which was mediated by p38 MAPK. Survival of the Phgdh-deficient mouse embryonic fibroblasts was markedly reduced by p38 MAPK inhibition under l-serine depletion, whereas p38 MAPK could be activated by 1-deoxysphinganine, an atypical alanine-derived sphingoid base that was found to accumulate in l-serine-depleted mouse embryonic fibroblasts. These observations provide persuasive evidence that when the external l-serine supply is limited, l-serine synthesized de novo in proliferating cells serves as a metabolic gatekeeper to maintain cell survival and the functions necessary for executing cell cycle progression. Gene Expression Omnibus, accession number GSE55687.

  7. Protease-activated receptor 1 and 2 contribute to angiotensin II-induced activation of adventitial fibroblasts from rat aorta

    SciTech Connect

    He, Rui-Qing; Tang, Xiao-Feng; Zhang, Bao-Li; Li, Xiao-Dong; Hong, Mo-Na; Chen, Qi-Zhi; Han, Wei-Qing; Gao, Ping-Jin

    2016-04-29

    Adventitial fibroblasts (AFs) can be activated by angiotensin II (Ang II) and exert pro-fibrotic and pro-inflammatory effects in vascular remodeling. Protease-activated receptor (PAR) 1 and 2 play a significant role in fibrogenic and inflammatory diseases. The present study hypothesized that PAR1 and PAR2 are involved in Ang II-induced AF activation and contribute to adventitial remodeling. We found that direct activation of PAR1 and PAR2 with PAR1-AP and PAR2-AP led to AF activation, including proliferation and differentiation of AFs, extracellular matrix synthesis, as well as production of pro-fibrotic cytokine TGF-β and pro-inflammatory cytokines IL-6 and MCP-1. Furthermore, PAR1 and PAR2 mediated Ang II-induced AF activation, since both PAR1 and PAR2 antagonists inhibited Ang II-induced proliferation, migration, differentiation, extracellular matrix synthesis and production of pro-fibrotic and pro-inflammatory cytokines in AFs. Finally, mechanistic study showed that Ang II, via Ang II type I receptor (AT1R), upregulated both PAR1 and PAR2 expression, and transactivated PAR1 and PAR2, as denoted by internalization of both proteins. In conclusion, our results suggest that PAR1 and PAR2 play a critical role in Ang II-induced AF activation, and this may contribute to adventitia-related pathological changes. - Highlights: • Direct activation of PAR1 and PAR2 led to adventitial fibroblast (AF) activation. • PAR1 and PAR2 antagonists attenuated Ang II-induced AF activation. • Ang II induced the upregulation and transactivation of PAR1/PAR2 in AFs.

  8. Profiling of differentially expressed genes in human gingival epithelial cells and fibroblasts by DNA microarray.

    PubMed

    Abiko, Yoshimitsu; Hiratsuka, Koichi; Kiyama-Kishikawa, Michiko; Tsushima, Katsumasa; Ohta, Mitsuhiro; Sasahara, Hiroshige

    2004-03-01

    Gingival epithelial cells and fibroblasts play important roles and have a harmonious relationship under normal and disease conditions, but the precise differences between theses cells remain unknown. To study the differences in gene expression between human gingival epithelial cells (HGE) and human gingival fibroblasts (HGF), mRNA was recovered from primary cultured cells and analyzed using cDNA microarray technology. The cDNA retro-transcribed from equal quantities of mRNA was labeled with the fluorescent dyes Cy5 and Cy3. The mixed probes were then hybridized with 7276 genes on the DNA microarray, after which fluorescence signals were scanned and further analyzed using GeneSpring software. Of the 7276 genes screened, 469 showed expression levels that were more than 2-fold greater in HGE than in HGF, while 293 showed expression levels that were more than 2-fold greater in HGF than in HGE. To confirm the reliability of the microarray results, keratin K5 and desmocolin, and vimentin and gp130, which showed higher mRNA levels in HGE and HGF, respectively, were selected and their mRNA levels were further analyzed by RT-PCR. The results of RT-PCR correlated well with those of microarray analysis. The present findings using a DNA microarray to detect differences in the gene expression profiles of HGE and HGF may be beneficial for genetic diagnosis of periodontal tissue metabolism and periodontal diseases.

  9. Genome-wide expression analysis in fibroblast cell lines from probands with Pallister Killian syndrome.

    PubMed

    Kaur, Maninder; Izumi, Kosuke; Wilkens, Alisha B; Chatfield, Kathryn C; Spinner, Nancy B; Conlin, Laura K; Zhang, Zhe; Krantz, Ian D

    2014-01-01

    Pallister Killian syndrome (OMIM: # 601803) is a rare multisystem disorder typically caused by tissue limited mosaic tetrasomy of chromosome 12p (isochromosome 12p). The clinical manifestations of Pallister Killian syndrome are variable with the most common findings including craniofacial dysmorphia, hypotonia, cognitive impairment, hearing loss, skin pigmentary differences and epilepsy. Isochromosome 12p is identified primarily in skin fibroblast cultures and in chorionic villus and amniotic fluid cell samples and may be identified in blood lymphocytes during the neonatal and early childhood period. We performed genomic expression profiling correlated with interphase fluorescent in situ hybridization and single nucleotide polymorphism array quantification of degree of mosaicism in fibroblasts from 17 Caucasian probands with Pallister Killian syndrome and 9 healthy age, gender and ethnicity matched controls. We identified a characteristic profile of 354 (180 up- and 174 down-regulated) differentially expressed genes in Pallister Killian syndrome probands and supportive evidence for a Pallister Killian syndrome critical region on 12p13.31. The differentially expressed genes were enriched for developmentally important genes such as homeobox genes. Among the differentially expressed genes, we identified several genes whose misexpression may be associated with the clinical phenotype of Pallister Killian syndrome such as downregulation of ZFPM2, GATA6 and SOX9, and overexpression of IGFBP2.

  10. Analysis of gene-expression profiles after gamma irradiation of normal human fibroblasts

    SciTech Connect

    Tachiiri, Seiji . E-mail: tachiiri@kuhp.kyoto-u.ac.jp; Katagiri, Toyomasa; Tsunoda, Tatsuhiko; Oya, Natsuo; Hiraoka, Masahiro; Nakamura, Yusuke

    2006-01-01

    Purpose: To understand comprehensive transcriptional profile of normal human fibroblast in response to irradiation. Methods and Materials: To identify genes whose expression is influenced by {gamma} radiation, we used a cDNA microarray to analyze expression of 23,000 genes in normal human fibroblasts at 7 timepoints (1, 3, 6, 12, 24, 48, and 72 hours) after 5 different doses (0.5, 2, 5, 15, and 50 Gy) of expo