Science.gov

Sample records for fibrosis cells correlates

  1. Accumulation of Intrahepatic TNF-α-Producing NKp44+ NK Cells Correlates With Liver Fibrosis and Viral Load in Chronic HCV Infection.

    PubMed

    Nel, Isabelle; Lucar, Olivier; Petitdemange, Caroline; Béziat, Vivien; Lapalus, Martine; Bédossa, Pierre; Debré, Patrice; Asselah, Tarik; Marcellin, Patrick; Vieillard, Vincent

    2016-05-01

    In the setting of chronic hepatitis C virus (HCV) infection, changes in natural killer (NK) cells have been shown to reflect activation in response to virus stimulation. The contribution of individual natural cytotoxicity receptors to HCV infection remains to be clarified. NKp44 is the sole specific natural cytotoxicity receptor expressed only on activated NK cells.In this study, peripheral blood and liver NK-cell subsets were purified from 31 patients with chronic C hepatitis or nonalcoholic steatohepatitis, and then characterized by flow cytometry. Their polyfunctional activity was determined by expression of the CD107a degranulation marker, together with intracellular cytokine production.Unlike the patients with nonalcoholic steatohepatitis, patients with chronic HCV infection had a higher frequency of NKp44 NK cells in the liver than in their peripheral blood (P < 0.0001). Intrahepatic NKp44 NK cells from HCV individuals produced higher levels of tumor necrosis factor-α than did NKp44 NK cells (P = 0.0011). Importantly, the frequency of intrahepatic NKp44 NK cells was correlated with both HCV-RNA levels (P = 0.0234) and stage of fibrosis (P = 0.0003).Our findings suggest that the accumulation of intrahepatic tumor necrosis factor-α-producing NKp44 resident NK cells play a role in the liver damage associated with chronic HCV infection.

  2. Role of mast cells in fibrosis of classical Hodgkin lymphoma.

    PubMed

    Nakayama, Shoko; Yokote, Taiji; Hiraoka, Nobuya; Nishiwaki, Uta; Hanafusa, Toshiaki; Nishimura, Yasuichiro; Tsuji, Motomu

    2016-12-01

    The underlying mechanism of fibrosis in classical Hodgkin lymphoma (CHL) remains uncertain. This study aimed to investigate the association of fibrosis in the lymph nodes of patients with CHL through histological examination of the expression of cytokines associated with fibrosis and mast cell proliferation. Additionally, we sought to determine the degree of mast cell infiltration in a nodular sclerosis subtype of CHL (NSCHL) compared with that in non-NSCHL. We analyzed lymph nodes from 22 patients with CHL, of which eight were of the NSCHL and 14 of the non-NSCHL subtype, using immunohistochemical staining of forkhead box P3 (FOXP3), transforming growth factor (TGF)-β, interleukin (IL)-3, IL-13, and stem cell factor (SCF). Mast cells were positive for TGF-β and IL-13, and FOXP3-positive cells were negative for TGF-β. Only the expression of IL-13 in Hodgkin and Reed-Sternberg (HRS) cells was significantly more frequently observed in NSCHL than that in non-NSCHL (P = 0.0028) and was associated with a higher rate of fibrosis (P = 0.0097). The number of mast cells was significantly higher in NSCHL than that in non-NSCHL (P = 0.0001). A significantly positive correlation was observed between the rate of fibrosis and the number of mast cells (correlation coefficient, 0.8524; 95% CI, 0.6725-0.9372) (P <0.0001). The number of mast cells was significantly higher in the group with IL-13-positive HRS cells than that in the group with IL-13-negative HRS cells (P = 0.0157). Based on these findings, we hypothesize that IL-13 production by HRS cells may lead to fibrosis, and furthermore, promote mast cell proliferation and infiltration. This in turn might further produce the fibrotic cytokines IL-13 and TGF-β, resulting in fibrosis typical of NSCHL.

  3. Centrilobular ductular reaction correlates with fibrosis stage and fibrosis progression in non-alcoholic steatohepatitis.

    PubMed

    Zhao, Lei; Westerhoff, Maria; Pai, Rish K; Choi, Won-Tak; Gao, Zu-Hua; Hart, John

    2017-09-01

    There is increasing interest in the role of ductular reaction as part of the pathogenesis and characteristic histology of non-alcoholic steatohepatitis. However, earlier studies did not separately assess the contribution of periportal and centrilobular zone ductular reaction over the spectrum of non-alcoholic steatohepatitis, and their clinical significance remains unclear. We herein analyzed the character of ductular reaction in each hepatic zone in non-alcoholic steatohepatitis biopsies and for the first time evaluated the prognostic value of ductular reaction in baseline biopsies as a predictor of progression of fibrosis in subsequent biopsies. A total of 90 non-alcoholic steatohepatitis liver biopsies were included in the cohort. The relationships among ductular reaction, grade, stage, and other common histopathologic findings in non-alcoholic steatohepatitis were analyzed in a cross-sectional manner. Among these patients, a total of 47 patients underwent sequential liver biopsies in the absence of effective treatment. The frequency of ductular reaction and the other histopathologic parameters in the initial biopsies were analyzed as predictors of progression of fibrosis in the second biopsies in a longitudinal analysis. Centrilobular ductular reaction was identified in 90% of patients and 38% of centrilobular zones. The prevalence of centrilobular ductular reaction increased as non-alcoholic steatohepatitis grade increased (P=0.0002) and also as stage of fibrosis increased (P<0.0001) in the cross-sectional study. In the longitudinal study, the frequency of centrilobular ductular reaction in the initial biopsies was significantly higher in the group of progressors and correlated with the rate of fibrosis progression (P=0.02). Centrilobular ductular reaction is common in non-alcoholic steatohepatitis and its presence correlates significantly with increasing necroinflammatory activity and fibrosis stage. Development of centrilobular ductular reaction appears to

  4. Correlation between platelet count and both liver fibrosis and spleen diameter in patients with schistosomiasis mansoni.

    PubMed

    Medeiros, Tibério B; Domingues, Ana Lucia C; Luna, Carlos F; Lopes, Edmundo P

    2014-01-01

    Studies have described the correlation between platelet count and the stages of fibrosis in chronic viral hepatitis, but few publications have studied this correlation in Schistosomiasis mansoni. Therefore, this study aimed to correlate platelet count with both the periportal fibrosis pattern and spleen diameter evaluated by ultrasound exam in patients with Schistosomiasis mansoni. Patients with Schistosomiasis mansoni were evaluated by abdominal ultrasound by a single examiner for the determination of periportal fibrosis pattern (Niamey classification) and spleen diameter. Platelet counts were performed in an automated cell counter. One hundred eighty-seven patients with Schistosomiasis mansoni (mean age: 50.2 years) were included in the study, 114 of whom (61%) were women. Based on the Niamey classification, the ultrasound analysis revealed that 37, 64, 64 and 22 patients exhibited patterns C, D, E and F, respectively. In these four groups, the mean number of platelets was 264, 196, 127 and 103 x 109/L and mean spleen diameter was 9.2, 11.9, 14.9 and 16.2 centimeters, respectively. A reduction in platelet count was significantly associated with both the progression of the periportal fibrosis and the increase in spleen size. Platelet count in patients with Schistosomiasis mansoni was inversely correlated with the severity of periportal fibrosis and spleen diameter.

  5. Fetuin-A negatively correlates with liver and vascular fibrosis in nonalcoholic fatty liver disease subjects.

    PubMed

    Sato, Motoya; Kamada, Yoshihiro; Takeda, Yuri; Kida, Sachiho; Ohara, Yuka; Fujii, Hironobu; Akita, Maaya; Mizutani, Kayo; Yoshida, Yuichi; Yamada, Makoto; Hougaku, Hidetaka; Takehara, Tetsuo; Miyoshi, Eiji

    2015-03-01

    Fetuin-A (α2HS-glycoprotein), a liver secretory glycoprotein, is known as a transforming growth factor (TGF)-β1 signalling inhibitor. Serum fetuin-A concentration is associated with nonalcoholic fatty liver disease (NAFLD) and cardiovascular disease. However, the usefulness of serum fetuin-A as a predictive fibrosis biomarker in NAFLD patients remains unclear. In this study, we investigated the relationship between circulating fetuin-A levels and fibrosis-related markers [platelet count, NAFLD fibrosis score and carotid intima media thickness (IMT)] in subjects with NAFLD. A total of 295 subjects (male, 164; female, 131) who received medical health check-ups were enrolled in this study. NAFLD was diagnosed using abdominal ultrasonography. Serum fetuin-A was measured by ELISA. IMT was assessed using a high-resolution ultrasound scanner. Using recombinant human fetuin-A, we investigated the effects of fetuin-A on hepatic stellate cells, which play a pivotal role in the process of hepatic fibrosis. Serum fetuin-A concentration was significantly correlated with platelet count (R = 0.19, P < 0.01), NAFLD fibrosis score (R = -0.25, P < 0.01) and mean IMT (R = -0.22, P < 0.01). Multivariate analyses revealed that the fetuin-A concentration is a significant and independent determinant of platelet count, NAFLD fibrosis score and mean IMT. Recombinant fetuin-A suppressed TGF-β1 signalling and fibrosis-related gene expression and increased the expression of TGF-β1 pseudoreceptor bone morphogenic protein and activin membrane-bound inhibitor (BAMBI). Serum fetuin-A level is associated with liver/vessel fibrosis-related markers in NAFLD patients. Circulating fetuin-A could be a useful serum biomarker for predicting liver and vascular fibrosis progression in NAFLD patients. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Local Correlation Between Monte-Carlo Dose and Radiation-Induced Fibrosis in Lung Cancer Patients

    SciTech Connect

    Stroian, Gabriela; Martens, Chandra; Souhami, Luis; Collins, D. Louis; Seuntjens, Jan

    2008-03-01

    Purpose: To present a new method of evaluating the correlation between radiotherapy (RT)-induced fibrosis and the local dose delivered to non-small-cell lung cancer patients. Methods and Materials: Treatment plans were generated using the CadPlan treatment planning system (pencil beam, no heterogeneity corrections), and RT delivery was based on these plans. Retrospective Monte-Carlo dose calculations were performed, and the Monte-Carlo distributions of dose to real tissue were calculated using the planning computed tomography (CT) images and the number of monitor units actually delivered. After registration of the follow-up CT images with the planning CT images, different grades of radiologic fibrosis were automatically segmented on the follow-up CT images. Subsequently, patient-specific fibrosis probabilities were studied as a function of the local dose and a function of time after RT completion. Results: A strong patient-specific variation in the fibrosis volumes was found during the follow-up period. For both lungs, the threshold dose for which the probability of fibrosis became significant coincided with the threshold dose at which significant volumes of the lung were exposed. At later stages, only fibrosis localized in the high-dose regions persisted for both lungs. Overall, the Monte-Carlo dose distributions correlated much better with the probability of RT-induced fibrosis than did the CadPlan dose distributions. Conclusion: The presented method allows for an accurate, systematic, patient-specific and post-RT time-dependent numeric study of the relationship between RT-induced fibrosis and the local dose.

  7. Schistosome-induced cholangiocyte proliferation and osteopontin secretion correlate with fibrosis and portal hypertension in human and murine schistosomiasis mansoni.

    PubMed

    Pereira, Thiago A; Syn, Wing-Kin; Machado, Mariana V; Vidigal, Paula V; Resende, Vivian; Voieta, Izabela; Xie, Guanhua; Otoni, Alba; Souza, Márcia M; Santos, Elisângela T; Chan, Isaac S; Trindade, Guilherme V M; Choi, Steve S; Witek, Rafal P; Pereira, Fausto E; Secor, William E; Andrade, Zilton A; Lambertucci, José Roberto; Diehl, Anna Mae

    2015-11-01

    Schistosomiasis is a major cause of portal hypertension worldwide. It associates with portal fibrosis that develops during chronic infection. The mechanisms by which the pathogen evokes these host responses remain unclear. We evaluated the hypothesis that schistosome eggs release factors that directly stimulate liver cells to produce osteopontin (OPN), a pro-fibrogenic protein that stimulates hepatic stellate cells to become myofibroblasts. We also investigated the utility of OPN as a biomarker of fibrosis and/or severity of portal hypertension. Cultured cholangiocytes, Kupffer cells and hepatic stellate cells were treated with soluble egg antigen (SEA); OPN production was quantified by quantitative reverse transcriptase polymerase chain reaction (qRTPCR) and ELISA; cell proliferation was assessed by BrdU (5-bromo-2'-deoxyuridine). Mice were infected with Schistosoma mansoni for 6 or 16 weeks to cause early or advanced fibrosis. Liver OPN was evaluated by qRTPCR and immunohistochemistry (IHC) and correlated with liver fibrosis and serum OPN. Livers from patients with schistosomiasis mansoni (early fibrosis n=15; advanced fibrosis n=72) or healthy adults (n=22) were immunostained for OPN and fibrosis markers. Results were correlated with plasma OPN levels and splenic vein pressures. SEA-induced cholangiocyte proliferation and OPN secretion (P<0.001 compared with controls). Cholangiocytes were OPN (+) in Schistosoma-infected mice and humans. Liver and serum OPN levels correlated with fibrosis stage (mice: r=0.861; human r=0.672, P=0.0001) and myofibroblast accumulation (mice: r=0.800; human: r=0.761, P=0.0001). Numbers of OPN (+) bile ductules strongly correlated with splenic vein pressure (r=0.778; P=0.001). S. mansoni egg antigens stimulate cholangiocyte proliferation and OPN secretion. OPN levels in liver and blood correlate with fibrosis stage and portal hypertension severity.

  8. Schistosome-induced cholangiocyte proliferation and osteopontin secretion correlate with fibrosis and portal hypertension in human and murine schistosomiasis mansoni

    PubMed Central

    Pereira, Thiago A.; Syn, Wing-Kin; Machado, Mariana V.; Vidigal, Paula V.; Resende, Vivian; Voieta, Izabela; Xie, Guanhua; Otoni, Alba; Souza, Márcia M.; Santos, Elisângela T.; Chan, Isaac S.; Trindade, Guilherme V.M.; Choi, Steve S.; Witek, Rafal P.; Pereira, Fausto E.; Secor, William E.; Andrade, Zilton A.; Lambertucci, José Roberto

    2015-01-01

    Schistosomiasis is a major cause of portal hypertension worldwide. It associates with portal fibrosis that develops during chronic infection. The mechanisms by which the pathogen evokes these host responses remain unclear. We evaluated the hypothesis that schistosome eggs release factors that directly stimulate liver cells to produce osteopontin (OPN), a pro-fibrogenic protein that stimulates hepatic stellate cells to become myofibroblasts. We also investigated the utility of OPN as a biomarker of fibrosis and/or severity of portal hypertension. Cultured cholangiocytes, Kupffer cells and hepatic stellate cells were treated with soluble egg antigen (SEA); OPN production was quantified by quantitative reverse transcriptase polymerase chain reaction (qRTPCR) and ELISA; cell proliferation was assessed by BrdU (5-bromo-2'-deoxyuridine). Mice were infected with Schistosoma mansoni for 6 or 16 weeks to cause early or advanced fibrosis. Liver OPN was evaluated by qRTPCR and immunohistochemistry (IHC) and correlated with liver fibrosis and serum OPN. Livers from patients with schistosomiasis mansoni (early fibrosis n=15; advanced fibrosis n=72) or healthy adults (n=22) were immunostained for OPN and fibrosis markers. Results were correlated with plasma OPN levels and splenic vein pressures. SEA-induced cholangiocyte proliferation and OPN secretion (P<0.001 compared with controls). Cholangiocytes were OPN (+) in Schistosoma-infected mice and humans. Liver and serum OPN levels correlated with fibrosis stage (mice: r=0.861; human r=0.672, P=0.0001) and myofibroblast accumulation (mice: r=0.800; human: r=0.761, P=0.0001). Numbers of OPN (+) bile ductules strongly correlated with splenic vein pressure (r=0.778; P=0.001). S. mansoni egg antigens stimulate cholangiocyte proliferation and OPN secretion. OPN levels in liver and blood correlate with fibrosis stage and portal hypertension severity. PMID:26201095

  9. Acute adaptive immune response correlates with late radiation-induced pulmonary fibrosis in mice.

    PubMed

    Paun, Alexandra; Kunwar, Amit; Haston, Christina K

    2015-02-20

    The lung response to radiation exposure can involve an immediate or early reaction to the radiation challenge, including cell death and an initial immune reaction, and can be followed by a tissue injury response, of pneumonitis or fibrosis, to this acute reaction. Herein, we aimed to determine whether markers of the initial immune response, measured within days of radiation exposure, are correlated with the lung tissue injury responses occurring weeks later. Inbred strains of mice known to be susceptible (KK/HIJ, C57BL/6J, 129S1/SvImJ) or resistant (C3H/HeJ, A/J, AKR/J) to radiation-induced pulmonary fibrosis and to vary in time to onset of respiratory distress post thoracic irradiation (from 10-23 weeks) were studied. Mice were untreated (controls) or received 18 Gy whole thorax irradiation and were euthanized at 6 h, 1d or 7 d after radiation treatment. Pulmonary CD4+ lymphocytes, bronchoalveolar cell profile & cytokine level, and serum cytokine levels were assayed. Thoracic irradiation and inbred strain background significantly affected the numbers of CD4+ cells in the lungs and the bronchoalveolar lavage cell differential of exposed mice. At the 7 day timepoint greater numbers of pulmonary Th1 and Th17 lymphocytes and reduced lavage interleukin17 and interferonγ levels were significant predictors of late stage fibrosis. Lavage levels of interleukin-10, measured at the 7 day timepoint, were inversely correlated with fibrosis score (R=-0.80, p=0.05), while serum levels of interleukin-17 in control mice significantly correlated with post irradiation survival time (R=0.81, p=0.04). Lavage macrophage, lymphocyte or neutrophil counts were not significantly correlated with either of fibrosis score or time to respiratory distress in the six mouse strains. Specific cytokine and lymphocyte levels, but not strain dependent lavage cell profiles, were predictive of later radiation-induced lung injury in this panel of inbred strains.

  10. B cells: no longer bystanders in liver fibrosis

    PubMed Central

    Bhogal, Rashpal K.; Bona, Constantin A.

    2005-01-01

    Cytokines secreted by cells that mediate the innate and adaptive immune responses play a critical role in regulating the synthesis of ECM components by fibroblasts. Overexpression and deposition of ECM components are dominant features of fibrotic diseases, including hepatic fibrosis. The contribution of CD4+ Th2 cells to hepatic fibrosis has been well described. Now, in this issue of the JCI, Novobrantseva et al. provide data to suggest that hepatic B cells also play a role in liver injury. In a carbon tetrachloride–induced mouse model of hepatic fibrosis, T cell–deficient mice developed severe liver fibrosis; however, in B cell–deficient animals, hepatic fibrosis was attenuated. This study provides new insight into our understanding of the cells involved in mediating the adaptive immune response that leads to hepatic fibrosis. PMID:16276407

  11. Congenital hepatic fibrosis, liver cell carcinoma and adult polycystic kidneys.

    PubMed

    Manes, J L; Kissane, J M; Valdes, A J

    1977-06-01

    In reviewing the literature, we found no liver cell carcinoma (LCC) or well-documented adult polycystic kidneys (APK) associated with congenital hepatic fibrosis (CHF). We report a 69-year-old man with CHF, LCC, APK, duplication cyst of distal portion of stomach, two calcified splenic artery aneurysms, myocardial fibrosis and muscular hypertrophy of esophagus. The LCC was grossly predunculated and microscopically showed prominent fibrosis and hyaline intracytoplasmic inclusions in the tumor cells.

  12. Genotype-phenotype correlation for pulmonary function in cystic fibrosis

    PubMed Central

    de Gracia, J; Mata, F; Alvarez, A; Casals, T; Gatner, S; Vendrell, M; de la Rosa, D; Guarner, L; Hermosilla, E

    2005-01-01

    Background: Since the CFTR gene was cloned, more than 1000 mutations have been identified. To date, a clear relationship has not been established between genotype and the progression of lung damage. A study was undertaken of the relationship between genotype, progression of lung disease, and survival in adult patients with cystic fibrosis (CF). Methods: A prospective cohort of adult patients with CF and two CFTR mutations followed up in an adult cystic fibrosis unit was analysed. Patients were classified according to functional effects of classes of CFTR mutations and were grouped based on the CFTR molecular position on the epithelial cell surface (I–II/I–II, I–II/III–V). Spirometric values, progression of lung disease, probability of survival, and clinical characteristics were analysed between groups. Results: Seventy four patients were included in the study. Patients with genotype I–II/I–II had significantly lower current spirometric values (p<0.001), greater loss of pulmonary function (p<0.04), a higher proportion of end-stage lung disease (p<0.001), a higher risk of suffering from moderate to severe lung disease (odds ratio 7.12 (95% CI 1.3 to 40.5)) and a lower probability of survival than patients with genotype I–II/III, I–II/IV and I–II/V (p<0.001). Conclusions: The presence of class I or II mutations on both chromosomes is associated with worse respiratory disease and a lower probability of survival. PMID:15994263

  13. Bone marrow derived macrophages fuse with intestine stromal cells and contribute to chronic fibrosis after radiation.

    PubMed

    Yeh, Ming-Han; Chang, Ya-Hui; Tsai, Yi-Chih; Chen, Su-Liang; Huang, Tze-Sing; Chiu, Jeng-Fong; Ch'ang, Hui-Ju

    2016-05-01

    Bone marrow-derived cells (BMDC) have been demonstrated to play a critical role in intestine regeneration. However, organ fibrosis was one of the major side effects of bone marrow (BM) transplantation. It warrants further investigation on the mechanisms of BM cell therapy in radiation induced intestine damage. We established three murine models to evaluate BMDC within intestines after radiation, including cre-loxP system of transgenic mice. In vitro co-culture between murine BM with human intestine stromal cells was also performed to measure the level of fusion and fibrosis after treatment with anti-fibrotic agents or after macrophage depletion. Despite complete recovery of epithelial mucosa from radiation damage, we found persistent proliferation and repopulation of BMDC within the lamina propria. Fusion between BM derived monocytic and intestine stromal cells correlated with the level of fibrosis and proliferation index. Depleting macrophages genetically using CD11b-DTR mouse model or pharmacologically using clodronate liposome reduced the level of cell fusion and intestine fibrosis. Fibrotic cues from intestine enhance fusion between BM-derived monocytes/macrophages with intestine stromal cells. The fusion hybrids promote cell cycle re-entry, proliferation and reinforce fibrosis signal. Depleting macrophages interferes with cell fusion and ameliorates radiation-induced intestine fibrosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Multipotent mesenchymal stem cells in lung fibrosis

    PubMed Central

    Khan, Petra; Savic, Spasenija; Tamo, Luca; Lardinois, Didier; Roth, Michael; Tamm, Michael; Geiser, Thomas

    2017-01-01

    Rationale Stem cells have been identified in the human lung; however, their role in lung disease is not clear. We aimed to isolate mesenchymal stem cells (MSC) from human lung tissue and to study their in vitro properties. Methods MSC were cultured from lung tissue obtained from patients with fibrotic lung diseases (n = 17), from emphysema (n = 12), and normal lungs (n = 3). Immunofluorescence stainings were used to characterize MSC. The effect of MSC-conditioned media (MSC-CM) on fibroblast proliferation and on lung epithelial wound repair was studied. Results Expression of CD44, CD90, and CD105 characterized the cells as MSC. Moreover, the cells stained positive for the pluripotency markers Oct3/4 and Nanog. Positive co-stainings of chemokine receptor type 4 (CXCR4) with CD44, CD90 or CD105 indicated the cells are of bone marrow origin. MSC-CM significantly inhibited the proliferation of lung fibroblasts by 29% (p = 0.0001). Lung epithelial repair was markedly increased in the presence of MSC-CM (+ 32%). Significantly more MSC were obtained from fibrotic lungs than from emphysema or control lungs. Conclusions Our study demonstrates enhanced numbers of MSC in fibrotic lung tissue as compared to emphysema and normal lung. The cells inhibit the proliferation of fibroblasts and enhance epithelial repair in vitro. Further in vivo studies are needed to elucidate their potential role in the treatment of lung fibrosis. PMID:28827799

  15. Osteopontin: correlation with interstitial fibrosis in human diabetic kidney and PI3-kinase-mediated enhancement of expression by glucose in human proximal tubular epithelial cells.

    PubMed

    Junaid, A; Amara, F M

    2004-02-01

    To examine the expression and localization of osteopontin (OPN), a secreted phosphoprotein implicated in the development of tubulointerstitial inflammation in various models of renal disease, in human diabetic kidneys, and to study the regulation of OPN expression in primary cultures of human renal proximal tubular epithelial cells (RPTEC). Differential gene expression profiling through subtractive hybridization demonstrated increased renal OPN mRNA expression in a patient with diabetic nephropathy. Immunohistochemical staining of normal and diabetic human kidney samples confirmed that OPN was localized to cortical tubular, interstitial and juxtaglomerular compartments. Quantification of OPN immunostaining revealed a marked increase in the percentage of OPN-positive tubular profiles in diabetic kidneys (47 +/- 9% versus 5 +/- 3%, diabetic versus minimal change disease) that correlated strongly with the degree of cortical scarring (r2 = 0.91). Results of Northern hybridization, flow cytometry and Western blotting indicated that glucose up-regulates OPN mRNA and protein expression in primary cultures of human RPTECs. This effect was independent of the osmotic effects of glucose and independent of insulin. Finally, glucose-stimulated OPN expression was inhibited by LY294002, an inhibitor of phosphatidylinositol 3-kinase activity, in a dose-dependent manner. OPN is expressed in human diabetic kidneys and regulation of OPN expression is via a glucose-mediated, phosphatidylinositol 3-kinase-dependent pathway.

  16. Value of MR diffusion imaging in hepatic fibrosis and its correlations with serum indices.

    PubMed

    Hu, Xing-Rong; Cui, Xian-Nian; Hu, Qi-Tuo; Chen, Jun

    2014-06-28

    To compare apparent diffusion coefficient (ADC) values on diffusion-weighted imaging (DWI) of hepatic fibrosis patients with those of healthy controls and to identify their correlations with serum indices of liver fibrosis. Hyaluronic acid (HA), laminin (LN), type III procollagen (PCIII), and collagen type IV (IV-C) were measured in 54 hepatic fibrosis patients and 23 normal controls, and ADC values were determined on DWI at different b values (b = 300, 500, 700 s/mm(2)). Correlations between serum indices and ADC values at different liver fibrosis stages were examined, and each index variation of liver fibrosis in different stages were compared, and correlation analysis of each index and the staging of liver fibrosis carried out, and the correlation of each index performed. With progressive liver fibrosis, HA, PCIII, and IV-C levels increased (P < 0.01). As the b value increased, the ADC value decreased gradually with the hepatic fibrosis stages. In different groups with b values of 500 s/mm(2) and 700 s/mm(2), the ADC value decreased significantly as liver fibrosis progressed (P < 0.01). With b values of 500 s/mm(2) and 700 s/mm(2), there were negative correlations between ADC and LN, PCIII, HA, and IV-C. This pattern was observed only for HA and IV-C at a b value of 300 s/mm(2). Serum indices of liver fibrosis and ADC values are useful for diagnosing liver fibrosis, with some correlations among them.

  17. Intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells

    SciTech Connect

    Verhaeghe, Catherine; Tabruyn, Sebastien P.; Oury, Cecile; Bours, Vincent . E-mail: vbours@ulg.ac.be; Griffioen, Arjan W.

    2007-05-11

    Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditioned media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications.

  18. Mast Cells: A Pivotal Role in Pulmonary Fibrosis

    PubMed Central

    Veerappan, Arul; O'Connor, Nathan J.; Brazin, Jacqueline; Reid, Alicia C.; Jung, Albert; McGee, David; Summers, Barbara; Branch-Elliman, Dascher; Stiles, Brendon; Worgall, Stefan; Kaner, Robert J.

    2013-01-01

    Pulmonary fibrosis is characterized by an inflammatory response that includes macrophages, neutrophils, lymphocytes, and mast cells. The purpose of this study was to evaluate whether mast cells play a role in initiating pulmonary fibrosis. Pulmonary fibrosis was induced with bleomycin in mast-cell-deficient WBB6F1-W/Wv (MCD) mice and their congenic controls (WBB6F1-+/+). Mast cell deficiency protected against bleomycin-induced pulmonary fibrosis, but protection was reversed with the re-introduction of mast cells to the lungs of MCD mice. Two mast cell mediators were identified as fibrogenic: histamine and renin, via angiotensin (ANG II). Both human and rat lung fibroblasts express the histamine H1 and ANG II AT1 receptor subtypes and when activated, they promote proliferation, transforming growth factor β1 secretion, and collagen synthesis. Mast cells appear to be critical to pulmonary fibrosis. Therapeutic blockade of mast cell degranulation and/or histamine and ANG II receptors should attenuate pulmonary fibrosis. PMID:23570576

  19. Fibrosis of Two: Epithelial Cell-Fibroblast Interactions in Pulmonary Fibrosis

    PubMed Central

    Sakai, Norihiko; Tager, Andrew M.

    2013-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive and ultimately fatal accumulation of fibroblasts and extracellular matrix in the lung that distorts its architecture and compromises its function. IPF is now thought to result from wound-healing processes that, although initiated to protect the host from injurious environmental stimuli, lead to pathological fibrosis due to these processes becoming aberrant or over-exuberant. Although the environmental stimuli that trigger IPF remain to be identified, recent evidence suggests that they initially injure the alveolar epithelium. Repetitive cycles of epithelial injury and resultant alveolar epithelial cell death provoke the migration, proliferation, activation and myofibroblast differentiation of fibroblasts, causing the accumulation of these cells and the extracellular matrix that they synthesize. In turn, these activated fibroblasts induce further alveolar epithelial cell injury and death, thereby creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast interactions. Though other cell types certainly make important contributions, we focus here on the “pas de deux” (steps of two), or perhaps more appropriate to IPF pathogenesis, the “folie à deux” (madness of two) of epithelial cells and fibroblasts that drives the progression of pulmonary fibrosis. We describe the signaling molecules that mediate the interactions of these cell types in their “fibrosis of two”, including transforming growth factor-β, connective tissue growth factor, sonic hedgehog, prostaglandin E2, angiotensin II and reactive oxygen species. PMID:23499992

  20. Fibrosis and postoperative fistula of the pancreas: correlation with MR imaging findings--preliminary results.

    PubMed

    Watanabe, Haruo; Kanematsu, Masayuki; Tanaka, Kaori; Osada, Shinji; Tomita, Hiroyuki; Hara, Akira; Goshima, Satoshi; Kondo, Hiroshi; Kawada, Hiroshi; Noda, Yoshifumi; Tanahashi, Yukichi; Kawai, Nobuyuki; Yoshida, Kazuhiro; Moriyama, Noriyuki

    2014-03-01

    To assess the potential value of magnetic resonance (MR) imaging in evaluating pancreatic fibrosis and predicting the development of postoperative pancreatic fistula. This retrospective study had institutional review board approval, and the requirement for informed consent was waived. MR images obtained in 29 consecutive patients (15 men, 14 women; mean age, 64.9 years; age range, 21-80 years) who underwent pancreatectomy were evaluated. The pancreas-to-muscle signal intensity (SI) ratio on unenhanced T1- and T2-weighted, dynamic contrast material-enhanced, and diffusion-weighted images and the apparent diffusion coefficient (ADC) of the pancreas were measured. MR imaging parameters were correlated with the degrees of pancreatic fibrosis and expression of activated pancreatic stellate cells (PSCs) by using univariate and multivariate regression analyses and receiver operating characteristic curve analysis. The relationships between the development of postoperative pancreatic fistula and the MR imaging measurements were examined by using logistic regression analysis and the Mann-Whitney U test. Multiple regression analysis showed that pancreas-to-muscle SI ratios on T1-weighted images and ADC values were independently associated with pancreatic fibrosis (r(2) = 0.66, P < .001) and with activated PSC expression (r(2) = 0.67, P < .001). The mean pancreas-to-muscle SI ratio (± standard deviation) on T1-weighted images was higher (P = .0029) for patients with postoperative pancreatic fistula (1.6 ± 0.2) than for those without (1.2 ± 0.2), and the odds ratio for postoperative pancreatic fistula was 21.3 in patients with an SI ratio of 1.41 and higher. The pancreas-to-muscle SI ratio on T1-weighted MR images of the pancreas may be a potential biomarker for assessment of pancreatic fibrosis and prediction of postoperative pancreatic fistula. RSNA, 2013

  1. Serum cell death biomarkers for prediction of liver fibrosis and poor prognosis in primary biliary cirrhosis.

    PubMed

    Sekiguchi, Tomohiro; Umemura, Takeji; Fujimori, Naoyuki; Shibata, Soichiro; Ichikawa, Yuki; Kimura, Takefumi; Joshita, Satoru; Komatsu, Michiharu; Matsumoto, Akihiro; Tanaka, Eiji; Ota, Masao

    2015-01-01

    The development of simple, noninvasive markers of liver fibrosis is urgently needed for primary biliary cirrhosis (PBC). This study examined the ability of several serum biomarkers of cell death to estimate fibrosis and prognosis in PBC. A cohort of 130 patients with biopsy-proven PBC and 90 healthy subjects were enrolled. We assessed the utility of the M30 ELISA, which detects caspase-cleaved cytokeratin-18 (CK-18) fragments and is representative of apoptotic cell death, as well as the M65 and newly developed M65 Epideath (M65ED) ELISAs, which detect total CK-18 as indicators of overall cell death, in predicting clinically relevant fibrosis stage. All 3 cell death biomarkers were significantly higher in patients with PBC than in healthy controls and were significantly correlated with fibrosis stage. The areas under the receiver operating characteristic curve for the M65 and M65ED assays for differentiation among significant fibrosis, severe fibrosis, and cirrhosis were 0.66 and 0.76, 0.66 and 0.73, and 0.74 and 0.82, respectively. In multivariate analysis, high M65ED (hazard ratio 6.13; 95% confidence interval 1.18-31.69; P = 0.031) and severe fibrosis (hazard ratio 7.45; 95% confidence interval 1.82-30.51; P = 0.005) were independently associated with liver-related death, transplantation, or decompensation. High serum M65ED was also significantly associated with poor outcome in PBC (log-rank test; P = 0.001). Noninvasive cell death biomarkers appear to be clinically useful in predicting fibrosis in PBC. Moreover, the M65ED assay may represent a new surrogate marker of adverse disease outcome.

  2. Idiopathic pulmonary fibrosis: can cell mediated immunity markers predict clinical outcome?

    PubMed Central

    Meliconi, R; Lalli, E; Borzì, R M; Sturani, C; Galavotti, V; Gunella, G; Miniero, R; Facchini, A; Gasbarrini, G

    1990-01-01

    Most of the cells found in lung parenchyma in patients with idiopathic pulmonary fibrosis are activated T lymphocytes and macrophages. The serum levels of three markers of cell mediated immunity were measured in 20 patients with idiopathic pulmonary fibrosis, in 20 normal subjects and in 12 patients with sarcoidosis to evaluate their clinical and prognostic significance in idiopathic pulmonary fibrosis. The three markers were: soluble CD8 (from activated suppressor-cytotoxic lymphocytes), soluble interleukin (IL)-2 receptors (from activated T cells and macrophages), and neopterin (from activated macrophages). Patients with idiopathic pulmonary fibrosis had higher levels of all three markers than the control subjects. Soluble IL-2 receptor and neopterin tended to be lower (though not significantly) in patients with idiopathic pulmonary fibrosis than in those with sarcoidosis, whereas soluble CD8 was similar in the two groups of patients. No correlation was found between soluble IL-2 receptors or soluble CD8 and the clinical, radiological, and physiological measures of disease activity or with clinical outcome (after a mean follow up of 23 months). Tumour necrosis factor levels were also determined. Only 30% of patients with idiopathic pulmonary fibrosis or sarcoidosis had detectable circulating tumour necrosis factor; these patients had a lower percentage of bronchoalveolar lavage fluid neutrophils in their lavage fluid. Tumour necrosis factor levels did not correlate with clinical measures of severity or outcome. Thus our data support the hypothesis that cell mediated alveolitis occurs in idiopathic pulmonary fibrosis. They do not, however, provide evidence to support the use of these markers of cell mediated immunity to monitor the clinical course in these patients. PMID:2118691

  3. Physiological correlates of pulmonary function in children with cystic fibrosis.

    PubMed

    Wells, Greg D; Wilkes, Donna L; Schneiderman, Jane E; Thompson, Sara; Coates, Allan L; Ratjen, Felix

    2014-09-01

    Although peak aerobic capacity (VO(2peak)) has been linked to outcome in patients with cystic fibrosis (CF), measuring is time consuming, and requires expensive equipment and expertise that is not readily available in all centers. Other fitness parameters such as peak anaerobic power, measures of power and strength may be simpler to deliver in the clinic. The relationship between these measures and established outcomes such as forced expiratory volume in one second (FEV(1)) and peak aerobic power (VO(2peak)) in CF remains unclear. Therefore we evaluated (a) aerobic fitness, (b) anaerobic fitness, and (c) upper and lower body muscle strength to determine their relationship to FEV(1) and VO(2peak) in children with CF. Eighty-two patients (7-18 years) with CF (40 female) from the CF clinic at The Hospital for Sick Children in Toronto performed a maximal incremental cycling test to exhaustion. Anaerobic power (W) for 10 and 30 sec cycling trials as well as vertical jump (VJ) and hand grip strength (HG) were compared to FEV(1) and VO(2peak). Absolute VO(2peak) (R(2)  = 0.16, P < 0.001), anaerobic power (R(2)  = 0.21, P < 0.001), and hand grip strength (R(2)  = 0.10, P = 0.003) were significantly correlated to lung function whereas measures of explosive lower body strength (VJ) were not. Anaerobic power (R(2)  = 0.16, P = 0.001) and hand grip strength (R(2)  = 0.08, P = 0.01) were related to VO(2peak). Vertical jump was correlated with VO(2peak) (R(2)  = 0.29, P < 0.001) but not FEV(1). Simple fitness tests such as hand grip strength and anaerobic cycle tests may be useful indicators of lung health and fitness. © 2013 Wiley Periodicals, Inc.

  4. In hepatic fibrosis, liver sinusoidal endothelial cells acquire enhanced immunogenicity.

    PubMed

    Connolly, Michael K; Bedrosian, Andrea S; Malhotra, Ashim; Henning, Justin R; Ibrahim, Junaid; Vera, Valery; Cieza-Rubio, Napoleon E; Hassan, Burhan U; Pachter, H Leon; Cohen, Steven; Frey, Alan B; Miller, George

    2010-08-15

    The normal liver is characterized by immunologic tolerance. Primary mediators of hepatic immune tolerance are liver sinusoidal endothelial cells (LSECs). LSECs block adaptive immunogenic responses to Ag and induce the generation of T regulatory cells. Hepatic fibrosis is characterized by both intense intrahepatic inflammation and altered hepatic immunity. We postulated that, in liver fibrosis, a reversal of LSEC function from tolerogenic to proinflammatory and immunogenic may contribute to both the heightened inflammatory milieu and altered intrahepatic immunity. We found that, after fibrotic liver injury from hepatotoxins, LSECs become highly proinflammatory and secrete an array of cytokines and chemokines. In addition, LSECs gain enhanced capacity to capture Ag and induce T cell proliferation. Similarly, unlike LSECs in normal livers, in fibrosis, LSECs do not veto dendritic cell priming of T cells. Furthermore, whereas in normal livers, LSECs are active in the generation of T regulatory cells, in hepatic fibrosis LSECs induce an immunogenic T cell phenotype capable of enhancing endogenous CTLs and generating potent de novo CTL responses. Moreover, depletion of LSECs from fibrotic liver cultures mitigates the proinflammatory milieu characteristic of hepatic fibrosis. Our findings offer a critical understanding of the role of LSECs in modulating intrahepatic immunity and inflammation in fibro-inflammatory liver disease.

  5. SECs (Sinusoidal Endothelial Cells), Liver Microenvironment, and Fibrosis

    PubMed Central

    Natarajan, Vaishaali; Harris, Edward N.

    2017-01-01

    Liver fibrosis is a wound-healing response to chronic liver injury such as alcoholic/nonalcoholic fatty liver disease and viral hepatitis with no FDA-approved treatments. Liver fibrosis results in a continual accumulation of extracellular matrix (ECM) proteins and paves the way for replacement of parenchyma with nonfunctional scar tissue. The fibrotic condition results in drastic changes in the local mechanical, chemical, and biological microenvironment of the tissue. Liver parenchyma is supported by an efficient network of vasculature lined by liver sinusoidal endothelial cells (LSECs). These nonparenchymal cells are highly specialized resident endothelial cell type with characteristic morphological and functional features. Alterations in LSECs phenotype including lack of LSEC fenestration, capillarization, and formation of an organized basement membrane have been shown to precede fibrosis and promote hepatic stellate cell activation. Here, we review the interplay of LSECs with the dynamic changes in the fibrotic liver microenvironment such as matrix rigidity, altered ECM protein profile, and cell-cell interactions to provide insight into the pivotal changes in LSEC physiology and the extent to which it mediates the progression of liver fibrosis. Establishing the molecular aspects of LSECs in the light of fibrotic microenvironment is valuable towards development of novel therapeutic and diagnostic targets of liver fibrosis. PMID:28293634

  6. Quantitative analysis of fibrosis and mast cells in the tongue of chronic chagasic patients: autopsy study.

    PubMed

    de Lima Pereira, S A; dos Santos, V M; Rodrigues, D B R; da Cunha Castro, E C; dos Reis, M A; de Paula Antunes Teixeira, V

    2007-04-01

    Recently, an orally transmitted outbreak of Chagas disease was reported in Santa Catarina, Brazil, after ingestion of sugar cane juice (garapa). This disease is caused by Trypanosoma cruzi, a parasite that stimulates the development of chronic inflammatory response, characterized by fibrous connective tissue neoformation (fibrosis). As the density of tissue mast cells (MC) may be an index of fibroblast proliferation and development of local fibrosis, the purpose of this autopsy study was to quantify the fibrosis rate and the number of MC in the tongues of chronic chagasic (CC) patients, compared with a non-chagasic (NC) control group. Twenty-four evaluations, with a quantitative assessment of fibrosis percentage and MC density were performed. The percentage of fibrosis in the tongue was higher among CC than in the control group. In the CC group, a positive and significant correlation was found when the fibrosis rate was compared with the MC density. These morphometric findings suggest that tongue biopsy may be useful to study specific changes associated with Chagas disease. They also suggest that the systematic analysis of oral cavity, including tongue histopathology changes, could be useful in forensic pathology of the orally acquired chronic Chagas disease.

  7. Allogeneic stem cell transplantation for myelodysplastic syndromes with bone marrow fibrosis

    PubMed Central

    Kröger, Nicolaus; Zabelina, Tatjana; van Biezen, Anja; Brand, Ronald; Niederwieser, Dietger; Martino, Rodrigo; Lim, Zi Yi; Onida, Francesco; Schmid, Christoph; Garderet, Laurent; Robin, Marie; van Gelder, Michael; Marks, Reinhard; Symeonidis, Argiris; Kobbe, Guido; de Witte, Theo

    2011-01-01

    Background Bone marrow fibrosis in patients with myelodysplastic syndrome is associated with a poor outcome, but whether the outcome after allogeneic stem cell transplantation is related to the degree of bone marrow fibrosis is unknown. Design and Methods Patients with myelodysplastic syndrome and known bone marrow histology (n=721) who underwent hematopoietic stem cell transplantation were classified according to the degree of bone marrow fibrosis into those without fibrosis (n=483), those with mild or moderate fibrosis (n=199) and those with severe fibrosis (n=39) and analyzed regarding engraftment, treatment-related mortality, relapse and survival. Results The degree of fibrosis was not associated with disease status or abnormal cytogenetics. The cumulative incidence of engraftment achieved at day +30 in non-fibrotic patients was 93% and was significantly lower in those with mild or moderate fibrosis (89%) and severe fibrosis (75%) (P=0.009). Neutrophil engraftment occurred later in patients with mild or moderate fibrosis and severe fibrosis than in patients without fibrosis (median 17 versus 20 versus 16 days, respectively; P=0.002). The cumulative incidence of relapse at 3 years was significantly higher in patients with severe fibrosis than in those with a lesser degree of fibrosis or no fibrosis (47% versus 28% versus 27%, respectively; P=0.04), resulting in comparable 3-year disease-free survival rates in patients without fibrosis and in those with mild or moderate fibrosis (42% versus 38%, respectively) but a lower disease-free survival rate in those with severe fibrosis (18%; P=0.002). Severe fibrosis remained an independent factor for reduced survival (hazard ratio, 1.9; P=0.006). Conclusions Among patients with myelodysplastic syndromes, only severe fibrosis affects survival after hematopoietic stem cell transplantation while patients with mild or moderate fibrosis have an outcome comparable to that of patients without bone marrow fibrosis. PMID:20971823

  8. Lung mast cell density defines a subpopulation of patients with idiopathic pulmonary fibrosis.

    PubMed

    Cha, Seung-Ick; Chang, Christine S; Kim, Eun Kyung; Lee, Jae W; Matthay, Michael A; Golden, Jeffrey A; Elicker, Brett M; Jones, Kirk; Collard, Harold R; Wolters, Paul J

    2012-07-01

    The relationship of mast cells to the pathogenesis of lung fibrosis remains undefined despite recognition of their presence in the lungs of patients with pulmonary fibrosis. This study was performed to characterize the relationship of mast cells to fibrotic lung diseases. Lung tissues from patients with idiopathic pulmonary fibrosis (IPF), chronic hypersensitivity pneumonitis (HP), systemic sclerosis (SSc)-related interstitial lung disease (ILD) and normal individuals were subjected to chymase immunostaining and the mast cell density quantified. Eosinophils were quantified by immunostaining for eosinophil peroxidase. Changes in lung function were correlated with mast cell density. Lung tissue obtained from IPF patients had a higher density of chymase-immunoreactive mast cells than that from patients with HP, SSc-related ILD or normal lungs. IPF lung tissue had a higher density of eosinophils than normal lung. There was no correlation between mast cell density and eosinophil density in IPF lung. IPF patients with high mast cell density had a slower rate of decline in forced vital capacity (FVC) than IPF patients with low mast cell density. Mast cell density in IPF lungs is higher than in other fibrotic lung diseases and normal lungs. Increased mast cell density in IPF may predict slower disease progression. © 2012 Blackwell Publishing Ltd.

  9. Lung mast cell density defines a subpopulation of patients with idiopathic pulmonary fibrosis

    PubMed Central

    Cha, Seung-Ick; Chang, Christine S; Kim, Eun Kyung; Lee, Jae W.; Matthay, Michael A; Golden, Jeffrey A; Elicker, Brett M; Jones, Kirk; Collard, Harold R; Wolters, Paul J

    2012-01-01

    Aims The relationship of mast cells to the pathogenesis of lung fibrosis remains undefined despite recognition of their presence in the lungs of patients with pulmonary fibrosis. This study was performed to characterize the relationship of mast cells to fibrotic lung diseases. Methods and results Lung tissues from patients with idiopathic pulmonary fibrosis (IPF), chronic hypersensitivity pneumonitis (HP), systemic sclerosis (SSc)-related interstitial lung disease (ILD) and normal individuals were subjected to chymase immunostaining and the mast cell density quantified. Eosinophils were quantified by immunostaining for eosinophil peroxidase. Changes in lung function were correlated with mast cell density. Lung tissue obtained from IPF patients had a higher density of chymase-immunoreactive mast cells than that from patients with HP, SSc-related ILD or normal lungs. IPF lung tissue had a higher density of eosinophils than normal lung. There was no correlation between mast cell density and eosinophil density in IPF lung. IPF patients with high mast cell density had a slower rate of decline in forced vital capacity (FVC) than IPF patients with low mast cell density. Conclusions Mast cell density in IPF lungs is higher than in other fibrotic lung diseases and normal lungs. Increased mast cell density in IPF may predict slower disease progression. PMID:22394225

  10. Retroperitoneal fibrosis in three siblings with the sickle cell trait

    PubMed Central

    Phills, James A.; Geggie, Peter; Hidvegi, Robert I.; Oliva, Luis A.

    1973-01-01

    Three West-Indian black siblings with the sickle cell trait developed retroperitoneal fibrosis, a previously unreported association. Other well known renal manifestations associated with the sickle cell trait were also present in some of these cases and included renal medullary necrosis and spontaneous hematuria. It is postulated that the sickling of the erythrocytes in the periureteral vessels resulted in thrombosis, ischemia, reactive scarring and progressive fibrosis indistinguishable from the known histological picture of retroperitoneal fibrosis. The finding of fibrin thrombi in the small veins of the fibrotic tissue of one of these patients would support this explanation. ImagesFIG. 1AFIG. 1BFIG. 2FIG. 3AFIG. 3BFIG. 4AFIG. 4BFIG. 4C PMID:4699274

  11. Synthesis of sulfated oligosaccharides by cystic fibrosis trachea epithelial cells.

    PubMed

    Mendicino, J; Sangadala, S

    1999-11-01

    The mucin glycoproteins in tracheal mucus of patients with cystic fibrosis is more highly sulfated than the corresponding secretions from healthy individuals [16]. In order to further characterize these differences in sulfation and possibly also glycosylation patterns, we compared the structures of sulfated mucin oligosaccharides synthesized by continuously cultured human tracheal cells transformed by simian virus 40. The synthesis of highly sulfated oligosaccharide chains in mucins secreted by normal human epithelial and submucosal cell lines were compared with mucins formed by cystic fibrosis tracheal epithelial and submucosal cell lines. The epithelial cell lines from cystic fibrosis trachea showed a higher rate of sulfate uptake and a significantly higher rate of synthesis and sulfation of high molecular weight chains. Mucins synthesized by each cell line in the presence of 35SO4 were isolated and oligosaccharide chains were released by beta-elimination and separated by ion exchange chromatography and gel filtration. The sulfated high molecular weight chains synthesized by the cystic fibrosis cell lines were characterized by methylation analysis and sequential glycosidase digestion before and after desulfation. Carbohydrate analysis yielded Fuc, Gal and GlcNAc in a ratio of 1:2:2.2 and only one galactosaminitol residue for about every 150-200 sugar residues present. The average molecular size of oligosaccharide chains in these fractions was between 30,000-40,000 daltons. These studies show that increased sulfation of oligosaccharides in mucins synthesized by cells from cystic fibrosis trachea is accompanied by a significant increase in the extension of a basic branched structure present in many of the lower molecular weight oligosaccharides.

  12. Ductular reaction correlates with fibrogenesis but does not contribute to liver regeneration in experimental fibrosis models.

    PubMed

    Rókusz, András; Veres, Dániel; Szücs, Armanda; Bugyik, Edina; Mózes, Miklós; Paku, Sándor; Nagy, Péter; Dezső, Katalin

    2017-01-01

    Ductular reaction is a standard component of fibrotic liver tissue but its function is largely unknown. It is supposed to interact with the matrix producing myofibroblasts and compensate the declining regenerative capacity of hepatocytes. The relationship between the extent of fibrosis-ductular reaction, proliferative activity of hepatocytes and ductular reaction were studied sequentially in experimental hepatic fibrosis models. Liver fibrosis/cirrhosis was induced in wild type and TGFβ overproducing transgenic mice by carbon tetrachloride and thioacetamide administration. The effect of thioacetamide was modulated by treatment with imatinib and erlotinib. The extent of ductular reaction and fibrosis was measured by morphometry following cytokeratin 19 immunofluorescent labeling and Picro Sirius staining respectively. The proliferative activity of hepatocytes and ductular reaction was evaluated by BrdU incorporation. The temporal distribution of the parameters was followed and compared within and between different experimental groups. There was a strong significant correlation between the extent of fibrosis and ductular reaction in each experimental group. Although imatinib and erlotinib temporarily decreased fibrosis this effect later disappeared. We could not observe negative correlation between the proliferation of hepatocytes and ductular reaction in any of the investigated models. The stringent connection between ductular reaction and fibrosis, which cannot be influenced by any of our treatment regimens, suggests that there is a close mutual interaction between them instead of a unidirectional causal relationship. Our results confirm a close connection between DR and fibrogenesis. However, since the two parameters changed together we could not establish a causal relationship and were unable to reveal which was the primary event. The lack of inverse correlation between the proliferation of hepatocytes and ductular reaction questions that ductular reaction can

  13. Baseline Ultrasound and Clinical Correlates in Children with Cystic Fibrosis.

    PubMed

    Leung, Daniel H; Ye, Wen; Molleston, Jean P; Weymann, Alexander; Ling, Simon; Paranjape, Shruti M; Romero, Rene; Schwarzenberg, Sara Jane; Palermo, Joseph; Alonso, Estella M; Murray, Karen F; Marshall, Bruce C; Sherker, Averell H; Siegel, Marilyn J; Krishnamurthy, Rajesh; Harned, Roger; Karmazyn, Boaz; Magee, John C; Narkewicz, Michael R

    2015-10-01

    To investigate the relationship between abdominal ultrasound findings and demographic, historical, and clinical features in children with cystic fibrosis (CF). Children age 3-12 years with CF without known cirrhosis, were enrolled in a prospective, multicenter study of ultrasound to predict hepatic fibrosis. Consensus ultrasound patterns were assigned by 3 radiologists as normal, heterogeneous, homogeneous, or cirrhosis. Data were derived from direct collection and US or Toronto CF registries. χ(2) or ANOVA were used to compare variables among ultrasound groups and between normal and abnormal. Logistic regression was used to study risk factors for having abnormal ultrasound. Findings in 719 subjects were normal (n = 590, 82.1%), heterogeneous (64, 8.9%), homogeneous (41, 5.7%), and cirrhosis (24, 3.3%). Cirrhosis (P = .0004), homogeneous (P < .0001), and heterogeneous (P = .03) were older than normal. More males were heterogeneous (P = .001). More heterogeneous (15.0%, P = .009) and cirrhosis (25.0%, P = .005) had CF-related diabetes or impaired glucose tolerance vs normal (5.4%). Early infection with Pseudomonas aeruginosa (<2 years old) was associated with a lower risk (OR 0.42, P = .0007) of abnormal. Ursodeoxycholic acid use (OR 3.69, P < .0001) and CF-related diabetes (OR 2.21, P = .019) were associated with increased risk of abnormal. Unsuspected cirrhosis is seen in 3.3% of young patients with CF, heterogeneous in 8.9%. Abnormal ultrasound is associated with CF-related diabetes, and early P aeruginosa is associated with normal ultrasound. Prospective assessment of these risk factors may identify potential interventional targets. ClinicalTrials.gov: NCT01144507. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Inflammatory Leukocyte Phenotypes Correlate with Disease Progression in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Moore, Bethany B.; Fry, Chris; Zhou, Yueren; Murray, Susan; Han, MeiLan K.; Martinez, Fernando J.; Flaherty, Kevin R.

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by progressive deposition of extracellular matrix, worsening dyspnea, and eventual mortality. Pathogenesis of IPF is poorly understood and the role inflammation and activated leukocytes play in the disease process is controversial. Previous studies demonstrated that activated leukocyte subsets characterize IPF patients. We sought to validate this observation in a well-defined cohort of 35 IPF patients and to correlate the observed leukocyte phenotypes with robust parameters of disease progression. We demonstrate that in univariate and multivariate analyses, increases in the CD14hi, CD16hi subset of monocytes measured at baseline correlated with disease progression, with a threshold value >0.5% of the total peripheral blood mononuclear cells being a significant predictor for worse outcome. In addition, several T cell subsets, including CD25 expressing CD4 cells, and CXCR3 expressing CD4 and CD8 subsets correlated with disease progression when found in increased percentages in the peripheral blood of IPF patients when sampled at baseline. Somewhat surprising in comparison to previous literature, the CD4 T cells did not appear to have lost expression of the co-stimulatory molecule, CD28, but the CD8 T cells did. Taken together, these results are consistent with the presence of an inflammatory process in IPF patients who eventually progress. However, when longitudinal measurements of these same markers were examined, there was significant heterogeneity of expression and these biomarkers did not necessarily remain elevated in IPF patients with progressive disease. We interpret this heterogeneity to suggest that IPF patients experience episodic inflammatory events that once triggered, may lead to disease progression. This longitudinal heterogeneity in biomarker analyses may explain why such markers are not consistently measured in all IPF cohorts. PMID:25580363

  15. Correlation of fibrosis and transforming growth factor-beta type 2 levels in the eye.

    PubMed

    Connor, T B; Roberts, A B; Sporn, M B; Danielpour, D; Dart, L L; Michels, R G; de Bustros, S; Enger, C; Kato, H; Lansing, M

    1989-05-01

    Approximately 1 out of every 10 eyes undergoing surgery for retinal detachment develops excessive intraocular fibrosis that can lead to traction retinal detachment and ultimate blindness. This disease process has been termed proliferative vitreoretinopathy (PVR). The ability to monitor and grade this fibrotic response accurately within the eye as well as the ability to aspirate vitreous cavity fluid bathing the fibrotic tissue makes this an ideal setting in which to investigate the development of fibrosis. Although laboratory studies have recently shown that transforming growth factor-beta (TGF-beta) can enhance fibrosis, little clinical evidence is yet available correlating the level of this or other growth factors with the degree of fibrosis in a clinical setting. We have found that vitreous aspirates from eyes with intraocular fibrosis associated with PVR have more than three times the amount of TGF-beta (1,200 +/- 300 pM [SEM]) found in eyes with uncomplicated retinal detachments without intraocular fibrosis (360 +/- 91 pM [SEM]). Using an in vitro assay, 84-100% of the TGF-beta activity could be blocked with specific antibodies against TGF-beta 2, whereas only 10-21% could be blocked by specific antibodies against TGF-beta 1. TGF-beta 1 was used in an animal model of traction retinal detachment. Since beta 1 and beta 2 have essentially identical biologic effects and only human beta 1 was available in quantities required, beta 1 was chosen for these in vivo studies. The injection of TGF-beta1 plus fibronectin (FN) but not TGF-beta1 alone into the vitreous cavity of rabbits resulted in the increased formation of intraocular fibrosis and traction retinal detachments as compared to control eyes. In previous studies, intravitreal FN levels were also found to be elevated in eyes with intraocular fibrosis.

  16. Bone marrow-derived progenitor cells in pulmonary fibrosis.

    PubMed

    Hashimoto, Naozumi; Jin, Hong; Liu, Tianju; Chensue, Stephen W; Phan, Sem H

    2004-01-01

    The origin of fibroblasts in pulmonary fibrosis is assumed to be intrapulmonary, but their extrapulmonary origin and especially derivation from bone marrow (BM) progenitor cells has not been ruled out. To examine this possibility directly, adult mice were durably engrafted with BM isolated from transgenic mice expressing enhanced GFP. Induction of pulmonary fibrosis in such chimera mice by endotracheal bleomycin (BLM) injection caused large numbers of GFP(+) cells to appear in active fibrotic lesions, while only a few GFP(+) cells could be identified in control lungs. Flow-cytometric analysis of lung cells confirmed the BLM-induced increase in GFP(+) cells in chimera mice and revealed a significant increase in GFP(+) cells that also express type I collagen. GFP(+) lung fibroblasts isolated from chimera mice expressed collagen and telomerase reverse transcriptase but not alpha-smooth muscle actin. Treatment of isolated GFP(+) fibroblasts with TGF-beta failed to induce myofibroblast differentiation. Cultured lung fibroblasts expressed the chemokine receptors CXCR4 and CCR7 and responded chemotactically to their cognate ligands, stromal cell-derived factor-1 alpha and secondary lymphoid chemokine, respectively. Thus the collagen-producing lung fibroblasts in pulmonary fibrosis can also be derived from BM progenitor cells.

  17. Cystic fibrosis gene expression is not correlated with rectifying Cl sup minus channels

    SciTech Connect

    Ward, C.L.; Krouse, M.E.; Kopito, R.R.; Wine, J.J. ); Gruenert, D.C. )

    1991-06-15

    Cystic fibrosis (CF) involves a profound reduction of Cl{sup {minus}} permeability in several exocrine tissues. A distinctive, outwardly rectifying, depolarization-induced Cl{sup {minus}} channel (ORDIC channel) has been proposed to account for the Cl{sup {minus}} conductance that is defective in CF. The recently identified CF gene is predicted to code for a 1480-amino acid integral membrane protein termed the CF transmembrane conductance regulator (CFTR). The CFTR shares sequence similarity with a superfamily of ATP-binding membrane transport proteins such as P-glycoprotein and STE6, but it also has features consistent with an ion channel function. It has been proposed that the CFTR might be an ORDIC channel. To determine if CFTR and ORDIC channel expression are correlated, the authors surveyed various cell lines for natural variation in CFTR and ORDIC channel expression. In four human epithelial cell lines (T84, CaCo2, PANC-1, and 9HTEo-/S) that encompass the full observed range of CFTR mRNA levels and ORDIC channel density the authors found no correlation.

  18. Correlation between myocardial fibrosis and restrictive cardiac physiology in patients undergoing retransplantation.

    PubMed

    Kobashigawa, Jon A; Itagaki, Brandon K; Razi, Rabia R; Patel, Jignesh K; Chai, Wanxing; Kawano, Matthew A; Goldstein, Zachary; Kittleson, Michelle M; Fishbein, Michael C

    2013-01-01

    After cardiac transplant, there is often development of restrictive cardiac physiology. Little is known about the factors that contribute to this physiology and its correlation with pathology. Heart retransplantation provides a valuable opportunity to further understand this relationship. In this study, we investigated the correlation of myocardial fibrosis and restrictive physiology, and possible risk factors utilizing data from all retransplants at our center. A retrospective review of the 30 patients who underwent retransplantation at our institution between 1994 and 2004 was performed. Hemodynamic and imaging data were reviewed for the presence of restrictive physiology. Pathology reports were reviewed for the presence of myocardial fibrosis in the explanted hearts. The cohort with restrictive physiology preceding redo heart transplant had significantly more patients exhibiting myocardial fibrosis compared with the non-restrictive physiology group (94.1% vs. 15.4%, p < 0.001). We found no difference in the immunosuppressive regimen, history of rejection, and reason for transplant. In our study, we observed that myocardial fibrosis is an important contributor to the development of restrictive physiology. Further work needs to be done for risk stratification and the mechanism of fibrosis development.

  19. Correlation between genotype and phenotype in patients with cystic fibrosis.

    PubMed

    1993-10-28

    Cystic fibrosis is the most common lethal autosomal recessive disorder among whites. Seventy-two percent of patients with this disease are homozygotes or compound heterozygotes for eight mutations of the cystic fibrosis transmembrane conductance regulator gene on chromosome 7: delta F508, G542X, R553X, W1282X, N1303K, 621 + 1G-->T, 1717-1G-->A, and R117H. We studied the relation between genotype and phenotype in patients from 14 countries. Each of 399 patients who were compound heterozygotes for delta F508 and one other mutation was matched with the delta F508 homozygote of the same sex who was the closest in age from the same center. A paired analysis was performed of the following outcome variables: age at diagnosis, sweat chloride concentration, growth percentiles, pulmonary-function values, chest-film score, pseudomonas colonization, nasal polyps, pancreatic sufficiency, pancreatitis, diabetes mellitus, meconium ileus, distal intestinal obstruction syndrome, rectal prolapse, cirrhosis, and gallbladder disease. The compound heterozygotes having the genotype R117H/delta F508 clearly differed from the age- and sex-matched delta F508 homozygotes: they more often had pancreatic sufficiency (87 percent vs. 4 percent, P < 0.001), were older when the diagnosis was first made (mean [+/- SD] age, 10.2 +/- 10.5 vs. 2.5 +/- 4.3 years; P = 0.002), and had lower sweat chloride concentrations (80 +/- 18 vs. 108 +/- 14 mmol per liter, P < 0.001). There were no statistically significant differences between delta F508 homozygotes and other compound heterozygotes with regard to any variable tested. Prenatal and prognostic counseling for patients with the R117H/delta F508 genotype should include the likelihood that they will have long-term pancreatic sufficiency. Patients with the other genotypes should expect the early onset of pancreatic insufficiency. For none of the genotypes studied can predictions be made about the occurrence of common complications or the severity or course

  20. Bone marrow–derived progenitor cells in pulmonary fibrosis

    PubMed Central

    Hashimoto, Naozumi; Jin, Hong; Liu, Tianju; Chensue, Stephen W.; Phan, Sem H.

    2004-01-01

    The origin of fibroblasts in pulmonary fibrosis is assumed to be intrapulmonary, but their extrapulmonary origin and especially derivation from bone marrow (BM) progenitor cells has not been ruled out. To examine this possibility directly, adult mice were durably engrafted with BM isolated from transgenic mice expressing enhanced GFP. Induction of pulmonary fibrosis in such chimera mice by endotracheal bleomycin (BLM) injection caused large numbers of GFP+ cells to appear in active fibrotic lesions, while only a few GFP+ cells could be identified in control lungs. Flow-cytometric analysis of lung cells confirmed the BLM-induced increase in GFP+ cells in chimera mice and revealed a significant increase in GFP+ cells that also express type I collagen. GFP+ lung fibroblasts isolated from chimera mice expressed collagen and telomerase reverse transcriptase but not α-smooth muscle actin. Treatment of isolated GFP+ fibroblasts with TGF-β failed to induce myofibroblast differentiation. Cultured lung fibroblasts expressed the chemokine receptors CXCR4 and CCR7 and responded chemotactically to their cognate ligands, stromal cell–derived factor-1α and secondary lymphoid chemokine, respectively. Thus the collagen-producing lung fibroblasts in pulmonary fibrosis can also be derived from BM progenitor cells. PMID:14722616

  1. Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells

    NASA Astrophysics Data System (ADS)

    Rich, Devra P.; Anderson, Matthew P.; Gregory, Richard J.; Cheng, Seng H.; Paul, Sucharita; Jefferson, Douglas M.; McCann, John D.; Klinger, Katherine W.; Smith, Alan E.; Welsh, Michael J.

    1990-09-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) was expressed in cultured cystic fibrosis airway epithelial cells and Cl- channel activation assessed in single cells using a fluorescence microscopic assay and the patch-clamp technique. Expression of CFTR, but not of a mutant form of CFTR (ΔF508), corrected the Cl- channel defect. Correction of the phenotypic defect demonstrates a causal relationship between mutations in the CFTR gene and defective Cl- transport which is the hallmark of the disease.

  2. Correlation analysis between four serum biomarkers of liver fibrosis and liver function in infants with cholestasis

    PubMed Central

    TANG, NING; ZHANG, YAPING; LIU, ZEYU; FU, TAO; LIANG, QINGHONG; AI, XUEMEI

    2016-01-01

    The aim of the present study was to investigate the correlation between four serum biomarkers of liver fibrosis and liver function in infants with cholestasis. A total of 30 infants with cholestasis and 20 healthy infants were included in the study. Biochemical assays based on the initial rate method and colorimetric assays were conducted to determine the levels of liver function markers in the serum [such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), γ-glutamyl transferase (γ-GT), cholinesterase (CHE) and total bile acids (TBA)] and four serum biomarkers of liver fibrosis were measured using radioimmunoassays [hyaluronic acid (HA), procollagen type III (PCIII), laminin (LN) and collagen type IV (cIV)]. The serum levels of ALT, AST, TBIL, DBIL, IBIL, γ-GT and TBA in the infants with cholestasis were significantly higher compared to the healthy infants (P<0.01); the serum levels of CHE in the infants with cholestasis were significantly lower compared to the healthy infants (P<0.01). The serum levels of HA, PCIII, and cIV in the infants with cholestasis were significantly higher compared to the healthy infants (P<0.01). Correlation analyses between liver function and the four biomarkers of liver fibrosis showed that HA was positively correlated with AST and γ-GT (P<0.05) and negatively correlated with ALT, CHE and TBA (P<0.05). cIV was positively correlated with γ-GT (P<0.05) and negatively correlated with CHE (P<0.05). In conclusion, statistically significant differences were identified for the liver function markers (ALT, AST, TBIL, DBIL, IBIL, γ-GT and TBA) and the biomarkers HA, PCIII and cIV of liver fibrosis between infants with cholestasis and healthy infants. Thus, the serum levels of HA, cIV, γ-GT and CHE are sensitive markers for cholestatic liver fibrosis in infants. PMID:27347413

  3. Computed tomography enterography findings correlate with tissue inflammation, not fibrosis in resected small bowel Crohn's disease.

    PubMed

    Adler, Jeremy; Punglia, Darashana R; Dillman, Jonathan R; Polydorides, Alexandros D; Dave, Maneesh; Al-Hawary, Mahmoud M; Platt, Joel F; McKenna, Barbara J; Zimmermann, Ellen M

    2012-05-01

    It has become commonplace to categorize small intestinal Crohn's disease (CD) as "active" vs. "inactive" or "inflammatory" vs. "fibrotic" based on computed tomography enterography (CTE) findings. Data on histologic correlates of CTE findings are lacking. We aimed to compare CTE findings with histology from surgically resected specimens. We tested the hypothesis that CTE findings can distinguish tissue inflammation from fibrosis. Patients who underwent CTE within 3 months before intestinal resection for CD were retrospectively studied. Radiologists blinded to history and histology scored findings on CTE. Pathologists blinded to history and imaging scored resected histology. We compared histology with CTE findings and radiologists assessment of whether the stricture was likely "active" or "inactive." In all, 22 patients met inclusion criteria. Inflammatory CTE findings correlated with histologic inflammation (rho = 0.52). Strictures believed to be "active" on CTE were more inflamed at histology (P = 0.0002). Strictures lacking inflammatory findings on CTE or considered "inactive" were not associated with greater histologic fibrosis or significant histologic inflammation. Upstream dilation was associated with greater tissue fibrosis in univariate (P = 0.014) but not in multivariate analysis (P = 0.53). Overall, histologic fibrosis correlated best with histologic inflammation (rho = 0.52). Strictures on CTE with the most active disease activity also had the most fibrosis on histology. CTE findings of mesenteric hypervascularity, mucosal hyperenhancement, and mesenteric fat stranding predict tissue inflammation. However, small bowel stricture without CTE findings of inflammation does not predict the presence of tissue fibrosis. Therefore, caution should be used when using CTE criteria to predict the presence of scar tissue. Copyright © 2011 Crohn's & Colitis Foundation of America, Inc.

  4. Enhancement of hidden structures of early skin fibrosis using polarization degree patterns and Pearson correlation analysis.

    PubMed

    Sviridov, Alexander P; Chernomordik, Victor; Hassan, Moinuddin; Boccara, Albert C; Russo, Angelo; Smith, Paul; Gandjbakhche, Amir

    2005-01-01

    The skin of athymic nude mice is irradiated with a single dose of x-ray irradiation that initiated fibrosis. Digital photographs of the irradiated mice are taken by illuminating the mouse skin with linearly polarized probe light of 650 nm. The specific pattern of the surface distribution of the degree of polarization enables the detection of initial skin fibrosis structures that were not visually apparent. Data processing of the raw spatial distributions of the degree of polarization based on Fourier filtering of the high-frequency noise improves subjective perception of the revealed structure in the images. In addition, Pearson correlation analysis provides information about skin structural size and directionality.

  5. Epigenetic regulation of hepatic stellate cell activation and liver fibrosis.

    PubMed

    El Taghdouini, Adil; van Grunsven, Leo A

    2016-12-01

    Chronic liver injury to hepatocytes or cholangiocytes, when left unmanaged, leads to the development of liver fibrosis, a condition characterized by the excessive intrahepatic deposition of extracellular matrix proteins. Activated hepatic stellate cells constitute the predominant source of extracellular matrix in fibrotic livers and their transition from a quiescent state during fibrogenesis is associated with important alterations in their transcriptional and epigenetic landscape. Areas covered: We briefly describe the processes involved in hepatic stellate cell activation and discuss our current understanding of alterations in the epigenetic landscape, i.e DNA methylation, histone modifications and the functional role of non-coding RNAs that accompany this key event in the development of chronic liver disease. Expert commentary: Although great progress has been made, our understanding of the epigenetic regulation of hepatic stellate cell activation is limited and, thus far, insufficient to allow the development of epigenetic drugs that can selectively interrupt liver fibrosis.

  6. Baseline ultrasound and clinical correlates in children with cystic fibrosis

    PubMed Central

    Leung, Daniel H.; Ye, Wen; Molleston, Jean P.; Weymann, Alexander; Ling, Simon; Paranjape, Shruti M.; Romero, Rene; Schwarzenberg, Sara Jane; Palermo, Joseph; Alonso, Estella M.; Murray, Karen F.; Marshall, Bruce C.; Sherker, Averell H.; Siegel, Marilyn J.; Krishnamurthy, Rajesh; Harned, Roger; Karmazyn, Boaz; Magee, John C.; Narkewicz, Michael R

    2015-01-01

    Objective To investigate the relationship between abdominal ultrasound (US) findings and demographic, historical and clinical features in children with CF. Study design Children age 3-12 years with CF without known cirrhosis, were enrolled in a prospective, multi-center study of US to predict hepatic fibrosis. Consensus US patterns were assigned by 3 radiologists as normal, heterogeneous, homogeneous, or cirrhosis. Data were derived from direct collection and U.S. or Toronto CF registries. Chi-square or ANOVA were used to compare variables among US groups and between normal and abnormal. Logistic regression was used to study risk factors for having abnormal US. Results Findings in 719 subjects were normal (n=590, 82.1%), heterogeneous (64, 8.9%), homogeneous (41, 5.7%), and cirrhosis (24, 3.3%). Cirrhosis (p=0.0004), homogeneous (p<0.0001) and heterogeneous (p=0.03) were older than normal. More males were heterogeneous (p=0.001). More heterogeneous (15.0%, p=0.009) and cirrhosis (25.0%, p=0.005) had CF-related diabetes or impaired glucose tolerance versus normal (5.4%). Early infection with Pseudomonas aeruginosa (<2 years old) was associated with a lower risk (OR 0.42, p=0.0007) of abnormal. Ursodeoxycholic acid use (OR 3.69, p <0.0001) and CF-related diabetes (OR 2.21, p=0.019) were associated with increased risk of abnormal. Conclusions Unsuspected cirrhosis is seen in 3.3% of young patients with CF, heterogeneous in 8.9%. abnormal US is associated with CF-related diabetes, and early P aeruginosa is associated with normal US. Prospective assessment of these risk factors may identify potential interventional targets. PMID:26254836

  7. Cystic fibrosis mice carrying the missense mutation G551D replicate human genotype-phenotype correlations.

    PubMed Central

    Delaney, S J; Alton, E W; Smith, S N; Lunn, D P; Farley, R; Lovelock, P K; Thomson, S A; Hume, D A; Lamb, D; Porteous, D J; Dorin, J R; Wainwright, B J

    1996-01-01

    We have generated a mouse carrying the human G551D mutation in the cystic fibrosis transmembrane conductance regulator gene (CFTR) by a one-step gene targeting procedure. These mutant mice show cystic fibrosis pathology but have a reduced risk of fatal intestinal blockage compared with 'null' mutants, in keeping with the reduced incidence of meconium ileus in G551D patients. The G551D mutant mice show greatly reduced CFTR-related chloride transport, displaying activity intermediate between that of cftr(mlUNC) replacement ('null') and cftr(mlHGU) insertional (residual activity) mutants and equivalent to approximately 4% of wild-type CFTR activity. The long-term survival of these animals should provide an excellent model with which to study cystic fibrosis, and they illustrate the value of mouse models carrying relevant mutations for examining genotype-phenotype correlations. Images PMID:8605891

  8. Shear wave elastography results correlate with liver fibrosis histology and liver function reserve

    PubMed Central

    Feng, Yan-Hong; Hu, Xiang-Dong; Zhai, Lin; Liu, Ji-Bin; Qiu, Lan-Yan; Zu, Yuan; Liang, Si; Gui, Yu; Qian, Lin-Xue

    2016-01-01

    AIM: To evaluate the correlation of shear wave elastography (SWE) results with liver fibrosis histology and quantitative function reserve. METHODS: Weekly subcutaneous injection of 60% carbon tetrachloride (1.5 mL/kg) was given to 12 canines for 24 wk to induce experimental liver fibrosis, with olive oil given to 2 control canines. At 24 wk, liver condition was evaluated using clinical biochemistry assays, SWE imaging, lidocaine metabolite monoethylglycine-xylidide (MEGX) test, and histologic fibrosis grading. Clinical biochemistry assays were performed at the institutional central laboratory for routine liver function evaluation. Liver stiffness was measured in triplicate from three different intercostal spaces and expressed as mean liver stiffness modulus (LSM). Plasma concentrations of lidocaine and its metabolite MEGX were determined using high-performance liquid chromatography repeated in duplicate. Liver biopsy samples were fixed in 10% formaldehyde, and liver fibrosis was graded using the modified histological activity index Knodell score (F0-F4). Correlations among histologic grading, LSM, and MEGX measures were analyzed with the Pearson linear correlation coefficient. RESULTS: At 24 wk liver fibrosis histologic grading was as follows: F0, n = 2 (control); F1, n = 0; F2, n = 3; F3, n = 7; and F4, n = 2. SWE LSM was positively correlated with histologic grading (r = 0.835, P < 0.001). Specifically, the F4 group had a significantly higher elastic modulus than the F3, F2, and F0 groups (P = 0.002, P = 0.003, and P = 0.006, respectively), and the F3 group also had a significantly higher modulus than the control F0 group (P = 0.039). LSM was negatively associated with plasma MEGX concentrations at 30 min (r = -0.642; P = 0.013) and 60 min (r = -0.651; P = 0.012), time to ½ of the maximum concentration (r = -0.538; P = 0.047), and the area under the curve (r = -0.636; P = 0.014). Multiple comparisons showed identical differences in these three measures

  9. [Regulation of airway stem cell proliferation in idiopathic pulmonary fibrosis].

    PubMed

    Yang, S X; Wu, Q; Sun, X; Li, X; Li, K; Xu, L; Li, Y; Zhang, Q Y; Zhang, Y C; Chen, H Y

    2016-09-01

    To investigate the effect of fibroblasts on regulating airway stem cell proliferation in idiopathic pulmonary fibrosis. Lung cell suspension was prepared from β-actin-GFP mice. Airway stem cells were obtained by fluorescence activated cell sorting and co-cultured with lung fibroblasts. The fibroblasts were treated with TGF-β inhibitor SB43142. The expression of growth factors FGF1/2 and the effect of FGF1/2 on stem cell proliferation were observed. The cloning efficiency of airway stem cells, when co-cultured with normal lung fibroblast cells for 8 days, was (3.5±1.1)%, while the cloning efficiency was reduced to (0.04±0.04)% when co-cultured with lung fibroblasts from idiopathic pulmonary fibrosis patients. The difference between the 2 groups was statistically significant(P=0.002 5). TGF-β receptor inhibitor SB431542 increased lung fibroblast growth factors FGF1/2 expression.FGF1 mRNA expression was increased to the experimental group 0.005 5 from 0.000 2 in the control group.FGF2 mRNA expression of the amount raised to the experimental group 0.000 15 from 0.000 8 in the control group.FGF1/2 promoted the growth of airway stem cells. After FGF1/2 was co-cultured with normal lung fibroblast cells for 8 days, the cloning efficiency of airway stem cells was (0.3±0.1)%. During the development of idiopathic pulmonary fibrosis, fibroblast secreted FGF1/2 regulate airway stem cell proliferation.

  10. Paricalcitol Reduces Peritoneal Fibrosis in Mice through the Activation of Regulatory T Cells and Reduction in IL-17 Production

    PubMed Central

    González-Mateo, Guadalupe T.; Fernández-Míllara, Vanessa; Bellón, Teresa; Liappas, Georgios; Ruiz-Ortega, Marta; López-Cabrera, Manuel; Selgas, Rafael; Aroeira, Luiz S.

    2014-01-01

    Fibrosis is a significant health problem associated with a chronic inflammatory reaction. The precise mechanisms involved in the fibrotic process are still poorly understood. However, given that inflammation is a major causative factor, immunomodulation is a possible therapeutic approach to reduce fibrosis. The vitamin D receptor (VDR) that is present in all hematopoietic cells has been associated with immunomodulation. We investigated whether the intraperitoneal administration of paricalcitol, a specific activator of the VDR, modulates peritoneal dialysis fluid (PDF)-induced peritoneal fibrosis. We characterized the inflammatory process in the peritoneal cavity of mice treated or not treated with paricalcitol and analyzed the ensuing fibrosis. The treatment reduced peritoneal IL-17 levels, which strongly correlated with a significantly lower peritoneal fibrotic response. In vitro studies demonstrate that both CD4+ and CD8+ regulatory T cells appear to impact the regulation of IL-17. Paricalcitol treatment resulted in a significantly increased frequency of CD8+ T cells showing a regulatory phenotype. The frequency of CD4+ Tregs tends to be increased, but it did not achieve statistical significance. However, paricalcitol treatment increased the number of CD4+ and CD8+ Treg cells in vivo. In conclusion, the activation of immunological regulatory mechanisms by VDR signaling could prevent or reduce fibrosis, as shown in peritoneal fibrosis induced by PDF exposure in mice. PMID:25279459

  11. Renal Medullary and Cortical Correlates in Fibrosis, Epithelial Mass, Microvascularity, and Microanatomy Using Whole Slide Image Analysis Morphometry

    PubMed Central

    Farris, Alton B.; Ellis, Carla L.; Rogers, Thomas E.; Lawson, Diane; Cohen, Cynthia; Rosen, Seymour

    2016-01-01

    Renal tubulointerstitial injury often leads to interstitial fibrosis and tubular atrophy (IF/TA). IF/TA is typically assessed in the renal cortex and can be objectively quantitated with computerized image analysis (IA). However, the human medulla accounts for a substantial proportion of the nephron; therefore, medullary scarring will have important cortical consequences and may parallel overall chronic renal injury. Trichrome, periodic acid–Schiff (PAS), and collagen III immunohistochemistry (IHC) were visually examined and quantitated on scanned whole slide images (WSIs) (N = 67 cases). When tuned to measure fibrosis, IA of trichrome and Trichrome-PAS (T-P) WSIs correlated for all anatomic compartments (among cortex, medulla, and entire tissue, r = 0.84 to 0.89, P all <0.0001); and collagen III deposition correlated between compartments (r = 0.69 to 0.89, P <0.0001 to 0.0002); however, trichrome and T-P measures did not correlate with collagen deposition, suggesting heterogeneous contributions to extracellular matrix deposition. Epithelial cell mass (EPCM) correlated between cortex and medulla when measured with cytokeratin IHC and with the trichrome red portion (r = 0.85 and 0.66, respectively, all P < 0.0001). Visual assessment also correlated between compartments for fibrosis and EPCM. Correlations were found between increasing medullary inner stripe (IS) width and fibrosis in all of the tissue and the medulla by trichrome morphometry (r = 0.56, P < 0.0001, and r = 0.48, P = 0.00008, respectively). Weak correlations were found between increasing IS width and decreasing visual assessment of all tissue EPCM. Microvessel density (MVD) and microvessel area (MVA) measured using a MVD algorithm applied to CD34 IHC correlated significantly between all compartments (r = 0.76 to 0.87 for MVD and 0.71 to 0.87 for MVA, P all < 0.0001). Overall, these findings demonstrate the interrelatedness of the cortex and medulla and the importance of considering the renal

  12. Genetics and epithelial cell dysfunction in cystic fibrosis

    SciTech Connect

    Riordan, J.R.; Buchwald, M.

    1987-01-01

    This book examines the advances being made in the study of the physiology, cell biology, and molecular genetics of cystic fibrosis. Emphasis is placed on various areas of research that involve epithelial cells (e.g., the CF-specific phenotypes exhibited by epithelial cells, abnormalities in epithelium ion transport, chloride channel regulation in CF epithelial.) Coverage is presented on the current status of CF, including data on the incidence of the disease, its mode of inheritance, chromosomal localization, genetic heterogeneity, and screening and management.

  13. Six minute walk test Z score: correlations with cystic fibrosis severity markers.

    PubMed

    Stollar, Fabíola; Rodrigues, Joaquim C; Cunha, Maristela T; Leone, Claudio; Adde, Fabíola Villac

    2012-05-01

    The six-minute-walk-test (6MWT) has been increasingly used in cystic fibrosis (CF) patients. However, few studies in children have correlated 6MWT with current parameters used to evaluate CF severity. Moreover, no study transformed the values of distance walked from meters into Z scores to avoid bias like age and gender, which are sources of 6MWT variability. A cross-sectional descriptive study was performed to analyze the correlations (Spearman) among forced expiratory volume in one second (FEV(1)), body mass index (BMI), chest radiography (CXR), chest tomography (CT), and 6MWT Z score (Z-6MWT). Clinically stable CF patients, aged 6-21 years, were included. 34 patients, 14F/20M, mean age 12.1±4.0 years were studied. The mean Z-6MWT was -1.1±1.106. The following correlations versus Z-6MWT were found: FEV(1) (r=0.59, r(2)=0.32, p=0.0002), BMI Z score (r=0.42, r(2)=0.17, p=0.013), CXR (r=0.34, r(2)=0.15, p=0.0472) and CT (r=-0.45, r(2)=0.23, p=0.0073). In conclusion there was a significant, but poor, correlation between the six minute walk test Z score and the cystic fibrosis severity markers currently in use. Copyright © 2011 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  14. Lack of correlation between pulmonary disease and cystic fibrosis transmembrane conductance regulator dysfunction in cystic fibrosis: a case report

    PubMed Central

    2010-01-01

    Introduction Mutations in both alleles of the cystic fibrosis transmembrane conductance regulator gene result in the disease cystic fibrosis, which usually manifests as chronic sinopulmonary disease, pancreatic insufficiency, elevated sodium chloride loss in sweat, infertility among men due to agenesis of the vas deferens and other symptoms including liver disease. Case presentation We describe a pair of African-American brothers, aged 21 and 27, with cystic fibrosis. They were homozygous for a rare frameshift mutation in the cystic fibrosis transmembrane conductance regulator 3791delC, which would be expected to cause significant morbidity. Although 80% of cystic fibrosis patients are colonized with Pseudomonas aeruginosa by eight years of age, the older brother had no serum opsonic antibody titer to P. aeruginosa by age 13 and therefore would have failed to mount an effective antibody response to the alginate (mucoid polysaccharide) capsule of P. aeruginosa. He was not colonized with P. aeruginosa until 24 years of age. Similarly, the younger brother was not colonized with P. aeruginosa until age 20 and had no significant lung disease. Conclusion Despite a prevailing idea in cystic fibrosis research that the amount of functional cystic fibrosis transmembrane conductance regulator predicts clinical status, our results indicated that respiratory disease severity in cystic fibrosis exhibits phenotypic heterogeneity. If this heterogeneity is, in part, genetic, it is most likely derived from genes outside the cystic fibrosis transmembrane conductance regulator locus. PMID:20420703

  15. Lack of correlation between pulmonary disease and cystic fibrosis transmembrane conductance regulator dysfunction in cystic fibrosis: a case report.

    PubMed

    Levy, Hara; Cannon, Carolynn L; Asher, Daniel; García, Christopher; Cleveland, Robert H; Pier, Gerald B; Knowles, Michael R; Colin, Andrew A

    2010-04-26

    Mutations in both alleles of the cystic fibrosis transmembrane conductance regulator gene result in the disease cystic fibrosis, which usually manifests as chronic sinopulmonary disease, pancreatic insufficiency, elevated sodium chloride loss in sweat, infertility among men due to agenesis of the vas deferens and other symptoms including liver disease. We describe a pair of African-American brothers, aged 21 and 27, with cystic fibrosis. They were homozygous for a rare frameshift mutation in the cystic fibrosis transmembrane conductance regulator 3791delC, which would be expected to cause significant morbidity. Although 80% of cystic fibrosis patients are colonized with Pseudomonas aeruginosa by eight years of age, the older brother had no serum opsonic antibody titer to P. aeruginosa by age 13 and therefore would have failed to mount an effective antibody response to the alginate (mucoid polysaccharide) capsule of P. aeruginosa. He was not colonized with P. aeruginosa until 24 years of age. Similarly, the younger brother was not colonized with P. aeruginosa until age 20 and had no significant lung disease. Despite a prevailing idea in cystic fibrosis research that the amount of functional cystic fibrosis transmembrane conductance regulator predicts clinical status, our results indicated that respiratory disease severity in cystic fibrosis exhibits phenotypic heterogeneity. If this heterogeneity is, in part, genetic, it is most likely derived from genes outside the cystic fibrosis transmembrane conductance regulator locus.

  16. Management of Fibrosis: The Mesenchymal Stromal Cells Breakthrough

    PubMed Central

    Usunier, Benoît; Benderitter, Marc; Tamarat, Radia; Chapel, Alain

    2014-01-01

    Fibrosis is the endpoint of many chronic inflammatory diseases and is defined by an abnormal accumulation of extracellular matrix components. Despite its slow progression, it leads to organ malfunction. Fibrosis can affect almost any tissue. Due to its high frequency, in particular in the heart, lungs, liver, and kidneys, many studies have been conducted to find satisfactory treatments. Despite these efforts, current fibrosis management therapies either are insufficiently effective or induce severe adverse effects. In the light of these facts, innovative experimental therapies are being investigated. Among these, cell therapy is regarded as one of the best candidates. In particular, mesenchymal stromal cells (MSCs) have great potential in the treatment of inflammatory diseases. The value of their immunomodulatory effects and their ability to act on profibrotic factors such as oxidative stress, hypoxia, and the transforming growth factor-β1 pathway has already been highlighted in preclinical and clinical studies. Furthermore, their propensity to act depending on the microenvironment surrounding them enhances their curative properties. In this paper, we review a large range of studies addressing the use of MSCs in the treatment of fibrotic diseases. The results reported here suggest that MSCs have antifibrotic potential for several organs. PMID:25132856

  17. Neutrophilic Bronchial Inflammation Correlates with Clinical and Functional Findings in Patients with Noncystic Fibrosis Bronchiectasis

    PubMed Central

    Dente, Federico L.; Bilotta, Marta; Bartoli, Maria Laura; Bacci, Elena; Cianchetti, Silvana; Latorre, Manuela; Malagrinò, Laura; Nieri, Dario; Roggi, Maria Adelaide; Vagaggini, Barbara; Paggiaro, Pierluigi

    2015-01-01

    Background. Neutrophilic bronchial inflammation is a main feature of bronchiectasis, but not much is known about its relationship with other disease features. Aim. To compare airway inflammatory markers with clinical and functional findings in subjects with stable noncystic fibrosis bronchiectasis (NCFB). Methods. 152 NFCB patients (62.6 years; females: 57.2%) underwent clinical and functional cross-sectional evaluation, including microbiologic and inflammatory cell profile in sputum, and exhaled breath condensate malondialdehyde (EBC-MDA). NFCB severity was assessed using BSI and FACED criteria. Results. Sputum neutrophil percentages inversely correlated with FEV1 (P < 0.0001; rho = −0.428), weakly with Leicester Cough Questionnaire score (P = 0.068; rho = −0.58), and directly with duration of the disease (P = 0.004; rho = 0.3) and BSI severity score (P = 0.005; rho = 0.37), but not with FACED. Sputum neutrophilia was higher in colonized subjects, P. aeruginosa colonized subjects showing greater sputum neutrophilia and lower FEV1. Patients with ≥3 exacerbations in the last year showed a significantly greater EBC-MDA than the remaining patients. Conclusions. Sputum neutrophilic inflammation and biomarkers of oxidative stress in EBC can be considered good biomarkers of disease severity in NCFB patients, as confirmed by pulmonary function, disease duration, bacterial colonization, BSI score, and exacerbation rate. PMID:26819500

  18. Gadolinium contrast agent-induced CD163+ ferroportin+ osteogenic cells in nephrogenic systemic fibrosis.

    PubMed

    Swaminathan, Sundararaman; Bose, Chhanda; Shah, Sudhir V; Hall, Kimberly A; Hiatt, Kim M

    2013-09-01

    Gadolinium-based contrast agents are linked to nephrogenic systemic fibrosis in patients with renal insufficiency. The pathology of nephrogenic systemic fibrosis is characterized by abnormal tissue repair: fibrosis and ectopic ossification. The mechanisms by which gadolinium could induce fibrosis and ossification are not known. We examined in vitro the effect of a gadolinium-based contrast agent on human peripheral blood mononuclear cells for phenotype and function relevant to the pathology of nephrogenic systemic fibrosis using immunofluorescence, flow cytometry, real-time PCR, and osteogenic assays. We also examined tissues from patients with nephrogenic systemic fibrosis, using IHC to identify the presence of cells with phenotype induced by gadolinium. Gadolinium contrast induced differentiation of human peripheral blood mononuclear cells into a unique cellular phenotype--CD163(+) cells expressing proteins involved in fibrosis and bone formation. These cells express fibroblast growth factor (FGF)23, osteoblast transcription factors Runt-related transcription factor 2, and osterix, and show an osteogenic phenotype in in vitro assays. We show in vivo the presence of CD163(+)/procollagen-1(+)/osteocalcin(+) cells in the fibrotic and calcified tissues of nephrogenic systemic fibrosis patients. Gadolinium contrast-induced CD163(+)/ferroportin(+)/FGF23(+) cells with osteogenic potential may play a role in systemic fibrosis and ectopic ossification in nephrogenic systemic fibrosis.

  19. Atrophy, fibrosis, and increased PAX7-positive cells in pharyngeal muscles of oculopharyngeal muscular dystrophy patients.

    PubMed

    Gidaro, Teresa; Negroni, Elisa; Perié, Sophie; Mirabella, Massimiliano; Lainé, Jeanne; Lacau St Guily, Jean; Butler-Browne, Gillian; Mouly, Vincent; Trollet, Capucine

    2013-03-01

    Oculopharyngeal muscular dystrophy (OPMD) is a late-onset autosomal dominant inherited dystrophy caused by an abnormal trinucleotide repeat expansion in the poly(A)-binding-protein-nuclear 1 (PABPN1) gene. Primary muscular targets of OPMD are the eyelid elevator and pharyngeal muscles, including the cricopharyngeal muscle (CPM), the progressive involution of which leads to ptosis and dysphagia, respectively. To understand the consequences of PABPN1 polyalanine expansion in OPMD, we studied muscle biopsies from 14 OPMD patients, 3 inclusion body myositis patients, and 9 healthy controls. In OPMD patient CPM (n = 6), there were typical dystrophic features with extensive endomysial fibrosis and marked atrophy of myosin heavy-chain IIa fibers. There were more PAX7-positive cells in all CPM versus other muscles (n = 5, control; n = 3, inclusion body myositis), and they were more numerous in OPMD CPM versus control normal CPM without any sign of muscle regeneration. Intranuclear inclusions were present in all OPMD muscles but unaffected OPMD patient muscles (i.e. sternocleidomastoid, quadriceps, or deltoid; n = 14) did not show evidence of fibrosis, atrophy, or increased PAX7-positive cell numbers. These results suggest that the specific involvement of CPM in OPMD might be caused by failure of the regenerative response with dysfunction of PAX7-positive cells and exacerbated fibrosis that does not correlate with the presence of PABPN1 inclusions.

  20. Longitudinal assessment of bleomycin-induced lung fibrosis by Micro-CT correlates with histological evaluation in mice.

    PubMed

    Ruscitti, Francesca; Ravanetti, Francesca; Essers, Jeroen; Ridwan, Yanto; Belenkov, Sasha; Vos, Wim; Ferreira, Francisca; KleinJan, Alex; van Heijningen, Paula; Van Holsbeke, Cedric; Cacchioli, Antonio; Villetti, Gino; Stellari, Franco Fabio

    2017-01-01

    The intratracheal instillation of bleomycin in mice induces early damage to alveolar epithelial cells and development of inflammation followed by fibrotic tissue changes and represents the most widely used model of pulmonary fibrosis to investigate human IPF. Histopathology is the gold standard for assessing lung fibrosis in rodents, however it precludes repeated and longitudinal measurements of disease progression and does not provide information on spatial and temporal distribution of tissue damage. Here we investigated the use of the Micro-CT technique to allow the evaluation of disease onset and progression at different time-points in the mouse bleomycin model of lung fibrosis. Micro-CT was throughout coupled with histological analysis for the validation of the imaging results. In bleomycin-instilled and control mice, airways and lung morphology changes were assessed and reconstructed at baseline, 7, 14 and 21 days post-treatment based on Micro-CT images. Ashcroft score, percentage of collagen content and percentage of alveolar air area were detected on lung slides processed by histology and subsequently compared with Micro-CT parameters. Extent (%) of fibrosis measured by Micro-CT correlated with Ashcroft score, the percentage of collagen content and the percentage of alveolar air area (r(2)  = 0.91; 0.77; 0.94, respectively). Distal airway radius also correlated with the Ashcroft score, the collagen content and alveolar air area percentage (r(2)  = 0.89; 0.78; 0.98, respectively). Micro-CT data were in good agreement with histological read-outs as micro-CT was able to quantify effectively and non-invasively disease progression longitudinally and to reduce the variability and number of animals used to assess the damage. This suggests that this technique is a powerful tool for understanding experimental pulmonary fibrosis and that its use could translate into a more efficient drug discovery process, also helping to fill the gap between preclinical

  1. Fibrosis in Chronic Hepatitis C: Correlation between Immunohistochemically-Assessed Virus Load with Steatosis and Cellular Iron Content

    PubMed Central

    Akl, Maha; Hindawi, Ali EL; Mosaad, Maha; Montasser, Ahmed; Ray, Ahmed El; Khalil, Heba; Anas, Amgad; Atta, Raffat; Paradis, Valerie; Hadi, Ahmed Abdel; Hammam, Olfat

    2016-01-01

    AIM: We aimed study impact of hepatocytic viral load, steatosis, and iron load on fibrosis in chronic hepatitis C and role of VEGF and VEGFR overexpression in cirrhotic cases in evolving HCC. MATERIAL AND METHODS: Total of 120 cases were included from TBRI and Beaujon Hospital as chronic hepatitis C (CHC), post-hepatitis C cirrhosis, and HCC. Cases of CHC were stained for Sirius red, Prussian blue and immunohistochemically (IHC) for HCV-NS3/NS4. HCC were stained IHC for VEGF and by FISH. RESULTS: Stage of fibrosis was significantly correlated with inflammation in CHC (P < 0.01). Noticed iron load did not correlate with fibrosis. Steatosis was associated with higher inflammation and fibrosis. The cellular viral load did not correlate with inflammation, steatosis or fibrosis. VEGF by IHC was significantly higher in cases of HCC when compared to cirrhotic group (P < 0.001). Amplification of VEGFR2 was confirmed in 40% of cases of HCC. Scoring of VEGF by IHC was the good indicator of VEGFR2 amplification by FISH (P < 0.005). CONCLUSION: Grade of inflammation is the factor affecting fibrosis in CHC. The degree of liver damage is not related to cellular viral load or iron load. Steatosis is associated with higher inflammation and fibrosis. VEGF by IHC is correlated with overexpression of VEGFR2 by FISH. PMID:28028394

  2. Is serum high-mobility group box 1 (HMGB-1) level correlated with liver fibrosis in chronic hepatitis B?

    PubMed

    Inkaya, Ahmet Cagkan; Demir, Nazlim Aktug; Kolgelier, Servet; Sumer, Sua; Demir, Lutfi Saltuk; Ural, Onur; Pehlivan, Fatma Seher; Aslan, Mahmure; Arpaci, Abdullah

    2017-09-01

    High-mobility group box 1 (HMGB1), identified as an alarmin molecule, was shown to have a role in virus-triggered liver injury. We aimed to evaluate the association between serum levels of HMGB1 and liver fibrosis. This cross-sectional case-control study included 189 chronic hepatitis B (CHB) patients and 51 healthy controls. All patients underwent liver biopsy and modified Knodell scoring system used to determine the fibrosis level in CHB patients. Serum HMGB1 levels were determined with enzyme-linked immunosorbent assay (ELISA). Mean serum HMGB1 levels of patients (58.1 ± 54.7) were found to be higher than those of the control group (7.1 ± 4.3) (P = .001). HMGB1 levels of patients with advanced-stage fibrosis (stage 4 and 5) were detected to be higher than those of patients with early-stage fibrosis (stage 1-3). However, this difference was not statistically significant (P > .05). Albumin levels of fibrosis 3 and 4 patients were lower than fibrosis 1 and 2 patients. ALT, HBV DNA, and AFP levels of fibrosis 5 patients were significantly higher than fibrosis 1 and 2 patients, and their platelet and albumin levels are lower than fibrosis 1 and 2 patients (P < .001). In a logistic regression model, fibrosis levels were correlated with ALT values and inversely correlated with albumin levels. In this study, we demonstrated that serum HMGB1 levels increase in the early course of liver injury and this increase is not correlated with severity of the liver damage.

  3. The osteopontin level in liver, adipose tissue and serum is correlated with fibrosis in patients with alcoholic liver disease.

    PubMed

    Patouraux, Stéphanie; Bonnafous, Stéphanie; Voican, Cosmin S; Anty, Rodolphe; Saint-Paul, Marie-Christine; Rosenthal-Allieri, Maria-Alessandra; Agostini, Hélène; Njike, Micheline; Barri-Ova, Nadége; Naveau, Sylvie; Le Marchand-Brustel, Yannick; Veillon, Pascal; Calès, Paul; Perlemuter, Gabriel; Tran, Albert; Gual, Philippe

    2012-01-01

    Osteopontin (OPN) plays an important role in the progression of chronic liver diseases. We aimed to quantify the liver, adipose tissue and serum levels of OPN in heavy alcohol drinkers and to compare them with the histological severity of hepatic inflammation and fibrosis. OPN was evaluated in the serum of a retrospective and prospective group of 109 and 95 heavy alcohol drinkers, respectively, in the liver of 34 patients from the retrospective group, and in the liver and adipose tissue from an additional group of 38 heavy alcohol drinkers. Serum levels of OPN increased slightly with hepatic inflammation and progressively with the severity of hepatic fibrosis. Hepatic OPN expression correlated with hepatic inflammation, fibrosis, TGFβ expression, neutrophils accumulation and with the serum OPN level. Interestingly, adipose tissue OPN expression also correlated with hepatic fibrosis even after 7 days of alcohol abstinence. The elevated serum OPN level was an independent risk factor in estimating significant (F ≥ 2) fibrosis in a model combining alkaline phosphatase, albumin, hemoglobin, OPN and FibroMeter® levels. OPN had an area under the receiving operator curve that estimated significant fibrosis of 0.89 and 0.88 in the retrospective and prospective groups, respectively. OPN, Hyaluronate (AUROC: 0.88), total Cytokeratin 18 (AUROC: 0.83) and FibroMeter® (AUROC: 0.90) estimated significance to the same extent in the retrospective group. Finally, the serum OPN levels also correlated with hepatic fibrosis and estimated significant (F ≥ 2) fibrosis in 86 patients with chronic hepatitis C, which suggested that its elevated level could be a general response to chronic liver injury. OPN increased in the liver, adipose tissue and serum with liver fibrosis in alcoholic patients. Further, OPN is a new relevant biomarker for significant liver fibrosis. OPN could thus be an important actor in the pathogenesis of this chronic liver disease.

  4. The Osteopontin Level in Liver, Adipose Tissue and Serum Is Correlated with Fibrosis in Patients with Alcoholic Liver Disease

    PubMed Central

    Voican, Cosmin S.; Anty, Rodolphe; Saint-Paul, Marie-Christine; Rosenthal-Allieri, Maria-Alessandra; Agostini, Hélène; Njike, Micheline; Barri-Ova, Nadége; Naveau, Sylvie; Le Marchand-Brustel, Yannick; Veillon, Pascal; Calès, Paul; Perlemuter, Gabriel; Tran, Albert; Gual, Philippe

    2012-01-01

    Background Osteopontin (OPN) plays an important role in the progression of chronic liver diseases. We aimed to quantify the liver, adipose tissue and serum levels of OPN in heavy alcohol drinkers and to compare them with the histological severity of hepatic inflammation and fibrosis. Methodology/Principal Findings OPN was evaluated in the serum of a retrospective and prospective group of 109 and 95 heavy alcohol drinkers, respectively, in the liver of 34 patients from the retrospective group, and in the liver and adipose tissue from an additional group of 38 heavy alcohol drinkers. Serum levels of OPN increased slightly with hepatic inflammation and progressively with the severity of hepatic fibrosis. Hepatic OPN expression correlated with hepatic inflammation, fibrosis, TGFβ expression, neutrophils accumulation and with the serum OPN level. Interestingly, adipose tissue OPN expression also correlated with hepatic fibrosis even after 7 days of alcohol abstinence. The elevated serum OPN level was an independent risk factor in estimating significant (F≥2) fibrosis in a model combining alkaline phosphatase, albumin, hemoglobin, OPN and FibroMeter® levels. OPN had an area under the receiving operator curve that estimated significant fibrosis of 0.89 and 0.88 in the retrospective and prospective groups, respectively. OPN, Hyaluronate (AUROC: 0.88), total Cytokeratin 18 (AUROC: 0.83) and FibroMeter® (AUROC: 0.90) estimated significance to the same extent in the retrospective group. Finally, the serum OPN levels also correlated with hepatic fibrosis and estimated significant (F≥2) fibrosis in 86 patients with chronic hepatitis C, which suggested that its elevated level could be a general response to chronic liver injury. Conclusion/Significance OPN increased in the liver, adipose tissue and serum with liver fibrosis in alcoholic patients. Further, OPN is a new relevant biomarker for significant liver fibrosis. OPN could thus be an important actor in the

  5. Pharmacological Intervention in Hepatic Stellate Cell Activation and Hepatic Fibrosis

    PubMed Central

    Schon, Hans-Theo; Bartneck, Matthias; Borkham-Kamphorst, Erawan; Nattermann, Jacob; Lammers, Twan; Tacke, Frank; Weiskirchen, Ralf

    2016-01-01

    The activation and transdifferentiation of hepatic stellate cells (HSCs) into contractile, matrix-producing myofibroblasts (MFBs) are central events in hepatic fibrogenesis. These processes are driven by autocrine- and paracrine-acting soluble factors (i.e., cytokines and chemokines). Proof-of-concept studies of the last decades have shown that both the deactivation and removal of hepatic MFBs as well as antagonizing profibrogenic factors are in principle suitable to attenuate ongoing hepatic fibrosis. Although several drugs show potent antifibrotic activities in experimental models of hepatic fibrosis, there is presently no effective pharmaceutical intervention specifically approved for the treatment of liver fibrosis. Pharmaceutical interventions are generally hampered by insufficient supply of drugs to the diseased liver tissue and/or by adverse effects as a result of affecting non-target cells. Therefore, targeted delivery systems that bind specifically to receptors solely expressed on activated HSCs or transdifferentiated MFBs and delivery systems that can improve drug distribution to the liver in general are urgently needed. In this review, we summarize current strategies for targeted delivery of drugs to the liver and in particular to pro-fibrogenic liver cells. The applicability and efficacy of sequestering molecules, selective protein carriers, lipid-based drug vehicles, viral vectors, transcriptional targeting approaches, therapeutic liver- and HSC-specific nanoparticles, and miRNA-based strategies are discussed. Some of these delivery systems that had already been successfully tested in experimental animal models of ongoing hepatic fibrogenesis are expected to translate into clinically useful therapeutics specifically targeting HSCs. PMID:26941644

  6. Human non-contrast T1 values and correlation with histology in diffuse fibrosis

    PubMed Central

    Bull, Sacha; White, Steven K; Piechnik, Stefan K; Flett, Andrew S; Ferreira, Vanessa M; Loudon, Margaret; Francis, Jane M; Karamitsos, Theodoros D; Prendergast, Bernard D; Robson, Matthew D; Neubauer, Stefan; Moon, James C; Myerson, Saul G

    2013-01-01

    Background Aortic stenosis (AS) leads to diffuse fibrosis in the myocardium, which is linked to adverse outcome. Myocardial T1 values change with tissue composition. Objective To test the hypothesis that our recently developed non-contrast cardiac magnetic resonance (CMR) T1 mapping sequence could identify myocardial fibrosis without contrast agent. Design, setting and patients A prospective CMR non-contrast T1 mapping study of 109 patients with moderate and severe AS and 33 age- and gender-matched controls. Methods CMR at 1.5 T, including non-contrast T1 mapping using a shortened modified Look–Locker inversion recovery sequence, was carried out. Biopsy samples for histological assessment of collagen volume fraction (CVF%) were obtained in 19 patients undergoing aortic valve replacement. Results There was a significant correlation between T1 values and CVF% (r=0.65, p=0.002). Mean T1 values were significantly longer in all groups with severe AS (972±33 ms in severe asymptomatic, 1014±38 ms in severe symptomatic) than in normal controls (944±16 ms) (p<0.05). The strongest associations with T1 values were for aortic valve area (r=−0.40, p=0.001) and left ventricular mass index (LVMI) (r=0.36, p=0.008), and these were the only independent predictors on multivariate analysis. Conclusions Non-contrast T1 values are increased in patients with severe AS and further increase in symptomatic compared with asymptomatic patients. T1 values lengthened with greater LVMI and correlated with the degree of biopsy-quantified fibrosis. This may provide a useful clinical assessment of diffuse myocardial fibrosis in the future. PMID:23349348

  7. Human non-contrast T1 values and correlation with histology in diffuse fibrosis.

    PubMed

    Bull, Sacha; White, Steven K; Piechnik, Stefan K; Flett, Andrew S; Ferreira, Vanessa M; Loudon, Margaret; Francis, Jane M; Karamitsos, Theodoros D; Prendergast, Bernard D; Robson, Matthew D; Neubauer, Stefan; Moon, James C; Myerson, Saul G

    2013-07-01

    Aortic stenosis (AS) leads to diffuse fibrosis in the myocardium, which is linked to adverse outcome. Myocardial T1 values change with tissue composition. To test the hypothesis that our recently developed non-contrast cardiac magnetic resonance (CMR) T1 mapping sequence could identify myocardial fibrosis without contrast agent. A prospective CMR non-contrast T1 mapping study of 109 patients with moderate and severe AS and 33 age- and gender-matched controls. CMR at 1.5 T, including non-contrast T1 mapping using a shortened modified Look-Locker inversion recovery sequence, was carried out. Biopsy samples for histological assessment of collagen volume fraction (CVF%) were obtained in 19 patients undergoing aortic valve replacement. There was a significant correlation between T1 values and CVF% (r=0.65, p=0.002). Mean T1 values were significantly longer in all groups with severe AS (972 ± 33 ms in severe asymptomatic, 1014 ± 38 ms in severe symptomatic) than in normal controls (944 ± 16 ms) (p<0.05). The strongest associations with T1 values were for aortic valve area (r=-0.40, p=0.001) and left ventricular mass index (LVMI) (r=0.36, p=0.008), and these were the only independent predictors on multivariate analysis. Non-contrast T1 values are increased in patients with severe AS and further increase in symptomatic compared with asymptomatic patients. T1 values lengthened with greater LVMI and correlated with the degree of biopsy-quantified fibrosis. This may provide a useful clinical assessment of diffuse myocardial fibrosis in the future.

  8. Wnt6 regulates epithelial cell differentiation and is dysregulated in renal fibrosis.

    PubMed

    Beaton, Hayley; Andrews, Darrell; Parsons, Martin; Murphy, Mary; Gaffney, Andrew; Kavanagh, David; McKay, Gareth J; Maxwell, Alexander P; Taylor, Cormac T; Cummins, Eoin P; Godson, Catherine; Higgins, Debra F; Murphy, Paula; Crean, John

    2016-07-01

    Diabetic nephropathy is the most common microvascular complication of diabetes mellitus, manifesting as mesangial expansion, glomerular basement membrane thickening, glomerular sclerosis, and progressive tubulointerstitial fibrosis leading to end-stage renal disease. Here we describe the functional characterization of Wnt6, whose expression is progressively lost in diabetic nephropathy and animal models of acute tubular injury and renal fibrosis. We have shown prominent Wnt6 and frizzled 7 (FzD7) expression in the mesonephros of the developing mouse kidney, suggesting a role for Wnt6 in epithelialization. Importantly, TCF/Lef reporter activity is also prominent in the mesonephros. Analysis of Wnt family members in human renal biopsies identified differential expression of Wnt6, correlating with severity of the disease. In animal models of tubular injury and fibrosis, loss of Wnt6 was evident. Wnt6 signals through the canonical pathway in renal epithelial cells as evidenced by increased phosphorylation of GSK3β (Ser9), nuclear accumulation of β-catenin and increased TCF/Lef transcriptional activity. FzD7 was identified as a putative receptor of Wnt6. In vitro Wnt6 expression leads to de novo tubulogenesis in renal epithelial cells grown in three-dimensional culture. Importantly, Wnt6 rescued epithelial cell dedifferentiation in response to transforming growth factor-β (TGF-β); Wnt6 reversed TGF-β-mediated increases in vimentin and loss of epithelial phenotype. Wnt6 inhibited TGF-β-mediated p65-NF-κB nuclear translocation, highlighting cross talk between the two pathways. The critical role of NF-κB in the regulation of vimentin expression was confirmed in both p65(-/-) and IKKα/β(-/-) embryonic fibroblasts. We propose that Wnt6 is involved in epithelialization and loss of Wnt6 expression contributes to the pathogenesis of renal fibrosis. Copyright © 2016 the American Physiological Society.

  9. An autopsy study of combined pulmonary fibrosis and emphysema: correlations among clinical, radiological, and pathological features.

    PubMed

    Inomata, Minoru; Ikushima, Soichiro; Awano, Nobuyasu; Kondoh, Keisuke; Satake, Kohta; Masuo, Masahiro; Kusunoki, Yuji; Moriya, Atsuko; Kamiya, Hiroyuki; Ando, Tsunehiro; Yanagawa, Noriyo; Kumasaka, Toshio; Ogura, Takashi; Sakai, Fumikazu; Azuma, Arata; Gemma, Akihiko; Takemura, Tamiko

    2014-06-28

    Clinical evaluation to differentiate the characteristic features of pulmonary fibrosis and emphysema is often difficult in patients with combined pulmonary fibrosis and emphysema (CPFE), but diagnosis of pulmonary fibrosis is important for evaluating treatment options and the risk of acute exacerbation of interstitial pneumonia of such patients. As far as we know, it is the first report describing a correlation among clinical, radiological, and whole-lung pathological features in an autopsy cases of CPFE patients. Experts retrospectively reviewed the clinical charts and examined chest computed tomography (CT) images and pathological findings of an autopsy series of 22 CPFE patients, and compared these with findings from 8 idiopathic pulmonary fibrosis (IPF) patients and 17 emphysema-alone patients. All patients had a history of heavy smoking. Forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC%) was significantly lower in the emphysema-alone group than the CPFE and IPF-alone groups. The percent predicted diffusing capacity of the lung for carbon monoxide (DLCO%) was significantly lower in the CPFE group than the IPF- and emphysema-alone groups. Usual interstitial pneumonia (UIP) pattern was observed radiologically in 15 (68.2%) CPFE and 8 (100%) IPF-alone patients and was pathologically observed in all patients from both groups. Pathologically thick-cystic lesions involving one or more acini with dense wall fibrosis and occasional fibroblastic foci surrounded by honeycombing and normal alveoli were confirmed by post-mortem observation as thick-walled cystic lesions (TWCLs). Emphysematous destruction and enlargement of membranous and respiratory bronchioles with fibrosis were observed in the TWCLs. The cystic lesions were always larger than the cysts of honeycombing. The prevalence of both radiological and pathological TWCLs was 72.7% among CPFE patients, but no such lesions were observed in patients with IPF or emphysema alone (p=0.001). The extent of

  10. An autopsy study of combined pulmonary fibrosis and emphysema: correlations among clinical, radiological, and pathological features

    PubMed Central

    2014-01-01

    Background Clinical evaluation to differentiate the characteristic features of pulmonary fibrosis and emphysema is often difficult in patients with combined pulmonary fibrosis and emphysema (CPFE), but diagnosis of pulmonary fibrosis is important for evaluating treatment options and the risk of acute exacerbation of interstitial pneumonia of such patients. As far as we know, it is the first report describing a correlation among clinical, radiological, and whole-lung pathological features in an autopsy cases of CPFE patients. Methods Experts retrospectively reviewed the clinical charts and examined chest computed tomography (CT) images and pathological findings of an autopsy series of 22 CPFE patients, and compared these with findings from 8 idiopathic pulmonary fibrosis (IPF) patients and 17 emphysema-alone patients. Results All patients had a history of heavy smoking. Forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC%) was significantly lower in the emphysema-alone group than the CPFE and IPF-alone groups. The percent predicted diffusing capacity of the lung for carbon monoxide (DLCO%) was significantly lower in the CPFE group than the IPF- and emphysema-alone groups. Usual interstitial pneumonia (UIP) pattern was observed radiologically in 15 (68.2%) CPFE and 8 (100%) IPF-alone patients and was pathologically observed in all patients from both groups. Pathologically thick-cystic lesions involving one or more acini with dense wall fibrosis and occasional fibroblastic foci surrounded by honeycombing and normal alveoli were confirmed by post-mortem observation as thick-walled cystic lesions (TWCLs). Emphysematous destruction and enlargement of membranous and respiratory bronchioles with fibrosis were observed in the TWCLs. The cystic lesions were always larger than the cysts of honeycombing. The prevalence of both radiological and pathological TWCLs was 72.7% among CPFE patients, but no such lesions were observed in patients with IPF or emphysema

  11. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis

    PubMed Central

    Halliday, Nigel; Cámara, Miguel; Barrett, David A.; Williams, Paul; Forrester, Douglas L.; Simms, Rebecca; Smyth, Alan R.; Honeybourne, David; Whitehouse, Joanna L.; Nash, Edward F.; Dewar, Jane; Clayton, Andrew; Knox, Alan J.; Fogarty, Andrew W.

    2015-01-01

    Pseudomonas aeruginosa produces quorum sensing signal molecules that are potential biomarkers for infection. A prospective study of 60 cystic fibrosis patients with chronic P. aeruginosa, who required intravenous antibiotics for pulmonary exacerbations, was undertaken. Clinical measurements and biological samples were obtained at the start and end of the treatment period. Additional data were available for 29 of these patients when they were clinically stable. Cross-sectionally, quorum sensing signal molecules were detectable in the sputum, plasma and urine of 86%, 75% and 83% patients, respectively. They were positively correlated between the three biofluids. Positive correlations were observed for most quorum sensing signal molecules in sputum, plasma and urine, with quantitative measures of pulmonary P. aeruginosa load at the start of a pulmonary exacerbation. Plasma concentrations of 2-nonyl-4-hydroxy-quinoline (NHQ) were significantly higher at the start of a pulmonary exacerbation compared to clinical stability (p<0.01). Following the administration of systemic antibiotics, plasma 2-heptyl-4-hydroxyquinoline (p=0.02) and NHQ concentrations (p<0.01) decreased significantly. In conclusion, quorum sensing signal molecules are detectable in cystic fibrosis patients with pulmonary P. aeruginosa infection and are positively correlated with quantitative measures of P. aeruginosa. NHQ correlates with clinical status and has potential as a novel biomarker for P. aeruginosa infection. PMID:26022946

  12. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis.

    PubMed

    Barr, Helen L; Halliday, Nigel; Cámara, Miguel; Barrett, David A; Williams, Paul; Forrester, Douglas L; Simms, Rebecca; Smyth, Alan R; Honeybourne, David; Whitehouse, Joanna L; Nash, Edward F; Dewar, Jane; Clayton, Andrew; Knox, Alan J; Fogarty, Andrew W

    2015-10-01

    Pseudomonas aeruginosa produces quorum sensing signal molecules that are potential biomarkers for infection.A prospective study of 60 cystic fibrosis patients with chronic P. aeruginosa, who required intravenous antibiotics for pulmonary exacerbations, was undertaken. Clinical measurements and biological samples were obtained at the start and end of the treatment period. Additional data were available for 29 of these patients when they were clinically stable.Cross-sectionally, quorum sensing signal molecules were detectable in the sputum, plasma and urine of 86%, 75% and 83% patients, respectively. They were positively correlated between the three biofluids. Positive correlations were observed for most quorum sensing signal molecules in sputum, plasma and urine, with quantitative measures of pulmonary P. aeruginosa load at the start of a pulmonary exacerbation. Plasma concentrations of 2-nonyl-4-hydroxy-quinoline (NHQ) were significantly higher at the start of a pulmonary exacerbation compared to clinical stability (p<0.01). Following the administration of systemic antibiotics, plasma 2-heptyl-4-hydroxyquinoline (p=0.02) and NHQ concentrations (p<0.01) decreased significantly.In conclusion, quorum sensing signal molecules are detectable in cystic fibrosis patients with pulmonary P. aeruginosa infection and are positively correlated with quantitative measures of P. aeruginosa. NHQ correlates with clinical status and has potential as a novel biomarker for P. aeruginosa infection.

  13. The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis.

    PubMed

    Strieter, Robert M; Keeley, Ellen C; Hughes, Molly A; Burdick, Marie D; Mehrad, Borna

    2009-11-01

    Pulmonary fibrosis is associated with a number of disorders that affect the lung. Although there are several cellular types that are involved in the pathogenesis pulmonary fibrosis, the resident lung fibroblast has been viewed traditionally as the primary cell involved in promoting the deposition of ECM that culminates in pulmonary fibrosis. However, recent findings demonstrate that a circulating cell (i.e., the fibrocyte) can contribute to the evolution of pulmonary fibrosis. Fibrocytes are bone marrow-derived mesenchymal progenitor cells that express a variety of cell-surface markers related to leukocytes, hematopoietic progenitor cells, and fibroblasts. Fibrocytes are unique in that they are capable of differentiating into fibroblasts and myofibroblasts, as well as adipocytes. In this review, we present data supporting the critical role these cells play in the pathogenesis of pulmonary fibrosis.

  14. Mast cell density in oral submucous fibrosis: a possible role in pathogenesis.

    PubMed

    Pujari, Ravikumar; Vidya, N

    2013-01-01

    Oral submucous fibrosis (OSMF) is a premalignant condition of oral cavity characterized by inflammation and progressive mucosal fibrosis. It has questionable pathogenesis. Mast cells (MC) have been associated with variety of inflammatory and fibrotic conditions, but little is known about their role in OSMF. Mast cells have been studied in normal gingiva, chronic inflammatory gingivitis, desquamative gingivitis, lichen planus, OSMF and oral cancer. Mast cells exhibit phenotypic plasticity. There is variation in the mast cell mediators with the change in the microenvironment, which makes the study of this cell in various diseases interesting. A retrospective study was conducted to find possible correlation between MC in 25 cases of OSF, 10 cases of oral squamous cell carcinoma (OSCC) and 10 cases of normal buccal mucosa by means of acidified toluidine blue staining method. The density of MC increased with disease progression. The densities of MC were significantly higher in OSMF than in normal buccal mucosa (p=0.001). The average numbers of MCs per square millimeter were 25, 49.50, 53.25 & 55.25 respectively. The results suggest that MC have a definite role in initiation and progression of OSMF.

  15. The role of circulating mesenchymal progenitor cells, fibrocytes, in promoting pulmonary fibrosis.

    PubMed

    Strieter, Robert M; Keeley, Ellen C; Burdick, Marie D; Mehrad, Borna

    2009-01-01

    The resident fibroblast has been traditionally viewed as the primary cell involved in promoting pulmonary fibrosis. However, contemporary findings now support the concept of a circulating cell (fibrocyte) that also contributes to pulmonary fibrosis. Fibrocytes are bone marrow-derived mesenchymal progenitor cells that express a variety of cell surface markers related to leukocytes, hematopoietic progenitor cells and fibroblasts. Fibrocytes are unique in that they are capable of differentiating into fibroblasts and myofibroblasts, as well as adipocytes. In this review, we present data supporting the critical role these cells play in the pathogenesis of pulmonary fibrosis.

  16. CD8+ T Cell Response to Gammaherpesvirus Infection Mediates Inflammation and Fibrosis in Interferon Gamma Receptor-Deficient Mice

    PubMed Central

    O’Flaherty, Brigid M.; Matar, Caline G.; Wakeman, Brian S.; Garcia, AnaPatricia; Wilke, Carol A.; Courtney, Cynthia L.; Moore, Bethany B.; Speck, Samuel H.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF), one of the most severe interstitial lung diseases, is a progressive fibrotic disorder of unknown etiology. However, there is growing appreciation for the role of viral infection in disease induction and/or progression. A small animal model of multi-organ fibrosis, which involves murine gammaherpesvirus (MHV68) infection of interferon gamma receptor deficient (IFNγR-/-) mice, has been utilized to model the association of gammaherpesvirus infections and lung fibrosis. Notably, several MHV68 mutants which fail to induce fibrosis have been identified. Our current study aimed to better define the role of the unique MHV68 gene, M1, in development of pulmonary fibrosis. We have previously shown that the M1 gene encodes a secreted protein which possesses superantigen-like function to drive the expansion and activation of Vβ4+ CD8+ T cells. Here we show that M1-dependent fibrosis is correlated with heightened levels of inflammation in the lung. We observe an M1-dependent cellular infiltrate of innate immune cells with most striking differences at 28 days-post infection. Furthermore, in the absence of M1 protein expression we observed reduced CD8+ T cells and MHV68 epitope specific CD8+ T cells to the lungs—despite equivalent levels of viral replication between M1 null and wild type MHV68. Notably, backcrossing the IFNγR-/- onto the Balb/c background, which has previously been shown to exhibit weak MHV68-driven Vβ4+ CD8+ T cell expansion, eliminated MHV68-induced fibrosis—further implicating the activated Vβ4+ CD8+ T cell population in the induction of fibrosis. We further addressed the role that CD8+ T cells play in the induction of fibrosis by depleting CD8+ T cells, which protected the mice from fibrotic disease. Taken together these findings are consistent with the hypothesized role of Vβ4+ CD8+ T cells as mediators of fibrotic disease in IFNγR-/- mice. PMID:26317335

  17. Non-invasive Assessment of Liver Fibrosis with ElastPQ: Comparison with Transient Elastography and Serologic Fibrosis Marker Tests, and Correlation with Liver Pathology Results.

    PubMed

    Lee, Jeong Eun; Shin, Kyung Sook; Cho, June-Sik; You, Sun Kyoung; Min, Ji Hye; Kim, Kyung-Hee; Song, In Sang; Cheon, Kwang Sik

    2017-11-01

    We investigated the feasibility of using ultrasound shear wave elastography point quantification (ElastPQ) for liver fibrosis staging and compared it with other non-invasive tools with respect to efficacy in liver stiffness measurement. A total of 106 patients who underwent liver stiffness measurements, using ElastPQ and biochemical investigations, before parenchymal liver biopsy or surgery were included. Among these, 51 also underwent transient elastography (TE). Correlations of ElastPQ, TE and aspartate aminotransferase-to-platelet ratio index (APRI) with histopathological findings (as the reference standard) were determined using Spearman's correlation coefficient. The diagnostic performance of ElastPQ, TE and APRI was evaluated using receiver operating characteristic (ROC) curve analysis. ElastPQ had good diagnostic accuracy in identifying each liver fibrosis stage, with an area under the ROC curve (AUC) of 0.810 to 0.864. Stiffness values obtained using ElastPQ, TE and APRI were significantly positively correlated (r = 0.686, r = 0.732 and r = 0.454, respectively) with histologic fibrosis staging (p < 0.001). According to the AUC for the diagnosis of significant fibrosis (≥F2) and cirrhosis (=F4), ElastPQ had better diagnostic accuracy (AUC = 0.929 and 0.834, respectively) than APRI (AUC = 0.656 and 0.618, respectively) (p < 0.05), and was similar to TE (AUC = 0.915 and 0.879, respectively). ElastPQ is a promising ultrasound-based imaging technique for evaluation of liver fibrosis, with a diagnostic accuracy comparable to that of TE. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Dendritic cells maintain dermal adipose–derived stromal cells in skin fibrosis

    PubMed Central

    Chia, Jennifer J.; Zhu, Tong; Chyou, Susan; Dasoveanu, Dragos C.; Carballo, Camila; Tian, Sha; Magro, Cynthia M.; Rodeo, Scott; Spiera, Robert F.; Ruddle, Nancy H.; McGraw, Timothy E.; Browning, Jeffrey L.; Lafyatis, Robert; Gordon, Jessica K.; Lu, Theresa T.

    2016-01-01

    Scleroderma is a group of skin-fibrosing diseases for which there are no effective treatments. A feature of the skin fibrosis typical of scleroderma is atrophy of the dermal white adipose tissue (DWAT). Adipose tissue contains adipose-derived mesenchymal stromal cells (ADSCs) that have regenerative and reparative functions; however, whether DWAT atrophy in fibrosis is accompanied by ADSC loss is poorly understood, as are the mechanisms that might maintain ADSC survival in fibrotic skin. Here, we have shown that DWAT ADSC numbers were reduced, likely because of cell death, in 2 murine models of scleroderma skin fibrosis. The remaining ADSCs showed a partial dependence on dendritic cells (DCs) for survival. Lymphotoxin β (LTβ) expression in DCs maintained ADSC survival in fibrotic skin by activating an LTβ receptor/β1 integrin (LTβR/β1 integrin) pathway on ADSCs. Stimulation of LTβR augmented the engraftment of therapeutically injected ADSCs, which was associated with reductions in skin fibrosis and improved skin function. These findings provide insight into the effects of skin fibrosis on DWAT ADSCs, identify a DC-ADSC survival axis in fibrotic skin, and suggest an approach for improving mesenchymal stromal cell therapy in scleroderma and other diseases. PMID:27721238

  19. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis

    PubMed Central

    Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6-/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6-/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6-/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6-/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis. PMID:26691857

  20. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis.

    PubMed

    Affò, Silvia; Rodrigo-Torres, Daniel; Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6-/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6-/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6-/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6-/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis.

  1. A network model of correlated growth of tissue stiffening in pulmonary fibrosis

    NASA Astrophysics Data System (ADS)

    Oliveira, Cláudio L. N.; Bates, Jason H. T.; Suki, Béla

    2014-06-01

    During the progression of pulmonary fibrosis, initially isolated regions of high stiffness form and grow in the lung tissue due to collagen deposition by fibroblast cells. We have previously shown that ongoing collagen deposition may not lead to significant increases in the bulk modulus of the lung until these local remodeled regions have become sufficiently numerous and extensive to percolate in a continuous path across the entire tissue (Bates et al 2007 Am. J. Respir. Crit. Care Med. 176 617). This model, however, did not include the possibility of spatially correlated deposition of collagen. In the present study, we investigate whether spatial correlations influence the bulk modulus in a two-dimensional elastic network model of lung tissue. Random collagen deposition at a single site is modeled by increasing the elastic constant of the spring at that site by a factor of 100. By contrast, correlated collagen deposition is represented by stiffening the springs encountered along a random walk starting from some initial spring, the rationale being that excess collagen deposition is more likely in the vicinity of an already stiff region. A combination of random and correlated deposition is modeled by performing random walks of length N from randomly selected initial sites, the balance between the two processes being determined by N. We found that the dependence of bulk modulus, B(N,c), on both N and the fraction of stiff springs, c, can be described by a strikingly simple set of empirical equations. For c<0.3, B(N,c) exhibits exponential growth from its initial value according to B(N,c)\\approx {{B}_{0}}exp (2c)\\left[ 1+{{c}^{\\beta }}ln \\left( {{N}^{{{a}_{I}}}} \\right) \\right], where \\beta =0.994+/- 0.024 and {{a}_{I}}=0.54+/- 0.026. For intermediate concentrations of stiffening, 0.3\\leqslant c\\leqslant 0.8, another exponential rule describes the bulk modulus as B(N,c)=4{{B}_{0}}exp \\left[ {{a}_{II}}\\left( c-{{c}_{c}} \\right) \\right], where {{a

  2. A network model of correlated growth of tissue stiffening in pulmonary fibrosis.

    PubMed

    Oliveira, Cláudio L N; Bates, Jason H T; Suki, Béla

    2014-06-26

    During the progression of pulmonary fibrosis, initially isolated regions of high stiffness form and grow in the lung tissue due to collagen deposition by fibroblast cells. We have previously shown that ongoing collagen deposition may not lead to significant increases in the bulk modulus of the lung until these local remodeled regions have become sufficiently numerous and extensive to percolate in a continuous path across the entire tissue [Bates et al. 2007 Am. J. Respir. Crit. Care Med. 176 617]. This model, however, did not include the possibility of spatially correlated deposition of collagen. In the present study, we investigate whether spatial correlations influence the bulk modulus in a two-dimensional elastic network model of lung tissue. Random collagen deposition at a single site is modeled by increasing the elastic constant of the spring at that site by a factor of 100. By contrast, correlated collagen deposition is represented by stiffening the springs encountered along a random walk starting from some initial spring, the rationale being that excess collagen deposition is more likely in the vicinity of an already stiff region. A combination of random and correlated deposition is modeled by performing random walks of length N from randomly selected initial sites, the balance between the two processes being determined by N. We found that the dependence of bulk modulus, B(N, c), on both N and the fraction of stiff springs, c, can be described by a strikingly simple set of empirical equations. For c < 0.3, B(N, c) exhibits exponential growth from its initial value according to B(N, c) ≈ B0exp(2c)[1 + c(β) ln(N(a)(I))], where β = 0.994 ± 0.024 and aI = 0.54 ± 0.026. For intermediate concentrations of stiffening, 0.3 ≤ c ≤ 0.8, another exponential rule describes the bulk modulus as B(N, c) = 4B0exp[aII (c - cc )], where aII and cc are parameters that depend on N. For c > 0.8, B(N, c) is linear in c and independent of N, such that B(N, c) = 100B0

  3. A network model of correlated growth of tissue stiffening in pulmonary fibrosis

    PubMed Central

    Oliveira, Cláudio L N; Bates, Jason H T; Suki, Béla

    2014-01-01

    During the progression of pulmonary fibrosis, initially isolated regions of high stiffness form and grow in the lung tissue due to collagen deposition by fibroblast cells. We have previously shown that ongoing collagen deposition may not lead to significant increases in the bulk modulus of the lung until these local remodeled regions have become sufficiently numerous and extensive to percolate in a continuous path across the entire tissue [Bates et al. 2007 Am. J. Respir. Crit. Care Med. 176 617]. This model, however, did not include the possibility of spatially correlated deposition of collagen. In the present study, we investigate whether spatial correlations influence the bulk modulus in a two-dimensional elastic network model of lung tissue. Random collagen deposition at a single site is modeled by increasing the elastic constant of the spring at that site by a factor of 100. By contrast, correlated collagen deposition is represented by stiffening the springs encountered along a random walk starting from some initial spring, the rationale being that excess collagen deposition is more likely in the vicinity of an already stiff region. A combination of random and correlated deposition is modeled by performing random walks of length N from randomly selected initial sites, the balance between the two processes being determined by N. We found that the dependence of bulk modulus, B(N, c), on both N and the fraction of stiff springs, c, can be described by a strikingly simple set of empirical equations. For c < 0.3, B(N, c) exhibits exponential growth from its initial value according to B(N, c) ≈ B0exp(2c)[1 + cβ ln(NaI)], where β = 0.994 ± 0.024 and aI = 0.54 ± 0.026. For intermediate concentrations of stiffening, 0.3 ≤ c ≤ 0.8, another exponential rule describes the bulk modulus as B(N, c) = 4B0exp[aII (c − cc)], where aII and cc are parameters that depend on N. For c > 0.8, B(N, c) is linear in c and independent of N, such that B(N, c) = 100B0 − 100a

  4. Change in the cells that express connective tissue growth factor in acute Coxsackievirus-induced myocardial fibrosis in mouse.

    PubMed

    Yun, Soo-Hyeon; Shin, Jae-Ok; Lim, Byung-Kwan; Kim, Kyoung-Li; Gil, Chae-Ok; Kim, Duk-Kyung; Jeon, Eun-Seok

    2007-06-01

    Cardiac fibrosis and inflammation are major pathologic conditions that result from viral myocarditis. Connective tissue growth factor (CTGF) stimulates fibroblast proliferation and induces production of extracellular matrix molecules. We studied the correlation between CTGF and cardiac fibrosis in an acute Coxsackievirus B3 (CVB3) myocarditis animal model. Eight-week-old BALB/c mice were infected intraperitoneally with 10(4) plaque forming units (PFU) of CVB3. Myocardial inflammation peaked on day 7 and decreased markedly by day 14 post-infection (pi); cardiac fibrosis was noted from day 7 and peaked on day 14. By contrast, CTGF was weakly expressed by the interstitial cells in uninfected control hearts and also in the hearts of day 3 pi. CTGF expression measured by real-time PCR was elevated on day 3 and peaked on day 7 pi. TGF-beta expression peaked at day 7 pi. The cell type of CTGF expression changed from interstitial cells to myocytes after virus infection. On day 7, CTGF was strongly expressed by myocytes and inflammatory cells surrounding calcified necrotic areas. In addition, cardiac myocytes expressed CTGF on day 14. Our results, based on an acute CVB3 model of myocarditis, provide evidence that CTGF may mediate the development of fibrosis after viral myocarditis, and that the cells expressed CTGF changes during the course of viral myocarditis.

  5. Huangqi decoction inhibits apoptosis and fibrosis, but promotes Kupffer cell activation in dimethylnitrosamine-induced rat liver fibrosis

    PubMed Central

    2012-01-01

    Background Previously, Huangqi decoction (HQD) has been found to have a potential therapeutic effect on DMN-induced liver cirrhosis. Here, the mechanisms of HQD action against liver fibrosis were investigated in relation to hepatocyte apoptosis and hepatic inflammation regulation. Methods Liver fibrosis was induced by DMN administration for 2 or 4 weeks. Hepatocyte apoptosis and of Kupffer cells (KC) and hepatic stellate cells (HSC) interaction were investigated using confocal microscopy. The principle cytokines, fibrogenic proteins and apoptotic factors were investigated using western blot analysis. Results Compared with the DMN-water group, HQD showed decreased hepatocyte apoptosis and reduced expression of apoptotic effectors, cleaved-caspase-3, and fibrotic factors, such as smooth muscle α-actin (α-SMA), transforming growth factor beta-1 (TGF-β1). However, the KC marker CD68 increased significantly in DMN-HQD liver. Confocal microscopy demonstrated widespread adhesion of KCs to HSCs in DMN-water and DMN-HQD rats liver. Conclusions HQD exhibited positive protective effects against liver fibrosis; its mechanism of action was associated with protection from hepatocyte apoptosis and the promotion of CD68 expression in the devolopment of liver fibrosis to cirrhosis development. PMID:22531084

  6. Association between diffuse myocardial fibrosis and diastolic dysfunction in sickle cell anemia.

    PubMed

    Niss, Omar; Fleck, Robert; Makue, Fowe; Alsaied, Tarek; Desai, Payal; Towbin, Jeffrey A; Malik, Punam; Taylor, Michael D; Quinn, Charles T

    2017-07-13

    Sickle cell anemia (SCA)-related cardiomyopathy is characterized by diastolic dysfunction and hyperdynamic features. Diastolic dysfunction portends early mortality in SCA. Diastolic dysfunction is associated with microscopic myocardial fibrosis in SCA mice, but the cause of diastolic dysfunction in humans with SCA is unknown. We used cardiac magnetic resonance measurements of extracellular volume fraction (ECV) to discover and quantify diffuse myocardial fibrosis in 25 individuals with SCA (mean age, 23 ± 13 years) and determine the association between diffuse myocardial fibrosis and diastolic dysfunction. ECV was calculated from pre- and post-gadolinium T1 measurements of blood and myocardium, and diastolic function was assessed by echocardiography. ECV was markedly increased in all participants compared with controls (0.44 ± 0.08 vs 0.26 ± 0.02, P < .0001), indicating the presence of diffuse myocardial fibrosis. Seventeen patients (71%) had diastolic abnormalities, and 7 patients (29%) met the definition of diastolic dysfunction. Participants with diastolic dysfunction had higher ECV (0.49 ± 0.07 vs 0.37 ± 0.04, P = .01) and N-terminal pro-brain natriuretic peptide (NT-proBNP; 191 ± 261 vs 33 ± 33 pg/mL, P = .04) but lower hemoglobin (8.4 ± 0.3 vs 10.9 ± 1.4 g/dL, P = .004) compared with participants with normal diastolic function. Participants with the highest ECV values (≥0.40) were more likely to have diastolic dysfunction (P = .003) and increased left atrial volume (57 ± 11 vs 46 ± 12 mL/m(2), P = .04) compared with those with ECV <0.4. ECV correlated with hemoglobin (r = -0.46, P = .03) and NT-proBNP (r = 0.62, P = .001). In conclusion, diffuse myocardial fibrosis, determined by ECV, is a common and previously underappreciated feature of SCA that is associated with diastolic dysfunction, anemia, and high NT-proBNP. Diffuse myocardial fibrosis is a novel mechanism that appears to underlie diastolic dysfunction in SCA. © 2017 by The American

  7. Mesothelial cell autoantibodies upregulate transcription factors associated with fibrosis.

    PubMed

    Gilmer, John; Harding, Tanner; Woods, Linda; Black, Brad; Flores, Raja; Pfau, Jean

    2017-01-01

    Amphibole asbestos exposure is associated with the production of mesothelial cell autoantibodies (MCAA). These MCAA have been linked with pleural fibrotic disease in the asbestos exposed community of Libby, Montana, and induce collagen deposition by cultured mesothelial cells. However, the exact intracellular mechanism by which these autoantibodies cause an increase in collagen deposition remains unknown. This study sought to gain insight into the transcription factors involved in the collagen production after human mesothelial cells are exposed to MCAA. In this study, transcription factor activation profiles were generated from human mesothelial cells (Met5A) treated with serum from Libby subjects, and were compared to cells treated with serum cleared of IgG, and therefore containing no MCAA. Analysis of those profiles indicated C/EBP-beta and hypoxia inducible factor 1 alpha (HIF-1α) are significantly increased in the nucleus, indicating activation, due to MCAA exposure compared to controls. Inhibition of either of these transcription factors significantly reduced collagen 1 deposition by these cells following exposure to MCAA. These data suggest autoantibodies are directly involved in type I collagen deposition and may elucidate potential therapeutic targets for autoantibody mediated fibrosis.

  8. Rest perfusion abnormalities in hypertrophic cardiomyopathy: correlation with myocardial fibrosis and risk factors for sudden cardiac death.

    PubMed

    Chiribiri, A; Leuzzi, S; Conte, M R; Bongioanni, S; Bratis, K; Olivotti, L; De Rosa, C; Lardone, E; Di Donna, P; Villa, A D M; Cesarani, F; Nagel, E; Gaita, F; Bonamini, R

    2015-05-01

    To measure the prevalence of abnormal rest perfusion in a population of consecutive patients with known hypertrophic cardiomyopathy (HCM) referred for cardiovascular MRI (CMR), and to assess any associations between abnormal rest perfusion and the presence, pattern, and severity of myocardial scar and the presence of risk factors for sudden death. Eighty consecutive patients with known HCM referred for CMR underwent functional imaging, rest first-pass perfusion, and late gadolinium enhancement (LGE). Thirty percent of the patients had abnormal rest perfusion, all of them corresponding to areas of mid-myocardial LGE and to a higher degree of segmental hypertrophy. Rest perfusion abnormalities correlated with more extensive and confluent LGE. The subgroup of patients with myocardial fibrosis and rest perfusion abnormalities (fibrosis+/perfusion+) had more than twice the incidence of episodes of non-sustained ventricular tachycardia on Holter monitoring in comparison to patients with myocardial fibrosis and normal rest perfusion (fibrosis+/perfusion-) and patients with no fibrosis and normal rest perfusion (fibrosis-/perfusion-). First-pass perfusion CMR identifies abnormal rest perfusion in a significant proportion of patients with HCM. These abnormalities are associated with the presence and distribution of myocardial scar and the degree of hypertrophy. Rest perfusion abnormalities identify patients with increased incidence of episodes of non-sustained ventricular tachycardia on Holter monitoring, independently from the presence of myocardial fibrosis. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  9. Plasma gelsolin levels are decreased and correlate with fibrosis in IgA nephropathy.

    PubMed

    Han, Changsong; Zhang, Lei; Zhu, Xiaoling; Tang, Jing; Jin, Xiaoming

    2013-11-01

    IgA nephropathy (IgAN) is an immune complex glomerulonephritis that is characterized by recurrent hematuria as the main clinical manifestation. In this study, we used the IgAN mouse model which was previously established to investigate the possible mechanism by which IgAN fibrosis correlates with decreased plasma gelsolin (pGSN) levels. We investigated the levels of pGSN, transforming growth factor β1 (TGFβ1), and oxidative stress markers including superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and malondialdehyde (MDA) in the serum and renal tissues of different groups. The between-group differences and correlations in the results for the IgAN group were analyzed with statistical methods. The pathological and urinalysis results obtained from the IgAN mouse model showed that this model conforms to the basic lesion characteristics observed in human IgAN. The serum pGSN levels and SOD, CAT, GSH levels in renal tissues were decreased in the IgAN group (P < 0.01), and pGSN, TGFβ1, MDA levels in renal tissues of the IgAN group were increased which compared with those in the other groups (P < 0.01). The correlation analysis for serum pGSN levels in the IgAN group showed a significant correlation with different test results (P < 0.01). The possible mechanism by which IgAN fibrosis correlates with decreased pGSN levels involves the regulation of TGFβ1 and oxidative stress.

  10. Genotype-phenotype correlation and functional studies in patients with cystic fibrosis bearing CFTR complex alleles.

    PubMed

    Terlizzi, Vito; Castaldo, Giuseppe; Salvatore, Donatello; Lucarelli, Marco; Raia, Valeria; Angioni, Adriano; Carnovale, Vincenzo; Cirilli, Natalia; Casciaro, Rosaria; Colombo, Carla; Di Lullo, Antonella Miriam; Elce, Ausilia; Iacotucci, Paola; Comegna, Marika; Scorza, Manuela; Lucidi, Vincenzina; Perfetti, Anna; Cimino, Roberta; Quattrucci, Serena; Seia, Manuela; Sofia, Valentina Maria; Zarrilli, Federica; Amato, Felice

    2017-04-01

    The effect of complex alleles in cystic fibrosis (CF) is poorly defined for the lack of functional studies. To describe the genotype-phenotype correlation and the results of either in vitro and ex vivo studies performed on nasal epithelial cells (NEC) in a cohort of patients with CF carrying cystic fibrosis transmembrane conductance regulator (CFTR) complex alleles. We studied 70 homozygous, compound heterozygous or heterozygous for CFTR mutations: p.[Arg74Trp;Val201Met;Asp1270Asn], n=8; p.[Ile148Thr;Ile1023_Val1024del], n=5; p.[Arg117Leu;Leu997Phe], n=6; c.[1210-34TG[12];1210-12T[5];2930C>T], n=3; p.[Arg74Trp;Asp1270Asn], n=4; p.Asp1270Asn, n=2; p.Ile148Thr, n=6; p.Leu997Phe, n=36. In 39 patients, we analysed the CFTR gating activity on NEC in comparison with patients with CF (n=8) and carriers (n=4). Finally, we analysed in vitro the p.[Arg74Trp;Val201Met;Asp1270Asn] complex allele. The p.[Ile148Thr;Ile1023_Val1024del] caused severe CF in five compound heterozygous with a class I-II mutation. Their CFTR activity on NEC was comparable with patients with two class I-II mutations (mean 7.3% vs 6.9%). The p.[Arg74Trp;Asp1270Asn] and the p.Asp1270Asn have scarce functional effects, while p.[Arg74Trp;Val201Met;Asp1270Asn] caused mild CF in four of five subjects carrying a class I-II mutation in trans, or CFTR-related disorders (CFTR-RD) in three having in trans a class IV-V mutation. The p.[Arg74Trp;Val201Met;Asp1270Asn] causes significantly (p<0.001) higher CFTR activity compared with compound heterozygous for class I-II mutations. Furthermore, five of six compounds heterozygous with the p.[Arg117Leu;Leu997Phe] had mild CF, whereas the p.Leu997Phe, in trans with a class I-II CFTR mutation, caused CFTR-RD or a healthy status (CFTR activity: 21.3-36.9%). Finally, compounds heterozygous for the c.[1210-34TG[12];1210-12T[5];2930C>T] and a class I-II mutation had mild CF or CFTR-RD (gating activity: 18.5-19.0%). The effect of complex alleles partially depends on the

  11. Ibuprofen regulation of microtubule dynamics in cystic fibrosis epithelial cells.

    PubMed

    Rymut, Sharon M; Kampman, Claire M; Corey, Deborah A; Endres, Tori; Cotton, Calvin U; Kelley, Thomas J

    2016-08-01

    High-dose ibuprofen, an effective anti-inflammatory therapy for the treatment of cystic fibrosis (CF), has been shown to preserve lung function in a pediatric population. Despite its efficacy, few patients receive ibuprofen treatment due to potential renal and gastrointestinal toxicity. The mechanism of ibuprofen efficacy is also unclear. We have previously demonstrated that CF microtubules are slower to reform after depolymerization compared with respective wild-type controls. Slower microtubule dynamics in CF cells are responsible for impaired intracellular transport and are related to inflammatory signaling. Here, it is identified that high-dose ibuprofen treatment in both CF cell models and primary CF nasal epithelial cells restores microtubule reformation rates to wild-type levels, as well as induce extension of microtubules to the cell periphery. Ibuprofen treatment also restores microtubule-dependent intracellular transport monitored by measuring intracellular cholesterol transport. These effects are specific to ibuprofen as other cyclooxygenase inhibitors have no effect on these measures. Effects of ibuprofen are mimicked by stimulation of AMPK and blocked by the AMPK inhibitor compound C. We conclude that high-dose ibuprofen treatment enhances microtubule formation in CF cells likely through an AMPK-related pathway. These findings define a potential mechanism to explain the efficacy of ibuprofen therapy in CF. Copyright © 2016 the American Physiological Society.

  12. The efficiency of sputum cell counts in cystic fibrosis

    PubMed Central

    Jayaram, Lata; Labiris, N Renee; Efthimiadis, Ann; Vlachos-Mayer, Helen; Hargreave, Frederick E; Freitag, Andreas P

    2007-01-01

    BACKGROUND: Technical factors relating to processing viscid sputum in cystic fibrosis (CF) and their influence on the reproducibility and validity of cell counts need to be evaluated. In addition, the methods need to be standardized so that they can be applied clinically and in research. OBJECTIVE: To examine the efficiency, reliability and validity of processing small volumes of spontaneously expectorated sputum from subjects with CF. METHODS: Sputum was collected from adults with CF (n=35) and compared with sputum from adults with infective bronchitis or bronchiectasis (IB/B) (n=16), or with asthma or chronic obstructive pulmonary disease (AS/COPD) (n=25). Selected sputum (100 mg to 200 mg) was processed with dithiothreitol (0.1%) and filtered. Total cell count (TCC) and viability were obtained in a counting chamber and cytospins were prepared and stained with Wright’s for a differential cell count. Sputum and filter remnant were processed for TCC, viability and differential cell count, and the efficiency was determined by comparing the mean loss in cell yield to the filter. Two different portions from the same sputum sample were processed for cell counts to determine reproducibility. Results were compared with those from IB/B and AS/COPD groups. RESULTS: Efficiency of cell dispersal was excellent and similar to that in AS/COPD and IB/B groups. Reproducibility of cell counts from two portions of a sputum sample was high (R≥0.80). CF sputum demonstrated a raised TCC and neutrophilia similar to IB/B but significantly higher than AS/COPD. CONCLUSION: The selection method of evaluating cell counts in viscid CF sputum is efficient, reproducible and valid. PMID:17372637

  13. Modeling Cystic Fibrosis Using Pluripotent Stem Cell-Derived Human Pancreatic Ductal Epithelial Cells.

    PubMed

    Simsek, Senem; Zhou, Ting; Robinson, Christopher L; Tsai, Su-Yi; Crespo, Miguel; Amin, Sadaf; Lin, Xiangyi; Hon, Jane; Evans, Todd; Chen, Shuibing

    2016-05-01

    We established an efficient strategy to direct human pluripotent stem cells, including human embryonic stem cells (hESCs) and an induced pluripotent stem cell (iPSC) line derived from patients with cystic fibrosis, to differentiate into pancreatic ductal epithelial cells (PDECs). After purification, more than 98% of hESC-derived PDECs expressed functional cystic fibrosis transmembrane conductance regulator (CFTR) protein. In addition, iPSC lines were derived from a patient with CF carrying compound frameshift and mRNA splicing mutations and were differentiated to PDECs. PDECs derived from Weill Cornell cystic fibrosis (WCCF)-iPSCs showed defective expression of mature CFTR protein and impaired chloride ion channel activity, recapitulating functional defects of patients with CF at the cellular level. These studies provide a new methodology to derive pure PDECs expressing CFTR and establish a "disease in a dish" platform to identify drug candidates to rescue the pancreatic defects of patients with CF. An efficient strategy was established to direct human pluripotent stem cells, including human embryonic stem cells (hESCs) and an induced pluripotent stem cell line derived from patients with cystic fibrosis (CF-iPSCs), to differentiate into pancreatic ductal epithelial cells (PDECs). After purification, more than 98% of hESC-PDECs derived from CF-iPSCs showed defective expression of mature cystic fibrosis transmembrane conductance regulator (CFTR) protein and impaired chloride ion channel activity, recapitulating functional pancreatic defects of patients with CF at the cellular level. These studies provide a new methodology for deriving pure PDECs expressing CFTR, and they establish a "disease-in-a-dish" platform for identifying drug candidates to rescue the pancreatic defects of these patients. ©AlphaMed Press.

  14. Molecular interplays in hepatic stellate cells: apoptosis, senescence, and phenotype reversion as cellular connections that modulate liver fibrosis.

    PubMed

    de Oliveira da Silva, Brenda; Ramos, Letícia Ferrreira; Moraes, Karen C M

    2017-09-01

    Liver fibrosis is a pathophysiological process correlated with intense repair and cicatrization mechanisms in injured liver, and over the past few years, the characterization of the fine-tuning of molecular interconnections that support the development of liver fibrosis has been investigated. In this cellular process, the hepatic stellate cells (HSCs) support the organ fibrogenesis. The HSCs are found in two distinct morpho-physiological states: quiescent and activated. In normal liver, most HSCs are found in quiescent state, presenting a considerable amount of lipid droplets in the cytoplasm, while in injured liver, the activated phenotype of HSCs is a myofibroblast, that secrete extracellular matrix elements and contribute to the establishment of the fibrotic process. Studies on the molecular mechanisms by which HSCs try to restore their quiescent state have been performed; however, no effective treatment to reverse fibrosis has been so far prescribed. Therefore, the elucidation of the cellular and molecular mechanisms of apoptosis, senescence, and the cell reversion phenotype process from activate to quiescent state will certainly contribute to the development of effective therapies to treat hepatic fibrosis. In this context, this review aimed to address central elements of apoptosis, senescence, and reversal of HSC phenotype in the control of hepatic fibrogenesis, as a guide to future development of therapeutic strategies. © 2017 International Federation for Cell Biology.

  15. Bone Marrow CD11c+ Cell-Derived Amphiregulin Promotes Pulmonary Fibrosis

    PubMed Central

    Ding, Lin; Liu, Tianju; Wu, Zhe; Hu, Biao; Nakashima, Taku; Ullenbruch, Matthew; De Los Santos, Francina Gonzalez; Phan, Sem H.

    2016-01-01

    Amphiregulin (AREG), an epidermal growth factor receptor ligand, is implicated in tissue repair and fibrosis but its cellular source and role in regeneration vs. fibrosis remain unclear. In this study we hypothesize that AREG induced in bone marrow derived CD11c+ cells is essential for pulmonary fibrosis. Thus the objectives were to evaluate the importance and role of AREG in pulmonary fibrosis, identify the cellular source of AREG induction and analyze its regulation of fibroblast function and activation. The results showed that lung AREG expression was significantly induced in bleomycin-induced pulmonary fibrosis. AREG deficiency in knockout (KO) mice significantly diminished pulmonary fibrosis. Analysis of AREG expression in major lung cell types revealed induction in fibrotic lungs predominantly occurred in CD11c+ cells. Moreover depletion of bone marrow derived CD11c+ cells suppressed both induction of lung AREG expression and pulmonary fibrosis. Conversely, adoptive transfer of bone marrow-derived CD11c+ cells from BLM-treated donor mice exacerbated pulmonary fibrosis but not if the donor cells were made AREG-deficient prior to transfer. CD11c+ cell conditioned media or co-culture stimulated fibroblast proliferation, activation and myofibroblast differentiation in an AREG dependent manner. Furthermore recombinant AREG induced telomerase reverse transcriptase (TERT) which appeared to be essential for the proliferative effect. Finally AREG significantly enhanced fibroblast motility, which was associated with increased expression of α6 integrin. These findings suggested that induced AREG specifically in recruited bone marrow-derived CD11c+ cells promoted bleomycin induced pulmonary fibrosis by activation of fibroblast TERT dependent proliferation, motility and indirectly, myofibroblast differentiation. PMID:27206766

  16. Bone Marrow CD11c+ Cell-Derived Amphiregulin Promotes Pulmonary Fibrosis.

    PubMed

    Ding, Lin; Liu, Tianju; Wu, Zhe; Hu, Biao; Nakashima, Taku; Ullenbruch, Matthew; Gonzalez De Los Santos, Francina; Phan, Sem H

    2016-07-01

    Amphiregulin (AREG), an epidermal growth factor receptor ligand, is implicated in tissue repair and fibrosis, but its cellular source and role in regeneration versus fibrosis remain unclear. In this study, we hypothesize that AREG induced in bone marrow-derived CD11c(+) cells is essential for pulmonary fibrosis. Thus, the objectives were to evaluate the importance and role of AREG in pulmonary fibrosis, identify the cellular source of AREG induction, and analyze its regulation of fibroblast function and activation. The results showed that lung AREG expression was significantly induced in bleomycin-induced pulmonary fibrosis. AREG deficiency in knockout mice significantly diminished pulmonary fibrosis. Analysis of AREG expression in major lung cell types revealed induction in fibrotic lungs predominantly occurred in CD11c(+) cells. Moreover, depletion of bone marrow-derived CD11c(+) cells suppressed both induction of lung AREG expression and pulmonary fibrosis. Conversely, adoptive transfer of bone marrow-derived CD11c(+) cells from bleomycin-treated donor mice exacerbated pulmonary fibrosis, but not if the donor cells were made AREG deficient prior to transfer. CD11c(+) cell-conditioned media or coculture stimulated fibroblast proliferation, activation, and myofibroblast differentiation in an AREG-dependent manner. Furthermore, recombinant AREG induced telomerase reverse transcriptase, which appeared to be essential for the proliferative effect. Finally, AREG significantly enhanced fibroblast motility, which was associated with increased expression of α6 integrin. These findings suggested that induced AREG specifically in recruited bone marrow-derived CD11c(+) cells promoted bleomycin-induced pulmonary fibrosis by activation of fibroblast telomerase reverse transcriptase-dependent proliferation, motility, and indirectly, myofibroblast differentiation. Copyright © 2016 by The American Association of Immunologists, Inc.

  17. Classical dendritic cells mediate fibrosis directly via the retinoic acid pathway in severe eye allergy

    PubMed Central

    Ahadome, Sarah D.; Mathew, Rose; Reyes, Nancy J.; Mettu, Priyatham S.; Cousins, Scott W.; Calder, Virginia L.; Saban, Daniel R.

    2016-01-01

    Fibrosis is a shared end-stage pathway to lung, liver, and heart failure. In the ocular mucosa (conjunctiva), fibrosis leads to blindness in trachoma, pemphigoid, and allergy. The indirect fibrogenic role of DCs via T cell activation and inflammatory cell recruitment is well documented. However, here we demonstrate that DCs can directly induce fibrosis. In the mouse model of allergic eye disease (AED), classical CD11b+ DCs in the ocular mucosa showed increased activity of aldehyde dehydrogenase (ALDH), the enzyme required for retinoic acid synthesis. In vitro, CD11b+ DC–derived ALDH was associated with 9-cis-retinoic acid ligation to retinoid x receptor (RXR), which induced conjunctival fibroblast activation. In vivo, stimulating RXR led to rapid onset of ocular mucosal fibrosis, whereas inhibiting ALDH activity in DCs or selectively depleting DCs markedly reduced fibrosis. Collectively, these data reveal a profibrotic ALDH-dependent pathway by DCs and uncover a role for DC retinoid metabolism. PMID:27595139

  18. Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis

    PubMed Central

    Vandivier, R. William; Fadok, Valerie A.; Hoffmann, Peter R.; Bratton, Donna L.; Penvari, Churee; Brown, Kevin K.; Brain, Joseph D.; Accurso, Frank J.; Henson, Peter M.

    2002-01-01

    Cystic fibrosis is characterized by an early and sustained influx of inflammatory cells into the airways and by release of proteases. Resolution of inflammation is normally associated with the orderly removal of dying apoptotic inflammatory cells through cell recognition receptors, such as the phosphatidylserine receptor, CD36, and αv integrins. Accordingly, removal of apoptotic inflammatory cells may be impaired in persistent inflammatory responses such as that seen in cystic fibrosis airways. Examination of sputa from cystic fibrosis and non–cystic fibrosis bronchiectasis patients demonstrated an abundance of apoptotic cells, in excess of that seen in patients with chronic bronchitis. In vitro, cystic fibrosis and bronchiectasis airway fluid directly inhibited apoptotic cell removal by alveolar macrophages in a neutrophil elastase-dependent manner, suggesting that elastase may impair apoptotic cell clearance in vivo. Flow cytometry demonstrated that neutrophil elastase cleaved the phosphatidylserine receptor, but not CD36 or CD32 (FcγRII). Cleavage of the phosphatidylserine receptor by neutrophil elastase specifically disrupted phagocytosis of apoptotic cells, implying a potential mechanism for delayed apoptotic cell clearance in vivo. Therefore, defective airway clearance of apoptotic cells in cystic fibrosis and bronchiectasis may be due to elastase-mediated cleavage of phosphatidylserine receptor on phagocytes and may contribute to ongoing airway inflammation. PMID:11877474

  19. Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-beta.

    PubMed

    Vetrone, Sylvia A; Montecino-Rodriguez, Encarnacion; Kudryashova, Elena; Kramerova, Irina; Hoffman, Eric P; Liu, Scot D; Miceli, M Carrie; Spencer, Melissa J

    2009-06-01

    Duchenne muscular dystrophy (DMD) is an X-linked, degenerative muscle disease that is exacerbated by secondary inflammation. Here, we characterized the immunological milieu of dystrophic muscle in mdx mice, a model of DMD, to identify potential therapeutic targets. We identified a specific subpopulation of cells expressing the Vbeta8.1/8.2 TCR that is predominant among TCR-beta+ T cells. These cells expressed high levels of osteopontin (OPN), a cytokine that promotes immune cell migration and survival. Elevated OPN levels correlated with the dystrophic process, since OPN was substantially elevated in the serum of mdx mice and muscle biopsies after disease onset. Muscle biopsies from individuals with DMD also had elevated OPN levels. To test the role of OPN in mdx muscle, mice lacking both OPN and dystrophin were generated and termed double-mutant mice (DMM mice). Reduced infiltration of NKT-like cells and neutrophils was observed in the muscle of DMM mice, supporting an immunomodulatory role for OPN in mdx muscle. Concomitantly, an increase in CD4+ and FoxP3+ Tregs was also observed in DMM muscle, which also showed reduced levels of TGF-beta, a known fibrosis mediator. These inflammatory changes correlated with increased strength and reduced diaphragm and cardiac fibrosis. These studies suggest that OPN may be a promising therapeutic target for reducing inflammation and fibrosis in individuals with DMD.

  20. Proteomic Analysis of Nasal Epithelial Cells from Cystic Fibrosis Patients

    PubMed Central

    Papon, Jean-François; Chhuon, Cerina; Zadigue, Patricia; Prulière-Escabasse, Virginie; Amselem, Serge; Escudier, Estelle; Coste, André; Edelman, Aleksander

    2014-01-01

    The pathophysiology of cystic fibrosis (CF) lung disease remains incompletely understood. New explanations for the pathogenesis of CF lung disease may be discovered by studying the patterns of protein expression in cultured human nasal epithelial cells (HNEC). To that aim, we compared the level of protein expressions in primary cultures of HNEC from nasal polyps secondary to CF (CFNP, n = 4), primary nasal polyps (NP, n = 8) and control mucosa (CTRL, n = 4) using isobaric tag for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography (LC)-MS-MS. The analysis of the data revealed 42 deregulated protein expressions in CFNP compared to NP and CTRL, suggesting that these alterations are related to CF. Overall, AmiGo analysis highlighted six major pathways important for cell functions that seem to be impaired: metabolism, G protein process, inflammation and oxidative stress response, protein folding, proteolysis and structural proteins. Among them, glucose and fatty acid metabolic pathways could be impaired in CF with nine deregulated proteins. Our proteomic study provides a reproducible set of differentially expressed proteins in airway epithelial cells from CF patients and reveals many novel deregulated proteins that could lead to further studies aiming to clarify the involvement of such proteins in CF pathophysiology. PMID:25268127

  1. Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis.

    PubMed

    Naikawadi, Ram P; Disayabutr, Supparerk; Mallavia, Benat; Donne, Matthew L; Green, Gary; La, Janet L; Rock, Jason R; Looney, Mark R; Wolters, Paul J

    2016-09-08

    Telomeres are short in type II alveolar epithelial cells (AECs) of patients with idiopathic pulmonary fibrosis (IPF). Whether dysfunctional telomeres contribute directly to development of lung fibrosis remains unknown. The objective of this study was to investigate whether telomere dysfunction in type II AECs, mediated by deletion of the telomere shelterin protein TRF1, leads to pulmonary fibrosis in mice (SPC-Cre TRF1(fl/fl) mice). Deletion of TRF1 in type II AECs for 2 weeks increased γH2AX DNA damage foci, but not histopathologic changes in the lung. Deletion of TRF1 in type II AECs for up to 9 months resulted in short telomeres and lung remodeling characterized by increased numbers of type II AECs, α-smooth muscle actin(+) mesenchymal cells, collagen deposition, and accumulation of senescence-associated β-galactosidase(+) lung epithelial cells. Deletion of TRF1 in collagen-expressing cells caused pulmonary edema, but not fibrosis. These results demonstrate that prolonged telomere dysfunction in type II AECs, but not collagen-expressing cells, leads to age-dependent lung remodeling and fibrosis. We conclude that telomere dysfunction in type II AECs is sufficient to cause lung fibrosis, and may be a dominant molecular defect causing IPF. SPC-Cre TRF1(fl/fl) mice will be useful for assessing cellular and molecular mechanisms of lung fibrosis mediated by telomere dysfunction.

  2. Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis

    PubMed Central

    Naikawadi, Ram P.; Disayabutr, Supparerk; Mallavia, Benat; Donne, Matthew L.; Green, Gary; La, Janet L.; Rock, Jason R.; Looney, Mark R.; Wolters, Paul J.

    2016-01-01

    Telomeres are short in type II alveolar epithelial cells (AECs) of patients with idiopathic pulmonary fibrosis (IPF). Whether dysfunctional telomeres contribute directly to development of lung fibrosis remains unknown. The objective of this study was to investigate whether telomere dysfunction in type II AECs, mediated by deletion of the telomere shelterin protein TRF1, leads to pulmonary fibrosis in mice (SPC-Cre TRF1fl/fl mice). Deletion of TRF1 in type II AECs for 2 weeks increased γH2AX DNA damage foci, but not histopathologic changes in the lung. Deletion of TRF1 in type II AECs for up to 9 months resulted in short telomeres and lung remodeling characterized by increased numbers of type II AECs, α-smooth muscle actin+ mesenchymal cells, collagen deposition, and accumulation of senescence-associated β-galactosidase+ lung epithelial cells. Deletion of TRF1 in collagen-expressing cells caused pulmonary edema, but not fibrosis. These results demonstrate that prolonged telomere dysfunction in type II AECs, but not collagen-expressing cells, leads to age-dependent lung remodeling and fibrosis. We conclude that telomere dysfunction in type II AECs is sufficient to cause lung fibrosis, and may be a dominant molecular defect causing IPF. SPC-Cre TRF1fl/fl mice will be useful for assessing cellular and molecular mechanisms of lung fibrosis mediated by telomere dysfunction. PMID:27699234

  3. Spontaneous in vitro production of rheumatoid factor during infectious exacerbations of cystic fibrosis: correlation with circulating immune complex levels.

    PubMed Central

    Keogan, M T; Callaghan, M; Yanni, G; Mulherin, D; Feighery, C; Brown, D L; Fitzgerald, M X; Bresnihan, B

    1993-01-01

    Rheumatoid factor (RF) production has been demonstrated during infections, including infectious exacerbations of cystic fibrosis (CF). The aim of this study was to evaluate the relationship of RF production to infection, and examine the mechanisms involved. Serial peripheral blood mononuclear cell (PBMC) cultures with measurement of spontaneous production of IgM RF, IgA RF, total IgM and IgA, and measurement of serum levels of immune complexes were carried out during exacerbations of CF. The percentage of B cells expressing CD5 was examined in a second cohort of acutely infected CF patients, and related to IgM RF production. IgM RF production was significantly elevated during acute infection compared with convalescence (P < 0.05), stable CF subjects (P < 0.005) and normal controls (P < 0.05). IgM RF production did not correlate with total IgM production in the majority of patients, but was closely related to circulating immune complex levels in 8/10 subjects. IgA RF production did not increase significantly during infection, and did not correlate with total IgA or IgM RF production, or with circulating immune complex levels. CD5+ B cells were not increased in the CF group, and the percentage of CD5+ B cells did not correlate with IgM RF synthesis. These observations suggest that RF production during infection is specifically induced, possibly by immune complex autoimmunization, and is not simply the result of polyclonal B cell activation. Different patterns of IgM RF and IgA RF synthesis suggest different mechanisms of induction. PMID:7680296

  4. Decreased myocardial dendritic cells is associated with impaired reparative fibrosis and development of cardiac rupture after myocardial infarction in humans.

    PubMed

    Nagai, Toshiyuki; Honda, Satoshi; Sugano, Yasuo; Matsuyama, Taka-aki; Ohta-Ogo, Keiko; Asaumi, Yasuhide; Ikeda, Yoshihiko; Kusano, Kengo; Ishihara, Masaharu; Yasuda, Satoshi; Ogawa, Hisao; Ishibashi-Ueda, Hatsue; Anzai, Toshihisa

    2014-06-03

    Dendritic cells (DC) play pivotal roles in regulating the immune system and inflammatory response. We previously reported DC infiltration in the infarcted heart and its immunoprotective roles in the post-infarction healing process after experimental myocardial infarction (MI). However, its clinical significance has not been determined. The degree of DC infiltration and its correlation with the post-infarction healing process in the human infarcted heart were investigated in 24 autopsy subjects after ST-elevation MI. Patients were divided into two groups according to the presence (n=13) or absence (n=11) of cardiac rupture. The numbers of infiltrated DC and macrophages and the extent of fibrosis in the infarcted area were examined. In the rupture group, CD68(+) macrophage infiltration was increased and CD209(+) DC, and CD11c(+) DC infiltration and the extent of reparative fibrosis were decreased compared with the non-rupture group, under matched baseline characteristics including the time from onset to death and use of revascularization. Furthermore, there was a significant positive correlation between the number of infiltrating CD209(+) DC, and CD11c(+) DC and the extent of reparative fibrosis. Decreased number of DC in human-infarcted myocardial tissue was associated with increased macrophage infiltration, impaired reparative fibrosis, and the development of cardiac rupture after MI. These findings suggest a protective role of DC in post-MI inflammation and the subsequent healing process. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  5. Hepatocyte Growth Factor Is Required for Mesenchymal Stromal Cell Protection Against Bleomycin-Induced Pulmonary Fibrosis

    PubMed Central

    Cahill, Emer F.; Kennelly, Helen; Carty, Fiona; Mahon, Bernard P.

    2016-01-01

    The incidence of idiopathic pulmonary fibrosis is on the rise and existing treatments have failed to halt or reverse disease progression. Mesenchymal stromal cells (MSCs) have potent cytoprotective effects, can promote tissue repair, and have demonstrated efficacy in a range of fibrotic lung diseases; however, the exact mechanisms of action remain to be elucidated. Chemical antagonists and short hairpin RNA knockdown were used to identify the mechanisms of action used by MSCs in promoting wound healing, proliferation, and inhibiting apoptosis. Using the bleomycin induced fibrosis model, the protective effects of early or late MSC administration were examined. The role for hepatocyte growth factor (HGF) in MSC protection against bleomycin lung injury was examined using HGF knockdown MSC. Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling assay was performed on ex vivo lung sections to examine the effects of MSC on apoptosis. MSC conditioned media (CM) enhanced wound closure and inhibited apoptosis of pulmonary cells in vitro. HGF was required for MSC CM enhancement of epithelial cell proliferation and inhibition of apoptosis. In contrast, MSC required COX-2 for CM to inhibit fibroblast proliferation. In a murine model, early administration of MSC protected against bleomycin induced lung fibrosis and correlated with reduced levels of the proinflammatory cytokine interleukin-1β, reduced levels of apoptosis, and significantly increased levels of HGF. These protective effects were in part mediated by MSC derived HGF as HGF knockdown MSC were unable to protect against fibrosis in vivo. These findings delineate the mechanisms of MSC protection in a preclinical model of fibrotic lung disease. Significance The mechanisms used by mesenchymal stromal cells (MSCs) in mediating protective effects in chronic models of lung disease are not understood and remain to be elucidated. These findings from in vitro studies highlight an important role for the MSC

  6. Hepatic fibrosis

    PubMed Central

    Jiao, Jingjing; Friedman, Scott L.; Aloman, Costica

    2010-01-01

    Purpose of review This review will summarize the most significant work that contributed to the understanding of liver fibrosis progression and resolution, which in turn has yielded new areas of therapeutic targeting. Recent findings Liver fibrosis is the result of an imbalance between production and dissolution of extracellular matrix. Stellate cells, portal myofibroblasts, and bone marrow derived cells converge in a complex interaction with hepatocytes and immune cells to provoke scarring in response to liver injury. Uncovering the specific effects of growth factors on these cells, defining the interaction of different cell population during liver fibrosis and characterizing the genetic determinants of fibrosis progression will enable the discovery of new therapeutic approaches. Summary The outcome of improved understanding of liver fibrosis process, especially the regulation and activation of stellate cells, is reflected in the development of new therapeutic strategies, which are validated in animal models. PMID:19396960

  7. Mesenchymal Stromal Cells in Animal Bleomycin Pulmonary Fibrosis Models: A Systematic Review.

    PubMed

    Srour, Nadim; Thébaud, Bernard

    2015-12-01

    Idiopathic pulmonary fibrosis is an inexorably progressive lung disease with few available treatments. New therapeutic options are needed. Stem cells have generated much enthusiasm for the treatment of several conditions, including lung diseases. Human trials of mesenchymal stromal cell (MSC) therapy for pulmonary fibrosis are under way. To shed light on the potential usefulness of MSCs for human disease, we aimed to systematically review the preclinical literature to determine if MSCs are beneficial in animal bleomycin pulmonary fibrosis models. The MEDLINE and Embase databases were searched for original studies of stem cell therapy in animal bleomycin models of pulmonary fibrosis. Studies using embryonic stem cells or induced pluripotent stem cells were excluded. Seventeen studies were selected, all of which used MSCs in rodents. MSC therapy led to an improvement in bleomycin-induced lung collagen deposition in animal lungs and in the pulmonary fibrosis Ashcroft score in most studies. MSC therapy improved histopathology in almost all studies in which it was evaluated qualitatively. Furthermore, MSC therapy was found to improve 14-day survival in animals with bleomycin-induced pulmonary fibrosis. Bronchoalveolar lavage total and neutrophil counts, as well as transforming growth factor-β levels, were also reduced by MSCs. MSCs are beneficial in rodent bleomycin pulmonary fibrosis models. Since most studies examined the initial inflammatory phase rather than the chronic fibrotic phase, preclinical data offer better support for human trials of MSCs in acute exacerbations of pulmonary fibrosis rather than the chronic phase of the disease. There has been increased interest in mesenchymal stromal cell therapy for lung diseases. A few small clinical trials are under way in idiopathic pulmonary fibrosis. Preclinical evidence was assessed in a systematic review, as is often done for clinical studies. The existing studies offer better support for efficacy in the initial

  8. Mutant cystic fibrosis transmembrane conductance regulator inhibits acidification and apoptosis in C127 cells: possible relevance to cystic fibrosis.

    PubMed Central

    Gottlieb, R A; Dosanjh, A

    1996-01-01

    We have shown elsewhere that acidification is an early event in apoptosis, preceding DNA cleavage. Cells expressing the most common mutation (delF508) of the cystic fibrosis transmembrane regulator (CFTR) exhibit a higher resting intracellular pH and are unable to secrete chloride and bicarbonate in response to cAMP. We hypothesized that defective acidification in cells expressing delF508 CFTR would interfere with the acidification that accompanies apoptosis, which in turn, would prevent endonuclease activation and cleavage of DNA. We therefore determined whether the function of the CFTR would affect the process of apoptosis in mouse mammary epithelial C127 cells stably transfected with the wild-type CFTR (C127/wt) or the delF508 mutation of the CFTR (C127/508). C127 cells possessed an acid endonuclease capable of DNA degradation at low pH. Sixteen hours after treatment with cycloheximide, C127/wt cells underwent cytoplasmic acidification. In contrast, C127/508 cells failed to demonstrate acidification. Furthermore, the C127/508 cells did not show nuclear condensation or DNA fragmentation detected by in situ nick-end labeling after treatment with cycloheximide or etoposide, in contrast to the characteristic features of apoptosis demonstrated by the C127/wt cells. Measurement of cell viability indicated a preservation of cell viability in C127/508 cells but not in C127/wt cells. That this resistance to the induction of apoptosis depended upon the loss of CFTR activity is shown by the finding that inhibition of the CFTR with diphenylamine carboxylate in C127/wt cells conferred similar protection. These findings suggest a role for the CFTR in acidification during the initiation of apoptosis in epithelial cells and imply that a failure to undergo programmed cell death could contribute to the pathogenesis of cystic fibrosis. Images Fig. 1 Fig. 2 Fig. 3 PMID:8622979

  9. The Km of NADH dehydrogenase is decreased in mitochondria of cystic fibrosis cells.

    PubMed

    Dechecchi, M C; Girella, E; Cabrini, G; Berton, G

    1988-01-01

    The kinetic properties of the NADH dehydrogenase of the mitochondrial respiratory chain, assayed as NADH-dependent rotenone-sensitive cytochrome c reductase have been studied in mitochondria isolated from mononuclear white blood cells in patients affected by cystic fibrosis. Data reported here show that the apparent Km of the enzyme for NADH is significantly decreased in cystic fibrosis mitochondria. These findings are independent of the age or the clinical state of the disease and have also been obtained with mitochondria isolated from cultured skin fibroblasts. These observations support the notion that cystic fibrosis is possibly accompanied by alterations of intracellular membranes and these are evident also in circulating cells and cultured fibroblasts.

  10. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis.

    PubMed

    Zhang, Ying; Zhao, Xin; Chang, Yanzhong; Zhang, Yuanyuan; Chu, Xi; Zhang, Xuan; Liu, Zhenyi; Guo, Hui; Wang, Na; Gao, Yonggang; Zhang, Jianping; Chu, Li

    2016-06-15

    Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n=8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined by molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Current status and future prospects of mesenchymal stem cell therapy for liver fibrosis*

    PubMed Central

    Guo, Yang; Chen, Bo; Chen, Li-jun; Zhang, Chun-feng; Xiang, Charlie

    2016-01-01

    Liver fibrosis is the end-stage of many chronic liver diseases and is a significant health threat. The only effective therapy is liver transplantation, which still has many problems, including the lack of donor sources, immunological rejection, and high surgery costs, among others. However, the use of cell therapy is becoming more prevalent, and mesenchymal stem cells (MSCs) seem to be a promising cell type for the treatment of liver fibrosis. MSCs have multiple differentiation abilities, allowing them to migrate directly into injured tissue and differentiate into hepatocyte-like cells. Additionally, MSCs can release various growth factors and cytokines to increase hepatocyte regeneration, regress liver fibrosis, and regulate inflammation and immune responses. In this review, we summarize the current uses of MSC therapies for liver fibrosis and suggest potential future applications. PMID:27819130

  12. Quantitative CT analysis of honeycombing area in idiopathic pulmonary fibrosis: Correlations with pulmonary function tests.

    PubMed

    Nakagawa, Hiroaki; Nagatani, Yukihiro; Takahashi, Masashi; Ogawa, Emiko; Tho, Nguyen Van; Ryujin, Yasushi; Nagao, Taishi; Nakano, Yasutaka

    2016-01-01

    The 2011 official statement of idiopathic pulmonary fibrosis (IPF) mentions that the extent of honeycombing and the worsening of fibrosis on high-resolution computed tomography (HRCT) in IPF are associated with the increased risk of mortality. However, there are few reports about the quantitative computed tomography (CT) analysis of honeycombing area. In this study, we first proposed a computer-aided method for quantitative CT analysis of honeycombing area in patients with IPF. We then evaluated the correlations between honeycombing area measured by the proposed method with that estimated by radiologists or with parameters of PFTs. Chest HRCTs and pulmonary function tests (PFTs) of 36 IPF patients, who were diagnosed using HRCT alone, were retrospectively evaluated. Two thoracic radiologists independently estimated the honeycombing area as Identified Area (IA) and the percentage of honeycombing area to total lung area as Percent Area (PA) on 3 axial CT slices for each patient. We also developed a computer-aided method to measure the honeycombing area on CT images of those patients. The total honeycombing area as CT honeycombing area (HA) and the percentage of honeycombing area to total lung area as CT %honeycombing area (%HA) were derived from the computer-aided method for each patient. HA derived from three CT slices was significantly correlated with IA (ρ=0.65 for Radiologist 1 and ρ=0.68 for Radiologist 2). %HA derived from three CT slices was also significantly correlated with PA (ρ=0.68 for Radiologist 1 and ρ=0.70 for Radiologist 2). HA and %HA derived from all CT slices were significantly correlated with FVC (%pred.), DLCO (%pred.), and the composite physiologic index (CPI) (HA: ρ=-0.43, ρ=-0.56, ρ=0.63 and %HA: ρ=-0.60, ρ=-0.49, ρ=0.69, respectively). The honeycombing area measured by the proposed computer-aided method was correlated with that estimated by expert radiologists and with parameters of PFTs. This quantitative CT analysis of

  13. B cell activating factor is central to bleomycin- and IL-17-mediated experimental pulmonary fibrosis.

    PubMed

    François, Antoine; Gombault, Aurélie; Villeret, Bérengère; Alsaleh, Ghada; Fanny, Manoussa; Gasse, Paméla; Adam, Sylvain Marchand; Crestani, Bruno; Sibilia, Jean; Schneider, Pascal; Bahram, Seiamak; Quesniaux, Valérie; Ryffel, Bernhard; Wachsmann, Dominique; Gottenberg, Jacques-Eric; Couillin, Isabelle

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive devastating, yet untreatable fibrotic disease of unknown origin. We investigated the contribution of the B-cell activating factor (BAFF), a TNF family member recently implicated in the regulation of pathogenic IL-17-producing cells in autoimmune diseases. The contribution of BAFF was assessed in a murine model of lung fibrosis induced by airway administered bleomycin. We show that murine BAFF levels were strongly increased in the bronchoalveolar space and lungs after bleomycin exposure. We identified Gr1(+) neutrophils as an important source of BAFF upon BLM-induced lung inflammation and fibrosis. Genetic ablation of BAFF or BAFF neutralization by a soluble receptor significantly attenuated pulmonary fibrosis and IL-1β levels. We further demonstrate that bleomycin-induced BAFF expression and lung fibrosis were IL-1β and IL-17A dependent. BAFF was required for rIL-17A-induced lung fibrosis and augmented IL-17A production by CD3(+) T cells from murine fibrotic lungs ex vivo. Finally we report elevated levels of BAFF in bronchoalveolar lavages from IPF patients. Our data therefore support a role for BAFF in the establishment of pulmonary fibrosis and a crosstalk between IL-1β, BAFF and IL-17A.

  14. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets

    PubMed Central

    Zhang, Chong-Yang; Yuan, Wei-Gang; He, Pei; Lei, Jia-Hui; Wang, Chun-Xu

    2016-01-01

    Liver fibrosis is a reversible wound-healing process aimed at maintaining organ integrity, and presents as the critical pre-stage of liver cirrhosis, which will eventually progress to hepatocellular carcinoma in the absence of liver transplantation. Fibrosis generally results from chronic hepatic injury caused by various factors, mainly viral infection, schistosomiasis, and alcoholism; however, the exact pathological mechanisms are still unknown. Although numerous drugs have been shown to have antifibrotic activity in vitro and in animal models, none of these drugs have been shown to be efficacious in the clinic. Importantly, hepatic stellate cells (HSCs) play a key role in the initiation, progression, and regression of liver fibrosis by secreting fibrogenic factors that encourage portal fibrocytes, fibroblasts, and bone marrow-derived myofibroblasts to produce collagen and thereby propagate fibrosis. These cells are subject to intricate cross-talk with adjacent cells, resulting in scarring and subsequent liver damage. Thus, an understanding of the molecular mechanisms of liver fibrosis and their relationships with HSCs is essential for the discovery of new therapeutic targets. This comprehensive review outlines the role of HSCs in liver fibrosis and details novel strategies to suppress HSC activity, thereby providing new insights into potential treatments for liver fibrosis. PMID:28082803

  15. Extracellular superoxide dismutase increased the therapeutic potential of human mesenchymal stromal cells in radiation pulmonary fibrosis.

    PubMed

    Wei, Li; Zhang, Jing; Yang, Zai-Liang; You, Hua

    2017-05-01

    Pulmonary fibrosis induced by irradiation is a significant problem of radiotherapy in cancer patients. Extracellular superoxide dismutase (SOD3) is found to be predominantly and highly expressed in the extracellular matrix of lung and plays a pivotal role against oxidative damage. Early administration of mesenchymal stromal cells (MSCs) has been demonstrated to reduce fibrosis of damaged lung. However, injection of MSCs at a later stage would be involved in fibrosis development. The present study aimed to determine whether injection of human umbilical cord-derived MSCs (UC-MSCs) over-expressing SOD3 at the established fibrosis stage would have beneficial effects in a mice model of radiation pulmonary fibrosis. Herein, pulmonary fibrosis in mice was induced using Cobalt-60 ((60)Co) irradiator with 20 Gy, followed by intravenous injection of UC-MSCs, transduced or not to express SOD3 at 2 h (early delivery) and 60 day (late delivery) post-irradiation, respectively. Our results demonstrated that the early administration of UC-MSCs could attenuate the microscopic damage, reduce collagen deposition, inhibit (myo)fibroblast proliferation, reduce inflammatory cell infiltration, protect alveolar type II (AE2) cell injury, prevent oxidative stress and increase antioxidant status, and reduce pro-fibrotic cytokine level in serum. Furthermore, the early treatment with SOD3-infected UC-MSCs resulted in better improvement. However, we failed to observe the therapeutic effects of UC-MSCs, transduced to express SOD3, during established fibrosis. Altogether, our results demonstrated that the early treatment with UC-MSCs alone significantly reduced radiation pulmonary fibrosis in mice through paracrine effects, with further improvement by administration of SOD3-infected UC-MSCs, suggesting that SOD3-infected UC-MSCs may be a potential cell-based gene therapy to treat clinical radiation pulmonary fibrosis. Copyright © 2017 International Society for Cellular Therapy. Published by

  16. Assessment of Correlation between Sweat Chloride Levels and Clinical Features of Cystic Fibrosis Patients

    PubMed Central

    Raina, Manzoor A.; Khan, Mosin S.; Malik, Showkat A.; Raina, AB Hameed; Makhdoomi, Mudassir J.; Bhat, Javed I.

    2016-01-01

    Introduction Cystic Fibrosis (CF) is an autosomal recessive disorder and the incidence of this disease is undermined in Northern India. The distinguishable salty character of the sweat belonging to individuals suffering from CF makes sweat chloride estimation essential for diagnosis of CF disease. Aim The aim of this prospective study was to elucidate the relationship of sweat chloride levels with clinical features and pattern of CF. Materials and Methods A total of 182 patients, with clinical features of CF were included in this study for quantitative measurement of sweat chloride. Sweat stimulation and collection involved pilocarpine iontophoresis based on the Gibson and Cooks methodology. The quantitative estimation of chloride was done by Schales and Schales method with some modifications. Cystic Fibrosis Trans Membrane Conductance Regulator (CFTR) mutation status was recorded in case of patients with borderline sweat chloride levels to correlate the results and for follow-up. Results Out of 182 patients having clinical features consistent with CF, borderline and elevated sweat chloride levels were present in 9 (5%) and 41 (22.5%) subjects respectively. Elevated sweat chloride levels were significantly associated with wheeze, Failure To Thrive (FTT), history of CF in Siblings, product of Consanguineous Marriage (CM), digital clubbing and steatorrhoea on univariate analysis. On multivariate analysis only wheeze, FTT and steatorrhoea were found to be significantly associated with elevated sweat chloride levels (p<0.05). Among the nine borderline cases six cases were positive for at least two CFTR mutations and rest of the three cases were not having any mutation in CFTR gene. Conclusion The diagnosis is often delayed and the disease is advanced in most patients at the time of diagnosis. Sweat testing is a gold standard for diagnosis of CF patients as genetic mutation profile being heterozygous and unlikely to become diagnostic test. PMID:28208841

  17. Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction.

    PubMed

    Tapmeier, Thomas T; Fearn, Amy; Brown, Kathryn; Chowdhury, Paramit; Sacks, Steven H; Sheerin, Neil S; Wong, Wilson

    2010-08-01

    Tubulointerstitial fibrosis is a common consequence of a diverse range of kidney diseases that lead to end-stage renal failure. The degree of fibrosis is related to leukocyte infiltration. Here, we determined the role of different T cell populations on renal fibrosis in the well-characterized mouse model of unilateral ureteric obstruction. Depletion of CD4(+) T cells in wild-type mice with a monoclonal antibody significantly reduced the amount of interstitial expansion and collagen deposition after 2 weeks of obstruction. Reconstitution of lymphopenic RAG knockout mice with purified CD4(+) but not CD8(+) T cells, prior to ureteric obstruction, resulted in a significant increase in interstitial expansion and collagen deposition. Wild-type mice had significantly greater interstitial expansion and collagen deposition compared with lymphopenic RAG(-/-) mice, following ureteric obstruction; however, macrophage infiltration was equivalent in all groups. Thus, our results suggest that renal injury with subsequent fibrosis is likely to be a multifactorial process, with different arms of the immune system involved at different stages. In this ureteric obstruction model, we found a critical role for CD4(+) T cells in kidney fibrosis. These cells could be a potential target of therapeutic intervention to prevent excessive fibrosis and loss of function due to renal injury.

  18. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis

    PubMed Central

    Mizuno, Takako; Sridharan, Anusha; Du, Yina; Guo, Minzhe; Wikenheiser-Brokamp, Kathryn A.; Perl, Anne-Karina T.; Funari, Vincent A.; Gokey, Jason J.; Stripp, Barry R.; Whitsett, Jeffrey A.

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial lung disease characterized by airway remodeling, inflammation, alveolar destruction, and fibrosis. We utilized single-cell RNA sequencing (scRNA-seq) to identify epithelial cell types and associated biological processes involved in the pathogenesis of IPF. Transcriptomic analysis of normal human lung epithelial cells defined gene expression patterns associated with highly differentiated alveolar type 2 (AT2) cells, indicated by enrichment of RNAs critical for surfactant homeostasis. In contrast, scRNA-seq of IPF cells identified 3 distinct subsets of epithelial cell types with characteristics of conducting airway basal and goblet cells and an additional atypical transitional cell that contributes to pathological processes in IPF. Individual IPF cells frequently coexpressed alveolar type 1 (AT1), AT2, and conducting airway selective markers, demonstrating “indeterminate” states of differentiation not seen in normal lung development. Pathway analysis predicted aberrant activation of canonical signaling via TGF-β, HIPPO/YAP, P53, WNT, and AKT/PI3K. Immunofluorescence confocal microscopy identified the disruption of alveolar structure and loss of the normal proximal-peripheral differentiation of pulmonary epithelial cells. scRNA-seq analyses identified loss of normal epithelial cell identities and unique contributions of epithelial cells to the pathogenesis of IPF. The present study provides a rich data source to further explore lung health and disease. PMID:27942595

  19. IL-21 induction of CD4+ T cell differentiation into Th17 cells contributes to bleomycin-induced fibrosis in mice.

    PubMed

    Lei, Ling; Zhong, Xiao-Ning; He, Zhi-Yi; Zhao, Cheng; Sun, Xue-Jiao

    2015-04-01

    Systemic sclerosis (SSc) is a connective tissue disease characterized by fibrosis of the skin and internal organs. Th17 cells and interleukin-17 (also called IL-17A) have been found to be increased in peripheral blood and skin in patients with SSc. IL-21 is a potent inducer of Th17 differentiation that is produced by activated T cells, and whose relationship with Th17 cells in SSc is unclear. Here, using a bleomycin (BLM)-induced mouse model of skin fibrosis, we detected the frequency of CD4+/IL-17+ (Th17) cells, CD4+/IL-21+ T cells and IL-21+ Th17 cells in peripheral blood, skin and lungs, as well as the serum content of IL-17A and IL-21. In addition, we assessed the differentiation of CD4+ T cells cultured from these mice into Th17 cells in response to treatment with IL-21. Compared with the control mice, Th17 cell counts and IL-17A levels were significantly increased and correlated with inflammatory and fibrotic indices in the skin and lungs of the BLM-induced fibrosis mice. Moreover, serum levels of CD4+/IL-21+ T cells, IL-21+ Th17 cells, and IL-21 were significantly increased in these mice, and correlated positively with serum levels of Th17 cells. In vitro experiments showed that IL-21 treated CD4+ T cells derived from BLM-induced mice differentiated into Th17 cells. Our results indicate that Th17 cells and IL-17A contributes to inflammatory and fibrotic processes in the skin and lungs in a BLM-induced mouse model of SSc. Moreover, the expansion of the Th17 cell population may be subsequent to IL-21 promotion of the differentiation of CD4+ T cells in these mice.

  20. Stem cell therapy for idiopathic pulmonary fibrosis: a protocol proposal

    PubMed Central

    2011-01-01

    Background Idiopathic pulmonary fibrosis represents a lethal form of progressive fibrotic lung disorder with gradually increasing incidence worldwide. Despite intense research efforts its pathogenesis is still elusive and controversial reflecting in the current disappointing status regarding its treatment. Patients and Methods: We report the first protocol proposal of a prospective, unicentric, non-randomized, phase Ib clinical trial to study the safety and tolerability of the adipose-derived stem cells (ADSCs) stromal vascular fraction (SVF) as a therapeutic agent in IPF. After careful patient selection based on functional criteria (forced vital capacity-FVC > 50%, diffuse lung capacity for carbon monoxide-DLCO > 35% of the predicted values) all eligible subjects will be subjected to lipoaspiration resulting in the isolation of approximately 100- 500 gr of adipose tissue. After preparation, isolation and labelling ADSCs-SVF will be endobronchially infused to both lower lobes of the fibrotic lungs. Procedure will be repeated thrice at monthly intervals. Primary end-point represent safety and tolerability data, while exploratory secondary end-points include assessment of clinical functional and radiological status. Results: Preliminary results recently presented in the form of an abstract seem promising and tantalizing since there were no cases of clinically significant allergic reactions, infections, disease acute exacerbations or ectopic tissue formation. In addition 6 months follow-up data revealed a marginal improvement at 6-minute walking distance and forced vital capacity. Conclusions Adipose tissue represents an abundant, safe, ethically uncontested and potentially beneficial source of stem cells for patients with IPF. Larger multicenter phase II and III placebo-controlled clinical trials are sorely needed in order to prove efficacy. However, pilot safety studies are of major importance and represent the first hamper that should be overcome to establish a

  1. Correlation between impulse oscillometry and spirometry parameters in Indian patients with cystic fibrosis.

    PubMed

    Raj, Dinesh; Sharma, Ganesh Kumar; Lodha, Rakesh; Kabra, Sushil Kumar

    2014-06-30

    Impulse oscillometry (IOS) is an emerging tool to assess lung function in chronic respiratory diseases, more often in preschool children and patients who are unable to perform spirometry. We conducted a prospective cross-sectional study on patients with cystic fibrosis (CF). Primary objective was to evaluate correlation between IOS and spirometry parameters. Secondary objective was to evaluate the ability of IOS parameters to discriminate patients with airflow limitation at various forced expiratory volume in 1 second (FEV1) cutoffs. Patients with CF above 6 years of age, who were following up on a routine visit, were enrolled in the study. Patients underwent IOS and spirometry as per guidelines. A total of 39 patients (34 children and 5 adults) were enrolled in the study. There was a significant moderate negative correlation between spirometry parameters (FEV1, forced vital capacity, and peak expiratory flow rate) and IOS parameters, that is, impedance at 5 Hz (Z5), resistance at 5 Hz (R5), and reactance area, both between raw values and percent predicted values. Of the various IOS parameters, Z5 percent predicted had the maximum area under the curve (AUC) of 0.8152 and 0.8448 for identifying children with FEV1 <60% and <80%, respectively. R5 percent predicted had an AUC of 0.8185 for identifying children with FEV1 <40%. IOS can be used as an alternative pulmonary function test in patients with CF more so in patients who are unable to perform spirometry. © The Author(s) 2014.

  2. Cardiac Magnetic Resonance-Verified Myocardial Fibrosis in Chagas Disease: Clinical Correlates and Risk Stratification

    PubMed Central

    Uellendahl, Marly; de Siqueira, Maria Eduarda Menezes; Calado, Eveline Barros; Kalil-Filho, Roberto; Sobral, Dário; Ribeiro, Clébia; Oliveira, Wilson; Martins, Silvia; Narula, Jagat; Rochitte, Carlos Eduardo

    2016-01-01

    Background Chagas disease (CD) is an important cause of heart failure and mortality, mainly in Latin America. This study evaluated the morphological and functional characteristics of the heart as well the extent of myocardial fibrosis (MF) in patients with CD by cardiac magnetic resonance (CMR). The prognostic value of MF evaluated by myocardial-delayed enhancement (MDE) was compared with that via Rassi score. Methods This study assessed 39 patients divided into 2 groups: 28 asymptomatic patients as indeterminate form group (IND); and symptomatic patients as Chagas Heart Disease (CHD) group. All patients underwent CMR using the techniques of cine-MRI and MDE, and the amount of MF was compared with the Rassi score. Results Regarding the morphological and functional analysis, significant differences were observed between both groups (p < 0.001). Furthermore, there was a strong correlation between the extent of MF and the Rassi score (r = 0.76). Conclusions CMR is an important technique for evaluating patients with CD, stressing morphological and functional differences in all clinical presentations. The strong correlation with the Rassi score and the extent of MF detected by CMR emphasizes its role in the prognostic stratification of patients with CD. PMID:27982271

  3. Complement Effectors of Inflammation in Cystic Fibrosis Lung Fluid Correlate with Clinical Measures of Disease

    PubMed Central

    Sass, Laura A.; Hair, Pamela S.; Perkins, Amy M.; Shah, Tushar A.; Krishna, Neel K.; Cunnion, Kenji M.

    2015-01-01

    In cystic fibrosis (CF), lung damage is mediated by a cycle of obstruction, infection, and inflammation. Here we explored complement inflammatory effectors in CF lung fluid. In this study soluble fractions (sols) from sputum samples of 15 CF patients were assayed for complement effectors and analyzed with clinical measurements. The pro-inflammatory peptide C5a was increased 4.8-fold (P = 0.04) in CF sols compared with controls. Incubation of CF sols with P. aeruginosa or S. aureus increased C5a concentration 2.3-fold (P = 0.02). A peptide inhibitor of complement C1 (PIC1) completely blocked the increase in C5a concentration from P. aeruginosa in CF sol in vitro (P = 0.001). C5a concentration in CF sol correlated inversely with body mass index (BMI) percentile in children (r = -0.77, P = 0.04). C3a, which has anti-inflammatory effects, correlated positively with FEV1% predicted (rs = 0.63, P = 0.02). These results suggest that complement effectors may significantly impact inflammation in CF lung fluid. PMID:26642048

  4. Complement Effectors of Inflammation in Cystic Fibrosis Lung Fluid Correlate with Clinical Measures of Disease.

    PubMed

    Sass, Laura A; Hair, Pamela S; Perkins, Amy M; Shah, Tushar A; Krishna, Neel K; Cunnion, Kenji M

    2015-01-01

    In cystic fibrosis (CF), lung damage is mediated by a cycle of obstruction, infection, and inflammation. Here we explored complement inflammatory effectors in CF lung fluid. In this study soluble fractions (sols) from sputum samples of 15 CF patients were assayed for complement effectors and analyzed with clinical measurements. The pro-inflammatory peptide C5a was increased 4.8-fold (P = 0.04) in CF sols compared with controls. Incubation of CF sols with P. aeruginosa or S. aureus increased C5a concentration 2.3-fold (P = 0.02). A peptide inhibitor of complement C1 (PIC1) completely blocked the increase in C5a concentration from P. aeruginosa in CF sol in vitro (P = 0.001). C5a concentration in CF sol correlated inversely with body mass index (BMI) percentile in children (r = -0.77, P = 0.04). C3a, which has anti-inflammatory effects, correlated positively with FEV1% predicted (rs = 0.63, P = 0.02). These results suggest that complement effectors may significantly impact inflammation in CF lung fluid.

  5. CXCR4+ granulocytes reflect fungal cystic fibrosis lung disease.

    PubMed

    Carevic, Melanie; Singh, Anurag; Rieber, Nikolaus; Eickmeier, Olaf; Griese, Matthias; Hector, Andreas; Hartl, Dominik

    2015-08-01

    Cystic fibrosis airways are frequently colonised with fungi. However, the interaction of these fungi with immune cells and the clinical relevance in cystic fibrosis lung disease are incompletely understood.We characterised granulocytes in airway fluids and peripheral blood from cystic fibrosis patients with and without fungal colonisation, non-cystic fibrosis disease controls and healthy control subjects cross-sectionally and longitudinally and correlated these findings with lung function parameters.Cystic fibrosis patients with chronic fungal colonisation by Aspergillus fumigatus were characterised by an accumulation of a distinct granulocyte subset, expressing the HIV coreceptor CXCR4. Percentages of airway CXCR4(+) granulocytes correlated with lung disease severity in patients with cystic fibrosis.These studies demonstrate that chronic fungal colonisation with A. fumigatus in cystic fibrosis patients is associated with CXCR4(+) airway granulocytes, which may serve as a potential biomarker and therapeutic target in fungal cystic fibrosis lung disease.

  6. Relevance of activated hepatic stellate cells in predicting the development of pediatric liver allograft fibrosis.

    PubMed

    Venturi, Carla; Reding, Raymond; Quinones, Jorge Abarca; Sokal, Etienne; Rahier, Jacques; Bueno, Javier; Sempoux, Christine

    2016-06-01

    Activated hepatic stellate cells (HSCs) are the main collagen-producing cells in liver fibrogenesis. With the purpose of analyzing their presence and relevance in predicting liver allograft fibrosis development, 162 liver biopsies of 54 pediatric liver transplantation (LT) recipients were assessed at 6 months, 3 years, and 7 years after LT. The proportion of activated HSCs, identified by α-smooth muscle actin (ASMA) immunostaining, and the amount of fibrosis, identified by picrosirius red (PSR%) staining, were determined by computer-based morphometric analysis. Fibrosis was also staged by using the semiquantitative liver allograft fibrosis score (LAFSc), specifically designed to score fibrosis in the pediatric LT population. Liver allograft fibrosis displayed progression over time by PSR% (P < 0.001) and by LAFSc (P < 0.001). The ASMA expression decreased in the long term, with inverse evolution with respect to fibrosis (P < 0.01). Patients with ASMA-positive HSCs area ≥ 8% at 6 months (n = 20) developed a higher fibrosis proportion compared to those with ASMA-positive HSCs area ≤ 8% (n = 34) at the same period of time and in the long term (P = 0.03 and P < 0.01, respectively), but not at 3 years (P = 0.8). ASMA expression ≥ 8% at 6 months was found to be an independent risk factor for 7-year fibrosis development by PSR% (r(2) = 0.5; P < 0.01) and by LAFSc (r(2) = 0.3; P = 0.03). Furthermore, ASMA expression ≥ 8% at 3 years showed an association with the development of fibrosis at 7 years (P = 0.02). In conclusion, there is a high proportion of activated HSCs in pediatric LT recipients. ASMA ≥ 8% at 6 months seems to be a risk factor for early and longterm fibrosis development. In addition, activated HSCs showed inverse evolution with respect to fibrosis in the long term. Liver Transplantation 22 822-829 2016 AASLD. © 2016 American Association for the Study of Liver Diseases.

  7. Free DNA in Cystic Fibrosis Airway Fluids Correlates with Airflow Obstruction

    PubMed Central

    Marcos, Veronica; Zhou-Suckow, Zhe; Önder Yildirim, Ali; Bohla, Alexander; Hector, Andreas; Vitkov, Ljubomir; Krautgartner, Wolf Dietrich; Stoiber, Walter; Griese, Matthias; Eickelberg, Oliver; Mall, Marcus A.; Hartl, Dominik

    2015-01-01

    Chronic obstructive lung disease determines morbidity and mortality of patients with cystic fibrosis (CF). CF airways are characterized by a nonresolving neutrophilic inflammation. After pathogen contact or prolonged activation, neutrophils release DNA fibres decorated with antimicrobial proteins, forming neutrophil extracellular traps (NETs). NETs have been described to act in a beneficial way for innate host defense by bactericidal, fungicidal, and virucidal actions. On the other hand, excessive NET formation has been linked to the pathogenesis of autoinflammatory and autoimmune disease conditions. We quantified free DNA structures characteristic of NETs in airway fluids of CF patients and a mouse model with CF-like lung disease. Free DNA levels correlated with airflow obstruction, fungal colonization, and CXC chemokine levels in CF patients and CF-like mice. When viewed in combination, our results demonstrate that neutrophilic inflammation in CF airways is associated with abundant free DNA characteristic for NETosis, and suggest that free DNA may be implicated in lung function decline in patients with CF. PMID:25918476

  8. Macrophage and Innate Lymphoid Cell Interplay in the Genesis of Fibrosis

    PubMed Central

    Hams, Emily; Bermingham, Rachel; Fallon, Padraic G.

    2015-01-01

    Fibrosis is a characteristic pathological feature of an array of chronic diseases, where development of fibrosis in tissue can lead to marked alterations in the architecture of the affected organs. As a result of this process of sustained attrition to organs, many diseases that involve fibrosis are often progressive conditions and have a poor long-term prognosis. Inflammation is often a prelude to fibrosis, with innate and adaptive immunity involved in both the initiation and regulation of the fibrotic process. In this review, we will focus on the emerging roles of the newly described innate lymphoid cells (ILCs) in the generation of fibrotic disease with an examination of the potential interplay between ILC and macrophages and the adaptive immune system. PMID:26635811

  9. Hepatic Stellate Cells and microRNAs in Pathogenesis of Liver Fibrosis

    PubMed Central

    Kitano, Mio; Bloomston, P. Mark

    2016-01-01

    microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by either blocking translation or inducing degradation of target mRNA. miRNAs play essential roles in diverse biological and pathological processes, including development of hepatic fibrosis. Hepatic stellate cells (HSCs) play a central role in development of hepatic fibrosis and there are intricate regulatory effects of miRNAs on their activation, proliferation, collagen production, migration, and apoptosis. There are multiple differentially expressed miRNAs in activated HSCs, and in this review we aim to summarize current data on miRNAs that participate in the development of hepatic fibrosis. Based on this review, miRNAs may serve as biomarkers for diagnosis of liver disease, as well as markers of disease progression. Most importantly, dysregulated miRNAs may potentially be targeted by novel therapies to treat and reverse progression of hepatic fibrosis. PMID:26999230

  10. Hypoxia Induces Mesenchymal Gene Expression in Renal Tubular Epithelial Cells: An in vitro Model of Kidney Transplant Fibrosis.

    PubMed

    Zell, Stephanie; Schmitt, Roland; Witting, Sandra; Kreipe, Hans H; Hussein, Kais; Becker, Jan U

    2013-01-01

    The development of interstitial fibrosis and tubular atrophy is a common complication after kidney transplantation and is associated with reduced long-term outcome. The hallmark of tubulointerstitial fibrosis is an increase in extracellular matrix resulting from exaggerated activation of fibroblasts/myofibroblasts, and tubular atrophy is characterized by a decrease in tubular diameter and loss of function. Atrophic epithelial cells may undergo epithelial-to-mesenchymal transition (EMT) with potential differentiation into interstitial fibroblasts. One potential driver of EMT in developing interstitial fibrosis and tubular atrophy is chronic hypoxia. The expression of 46 EMT-related genes was analyzed in an in vitro hypoxia model in renal proximal tubular epithelial cells (RPTEC). Furthermore, the expression of 342 microRNAs (miR) was evaluated in hypoxic culture conditions. Hypoxic RPTEC expressed markers of a more mesenchymal phenotype and showed an increased expression of matrix metalloproteinase-2 (MMP2). MMP2 expression in RPTEC correlated inversely with a decreased expression of miR-124, which was found to have a putative binding site for the MMP2 transcript. Overexpression of miR-124 inhibited MMP2 protein translation. Hypoxia was associated with increased migration/proliferation of RPTEC which was reversed by miR-124. These results indicate that hypoxia promotes a mesenchymal and migratory phenotype in renal epithelial cells, which is associated with increased MMP2 expression. Hypoxia-dependent MMP2 expression is regulated via a reduced transcription of miR-124. Overexpression of miR-124 antagonizes hypoxia-induced cell migration. Further research is needed to elucidate the functional role of miR-124 and MMP2 in the development of fibrosis in renal transplant degeneration.

  11. Hypoxia Induces Mesenchymal Gene Expression in Renal Tubular Epithelial Cells: An in vitro Model of Kidney Transplant Fibrosis

    PubMed Central

    Zell, Stephanie; Schmitt, Roland; Witting, Sandra; Kreipe, Hans H.; Hussein, Kais; Becker, Jan U.

    2013-01-01

    Background The development of interstitial fibrosis and tubular atrophy is a common complication after kidney transplantation and is associated with reduced long-term outcome. The hallmark of tubulointerstitial fibrosis is an increase in extracellular matrix resulting from exaggerated activation of fibroblasts/myofibroblasts, and tubular atrophy is characterized by a decrease in tubular diameter and loss of function. Atrophic epithelial cells may undergo epithelial-to-mesenchymal transition (EMT) with potential differentiation into interstitial fibroblasts. One potential driver of EMT in developing interstitial fibrosis and tubular atrophy is chronic hypoxia. Methods The expression of 46 EMT-related genes was analyzed in an in vitro hypoxia model in renal proximal tubular epithelial cells (RPTEC). Furthermore, the expression of 342 microRNAs (miR) was evaluated in hypoxic culture conditions. Results Hypoxic RPTEC expressed markers of a more mesenchymal phenotype and showed an increased expression of matrix metalloproteinase-2 (MMP2). MMP2 expression in RPTEC correlated inversely with a decreased expression of miR-124, which was found to have a putative binding site for the MMP2 transcript. Overexpression of miR-124 inhibited MMP2 protein translation. Hypoxia was associated with increased migration/proliferation of RPTEC which was reversed by miR-124. Conclusions These results indicate that hypoxia promotes a mesenchymal and migratory phenotype in renal epithelial cells, which is associated with increased MMP2 expression. Hypoxia-dependent MMP2 expression is regulated via a reduced transcription of miR-124. Overexpression of miR-124 antagonizes hypoxia-induced cell migration. Further research is needed to elucidate the functional role of miR-124 and MMP2 in the development of fibrosis in renal transplant degeneration. PMID:23898346

  12. Chemokine receptor CXCR6-dependent hepatic NK T Cell accumulation promotes inflammation and liver fibrosis.

    PubMed

    Wehr, Alexander; Baeck, Christer; Heymann, Felix; Niemietz, Patricia Maria; Hammerich, Linda; Martin, Christian; Zimmermann, Henning W; Pack, Oliver; Gassler, Nikolaus; Hittatiya, Kanishka; Ludwig, Andreas; Luedde, Tom; Trautwein, Christian; Tacke, Frank

    2013-05-15

    Chronic liver injury characteristically results in hepatic inflammation, which represents a prerequisite for organ fibrosis. Although NKT cells are abundantly present in liver and involved in hepatic inflammation, molecular mechanisms of their recruitment in liver fibrosis remained elusive. We hypothesized that chemokine receptor CXCR6 and its ligand CXCL16 control NKT cell migration and functionality in liver fibrosis. In patients with chronic liver diseases (n = 58), CXCR6 and CXCL16 expression was intrahepatically upregulated compared with controls. In murine liver, Cxcl16 was strongly expressed by endothelium and macrophages, whereas lymphocyte populations (NKT, NK, CD4 T, CD8 T cells) expressed CXCR6. Intravital two-photon microscopy imaging of Cxcr6(+/gfp) and Cxcr6(gfp/gfp) mice and chemotaxis studies in vitro revealed that CXCR6 specifically controls hepatic NKT cell accumulation during the early response upon experimental liver damage. Hepatic invariant NKT cells expressed distinct proinflammatory cytokines including IFN-γ and IL-4 upon injury. CXCR6-deficient mice were protected from liver fibrosis progression in two independent experimental models. Macrophage infiltration and protein levels of inflammatory cytokines IFN-γ, TNF-α, and IL-4 were also reduced in fibrotic livers of Cxcr6(-/-) mice, corroborating that hepatic NKT cells provide essential cytokine signals perpetuating hepatic inflammation and fibrogenesis. Adoptive transfer of NKT cells, but not CD4 T cells, isolated from wild type livers restored hepatic fibrosis in Cxcr6(-/-) mice upon experimental steatohepatitis. Our results demonstrate that hepatic NKT cells accumulate CXCR6-dependent early upon injury, thereby accentuating the inflammatory response in the liver and promoting hepatic fibrogenesis. Interfering with CXCR6/CXCL16 might therefore bear therapeutic potential in liver fibrosis.

  13. mTOR Overactivation in Mesenchymal cells Aggravates CCl4− Induced liver Fibrosis

    PubMed Central

    Shan, Lanlan; Ding, Yan; Fu, You; Zhou, Ling; Dong, Xiaoying; Chen, Shunzhi; Wu, Hongyuan; Nai, Wenqing; Zheng, Hang; Xu, Wanfu; Bai, Xiaochun; Jia, Chunhong; Dai, Meng

    2016-01-01

    Hepatic stellate cells are of mesenchymal cell type located in the space of Disse. Upon liver injury, HSCs transactivate into myofibroblasts with increase in expression of fibrillar collagen, especially collagen I and III, leading to liver fibrosis. Previous studies have shown mTOR signaling is activated during liver fibrosis. However, there is no direct evidence in vivo. The aim of this study is to examine the effects of conditional deletion of TSC1 in mesenchymal on pathogenesis of liver fibrosis. Crossing mice bearing the floxed TSC1 gene with mice harboring Col1α2-Cre-ER(T) successfully generated progeny with a conditional knockout of TSC1 (TSC1 CKO) in collagen I expressing mesenchymal cells. TSC1 CKO and WT mice were subjected to CCl4, oil or CCl4+ rapamycin treatment for 8 weeks. TSC1 CKO mice developed pronounced liver fibrosis relative to WT mice, as examined by ALT, hydroxyproline, histopathology, and profibrogenic gene. Absence of TSC1 in mesenchymal cells induced proliferation and prevented apoptosis in activated HSCs. However, there were no significant differences in oil-treated TSC1 CKO and WT mice. Rapamycin, restored these phenotypic changes by preventing myofibroblasts proliferation and enhancing their apoptosis. These findings revealed mTOR overactivation in mesenchymal cells aggravates CCl4− induced liver fibrosis and the rapamycin prevent its occurance. PMID:27819329

  14. Modulation of Stem Cell Differentiation and Myostatin as an Approach to Counteract Fibrosis in Muscle Dystrophy and Regeneration after Injury

    DTIC Science & Technology

    2011-03-01

    07-1-0181 TITLE: Modulation of Stem Cell Differentiation and Myostatin as an Approach to Counteract Fibrosis in Muscle Dystrophy and...Myostatin as an Approach to Counteract Fibrosis in Muscle Dystrophy and Regeneration after Injury Dr. Nestor Gonzalez-Cadavid Charles R. Drew...combat fibrosis and lipofibrotic degeneration, and stimulate MDSC fusion with myofibers. Myostatin, muscle dystrophy, stem cells, myogenesis, Oct-4

  15. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo

    PubMed Central

    Lehmann, Mareike; Korfei, Martina; Mutze, Kathrin; Klee, Stephan; Skronska-Wasek, Wioletta; Alsafadi, Hani N.; Ota, Chiharu; Costa, Rita; Schiller, Herbert B.; Lindner, Michael; Wagner, Darcy E.; Günther, Andreas

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor prognosis and limited therapeutic options. The incidence of IPF increases with age, and ageing-related mechanisms such as cellular senescence have been proposed as pathogenic drivers. The lung alveolar epithelium represents a major site of tissue injury in IPF and senescence of this cell population is probably detrimental to lung repair. However, the potential pathomechanisms of alveolar epithelial cell senescence and the impact of senolytic drugs on senescent lung cells and fibrosis remain unknown. Here we demonstrate that lung epithelial cells exhibit increased P16 and P21 expression as well as senescence-associated β-galactosidase activity in experimental and human lung fibrosis tissue and primary cells. Primary fibrotic mouse alveolar epithelial type (AT)II cells secreted increased amounts of senescence-associated secretory phenotype (SASP) factors in vitro, as analysed using quantitative PCR, mass spectrometry and ELISA. Importantly, pharmacological clearance of senescent cells by induction of apoptosis in fibrotic ATII cells or ex vivo three-dimensional lung tissue cultures reduced SASP factors and extracellular matrix markers, while increasing alveolar epithelial markers. These data indicate that alveolar epithelial cell senescence contributes to lung fibrosis development and that senolytic drugs may be a viable therapeutic option for IPF. PMID:28775044

  16. Lung Ultrasonography in Patients With Idiopathic Pulmonary Fibrosis: Evaluation of a Simplified Protocol With High-Resolution Computed Tomographic Correlation.

    PubMed

    Vassalou, Evangelia E; Raissaki, Maria; Magkanas, Eleftherios; Antoniou, Katerina M; Karantanas, Apostolos H

    2017-09-06

    To compare a simplified ultrasonographic (US) protocol in 2 patient positions with the same-positioned comprehensive US assessments and high-resolution computed tomographic (CT) findings in patients with idiopathic pulmonary fibrosis. Twenty-five consecutive patients with idiopathic pulmonary fibrosis were prospectively enrolled and examined in 2 sessions. During session 1, patients were examined with a US protocol including 56 lung intercostal spaces in supine/sitting (supine/sitting comprehensive protocol) and lateral decubitus (decubitus comprehensive protocol) positions. During session 2, patients were evaluated with a 16-intercostal space US protocol in sitting (sitting simplified protocol) and left/right decubitus (decubitus simplified protocol) positions. The 16 intercostal spaces were chosen according to the prevalence of idiopathic pulmonary fibrosis-related changes on high-resolution CT. The sum of B-lines counted in each intercostal space formed the US scores for all 4 US protocols: supine/sitting and decubitus comprehensive US scores and sitting and decubitus simplified US scores. High-resolution CT-related Warrick scores (J Rheumatol 1991; 18:1520-1528) were compared to US scores. The duration of each protocol was recorded. A significant correlation was found between all US scores and Warrick scores and between simplified and corresponding comprehensive scores (P < .0001). Decubitus simplified US scores showed a slightly higher correlation with Warrick scores compared to sitting simplified US scores. Mean durations of decubitus and sitting simplified protocols were 4.76 and 6.20 minutes, respectively (P < .005). Simplified 16-intercostal space protocols correlated with comprehensive protocols and high-resolution CT findings in patients with idiopathic pulmonary fibrosis. The 16-intercostal space simplified protocol in the lateral decubitus position correlated better with high-resolution CT findings and was less time-consuming compared to the

  17. Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa

    PubMed Central

    Bajmoczi, Milan; Gadjeva, Mihaela; Alper, Seth L.; Pier, Gerald B.; Golan, David E.

    2009-01-01

    Patients with cystic fibrosis (CF) exhibit defective innate immunity and are susceptible to chronic lung infection with Pseudomonas aeruginosa. To investigate the molecular bases for the hypersusceptibility of CF patients to P. aeruginosa, we used the IB3-1 cell line with two defective CF transmembrane conductance regulator (CFTR) genes (ΔF508/W1282X) to generate isogenic stable, clonal lung epithelial cells expressing wild-type (WT)-CFTR with an NH2-terminal green fluorescent protein (GFP) tag. GFP-CFTR exhibited posttranslational modification, subcellular localization, and anion transport function typical of WT-CFTR. P. aeruginosa internalization, a component of effective innate immunity, required functional CFTR and caveolin-1, as shown by: 1) direct correlation between GFP-CFTR expression levels and P. aeruginosa internalization; 2) enhanced P. aeruginosa internalization by aminoglycoside-induced read through of the CFTR W1282X allele in IB3-1 cells; 3) decreased P. aeruginosa internalization following siRNA knockdown of GFP-CFTR or caveolin-1; and 4) spatial association of P. aeruginosa with GFP-CFTR and caveolin-1 at the cell surface. P. aeruginosa internalization also required free lateral diffusion of GFP-CFTR, allowing for bacterial coclustering with GFP-CFTR and caveolin-1 at the plasma membrane. Thus efficient initiation of innate immunity to P. aeruginosa requires formation of an epithelial “internalization platform” involving both caveolin-1 and functional, laterally mobile CFTR. PMID:19386787

  18. Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa.

    PubMed

    Bajmoczi, Milan; Gadjeva, Mihaela; Alper, Seth L; Pier, Gerald B; Golan, David E

    2009-08-01

    Patients with cystic fibrosis (CF) exhibit defective innate immunity and are susceptible to chronic lung infection with Pseudomonas aeruginosa. To investigate the molecular bases for the hypersusceptibility of CF patients to P. aeruginosa, we used the IB3-1 cell line with two defective CF transmembrane conductance regulator (CFTR) genes (DeltaF508/W1282X) to generate isogenic stable, clonal lung epithelial cells expressing wild-type (WT)-CFTR with an NH(2)-terminal green fluorescent protein (GFP) tag. GFP-CFTR exhibited posttranslational modification, subcellular localization, and anion transport function typical of WT-CFTR. P. aeruginosa internalization, a component of effective innate immunity, required functional CFTR and caveolin-1, as shown by: 1) direct correlation between GFP-CFTR expression levels and P. aeruginosa internalization; 2) enhanced P. aeruginosa internalization by aminoglycoside-induced read through of the CFTR W1282X allele in IB3-1 cells; 3) decreased P. aeruginosa internalization following siRNA knockdown of GFP-CFTR or caveolin-1; and 4) spatial association of P. aeruginosa with GFP-CFTR and caveolin-1 at the cell surface. P. aeruginosa internalization also required free lateral diffusion of GFP-CFTR, allowing for bacterial coclustering with GFP-CFTR and caveolin-1 at the plasma membrane. Thus efficient initiation of innate immunity to P. aeruginosa requires formation of an epithelial "internalization platform" involving both caveolin-1 and functional, laterally mobile CFTR.

  19. Oral submucous fibrosis: A quantitative assessment of serum malondialdehyde, superoxide dismutase and correlation with clinical staging

    PubMed Central

    Bale, Ratnakar; Kattappagari, Kiran Kumar; Vidya, Desai; Vuddandi, Sivapradobh; Gummalla, Charani; Baddam, Venkata Ramana Reddy

    2017-01-01

    Background: Oral submucous fibrosis (OSMF) is a progressive disorder affecting the oral mucosa. OSMF predominantly seen in South-east Asian countries. There are some biochemicals parameters which are modify in oral submucous fibrosis; this alteration can be used as a tool for diseases progress and avert malignant transformation. Aims and Objectives: The aim of this study is to evaluate the serum malondialdehyde (malondialdehyde [MDA]), and Superoxide dismutase (SOD) in oral sub mucous fibrosis cases and compare clinical stages. Materials and Methods: Thirty cases of clinical and histopathological established oral submucous fibrosis and thirty cases of nonsymptomatic features of oral submucous fibrosis preferred as controls. Venous blood was collected and separation of serum for estimation of MDA and SOD levels was done using an ultraviolet spectrophotometer. Statistical Analysis: Data were analyzed using SPSS software using Student's t-test and Kruskal–Wallis ANOVA test. Results: Serum MDA levels were elevated when clinical staging increases, where as SOD levels were decreased when clinical stage increases when compared with control cases and it showed stastically significant. Conclusion: Estimation of serum MDA and SOD in patients with OSMF, we can assess the degree of oxidative damage of the disease. This can be used as an early diagnostic tool for preventing malignant transformation of oral submucous fibrosis. PMID:28479685

  20. Oral submucous fibrosis: A quantitative assessment of serum malondialdehyde, superoxide dismutase and correlation with clinical staging.

    PubMed

    Bale, Ratnakar; Kattappagari, Kiran Kumar; Vidya, Desai; Vuddandi, Sivapradobh; Gummalla, Charani; Baddam, Venkata Ramana Reddy

    2017-01-01

    Oral submucous fibrosis (OSMF) is a progressive disorder affecting the oral mucosa. OSMF predominantly seen in South-east Asian countries. There are some biochemicals parameters which are modify in oral submucous fibrosis; this alteration can be used as a tool for diseases progress and avert malignant transformation. The aim of this study is to evaluate the serum malondialdehyde (malondialdehyde [MDA]), and Superoxide dismutase (SOD) in oral sub mucous fibrosis cases and compare clinical stages. Thirty cases of clinical and histopathological established oral submucous fibrosis and thirty cases of nonsymptomatic features of oral submucous fibrosis preferred as controls. Venous blood was collected and separation of serum for estimation of MDA and SOD levels was done using an ultraviolet spectrophotometer. Data were analyzed using SPSS software using Student's t-test and Kruskal-Wallis ANOVA test. Serum MDA levels were elevated when clinical staging increases, where as SOD levels were decreased when clinical stage increases when compared with control cases and it showed stastically significant. Estimation of serum MDA and SOD in patients with OSMF, we can assess the degree of oxidative damage of the disease. This can be used as an early diagnostic tool for preventing malignant transformation of oral submucous fibrosis.

  1. Endothelial cell Toll-like receptor 4 regulates fibrosis associated angiogenesis in liver

    PubMed Central

    Jagavelu, K; Routray, C; Shergill, U; O’Hara, SP; Faubion, W; Shah, VH

    2010-01-01

    Angiogenesis defines the growth of new blood vessels from pre-existing vascular endothelial networks and corresponds with the wound healing process that is typified by the process of liver fibrosis. Liver fibrosis is also associated with increased endotoxin within the gut lumen and its associated portal circulation. However, the interrelationship of gut endotoxin and its receptor, Toll-like receptor 4 (TLR4), with liver fibrosis and associated angiogenesis remains incompletely defined. RESULT Here we provide evidence, using complementary genetic, molecular, and pharmacologic approaches that the pattern recognition receptor that recognizes endotoxin, TLR4, expressed on liver endothelial cells (LEC), regulates angiogenic responses both in vitro and in vivo. Mechanistic studies reveal a key role for a cognate TLR4 effector protein, MyD88 in this process which culminates in extracellular protease production that regulates LEC invasive capacity, a key step in angiogenesis. Furthermore TLR4 dependent angiogenesis in vivo corresponds with fibrosis in complementary liver models of fibrosis. CONCLUSION These studies provide evidence that the TLR4 pathway in LEC regulates angiogenesis through its MyD88 effector protein by regulating extracellular protease production and that this process is linked to the development of liver fibrosis. PMID:20564354

  2. Effect of adipose tissue-derived stem cell injection in a rat model of urethral fibrosis

    PubMed Central

    Sangkum, Premsant; Yafi, Faysal A.; Kim, Hogyoung; Bouljihad, Mostafa; Ranjan, Manish; Datta, Amrita; Mandava, Sree Harsha; Sikka, Suresh C; Abdel-Mageed, Asim B.; Hellstrom, Wayne J.G.

    2016-01-01

    Introduction: We sought to evaluate the therapeutic effect of adi-pose tissue-derived stem cells (ADSCs) in a rat model of urethral fibrosis. Methods: Eighteen (18) male Sprague-Dawley rats (300‒350 g) were divided into three groups: (1) sham (saline injection); (2) urethral fibrosis group (10 μg transforming growth factor beta 1 (TGF-β1) injection); and (3) ADSCs group (10 μg TGF-β1 injection plus 2 × 105 ADSCs). Rat ADSCs were harvested from rat inguinal fat pads. All study animals were euthanized at two weeks after urethral injection. Following euthanasia, rat urethral tissue was harvested for histologic evaluation. Type I and III collagen levels were quantitated by Western blot analysis. Results: TGF-β1 injection induced significant urethral fibrosis and increased collagen type I and III expression (p<0.05). Significant decrease in submucosal fibrosis and collagen type I and III expression were noted in the ADSCs group compared with the urethral fibrosis group (p<0.05). TGF-β1 induced fibrotic changes were ameliorated by injection of ADSCs. Conclusions: Local injection of ADSCs in a rat model of urethral fibrosis significantly decreased collagen type I and III. These findings suggest that ADSC injection may prevent scar formation and potentially serve as an adjunct treatment to increase the success rate of primary treatment for urethral stricture disease. Further animal and clinical studies are needed to confirm these results. PMID:27790299

  3. Oleoylethanolamide, an endogenous PPAR-α ligand, attenuates liver fibrosis targeting hepatic stellate cells.

    PubMed

    Chen, Ling; Li, Long; Chen, Junde; Li, Lei; Zheng, Zihan; Ren, Jie; Qiu, Yan

    2015-12-15

    Oleoylethanolamide (OEA), an endocannabinoid-like molecule, was revealed to modulate lipid metabolism through a peroxisome proliferator-activated receptor-α (PPAR-α) mediated mechanism. In present study, we further investigated the activities and mechanisms of OEA in ameliorating hepatic fibrosis in Sv/129 mice induced by a methionine choline-deficient (MCD) diet or thioacetamide (TAA) treatment. Liver fibrosis development was assessed by Hematoxylin-eosin and Sirius red staining. Treatment with OEA (5 mg/kg/day, intraperitoneal injection, i.p.) significantly attenuated the progress of liver fibrosis in both two experimental animal models by blocking the activation of hepatic stellate cells (HSCs). Gene expression analysis of hepatic tissues indicated that OEA inhibited the expression of α-smooth muscle action (α-SMA) and collagen matrix, fibrosis markers, and genes involved in inflammation and extracellular matrix remodeling. In vitro studies showed that OEA inhibited transforming growth factor β1-stimulated HSCs activation through suppressing Smad2/3 phosphorylation, α-SMA expression and myofibroblast transformation. These improvements could not be observed in PPAR-α knockout mice models with OEA administration, which suggested all the anti-fibrotic effects of OEA in vivo and in vitro were mediated by PPAR-α activation. Collectively, our results suggested that OEA exerted a pharmacological effect on modulating hepatic fibrosis development through the inhibition of HSCs activation in liver and therefore may be a potential therapeutic agent for liver fibrosis.

  4. Oleoylethanolamide, an endogenous PPAR-α ligand, attenuates liver fibrosis targeting hepatic stellate cells

    PubMed Central

    Chen, Junde; Li, Lei; Zheng, Zihan; Ren, Jie; Qiu, Yan

    2015-01-01

    Oleoylethanolamide (OEA), an endocannabinoid-like molecule, was revealed to modulate lipid metabolism through a peroxisome proliferator-activated receptor-α (PPAR-α) mediated mechanism. In present study, we further investigated the activities and mechanisms of OEA in ameliorating hepatic fibrosis in Sv/129 mice induced by a methionine choline-deficient (MCD) diet or thioacetamide (TAA) treatment. Liver fibrosis development was assessed by Hematoxylin-eosin and Sirius red staining. Treatment with OEA (5 mg/kg/day, intraperitoneal injection, i.p.) significantly attenuated the progress of liver fibrosis in both two experimental animal models by blocking the activation of hepatic stellate cells (HSCs). Gene expression analysis of hepatic tissues indicated that OEA inhibited the expression of α-smooth muscle action (α-SMA) and collagen matrix, fibrosis markers, and genes involved in inflammation and extracellular matrix remodeling. In vitro studies showed that OEA inhibited transforming growth factor β1-stimulated HSCs activation through suppressing Smad2/3 phosphorylation, α-SMA expression and myofibroblast transformation. These improvements could not be observed in PPAR-α knockout mice models with OEA administration, which suggested all the anti-fibrotic effects of OEA in vivo and in vitro were mediated by PPAR-α activation. Collectively, our results suggested that OEA exerted a pharmacological effect on modulating hepatic fibrosis development through the inhibition of HSCs activation in liver and therefore may be a potential therapeutic agent for liver fibrosis. PMID:26729705

  5. The distribution of immunomodulatory cells in the lungs of patients with idiopathic pulmonary fibrosis.

    PubMed

    Nuovo, Gerard J; Hagood, James S; Magro, Cynthia M; Chin, Nena; Kapil, Rubina; Davis, Luke; Marsh, Clay B; Folcik, Virginia A

    2012-03-01

    We have characterized the immune system involvement in the disease processes of idiopathic pulmonary fibrosis in novel ways. To do so, we analyzed lung tissue from 21 cases of idiopathic pulmonary fibrosis and 21 (non-fibrotic, non-cancerous) controls for immune cell and inflammation-related markers. The immunohistochemical analysis of the tissue was grouped by patterns of severity in disease pathology. There were significantly greater numbers of CD68(+) and CD80(+) cells and significantly fewer CD3(+), CD4(+), and CD45RO(+) cells in areas of relatively (histologically) normal lung in biopsy samples from idiopathic pulmonary fibrosis patients compared with controls. In zones of active disease, characterized by epithelial cell regeneration and fibrosis, there were significantly more cells expressing CD4, CD8, CD20, CD68, CD80, chemokine receptor 6 (CCR6), S100, IL-17, tumor necrosis factor-α, and retinoic acid-related orphan receptors compared with histologically normal lung areas from idiopathic pulmonary fibrosis patients. Inflammation was implicated in these active regions by the cells that expressed retinoid orphan receptor-α, -β, and -γ, CCR6, and IL-17. The regenerating epithelial cells predominantly expressed these pro-inflammatory molecules, as evidenced by co-expression analyses with epithelial cytokeratins. Macrophages in pseudo-alveoli and CD3(+) T cells in the fibrotic interstitium also expressed IL-17. Co-expression of IL-17 with retinoid orphan receptors and epithelial cytoskeletal proteins, CD68, and CD3 in epithelial cells, macrophages, and T-cells, respectively, confirmed the production of IL-17 by these cell types. There was little staining for forkhead box p3, CD56, or CD34 in any idiopathic pulmonary fibrosis lung regions. The fibrotic regions had fewer immune cells overall. In summary, our study shows participation of innate and adaptive mononuclear cells in active-disease regions of idiopathic pulmonary fibrosis lung, where the regenerating

  6. The distribution of immunomodulatory cells in the lungs of patients with idiopathic pulmonary fibrosis

    PubMed Central

    Nuovo, Gerard J.; Hagood, James S.; Magro, Cynthia M.; Chin, Nena; Kapil, Rubina; Davis, Luke; Marsh, Clay B.; Folcik, Virginia A.

    2011-01-01

    We have characterized the immune system involvement in the disease processes of idiopathic pulmonary fibrosis in novel ways. To do so, we analyzed lung tissue from 21 cases of idiopathic pulmonary fibrosis and 21 (non-fibrotic, non-cancerous) controls for immune cell and inflammation-related markers. The immunohistochemical analysis of the tissue was grouped by patterns of severity in disease pathology. There were significantly greater numbers of CD68+ and CD80+ cells, and significantly fewer CD3+, CD4+, and CD45RO+ cells in areas of relatively (histologically) normal lung in biopsies from idiopathic pulmonary fibrosis patients compared to controls. In zones of active disease, characterized by epithelial cell regeneration and fibrosis, there were significantly more cells expressing CD4, CD8, CD20, CD68, CD80, CCR6, S100, IL-17, tumor necrosis factor-α, and retinoic acid-related orphan receptors compared to histologically normal lung areas from idiopathic pulmonary fibrosis patients. Inflammation was implicated in these active regions by the cells that expressed retinoid orphan receptor-α, -β, and -γ, CCR6, and IL-17. The regenerating epithelial cells predominantly expressed these pro-inflammatory molecules, as evidenced by co-expression analyses with epithelial cytokeratins. Macrophages in pseudo-alveoli and CD3+ T cells in the fibrotic interstitium also expressed IL-17. Co-expression of IL-17 with retinoid orphan receptors, and epithelial cytoskeletal proteins, CD68, and CD3 in epithelial cells, macrophages, and T-cells, respectively, confirmed the production of IL-17 by these cell types. There was little staining for Foxp3, CD56, or CD34 in any idiopathic pulmonary fibrosis lung regions. The fibrotic regions had fewer immune cells overall. In summary, our study shows participation of innate and adaptive mononuclear cells in active-disease regions of idiopathic pulmonary fibrosis lung, where the regenerating epithelial cells appear to propagate inflammation

  7. Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction

    PubMed Central

    Livingston, Man J.; Ding, Han-Fei; Huang, Shuang; Hill, Joseph A.; Yin, Xiao-Ming; Dong, Zheng

    2016-01-01

    ABSTRACT Renal fibrosis is the final, common pathway of end-stage renal disease. Whether and how autophagy contributes to renal fibrosis remains unclear. Here we first detected persistent autophagy in kidney proximal tubules in the renal fibrosis model of unilateral ureteral obstruction (UUO) in mice. UUO-associated fibrosis was suppressed by pharmacological inhibitors of autophagy and also by kidney proximal tubule-specific knockout of autophagy-related 7 (PT-Atg7 KO). Consistently, proliferation and activation of fibroblasts, as indicated by the expression of ACTA2/α-smooth muscle actin and VIM (vimentin), was inhibited in PT-Atg7 KO mice, so was the accumulation of extracellular matrix components including FN1 (fibronectin 1) and collagen fibrils. Tubular atrophy, apoptosis, nephron loss, and interstitial macrophage infiltration were all inhibited in these mice. Moreover, these mice showed a specific suppression of the expression of a profibrotic factor FGF2 (fibroblast growth factor 2). In vitro, TGFB1 (transforming growth factor β 1) induced autophagy, apoptosis, and FN1 accumulation in primary proximal tubular cells. Inhibition of autophagy suppressed FN1 accumulation and apoptosis, while enhancement of autophagy increased TGFB1-induced-cell death. These results suggest that persistent activation of autophagy in kidney proximal tubules promotes renal interstitial fibrosis during UUO. The profibrotic function of autophagy is related to the regulation on tubular cell death, interstitial inflammation, and the production of profibrotic factors. PMID:27123926

  8. Umbilical cord-derived mesenchymal stem cells alleviate liver fibrosis in rats

    PubMed Central

    Chai, Ning-Li; Zhang, Xiao-Bin; Chen, Si-Wen; Fan, Ke-Xing; Linghu, En-Qiang

    2016-01-01

    AIM: To evaluate the efficacy of umbilical cord-derived mesenchymal stem cells (UC-MSCs) transplantation in the treatment of liver fibrosis. METHODS: Cultured human UC-MSCs were isolated and transfused into rats with liver fibrosis induced by dimethylnitrosamine (DMN). The effects of UC-MSCs transfusion on liver fibrosis were then evaluated by histopathology; serum interleukin (IL)-4 and IL-10 levels were also measured. Furthermore, Kupffer cells (KCs) in fibrotic livers were isolated and cultured to analyze their phenotype. Moreover, UC-MSCs were co-cultured with KCs in vitro to assess the effects of UC-MSCs on KCs’ phenotype, and IL-4 and IL-10 levels were measured in cell culture supernatants. Finally, UC-MSCs and KCs were cultured in the presence of IL-4 antibodies to block the effects of this cytokine, followed by phenotypical analysis of KCs. RESULTS: UC-MSCs transfused into rats were recruited by the injured liver and alleviated liver fibrosis, increasing serum IL-4 and IL-10 levels. Interestingly, UC-MSCs promoted mobilization of KCs not only in fibrotic livers, but also in vitro. Co-culture of UC-MSCs with KCs resulted in increased production of IL-4 and IL-10. The addition of IL-4 antibodies into the co-culture system resulted in decreased KC mobilization. CONCLUSION: UC-MSCs could increase IL-4 and promote mobilization of KCs both in vitro and in vivo, subsequently alleviating the liver fibrosis induced by DMN. PMID:27468195

  9. Liver fibrosis secondary to bile duct injury: correlation of Smad7 with TGF-β and extracellular matrix proteins

    PubMed Central

    2009-01-01

    Background Liver fibrosis is the result of continuous liver injury stemming from different etiological factors. Bile duct injury induces an altered expression of TGF-β, which has an important role in liver fibrosis because this cytokine induces the expression of target genes such as collagens, PAI-1, TIMPs, and others that lead to extracellular matrix deposition. Smad7 is the principal inhibitor that regulates the target gene transcription of the TGF-β signaling. The aim of the study was to determine whether Smad7 mRNA expression correlates with the gene expression of TGF-β, Col I, Col III, Col IV, or PAI-1 in liver fibrosis secondary to bile duct injury (BDI). Results Serum TGF-β concentration was higher in BDI patients (39 296 pg/ml) than in liver donors (9008 pg/ml). Morphometric analysis of liver sections showed 41.85% of tissue contained fibrotic deposits in BDI patients. mRNA expression of Smad7, Col I, and PAI-1 was also significantly higher (P < 0.05) in patients with BDI than in controls. Smad7 mRNA expression correlated significantly with TGF-β concentration, Col I and Col III expression, and the amount of fibrosis. Conclusion We found augmented serum concentration of TGF-β and an increase in the percentage of fibrotic tissue in the liver of BDI patients. Contrary to expected results, the 6-fold increase in Smad7 expression did not inhibit the expression of TGF-β, collagens, and PAI-1. We also observed greater expression of Col I and Col III mRNA in BDI patients and significant correlations between their expression and TGF-β concentration and Smad7 mRNA expression. PMID:19878580

  10. IL-21 Promotes Pulmonary Fibrosis through the Induction of Pro-fibrotic CD8+ T Cells

    PubMed Central

    Brodeur, Tia Y.; Robidoux, Tara E.; Weinstein, Jason S.; Craft, Joseph; Swain, Susan L.; Marshak-Rothstein, Ann

    2015-01-01

    Type 2 effector production of IL-13, a demonstrated requirement in models of fibrosis, is routinely ascribed to CD4+ Th2 cells. We now demonstrate a major role for CD8+ T cells in a murine model of sterile lung injury. These pulmonary CD8+ T cells differentiate into IL-13-producing Tc2 and play a major role in a bleomycin-induced model of fibrosis. Differentiation of these Tc2 cells in the lung requires IL-21, and bleomycin treated IL-21- and IL-21R-deficient mice develop inflammation but not fibrosis. Moreover, IL-21R-expressing CD8+ cells are sufficient to reconstitute the fibrotic response in the IL-21R-deficient mice. We further show that the combination of IL-4 and IL-21 skews naïve CD8+ T cells to produce IL-21, which in turn acts in an autocrine manner to support robust IL-13 production. Our data reveal a novel pathway involved in the onset and regulation of pulmonary fibrosis, and identify Tc2 cells as key mediators of fibrogenesis. PMID:26519529

  11. An observational study of giant cell interstitial pneumonia and lung fibrosis in hard metal lung disease.

    PubMed

    Tanaka, Junichi; Moriyama, Hiroshi; Terada, Masaki; Takada, Toshinori; Suzuki, Eiichi; Narita, Ichiei; Kawabata, Yoshinori; Yamaguchi, Tetsuo; Hebisawa, Akira; Sakai, Fumikazu; Arakawa, Hiroaki

    2014-03-27

    Hard metal lung disease has various pathological patterns including giant cell interstitial pneumonia (GIP) and usual interstitial pneumonia (UIP). Although the UIP pattern is considered the prominent feature in advanced disease, it is unknown whether GIP finally progresses to the UIP pattern. To clarify clinical, pathological and elemental differences between the GIP and UIP patterns in hard metal lung disease. A cross-sectional study of patients from 17 institutes participating in the 10th annual meeting of the Tokyo Research Group for Diffuse Parenchymal Lung Diseases, 2009. Nineteen patients (seven female) diagnosed with hard metal lung disease by the presence of tungsten in lung specimens were studied. Fourteen cases were pathologically diagnosed as GIP or centrilobular inflammation/fibrosing. The other five cases were the UIP pattern or upper lobe fibrosis. Elemental analyses of lung specimens of GIP showed tungsten throughout the centrilobular fibrotic areas. In the UIP pattern, tungsten was detected in the periarteriolar area with subpleural fibrosis, but no association with centrilobular fibrosis or inflammatory cell infiltration. The GIP group was younger (43.1 vs 58.6 years), with shorter exposure duration (73 vs 285 months; p<0.01), lower serum KL-6 (398 vs 710 U/mL) and higher lymphocyte percentage in bronchoalveolar lavage fluid (31.5% vs 3.22%; p<0.05) than the fibrosis group. The UIP pattern or upper lobe fibrosis is remarkably different from GIP in distribution of hard metal elements, associated interstitial inflammation and fibrosis, and clinical features. In hard metal lung disease, the UIP pattern or upper lobe fibrosis may not be an advanced form of GIP.

  12. An observational study of giant cell interstitial pneumonia and lung fibrosis in hard metal lung disease

    PubMed Central

    Tanaka, Junichi; Moriyama, Hiroshi; Terada, Masaki; Takada, Toshinori; Suzuki, Eiichi; Narita, Ichiei; Kawabata, Yoshinori; Yamaguchi, Tetsuo; Hebisawa, Akira; Sakai, Fumikazu; Arakawa, Hiroaki

    2014-01-01

    Background Hard metal lung disease has various pathological patterns including giant cell interstitial pneumonia (GIP) and usual interstitial pneumonia (UIP). Although the UIP pattern is considered the prominent feature in advanced disease, it is unknown whether GIP finally progresses to the UIP pattern. Objectives To clarify clinical, pathological and elemental differences between the GIP and UIP patterns in hard metal lung disease. Methods A cross-sectional study of patients from 17 institutes participating in the 10th annual meeting of the Tokyo Research Group for Diffuse Parenchymal Lung Diseases, 2009. Nineteen patients (seven female) diagnosed with hard metal lung disease by the presence of tungsten in lung specimens were studied. Results Fourteen cases were pathologically diagnosed as GIP or centrilobular inflammation/fibrosing. The other five cases were the UIP pattern or upper lobe fibrosis. Elemental analyses of lung specimens of GIP showed tungsten throughout the centrilobular fibrotic areas. In the UIP pattern, tungsten was detected in the periarteriolar area with subpleural fibrosis, but no association with centrilobular fibrosis or inflammatory cell infiltration. The GIP group was younger (43.1 vs 58.6 years), with shorter exposure duration (73 vs 285 months; p<0.01), lower serum KL-6 (398 vs 710 U/mL) and higher lymphocyte percentage in bronchoalveolar lavage fluid (31.5% vs 3.22%; p<0.05) than the fibrosis group. Conclusions The UIP pattern or upper lobe fibrosis is remarkably different from GIP in distribution of hard metal elements, associated interstitial inflammation and fibrosis, and clinical features. In hard metal lung disease, the UIP pattern or upper lobe fibrosis may not be an advanced form of GIP. PMID:24674995

  13. Gas6/Axl pathway is activated in chronic liver disease and its targeting reduces fibrosis via hepatic stellate cell inactivation

    PubMed Central

    Bárcena, Cristina; Stefanovic, Milica; Tutusaus, Anna; Joannas, Leonel; Menéndez, Anghara; García-Ruiz, Carmen; Sancho-Bru, Pau; Marí, Montserrat; Caballeria, Joan; Rothlin, Carla V.; Fernández-Checa, José C.; de Frutos, Pablo García; Morales, Albert

    2015-01-01

    Background & Aims Liver fibrosis, an important health concern associated to chronic liver injury that provides a permissive environment for cancer development, is characterized by accumulation of extracellular matrix components mainly derived from activated hepatic stellate cells (HSCs). Axl, a receptor tyrosine kinase, and its ligand Gas6 are involved in cell differentiation, immune response and carcinogenesis. Methods HSCs were obtained from wild type and Axl−/− mice, treated with recombinant Gas6 protein (rGas6), Axl siRNAs or the Axl inhibitor BGB324, and analyzed by western blot and real-time PCR. Experimental fibrosis was studied in CCl4-treated wild type and Axl−/− mice, and in combination with Axl inhibitor. Gas6 and Axl serum levels were measured in alcoholic liver disease (ALD) and hepatitis C virus (HCV) patients. Results In primary mouse HSCs, Gas6 and Axl levels paralleled HSC activation. rGas6 phosphorylated Axl and AKT prior to HSC phenotypic changes, while Axl siRNA silencing reduced HSC activation. Moreover, BGB324 blocked Axl/AKT phosphorylation and diminished HSC activation. In addition, Axl KO mice displayed decreased HSC activation in vitro and liver fibrogenesis after chronic damage by CCl4 administration. Similarly, BGB324 reduced collagen deposition and CCl4-induced liver fibrosis in mice. Importantly, Gas6 and Axl serum levels increased in ALD and HCV patients, inversely correlating with liver functionality. Conclusions: The Gas6/Axl axis is required for full HSC activation. Gas6 and Axl serum levels increase in parallel to chronic liver disease progression. Axl targeting may be a therapeutic strategy for liver fibrosis management. PMID:25908269

  14. Comparison of Histochemical Stainings in Evaluation of Liver Fibrosis and Correlation with Transient Elastography in Chronic Hepatitis

    PubMed Central

    Cabibi, Daniela; Bronte, Fabrizio; Porcasi, Rossana; Ingrao, Sabrina; Giannone, Antonino Giulio; Maida, Marcello; Grazia Bavetta, Maria; Petta, Salvatore; Di Marco, Vito; Calvaruso, Vincenza

    2015-01-01

    Background and Aim. The best staining to evaluate liver fibrosis in liver hepatitis is still a debated topic. This study aimed to compare Masson's trichrome (MT), Sirius Red (SR), and orcein stainings in evaluating liver fibrosis in chronic HCV hepatitis (CHC) with semiquantitative and quantitative methods (Collagen Proportionate Area (CPA) by Digital Image Analysis (DIA)) and correlate them with transient elastography (TE). Methods. Liver stiffness evaluation of 111 consecutive patients with CHC was performed by TE. Semiquantitative staging by Metavir score system and CPA by DIA were assessed on liver biopsy stained with MT, SR, and orcein. Results. MT, SR, and orcein staining showed concordant results in 89.6% of cases in staging CHC, without significant difference in both semiquantitative and quantitative evaluations of fibrosis. TE values were concordant with orcein levels in 86.5% of the cases and with MT/RS in 77.5% (P < 0.001). No significant correlation between the grade of necroinflammatory activity and TE values was found. Conclusion. In CHC, SR/MT and orcein stainings are almost concordant and when discordant, orcein staining is better related to TE values than MT/RS. This suggests that elastic fibers play a more important role than reticular or collagenous ones in determining stiffness values in CHC. PMID:26665101

  15. Diffuse myocardial fibrosis among healthy pediatric heart transplant recipients: Correlation of histology, cardiovascular magnetic resonance, and clinical phenotype.

    PubMed

    Feingold, Brian; Salgado, Cláudia M; Reyes-Múgica, Miguel; Drant, Stacey E; Miller, Susan A; Kennedy, Mark; Kellman, Peter; Schelbert, Erik B; Wong, Timothy C

    2017-08-01

    Fibrosis is commonly described in heart allografts lost late after transplantation. CMR-derived ECV is a validated measure of DMF in native adult hearts that may predict heart failure and mortality. We explored associations of ECV with histologic myocardial fibrosis and clinical features after pediatric heart transplantation. Twenty-five recipients (7.0±6.3 years at transplant and 10.7±6.5 years post-transplant) were prospectively recruited for CMR and BNP measurement at the time of surveillance biopsy. All had normal ejection fractions and lacked heart failure symptoms. Fibrosis was quantified on biopsy after picrosirius red staining as CVF. ECV was quantified using contemporaneous hematocrit on basal and mid-short-axis slices. ECV was moderately correlated with CVF (r=.47; P=.019). We found no associations of ECV with hemodynamics, ischemic time, time since transplantation, or number of prior biopsies or acute rejections. Compared to healthy non-transplant controls, there was no significant difference in ECV (25.1±3.0 vs 23.7±2.0%, P=.09). Log-transformed BNP was correlated with ECV (recipients: r=.46, P=.02; recipients and controls: r=.45, P=.006). These findings suggest ECV quantifies DMF and relates to biological indicators of cardiac function after pediatric heart transplantation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Predictive Factors of Late Radiation Fibrosis: A Prospective Study in Non-Small Cell Lung Cancer

    SciTech Connect

    Mazeron, Renaud; Etienne-Mastroianni, Benedicte; Perol, David; Arpin, Dominique; Vincent, Michel; Falchero, Lionel; Martel-Lafay, Isabelle; Carrie, Christian; Claude, Line

    2010-05-01

    Purpose: To determine predictive factors of late radiation fibrosis (RF) after conformal radiotherapy (3D-RT) in non-small cell lung cancer (NSCLC). Methods and Materials: Ninety-six patients with Stage IA-IIIB NSCLC were included in a prospective trial. Clinical evaluation, chest X-ray, and pulmonary functional tests including diffusion parameters were performed before and 6 months after radiotherapy. An independent panel of experts prospectively analyzed RF, using Late Effects in Normal Tissues-Subjective, Objective, Management and Analytic scales classification. Logistic regression analysis was performed to identify relationships between clinical, functional, or treatment parameters and incidence of RF. Variations of circulating serum levels of pro-inflammatory (interleukin-6, tumor necrosis factor alpha, tumor growth factor beta1) and anti-inflammatory (interleukin-10) cytokines during 3D-RT were examined to identify correlations with RF. Results: Of the 96 patients included, 72 were evaluable for RF at 6 months. Thirty-seven (51.4%) developed RF (Grade >=1), including six severe RF (Grades 2-3; 8.3%). In univariate analysis, only poor Karnofsky Performance Status and previous acute radiation pneumonitis were associated with RF (p < 0.05). Dosimetric factors (mean lung dose, percentage of lung volume receiving more than 10, 20, 30, 40, and 50 Gy) were highly correlated with RF (p < 0.001). In multivariate analysis, previous acute radiation pneumonitis and dosimetric parameters were significantly correlated with RF occurrence. It was not significantly correlated either with cytokines at baseline or with their variation during 3D-RT. Conclusions: This study confirms the importance of dosimetric parameters to limit the risk of RF. Contrary to acute radiation pneumonitis, RF was not correlated to cytokine variations during 3D-RT.

  17. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis

    PubMed Central

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P.; Williams, David B.; Kamp, David W.

    2015-01-01

    Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer. PMID:26370974

  18. Activation of calpain by renin-angiotensin system in pleural mesothelial cells mediates tuberculous pleural fibrosis

    PubMed Central

    Yang, Jie; Xiang, Fei; Cai, Peng-Cheng; Lu, Yu-Zhi; Xu, Xiao-Xiao; Yu, Fan; Li, Feng-Zhi; Greer, Peter A.; Shi, Huan-Zhong; Zhou, Qiong; Xin, Jian-Bao; Ye, Hong; Su, Yunchao

    2016-01-01

    Pleural fibrosis is defined as an excessive deposition of extracellular matrix (ECM) components that results in destruction of the normal pleural tissue architecture. It can result from diverse inflammatory conditions, especially tuberculous pleurisy. Pleural mesothelial cells (PMCs) play a pivotal role in pleural fibrosis. Calpain is a family of calcium-dependent endopeptidases, which plays an important role in ECM remodeling. However, the role of calpain in pleural fibrosis remains unknown. In the present study, we found that tuberculous pleural effusion (TPE) induced calpain activation in PMCs and that inhibition of calpain prevented TPE-induced collagen-I synthesis and cell proliferation of PMCs. Moreover, our data revealed that the levels of angiotensin (ANG)-converting enzyme (ACE) were significantly higher in pleural fluid of patients with TPE than those with malignant pleural effusion, and ACE-ANG II in TPE resulted in activation of calpain and subsequent triggering of the phosphatidylinositol 3-kinase (PI3K)/Akt/NF-κB signaling pathway in PMCs. Finally, calpain activation in PMCs and collagen depositions were confirmed in pleural biopsy specimens from patients with tuberculous pleurisy. Together, these studies demonstrated that calpain is activated by renin-angiotensin system in pleural fibrosis and mediates TPE-induced collagen-I synthesis and proliferation of PMCs via the PI3K/Akt/NF-κB signaling pathway. Calpain in PMCs might be a novel target for intervention in tuberculous pleural fibrosis. PMID:27261452

  19. Deletion of ADORA2B from myeloid cells dampens lung fibrosis and pulmonary hypertension.

    PubMed

    Karmouty-Quintana, Harry; Philip, Kemly; Acero, Luis F; Chen, Ning-Yuan; Weng, Tingting; Molina, Jose G; Luo, Fayong; Davies, Jonathan; Le, Ngoc-Bao; Bunge, Isabelle; Volcik, Kelly A; Le, Thanh-Thuy T; Johnston, Richard A; Xia, Yang; Eltzschig, Holger K; Blackburn, Michael R

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal, fibroproliferative disease. Pulmonary hypertension (PH) can develop secondary to IPF and increase mortality. Alternatively, activated macrophages (AAMs) contribute to the pathogenesis of both IPF and PH. Here we hypothesized that adenosine signaling through the ADORA2B on AAMs impacts the progression of these disorders and that conditional deletion of ADORA2B on myeloid cells would have a beneficial effect in a model of these diseases. Conditional knockout mice lacking ADORA2B on myeloid cells (Adora2B(f/f)-LysM(Cre)) were exposed to the fibrotic agent bleomycin (BLM; 0.035 U/g body weight, i.p.). At 14, 17, 21, 25, or 33 d after exposure, SpO2, bronchoalveolar lavage fluid (BALF), and histologic analyses were performed. On day 33, lung function and cardiovascular analyses were determined. Markers for AAM and mediators of fibrosis and PH were assessed. Adora2B(f/f)-LysM(Cre) mice presented with attenuated fibrosis, improved lung function, and no evidence of PH compared with control mice exposed to BLM. These findings were accompanied by reduced expression of CD206 and arginase-1, markers for AAMs. A 10-fold reduction in IL-6 and a 5-fold decrease in hyaluronan, both linked to lung fibrosis and PH, were also observed. These data suggest that activation of the ADORA2B on macrophages plays an active role in the pathogenesis of lung fibrosis and PH.

  20. Human Amnion Epithelial Cells Induced to Express Functional Cystic Fibrosis Transmembrane Conductance Regulator

    PubMed Central

    Murphy, Sean V.; Lim, Rebecca; Heraud, Philip; Cholewa, Marian; Le Gros, Mark; de Jonge, Martin D.; Howard, Daryl L.; Paterson, David; McDonald, Courtney; Atala, Anthony; Jenkin, Graham; Wallace, Euan M.

    2012-01-01

    Cystic fibrosis, an autosomal recessive disorder caused by a mutation in a gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), remains a leading cause of childhood respiratory morbidity and mortality. The respiratory consequences of cystic fibrosis include the generation of thick, tenacious mucus that impairs lung clearance, predisposing the individual to repeated and persistent infections, progressive lung damage and shortened lifespan. Currently there is no cure for cystic fibrosis. With this in mind, we investigated the ability of human amnion epithelial cells (hAECs) to express functional CFTR. We found that hAECs formed 3-dimensional structures and expressed the CFTR gene and protein after culture in Small Airway Growth Medium (SAGM). We also observed a polarized CFTR distribution on the membrane of hAECs cultured in SAGM, similar to that observed in polarized airway cells in vivo. Further, hAECs induced to express CFTR possessed functional iodide/chloride (I−/Cl−) ion channels that were inhibited by the CFTR-inhibitor CFTR-172, indicating the presence of functional CFTR ion channels. These data suggest that hAECs may be a promising source for the development of a cellular therapy for cystic fibrosis. PMID:23029546

  1. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment - A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine.

    PubMed

    Koli, Katri; Sutinen, Eva; Rönty, Mikko; Rantakari, Pia; Fortino, Vittorio; Pulkkinen, Ville; Greco, Dario; Sipilä, Petra; Myllärniemi, Marjukka

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung.

  2. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment – A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine

    PubMed Central

    Koli, Katri; Sutinen, Eva; Rönty, Mikko; Rantakari, Pia; Fortino, Vittorio; Pulkkinen, Ville; Greco, Dario; Sipilä, Petra; Myllärniemi, Marjukka

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung. PMID:27428020

  3. Amelioration of Murine Schistosoma mansoni Induced Liver Fibrosis by Mesenchymal Stem Cells.

    PubMed

    Abdel Aziz, Mt; Atta, Hm; Roshdy, Nk; Rashed, LA; Sabry, D; Hassouna, Aa; Aboul Fotouh, Gi; Hasan, Nm; Younis, Rh; Chowdhury, Jr

    2012-01-01

    Schistosomiasis is a common chronic helminthic infection of the liver that causes hepatic fibrosis and portal hypertension,contributing to the death of over half a million people a year. Infusion of autologous bone marrow cells into patients with hepatic cirrhosis has been reported to ameliorate symptoms of portal hypertension and improve liver function, either by conversion of the infused mesenchymal stem cells (MSCs) to hepatocytes or by modulating of the hepatic fibrosis. Here,we have investigated the antifibrotic effect of mesenchymal stem cells (MSCs) using S. mansoni-induced liver fibrosis in mice, which causes an intense, stable fibrosis. MSCs derived from bone marrow of male mice were then infused intravenously into female mice that had received intraperitoneal injection of S.mansoni cercariae. Mice were divided into 4 groups: Untreated control; MSCs infusion only; Schistosomiasis only; and Schistosomiasis plus MSCs infusion. Serum alanine aminotransferase (ALT) and liver histopathology were evaluated. Expression of the collagen gene (type I),transforming growth factor (TGF-β), matrix metalloproteinase (MMP2), tissue inhibitor of metalloproteinase (TIMP-1),stromal cell-derived factor-1(SDF-1) and its receptor (CXCR4) were analyzed. MSC infusion resulted in significant decrease in liver collagen and TGF-β gene expression in the Schistosomiasis mice. The ratio of MMP-2 to TIMP-1 expression increased. SDF-1 and CXCR4 mRNA expression also increased. There was overall improvement of liver histology and a statistically significant reduction of serum ALT level. MSCs infusion ameliorated S. mansoni-induced liver fibrosis, probably by modulating the relative expression of MMP and TIMP. The findings support the hypothesis that MSCs participate in liver regeneration and functional improvement by reducing liver fibrosis.

  4. HSP72 attenuates renal tubular cell apoptosis and interstitial fibrosis in obstructive nephropathy

    PubMed Central

    Mao, Haiping; Li, Zhilian; Zhou, Yi; Li, Zhijian; Zhuang, Shougang; An, Xin; Zhang, Baiyu; Chen, Wei; Nie, Jing; Wang, Zhiyong; Borkan, Steven C.; Wang, Yihan; Yu, Xueqing

    2008-01-01

    Although heat shock protein 72 kDa (HSP72) protects tubular epithelium from a variety of acute insults, its role in chronic renal injury and fibrosis is poorly characterized. In this study, we tested the hypothesis that HSP72 reduces apoptosis and epithelial-to-mesenchymal transition (EMT), important contributors to tubular cell injury in vitro and in vivo. In rats, orally administered geranylgeranylacetone (GGA), an agent that selectively induces HSP72, markedly reduced both apoptosis and cell proliferation in tubular epithelium and decreased both interstitial fibroblast accumulation and collagen I deposition after unilateral ureteric obstruction, a model of chronic renal tubulointerstitial fibrosis and dysfunction. In cultured renal NRK52E cells, exposure to TGF-β1 induced EMT and apoptosis, major causes of renal fibrosis and tubular atrophy, respectively. Exposure to a pan-caspase inhibitor (ZVAD-FMK) prevented TGF-β1-induced apoptosis but did not reduce EMT. In contrast, selective HSP72 expression in vitro inhibited EMT caused by TGF-β1 as indicated by preserving the E-cadherin expression level and α-smooth muscle actin induction. Small interfering RNA directed against HSP72 blocked the cytoprotective effects of HSP72 overexpression on EMT in TGF-β1-exposed cells. Taken together, our data indicate that HSP72 ameliorates renal tubulointerstitial fibrosis in obstructive nephropathy by inhibiting both renal tubular epithelial cell apoptosis and EMT. PMID:18417540

  5. Enhancement of CD147 on M1 macrophages induces differentiation of Th17 cells in the lung interstitial fibrosis.

    PubMed

    Geng, Jie-jie; Zhang, Kui; Chen, Li-na; Miao, Jin-lin; Yao, Meng; Ren, Ying; Fu, Zhi-guang; Chen, Zhi-nan; Zhu, Ping

    2014-09-01

    Lung interstitial fibrosis is a chronic lung disease, and few effective therapies are available to halt or reverse the progression of the disease. In murine and human lung fibrosis, the expression of CD147 is increased. However, the role of CD147 in lung fibrosis has not been identified, and it remains to be determined whether lung fibrosis would be improved by decreasing the expression of CD147. A murine bleomycin-induced lung interstitial fibrosis model was used in the experiments, and HAb18 mAbs and CsA were administered during the induction of lung fibrosis. In our study, we found that the HAb18 mAbs markedly reduced the collagen score and down-regulated M1 macrophages and Th17 cells. In vitro, flow cytometry analysis showed that M1 macrophages induced higher Th17 differentiation than M2 macrophages. After treatment with HAb18 mAbs or after reducing the expression of CD147 by lentivirus interference in M1 macrophages, the level of Th17 cells were significantly inhibited. In conclusion, HAb18 mAbs or CsA treatment ameliorates lung interstitial fibrosis. CD147 promoted M1 macrophage and induced the differentiation of Th17 cells in lung interstitial fibrosis, perhaps by regulating some cytokines such as IL-6, IL-1β, IL-12 and IL-23. These results indicated that CD147 may play an important role in the development of lung interstitial fibrosis.

  6. Treatment with 4-Methylpyrazole Modulated Stellate Cells and Natural Killer Cells and Ameliorated Liver Fibrosis in Mice

    PubMed Central

    Lee, Young-Sun; Jung, Ju Yeon; Park, Seol-Hee; Park, Keun-Gyu; Choi, Hueng-Sik; Suh, Jae Myoung; Jeong, Won-Il

    2015-01-01

    Background & Aims Accumulating evidence suggests that retinol and its metabolites are closely associated with liver fibrogenesis. Recently, we demonstrated that genetic ablation of alcohol dehydrogenase 3 (ADH3), a retinol metabolizing gene that is expressed in hepatic stellate cells (HSCs) and natural killer (NK) cells, attenuated liver fibrosis in mice. In the current study, we investigated whether pharmacological ablation of ADH3 has therapeutic effects on experimentally induced liver fibrosis in mice. Methods Liver fibrosis was induced by intraperitoneal injections of carbon tetrachloride (CCl4) or bile duct ligation (BDL) for two weeks. To inhibit ADH3-mediated retinol metabolism, 10 μg 4-methylpyrazole (4-MP)/g of body weight was administered to mice treated with CCl4 or subjected to BDL. The mice were sacrificed at week 2 to evaluate the regression of liver fibrosis. Liver sections were stained for collagen and α-smooth muscle actin (α-SMA). In addition, HSCs and NK cells were isolated from control and treated mice livers for molecular and immunological studies. Results Treatment with 4-MP attenuated CCl4- and BDL-induced liver fibrosis in mice, without any adverse effects. HSCs from 4-MP treated mice depicted decreased levels of retinoic acids and increased retinol content than HSCs from control mice. In addition, the expression of α-SMA, transforming growth factor-β1 (TGF-β1), and type I collagen α1 was significantly reduced in the HSCs of 4-MP treated mice compared to the HSCs from control mice. Furthermore, inhibition of retinol metabolism by 4-MP increased interferon-γ production in NK cells, resulting in increased apoptosis of activated HSCs. Conclusions Based on our data, we conclude that inhibition of retinol metabolism by 4-MP ameliorates liver fibrosis in mice through activation of NK cells and suppression of HSCs. Therefore, retinol and its metabolizing enzyme, ADH3, might be potential targets for therapeutic intervention of liver fibrosis

  7. Th2-Associated Alternative Kupffer Cell Activation Promotes Liver Fibrosis without Inducing Local Inflammation

    PubMed Central

    López-Navarrete, Giuliana; Ramos-Martínez, Espiridión; Suárez-Álvarez, Karina; Aguirre-García, Jesús; Ledezma-Soto, Yadira; León-Cabrera, Sonia; Gudiño-Zayas, Marco; Guzmán, Carolina; Gutiérrez-Reyes, Gabriela; Hernández-Ruíz, Joselín; Camacho-Arroyo, Ignacio; Robles-Díaz, Guillermo; Kershenobich, David; Terrazas, Luis I.; Escobedo, Galileo

    2011-01-01

    Cirrhosis is the final outcome of liver fibrosis. Kupffer cell-mediated hepatic inflammation is considered to aggravate liver injury and fibrosis. Alternatively-activated macrophages are able to control chronic inflammatory events and trigger wound healing processes. Nevertheless, the role of alternative Kupffer cell activation in liver harm is largely unclear. Thus, we evaluated the participation of alternatively-activated Kupffer cells during liver inflammation and fibrosis in the murine model of carbon tetrachloride-induced hepatic damage. To stimulate alternative activation in Kupffer cells, 20 Taenia crassiceps (Tc) larvae were inoculated into BALBc/AnN female mice. Six weeks post-inoculation, carbon tetrachloride or olive oil were orally administered to Tc-inoculated and non-inoculated mice twice per week during other six weeks. The initial exposure of animals to T. crassiceps resulted in high serum concentrations of IL-4 accompanied by a significant increase in the hepatic mRNA levels of Ym-1, with no alteration in iNOS expression. In response to carbon tetrachloride, recruitment of inflammatory cell populations into the hepatic parenchyma was 5-fold higher in non-inoculated animals than Tc-inoculated mice. In contrast, carbon tetrachloride-induced liver fibrosis was significantly less in non-inoculated animals than in the Tc-inoculated group. The latter showed elevated IL-4 serum levels and low IFN-γ concentrations during the whole experiment, associated with hepatic expression of IL-4, TGF-β, desmin and α-sma, as well as increased mRNA levels of Arg-1, Ym-1, FIZZ-1 and MMR in Kupffer cells. These results suggest that alternative Kupffer cell activation is favored in a Th2 microenvironment, whereby such liver resident macrophages could exhibit a dichotomic role during chronic hepatic damage, being involved in attenuation of the inflammatory response but at the same time exacerbation of liver fibrosis. PMID:22110380

  8. Partial hepatectomy-induced regeneration accelerates reversion of liver fibrosis involving participation of hepatic stellate cells.

    PubMed

    Suárez-Cuenca, Juan A; Chagoya de Sánchez, Victoria; Aranda-Fraustro, Alberto; Sánchez-Sevilla, Lourdes; Martínez-Pérez, Lidia; Hernández-Muñoz, Rolando

    2008-07-01

    Hepatic fibrosis underlies most types of chronic liver diseases and is characterized by excessive deposition of extracellular matrix (ECM), altered liver architecture, and impaired hepatocyte proliferation; however, the fibrotic liver can still regenerate after partial hepatectomy (PH). Therefore, the present study was aimed at addressing whether a PH-induced regeneration normalizes ECM turnover and the possible involvement of hepatic stellate cells (HSC) during resolution of a pre-established fibrosis. Male Wistar rats were rendered fibrotic by intraperitoneal administration of swine serum for 9 weeks and subjected afterwards to 70% PH or sham-operation. Histological and morphometric analyses were performed, and parameters indicative of cell proliferation, collagen synthesis and degradation, and activation of HSC were determined. Liver collagen content was reduced to 75% after PH in cirrhotic rats when compared with sham-operated cirrhotic rats. The regenerating fibrotic liver oxidized actively free proline and had diminished transcripts for alpha-1 (I) collagen mRNA, resulting in decreased collagen synthesis. PH also increased collagenase activity, accounted for by higher amounts of pro-MMP-9, MMP-2, and MMP-13, which largely coincided with a lower expression of TIMP-1 and TIMP-2. Therefore, an early decreased collagen synthesis, mild ECM degradation, and active liver regeneration were followed by higher collagenolysis and limited deposition of ECM, probably associated with increased mitochondrial activity. Activated HSC readily increased during liver fibrosis and remained activated after liver regeneration, even during fibrosis resolution. In conclusion, stimulation of liver regeneration through PH restores the balance in ECM synthesis/degradation, leading to ECM remodeling and to an almost complete resolution of liver fibrosis. As a response to the regenerative stimulus, activated HSC seem to play a controlling role on ECM remodeling during experimental

  9. Deletion of ADORA2B from myeloid cells dampens lung fibrosis and pulmonary hypertension

    PubMed Central

    Karmouty-Quintana, Harry; Philip, Kemly; Acero, Luis F.; Chen, Ning-Yuan; Weng, Tingting; Molina, Jose G.; Luo, Fayong; Davies, Jonathan; Le, Ngoc-Bao; Bunge, Isabelle; Volcik, Kelly A.; Le, Thanh-Thuy T.; Johnston, Richard A.; Xia, Yang; Eltzschig, Holger K.; Blackburn, Michael R.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal, fibroproliferative disease. Pulmonary hypertension (PH) can develop secondary to IPF and increase mortality. Alternatively, activated macrophages (AAMs) contribute to the pathogenesis of both IPF and PH. Here we hypothesized that adenosine signaling through the ADORA2B on AAMs impacts the progression of these disorders and that conditional deletion of ADORA2B on myeloid cells would have a beneficial effect in a model of these diseases. Conditional knockout mice lacking ADORA2B on myeloid cells (Adora2Bf/f-LysMCre) were exposed to the fibrotic agent bleomycin (BLM; 0.035 U/g body weight, i.p.). At 14, 17, 21, 25, or 33 d after exposure, SpO2, bronchoalveolar lavage fluid (BALF), and histologic analyses were performed. On day 33, lung function and cardiovascular analyses were determined. Markers for AAM and mediators of fibrosis and PH were assessed. Adora2Bf/f-LysMCre mice presented with attenuated fibrosis, improved lung function, and no evidence of PH compared with control mice exposed to BLM. These findings were accompanied by reduced expression of CD206 and arginase-1, markers for AAMs. A 10-fold reduction in IL-6 and a 5-fold decrease in hyaluronan, both linked to lung fibrosis and PH, were also observed. These data suggest that activation of the ADORA2B on macrophages plays an active role in the pathogenesis of lung fibrosis and PH.—Karmouty-Quintana, H., Philip, K., Acero, L. F., Chen, N.-Y., Weng, T., Molina, J. G., Luo, F., Davies, J., Le, N.-B., Bunge, I., Volcik, K. A., Le, T.-T. T., Johnston, R. A., Xia, Y., Eltzschig, H. K., Blackburn, M. R. Deletion of ADORA2B from myeloid cells dampens lung fibrosis and pulmonary hypertension. PMID:25318478

  10. Remodeling of the transverse tubular system after myocardial infarction in rabbit correlates with local fibrosis: A potential role of biomechanics.

    PubMed

    Seidel, T; Sankarankutty, A C; Sachse, F B

    2017-07-11

    The transverse tubular system (t-system) of ventricular cardiomyocytes is essential for efficient excitation-contraction coupling. In cardiac diseases, such as heart failure, remodeling of the t-system contributes to reduced cardiac contractility. However, mechanisms of t-system remodeling are incompletely understood. Prior studies suggested an association with altered cardiac biomechanics and gene expression in disease. Since fibrosis may alter tissue biomechanics, we investigated the local microscopic association of t-system remodeling with fibrosis in a rabbit model of myocardial infarction (MI). Biopsies were taken from the MI border zone of 6 infarcted hearts and from 6 control hearts. Using confocal microscopy and automated image analysis, we quantified t-system integrity (ITT) and the local fraction of extracellular matrix (fECM). In control, fECM was 18 ± 0.3%. ITT was high and homogeneous (0.07 ± 0.006), and did not correlate with fECM (R(2) = 0.05 ± 0.02). The MI border zone exhibited increased fECM within 3 mm from the infarct scar (30 ± 3.5%, p < 0.01 vs control), indicating fibrosis. Myocytes in the MI border zone exhibited significant t-system remodeling, with dilated, sheet-like components, resulting in low ITT (0.03 ± 0.008, p < 0.001 vs control). While both fECM and t-system remodeling decreased with infarct distance, ITT correlated better with decreasing fECM (R(2) = 0.44) than with infarct distance (R(2) = 0.24, p < 0.05). Our results show that t-system remodeling in the rabbit MI border zone resembles a phenotype previously described in human heart failure. T-system remodeling correlated with the amount of local fibrosis, which is known to stiffen cardiac tissue, but was not found in regions without fibrosis. Thus, locally altered tissue mechanics may contribute to t-system remodeling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A Synthetic Chloride Channel Restores Chloride Conductance in Human Cystic Fibrosis Epithelial Cells

    PubMed Central

    Wang, Fei; Yao, Xiaoqiang; Yang, Dan

    2012-01-01

    Mutations in the gene-encoding cystic fibrosis transmembrane conductance regulator (CFTR) cause defective transepithelial transport of chloride (Cl−) ions and fluid, thereby becoming responsible for the onset of cystic fibrosis (CF). One strategy to reduce the pathophysiology associated with CF is to increase Cl− transport through alternative pathways. In this paper, we demonstrate that a small synthetic molecule which forms Cl− channels to mediate Cl− transport across lipid bilayer membranes is capable of restoring Cl− permeability in human CF epithelial cells; as a result, it has the potential to become a lead compound for the treatment of human diseases associated with Cl− channel dysfunction. PMID:22514656

  12. Advances in Cell and Gene-based Therapies for Cystic Fibrosis Lung Disease

    PubMed Central

    Oakland, Mayumi; Sinn, Patrick L; McCray Jr, Paul B

    2012-01-01

    Cystic fibrosis (CF) is a disease characterized by airway infection, inflammation, remodeling, and obstruction that gradually destroy the lungs. Direct delivery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene to airway epithelia may offer advantages, as the tissue is accessible for topical delivery of vectors. Yet, physical and host immune barriers in the lung present challenges for successful gene transfer to the respiratory tract. Advances in gene transfer approaches, tissue engineering, and novel animal models are generating excitement within the CF research field. This review discusses current challenges and advancements in viral and nonviral vectors, cell-based therapies, and CF animal models. PMID:22371844

  13. A synthetic chloride channel restores chloride conductance in human cystic fibrosis epithelial cells.

    PubMed

    Shen, Bing; Li, Xiang; Wang, Fei; Yao, Xiaoqiang; Yang, Dan

    2012-01-01

    Mutations in the gene-encoding cystic fibrosis transmembrane conductance regulator (CFTR) cause defective transepithelial transport of chloride (Cl(-)) ions and fluid, thereby becoming responsible for the onset of cystic fibrosis (CF). One strategy to reduce the pathophysiology associated with CF is to increase Cl(-) transport through alternative pathways. In this paper, we demonstrate that a small synthetic molecule which forms Cl(-) channels to mediate Cl(-) transport across lipid bilayer membranes is capable of restoring Cl(-) permeability in human CF epithelial cells; as a result, it has the potential to become a lead compound for the treatment of human diseases associated with Cl(-) channel dysfunction.

  14. Amniotic fluid stem cells inhibit the progression of bleomycin-induced pulmonary fibrosis via CCL2 modulation in bronchoalveolar lavage.

    PubMed

    Garcia, Orquidea; Carraro, Gianni; Turcatel, Gianluca; Hall, Marisa; Sedrakyan, Sargis; Roche, Tyler; Buckley, Sue; Driscoll, Barbara; Perin, Laura; Warburton, David

    2013-01-01

    The potential for amniotic fluid stem cell (AFSC) treatment to inhibit the progression of fibrotic lung injury has not been described. We have previously demonstrated that AFSC can attenuate both acute and chronic-fibrotic kidney injury through modification of the cytokine environment. Fibrotic lung injury, such as in Idiopathic Pulmonary Fibrosis (IPF), is mediated through pro-fibrotic and pro-inflammatory cytokine activity. Thus, we hypothesized that AFSC treatment might inhibit the progression of bleomycin-induced pulmonary fibrosis through cytokine modulation. In particular, we aimed to investigate the effect of AFSC treatment on the modulation of the pro-fibrotic cytokine CCL2, which is increased in human IPF patients and is correlated with poor prognoses, advanced disease states and worse fibrotic outcomes. The impacts of intravenous murine AFSC given at acute (day 0) or chronic (day 14) intervention time-points after bleomycin injury were analyzed at either day 3 or day 28 post-injury. Murine AFSC treatment at either day 0 or day 14 post-bleomycin injury significantly inhibited collagen deposition and preserved pulmonary function. CCL2 expression increased in bleomycin-injured bronchoalveolar lavage (BAL), but significantly decreased following AFSC treatment at either day 0 or at day 14. AFSC were observed to localize within fibrotic lesions in the lung, showing preferential targeting of AFSC to the area of fibrosis. We also observed that MMP-2 was transiently increased in BAL following AFSC treatment. Increased MMP-2 activity was further associated with cleavage of CCL2, rendering it a putative antagonist for CCL2/CCR2 signaling, which we surmise is a potential mechanism for CCL2 reduction in BAL following AFSC treatment. Based on this data, we concluded that AFSC have the potential to inhibit the development or progression of fibrosis in a bleomycin injury model during both acute and chronic remodeling events.

  15. Amniotic Fluid Stem Cells Inhibit the Progression of Bleomycin-Induced Pulmonary Fibrosis via CCL2 Modulation in Bronchoalveolar Lavage

    PubMed Central

    Garcia, Orquidea; Carraro, Gianni; Turcatel, Gianluca; Hall, Marisa; Sedrakyan, Sargis; Roche, Tyler; Buckley, Sue; Driscoll, Barbara; Perin, Laura; Warburton, David

    2013-01-01

    The potential for amniotic fluid stem cell (AFSC) treatment to inhibit the progression of fibrotic lung injury has not been described. We have previously demonstrated that AFSC can attenuate both acute and chronic-fibrotic kidney injury through modification of the cytokine environment. Fibrotic lung injury, such as in Idiopathic Pulmonary Fibrosis (IPF), is mediated through pro-fibrotic and pro-inflammatory cytokine activity. Thus, we hypothesized that AFSC treatment might inhibit the progression of bleomycin-induced pulmonary fibrosis through cytokine modulation. In particular, we aimed to investigate the effect of AFSC treatment on the modulation of the pro-fibrotic cytokine CCL2, which is increased in human IPF patients and is correlated with poor prognoses, advanced disease states and worse fibrotic outcomes. The impacts of intravenous murine AFSC given at acute (day 0) or chronic (day 14) intervention time-points after bleomycin injury were analyzed at either day 3 or day 28 post-injury. Murine AFSC treatment at either day 0 or day 14 post-bleomycin injury significantly inhibited collagen deposition and preserved pulmonary function. CCL2 expression increased in bleomycin-injured bronchoalveolar lavage (BAL), but significantly decreased following AFSC treatment at either day 0 or at day 14. AFSC were observed to localize within fibrotic lesions in the lung, showing preferential targeting of AFSC to the area of fibrosis. We also observed that MMP-2 was transiently increased in BAL following AFSC treatment. Increased MMP-2 activity was further associated with cleavage of CCL2, rendering it a putative antagonist for CCL2/CCR2 signaling, which we surmise is a potential mechanism for CCL2 reduction in BAL following AFSC treatment. Based on this data, we concluded that AFSC have the potential to inhibit the development or progression of fibrosis in a bleomycin injury model during both acute and chronic remodeling events. PMID:23967234

  16. Correlation of sweat chloride concentration with genotypes in cystic fibrosis patients in Saguenay Lac-Saint-Jean, Quebec, Canada.

    PubMed

    De Braekeleer, M; Allard, C; Leblanc, J P; Aubin, G; Simard, F

    1998-02-01

    Saguenay Lac-Saint-Jean, a geographically isolated region of northeastern Quebec has a high incidence of cystic fibrosis (CF) and three mutations only account for 94% of the CF chromosomes. The objective of the present study was to determine whether different mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene had different effects upon the sweat chloride concentration. The sweat chloride concentration of 114 patients was measured by quantitative pilocarpine iontophoresis. CF patients carrying the A455E mutation, usually associated with pancreatic sufficiency, had lower sweat chloride concentrations than those carrying mutations associated with pancreatic insufficiency (delta F508 and 621 + 1G-->T). Our results confirm that mutations resulting in a reduction of the chloride current at the apical membrane of epithelial cells induce lower sweat chloride values. However, there are differences in the chloride current between genotypes, even if they are composed of mutations apparently having the same functional effect.

  17. Peritumoral fibrosis in basal cell and squamous cell carcinoma mimicking perineural invasion: potential pitfall in Mohs micrographic surgery.

    PubMed

    Hassanein, Ashraf M; Proper, Steven A; Depcik-Smith, Natalie D; Flowers, Franklin P

    2005-09-01

    Perineural invasion (PI) in cutaneous basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) is linked to an aggressive course. We describe a histologic mimic for PI that we termed peritumoral fibrosis (PF). To describe the morphologic changes associated with PF and to determine the incidence of PF and PI in Mohs frozen sections of BCC and SCC. All cases of BCC and SCC that were treated by Mohs micrographic surgery (MMS) at the Skin and Cancer Center, University of Florida College of Medicine, Gainesville, Florida, and the Center for Dermatology and Skin Surgery, Tampa, Florida, during the period from January 1, 2003, to August 1, 2004, were reviewed for the presence of PI and PF. The latter was defined as the presence of concentric layers of fibrous tissue that either surround and/or were surrounded by tumor formations mimicking perineural or intraneural invasion. Seven hundred six cases of BCC and 264 cases of SCC were surveyed. Eleven cases (10 BCC and 1 SCC) with equivocal areas were destained, and immunohistochemical staining with S-100 protein was performed, proving actual PI in all of these cases. Available original hematoxylin-eosin biopsy slides were correlated with the MMS frozen sections. PF was noticed in 4.5% of SCCs and 5.8% of BCCs. The incidence of unequivocal PI was noted to be 2.6% in SCC and 2.1% in BCC. We describe a specific pattern of fibrosis noted in BCC and SCC that we called PF. It shows concentric layers of fibrous tissue surrounding and/or surrounded by tumor formations and resembles carcinomatous perineural and/or intraneural invasion. Moreover, PF was found to be a sensitive marker for PI. Mohs micrographic surgeons should be aware of this phenomenon to avoid triggering unnecessary steps in managing these cases, such as irradiation.

  18. The role of club cell phenoconversion and migration in idiopathic pulmonary fibrosis

    PubMed Central

    Fukumoto, Jutaro; Soundararajan, Ramani; Leung, Joseph; Cox, Ruan; Mahendrasah, Sanjay; Muthavarapu, Neha; Herrin, Travis; Czachor, Alexander; Tan, Lee C.; Hosseinian, Nima; Patel, Priyanshi; Gone, Jayanthraj; Breitzig, Mason T.; Cho, Young; Cooke, Andrew J.; Galam, Lakshmi; Narala, Venkata Ramireddy; Pathak, Yashwant; Lockey, Richard F.; Kolliputi, Narasaiah

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is an age-related multifactorial disease featuring non-uniform lung fibrosis. The decisive cellular events at early stages of IPF are poorly understood. While the involvement of club cells in IPF pathogenesis is unclear, their migration has been associated with lung fibrosis. In this study, we labeled club cells immunohistochemically in IPF lungs using a club cell marker Claudin-10 (Cldn10), a unique protein based on the recent report which demonstrated that the appearance of Cldn10 in developing and repairing lungs precedes other club cell markers including club cell secretory protein (CCSP). Cldn10-positive cells in IPF lungs displayed marked pleomorphism and were found in varied arrangements, suggesting their phenoconversion. These results were corroborated by immunogold labeling for Cldn10. Further, immunohistochemical double-labeling for Cldn10 and α-smooth muscle actin (α-SMA) demonstrated that aberrant α-SMA signals are frequently encountered near disorganized Cldn10-positive cells in hyperplastic bronchiolar epithelium and thickened interstitium of IPF lungs. Collectively, these data indicate that club cells actively participate in the initiation and progression of IPF through phenoconversion involving the acquisition of proliferative and migratory abilities. Thus, our new findings open the possibility for club cell-targeted therapy to become a strategic option for the treatment of IPF. PMID:27899769

  19. Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor.

    PubMed

    Yang, Jibing; Velikoff, Miranda; Canalis, Ernesto; Horowitz, Jeffrey C; Kim, Kevin K

    2014-04-15

    Fibrogenesis involves a pathological accumulation of activated fibroblasts and extensive matrix remodeling. Profibrotic cytokines, such as TGF-β, stimulate fibroblasts to overexpress fibrotic matrix proteins and induce further expression of profibrotic cytokines, resulting in progressive fibrosis. Connective tissue growth factor (CTGF) is a profibrotic cytokine that is indicative of fibroblast activation. Epithelial cells are abundant in the normal lung, but their contribution to fibrogenesis remains poorly defined. Profibrotic cytokines may activate epithelial cells with protein expression and functions that overlap with the functions of active fibroblasts. We found that alveolar epithelial cells undergoing TGF-β-mediated mesenchymal transition in vitro were also capable of activating lung fibroblasts through production of CTGF. Alveolar epithelial cell expression of CTGF was dramatically reduced by inhibition of Rho signaling. CTGF reporter mice demonstrated increased CTGF promoter activity by lung epithelial cells acutely after bleomycin in vivo. Furthermore, mice with lung epithelial cell-specific deletion of CTGF had an attenuated fibrotic response to bleomycin. These studies provide direct evidence that epithelial cell activation initiates a cycle of fibrogenic effector cell activation during progressive fibrosis. Therapy targeted at epithelial cell production of CTGF offers a novel pathway for abrogating this progressive cycle and limiting tissue fibrosis.

  20. Strongly correlated perovskite fuel cells.

    PubMed

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D; Ramanathan, Shriram

    2016-06-09

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  1. Strongly correlated perovskite fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-06-01

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  2. Strongly correlated perovskite fuel cells

    SciTech Connect

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-05-16

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines1, 2, 3, 4. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number5. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes6. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  3. Strongly correlated perovskite fuel cells

    DOE PAGES

    Zhou, You; Guan, Xiaofei; Zhou, Hua; ...

    2016-05-16

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes.more » Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.« less

  4. Strongly correlated perovskite fuel cells

    SciTech Connect

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-05-16

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  5. Bone marrow-derived mesenchymal stem cell attenuates skin fibrosis development in mice.

    PubMed

    Wu, Yan; Huang, Sha; Enhe, Jirigala; Ma, Kui; Yang, Siming; Sun, Tongzhu; Fu, Xiaobing

    2014-12-01

    Recent studies showed that mesenchymal stem cell (MSC) transplantation significantly alleviated tissue fibrosis; however, little is known about the efficacy on attenuating cutaneous scar formation. In this study, we established a dermal fibrosis model induced by bleomycin and evaluated the benefit of bone marrow-derived mesenchymal stem cells (BM-MSCs) on skin fibrosis development. Tracing assay of green fluorescent protein (GFP(+) )BM-MSCs showed that the cells disappeared gradually within 24 hours upon administration, which hinted the action of BM-MSCs in vivo was exerted in the initial phase of repair in this model. Therefore, we repeatedly transplanted syngeneic BM-MSCs in the process of skin fibrosis formation. After 3 weeks, it was found that BM-MSC-treated lesional skin demonstrated a unanimous basket-weave organisation of collagen arrangement similar to normal skin, with few inflammatory cells. In addition, lesional skin with BM-MSC treatment exhibited a significant down-regulation of transforming growth factor-β1 (TGF-β1), type I collagen and heat-shock protein 47 (HSP47), with higher expression of matrix metalloproteinases (MMPs)-2, -9 and -13. Further experiments showed that α-smooth muscle actin (α-SMA) positive cells, the most reliable marker of myofibroblasts, apparently decreased after BM-MSC transplantation, which revealed that BM-MSCs could attenuate myofibroblast proliferation and differentiation as well as matrix production. Taken together, these findings suggested that BM-MSCs can inhibit the formation process of bleomycin-induced skin fibrosis, alleviate inflammation and favour the remodelling of extracellular matrix. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  6. Preconception risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease.

    PubMed

    Hussein, Norita; Weng, Stephen F; Kai, Joe; Kleijnen, Jos; Qureshi, Nadeem

    2015-08-12

    Globally, about five per cent of children are born with congenital or genetic disorders. The most common autosomal recessive conditions are thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease, with higher carrier rates in specific patient populations. Identifying and counselling couples at genetic risk of the conditions before pregnancy enables them to make fully informed reproductive decisions, with some of these choices not being available if genetic counselling is only offered in an antenatal setting. To assess the effectiveness of systematic preconception genetic risk assessment to improve reproductive outcomes in women and their partners who are identified as carriers of thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease in healthcare settings when compared to usual care. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Trials Registers. In addition, we searched for all relevant trials from 1970 (or the date at which the database was first available if after 1970) to date using electronic databases (MEDLINE, Embase, CINAHL, PsycINFO), clinical trial databases (National Institutes of Health, Clinical Trials Search portal of the World Health Organization, metaRegister of controlled clinical trials), and hand searching of key journals and conference abstract books from 1998 to date (European Journal of Human Genetics, Genetics in Medicine, Journal of Community Genetics). We also searched the reference lists of relevant articles, reviews and guidelines and also contacted subject experts in the field to request any unpublished or other published trials.Date of latest search of the registers: 25 June 2015.Date of latest search of all other sources: 10 December 2014. Any randomised or quasi-randomised control trials (published or unpublished) comparing reproductive outcomes of systematic preconception genetic risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease

  7. [Correlation of liver stiffness measured by FibroTouch and FibroScan with Ishak fibrosis score in patients with chronic hepatitis B].

    PubMed

    Chen, G F; Ping, J; Gu, H T; Zhao, Z M; Zhou, Y; Xing, F; Tao, Y Y; Mu, Y P; Liu, P; Liu, C H

    2017-02-20

    Objective: To investigate the correlation of liver stiffness measured by FibroTouch (FT) and FibroScan (FS) with Ishak fibrosis score in patients with chronic hepatitis B. Methods: A total of 313 patients with chronic hepatitis B who visited Department of Liver Cirrhosis in Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine from November 2014 to May 2016 were enrolled. All the patients underwent liver biopsy, and FT and FS were used to determine liver stiffness measurement (LSM). Serum biochemical parameters were measured, and the aspartate aminotransferase-to-platelet ratio index (APRI) in a multi-parameter model of liver fibrosis and fibrosis-4 (FIB-4) index were calculated. The consistency between the results of four noninvasive examinations and Ishak fibrosis score was compared. The t-test was used for comparison of LSM determined by FT and FS. Pearson correlation analysis was used investigate the correlation between LSM determined by FT and FS; Spearman correlation analysis was used to investigate the correlation of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and Knodell score with LSM determined by FT and FS; the correlation between LSM determined by FT and FS and fibrosis stage was analyzed by partial correlation analysis adjusted by Knodell score for liver inflammatory activity; Spearman correlation analysis was used for APRI, FIB-4, and fibrosis stage. Based on the Ishak fibrosis score, the receiver operating characteristic (ROC) curve was used to analyze the values of four noninvasive methods in the diagnosis of liver fibrosis. Results: There was no significant difference in LSM measured by FT and FS in all patients (15.75±9.42 kPa vs 15.42±10.52 kPa, P > 0.05) and Pearson correlation analysis indicated a significant positive correlation between them (r = 0.858, P < 0.01); serum ALT and AST levels and liver inflammatory activity were correlated with LSM determined by FT and FS. There

  8. Curcumin attenuates angiogenesis in liver fibrosis and inhibits angiogenic properties of hepatic stellate cells

    PubMed Central

    Zhang, Feng; Zhang, Zili; Chen, Li; Kong, Desong; Zhang, Xiaoping; Lu, Chunfeng; Lu, Yin; Zheng, Shizhong

    2014-01-01

    Hepatic fibrosis is concomitant with sinusoidal pathological angiogenesis, which has been highlighted as novel therapeutic targets for the treatment of chronic liver disease. Our prior studies have demonstrated that curcumin has potent antifibrotic activity, but the mechanisms remain to be elucidated. The current work demonstrated that curcumin ameliorated fibrotic injury and sinusoidal angiogenesis in rat liver with fibrosis caused by carbon tetrachloride. Curcumin reduced the expression of a number of angiogenic markers in fibrotic liver. Experiments in vitro showed that the viability and vascularization of rat liver sinusoidal endothelial cells and rat aortic ring angiogenesis were not impaired by curcumin. These results indicated that hepatic stellate cells (HSCs) that are characterized as liver-specific pericytes could be potential target cells for curcumin. Further investigations showed that curcumin inhibited VEGF expression in HSCs associated with disrupting platelet-derived growth factor-β receptor (PDGF-βR)/ERK and mTOR pathways. HSC motility and vascularization were also suppressed by curcumin associated with blocking PDGF-βR/focal adhesion kinase/RhoA cascade. Gain- or loss-of-function analyses revealed that activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) was required for curcumin to inhibit angiogenic properties of HSCs. We concluded that curcumin attenuated sinusoidal angiogenesis in liver fibrosis possibly by targeting HSCs via a PPAR-γ activation-dependent mechanism. PPAR-γ could be a target molecule for reducing pathological angiogenesis during liver fibrosis. PMID:24779927

  9. Human CD133+ Renal Progenitor Cells Induce Erythropoietin Production and Limit Fibrosis After Acute Tubular Injury

    PubMed Central

    Aggarwal, Shikhar; Grange, Cristina; Iampietro, Corinne; Camussi, Giovanni; Bussolati, Benedetta

    2016-01-01

    Persistent alterations of the renal tissue due to maladaptive repair characterize the outcome of acute kidney injury (AKI), despite a clinical recovery. Acute damage may also limit the renal production of erythropoietin, with impairment of the hemopoietic response to ischemia and possible lack of its reno-protective action. We aimed to evaluate the effect of a cell therapy using human CD133+ renal progenitor cells on maladaptive repair and fibrosis following AKI in a model of glycerol-induced rhabdomyolysis. In parallel, we evaluated the effect of CD133+ cells on erythropoietin production. Administration of CD133+ cells promoted the restoration of the renal tissue, limiting the presence of markers of injury and pro-inflammatory molecules. In addition, it promoted angiogenesis and protected against fibrosis up to day 60. No effect of dermal fibroblasts was observed. Treatment with CD133+ cells, but not with PBS or fibroblasts, limited anemia and increased erythropoietin levels both in renal tissue and in circulation. Finally, CD133+ cells contributed to the local production of erythropoietin, as observed by detection of circulating human erythropoietin. CD133+ cells appear therefore an effective source for cell repair, able to restore renal functions, including erythropoietin release, and to limit long term maldifferentiation and fibrosis. PMID:27853265

  10. Cardiac Magnetic Resonance-Verified Myocardial Fibrosis in Chagas Disease: Clinical Correlates and Risk Stratification.

    PubMed

    Uellendahl, Marly; Siqueira, Maria Eduarda Menezes de; Calado, Eveline Barros; Kalil-Filho, Roberto; Sobral, Dário; Ribeiro, Clébia; Oliveira, Wilson; Martins, Silvia; Narula, Jagat; Rochitte, Carlos Eduardo

    2016-11-01

    Chagas disease (CD) is an important cause of heart failure and mortality, mainly in Latin America. This study evaluated the morphological and functional characteristics of the heart as well the extent of myocardial fibrosis (MF) in patients with CD by cardiac magnetic resonance (CMR). The prognostic value of MF evaluated by myocardial-delayed enhancement (MDE) was compared with that via Rassi score. This study assessed 39 patients divided into 2 groups: 28 asymptomatic patients as indeterminate form group (IND); and symptomatic patients as Chagas Heart Disease (CHD) group. All patients underwent CMR using the techniques of cine-MRI and MDE, and the amount of MF was compared with the Rassi score. Regarding the morphological and functional analysis, significant differences were observed between both groups (p < 0.001). Furthermore, there was a strong correlation between the extent of MF and the Rassi score (r = 0.76). CMR is an important technique for evaluating patients with CD, stressing morphological and functional differences in all clinical presentations. The strong correlation with the Rassi score and the extent of MF detected by CMR emphasizes its role in the prognostic stratification of patients with CD. A doença de Chagas (DC) é importante causa de insuficiência cardíaca e mortalidade, principalmente na América Latina. Este estudo avaliou as características morfológicas e funcionais do coração, assim como a extensão da fibrose miocárdica (FM) em pacientes com DC através de ressonância magnética cardíaca (RMC). O valor prognóstico da FM avaliada por realce tardio miocárdico (RTM) foi comparado àquele do escore de Rassi. Avaliação de 39 pacientes divididos em 2 grupos: grupo 'forma indeterminada' (IND), 28 pacientes assintomáticos; e grupo 'cardiopatia chagásica' (CC), pacientes sintomáticos. Todos os pacientes foram submetidos a RMC com as técnicas de cine-RM e RTM, sendo a quantidade de FM evidenciada ao exame comparada ao escore de

  11. Hepatitis C virus load in parenchyma cells correlates with hepatic injury in infected patients

    PubMed Central

    Xu, Zhen; Lin, Ji-Zong; Lin, Guo-Li; Wei, Fang-Fang; Liu, Jing; Zhao, Zhi-Xin; Zhang, Ying; Ke, Wei-Ming; Zhang, Xiao-Hong

    2017-01-01

    The association between serum hepatitis C virus (HCV) load and hepatic injury in HCV-infected patients has been extensively investigated. The present study aimed to investigate the association between HCV load in hepatic parenchyma cells and hepatic injury in HCV-infected patients. A total of 56 HCV-infected patients were included in the present retrospective study. The serum HCV mRNA was determined using quantitative polymerase chain reaction, while the hepatic parenchyma cell volume and HCV mRNA in hepatic parenchyma cells were also determined. Hepatic injury was evaluated on the basis of the severity of inflammation and fibrosis. The results demonstrated that there were evident differences in the mean serum HCV RNA levels and the HCV load/parenchyma cell volume among the various grades of hepatic inflammation (G1-G4) when groups with the least and most inflammation were compared (G1 vs. G4; P<0.05). Significant differences in the HCV load existed between groups divided according to the fibrosis grade; in addition, differences existed between fibrosis grades S1 and S2, and S2 and S4 when comparing serum HCV RNA levels (P<0.05). Similarly, differences existed between every two fibrosis stages (S0 vs. S4, S2 vs. S3, and S2 vs. S4; P<0.05) when viral loads and parenchyma cell volumes were compared (F=2.860, P<0.05). Furthermore, the fibrosis staging was correlated with the viral load/parenchyma cell volume (F=2.670, P<0.05). In conclusion, hepatic fibrosis grade was found to be associated with HCV load in parenchyma cells. The results of the present study demonstrated that the viral load in parenchyma cells is a more appropriate index compared with the serum viral load for evaluating HCV replication in hepatocytes, and may function as an important factor in HCV-infected hepatic injury evaluation. PMID:28123484

  12. Chrysin attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway.

    PubMed

    Balta, Cornel; Herman, Hildegard; Boldura, Oana Maria; Gasca, Ionela; Rosu, Marcel; Ardelean, Aurel; Hermenean, Anca

    2015-10-05

    We investigated the protective effect of chrysin on chronic liver fibrosis in mice and the potential mechanism underlying TGF-β1-mediated hepatic stellate cells (HSCs) activation on fibrogenesis. Experimental fibrosis was established by intraperitoneal injection of mice with 20% v/v, 2 ml/kg CCl4 twice a week, for 7 weeks. Mice were orally treated with 3 doses of chrysin (50, 100 and 200 mg/kg) or with vehicle as control. For the assessment of the spontaneous reversion of fibrosis, CCl4 treated animals were investigated after two weeks of recovery time. Silymarin was used as standard hepatoprotective flavonoid. Histopathological investigations showed that hepatic fibrosis grade was markedly reduced in the chrysin groups compared to the fibrotic one. Moreover, CCl4 activated HSCs induced an upregulation of smooth muscle actin (α-SMA), an increased number of TGF-β1 immunopositive cells and marked up-regulation of TGF-β1. α-SMA and TGF-β1 levels were significantly reduced in all chrysin treated groups in a dose-dependent manner, whereas the level of spontaneous reversal of fibrosis was lower compared to all flavonoid treated groups. Liver mRNA levels of Smad 2 in the 50, 100 and 200 mg/kg chrysin treated groups were significantly reduced by about 88.54%, 92.15% and 95.56% of the corresponding levels in the fibrosis mice group. The results were similar for mRNA levels of Smad 3. The protective response to silymarin was almost similar to that seen with the highest doses of chrysin. In this study, we have shown that chrysin has the efficacy to reverse CCl4-stimulated liver fibrosis by inhibition of HSCs activation and proliferation through TGF-β1/Smad pathway. These results suggest that chrysin may be useful in stopping or reversing the progression of liver fibrosis and might offer the possibility to develop a new therapeutic drug, useful in treatment of chronic liver diseases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers.

    PubMed

    Selman, Moisés; Pardo, Annie

    2006-06-01

    Idiopathic pulmonary fibrosis (IPF), a progressive and relentless lung scarring of unknown etiology, has been recognized as the most lethal interstitial lung disease. Despite the growing interest in IPF, the precise molecular mechanisms underlying the development of fibrosis and leading to the irreversible destruction of the lung are still unknown. Recently, it has been proposed that IPF, instead of being a chronic inflammatory disorder, results from multiple cycles of epithelial cell injury and activation. In turn, active alveolar epithelial cells provoke the migration, proliferation, and activation of mesenchymal cells with the formation of fibroblastic/myofibroblastic foci and the exaggerated accumulation of extracellular matrix, mirroring abnormal wound repair. In this article, some characteristics of the alveolar epithelium are briefly outlined, and the fibrogenic mechanisms specifically operated by active abnormal epithelial cells are examined.

  14. S-Nitrosothiols increases cystic fibrosis transmembrane regulator expression and maturation in the cell surface.

    PubMed

    Zaman, Khalequz; Bennett, Deric; Fraser-Butler, Maya; Greenberg, Zivi; Getsy, Paulina; Sattar, Abdus; Smith, Laura; Corey, Deborah; Sun, Fei; Hunt, John; Lewis, Stephen J; Gaston, Benjamin

    2014-01-24

    S-nitrosothiols (SNOs) are endogenous signaling molecules with a broad spectrum of beneficial airway effects. SNOs are normally present in the airway, but levels tend to be low in cystic fibrosis (CF) patients. We and others have demonstrated that S-nitrosoglutathione (GSNO) increases the expression, maturation, and function of wild-type and mutant F508del cystic fibrosis transmembrane conductance regulator (CFTR) in human bronchial airway epithelial (HBAE) cells. We hypothesized that membrane permeable SNOs, such as S-nitrosoglutathione diethyl ester (GNODE) and S-nitroso-N-acetyl cysteine (SNOAC) may be more efficient in increasing the maturation of CFTR. HBAE cells expressing F508del CFTR were exposed to GNODE and SNOAC. The effects of these SNOs on the expression and maturation of F508del CFTR were determined by cell surface biotinylation and Western blot analysis. We also found for the first time that GNODE and SNOAC were effective at increasing CFTR maturation at the cell surface. Furthermore, we found that cells maintained at low temperature increased cell surface stability of F508del CFTR whereas the combination of low temperature and SNO treatment significantly extended the half-life of CFTR. Finally, we showed that SNO decreased the internalization rate of F508del CFTR in HBAE cells. We anticipate identifying the novel mechanisms, optimal SNOs, and lowest effective doses which could benefit cystic fibrosis patients.

  15. Bronchoalveolar lavage in pulmonary fibrosis: comparison of cells obtained with lung biopsy and clinical features

    PubMed Central

    Haslam, P L; Turton, C W G; Heard, B; Lukoszek, A; Collins, J V; Salsbury, A J; Turner-Warwick, M

    1980-01-01

    Bronchoalveolar lavage, open lung biopsy, and cell extraction from the biopsy material have been studied in 21 symptomatic patients with progressive pulmonary fibrosis (18 with cryptogenic fibrosing alveolitis, fulfilling also the criteria for “usual interstitial pneumonia” (UIP), and three with rapidly progressive disease probably related to asbestos exposure). The total and differential cell counts between the three different samples have been compared as well as the influence on them of smoking and their correlation with steroid responsiveness and later progress. There was no correlation between semiquantitative scores of cell types observed within alveolar spaces and in alveolar walls and the differential or total cell counts obtained from extraction or lung lavage samples. There was, however, some correlation between differential counts obtained from lung lavage and extractions (neutrophils p<0·02, eosinophils p<0·07, lymphocytes p<0·08) suggesting that lung lavage reflects the cellularity of the peripheral parts of the lung in patients without overt bronchial disease. Steroid responsiveness related to the percentage of lymphocytes found in extraction samples (p<0·01) and was associated with a complementary fall in the percentage of macrophages (p<0·02). There was no relationship between steroid response and the numbers of neutrophils or eosinophils in extracted samples. There was a trend towards increased numbers of lymphocytes in the lung wash in those patients responding to steroids. Those cases showing more rapid progression before starting treatment tended to have higher percentages of lymphocytes, neutrophils, or eosinophils in the lung lavage than more slowly deteriorating cases (p<0·01). Follow-up studies showed that three cases having predominant lymphocytes in the lung lavage continued to do well while nine cases with predominant neutrophils or eosinophils or both showed a less satisfactory response to steroids and often deteriorated

  16. Early infiltration of p40IL12+CCR7+CD11b+ cells is critical for fibrosis development

    PubMed Central

    Correa‐Costa, Matheus; Azevedo, Hatylas; Silva, Reinaldo Correia; Cruz, Mario Costa; Almeida, Maira Estanislau Soares; Hiyane, Meire Ioshie; Moreira‐Filho, Carlos Alberto; Santos, Marinilce Fagundes; Perez, Katia Regina; Cuccovia, Iolanda Midea; Camara, Niels Olsen Saraiva

    2016-01-01

    Abstract Introduction Macrophages are heterogeneous and thus can be correlated with distinct tissue outcomes after injury. Conflicting data have indicated that the M2‐related phenotype directly triggers fibrosis. Conversely, we hypothesize here that the inflammatory milieu provided by early infiltration of pro‐inflammatory macrophages dictates tissue scarring after injury. Methods and Results We first determined that tissue‐localized macrophages exhibit a pro‐inflammatory phenotype (p40IL12+CCR7+CD11b+) during the early phase of a chronic injury model, in contrast to a pro‐resolving phenotype (Arg1+IL10+CD206+CD11b+) at a later stage. Then, we evaluated the effects of injecting macrophages differentiated in vitro in the presence of IFNγ + LPS or IL4 + IL13 or non‐differentiated macrophages (hereafter, M0) on promoting inflammation and progression of chronic injury in macrophage‐depleted mice. In addition to enhancing the expression of pro‐inflammatory cytokines, the injection of M (IFNγ + LPS), but not M (IL4 + IL13) or M0, accentuated fibrosis while augmenting levels of anti‐inflammatory molecules, increasing collagen deposition and impairing organ function. We observed a similar profile after injection of sorted CCR7+CD11b+ cells and a more pronounced effect of M (IFNγ + LPS) cells originated from Stat6−/− mice. The injection of M (IFNγ + LPS) cells was associated with the up‐regulation of inflammation‐ and fibrosis‐related proteins (Thbs1, Mmp7, Mmp8, and Mmp13). Conclusions Our results suggest that pro‐inflammatory macrophages promote microenvironmental changes that may lead to fibrogenesis by inducing an inflammatory milieu that alters a network of extracellular‐related genes, culminating in tissue fibrosis. PMID:27621813

  17. Restoration of Chloride Efflux by Azithromycin in Airway Epithelial Cells of Cystic Fibrosis Patients▿

    PubMed Central

    Saint-Criq, Vinciane; Rebeyrol, Carine; Ruffin, Manon; Roque, Telma; Guillot, Loïc; Jacquot, Jacky; Clement, Annick; Tabary, Olivier

    2011-01-01

    Azithromycin (AZM) has shown promising anti-inflammatory properties in chronic obstructive pulmonary diseases, and clinical studies have presented an improvement in the respiratory condition of cystic fibrosis (CF) patients. The aim of this study was to investigate, in human airway cells, the mechanism by which AZM has beneficial effects in CF. We demonstrated that AZM did not have any anti-inflammatory effect on CF airway cells but restored Cl− efflux. PMID:21220528

  18. Mast cell chymase protects against renal fibrosis in murine unilateral ureteral obstruction.

    PubMed

    Beghdadi, Walid; Madjene, Lydia C; Claver, Julien; Pejler, Gunnar; Beaudoin, Lucie; Lehuen, Agnès; Daugas, Eric; Blank, Ulrich

    2013-08-01

    Mast cell release of chymase is important in tissue remodeling and may participate in inflammation leading to fibrosis and organ failure. Here we analyzed the function of chymase in unilateral ureteral obstruction, an established accelerated model of renal tubulointerstitial fibrosis. Mice deficient in mouse mast cell protease 4 (mMCP4), the functional counterpart of human chymase, had increased obstruction-induced fibrosis when compared to wild-type mice indicating a protective effect of mMCP4. Engraftment of mast cell-deficient Kit(Wsh/Wsh) mice with wild type, but not mMCP4-deficient mast cells, restored protection confirming the role of mMCP4. Kidneys of mMCP4-deficient mice had higher levels of renal tubular damage, interstitial fibrosis, collagen deposition, increased α-smooth muscle actin, and decreased E-cadherin expression compared to the kidneys of wild-type mice. Further analysis showed an elevated inflammatory response in mMCP4-deficient mice with increased levels of kidney-infiltrating macrophages and T cells and local profibrotic TGF-β1 and CCL2. Granulated and degranulated mast cells and mMCP4 were mainly found in the kidney capsule, respectively, before and after ureteral obstruction. Analysis of mMCP4 substrates showed that it mediates its anti-fibrotic actions by degrading interstitial deposits of fibronectin, a known promoter of inflammatory cell infiltration and adhesion. Thus, mast cell released mMCP4 has anti-fibrotic potential in acutely induced obstructive nephropathy.

  19. MALDI imaging reveals NCOA7 as a potential biomarker in oral squamous cell carcinoma arising from oral submucous fibrosis

    PubMed Central

    Wang, Peiqi; Li, Xinyi; Chen, Fangman; Sun, Chongkui; Zhao, Hang; Zeng, Xin; Jiang, Lu; Zhou, Yu; Dan, Hongxia; Feng, Mingye; Liu, Rui; Chen, Qianming

    2016-01-01

    Oral squamous cell carcinoma (OSCC) ranks among the most common cancer worldwide, and is associated with severe morbidity and high mortality. Oral submucous fibrosis (OSF), characterized by fibrosis of the mucosa of the upper digestive tract, is a pre-malignant lesion, but the molecular mechanisms underlying this malignant transformation remains to be elucidated. In this study, matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS)-based proteomic strategy was employed to profile the differentially expressed peptides/proteins between OSCC tissues and the corresponding adjacent non-cancerous OSF tissues. Sixty-five unique peptide peaks and nine proteins were identified with altered expression levels. Of them, expression of NCOA7 was found to be up-regulated in OSCC tissues by immunohistochemistry staining and western blotting, and correlated with a pan of clinicopathologic parameters, including lesion site, tumor differentiation status and lymph node metastasis. Further, we show that overexpression of NCOA7 promotes OSCC cell proliferation in either in vitro or in vivo models. Mechanistic study demonstrates that NCOA7 induces OSCC cell proliferation probably by activating aryl hydrocarbon receptor (AHR). The present study suggests that NCOA7 is a potential biomarker for early diagnosis of OSF malignant transformation, and leads to a better understanding of the molecular mechanisms responsible for OSCC development. PMID:27509054

  20. SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice.

    PubMed

    Li, Min; Hong, Wenxuan; Hao, Chenzhi; Li, Luyang; Wu, Dongmei; Shen, Aiguo; Lu, Jun; Zheng, Yuanlin; Li, Ping; Xu, Yong

    2017-09-26

    Hepatic stellate cells (HSCs) are a major source of fibrogenesis in the liver contributing to cirrhosis. When activated, HSCs transdifferentiate into myofibroblast and undergo profound functional alterations paralleling an overhaul of the transcriptome, the mechanism of which remains largely undefined. We investigated the involvement of the class III deacetylase sirtuin (silent information regulator 1, SIRT1) in HSC activation and liver fibrosis. SIRT1 levels were down-regulated in the livers in mouse models of liver fibrosis, in patients with cirrhosis, and in activated HSCs as opposed to quiescent HSCs. SIRT1 activation halted whereas SIRT1 inhibition promoted HSC trans-differentiation into myofibroblast. Liver fibrosis was exacerbated in mice with HSC-specific deletion of SIRT1 (conditional knockout, cKO), receiving CCl4 (1 mg/kg) injection or subjected to bile duct ligation, compared to wild-type littermates. SIRT1 regulated peroxisome proliferator activated receptor γ (PPARγ) transcription by deacetylating enhancer of zeste homolog 2 (EZH2) in quiescent HSCs. Finally, EZH2 inhibition or PPARγ activation ameliorated fibrogenesis in cKO mice. In summary, our data suggest that SIRT1 plays an essential role guiding the transition of HSC phenotypes.-Li, M., Hong, W., Hao, C., Li, L., Wu, D., Shen, A., Lu, J., Zheng, Y., Li, P., Xu, Y. SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice. © FASEB.

  1. Effects of Melatonin on Differentiation Potential of Ito Cells in Mice with Induced Fibrosis of the Liver.

    PubMed

    Nalobin, D S; Suprunenko, E A; Golichenkov, V A

    2016-10-01

    We studied the effects of melatonin on differentiation potential of Ito cells during atypical regeneration of mouse liver under conditions of CCl4-induced fibrosis. The dynamics of fibrosis was traced at the histological level and the effects of melatonin on the differentiation potential of mouse Ito cells were evaluated. Melatonin alleviated fibrotic changes in the liver tissue and reduced differentiation of Ito cells into myofibroblasts under conditions of atypical regeneration of the liver in induced fibrosis. The hepatoprotective role of melatonin was shown.

  2. The Role of Dendritic Cells in Fibrosis Progression in Nonalcoholic Fatty Liver Disease

    PubMed Central

    Almeda-Valdes, Paloma; Aguilar Olivos, Nancy E.; Barranco-Fragoso, Beatriz; Uribe, Misael; Méndez-Sánchez, Nahum

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most frequent cause of chronic liver disease. NAFLD encompasses a wide range of pathologies, from simple steatosis to steatosis with inflammation to fibrosis. The pathogenesis of NAFLD progression has not been completely elucidated, and different liver cells could be implicated. This review focuses on the current evidence of the role of liver dendritic cells (DCs) in the progression from NAFLD to fibrosis. Liver DCs are a heterogeneous population of hepatic antigen-presenting cells; their main function is to induce T-cell mediated immunity by antigen processing and presentation to T cells. During the steady state liver DCs are immature and tolerogenic. However, in an environment of chronic inflammation, DCs are transformed to potent inducers of immune responses. There is evidence about the role of DC in liver fibrosis, but it is not clearly understood. Interestingly, there might be a link between lipid metabolism and DC function, suggesting that immunogenic DCs are associated with liver lipid storage, representing a possible pathophysiological mechanism in NAFLD development. A better understanding of the interaction between inflammatory pathways and the different cell types and the effect on the progression of NAFLD is of great relevance. PMID:26339640

  3. HIV-HCV co-infected patients with low CD4+ cell nadirs are at risk for faster fibrosis progression and portal hypertension.

    PubMed

    Reiberger, T; Ferlitsch, A; Sieghart, W; Kreil, A; Breitenecker, F; Rieger, A; Schmied, B; Gangl, A; Peck-Radosavljevic, M

    2010-06-01

    Patients co-infected with the human immunodeficiency virus (HIV) and the hepatitis C virus (HCV) are fraught with a rapid fibrosis progression rate and with complications of portal hypertension (PHT) We aimed to assess the influence of immune function [Centers of Disease Control and Prevention (CDC) stage] on development of PHT and disease progression in HIV-HCV co-infection. Data of 74 interferon-naïve HIV-HCV co-infected patients undergoing liver biopsy, measurement of portal pressure and of liver stiffness and routine laboratory tests (including CD4+ cell count, HIV and HCV viral load) were analysed. Time of initial exposure (risk behaviour) was used to assess fibrosis progression. Fibrosis progression, time to cirrhosis and portal pressure were correlated with HIV status (CDC stage). HIV-HCV patients had rapid progression of fibrosis [0.201 +/- 0.088 METAVIR fibrosis units/year (FU/y)] and accelerated time to cirrhosis (24 +/- 13 years), high HCV viral loads (4.83 x 10(6) IU/mL) and a mean HVPG at the upper limit of normal (5 mmHg). With moderate or severe immunodeficiency, fibrosis progression was even higher (CDC-2 = 0.177 FU/y; CDC-3 = 0.248 FU/y) compared with patients with higher CD4+ nadirs (CDC-1 = 0.120 FU/y; P = 0.0001). An indirect correlation between CD4+ cell count and rate of fibrosis progression (R = -0.6654; P < 0.001) could be demonstrated. Hepatic venous pressure gradient (HVPG) showed early elevation of portal pressure with median values of 4, 8 and 12 mmHg after 10, 15 and 20 years of HCV infection for CDC-3 patients. Patients treated with highly active anti-retroviral therapy (HAART) had similar rates of progression and portal pressure values than patients without HAART. Progression of HCV disease is accelerated in HIV-HCV co-infection, being more pronounced in patients with low CD4+ cell count. A history of a CD4+ cell nadir <200/microL is a risk factor for rapid development of cirrhosis and PHT. Thus, HCV treatment should be considered

  4. Lysophosphatidic acid accelerates lung fibrosis by inducing differentiation of mesenchymal stem cells into myofibroblasts.

    PubMed

    Tang, Na; Zhao, Yanxia; Feng, Ruopeng; Liu, Yinan; Wang, Shuling; Wei, Wanguo; Ding, Qiang; An, Michael Songzhu; Wen, Jinhua; Li, Lingsong

    2014-01-01

    Lung fibrosis is characterized by vascular leakage and myofibroblast recruitment, and both phenomena are mediated by lysophosphatidic acid (LPA) via its type-1 receptor (LPA1). Following lung damage, the accumulated myofibroblasts activate and secrete excessive extracellular matrix (ECM), and form fibrotic foci. Studies have shown that bone marrow-derived cells are an important source of myofibroblasts in the fibrotic organ. However, the type of cells in the bone marrow contributing predominantly to the myofibroblasts and the involvement of LPA-LPA1 signalling in this is yet unclear. Using a bleomycin-induced mouse lung-fibrosis model with an enhanced green fluorescent protein (EGFP) transgenic mouse bone marrow replacement, we first demonstrated that bone marrow derived-mesenchymal stem cells (BMSCs) migrated markedly to the bleomycin-injured lung. The migrated BMSC contributed significantly to α-smooth muscle actin (α-SMA)-positive myofibroblasts. By transplantation of GFP-labelled human BMSC (hBMSC) or EGFP transgenic mouse BMSC (mBMSC), we further showed that BMSC might be involved in lung fibrosis in severe combined immune deficiency (SCID)/Beige mice induced by bleomycin. In addition, using quantitative-RT-PCR, western blot, Sircol collagen assay and migration assay, we determined the underlying mechanism was LPA-induced BMSC differentiation into myofibroblast and the secretion of ECM via LPA1. By employing a novel LPA1 antagonist, Antalpa1, we then showed that Antalpa1 could attenuate lung fibrosis by inhibiting both BMSC differentiation into myofibroblast and the secretion of ECM. Collectively, the above findings not only further validate LPA1 as a drug target in the treatment of pulmonary fibrosis but also elucidate a novel pathway in which BMSCs contribute to the pathologic process. © 2013 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. Fn14 hepatic progenitor cells are associated with liver fibrosis in biliary atresia.

    PubMed

    Zheng, Lulu; Lv, Zhibao; Gong, Zhenhua; Sheng, Qingfeng; Gao, Zhimei; Zhang, Yuting; Yu, Shenghua; Zhou, Junmei; Xi, Zhengjun; Wang, Xueli

    2017-05-01

    The liver in biliary atresia (BA) is characterized by progressing fibrosis which is promoted by unclear reasons. We aimed to understand the factors influencing liver fibrosis. This study hypothesized that HPCs (hepatic progenitor cells) are activated and associated with liver fibrosis in biliary atresia. Liver samples from biliary atresia patients are as BA group, and the normal liver derived from hepatoblastoma infants during operation are control group. The extent of fibrosis in liver samples was blindly evaluated by two experienced pathologists depending on Ishak system. The BA liver samples were divided into mild liver fibrosis group (grade I-IV, BAa) and severe liver fibrosis group (grade V-VI, BAb) to detect Fn14 protein expression. In mRNA level, Fn14 expression was 21.23 ± 8.3 vs. 1.00 ± 0.17, p = 0.023 < 0.05 and CD133 expression was 6.02 ± 2.16 vs. 1.14 ± 0.75, p = 0.008 < 0.01 between BA group and control group. Fn14 cells co-expressed the progenitor marker CD133 in liver, and activated in BA. Fn14 andα-SMA were co-location in fibrous area in liver. Compared to the control group, Fn14, CD133, and α-SMA protein expression were 2.10 ± 0.53 vs. 0.97 ± 0.2, p = 0.001, 2.23 ± 0.57 vs. 1.00 ± 0.03, p = 0.000, 4.96 ± 2.4 vs. 1.00 ± 0.22, p = 0.001. The Fn14 protein expression was 2.60 ± 0.35 vs. 1.86 ± 0.42, p = 0.012, between BAb and BAa group. Fn14 cells, which co-express the progenitor marker CD133 in liver, are HPCs and activated in BA. Fn14 + HPCs are associated with liver fibrosis in BA.

  6. Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated From Patient iPSCs

    PubMed Central

    Firth, Amy L; Menon, Tushar; Parker, Gregory S; Qualls, Susan J; Lewis, Benjamin M; Ke, Eugene; Dargitz, Carl T; Wright, Rebecca; Khanna, Ajai; Gage, Fred H; Verma, Inder M

    2015-01-01

    SUMMARY Lung disease is a major cause of death in the USA, with current therapeutic approaches only serving to manage symptoms. The most common chronic and life-threatening genetic disease of the lung is Cystic fibrosis (CF) caused by mutations in the cystic fibrosis transmembrane regulator (CFTR). We have generated induced pluripotent stem cells (iPSC) from CF patients carrying a homozygous deletion of F508 in the CFTR gene, which results in defective processing of CFTR to the cell membrane. This mutation was precisely corrected using CRISPR to target corrective sequences to the endogenous CFTR genomic locus, in combination with a completely excisable selection system which significantly improved the efficiency of this correction. The corrected iPSC were subsequently differentiated to mature airway epithelial cells where recovery of normal CFTR expression and function was demonstrated. This isogenic iPSC-based model system for CF could be adapted for the development of new therapeutic approaches. PMID:26299960

  7. Peripheral Blood Mononuclear Cell Gene Expression Profiles Predict Poor Outcome in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Herazo-Maya, Jose D.; Noth, Imre; Duncan, Steven R.; Kim, SungHwan; Ma, Shwu-Fan; Tseng, George C.; Feingold, Eleanor; Juan-Guardela, Brenda M.; Richards, Thomas J.; Lussier, Yves; Huang, Yong; Vij, Rekha; Lindell, Kathleen O.; Xue, Jianmin; Gibson, Kevin F.; Shapiro, Steven D.; Garcia, Joe G. N.; Kaminski, Naftali

    2014-01-01

    We aimed to identify peripheral blood mononuclear cell (PBMC) gene expression profiles predictive of poor outcomes in idiopathic pulmonary fibrosis (IPF) by performing microarray experiments of PBMCs in discovery and replication cohorts of IPF patients. Microarray analyses identified 52 genes associated with transplant-free survival (TFS) in the discovery cohort. Clustering the microarray samples of the replication cohort using the 52-gene outcome-predictive signature distinguished two patient groups with significant differences in TFS. We studied the pathways associated with TFS in each independent microarray cohort and identified decreased expression of “The costimulatory signal during T cell activation” Biocarta pathway and, in particular, the genes CD28, ICOS, LCK, and ITK, results confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). A proportional hazards model, including the qRT-PCR expression of CD28, ICOS, LCK, and ITK along with patient’s age, gender, and percent predicted forced vital capacity (FVC%), demonstrated an area under the receiver operating characteristic curve of 78.5% at 2.4 months for death and lung transplant prediction in the replication cohort. To evaluate the potential cellular source of CD28, ICOS, LCK, and ITK expression, we analyzed and found significant correlation of these genes with the PBMC percentage of CD4+CD28+ T cells in the replication cohort. Our results suggest that CD28, ICOS, LCK, and ITK are potential outcome biomarkers in IPF and should be further evaluated for patient prioritization for lung transplantation and stratification in drug studies. PMID:24089408

  8. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis.

    PubMed

    Chapman, Mark A; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David; Lieber, Richard L

    2017-02-01

    Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173-183, 2009; Kjaer M. Physiol Rev 84: 649-98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins-fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell.

  9. IGF-I induces senescence of hepatic stellate cells and limits fibrosis in a p53-dependent manner

    PubMed Central

    Nishizawa, Hitoshi; Iguchi, Genzo; Fukuoka, Hidenori; Takahashi, Michiko; Suda, Kentaro; Bando, Hironori; Matsumoto, Ryusaku; Yoshida, Kenichi; Odake, Yukiko; Ogawa, Wataru; Takahashi, Yutaka

    2016-01-01

    Hepatic fibrosis in nonalcoholic steatohepatitis (NASH) and cirrhosis determines patient prognosis; however, effective treatment for fibrosis has not been established. Oxidative stress and inflammation activate hepatic stellate cells (HSCs) and promote fibrosis. In contrast, cellular senescence inhibits HSCs’ activity and limits fibrosis. The aim of this study was to explore the effect of IGF-I on NASH and cirrhotic models and to clarify the underlying mechanisms. We demonstrate that IGF-I significantly ameliorated steatosis, inflammation, and fibrosis in a NASH model, methionine-choline-deficient diet-fed db/db mice and ameliorated fibrosis in cirrhotic model, dimethylnitrosamine-treated mice. As the underlying mechanisms, IGF-I improved oxidative stress and mitochondrial function in the liver. In addition, IGF-I receptor was strongly expressed in HSCs and IGF-I induced cellular senescence in HSCs in vitro and in vivo. Furthermore, in mice lacking the key senescence regulator p53, IGF-I did not induce cellular senescence in HSCs or show any effects on fibrosis. Taken together, these results indicate that IGF-I induces senescence of HSCs, inactivates these cells and limits fibrosis in a p53-dependent manner and that IGF-I may be applied to treat NASH and cirrhosis. PMID:27721459

  10. Physical performance, quality of life and sexual satisfaction evaluation in adults with cystic fibrosis: An unexplored correlation.

    PubMed

    Aguiar, K C A; Marson, F A L; Gomez, C C S; Pereira, M C; Paschoal, I A; Ribeiro, A F; Ribeiro, J D

    Quality of life (QOL), sexual satisfaction (SS) and physical performance have been assessed in the management of numerous chronic diseases. In this study, the following tests and surveys were applied: (i) QOL questionnaire [Cystic Fibrosis Questionnaire (CFQ)]; (ii) SS questionnaire (SSQ) [female sexual quotient (FSQ) and male sexual quotient (MSQ)]; (iii) 6-minute walk test (6MWT). Spearman's correlation was used for comparison between the data; the Mann-Whitney test was applied to analyze the difference between genders. A total of 52 adult patients with CF were included in this study. There was a positive correlation between CFQ domains and SSQ questions. The CFQ showed a positive correlation with peripheral oxygen saturation of hemoglobin (SpO2) and the distance walked in the 6MWT, and a negative correlation with the Borg scale. The SSQ showed positive correlation with the distance walked and a negative correlation with the Borg scale. For some markers evaluated in the 6MWT, there was sometimes association with the evaluated domains and questions. Male patients showed better scores in the emotional CFQ domain, better performance in SSQ and physical performance. There was a correlation between CFQ, SSQ and 6MWT in CF. Finally; we believe that QOL surveys should assess the domain "sexuality" as well as physical performance tests. Copyright © 2017 Sociedade Portuguesa de Pneumologia. Published by Elsevier España, S.L.U. All rights reserved.

  11. Altered surfactant homeostasis and alveolar epithelial cell stress in amiodarone-induced lung fibrosis.

    PubMed

    Mahavadi, Poornima; Henneke, Ingrid; Ruppert, Clemens; Knudsen, Lars; Venkatesan, Shalini; Liebisch, Gerhard; Chambers, Rachel C; Ochs, Matthias; Schmitz, Gerd; Vancheri, Carlo; Seeger, Werner; Korfei, Martina; Guenther, Andreas

    2014-11-01

    Amiodarone (AD) is a highly efficient antiarrhythmic drug with potentially serious side effects. Severe pulmonary toxicity is reported in patients receiving AD even at low doses and may cause interstitial pneumonia as well as lung fibrosis. Apoptosis of alveolar epithelial type II cells (AECII) has been suggested to play an important role in this disease. In the current study, we aimed to establish a murine model of AD-induced lung fibrosis and analyze surfactant homeostasis, lysosomal, and endoplasmic reticulum (ER) stress in this model. AD/vehicle was instilled intratracheally into C57BL/6 mice, which were sacrificed on days 7, 14, 21, and 28. Extent of lung fibrosis development was assessed by trichrome staining and hydroxyproline measurement. Cytotoxicity was assessed by lactate dehydrogenase assay. Phospholipids (PLs) were analyzed by mass spectrometry. Surfactant proteins (SP) and markers for apoptosis, lysosomal, and ER stress were studied by Western blotting and immunohistochemistry. AECII morphology was evaluated by electron microscopy. Extensive lung fibrosis and AECII hyperplasia were observed in AD-treated mice already at day 7. Surfactant PL and SP accumulated in AECII over time. In parallel, induction of apoptosis, lysosomal, and ER stress was encountered in AECII of mice lungs and in MLE12 cells treated with AD. In vitro, siRNA-mediated knockdown of cathepsin D did not alter the AD-induced apoptotic response. Our data suggest that mice exposed to intratracheal AD develop severe pulmonary fibrosis, exhibit extensive surfactant alterations and cellular stress, but AD-induced AECII apoptosis is not mediated primarily via cathepsin D.

  12. Modulation of the Unfolded Protein Response by Tauroursodeoxycholic Acid Counteracts Apoptotic Cell Death and Fibrosis in a Mouse Model for Secondary Biliary Liver Fibrosis.

    PubMed

    Paridaens, Annelies; Raevens, Sarah; Devisscher, Lindsey; Bogaerts, Eliene; Verhelst, Xavier; Hoorens, Anne; Van Vlierberghe, Hans; van Grunsven, Leo A; Geerts, Anja; Colle, Isabelle

    2017-01-20

    The role of endoplasmic reticulum stress and the unfolded protein response (UPR) in cholestatic liver disease and fibrosis is not fully unraveled. Tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid, has been shown to reduce endoplasmic reticulum (ER) stress and counteract apoptosis in different pathologies. We aimed to investigate the therapeutic potential of TUDCA in experimental secondary biliary liver fibrosis in mice, induced by common bile duct ligation. The kinetics of the hepatic UPR and apoptosis during the development of biliary fibrosis was studied by measuring markers at six different timepoints post-surgery by qPCR and Western blot. Next, we investigated the therapeutic potential of TUDCA, 10 mg/kg/day in drinking water, on liver damage (AST/ALT levels) and fibrosis (Sirius red-staining), in both a preventive and therapeutic setting. Common bile duct ligation resulted in the increased protein expression of CCAAT/enhancer-binding protein homologous protein (CHOP) at all timepoints, along with upregulation of pro-apoptotic caspase 3 and 12, tumor necrosis factor receptor superfamily, member 1A (TNFRsf1a) and Fas-Associated protein with Death Domain (FADD) expression. Treatment with TUDCA led to a significant reduction of liver fibrosis, accompanied by a slight reduction of liver damage, decreased hepatic protein expression of CHOP and reduced gene and protein expression of pro-apoptotic markers. These data indicate that TUDCA exerts a beneficial effect on liver fibrosis in a model of cholestatic liver disease, and suggest that this effect might, at least in part, be attributed to decreased hepatic UPR signaling and apoptotic cell death.

  13. Modulation of the Unfolded Protein Response by Tauroursodeoxycholic Acid Counteracts Apoptotic Cell Death and Fibrosis in a Mouse Model for Secondary Biliary Liver Fibrosis

    PubMed Central

    Paridaens, Annelies; Raevens, Sarah; Devisscher, Lindsey; Bogaerts, Eliene; Verhelst, Xavier; Hoorens, Anne; van Vlierberghe, Hans; Van Grunsven, Leo A.; Geerts, Anja; Colle, Isabelle

    2017-01-01

    The role of endoplasmic reticulum stress and the unfolded protein response (UPR) in cholestatic liver disease and fibrosis is not fully unraveled. Tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid, has been shown to reduce endoplasmic reticulum (ER) stress and counteract apoptosis in different pathologies. We aimed to investigate the therapeutic potential of TUDCA in experimental secondary biliary liver fibrosis in mice, induced by common bile duct ligation. The kinetics of the hepatic UPR and apoptosis during the development of biliary fibrosis was studied by measuring markers at six different timepoints post-surgery by qPCR and Western blot. Next, we investigated the therapeutic potential of TUDCA, 10 mg/kg/day in drinking water, on liver damage (AST/ALT levels) and fibrosis (Sirius red-staining), in both a preventive and therapeutic setting. Common bile duct ligation resulted in the increased protein expression of CCAAT/enhancer-binding protein homologous protein (CHOP) at all timepoints, along with upregulation of pro-apoptotic caspase 3 and 12, tumor necrosis factor receptor superfamily, member 1A (TNFRsf1a) and Fas-Associated protein with Death Domain (FADD) expression. Treatment with TUDCA led to a significant reduction of liver fibrosis, accompanied by a slight reduction of liver damage, decreased hepatic protein expression of CHOP and reduced gene and protein expression of pro-apoptotic markers. These data indicate that TUDCA exerts a beneficial effect on liver fibrosis in a model of cholestatic liver disease, and suggest that this effect might, at least in part, be attributed to decreased hepatic UPR signaling and apoptotic cell death. PMID:28117681

  14. Hepatic stellate cell-specific deletion of SIRT1 exacerbates liver fibrosis in mice.

    PubMed

    Li, Min; Hong, Wenxuan; Hao, Chenzhi; Li, Luyang; Xu, Huihui; Li, Ping; Xu, Yong

    2017-09-14

    Liver fibrosis is widely perceived as a host defense mechanism that aids tissue repair following liver injury. Excessive fibrogenesis, however, serves to disrupts normal liver structure and precedes such irrevocable human pathologies as cirrhosis and hepatocellular carcinoma. Activation of hepatic stellate cells (HSCs) is a hallmark event during liver fibrosis. In the present study we investigated the mechanism by which the lysine deacetylase SIRT1 regulates HSC activation. We report here that SIRT1 levels were decreased in the liver in different mouse models and in cultured HSCs undergoing activation. SIRT1 down-regulation paralleled HDAC4 up-regulation. HDAC4 was recruited to the SIRT1 promoter during HSC activation and removed acetylated histones H3 and H4 from the SIRT1 promoter leading to SIRT1 trans‑repression. HDAC4 silencing restored SIRT1 expression and attenuated HSC activation in SIRT1-dependent manner. More important, selective deletion of SIRT1 in HSCs exacerbated CCl4-induced liver fibrosis in mice. Mechanistically, SIRT1 deacetylated PPARγ to block HSC activation. Together, our data reveal an HDAC4-SIRT1-PPARγ axis that contributes to the regulation of HSC activation and liver fibrosis. Copyright © 2017. Published by Elsevier B.V.

  15. Corona-directed nucleic acid delivery into hepatic stellate cells for liver fibrosis therapy.

    PubMed

    Zhang, Zhengping; Wang, Chunming; Zha, Yinhe; Hu, Wei; Gao, Zhongfei; Zang, Yuhui; Chen, Jiangning; Zhang, Junfeng; Dong, Lei

    2015-03-24

    Strategies to modify nanoparticles with biological ligands for targeted drug delivery in vivo have been widely studied but met with limited clinical success. A possible reason is that, in the blood circulation, serum proteins could rapidly form a layer of protein "corona" on the vehicle surface, which might block the modified ligands and hamper their targeting functions. We speculate that strategies for drug delivery can be designed based upon elegant control of the corona formation on the vehicle surfaces. In this study, we demonstrate a retinol-conjugated polyetherimine (RcP) nanoparticle system that selectively recruited the retinol binding protein 4 (RBP) in its corona components. RBP was found to bind retinol, and direct the antisense oligonucleotide (ASO)-laden RcP carrier to hepatic stellate cells (HSC), which play essential roles in the progression of hepatic fibrosis. In both mouse fibrosis models, induced by carbon tetrachloride (CCl4) and bile duct ligation (BDL), respectively, the ASO-laden RcP particles effectively suppressed the expression of type I collagen (collagen I), and consequently ameliorated hepatic fibrosis. Such findings suggest that this delivery system, designed to exploit the power of corona proteins, can serve as a promising tool for targeted delivery of therapeutic agents for the treatment of hepatic fibrosis.

  16. Mesenchymal stem cells inhibit cutaneous radiation-induced fibrosis by suppressing chronic inflammation.

    PubMed

    Horton, Jason A; Hudak, Kathryn E; Chung, Eun Joo; White, Ayla O; Scroggins, Bradley T; Burkeen, Jeffrey F; Citrin, Deborah E

    2013-10-01

    Exposure to ionizing radiation (IR) can result in the development of cutaneous fibrosis, for which few therapeutic options exist. We tested the hypothesis that bone marrow-derived mesenchymal stem cells (BMSC) would favorably alter the progression of IR-induced fibrosis. We found that a systemic infusion of BMSC from syngeneic or allogeneic donors reduced skin contracture, thickening, and collagen deposition in a murine model. Transcriptional profiling with a fibrosis-targeted assay demonstrated increased expression of interleukin-10 (IL-10) and decreased expression of IL-1β in the irradiated skin of mice 14 days after receiving BMSC. Similarly, immunoassay studies demonstrated durable alteration of these and several additional inflammatory mediators. Immunohistochemical studies revealed a reduction in infiltration of proinflammatory classically activated CD80(+) macrophages and increased numbers of anti-inflammatory regulatory CD163(+) macrophages in irradiated skin of BMSC-treated mice. In vitro coculture experiments confirmed that BMSC induce expression of IL-10 by activated macrophages, suggesting polarization toward a regulatory phenotype. Furthermore, we demonstrated that tumor necrosis factor-receptor 2 (TNF-R2) mediates IL-10 production and transition toward a regulatory phenotype during coculture with BMSC. Taken together, these data demonstrate that systemic infusion of BMSC can durably alter the progression of radiation-induced fibrosis by altering macrophage phenotype and suppressing local inflammation in a TNF-R2-dependent fashion. © AlphaMed Press.

  17. Deletion of mTORC1 Activity in CD4+ T Cells Is Associated with Lung Fibrosis and Increased γδ T Cells

    PubMed Central

    Vigeland, Christine L.; Collins, Samuel L.; Chan-Li, Yee; Hughes, Andrew H.; Oh, Min-Hee; Powell, Jonathan D.; Horton, Maureen R.

    2016-01-01

    Pulmonary fibrosis is a devastating, incurable disease in which chronic inflammation and dysregulated, excessive wound healing lead to progressive fibrosis, lung dysfunction, and ultimately death. Prior studies have implicated the cytokine IL-17A and Th17 cells in promoting the development of fibrosis. We hypothesized that loss of Th17 cells via CD4-specific deletion of mTORC1 activity would abrogate the development of bleomycin-induced pulmonary fibrosis. However, in actuality loss of Th17 cells led to increased mortality and fibrosis in response to bleomycin. We found that in the absence of Th17 cells, there was continued production of IL-17A by γδ T cells. These IL-17A+ γδ T cells were associated with increased lung neutrophils and M2 macrophages, accelerated development of fibrosis, and increased mortality. These data elucidate the critical role of IL-17A+ γδ T cells in promoting chronic inflammation and fibrosis, and reveal a novel therapeutic target for treatment of pulmonary fibrosis. PMID:27649073

  18. Reversibility of liver fibrosis.

    PubMed

    Sun, Mengxi; Kisseleva, Tatiana

    2015-09-01

    Liver fibrosis is a serious health problem worldwide, which can be induced by a wide spectrum of chronic liver injuries. However, until today, there is no effective therapy available for liver fibrosis except the removal of underlying etiology or liver transplantation. Recent studies indicate that liver fibrosis is reversible when the causative agent(s) is removed. Understanding of mechanisms of liver fibrosis regression will lead to the identification of new therapeutic targets for liver fibrosis. This review summarizes recent research progress on mechanisms of reversibility of liver fibrosis. While most of the research has been focused on HSCs/myofibroblasts and inflammatory pathways, the crosstalk between different organs, various cell types and multiple signaling pathways should not be overlooked. Future studies that lead to fully understanding of the crosstalk between different cell types and the molecular mechanism underlying the reversibility of liver fibrosis will definitely give rise to new therapeutic strategies to treat liver fibrosis.

  19. The role of miRNAs in stress-responsive hepatic stellate cells during liver fibrosis

    PubMed Central

    Lambrecht, Joeri; Mannaerts, Inge; van Grunsven, Leo A.

    2015-01-01

    The progression of liver fibrosis and cirrhosis is associated with the persistence of an injury causing agent, leading to changes in the extracellular environment and a disruption of the cellular homeostasis of liver resident cells. Recruitment of inflammatory cells, apoptosis of hepatocytes, and changes in liver microvasculature are some examples of changing cellular environment that lead to the induction of stress responses in nearby cells. During liver fibrosis, the major stresses include hypoxia, oxidative stress, and endoplasmic reticulum stress. When hepatic stellate cells (HSCs) are subjected to such stress, they modulate fibrosis progression by induction of their activation toward a myofibroblastic phenotype, or by undergoing apoptosis, and thus helping fibrosis resolution. It is widely accepted that microRNAs are import regulators of gene expression, both during normal cellular homeostasis, as well as in pathologic conditions. MicroRNAs are short RNA sequences that regulate the gene expression by mRNA destabilization and inhibition of mRNA translation. Specific microRNAs have been identified to play a role in the activation process of HSCs on the one hand and in stress-responsive pathways on the other hand in other cell types (Table 2). However, so far there are no reports for the involvement of miRNAs in the different stress responses linked to HSC activation. Here, we review briefly the major stress response pathways and propose several miRNAs to be regulated by these stress responsive pathways in activating HSCs, and discuss their potential specific pro-or anti-fibrotic characteristics. PMID:26283969

  20. Gradually softening hydrogels for modeling hepatic stellate cell behavior during fibrosis regression.

    PubMed

    Caliari, Steven R; Perepelyuk, Maryna; Soulas, Elizabeth M; Lee, Gi Yun; Wells, Rebecca G; Burdick, Jason A

    2016-06-13

    The extracellular matrix (ECM) presents an evolving set of mechanical cues to resident cells. We developed methacrylated hyaluronic acid (MeHA) hydrogels containing both stable and hydrolytically degradable crosslinks to provide cells with a gradually softening (but not fully degradable) milieu, mimicking physiological events such as fibrosis regression. To demonstrate the utility of this cell culture system, we studied the phenotype of rat hepatic stellate cells, the major liver precursors of fibrogenic myofibroblasts, within this softening environment. Stellate cells that were mechanically primed on tissue culture plastic attained a myofibroblast phenotype, which persisted when seeded onto stiff (∼20 kPa) hydrogels. However, mechanically primed stellate cells on stiff-to-soft (∼20 to ∼3 kPa) hydrogels showed reversion of the myofibroblast phenotype over 14 days, with reductions in cell area, expression of the myofibroblast marker alpha-smooth muscle actin (α-SMA), and Yes-associated protein/Transcriptional coactivator with PDZ-binding motif (YAP/TAZ) nuclear localization when compared to stellate cells on stiff hydrogels. Cells on stiff-to-soft hydrogels did not fully revert, however. They displayed reduced expression of glial fibrillary acidic protein (GFAP), and underwent abnormally rapid re-activation to myofibroblasts in response to re-stiffening of the hydrogels through introduction of additional crosslinks. These features are typical of stellate cells with an intermediate phenotype, reported to occur in vivo with fibrosis regression and re-injury. Together, these data suggest that mechanics play an important role in fibrosis regression and that integrating dynamic mechanical cues into model systems helps capture cell behaviors observed in vivo.

  1. Rare aggressive natural killer cell leukemia presented with bone marrow fibrosis - a diagnostic challenge.

    PubMed

    Soliman, Dina S; Sabbagh, Ahmad Al; Omri, Halima El; Ibrahim, Firyal A; Amer, Aliaa M; Otazu, Ivone B

    2014-01-01

    Aggressive natural killer cell leukemia is an extraordinary rare aggressive malignant neoplasm of natural killer cells. Although its first recognition as a specific entity was approximately 20 years ago, this leukemia has not yet been satisfactorily characterized as fewer than 200 cases have been reported in the literature and up to our knowledge, this is the first case report in Qatar. Reaching a diagnosis of aggressive natural killer leukemia was a challenging experience, because in addition to being a rare entity, the relative scarcity of circulating neoplastic cells, failure to obtain an adequate aspirate sample sufficient to perform flow cytometric analysis, together with the absence of applicable method to prove NK clonality (as it lack specific clonal marker); our case had atypical confusing presentation of striking increase in bone marrow fibrosis that was misleading and complicated the case further. The bone marrow fibrosis encountered may be related to the neoplastic natural killer cells' chemokine profile and it may raise the awareness for considering aggressive natural killer leukemia within the differential diagnosis of leukemia with heightened marrow fibrosis.

  2. Continuous AMD3100 Treatment Worsens Renal Fibrosis through Regulation of Bone Marrow Derived Pro-Angiogenic Cells Homing and T-Cell-Related Inflammation.

    PubMed

    Yang, Juan; Zhu, Fengming; Wang, Xiaohui; Yao, Weiqi; Wang, Meng; Pei, Guangchang; Hu, Zhizhi; Guo, Yujiao; Zhao, Zhi; Wang, Pengge; Mou, Jingyi; Sun, Jie; Zeng, Rui; Xu, Gang; Liao, Wenhui; Yao, Ying

    2016-01-01

    AMD3100 is a small molecule inhibitor of chemokine receptor type 4 (CXCR4), which is located in the cell membranes of CD34+ cells and a variety of inflammatory cells and has been reported to reduce organ fibrosis in the lung, liver and myocardium. However, the effect of AMD3100 on renal fibrosis is unknown. This study investigated the impact of AMD3100 on renal fibrosis. C57bl/6 mice were subjected to unilateral ureteral obstruction (UUO) surgery with or without AMD3100 administration. Tubular injury, collagen deposition and fibrosis were detected and analyzed by histological staining, immunocytochemistry and Western Blot. Bone marrow derived pro-angiogenic cells (CD45+, CD34+ and CD309+ cells) and capillary density (CD31+) were measured by flow cytometry (FACS) and immunofluorescence (IF). Inflammatory cells, chemotactic factors and T cell proliferation were characterized. We found that AMD3100 treatment did not alleviate renal fibrosis but, rather, increased tissue damage and renal fibrosis. Continuous AMD3100 administration did not improve bone marrow derived pro-angiogenic cells mobilization but, rather, inhibited the migration of bone marrow derived pro-angiogenic cells into the fibrotic kidney. Additionally, T cell infiltration was significantly increased in AMD3100-treated kidneys compared to un-treated kidneys. Thus, treatment of UUO mice with AMD3100 led to an increase in T cell infiltration, suggesting that AMD3100 aggravated renal fibrosis.

  3. A bacterial cell to cell signal in the lungs of cystic fibrosis patients.

    PubMed

    Collier, David N; Anderson, Lisa; McKnight, Susan L; Noah, Terry L; Knowles, Michael; Boucher, Richard; Schwab, Ute; Gilligan, Peter; Pesci, Everett C

    2002-09-24

    Pseudomonas aeruginosa is an opportunistic pathogen that is a major cause of mortality in cystic fibrosis (CF) patients. This bacterium has numerous genes controlled by cell to cell signaling, which occurs through a complex circuitry of interconnected regulatory systems. One of the signals is the Pseudomonas Quinolone Signal (PQS), which was identified as 2-heptyl-3-hydroxy-4-quinolone. This intercellular signal controls the expression of multiple virulence factors and is required for virulence in an insect model of P. aeruginosa infection. Previous studies have implied that the intercellular signals of P. aeruginosa are important for human disease, and our goal was to determine whether PQS was produced during human infections. In this report, three types of samples from CF patients infected with P. aeruginosa were analyzed for the presence of PQS. Sputum, bronchoalveolar lavage fluid, and mucopurulent fluid from distal airways of end-stage lungs removed at transplant, all contained PQS, indicating that this cell to cell signal is produced in vivo by P. aeruginosa infecting the lungs of CF patients.

  4. Prevalence, distribution and clinical correlates of myocardial fibrosis in systemic lupus erythematosus: a cardiac magnetic resonance study.

    PubMed

    Seneviratne, M G; Grieve, S M; Figtree, G A; Garsia, R; Celermajer, D S; Adelstein, S; Puranik, R

    2016-05-01

    To assess the prevalence, distribution and clinical correlates of myocardial fibrosis, as detected by cardiac magnetic resonance (CMR), in systemic lupus erythematosus (SLE). Forty-one subjects (average age 39 ± 12 years and 80% female) with SLE underwent CMR imaging at 1.5T, using late gadolinium enhancement (LGE) to quantify the area of myocardial fibrosis in the left ventricle (LV). Subjects also underwent transthoracic echocardiography (TTE) and exercise testing. LGE was detected in 15/41 subjects, 11 with localized LGE (<15% LV mass) and four with extensive LGE (>15% LV mass). The commonest site of LGE was the interventricular septum, with all but one case demonstrating an intramural or inflammatory pattern. The mean age of the >15% LGE group (55 ± 15 years) was significantly higher than the <15% or absent LGE subgroups. Based on both CMR and TTE measurements, subjects with LGE > 15% demonstrated a reduced E/A ratio of 0.9 ± 0.4 relative to the <15% and absent LGE subgroups. LV end-systolic volume (ESVi), end-diastolic volume (EDVi) and maximum exercise capacity were also reduced in the >15% LGE group. Mid-wall myocardial fibrosis occurs frequently in SLE and is strongly associated with advancing subject age, but not with SLE duration or severity. Extensive LGE may be associated with diastolic dysfunction and impaired exercise capacity, although this may be an epiphenomenon of age. Cardiac magnetic resonance with quantitative assessment of LGE may provide a basis for cardiac risk stratification in SLE. © The Author(s) 2015.

  5. Dynamic of bone marrow fibrosis regression predicts survival after allogeneic stem cell transplantation for myelofibrosis.

    PubMed

    Kröger, Nicolaus; Zabelina, Tatjana; Alchalby, Haefaa; Stübig, Thomas; Wolschke, Christine; Ayuk, Francis; von Hünerbein, Natascha; Kvasnicka, Hans-Michael; Thiele, Jürgen; Kreipe, Hans-Heinrich; Büsche, Guntram

    2014-06-01

    We correlate regression of bone marrow fibrosis (BMF) on day 30 and 100 after dose- reduced allogeneic stem cell transplantation (allo-SCT) in 57 patients with primary or post-essential thrombocythemia/polycythemia vera myelofibrosis with graft function and survival. The distribution of International Prognostic Scoring System (IPSS) risk score categories was 1 patient with low risk, 5 patients with intermediate-1 risk, 18 patients with intermediate-2 risk, and 33 patients with high risk. Before allo-SCT, 41 patients (72%) were classified as XXX [myclofibrosis (MF)]-3 and 16 (28%) were classified as MF-2 according to the World Health Organization criteria. At postengraftment day +30 (±10 days), 21% of the patients had near-complete or complete regression of BMF (MF-0/-1), and on day +100 (±20 days), 54% were MF-0/-1. The 5-year overall survival rate at day +100 was 96% in patients with MF-0/-1 and 57% for those with MF-2/-3 (P = .04). There was no difference in BMF regression at day +100 between IPSS high-risk and low/intermediate-risk patients. Complete donor cell chimerism at day +100 was seen in 81% of patients with MF-0/-1 and in 31% of those with MF-2/-3. Patients with MF-2/-3 at day +100 were more likely to be transfusion-dependent for either RBCs (P = .014) or platelets (P = .018). Rapid BMF regression after reduced-intensity conditioning allo-SCT resulted in a favorable survival independent of IPSS risk score at transplantation.

  6. Safety and Tolerability of Alveolar Type II Cell Transplantation in Idiopathic Pulmonary Fibrosis.

    PubMed

    Serrano-Mollar, Anna; Gay-Jordi, Gemma; Guillamat-Prats, Raquel; Closa, Daniel; Hernandez-Gonzalez, Fernanda; Marin, Pedro; Burgos, Felip; Martorell, Jaume; Sánchez, Marcelo; Arguis, Pedro; Soy, Dolors; Bayas, José M; Ramirez, José; Tetley, Teresa D; Molins, Laureano; de la Bellacasa, Jordi Puig; Rodríguez-Villar, Camino; Rovira, Irene; Fiblà, Juan José; Xaubet, Antoni

    2016-09-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited response to currently available therapies. Alveolar type II (ATII) cells act as progenitor cells in the adult lung, contributing to alveolar repair during pulmonary injury. However, in IPF, ATII cells die and are replaced by fibroblasts and myofibroblasts. In previous preclinical studies, we demonstrated that ATII-cell intratracheal transplantation was able to reduce pulmonary fibrosis. The main objective of this study was to investigate the safety and tolerability of ATII-cell intratracheal transplantation in patients with IPF. We enrolled 16 patients with moderate and progressive IPF who underwent ATII-cell intratracheal transplantation through fiberoptic bronchoscopy. We evaluated the safety and tolerability of ATII-cell transplantation by assessing the emergent adverse side effects that appeared within 12 months. Moreover, pulmonary function, respiratory symptoms, and disease extent during 12 months of follow-up were evaluated. No significant adverse events were associated with the ATII-cell intratracheal transplantation. After 12 months of follow-up, there was no deterioration in pulmonary function, respiratory symptoms, or disease extent. Our results support the hypothesis that ATII-cell intratracheal transplantation is safe and well tolerated in patients with IPF. This study opens the door to designing a clinical trial to elucidate the potential beneficial effects of ATII-cell therapy in IPF. Copyright © 2016 American College of Chest Physicians. All rights reserved.

  7. Intestinal decontamination inhibits TLR4 dependent fibronectin mediated crosstalk between stellate cells and endothelial cells in liver fibrosis in mice

    PubMed Central

    Zhu, Qiang; Zou, Li; Jagavelu, Kumaravelu; Simonetto, Douglas A.; Huebert, Robert C.; Jiang, Zhi-Dong; DuPont, Herbert L.; Shah, Vijay H.

    2012-01-01

    Background/Aims Liver fibrosis is associated with angiogenesis and leads to portal hypertension. Certain antibiotics reduce complications of liver failure in humans, however, effect of antibiotics on the pathologic alterations of the disease are not fully understood. The aim of this study was to test whether the non-absorbable antibiotic rifaximin could attenuate fibrosis progression and portal hypertension in vivo, and explore potential mechanisms in vitro. Methods Effect of rifaximin on portal pressure, fibrosis, and angiogenesis was examined in wild type and toll like receptor 4 (TLR4) mutant mice after bile duct ligation (BDL). In vitro studies were carried out to evaluate the effect of the bacterial product and TLR agonist, lipopolysaccharide (LPS) on paracrine interactions between hepatic stellate cells (HSC) and liver endothelial cells (LEC) that lead to fibrosis and portal hypertension. Results Portal pressure, fibrosis, and angiogenesis were significantly lower in BDL mice receiving rifaximin compared to BDL mice receiving vehicle. Studies in TLR4 mutant mice confirmed that the effect of rifaximin was dependent on LPS/TLR4 pathway. Fibronectin (FN) was increased in BDL liver and was reduced by rifaximin administration and thus was explored further in vitro as a potential mediator of paracrine interactions of HSC and LEC. In vitro, LPS promoted FN production from HSC. Furthermore, HSC-derived FN promoted LEC migration and angiogenesis. Conclusion These studies expand our understanding of the relationship of intestinal microbiota with fibrosis development by identifying FN as a TLR4 dependent mediator of the matrix and vascular changes that characterize cirrhosis. PMID:22173161

  8. Graptopetalum Paraguayense Ameliorates Chemical-Induced Rat Hepatic Fibrosis In Vivo and Inactivates Stellate Cells and Kupffer Cells In Vitro

    PubMed Central

    Su, Li-Jen; Chang, Chia-Chuan; Yang, Chih-Hsueh; Hsieh, Shur-Jong; Wu, Yi-Chin; Lai, Jin-Mei; Tseng, Tzu-Ling; Huang, Chi-Ying F.; Hsu, Shih-Lan

    2013-01-01

    Background Graptopetalum paraguayense (GP) is a folk herbal medicine with hepatoprotective effects that is used in Taiwan. The aim of this study was to evaluate the hepatoprotective and antifibrotic effects of GP on experimental hepatic fibrosis in both dimethylnitrosamine (DMN)- and carbon tetrachloride (CCl4)-induced liver injury rats. Methods Hepatic fibrosis-induced rats were fed with the methanolic extract of GP (MGP) by oral administration every day. Immunohistochemistry, biochemical assays, and Western blot analysis were performed. The effects of MGP on the expression of fibrotic markers and cytokines in the primary cultured hepatic stellate cells (HSCs) and Kupffer cells, respectively, were evaluated. Results Oral administration of MGP significantly alleviated DMN- or CCl4-induced liver inflammation and fibrosis. High levels of alanine transaminase, aspartate transaminase, bilirubin, prothrombin activity and mortality rates also decreased in rats treated with MGP. There were significantly decreased hydroxyproline levels in therapeutic rats compared with those of the liver-damaged rats. Collagen I and alpha smooth muscle actin (α-SMA) expression were all reduced by incubation with MGP in primary cultured rat HSCs. Furthermore, MGP induced apoptotic cell death in activated HSCs. MGP also suppressed lipopolysaccharide-stimulated rat Kupffer cell activation by decreasing nitric oxide, tumor necrosis factor-α and interleukin-6 production, and increasing interleukin-10 expression. Conclusions The results show that the administration of MGP attenuated toxin-induced hepatic damage and fibrosis in vivo and inhibited HSC and Kupffer cell activation in vitro, suggesting that MGP might be a promising complementary or alternative therapeutic agent for liver inflammation and fibrosis. PMID:23335984

  9. Combination therapy of mesenchymal stem cells and serelaxin effectively attenuates renal fibrosis in obstructive nephropathy.

    PubMed

    Huuskes, Brooke M; Wise, Andrea F; Cox, Alison J; Lim, Ee X; Payne, Natalie L; Kelly, Darren J; Samuel, Chrishan S; Ricardo, Sharon D

    2015-02-01

    Chronic kidney disease (CKD) results from the development of fibrosis, ultimately leading to end-stage renal disease (ESRD). Although human bone marrow-derived mesenchymal stem cells (MSCs) can accelerate renal repair following acute injury, the establishment of fibrosis during CKD may affect their potential to influence regeneration capacity. Here we tested the novel combination of MSCs with the antifibrotic serelaxin to repair and protect the kidney 7 d post-unilateral ureteral obstruction (UUO), when fibrosis is established. Male C57BL6 mice were sham-operated or UUO-inured (n = 4-6) and received vehicle, MSCs (1 × 10(6)), serelaxin (0.5 mg/kg per d), or the combination of both. In vivo tracing studies with luciferin/enhanced green fluorescent protein (eGFP)-tagged MSCs showed specific localization in the obstructed kidney where they remained for 36 h. Combination therapy conferred significant protection from UUO-induced fibrosis, as indicated by hydroxyproline analysis (P < 0.001 vs. vehicle, P < 0.05 vs. MSC or serelaxin alone). This was accompanied by preserved structural architecture, decreased tubular epithelial injury (P < 0.01 vs. MSCs alone), macrophage infiltration, and myofibroblast localization in the kidney (both P < 0.01 vs. vehicle). Combination therapy also stimulated matrix metalloproteinase (MMP)-2 activity over either treatment alone (P < 0.05 vs. either treatment alone). These results suggest that the presence of an antifibrotic in conjunction with MSCs ameliorates established kidney fibrosis and augments tissue repair to a greater extent than either treatment alone.

  10. Hyper-activated pro-inflammatory CD16 monocytes correlate with the severity of liver injury and fibrosis in patients with chronic hepatitis B.

    PubMed

    Zhang, Ji-Yuan; Zou, Zheng-Sheng; Huang, Ang; Zhang, Zheng; Fu, Jun-Liang; Xu, Xiang-Sheng; Chen, Li-Ming; Li, Bao-Sen; Wang, Fu-Sheng

    2011-03-01

    Extensive mononuclear cell infiltration is strongly correlated with liver damage in patients with chronic hepatitis B virus (CHB) infection. Macrophages and infiltrating monocytes also participate in the development of liver damage and fibrosis in animal models. However, little is known regarding the immunopathogenic role of peripheral blood monocytes and intrahepatic macrophages. The frequencies, phenotypes, and functions of peripheral blood and intrahepatic monocyte/macrophage subsets were analyzed in 110 HBeAg positive CHB patients, including 32 immune tolerant (IT) carriers and 78 immune activated (IA) patients. Liver biopsies from 20 IA patients undergoing diagnosis were collected for immunohistochemical analysis. IA patients displayed significant increases in peripheral blood monocytes and intrahepatic macrophages as well as CD16(+) subsets, which were closely associated with serum alanine aminotransferase (ALT) levels and the liver histological activity index (HAI) scores. In addition, the increased CD16(+) monocytes/macrophages expressed higher levels of the activation marker HLA-DR compared with CD16(-) monocytes/macrophages. Furthermore, peripheral blood CD16(+) monocytes preferentially released inflammatory cytokines and hold higher potency in inducing the expansion of Th17 cells. Of note, hepatic neutrophils also positively correlated with HAI scores. These distinct properties of monocyte/macrophage subpopulations participate in fostering the inflammatory microenvironment and liver damage in CHB patients and further represent a collaborative scenario among different cell types contributing to the pathogenesis of HBV-induced liver disease.

  11. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha.

    PubMed

    Connolly, Michael K; Bedrosian, Andrea S; Mallen-St Clair, Jon; Mitchell, Aaron P; Ibrahim, Junaid; Stroud, Andrea; Pachter, H Leon; Bar-Sagi, Dafna; Frey, Alan B; Miller, George

    2009-11-01

    Hepatic fibrosis occurs during most chronic liver diseases and is driven by inflammatory responses to injured tissue. Because DCs are central to modulating liver immunity, we postulated that altered DC function contributes to immunologic changes in hepatic fibrosis and affects the pathologic inflammatory milieu within the fibrotic liver. Using mouse models, we determined the contribution of DCs to altered hepatic immunity in fibrosis and investigated the role of DCs in modulating the inflammatory environment within the fibrotic liver. We found that DC depletion completely abrogated the elevated levels of many inflammatory mediators that are produced in the fibrotic liver. DCs represented approximately 25% of the fibrotic hepatic leukocytes and showed an elevated CD11b+CD8- fraction, a lower B220+ plasmacytoid fraction, and increased expression of MHC II and CD40. Moreover, after liver injury, DCs gained a marked capacity to induce hepatic stellate cells, NK cells, and T cells to mediate inflammation, proliferation, and production of potent immune responses. The proinflammatory and immunogenic effects of fibrotic DCs were contingent on their production of TNF-alpha. Therefore, modulating DC function may be an attractive approach to experimental therapeutics in fibro-inflammatory liver disease.

  12. Use of mesenchymal stem cells to treat liver fibrosis: Current situation and future prospects

    PubMed Central

    Berardis, Silvia; Dwisthi Sattwika, Prenali; Najimi, Mustapha; Sokal, Etienne Marc

    2015-01-01

    Progressive liver fibrosis is a major health issue for which no effective treatment is available, leading to cirrhosis and orthotopic liver transplantation. However, organ shortage is a reality. Hence, there is an urgent need to find alternative therapeutic strategies. Cell-based therapy using mesenchymal stem cells (MSCs) may represent an attractive therapeutic option, based on their immunomodulatory properties, their potential to differentiate into hepatocytes, allowing the replacement of damaged hepatocytes, their potential to promote residual hepatocytes regeneration and their capacity to inhibit hepatic stellate cell activation or induce their apoptosis, particularly via paracrine mechanisms. The current review will highlight recent findings regarding the input of MSC-based therapy for the treatment of liver fibrosis, from in vitro studies to pre-clinical and clinical trials. Several studies have shown the ability of MSCs to reduce liver fibrosis and improve liver function. However, despite these promising results, some limitations need to be considered. Future prospects will also be discussed in this review. PMID:25624709

  13. Intratracheal cell transfer demonstrates the profibrotic potential of resident fibroblasts in pulmonary fibrosis.

    PubMed

    Tsukui, Tatsuya; Ueha, Satoshi; Shichino, Shigeyuki; Inagaki, Yutaka; Matsushima, Kouji

    2015-11-01

    Pulmonary fibrosis is a devastating disease for which there are few effective therapies. Activated fibroblasts form subepithelial clusters known as fibroblastic foci, which are characterized by excessive collagen deposition. The origin of activated fibroblasts is controversial and needs to be clarified to understand their pathogenicity. Here, using an intratracheal adoptive cell transfer method, we show that resident fibroblasts in alveolar walls have the highest profibrotic potential. By using collagen I(α)2-green fluorescent protein and neural/glial antigen 2-DsRed fluorescent reporter mice, we identified resident fibroblasts and pericytes in the alveolar walls based on surface marker expression and ultrastructural characteristics. In the early phase of bleomycin-induced pulmonary fibrosis, activated fibroblasts migrated into epithelium-denuded alveolar airspaces. Purified resident fibroblasts delivered into injured alveoli by an intratracheal route showed similar activated signatures as activated fibroblasts and formed fibroblastic foci. Neither pericytes nor epithelial cells had the same profibrotic potential. Transferred resident fibroblasts highly up-regulated profibrotic genes including α-smooth muscle actin and were a significant source of collagen deposition. These data provide insights into the cellular mechanisms of fibrogenesis and show intratracheal cell transfer to be a useful tool for exploring novel therapeutic targets against pulmonary fibrosis. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Effects of NOX1 on fibroblastic changes of endothelial cells in radiation-induced pulmonary fibrosis

    PubMed Central

    CHOI, SEO-HYUN; KIM, MISEON; LEE, HAE-JUNE; KIM, EUN-HO; KIM, CHUN-HO; LEE, YOON-JIN

    2016-01-01

    Lung fibrosis is a major complication in radiation-induced lung damage following thoracic radiotherapy, while the underlying mechanism has remained to be elucidated. The present study performed immunofluorescence and immunoblot assays on irradiated human pulmonary artery endothelial cells (HPAECs) with or without pre-treatment with VAS2870, a novel NADPH oxidase (NOX) inhibitor, or small hairpin (sh)RNA against NOX1, -2 or -4. VAS2870 reduced the cellular reactive oxygen species content induced by 5 Gy radiation in HPAECs and inhibited phenotypic changes in fibrotic cells, including increased alpha smooth muscle actin and vimentin, and decreased CD31 and vascular endothelial cadherin expression. These fibrotic changes were significantly inhibited by treatment with NOX1 shRNA, but not by NOX2 or NOX4 shRNA. Next, the role of NOX1 in pulmonary fibrosis development was assessed in the lung tissues of C57BL/6J mice following thoracic irradiation using trichrome staining. Administration of an NOX1-specific inhibitor suppressed radiation-induced collagen deposition and fibroblastic changes in the endothelial cells (ECs) of these mice. The results suggested that radiation-induced pulmonary fibrosis may be efficiently reduced by specific inhibition of NOX1, an effect mediated by reduction of fibrotic changes of ECs. PMID:27053172

  15. Asbestosis and other pulmonary fibrosis in asbestos-exposed workers: high-resolution CT features with pathological correlations.

    PubMed

    Arakawa, Hiroaki; Kishimoto, Takumi; Ashizawa, Kazuto; Kato, Katsuya; Okamoto, Kenzo; Honma, Koichi; Hayashi, Seiji; Akira, Masanori

    2016-05-01

    The purpose was to identify distinguishing CT features of pathologically diagnosed asbestosis, and correlate diagnostic confidence with asbestos body burden. Thirty-three workers (mean age at CT: 73 years) with clinical diagnoses of asbestosis, who were autopsied (n = 30) or underwent lobectomy (n = 3), were collected. Two radiologists independently scored high-resolution CT images for various CT findings and the likelihood of asbestosis was scored. Two pathologists reviewed the pathology specimens and scored the confidence of their diagnoses. Asbestos body count was correlated with CT and pathology scores. Pathologically, 15 cases were diagnosed as asbestosis and 18 cases with various lung fibroses other than asbestosis. On CT, only the score of the subpleural curvilinear lines was significantly higher in asbestosis (p = 0.03). Accuracy of CT diagnosis of asbestosis with a high confidence ranged from 0.73 to 0.79. Asbestos body count positively correlated with CT likelihood of asbestosis (r = 0.503, p = 0.003), and with the confidence level of pathological diagnosis (r = 0.637, p < 0.001). Subpleural curvilinear lines were the only clue for the diagnosis of asbestosis. However, this was complicated by other lung fibrosis, especially at low asbestos body burden. • Various patterns of pulmonary fibrosis occurred in asbestos-exposed workers. • The fibre burden in lungs paralleled confident CT diagnosis of asbestosis. • The fibre burden in lungs paralleled confident pathological diagnosis of asbestosis. • Subpleural curvilinear lines were an important CT finding favouring asbestosis.

  16. Knockout of Endothelial Cell-Derived Endothelin-1 Attenuates Skin Fibrosis but Accelerates Cutaneous Wound Healing

    PubMed Central

    Makino, Katsunari; Jinnin, Masatoshi; Aoi, Jun; Kajihara, Ikko; Makino, Takamitsu; Fukushima, Satoshi; Sakai, Keisuke; Nakayama, Kazuhiko; Emoto, Noriaki; Yanagisawa, Masashi; Ihn, Hironobu

    2014-01-01

    Endothelin (ET)-1 is known for the most potent vasoconstrictive peptide that is released mainly from endothelial cells. Several studies have reported ET-1 signaling is involved in the process of wound healing or fibrosis as well as vasodilation. However, little is known about the role of ET-1 in these processes. To clarify its mechanism, we compared skin fibrogenesis and wound repair between vascular endothelial cell-specific ET-1 knockout mice and their wild-type littermates. Bleomycin-injected fibrotic skin of the knockout mice showed significantly decreased skin thickness and collagen content compared to that of wild-type mice, indicating that bleomycin-induced skin fibrosis is attenuated in the knockout mice. The mRNA levels of transforming growth factor (TGF)-β were decreased in the bleomycin-treated skin of ET-1 knockout mice. On the other hand, skin wound healing was accelerated in ET-1 knockout mice, which was indicated by earlier granulation tissue reduction and re-epithelialization in these mice. The mRNA levels of TGF-β, tumor necrosis factor (TNF)-α and connective tissue growth factor (CTGF) were reduced in the wound of ET-1 knockout mice. In endothelial ET-1 knockout mouse, the expression of TNF-α, CTGF and TGF-β was down-regulated. Bosentan, an antagonist of dual ET receptors, is known to attenuate skin fibrosis and accelerate wound healing in systemic sclerosis, and such contradictory effect may be mediated by above molecules. The endothelial cell-derived ET-1 is the potent therapeutic target in fibrosis or wound healing, and investigations of the overall regulatory mechanisms of these pathological conditions by ET-1 may lead to a new therapeutic approach. PMID:24853267

  17. Interferon-γ production by tubulointerstitial human CD56(bright) natural killer cells contributes to renal fibrosis and chronic kidney disease progression.

    PubMed

    Law, Becker M P; Wilkinson, Ray; Wang, Xiangju; Kildey, Katrina; Lindner, Mae; Rist, Melissa J; Beagley, Kenneth; Healy, Helen; Kassianos, Andrew J

    2017-07-01

    Natural killer (NK) cells are a population of lymphoid cells that play a significant role in mediating innate immune responses. Studies in mice suggest a pathological role for NK cells in models of kidney disease. In this study, we characterized the NK cell subsets present in native kidneys of patients with tubulointerstitial fibrosis, the pathological hallmark of chronic kidney disease. Significantly higher numbers of total NK cells (CD3(-)CD56(+)) were detected in renal biopsies with tubulointerstitial fibrosis compared with diseased biopsies without fibrosis and healthy kidney tissue using multi-color flow cytometry. At a subset level, both the CD56(dim) NK cell subset and particularly the CD56(bright) NK cell subset were elevated in fibrotic kidney tissue. However, only CD56(bright) NK cells significantly correlated with the loss of kidney function. Expression of the tissue-retention and -activation molecule CD69 on CD56(bright) NK cells was significantly increased in fibrotic biopsy specimens compared with non-fibrotic kidney tissue, indicative of a pathogenic phenotype. Further flow cytometric phenotyping revealed selective co-expression of activating receptor CD335 (NKp46) and differentiation marker CD117 (c-kit) on CD56(bright) NK cells. Multi-color immunofluorescent staining of fibrotic kidney tissue localized the accumulation of NK cells within the tubulointerstitium, with CD56(bright) NK cells (NKp46(+) CD117(+)) identified as the source of pro-inflammatory cytokine interferon-γ within the NK cell compartment. Thus, activated interferon-γ-producing CD56(bright) NK cells are positioned to play a key role in the fibrotic process and progression to chronic kidney disease. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  18. Atrial fibrosis in a chronic murine model of obstructive sleep apnea: mechanisms and prevention by mesenchymal stem cells

    PubMed Central

    2014-01-01

    Background OSA increases atrial fibrillation (AF) risk and is associated with poor AF treatment outcomes. However, a causal association is not firmly established and the mechanisms involved are poorly understood. The aims of this work were to determine whether chronic obstructive sleep apnea (OSA) induces an atrial pro-arrhythmogenic substrate and to explore whether mesenchymal stem cells (MSC) are able to prevent it in a rat model of OSA. Methods A custom-made setup was used to mimic recurrent OSA-like airway obstructions in rats. OSA-rats (n = 16) were subjected to 15-second obstructions, 60 apneas/hour, 6 hours/day during 21 consecutive days. Sham rats (n = 14) were placed in the setup but no obstructions were applied. In a second series of rats, MSC were administered to OSA-rats and saline to Sham-rats. Myocardial collagen deposit was evaluated in Picrosirius-red stained samples. mRNA expression of genes involved in collagen turnover, inflammation and oxidative stress were quantified by real time PCR. MMP-2 protein levels were quantified by Western Blot. Results A 43% greater interstitial collagen fraction was observed in the atria, but not in the ventricles, of OSA-rats compared to Sham-rats (Sham 8.32 ± 0.46% vs OSA 11.90 ± 0.59%, P < 0.01). Angiotensin-I Converting Enzyme (ACE) and Interleukin 6 (IL-6) expression were significantly increased in both atria, while Matrix Metalloproteinase-2 (MMP-2) expression was decreased. MSC administration blunted OSA-induced atrial fibrosis (Sham + Saline 8.39 ± 0.56% vs OSA + MSC 9.57 ± 0.31%, P = 0.11), as well as changes in MMP-2 and IL-6 expression. Interleukin 1-β (IL-1β) plasma concentration correlated to atrial but not ventricular fibrosis. Notably, a 2.5-fold increase in IL-1β plasma levels was observed in the OSA group, which was prevented in rats receiving MSC. Conclusions OSA induces selective atrial fibrosis in a chronic murine model, which can be mediated in part

  19. Atrial fibrosis in a chronic murine model of obstructive sleep apnea: mechanisms and prevention by mesenchymal stem cells.

    PubMed

    Ramos, Pablo; Rubies, Cira; Torres, Marta; Batlle, Montserrat; Farre, Ramon; Brugada, Josep; Montserrat, Josep M; Almendros, Isaac; Mont, Lluís

    2014-04-28

    OSA increases atrial fibrillation (AF) risk and is associated with poor AF treatment outcomes. However, a causal association is not firmly established and the mechanisms involved are poorly understood. The aims of this work were to determine whether chronic obstructive sleep apnea (OSA) induces an atrial pro-arrhythmogenic substrate and to explore whether mesenchymal stem cells (MSC) are able to prevent it in a rat model of OSA. A custom-made setup was used to mimic recurrent OSA-like airway obstructions in rats. OSA-rats (n = 16) were subjected to 15-second obstructions, 60 apneas/hour, 6 hours/day during 21 consecutive days. Sham rats (n = 14) were placed in the setup but no obstructions were applied. In a second series of rats, MSC were administered to OSA-rats and saline to Sham-rats. Myocardial collagen deposit was evaluated in Picrosirius-red stained samples. mRNA expression of genes involved in collagen turnover, inflammation and oxidative stress were quantified by real time PCR. MMP-2 protein levels were quantified by Western Blot. A 43% greater interstitial collagen fraction was observed in the atria, but not in the ventricles, of OSA-rats compared to Sham-rats (Sham 8.32 ± 0.46% vs OSA 11.90 ± 0.59%, P < 0.01). Angiotensin-I Converting Enzyme (ACE) and Interleukin 6 (IL-6) expression were significantly increased in both atria, while Matrix Metalloproteinase-2 (MMP-2) expression was decreased. MSC administration blunted OSA-induced atrial fibrosis (Sham + Saline 8.39 ± 0.56% vs OSA + MSC 9.57 ± 0.31%, P = 0.11), as well as changes in MMP-2 and IL-6 expression. Interleukin 1-β (IL-1β) plasma concentration correlated to atrial but not ventricular fibrosis. Notably, a 2.5-fold increase in IL-1β plasma levels was observed in the OSA group, which was prevented in rats receiving MSC. OSA induces selective atrial fibrosis in a chronic murine model, which can be mediated in part by the systemic and local inflammation

  20. A case of acute exacerbation of idiopathic pulmonary fibrosis after proton beam therapy for non-small cell lung cancer.

    PubMed

    Nagano, Tatsuya; Kotani, Yoshikazu; Fujii, Osamu; Demizu, Yusuke; Niwa, Yasue; Ohno, Yoshiharu; Nishio, Wataru; Itoh, Tomoo; Murakami, Masao; Nishimura, Yoshihiro

    2012-10-01

    There have been no reports describing acute exacerbations of idiopathic pulmonary fibrosis after particle radiotherapy for non-small cell lung cancer. The present study describes the case of a 76-year-old Japanese man with squamous cell carcinoma of the lung that relapsed in the left upper lobe 1 year after right upper lobectomy. He had been treated with oral prednisolone 20 mg/day every 2 days for idiopathic pulmonary fibrosis, and the relapsed lung cancer was treated by proton beam therapy, which was expected to cause the least adverse effects on the idiopathic pulmonary fibrosis. Fifteen days after the initiation of proton beam therapy, the idiopathic pulmonary fibrosis exacerbated, centered on the left upper lobe, for which intensive steroid therapy was given. About 3 months later, the acute exacerbation of idiopathic pulmonary fibrosis had improved, and the relapsed lung cancer became undetectable. Clinicians should be aware that an acute exacerbation of idiopathic pulmonary fibrosis may occur even in proton beam therapy, although proton beam therapy appears to be an effective treatment option for patients with idiopathic pulmonary fibrosis.

  1. Targeted gene transfer of hepatocyte growth factor to alveolar type II epithelial cells reduces lung fibrosis in rats.

    PubMed

    Gazdhar, Amiq; Temuri, Almas; Knudsen, Lars; Gugger, Mathias; Schmid, Ralph A; Ochs, Matthias; Geiser, Thomas

    2013-01-01

    Inefficient alveolar wound repair contributes to the development of pulmonary fibrosis. Hepatocyte growth factor (HGF) is a potent growth factor for alveolar type II epithelial cells (AECII) and may improve repair and reduce fibrosis. We studied whether targeted gene transfer of HGF specifically to AECII improves lung fibrosis in bleomycin-induced lung fibrosis. A plasmid encoding human HGF expressed from the human surfactant protein C promoter (pSpC-hHGF) was designed, and extracorporeal electroporation-mediated gene transfer of HGF specifically to AECII was performed 7 days after bleomycin-induced lung injury in the rat. Animals were killed 7 days after hHGF gene transfer. Electroporation-mediated HGF gene transfer resulted in HGF expression specifically in AECII at biologically relevant levels. HGF gene transfer reduced pulmonary fibrosis as assessed by histology, hydroxyproline determination, and design-based stereology compared with controls. Our results indicate that the antifibrotic effect of HGF is due in part to a reduction of transforming growth factor-β(1), modulation of the epithelial-mesenchymal transition, and reduction of extravascular fibrin deposition. We conclude that targeted HGF gene transfer specifically to AECII decreases bleomycin-induced lung fibrosis and may therefore represent a novel cell-specific gene transfer technology to treat pulmonary fibrosis.

  2. Cystic fibrosis.

    PubMed

    Ratjen, Felix; Bell, Scott C; Rowe, Steven M; Goss, Christopher H; Quittner, Alexandra L; Bush, Andrew

    2015-05-14

    Cystic fibrosis is an autosomal recessive, monogenetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The gene defect was first described 25 years ago and much progress has been made since then in our understanding of how CFTR mutations cause disease and how this can be addressed therapeutically. CFTR is a transmembrane protein that transports ions across the surface of epithelial cells. CFTR dysfunction affects many organs; however, lung disease is responsible for the vast majority of morbidity and mortality in patients with cystic fibrosis. Prenatal diagnostics, newborn screening and new treatment algorithms are changing the incidence and the prevalence of the disease. Until recently, the standard of care in cystic fibrosis treatment focused on preventing and treating complications of the disease; now, novel treatment strategies directly targeting the ion channel abnormality are becoming available and it will be important to evaluate how these treatments affect disease progression and the quality of life of patients. In this Primer, we summarize the current knowledge, and provide an outlook on how cystic fibrosis clinical care and research will be affected by new knowledge and therapeutic options in the near future. For an illustrated summary of this Primer, visit: http://go.nature.com/4VrefN.

  3. Streptomycin treatment alters the intestinal microbiome, pulmonary T cell profile and airway hyperresponsiveness in a cystic fibrosis mouse model

    PubMed Central

    Bazett, Mark; Bergeron, Marie-Eve; Haston, Christina K.

    2016-01-01

    Cystic fibrosis transmembrane conductance regulator deficient mouse models develop phenotypes of relevance to clinical cystic fibrosis (CF) including airway hyperresponsiveness, small intestinal bacterial overgrowth and an altered intestinal microbiome. As dysbiosis of the intestinal microbiota has been recognized as an important contributor to many systemic diseases, herein we investigated whether altering the intestinal microbiome of BALB/c Cftrtm1UNC mice and wild-type littermates, through treatment with the antibiotic streptomycin, affects the CF lung, intestinal and bone disease. We demonstrate that streptomycin treatment reduced the intestinal bacterial overgrowth in Cftrtm1UNC mice and altered the intestinal microbiome similarly in Cftrtm1UNC and wild-type mice, principally by affecting Lactobacillus levels. Airway hyperresponsiveness of Cftrtm1UNC mice was ameliorated with streptomycin, and correlated with Lactobacillus abundance in the intestine. Additionally, streptomycin treated Cftrtm1UNC and wild-type mice displayed an increased percentage of pulmonary and mesenteric lymph node Th17, CD8 + IL-17+ and CD8 + IFNγ+ lymphocytes, while the CF-specific increase in respiratory IL-17 producing γδ T cells was decreased in streptomycin treated Cftrtm1UNC mice. Bone disease and intestinal phenotypes were not affected by streptomycin treatment. The airway hyperresponsiveness and lymphocyte profile of BALB/c Cftrtm1UNC mice were affected by streptomycin treatment, revealing a potential intestinal microbiome influence on lung response in BALB/c Cftrtm1UNC mice. PMID:26754178

  4. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression

    PubMed Central

    Hyun, Jeongeun; Wang, Sihyung; Kim, Jieun; Rao, Kummara Madhusudana; Park, Soo Yong; Chung, Ildoo; Ha, Chang-Sik; Kim, Sang-Woo; Yun, Yang H.; Jung, Youngmi

    2016-01-01

    Hedgehog (Hh) signalling regulates hepatic fibrogenesis. MicroRNAs (miRNAs) mediate various cellular processes; however, their role in liver fibrosis is unclear. Here we investigate regulation of miRNAs in chronically damaged fibrotic liver. MiRNA profiling shows that expression of miR-378 family members (miR-378a-3p, miR-378b and miR-378d) declines in carbon tetrachloride (CCl4)-treated compared with corn-oil-treated mice. Overexpression of miR-378a-3p, directly targeting Gli3 in activated hepatic stellate cells (HSCs), reduces expression of Gli3 and profibrotic genes but induces gfap, the inactivation marker of HSCs, in CCl4-treated liver. Smo blocks transcriptional expression of miR-378a-3p by activating the p65 subunit of nuclear factor-κB (NF-κB). The hepatic level of miR-378a-3p is inversely correlated with the expression of Gli3 in tumour and non-tumour tissues in human hepatocellular carcinoma. Our results demonstrate that miR-378a-3p suppresses activation of HSCs by targeting Gli3 and its expression is regulated by Smo-dependent NF-κB signalling, suggesting miR-378a-3p has therapeutic potential for liver fibrosis. PMID:27001906

  5. Impaired Cell Volume Regulation in Intestinal Crypt Epithelia of Cystic Fibrosis Mice

    NASA Astrophysics Data System (ADS)

    Valverde, M. A.; O'Brien, J. A.; Sepulveda, F. V.; Ratcliff, R. A.; Evans, M. J.; Colledge, W. H.

    1995-09-01

    Cystic fibrosis is a disease characterized by abnormalities in the epithelia of the lungs, intestine, salivary and sweat glands, liver, and reproductive systems, often as a result of inadequate hydration of their secretions. The primary defect in cystic fibrosis is the altered activity of a cAMP-activated Cl^- channel, the cystic fibrosis transmembrane conductance regulator (CFTR) channel. However, it is not clear how a defect in the CFTR Cl^- channel function leads to the observed pathological changes. Although much is known about the structural properties and regulation of the CFTR, little is known of its relationship to cellular functions other than the cAMP-dependent Cl^- secretion. Here we report that cell volume regulation after hypotonic challenge is also defective in intestinal crypt epithelial cells isolated from CFTR -/- mutant mice. Moreover, the impairment of the regulatory volume decrease in CFTR -/- crypts appears to be related to the inability of a K^+ conductance to provide a pathway for the exit of this cation during the volume adjustments. This provides evidence that the lack of CFTR protein may have additional consequences for the cellular function other than the abnormal cAMP-mediated Cl^- secretion.

  6. PLCB3 is a key modulator of IL-8 expression in cystic fibrosis bronchial epithelial cells

    PubMed Central

    Bezzerri, Valentino; d’Adamo, Pio; Rimessi, Alessandro; Lanzara, Carmen; Crovella, Sergio; Nicolis, Elena; Tamanini, Anna; Athanasakis, Emmanouil; Tebon, Maela; Bisoffi, Giulia; Drumm, Mitchell L.; Knowles, Michael R.; Pinton, Paolo; Gasparini, Paolo; Berton, Giorgio; Cabrini, Giulio

    2014-01-01

    Respiratory insufficiency is the major cause of morbidity and mortality in patients affected by cystic fibrosis. An excessive neutrophilic inflammation, mainly orchestrated by the release of IL-8 from bronchial epithelial cells and amplified by chronic bacterial infection with Pseudomonas aeruginosa, leads to progressive tissue destruction. The anti-inflammatory drugs presently utilized in cystic fibrosis patients have several limitations, indicating the need for identifying novel molecular targets. To address this issue, we preliminarily studied the association of 721 single-nucleotide polymorphisms from 135 genes potentially involved in signal transduction implicated in neutrophil recruitment in a cohort of F508del homozygous cystic fibrosis patients with either severe or mild progression of lung disease. The top ranking association was found for a nonsynonymous polymorphism of the phospholipase C beta 3 (PLCB3) gene. Studies in bronchial epithelial cells exposed to P.aeruginosa revealed that PLCB3 is implicated in extra cellular nucleotide–dependent intracellular calcium signaling, leading to activation of the protein kinase C alpha and beta and of the nuclear transcription factor NF-κB p65. The pro-inflammatory pathway regulated by PLCB3 acts by potentiating the Toll-like Receptors’ signaling cascade and represents an interesting molecular target to attenuate the excessive recruitment of neutrophils without completely abolishing the inflammatory response. PMID:21411730

  7. Stromal vascular stem cell treatment decreases muscle fibrosis following chronic rotator cuff tear.

    PubMed

    Gumucio, Jonathan P; Flood, Michael D; Roche, Stuart M; Sugg, Kristoffer B; Momoh, Adeyiza O; Kosnik, Paul E; Bedi, Asheesh; Mendias, Christopher L

    2016-04-01

    Rotator cuff injuries are associated with atrophy and fat infiltration into the muscle, commonly referred to as "fatty degeneration." As the poor function of chronically torn muscles may limit recovery after surgical repair, there is considerable interest in finding therapies to enhance muscle regeneration. Stromal vascular fraction stem cells (SVFCs) can improve muscle regeneration in other chronic injury states, and our objective was to evaluate the ability of SVFCs to reduce fibrosis and fat accumulation, and enhance muscle fibre specific force production after chronic rotator cuff tear. Chronic supraspinatus tears were induced in adult immunodeficient rats, and repaired one month following tear. Rats received vehicle control, or injections of 3 × 10(5) or 3 × 10(6) human SVFCs into supraspinatus muscles. Two weeks following repair, we detected donor human DNA and protein in SVFC treated muscles. There was a 40 % reduction in fibrosis in the treated groups compared to controls (p = 0.03 for 3 × 10(5), p = 0.04 for 3 × 10(6)), and no differences between groups for lipid content or force production were observed. As there has been much interest in the use of stem cell-based therapies in musculoskeletal regenerative medicine, the reduction in fibrosis and trend towards an improvement in single fiber contractility suggest that SVFCs may be beneficial to enhance the treatment and recovery of patients with chronic rotator cuff tears.

  8. BET inhibitors block pancreatic stellate cell collagen I production and attenuate fibrosis in vivo

    PubMed Central

    Kumar, Krishan; DeCant, Brian T.; Grippo, Paul J.; Hwang, Rosa F.; Bentrem, David J.; Ebine, Kazumi

    2017-01-01

    The fibrotic reaction, which can account for over 70%–80% of the tumor mass, is a characteristic feature of human pancreatic ductal adenocarcinoma (PDAC) tumors. It is associated with activation and proliferation of pancreatic stellate cells (PSCs), which are key regulators of collagen I production and fibrosis in vivo. In this report, we show that members of the bromodomain and extraterminal (BET) family of proteins are expressed in primary PSCs isolated from human PDAC tumors, with BRD4 positively regulating, and BRD2 and BRD3 negatively regulating, collagen I expression in primary cancer-associated PSCs. We show that the inhibitory effect of pan-BET inhibitors on collagen I expression in primary cancer-associated PSCs is through blocking of BRD4 function. Importantly, we show that FOSL1 is repressed by BRD4 in primary cancer-associated PSCs and negatively regulates collagen I expression. While BET inhibitors do not affect viability or induce PSC apoptosis or senescence, BET inhibitors induce primary cancer-associated PSCs to become quiescent. Finally, we show that BET inhibitors attenuate stellate cell activation, fibrosis, and collagen I production in the EL-KrasG12D transgenic mouse model of pancreatic tumorigenesis. Our results demonstrate that BET inhibitors regulate fibrosis by modulating the activation and function of cancer-associated PSCs. PMID:28194432

  9. Estimation and correlative study of salivary nitrate and nitrite in tobacco related oral squamous carcinoma and submucous fibrosis

    PubMed Central

    Shende, Vaishali; Biviji, AT; Akarte, N

    2013-01-01

    Oral cancer is one of the ten leading cancers of the world. In India, it is one of the common cancers and is an important public health problem. Tobacco plays significant role in etiology of oral squamous carcinoma. Tobacco which is chewed or smoked contains many alkaloids which are known carcinogens. Oral submucous fibrosis (OSMF) is a disease of the Indian subcontinent, which through immigration has a worldwide distribution. Betel nut chewing plays significant role in etiology of OSMF. The nut alkaloids have been shown experimentally to result in stimulation of collagen synthesis by fibroblasts in vitro, which can induce precancerous conditions. Materials and Methods: The present study was undertaken to detect nitrate and nitrite factor in saliva of cases with oral carcinoma, OSMF and normal individuals without any habits and to determine whether increased salivary nitrate and nitrite level is significant in oral carcinoma and submucous fibrosis using biochemical parameters. Conclusion: We conclude that the major inducer of oral squamous cell carcinoma (OSCC) is exposure to tobacco. Recent studies have demonstrated that oxidative and nitrosative stress contributes to the development of oral carcinogenesis through deoxyribonucleic acid (DNA) damage. Salivary composition of OSCC patients is substantially altered with respect to free radical-involved mechanisms. PMID:24574656

  10. Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro.

    PubMed

    Zhou, Xiangjun; Yao, Qisheng; Sun, Xinbo; Gong, Xiaoxin; Yang, Yong; Chen, Congbo; Shan, Guang

    2017-03-01

    Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treated with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)-1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. CD133(+) human umbilical cord blood stem cells enhance angiogenesis in experimental chronic hepatic fibrosis.

    PubMed

    Elkhafif, Nagwa; El Baz, Hanan; Hammam, Olfat; Hassan, Salwa; Salah, Faten; Mansour, Wafaa; Mansy, Soheir; Yehia, Hoda; Zaki, Ahmed; Magdy, Ranya

    2011-01-01

    The in vivo angiogenic potential of transplanted human umbilical cord blood (UCB) CD133(+) stem cells in experimental chronic hepatic fibrosis induced by murine schistosomiasis was studied. Enriched cord blood-derived CD133(+) cells were cultured in primary medium for 3 weeks. Twenty-two weeks post-Schistosomiasis infection in mice, after reaching the chronic hepatic fibrotic stage, transplantation of stem cells was performed and mice were sacrificed 3 weeks later. Histopathology and electron microscopy showed an increase in newly formed blood vessels and a decrease in the fibrosis known for this stage of the disease. By immunohistochemical analysis the newly formed blood vessels showed positive expression of the human-specific angiogenic markers CD31, CD34 and von Willebrand factor. Few hepatocyte-like polygonal cells showed positive expression of human vascular endothelial growth factor and inducible nitric oxide synthase. The transplanted CD133(+) human stem cells primarily enhanced hepatic angiogenesis and neovascularization and contributed to repair in a paracrine manner by creating a permissive environment that enabled proliferation and survival of damaged cells rather than by direct differentiation to hepatocytes. A dual advantage of CD133(+) cell therapy in hepatic disease is suggested based on its capability of hematopoietic and endothelial differentiation.

  12. Correlation of serum liver fibrosis markers with severity of liver dysfunction in liver cirrhosis: a retrospective cross-sectional study

    PubMed Central

    Zhu, Cuihong; Qi, Xingshun; Li, Hongyu; Peng, Ying; Dai, Junna; Chen, Jiang; Xia, Chunlian; Hou, Yue; Zhang, Wenwen; Guo, Xiaozhong

    2015-01-01

    Hyaluronic acid (HA), laminin (LN), amino-terminal pro-peptide of type III pro-collagen (PIIINP), and collagen IV (CIV) are four major serum markers of liver fibrosis. This retrospective cross-sectional study aimed to evaluate the correlations of the four serum markers with the severity of liver dysfunction in cirrhotic patients. Between January 2013 and June 2014, a total of 228 patients with a clinical diagnosis with liver cirrhosis and without malignancy underwent the tests of HA, LN, PIIINP, and CIV levels. Laboratory data were collected. Child-Pugh and model for the end-stage of liver diseases (MELD) scores were calculated. Of them, 32%, 40%, and 18% had Child-Pugh class A, B, and C, respectively. MELD score was 7.58±0.50. HA (coefficient r: 0.1612, P=0.0203), LN (coefficient r: 0.2445, P=0.0004), and CIV (coefficient r: 0.2361, P=0.0006) levels significantly correlated with Child-Pugh score, but not PIIINP level. Additionally, LN (coefficient r: 0.2588, P=0.0002) and CIV (coefficient r: 0.1795, P=0.0108) levels significantly correlated with MELD score, but not HA or PIIINP level. In conclusions, HA, LN, and CIV levels might be positively associated with the severity of liver dysfunction in cirrhotic patients. However, given a relatively weak correlation between them, our findings should be cautiously interpreted and further validated. PMID:26131195

  13. Defective fatty acid oxidation in renal tubular epithelial cells plays a key role in kidney fibrosis development

    PubMed Central

    Kang, Hyun Mi; Ahn, Seon Ho; Choi, Peter; Ko, Yi-An; Han, Seung Hyeok; Chinga, Frank; Park, Ae Seo Deok; Tao, Jianling; Sharma, Kumar; Pullman, James; Bottinger, Erwin P.; Goldberg, Ira J.; Susztak, Katalin

    2015-01-01

    Fibrosis is the histological manifestation of a progressive usually irreversible process causing chronic and end stage kidney disease. Genome-wide transcriptome studies of a large cohort (n=95) of normal and fibrotic human kidney tubule samples followed by systems and network analyses identified inflammation and metabolism as top dysregulated pathways in diseased kidneys. In particular, we found that humans and mouse models with tubulointerstitial fibrosis had lower expression of key enzymes and regulators of fatty acid oxidation (FAO) and increased intracellular lipid deposition. In vitro experiments indicated that inhibition of fatty acid oxidation in tubule epithelial cells caused ATP depletion, cell death, dedifferentiation and intracellular lipid deposition; a phenotype observed in fibrosis. Restoring fatty acid metabolism by genetic or pharmacological methods protected mice from tubulointerstitial fibrosis. Our results raise the possibility that correcting the metabolic defect may be useful for preventing and treating chronic kidney disease. PMID:25419705

  14. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    SciTech Connect

    Xiong, Shanshan; Pan, Xiujie; Xu, Long; Yang, Zhihua; Guo, Renfeng; Gu, Yongqing; Li, Ruoxi; Wang, Qianjun; Xiao, Fengjun; Du, Li; Zhou, Pingkun; Zhu, Maoxiang

    2015-10-01

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4{sup +}CD25{sup +}FoxP3{sup +} regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated on days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis.

  15. Regulatory T Cells Promote β-Catenin--Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis.

    PubMed

    Xiong, Shanshan; Pan, Xiujie; Xu, Long; Yang, Zhihua; Guo, Renfeng; Gu, Yongqing; Li, Ruoxi; Wang, Qianjun; Xiao, Fengjun; Du, Li; Zhou, Pingkun; Zhu, Maoxiang

    2015-10-01

    Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated on days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis. Copyright © 2015. Published by Elsevier Inc.

  16. Correlations of Hepatic Hemodynamics, Liver Function, and Fibrosis Markers in Nonalcoholic Fatty Liver Disease: Comparison with Chronic Hepatitis Related to Hepatitis C Virus.

    PubMed

    Shigefuku, Ryuta; Takahashi, Hideaki; Nakano, Hiroyasu; Watanabe, Tsunamasa; Matsunaga, Kotaro; Matsumoto, Nobuyuki; Kato, Masaki; Morita, Ryo; Michikawa, Yousuke; Tamura, Tomohiro; Hiraishi, Tetsuya; Hattori, Nobuhiro; Noguchi, Yohei; Nakahara, Kazunari; Ikeda, Hiroki; Ishii, Toshiya; Okuse, Chiaki; Sase, Shigeru; Itoh, Fumio; Suzuki, Michihiro

    2016-09-14

    The progression of chronic liver disease differs by etiology. The aim of this study was to elucidate the difference in disease progression between chronic hepatitis C (CHC) and nonalcoholic fatty liver disease (NAFLD) by means of fibrosis markers, liver function, and hepatic tissue blood flow (TBF). Xenon computed tomography (Xe-CT) was performed in 139 patients with NAFLD and 152 patients with CHC (including liver cirrhosis (LC)). The cutoff values for fibrosis markers were compared between NAFLD and CHC, and correlations between hepatic TBF and liver function tests were examined at each fibrosis stage. The cutoff values for detection of the advanced fibrosis stage were lower in NAFLD than in CHC. Although portal venous TBF (PVTBF) correlated with liver function tests, PVTBF in initial LC caused by nonalcoholic steatohepatitis (NASH-LC) was significantly lower than that in hepatitis C virus (C-LC) (p = 0.014). Conversely, the liver function tests in NASH-LC were higher than those in C-LC (p < 0.05). It is important to recognize the difference between NAFLD and CHC. We concluded that changes in hepatic blood flow occurred during the earliest stage of hepatic fibrosis in patients with NAFLD; therefore, patients with NAFLD need to be followed carefully.

  17. Correlations of Hepatic Hemodynamics, Liver Function, and Fibrosis Markers in Nonalcoholic Fatty Liver Disease: Comparison with Chronic Hepatitis Related to Hepatitis C Virus

    PubMed Central

    Shigefuku, Ryuta; Takahashi, Hideaki; Nakano, Hiroyasu; Watanabe, Tsunamasa; Matsunaga, Kotaro; Matsumoto, Nobuyuki; Kato, Masaki; Morita, Ryo; Michikawa, Yousuke; Tamura, Tomohiro; Hiraishi, Tetsuya; Hattori, Nobuhiro; Noguchi, Yohei; Nakahara, Kazunari; Ikeda, Hiroki; Ishii, Toshiya; Okuse, Chiaki; Sase, Shigeru; Itoh, Fumio; Suzuki, Michihiro

    2016-01-01

    The progression of chronic liver disease differs by etiology. The aim of this study was to elucidate the difference in disease progression between chronic hepatitis C (CHC) and nonalcoholic fatty liver disease (NAFLD) by means of fibrosis markers, liver function, and hepatic tissue blood flow (TBF). Xenon computed tomography (Xe-CT) was performed in 139 patients with NAFLD and 152 patients with CHC (including liver cirrhosis (LC)). The cutoff values for fibrosis markers were compared between NAFLD and CHC, and correlations between hepatic TBF and liver function tests were examined at each fibrosis stage. The cutoff values for detection of the advanced fibrosis stage were lower in NAFLD than in CHC. Although portal venous TBF (PVTBF) correlated with liver function tests, PVTBF in initial LC caused by nonalcoholic steatohepatitis (NASH-LC) was significantly lower than that in hepatitis C virus (C-LC) (p = 0.014). Conversely, the liver function tests in NASH-LC were higher than those in C-LC (p < 0.05). It is important to recognize the difference between NAFLD and CHC. We concluded that changes in hepatic blood flow occurred during the earliest stage of hepatic fibrosis in patients with NAFLD; therefore, patients with NAFLD need to be followed carefully. PMID:27649152

  18. Image Analysis Algorithms for Immunohistochemical Assessment of Cell Death Events and Fibrosis in Tissue Sections

    PubMed Central

    Krajewska, Maryla; Smith, Layton H.; Rong, Juan; Huang, Xianshu; Hyer, Marc L.; Zeps, Nikolajs; Iacopetta, Barry; Linke, Steven P.; Olson, Allen H.; Reed, John C.; Krajewski, Stan

    2009-01-01

    Cell death is of broad physiological and pathological importance, making quantification of biochemical events associated with cell demise a high priority for experimental pathology. Fibrosis is a common consequence of tissue injury involving necrotic cell death. Using tissue specimens from experimental mouse models of traumatic brain injury, cardiac fibrosis, and cancer, as well as human tumor specimens assembled in tissue microarray (TMA) format, we undertook computer-assisted quantification of specific immunohistochemical and histological parameters that characterize processes associated with cell death. In this study, we demonstrated the utility of image analysis algorithms for color deconvolution, colocalization, and nuclear morphometry to characterize cell death events in tissue specimens: (a) subjected to immunostaining for detecting cleaved caspase-3, cleaved poly(ADP-ribose)-polymerase, cleaved lamin-A, phosphorylated histone H2AX, and Bcl-2; (b) analyzed by terminal deoxyribonucleotidyl transferase–mediated dUTP nick end labeling assay to detect DNA fragmentation; and (c) evaluated with Masson's trichrome staining. We developed novel algorithm-based scoring methods and validated them using TMAs as a high-throughput format. The proposed computer-assisted scoring methods for digital images by brightfield microscopy permit linear quantification of immunohistochemical and histochemical stainings. Examples are provided of digital image analysis performed in automated or semiautomated fashion for successful quantification of molecular events associated with cell death in tissue sections. (J Histochem Cytochem 57:649–663, 2009) PMID:19289554

  19. Therapeutic effect of hepatocyte growth factor-secreting mesenchymal stem cells in a rat model of liver fibrosis

    PubMed Central

    Kim, Myung-Deok; Kim, Sung-Soo; Cha, Hyun-Young; Jang, Seung-Hun; Chang, Da-Young; Kim, Wookhwan; Suh-Kim, Haeyoung; Lee, Jae-Ho

    2014-01-01

    Bone marrow-derived mesenchymal stromal cells (MSCs) have been reported to be beneficial for the treatment of liver fibrosis. Here, we investigated the use of genetically engineered MSCs that overexpress hepatocyte growth factor (HGF) as a means to improve their therapeutic effect in liver fibrosis. Liver fibrosis was induced by intraperitoneal injection of dimethylnitrosamine. HGF-secreting MSCs (MSCs/HGF) were prepared by transducing MSCs with an adenovirus carrying HGF-encoding cDNA. MSCs or MSCs/HGF were injected directly into the spleen of fibrotic rats. Tissue fibrosis was assessed by histological analysis 12 days after stem cell injection. Although treatment with MSCs reduced fibrosis, treatment with MSCs/HGF produced a more significant reduction and was associated with elevated HGF levels in the portal vein. Collagen levels in the liver extract were decreased after MSC/HGF therapy, suggesting recovery from fibrosis. Furthermore, liver function was improved in animals receiving MSCs/HGF, indicating that MSC/HGF therapy resulted not only in reduction of liver fibrosis but also in improvement of hepatocyte function. Assessment of cell and biochemical parameters revealed that mRNA levels of the fibrogenic cytokines PDGF-bb and TGF-β1 were significantly decreased after MSC/HGF therapy. Subsequent to the decrease in collagen, expression of matrix metalloprotease-9 (MMP-9), MMP-13, MMP-14 and urokinase-type plasminogen activator was augmented following MSC/HGF, whereas tissue inhibitor of metalloprotease-1 (TIMP-1) expression was reduced. In conclusion, therapy with MSCs/HGF resulted in an improved therapeutic effect compared with MSCs alone, probably because of the anti-fibrotic activity of HGF. Thus, MSC/HGF represents a promising approach toward a cell therapy for liver fibrosis. PMID:25145391

  20. Verrucoid Variant of Invasive Squamous Cell Carcinoma in Oral Submucous Fibrosis: A Clinicopathological Challenge

    PubMed Central

    Ramani, Priya; Krithika, C.; Ananthalakshmi, R.; Jagdish, Praveena; Janardhanan, Sunitha; Jeevakarunyam, Sathiyajeeva

    2016-01-01

    Verrucous carcinoma (VC) is an exophytic, low-grade, well-differentiated variant of squamous cell carcinoma. It is described as a lesion appearing in the sixth or seventh decade of life that has minimal aggressive potential and, in long-standing cases, has been shown to transform into squamous cell carcinoma. Oral submucous fibrosis (OSMF) is a potentially malignant disorder, and about one-third of the affected population develop oral squamous cell carcinoma. The histopathological diagnosis of verrucous carcinoma is challenging, and the interpretation of early squamous cell carcinoma requires immense experience. Here we present a rare case of a 24-year-old male with OSMF transforming to verrucous carcinoma with invasive squamous cell carcinoma. Even though the case had a straightforward clinical diagnosis, the serial sectioning done for pathological diagnosis disclosed the squamous cell carcinoma.

  1. Effect of bevacizumab on the expression of fibrosis-related inflammatory mediators in ARPE-19 cells

    PubMed Central

    Chu, San-Jun; Zhang, Zhao-Hua; Wang, Min; Xu, Hai-Feng

    2017-01-01

    AIM To investigate the effect of anti-vascular epithelial growth factor (VEGF) agents on the expression of fibrosis-related inflammatory mediators under normoxic and hypoxic conditions, and to further clarify the mechanism underlying fibrosis after anti-VEGF therapy. METHODS Human retinal pigment epithelial (RPE) cells were incubated under normoxic and hypoxic conditions. For hypoxia treatment, CoCl2 at 200 µmol/L was added to the media. ARPE-19 cells were treated as following: 1) control group: no treatment; 2) bevacizumab group: bevacizumab at 0.25 mg/mL was added to the media; 3) hypoxia group: CoCl2 at 200 µmol/L was added to the media; 4) hypoxia+bevacizumab group: CoCl2 at 200 µmol/L and bevacizumab at 0.25 mg/mL were added to the media. The expression of interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor (TNF)-α were evaluated using real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) at 6, 12, 24 and 48h. RESULTS Both mRNA and protein levels of IL-1β, IL-6 and IL-8 were statistically significantly higher in the bevacizumab group than in the control group at each time point, and TNF-α gene and protein expression was only significantly higher only at 24 and 48h (P<0.05). Under hypoxic conditions, bevacizumab significantly increased the expression of IL-1β, IL-6, IL-8 and TNF-α at 6, 12, 24 and 48h (P<0.05). IL-1β, IL-8 and TNF-α peaked at 24h and IL-6 peaked at 12h after the bevacizumab treatment under both normoxic and hypoxic conditions. CONCLUSION Treatment of ARPE-19 cells with bevacizumab can significantly increase the expression of fibrosis-related inflammatory mediators under both normoxic and hypoxic conditions. Inflammatory factors might be involved in the process of fibrosis after anti-VEGF therapy, and the up-regulation of inflammatory factors induced by anti-VEGF drugs might promote the fibrosis process.

  2. Therapeutic effect of lung mixed culture-derived epithelial cells on lung fibrosis.

    PubMed

    Tanaka, Kensuke; Fujita, Tetsuo; Umezawa, Hiroki; Namiki, Kana; Yoshioka, Kento; Hagihara, Masahiko; Sudo, Tatsuhiko; Kimura, Sadao; Tatsumi, Koichiro; Kasuya, Yoshitoshi

    2014-11-01

    Cell-based therapy is recognized as one of potential therapeutic options for lung fibrosis. However, preparing stem/progenitor cells is complicated and not always efficient. Here, we show easily prepared cell populations having therapeutic capacity for lung inflammatory disease that are named as 'lung mixed culture-derived epithelial cells' (LMDECs). LMDECs expressed surfactant protein (SP)-C and gave rise to type I alveolar epithelial cells (AECs) in vitro and in vivo that partly satisfied type II AEC-like characteristics. An intratracheal delivery of not HEK 293 cells but LMDECs to the lung ameliorated bleomycin (BLM)-induced lung injury. A comprehensive analysis of bronchoalveolar fluid by western blot array revealed that LMDEC engraftment could improve the microenvironment in the BLM-instilled lung in association with stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 signaling axis. SDF-1 enhanced both migration activity and differentiating efficiency of LMDECs. Further classification of LMDECs by flow cytometric study showed that a major population of LMDECs (LMDEC(Maj), 84% of total LMDECs) was simultaneously SP-C(+), CD44(+), CD45(+), and hematopoietic cell lineage(+) and that LMDECs included bronchioalveolar stem cells (BASCs) showing SP-C(+)Clara cell secretory protein(+)stem cell antigen (Sca)1(+) as a small population (1.8% of total LMDECs). CD44(+)-sorted LMDEC(Maj) and Sca1(+)-sorted LMDECs equally ameliorated fibrosis induced by BLM like LMDECs did. However, infiltrated neutrophils were observed in Sca1(+)-sorted LMDEC-treated alveoli that was not typical in LMDEC(Maj)- or LMDEC-treated alveoli. These findings suggest that the protective effect of LMDECs against BLM-induced lung injury depends greatly on that of LMDEC(Maj). Furthermore, the cells expressing both alveolar epithelial and hematopoietic cell lineage markers (SP-C(+)CD45(+)) that have characteristics corresponding to LMDEC(Maj) were observed in the alveoli of lung and

  3. Genotype-phenotype correlation in cystic fibrosis patients compound heterozygous for the A455E mutation.

    PubMed

    De Braekeleer, M; Allard, C; Leblanc, J P; Simard, F; Aubin, G

    1997-12-01

    Cystic fibrosis (CF) has a high incidence in the French-Canadian population of Saguenay Lac-Saint-Jean (Quebec). The A455E mutation accounts for 8.3% of the CF chromosomes. This mutation was shown to be associated with a milder lung disease in the Dutch population. Twenty two CF patients distributed in 17 families and compound heterozygotes for the A455E mutation have been followed at the Clinique de Fibrose Kystique de Chicoutimi. Fourteen patients also carried the delta F508 mutation while the remaining eight patients had the 621 + 1G-->T mutation. Each patient was matched by sex and age to a patient homozygous for the delta F508 mutation. The pairs were analyzed for several clinical and laboratory variables. The A455E compound heterozygotes were diagnosed at a later age (P = 0.003) and had chloride concentrations at the sweat test lower than those homozygous for the delta F508 mutation (P = 0.007). More patients were pancreatic sufficient (P = 0.004). They had a higher Shwachman score (P = 0.001) and better pulmonary function tests (P < 0.02). CF patients compound heterozygous for the A455E mutation have a milder pancreatic and lung disease than the delta F508 homozygotes. Therefore, the A455E should be associated with a better prognosis.

  4. Complement effectors, C5a and C3a, in cystic fibrosis lung fluid correlate with disease severity

    PubMed Central

    Hair, Pamela S.; Sass, Laura A.; Vazifedan, Turaj; Shah, Tushar A.; Krishna, Neel K.

    2017-01-01

    In cystic fibrosis (CF), lung damage is mediated by a cycle of obstruction, infection, inflammation and tissue destruction. The complement system is a major mediator of inflammation for many diseases with the effectors C5a and C3a often playing important roles. We have previously shown in a small pilot study that CF sputum soluble fraction concentrations of C5a and C3a were associated with clinical measures of CF disease. Here we report a much larger study of 34 CF subjects providing 169 testable sputum samples allowing longitudinal evaluation comparing C5a and C3a with clinical markers. Levels of the strongly pro-inflammatory C5a correlated negatively with FEV1% predicted (P < 0.001), whereas the often anti-inflammatory C3a correlated positively with FEV1% predicted (P = 0.01). C5a concentrations correlated negatively with BMI percentile (P = 0.017), positively with worsening of an acute pulmonary exacerbation score (P = 0.007) and positively with P. aeruginosa growth in sputum (P = 0.002). C5a levels also correlated positively with concentrations of other sputum markers associated with worse CF lung disease including neutrophil elastase (P < 0.001), myeloperoxidase activity (P = 0.006) and DNA concentration (P < 0.001). In contrast to C5a, C3a levels correlated negatively with worse acute pulmonary exacerbation score and correlated negatively with sputum concentrations of neutrophil elastase, myeloperoxidase activity and DNA concentration. In summary, these data suggest that in CF sputum, increased C5a is associated with increased inflammation and poorer clinical measures, whereas increased C3a appears to be associated with less inflammation and improved clinical measures. PMID:28278205

  5. Mesenchymal stem cell-derived inflammatory fibroblasts mediate interstitial fibrosis in the aging heart.

    PubMed

    Trial, JoAnn; Entman, Mark L; Cieslik, Katarzyna A

    2016-02-01

    Pathologic fibrosis in the aging mouse heart is associated with dysregulated resident mesenchymal stem cells (MSC) arising from reduced stemness and aberrant differentiation into dysfunctional inflammatory fibroblasts. Fibroblasts derived from aging MSC secrete higher levels of 1) collagen type 1 (Col1) that directly contributes to fibrosis, 2) monocyte chemoattractant protein-1 (MCP-1) that attracts leukocytes from the blood and 3) interleukin-6 (IL-6) that facilitates transition of monocytes into myeloid fibroblasts. The transcriptional activation of these proteins is controlled via the farnesyltransferase (FTase)-Ras-Erk pathway. The intrinsic change in the MSC phenotype acquired by advanced age is specific for the heart since MSC originating from bone wall (BW-MSC) or fibroblasts derived from them were free of these defects. The potential therapeutic interventions other than clinically approved strategies based on findings presented in this review are discussed as well. This article is a part of a Special Issue entitled "Fibrosis and Myocardial Remodeling". Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Betaine treatment decreased oxidative stress, inflammation, and stellate cell activation in rats with alcoholic liver fibrosis.

    PubMed

    Bingül, İlknur; Başaran-Küçükgergin, Canan; Aydın, A Fatih; Çoban, Jale; Doğan-Ekici, Işın; Doğru-Abbasoğlu, Semra; Uysal, Müjdat

    2016-07-01

    The aim of this study was to investigate the effect of betaine (BET) on alcoholic liver fibrosis in rats. Fibrosis was experimentally generated with ethanol plus carbon tetrachloride (ETH+CCl4) treatment. Rats were treated with ETH (5% v/v in drinking water) for 14 weeks. CCl4 was administered intraperitoneally (i.p.) 0.2mL/kg twice a week to rats in the last 6 weeks with/without commercial food containing BET (2% w/w). Serum hepatic damage markers, tumor necrosis factor-α, hepatic triglyceride (TG) and hydroxyproline (HYP) levels, and oxidative stress parameters were measured together with histopathologic observations. In addition, α-smooth muscle-actin (α-SMA), transforming growth factor-β1 (TGF-β1) and type I collagen (COL1A1) protein expressions were assayed immunohistochemically to evaluate stellate cell (HSC) activation. mRNA expressions of matrix metalloproteinase-2 (MMP-2) and its inhibitors (TIMP-1 and TIMP-2) were also determined. BET treatment diminished TG and HYP levels; prooxidant status and fibrotic changes; α-SMA, COL1A1 and TGF-β protein expressions; MMP-2, TIMP-1 and TIMP-2 mRNA expressions in the liver of fibrotic rats. In conclusion, these results indicate that the antifibrotic effect of BET may be related to its suppressive effects on oxidant and inflammatory processes together with HSC activation in alcoholic liver fibrosis.

  7. Circulating endothelial progenitor cells, microvascular density and fibrosis in obesity before and after bariatric surgery.

    PubMed

    De Ciuceis, Carolina; Rossini, Claudia; Porteri, Enzo; La Boria, Elisa; Corbellini, Claudia; Mittempergher, Francesco; Di Betta, Ernesto; Petroboni, Beatrice; Sarkar, Annamaria; Agabiti-Rosei, Claudia; Casella, Claudio; Nascimbeni, Riccardo; Rezzani, Rita; Rodella, Luigi F; Bonomini, Francesca; Agabiti-Rosei, Enrico; Rizzoni, Damiano

    2013-06-01

    It is not known whether, in obesity, the capillary density or the number of circulating endothelial progenitor cells (EPCs) are reduced, or whether fibrosis of small vessels is also present. In addition, possible effects of weight reduction on these parameters have never been evaluated. Therefore, we investigated EPCs and capillary density in 25 patients with severe obesity, all submitted to bariatric surgery, and in 18 normotensive lean subjects and 12 hypertensive lean patients as controls. All patients underwent a biopsy of subcutaneous fat during bariatric surgery. In five patients, a second biopsy was obtained after consistent weight loss, about 1 year later, during a surgical intervention for abdominoplasty. EPCs and capillary density were reduced in obesity, and EPCs were significantly increased after weight reduction. Vascular collagen content was clearly increased in obese patients. No significant difference in vascular collagen was observed between normotensive obese patients and hypertensive obese patients. After pronounced weight reduction, collagen content was nearly normalized. No difference in stress-strain relation was observed among groups or before and after weight loss. In conclusion, our data suggest that microvascular rarefaction occurs in obesity. EPCs were significantly reduced in obese patients. Pronounced weight loss induced by bariatric surgery seems to induce a significant improvement of EPC number, but not of capillary rarefaction. A pronounced fibrosis of subcutaneous small resistance arteries is present in obese patients, regardless of the presence of increased blood pressure values. Consistent weight loss induced by bariatric surgery may induce an almost complete regression of microvascular fibrosis.

  8. A novel exon in the cystic fibrosis transmembrane conductance regulator gene activated by the nonsense mutation E92X in airway epithelial cells of patients with cystic fibrosis.

    PubMed Central

    Will, K; Dörk, T; Stuhrmann, M; Meitinger, T; Bertele-Harms, R; Tümmler, B; Schmidtke, J

    1994-01-01

    Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. We report on a novel nonsense mutation that leads to exon skipping and the activation of a cryptic exon. Screening of genomic DNA from 700 German patients with CF uncovered four cases with the nonsense mutation E92X, a G-->T transversion that creates a termination codon and affects the first base of exon 4 of the CFTR gene. Lymphocyte RNA of two CF patients heterozygous for E92X was found to contain the wild type sequence and a differentially spliced isoform lacking exon 4. In RNA derived from nasal epithelial cells of E92X patients, a third fragment of longer size was observed. Sequencing revealed the presence of E92X and an additional 183-bp fragment, inserted between exons 3 and 4. The 183-bp sequence was mapped to intron 3 of the CFTR gene. It is flanked by acceptor and donor splice sites. We conclude that the 183-bp fragment in intron 3 is a cryptic CFTR exon that can be activated in epithelial cells by the presence of the E92X mutation. E92X abolishes correctly spliced CFTR mRNA and leads to severe cystic fibrosis. Images PMID:7512993

  9. Characteristics of interstitial fibrosis and inflammatory cell infiltration in right ventricles of systemic sclerosis-associated pulmonary arterial hypertension.

    PubMed

    Overbeek, Maria J; Mouchaers, Koen T B; Niessen, Hans M; Hadi, Awal M; Kupreishvili, Koba; Boonstra, Anco; Voskuyl, Alexandre E; Belien, Jeroen A M; Smit, Egbert F; Dijkmans, Ben C; Vonk-Noordegraaf, Anton; Grünberg, Katrien

    2010-01-01

    Objective. Systemic sclerosis-associated pulmonary arterial hypertension (SScPAH) has a disturbed function of the right ventricle (RV) when compared to idiopathic PAH (IPAH). Systemic sclerosis may also affect the heart. We hypothesize that RV differences may occur at the level of interstitial inflammation and-fibrosis and compared inflammatory cell infiltrate and fibrosis between the RV of SScPAH, IPAH, and healthy controls. Methods. Paraffin-embedded tissue samples of RV and left ventricle (LV) from SScPAH (n = 5) and IPAH (n = 9) patients and controls (n = 4) were picrosirius red stained for detection of interstitial fibrosis, which was quantified semiautomatically. Neutrophilic granulocytes (MPO), macrophages (CD68), and lymphocytes (CD45) were immunohistochemically stained and only interstitial leukocytes were counted. Presence of epi- or endocardial inflammation, and of perivascular or intimal fibrosis of coronary arteries was assessed semiquantitatively (0-3: absent to extensive). Results. RV's of SScPAH showed significantly more inflammatory cells than of IPAH (cells/mm(2), mean ± sd MPO 11 ± 3 versus 6 ± 1; CD68 11 ± 3 versus 6 ± 1; CD45 11 ± 1 versus 5 ± 1 , P < .05) and than of controls. RV interstitial fibrosis was similar in SScPAH and IPAH (4 ± 1 versus 5 ± 1%, P = .9), and did not differ from controls (5 ± 1%, P = .8). In 4 SScPAH and 5 IPAH RV's foci of replacement fibrosis were found. No differences were found on epi- or endocardial inflammation or on perivascular or intimal fibrosis of coronary arteries. Conclusion. SScPAH RVs display denser inflammatory infiltrates than IPAH, while they do not differ with respect to interstitial fibrosis. Whether increased inflammatory status is a contributor to altered RV function in SScPAH warrants further research.

  10. Characteristics of Interstitial Fibrosis and Inflammatory Cell Infiltration in Right Ventricles of Systemic Sclerosis-Associated Pulmonary Arterial Hypertension

    PubMed Central

    Overbeek, Maria J.; Mouchaers, Koen T. B.; Niessen, Hans M.; Hadi, Awal M.; Kupreishvili, Koba; Boonstra, Anco; Voskuyl, Alexandre E.; Belien, Jeroen A. M.; Smit, Egbert F.; Dijkmans, Ben C.; Vonk-Noordegraaf, Anton; Grünberg, Katrien

    2010-01-01

    Objective. Systemic sclerosis-associated pulmonary arterial hypertension (SScPAH) has a disturbed function of the right ventricle (RV) when compared to idiopathic PAH (IPAH). Systemic sclerosis may also affect the heart. We hypothesize that RV differences may occur at the level of interstitial inflammation and—fibrosis and compared inflammatory cell infiltrate and fibrosis between the RV of SScPAH, IPAH, and healthy controls. Methods. Paraffin-embedded tissue samples of RV and left ventricle (LV) from SScPAH (n = 5) and IPAH (n = 9) patients and controls (n = 4) were picrosirius red stained for detection of interstitial fibrosis, which was quantified semiautomatically. Neutrophilic granulocytes (MPO), macrophages (CD68), and lymphocytes (CD45) were immunohistochemically stained and only interstitial leukocytes were counted. Presence of epi- or endocardial inflammation, and of perivascular or intimal fibrosis of coronary arteries was assessed semiquantitatively (0–3: absent to extensive). Results. RV's of SScPAH showed significantly more inflammatory cells than of IPAH (cells/mm2, mean ± sd MPO 11 ± 3 versus 6 ± 1; CD68 11 ± 3 versus 6 ± 1; CD45 11 ± 1 versus 5 ± 1 , P < .05) and than of controls. RV interstitial fibrosis was similar in SScPAH and IPAH (4 ± 1 versus 5 ± 1%, P = .9), and did not differ from controls (5 ± 1%, P = .8). In 4 SScPAH and 5 IPAH RV's foci of replacement fibrosis were found. No differences were found on epi- or endocardial inflammation or on perivascular or intimal fibrosis of coronary arteries. Conclusion. SScPAH RVs display denser inflammatory infiltrates than IPAH, while they do not differ with respect to interstitial fibrosis. Whether increased inflammatory status is a contributor to altered RV function in SScPAH warrants further research. PMID:20936074

  11. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis.

    PubMed

    Li, Tingfen; Yan, Yongmin; Wang, Bingying; Qian, Hui; Zhang, Xu; Shen, Li; Wang, Mei; Zhou, Ying; Zhu, Wei; Li, Wei; Xu, Wenrong

    2013-03-15

    Mesenchymal stem cells (MSCs) have been considered as an attractive tool for the therapy of diseases. Exosomes excreted from MSCs can reduce myocardial ischemia/reperfusion damage and protect against acute tubular injury. However, whether MSC-derived exosomes can relieve liver fibrosis and its mechanism remain unknown. Previous work showed that human umbilical cord-MSCs (hucMSCs) transplanted into acutely injured and fibrotic livers could restore liver function and improve liver fibrosis. In this study, it was found that transplantation of exosomes derived from hucMSC (hucMSC-Ex) reduced the surface fibrous capsules and got their textures soft, alleviated hepatic inflammation and collagen deposition in carbon tetrachloride (CCl4)-induced fibrotic liver. hucMSC-Ex also significantly recovered serum aspartate aminotransferase (AST) activity, decreased collagen type I and III, transforming growth factor (TGF)-β1 and phosphorylation Smad2 expression in vivo. In further experiments, we found that epithelial-to-mesenchymal transition (EMT)-associated markers E-cadherin-positive cells increased and N-cadherin- and vimentin-positive cells decreased after hucMSC-Ex transplantation. Furthermore, the human liver cell line HL7702 underwent typical EMT after induction with recombinant human TGF-β1, and then hucMSC-Ex treatment reversed spindle-shaped and EMT-associated markers expression in vitro. Taken together, these results suggest that hucMSC-Ex could ameliorate CCl4-induced liver fibrosis by inhibiting EMT and protecting hepatocytes. This provides a novel approach for the treatment of fibrotic liver disease.

  12. Lung epithelial cell focal adhesion kinase signaling inhibits lung injury and fibrosis.

    PubMed

    Wheaton, Amanda K; Agarwal, Manisha; Jia, Shijing; Kim, Kevin K

    2017-05-01

    Progressive pulmonary fibrosis is a devastating consequence of many acute and chronic insults to the lung. Lung injury leads to alveolar epithelial cell (AEC) death, destruction of the basement membrane, and activation of transforming growth factor-β (TGF-β). There is subsequent resolution of the injury and a coordinated and concurrent initiation of fibrosis. Both of these processes may involve activation of similar intracellular signaling pathways regulated in part by dynamic changes to the extracellular matrix. Matrix signaling can augment the profibrotic fibroblast response to TGF-β. However, similar matrix/integrin signaling pathways may also be involved in the inhibition of ongoing TGF-β-induced AEC apoptosis. Focal adhesion kinase (FAK) is an integrin-associated signaling molecule expressed by many cell types. We used mice with AEC-specific FAK deletion to isolate the epithelial aspect of integrin signaling in the bleomycin model of lung injury and fibrosis. Mice with AEC-specific deletion of FAK did not exhibit spontaneous lung injury but did have significantly greater terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling-positive cells (18.6 vs. 7.1) per ×200 field, greater bronchoalveolar lavage protein (3.2 vs. 1.8 mg/ml), and significantly greater death (77 vs. 19%) after bleomycin injury compared with littermate control mice. Within primary AECs, activated FAK directly associates with caspase-8 and inhibits activation of the caspase cascade resulting in less apoptosis in response to TGF-β. Our studies support a model in which dynamic changes to the extracellular matrix after injury promote fibroblast activation and inhibition of epithelial cell apoptosis in response to TGF-β through FAK activation potentially complicating attempts to nonspecifically target this pathway for antifibrotic therapy. Copyright © 2017 the American Physiological Society.

  13. Hepatocellular carcinoma in chronic HBV-HCV co-infection is correlated to fibrosis and disease duration.

    PubMed

    Zampino, Rosa; Pisaturo, Maria A; Cirillo, Grazia; Marrone, Aldo; Macera, Margherita; Rinaldi, Luca; Stanzione, Maria; Durante-Mangoni, Emanuele; Gentile, Ivan; Sagnelli, Evangelista; Signoriello, Giuseppe; Miraglia Del Giudice, Emanuele; Adinolfi, Luigi E; Coppola, Nicola

    2015-01-01

    Hepatocellular carcinoma (HCC) is a development of severe liver disease frequently due to HBV and/or HCV infection. The aim of this retrospective study was to evaluate the development of HCC in patients with HBV-HCV chronic infection compared with patients with single HBV or HCV infection and the viral and host factors correlated to HCC in co-infected patients. We studied 268 patients with histology proven chronic hepatitis: 56 had HBV-HCV co-infection (HBV-HCV group), 46 had HBV infection (HBV group) and 166 had HCV infection (HCV group). Patients were followed up for at least 3 years. Viral and host factors were studied. HCC was more frequent in HBV-HCV group (14%) compared with HBV (2%, p = 0.006) and HCV monoinfected (4%, p = 0.006). The Mantel-Haenszel test used to investigate the relationship between HBV-HCV co-infection and development of HCC indicated an association between development of HCC and HBV-HCV co-infection (p < 0.001). In the HBV-HCV group, patients with HCC were significantly older (p = 0.000), had longer disease duration (p = 0.001), higher blood glucose levels (p = 0.001), lower levels of steatosis (p = 0.02), higher levels of fibrosis (p = 0.000), higher HCV RNA (p = 0.01) than those without HCC. ALT, lipid profile, PNPLA3 variant distribution and HBV viral load did not differ among co-infected patients with or without HCC. In conclusion HCC was more frequent in our patients with HBV-HCV co-infection, than in those with HBV or HCV mono-infection; possible associated risk factors for HCC development seem a long duration of disease, high levels of fibrosis and carbohydrate intolerance.

  14. Radiation-induced lung fibrosis after treatment of small cell carcinoma of the lung with very high-dose cyclophosphamide

    SciTech Connect

    Trask, C.W.; Joannides, T.; Harper, P.G.; Tobias, J.S.; Spiro, S.G.; Geddes, D.M.; Souhami, R.L.; Beverly, P.C.

    1985-01-01

    Twenty-five previously untreated patients with small cell carcinoma of the lung were treated with cyclophosphamide 160 to 200 mg/kg (with autologous bone marrow support) followed by radiotherapy (4000 cGy) to the primary site and mediastinum. No other treatment was given until relapse occurred. Nineteen patients were assessable at least 4 months after radiotherapy; of these, 15 (79%) developed radiologic evidence of fibrosis, which was symptomatic in 14 (74%). The time of onset of fibrosis was related to the volume of lung irradiated. A retrospective analysis was made of 20 consecutive patients treated with multiple-drug chemotherapy and an identical radiotherapy regimen as part of a randomized trial. Radiologic and symptomatic fibrosis was one half as frequent (35%) as in the high-dose cyclophosphamide group. Very high-dose cyclophosphamide appears to sensitize the lung to radiotherapy and promotes the production of fibrosis.

  15. Fibrosis and Subsequent Cytopenias are Associated with bFGF-deficient Pluripotent Mesenchymal Stromal Cells in Large Granular Lymphocyte Leukemia1

    PubMed Central

    Mailloux, Adam W.; Zhang, Ling; Moscinski, Lynn; Bennett, John M.; Yang, Lili; Yoder, Sean J.; Bloom, Gregory; Wei, Codi; Wei, Sheng; Sokol, Lubomir; Loughran, Thomas P.; Epling-Burnette, P.K.

    2015-01-01

    Cytopenias occur frequently in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Felty’s Syndrome and Large Granular Lymphocyte (LGL) leukemia, but the bone marrow microenvironment has not been systematically studied. In LGL leukemia (n=24), retrospective analysis of bone marrow (BM) histopathology revealed severe fibrosis in 15 out of 24 patients (63%) in association with the presence of cytopenias, occurrence of autoimmune diseases, and splenomegaly, but was undetectable in control cases with B-cell malignancies (n=11). Fibrosis severity correlated with T-LGL cell numbers in the BM but not in the periphery, suggesting deregulation is limited to the BM microenvironment. To identify fibrosis initiating populations, primary mesenchymal stromal cultures (MSCs) from patients were characterized and found to display proliferation kinetics and overabundant collagen deposition, but displayed normal telomere lengths and osteoblastogenic, chondrogenic, and adipogenic differentiation potentials. To determine the effect of fibrosis on healthy hematopoietic cells (HPCs), bioartificial matrixes from rat-tail or purified human collagen were found to suppress HPC differentiation and proliferation. The ability of patient MSCs to support healthy HSC proliferation was significantly impaired, but could be rescued with collagenase pre-treatment. Clustering analysis confirmed the undifferentiated state of patient MSCs, and pathway analysis revealed an inverse relationship between cell division and pro-fibrotic ontologies associated with reduced basic fibroblast growth factor (FGFb) production, which was confirmed by ELISA. Reconstitution with exogenous FGFb normalized patient MSC proliferation, collagen deposition, and HPC supportive function suggesting LGL BM infiltration and secondary accumulation of MSC-derived collagen is responsible for hematopoietic failure in autoimmune-associated cytopenias in LGL leukemia. PMID:24014875

  16. Functional expression and apical localization of the cystic fibrosis transmembrane conductance regulator in MDCK I cells.

    PubMed Central

    Mohamed, A; Ferguson, D; Seibert, F S; Cai, H M; Kartner, N; Grinstein, S; Riordan, J R; Lukacs, G L

    1997-01-01

    The gene product affected in cystic fibrosis, the cystic fibrosis transmembrane conductance regulator (CFTR), is a chlorideselective ion channel that is regulated by cAMP-dependent protein kinase-mediated phosphorylation, ATP binding and ATP hydrolysis. Mutations in the CFTR gene may result in cystic fibrosis characterized by severe pathology (e.g. recurrent pulmonary infection, male infertility and pancreatic insufficiency) involving organs expressing the CFTR. Interestingly, in the kidney, where expression of the CFTR has been reported, impaired ion transport in patients suffering from cystic fibrosis could not be observed. To understand the role of the CFTR in chloride transport in the kidney, we attempted to identify an epithelial cell line that can serve as a model. We demonstrate that the CFTR is expressed constitutively in Madine-Darby canine kidney (MDCK) type I cells, which are thought to have originated from the distal tubule of the dog nephron. We show expression at the mRNA level, using reverse transcriptase-PCR, and at the protein level, using Western blot analysis with three different monoclonal antibodies. Iodide efflux measurements indicate that CFTR expression confers a plasma membrane anion conductance that is responsive to stimulation by cAMP. The cAMP-stimulated iodide release is sensitive to glybenclamide, diphenylamine carboxylic acid and 5-nitro-2-(3-phenylpropylamino)benzoic acid, but not to 4,4'-di-isothiocyanostilbene-2,2'-disulphonic acid, an inhibitor profile characteristic of the CFTR chloride channel. Finally, the polarized localization of the CFTR to the apical plasma membrane was established by iodide efflux measurements and cell-surface biotinylation on MDCK I monolayers. Interestingly, MDCK type II cells, which are thought to have originated from the proximal tubule of the kidney, lack CFTR protein expression and cAMP-stimulated chloride conductance. In conclusion, we propose that MDCK type I and II cells can serve as convenient

  17. There is no evident correlation between interleukin-10 gene polymorphisms and periportal fibrosis regression after specific treatment.

    PubMed

    Silva, Paula Carolina Valença; Silva, Aline Vieira da; Silva, Taysa Nascimento; Vasconcelos, Letícia Moura de; Gomes, Adriana Vieira; Coêlho, Maria Rosângela Cunha Duarte; Muniz, Maria Tereza Cartaxo; Domingues, Ana Lúcia Coutinho

    2016-01-01

    We evaluated the associations between interleukin-10 (IL-10) gene polymorphisms -G1082A/-C819T/-C592A and periportal fibrosis regression after specific treatment for schistosomiasis. This retrospective cohort study involved 125 Brazilian patients infected with Schistosomiasis mansoni, who were followed up for 2 years after specific treatment to estimate the probability of periportal fibrosis regression. There was no evidence of associations between IL-10 polymorphisms and periportal fibrosis regression after treatment. There was no evidence of associations between gene promoter polymorphisms of IL-10 and the regression of periportal fibrosis in this Brazilian population.

  18. Detection of Hepatic Fibrosis in Ex Vivo Liver Samples Using an Open-Photoacoustic-Cell Method: Feasibility Study

    NASA Astrophysics Data System (ADS)

    Stolik, S.; Fabila, D. A.; de la Rosa, J. M.; Escobedo, G.; Suárez-Álvarez, K.; Tomás, S. A.

    2015-09-01

    Design of non-invasive and accurate novel methods for liver fibrosis diagnosis has gained growing interest. Different stages of liver fibrosis were induced in Wistar rats by intraperitoneally administering different doses of carbon tetrachloride. The liver fibrosis degree was conventionally determined by means of histological examination. An open-photoacoustic-cell (OPC) technique for the assessment of liver fibrosis was developed and is reported here. The OPC technique is based on the fact that the thermal diffusivity can be accurately measured by photoacoustics taking into consideration the photoacoustic signal amplitude versus the modulation frequency. This technique measures directly the heat generated in a sample, due to non-radiative de-excitation processes, following the absorption of light. The thermal diffusivity was measured with a home-made open-photoacoustic-cell system that was specially designed to perform the measurement from ex vivo liver samples. The human liver tissue showed a significant increase in the thermal diffusivity depending on the fibrosis stage. Specifically, liver samples from rats exhibiting hepatic fibrosis showed a significantly higher value of the thermal diffusivity than for control animals.

  19. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis

    PubMed Central

    Bataller, Ramón; Schwabe, Robert F.; Choi, Youkyung H.; Yang, Liu; Paik, Yong Han; Lindquist, Jeffrey; Qian, Ting; Schoonhoven, Robert; Hagedorn, Curt H.; Lemasters, John J.; Brenner, David A.

    2003-01-01

    Angiotensin II (Ang II) is a pro-oxidant and fibrogenic cytokine. We investigated the role of NADPH oxidase in Ang II–induced effects in hepatic stellate cells (HSCs), a fibrogenic cell type. Human HSCs express mRNAs of key components of nonphagocytic NADPH oxidase. Ang II phosphorylated p47phox, a regulatory subunit of NADPH oxidase, and induced reactive oxygen species formation via NADPH oxidase activity. Ang II phosphorylated AKT and MAPKs and increased AP-1 DNA binding in a redox-sensitive manner. Ang II stimulated DNA synthesis, cell migration, procollagen α1(I) mRNA expression, and secretion of TGF-β1 and inflammatory cytokines. These effects were attenuated by N-acetylcysteine and diphenylene iodonium, an NADPH oxidase inhibitor. Moreover, Ang II induced upregulation of genes potentially involved in hepatic wound-healing response in a redox-sensitive manner, as assessed by microarray analysis. HSCs isolated from p47phox–/– mice displayed a blunted response to Ang II compared with WT cells. We also assessed the role of NADPH oxidase in experimental liver fibrosis. After bile duct ligation, p47phox–/– mice showed attenuated liver injury and fibrosis compared with WT counterparts. Moreover, expression of smooth muscle α-actin and expression of TGF-β1 were reduced in p47phox–/– mice. Thus, NADPH oxidase mediates the actions of Ang II on HSCs and plays a critical role in liver fibrogenesis. PMID:14597764

  20. Bone marrow mesenchymal stem cells attenuate silica-induced pulmonary fibrosis via paracrine mechanisms.

    PubMed

    Li, Xiaoli; Wang, Yan; An, Guoliang; Liang, Di; Zhu, Zhonghui; Lian, Ximeng; Niu, Piye; Guo, Caixia; Tian, Lin

    2017-03-15

    The purpose of this study was to investigate the anti-fibrotic effect and possible mechanism of bone marrow mesenchymal stem cells (BMSCs) in silica-induced lung injury and fibrosis in vivo and in vitro. In vivo, rats were exposed to 50mg/ml silica intratracheally. The rats were sacrificed on day 15 or day 30 after intravenous injection of BMSCs. Histopathological examination demonstrated that BMSCs decreased the blue areas of collagen fibers and the number of nodules. Alveolar epithelium was damaged by silica, but it was restored by BMSCs. In vitro, BMSCs co-cultured with RLE-6TN cells in 6-Transwell plates were evaluated to determine the possible mechanism. The results demonstrated that BMSCs downregulated the expression of collagen I and III. BMSCs reversed morphological abnormalities and reduced the proliferation of RLE-6TN cells. These data showed that BMSCs did not give rise to alveolar epithelial cells directly, while the levels of hepatocyte growth factor, keratinocyte growth factor and bone morphogenetic protein -7 increased and expression of tumor necrosis factor-α and transforming growth factor-β1 decreased in the 6TN+Silica+BMSCs group compared with the 6TN+Silica group. Our results revealed that BMSCs exerted anti-fibrotic effects on silica-induced pulmonary fibrosis, which might be associated with paracrine mechanisms rather than differentiation.

  1. Inhibition of connective tissue growth factor attenuates paraquat-induced lung fibrosis in a human MRC-5 cell line.

    PubMed

    Huang, Min; Yang, Huifang; Zhu, Lingqin; Li, Honghui; Zhou, Jian; Zhou, Zhijun

    2016-11-01

    Chronic exposure to Paraquat (PQ) may result in progressive pulmonary fibrosis and subsequent chronic obstructive pulmonary malfunction. Connective tissue growth factor (CTGF) has been proposed as a key determinant in the development of lung fibrosis. We investigated thus whether knock down of CTGF can prevent human lung fibroblasts (MRC-5) activation and proliferation with the subsequent inhibition of PQ-induced fibrosis. MRC-5 was transfected with CTGF-siRNAs and exposed to different concentrations of PQ. The siRNA-silencing efficacy was evaluated using western blotting analyses, qRT-PCR and flow cytometry. Next, the viability and migration of MRC-5 was determined. MMP-2, MMP-9, and TIMP-1 accumulation were quantified to evaluate the lung fibrosis exposure to PQ. Over expression of CTGF mRNA was observed in human MRC-5 cell as early as 6 h following PQ stimulation. CTGF gene expression in MRC-5 cells was substantially reduced by RNAi, which significantly suppressed the expression of the lung fibrosis markers such as tissue inhibitor of metalloproteinase-2 (TIMP-2), Matrix metalloproteinase-2 (MMP-2) and Matrix metalloproteinase-9 (MMP-9) that were stimulated by PQ. Inhibition of CTGF expression suppressed impeded the proliferation and migration ability of MRC-5 cells and resulted in cell-extracellular matrix (ECM) protein accumulation in cells. Our results suggest that CTGF promoted the development of PQ-induced lung fibrosis in collaboration with transforming growth factor β1 (TGFβ1). Furthermore, the observed arresting effects of CTGF knock down during this process suggested that CTGF is the potential target site for preventing PQ-induced pulmonary fibrosis. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1620-1626, 2016.

  2. Aberrant mural cell recruitment to lymphatic vessels and impaired lymphatic drainage in a murine model of pulmonary fibrosis.

    PubMed

    Meinecke, Anna-Katharina; Nagy, Nadine; Lago, Gabriela D'Amico; Kirmse, Santina; Klose, Ralph; Schrödter, Katrin; Zimmermann, Annika; Helfrich, Iris; Rundqvist, Helene; Theegarten, Dirk; Anhenn, Olaf; Orian-Rousseau, Véronique; Johnson, Randall S; Alitalo, Kari; Fischer, Jens W; Fandrey, Joachim; Stockmann, Christian

    2012-06-14

    Pulmonary fibrosis is a progressive disease with unknown etiology that is characterized by extensive remodeling of the lung parenchyma, ultimately resulting in respiratory failure. Lymphatic vessels have been implicated with the development of pulmonary fibrosis, but the role of the lymphatic vasculature in the pathogenesis of pulmonary fibrosis remains enigmatic. Here we show in a murine model of pulmonary fibrosis that lymphatic vessels exhibit ectopic mural coverage and that this occurs early during the disease. The abnormal lymphatic vascular patterning in fibrotic lungs was driven by expression of platelet-derived growth factor B (PDGF-B) in lymphatic endothelial cells and signaling through platelet-derived growth factor receptor (PDGFR)-β in associated mural cells. Because of impaired lymphatic drainage, aberrant mural cell coverage fostered the accumulation of fibrogenic molecules and the attraction of fibroblasts to the perilymphatic space. Pharmacologic inhibition of the PDGF-B/PDGFR-β signaling axis disrupted the association of mural cells and lymphatic vessels, improved lymphatic drainage of the lung, and prevented the attraction of fibroblasts to the perilymphatic space. Our results implicate aberrant mural cell recruitment to lymphatic vessels in the pathogenesis of pulmonary fibrosis and that the drainage capacity of pulmonary lymphatics is a critical mediator of fibroproliferative changes.

  3. The Origin of Matrix-Producing Cells that Contribute to Aortic Fibrosis in Hypertension

    PubMed Central

    Wu, Jing; Montaniel, Kim Ramil C.; Saleh, Mohamed A.; Xiao, Liang; Chen, Wei; Owens, Gary K.; Humphrey, Jay D.; Majesky, Mark W.; Paik, David T.; Hatzopoulos, Antonis K.; Madhur, Meena S.; Harrison, David G.

    2015-01-01

    Various hypertensive stimuli lead to exuberant adventitial collagen deposition in large arteries, exacerbating blood pressure elevation and end-organ damage. Collagen production is generally attributed to resident fibroblasts, however other cells, including resident and bone marrow derived Stem Cell Antigen positive (Sca1+) cells, endothelial and vascular smooth muscle cells, can produce collagen and contribute to vascular stiffening. Using flow cytometry and immunofluorescence, we found that adventitial Sca-1+ progenitor cells begin to produce collagen and acquire a fibroblast-like phenotype in hypertension. We also found that bone marrow derived cells represent more than half of the matrix producing cells in hypertension, and that one-third of these are Sca-1+. Cell sorting and lineage tracing studies showed that cells of endothelial origin contribute to no more than one-fourth of adventitial collagen I+ cells while those of vascular smooth muscle lineage do not contribute. Our findings indicate that Sca-1+ progenitor cells and bone marrow-derived infiltrating fibrocytes are major sources of arterial fibrosis in hypertension. Endothelial to mesenchymal transition likely also contributes, albeit to a lesser extent and pre-existing resident fibroblasts represent a minority of aortic collagen-producing cells in hypertension. This study shows that vascular stiffening represents a complex process involving recruitment and transformation of multiple cells types that ultimately elaborate adventitial extracellular matrix. PMID:26693821

  4. Origin of Matrix-Producing Cells That Contribute to Aortic Fibrosis in Hypertension.

    PubMed

    Wu, Jing; Montaniel, Kim Ramil C; Saleh, Mohamed A; Xiao, Liang; Chen, Wei; Owens, Gary K; Humphrey, Jay D; Majesky, Mark W; Paik, David T; Hatzopoulos, Antonis K; Madhur, Meena S; Harrison, David G

    2016-02-01

    Various hypertensive stimuli lead to exuberant adventitial collagen deposition in large arteries, exacerbating blood pressure elevation and end-organ damage. Collagen production is generally attributed to resident fibroblasts; however, other cells, including resident and bone marrow-derived stem cell antigen positive (Sca-1(+)) cells and endothelial and vascular smooth muscle cells, can produce collagen and contribute to vascular stiffening. Using flow cytometry and immunofluorescence, we found that adventitial Sca-1(+) progenitor cells begin to produce collagen and acquire a fibroblast-like phenotype in hypertension. We also found that bone marrow-derived cells represent more than half of the matrix-producing cells in hypertension, and that one-third of these are Sca-1(+). Cell sorting and lineage-tracing studies showed that cells of endothelial origin contribute to no more than one fourth of adventitial collagen I(+) cells, whereas those of vascular smooth muscle lineage do not contribute. Our findings indicate that Sca-1(+) progenitor cells and bone marrow-derived infiltrating fibrocytes are major sources of arterial fibrosis in hypertension. Endothelial to mesenchymal transition likely also contributes, albeit to a lesser extent and pre-existing resident fibroblasts represent a minority of aortic collagen-producing cells in hypertension. This study shows that vascular stiffening represents a complex process involving recruitment and transformation of multiple cells types that ultimately elaborate adventitial extracellular matrix.

  5. Alveolar epithelial cells express mesenchymal proteins in patients with idiopathic pulmonary fibrosis

    PubMed Central

    Marmai, Cecilia; Sutherland, Rachel E.; Kim, Kevin K.; Dolganov, Gregory M.; Fang, Xiaohui; Kim, Sophia S.; Jiang, Shuwei; Golden, Jeffery A.; Hoopes, Charles W.; Matthay, Michael A.; Chapman, Harold A.

    2011-01-01

    Prior work has shown that transforming growth factor-β (TGF-β) can mediate transition of alveolar type II cells into mesenchymal cells in mice. Evidence this occurs in humans is limited to immunohistochemical studies colocalizing epithelial and mesenchymal proteins in sections of fibrotic lungs. To acquire further evidence that epithelial-to-mesenchymal transition occurs in the lungs of patients with idiopathic pulmonary fibrosis (IPF), we studied alveolar type II cells isolated from fibrotic and normal human lung. Unlike normal type II cells, type II cells isolated from the lungs of patients with IPF express higher levels of mRNA for the mesenchymal proteins type I collagen, α-smooth muscle actin (α-SMA), and calponin. When cultured on Matrigel/collagen, human alveolar type II cells maintain a cellular morphology consistent with epithelial cells and expression of surfactant protein C (SPC) and E-cadherin. In contrast, when cultured on fibronectin, the human type II cells flatten, spread, lose expression of pro- SPC, and increase expression of vimentin, N-cadherin, and α-SMA; markers of mesenchymal cells. Addition of a TGF-β receptor kinase inhibitor (SB431542) to cells cultured on fibronectin inhibited vimentin expression and maintained pro-SPC expression, indicating persistence of an epithelial phenotype. These data suggest that alveolar type II cells can acquire features of mesenchymal cells in IPF lungs and that TGF-β can mediate this process. PMID:21498628

  6. Biphasic recruitment of microchimeric fetal mesenchymal cells in fibrosis following acute kidney injury.

    PubMed

    Roy, Edwige; Seppanen, Elke; Ellis, Rebecca; Lee, Eddy S; Khosrotehrani, Kiarash; Khosroterani, Kiarash; Fisk, Nicholas M; Bou-Gharios, George

    2014-03-01

    Fetal microchimeric cells (FMCs) enter the maternal circulation and persist in tissue for decades. They have capacity to home to injured maternal tissue and differentiate along that tissue's lineage. This raises the question of the origin(s) of cells transferred to the mother during pregnancy. FMCs with a mesenchymal phenotype have been documented in several studies, which makes mesenchymal stem cells an attractive explanation for their broad plasticity. Here we assessed the recruitment and mesenchymal lineage contribution of FMCs in response to acute kidney fibrosis induced by aristolochic acid injection. Serial in vivo bioluminescence imaging revealed a biphasic recruitment of active collagen-producing FMCs during the repair process of injured kidney in post-partum wild-type mothers that had delivered transgenic pups expressing luciferase under the collagen type I-promoter. The presence of FMCs long-term post injury (day 60) was associated with profibrotic molecules (TGF-β/CTGF), serum urea levels, and collagen deposition. Immunostaining confirmed FMCs at short term (day 15) using post-partum wild-type mothers that had delivered green fluorescent protein-positive pups and suggested a mainly hematopoietic phenotype. We conclude that there is biphasic recruitment to, and activity of, FMCs at the injury site. Moreover, we identified five types of FMC, implicating them all in the reparative process at different stages of induced renal interstitial fibrosis.

  7. Activated Wnt signaling induces myofibroblast differentiation of mesenchymal stem cells, contributing to pulmonary fibrosis.

    PubMed

    Sun, Zhaorui; Wang, Cong; Shi, Chaowen; Sun, Fangfang; Xu, Xiaomeng; Qian, Weiping; Nie, Shinan; Han, Xiaodong

    2014-05-01

    Acute lung injury may lead to fibrogenesis. However, no treatment is currently available. This study was conducted to determine the effects of bone marrow-derived mesenchymal stem cells (MSCs) in a model of HCl-induced acute lung injury in Sprague-Dawley (SD) rats. Stromal cell-derived factor (SDF)-1 and its receptor CXC chemokine receptor (CXCR)4 have been shown to participate in mobilizing MSCs. Adenovirus carrying the CXCR4 gene was used to transfect MSCs in order to increase the engraftment numbers of MSCs at injured sites. Histological examination data demonstrated that the engraftment of MSCs did not attenuate lung injury and pulmonary fibrosis. The results showed that engraftment of MSCs almost differentiated into myofibroblasts, but rarely differentiated into lung epithelial cells. Additionally, it was demonstrated that activated canonical Wnt/β-catenin signaling in injured lung tissue regulated the myofibroblast differentiation of MSCs in vivo. The in vitro study results demonstrated that activation of the Wnt/β-catenin signaling stimulated MSCs to express myofibroblast markers; however, this process was attenuated by Wnt antagonist DKK1. Therefore, the results demonstrated that the aberrant activation of Wnt signaling induces the myofibroblast differentiation of engrafted MSCs, thus contributing to pulmonary fibrosis following lung injury.

  8. Bone Marrow Stem Cells Anti-liver Fibrosis Potency: Inhibition of Hepatic Stellate Cells Activity and Extracellular Matrix Deposition.

    PubMed

    Sitanggang, Ervina Julien; Antarianto, Radiana Dhewayani; Jusman, Sri Widia A; Pawitan, Jeanne Adiwinata; Jusuf, Ahmad Aulia

    2017-05-30

    Transplantation of bone marrow derived stem cells (BMSCs) has been reported inhibits liver fibrosis. Several in vitro studies by co-culturing BMSCs and hepatic stellate cells (HSCs) indirectly or directly in 2D models showed inhibition of HSC as the key player in liver fibrosis. In this study, we investigated direct effect of BMSCs on HSCs by co-culturing BMSCs and HSCs in 3D model as it represents the liver microenvironment with intricate cell-cell and cell-matrix interactions. Primary isolated rat HSCs and BMSCs were directly co-cultured at 1:1 ratio with hanging drop method. The monoculture of rat HSCs served as positive control. Mono-culture and co-culture samples were harvested on day 3, 5 and 7 for histological analysis. The samples were analyzed for extracellular matrix deposition by Masson's Trichrome staining, tenascin-C immunocytochemistry, resting HSC's state as shown by positive Oil Red O stained cells. Our results indicated CD90(+)CD34(-) BMSCs anti-liver fibrosis potency as evidenced by higher proportion of Oil Red O-positive cells in the co-culture group compared to the monoculture group and the significant decrease in extracellular matrix deposition as well as the decrease in tenascin-C expression in the co-culture group (p<0.05) compared to the monoculture group. These findings demonstrate that BMSCs have a potential therapeutic effect against liver fibrotic process through their capacity to inhibit HSCs activation and their effect in minimizing extracellular matrix deposition.

  9. Fat on sale: role of adipose-derived stem cells as anti-fibrosis agent in regenerative medicine.

    PubMed

    Gupta, Manoj K; Ajay, Amrendra Kumar

    2015-12-01

    The potential use of stem cells for cell-based tissue repair and regeneration offers alternative therapeutic strategies for various diseases. Adipose-derived stem cells (ADSCs) have emerged as a promising source of stem cells suitable for transplantation in regenerative medicine and wound repair. A recent publication in Stem Cell Research & Therapy by Zhang and colleagues reports a new finding about the anti-fibrosis role of ADSCs and conditioned media derived from them on hypertrophic scar formation in vivo.

  10. Correlation of sweat chloride and percent predicted FEV1 in cystic fibrosis patients treated with ivacaftor.

    PubMed

    Fidler, Meredith C; Beusmans, Jack; Panorchan, Paul; Van Goor, Fredrick

    2017-01-01

    Ivacaftor, a CFTR potentiator that enhances chloride transport by acting directly on CFTR to increase its channel gating activity, has been evaluated in patients with different CFTR mutations. Several previous analyses have reported no statistical correlation between change from baseline in ppFEV1 and reduction in sweat chloride levels for individuals treated with ivacaftor. The objective of the post hoc analysis described here was to expand upon previous analyses and evaluate the correlation between sweat chloride levels and absolute ppFEV1 changes across multiple cohorts of patients with different CF-causing mutations who were treated with ivacaftor. The goal of the analysis was to help define the potential value of sweat chloride as a pharmacodynamic biomarker for use in CFTR modulator trials. For any given study, reductions in sweat chloride levels and improvements in absolute ppFEV1 were not correlated for individual patients. However, when the data from all studies were combined, a statistically significant correlation between sweat chloride levels and ppFEV1 changes was observed (p<0.0001). Thus, sweat chloride level changes in response to potentiation of the CFTR protein by ivacaftor appear to be a predictive pharmacodynamic biomarker of lung function changes on a population basis but are unsuitable for the prediction of treatment benefits for individuals.

  11. Mononuclear Phagocytes and Airway Epithelial Cells: Novel Sources of Matrix Metalloproteinase-8 (MMP-8) in Patients with Idiopathic Pulmonary Fibrosis

    PubMed Central

    Craig, Vanessa J.; Polverino, Francesca; Laucho-Contreras, Maria E.; Shi, Yuanyuan; Liu, Yushi; Osorio, Juan C.; Tesfaigzi, Yohannes; Pinto-Plata, Victor; Gochuico, Bernadette R.; Rosas, Ivan O.; Owen, Caroline A.

    2014-01-01

    Objectives Matrix metalloproteinase-8 (MMP-8) promotes lung fibrotic responses to bleomycin in mice. Although prior studies reported that MMP-8 levels are increased in plasma and bronchoalveolar lavage fluid (BALF) samples from IPF patients, neither the bioactive forms nor the cellular sources of MMP-8 in idiopathic pulmonary fibrosis (IPF) patients have been identified. It is not known whether MMP-8 expression is dys-regulated in IPF leukocytes or whether MMP-8 plasma levels correlate with IPF outcomes. Our goal was to address these knowledge gaps. Methods We measured MMP-8 levels and forms in blood and lung samples from IPF patients versus controls using ELISAs, western blotting, and qPCR, and assessed whether MMP-8 plasma levels in 73 IPF patients correlate with rate of lung function decline and mortality. We used immunostaining to localize MMP-8 expression in IPF lungs. We quantified MMP-8 levels and forms in blood leukocytes from IPF patients versus controls. Results IPF patients have increased BALF, whole lung, and plasma levels of soluble MMP-8 protein. Active MMP-8 is the main form elevated in IPF lungs. MMP-8 mRNA levels are increased in monocytes from IPF patients, but IPF patients and controls have similar levels of MMP-8 in PMNs. Surprisingly, macrophages and airway epithelial cells are the main cells expressing MMP-8 in IPF lungs. Plasma and BALF MMP-8 levels do not correlate with decline in lung function and/or mortality in IPF patients. Conclusion Blood and lung MMP-8 levels are increased in IPF patients. Active MMP-8 is the main form elevated in IPF lungs. Surprisingly, blood monocytes, lung macrophages, and airway epithelial cells are the main cells in which MMP-8 is upregulated in IPF patients. Plasma and BALF MMP-8 levels are unlikely to serve as a prognostic biomarker for IPF patients. These results provide new information about the expression patterns of MMP-8 in IPF patients. PMID:24828408

  12. Liver Fibrosis and Protection Mechanisms Action of Medicinal Plants Targeting Apoptosis of Hepatocytes and Hepatic Stellate Cells

    PubMed Central

    Moreno-Cuevas, Jorge E.; González-Garza, Maria Teresa; Rodríguez-Montalvo, Carlos; Cruz-Vega, Delia Elva

    2014-01-01

    Following chronic liver injury, hepatocytes undergo apoptosis leading to activation of hepatic stellate cells (HSC). Consequently, activated HSC proliferate and produce excessive extracellular matrix, responsible for the scar formation. The pandemic trend of obesity, combined with the high incidence of alcohol intake and viral hepatitis infections, highlights the urgent need to find accessible antifibrotic therapies. Treatment strategies should take into account the versatility of its pathogenesis and act on all the cell lines involved to reduce liver fibrosis. Medicinal plants are achieving popularity as antifibrotic agents, supported by their safety, cost-effectiveness, and versatility. This review will describe the role of hepatocytes and HSC in the pathogenesis of liver fibrosis and detail the mechanisms of modulation of apoptosis of both cell lines by twelve known hepatoprotective plants in order to reduce liver fibrosis. PMID:25505905

  13. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology

    NASA Astrophysics Data System (ADS)

    Mederacke, Ingmar; Hsu, Christine C.; Troeger, Juliane S.; Huebener, Peter; Mu, Xueru; Dapito, Dianne H.; Pradere, Jean-Philippe; Schwabe, Robert F.

    2013-11-01

    Although organ fibrosis causes significant morbidity and mortality in chronic diseases, the lack of detailed knowledge about specific cellular contributors mediating fibrogenesis hampers the design of effective antifibrotic therapies. Different cellular sources, including tissue-resident and bone marrow-derived fibroblasts, pericytes and epithelial cells, have been suggested to give rise to myofibroblasts, but their relative contributions remain controversial, with profound differences between organs and different diseases. Here we employ a novel Cre-transgenic mouse that marks 99% of hepatic stellate cells (HSCs), a liver-specific pericyte population, to demonstrate that HSCs give rise to 82-96% of myofibroblasts in models of toxic, cholestatic and fatty liver disease. Moreover, we exclude that HSCs function as facultative epithelial progenitor cells in the injured liver. On the basis these findings, HSCs should be considered the primary cellular target for antifibrotic therapies across all types of liver disease.

  14. Mast cells in renal inflammation and fibrosis: lessons learnt from animal studies.

    PubMed

    Madjene, Lydia Celia; Pons, Maguelonne; Danelli, Luca; Claver, Julien; Ali, Liza; Madera-Salcedo, Iris K; Kassas, Asma; Pellefigues, Christophe; Marquet, Florian; Dadah, Albert; Attout, Tarik; El-Ghoneimi, Alaa; Gautier, Gregory; Benhamou, Marc; Charles, Nicolas; Daugas, Eric; Launay, Pierre; Blank, Ulrich

    2015-01-01

    Mast cells are hematopoietic cells involved in inflammation and immunity and have been recognized also as important effector cells in kidney inflammation. In humans, only a few mast cells reside in kidneys constitutively but in progressive renal diseases their numbers increase substantially representing an essential part of the interstitial infiltrate of inflammatory cells. Recent data obtained in experimental animal models have emphasized a complex role of these cells and the mediators they release as they have been shown both to promote, but also to protect from disease and fibrosis development. Sometimes conflicting results have been reported in similar models suggesting a very narrow window between these activities depending on the pathophysiological context. Interestingly in mice, mast cell or mast cell mediator specific actions became also apparent in the absence of significant mast cell kidney infiltration supporting systemic or regional actions via draining lymph nodes or kidney capsules. Many of their activities rely on the capacity of mast cells to release, in a timely controlled manner, a wide range of inflammatory mediators, which can promote anti-inflammatory actions and repair activities that contribute to healing, but in some circumstances or in case of inappropriate regulation may also promote kidney disease.

  15. TGF-β1 Induces the Dual Regulation of Hepatic Progenitor Cells with Both Anti- and Proliver Fibrosis.

    PubMed

    Yang, Ai-Ting; Hu, Dou-Dou; Wang, Ping; Cong, Min; Liu, Tian-Hui; Zhang, Dong; Sun, Ya-Meng; Zhao, Wen-Shan; Jia, Ji-Dong; You, Hong

    2016-01-01

    Transforming growth factor-beta 1 (TGF-β1) plays a central role in hepatic progenitor cells- (HPCs-) mediated liver repair and fibrosis. However, different effects of TGF-β1 on progenitor cells have not been described. In this study, both in vitro (HPCs cocultured with hepatic stellate cells (HSCs) in transwells) and in vivo (CCl4-injured liver fibrosis rat) systems were used to evaluate the impacts. We found that HPCs pretreated with TGF-β1 for 12 hours inhibited the activation of HSCs, while sensitization for 48 hours increased the activation of HSCs. Consistent with these in vitro results, the in vivo fibrosis rat model showed the same time-dependent dual effect of TGF-β1. Regression of liver fibrosis as well as normalization of serum aminotransferase and albumin levels was detected in the rats transplanted with HPCs pretreated with TGF-β1 for 12 hours. In contrast, severe liver fibrosis and elevated collagen-1 levels were detected in the rats transplanted with HPCs pretreated with TGF-β1 for 48 hours. Furthermore, the TGF-β1-pretreated HPCs were shown to deactivate HSCs via enhancing SERPINE1 expression. Inhibition of SERPINE1 reversed the deactivation response in a dose-dependent manner.

  16. Early Outgrowth Cells Release Soluble Endocrine Antifibrotic Factors That Reduce Progressive Organ Fibrosis

    PubMed Central

    Yuen, Darren A.; Connelly, Kim A.; Zhang, Yanling; Advani, Suzanne L.; Thai, Kerri; Kabir, Golam; Kepecs, David; Spring, Christopher; Smith, Christopher; Batruch, Ihor; Kosanam, Hari; Advani, Andrew; Diamandis, Eleftherios; Marsden, Philip A.; Gilbert, Richard E.

    2017-01-01

    Adult bone marrow-derived cells can improve organ function in chronic disease models, ostensibly by the release of paracrine factors. It has, however, been difficult to reconcile this prevailing paradigm with the lack of cell retention within injured organs and their rapid migration to the reticuloendothelial system. Here, we provide evidence that the salutary antifibrotic effects of bone marrow-derived early outgrowth cells (EOCs) are more consistent with an endocrine mode of action, demonstrating not only the presence of antifibrotic factors in the plasma of EOC-treated rats but also that EOC conditioned medium (EOC-CM) potently attenuates both TGF-β- and angiotensin II-induced fibroblast collagen production in vitro. To examine the therapeutic relevance of these findings in vivo, 5/6 subtotally nephrectomized rats, a model of chronic kidney and heart failure characterized by progressive fibrosis of both organs, were randomized to receive i.v. injections of EOC-CM, unconditioned medium, or 106 EOCs. Rats that received unconditioned medium developed severe kidney injury with cardiac diastolic dysfunction. In comparison, EOC-CM-treated rats demonstrated substantially improved renal and cardiac function and structure, mimicking the changes found in EOC-treated animals. Mass spectrometric analysis of EOC-CM identified proteins that regulate cellular functions implicated in fibrosis. These results indicate that EOCs secrete soluble factor(s) with highly potent antifibrotic activity, that when injected intravenously replicate the salutary effects of the cells themselves. Together, these findings suggest that an endocrine mode of action may underlie the effectiveness of cell therapy in certain settings and portend the possibility for systemic delivery of cell-free therapy. PMID:23922321

  17. The improving effects on hepatic fibrosis of interferon-γ liposomes targeted to hepatic stellate cells.

    PubMed

    Li, Qinghua; Yan, Zhiqiang; Li, Feng; Lu, Weiyue; Wang, Jiyao; Guo, Chuanyong

    2012-07-05

    No satisfactory anti-fibrotic therapies have yet been applied clinically. One of the main reasons is the inability to specifically target the responsible cells to produce an available drug concentration and the side-effects. Exploiting the key role of the activated hepatic stellate cells (HSCs) in both hepatic fibrogenesis and over-expression of platelet-derived growth factor receptor- (PDGFR- ), we constructed targeted sterically stable liposomes (SSLs) modified by a cyclic peptide (pPB) with affinity for the PDGFR- to deliver interferon (IFN)- to HSCs. The pPB-SSL-IFN- showed satisfactory size distribution. In vitro pPB-SSL could be taken up by activated HSCs. The study of tissue distribution via living-body animal imaging showed that the pPB-SSL-IFN- mostly accumulated in the liver until 24 h. Furthermore, the pPB-SSL-IFN- showed more significant remission of hepatic fibrosis. In vivo the histological Ishak stage, the semiquantitative score for collagen in fibrotic liver and the serum levels of collagen type IV-C in fibrotic rats treated with pPB-SSL-IFN- were less than those treated with SSL-IFN- , IFN- and the control group. In vitro pPB-SSL-IFN- was also more effective in suppressing activated HSC proliferation and inducing apoptosis of activated HSCs. Thus the data suggest that pPB-SSL-IFN- might be a more effective anti-fibrotic agent and a new opportunity for clinical therapy of hepatic fibrosis.

  18. Ouabain Mimics Low Temperature Rescue of F508del-CFTR in Cystic Fibrosis Epithelial Cells

    PubMed Central

    Zhang, Donglei; Ciciriello, Fabiana; Anjos, Suzana M.; Carissimo, Annamaria; Liao, Jie; Carlile, Graeme W.; Balghi, Haouaria; Robert, Renaud; Luini, Alberto; Hanrahan, John W.; Thomas, David Y.

    2012-01-01

    Most cases of cystic fibrosis (CF) are caused by the deletion of a single phenylalanine residue at position 508 of the cystic fibrosis transmembrane conductance regulator (CFTR). The mutant F508del-CFTR is retained in the endoplasmic reticulum and degraded, but can be induced by low temperature incubation (29°C) to traffic to the plasma membrane where it functions as a chloride channel. Here we show that, cardiac glycosides, at nanomolar concentrations, can partially correct the trafficking of F508del-CFTR in human CF bronchial epithelial cells (CFBE41o-) and in an F508del-CFTR mouse model. Comparison of the transcriptional profiles obtained with polarized CFBE41o-cells after treatment with ouabain and by low temperature has revealed a striking similarity between the two corrector treatments that is not shared with other correctors. In summary, our study shows a novel function of ouabain and its analogs in the regulation of F508del-CFTR trafficking and suggests that compounds that mimic this low temperature correction of trafficking will provide new avenues for the development of therapeutics for CF. PMID:23060796

  19. Progress toward generating a ferret model of cystic fibrosis by somatic cell nuclear transfer

    PubMed Central

    Li, Ziyi; Engelhardt, John F

    2003-01-01

    Mammalian cloning by nuclear transfer from somatic cells has created new opportunities to generate animal models of genetic diseases in species other than mice. Although genetic mouse models play a critical role in basic and applied research for numerous diseases, often mouse models do not adequately reproduce the human disease phenotype. Cystic fibrosis (CF) is one such disease. Targeted ablation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in mice does not adequately replicate spontaneous bacterial infections observed in the human CF lung. Hence, several laboratories are pursuing alternative animal models of CF in larger species such as the pig, sheep, rabbits, and ferrets. Our laboratory has focused on developing the ferret as a CF animal model. Over the past few years, we have investigated several experimental parameters required for gene targeting and nuclear transfer (NT) cloning in the ferret using somatic cells. In this review, we will discuss our progress and the hurdles to NT cloning and gene-targeting that accompany efforts to generate animal models of genetic diseases in species such as the ferret. PMID:14613541

  20. Mesenchymal stem cells protect against the tissue fibrosis of ketamine-induced cystitis in rat bladder

    PubMed Central

    Kim, Aram; Yu, Hwan Yeul; Heo, Jinbeom; Song, Miho; Shin, Jung-Hyun; Lim, Jisun; Yoon, Soo-Jung; Kim, YongHwan; Lee, Seungun; Kim, Seong Who; Oh, Wonil; Choi, Soo Jin; Shin, Dong-Myung; Choo, Myung-Soo

    2016-01-01

    Abuse of the hallucinogenic drug ketamine promotes the development of lower urinary tract symptoms that resemble interstitial cystitis. The pathophysiology of ketamine-induced cystitis (KC) is largely unknown and effective therapies are lacking. Here, using a KC rat model, we show the therapeutic effects of human umbilical cord-blood (UCB)-derived mesenchymal stem cells (MSCs). Daily injection of ketamine to Sprague-Dawley rats for 2-weeks resulted in defective bladder function, indicated by irregular voiding frequency, increased maximum contraction pressure, and decreased intercontraction intervals and bladder capacity. KC bladders were characterized by severe mast-cell infiltration, tissue fibrosis, apoptosis, upregulation of transforming growth factor-β signaling related genes, and phosphorylation of Smad2 and Smad3 proteins. A single administration of MSCs (1 × 106) into bladder tissue not only significantly ameliorated the aforementioned bladder voiding parameters, but also reversed the characteristic histological and gene-expression alterations of KC bladder. Treatment with the antifibrotic compound N-acetylcysteine also alleviated the symptoms and pathological characteristics of KC bladder, indicating that the antifibrotic capacity of MSC therapy underlies its benefits. Thus, this study for the first-time shows that MSC therapy might help to cure KC by protecting against tissue fibrosis in a KC animal model and provides a foundation for clinical trials of MSC therapy. PMID:27481042

  1. Identification of a Cell-of-Origin for Fibroblasts Comprising the Fibrotic Reticulum in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Xia, Hong; Bodempudi, Vidya; Benyumov, Alexey; Hergert, Polla; Tank, Damien; Herrera, Jeremy; Braziunas, Jeff; Larsson, Ola; Parker, Matthew; Rossi, Daniel; Smith, Karen; Peterson, Mark; Limper, Andrew; Jessurun, Jose; Connett, John; Ingbar, David; Phan, Sem; Bitterman, Peter B.; Henke, Craig A.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease of the middle aged and elderly with a prevalence of one million persons worldwide. The fibrosis spreads from affected alveoli into contiguous alveoli, creating a reticular network that leads to death by asphyxiation. Lung fibroblasts from patients with IPF have phenotypic hallmarks, distinguishing them from their normal counterparts: pathologically activated Akt signaling axis, increased collagen and α-smooth muscle actin expression, distinct gene expression profile, and ability to form fibrotic lesions in model organisms. Despite the centrality of these fibroblasts in disease pathogenesis, their origin remains uncertain. Here, we report the identification of cells in the lungs of patients with IPF with the properties of mesenchymal progenitors. In contrast to progenitors isolated from nonfibrotic lungs, IPF mesenchymal progenitor cells produce daughter cells manifesting the full spectrum of IPF hallmarks, including the ability to form fibrotic lesions in zebrafish embryos and mouse lungs, and a transcriptional profile reflecting these properties. Morphological analysis of IPF lung tissue revealed that mesenchymal progenitor cells and cells with the characteristics of their progeny comprised the fibrotic reticulum. These data establish that the lungs of patients with IPF contain pathological mesenchymal progenitor cells that are cells of origin for fibrosis-mediating fibroblasts. These fibrogenic mesenchymal progenitors and their progeny represent an unexplored target for novel therapies to interdict fibrosis. PMID:24631025

  2. Cystic fibrosis transmembrane conductance regulator protein expression rate in healthy spermatozoa is not correlated with ovum fertilisation rate.

    PubMed

    Li, H-G; Xu, C-M; Chen, W-Y; Shi, Q-X; Ni, Y

    2012-05-01

    Our previous studies have shown that the cystic fibrosis transmembrane conductance regulator (CFTR) was important for capacitation and fertilisation in mouse, guinea pig and human spermatozoa. However, it is unclear whether CFTR is correlated with ovum fertilisation rate. The present study was to test the possible relationship between spermatozoa CFTR protein expression rate in healthy men and ovum fertilisation rate during in vitro fertilisation. Ninety-four couples for female factor infertility for IVF-ET treatments were retrospectively studied. All the patients were divided into three groups based on the fertilisation rate of ovum in vitro. It was performed to explore whether there were differences in sperm CFTR protein expression rate among the three groups and the relevance between CFTR protein expression rate and ovum fertilisation rate. Our study showed that there was no significant differences in sperm CFTR protein expression rate among the three groups (F = 0.614, P = 0.544), and the relevance between spermatozoa CFTR protein expression rate and ovum fertilisation rate was not significantly different (r = 0.013, P = 0.904). These results further suggest that CFTR protein expression rate in healthy men spermatozoa was not associated with ovum fertilisation rate and thus we cannot predict ovum fertilisation results by sperm CFTR protein expression rate.

  3. Smoking-related interstitial fibrosis combined with pulmonary emphysema: computed tomography-pathologic correlative study using lobectomy specimens.

    PubMed

    Otani, Hideji; Tanaka, Tomonori; Murata, Kiyoshi; Fukuoka, Junya; Nitta, Norihisa; Nagatani, Yukihiro; Sonoda, Akinaga; Takahashi, Masashi

    2016-01-01

    To evaluate the incidence and pathologic correlation of thin-section computed tomography (TSCT) findings in smoking-related interstitial fibrosis (SRIF) with pulmonary emphysema. Our study included 172 consecutive patients who underwent TSCT and subsequent lobectomy. TSCT findings including clustered cysts with visible walls (CCVW) and ground-glass attenuation with/without reticulation (GGAR) were evaluated and compared in nonsmokers and smokers and among lung locations. TSCT findings, especially CCVW, were also compared with histological findings using lobectomy specimens. The incidence of CCVW and GGAR was significantly higher in smokers than in nonsmokers (34.1% and 40.7%, respectively, vs 2.0% and 12.2%). CCVW and GGAR were frequently found in the lower and peripheral zones. Histologically, CCVW corresponded more often with SRIF with emphysema than usual interstitial pneumonia (UIP, 63.3% vs 30%). CCVW of irregular size and shape were seen in 19 of 20 SRIF with emphysema and in seven of nine UIP-manifested areas with similar round cysts. A less-involved subpleural parenchyma was observed more frequently in SRIF with emphysema. SRIF with emphysema is a more frequent pathological finding than UIP in patients with CCVW on TSCT. The irregular size and shape of CCVW and a less-involved subpleural parenchyma may be a clue suggesting the presence of SRIF with emphysema.

  4. Antisense oligodeoxynucleotide to the cystic fibrosis gene inhibits anion transport in normal cultured sweat duct cells

    SciTech Connect

    Sorscher, E.J.; Kirk, K.L.; Weaver, M.L.; Jilling, T.; Blalock, J.E.; LeBoeuf, R.D. )

    1991-09-01

    The authors have tested the hypothesis that the cystic fibrosis (CF) gene product, called the CF transmembrane conductance regulator (CFTR), mediates anion transport in normal human sweat duct cells. Sweat duct cells in primary culture were treated with oligodeoxynucleotides that were antisense to the CFTR gene transcript in order to block the expression of the wild-type CFTR. Anion transport in CFTR transcript antisense-treated cells was then assessed with a halide-specific dye, 6-methoxy-N-(3-sulfopropryl)quinolinium, and fluorescent digital imaging microscopy to monitor halide influx and efflux from single sweat duct cells. Antisense oligodeoxynucleotide treatment for 24 hr virtually abolished Cl{sup {minus}} transport in sweat duct cells compared with untreated cells or control cells treated with sense oligodeoxynucleotides. Br{sup {minus}} uptake into sweat duct cells was also blocked after a 24-hr CFTR transcript antisense treatments, but not after treatments for only 4 hr. Lower concentrations of antisense oligodeoxynucleotides were less effective at inhibiting Cl{sup {minus}} transport. These results indicate that oligodeoxynucleotides that are antisense to CFTR transcript inhibit sweat duct Cl{sup {minus}} permeability in both a time-dependent and dose-dependent manner. This approach provides evidence that inhibition of the expression of the wild-type CFTR gene in a normal, untransfected epithelial cell results in an inhibition of Cl{sup {minus}} permeability.

  5. Increased tubulointerstitial recruitment of human CD141(hi) CLEC9A(+) and CD1c(+) myeloid dendritic cell subsets in renal fibrosis and chronic kidney disease.

    PubMed

    Kassianos, Andrew J; Wang, Xiangju; Sampangi, Sandeep; Muczynski, Kimberly; Healy, Helen; Wilkinson, Ray

    2013-11-15

    Dendritic cells (DCs) play critical roles in immune-mediated kidney diseases. Little is known, however, about DC subsets in human chronic kidney disease, with previous studies restricted to a limited set of pathologies and to using immunohistochemical methods. In this study, we developed novel protocols for extracting renal DC subsets from diseased human kidneys and identified, enumerated, and phenotyped them by multicolor flow cytometry. We detected significantly greater numbers of total DCs as well as CD141(hi) and CD1c(+) myeloid DC (mDCs) subsets in diseased biopsies with interstitial fibrosis than diseased biopsies without fibrosis or healthy kidney tissue. In contrast, plasmacytoid DC numbers were significantly higher in the fibrotic group compared with healthy tissue only. Numbers of all DC subsets correlated with loss of kidney function, recorded as estimated glomerular filtration rate. CD141(hi) DCs expressed C-type lectin domain family 9 member A (CLEC9A), whereas the majority of CD1c(+) DCs lacked the expression of CD1a and DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), suggesting these mDC subsets may be circulating CD141(hi) and CD1c(+) blood DCs infiltrating kidney tissue. Our analysis revealed CLEC9A(+) and CD1c(+) cells were restricted to the tubulointerstitium. Notably, DC expression of the costimulatory and maturation molecule CD86 was significantly increased in both diseased cohorts compared with healthy tissue. Transforming growth factor-β levels in dissociated tissue supernatants were significantly elevated in diseased biopsies with fibrosis compared with nonfibrotic biopsies, with mDCs identified as a major source of this profibrotic cytokine. Collectively, our data indicate that activated mDC subsets, likely recruited into the tubulointerstitium, are positioned to play a role in the development of fibrosis and, thus, progression to chronic kidney disease.

  6. [Correlation between the mRNA expression of tissue inhibitor of metalloproteinase-1 and apparent diffusion coefficient on diffusion-weighted imaging in rats' liver fibrosis].

    PubMed

    Zhan, Yuefu; Liang, Xianwen; Han, Xiangjun; Chen, Jianqiang; Zhang, Shufang; Tan, Shun; Li, Qun; Wang, Xiong; Liu, Fan

    2017-02-28

    To explore the correlation between the apparent diffusion coefficient (ADC) and mRNA expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in different stages of liver fibrosis in rats.
 Methods: A model of liver fibrosis in rats was established by intraperitoneal injection of high-fat diet combined with porcine serum. After drug administration for 4 weeks, 48 rats served as a model group and 12 rats served as a control group, then they underwent diffusion weighted imaging (DWI) scanning. The value of ADC was calculated at b value=800 s/mm2. The rats were sacrificed and carried out pathologic examination after DWI scanning immediately. The mRNA expression of TIMP-1 was detected by real time-polymerase chain reaction (RT-PCR). The rats of hepatic fibrosis were also divided into a S0 group (n=4), a S1 group (n=11), a S2 group (n=12), a S3 group (n=10), and a S4 group (n=9) according to their pathological stage. The value of ADC and the expression of TIMP-1 mRNA among the different stage groups of liver fibrosis were compared, and the correlation between ADC and the TIMP-1 mRNA were analyzed.
 Results: The ADC value and the TIMP-1 mRNA expression were significantly different between the control group and the liver fibrosis group (F=46.54 and 53.87, P<0.05). There were significant differences in the value of ADC between every two groups (all P<0.05), except the control group vs the S1 group, the S1 group vs the S2 group, and the S2 group vs the S3 group (all P>0.05). For the comparison of TIMP-1 mRNA, there was no significant difference between the S1 group and the S2 group, the S3 group and the S4 group (both P>0.05). There were significant differences among the rest of the groups (all P<0.05). Rank correlation analysis showed that there was a negative correlation between the ADC value and the TIMP-1 mRNA expression (r=-0.76, P<0.01).
 Conclusion: When the value of ADC decreases in the progress of rats' liver fibrosis, the mRNA expression of TIMP-1

  7. Evidence that the cells responsible for marrow fibrosis in a rat model for hyperparathyroidism are preosteoblasts.

    PubMed

    Lotinun, Sutada; Sibonga, Jean D; Turner, Russell T

    2005-09-01

    We examined proliferation of cells associated with PTH-induced peritrabecular bone marrow fibrosis in rats as well as the fate of those cells after withdrawal of PTH. Time-course studies established that severe fibrosis was present 7 d after initiation of a continuous sc PTH infusion (40 microg/kg.d). To ascertain cell proliferation, rats were coinfused for 1 wk with PTH (treated) or vehicle (control) and [3H]thymidine (1.5 mCi/rat). Groups of control and treated rats were killed immediately (d 0) and 1 wk (d 7) later. Few osteoblasts (Obs) and osteocytes in treated and control groups were radiolabeled on d 0. Peritrabecular cells expressing a fibroblastic (Fb) phenotype and surrounded by an extracellular matrix were not present in controls on either d 0 or d 7. Multiple cell layers of Fbs lined most (70%) of the bone surface on d 0 in treated rats and nearly all (85%) of the Fbs were radiolabeled. Fbs had entirely disappeared from bone surfaces on d 7. Eighty-five percent of the Obs on and 73% of the osteocytes within the active remodeling sites were radiolabeled. Immunohistochemistry revealed that Fbs induced by PTH treatment produced osteocalcin, osteonectin, and core binding factor-alpha1. These data provide compelling evidence that Fbs recruited to bone surfaces in response to a continuous PTH infusion undergo extensive proliferation, express osteoblast-specific proteins, and produce an extracellular matrix that is similar to osteoid. After restoration of normal PTH levels, Fbs differentiated to Obs, providing further evidence that Fbs are preosteoblasts.

  8. Streptomycin treatment alters the intestinal microbiome, pulmonary T cell profile and airway hyperresponsiveness in a cystic fibrosis mouse model.

    PubMed

    Bazett, Mark; Bergeron, Marie-Eve; Haston, Christina K

    2016-01-12

    Cystic fibrosis transmembrane conductance regulator deficient mouse models develop phenotypes of relevance to clinical cystic fibrosis (CF) including airway hyperresponsiveness, small intestinal bacterial overgrowth and an altered intestinal microbiome. As dysbiosis of the intestinal microbiota has been recognized as an important contributor to many systemic diseases, herein we investigated whether altering the intestinal microbiome of BALB/c Cftr(tm1UNC) mice and wild-type littermates, through treatment with the antibiotic streptomycin, affects the CF lung, intestinal and bone disease. We demonstrate that streptomycin treatment reduced the intestinal bacterial overgrowth in Cftr(tm1UNC) mice and altered the intestinal microbiome similarly in Cftr(tm1UNC) and wild-type mice, principally by affecting Lactobacillus levels. Airway hyperresponsiveness of Cftr(tm1UNC) mice was ameliorated with streptomycin, and correlated with Lactobacillus abundance in the intestine. Additionally, streptomycin treated Cftr(tm1UNC) and wild-type mice displayed an increased percentage of pulmonary and mesenteric lymph node Th17, CD8 + IL-17+ and CD8 + IFNγ+ lymphocytes, while the CF-specific increase in respiratory IL-17 producing γδ T cells was decreased in streptomycin treated Cftr(tm1UNC) mice. Bone disease and intestinal phenotypes were not affected by streptomycin treatment. The airway hyperresponsiveness and lymphocyte profile of BALB/c Cftr(tm1UNC) mice were affected by streptomycin treatment, revealing a potential intestinal microbiome influence on lung response in BALB/c Cftr(tm1UNC) mice.

  9. Sphingosine-1-Phosphate Prevents Egress of Hematopoietic Stem Cells From Liver to Reduce Fibrosis.

    PubMed

    King, Andrew; Houlihan, Diarmaid D; Kavanagh, Dean; Haldar, Debashis; Luu, Nguyet; Owen, Andrew; Suresh, Shankar; Than, Nwe Ni; Reynolds, Gary; Penny, Jasmine; Sumption, Henry; Ramachandran, Prakash; Henderson, Neil C; Kalia, Neena; Frampton, Jon; Adams, David H; Newsome, Philip N

    2017-07-01

    There is growing interest in the use of bone marrow cells to treat liver fibrosis, however, little is known about their antifibrotic efficacy or the identity of their effector cell(s). Sphingosine-1-phosphate (S1P) mediates egress of immune cells from the lymphoid organs into the lymphatic vessels; we investigated its role in the response of hematopoietic stem cells (HSCs) to liver fibrosis in mice. Purified (c-kit+/sca1+/lin-) HSCs were infused repeatedly into mice undergoing fibrotic liver injury. Chronic liver injury was induced in BoyJ mice by injection of carbon tetrachloride (CCl4) or placement on a methionine-choline-deficient diet. Some mice were irradiated and given transplants of bone marrow cells from C57BL6 mice, with or without the S1P antagonist FTY720; we then studied HSC mobilization and localization. Migration of HSC lines was quantified in Transwell assays. Levels of S1P in liver, bone marrow, and lymph fluid were measured using an enzyme-linked immunosorbent assay. Liver tissues were collected and analyzed by immunohistochemical quantitative polymerase chain reaction and sphingosine kinase activity assays. We performed quantitative polymerase chain reaction analyses of the expression of sphingosine kinase 1 and 2, sphingosine-1-phosphate lyase 1, and sphingosine-1-phosphate phosphatase 1 in normal human liver and cirrhotic liver from patients with alcohol-related liver disease (n = 6). Infusions of HSCs into mice with liver injury reduced liver scarring based on picrosirius red staining (49.7% reduction in mice given HSCs vs control mice; P < .001), and hepatic hydroxyproline content (328 mg/g in mice given HSCs vs 428 mg/g in control mice; P < .01). HSC infusion also reduced hepatic expression of α-smooth muscle actin (0.19 ± 0.007-fold compared with controls; P < .0001) and collagen type I α 1 chain (0.29 ± 0.17-fold compared with controls; P < .0001). These antifibrotic effects were maintained with infusion of lymphoid progenitors that

  10. Arecoline inhibits epithelial cell viability by upregulating the apoptosis pathway: implication for oral submucous fibrosis.

    PubMed

    Li, Ming; Gao, Feng; Zhou, Zhong-Su; Zhang, Hui-Ming; Zhang, Rui; Wu, Ying-Fang; Bai, Ming-Hai; Li, Ji-Jia; Lin, Shi-Rong; Peng, Jie-Ying

    2014-05-01

    Oral submucous fibrosis (OSF) is a chronic inflammatory disease characterized by the accumulation of excess collagen, and areca nut chewing has been proposed as a significant etiological factor for disease manifestation. However, the underlying molecular mechanisms regarding areca nut chewing-induced OSF are only partially understood. Herein, we reported that arecoline markedly induced morphologic change in HaCaT epithelial cells, but had no obvious effect on Hel fibroblast cells. MTS assay revealed that arecoline significantly suppressed HaCaT cell viability. Moreover, flow cytometric analysis indicated that arecoline substantially promoted HaCaT cell, but not Hel cell apoptosis in a dose-dependent manner. Furthermore, arecoline-induced HaCaT cell apoptosis was found to be associated with increased expression and activation of cleaved-Bid, cleaved-PARA and cleaved-caspase-3. Collectively, our results suggest that HaCaT epithelial cells are more sensitive than Hel fibroblast cells to arecoline-induced cytotoxicity, which may be involved in the pathogenesis of OSF.

  11. Tissue culture of normal and cystic fibrosis sweat gland duct cells. I. Alterations in dome formation.

    PubMed

    Hazen-Martin, D J; Spicer, S S; Sens, M A; Jenkins, M Q; Westphal, M C; Sens, D A

    1987-01-01

    The elucidation of the underlying defect in fluid secretion by cystic fibrosis (CF) sweat glands is hindered by the unavailability of an experimental model for investigating this disease. As a potential model system, a serum-free growth medium was developed that supports the explant growth of epithelial cells from fragments of human skin. Immunohistochemical analysis demonstrated that these epithelial cell outgrowths originated from the duct of the sweat gland. By electron microscopy, the cells were demonstrated to possess keratinocyte-like morphology as noted by the presence of a multilayered outgrowth of cells containing well-defined keratin bundles. Identical outgrowths from skin biopsies of CF patients were compared to normal outgrowths and alterations were noted to occur in dome formation and in the number of intercellular spaces between cells. Doming alterations were also noted to occur in the CF heterozygous state. No differences in cell fine structure or in growth factor requirements for cell proliferation were noted between normal and CF cells. The potential use of this system as a model for CF research is discussed.

  12. Restoring homeostasis of CD4+ T cells in hepatitis-B-virus-related liver fibrosis

    PubMed Central

    Cheng, Li-Sha; Liu, Yun; Jiang, Wei

    2015-01-01

    Immune-mediated liver injury is widely seen during hepatitis B virus (HBV) infection. Unsuccessful immune clearance of HBV results in chronic hepatitis and increases the risk of liver cirrhosis and hepatocellular carcinoma. HBV-related liver fibrosis (HBVLF), occurring as a result of HBV-induced chronic hepatitis, is a reversible, intermediate stage of chronic hepatitis B (CHB) and liver cirrhosis. Therefore, defining the pathogenesis of HBVLF is of practical significance for achieving better clinical outcomes. Recently, the homeostasis of CD4+ T cells was considered to be pivotal in the process of HBVLF. To better uncover the underlying mechanisms, in this review, we systematically retrospect the impacts of different CD4+ T-cell subsets on CHB and HBVLF. We emphasize CD4+ T-cell homeostasis and the important balance between regulatory T (Treg) and T helper 17 (Th17) cells. We discuss some cytokines associated with Treg and Th17 cells such as interleukin (IL)-17, IL-22, IL-21, IL-23, IL-10, IL-35 and IL-33, as well as surface molecules such as programmed cell death protein 1, cytotoxic T lymphocyte-associated antigen 4, T cell immunoglobulin domain and mucin domain-containing molecule 3 and cannabinoid receptor 2 that have potential therapeutic implications for the homeostasis of CD4+ T cells in CHB and HBVLF. PMID:26478664

  13. Bone marrow mesenchymal stem cells protect against bleomycin-induced pulmonary fibrosis in rat by activating Nrf2 signaling

    PubMed Central

    Ni, Shirong; Wang, Dexuan; Qiu, Xiaoxiao; Pang, Lingxia; Song, Zhangjuan; Guo, Kunyuan

    2015-01-01

    Pulmonary fibrosis is a progressive and lethal disorder. Although the precise mechanisms of pulmonary fibrosis are not fully understood, oxidant/antioxidant may play an important role in many of the processes of inflammation and fibrosis. Keap1-Nrf2-ARE pathway represents one of the most important cellular defense mechanisms against oxidative stress. Mesenchymal stem cells (MSC) are in clinical trials for widespread indications including musculoskeletal, neurological, cardiac and haematological disorders. One emerging concept is that MSCs may have paracrine, rather than a functional, roles in lung injury repair and regeneration. In the present study, we investigated bone marrow mesenchymal stem cells (BMSCs) for the treatment of bleomycin-induced pulmonary fibrosis. Our results showed that BMSCs administration significantly ameliorated the bleomycin mediated histological alterations and blocked collagen deposition with parallel reduction in the hydroxyproline level. The gene expression levels of NAD(P)H: quinine oxidoreductase 1 (NQO1), gama-glutamylcysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2), attenuated by bleomycin, were increased up to basal levels after BMSCs transplantation. BMSCs significantly increased superoxide dismutase (SOD) activity and inhibited malondialdehyde (MDA) production in the injured lung. The present study provides evidence that BMSCs may be a potential therapeutic reagent for the treatment of lung fibrosis. PMID:26339340

  14. Contribution and Mobilization of Mesenchymal Stem Cells in a mouse model of carbon tetrachloride-induced liver fibrosis.

    PubMed

    Liu, Yan; Yang, Xue; Jing, Yingying; Zhang, Shanshan; Zong, Chen; Jiang, Jinghua; Sun, Kai; Li, Rong; Gao, Lu; Zhao, Xue; Wu, Dong; Shi, Yufang; Han, Zhipeng; Wei, Lixin

    2015-12-08

    Hepatic fibrosis is associated with bone marrow derived mesenchymal stem cells (BM-MSCs). In this study, we aimed to determine what role MSCs play in the process and how they mobilize from bone marrow (BM). We employed a mouse model of carbon tetrachloride(CCl4)-induced liver fibrosis. Frozen section was used to detect MSCs recruited to mice and human fibrotic liver. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) was detected to assess liver function. It was found that MSCs of both exogenous and endogenous origin could aggravate liver fibrosis and attenuate liver damage as indicated by lower serum ALT and AST levels. Stromal cell-derived factor-1 (SDF-1α)/ CXCR4 was the most important chemotactic axis regulating MSCs migration from BM to fibrotic liver. Frozen section results showed that the migration did not start from the beginning of liver injury but occurred when the expression balance of SDF-1α between liver and BM was disrupted, where SDF-1α expression in liver was higher than that in BM. Our findings provide further evidence to show the role of BM-MSCs in liver fibrosis and to elucidate the mechanism underlying MSCs mobilization in our early liver fibrosis mice model induced by CCl4.

  15. Detection of KI WU and Merkel cell polyomavirus in respiratory tract of cystic fibrosis patients.

    PubMed

    Iaria, M; Caccuri, F; Apostoli, P; Giagulli, C; Pelucchi, F; Padoan, R F; Caruso, A; Fiorentini, S

    2015-06-01

    In the last few years, many reports have confirmed the presence of WU, KI and Merkel cell (MC) polyomaviruses (PyV) in respiratory samples wordwide, but their pathogenic role in patients with underlying conditions such as cystic fibrosis is still debated. To determine the prevalence of MCPyV, WUPyV and KIPyV, we conducted a 1-year-long microbiological testing of respiratory specimens from 93 patients with cystic fibrosis in Brescia, Italy. We detected PyV DNA in 94 out of 337 analysed specimens. KIPyV was the most common virus detected (12.1%), followed by WUPyV (8.9%) and MCPyV (6.8%). We found an intriguing association between the presence of MCPyV and the concurrent isolation of Pseudomonas aeruginosa, as well as with the patient status, classified as chronically colonized with P. aeruginosa. Our study adds perspective on the prevalence and the potential pathogenic role of PyV infections.

  16. Developmental Reprogramming in Mesenchymal Stromal Cells of Human Subjects with Idiopathic Pulmonary Fibrosis

    PubMed Central

    Chanda, Diptiman; Kurundkar, Ashish; Rangarajan, Sunad; Locy, Morgan; Bernard, Karen; Sharma, Nirmal S.; Logsdon, Naomi J.; Liu, Hui; Crossman, David K.; Horowitz, Jeffrey C.; De Langhe, Stijn; Thannickal, Victor J.

    2016-01-01

    Cellular plasticity and de-differentiation are hallmarks of tissue/organ regenerative capacity in diverse species. Despite a more restricted capacity for regeneration, humans with age-related chronic diseases, such as cancer and fibrosis, show evidence of a recapitulation of developmental gene programs. We have previously identified a resident population of mesenchymal stromal cells (MSCs) in the terminal airways-alveoli by bronchoalveolar lavage (BAL) of human adult lungs. In this study, we characterized MSCs from BAL of patients with stable and progressive idiopathic pulmonary fibrosis (IPF), defined as <5% and ≥10% decline, respectively, in forced vital capacity over the preceding 6-month period. Gene expression profiles of MSCs from IPF subjects with progressive disease were enriched for genes regulating lung development. Most notably, genes regulating early tissue patterning and branching morphogenesis were differentially regulated. Network interactive modeling of a set of these genes indicated central roles for TGF-β and SHH signaling. Importantly, fibroblast growth factor-10 (FGF-10) was markedly suppressed in IPF subjects with progressive disease, and both TGF-β1 and SHH signaling were identified as critical mediators of this effect in MSCs. These findings support the concept of developmental gene re-activation in IPF, and FGF-10 deficiency as a potentially critical factor in disease progression. PMID:27869174

  17. Renal fibrosis is not reduced by blocking transforming growth factor-β signaling in matrix-producing interstitial cells.

    PubMed

    Neelisetty, Surekha; Alford, Catherine; Reynolds, Karen; Woodbury, Luke; Nlandu-Khodo, Stellor; Yang, Haichun; Fogo, Agnes B; Hao, Chuan-Ming; Harris, Raymond C; Zent, Roy; Gewin, Leslie

    2015-09-01

    Transforming growth factor-β (TGF-β) strongly promotes renal tubulointerstitial fibrosis, but the cellular target that mediates its profibrotic actions has not been clearly identified. While in vitro data suggest that TGF-β-induced matrix production is mediated by renal fibroblasts, the role of these cells in TGF-β-dependent tubulointerstitial fibrosis following renal injury is not well defined. To address this, we deleted the TGF-β type II receptor in matrix-producing interstitial cells using two different inducible Cre models: COL1A2-Cre with a mesenchymal enhancer element and tenascin-Cre that targets medullary interstitial cells, and either the mouse unilateral ureteral obstruction or the aristolochic acid renal injury model. Renal interstitial cells lacking the TGF-β receptor had significantly impaired collagen I production, but, unexpectedly, overall tissue fibrosis was unchanged in the conditional knockouts after renal injury. Thus, abrogating TGF-β signaling in matrix-producing interstitial cells is not sufficient to reduce fibrosis after renal injury.

  18. Renal fibrosis is not reduced by blocking transforming growth factor-β signaling in matrix-producing interstitial cells

    PubMed Central

    Neelisetty, Surekha; Alford, Catherine; Reynolds, Karen; Woodbury, Luke; Nlandu-khodo, Stellor; Yang, Haichun; Fogo, Agnes B.; Hao, Chuan-Ming; Harris, Raymond C.; Zent, Roy; Gewin, Leslie

    2015-01-01

    Transforming growth factor-β (TGF-β) strongly promotes renal tubulointerstitial fibrosis, but the cellular target that mediates its profibrotic actions has not been clearly identified. While in vitro data suggest that TGF-β-induced matrix production is mediated by renal fibroblasts, the role of these cells in TGF-β-dependent tubulointerstitial fibrosis following renal injury is not well defined. To address this, we deleted the TGF-β type II receptor in matrix-producing interstitial cells using two different inducible Cre models: COL1A2-Cre with a mesenchymal enhancer element and tenascin-Cre which targets medullary interstitial cells and either the mouse unilateral ureteral obstruction or aristolochic acid renal injury model. Renal interstitial cells lacking the TGF-β receptor had significantly impaired collagen I production, but unexpectedly, overall tissue fibrosis was unchanged in the conditional knockouts after renal injury. Thus, abrogating TGF-β signaling in matrix-producing interstitial cells is not sufficient to reduce fibrosis after renal injury. PMID:25760325

  19. Flagellin induces myeloid-derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease.

    PubMed

    Rieber, Nikolaus; Brand, Alina; Hector, Andreas; Graepler-Mainka, Ute; Ost, Michael; Schäfer, Iris; Wecker, Irene; Neri, Davide; Wirth, Andreas; Mays, Lauren; Zundel, Sabine; Fuchs, Jörg; Handgretinger, Rupert; Stern, Martin; Hogardt, Michael; Döring, Gerd; Riethmüller, Joachim; Kormann, Michael; Hartl, Dominik

    2013-02-01

    Pseudomonas aeruginosa persists in patients with cystic fibrosis (CF) and drives CF lung disease progression. P. aeruginosa potently activates the innate immune system, mainly mediated through pathogen-associated molecular patterns, such as flagellin. However, the host is unable to eradicate this flagellated bacterium efficiently. The underlying immunological mechanisms are incompletely understood. Myeloid-derived suppressor cells (MDSCs) are innate immune cells generated in cancer and proinflammatory microenvironments and are capable of suppressing T cell responses. We hypothesized that P. aeruginosa induces MDSCs to escape T cell immunity. In this article, we demonstrate that granulocytic MDSCs accumulate in CF patients chronically infected with P. aeruginosa and correlate with CF lung disease activity. Flagellated P. aeruginosa culture supernatants induced the generation of MDSCs, an effect that was 1) dose-dependently mimicked by purified flagellin protein, 2) significantly reduced using flagellin-deficient P. aeruginosa bacteria, and 3) corresponded to TLR5 expression on MDSCs in vitro and in vivo. Both purified flagellin and flagellated P. aeruginosa induced an MDSC phenotype distinct from that of the previously described MDSC-inducing cytokine GM-CSF, characterized by an upregulation of the chemokine receptor CXCR4 on the surface of MDSCs. Functionally, P. aeruginosa-infected CF patient ex vivo-isolated as well as flagellin or P. aeruginosa in vitro-generated MDSCs efficiently suppressed polyclonal T cell proliferation in a dose-dependent manner and modulated Th17 responses. These studies demonstrate that flagellin induces the generation of MDSCs and suggest that P. aeruginosa uses this mechanism to undermine T cell-mediated host defense in CF and other P. aeruginosa-associated chronic lung diseases.

  20. Quantitative computed tomography analysis of the airways in patients with cystic fibrosis using automated software: correlation with spirometry in the evaluation of severity*

    PubMed Central

    Santos, Marcel Koenigkam; Cruvinel, Danilo Lemos; de Menezes, Marcelo Bezerra; Teixeira, Sara Reis; Vianna, Elcio de Oliveira; Elias Júnior, Jorge; Martinez, José Antonio Baddini

    2016-01-01

    Objective To perform a quantitative analysis of the airways using automated software, in computed tomography images of patients with cystic fibrosis, correlating the results with spirometric findings. Materials and Methods Thirty-four patients with cystic fibrosis were studied-20 males and 14 females; mean age 18 ± 9 years-divided into two groups according to the spirometry findings: group I (n = 21), without severe airflow obstruction (forced expiratory volume in first second [FEV1] > 50% predicted), and group II (n = 13), with severe obstruction (FEV1 ≤ 50% predicted). The following tracheobronchial tree parameters were obtained automatically: bronchial diameter, area, thickness, and wall attenuation. Results On average, 52 bronchi per patient were studied. The number of bronchi analyzed was higher in group II. The correlation with spirometry findings, especially between the relative wall thickness of third to eighth bronchial generation and predicted FEV1, was better in group I. Conclusion Quantitative analysis of the airways by computed tomography can be useful for assessing disease severity in cystic fibrosis patients. In patients with severe airflow obstruction, the number of bronchi studied by the method is higher, indicating more bronchiectasis. In patients without severe obstruction, the relative bronchial wall thickness showed a good correlation with the predicted FEV1. PMID:28100929

  1. Iron overload correlates with serum liver fibrotic markers and liver dysfunction: Potential new methods to predict iron overload-related liver fibrosis in thalassemia patients

    PubMed Central

    Wang, Man; Liu, Rongrong; Liang, Yuzhen; Yang, Gaohui; Huang, Yumei; Yu, Chunlan; Sun, Kaiqi; Xia, Yang

    2016-01-01

    Background Early detection of liver fibrosis in thalassemia patients and rapid initiation of treatment to interfere with its progression are extremely important. Objective This study aimed to find a sensitive, easy-to-detect and noninvasive method other than liver biopsy for early detection of liver fibrosis in thalassemia patients. Methods A total of 244 Chinese Thalassemia patients with non-transfusion-dependent thalassemia (NTDT, n = 105) or thalassemia major (TM, n = 139) and 120 healthy individuals were recruited into the present study, and blood collagen type IV (C IV), precollagen type III (PIIINPC) and hyaluronic acid (HA), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and ferritin were measured. Liver iron concentration was determined by MRI. The correlation of serum markers with liver iron load and liver function was evaluated. Results Serum C IV, PIIINPC and HA were significantly elevated in Chinese patients with NTDT and further elevated in TM patients. Moreover, C IV, PIIINPC and HA were also positively correlated to serum ferritin and liver iron concentration and further elevated during the progression to multi-organ damage in NTDT patients. Finally, serum ferritin and liver iron concentration were significantly correlated with liver dysfunction determined by AST and ALT. Conclusion Taken together, our results indicate that monitoring serum C IV, PIIINPC and HA is a potentially sensitive method to predict the risks for iron overload-related liver fibrosis in Chinese thalassemia patients. PMID:28405327

  2. Oncoprotein mdig contributes to silica-induced pulmonary fibrosis by altering balance between Th17 and Treg T cells

    PubMed Central

    Sun, Jiaying; Zhang, Yadong; Lu, Yongju; Battelli, Lori; Porter, Dale W.; Chen, Fei

    2015-01-01

    Mineral dust-induced gene (mdig, also named Mina53) was first identified from alveolar macrophages of the coal miners with chronic lung inflammation or fibrosis, but how this gene is involved in lung diseases is poorly understood. Here we show that heterozygotic knockout of mdig (mdig+/−) ameliorates silica-induced lung fibrosis by altering the balance between Th17 cells and Treg cells. Relative to the wild type (WT) mice, infiltration of the macrophages and Th17 cells was reduced in lungs from silica-exposed mdig+/− mice. In contrast, an increased infiltration of the T regulatory (Treg) cells to the lung intestitium was observed in the mdig+/− mice treated with silica. Both the number of Th17 cells in the lung lymph nodes and the level of IL-17 in the bronchoalveolar lavage fluids were decreased in the mdig+/− mice in response to silica. Thus, these results suggest that mdig may contribute to silica-induced lung fibrosis by altering the balance between Th17 and Treg cells. Genetic deficiency of mdig impairs Th17 cell infiltration and function, but favors infiltration of the Treg cells, the immune suppressive T cells that are able to limit the inflammatory responses by repressing the Th17 cells and macrophages. PMID:25669985

  3. Effect of taurine on acinar cell apoptosis and pancreatic fibrosis in dibutyltin dichloride-induced chronic pancreatitis.

    PubMed

    Matsushita, Koki; Mizushima, Takaaki; Shirahige, Akinori; Tanioka, Hiroaki; Sawa, Kiminari; Ochi, Koji; Tanimoto, Mitsune; Koide, Norio

    2012-01-01

    The relationship between pancreatic fibrosis and apoptosis of pancreatic acinar cells has not been fully elucidated. We reported that taurine had an anti-fibrotic effect in a dibutyltin dichloride (DBTC)-chronic pancreatitis model. However, the effect of taurine on apoptosis of pancreatic acinar cells is still unclear. Therefore, we examined apoptosis in DBTC-chronic pancreatitis and in the AR42J pancreatic acinar cell line with/without taurine. Pancreatic fibrosis was induced by a single administration of DBTC. Rats were fed a taurine-containing diet or a normal diet and were sacrificed at day 5. The AR42J pancreatic acinar cell line was incubated with/without DBTC with taurine chloramines. Apoptosis was determined by using terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) assay. The expression of Bad and Bcl-2 proteins in the AR42J cells lysates was detected by Western blot analysis. The apoptotic index of pancreatic acinar cells in DBTC-administered rats was significantly increased. Taurine treatment inhibited pancreatic fibrosis and apoptosis of acinar cells induced by DBTC. The number of TUNEL-positive cells in the AR42J pancreatic acinar cell lines was significantly increased by the addition of DBTC. Incubation with taurine chloramines ameliorated these changes. In conclusion, taurine inhibits apoptosis of pancreatic acinar cells and pancreatitis in experimental chronic pancreatitis.

  4. Targeting dexamethasone to Kupffer cells: effects on liver inflammation and fibrosis in rats.

    PubMed

    Melgert, B N; Olinga, P; Van Der Laan, J M; Weert, B; Cho, J; Schuppan, D; Groothuis, G M; Meijer, D K; Poelstra, K

    2001-10-01

    Kupffer cells (KC) play an important role in the pathogenesis of inflammatory liver diseases leading to fibrosis. Anti-inflammatory drugs are only effective when administered at high doses that may cause side effects. Therefore, dexamethasone coupled to mannosylated albumin (Dexa(5)-Man(10)-HSA) was designed by us to selectively deliver this anti-inflammatory drug to the KC. The effectiveness of Dexa(5)-Man(10)-HSA was studied both in organ cultures and fibrosis induced by bile duct ligation (BDL) in rats. Dexa(5)-Man(10)-HSA accumulated in livers of both healthy and fibrotic rats (67% +/- 5% and 70% +/- 9% of the dose, respectively) and uptake was found almost exclusively in KC. Active dexamethasone was liberated from its carrier, because Dexa(5)-Man(10)-HSA could effectively inhibit nitric oxide (NO) and tumor necrosis factor alpha (TNF-alpha) release in endotoxin-activated liver slices. In vivo, however, this was associated with increased collagen I and III depositions and enhanced tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA expression. This was accompanied by a decreased influx of reactive oxygen species (ROS) producing cells in the livers of BDL animals treated with Dexa(5)-Man(10)-HSA as compared with untreated BDL rats. Dexa(5)-Man(10)-HSA treatment also replenished the depleted glycogen stores in hepatocytes of BDL livers. In conclusion, our studies showed selective delivery of dexamethasone to KC with Dexa(5)-Man(10)-HSA. This conjugate reduced intrahepatic ROS in vivo and TNF-alpha production in vitro and prevented glycogen depletion in vivo, indicating effective pharmacologic targeting. Dexa(5)-Man(10)-HSA, however, also accelerated fibrogenesis, which was paralleled by TIMP-1 mRNA induction. Targeting of dexamethasone to KC provides evidence for a dual role of this cell type in fibrogenesis of BDL rats.

  5. Dysfunction of mitochondria Ca2+ uptake in cystic fibrosis airway epithelial cells.

    PubMed

    Antigny, Fabrice; Girardin, Nathalie; Raveau, Dorothée; Frieden, Maud; Becq, Frédéric; Vandebrouck, Clarisse

    2009-07-01

    In the genetic disease cystic fibrosis (CF), the most common mutation F508del promotes the endoplasmic reticulum (ER) retention of misfolded CF proteins. Furthermore, in homozygous F508del-CFTR airway epithelial cells, the histamine Ca(2+) mobilization is abnormally increased. Because the uptake of Ca(2+) by mitochondria during Ca(2+) influx or Ca(2+) release from ER stores may be crucial for maintaining a normal Ca(2+) homeostasis, we compared the mitochondria morphology and distribution by transmission electron microscopy technique and the mitochondria membrane potential variation (DeltaPsi(mit)) using a fluorescent probe (TMRE) on human CF (CF-KM4) and non-CF (MM39) tracheal serous gland cell lines. Confocal imaging of Rhod-2-AM-loaded or of the mitochondrial targeted cameleon 4mtD3cpv-transfected human CF and non-CF cells, were used to examine the ability of mitochondria to sequester intracellular Ca(2+). The present study reveals that (i) the mitochondria network is fragmented in F508del-CFTR cells, (ii) the DeltaPsi(mit) of CF mitochondria is depolarized compared non-CF mitochondria, and (iii) the CF mitochondria Ca(2+) uptake is reduced compared non-CF cells. We propose that these defects in airway epithelial F508del-CFTR cells are the consequence of mitochondrial membrane depolarization leading to a deficient mitochondrial Ca(2+) uptake.

  6. Dickkopf proteins influence lung epithelial cell proliferation in idiopathic pulmonary fibrosis.

    PubMed

    Pfaff, E-M; Becker, S; Günther, A; Königshoff, M

    2011-01-01

    Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease with unknown pathogenesis. The WNT/β-catenin pathway has recently been reported to be operative in epithelial cells in IPF. Dickkopf (DKK) proteins are known to regulate WNT signalling via interaction with Kremen (KRM) receptors, yet their expression and role in the adult lung and in IPF has not been addressed. We analysed the expression, localisation and function of DKK and KRM proteins in IPF lungs using Western blotting, quantitative RT-PCR, immunohistochemistry, ELISA and functional in vitro studies. Enhanced expression of DKK1 and DKK4 and KRM1 was detected in lung homogenates of IPF patients compared with transplant donors. Immunohistochemistry revealed that DKK1 was predominantly localised in basal bronchial epithelial cells. Furthermore, prominent expression of all proteins was observed in hyperplastic alveolar epithelial cells in IPF. Quantitative measurement of DKK1 revealed enhanced protein expression in the bronchoalveolar lumen of IPF patients. Finally, functional studies using human bronchial and alveolar epithelial cell lines demonstrated that WNT-induced epithelial cell proliferation is regulated by DKK1 in a dose-dependent fashion. In summary, DKK proteins are expressed in the lung epithelium in IPF. DKK proteins influence epithelial cell proliferation and may, therefore, be suitable therapeutic targets for IPF.

  7. Increased sulfation of glycoconjugates by cultured nasal epithelial cells from patients with cystic fibrosis.

    PubMed Central

    Cheng, P W; Boat, T F; Cranfill, K; Yankaskas, J R; Boucher, R C

    1989-01-01

    Cystic fibrosis (CF) respiratory epithelia exhibit abnormal anion transport that may be linked to abnormal lung defense. In these studies, we investigated whether primary cultures of CF respiratory epithelial cells regulate abnormally the sulfate content of high molecular weight glycoconjugates (HMG) participating in airways' mucosal defense. HMG, including glycosaminoglycans and mucin-type glycoproteins released spontaneously into medium and HMG released from cell surfaces by trypsin, were metabolically labeled with 35SO4- and [6-3H]-glucosamine (GlcN) or 35SO4- and [3H]serine. All three classes of HMG from CF cells exhibited 35S/3H labeling ratios 1.5-4-fold greater than HMG from normal or disease control cells. Differences for labeling ratios of HMG from CF cells were shown to be the consequence of increased 35SO4- incorporation rather than decreased peptide synthesis and release or HMG glycosylation. The buoyant density of CF mucin-type HMG also was increased, consistent with increased sulfation. These observations suggest that oversulfation of a spectrum of HMG is a genetically determined characteristic of CF epithelial cells and may play an important pathophysiological role by altering the properties of mucous secretions and/or the interactions between selected bacteria and HMG at the airways' surface. Images PMID:2738159

  8. Calcium-binding protein S100A4 confers mesenchymal progenitor cell fibrogenicity in idiopathic pulmonary fibrosis

    PubMed Central

    Xia, Hong; Gilbertsen, Adam; Herrera, Jeremy; Racila, Emilian; Peterson, Mark; Griffin, Timothy; Benyumov, Alexey; Yang, Libang; Bitterman, Peter B.; Henke, Craig A.

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease with a prevalence of 1 million persons worldwide. The fibrosis spreads from affected alveoli into contiguous alveoli and leads to death by asphyxiation. We previously discovered that the IPF lung harbors fibrogenic mesenchymal progenitor cells (MPCs) that serve as a cell of origin for disease-mediating myofibroblasts. In a prior genomewide transcriptional analysis, we found that IPF MPCs displayed increased expression of S100 calcium-binding A4 (S100A4), a protein linked to cancer cell proliferation and invasiveness. Here, we have examined whether S100A4 mediates MPC fibrogenicity. Ex vivo analysis revealed that IPF MPCs had increased levels of nuclear S100A4, which interacts with L-isoaspartyl methyltransferase to promote p53 degradation and MPC self-renewal. In vivo, injection of human IPF MPCs converted a self-limited bleomycin-induced mouse model of lung fibrosis to a model of persistent fibrosis in an S100A4-dependent manner. S100A4 gain of function was sufficient to confer fibrotic properties to non-IPF MPCs. In IPF tissue, fibroblastic foci contained cells expressing Ki67 and the MPC markers SSEA4 and S100A4. The expression colocalized in an interface region between myofibroblasts in the focus core and normal alveolar structures, defining this region as an active fibrotic front. Our findings indicate that IPF MPCs are intrinsically fibrogenic and that S100A4 confers MPCs with fibrogenicity. PMID:28530639

  9. Epithelial-mesenchymal interactions in fibrosis and repair. Transforming growth factor-β activation by epithelial cells and fibroblasts.

    PubMed

    Sheppard, Dean

    2015-03-01

    Transforming growth factor-β (TGF-β) plays a central role in driving tissue fibrosis. TGF-β is secreted in a latent form, held latent by noncovalent association of the active cytokine with a peptide derived from cleavage of the N-terminal domain of the same gene product, and needs to be activated extracellularly to exert any of its diverse biological effects. We have shown that two of the three mammalian isoforms of TGF-β, TGF-β1 and TGF-β3, depend on interactions with cell surface integrins for activation. We found that the integrin αvβ6 is highly induced on injured alveolar epithelial cells, potently induces TGF-β activation, and is critical for the development of pulmonary fibrosis and acute lung injury. However, although TGF-β drives fibrosis in virtually every anatomic site, αvβ6-mediated TGF-β activation is much more restricted. For example, αvβ6 is not induced on injured hepatocytes and plays little or no role in cirrhosis induced by repetitive hepatocyte injury. Fibroblasts are highly contractile cells that express multiple integrins closely related to αvβ6, which share the promiscuous αv subunit, so we reasoned that perhaps one or more of these αv integrins on fibroblasts might substitute for αvβ6 and activate the TGF-β required to drive liver fibrosis. Indeed, deletion of the αv subunit from activated fibroblasts protected mice from carbon tetrachloride-induced liver fibrosis. Importantly, these same mice were protected from bleomycin-induced pulmonary fibrosis and renal fibrosis caused by unilateral ureteral obstruction, despite the presence of epithelial αvβ6 in these mice. These results suggest that the generation and maintenance of sufficient quantities of active TGF-β to cause tissue fibrosis in multiple organs probably depends on at least two sources-TGF-β activation by injured epithelial cells that drives fibroblast expansion and activation and an amplification step that involves TGF-β activation by an αv integrin on

  10. Upregulation of Steroidogenic Acute Regulatory Protein by Hypoxia Stimulates Aldosterone Synthesis in Pulmonary Artery Endothelial Cells to Promote Pulmonary Vascular Fibrosis

    PubMed Central

    Maron, Bradley A.; Oldham, William M.; Chan, Stephen Y.; Vargas, Sara O.; Arons, Elena; Zhang, Ying-Yi; Loscalzo, Joseph; Leopold, Jane A.

    2014-01-01

    Background The molecular mechanism(s) regulating hypoxia-induced vascular fibrosis are unresolved. Hyperaldosteronism correlates positively with vascular remodeling in pulmonary arterial hypertension (PAH), suggesting that aldosterone may contribute to the pulmonary vasculopathy of hypoxia. The hypoxia-sensitive transcription factors c-Fos/c-Jun regulate steroidogenic acute regulatory protein (StAR), which facilitates the rate-limiting step of aldosterone steroidogenesis. We hypothesized that c-Fos/c-Jun upregulation by hypoxia activates StAR-dependent aldosterone synthesis in human pulmonary artery endothelial cells (HPAECs) to promote vascular fibrosis in PAH. Methods and Results Patients with PAH, rats with Sugen/hypoxia-PAH, and mice exposed to chronic hypoxia expressed increased StAR in remodeled pulmonary arterioles, providing a basis for investigating hypoxia-StAR signaling in HPAECs. Hypoxia (2.0% FiO2) increased aldosterone levels selectively in HPAECs, which was confirmed by liquid chromatography-mass spectrometry. Increased aldosterone by hypoxia resulted from enhanced c-Fos/c-Jun binding to the proximal activator protein (AP-1) site of the StAR promoter in HPAECs, which increased StAR expression and activity. In HPAECs transfected with StAR-siRNA or treated with the AP-1 inhibitor, SR-11302, hypoxia failed to increase aldosterone, confirming that aldosterone biosynthesis required StAR activation by c-Fos/c-Jun. The functional consequences of aldosterone were confirmed by pharmacological inhibition of the mineralocorticoid receptor with spironolactone or eplerenone, which attenuated hypoxia-induced upregulation of the fibrogenic protein connective tissue growth factor and collagen III in vitro, and decreased pulmonary vascular fibrosis to improve pulmonary hypertension in Conclusions Our findings identify autonomous aldosterone synthesis in HPAECs due to hypoxia-mediated upregulation of StAR as a novel molecular mechanism that promotes pulmonary vascular

  11. Contribution and Mobilization of Mesenchymal Stem Cells in a mouse model of carbon tetrachloride-induced liver fibrosis

    PubMed Central

    Liu, Yan; Yang, Xue; Jing, Yingying; Zhang, Shanshan; Zong, Chen; Jiang, Jinghua; Sun, Kai; Li, Rong; Gao, Lu; Zhao, Xue; Wu, Dong; Shi, Yufang; Han, Zhipeng; Wei, Lixin

    2015-01-01

    Hepatic fibrosis is associated with bone marrow derived mesenchymal stem cells (BM-MSCs). In this study, we aimed to determine what role MSCs play in the process and how they mobilize from bone marrow (BM). We employed a mouse model of carbon tetrachloride(CCl4)-induced liver fibrosis. Frozen section was used to detect MSCs recruited to mice and human fibrotic liver. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) was detected to assess liver function. It was found that MSCs of both exogenous and endogenous origin could aggravate liver fibrosis and attenuate liver damage as indicated by lower serum ALT and AST levels. Stromal cell–derived factor-1 (SDF-1α)/ CXCR4 was the most important chemotactic axis regulating MSCs migration from BM to fibrotic liver. Frozen section results showed that the migration did not start from the beginning of liver injury but occured when the expression balance of SDF-1α between liver and BM was disrupted, where SDF-1α expression in liver was higher than that in BM. Our findings provide further evidence to show the role of BM-MSCs in liver fibrosis and to elucidate the mechanism underlying MSCs mobilization in our early liver fibrosis mice model induced by CCl4. PMID:26643997

  12. Modified citrus pectin stops progression of liver fibrosis by inhibiting galectin-3 and inducing apoptosis of stellate cells.

    PubMed

    Abu-Elsaad, Nashwa M; Elkashef, Wagdi Fawzi

    2016-05-01

    Modified citrus pectin (MCP) is a pH modified form of the dietary soluble citrus peel fiber known as pectin. The current study aims at testing its effect on liver fibrosis progression. Rats were injected with CCl4 (1 mL/kg, 40% v/v, i.p., twice a week for 8 weeks). Concurrently, MCP (400 or 1200 mg/kg) was administered daily in drinking water from the first week in groups I and II (prophylactic model) and in the beginning of week 5 in groups III and IV (therapeutic model). Liver function biomarkers (ATL, AST, and ALP), fibrosis markers (laminin and hyaluronic acid), and antioxidant biomarkers (reduced glutathione (GSH) and superoxide dismutase (SOD)) were measured. Stained liver sections were scored for fibrosis and necroinflammation. Additionally, expression of galectin-3 (Gal-3), α-smooth muscle actin (SMA), tissue inhibitor metalloproteinase (TIMP)-1, collagen (Col)1A1, caspase (Cas)-3, and apoptosis related factor (FAS) were assigned. Modified pectin late administration significantly (p < 0.05) decreased malondialdehyde (MDA), TIMP-1, Col1A1, α-SMA, and Gal-3 levels and increased levels of FAS, Cas-3, GSH, and SOD. It also decreased percentage of fibrosis and necroinflammation significantly (p < 0.05). It can be concluded that MCP can attenuate liver fibrosis through an antioxidant effect, inhibition of Gal-3 mediated hepatic stellate cells activation, and induction of apoptosis.

  13. Serial automated quantitative CT analysis in idiopathic pulmonary fibrosis: functional correlations and comparison with changes in visual CT scores.

    PubMed

    Jacob, Joseph; Bartholmai, Brian J; Rajagopalan, Srinivasan; Kokosi, Maria; Egashira, Ryoko; Brun, Anne Laure; Nair, Arjun; Walsh, Simon L F; Karwoski, Ronald; Wells, Athol U

    2017-09-29

    To determine whether computer-based CT quantitation of change can improve on visual change quantification of parenchymal features in IPF. Sixty-six IPF patients with serial CT imaging (6-24 months apart) had CT features scored visually and with a computer software tool: ground glass opacity, reticulation and honeycombing (all three variables summed as interstitial lung disease extent [ILD]) and emphysema. Pulmonary vessel volume (PVV) was estimated by computer only. Relationships between changes in CT features and forced vital capacity (FVC) were examined using univariate and multivariate linear regression analyses. On univariate analysis, changes in computer variables demonstrated stronger linkages to FVC change than changes in visual scores (CALIPER ILD:R(2)=0.53, p<0.0001; Visual ILD:R(2)=0.16, p=0.001). PVV increase correlated most strongly with relative FVC change (R(2)=0.57). When PVV constituents (vessel size and location) were examined, an increase in middle zone vessels linked most strongly to FVC decline (R(2)=0.57) and was independent of baseline disease severity (characterised by CT fibrosis extent, FVC, or DLco). An increase in PVV, specifically an increase in middle zone lung vessels, was the strongest CT determinant of FVC decline in IPF and was independent of baseline disease severity. • Computer analysis improves on visual CT scoring in evaluating deterioration on CT • Increasing pulmonary vessel volume is the strongest CT predictor of functional deterioration • Increasing pulmonary vessel volume predicts functional decline independent of baseline disease severity.

  14. The risk for immediate postoperative complications after pancreaticoduodenectomy is increased by high frequency of acinar cells and decreased by prevalent fibrosis of the cut edge of pancreas.

    PubMed

    Laaninen, Matias; Bläuer, Merja; Vasama, Kaija; Jin, Haitao; Räty, Sari; Sand, Juhani; Nordback, Isto; Laukkarinen, Johanna

    2012-08-01

    Soft pancreas is considered as a factor for pancreatitis after pancreaticoduodenectomy, which in turn constitutes a high risk for local complications. The aim was to analyze the proportion of different cell types in the cut edge of pancreas (CEP) in relation to postoperative pancreatitis and other complications after pancreaticoduodenectomy. Data from postoperative follow-up was collected on 40 patients who had undergone pancreaticoduodenectomy. Positive urine trypsinogen-2, an early detector of pancreatitis, was checked on days 1 to 6 after operation. Drain amylase was measured on postoperative day 3. Anastomotic leakages, delayed gastric emptying, and other complications were registered. The areas of different cell types were calculated from the entire hematoxylin-eosin-stained section of CEP. High frequency of acinar cells in the CEP significantly increased positive urine trypsinogen-2 days, drain amylase values, and delayed gastric emptying. In a subgroup of patients with more than 40% acini in the CEP, there were significantly more postoperative complications. Increased fibrosis correlated with a small number of positive urine trypsinogen-2 days and postoperative complications. A large number of acinar cells in the CEP increases, whereas extensive fibrosis in the CEP decreases, the risk for postoperative complications after pancreaticoduodenectomy. These results emphasize the importance of acini in the development of postoperative complications.

  15. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells.

    PubMed Central

    Kelley, T J; Drumm, M L

    1998-01-01

    It has been reported that exhaled nitric oxide levels are reduced in cystic fibrosis (CF) patients. We have examined the inducible isoform of nitric oxide synthase (iNOS) in the airways by immunostaining and found that iNOS is constitutively expressed in the airway epithelia of non-CF mouse and human tissues but essentially absent in the epithelium of CF airways. We explored potential consequences of lost iNOS expression and found that iNOS inhibition significantly increases mouse nasal trans-epithelial potential difference, and hindered the ability of excised mouse lungs to prevent growth of Pseudomonas aeruginosa. The absence of continuous nitric oxide production in epithelial cells of CF airways may play a role in two CF-associated characteristics: hyperabsorption of sodium and susceptibility to bacterial infections. PMID:9739054

  16. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice

    SciTech Connect

    Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna; Chowdhury, Abhijit; Boyer, James L.; Santra, Amal

    2011-02-15

    Arsenic is an environmental toxicant and carcinogen. Exposure to arsenic is associated with development of liver fibrosis and portal hypertension through ill defined mechanisms. We evaluated hepatic fibrogenesis after long term arsenic exposure in a murine model. BALB/c mice were exposed to arsenic by daily gavages of 6 {mu}g/gm body weight for 1 year and were evaluated for markers of hepatic oxidative stress and fibrosis, as well as pro-inflammatory, pro-apoptotic and pro-fibrogenic factors at 9 and 12 months. Hepatic NADPH oxidase activity progressively increased in arsenic exposure with concomitant development of hepatic oxidative stress. Hepatic steatosis with occasional collection of mononuclear inflammatory cells and mild portal fibrosis were the predominant liver lesion observed after 9 months of arsenic exposure, while at 12 months, the changes included mild hepatic steatosis, inflammation, necrosis and significant fibrosis in periportal areas. The pathologic changes in the liver were associated with markers of hepatic stellate cells (HSCs) activation, matrix reorganization and fibrosis including {alpha}-smooth muscle actin, transforming growth factor-{beta}1, PDGF-R{beta}, pro-inflammatory cytokines and enhanced expression of tissue inhibitor of metalloproteinase-1 and pro({alpha}) collagen type I. Moreover, pro-apoptotic protein Bax was dominantly expressed and Bcl-2 was down-regulated along with increased number of TUNEL positive hepatocytes in liver of arsenic exposed mice. Furthermore, HSCs activation due to increased hepatic oxidative stress observed after in vivo arsenic exposure was recapitulated in co-culture model of isolated HSCs and hepatocytes exposed to arsenic. These findings have implications not only for the understanding of the pathology of arsenic related liver fibrosis but also for the design of preventive strategies in chronic arsenicosis.

  17. PTH-enhanced structural allograft healing is associated with decreased angiopoietin-2-mediated arteriogenesis, mast cell accumulation, and fibrosis.

    PubMed

    Dhillon, Robinder S; Xie, Chao; Tyler, Wakenda; Calvi, Laura M; Awad, Hani A; Zuscik, Michael J; O'Keefe, Regis J; Schwarz, Edward M

    2013-03-01

    Recombinant parathyroid hormone (rPTH) therapy has been evaluated for skeletal repair in animal studies and clinical trials based on its known anabolic effects, but its effects on angiogenesis and fibrosis remain poorly understood. We examined the effects of rPTH therapy on blood vessel formation and osseous integration in a murine femoral allograft model, which caused a significant increase in small vessel numbers, and decreased large vessel formation (p < 0.05). Histology showed that rPTH also reduced fibrosis around the allografts to similar levels observed in live autografts, and decreased mast cells at the graft-host junction. Similar effects on vasculogenesis and fibrosis were observed in femoral allografts from Col1caPTHR transgenic mice. Gene expression profiling revealed rPTH-induced angiopoietin-1 (8-fold), while decreasing angiopoietin-2 (70-fold) at day 7 of allograft healing. Finally, we show anti-angiopoietin-2 peptibody (L1-10) treatment mimics rPTH effects on angiogenesis and fibrosis. Collectively, these findings show that intermittent rPTH treatment enhances structural allograft healing by two processes: (1) anabolic effects on new bone formation via small vessel angiogenesis, and (2) inhibition of angiopoietin-2-mediated arteriogenesis. The latter effect may function as a vascular sieve to limit mast cell access to the site of tissue repair, which decreases fibrosis around and between the fractured ends of bone. Thus, rPTH therapy may be generalizable to all forms of tissue repair that suffer from limited biointegration and excessive fibrosis.

  18. CGRP induction in cystic fibrosis airways alters the submucosal gland progenitor cell niche in mice

    PubMed Central

    Xie, Weiliang; Fisher, John T.; Lynch, Thomas J.; Luo, Meihui; Evans, Turan I.A.; Neff, Traci L.; Zhou, Weihong; Zhang, Yulong; Ou, Yi; Bunnett, Nigel W.; Russo, Andrew F.; Goodheart, Michael J.; Parekh, Kalpaj R.; Liu, Xiaoming; Engelhardt, John F.

    2011-01-01

    In cystic fibrosis (CF), a lack of functional CF transmembrane conductance regulator (CFTR) chloride channels causes defective secretion by submucosal glands (SMGs), leading to persistent bacterial infection that damages airways and necessitates tissue repair. SMGs are also important niches for slow-cycling progenitor cells (SCPCs) in the proximal airways, which may be involved in disease-related airway repair. Here, we report that calcitonin gene–related peptide (CGRP) activates CFTR-dependent SMG secretions and that this signaling pathway is hyperactivated in CF human, pig, ferret, and mouse SMGs. Since CGRP-expressing neuroendocrine cells reside in bronchiolar SCPC niches, we hypothesized that the glandular SCPC niche may be dysfunctional in CF. Consistent with this hypothesis, CFTR-deficient mice failed to maintain glandular SCPCs following airway injury. In wild-type mice, CGRP levels increased following airway injury and functioned as an injury-induced mitogen that stimulated SMG progenitor cell proliferation in vivo and altered the proliferative potential of airway progenitors in vitro. Components of the receptor for CGRP (RAMP1 and CLR) were expressed in a very small subset of SCPCs, suggesting that CGRP indirectly stimulates SCPC proliferation in a non-cell-autonomous manner. These findings demonstrate that CGRP-dependent pathways for CFTR activation are abnormally upregulated in CF SMGs and that this sustained mitogenic signal alters properties of the SMG progenitor cell niche in CF airways. This discovery may have important implications for injury/repair mechanisms in the CF airway. PMID:21765217

  19. Epigenetic dysregulation of interleukin 8 (CXCL8) hypersecretion in cystic fibrosis airway epithelial cells

    SciTech Connect

    Poghosyan, Anna Patel, Jamie K.; Clifford, Rachel L.; Knox, Alan J.

    2016-08-05

    Airway epithelial cells in cystic fibrosis (CF) overexpress Interleukin 8 (CXCL8) through poorly defined mechanisms. CXCL8 transcription is dependent on coordinated binding of CCAAT/enhancer binding protein (C/EBP)β, nuclear factor (NF)-κB, and activator protein (AP)-1 to the promoter. Here we show abnormal epigenetic regulation is responsible for CXCL8 overexpression in CF cells. Under basal conditions CF cells had increased bromodomain (Brd)3 and Brd4 recruitment and enhanced NF-κB and C/EBPβ binding to the CXCL8 promoter compared to non-CF cells due to trimethylation of histone H3 at lysine 4 (H3K4me3) and DNA hypomethylation at CpG6. IL-1β increased NF-κB, C/EBPβ and Brd4 binding. Furthermore, inhibitors of bromodomain and extra-terminal domain family (BET) proteins reduced CXCL8 production in CF cells suggesting a therapeutic target for the BET pathway. -- Highlights: •A regulatory mechanism of CXCL8 transcriptional control in CF airways is proposed. •There was an increased binding of NF-κB and C/EBPβ transcription factors. •There was enhanced recruitment of BET proteins to the CXCL8 promoter. •Epigenetic modifications are responsible for the aberrant CXCL8 transcription.

  20. Characterization of mitochondrial function in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function.

    PubMed

    Atlante, Anna; Favia, Maria; Bobba, Antonella; Guerra, Lorenzo; Casavola, Valeria; Reshkin, Stephan Joel

    2016-06-01

    Evidence supporting the occurrence of oxidative stress in Cystic Fibrosis (CF) is well established and the literature suggests that oxidative stress is inseparably linked to mitochondrial dysfunction. Here, we have characterized mitochondrial function, in particular as it regards the steps of oxidative phosphorylation and ROS production, in airway cells either homozygous for the F508del-CFTR allele or stably expressing wt-CFTR. We find that oxygen consumption, ΔΨ generation, adenine nucleotide translocator-dependent ADP/ATP exchange and both mitochondrial Complex I and IV activities are impaired in CF cells, while both mitochondrial ROS production and membrane lipid peroxidation increase. Importantly, treatment of CF cells with the small molecules VX-809 and 4,6,4'-trimethylangelicin, which act as "correctors" for F508del CFTR by rescuing the F508del CFTR-dependent chloride secretion, while having no effect per sè on mitochondrial function in wt-CFTR cells, significantly improved all the above mitochondrial parameters towards values found in the airway cells expressing wt-CFTR. This novel study on mitochondrial bioenergetics provides a springboard for future research to further understand the molecular mechanisms responsible for the involvement of mitochondria in CF and identify the proteins primarily responsible for the F508del-CFTR-dependent mitochondrial impairment and thus reveal potential novel targets for CF therapy.

  1. A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis

    PubMed Central

    Moretti, Silvia; Renga, Giorgia; Oikonomou, Vasilis; Galosi, Claudia; Pariano, Marilena; Iannitti, Rossana G.; Borghi, Monica; Puccetti, Matteo; De Zuani, Marco; Pucillo, Carlo E.; Paolicelli, Giuseppe; Zelante, Teresa; Renauld, Jean-Christophe; Bereshchenko, Oxana; Sportoletti, Paolo; Lucidi, Vincenzina; Russo, Maria Chiara; Colombo, Carla; Fiscarelli, Ersilia; Lass-Flörl, Cornelia; Majo, Fabio; Ricciotti, Gabriella; Ellemunter, Helmut; Ratclif, Luigi; Talesa, Vincenzo Nicola; Napolioni, Valerio; Romani, Luigina

    2017-01-01

    T helper 9 (Th9) cells contribute to lung inflammation and allergy as sources of interleukin-9 (IL-9). However, the mechanisms by which IL-9/Th9 mediate immunopathology in the lung are unknown. Here we report an IL-9-driven positive feedback loop that reinforces allergic inflammation. We show that IL-9 increases IL-2 production by mast cells, which leads to expansion of CD25+ type 2 innate lymphoid cells (ILC2) and subsequent activation of Th9 cells. Blocking IL-9 or inhibiting CD117 (c-Kit) signalling counteracts the pathogenic effect of the described IL-9-mast cell-IL-2 signalling axis. Overproduction of IL-9 is observed in expectorates from cystic fibrosis (CF) patients, and a sex-specific variant of IL-9 is predictive of allergic reactions in female patients. Our results suggest that blocking IL-9 may be a therapeutic strategy to ameliorate inflammation associated with microbial colonization in the lung, and offers a plausible explanation for gender differences in clinical outcomes of patients with CF. PMID:28090087

  2. Computational Modeling Predicts Simultaneous Targeting of Fibroblasts and Epithelial Cells Is Necessary for Treatment of Pulmonary Fibrosis

    PubMed Central

    Warsinske, Hayley C.; Wheaton, Amanda K.; Kim, Kevin K.; Linderman, Jennifer J.; Moore, Bethany B.; Kirschner, Denise E.

    2016-01-01

    Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited with enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGF-β1 receptor ligand signaling in fibroblasts. PGE2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. Thus, a two-hit therapeutic intervention strategy

  3. Computational modeling predicts simultaneous targeting of fibroblasts and epithelial cells is necessary for treatment of pulmonary fibrosis

    SciTech Connect

    Warsinske, Hayley C.; Wheaton, Amanda K.; Kim, Kevin K.; Linderman, Jennifer J.; Moore, Bethany B.; Kirschner, Denise E.

    2016-06-23

    Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited with enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGFβ1 receptor ligand signaling in fibroblasts. PGE2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. In conclusion, a two

  4. Computational modeling predicts simultaneous targeting of fibroblasts and epithelial cells is necessary for treatment of pulmonary fibrosis

    DOE PAGES

    Warsinske, Hayley C.; Wheaton, Amanda K.; Kim, Kevin K.; ...

    2016-06-23

    Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited withmore » enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGFβ1 receptor ligand signaling in fibroblasts. PGE2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. In conclusion, a two-hit therapeutic

  5. Myeloperoxidase–Hepatocyte–Stellate Cell Cross Talk Promotes Hepatocyte Injury and Fibrosis in Experimental Nonalcoholic Steatohepatitis

    PubMed Central

    Pulli, Benjamin; Ali, Muhammad; Iwamoto, Yoshiko; Zeller, Matthias W.G.; Schob, Stefan; Linnoila, Jenny J.

    2015-01-01

    Abstract Aims: Myeloperoxidase (MPO), a highly oxidative enzyme secreted by leukocytes has been implicated in human and experimental nonalcoholic steatohepatitis (NASH), but the underlying mechanisms remain unknown. In this study, we investigated how MPO contributes to progression from steatosis to NASH. Results: In C57Bl/6J mice fed a diet deficient in methionine and choline to induce NASH, neutrophils and to a lesser extent inflammatory monocytes are markedly increased compared with sham mice and secrete abundant amounts of MPO. Through generation of HOCl, MPO directly causes hepatocyte death in vivo. In vitro experiments demonstrate mitochondrial permeability transition pore induction via activation of SAPK/JNK and PARP. MPO also contributes to activation of hepatic stellate cells (HSCs), the most important source of collagen in the liver. In vitro MPO-activated HSCs have an activation signature (MAPK and PI3K-AKT phosphorylation) and upregulate COL1A1, α-SMA, and CXCL1. MPO-derived oxidative stress also activates transforming growth factor β (TGF-β) in vitro, and TGF-β signaling inhibition with SB-431542 decreased steatosis and fibrosis in vivo. Conversely, congenital absence of MPO results in reduced hepatocyte injury, decreased levels of TGF-β, fewer activated HSCs, and less severe fibrosis in vivo. Innovation and Conclusion: Cumulatively, these findings demonstrate important cross talk between inflammatory myeloid cells, hepatocytes, and HSCs via MPO and establish MPO as part of a proapoptotic and profibrotic pathway of progression in NASH, as well as a potential therapeutic target to ameliorate this disease. Antioxid. Redox Signal. 23, 1255–1269. PMID:26058518

  6. The improving effects on hepatic fibrosis of interferon-γ liposomes targeted to hepatic stellate cells

    NASA Astrophysics Data System (ADS)

    Li, Qinghua; Yan, Zhiqiang; Li, Feng; Lu, Weiyue; Wang, Jiyao; Guo, Chuanyong

    2012-07-01

    No satisfactory anti-fibrotic therapies have yet been applied clinically. One of the main reasons is the inability to specifically target the responsible cells to produce an available drug concentration and the side-effects. Exploiting the key role of the activated hepatic stellate cells (HSCs) in both hepatic fibrogenesis and over-expression of platelet-derived growth factor receptor-β (PDGFR-β), we constructed targeted sterically stable liposomes (SSLs) modified by a cyclic peptide (pPB) with affinity for the PDGFR-β to deliver interferon (IFN)-γ to HSCs. The pPB-SSL-IFN-γ showed satisfactory size distribution. In vitro pPB-SSL could be taken up by activated HSCs. The study of tissue distribution via living-body animal imaging showed that the pPB-SSL-IFN-γ mostly accumulated in the liver until 24 h. Furthermore, the pPB-SSL-IFN-γ showed more significant remission of hepatic fibrosis. In vivo the histological Ishak stage, the semiquantitative score for collagen in fibrotic liver and the serum levels of collagen type IV-C in fibrotic rats treated with pPB-SSL-IFN-γ were less than those treated with SSL-IFN-γ, IFN-γ and the control group. In vitro pPB-SSL-IFN-γ was also more effective in suppressing activated HSC proliferation and inducing apoptosis of activated HSCs. Thus the data suggest that pPB-SSL-IFN-γ might be a more effective anti-fibrotic agent and a new opportunity for clinical therapy of hepatic fibrosis.

  7. Identification of the five most common cystic fibrosis mutations in single cells using a rapid and specific differential amplification system.

    PubMed

    Scobie, G; Woodroffe, B; Fishel, S; Kalsheker, N

    1996-03-01

    We describe a rapid and specific differential amplification system which can detect five of the most common cystic fibrosis mutations from a single cell. In the first round of the polymerase chain reaction (PCR), regions of exons 4, 10 and 11 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene containing the mutations delta F508, G551D, R553X, G542X and 621+1G > T were co-amplified in a single multiplex PCR. To identify potential contamination, we included external amplification primers for the polymorphic human tyrosine hydroxylase (HUMTH01) locus as a fingerprint for the sample. In the second round of PCR, detection of any of the five mutations was achieved using the amplification refractory mutation system (ARMS) in two separate reactions, each containing nested amplification primers for either wild type or mutant sequence. A separate second round PCR for the fingerprinting was performed with nested HUMTH01 primers. Using this procedure we have successfully and accurately detected five cystic fibrosis mutations in 30 single cells with a failed amplification rate of 7% and a contamination rate of 4.6% and that PCR failure or possible contamination will also be easily detected. This procedure allows detection of the five most common point mutations and small deletions responsible for cystic fibrosis from a single cell in < 8 h which could be applicable to preimplantation diagnosis in human embryos.

  8. Plasma B-Lymphocyte Stimulator (BLyS) and B-cell Differentiation in Idiopathic Pulmonary Fibrosis Patients*

    PubMed Central

    Xue, Jianmin; Kass, Daniel J.; Bon, Jessica; Vuga, Louis; Tan, Jiangning; Csizmadia, Eva; Otterbein, Leo; Soejima, Makoto; Levesque, Marc C.; Gibson, Kevin F.; Kaminski, Naftali; Pilewski, Joseph M.; Donahoe, Michael; Sciurba, Frank C.; Duncan, Steven R.

    2013-01-01

    We hypothesized B-cells are involved in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a progressive, restrictive lung disease that is refractory to glucocorticoids and other nonspecific therapies, and almost invariably lethal. Accordingly, we sought to identify clinically-associated B-cell-related abnormalities in these patients. Phenotypes of circulating B-cells were characterized by flow cytometry. Intrapulmonary processes were evaluated by immunohistochemistry. Plasma B-lymphocyte stimulating factor (BLyS) was assayed by ELISA. Circulating B-cells of IPF subjects were more antigen-differentiated, with greater plasmablast proportions (3.1±0.8%) than in normal controls (1.3±0.3%) (p<0.03), and the extent of this differentiation correlated with IPF patient lung volumes (r=0.44, p<0.03). CD20+ B-cell aggregates, diffuse parenchymal and perivascular immune complexes, and complement depositions were all prevalent in IPF lungs, but much less prominent or absent in normal lungs. Plasma concentrations of BLyS, an obligate factor for B-cell survival and differentiation, were significantly greater (p<0.0001) in 110 IPF (2.05±0.05 ng/ml) than among 53 normal (1.40±0.04 ng/ml) and 90 chronic obstructive pulmonary disease (COPD) subjects (1.59±0.05 ng/ml). BLyS levels were uniquely correlated among IPF patients with pulmonary artery pressures (r=0.58, p<0.0001). The 25% of IPF subjects with the greatest BLyS values also had diminished one-year survival (46±11%), compared to those with lesser BLyS concentrations (81±5%) (HR=4.0, 95%CI=1.8-8.7, p=0.0002). Abnormalities of B-cells and BLyS are common in IPF patients, and highly associated with disease manifestations and patient outcomes. These findings have implications regarding IPF pathogenesis, and illuminate the potential for novel treatment regimens that specifically target B-cells in patients with this lung disease. PMID:23872052

  9. Antibody isotype responses to paramyosin, a vaccine candidate for schistosomiasis, and their correlations with resistance and fibrosis in patients infected with Schistosoma japonicum in Leyte, The Philippines.

    PubMed

    Nara, Takeshi; Iizumi, Kyoichi; Ohmae, Hiroshi; Sy, Orlando S; Tsubota, Soichi; Inaba, Yutaka; Tsubouchi, Akiko; Tanabe, Masanobu; Kojima, Somei; Aoki, Takashi

    2007-02-01

    We examined whether antibody isotype responses to paramyosin (PM), a vaccine candidate for schistosomiasis, are associated with age-dependent resistance and pathology in liver fibrosis using human sera collected from 139 individuals infected with Schistosoma japonicum in Leyte, The Philippines. We report that IgA and IgG3 responses to PM showed a positive correlation with age and that the epitopes responsible were localized predominantly within the N-terminal half of PM. In addition, the IgG3 response to PM was associated with serum level of procollagen-III-peptide (P-III-P), an indicator of progression of liver fibrosis. These results imply that IgG3 against PM may not only provoke age-dependent resistance to S. japonicum infection but also enhance liver fibrosis. In contrast, levels of IgE to PM and to multiple PM fragments showed a negative correlation with P-III-P level. Thus, in contrast to IgG3, increases in PM-specific IgE may contribute to suppression of liver pathogenesis in schistosomiasis.

  10. Skin elasticity as a measure of radiation fibrosis: is it reproducible and does it correlate with patient and physician-reported measures?

    PubMed

    Nguyen, Nhu-Tram A; Roberge, David; Freeman, Carolyn R; Wong, Cindy; Hines, Jerod; Turcotte, Robert E

    2014-10-01

    Current means of measuring RT-induced fibrosis are subjective. We evaluated the DermaLab suction cup system to measure objectively skin deflection as a surrogate for fibrosis. Sixty-nine patients with E-STS were treated with limb-sparing surgery and 50-66 Grays (Gy) of RT. Using a "scleroderma" DermaLab Suction Cup, the skin stiffness was measured by two clinicians. The National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE) scale, the Musculoskeletal Tumor Rating Scale (MSTS) and Toronto Extremity Salvage Score (TESS) questionnaires were completed for each patient. Levels of agreement between measurers were estimated using the Kappa (k) coefficient and the concordance correlation coefficient (CCC). All sixty-nine patients were included. The level of agreement between measurers for NCI-CTCAE grading was moderate (range k = 0.41-0.59). The CCC for the elasticity measurements were higher, with CCC = 0.82 for fibrotic skin and CCC 5 0.84 for normal skin. The elasticity measurements were significantly higher when MSTS scores were <30 and or TESS scores were <90. Suction Cup measurement of skin elasticity is more reproducible than CTCAE grading and shows promise in generating reproducible measurements for radiation-induced skin fibrosis. Furthermore, it correlates well with the MSTS and TESS.

  11. Rhinovirus Load Is High despite Preserved Interferon-β Response in Cystic Fibrosis Bronchial Epithelial Cells

    PubMed Central

    Cammisano, Maria; Chen, He; Singh, Sareen; Kooi, Cora; Leigh, Richard; Beaudoin, Trevor; Rousseau, Simon; Lands, Larry C.

    2015-01-01

    Lung disease in cystic fibrosis (CF) is often exacerbated following acute upper respiratory tract infections caused by the human rhinovirus (HRV). Pathophysiology of these exacerbations is presently unclear and may involve deficient innate antiviral or exaggerated inflammatory responses in CF airway epithelial cells. Furthermore, responses of CF cells to HRV may be adversely affected by pre-exposure to virulence factors of Pseudomonas (P.) aeruginosa, the microorganism that frequently colonizes CF airways. Here we examined production of antiviral cytokine interferon-β and inflammatory chemokine interleukin-8, expression of the interferon-responsive antiviral gene 2’-5’-oligoadenylate synthetase 1 (OAS1), and intracellular virus RNA load in primary CF (delF508 CFTR) and healthy airway epithelial cells following inoculation with HRV16. Parallel cells were exposed to virulence factors of P. aeruginosa prior to and during HRV16 inoculation. CF cells exhibited production of interferon-β and interleukin-8, and expression of OAS1 at levels comparable to those in healthy cells, yet significantly higher HRV16 RNA load during early hours post-inoculation with HRV16. In line with this, HRV16 RNA load was higher in the CFBE41o- dF cell line overexpessing delF508 CFTR, compared with the isogenic control CFBE41o- WT (wild-type CFTR). Pre-exposure to virulence factors of P. aeruginosa did not affect OAS1 expression or HRV16 RNA load, but potentiated interleukin-8 production. In conclusion, CF cells demonstrate elevated HRV RNA load despite preserved interferon-β and OAS1 responses. High HRV load in CF airway epithelial cells appears to be due to deficiencies manifesting early during HRV infection, and may not be related to interferon-β. PMID:26599098

  12. Multimodality thoracic imaging of juvenile systemic sclerosis: emphasis on clinical correlation and high-resolution CT of pulmonary fibrosis.

    PubMed

    Valeur, Natalie S; Stevens, Anne M; Ferguson, Mark R; Effmann, Eric L; Iyer, Ramesh S

    2015-02-01

    OBJECTIVE. Juvenile systemic sclerosis is a rare multisystem autoimmune disorder characterized by vasculopathy and multiorgan fibrosis. Cardiopulmonary complications are the leading cause of morbidity and mortality. Although pulmonary fibrosis is the complication that is most common and well described, cardiovascular and esophageal involvement may also be observed. In this article, common thoracic findings in juvenile systemic sclerosis will be discussed. We will focus on chest CT, including CT findings of pulmonary fibrosis and associated grading methods, as well as cardiac MRI and esophageal imaging. CONCLUSION. Radiologists play a pivotal role in the initial diagnosis and follow-up evaluation of pediatric patients with systemic sclerosis. Treatment decisions and prognostic assessment are directly related to imaging findings along with clinical evaluation.

  13. Burkholderia cenocepacia ET12 Strain Activates TNFR1 Signaling in Cystic Fibrosis Airway Epithelial Cells

    PubMed Central

    Umadevi Sajjan, S.; Hershenson, Marc B.; Forstner, Janet F.; LiPuma, John J.

    2011-01-01

    Burkholderia cenocepacia is an important pulmonary pathogen in individuals with cystic fibrosis. Infection is often associated with severe pulmonary inflammation and some patients develop a fatal necrotizing pneumonia and sepsis (‘cepacia syndrome’). The mechanisms by which this species causes severe pulmonary inflammation are poorly understood. Here, we demonstrate that B. cenocepacia BC7, a potentially virulent representative of the epidemic ET12 lineage binds to tumor necrosis factor receptor I (TNFR1) and activates TNFR1-related signaling pathway similar to TNF-α, a natural ligand for TNFR1. This interaction participates in stimulating a robust IL-8 production from CF airway epithelial cells. In contrast, BC45, a relatively less virulent ET12 representative, and ATCC 25416, an environmental B. cepacia strain do not bind to TNFR1 and stimulate only minimal IL-8 production from CF cells. Further, TNFR1 expression is increased in CF airway epithelial cells compared to non-CF cells. We also show that B. cenocepacia ET12 strain colocaizes with TNFR1 in vitro and in the lungs of CF patient who died due to infection with B. cenocepacia, ET12 strain. Together, these results suggest that interaction of B. cenocepacia, ET12 strain with TNFR1 may contribute to robust inflammatory responses elicited by this organism. PMID:17697131

  14. Epithelial Cell Mitochondrial Dysfunction and PINK1 Are Induced by Transforming Growth Factor- Beta1 in Pulmonary Fibrosis

    PubMed Central

    Patel, Avignat S.; Song, Jin Woo; Chu, Sarah G.; Mizumura, Kenji; Osorio, Juan C.; Shi, Ying; El-Chemaly, Souheil; Lee, Chun Geun; Rosas, Ivan O.; Elias, Jack A.; Choi, Augustine M. K.; Morse, Danielle

    2015-01-01

    Background Epithelial cell death is a major contributor to fibrogenesis in the lung. In this study, we sought to determine the function of mitochondria and their clearance (mitophagy) in alveolar epithelial cell death and fibrosis. Methods We studied markers of mitochondrial injury and the mitophagy marker, PTEN-induced putative kinase 1 (PINK1), in IPF lung tissues by Western blotting, transmission electron microscopy (TEM), and immunofluorescence. In vitro experiments were carried out in lung epithelial cells stimulated with transforming growth factor-β1 (TGF-β1). Changes in cell function were measured by Western blotting, flow cytometry and immunofluorescence. In vivo experiments were performed using the murine bleomycin model of lung fibrosis. Results Evaluation of IPF lung tissue demonstrated increased PINK1 expression by Western blotting and immunofluorescence and increased numbers of damaged mitochondria by TEM. In lung epithelial cells, TGF-β1 induced mitochondrial depolarization, mitochondrial ROS, and PINK1 expression; all were abrogated by mitochondrial ROS scavenging. Finally, Pink1-/- mice were more susceptible than control mice to bleomycin induced lung fibrosis. Conclusion TGF-β1 induces lung epithelial cell mitochondrial ROS and depolarization and stabilizes the key mitophagy initiating protein, PINK1. PINK1 ameliorates epithelial cell death and may be necessary to limit fibrogenesis. PMID:25785991

  15. Cystic Fibrosis patients have inducible IL-17+IL-22+ memory cells in lung draining lymph nodes

    PubMed Central

    Chan, Yvonne R.; Chen, Kong; Duncan, Steven R.; Lathrop, Kira; Latoche, Joseph; Logar, Alison; Pociask, Derek A.; Wahlberg, Brendon; Ray, Prabir; Ray, Anuradha; Pilewski, Joseph M.; Kolls, Jay K.

    2012-01-01

    Background Interleukin (IL)-17 is an important cytokine signature of a T helper differentiation pathway, Th17. This T cell subset is crucial in mediating autoimmune disease or antimicrobial immunity in animal models, but its presence and role in human disease remains to be completely characterized. Objective We set out to determine the frequency of Th17 cells in cystic fibrosis (CF), a disease in which there is recurrent infection with known pathogens. Methods Explanted lungs from patients undergoing transplant or organ donors (CF = 18, non-CF, non-bronchiectatic = 10) were collected. Hilar nodes and parenchymal lung tissue were processed. We examined them for Th17 signature by immunofluorescence and quantitative real time PCR. T cells were isolated and stimulated with antigens from Pseudomonas aeruginosa and Aspergillus. Cytokine profiles and staining by flow cytometry were used to assess the reactivity of these cells to antigen stimulation. Results We found a strong IL-17 phenotype in CF compared to non-CF controls. Within this tissue, we found pathogen-antigen-responsive CD4+IL17+ cells. There were double positive IL-17+IL-22+ cells and the IL-22+ population had higher proportions of memory characteristics. Antigen-specific Th17 responses were stronger in the draining lymph nodes compared to matched parenchymal lung. Conclusion Inducible proliferation of Th17(22) with memory cell characteristics is seen in CF lung. The function of these individual subpopulations will require further study regarding their development. T-cells are likely not the exclusive producers of IL-17 and IL-22 and this will require further characterization. PMID:22795370

  16. Genotype-phenotype correlation in cystic fibrosis patients bearing [H939R;H949L] allele

    PubMed Central

    Polizzi, Angela; Tesse, Riccardina; Santostasi, Teresa; Diana, Anna; Manca, Antonio; Logrillo, Vito Paolo; Cazzato, Maria Domenica; Pantaleo, Maria Giuseppa; Armenio, Lucio

    2011-01-01

    Cystic fibrosis (CF) is caused by CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations. We ascertained five patients with a novel complex CFTR allele, with two mutations, H939R and H949L, inherited in cis in the same exon of CFTR gene, and one different mutation per patient inherited in trans in a wide population of 289 Caucasian CF subjects from South Italy. The genotype-phenotype relationship in patients bearing this complex allele was investigated. The two associated mutations were related to classical severe CF phenotypes. PMID:21931512

  17. Red blood cell distribution width is not a reliable biomarker for low iron stores in children with cystic fibrosis.

    PubMed

    Akkermans, M D; Uijterschout, L; Nuijsink, M; Hendriks, D M; van Goudoever, J B; Brus, F

    2017-02-01

    Low iron stores in children, absolute iron deficiency (AID), can lead to impaired neurodevelopment and requires iron therapy. In the presence of infection/inflammation, like in cystic fibrosis (CF), serum ferritin (SF) is not a reliable biomarker for AID. Red blood cell distribution width (RDW) is a promising alternative reported not to be influenced by infection in healthy children. Currently, there are no data on the diagnostic capacity of RDW to detect AID in pediatric CF patients. This was a prospective observational study that investigated iron status biomarkers in 53 Dutch pediatric CF patients. AID was defined using World Health Organization criteria for SF in stable patients (no recent pulmonary exacerbation) and C-reactive protein (CRP) ≤10 mg/l. Patients with AID had higher RDW levels than patients without AID (p = 0.019). An RDW ≥13.2% showed the following test statistics: sensitivity 100%; specificity 39.4%; positive predictive value 20%; and negative predictive value 100%. Furthermore, we found a correlation between RDW and CRP in the total group that originated from the stable patients (r = 0.308; p = 0.042). In conclusion, the diagnostic capacity of RDW for detecting AID in pediatric CF patients seems limited because RDW levels might also be influenced by chronic infection/inflammation in these patients.

  18. Comprehensive solar cell modeling and correlation studies

    NASA Technical Reports Server (NTRS)

    Lamorte, M. L.

    1985-01-01

    Modeling and correlation studies of solar cells was discussed. Recursive relationships were used to generate solutions at a number of mesh points within the emitter region. Photoexcited hole concentration and built-in electric field were calculated as a function of position. Simulated and experimentally determined I-V curves were shown to have good fit.

  19. ω-3 PUFAs ameliorate liver fibrosis and inhibit hepatic stellate cells proliferation and activation by promoting YAP/TAZ degradation

    PubMed Central

    Zhang, Kun; Chang, Yanan; Shi, Zhemin; Han, Xiaohui; Han, Yawei; Yao, Qingbin; Hu, Zhimei; Cui, Hongmei; Zheng, Lina; Han, Tao; Hong, Wei

    2016-01-01

    Elevated levels of the transcriptional regulators Yes-associated protein (YAP) and transcriptional coactivators with PDZ-binding motif (TAZ), key effectors of the Hippo pathway, have been shown to play essential roles in controlling liver cell fate and the activation of hepatic stellate cells (HSCs). The dietary intake of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) has been positively associated with a number of health benefits including prevention and reduction of cardiovascular diseases, inflammation and cancers. However, little is known about the impact of ω-3 PUFAs on liver fibrosis. In this study, we used CCl4-induced liver fibrosis mouse model and found that YAP/TAZ is over-expressed in the fibrotic liver and activated HSCs. Fish oil administration to the model mouse attenuates CCl4-induced liver fibrosis. Further study revealed that ω-3 PUFAs down-regulate the expression of pro-fibrogenic genes in activated HSCs and fibrotic liver, and the down-regulation is mediated via YAP, thus identifying YAP as a target of ω-3 PUFAs. Moreover, ω-3 PUFAs promote YAP/TAZ degradation in a proteasome-dependent manner. Our data have identified a mechanism of ω-3 PUFAs in ameliorating liver fibrosis. PMID:27435808

  20. HuR contributes to Hepatic Stellate Cell activation and liver fibrosis

    PubMed Central

    Woodhoo, A.; Iruarrizaga-Lejarreta, M.; Beraza, N.; García-Rodríguez, J.L.; Embade, N.; Fernández-Ramos, D.; Matinez-Lopez, N.; Gutiérrez, Virginia; Arteta, B.; Caballeria, J.; Lu, S.C.; Mato, J.M.; Varela-Rey, M.; Martinez-Chantar, M.L.

    2012-01-01

    RNA-binding proteins (RBPs) play a major role in control of mRNA turnover and translation rates. We examined the role of the RBP human antigen R (HuR) during cholestatic liver injury and hepatic stellate cells (HSC) activation. HuR silencing attenuated fibrosis development in vivo after BDL, reducing liver damage, oxidative stress, inflammation, and collagen and α-SMA (α-smooth muscle actin) expression. HuR expression increased in activated HSC from BDL mice and during HSC activation in vitro, and HuR silencing markedly reduced HSC activation. HuR regulated platelet-derived growth factor (PDGF)-induced proliferation and migration, and controlled expression of several mRNAs involved in these processes (Actin, MMP9, Cyclin D1 and B1). These functions of HuR were linked to its abundance and cytoplasmic localisation, controlled by PDGF, via ERK and PI3K activation, and ERK-LKB1 activation respectively. More importantly, we identified the tumor suppressor LKB1 as a novel downstream target of PDGF-induced ERK activation in HSC. HuR also controlled transforming growth factor beta (TGF-β-induced profibrogenic actions by regulating expression of TGF-β, α-SMA, and p21. This was likely due to an increased cytoplasmic localisation of HuR, controlled by TGF-β-induced p38 MAPK activation. Finally, we found that HuR and LKB1 (Ser428) levels were highly expressed in activated HSC in human cirrhotic samples. Conclusion: Our results show that HuR is important for pathogenesis of liver fibrosis development in the cholestatic injury model, for HSC activation, and for the response of activated HSC to PDGF and TGF-β. PMID:22576182

  1. Relationships among injury, fibrosis, and time in human kidney transplants

    PubMed Central

    Venner, Jeffery M.; Famulski, Konrad S.; Reeve, Jeff; Chang, Jessica; Halloran, Philip F.

    2016-01-01

    BACKGROUND. Kidney transplant biopsies offer an opportunity to understand the pathogenesis of organ fibrosis. We studied the relationships between the time of biopsy after transplant (TxBx), histologic fibrosis, diseases, and transcript expression. METHODS. Expression microarrays from 681 kidney transplant indication biopsies taken either early (n = 282, <1 year) or late (n = 399, >1 year) after transplant were used to analyze the molecular landscape of fibrosis in relationship to histologic fibrosis and diseases. RESULTS. Fibrosis was absent at transplantation but was present in some early biopsies by 4 months after transplant, apparently as a self-limited response to donation implantation injury not associated with progression to failure. The molecular phenotype of early biopsies represented the time sequence of the response to wounding: immediate expression of acute kidney injury transcripts, followed by fibrillar collagen transcripts after several weeks, then by the appearance of immunoglobulin and mast cell transcripts after several months as fibrosis appeared. Fibrosis in late biopsies correlated with injury, fibrillar collagen, immunoglobulin, and mast cell transcripts, but these were independent of time. Pathway analysis revealed epithelial response-to-wounding pathways such as Wnt/β-catenin. CONCLUSION. Fibrosis in late biopsies had different associations because many kidneys had potentially progressive diseases and subsequently failed. Molecular correlations with fibrosis in late biopsies were independent of time, probably because ongoing injury obscured the response-to-wounding time sequence. The results indicate that fibrosis in kidney transplants is driven by nephron injury and that progression to failure reflects continuing injury, not autonomous fibrogenesis. TRIAL REGISTRATION. INTERCOM study (www.clinicalTrials.gov; NCT01299168). FUNDING. Canada Foundation for Innovation and Genome Canada. PMID:27699214

  2. Correlation of cell membrane dynamics and cell motility

    PubMed Central

    2011-01-01

    Background Essential events of cell development and homeostasis are revealed by the associated changes of cell morphology and therefore have been widely used as a key indicator of physiological states and molecular pathways affecting various cellular functions via cytoskeleton. Cell motility is a complex phenomenon primarily driven by the actin network, which plays an important role in shaping the morphology of the cells. Most of the morphology based features are approximated from cell periphery but its dynamics have received none to scant attention. We aim to bridge the gap between membrane dynamics and cell states from the perspective of whole cell movement by identifying cell edge patterns and its correlation with cell dynamics. Results We present a systematic study to extract, classify, and compare cell dynamics in terms of cell motility and edge activity. Cell motility features extracted by fitting a persistent random walk were used to identify the initial set of cell subpopulations. We propose algorithms to extract edge features along the entire cell periphery such as protrusion and retraction velocity. These constitute a unique set of multivariate time-lapse edge features that are then used to profile subclasses of cell dynamics by unsupervised clustering. Conclusions By comparing membrane dynamic patterns exhibited by each subclass of cells, correlated trends of edge and cell movements were identified. Our findings are consistent with published literature and we also identified that motility patterns are influenced by edge features from initial time points compared to later sampling intervals. PMID:22372978

  3. Rescue of dysfunctional autophagy attenuates hyperinflammatory responses from cystic fibrosis cells.

    PubMed

    Mayer, Matthew L; Blohmke, Christoph J; Falsafi, Reza; Fjell, Chris D; Madera, Laurence; Turvey, Stuart E; Hancock, Robert E W

    2013-02-01

    A hallmark feature of cystic fibrosis (CF) is progressive pulmonary obstruction arising from exaggerated host proinflammatory responses to chronic bacterial airway colonization. The mechanisms for these heightened inflammatory responses have been only partially characterized, hampering development of effective anti-inflammatory therapies. The aim of this study was to identify and validate novel dysfunctional processes or pathways driving the hyperinflammatory phenotype of CF cells using systems biology and network analysis to examine transcriptional changes induced by innate defense regulator (IDR)-1018, an anti-inflammatory peptide. IDR-1018 selectively attenuated hyperinflammatory cytokine production from CF airway cells and PBMCs stimulated with multiple bacterial ligands, including flagellin (FliC). Network analysis of CF cell transcriptional responses to FliC and IDR-1018 identified dysfunctional autophagy as the target of the peptide via modulation of upstream adenosine monophosphate-activated protein kinase (AMPK)-Akt signaling. After treatment with FliC, CF cells were found to have elevated levels of the autophagosome marker LC3-II, and GFP-LC3-transfected CF airway cells showed abnormal perinuclear accumulation of GFP(+) structures. In both instances, treatment of CF cells with IDR-1018 abolished the accumulation of LC3 induced by FliC. Furthermore, inhibition of autophagosome-lysosome fusion with bafilomycinA1 attenuated the anti-inflammatory and autophagosome-clearing effects of IDR-1018, as did a chemical inhibitor of Akt and an activator of AMPK. These findings were consistent with hypotheses generated in silico, demonstrating the utility of systems biology and network analysis approaches for providing pathway-level insights into CF-associated inflammation. Collectively, these data suggest that dysfunctional autophagosome clearance contributes to heightened inflammatory responses from CF transmembrane receptor mutant cells and highlight autophagy and

  4. Toward an animal model of cystic fibrosis: Targeted interruption of exon 10 of the cystic fibrosis transmembrane regulator gene in embryonic stem cells

    SciTech Connect

    Koller, B.H.; Hyungsuk Kim; Latour, A.M.; Brigman, K.; Boucher, R.C. Jr.; Smithies, O. ); Scambler, P.; Wainwright, B. )

    1991-12-01

    A gene-targeting construct was made containing 7.8 kilobases of DNA spanning exon 10 of the mouse cystic fibrosis transmembrane regulator (CFTR) gene in which part of the exon has been replaced by two neomycin-resistance (Neo) genes driven by different promoters. (This replacement introduces a chain-termination codon at amino acid position 489 in the CFTR sequence). A herpes simplex thymidine kinase gene was on each end of the construct, which was electroporated into embryonic stem (ES) cells. Colonies resistant to G418, or to G418 plus ganciclovir, were selected and screened by Southern blotting or by PCR amplification. Five pools of G418-resistant cells gave PCR products diagnostic of targeting. Four independent clones of ES cells with a disrupted CFTR gene have been isolated from these pools. The frequency of targeting was 1/2500 G418-resistant colonies. This low frequency is not the consequence of marginal expression of the Neo genes in the targeted cells. The CFTR targeting events were clustered among our experiments in a manner suggesting that some unidentified factor(s), possible passage number, influences the recovery of CFTR-targeted cells.

  5. Red cell volume distribution width-to-platelet ratio in assessment of liver fibrosis in patients with chronic hepatitis B.

    PubMed

    Lee, Hye Won; Kang, Wonseok; Kim, Beom Kyung; Kim, Seung Up; Park, Jun Yong; Kim, Do Young; Ahn, Sang Hoon; Park, Young Nyun; Han, Kwang Hyub

    2016-01-01

    Precise assessment of liver fibrosis is necessary in patients with chronic liver disease. We investigated the performance of red cell volume distribution width-to-platelet ratio for the assessment of liver fibrosis in patients with chronic hepatitis B. A total of 482 consecutive patients with chronic hepatitis B who underwent liver biopsy between October 2005 and May 2014 were recruited. Liver stiffness was measured using transient elastography. FIB-4 score, red cell volume distribution width-to-platelet ratio and the aspartate aminotransferase-to-platelet ratio index were also assessed. A total of 271 (56.2%) patients were males. The median age was 44 years. F1, F2, F3 and F4 fibrosis stages were identified in 68 (14.1%), 137 (28.4%), 64 (13.3%) and 213 (44.2%) of the patients respectively. The mean red cell volume distribution width-to-platelet ratio increased with liver fibrosis severity: F1, 0.065; F2, 0.077; F3, 0.097 and F4, 0.121 (P < 0.01). The area under the receiver operating characteristic curve of the red cell volume distribution width-to-platelet ratio for predicting significant fibrosis (≥F2) was 0.747. This result was inferior to transient elastography (0.866, P = 0.004), but comparable to FIB-4 (0.782, P = 0.427) and aspartate aminotransferase-to-platelet ratio index (0.716, P = 0.507). The area under the receiver operating characteristic curve of red cell volume distribution width-to-platelet ratio for predicting cirrhosis (F4) was 0.811, which was inferior to liver stiffness (0.915, P < 0.001), but comparable to FIB-4 (0.804, P = 0.805) and superior to aspartate aminotransferase-to-platelet ratio index (0.680, P < 0.001). The accuracy of red cell volume distribution width-to-platelet ratio was acceptable for the assessment of liver fibrosis in patients with chronic hepatitis B. When transient elastography is not available, red cell volume distribution width-to-platelet ratio assessment is a simple method that can be used to reduce the need for

  6. Multifaceted Therapeutic Benefits of Factors Derived From Dental Pulp Stem Cells for Mouse Liver Fibrosis.

    PubMed

    Hirata, Marina; Ishigami, Masatoshi; Matsushita, Yoshihiro; Ito, Takanori; Hattori, Hisashi; Hibi, Hideharu; Goto, Hidemi; Ueda, Minoru; Yamamoto, Akihito

    2016-10-01

    : Chronic liver injury from various causes often results in liver fibrosis (LF). Although the liver possesses endogenous tissue-repairing activities, these can be overcome by sustained inflammation and excessive fibrotic scar formation. Advanced LF leads to irreversible cirrhosis and subsequent liver failure and/or hepatic cancer. Here, using the mouse carbon tetrachloride (CCl4)-induced LF model, we showed that a single intravenous administration of stem cells derived from human exfoliated deciduous teeth (SHEDs) or of SHED-derived serum-free conditioned medium (SHED-CM) resulted in fibrotic scar resolution. SHED-CM suppressed the gene expression of proinflammatory mediators, such as TNF-α, IL-1β, and iNOS, and eliminated activated hepatic stellate cells by inducing their apoptosis, but protected parenchymal hepatocytes from undergoing apoptosis. In addition, SHED-CM induced tissue-repairing macrophages that expressed high levels of the profibrinolytic factor, matrix metalloproteinase 13. Furthermore, SHED-CM suppressed the CCl4-induced apoptosis of primary cultured hepatocytes. SHED-CM contained a high level of hepatocyte growth factor (HGF). Notably, HGF-depleted SHED-CM (dHGF-CM) did not suppress the proinflammatory response or resolve fibrotic scarring. Furthermore, SHED-CM, but not dHGF-CM, inhibited CCl4-induced hepatocyte apoptosis. These results suggest that HGF plays a central role in the SHED-CM-mediated resolution of LF. Taken together, our findings suggest that SHED-CM provides multifaceted therapeutic benefits for the treatment of LF. This study demonstrated that a single intravenous administration of stem cells from human exfoliated deciduous teeth (SHEDs) or of the serum-free conditioned medium (CM) derived from SHEDs markedly improved mouse liver fibrosis (LF). SHED-CM suppressed chronic inflammation, eliminated activated hepatic stellate cells by inducing their apoptosis, protected hepatocytes from undergoing apoptosis, and induced

  7. Correlated FLIM and PLIM for cell metabolism

    NASA Astrophysics Data System (ADS)

    Rück, A.; Breymayer, J.; Kalinina, S.

    2016-03-01

    Correlated imaging of phosphorescence and fluorescence lifetime parameters of metabolic markers is a challenge for direct investigating mechanisms related to cell metabolism and oxygen tension. A large variety of clinical phenotypes is associated with mitochondrial defects accomplished with changes in cell metabolism. In many cases the hypoxic microenvironment of cancer cells shifts metabolism from oxidative phosphorylation (OXPHOS) to anaerobic or aerobic glycolysis, a process known as "Warburg" effect. Also during stem cell differentiation a switch in cell metabolism is observed. A defective mitochondrial function associated with hypoxia has been invoked in many complex disorders such as type 2 diabetes, Alzheimers disease, cardiac ischemia/reperfusion injury, tissue inflammation and cancer. Cellular responses to oxygen tension have been studied extensively, optical imaging techniques based on time correlated single photon counting (TCSPC) to detect the underlying metabolic mechanisms are therefore of prominent interest. They offer the possibility by inspecting fluorescence decay characteristics of intrinsic coenzymes to directly image metabolic pathways. Moreover oxygen tension can be determined by considering the phosphorescence lifetime of a phosphorescent probe. The combination of both fluorescence lifetime imaging (FLIM) of coenzymes like NADH and FAD and phosphorescence lifetime (PLIM) of phosphorescent dyes could provide valuable information about correlation of metabolic pathways and oxygen tension.

  8. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy.

    PubMed

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Bátkai, Sándor; Patel, Vivek; Saito, Keita; Matsumoto, Shingo; Kashiwaya, Yoshihiro; Horváth, Béla; Mukhopadhyay, Bani; Becker, Lauren; Haskó, György; Liaudet, Lucas; Wink, David A; Veves, Aristidis; Mechoulam, Raphael; Pacher, Pál

    2010-12-14

    In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose. Cannabidiol, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts anti-inflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans. Left ventricular function was measured by the pressure-volume system. Oxidative stress, cell death, and fibrosis markers were evaluated by molecular biology/biochemical techniques, electron spin resonance spectroscopy, and flow cytometry. Diabetic cardiomyopathy was characterized by declined diastolic and systolic myocardial performance associated with increased oxidative-nitrative stress, nuclear factor-κB and mitogen-activated protein kinase (c-Jun N-terminal kinase, p-38, p38α) activation, enhanced expression of adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1), tumor necrosis factor-α, markers of fibrosis (transforming growth factor-β, connective tissue growth factor, fibronectin, collagen-1, matrix metalloproteinase-2 and -9), enhanced cell death (caspase 3/7 and poly[adenosine diphosphate-ribose] polymerase activity, chromatin fragmentation, and terminal deoxynucleotidyl transferase dUTP nick end labeling), and diminished Akt phosphorylation. Remarkably, CBD attenuated myocardial dysfunction, cardiac fibrosis, oxidative/nitrative stress, inflammation, cell death, and interrelated signaling pathways. Furthermore, CBD also attenuated the high glucose-induced increased reactive oxygen species generation, nuclear factor-κB activation, and cell death in primary human cardiomyocytes. Collectively, these results coupled with the excellent safety and tolerability profile of CBD in humans, strongly

  9. Alteration and localization of glycan-binding proteins in human hepatic stellate cells during liver fibrosis.

    PubMed

    Zhong, Yaogang; Qin, Yannan; Dang, Liuyi; Jia, Liyuan; Zhang, Zhiwei; Wu, Haoxiang; Cui, Jihong; Bian, Huijie; Li, Zheng

    2015-10-01

    Glycan-binding proteins (GBPs) play an important role in cell adhesion, bacterial/viral infection, and cellular signaling pathways. However, little is known about the precision alteration of GBPs referred to pathological changes in hepatic stellate cells (HSCs) during liver fibrosis. Here, the carbohydrate microarrays were used to probe the alteration of GBPs in the activated HSCs and quiescent HSCs. As a result, 12 carbohydrates (e.g. Gal, GalNAc, and Man-9Glycan) showed increased signal, while seven carbohydrates (e.g. NeuAc, Lac, and GlcNAc-O-Ser) showed decreased signal in activated HSCs. Three carbohydrates (Gal, GalNAc, and NeuAc) were selected and subsequently used to validate the results of the carbohydrate microarrays as well as assess the distribution and localization of their binding proteins in HSCs and liver tissues by cy/histochemistry; the results showed that GBPs mainly distributed in the cytoplasma membrane and perinuclear region of cytoplasm. The immunocytochemistry was further used to verify some GBPs really exist in Golgi apparatus of the cells. The precision alteration and localization of GBPs referred to pathological changes in HSCs may provide pivotal information to help understand the biological functions of glycans how to exert through their recognition by a wide variety of GBPs. This study could lead to the development of new anti-fibrotic strategies.

  10. EZH2-mediated repression of Dkk1 promotes hepatic stellate cell activation and hepatic fibrosis.

    PubMed

    Yang, Yang; Chen, Xiao-Xia; Li, Wan-Xia; Wu, Xiao-Qin; Huang, Cheng; Xie, Juan; Zhao, Yu-Xin; Meng, Xiao-Ming; Li, Jun

    2017-03-23

    EZH2, a histone H3 lysine-27-specific methyltransferase, is involved in diverse physiological and pathological processes including cell proliferation and differentiation. However, the role of EZH2 in liver fibrosis is largely unknown. In this study, it was identified that EZH2 promoted Wnt pathway-stimulated fibroblasts in vitro and in vivo by repressing Dkk-1, which is a Wnt pathway antagonist. The expression of EZH2 was increased in CCl4 -induced rat liver and primary HSCs as well as TGF-β1-treated HSC-T6, whereas the expression of Dkk1 was reduced. Silencing of EZH2 prevented TGF-β1-induced proliferation of HSC-T6 cells and the expression of α-SMA. In addition, knockdown of Dkk1 promoted TGF-β1-induced activation of HSCs. Moreover, silencing of EZH2 could restore the repression of Dkk-1 through trimethylation of H3K27me3 in TGF-β1-treated HSC-T6 cells. Interestingly, inhibition of EZH2 had almost no effect on the activation of HSC when Dkk1 was silenced. Collectively, EZH2-mediated repression of Dkk1 promotes the activation of Wnt/β-catenin pathway, which is an essential event for HSC activation.

  11. β-Sitosterol Reduces the Expression of Chemotactic Cytokine Genes in Cystic Fibrosis Bronchial Epithelial Cells

    PubMed Central

    Lampronti, Ilaria; Dechecchi, Maria C.; Rimessi, Alessandro; Bezzerri, Valentino; Nicolis, Elena; Guerrini, Alessandra; Tacchini, Massimo; Tamanini, Anna; Munari, Silvia; D’Aversa, Elisabetta; Santangelo, Alessandra; Lippi, Giuseppe; Sacchetti, Gianni; Pinton, Paolo; Gambari, Roberto; Agostini, Maddalena; Cabrini, Giulio

    2017-01-01

    Extracts from Nigella arvensis L. seeds, which are widely used as anti-inflammatory remedies in traditional medicine of Northern Africa, were able to inhibit the expression of the pro-inflammatory neutrophil chemokine Interleukin (IL)-8 in Cystic Fibrosis (CF) bronchial epithelial IB3-1 cells exposed to the Gram-negative bacterium Pseudomonas aeruginosa. The chemical composition of the extracts led to the identification of three major components, β-sitosterol, stigmasterol, and campesterol, which are the most abundant phytosterols, cholesterol-like molecules, usually found in plants. β-sitosterol (BSS) was the only compound that significantly reproduced the inhibition of the P. aeruginosa-dependent expression of IL-8 at nanomolar concentrations. BSS was tested in CF airway epithelial CuFi-1 cells infected with P. aeruginosa. BSS (100 nM), showed a significant and consistent inhibitory activity on expression of the P. aeruginosa-stimulated expression chemokines IL-8, GRO-α GRO-β, which play a pivotal role in the recruitment of neutrophils in CF inflamed lungs. Preliminary mechanistic analysis showed that BSS partially inhibits the P. aeruginosa-dependent activation of Protein Kinase C isoform alpha, which is known to be involved in the transmembrane signaling activating IL-8 gene expression in bronchial epithelial cells. These data indicate BSS as a promising molecule to control excessive lung inflammation in CF patients. PMID:28553226

  12. Abnormal apical cell membrane in cystic fibrosis respiratory epithelium. An in vitro electrophysiologic analysis.

    PubMed Central

    Cotton, C U; Stutts, M J; Knowles, M R; Gatzy, J T; Boucher, R C

    1987-01-01

    The transepithelial chloride permeability of airway and sweat ductal epithelium has been reported to be decreased in patients with cystic fibrosis (CF). In the present study, we investigated whether the airway epithelial defect was in the cell path by characterizing the relative ion permeabilities of the apical membrane of respiratory epithelial cells from CF and normal subjects. Membrane electric potential difference (PD) and the responses to luminal Cl- replacement, isoproterenol, and amiloride were measured with intracellular microelectrodes. The PD across the apical barrier was smaller for CF (-11 mV) than normal (-29 mV) epithelia whereas the PD across the basolateral barrier was similar, (-26 and -34 mV respectively). In contrast to normal nasal epithelium, the apical membrane in CF epithelia was not Cl- permselective and was not responsive to isoproterenol. Amiloride, a selective Na+ channel blocker, induced a larger apical membrane hyperpolarization and a greater increase in transepithelial resistance in CF epithelia. Both reduced apical cell membrane Cl- conductance and increased Na+ conductance appear to contribute to the abnormal function of respiratory epithelia of CF patients. PMID:3793933

  13. miR-1273g-3p modulates activation and apoptosis of hepatic stellate cells by directly targeting PTEN in HCV-related liver fibrosis.

    PubMed

    Niu, Xuemin; Fu, Na; Du, Jinghua; Wang, Rongqi; Wang, Yang; Zhao, Suxian; Du, Huijuan; Wang, Baoyu; Zhang, Yuguo; Sun, Dianxing; Nan, Yuemin

    2016-08-01

    MicroRNA (miRNA) play a pivotal role in the development of liver fibrosis. However, the functions of miRNA in hepatitis C virus (HCV)-related liver fibrosis remain unclear. In this study, we systematically analyzed the microarray data of the serum miRNA in patients with HCV-induced hepatic fibrosis. Among 41 dysregulated miRNA, miR-1273g-3p was the most significantly upregulated miRNA and correlated with the stage of liver fibrosis. Overexpression of miR-1273g-3p could inhibit translation of PTEN, increase the expression of α-SMA, Col1A1, and reduce apoptosis in HSCs. Hence, we conclude that miR-1273g-3p might affect the activation and apoptosis of HSCs by directly targeting PTEN in HCV-related liver fibrosis.

  14. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients.

    PubMed

    Schwank, Gerald; Koo, Bon-Kyoung; Sasselli, Valentina; Dekkers, Johanna F; Heo, Inha; Demircan, Turan; Sasaki, Nobuo; Boymans, Sander; Cuppen, Edwin; van der Ent, Cornelis K; Nieuwenhuis, Edward E S; Beekman, Jeffrey M; Clevers, Hans

    2013-12-05

    Single murine and human intestinal stem cells can be expanded in culture over long time periods as genetically and phenotypically stable epithelial organoids. Increased cAMP levels induce rapid swelling of such organoids by opening the cystic fibrosis transmembrane conductor receptor (CFTR). This response is lost in organoids derived from cystic fibrosis (CF) patients. Here we use the CRISPR/Cas9 genome editing system to correct the CFTR locus by homologous recombination in cultured intestinal stem cells of CF patients. The corrected allele is expressed and fully functional as measured in clonally expanded organoids. This study provides proof of concept for gene correction by homologous recombination in primary adult stem cells derived from patients with a single-gene hereditary defect.

  15. Elevated serum concentrations of triggering receptor expressed on myeloid cells-1 in diffuse cutaneous systemic sclerosis: association with severity of pulmonary fibrosis.

    PubMed

    Tomita, Hajime; Ogawa, Fumihide; Hara, Toshihide; Yanaba, Koichi; Iwata, Yohei; Muroi, Eiji; Yoshizaki, Ayumi; Komura, Kazuhiro; Takenaka, Motoi; Shimizu, Kazuhiro; Hasegawa, Minoru; Fujimoto, Manabu; Sato, Shinichi

    2010-04-01

    To determine serum concentrations and clinical association of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) in patients with systemic sclerosis (SSc). Serum sTREM-1 levels from 17 patients with limited cutaneous SSc (lSSc), 24 patients with diffuse cutaneous SSc (dSSc), and 29 healthy control individuals were examined by ELISA. Total SSc patients exhibited significantly elevated serum sTREM-1 levels relative to controls (p < 0.01). Serum sTREM-1 levels were significantly elevated in patients with dSSc compared to controls (p < 0.005) and lSSc patients (p < 0.05). By contrast, sTREM-1 levels in lSSc were similar to those in controls. Serum sTREM-1 levels were significantly elevated in SSc patients with decreased percentage vital capacity (%VC). Consistent with this, serum sTREM-1 levels in SSc patients correlated negatively with %VC (r = -0.24, p < 0.005). Among SSc patients with pulmonary fibrosis, sTREM-1 levels were significantly increased in patients with decreased %VC or decreased percentage of diffusion capacity for carbon monoxide relative to those with normal values (p < 0.05). Serum sTREM-1 levels were elevated in dSSc patients and correlated with severity of pulmonary fibrosis, suggesting that serum sTREM-1 is a novel serological marker for the disease severity of SSc.

  16. Activation of Endoplasmic Reticulum Stress in Granulosa Cells from Patients with Polycystic Ovary Syndrome Contributes to Ovarian Fibrosis.

    PubMed

    Takahashi, Nozomi; Harada, Miyuki; Hirota, Yasushi; Nose, Emi; Azhary, Jerilee Mk; Koike, Hiroshi; Kunitomi, Chisato; Yoshino, Osamu; Izumi, Gentaro; Hirata, Tetsuya; Koga, Kaori; Wada-Hiraike, Osamu; Chang, R Jeffrey; Shimasaki, Shunichi; Fujii, Tomoyuki; Osuga, Yutaka

    2017-09-07

    Recent studies report the involvement of intra-ovarian factors, such as inflammation and oxidative stress, in the pathophysiology of polycystic ovary syndrome (PCOS), the most common endocrine disorder of reproductive age women. Endoplasmic reticulum (ER) stress is a local factor that affects various cellular events during a broad spectrum of physiological and pathological conditions. It may also be an important determinant of pro-fibrotic remodeling during tissue fibrosis. In the present study, we showed that ER stress was activated in granulosa cells of PCOS patients as well as in a well-established PCOS mouse model. Pharmacological inducers of ER stress, tunicamycin and thapsigargin, were found to increase the expression of pro-fibrotic growth factors, including transforming growth factor (TGF)-β1, in human granulosa cells, and their expression also increased in granulosa cells of PCOS patients. By contrast, treatment of PCOS mice with an ER stress inhibitor, tauroursodeoxycholic acid or BGP-15, decreased interstitial fibrosis and collagen deposition in ovaries, accompanied by a reduction in TGF-β1 expression in granulosa cells. These findings suggest that ER stress in granulosa cells of women with PCOS contributes to the induction of pro-fibrotic growth factors during ovarian fibrosis, and that ER stress may serve as a therapeutic target in PCOS.

  17. Mobilization of endogenous bone marrow-derived stem cells in a thioacetamide-induced mouse model of liver fibrosis.

    PubMed

    El-Akabawy, Gehan; El-Mehi, Abeer

    2015-06-01

    The clinical significance of enhancing endogenous circulating haematopoietic stem cells is becoming increasingly recognized, and the augmentation of circulating stem cells using granulocyte-colony stimulating factor (G-CSF) has led to promising preclinical and clinical results for several liver fibrotic conditions. However, this approach is largely limited by cost and the infeasibility of maintaining long-term administration. Preclinical studies have reported that StemEnhance, a mild haematopoietic stem cell mobilizer, promotes cardiac muscle regeneration and remedies the manifestation of diabetes. However, the effectiveness of StemEnhance in ameliorating liver cirrhosis has not been studied. This study is the first to evaluate the beneficial effect of StemEnhance administration in a thioacetamide-induced mouse model of liver fibrosis. StemEnhance augmented the number of peripheral CD34-positive cells, reduced hepatic fibrosis, improved histopathological changes, and induced endogenous liver proliferation. In addition, VEGF expression was up-regulated, while TNF-α expression was down-regulated in thioacetamide-induced fibrotic livers after StemEnhance intake. These data suggest that StemEnhance may be useful as a potential therapeutic candidate for liver fibrosis by inducing reparative effects via mobilization of haematopoietic stem cells.

  18. Role of atrial endothelial cells in the development of atrial fibrosis and fibrillation in response to pressure overload.

    PubMed

    Kume, Osamu; Teshima, Yasushi; Abe, Ichitaro; Ikebe, Yuki; Oniki, Takahiro; Kondo, Hidekazu; Saito, Shotaro; Fukui, Akira; Yufu, Kunio; Miura, Masahiro; Shimada, Tatsuo; Takahashi, Naohiko

    Monocyte chemoattractant protein-1 (MCP-1)-mediated inflammatory mechanisms have been shown to play a crucial role in atrial fibrosis induced by pressure overload. In the present study, we investigated whether left atrial endothelial cells would quickly respond structurally and functionally to pressure overload to trigger atrial fibrosis and fibrillation. Six-week-old male Sprague-Dawley rats underwent suprarenal abdominal aortic constriction (AAC) or a sham operation. By day 3 after surgery, macrophages were observed to infiltrate into the endocardium. The expression of MCP-1 and E-selectin in atrial endothelium and the expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and ED1 in left atrial tissue were enhanced. Atrial endothelial cells were irregularly hypertrophied with the disarrangement of lines of cells by scanning electron microscopy. Various-sized gap formations appeared along the border in atrial endothelial cells, and several macrophages were located just in the endothelial gap. Along with the development of heterogeneous interstitial fibrosis, interatrial conduction time was prolonged and the inducibility of atrial fibrillation by programmed extrastimuli was increased in the AAC rats compared to the sham-operated rats. Atrial endothelium responds rapidly to pressure overload by expressing adhesion molecules and MCP-1, which induce macrophage infiltration into the atrial tissues. These processes could be an initial step in the development of atrial remodeling for atrial fibrillation. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. AST to Platelet Index Correlates with Hepatic Cirrhosis But Not with Fibrosis in Pediatric Patients with Intestinal Failure

    PubMed Central

    Díaz, Juan J; Gura, Kathleen M.; Roda, Juliamna; Perez-Atayde, Antonio R.; Duggan, Christopher; Jaksic, Tom; Lo, Clifford W.

    2013-01-01

    Patients with Intestinal failure (IF) require parenteral nutrition (PN) support to obtain enough nutrients to sustain growth. long-term PN use is associated with significant liver damage. Objective To analyze the utility of a non-invasive test, the aspartate aminotransferase (AST) to platelet ratio index (APRI), in the diagnosis of liver disease in pediatric patients with IF. Methods Medical records of all Boston Children’s Hospital patients who received PN and underwent a liver biopsy from January 2006 until November 2010 were reviewed. Patients with a clinical diagnosis with IF were selected. APRI was calculated as follows (AST (U/L)/ upper normal limit) × 100/ platelets (109/L). Presence of fibrosis and cirrhosis was estimated using the METAVIR score in liver biopsies. Results 62 liver biopsies from 48 patients (22 female) were studied. Mean APRI values in the different METAVIR categories (0-1; 2-3; 4) were: 1.80, 1.17, and 4.24 respectively (ANOVA; P=0.053; Bonferroni test for cirrhosis versus fibrosis P=0.048). APRI could significantly predict cirrhosis (OR 1.2.; 95% CI 1.001-1.43) but not significant fibrosis (METAVIR 2-3, OR 1.00; 95% CI =0.86-1.18). Area under the receiver operating characteristic curve for cirrhosis was 0.67 (95% CI= 0.45-0.89; p=0.13). Conclusion APRI, a non invasive, easy to obtain bedside test significantly predicts cirrhosis but not fibrosis in pediatric patients with IFALD. As the clinicians need a non invasive test to differentiate among different stages of liver fibrosis rather than differentiating cirrhosis from normal, we cannot recommend the use of this test in pediatric patients with IFALD for this purpose. PMID:23666459

  20. [Effect of leptin on lung fibrosis of silicosis rats and the correlation between leptin and HIF-1α expressions].

    PubMed

    Pei, Houshuang; Li, Yongbin; Fan, Delong; Zhu, Shuyang; Zhang, Maowei; Li, Huiting; Chen, Bi; Zhang, Miao; Zhou, Ruijuan

    2014-07-01

    To observe the expression of leptin (LP) and its influence on pulmonary fibrosis in experimental rats with silicosis and the correlation between the expressions of leptin and HIF-1α. A total of 120 male Sprague-Dawley rats were randomly divided into normal control group, silicosis model group, LP intervention groups (consisting of LP5, LP10 and LP20 groups according to the concentration of LP). The rats in the normal control group were intratracheally administered 1 mL normal sodium, and the ones in the other groups were intratracheally given 1 mL SiO₂(40 mg/mL) suspension. The rats in LP intervention groups were intraperitoneally injected with leptin 5, 10, 20 ng/kg.d respectively from the first day. Six rats in each group were sacrificed on the 7th, 14th, 21th and 28th day. The expression of LP on the 7th, 14th, 21th and 28th day and the hydroxyproline content on the 28th day in rat lung tissues were measured by ELISA, and the expressions of HIF-1α and LP proteins in the lung tissues of the silicosis model group were measured by Western blotting. There were significant differences in the expression of LP in the lung tissues at each time point (7th, 14th, 21th and 28th day) among the five groups (F=669.18, 948.67, 1 172.00, 521.55, P<0.05). The LP content in the silicosis model group was significantly higher than that in the normal control group (P<0.05) and the expression of LP in the LP intervention groups were significantly elevated at each time point (P<0.05) as compared with the silicosis model group. Hydroxyproline content on 28th day was (0.89 ± 0.16), (3.14 ± 0.40), (3.78 ± 0.27), (4.35 ± 0.13), (4.87 ± 0.16) mg/g in normal control group, silicosis model group, LP5, LP10 and LP20 intervention groups, respectively. Compared with the normal control group, hydroxyproline content in the silicosis model group significantly increased (P<0.05), and compared with the silicosis model group, hydroxyproline content in LP intervention groups were

  1. Pulmonary Fibrosis

    MedlinePlus

    Pulmonary fibrosis is a condition in which the tissue deep in your lungs becomes scarred over time. This tissue ... may not get enough oxygen. Causes of pulmonary fibrosis include environmental pollutants, some medicines, some connective tissue ...

  2. Molecular magnetic resonance imaging of activated hepatic stellate cells with ultrasmall superparamagnetic iron oxide targeting integrin αvβ3 for staging liver fibrosis in rat model

    PubMed Central

    Zhang, Caiyuan; Liu, Huanhuan; Cui, Yanfen; Li, Xiaoming; Zhang, Zhongyang; Zhang, Yong; Wang, Dengbin

    2016-01-01

    Purpose To evaluate the expression level of integrin αvβ3 on activated hepatic stellate cells (HSCs) at different stages of liver fibrosis induced by carbon tetrachloride (CCl4) in rat model and the feasibility to stage liver fibrosis by using molecular magnetic resonance imaging (MRI) with arginine-glycine-aspartic acid (RGD) peptide modified ultrasmall superparamagnetic iron oxide nanoparticle (USPIO) specifically targeting integrin αvβ3. Materials and methods All experiments received approval from our Institutional Animal Care and Use Committee. Thirty-six rats were randomly divided into three groups of 12 subjects each, and intraperitoneally injected with CCl4 for either 3, 6, or 9 weeks. Controls (n=10) received pure olive oil. The change in T2* relaxation rate (ΔR2*) pre- and postintravenous administration of RGD-USPIO or naked USPIO was measured by 3.0T clinical MRI and compared by one-way analysis of variance or the Student’s t-test. The relationship between expression level of integrin αvβ3 and liver fibrotic degree was evaluated by Spearman’s ranked correlation. Results Activated HSCs were confirmed to be the main cell types expressing integrin αvβ3 during liver fibrogenesis. The protein level of integrin αv and β3 subunit expressed on activated HSCs was upregulated and correlated well with the progression of liver fibrosis (r=0.954, P<0.001; r=0.931, P<0.001, respectively). After injection of RGD-USPIO, there is significant difference in ΔR2* among rats treated with 0, 3, 6, and 9 weeks of CCl4 (P<0.001). The accumulation of iron particles in fibrotic liver specimen is significantly greater for RGD-USPIO than naked USPIO after being injected with equal dose of iron. Conclusion Molecular MRI of integrin αvβ3 expressed on activated HSCs by using RGD-USPIO may distinguish different liver fibrotic stages in CCl4 rat model and shows promising to noninvasively monitor the progression of the liver fibrosis and therapeutic response to

  3. Endotoxin induces fibrosis in vascular endothelial cells through a mechanism dependent on transient receptor protein melastatin 7 activity.

    PubMed

    Echeverría, Cesar; Montorfano, Ignacio; Hermosilla, Tamara; Armisén, Ricardo; Velásquez, Luis A; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe

    2014-01-01

    The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelial-to-mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis.

  4. Endotoxin Induces Fibrosis in Vascular Endothelial Cells through a Mechanism Dependent on Transient Receptor Protein Melastatin 7 Activity

    PubMed Central

    Echeverría, Cesar; Montorfano, Ignacio; Hermosilla, Tamara; Armisén, Ricardo; Velásquez, Luis A.; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe

    2014-01-01

    The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelial­to­mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis. PMID:24710004

  5. MHC-compatible bone marrow stromal/stem cells trigger fibrosis by activating host T cells in a scleroderma mouse model

    PubMed Central

    Ogawa, Yoko; Morikawa, Satoru; Okano, Hideyuki; Mabuchi, Yo; Suzuki, Sadafumi; Yaguchi, Tomonori; Sato, Yukio; Mukai, Shin; Yaguchi, Saori; Inaba, Takaaki; Okamoto, Shinichiro; Kawakami, Yutaka; Tsubota, Kazuo; Matsuzaki, Yumi; Shimmura, Shigeto

    2016-01-01

    Fibrosis of organs is observed in systemic autoimmune disease. Using a scleroderma mouse, we show that transplantation of MHC compatible, minor antigen mismatched bone marrow stromal/stem cells (BMSCs) play a role in the pathogenesis of fibrosis. Removal of donor BMSCs rescued mice from disease. Freshly isolated PDGFRα+ Sca-1+ BMSCs expressed MHC class II following transplantation and activated host T cells. A decrease in FOXP3+ CD25+ Treg population was observed. T cells proliferated and secreted IL-6 when stimulated with mismatched BMSCs in vitro. Donor T cells were not involved in fibrosis because transplanting T cell-deficient RAG2 knock out mice bone marrow still caused disease. Once initially triggered by mismatched BMSCs, the autoimmune phenotype was not donor BMSC dependent as the phenotype was observed after effector T cells were adoptively transferred into naïve syngeneic mice. Our data suggest that minor antigen mismatched BMSCs trigger systemic fibrosis in this autoimmune scleroderma model. DOI: http://dx.doi.org/10.7554/eLife.09394.001 PMID:26809474

  6. Suppression of renal fibrosis by galectin-1 in high glucose-treated renal epithelial cells

    SciTech Connect

    Okano, Kazuhiro Tsuruta, Yuki; Yamashita, Tetsuri; Takano, Mari; Echida, Yoshihisa; Nitta, Kosaku

    2010-11-15

    Diabetic nephropathy is the most common cause of chronic kidney disease. We investigated the ability of intracellular galectin-1 (Gal-1), a prototype of endogenous lectin, to prevent renal fibrosis by regulating cell signaling under a high glucose (HG) condition. We demonstrated that overexpression of Gal-1 reduces type I collagen (COL1) expression and transcription in human renal epithelial cells under HG conditions and transforming growth factor-{beta}1 (TGF-{beta}1) stimulation. Matrix metalloproteinase 1 (MMP1) is stimulated by Gal-1. HG conditions and TGF-{beta}1 treatment augment expression and nuclear translocation of Gal-1. In contrast, targeted inhibition of Gal-1 expression reduces COL1 expression and increases MMP1 expression. The Smad3 signaling pathway is inhibited, whereas two mitogen-activated protein kinase (MAPK) pathways, p38 and extracellular signal-regulated kinase (ERK), are activated by Gal-1, indicating that Gal-1 regulates these signaling pathways in COL1 production. Using specific inhibitors of Smad3, ERK, and p38 MAPK, we showed that ERK MAPK activated by Gal-1 plays an inhibitory role in COL1 transcription and that activation of the p38 MAPK pathway by Gal-1 plays a negative role in MMP1 production. Taken together, two MAPK pathways are stimulated by increasing levels of Gal-1 in the HG condition, leading to suppression of COL1 expression and increase of MMP1 expression.

  7. Neuroinflammatory Mechanisms of Connective Tissue Fibrosis: Targeting Neurogenic and Mast Cell Contributions

    PubMed Central

    Monument, Michael J.; Hart, David A.; Salo, Paul T.; Befus, A. Dean; Hildebrand, Kevin A.

    2015-01-01

    Significance: The pathogenesis of fibrogenic wound and connective tissue healing is complex and incompletely understood. Common observations across a vast array of human and animal models of fibroproliferative conditions suggest neuroinflammatory mechanisms are important upstream fibrogenic events. Recent Advances: As detailed in this review, mast cell hyperplasia is a common observation in fibrotic tissue. Recent investigations in human and preclinical models of hypertrophic wound healing and post-traumatic joint fibrosis provides evidence that fibrogenesis is governed by a maladaptive neuropeptide-mast cell-myofibroblast signaling pathway. Critical Issues: The blockade and manipulation of these factors is providing promising evidence that if timed correctly, the fibrogenic process can be appropriately regulated. Clinically, abnormal fibrogenic healing responses are not ubiquitous to all patients and the identification of those at-risk remains an area of priority. Future Directions: Ultimately, an integrated appreciation of the common pathobiology shared by many fibrogenic connective tissue conditions may provide a scientific framework to facilitate the development of novel antifibrotic prevention and treatment strategies. PMID:25785237

  8. T-bet-positive mononuclear cell infiltration is associated with transplant glomerulopathy and interstitial fibrosis and tubular atrophy in renal allograft recipients.

    PubMed

    Yadav, Brijesh; Prasad, Narayan; Agrawal, Vinita; Jain, Manoj; Agarwal, Vikas; Jaiswal, Akhilesh; Bhadauria, Dharmendra; Sharma, R K; Gupta, Amit

    2015-04-01

    We aimed to study the role of T-bet-positive mononuclear cell infiltration in different compartments of kidney graft tissues in patients with chronic transplant glomerulopathy, interstitial fibrosis and tubular atrophy, and stable graft function. There were 80 living-related renal transplant recipients included (chronic transplant glomerulopathy, n = 28; interstitial fibrosis and tubular atrophy, n = 28; stable graft function, n = 24). Histologic characteristics and scoring for peritubular capillaritis, glomerulitis, interstitial fibrosis and tubular atrophy, and intimal arteritis were performed according to Banff 2007 classification and compared between the groups. Immunohistologic staining was performed for transcription factor T-bet, T-bet mononuclear cells were counted, and T-bet infiltration score was compared between groups. Patients in different groups had similar clinical profiles and human leukocyte antigen mismatches, except the groups differed in serum creatinine and proteinuria. The prevalence and scoring of peritubular capillaritis and glomerulitis were significantly higher in chronic transplant glomerulopathy than interstitial fibrosis and tubular atrophy (P = .001) and stable graft function (P < .001). Tubulitis was observed in 6 patients (21.4%) with chronic transplant glomerulopathy but no patients with interstitial fibrosis and tubular atrophy. The C4d/donor-specific antibody was positive in 100% patients with chronic transplant glomerulopathy, 0% patients with interstitial fibrosis and tubular atrophy, and 4.1 % patients with stable graft function. Interstitial fibrosis and tubular atrophy was seen in 100% patients who had interstitial fibrosis and tubular atrophy; in patients who had chronic transplant glomerulopathy, 24 patients (85.7%) had interstitial fibrosis and 78.5% patients had tubular atrophy. The degree and severity of T-bet-positive cell infiltration were significantly higher in chronic transplant glomerulopathy than interstitial

  9. Cystic fibrosis transmembrane conductance regulator modulates neurosecretory function in pulmonary neuroendocrine cell-related tumor cell line models.

    PubMed

    Pan, Jie; Bear, Christine; Farragher, Susan; Cutz, Ernest; Yeger, Herman

    2002-11-01

    The pulmonary neuroendocrine cell (PNEC) system consists of solitary cells and distinctive cell clusters termed neuroepithelial bodies (NEB) localized in the airway epithelium. PNEC/NEB express a variety of bioactive substances, including amine (serotonin, 5HT) and neuropeptides. We have previously shown that NEB cells are O(2) sensors expressing nicotinamide adenine diphosphate oxidase complex and O(2) sensitive K(+) channel. Recently, we demonstrated expression of functional cystic fibrosis transmembrane conductance regulator (CFTR) and Cl(-) conductances in NEB cells of rabbit neonatal lung. Because PNEC/NEB are sparsely distributed and difficult to study in native lung, we investigated small-cell lung carcinoma (SCLC) and carcinoid tumor cell lines (tumor counterparts of normal PNEC/NEB) as models for PNEC/NEB. SCLC (H146, H345) and carcinoid (H727) cell lines express neuroendocrine cell markers, including chromogranin A, neural cell adhesion molecule (N-CAM), 5HT, and tryptophan hydroxylase. We report that H146, H345, and H727 express CFTR messenger RNA (reverse transcription polymerase chain reaction) and protein (immunoblotting) and possess functional CFTR Cl(-) conductance, demonstrated by an iodide efflux assay inhibitable by transfection with antisense CFTR. Using an immunoassay to quantitate 5HT secretion, we also show that downregulation of CFTR abolishes hypoxia-induced 5HT release, and reduces secretory response to high potassium. Our findings suggest that CFTR may modulate neurosecretory activity of PNEC/NEB possessing O(2) sensor function. We propose that these tumor cell lines may be useful models for investigating the role of CFTR in PNEC/NEB functions in health and disease.

  10. Phase correlation imaging of unlabeled cell dynamics

    NASA Astrophysics Data System (ADS)

    Ma, Lihong; Rajshekhar, Gannavarpu; Wang, Ru; Bhaduri, Basanta; Sridharan, Shamira; Mir, Mustafa; Chakraborty, Arindam; Iyer, Rajashekar; Prasanth, Supriya; Millet, Larry; Gillette, Martha U.; Popescu, Gabriel

    2016-09-01

    We present phase correlation imaging (PCI) as a novel approach to study cell dynamics in a spatially-resolved manner. PCI relies on quantitative phase imaging time-lapse data and, as such, functions in label-free mode, without the limitations associated with exogenous markers. The correlation time map outputted in PCI informs on the dynamics of the intracellular mass transport. Specifically, we show that PCI can extract quantitatively the diffusion coefficient map associated with live cells, as well as standard Brownian particles. Due to its high sensitivity to mass transport, PCI can be applied to studying the integrity of actin polymerization dynamics. Our results indicate that the cyto-D treatment blocking the actin polymerization has a dominant effect at the large spatial scales, in the region surrounding the cell. We found that PCI can distinguish between senescent and quiescent cells, which is extremely difficult without using specific markers currently. We anticipate that PCI will be used alongside established, fluorescence-based techniques to enable valuable new studies of cell function.

  11. Phase correlation imaging of unlabeled cell dynamics

    PubMed Central

    Ma, Lihong; Rajshekhar, Gannavarpu; Wang, Ru; Bhaduri, Basanta; Sridharan, Shamira; Mir, Mustafa; Chakraborty, Arindam; Iyer, Rajashekar; Prasanth, Supriya; Millet, Larry; Gillette, Martha U.; Popescu, Gabriel

    2016-01-01

    We present phase correlation imaging (PCI) as a novel approach to study cell dynamics in a spatially-resolved manner. PCI relies on quantitative phase imaging time-lapse data and, as such, functions in label-free mode, without the limitations associated with exogenous markers. The correlation time map outputted in PCI informs on the dynamics of the intracellular mass transport. Specifically, we show that PCI can extract quantitatively the diffusion coefficient map associated with live cells, as well as standard Brownian particles. Due to its high sensitivity to mass transport, PCI can be applied to studying the integrity of actin polymerization dynamics. Our results indicate that the cyto-D treatment blocking the actin polymerization has a dominant effect at the large spatial scales, in the region surrounding the cell. We found that PCI can distinguish between senescent and quiescent cells, which is extremely difficult without using specific markers currently. We anticipate that PCI will be used alongside established, fluorescence-based techniques to enable valuable new studies of cell function. PMID:27615512

  12. Paracellular transport through healthy and cystic fibrosis bronchial epithelial cell lines--do we have a proper model?

    PubMed

    Molenda, Natalia; Urbanova, Katarina; Weiser, Nelly; Kusche-Vihrog, Kristina; Günzel, Dorothee; Schillers, Hermann

    2014-01-01

    It has been reported recently that the cystic fibrosis transmembrane conductance regulator (CFTR) besides transcellular chloride transport, also controls the paracellular permeability of bronchial epithelium. The aim of this study was to test whether overexpressing wtCFTR solely regulates paracellular permeability of cell monolayers. To answer this question we used a CFBE41o- cell line transfected with wtCFTR or mutant F508del-CFTR and compered them with parental line and healthy 16HBE14o- cells. Transepithelial electrical resistance (TER) and paracellular fluorescein flux were measured under control and CFTR-stimulating conditions. CFTR stimulation significant decreased TER in 16HBE14o- and also in CFBE41o- cells transfected with wtCFTR. In contrast, TER increased upon stimulation in CFBE41o- cells and CFBE41o- cells transfected with F508del-CFTR. Under non-stimulated conditions, all four cell lines had similar paracellular fluorescein flux. Stimulation increased only the paracellular permeability of the 16HBE14o- cell monolayers. We observed that 16HBE14o- cells were significantly smaller and showed a different structure of cell-cell contacts than CFBE41o- and its overexpressing clones. Consequently, 16HBE14o- cells have about 80% more cell-cell contacts through which electrical current and solutes can leak. Also tight junction protein composition is different in 'healthy' 16HBE14o- cells compared to 'cystic fibrosis' CFBE41o- cells. We found that claudin-3 expression was considerably stronger in 16HBE14o- cells than in the three CFBE41o- cell clones and thus independent of the presence of functional CFTR. Together, CFBE41o- cell line transfection with wtCFTR modifies transcellular conductance, but not the paracellular permeability. We conclude that CFTR overexpression is not sufficient to fully reconstitute transport in CF bronchial epithelium. Hence, it is not recommended to use those cell lines to study CFTR-dependent epithelial transport.

  13. Andrographolide attenuates skeletal muscle dystrophy in mdx mice and increases efficiency of cell therapy by reducing fibrosis

    PubMed Central

    2014-01-01

    Background Duchenne muscular dystrophy (DMD) is characterized by the absence of the cytoskeletal protein dystrophin, muscle wasting, increased transforming growth factor type beta (TGF-β) signaling, and fibrosis. At the present time, the only clinically validated treatments for DMD are glucocorticoids. These drugs prolong muscle strength and ambulation of patients for a short term only and have severe adverse effects. Andrographolide, a bicyclic diterpenoid lactone, has traditionally been used for the treatment of colds, fever, laryngitis, and other infections with no or minimal side effects. We determined whether andrographolide treatment of mdx mice, an animal model for DMD, affects muscle damage, physiology, fibrosis, and efficiency of cell therapy. Methods mdx mice were treated with andrographolide for three months and skeletal muscle histology, creatine kinase activity, and permeability of muscle fibers were evaluated. Fibrosis and TGF-β signaling were evaluated by indirect immunofluorescence and Western blot analyses. Muscle strength was determined in isolated skeletal muscles and by a running test. Efficiency of cell therapy was determined by grafting isolated skeletal muscle satellite cells onto the tibialis anterior of mdx mice. Results mdx mice treated with andrographolide exhibited less severe muscular dystrophy than untreated dystrophic mice. They performed better in an exercise endurance test and had improved muscle strength in isolated muscles, reduced skeletal muscle impairment, diminished fibrosis and a significant reduction in TGF-β signaling. Moreover, andrographolide treatment of mdx mice improved grafting efficiency upon intramuscular injection of dystrophin-positive satellite cells. Conclusions These results suggest that andrographolide could be used to improve quality of life in individuals with DMD. PMID:24655808

  14. Andrographolide attenuates skeletal muscle dystrophy in mdx mice and increases efficiency of cell therapy by reducing fibrosis.

    PubMed

    Cabrera, Daniel; Gutiérrez, Jaime; Cabello-Verrugio, Claudio; Morales, Maria Gabriela; Mezzano, Sergio; Fadic, Ricardo; Casar, Juan Carlos; Hancke, Juan L; Brandan, Enrique

    2014-01-01

    Duchenne muscular dystrophy (DMD) is characterized by the absence of the cytoskeletal protein dystrophin, muscle wasting, increased transforming growth factor type beta (TGF-β) signaling, and fibrosis. At the present time, the only clinically validated treatments for DMD are glucocorticoids. These drugs prolong muscle strength and ambulation of patients for a short term only and have severe adverse effects. Andrographolide, a bicyclic diterpenoid lactone, has traditionally been used for the treatment of colds, fever, laryngitis, and other infections with no or minimal side effects. We determined whether andrographolide treatment of mdx mice, an animal model for DMD, affects muscle damage, physiology, fibrosis, and efficiency of cell therapy. mdx mice were treated with andrographolide for three months and skeletal muscle histology, creatine kinase activity, and permeability of muscle fibers were evaluated. Fibrosis and TGF-β signaling were evaluated by indirect immunofluorescence and Western blot analyses. Muscle strength was determined in isolated skeletal muscles and by a running test. Efficiency of cell therapy was determined by grafting isolated skeletal muscle satellite cells onto the tibialis anterior of mdx mice. mdx mice treated with andrographolide exhibited less severe muscular dystrophy than untreated dystrophic mice. They performed better in an exercise endurance test and had improved muscle strength in isolated muscles, reduced skeletal muscle impairment, diminished fibrosis and a significant reduction in TGF-β signaling. Moreover, andrographolide treatment of mdx mice improved grafting efficiency upon intramuscular injection of dystrophin-positive satellite cells. These results suggest that andrographolide could be used to improve quality of life in individuals with DMD.

  15. Effect of bosentan is correlated with MMP-9/TIMP-1 ratio in bleomycin-induced pulmonary fibrosis

    PubMed Central

    Zuo, Wan-Li; Zhao, Jie-Min; Huang, Ji-Xiong; Zhou, Wei; Lei, Ze-Hong; Huang, Yan-Ming; Huang, Yan-Fen; Li, Hai-Gang

    2017-01-01

    Pulmonary fibrosis (PF) is a life-threatening non-tumorous disease characterized by progressive fibrosis and worsening lung function. Various drugs, such as bleomycin, can contribute to lung injury and PF, with lung injury potentially occurring in 10% of bleomycin users. Bleomycin is the most commonly used drug in the establishment of an animal model of PF in rats. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) serve an important role in controlling tissue organization and fibrosis following injury. The present study examined the effect of bosentan on fibrotic lung tissue in rats administrated with bleomycin. In total, 48 Wistar rats were administrated with bleomycin, with or without bosentan, while the control rats received saline. The lung tissues were microscopically examined by staining with hematoxylin and eosin and Masson's trichome. ELISA was also used to detect the MMP-9 and TIMP-1 concentrations in the plasma. The results indicated that the bosentan-treated groups on the next day and the 15th day showed significant reversal of pathological findings. In addition, the concentrations of MMP-9 and TIMP-1 appeared to be altered following bosentan treatment, improving the bleomycin-induced PF. Masson's trichome staining showed high collagen deposition in the lung tissue sections, which may be a direct result of the activity of MMP-9 and TIMP-1. Furthermore, the deposition of collagen was significantly inhibited in bosentan-treated groups. In conclusion, these results demonstrated that bosentan inhibited lung fibrosis induced by bleomycin and it may be used as an inhibitor of PF. PMID:28357073

  16. Differences in correlation of mRNA gene expression in mice sensitive and resistant to radiation-induced pulmonary fibrosis

    SciTech Connect

    Johnston, C.J.; Piedboeuf, B.; Finkelstein, J.N.; Baggs, R.; Rubin, P.

    1995-05-01

    Fibrosis, characterized by the accumulation of collagen, is a late result of thoracic irradiation. The purpose of this study was to determine if extracellular matrix protein and transforming growth factor {beta} mRNA expression are altered late in the course of pulmonary fibrosis after irradiation, and then to determine if these changes differ between two strains of mice which vary in their sensitivity to radiation. Radiation-sensitive (C57BL/6) and radiation-resistant (C3H/HeJ) mice were irradiated with a single dose of 5 or 12.5 Gy to the thorax. Total lung RNA was prepared and immobilized by Northern and slot blotting and hybridized with radiolabeled cDNA probes for collagens I, III and IV, fibronectin, and transforming growth factor {beta}{sub 1} and {beta}{sub 3}. Autoradiographic data were quantified by video densitometry and results normalized to a control probe encoding for glyceralde-hyde-3-phosphate dehydrogenase. Alterations in mRNA abundance were observed in the sensitive mice at all times, while levels in the resistant mice were unaffected until 26 weeks after irradiation. The relationship between extracellular matrix protein per se and increased mRNA abundance suggests that late matrix protein accumulation may be a function of gene expression. Differences in levels of transforming growth factor {beta}mRNA may lead to strain-dependent variation in fibrotic response and may also contribute to the radiation-induced component of pulmonary fibrosis. 32 refs., 5 figs.

  17. Identification of myocardial diffuse fibrosis by 11 heartbeat MOLLI T 1 mapping: averaging to improve precision and correlation with collagen volume fraction.

    PubMed

    Vassiliou, Vassilios S; Wassilew, Katharina; Cameron, Donnie; Heng, Ee Ling; Nyktari, Evangelia; Asimakopoulos, George; de Souza, Anthony; Giri, Shivraman; Pierce, Iain; Jabbour, Andrew; Firmin, David; Frenneaux, Michael; Gatehouse, Peter; Pennell, Dudley J; Prasad, Sanjay K

    2017-06-12

    Our objectives involved identifying whether repeated averaging in basal and mid left ventricular myocardial levels improves precision and correlation with collagen volume fraction for 11 heartbeat MOLLI T 1 mapping versus assessment at a single ventricular level. For assessment of T 1 mapping precision, a cohort of 15 healthy volunteers underwent two CMR scans on separate days using an 11 heartbeat MOLLI with a 5(3)3 beat scheme to measure native T 1 and a 4(1)3(1)2 beat post-contrast scheme to measure post-contrast T 1, allowing calculation of partition coefficient and ECV. To assess correlation of T 1 mapping with collagen volume fraction, a separate cohort of ten aortic stenosis patients scheduled to undergo surgery underwent one CMR scan with this 11 heartbeat MOLLI scheme, followed by intraoperative tru-cut myocardial biopsy. Six models of myocardial diffuse fibrosis assessment were established with incremental inclusion of imaging by averaging of the basal and mid-myocardial left ventricular levels, and each model was assessed for precision and correlation with collagen volume fraction. A model using 11 heart beat MOLLI imaging of two basal and two mid ventricular level averaged T 1 maps provided improved precision (Intraclass correlation 0.93 vs 0.84) and correlation with histology (R (2) = 0.83 vs 0.36) for diffuse fibrosis compared to a single mid-ventricular level alone. ECV was more precise and correlated better than native T 1 mapping. T 1 mapping sequences with repeated averaging could be considered for applications of 11 heartbeat MOLLI, especially when small changes in native T 1/ECV might affect clinical management.

  18. The anti-hepatic fibrosis activity of ergosterol depended on upregulation of PPARgamma in HSC-T6 cells.

    PubMed

    Tai, Chen-Jei; Choong, Chen-Yen; Lin, Yu-Chun; Shi, Yeu-Ching; Tai, Cheng-Jeng

    2016-04-01

    Advanced glycation endproducts (AGEs) were shown to play an important role in metabolic syndrome and were suggested to contribute to the development of hepatic fibrosis. Evidence indicates that AGEs resulted in hepatic fibrosis coupled to the activation of the receptor for AGEs (RAGE) in hepatic stellate cells (HSCs). NADPH oxidase is downstream of the RAGE signaling pathway, resulting in an increase in reactive oxygen species (ROS), alpha-smooth muscle actin (alpha-SMA), RAGE, and matrix metalloproteinase-9 (MMP-9). This study was designed to evaluate the effects of ergosterol on RAGE signaling in HSC-T6 cells. Ergosterol suppressed the activation of HSC-T6 cells induced by AGEs, and attenuated overexpressions of alpha-SMA, MMP-9, and epithelial-mesenchymal transition (EMT) markers, including N-cadherin and vimentin. We also found that these inhibitory effects of ergosterol on the activation of HSCs were dependent on peroxisome proliferator-activated receptor-gamma (PPARgamma) confirmed by PPARgamma reporter assay and PPARgamma knockdown. In addition, ergosterol also showed an inhibitory effect on the generation of AGEs, fructosamine, and α-dicarbonyl compounds in this study. Our results show that ergosterol can be used as a protective agent against hepatic fibrosis caused by induction of AGEs.

  19. Effect of Rougan Huaqian granules combined with human mesenchymal stem cell transplantation on liver fibrosis in cirrhosis rats.

    PubMed

    Wang, Zhen-Chang; Yang, Shan; Huang, Jing-Jing; Chen, Song-Lin; Li, Quan-Qiang; Li, Yuan

    2014-07-01

    To observe the effect of Rougan Huaqian granules combined with human mesenchymal stem cell (hMSC) transplantation on the liver fibrosis in carbon tetrachloride-induced cirrhosis rats. Sixty SD rats were randomly divided into five groups. The rats in control group received intraperitoneal injection of saline, while those in model control group, treatment group A, group B and group C received intraperitoneal injection of carbon tetrachloride oily solution to induce liver cirrhosis within 8 weeks. Then, the rats in the model control group, treatment group A, treatment group B, treatment group C received vein tail injection of saline, Rougan Huaqian granules, hMSC suspension and Rougan Huaqian granules combined with hMSC suspension. The treatment groups had significantly different liver function (AST levels), liver