Sample records for fibrosis cells correlates

  1. Eotaxin/CCL11 levels correlate with myocardial fibrosis and mast cell density in native and transplanted rat hearts.

    PubMed

    Zweifel, M; Matozan, K; Dahinden, C; Schaffner, T; Mohacsi, P

    2010-09-01

    Myocardial fibrosis contributes to hemodynamic and cardiac functional alterations commonly observed posttransplantation. Cardiac mast cells (MC) have been linked to fibrosis in posttransplantation hearts. Eotaxin, which has been shown to be involved in fibrogenesis, has been demonstrated to be increased in production in cardiac macrophages. The aim of our study was to correlate myocardial fibrosis during heart transplant rejection in the rat with eotaxin/chemokine [c-c motif] ligand 11 (CCL11) expression, and with various subtypes of infiltrating cardiac MC, namely connective-type MC (CTMC) and mucosa-type MC (MMC). We used tissues from 2 previous studies of ongoing acute rejection in allogeneic Brown-Norway to Lewis rat and an isogeneic Brown-Norway to Brown-Norway heterotopic heart transplantation models under cyclosporin/prednisolone immunosuppression. Collagen fibrils were stained with Masson's trichrome with myocardial fibrosis expressed as percent fibrotic area per total section area. Eotaxin/CCL11 previously measured in heart tissue using enzyme-linked immunosorbent assay (ELISA) was correlated with the extent of myocardial fibrosis. We compared values from native hearts (n = 4) as well as transplants on days 5, 16, and 28 (n = 4 in each group). The area of myocardial fibrosis was significantly increased in the allogeneic compared with the isogeneic group at day 16 (38% vs 21%) and at day 28 (49% vs 22%) after transplantation. Myocardial fibrosis correlated significantly with eotaxin/CCL11 concentrations and the density of MMC, but not with CTMC in heart tissue. Eotaxin-triggered MC infiltration of the heart may contribute to myocardial fibrosis after transplantation. Targeting eotaxin/CCL11 with monoclonal antibodies, such as bertilimumab, could reduce MC infiltration, possibly resulting in decreased myocardial fibrosis and improved contractile function after heart transplantation. 2010 Elsevier Inc. All rights reserved.

  2. Mineralogic correlates of fibrosis in chrysotile miners and millers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churg, A.; Wright, J.L.; DePaoli, L.

    1989-04-01

    To determine which mineral parameters relate to the degree of interstitial fibrosis (asbestosis) in the lungs of chrysotile miners and millers, we graded fibrosis histologically and correlated fibrosis grades with fiber concentration and mean size, surface area, and mass, and with total sample fiber length, surface area, and mass in 21 cases. A positive correlation of fibrosis grade with tremolite concentration and a lesser correlation with chrysotile concentration was found for whole lungs, specific sites within lungs, and, for tremolite, single microscopic fields. No correlations were found for measures of chrysotile fiber size, surface area, or mass, but tremolite meanmore » fiber length, aspect ratio, and surface area were, surprisingly, negatively correlated with fibrosis grade. Measures based on total rather than on mean case or site parameters failed to show correlations with fibrosis. We conclude that: (1) degree of pulmonary fibrosis reflects fiber concentration at both a bulk and a microscopic level; (2) mean fiber length and parameters related to mean fiber length also correlate with fibrosis grade, but, contrary to predictions from animal studies, this correlation is negative, suggesting that short fibers may be more important in the genesis of pulmonary fibrosis than is commonly believed; (3) there is no evidence that parameters such as total fiber length, surface area, or mass provide predictors of degree of fibrosis.« less

  3. Intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhaeghe, Catherine; Tabruyn, Sebastien P.; Oury, Cecile

    Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditionedmore » media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications.« less

  4. Pancreatic fibrosis correlates with exocrine pancreatic insufficiency after pancreatoduodenectomy.

    PubMed

    Tran, T C K; van 't Hof, G; Kazemier, G; Hop, W C; Pek, C; van Toorenenbergen, A W; van Dekken, H; van Eijck, C H J

    2008-01-01

    Obstruction of the pancreatic duct can lead to pancreatic fibrosis. We investigated the correlation between the extent of pancreatic fibrosis and the postoperative exocrine and endocrine pancreatic function. Fifty-five patients who were treated for pancreatic and periampullary carcinoma and 19 patients with chronic pancreatitis were evaluated. Exocrine pancreatic function was evaluated by fecal elastase-1 test, while endocrine pancreatic function was assessed by plasma glucose level. The extent of fibrosis, duct dilation and endocrine tissue loss was examined histopathologically. A strong correlation was found between pancreatic fibrosis and elastase-1 level less than 100 microg/g (p < 0.0001), reflecting severe exocrine pancreatic insufficiency. A strong correlation was found between pancreatic fibrosis and endocrine tissue loss (p < 0.0001). Neither pancreatic fibrosis nor endocrine tissue loss were correlated with the development of postoperative diabetes mellitus. Duct dilation alone was neither correlated with exocrine nor with endocrine function loss. The majority of patients develop severe exocrine pancreatic insufficiency after pancreatoduodenectomy. The extent of exocrine pancreatic insufficiency is strongly correlated with preoperative fibrosis. The loss of endocrine tissue does not correlate with postoperative diabetes mellitus. Preoperative dilation of the pancreatic duct per se does not predict exocrine or endocrine pancreatic insufficiency postoperatively. Copyright 2008 S. Karger AG, Basel.

  5. Schistosome-induced cholangiocyte proliferation and osteopontin secretion correlate with fibrosis and portal hypertension in human and murine schistosomiasis mansoni.

    PubMed

    Pereira, Thiago A; Syn, Wing-Kin; Machado, Mariana V; Vidigal, Paula V; Resende, Vivian; Voieta, Izabela; Xie, Guanhua; Otoni, Alba; Souza, Márcia M; Santos, Elisângela T; Chan, Isaac S; Trindade, Guilherme V M; Choi, Steve S; Witek, Rafal P; Pereira, Fausto E; Secor, William E; Andrade, Zilton A; Lambertucci, José Roberto; Diehl, Anna Mae

    2015-11-01

    Schistosomiasis is a major cause of portal hypertension worldwide. It associates with portal fibrosis that develops during chronic infection. The mechanisms by which the pathogen evokes these host responses remain unclear. We evaluated the hypothesis that schistosome eggs release factors that directly stimulate liver cells to produce osteopontin (OPN), a pro-fibrogenic protein that stimulates hepatic stellate cells to become myofibroblasts. We also investigated the utility of OPN as a biomarker of fibrosis and/or severity of portal hypertension. Cultured cholangiocytes, Kupffer cells and hepatic stellate cells were treated with soluble egg antigen (SEA); OPN production was quantified by quantitative reverse transcriptase polymerase chain reaction (qRTPCR) and ELISA; cell proliferation was assessed by BrdU (5-bromo-2'-deoxyuridine). Mice were infected with Schistosoma mansoni for 6 or 16 weeks to cause early or advanced fibrosis. Liver OPN was evaluated by qRTPCR and immunohistochemistry (IHC) and correlated with liver fibrosis and serum OPN. Livers from patients with schistosomiasis mansoni (early fibrosis n=15; advanced fibrosis n=72) or healthy adults (n=22) were immunostained for OPN and fibrosis markers. Results were correlated with plasma OPN levels and splenic vein pressures. SEA-induced cholangiocyte proliferation and OPN secretion (P<0.001 compared with controls). Cholangiocytes were OPN (+) in Schistosoma-infected mice and humans. Liver and serum OPN levels correlated with fibrosis stage (mice: r=0.861; human r=0.672, P=0.0001) and myofibroblast accumulation (mice: r=0.800; human: r=0.761, P=0.0001). Numbers of OPN (+) bile ductules strongly correlated with splenic vein pressure (r=0.778; P=0.001). S. mansoni egg antigens stimulate cholangiocyte proliferation and OPN secretion. OPN levels in liver and blood correlate with fibrosis stage and portal hypertension severity. © 2015 Authors; published by Portland Press Limited.

  6. Mast Cells: Key Contributors to Cardiac Fibrosis

    PubMed Central

    Widiapradja, Alexander

    2018-01-01

    Historically, increased numbers of mast cells have been associated with fibrosis in numerous cardiac pathologies, implicating mast cells in the development of cardiac fibrosis. Subsequently, several approaches have been utilised to demonstrate a causal role for mast cells in animal models of cardiac fibrosis including mast cell stabilising compounds, rodents deficient in mast cells, and inhibition of the actions of mast cell-specific proteases such as chymase and tryptase. Whilst most evidence supports a pro-fibrotic role for mast cells, there is evidence that in some settings these cells can oppose fibrosis. A major gap in our current understanding of cardiac mast cell function is identification of the stimuli that activate these cells causing them to promote a pro-fibrotic environment. This review will present the evidence linking mast cells to cardiac fibrosis, as well as discuss the major questions that remain in understanding how mast cells contribute to cardiac fibrosis. PMID:29329223

  7. Red Blood Cell Distribution Width Levels Correlate With Liver Fibrosis and Inflammation

    PubMed Central

    Xu, Wen-Shen; Qiu, Xiao-Ming; Ou, Qi-shui; Liu, Can; Lin, Jin-Piao; Chen, Hui-Juan; Lin, Sheng; Wang, Wen-Hua; Lin, Shou-Rong; Chen, Jing

    2015-01-01

    Abstract We aimed to study whether red blood cell distribution width (RDW) could be one of the variables determining the extent of liver fibrosis and inflammation in patients with biopsy-proven hepatitis B. A total of 446 hepatitis B virus-infected patients who underwent liver biopsy were divided into 2 groups: absent or mild and moderate–severe according to the severity of liver fibrosis and inflammation. The independent variables that determine the severity of liver fibrosis and inflammation were explored. RDW values increased with progressive liver fibrosis and inflammation. After adjustments for other potent predictors, liver fibrosis (moderate–severe) was independently associated with RDW, platelet, and albumin (odds ratio = 1.121, 0.987, and 0.941, respectively), whereas increased odds ratios of significant inflammation were found for RDW, alanine aminotransferase, albumin, and PLT (odds ratio = 1.146, 1.003, 0.927, and 0.990, respectively). The sensitivity and specificity of model A were 70.0% and 62.9% for detection of significant liver fibrosis [area under the receiver-operating characteristic curve (AUC) = 0.713, P < 0.001]. The sensitivity and specificity of model B were 66.1% and 79.4% for predicting advanced liver inflammation (AUC = 0.765, P < 0.001). Compared with preexisting indicators, model A achieved the highest AUC, whereas model B showed a higher AUC than RDW to platelet ratio (0.670, P < 0.001) and FIB-4 (0.740, P = 0.32). RDW may provide a useful clinical value for predicting liver fibrosis and necroinflammation in hepatitis B-infected patients with other markers. PMID:25761184

  8. Fibrosis of Two: Epithelial Cell-Fibroblast Interactions in Pulmonary Fibrosis

    PubMed Central

    Sakai, Norihiko; Tager, Andrew M.

    2013-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive and ultimately fatal accumulation of fibroblasts and extracellular matrix in the lung that distorts its architecture and compromises its function. IPF is now thought to result from wound-healing processes that, although initiated to protect the host from injurious environmental stimuli, lead to pathological fibrosis due to these processes becoming aberrant or over-exuberant. Although the environmental stimuli that trigger IPF remain to be identified, recent evidence suggests that they initially injure the alveolar epithelium. Repetitive cycles of epithelial injury and resultant alveolar epithelial cell death provoke the migration, proliferation, activation and myofibroblast differentiation of fibroblasts, causing the accumulation of these cells and the extracellular matrix that they synthesize. In turn, these activated fibroblasts induce further alveolar epithelial cell injury and death, thereby creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast interactions. Though other cell types certainly make important contributions, we focus here on the “pas de deux” (steps of two), or perhaps more appropriate to IPF pathogenesis, the “folie à deux” (madness of two) of epithelial cells and fibroblasts that drives the progression of pulmonary fibrosis. We describe the signaling molecules that mediate the interactions of these cell types in their “fibrosis of two”, including transforming growth factor-β, connective tissue growth factor, sonic hedgehog, prostaglandin E2, angiotensin II and reactive oxygen species. PMID:23499992

  9. Correlation of four potential biomarkers of liver fibrosis with liver function and grade of hepatic fibrosis in a neonatal cholestatic rat model.

    PubMed

    Tang, Ning; Zhang, Yaping; Liu, Zeyu; Ai, Xuemei; Liang, Qinghong

    2017-07-01

    The present study investigated the correlation between four serum biomarkers of liver fibrosis, liver function and pathological hepatic fibrosis grade in neonatal cholestatic rats. A total of 38 Sprague‑Dawley rats, aged 3 weeks, were randomly assigned to the experimental group (EG), control group (CG) and the blank control group (BCG). EG received intragastric administration of 1% α‑naphthylisothiocyanate, 75 mg/kg, to induce acute cholestasis liver injury, CG and BCG were set as control groups. Blood samples from all groups were collected 48 h following the procedure. The levels of liver function markers, and four biomarkers of liver fibrosis in serum, were measured and sections of liver tissue were stained for pathological analysis. The results of the present study demonstrated that the degree of hepatic fibrosis in EG, in the serum levels or by pathological analysis, was markedly more evident compared with the CG. Several indices of four biomarkers for liver fibrosis in serum were identified and correlated with the levels of liver function markers. The pathological hepatic fibrosis grade was correlated with γ‑glutamyl transferase (γ‑GT) and Hyaluronic acid (HA). Therefore, HA and γ‑GT were positively correlated with the grade of hepatic fibrosis, indicating their efficacy as biomarkers of infantile cholestatic hepatic fibrosis.

  10. Pulmonary CCR2+CD4+ T cells are immune regulatory and attenuate lung fibrosis development.

    PubMed

    Milger, Katrin; Yu, Yingyan; Brudy, Eva; Irmler, Martin; Skapenko, Alla; Mayinger, Michael; Lehmann, Mareike; Beckers, Johannes; Reichenberger, Frank; Behr, Jürgen; Eickelberg, Oliver; Königshoff, Melanie; Krauss-Etschmann, Susanne

    2017-11-01

    Animal models have suggested that CCR2-dependent signalling contributes to the pathogenesis of pulmonary fibrosis, but global blockade of CCL2 failed to improve the clinical course of patients with lung fibrosis. However, as levels of CCR2 + CD4 + T cells in paediatric lung fibrosis had previously been found to be increased, correlating with clinical symptoms, we hypothesised that distinct CCR2 + cell populations might either increase or decrease disease pathogenesis depending on their subtype. To investigate the role of CCR2 + CD4 + T cells in experimental lung fibrosis and in patients with idiopathic pulmonary fibrosis and other fibrosis. Pulmonary CCR2 + CD4 + T cells were analysed using flow cytometry and mRNA profiling, followed by in silico pathway analysis, in vitro assays and adoptive transfer experiments. Frequencies of CCR2 + CD4 + T cells were increased in experimental fibrosis-specifically the CD62L - CD44 + effector memory T cell phenotype, displaying a distinct chemokine receptor profile. mRNA profiling of isolated CCR2 + CD4 + T cells from fibrotic lungs suggested immune regulatory functions, a finding that was confirmed in vitro using suppressor assays. Importantly, adoptive transfer of CCR2 + CD4 + T cells attenuated fibrosis development. The results were partly corroborated in patients with lung fibrosis, by showing higher percentages of Foxp3 + CD25 + cells within bronchoalveolar lavage fluid CCR2 + CD4 + T cells as compared with CCR2 - CD4 + T cells. Pulmonary CCR2 + CD4 + T cells are immunosuppressive, and could attenuate lung inflammation and fibrosis. Therapeutic strategies completely abrogating CCR2-dependent signalling will therefore also eliminate cell populations with protective roles in fibrotic lung disease. This emphasises the need for a detailed understanding of the functions of immune cell subsets in fibrotic lung disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights

  11. Hypervitaminosis A-induced liver fibrosis: stellate cell activation and daily dose consumption.

    PubMed

    Nollevaux, M-C; Guiot, Y; Horsmans, Y; Leclercq, I; Rahier, J; Geubel, A P; Sempoux, C

    2006-03-01

    Hypervitaminosis A-related liver toxicity may be severe and may even lead to cirrhosis. In the normal liver, vitamin A is stored in hepatic stellate cells (HSC), which are prone to becoming activated and acquiring a myofibroblast-like phenotype, producing large amounts of extracellular matrix. In order to assess the relationship between vitamin A intake, HSC activation and fibrosis, we studied nine liver biopsies from patients belonging to a well-characterized series of 41 patients with vitamin A hepatotoxicity. Fibrosis was underlined by Sirius-red staining, whereas activated HSC were immunohistochemically identified using an antibody against alpha smooth muscle actin. The volume density (Vv) of sinusoidal and total fibrosis and of sinusoidal and total activated HSC was quantified by the point-counting method. Morphology ranged from HSC hypertrophy and hyperplasia as the sole features to severe architectural distortion. There was a significant positive correlation between Vv of perisinusoidal fibrosis and the daily consumption of vitamin A (P=0.004). The close correlation between the severity of perisinusoidal fibrosis and the daily dose of the retinol intake suggests the existence of a dose-effect relationship.

  12. miR-122 negatively correlates with liver fibrosis as detected by histology and FibroScan

    PubMed Central

    Halász, Tünde; Horváth, Gábor; Pár, Gabriella; Werling, Klára; Kiss, András; Schaff, Zsuzsa; Lendvai, Gábor

    2015-01-01

    AIM: To investigate whether expression of selected miRNAs obtained from fibrotic liver biopsies correlate with fibrosis stage. METHODS: Altogether, 52 patients were enrolled in the study representing various etiologic backgrounds of fibrosis: 24 cases with chronic hepatitis infections (types B, C), 19 with autoimmune liver diseases (autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis, overlapping syndrome cases), and 9 of mixed etiology (alcoholic and nonalcoholic steatosis, cryptogenic cases). Severity of fibrosis was determined by both histologic staging using the METAVIR scoring system and noninvasive transient elastography. Following RNA isolation, expression levels of miR-21, miR-122, miR-214, miR-221, miR-222, and miR-224 were determined using TaqMan MicroRNA Assays applying miR-140 as the reference. Selection of miRNAs was based on their characteristic up- or downregulation observed in hepatocellular carcinoma. Relative expression of miRNAs was correlated with fibrosis stage and liver stiffness (LS) value measured by transient elastography, as well as with serum alanine aminotransferase (ALT) level. RESULTS: The expression of individual miRNAs showed deregulated patterns in stages F1-F4 as compared with stage F0, but only the reduced level of miR-122 in stage F4 was statistically significant (P < 0.04). When analyzing miRNA expression in relation to fibrosis, levels of miR-122 and miR-221 showed negative correlations with fibrosis stage, and miR-122 was found to correlate negatively and miR-224 positively with LS values (all P < 0.05). ALT levels displayed a positive correlation with miR-21 (P < 0.04). Negative correlations were observed in the fibrosis samples of mixed etiology between miR-122 and fibrosis stage and LS values (P < 0.05), and in the samples of chronic viral hepatitis, between miR-221 and fibrosis stage (P < 0.01), whereas miR-21 showed positive correlation with ALT values in the samples of autoimmune liver

  13. miR-122 negatively correlates with liver fibrosis as detected by histology and FibroScan.

    PubMed

    Halász, Tünde; Horváth, Gábor; Pár, Gabriella; Werling, Klára; Kiss, András; Schaff, Zsuzsa; Lendvai, Gábor

    2015-07-07

    To investigate whether expression of selected miRNAs obtained from fibrotic liver biopsies correlate with fibrosis stage. Altogether, 52 patients were enrolled in the study representing various etiologic backgrounds of fibrosis: 24 cases with chronic hepatitis infections (types B, C), 19 with autoimmune liver diseases (autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis, overlapping syndrome cases), and 9 of mixed etiology (alcoholic and nonalcoholic steatosis, cryptogenic cases). Severity of fibrosis was determined by both histologic staging using the METAVIR scoring system and noninvasive transient elastography. Following RNA isolation, expression levels of miR-21, miR-122, miR-214, miR-221, miR-222, and miR-224 were determined using TaqMan MicroRNA Assays applying miR-140 as the reference. Selection of miRNAs was based on their characteristic up- or downregulation observed in hepatocellular carcinoma. Relative expression of miRNAs was correlated with fibrosis stage and liver stiffness (LS) value measured by transient elastography, as well as with serum alanine aminotransferase (ALT) level. The expression of individual miRNAs showed deregulated patterns in stages F1-F4 as compared with stage F0, but only the reduced level of miR-122 in stage F4 was statistically significant (P < 0.04). When analyzing miRNA expression in relation to fibrosis, levels of miR-122 and miR-221 showed negative correlations with fibrosis stage, and miR-122 was found to correlate negatively and miR-224 positively with LS values (all P < 0.05). ALT levels displayed a positive correlation with miR-21 (P < 0.04). Negative correlations were observed in the fibrosis samples of mixed etiology between miR-122 and fibrosis stage and LS values (P < 0.05), and in the samples of chronic viral hepatitis, between miR-221 and fibrosis stage (P < 0.01), whereas miR-21 showed positive correlation with ALT values in the samples of autoimmune liver diseases (P < 0.03). The

  14. Dendritic cells maintain dermal adipose–derived stromal cells in skin fibrosis

    PubMed Central

    Chia, Jennifer J.; Zhu, Tong; Chyou, Susan; Dasoveanu, Dragos C.; Carballo, Camila; Tian, Sha; Magro, Cynthia M.; Rodeo, Scott; Spiera, Robert F.; Ruddle, Nancy H.; McGraw, Timothy E.; Browning, Jeffrey L.; Lafyatis, Robert; Gordon, Jessica K.; Lu, Theresa T.

    2016-01-01

    Scleroderma is a group of skin-fibrosing diseases for which there are no effective treatments. A feature of the skin fibrosis typical of scleroderma is atrophy of the dermal white adipose tissue (DWAT). Adipose tissue contains adipose-derived mesenchymal stromal cells (ADSCs) that have regenerative and reparative functions; however, whether DWAT atrophy in fibrosis is accompanied by ADSC loss is poorly understood, as are the mechanisms that might maintain ADSC survival in fibrotic skin. Here, we have shown that DWAT ADSC numbers were reduced, likely because of cell death, in 2 murine models of scleroderma skin fibrosis. The remaining ADSCs showed a partial dependence on dendritic cells (DCs) for survival. Lymphotoxin β (LTβ) expression in DCs maintained ADSC survival in fibrotic skin by activating an LTβ receptor/β1 integrin (LTβR/β1 integrin) pathway on ADSCs. Stimulation of LTβR augmented the engraftment of therapeutically injected ADSCs, which was associated with reductions in skin fibrosis and improved skin function. These findings provide insight into the effects of skin fibrosis on DWAT ADSCs, identify a DC-ADSC survival axis in fibrotic skin, and suggest an approach for improving mesenchymal stromal cell therapy in scleroderma and other diseases. PMID:27721238

  15. Bone Marrow CD11c+ Cell-Derived Amphiregulin Promotes Pulmonary Fibrosis

    PubMed Central

    Ding, Lin; Liu, Tianju; Wu, Zhe; Hu, Biao; Nakashima, Taku; Ullenbruch, Matthew; De Los Santos, Francina Gonzalez; Phan, Sem H.

    2016-01-01

    Amphiregulin (AREG), an epidermal growth factor receptor ligand, is implicated in tissue repair and fibrosis but its cellular source and role in regeneration vs. fibrosis remain unclear. In this study we hypothesize that AREG induced in bone marrow derived CD11c+ cells is essential for pulmonary fibrosis. Thus the objectives were to evaluate the importance and role of AREG in pulmonary fibrosis, identify the cellular source of AREG induction and analyze its regulation of fibroblast function and activation. The results showed that lung AREG expression was significantly induced in bleomycin-induced pulmonary fibrosis. AREG deficiency in knockout (KO) mice significantly diminished pulmonary fibrosis. Analysis of AREG expression in major lung cell types revealed induction in fibrotic lungs predominantly occurred in CD11c+ cells. Moreover depletion of bone marrow derived CD11c+ cells suppressed both induction of lung AREG expression and pulmonary fibrosis. Conversely, adoptive transfer of bone marrow-derived CD11c+ cells from BLM-treated donor mice exacerbated pulmonary fibrosis but not if the donor cells were made AREG-deficient prior to transfer. CD11c+ cell conditioned media or co-culture stimulated fibroblast proliferation, activation and myofibroblast differentiation in an AREG dependent manner. Furthermore recombinant AREG induced telomerase reverse transcriptase (TERT) which appeared to be essential for the proliferative effect. Finally AREG significantly enhanced fibroblast motility, which was associated with increased expression of α6 integrin. These findings suggested that induced AREG specifically in recruited bone marrow-derived CD11c+ cells promoted bleomycin induced pulmonary fibrosis by activation of fibroblast TERT dependent proliferation, motility and indirectly, myofibroblast differentiation. PMID:27206766

  16. Bone Marrow CD11c+ Cell-Derived Amphiregulin Promotes Pulmonary Fibrosis.

    PubMed

    Ding, Lin; Liu, Tianju; Wu, Zhe; Hu, Biao; Nakashima, Taku; Ullenbruch, Matthew; Gonzalez De Los Santos, Francina; Phan, Sem H

    2016-07-01

    Amphiregulin (AREG), an epidermal growth factor receptor ligand, is implicated in tissue repair and fibrosis, but its cellular source and role in regeneration versus fibrosis remain unclear. In this study, we hypothesize that AREG induced in bone marrow-derived CD11c(+) cells is essential for pulmonary fibrosis. Thus, the objectives were to evaluate the importance and role of AREG in pulmonary fibrosis, identify the cellular source of AREG induction, and analyze its regulation of fibroblast function and activation. The results showed that lung AREG expression was significantly induced in bleomycin-induced pulmonary fibrosis. AREG deficiency in knockout mice significantly diminished pulmonary fibrosis. Analysis of AREG expression in major lung cell types revealed induction in fibrotic lungs predominantly occurred in CD11c(+) cells. Moreover, depletion of bone marrow-derived CD11c(+) cells suppressed both induction of lung AREG expression and pulmonary fibrosis. Conversely, adoptive transfer of bone marrow-derived CD11c(+) cells from bleomycin-treated donor mice exacerbated pulmonary fibrosis, but not if the donor cells were made AREG deficient prior to transfer. CD11c(+) cell-conditioned media or coculture stimulated fibroblast proliferation, activation, and myofibroblast differentiation in an AREG-dependent manner. Furthermore, recombinant AREG induced telomerase reverse transcriptase, which appeared to be essential for the proliferative effect. Finally, AREG significantly enhanced fibroblast motility, which was associated with increased expression of α6 integrin. These findings suggested that induced AREG specifically in recruited bone marrow-derived CD11c(+) cells promoted bleomycin-induced pulmonary fibrosis by activation of fibroblast telomerase reverse transcriptase-dependent proliferation, motility, and indirectly, myofibroblast differentiation. Copyright © 2016 by The American Association of Immunologists, Inc.

  17. Immunophenotypic Alterations in Resident Immune Cells and Myocardial Fibrosis in the Aging Rhesus Macaque (Macaca mulatta) Heart

    PubMed Central

    Macri, Sheila C.; Bailey, Charles C.; de Oca, Nicole Monts; Silva, Nilsa A.; Rosene, Douglas L.; Mansfield, Keith G.; Miller, Andrew D.

    2012-01-01

    The rhesus macaque (Macaca mulatta) is used extensively in translational biomedical research and drug development studies and is an important model of aging. Macaques often develop myocardial fibrosis with age which can result in the loss of normal cardiac architecture with the expansion of the extracellular matrix and deposition of collagen. The etiology and pathogenesis of this pernicious process is poorly understood. Cardiac fibrosis was assessed using histologic and immunohistochemical techniques in cardiac tissue sections from 34 rhesus macaques. Overall left ventricular and left ventricular mid-myocardial interstitial/perivascular fibrosis were positively correlated with age (r=0.6522, p<0.0001 and r=0.4704, p=0.005, respectively). When divided into young (mean=2.8 years), middle-aged (mean=17.5 years), and advanced age (mean=29.2 years) groups, immunophenotypic characterization of antigen presenting cells revealed differential expression of CD163 and DC-SIGN between the young and middle-aged groups compared to the advanced age group (p<0.0001). HAM-56 expression decreased significantly in the advanced age cohort (p=0.0021). The expression of CD8, CD163, and DCSIGN correlated positively with age (r=0.3999, p= 0.0191; r=0.5676, p=0.0005; r=0.5245, p=0.0014 respectively). These results show the importance of myocardial fibrosis as a common age-related pathology and additionally, alterations in T cell, macrophage, and dendritic cell phenotype in rhesus macaque myocardium are associated with age but unassociated with the fibrosis. PMID:22328408

  18. Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis

    PubMed Central

    Naikawadi, Ram P.; Disayabutr, Supparerk; Mallavia, Benat; Donne, Matthew L.; Green, Gary; La, Janet L.; Rock, Jason R.; Looney, Mark R.; Wolters, Paul J.

    2016-01-01

    Telomeres are short in type II alveolar epithelial cells (AECs) of patients with idiopathic pulmonary fibrosis (IPF). Whether dysfunctional telomeres contribute directly to development of lung fibrosis remains unknown. The objective of this study was to investigate whether telomere dysfunction in type II AECs, mediated by deletion of the telomere shelterin protein TRF1, leads to pulmonary fibrosis in mice (SPC-Cre TRF1fl/fl mice). Deletion of TRF1 in type II AECs for 2 weeks increased γH2AX DNA damage foci, but not histopathologic changes in the lung. Deletion of TRF1 in type II AECs for up to 9 months resulted in short telomeres and lung remodeling characterized by increased numbers of type II AECs, α-smooth muscle actin+ mesenchymal cells, collagen deposition, and accumulation of senescence-associated β-galactosidase+ lung epithelial cells. Deletion of TRF1 in collagen-expressing cells caused pulmonary edema, but not fibrosis. These results demonstrate that prolonged telomere dysfunction in type II AECs, but not collagen-expressing cells, leads to age-dependent lung remodeling and fibrosis. We conclude that telomere dysfunction in type II AECs is sufficient to cause lung fibrosis, and may be a dominant molecular defect causing IPF. SPC-Cre TRF1fl/fl mice will be useful for assessing cellular and molecular mechanisms of lung fibrosis mediated by telomere dysfunction. PMID:27699234

  19. Shear wave elastography results correlate with liver fibrosis histology and liver function reserve.

    PubMed

    Feng, Yan-Hong; Hu, Xiang-Dong; Zhai, Lin; Liu, Ji-Bin; Qiu, Lan-Yan; Zu, Yuan; Liang, Si; Gui, Yu; Qian, Lin-Xue

    2016-05-07

    To evaluate the correlation of shear wave elastography (SWE) results with liver fibrosis histology and quantitative function reserve. Weekly subcutaneous injection of 60% carbon tetrachloride (1.5 mL/kg) was given to 12 canines for 24 wk to induce experimental liver fibrosis, with olive oil given to 2 control canines. At 24 wk, liver condition was evaluated using clinical biochemistry assays, SWE imaging, lidocaine metabolite monoethylglycine-xylidide (MEGX) test, and histologic fibrosis grading. Clinical biochemistry assays were performed at the institutional central laboratory for routine liver function evaluation. Liver stiffness was measured in triplicate from three different intercostal spaces and expressed as mean liver stiffness modulus (LSM). Plasma concentrations of lidocaine and its metabolite MEGX were determined using high-performance liquid chromatography repeated in duplicate. Liver biopsy samples were fixed in 10% formaldehyde, and liver fibrosis was graded using the modified histological activity index Knodell score (F0-F4). Correlations among histologic grading, LSM, and MEGX measures were analyzed with the Pearson linear correlation coefficient. At 24 wk liver fibrosis histologic grading was as follows: F0, n = 2 (control); F1, n = 0; F2, n = 3; F3, n = 7; and F4, n = 2. SWE LSM was positively correlated with histologic grading (r = 0.835, P < 0.001). Specifically, the F4 group had a significantly higher elastic modulus than the F3, F2, and F0 groups (P = 0.002, P = 0.003, and P = 0.006, respectively), and the F3 group also had a significantly higher modulus than the control F0 group (P = 0.039). LSM was negatively associated with plasma MEGX concentrations at 30 min (r = -0.642; P = 0.013) and 60 min (r = -0.651; P = 0.012), time to ½ of the maximum concentration (r = -0.538; P = 0.047), and the area under the curve (r = -0.636; P = 0.014). Multiple comparisons showed identical differences in these three measures: significantly lower with F4 (P

  20. Tranilast prevents renal interstitial fibrosis by blocking mast cell infiltration in a rat model of diabetic kidney disease.

    PubMed

    Yin, Dan-Dan; Luo, Jun-Hui; Zhao, Zhu-Ye; Liao, Ying-Jun; Li, Ying

    2018-05-01

    Renal interstitial fibrosis is a final pathway that is observed in various types of kidney diseases, including diabetic kidney disease (DKD). The present study investigated the effect of tranilast on renal interstitial fibrosis and the association between its role and mast cell infiltration in a rat model of DKD. A total of 30 healthy 6‑week‑old male Sprague‑Dawley rats were randomly divided into the following four groups: Normal control group; DKD model group; low‑dose tranilast group (200 mg/kg/day); and high‑dose tranilast group (400 mg/kg/day). The morphological alterations of tubulointerstitial fibrosis were evaluated by Masson's trichrome staining, while mast cell infiltration into the renal tubular interstitium was measured by toluidine blue staining and complement C3a receptor 1 (C3aR) immunohistochemical staining (IHC). The expression of fibronectin (FN), collagen I (Col‑I), stem cell factor (SCF) and proto‑oncogene c‑kit (c‑kit) was detected by IHC, western blotting and reverse transcription‑quantitative‑polymerase chain reaction. The results demonstrated that tubulointerstitial fibrosis and mast cell infiltration were observed in DKD model rats, and this was improved dose‑dependently in the tranilast treatment groups. The expression of FN, Col‑I, SCF and c‑kit mRNA and protein was upregulated in the tubulointerstitium of DKD model rats compared with the normal control rats, and tranilast inhibited the upregulated expression of these markers. Furthermore, the degree of SCF and c‑kit expression demonstrated a significant positive correlation with C3aR‑positive mast cells and the markers of renal interstitial fibrosis. The results of the present study indicate that mast cell infiltration may promote renal interstitial fibrosis via the SCF/c‑kit signaling pathway. Tranilast may prevent renal interstitial fibrosis through inhibition of mast cell infiltration mediated through the SCF/c-kit signaling pathway.

  1. Correlation of endothelin-1 concentration and angiotensin-converting enzyme activity with the staging of liver fibrosis.

    PubMed

    Kardum, Dusko; Fabijanić, Damir; Lukić, Anita; Romić, Zeljko; Petrovecki, Mladen; Bogdanović, Zoran; Jurić, Klara; Urek-Crncević, Marija; Banić, Marko

    2012-06-01

    Increased serum angiotensin-converting enzyme (SACE) activity and serum concentration of endothelin-1 (ET-1) were found in liver cirrhosis. We investigated a correlation between the different stages of liver fibrosis and SACE activity and serum ET-1 concentration. Seventy patients with pathohistologically established chronic liver disease were divided in three groups according to Ishak criteria for liver fibrosis: minimal fibrosis (Ishak score 0-1, n =20), medium fibrosis (Ishak score 2-5, n=20) and cirrhosis (Ishak score 6, n=30). SACE activity and ET-1 concentration were determined using commercial ELISA kits. SACE activity and ET-1 concentrations were proportional to the severity of disease, the highest being in patients with liver cirrhosis. Maximal increase in SACE activity was found between minimal and medium fibrosis while maximal increase in ET-1 concentration was revealed between medium fibrosis and cirrhosis. The analysis of the Receiver Operating Characteristic (ROC) curve for SACE activity suggested a cut-off value to separate minimal from medium fibrosis at 59.00 U/L (sensitivity 100%, specificity 64.7%). The cut-off value for serum ET-1 concentration to separate medium fibrosis from cirrhosis was 12.4 pg/mL (sensitivity 96.8%, specificity 94.4%). A positive correlation between SACE activity and ET-1 concentration was registered (Spearman's ñ = 0.438, p = 0.004). Both SACE activity and ET-1 concentration were increased in all stages of liver fibrosis. Cut-off points for SACE activity and ET-1 concentration could be a biochemical marker for the progression of fibrosis. Positive correlation between SACE activity and ET-1 concentration might indicate their interaction in the development of liver cirrhosis.

  2. CXCR4+ granulocytes reflect fungal cystic fibrosis lung disease.

    PubMed

    Carevic, Melanie; Singh, Anurag; Rieber, Nikolaus; Eickmeier, Olaf; Griese, Matthias; Hector, Andreas; Hartl, Dominik

    2015-08-01

    Cystic fibrosis airways are frequently colonised with fungi. However, the interaction of these fungi with immune cells and the clinical relevance in cystic fibrosis lung disease are incompletely understood.We characterised granulocytes in airway fluids and peripheral blood from cystic fibrosis patients with and without fungal colonisation, non-cystic fibrosis disease controls and healthy control subjects cross-sectionally and longitudinally and correlated these findings with lung function parameters.Cystic fibrosis patients with chronic fungal colonisation by Aspergillus fumigatus were characterised by an accumulation of a distinct granulocyte subset, expressing the HIV coreceptor CXCR4. Percentages of airway CXCR4(+) granulocytes correlated with lung disease severity in patients with cystic fibrosis.These studies demonstrate that chronic fungal colonisation with A. fumigatus in cystic fibrosis patients is associated with CXCR4(+) airway granulocytes, which may serve as a potential biomarker and therapeutic target in fungal cystic fibrosis lung disease. Copyright ©ERS 2015.

  3. Lymphoid tissue fibrosis is associated with impaired vaccine responses.

    PubMed

    Kityo, Cissy; Makamdop, Krystelle Nganou; Rothenberger, Meghan; Chipman, Jeffrey G; Hoskuldsson, Torfi; Beilman, Gregory J; Grzywacz, Bartosz; Mugyenyi, Peter; Ssali, Francis; Akondy, Rama S; Anderson, Jodi; Schmidt, Thomas E; Reimann, Thomas; Callisto, Samuel P; Schoephoerster, Jordan; Schuster, Jared; Muloma, Proscovia; Ssengendo, Patrick; Moysi, Eirini; Petrovas, Constantinos; Lanciotti, Ray; Zhang, Lin; Arévalo, Maria T; Rodriguez, Benigno; Ross, Ted M; Trautmann, Lydie; Sekaly, Rafick-Pierre; Lederman, Michael M; Koup, Richard A; Ahmed, Rafi; Reilly, Cavan; Douek, Daniel C; Schacker, Timothy W

    2018-05-21

    Vaccine responses vary by geographic location. We have previously described how HIV-associated inflammation leads to fibrosis of secondary lymph nodes (LNs) and T cell depletion. We hypothesized that other infections may cause LN inflammation and fibrosis, in a process similar to that seen in HIV infection, which may lead to T cell depletion and affect vaccine responses. We studied LNs of individuals from Kampala, Uganda, before and after yellow fever vaccination (YFV) and found fibrosis in LNs that was similar to that seen in HIV infection. We found blunted antibody responses to YFV that correlated to the amount of LN fibrosis and loss of T cells, including T follicular helper cells. These data suggest that LN fibrosis is not limited to HIV infection and may be associated with impaired immunologic responses to vaccines. This may have an impact on vaccine development, especially for infectious diseases prevalent in the developing world.

  4. CD8+ T cells induce thyroid epithelial cell hyperplasia and fibrosis.

    PubMed

    Yu, Shiguang; Fang, Yujiang; Sharav, Tumenjargal; Sharp, Gordon C; Braley-Mullen, Helen

    2011-02-15

    CD8(+) T cells can be important effector cells in autoimmune inflammation, generally because they can damage target cells by cytotoxicity. This study shows that activated CD8(+) T cells induce thyroid epithelial cell hyperplasia and proliferation and fibrosis in IFN-γ(-/-) NOD.H-2h4 SCID mice in the absence of CD4(+) T cells. Because CD8(+) T cells induce proliferation rather than cytotoxicity of target cells, these results describe a novel function for CD8(+) T cells in autoimmune disease. In contrast to the ability of purified CD8(+) T cells to induce thyrocyte proliferation, CD4(+) T cells or CD8 T cell-depleted splenocytes induced only mild thyroid lesions in SCID recipients. T cells in both spleens and thyroids highly produce TNF-α. TNF-α promotes proliferation of thyrocytes in vitro, and anti-TNF-α inhibits development of thyroid epithelial cell hyperplasia and proliferation in SCID recipients of IFN-γ(-/-) splenocytes. This suggests that targeting CD8(+) T cells and/or TNF-α may be effective for treating epithelial cell hyperplasia and fibrosis.

  5. Induced Autologous Stem Cell Transplantation for Treatment of Rabbit Renal Interstitial Fibrosis

    PubMed Central

    Ruan, Guang-Ping; Xu, Fan; Li, Zi-An; Zhu, Guang-Xu; Pang, Rong-Qing; Wang, Jin-Xiang; Cai, Xue-Min; He, Jie; Yao, Xiang; Ruan, Guang-Hong; Xu, Xin-Ming; Pan, Xing-Hua

    2013-01-01

    Introduction Renal interstitial fibrosis (RIF) is a significant cause of end-stage renal failure. The goal of this study was to characterize the distribution of transplanted induced autologous stem cells in a rabbit model of renal interstitial fibrosis and evaluate its therapeutic efficacy for treatment of renal interstitial fibrosis. Methods A rabbit model of renal interstitial fibrosis was established. Autologous fibroblasts were cultured, induced and labeled with green fluorescent protein (GFP). These labeled stem cells were transplanted into the renal artery of model animals at 8 weeks. Results Eight weeks following transplantation of induced autologous stem cells, significant reductions (P < 0.05) were observed in serum creatinine (SCr) (14.8 ± 1.9 mmol/L to 10.1 ± 2.1 mmol/L) and blood urea nitrogen (BUN) (119 ± 22 µmol/L to 97 ± 13 µmol/L), indicating improvement in renal function. Conclusions We successfully established a rabbit model of renal interstitial fibrosis and demonstrated that transplantation of induced autologous stem cells can repair kidney damage within 8 weeks. The repair occurred by both inhibition of further development of renal interstitial fibrosis and partial reversal of pre-existing renal interstitial fibrosis. These beneficial effects lead to the development of normal tissue structure and improved renal function. PMID:24367598

  6. [Correlation of liver stiffness measured by FibroTouch and FibroScan with Ishak fibrosis score in patients with chronic hepatitis B].

    PubMed

    Chen, G F; Ping, J; Gu, H T; Zhao, Z M; Zhou, Y; Xing, F; Tao, Y Y; Mu, Y P; Liu, P; Liu, C H

    2017-02-20

    Objective: To investigate the correlation of liver stiffness measured by FibroTouch (FT) and FibroScan (FS) with Ishak fibrosis score in patients with chronic hepatitis B. Methods: A total of 313 patients with chronic hepatitis B who visited Department of Liver Cirrhosis in Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine from November 2014 to May 2016 were enrolled. All the patients underwent liver biopsy, and FT and FS were used to determine liver stiffness measurement (LSM). Serum biochemical parameters were measured, and the aspartate aminotransferase-to-platelet ratio index (APRI) in a multi-parameter model of liver fibrosis and fibrosis-4 (FIB-4) index were calculated. The consistency between the results of four noninvasive examinations and Ishak fibrosis score was compared. The t-test was used for comparison of LSM determined by FT and FS. Pearson correlation analysis was used investigate the correlation between LSM determined by FT and FS; Spearman correlation analysis was used to investigate the correlation of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and Knodell score with LSM determined by FT and FS; the correlation between LSM determined by FT and FS and fibrosis stage was analyzed by partial correlation analysis adjusted by Knodell score for liver inflammatory activity; Spearman correlation analysis was used for APRI, FIB-4, and fibrosis stage. Based on the Ishak fibrosis score, the receiver operating characteristic (ROC) curve was used to analyze the values of four noninvasive methods in the diagnosis of liver fibrosis. Results: There was no significant difference in LSM measured by FT and FS in all patients (15.75±9.42 kPa vs 15.42±10.52 kPa, P > 0.05) and Pearson correlation analysis indicated a significant positive correlation between them ( r = 0.858, P < 0.01); serum ALT and AST levels and liver inflammatory activity were correlated with LSM determined by FT and FS. There

  7. Wnt6 regulates epithelial cell differentiation and is dysregulated in renal fibrosis.

    PubMed

    Beaton, Hayley; Andrews, Darrell; Parsons, Martin; Murphy, Mary; Gaffney, Andrew; Kavanagh, David; McKay, Gareth J; Maxwell, Alexander P; Taylor, Cormac T; Cummins, Eoin P; Godson, Catherine; Higgins, Debra F; Murphy, Paula; Crean, John

    2016-07-01

    Diabetic nephropathy is the most common microvascular complication of diabetes mellitus, manifesting as mesangial expansion, glomerular basement membrane thickening, glomerular sclerosis, and progressive tubulointerstitial fibrosis leading to end-stage renal disease. Here we describe the functional characterization of Wnt6, whose expression is progressively lost in diabetic nephropathy and animal models of acute tubular injury and renal fibrosis. We have shown prominent Wnt6 and frizzled 7 (FzD7) expression in the mesonephros of the developing mouse kidney, suggesting a role for Wnt6 in epithelialization. Importantly, TCF/Lef reporter activity is also prominent in the mesonephros. Analysis of Wnt family members in human renal biopsies identified differential expression of Wnt6, correlating with severity of the disease. In animal models of tubular injury and fibrosis, loss of Wnt6 was evident. Wnt6 signals through the canonical pathway in renal epithelial cells as evidenced by increased phosphorylation of GSK3β (Ser9), nuclear accumulation of β-catenin and increased TCF/Lef transcriptional activity. FzD7 was identified as a putative receptor of Wnt6. In vitro Wnt6 expression leads to de novo tubulogenesis in renal epithelial cells grown in three-dimensional culture. Importantly, Wnt6 rescued epithelial cell dedifferentiation in response to transforming growth factor-β (TGF-β); Wnt6 reversed TGF-β-mediated increases in vimentin and loss of epithelial phenotype. Wnt6 inhibited TGF-β-mediated p65-NF-κB nuclear translocation, highlighting cross talk between the two pathways. The critical role of NF-κB in the regulation of vimentin expression was confirmed in both p65(-/-) and IKKα/β(-/-) embryonic fibroblasts. We propose that Wnt6 is involved in epithelialization and loss of Wnt6 expression contributes to the pathogenesis of renal fibrosis. Copyright © 2016 the American Physiological Society.

  8. Prominent contribution of portal mesenchymal cells to liver fibrosis in ischemic and obstructive cholestatic injuries.

    PubMed

    Beaussier, Marc; Wendum, Dominique; Schiffer, Eduardo; Dumont, Sylvie; Rey, Colette; Lienhart, André; Housset, Chantal

    2007-03-01

    Liver fibrosis is produced by myofibroblasts of different origins. In culture models, rat myofibroblasts derived from hepatic stellate cells (HSCs) and from periductal portal mesenchymal cells, show distinct proliferative and immunophenotypic evolutive profiles, in particular regarding desmin microfilament (overexpressed vs shut-down, respectively). Here, we examined the contributions of both cell types, in two rat models of cholestatic injury, arterial liver ischemia and bile duct ligation (BDL). Serum and (immuno)histochemical hepatic analyses were performed at different time points (2 days, 1, 2 and 6 weeks) after injury induction. Cholestatic liver injury, as attested by serum biochemical tests, was moderate/resolutive in ischemia vs severe and sustained in BDL. Spatio-temporal and morphometric analyses of cytokeratin-19 and Sirius red stainings showed that in both models, fibrosis accumulated around reactive bile ductules, with a significant correlation between the progression rates of fibrosis and of the ductular reaction (both higher in BDL). After 6 weeks, fibrosis was stabilized and did not exceed F2 (METAVIR) in arterial ischemia, whereas micronodular cirrhosis (F4) was established in BDL. Immuno-analyses of alpha-smooth muscle actin and desmin expression profiles showed that intralobular HSCs underwent early phenotypic changes marked by desmin overexpression in both models and that the accumulation of fibrosis coincided with that of alpha-SMA-labeled myofibroblasts around portal/septal ductular structures. With the exception of desmin-positive myofibroblasts located at the portal/septal-lobular interface at early stages, and of myofibroblastic HSCs detected together with fine lobular septa in BDL cirrhotic liver, the vast majority of myofibroblasts were desmin-negative. These findings suggest that both in resolutive and sustained cholestatic injury, fibrosis is produced by myofibroblasts that derive predominantly from portal/periportal mesenchymal cells

  9. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ying

    Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n = 8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined bymore » molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth. - Highlights: • Calcium channel blockers (CCBs) reduced hepatic iron content. • CCBs decreased hepatic fibrotic areas and collagen expression levels. • CCBs resolve fibrosis by regulating iron transport

  10. Longitudinal assessment of bleomycin-induced lung fibrosis by Micro-CT correlates with histological evaluation in mice.

    PubMed

    Ruscitti, Francesca; Ravanetti, Francesca; Essers, Jeroen; Ridwan, Yanto; Belenkov, Sasha; Vos, Wim; Ferreira, Francisca; KleinJan, Alex; van Heijningen, Paula; Van Holsbeke, Cedric; Cacchioli, Antonio; Villetti, Gino; Stellari, Franco Fabio

    2017-01-01

    The intratracheal instillation of bleomycin in mice induces early damage to alveolar epithelial cells and development of inflammation followed by fibrotic tissue changes and represents the most widely used model of pulmonary fibrosis to investigate human IPF. Histopathology is the gold standard for assessing lung fibrosis in rodents, however it precludes repeated and longitudinal measurements of disease progression and does not provide information on spatial and temporal distribution of tissue damage. Here we investigated the use of the Micro-CT technique to allow the evaluation of disease onset and progression at different time-points in the mouse bleomycin model of lung fibrosis. Micro-CT was throughout coupled with histological analysis for the validation of the imaging results. In bleomycin-instilled and control mice, airways and lung morphology changes were assessed and reconstructed at baseline, 7, 14 and 21 days post-treatment based on Micro-CT images. Ashcroft score, percentage of collagen content and percentage of alveolar air area were detected on lung slides processed by histology and subsequently compared with Micro-CT parameters. Extent (%) of fibrosis measured by Micro-CT correlated with Ashcroft score, the percentage of collagen content and the percentage of alveolar air area ( r 2  = 0.91; 0.77; 0.94, respectively). Distal airway radius also correlated with the Ashcroft score, the collagen content and alveolar air area percentage ( r 2  = 0.89; 0.78; 0.98, respectively). Micro-CT data were in good agreement with histological read-outs as micro-CT was able to quantify effectively and non-invasively disease progression longitudinally and to reduce the variability and number of animals used to assess the damage. This suggests that this technique is a powerful tool for understanding experimental pulmonary fibrosis and that its use could translate into a more efficient drug discovery process, also helping to fill the gap between preclinical

  11. Cystic fibrosis gene expression is not correlated with rectifying Cl sup minus channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.L.; Krouse, M.E.; Kopito, R.R.

    1991-06-15

    Cystic fibrosis (CF) involves a profound reduction of Cl{sup {minus}} permeability in several exocrine tissues. A distinctive, outwardly rectifying, depolarization-induced Cl{sup {minus}} channel (ORDIC channel) has been proposed to account for the Cl{sup {minus}} conductance that is defective in CF. The recently identified CF gene is predicted to code for a 1480-amino acid integral membrane protein termed the CF transmembrane conductance regulator (CFTR). The CFTR shares sequence similarity with a superfamily of ATP-binding membrane transport proteins such as P-glycoprotein and STE6, but it also has features consistent with an ion channel function. It has been proposed that the CFTR mightmore » be an ORDIC channel. To determine if CFTR and ORDIC channel expression are correlated, the authors surveyed various cell lines for natural variation in CFTR and ORDIC channel expression. In four human epithelial cell lines (T84, CaCo2, PANC-1, and 9HTEo-/S) that encompass the full observed range of CFTR mRNA levels and ORDIC channel density the authors found no correlation.« less

  12. Oral submucous fibrosis: A clinico-histopathological correlational study.

    PubMed

    Biradar, Sudharani Basawaraj; Munde, Anita Dnyanoba; Biradar, Basawaraj Chanabasappa; Shaik, Safia Shoeb; Mishra, Shweta

    2018-01-01

    The aim of this study was to correlate the clinical staging (clinical severity) with the histopathological staging (histopathological changes) of oral submucous fibrosis (OSF) patients, which would further assist the clinicians to formulate a definite treatment plan. The study group consisted of 50 subjects who were clinically and histologically diagnosed as OSF. Detailed information was gathered in a pretested proforma with emphasis on the various addictions. The clinical findings were noted; punch biopsy was performed followed by histological examination. Clinical and histological staging were divided into four stages, as Stages I-IV according to Khanna and Andrade classification. The 50 subjects were in the age range of 18-70 years, of which 20 patients were in clinical Group III, 15 were in histopathological stage III, 2, 1, and 2 in Stage II, Stage I, and Stage IV, respectively, out of 5 patients in clinical Group IV, 4 were in histopathological staging IV and 1 was in Stage III, out of 5 patients in clinical Group I, 3 and 2 were in histologic Stages II and I, respectively. Statistical analysis with Chi-square test showed high significance with P < 0.001. The correlation of clinical and histopathological staging was found to be highly significant, thus suggesting that the subject with clinically advanced OSF had extensive fibrosis histologically.

  13. A role of pancreatic stellate cells in islet fibrosis and β-cell dysfunction in type 2 diabetes mellitus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Esder; Ryu, Gyeong Ryul; Ko, Seung-Hyun

    Objectives: To investigate whether the activation of pancreatic stellate cells (PSCs) leads to pancreatic β-cell dysfunction in type 2 diabetes mellitus (T2DM). Methods: The pancreases of Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an animal model of T2DM, and patient with T2DM were analyzed. And the in vitro and in vivo effects of pirfenidone, an antifibrotic agent, on PSC activation, islet fibrosis, and β-cells were studied. Results: The extent of islet fibrosis and the percentage of activated PSCs, positive for α-smooth muscle actin, in the islets were significantly greater in OLETF rats compared with non-diabetic rats. Also, the extent of islet fibrosis inmore » patients with T2DM was slightly greater compared with age- and BMI-matched non-diabetic patients. In rat PSCs cultured with high glucose for 72 h, pirfenidone produced decreases in cell proliferation, release of collagen, and the expression of fibronectin and connective tissue growth factor. Treatment of OLETF rats with pirfenidone for 16 weeks decreased the activation of PSCs and the extent of islet fibrosis, but did not enhance glucose tolerance, pancreatic insulin content, or β-cell mass. Conclusions: Activated PSCs in islets might lead to islet fibrosis in T2DM. However, PSC activation itself might not contribute significantly to progressive β-cell failure in T2DM. - Highlights: • Islet fibrosis developed progressively in OLETF rats, a model of type 2 diabetes. • PSCs in the islets became activated in OLETF rats. • Islet fibrosis was increased in patients with type 2 diabetes. • Pirfenidone attenuated the activation of PSCs and islet fibrosis in OLETF rats. • Pirfenidonet had no effects on glucose tolerance or on β-cells in OLETF rats.« less

  14. Indoleamine 2,3-dioxygenase 1 deficiency attenuates CCl4-induced fibrosis through Th17 cells down-regulation and tryptophan 2,3-dioxygenase compensation

    PubMed Central

    Zhou, Zhenting; Lin, Haiyan; Chen, Chun; Huang, Peng; Huang, Weiliang; Zhou, Chuying; Huang, Shaohui; Nie, Linghui; Liu, Ye; Chen, Youming; Zhou, Daqiao; Lv, Zhiping

    2017-01-01

    Indoleamine 2,3-dioxygenase 1 (IDO1) is an intracellular rate-limiting enzyme in the metabolism of tryptophan along the kynurenine pathway, subsequently mediating the immune response; however, the role of IDO1 in liver fibrosis and cirrhosis is still unclear. In this study, we investigated the role of IDO1 in the development of hepatic fibrosis and cirrhosis. Patients with hepatitis B virus-induced cirrhosis and healthy volunteers were enrolled. For animals, carbon tetrachloride (CCl4) was used to establish liver fibrosis in wild-type and IDO1 knockout mice. Additionally, an IDO1 inhibitor (1-methyl-D-tryptophan) was administered to WT fibrosis mice. Liver lesions were positively correlated with serum IDO1 levels in both the clinical subjects and hepatic fibrosis mice. A positive correlation between serum IDO1 levels and liver stiffness values was found in the cirrhosis patients. Notably, IDO1 knockout mice were protected from CCl4-induced liver fibrosis, as reflected by unchanged serum alanine transaminase and aspartate transaminase levels and lower collagen deposition, α-smooth muscle actin expression and apoptotic cell death rates. On the other hand, tryptophan 2,3-dioxygenase (TDO), another systemic tryptophan metabolism enzyme, exhibited a compensatory increase as a result of IDO1 deficiency. Moreover, hepatic interleukin-17a, a characteristic cytokine of T helper 17 (Th17) cells, and downstream cytokines’ mRNA levels showed lower expression in the IDO1–/– model mice. IDO1 appears to be a potential hallmark of liver lesions, and its deficiency protects mice from CCl4-induced fibrosis mediated by Th17 cells down-regulation and TDO compensation. PMID:28465467

  15. Characteristics of liver fibrosis with different etiologies using a fully quantitative fibrosis assessment tool.

    PubMed

    Wu, Q; Zhao, X; You, H

    2017-05-18

    This study aimed to test the diagnostic performance of a fully quantitative fibrosis assessment tool for liver fibrosis in patients with chronic hepatitis B (CHB), primary biliary cirrhosis (PBC) and non-alcoholic steatohepatitis (NASH). A total of 117 patients with liver fibrosis were included in this study, including 50 patients with CHB, 49 patients with PBC and 18 patients with NASH. All patients underwent liver biopsy (LB). Fibrosis stages were assessed by two experienced pathologists. Histopathological images of LB slices were processed by second harmonic generation (SHG)/two-photon excited fluorescence (TPEF) microscopy without staining, a system called qFibrosis (quantitative fibrosis) system. Altogether 101 quantitative features of the SHG/TPEF images were acquired. The parameters of aggregated collagen in portal, septal and fibrillar areas increased significantly with stages of liver fibrosis in PBC and CHB (P<0.05), but the same was not found for parameters of distributed collagen (P>0.05). There was a significant correlation between parameters of aggregated collagen in portal, septal and fibrillar areas and stages of liver fibrosis from CHB and PBC (P<0.05), but no correlation was found between the distributed collagen parameters and the stages of liver fibrosis from those patients (P>0.05). There was no significant correlation between NASH parameters and stages of fibrosis (P>0.05). For CHB and PBC patients, the highest correlation was between septal parameters and fibrosis stages, the second highest was between portal parameters and fibrosis stages and the lowest correlation was between fibrillar parameters and fibrosis stages. The correlation between the septal parameters of the PBC and stages is significantly higher than the parameters of the other two areas (P<0.05). The qFibrosis candidate parameters based on CHB were also applicable for quantitative analysis of liver fibrosis in PBC patients. Different parameters should be selected for liver

  16. Characteristics of liver fibrosis with different etiologies using a fully quantitative fibrosis assessment tool

    PubMed Central

    Wu, Q.; Zhao, X.; You, H.

    2017-01-01

    This study aimed to test the diagnostic performance of a fully quantitative fibrosis assessment tool for liver fibrosis in patients with chronic hepatitis B (CHB), primary biliary cirrhosis (PBC) and non-alcoholic steatohepatitis (NASH). A total of 117 patients with liver fibrosis were included in this study, including 50 patients with CHB, 49 patients with PBC and 18 patients with NASH. All patients underwent liver biopsy (LB). Fibrosis stages were assessed by two experienced pathologists. Histopathological images of LB slices were processed by second harmonic generation (SHG)/two-photon excited fluorescence (TPEF) microscopy without staining, a system called qFibrosis (quantitative fibrosis) system. Altogether 101 quantitative features of the SHG/TPEF images were acquired. The parameters of aggregated collagen in portal, septal and fibrillar areas increased significantly with stages of liver fibrosis in PBC and CHB (P<0.05), but the same was not found for parameters of distributed collagen (P>0.05). There was a significant correlation between parameters of aggregated collagen in portal, septal and fibrillar areas and stages of liver fibrosis from CHB and PBC (P<0.05), but no correlation was found between the distributed collagen parameters and the stages of liver fibrosis from those patients (P>0.05). There was no significant correlation between NASH parameters and stages of fibrosis (P>0.05). For CHB and PBC patients, the highest correlation was between septal parameters and fibrosis stages, the second highest was between portal parameters and fibrosis stages and the lowest correlation was between fibrillar parameters and fibrosis stages. The correlation between the septal parameters of the PBC and stages is significantly higher than the parameters of the other two areas (P<0.05). The qFibrosis candidate parameters based on CHB were also applicable for quantitative analysis of liver fibrosis in PBC patients. Different parameters should be selected for liver

  17. Adult Lung Spheroid Cells Contain Progenitor Cells and Mediate Regeneration in Rodents With Bleomycin-Induced Pulmonary Fibrosis.

    PubMed

    Henry, Eric; Cores, Jhon; Hensley, M Taylor; Anthony, Shirena; Vandergriff, Adam; de Andrade, James B M; Allen, Tyler; Caranasos, Thomas G; Lobo, Leonard J; Cheng, Ke

    2015-11-01

    Lung diseases are devastating conditions and ranked as one of the top five causes of mortality worldwide according to the World Health Organization. Stem cell therapy is a promising strategy for lung regeneration. Previous animal and clinical studies have focused on the use of mesenchymal stem cells (from other parts of the body) for lung regenerative therapies. We report a rapid and robust method to generate therapeutic resident lung progenitors from adult lung tissues. Outgrowth cells from healthy lung tissue explants are self-aggregated into three-dimensional lung spheroids in a suspension culture. Without antigenic sorting, the lung spheroids recapitulate the stem cell niche and contain a natural mixture of lung stem cells and supporting cells. In vitro, lung spheroid cells can be expanded to a large quantity and can form alveoli-like structures and acquire mature lung epithelial phenotypes. In severe combined immunodeficiency mice with bleomycin-induced pulmonary fibrosis, intravenous injection of human lung spheroid cells inhibited apoptosis, fibrosis, and infiltration but promoted angiogenesis. In a syngeneic rat model of pulmonary fibrosis, lung spheroid cells outperformed adipose-derived mesenchymal stem cells in reducing fibrotic thickening and infiltration. Previously, lung spheroid cells (the spheroid model) had only been used to study lung cancer cells. Our data suggest that lung spheroids and lung spheroid cells from healthy lung tissues are excellent sources of regenerative lung cells for therapeutic lung regeneration. The results from the present study will lead to future human clinical trials using lung stem cell therapies to treat various incurable lung diseases, including pulmonary fibrosis. The data presented here also provide fundamental knowledge regarding how injected stem cells mediate lung repair in pulmonary fibrosis. ©AlphaMed Press.

  18. Alveolar type II cell transplantation restores pulmonary surfactant protein levels in lung fibrosis.

    PubMed

    Guillamat-Prats, Raquel; Gay-Jordi, Gemma; Xaubet, Antoni; Peinado, Victor I; Serrano-Mollar, Anna

    2014-07-01

    Alveolar Type II cell transplantation has been proposed as a cell therapy for the treatment of idiopathic pulmonary fibrosis. Its long-term benefits include repair of lung fibrosis, but its success partly depends on the restoration of lung homeostasis. Our aim was to evaluate surfactant protein restoration after alveolar Type II cell transplantation in an experimental model of bleomycin-induced lung fibrosis in rats. Lung fibrosis was induced by intratracheal instillation of bleomycin. Alveolar Type II cells were obtained from healthy animals and transplanted 14 days after bleomycin was administered. Furthermore, one group transplanted with alveolar macrophages and another group treated with surfactant were established to evaluate the specificity of the alveolar Type II cell transplantation. The animals were euthanized at 21 days after bleomycin instillation. Lung fibrosis was confirmed by a histologic study and an evaluation of the hydroxyproline content. Changes in surfactant proteins were evaluated by mRNA expression, Western blot and immunofluorescence studies. The group with alveolar Type II cell transplantation was the only one to show a reduction in the degree of lung fibrosis and a complete recovery to normal levels of surfactant proteins. One of the mechanisms involved in the beneficial effect of alveolar Type II cell transplantation is restoration of lung surfactant protein levels, which is required for proper respiratory function. Copyright © 2014 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  19. Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells

    NASA Astrophysics Data System (ADS)

    Rich, Devra P.; Anderson, Matthew P.; Gregory, Richard J.; Cheng, Seng H.; Paul, Sucharita; Jefferson, Douglas M.; McCann, John D.; Klinger, Katherine W.; Smith, Alan E.; Welsh, Michael J.

    1990-09-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) was expressed in cultured cystic fibrosis airway epithelial cells and Cl- channel activation assessed in single cells using a fluorescence microscopic assay and the patch-clamp technique. Expression of CFTR, but not of a mutant form of CFTR (ΔF508), corrected the Cl- channel defect. Correction of the phenotypic defect demonstrates a causal relationship between mutations in the CFTR gene and defective Cl- transport which is the hallmark of the disease.

  20. Red blood cell distribution width levels correlate with liver fibrosis and inflammation: a noninvasive serum marker panel to predict the severity of fibrosis and inflammation in patients with hepatitis B.

    PubMed

    Xu, Wen-Shen; Qiu, Xiao-Ming; Ou, Qi-shui; Liu, Can; Lin, Jin-Piao; Chen, Hui-Juan; Lin, Sheng; Wang, Wen-Hua; Lin, Shou-Rong; Chen, Jing

    2015-03-01

    We aimed to study whether red blood cell distribution width (RDW) could be one of the variables determining the extent of liver fibrosis and inflammation in patients with biopsy-proven hepatitis B. A total of 446 hepatitis B virus-infected patients who underwent liver biopsy were divided into 2 groups: absent or mild and moderate-severe according to the severity of liver fibrosis and inflammation. The independent variables that determine the severity of liver fibrosis and inflammation were explored. RDW values increased with progressive liver fibrosis and inflammation. After adjustments for other potent predictors, liver fibrosis (moderate-severe) was independently associated with RDW, platelet, and albumin (odds ratio = 1.121, 0.987, and 0.941, respectively), whereas increased odds ratios of significant inflammation were found for RDW, alanine aminotransferase, albumin, and PLT (odds ratio = 1.146, 1.003, 0.927, and 0.990, respectively). The sensitivity and specificity of model A were 70.0% and 62.9% for detection of significant liver fibrosis [area under the receiver-operating characteristic curve (AUC) = 0.713, P < 0.001]. The sensitivity and specificity of model B were 66.1% and 79.4% for predicting advanced liver inflammation (AUC = 0.765, P < 0.001). Compared with preexisting indicators, model A achieved the highest AUC, whereas model B showed a higher AUC than RDW to platelet ratio (0.670, P < 0.001) and FIB-4 (0.740, P = 0.32). RDW may provide a useful clinical value for predicting liver fibrosis and necroinflammation in hepatitis B-infected patients with other markers.

  1. Deep Proteome Profiling Reveals Common Prevalence of MZB1-Positive Plasma B Cells in Human Lung and Skin Fibrosis.

    PubMed

    Schiller, Herbert B; Mayr, Christoph H; Leuschner, Gabriela; Strunz, Maximilian; Staab-Weijnitz, Claudia; Preisendörfer, Stefan; Eckes, Beate; Moinzadeh, Pia; Krieg, Thomas; Schwartz, David A; Hatz, Rudolf A; Behr, Jürgen; Mann, Matthias; Eickelberg, Oliver

    2017-11-15

    Analyzing the molecular heterogeneity of different forms of organ fibrosis may reveal common and specific factors and thus identify potential future therapeutic targets. We sought to use proteome-wide profiling of human tissue fibrosis to (1) identify common and specific signatures across end-stage interstitial lung disease (ILD) cases, (2) characterize ILD subgroups in an unbiased fashion, and (3) identify common and specific features of lung and skin fibrosis. We collected samples of ILD tissue (n = 45) and healthy donor control samples (n = 10), as well as fibrotic skin lesions from localized scleroderma and uninvolved skin (n = 6). Samples were profiled by quantitative label-free mass spectrometry, Western blotting, or confocal imaging. We determined the abundance of more than 7,900 proteins and stratified these proteins according to their detergent solubility profiles. Common protein regulations across all ILD cases, as well as distinct ILD subsets, were observed. Proteomic comparison of lung and skin fibrosis identified a common upregulation of marginal zone B- and B1-cell-specific protein (MZB1), the expression of which identified MZB1 + /CD38 + /CD138 + /CD27 + /CD45 - /CD20 - plasma B cells in fibrotic lung and skin tissue. MZB1 levels correlated positively with tissue IgG and negatively with diffusing capacity of the lung for carbon monoxide. Despite the presumably high molecular and cellular heterogeneity of ILD, common protein regulations are observed, even across organ boundaries. The surprisingly high prevalence of MZB1-positive plasma B cells in tissue fibrosis warrants future investigations regarding the causative role of antibody-mediated autoimmunity in idiopathic cases of organ fibrosis, such as idiopathic pulmonary fibrosis.

  2. mTOR Overactivation in Mesenchymal cells Aggravates CCl4- Induced liver Fibrosis.

    PubMed

    Shan, Lanlan; Ding, Yan; Fu, You; Zhou, Ling; Dong, Xiaoying; Chen, Shunzhi; Wu, Hongyuan; Nai, Wenqing; Zheng, Hang; Xu, Wanfu; Bai, Xiaochun; Jia, Chunhong; Dai, Meng

    2016-11-07

    Hepatic stellate cells are of mesenchymal cell type located in the space of Disse. Upon liver injury, HSCs transactivate into myofibroblasts with increase in expression of fibrillar collagen, especially collagen I and III, leading to liver fibrosis. Previous studies have shown mTOR signaling is activated during liver fibrosis. However, there is no direct evidence in vivo. The aim of this study is to examine the effects of conditional deletion of TSC1 in mesenchymal on pathogenesis of liver fibrosis. Crossing mice bearing the floxed TSC1 gene with mice harboring Col1α2-Cre-ER(T) successfully generated progeny with a conditional knockout of TSC1 (TSC1 CKO) in collagen I expressing mesenchymal cells. TSC1 CKO and WT mice were subjected to CCl 4 , oil or CCl 4 + rapamycin treatment for 8 weeks. TSC1 CKO mice developed pronounced liver fibrosis relative to WT mice, as examined by ALT, hydroxyproline, histopathology, and profibrogenic gene. Absence of TSC1 in mesenchymal cells induced proliferation and prevented apoptosis in activated HSCs. However, there were no significant differences in oil-treated TSC1 CKO and WT mice. Rapamycin, restored these phenotypic changes by preventing myofibroblasts proliferation and enhancing their apoptosis. These findings revealed mTOR overactivation in mesenchymal cells aggravates CCl 4 - induced liver fibrosis and the rapamycin prevent its occurance.

  3. Levels of hepatic Th17 cells and regulatory T cells upregulated by hepatic stellate cells in advanced HBV-related liver fibrosis.

    PubMed

    Li, Xiaoyan; Su, Yujie; Hua, Xuefeng; Xie, Chan; Liu, Jing; Huang, Yuehua; Zhou, Liang; Zhang, Min; Li, Xu; Gao, Zhiliang

    2017-04-11

    Liver fibrosis which mainly occurs upon chronic hepatitis virus infection potentially leads to portal hypertension, hepatic failure and hepatocellular carcinoma. However, the immune status of Th17 and Treg cells in liver fibrosis is controversial and the exact mechanisms remain largely elusive. Liver tissues and peripheral blood were obtained simultaneously from 32 hepatitis B virus infected patients undergoing surgery for hepatocellular carcinoma at the medical center of Sun Yat-sen University. Liver tissues at least 3 cm away from the tumor site were used for the analyses. Levels of Th17 cells and regulatory T cells were detected by flow cytometry analysis and immunohistochemistry. In vitro experiment, we adopted magnetic cell sorting to investigate how hepatic stellate cells regulate the levels of Th17 cells and regulatory T cells. We found that hepatic Th17 cells and regulatory T cells were increased in patients with advanced stage HBV-related liver fibrosis. Hepatic stellate cells upregulated the levels of Th17 cells and regulatory T cells via PGE2/EP2 and EP4 pathway. We found that the increased levels of Th17 cells and regulatory T cells were upregulated by hepatic stellate cells. These results may provide insight into the role of hepatic stellate cells and Th17 cells and regulatory T cells in the persistence of fibrosis and into the occurrence of hepatocellular carcinoma following cirrhosis.

  4. The distribution of immunomodulatory cells in the lungs of patients with idiopathic pulmonary fibrosis

    PubMed Central

    Nuovo, Gerard J.; Hagood, James S.; Magro, Cynthia M.; Chin, Nena; Kapil, Rubina; Davis, Luke; Marsh, Clay B.; Folcik, Virginia A.

    2011-01-01

    We have characterized the immune system involvement in the disease processes of idiopathic pulmonary fibrosis in novel ways. To do so, we analyzed lung tissue from 21 cases of idiopathic pulmonary fibrosis and 21 (non-fibrotic, non-cancerous) controls for immune cell and inflammation-related markers. The immunohistochemical analysis of the tissue was grouped by patterns of severity in disease pathology. There were significantly greater numbers of CD68+ and CD80+ cells, and significantly fewer CD3+, CD4+, and CD45RO+ cells in areas of relatively (histologically) normal lung in biopsies from idiopathic pulmonary fibrosis patients compared to controls. In zones of active disease, characterized by epithelial cell regeneration and fibrosis, there were significantly more cells expressing CD4, CD8, CD20, CD68, CD80, CCR6, S100, IL-17, tumor necrosis factor-α, and retinoic acid-related orphan receptors compared to histologically normal lung areas from idiopathic pulmonary fibrosis patients. Inflammation was implicated in these active regions by the cells that expressed retinoid orphan receptor-α, -β, and -γ, CCR6, and IL-17. The regenerating epithelial cells predominantly expressed these pro-inflammatory molecules, as evidenced by co-expression analyses with epithelial cytokeratins. Macrophages in pseudo-alveoli and CD3+ T cells in the fibrotic interstitium also expressed IL-17. Co-expression of IL-17 with retinoid orphan receptors, and epithelial cytoskeletal proteins, CD68, and CD3 in epithelial cells, macrophages, and T-cells, respectively, confirmed the production of IL-17 by these cell types. There was little staining for Foxp3, CD56, or CD34 in any idiopathic pulmonary fibrosis lung regions. The fibrotic regions had fewer immune cells overall. In summary, our study shows participation of innate and adaptive mononuclear cells in active-disease regions of idiopathic pulmonary fibrosis lung, where the regenerating epithelial cells appear to propagate inflammation

  5. Risk Factors Associated with Quantitative Evidence of Lung Emphysema and Fibrosis in an HIV-infected Cohort

    PubMed Central

    Leader, Joseph K.; Crothers, Kristina; Huang, Laurence; King, Mark A.; Morris, Alison; Thompson, Bruce W.; Flores, Sonia C.; Drummond, M. Bradley; Rom, William N.; Diaz, Philip T.

    2015-01-01

    Introduction The disease spectrum for HIV-infected individuals has shifted towards co-morbid non-AIDS conditions including chronic lung disease, but quantitative image analysis of lung disease has not been performed. Objectives To quantify the prevalence of structural changes of the lung indicating emphysema or fibrosis on radiographic examination. Methods A cross-sectional analysis of 510 HIV-infected participants in the multi-center Lung-HIV study was performed. Data collected included: demographics, biological markers of HIV, pulmonary function testing, and chest CT examinations. Emphysema and fibrosis-like changes were quantified on CT images based on threshold approaches. Results In our cohort: 69% was on antiretroviral therapy, 13% had a current CD4 cell count less than 200 cells/μL, 39% had an HIV viral load greater than 500 copies/mL, 25% had at least a trace level of emphysema (defined as >2.5% of voxels <-950HU). Trace emphysema was significantly correlated with age, smoking, and pulmonary function. Neither current CD4 cell count nor HIV viral load was significantly correlated with emphysema. Fibrosis-like changes were detected in 29% of the participants and were significantly correlated with HIV viral load (Pearson correlation coefficient = 0.210, p<0.05); current CD4 cell count was not associated with fibrosis. In multivariable analyses including age, race, and smoking status, HIV viral load remained significantly correlated with fibrosis-like changes (coefficient = 0.107, P = 0.03). Conclusion A higher HIV viral load was significantly associated with fibrosis-like changes possibly indicating early interstitial lung disease, but emphysematous changes were not related to current CD4 cell count or HIV viral load. PMID:26914911

  6. Proteases Revisited: Roles and Therapeutic Implications in Fibrosis

    PubMed Central

    Kryczka, Jakub

    2017-01-01

    Proteases target many substrates, triggering changes in distinct biological processes correlated with cell migration, EMT/EndMT and fibrosis. Extracellular protease activity, demonstrated by secreted and membrane-bound protease forms, leads to ECM degradation, activation of other proteases (i.e., proteolysis of nonactive zymogens), decomposition of cell-cell junctions, release of sequestered growth factors (TGF-β and VEGF), activation of signal proteins and receptors, degradation of inflammatory inhibitors or inflammation-related proteins, and changes in cell mechanosensing and motility. Intracellular proteases, mainly caspases and cathepsins, modulate lysosome activity and signal transduction pathways. Herein, we discuss the current knowledge on the multidimensional impact of proteases on the development of fibrosis. PMID:28642633

  7. Histopathological Correlations between Mediastinal Fat-Associated Lymphoid Clusters and the Development of Lung Inflammation and Fibrosis following Bleomycin Administration in Mice.

    PubMed

    Elewa, Yaser Hosny Ali; Ichii, Osamu; Takada, Kensuke; Nakamura, Teppei; Masum, Md Abdul; Kon, Yasuhiro

    2018-01-01

    Bleomycin (BLM) has been reported to induce lung inflammation and fibrosis in human and mice and showed genetic susceptibility. Interestingly, the C57BL/6 (B6) mice had prominent mediastinal fat-associated lymphoid cluster (MFALCs) under healthy condition, and showed susceptibility to development of lung fibrosis following BLM administration. However, the pathogenesis of lung lesion progression, and their correlation with MFALC morphologies, remain to be clarified. To investigate the correlations between MFALC structures and lung injuries in B6 mice, histopathological examination of mediastinal fat tissues and lungs was examined at 7 and 21 days (d) following a single 50 μL intranasal (i.n.) instillation of either BLM sulfate (5 mg/kg) (BLM group) or phosphate-buffered saline (control group). The lung fibrosis was examined by Masson's trichrome (MT) stain of paraffin sections and mRNA expression levels of Col1a1, Col3a1, and Acta2 in different frozen lung samples. Furthermore, immunohistochemistry for CD3, B220, Iba1, Gr1, BrdU, LYVE-1, and peripheral node addressin (PNAd) was performed to detect T- and B-cells, macrophages, granulocytes, proliferating cells, lymph vessels (LVs), and high endothelial venules (HEVs). We found that MFALCs were more abundant in the BLM group as compared to the control group. The lung of BLM group developed pneumonitis with severe cellular infiltrations at 7 days and significant collagen deposition (MT) and higher expression of Col1a1, and Col3a1 at 21 days post-administration. Numerous immune cells, proliferating cells, HEVs, and LVs were observed in both MFALCs and lungs of the BLM group. Interestingly, PNAd + HEVs were observed in the lungs of the BLM group, but not the control group. Moreover, numerous Gr1 + polymorphonuclear and mononuclear-like ring cells were found in the MFALCs and lungs of the BLM group. Interestingly, flow cytometric analysis revealed a significant increase of B-cell populations within the

  8. Equine endometrial fibrosis correlates with 11beta-HSD2, TGF-beta1 and ACE activities.

    PubMed

    Ganjam, V K; Evans, T J

    2006-03-27

    Endometrial periglandular fibrosis (EPF) contributes to embryonic and fetal loss in mares. Equine EPF correlates inversely with conception and successful gestation. In the modified Kenney endometrial biopsy classification system, EPF categories I, IIA, IIB, and III correspond to minimal, mild, moderate, and severe fibrosis (+/-inflammation), respectively. Paraffin sections of biopsy specimens were stained with H&E, and picrosirius red (specific for fibrillar collagens types I and III), to determine %EPCVF. Endometrial ACE-binding activity, TGF-beta1 and 11beta-HSD2 activities were also measured. Ultrastructural changes in EPF categories IIB and III endometria strongly suggested myofibroblastic transformation. ACE-binding activity was highest in EPF category IIB; however, endometrial TGF-beta1 and 11beta-HSD2 activities were significantly correlated to the severity of EPF (P<0.05). We conclude that, locally generated angiotensin II initiates the expression of TGF-beta1 resulting in myofibroblastic transformation. 11Beta-HSD2 in concert appears to modulate the severity of endometrial fibrosis.

  9. [Regulation of airway stem cell proliferation in idiopathic pulmonary fibrosis].

    PubMed

    Yang, S X; Wu, Q; Sun, X; Li, X; Li, K; Xu, L; Li, Y; Zhang, Q Y; Zhang, Y C; Chen, H Y

    2016-09-01

    To investigate the effect of fibroblasts on regulating airway stem cell proliferation in idiopathic pulmonary fibrosis. Lung cell suspension was prepared from β-actin-GFP mice. Airway stem cells were obtained by fluorescence activated cell sorting and co-cultured with lung fibroblasts. The fibroblasts were treated with TGF-β inhibitor SB43142. The expression of growth factors FGF1/2 and the effect of FGF1/2 on stem cell proliferation were observed. The cloning efficiency of airway stem cells, when co-cultured with normal lung fibroblast cells for 8 days, was (3.5±1.1)%, while the cloning efficiency was reduced to (0.04±0.04)% when co-cultured with lung fibroblasts from idiopathic pulmonary fibrosis patients. The difference between the 2 groups was statistically significant(P=0.002 5). TGF-β receptor inhibitor SB431542 increased lung fibroblast growth factors FGF1/2 expression.FGF1 mRNA expression was increased to the experimental group 0.005 5 from 0.000 2 in the control group.FGF2 mRNA expression of the amount raised to the experimental group 0.000 15 from 0.000 8 in the control group.FGF1/2 promoted the growth of airway stem cells. After FGF1/2 was co-cultured with normal lung fibroblast cells for 8 days, the cloning efficiency of airway stem cells was (0.3±0.1)%. During the development of idiopathic pulmonary fibrosis, fibroblast secreted FGF1/2 regulate airway stem cell proliferation.

  10. The Osteopontin Level in Liver, Adipose Tissue and Serum Is Correlated with Fibrosis in Patients with Alcoholic Liver Disease

    PubMed Central

    Voican, Cosmin S.; Anty, Rodolphe; Saint-Paul, Marie-Christine; Rosenthal-Allieri, Maria-Alessandra; Agostini, Hélène; Njike, Micheline; Barri-Ova, Nadége; Naveau, Sylvie; Le Marchand-Brustel, Yannick; Veillon, Pascal; Calès, Paul; Perlemuter, Gabriel; Tran, Albert; Gual, Philippe

    2012-01-01

    Background Osteopontin (OPN) plays an important role in the progression of chronic liver diseases. We aimed to quantify the liver, adipose tissue and serum levels of OPN in heavy alcohol drinkers and to compare them with the histological severity of hepatic inflammation and fibrosis. Methodology/Principal Findings OPN was evaluated in the serum of a retrospective and prospective group of 109 and 95 heavy alcohol drinkers, respectively, in the liver of 34 patients from the retrospective group, and in the liver and adipose tissue from an additional group of 38 heavy alcohol drinkers. Serum levels of OPN increased slightly with hepatic inflammation and progressively with the severity of hepatic fibrosis. Hepatic OPN expression correlated with hepatic inflammation, fibrosis, TGFβ expression, neutrophils accumulation and with the serum OPN level. Interestingly, adipose tissue OPN expression also correlated with hepatic fibrosis even after 7 days of alcohol abstinence. The elevated serum OPN level was an independent risk factor in estimating significant (F≥2) fibrosis in a model combining alkaline phosphatase, albumin, hemoglobin, OPN and FibroMeter® levels. OPN had an area under the receiving operator curve that estimated significant fibrosis of 0.89 and 0.88 in the retrospective and prospective groups, respectively. OPN, Hyaluronate (AUROC: 0.88), total Cytokeratin 18 (AUROC: 0.83) and FibroMeter® (AUROC: 0.90) estimated significance to the same extent in the retrospective group. Finally, the serum OPN levels also correlated with hepatic fibrosis and estimated significant (F≥2) fibrosis in 86 patients with chronic hepatitis C, which suggested that its elevated level could be a general response to chronic liver injury. Conclusion/Significance OPN increased in the liver, adipose tissue and serum with liver fibrosis in alcoholic patients. Further, OPN is a new relevant biomarker for significant liver fibrosis. OPN could thus be an important actor in the

  11. Atrophy, fibrosis, and increased PAX7-positive cells in pharyngeal muscles of oculopharyngeal muscular dystrophy patients.

    PubMed

    Gidaro, Teresa; Negroni, Elisa; Perié, Sophie; Mirabella, Massimiliano; Lainé, Jeanne; Lacau St Guily, Jean; Butler-Browne, Gillian; Mouly, Vincent; Trollet, Capucine

    2013-03-01

    Oculopharyngeal muscular dystrophy (OPMD) is a late-onset autosomal dominant inherited dystrophy caused by an abnormal trinucleotide repeat expansion in the poly(A)-binding-protein-nuclear 1 (PABPN1) gene. Primary muscular targets of OPMD are the eyelid elevator and pharyngeal muscles, including the cricopharyngeal muscle (CPM), the progressive involution of which leads to ptosis and dysphagia, respectively. To understand the consequences of PABPN1 polyalanine expansion in OPMD, we studied muscle biopsies from 14 OPMD patients, 3 inclusion body myositis patients, and 9 healthy controls. In OPMD patient CPM (n = 6), there were typical dystrophic features with extensive endomysial fibrosis and marked atrophy of myosin heavy-chain IIa fibers. There were more PAX7-positive cells in all CPM versus other muscles (n = 5, control; n = 3, inclusion body myositis), and they were more numerous in OPMD CPM versus control normal CPM without any sign of muscle regeneration. Intranuclear inclusions were present in all OPMD muscles but unaffected OPMD patient muscles (i.e. sternocleidomastoid, quadriceps, or deltoid; n = 14) did not show evidence of fibrosis, atrophy, or increased PAX7-positive cell numbers. These results suggest that the specific involvement of CPM in OPMD might be caused by failure of the regenerative response with dysfunction of PAX7-positive cells and exacerbated fibrosis that does not correlate with the presence of PABPN1 inclusions.

  12. Th17 cells and IL-17 promote the skin and lung inflammation and fibrosis process in a bleomycin-induced murine model of systemic sclerosis.

    PubMed

    Lei, Ling; Zhao, Cheng; Qin, Fang; He, Zhi-Yi; Wang, Xu; Zhong, Xiao-Ning

    2016-01-01

    Systemic sclerosis (SSc) is characterised by fibrosis of the skin and internal organs, such as the lungs. Enhanced Th17 responses are associated with skin fibrosis in patients with SSc, however, whether they are associated with lung fibrosis has not been clarified. This study aimed to investigate the potential association of Th17 responses with the skin and pulmonary fibrosis as well as the potential mechanisms in a mouse bleomycin (BLM) model of SSc. BALB/c mice were injected subcutaneously with phosphate buffered saline (PBS) (control) or BLM for 28 days and the skin and pulmonary inflammation and fibrosis were characterized by histology. The percentages of circulating, skin and pulmonary infiltrating Th17 cells and the contents of collagen in mice were analysed. The levels of RORγt, IL-17A, IL-6 and TGF-β1 mRNA transcripts in the skin and lungs were determined by quantitative RTPCR and the levels of serum IL-17A, IL-6 and TGF-β1 were determined by ELISA. Furthermore, the effect of rIL-17A on the proliferation of pulmonary fibroblasts and their cytokine expression was analysed. The potential association of Th17 responses with the severity of skin and lung fibrosis was analysed. In comparison with the control mice, significantly increased skin and pulmonary inflammation and fibrosis and higher levels of hydroxyproline were detected in the BLM mice. Significantly higher frequency of circulating, skin and lung infiltrating Th17 cells and higher levels of serum, skin and lung IL-17A, TGF-β1, IL-6 and RORγt were detected in the BLM mice. The concentrations of serum IL-17A were correlated positively with the percentages of Th17 cells and the contents of skin hydroxyproline in the BLM mice. The levels of IL-17A expression were positively correlated with the skin and lung inflammatory scores as well as the skin fibrosis in the BLM mice. In addition, IL-17A significantly enhanced pulmonary fibroblast proliferation and their type I collagen, TGF-β and IL-6 expression

  13. Management of Fibrosis: The Mesenchymal Stromal Cells Breakthrough

    PubMed Central

    Usunier, Benoît; Benderitter, Marc; Tamarat, Radia; Chapel, Alain

    2014-01-01

    Fibrosis is the endpoint of many chronic inflammatory diseases and is defined by an abnormal accumulation of extracellular matrix components. Despite its slow progression, it leads to organ malfunction. Fibrosis can affect almost any tissue. Due to its high frequency, in particular in the heart, lungs, liver, and kidneys, many studies have been conducted to find satisfactory treatments. Despite these efforts, current fibrosis management therapies either are insufficiently effective or induce severe adverse effects. In the light of these facts, innovative experimental therapies are being investigated. Among these, cell therapy is regarded as one of the best candidates. In particular, mesenchymal stromal cells (MSCs) have great potential in the treatment of inflammatory diseases. The value of their immunomodulatory effects and their ability to act on profibrotic factors such as oxidative stress, hypoxia, and the transforming growth factor-β1 pathway has already been highlighted in preclinical and clinical studies. Furthermore, their propensity to act depending on the microenvironment surrounding them enhances their curative properties. In this paper, we review a large range of studies addressing the use of MSCs in the treatment of fibrotic diseases. The results reported here suggest that MSCs have antifibrotic potential for several organs. PMID:25132856

  14. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis.

    PubMed

    Barr, Helen L; Halliday, Nigel; Cámara, Miguel; Barrett, David A; Williams, Paul; Forrester, Douglas L; Simms, Rebecca; Smyth, Alan R; Honeybourne, David; Whitehouse, Joanna L; Nash, Edward F; Dewar, Jane; Clayton, Andrew; Knox, Alan J; Fogarty, Andrew W

    2015-10-01

    Pseudomonas aeruginosa produces quorum sensing signal molecules that are potential biomarkers for infection.A prospective study of 60 cystic fibrosis patients with chronic P. aeruginosa, who required intravenous antibiotics for pulmonary exacerbations, was undertaken. Clinical measurements and biological samples were obtained at the start and end of the treatment period. Additional data were available for 29 of these patients when they were clinically stable.Cross-sectionally, quorum sensing signal molecules were detectable in the sputum, plasma and urine of 86%, 75% and 83% patients, respectively. They were positively correlated between the three biofluids. Positive correlations were observed for most quorum sensing signal molecules in sputum, plasma and urine, with quantitative measures of pulmonary P. aeruginosa load at the start of a pulmonary exacerbation. Plasma concentrations of 2-nonyl-4-hydroxy-quinoline (NHQ) were significantly higher at the start of a pulmonary exacerbation compared to clinical stability (p<0.01). Following the administration of systemic antibiotics, plasma 2-heptyl-4-hydroxyquinoline (p=0.02) and NHQ concentrations (p<0.01) decreased significantly.In conclusion, quorum sensing signal molecules are detectable in cystic fibrosis patients with pulmonary P. aeruginosa infection and are positively correlated with quantitative measures of P. aeruginosa. NHQ correlates with clinical status and has potential as a novel biomarker for P. aeruginosa infection. Copyright ©ERS 2015.

  15. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis

    PubMed Central

    Halliday, Nigel; Cámara, Miguel; Barrett, David A.; Williams, Paul; Forrester, Douglas L.; Simms, Rebecca; Smyth, Alan R.; Honeybourne, David; Whitehouse, Joanna L.; Nash, Edward F.; Dewar, Jane; Clayton, Andrew; Knox, Alan J.; Fogarty, Andrew W.

    2015-01-01

    Pseudomonas aeruginosa produces quorum sensing signal molecules that are potential biomarkers for infection. A prospective study of 60 cystic fibrosis patients with chronic P. aeruginosa, who required intravenous antibiotics for pulmonary exacerbations, was undertaken. Clinical measurements and biological samples were obtained at the start and end of the treatment period. Additional data were available for 29 of these patients when they were clinically stable. Cross-sectionally, quorum sensing signal molecules were detectable in the sputum, plasma and urine of 86%, 75% and 83% patients, respectively. They were positively correlated between the three biofluids. Positive correlations were observed for most quorum sensing signal molecules in sputum, plasma and urine, with quantitative measures of pulmonary P. aeruginosa load at the start of a pulmonary exacerbation. Plasma concentrations of 2-nonyl-4-hydroxy-quinoline (NHQ) were significantly higher at the start of a pulmonary exacerbation compared to clinical stability (p<0.01). Following the administration of systemic antibiotics, plasma 2-heptyl-4-hydroxyquinoline (p=0.02) and NHQ concentrations (p<0.01) decreased significantly. In conclusion, quorum sensing signal molecules are detectable in cystic fibrosis patients with pulmonary P. aeruginosa infection and are positively correlated with quantitative measures of P. aeruginosa. NHQ correlates with clinical status and has potential as a novel biomarker for P. aeruginosa infection. PMID:26022946

  16. Arterially Delivered Mesenchymal Stem Cells Prevent Obstruction-Induced Renal Fibrosis

    PubMed Central

    Asanuma, Hiroshi; Vanderbrink, Brian A.; Campbell, Matthew T.; Hile, Karen L.; Zhang, Hongji; Meldrum, Daniel R.; Meldrum, Kirstan K.

    2010-01-01

    Purpose Mesenchymal stem cells (MSCs) hold promise for the treatment of renal disease. While MSCs have been shown to accelerate recovery and prevent acute renal failure in multiple disease models, the effect of MSC therapy on chronic obstruction-induced renal fibrosis has not previously been evaluated. Materials and Methods Male Sprague-Dawley rats underwent renal artery injection of vehicle or fluorescent-labeled human bone marrow-derived MSCs immediately prior to sham operation or induction of left ureteral obstruction (UUO). One or 4 weeks later, the kidneys were harvested and the renal cortex analyzed for evidence of stem cell infiltration, epithelial-mesenchymal transition (EMT) as evidenced by E-cadherin/α-smooth muscle actin (α-SMA) expression and fibroblast specific protein (FSP+) staining, renal fibrosis (collagen content, Masson’s trichrome staining), and cytokine and growth factor activity (ELISA and real time RT-PCR). Results Fluorescent-labeled MSCs were detected in the interstitium of the kidney up to 4 weeks post-obstruction. Arterially delivered MSCs significantly reduced obstruction-induced α-SMA expression, FSP+ cell accumulation, total collagen content, and tubulointerstitial fibrosis, while simultaneously preserving E-cadherin expression, suggesting that MSCs prevent obstruction-induced EMT and renal fibrosis. Exogenous MSCs reduced obstruction-induced tumor necrosis factor-α (TNF-α) levels, but did not alter transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), interleukin-10 (IL-10), fibroblast growth factor (FGF), or hepatocyte growth factor (HGF) expression. Conclusions Human bone marrow-derived MSCs remain viable several weeks after delivery into the kidney and provide protection against obstruction-induced EMT and chronic renal fibrosis. While the mechanism of MSCs-induced renal protection during obstruction remains unclear, our results demonstrate that alterations in TNF-α production may be involved

  17. Macrophage and Innate Lymphoid Cell Interplay in the Genesis of Fibrosis

    PubMed Central

    Hams, Emily; Bermingham, Rachel; Fallon, Padraic G.

    2015-01-01

    Fibrosis is a characteristic pathological feature of an array of chronic diseases, where development of fibrosis in tissue can lead to marked alterations in the architecture of the affected organs. As a result of this process of sustained attrition to organs, many diseases that involve fibrosis are often progressive conditions and have a poor long-term prognosis. Inflammation is often a prelude to fibrosis, with innate and adaptive immunity involved in both the initiation and regulation of the fibrotic process. In this review, we will focus on the emerging roles of the newly described innate lymphoid cells (ILCs) in the generation of fibrotic disease with an examination of the potential interplay between ILC and macrophages and the adaptive immune system. PMID:26635811

  18. B cell activating factor is central to bleomycin- and IL-17-mediated experimental pulmonary fibrosis.

    PubMed

    François, Antoine; Gombault, Aurélie; Villeret, Bérengère; Alsaleh, Ghada; Fanny, Manoussa; Gasse, Paméla; Adam, Sylvain Marchand; Crestani, Bruno; Sibilia, Jean; Schneider, Pascal; Bahram, Seiamak; Quesniaux, Valérie; Ryffel, Bernhard; Wachsmann, Dominique; Gottenberg, Jacques-Eric; Couillin, Isabelle

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive devastating, yet untreatable fibrotic disease of unknown origin. We investigated the contribution of the B-cell activating factor (BAFF), a TNF family member recently implicated in the regulation of pathogenic IL-17-producing cells in autoimmune diseases. The contribution of BAFF was assessed in a murine model of lung fibrosis induced by airway administered bleomycin. We show that murine BAFF levels were strongly increased in the bronchoalveolar space and lungs after bleomycin exposure. We identified Gr1(+) neutrophils as an important source of BAFF upon BLM-induced lung inflammation and fibrosis. Genetic ablation of BAFF or BAFF neutralization by a soluble receptor significantly attenuated pulmonary fibrosis and IL-1β levels. We further demonstrate that bleomycin-induced BAFF expression and lung fibrosis were IL-1β and IL-17A dependent. BAFF was required for rIL-17A-induced lung fibrosis and augmented IL-17A production by CD3(+) T cells from murine fibrotic lungs ex vivo. Finally we report elevated levels of BAFF in bronchoalveolar lavages from IPF patients. Our data therefore support a role for BAFF in the establishment of pulmonary fibrosis and a crosstalk between IL-1β, BAFF and IL-17A. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Correlation of circular RNA abundance with proliferation--exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues.

    PubMed

    Bachmayr-Heyda, Anna; Reiner, Agnes T; Auer, Katharina; Sukhbaatar, Nyamdelger; Aust, Stefanie; Bachleitner-Hofmann, Thomas; Mesteri, Ildiko; Grunt, Thomas W; Zeillinger, Robert; Pils, Dietmar

    2015-01-27

    Circular RNAs are a recently (re-)discovered abundant RNA species with presumed function as miRNA sponges, thus part of the competing endogenous RNA network. We analysed the expression of circular and linear RNAs and proliferation in matched normal colon mucosa and tumour tissues. We predicted >1,800 circular RNAs and proved the existence of five randomly chosen examples using RT-qPCR. Interestingly, the ratio of circular to linear RNA isoforms was always lower in tumour compared to normal colon samples and even lower in colorectal cancer cell lines. Furthermore, this ratio correlated negatively with the proliferation index. The correlation of global circular RNA abundance (the circRNA index) and proliferation was validated in a non-cancerous proliferative disease, idiopathic pulmonary fibrosis, ovarian cancer cells compared to cultured normal ovarian epithelial cells, and 13 normal human tissues. We are the first to report a global reduction of circular RNA abundance in colorectal cancer cell lines and cancer compared to normal tissues and discovered a negative correlation of global circular RNA abundance and proliferation. This negative correlation seems to be a general principle in human tissues as validated with three different settings. Finally, we present a simple model how circular RNAs could accumulate in non-proliferating cells.

  20. VEGF correlates with inflammation and fibrosis in tuberculous pleural effusion.

    PubMed

    Bien, Mauo-Ying; Wu, Ming-Ping; Chen, Wei-Lin; Chung, Chi-Li

    2015-01-01

    To investigate the relationship among angiogenic cytokines, inflammatory markers, and fibrinolytic activity in tuberculous pleural effusion (TBPE) and their clinical importance. Forty-two patients diagnosed with TBPE were studied. Based on chest ultrasonography, there were 26 loculated and 16 nonloculated TBPE patients. The effusion size radiological scores and effusion vascular endothelial growth factor (VEGF), interleukin- (IL-) 8, plasminogen activator inhibitor type-1 (PAI-1), and tissue type plasminogen activator (tPA) were measured. Treatment outcome and pleural fibrosis, defined as radiological residual pleural thickening (RPT), were assessed at 6-month follow-up. The effusion size and effusion lactate dehydrogenase (LDH), VEGF, IL-8, PAI-1, and PAI-1/tPA ratio were significantly higher, while effusion glucose, pH value, and tPA were significantly lower, in loculated than in nonloculated TBPE. VEGF and IL-8 correlated positively with LDH and PAI-1/tPA ratio and negatively with tPA in both loculated and nonloculated TBPE. Patients with higher VEGF or greater effusion size were prone to develop RPT (n=14; VEGF, odds ratio 1.28, P=0.01; effusion size, odds ratio 1.01, P=0.02), and VEGF was an independent predictor of RPT in TBPE (receiver operating characteristic curve AUC=0.985, P<0.001). Effusion VEGF correlates with pleural inflammation and fibrosis and may be targeted for adjunct therapy for TBPE.

  1. Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiangjun; Yao, Qisheng, E-mail: yymcyqs@126.com; Sun, Xinbo

    Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treatedmore » with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)−1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)−1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway. - Highlights: • Slit2 ameliorates inflammation after hypoxia-and LPS-induced epithelial cells

  2. Chemokine receptor CXCR6-dependent hepatic NK T Cell accumulation promotes inflammation and liver fibrosis.

    PubMed

    Wehr, Alexander; Baeck, Christer; Heymann, Felix; Niemietz, Patricia Maria; Hammerich, Linda; Martin, Christian; Zimmermann, Henning W; Pack, Oliver; Gassler, Nikolaus; Hittatiya, Kanishka; Ludwig, Andreas; Luedde, Tom; Trautwein, Christian; Tacke, Frank

    2013-05-15

    Chronic liver injury characteristically results in hepatic inflammation, which represents a prerequisite for organ fibrosis. Although NKT cells are abundantly present in liver and involved in hepatic inflammation, molecular mechanisms of their recruitment in liver fibrosis remained elusive. We hypothesized that chemokine receptor CXCR6 and its ligand CXCL16 control NKT cell migration and functionality in liver fibrosis. In patients with chronic liver diseases (n = 58), CXCR6 and CXCL16 expression was intrahepatically upregulated compared with controls. In murine liver, Cxcl16 was strongly expressed by endothelium and macrophages, whereas lymphocyte populations (NKT, NK, CD4 T, CD8 T cells) expressed CXCR6. Intravital two-photon microscopy imaging of Cxcr6(+/gfp) and Cxcr6(gfp/gfp) mice and chemotaxis studies in vitro revealed that CXCR6 specifically controls hepatic NKT cell accumulation during the early response upon experimental liver damage. Hepatic invariant NKT cells expressed distinct proinflammatory cytokines including IFN-γ and IL-4 upon injury. CXCR6-deficient mice were protected from liver fibrosis progression in two independent experimental models. Macrophage infiltration and protein levels of inflammatory cytokines IFN-γ, TNF-α, and IL-4 were also reduced in fibrotic livers of Cxcr6(-/-) mice, corroborating that hepatic NKT cells provide essential cytokine signals perpetuating hepatic inflammation and fibrogenesis. Adoptive transfer of NKT cells, but not CD4 T cells, isolated from wild type livers restored hepatic fibrosis in Cxcr6(-/-) mice upon experimental steatohepatitis. Our results demonstrate that hepatic NKT cells accumulate CXCR6-dependent early upon injury, thereby accentuating the inflammatory response in the liver and promoting hepatic fibrogenesis. Interfering with CXCR6/CXCL16 might therefore bear therapeutic potential in liver fibrosis.

  3. Osthole ameliorates hepatic fibrosis and inhibits hepatic stellate cell activation.

    PubMed

    Liu, Ya-Wei; Chiu, Yung-Tsung; Fu, Shu-Ling; Huang, Yi-Tsau

    2015-08-01

    Hepatic fibrosis is a dynamic process which ultimately leads to cirrhosis in almost patients with chronic hepatic injury. However, progressive fibrosis is a reversible scarring response. Activation of hepatic stellate cells (HSCs) is the prevailing process during hepatic fibrosis. Osthole is an active component majorly contained in the fruit of Cnidium monnieri (L.) Cusson. This present study investigated the therapeutic effects of osthole on rat liver fibrosis and HSC activation. We established the thioacetamide (TAA)-model of Sprague-Dawley (SD) rats to induce hepatic fibrosis. Rats were divided into three groups: control, TAA, and TAA + osthole (10 mg/kg). In vivo, osthole significantly reduced liver injury by diminishing levels of plasma AST and ALT, improving histological architecture, decreasing collagen and α-SMA accumulation, and improving hepatic fibrosis scores. Additionally, osthole reduced the expression of fibrosis-related genes significantly. Osthole also suppressed the production of fibrosis-related cytokines and chemokines. Moreover, nuclear translocation of p65 was significantly suppressed in osthole-treated liver. Osthole also ameliorated TAA-induced injury through reducing cellular oxidation. Osthole showed inhibitory effects in inflammation-related genes and chemokines production as well. In vitro, we assessed osthole effects in activated HSCs (HSC-T6 and LX-2). Osthole attenuated TGF-β1-induced migration and invasion in HSCs. Furthermore, osthole decreased TNF-α-triggered NF-κB activities significantly. Besides, osthole alleviated TGF-β1- or ET-1-induced HSCs contractility. Our study demonstrated that osthole improved TAA-caused liver injury, fibrogenesis and inflammation in rats. In addition, osthole suppressed HSCs activation in vitro significantly.

  4. Mast cell tryptase changes with Aspergillus fumigatus - Host crosstalk in cystic fibrosis patients.

    PubMed

    Gomez, Carine; Carsin, Ania; Gouitaa, Marion; Reynaud-Gaubert, Martine; Dubus, Jean-Christophe; Mège, Jean-Louis; Ranque, Stéphane; Vitte, Joana

    2018-02-15

    Pulmonary and systemic antifungal immunity influences quality of life and survival of people with cystic fibrosis. Aspergillus fumigatus (Af) induces specific IgG and IgE. Mast cells respond to IgE, IgG and direct interactions with Af. Mast cells are the source of the protease tryptase. We aimed at evaluating serum baseline tryptase as a potential biomarker of the Af-host interaction in cystic fibrosis patients. Serum baseline tryptase, IgE and IgG directed to Af extract and Af molecular allergens were measured in 76 cystic fibrosis patients. The main findings were (i) lower levels of serum baseline tryptase in patients displaying specific IgE to Af (p < 0.0001) and (ii) an association between tryptase levels and IgE or IgG responses to Af and ribotoxin (Asp f 1). These findings suggest that serum baseline tryptase is influenced by Af-host interactions and thus might be a marker for mast cell regulation and pulmonary immune defenses. Copyright © 2018 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  5. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Shanshan; Pan, Xiujie; Xu, Long

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4{sup +}CD25{sup +}FoxP3{sup +} regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated onmore » days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis.« less

  6. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis

    PubMed Central

    Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6 -/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6 -/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6 -/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6 -/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis. PMID:26691857

  7. Genetics and epithelial cell dysfunction in cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riordan, J.R.; Buchwald, M.

    1987-01-01

    This book examines the advances being made in the study of the physiology, cell biology, and molecular genetics of cystic fibrosis. Emphasis is placed on various areas of research that involve epithelial cells (e.g., the CF-specific phenotypes exhibited by epithelial cells, abnormalities in epithelium ion transport, chloride channel regulation in CF epithelial.) Coverage is presented on the current status of CF, including data on the incidence of the disease, its mode of inheritance, chromosomal localization, genetic heterogeneity, and screening and management.

  8. Case report: retroperitoneal fibrosis simulating local relapse of sarcomatoid renal cell carcinoma.

    PubMed

    Esquena, Salvador; Abascal, José Maria; Trilla, Enrique; De Torres, Inés; Morote, Juan

    2006-01-01

    Generally, retroperitoneal fibrosis is an idiopathic process that envelopes and displaces ureters, causing hydronefrosis and renal failure. CT scan is the best choice for diagnosis. Other aetiologies described are malignancies, drugs, aorta aneurisms and immunological or rheumatological diseases. A 53-year-old male with hypertension and diabetes was operated on radical nephrectomy for renal mass. Pathological examination showed sarcomatoid renal cell carcinoma, Fürhman 3 grade, pT2 N0. Within 6 months of surgery, control CT scan demonstrated a left retroperitoneal mass, without separation with pancreas queue and spleen hilium, suggesting local relapse. Resection of the mass with splenectomy and partial pancreatectomy en bloc was performed. Microscopic evaluation revealed a dense collagenic tissue with a prominent inflammatory infiltrate, and the immunohistochemical study was negative for cytokeratin AE1-AE3. There was no evidence of malignancy in the histological examination. All these findings aided to diagnose a retroperitoneal fibrosis. Sometimes retroperitoneal fibrosis can simulate or is associated to malignancies. Presentation of a retroperitoneal fibrosis simulating local relapse of sarcomatoid renal cell carcinoma has not been previously reported in the English literature.

  9. Early Improvement in Marrow Fibrosis Following Haploidentical Stem Cell Transplantation for a Patient with Myelodysplastic Syndrome with Bone Marrow Fibrosis

    PubMed Central

    Takahashi, Shuichiro; Tsumanuma, Riko; Aizawa, Keiko; Osakabe, Mitsumasa; Maeda, Kunihiko; Omoto, Ejiro

    2016-01-01

    The prognosis for myelodysplastic syndrome with bone marrow fibrosis (MDS-F) is worse than the prognosis of MDS without fibrosis. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy; however, the indications and the procedures involved in HSCT remain unclear. We herein describe a 69-year-old Japanese man with MDS-F who received haploidentical HSCT and post-transplantation cyclophosphamide. Although the first HSCT resulted in secondary graft failure, the second HSCT using PTCy led to successful engraftment after early improvement in fibrosis. Since the incidence of graft failure is high in myelofibrosis patients, a secondary HSCT using PTCy may be successful if employed. PMID:27853082

  10. Correlation of circular RNA abundance with proliferation – exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues

    PubMed Central

    Bachmayr-Heyda, Anna; Reiner, Agnes T.; Auer, Katharina; Sukhbaatar, Nyamdelger; Aust, Stefanie; Bachleitner-Hofmann, Thomas; Mesteri, Ildiko; Grunt, Thomas W.; Zeillinger, Robert; Pils, Dietmar

    2015-01-01

    Circular RNAs are a recently (re-)discovered abundant RNA species with presumed function as miRNA sponges, thus part of the competing endogenous RNA network. We analysed the expression of circular and linear RNAs and proliferation in matched normal colon mucosa and tumour tissues. We predicted >1,800 circular RNAs and proved the existence of five randomly chosen examples using RT-qPCR. Interestingly, the ratio of circular to linear RNA isoforms was always lower in tumour compared to normal colon samples and even lower in colorectal cancer cell lines. Furthermore, this ratio correlated negatively with the proliferation index. The correlation of global circular RNA abundance (the circRNA index) and proliferation was validated in a non-cancerous proliferative disease, idiopathic pulmonary fibrosis, ovarian cancer cells compared to cultured normal ovarian epithelial cells, and 13 normal human tissues. We are the first to report a global reduction of circular RNA abundance in colorectal cancer cell lines and cancer compared to normal tissues and discovered a negative correlation of global circular RNA abundance and proliferation. This negative correlation seems to be a general principle in human tissues as validated with three different settings. Finally, we present a simple model how circular RNAs could accumulate in non-proliferating cells. PMID:25624062

  11. Fibrosis in connective tissue disease: the role of the myofibroblast and fibroblast-epithelial cell interactions

    PubMed Central

    Krieg, Thomas; Abraham, David; Lafyatis, Robert

    2007-01-01

    Fibrosis, characterized by excessive extracellular matrix accumulation, is a common feature of many connective tissue diseases, notably scleroderma (systemic sclerosis). Experimental studies suggest that a complex network of intercellular interactions involving endothelial cells, epithelial cells, fibroblasts and immune cells, using an array of molecular mediators, drives the pathogenic events that lead to fibrosis. Transforming growth factor-β and endothelin-1, which are part of a cytokine hierarchy with connective tissue growth factor, are key mediators of fibrogenesis and are primarily responsible for the differentiation of fibroblasts toward a myofibroblast phenotype. The tight skin mouse (Tsk-1) model of cutaneous fibrosis suggests that numerous other genes may also be important. PMID:17767742

  12. Correlation between sinus and lung cultures in lung transplant patients with cystic fibrosis.

    PubMed

    Choi, Kevin J; Cheng, Tracy Z; Honeybrook, Adam L; Gray, Alice L; Snyder, Laurie D; Palmer, Scott M; Abi Hachem, Ralph; Jang, David W

    2018-03-01

    Lung transplantation has revolutionized the treatment of end-stage pulmonary disease due to cystic fibrosis. However, infection of the transplanted lungs can lead to serious complications, including graft failure and death. Although many of these patients have concurrent sinusitis, it is unclear whether bacteria from the sinuses can infect the allograft. This is a single-institution retrospective study of all patients who underwent lung transplantation for cystic fibrosis from 2005 to 2015 at Duke University Hospital. Pre- and posttransplant nasal and pulmonary cultures obtained via nasal endoscopy and bronchoalveolar lavage (BAL), respectively, were analyzed. A total of 141 patients underwent 144 lung transplants. Sinus cultures were available for 76 patients (12 pretransplant, 42 posttransplant, 22 both pre- and posttransplant). Pretransplant BAL cultures were available for 139 patients, and posttransplant BAL cultures were available for all patients. Pseudomonas aeruginosa (PsA) and methicillin-resistant Staphylococcus aureus (MRSA) were the most common organisms cultured. There was a significant correlation between pretransplant sinus and posttransplant BAL cultures for PsA (p = 0.003), MRSA (p = 0.013), and Burkholderia cepacia (p = 0.001). There was a high correlation between pretransplant sinus cultures and posttransplant BAL cultures for PsA, MRSA, and Burkholderia sp. This suggests that the paranasal sinuses may act as a reservoir for allograft colonization in patients with cystic fibrosis. Further studies are needed to determine whether treatment of sinusitis affects allograft colonization and transplant outcomes. © 2017 ARS-AAOA, LLC.

  13. VEGF Correlates with Inflammation and Fibrosis in Tuberculous Pleural Effusion

    PubMed Central

    Bien, Mauo-Ying; Wu, Ming-Ping; Chen, Wei-Lin; Chung, Chi-Li

    2015-01-01

    Objective. To investigate the relationship among angiogenic cytokines, inflammatory markers, and fibrinolytic activity in tuberculous pleural effusion (TBPE) and their clinical importance. Methods. Forty-two patients diagnosed with TBPE were studied. Based on chest ultrasonography, there were 26 loculated and 16 nonloculated TBPE patients. The effusion size radiological scores and effusion vascular endothelial growth factor (VEGF), interleukin- (IL-) 8, plasminogen activator inhibitor type-1 (PAI-1), and tissue type plasminogen activator (tPA) were measured. Treatment outcome and pleural fibrosis, defined as radiological residual pleural thickening (RPT), were assessed at 6-month follow-up. Results. The effusion size and effusion lactate dehydrogenase (LDH), VEGF, IL-8, PAI-1, and PAI-1/tPA ratio were significantly higher, while effusion glucose, pH value, and tPA were significantly lower, in loculated than in nonloculated TBPE. VEGF and IL-8 correlated positively with LDH and PAI-1/tPA ratio and negatively with tPA in both loculated and nonloculated TBPE. Patients with higher VEGF or greater effusion size were prone to develop RPT (n = 14; VEGF, odds ratio 1.28, P = 0.01; effusion size, odds ratio 1.01, P = 0.02), and VEGF was an independent predictor of RPT in TBPE (receiver operating characteristic curve AUC = 0.985, P < 0.001). Conclusions. Effusion VEGF correlates with pleural inflammation and fibrosis and may be targeted for adjunct therapy for TBPE. PMID:25884029

  14. Extracellular superoxide dismutase increased the therapeutic potential of human mesenchymal stromal cells in radiation pulmonary fibrosis.

    PubMed

    Wei, Li; Zhang, Jing; Yang, Zai-Liang; You, Hua

    2017-05-01

    Pulmonary fibrosis induced by irradiation is a significant problem of radiotherapy in cancer patients. Extracellular superoxide dismutase (SOD3) is found to be predominantly and highly expressed in the extracellular matrix of lung and plays a pivotal role against oxidative damage. Early administration of mesenchymal stromal cells (MSCs) has been demonstrated to reduce fibrosis of damaged lung. However, injection of MSCs at a later stage would be involved in fibrosis development. The present study aimed to determine whether injection of human umbilical cord-derived MSCs (UC-MSCs) over-expressing SOD3 at the established fibrosis stage would have beneficial effects in a mice model of radiation pulmonary fibrosis. Herein, pulmonary fibrosis in mice was induced using Cobalt-60 ( 60 Co) irradiator with 20 Gy, followed by intravenous injection of UC-MSCs, transduced or not to express SOD3 at 2 h (early delivery) and 60 day (late delivery) post-irradiation, respectively. Our results demonstrated that the early administration of UC-MSCs could attenuate the microscopic damage, reduce collagen deposition, inhibit (myo)fibroblast proliferation, reduce inflammatory cell infiltration, protect alveolar type II (AE2) cell injury, prevent oxidative stress and increase antioxidant status, and reduce pro-fibrotic cytokine level in serum. Furthermore, the early treatment with SOD3-infected UC-MSCs resulted in better improvement. However, we failed to observe the therapeutic effects of UC-MSCs, transduced to express SOD3, during established fibrosis. Altogether, our results demonstrated that the early treatment with UC-MSCs alone significantly reduced radiation pulmonary fibrosis in mice through paracrine effects, with further improvement by administration of SOD3-infected UC-MSCs, suggesting that SOD3-infected UC-MSCs may be a potential cell-based gene therapy to treat clinical radiation pulmonary fibrosis. Copyright © 2017 International Society for Cellular Therapy. Published by

  15. PD-1/PD-L1 Pathway Mediates the Alleviation of Pulmonary Fibrosis by Human Mesenchymal Stem Cells in Humanized Mice.

    PubMed

    Ni, Ke; Liu, Ming; Zheng, Jian; Wen, Liyan; Chen, Qingyun; Xiang, Zheng; Lam, Kowk-Tai; Liu, Yinping; Chan, Godfrey Chi-Fung; Lau, Yu-Lung; Tu, Wenwei

    2018-06-01

    Pulmonary fibrosis is a chronic progressive lung disease with few treatments. Human mesenchymal stem cells (MSCs) have been shown to be beneficial in pulmonary fibrosis because they have immunomodulatory capacity. However, there is no reliable model to test the therapeutic effect of human MSCs in vivo. To mimic pulmonary fibrosis in humans, we established a novel bleomycin-induced pulmonary fibrosis model in humanized mice. With this model, the benefit of human MSCs in pulmonary fibrosis and the underlying mechanisms were investigated. In addition, the relevant parameters in patients with pulmonary fibrosis were examined. We demonstrate that human CD8 + T cells were critical for the induction of pulmonary fibrosis in humanized mice. Human MSCs could alleviate pulmonary fibrosis and improve lung function by suppressing bleomycin-induced human T-cell infiltration and proinflammatory cytokine production in the lungs of humanized mice. Importantly, alleviation of pulmonary fibrosis by human MSCs was mediated by the PD-1/programmed death-ligand 1 pathway. Moreover, abnormal PD-1 expression was found in circulating T cells and lung tissues of patients with pulmonary fibrosis. Our study supports the potential benefit of targeting the PD-1/programmed death-ligand 1 pathway in the treatment of pulmonary fibrosis.

  16. PAI1 mediates fibroblast-mast cell interactions in skin fibrosis.

    PubMed

    Pincha, Neha; Hajam, Edries Yousaf; Badarinath, Krithika; Batta, Surya Prakash Rao; Masudi, Tafheem; Dey, Rakesh; Andreasen, Peter; Kawakami, Toshiaki; Samuel, Rekha; George, Renu; Danda, Debashish; Jacob, Paul Mazhuvanchary; Jamora, Colin

    2018-05-01

    Fibrosis is a prevalent pathological condition arising from the chronic activation of fibroblasts. This activation results from the extensive intercellular crosstalk mediated by both soluble factors and direct cell-cell connections. Prominent among these are the interactions of fibroblasts with immune cells, in which the fibroblast-mast cell connection, although acknowledged, is relatively unexplored. We have used a Tg mouse model of skin fibrosis, based on expression of the transcription factor Snail in the epidermis, to probe the mechanisms regulating mast cell activity and the contribution of these cells to this pathology. We have discovered that Snail-expressing keratinocytes secrete plasminogen activator inhibitor type 1 (PAI1), which functions as a chemotactic factor to increase mast cell infiltration into the skin. Moreover, we have determined that PAI1 upregulates intercellular adhesion molecule type 1 (ICAM1) expression on dermal fibroblasts, rendering them competent to bind to mast cells. This heterotypic cell-cell adhesion, also observed in the skin fibrotic disorder scleroderma, culminates in the reciprocal activation of both mast cells and fibroblasts, leading to the cascade of events that promote fibrogenesis. Thus, we have identified roles for PAI1 in the multifactorial program of fibrogenesis that expand its functional repertoire beyond its canonical role in plasmin-dependent processes.

  17. Engineered cell and tissue models of pulmonary fibrosis.

    PubMed

    Sundarakrishnan, Aswin; Chen, Ying; Black, Lauren D; Aldridge, Bree B; Kaplan, David L

    2018-04-01

    Pulmonary fibrosis includes several lung disorders characterized by scar formation and Idiopathic Pulmonary Fibrosis (IPF) is a particularly severe form of pulmonary fibrosis of unknown etiology with a mean life expectancy of 3years' post-diagnosis. Treatments for IPF are limited to two FDA approved drugs, pirfenidone and nintedanib. Most lead candidate drugs that are identified in pre-clinical animal studies fail in human clinical trials. Thus, there is a need for advanced humanized in vitro models of the lung to improve candidate treatments prior to moving to human clinical trials. The development of 3D tissue models has created systems capable of emulating human lung structure, function, and cell and matrix interactions. The specific models accomplish these features and preliminary studies conducted using some of these systems have shown potential for in vitro anti-fibrotic drug testing. Further characterization and improvements will enable these tissue models to extend their utility for in vitro drug testing, to help identify signaling pathways and mechanisms for new drug targets, and potentially reduce animal models as standard pre-clinical models of study. In the current review, we contrast different in vitro models based on increasing dimensionality (2D, 2.5D and 3D), with added focus on contemporary 3D pulmonary models of fibrosis. Copyright © 2017. Published by Elsevier B.V.

  18. Basic mechanisms and clinical implications of peritoneal fibrosis.

    PubMed

    Margetts, Peter J; Bonniaud, Philippe

    2003-01-01

    We have stressed the role of certain growth factors and cytokines in peritoneal fibrosis, including TGFbeta, TIMP-1, and inflammatory cytokines, especially IL-1beta. Recent research highlights the myofibroblast-like transformation of mesothelial cells as a central initiating event in peritoneal fibrosis. The induction, survival, and apoptosis of the myofibroblast cell population likely dictate the nature of the fibrogenic response. The accumulation of collagen occurs in a nondegradative environment, and collagenases and their inhibitors have a role in the maintenance of fibrosis. Fibrosis appears to be a ubiquitous response of peritoneal tissues to the damaging effects of uremia, bioincompatible dialysate, recurrent infection, and inflammation. Recent research has focused on the induction of angiogenesis, as this appears to correlate with increased solute transport and peritoneal membrane ultrafiltration failure. Fibrosis may play an integral part in peritoneal membrane dysfunction in several aspects. Angiogenesis may be induced as part of the fibrotic response, as many key fibrogenic cytokines are also strongly angiogenic. Fibrotic tissue may support and preserve angiogenesis. Changes in the interstitium may have a direct effect on the hydrodynamic properties of the peritoneum and may directly influence fluid movement. In its most extreme form, fibrosis manifests as the rare but devastating EPS. Peritoneal biopsy studies have identified a high prevalence of peritoneal fibrosis in PD patients. Research into peritoneal fibrosis will be enhanced by new animal models where the role of various cytokines and growth factors, cellular processes, and matrix interactions can be studied. With these models, the role of fibrosis in alteration of peritoneal membrane function can be better assessed. Clinical trials to assess the role of prevention of peritoneal injury using biocompatible solutions and treatments targeted directly at peritoneal fibrosis will be important, but

  19. The Prognosis of Small Cell Lung Cancer in Patients with Pulmonary Fibrosis.

    PubMed

    Matsumoto, Yoko; Ohara, Sayaka; Furukawa, Ryutaro; Usui, Kazuhiro

    2017-10-01

    The purpose of this study was to assess the prognosis of small cell lung cancer (SCLC) based on the underlying pulmonary disease. A total of 204 patients with SCLC were reviewed and categorized into three groups: normal, emphysema and fibrosis. The median overall survival duration (OS) in patients with normal lungs (n=57), with emphysema (n=105) and fibrosis (n=42) was 21.3, 16.4 and 10.8 months (p=0.063). In limited-stage disease (LD), the median OS in patients with fibrosis (7.4 months) was shorter than normal (52.7 months) or emphysema patients (26.4 months) (p=0.034). In extensive-stage disease (ED), the median OS in patients with fibrosis (12.7 months) was not significantly different from normal (11.4 months) or emphysema patients (13.5 months) (p=0.600). Patients with fibrosis had a poorer prognosis than normal or emphysema patients in LD-SCLC, but the coexistence of pulmonary fibrosis did not affect the prognostic outcomes in ED-SCLC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Low 25-OH vitamin D serum levels correlate with severe fibrosis in HIV-HCV co-infected patients with chronic hepatitis.

    PubMed

    Terrier, Benjamin; Carrat, Fabrice; Geri, Guillaume; Pol, Stanislas; Piroth, Lionel; Halfon, Philippe; Poynard, Thierry; Souberbielle, Jean-Claude; Cacoub, Patrice

    2011-10-01

    Recent findings in hepatitis C virus (HCV)-monoinfected patients have shown a correlation between low serum levels of 25-OH vitamin D3 [25(OH)D3] and severe liver fibrosis and low sustained virologic response to therapy. Data are lacking in HIV-HCV coinfected patients. One hundred and eighty nine HIV-HCV coinfected patients, who received ≥80% of interferon (IFN) plus ribavirin therapy, were analyzed for baseline serum 25(OH)D3 levels. Correlations between serum 25(OH)D3 levels, chronic hepatitis C features, HCV virologic response to antiviral therapy, and HIV infection characteristics were analyzed. Mean serum 25(OH)D3 level was 18.5 ± 9.8 ng/ml, including 162 (85%) patients with level ≤30 ng/ml. Serum 25(OH)D3 levels were significantly correlated with the histological Metavir fibrosis score (r = -0.16; p = 0.027). Patients with severe fibrosis (Metavir F3/F4) had lower serum 25(OH)D3 levels compared to F2 and F1 patients (16.2 ± 10.0 vs. 18.9 ± 8.5 and 20.9 ± 11.1 ng/ml, respectively; p = 0.06). In multivariate analysis, low serum 25(OH)D levels were independently associated with severe liver fibrosis (p = 0.04) and cold season (p = 0.0002). Serum levels of 25(OH)D3 were also significantly correlated with liver fibrosis as assessed by FibroTest® (r = -0.22; p = 0.008) and serum α2-macroglobulin levels (r = -0.23; p = 0.006). In contrast, no correlation was found between 25(OH)D3 levels and HCV sustained virologic response to IFN-based therapy [OR 0.98 (0.95-1.01); p = 0.22]. No association was found between 25(OH)D3 levels and markers of HIV-related immunodeficiency. In HIV-HCV coinfected patients, low serum 25(OH)D3 levels correlate with severe liver fibrosis. In contrast, serum 25(OH)D3 levels are not linked to HCV virologic response to therapy or severity of immunodeficiency. Copyright © 2011 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  1. Less contribution of mast cells to the progression of renal fibrosis in Rat kidneys with chronic renal failure.

    PubMed

    Baba, Asuka; Tachi, Masahiro; Ejima, Yutaka; Endo, Yasuhiro; Toyama, Hiroaki; Saito, Kazutomo; Abe, Nozomu; Yamauchi, Masanori; Miura, Chieko; Kazama, Itsuro

    2017-02-01

    Chronic renal failure (CRF) is histopathologically characterized by tubulointerstitial fibrosis in addition to glomerulosclerosis. Although mast cells are known to infiltrate into the kidneys with chronic inflammation, we know little about their contribution to the pathogenesis of renal fibrosis associated with CRF. The aim of this study was to reveal the involvement of mast cells in the progression of renal fibrosis in CRF. Using a rat model with CRF resulting from 5/6 nephrectomy, we examined the histopathological features of the kidneys and the infiltration of mast cells into the renal interstitium. By treating the rats with a potent mast cell stabilizer, tranilast, we also examined the involvement of mast cells in the progression of renal fibrosis associated with CRF. The CRF rat kidneys were characterized by the wide staining of collagen III and increased number of myofibroblasts, indicating the progression of renal fibrosis. Compared to T-lymphocytes or macrophages, the number of tryptase-positive mast cells was much smaller within the fibrotic kidneys and they did not proliferate in situ. The mRNA expression of mast cell-derived fibroblast-activating factors was not increased in the renal cortex isolated from CRF rat kidneys. Treatment with tranilast did not suppress the progression of renal fibrosis, nor did it ameliorate the progression of glomerulosclerosis and the interstitial proliferation of inflammatory leukocytes. This study demonstrated for the first time that mast cells are neither increased nor activated in the fibrotic kidneys of CRF rats. Compared to T-lymphocytes or macrophages that proliferate in situ within the fibrotic kidneys, mast cells were less likely to contribute to the progression of renal fibrosis associated with CRF. © 2016 Asian Pacific Society of Nephrology.

  2. Understanding deregulated cellular and molecular dynamics in the haematopoietic stem cell niche to develop novel therapeutics for bone marrow fibrosis.

    PubMed

    Gleitz, Hélène Fe; Kramann, Rafael; Schneider, Rebekka K

    2018-06-01

    Bone marrow fibrosis is the continuous replacement of blood-forming cells in the bone marrow with excessive scar tissue, leading to failure of the body to produce blood cells and ultimately to death. Myofibroblasts are fibrosis-driving cells and are well characterized in solid organ fibrosis, but their role and cellular origin in bone marrow fibrosis have remained obscure. Recent work has demonstrated that Gli1 + and leptin receptor + mesenchymal stromal cells are progenitors of fibrosis-causing myofibroblasts in the bone marrow. Genetic ablation or pharmacological inhibition of Gli1 + mesenchymal stromal cells ameliorated fibrosis in mouse models of myelofibrosis. Conditional deletion of the platelet-derived growth factor (PDGF) receptor-α (PDGFRA) gene (Pdgfra) and inhibition of PDGFRA by imatinib in leptin receptor + stromal cells suppressed their expansion and ameliorated bone marrow fibrosis. Understanding the cellular and molecular mechanisms in the haematopoietic stem cell niche that govern the mesenchymal stromal cell-to-myofibroblast transition and myofibroblast expansion will be critical to understand the pathogenesis of bone marrow fibrosis in both malignant and non-malignant conditions, and will guide the development of novel therapeutics. In this review, we summarize recent discoveries of mesenchymal stromal cells as part of the haematopoietic niche and as myofibroblast precursors, and discuss potential therapeutic strategies in the specific targeting of fibrotic transformation in bone marrow fibrosis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  3. Role of histone deacetylases(HDACs) in progression and reversal of liver fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xing; Wu, Xiao-Qin; Xu, Tao

    Liver fibrosis refers to a reversible wound healing process response to chronic liver injuries. Activation of hepatic stellate cells (HSCs) is closely correlated with the development of liver fibrosis. Histone deacetylases(HDACs) determine the acetylation levels of core histones to modulate expression of genes. To demonstrate the link between HDACs and liver fibrosis, CCl4-induced mouse liver fibrosis model and its spontaneous reversal model were established. Results of the current study demonstrated that deregulation of liver HDACs may involved in the development of liver fibrosis. Among 11 HDACs tested in our study (Class I, II, and IV HDACs), expression of HDAC2 wasmore » maximally increased in CCl4-induced fibrotic livers but decreased after spontaneous recovery. Moreover, expression of HDAC2 was elevated in human liver fibrotic tissues. In this regard, the potential role of HDAC2 in liver fibrosis was further evaluated. Our results showed that administration of HSC-T6 cells with transforming growth factor-beta1 (TGF-β1) resulted in an increase of HDAC2 protein expression in dose- and time-dependent manners. Moreover, HDAC2 deficiency inhibited HSC-T6 cell proliferation and activation induced by TGF-β1. More importantly, the present study showed HDAC2 may regulate HSCs activation by suppressing expression of Smad7, which is a negative modulator in HSCs activation and liver fibrosis. Collectively, these observations revealed that HDAC2 may play a pivotal role in HSCs activation and liver fibrosis while deregulation of HDACs may serve as a novel mechanism underlying liver fibrosis. - Highlights: • This is the first report to systematically examine expressions of HDACs during liver fibrosis and fibrosis reversal. • Aberrant expression of HDAC2 contributes to the development of liver fibrosis. • Provided important foundation for further liver fibrosis conversion studies.« less

  4. Hepatocyte Growth Factor Is Required for Mesenchymal Stromal Cell Protection Against Bleomycin-Induced Pulmonary Fibrosis

    PubMed Central

    Cahill, Emer F.; Kennelly, Helen; Carty, Fiona; Mahon, Bernard P.

    2016-01-01

    The incidence of idiopathic pulmonary fibrosis is on the rise and existing treatments have failed to halt or reverse disease progression. Mesenchymal stromal cells (MSCs) have potent cytoprotective effects, can promote tissue repair, and have demonstrated efficacy in a range of fibrotic lung diseases; however, the exact mechanisms of action remain to be elucidated. Chemical antagonists and short hairpin RNA knockdown were used to identify the mechanisms of action used by MSCs in promoting wound healing, proliferation, and inhibiting apoptosis. Using the bleomycin induced fibrosis model, the protective effects of early or late MSC administration were examined. The role for hepatocyte growth factor (HGF) in MSC protection against bleomycin lung injury was examined using HGF knockdown MSC. Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling assay was performed on ex vivo lung sections to examine the effects of MSC on apoptosis. MSC conditioned media (CM) enhanced wound closure and inhibited apoptosis of pulmonary cells in vitro. HGF was required for MSC CM enhancement of epithelial cell proliferation and inhibition of apoptosis. In contrast, MSC required COX-2 for CM to inhibit fibroblast proliferation. In a murine model, early administration of MSC protected against bleomycin induced lung fibrosis and correlated with reduced levels of the proinflammatory cytokine interleukin-1β, reduced levels of apoptosis, and significantly increased levels of HGF. These protective effects were in part mediated by MSC derived HGF as HGF knockdown MSC were unable to protect against fibrosis in vivo. These findings delineate the mechanisms of MSC protection in a preclinical model of fibrotic lung disease. Significance The mechanisms used by mesenchymal stromal cells (MSCs) in mediating protective effects in chronic models of lung disease are not understood and remain to be elucidated. These findings from in vitro studies highlight an important role for the MSC

  5. Classical dendritic cells mediate fibrosis directly via the retinoic acid pathway in severe eye allergy

    PubMed Central

    Ahadome, Sarah D.; Mathew, Rose; Reyes, Nancy J.; Mettu, Priyatham S.; Cousins, Scott W.; Calder, Virginia L.; Saban, Daniel R.

    2016-01-01

    Fibrosis is a shared end-stage pathway to lung, liver, and heart failure. In the ocular mucosa (conjunctiva), fibrosis leads to blindness in trachoma, pemphigoid, and allergy. The indirect fibrogenic role of DCs via T cell activation and inflammatory cell recruitment is well documented. However, here we demonstrate that DCs can directly induce fibrosis. In the mouse model of allergic eye disease (AED), classical CD11b+ DCs in the ocular mucosa showed increased activity of aldehyde dehydrogenase (ALDH), the enzyme required for retinoic acid synthesis. In vitro, CD11b+ DC–derived ALDH was associated with 9-cis-retinoic acid ligation to retinoid x receptor (RXR), which induced conjunctival fibroblast activation. In vivo, stimulating RXR led to rapid onset of ocular mucosal fibrosis, whereas inhibiting ALDH activity in DCs or selectively depleting DCs markedly reduced fibrosis. Collectively, these data reveal a profibrotic ALDH-dependent pathway by DCs and uncover a role for DC retinoid metabolism. PMID:27595139

  6. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis

    PubMed Central

    Mizuno, Takako; Sridharan, Anusha; Du, Yina; Guo, Minzhe; Wikenheiser-Brokamp, Kathryn A.; Perl, Anne-Karina T.; Funari, Vincent A.; Gokey, Jason J.; Stripp, Barry R.; Whitsett, Jeffrey A.

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial lung disease characterized by airway remodeling, inflammation, alveolar destruction, and fibrosis. We utilized single-cell RNA sequencing (scRNA-seq) to identify epithelial cell types and associated biological processes involved in the pathogenesis of IPF. Transcriptomic analysis of normal human lung epithelial cells defined gene expression patterns associated with highly differentiated alveolar type 2 (AT2) cells, indicated by enrichment of RNAs critical for surfactant homeostasis. In contrast, scRNA-seq of IPF cells identified 3 distinct subsets of epithelial cell types with characteristics of conducting airway basal and goblet cells and an additional atypical transitional cell that contributes to pathological processes in IPF. Individual IPF cells frequently coexpressed alveolar type 1 (AT1), AT2, and conducting airway selective markers, demonstrating “indeterminate” states of differentiation not seen in normal lung development. Pathway analysis predicted aberrant activation of canonical signaling via TGF-β, HIPPO/YAP, P53, WNT, and AKT/PI3K. Immunofluorescence confocal microscopy identified the disruption of alveolar structure and loss of the normal proximal-peripheral differentiation of pulmonary epithelial cells. scRNA-seq analyses identified loss of normal epithelial cell identities and unique contributions of epithelial cells to the pathogenesis of IPF. The present study provides a rich data source to further explore lung health and disease. PMID:27942595

  7. Interferon-γ production by tubulointerstitial human CD56bright natural killer cells contributes to renal fibrosis and chronic kidney disease progression.

    PubMed

    Law, Becker M P; Wilkinson, Ray; Wang, Xiangju; Kildey, Katrina; Lindner, Mae; Rist, Melissa J; Beagley, Kenneth; Healy, Helen; Kassianos, Andrew J

    2017-07-01

    Natural killer (NK) cells are a population of lymphoid cells that play a significant role in mediating innate immune responses. Studies in mice suggest a pathological role for NK cells in models of kidney disease. In this study, we characterized the NK cell subsets present in native kidneys of patients with tubulointerstitial fibrosis, the pathological hallmark of chronic kidney disease. Significantly higher numbers of total NK cells (CD3 - CD56 + ) were detected in renal biopsies with tubulointerstitial fibrosis compared with diseased biopsies without fibrosis and healthy kidney tissue using multi-color flow cytometry. At a subset level, both the CD56 dim NK cell subset and particularly the CD56 bright NK cell subset were elevated in fibrotic kidney tissue. However, only CD56 bright NK cells significantly correlated with the loss of kidney function. Expression of the tissue-retention and -activation molecule CD69 on CD56 bright NK cells was significantly increased in fibrotic biopsy specimens compared with non-fibrotic kidney tissue, indicative of a pathogenic phenotype. Further flow cytometric phenotyping revealed selective co-expression of activating receptor CD335 (NKp46) and differentiation marker CD117 (c-kit) on CD56 bright NK cells. Multi-color immunofluorescent staining of fibrotic kidney tissue localized the accumulation of NK cells within the tubulointerstitium, with CD56 bright NK cells (NKp46 + CD117 + ) identified as the source of pro-inflammatory cytokine interferon-γ within the NK cell compartment. Thus, activated interferon-γ-producing CD56 bright NK cells are positioned to play a key role in the fibrotic process and progression to chronic kidney disease. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  8. Cystic fibrosis.

    PubMed

    Elborn, J Stuart

    2016-11-19

    Cystic fibrosis is a common life-limiting autosomal recessive genetic disorder, with highest prevalence in Europe, North America, and Australia. The disease is caused by mutation of a gene that encodes a chloride-conducting transmembrane channel called the cystic fibrosis transmembrane conductance regulator (CFTR), which regulates anion transport and mucociliary clearance in the airways. Functional failure of CFTR results in mucus retention and chronic infection and subsequently in local airway inflammation that is harmful to the lungs. CFTR dysfunction mainly affects epithelial cells, although there is evidence of a role in immune cells. Cystic fibrosis affects several body systems, and morbidity and mortality is mostly caused by bronchiectasis, small airways obstruction, and progressive respiratory impairment. Important comorbidities caused by epithelial cell dysfunction occur in the pancreas (malabsorption), liver (biliary cirrhosis), sweat glands (heat shock), and vas deferens (infertility). The development and delivery of drugs that improve the clearance of mucus from the lungs and treat the consequent infection, in combination with correction of pancreatic insufficiency and undernutrition by multidisciplinary teams, have resulted in remarkable improvements in quality of life and clinical outcomes in patients with cystic fibrosis, with median life expectancy now older than 40 years. Innovative and transformational therapies that target the basic defect in cystic fibrosis have recently been developed and are effective in improving lung function and reducing pulmonary exacerbations. Further small molecule and gene-based therapies are being developed to restore CFTR function; these therapies promise to be disease modifying and to improve the lives of people with cystic fibrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Modulation of hepatic stellate cells and reversibility of hepatic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yu, E-mail: 1293363632@QQ.com; Deng, Xin, E-mail: Hendly@163.com; Liang, Jian, E-mail: lj99669@163.com

    Hepatic fibrosis (HF) is the pathological component of a variety of chronic liver diseases. Hepatic stellate cells (HSC) are the main collagen-producing cells in the liver and their activation promotes HF. If HSC activation and proliferation can be inhibited, HF occurrence and development can theoretically be reduced and even reversed. Over the past ten years, a number of studies have addressed this process, and here we present a review of HSC modulation and HF reversal. - Highlights: • We present a review of the modulation of hepatic stellate cells (HSC) and reversibility of hepatic fibrosis (HF). • HSC are themore » foci of HF occurrence and development, HF could be prevented and treated by modulating HSC. • If HSC activation and proliferation can be inhibited, HF could theoretically be inhibited and even reversed. • Prevention or reversal of HSC activation, or promotion of HSC apoptosis, immune elimination, and senescence may prevent, inhibit or reverse HF.« less

  10. The Mitochondrial Cardiolipin Remodeling Enzyme Lysocardiolipin Acyltransferase Is a Novel Target in Pulmonary Fibrosis

    PubMed Central

    Huang, Long Shuang; Mathew, Biji; Zhao, Yutong; Noth, Imre; Reddy, Sekhar P.; Harijith, Anantha; Usatyuk, Peter V.; Berdyshev, Evgeny V.; Kaminski, Naftali; Zhou, Tong; Zhang, Wei; Zhang, Yanmin; Rehman, Jalees; Kotha, Sainath R.; Gurney, Travis O.; Parinandi, Narasimham L.; Lussier, Yves A.; Garcia, Joe G. N.

    2014-01-01

    Rationale: Lysocardiolipin acyltransferase (LYCAT), a cardiolipin-remodeling enzyme regulating the 18:2 linoleic acid pattern of mammalian mitochondrial cardiolipin, is necessary for maintaining normal mitochondrial function and vascular development. We hypothesized that modulation of LYCAT expression in lung epithelium regulates development of pulmonary fibrosis. Objectives: To define a role for LYCAT in human and murine models of pulmonary fibrosis. Methods: We analyzed the correlation of LYCAT expression in peripheral blood mononuclear cells (PBMCs) with the outcomes of pulmonary functions and overall survival, and used the murine models to establish the role of LYCAT in fibrogenesis. We studied the LYCAT action on cardiolipin remodeling, mitochondrial reactive oxygen species generation, and apoptosis of alveolar epithelial cells under bleomycin challenge. Measurements and Main Results: LYCAT expression was significantly altered in PBMCs and lung tissues from patients with idiopathic pulmonary fibrosis (IPF), which was confirmed in two preclinical murine models of IPF, bleomycin- and radiation-induced pulmonary fibrosis. LYCAT mRNA expression in PBMCs directly and significantly correlated with carbon monoxide diffusion capacity, pulmonary function outcomes, and overall survival. In both bleomycin- and radiation-induced pulmonary fibrosis murine models, hLYCAT overexpression reduced several indices of lung fibrosis, whereas down-regulation of native LYCAT expression by siRNA accentuated fibrogenesis. In vitro studies demonstrated that LYCAT modulated bleomycin-induced cardiolipin remodeling, mitochondrial membrane potential, reactive oxygen species generation, and apoptosis of alveolar epithelial cells, potential mechanisms of LYCAT-mediated lung protection. Conclusions: This study is the first to identify modulation of LYCAT expression in fibrotic lungs and offers a novel therapeutic approach for ameliorating lung inflammation and pulmonary fibrosis. PMID

  11. Use of Bone Marrow-Derived Mesenchymal Stem Cells in Improving Thioacetamide Induced Liver Fibrosis in Rats

    NASA Astrophysics Data System (ADS)

    Mansour, Fatma A. A.; Shaheed, Iman; Hassan, Nabiha R. A.

    Liver fibrosis, is one of big problems usually ends with cirrhosis which considered a life threatening disease as the only way of treatment is the liver transplantation, this study aimed to find a new way for fibrosis treatment by the use of bone marrow isolated Mesenchymal stem cells (MSCs). Thioacetamide (TAA) was used for fibrosis induction in male Sprague Dawely (SD) rats which divided into two random groups: group infused with TAA for fibrosis induction and group as control negative group. MSCs were isolated from bone marrow of twenty five (4-5) weeks male SD rats, and labeled with fluorescent material (PKH26) to confirm the homing of cells. After fibrosis induction, rats were divided into four subgroups to study the effect of MSCs injection in fibrosis treatment. After 4 weeks from MSCs administration, all rats were sacrificed. Liver tissue were collected for histopathological and immunohistopathological studies. In comparison with control groups, the treated groups with MSCs showed improvement in the amount of deposited collagen which decreased compared to control positive group. So MSCs can be used to replace liver transplantation in the treatment of fibrosis.

  12. Image analysis of fibrosis in labial salivary glands of patients with systemic autoimmune diseases. Close correlation of lobular fibrosis to seropositive rheumatoid arthritis and increased anti-CCP and RF titres in the serum.

    PubMed

    Katona, Krisztián; Farkas, Nelli; Kneif, Mária; SütŐ, Gábor; Berki, Tímea; Balatonyi, Balázs; Tornóczky, Tamás

    2018-06-01

    Lobular fibrosis in labial salivary glands of patients with systemic autoimmune disease is a rarely examined and rather neglected histological change. Its significance and disease association is poorly understood. Our aim was to explore the clinical correlations of fibrosis in labial salivary gland samples using objective methods and laboratory parameters. Labial salivary gland samples from more than 300 patients over a 3-year period were selected from the archives of the pathology department, histologically examined, digitised, image analysed and statistically evaluated to identify the presence and intensity of lobular fibrosis, its relation to age, clinical diagnoses of systemic autoimmune disease and the presence of rheumatoid factor (RF), anti-cyclic citrullinated peptide (CCP), antinuclear antibodies (ANAs), and anti-dsDNA serum markers. Significant correlation was found between lobular fibrosis and the presence of autoimmune disease (p = 0.023), mainly seropositive rheumatoid arthritis (p < 0.001). Also significant association was found between the fibrosis and the presence of serum anti-CCP (p < 0.001) and IgA/IgG/IgM-RF (p < 0.001, p < 0.001 and p = 0.008, respectively). Significant association was explored between the anti-dsDNA positivity and the negative histology groups (p = 0.033) and between the ANA positivity and the inflammation only group (p = 0.021). The results suggest that lobular fibrosis tends to associate to certain systemic autoimmune diseases, mainly seropositive rheumatoid arthritis, and seems to be rare in labial salivary gland biopsies of autoimmune diseases characterised by presence of anti-dsDNA. The close correlation of ANA positivity and the inflammation only histology was not surprising, since the majority of patients (62%) have Sjögren's syndrome, known for its inflammatory infiltrate. These findings emphasise that evaluation of lobular fibrosis and inflammation in histological samples of labial salivary gland biopsies

  13. The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells.

    PubMed

    Yamada, Mitsuhiro; Kubo, Hiroshi; Ota, Chiharu; Takahashi, Toru; Tando, Yukiko; Suzuki, Takaya; Fujino, Naoya; Makiguchi, Tomonori; Takagi, Kiyoshi; Suzuki, Takashi; Ichinose, Masakazu

    2013-09-24

    The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined. Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR. The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated in isolated lung epithelial

  14. Liver fibrosis alleviation after co-transplantation of hematopoietic stem cells with mesenchymal stem cells in patients with thalassemia major.

    PubMed

    Ghavamzadeh, Ardeshir; Sotoudeh, Masoud; Hashemi Taheri, Amir Pejman; Alimoghaddam, Kamran; Pashaiefar, Hossein; Jalili, Mahdi; Shahi, Farhad; Jahani, Mohammad; Yaghmaie, Marjan

    2018-02-01

    The aims of this study are to determine the replacement rate of damaged hepatocytes by donor-derived cells in sex-mismatched recipient patients with thalassemia major and to determine whether co-transplantation of mesenchymal stem cells and hematopoietic stem cells (HSCs) can alleviate liver fibrosis. Ten sex-mismatched donor-recipient pairs who received co-transplantation of HSCs with mesenchymal stem cells were included in our study. Liver biopsy was performed before transplantation. Two other liver biopsies were performed between 2 and 5 years after transplantation. The specimens were studied for the presence of donor-derived epithelial cells or hepatocytes using fluorescence in situ hybridization by X- and Y-centromeric probes and immunohistochemical staining for pancytokeratin, CD45, and a hepatocyte-specific antigen. All sex-mismatched tissue samples demonstrated donor-derived hepatocyte independent of donor gender. XY-positive epithelial cells or hepatocytes accounted for 11 to 25% of the cells in histologic sections of female recipients in the first follow-up. It rose to 47-95% in the second follow-up. Although not statistically significant, four out of ten patients showed signs of improvement in liver fibrosis. Our results showed that co-transplantation of HSC with mesenchymal stem cells increases the rate of replacement of recipient hepatocytes by donor-derived cells and may improve liver fibrosis.

  15. Non-invasive oxidative stress markers for liver fibrosis development in the evolution of toxic hepatitis.

    PubMed

    Clichici, Simona; Catoi, C; Mocan, T; Filip, A; Login, C; Nagy, A; Daicoviciu, D; Decea, N; Gherman, C; Moldovan, R; Muresan, Adriana

    2011-06-01

    Oxidative stress is related to the liver fibrosis, anticipating the hepatic stellate cells' (HSC) activation. Our aim was to correlate oxidative stress markers with the histological liver alterations in order to identify predictive, noninvasive parameters of fibrosis progression in the evolution of toxic hepatitis.CCl4 in sunflower oil was administered to rats intragastrically, twice a week. After 2, 3, 4 and 8 weeks of treatment, plasma levels of malondialdehyde (MDA), protein carbonyls (PC), hydrogen donor capacity (HD), sulfhydryl groups (SH), and glutathione (GSH) were measured and histological examination of the liver slides was performed. Dynamics of histological disorders was assessed by The Knodell score. Significant elevation of inflammation grade was obtained after the second week of the experiment only (p=0.001), while fibrosis started to become significant (p=0.001) after 1 month of CCl4 administration. Between plasma MDA and liver fibrosis development a good correlation was obtained (r=0.877, p=0.05). Correlation between PC dynamics and liver alterations was marginally significant for inflammation grade (r=0.756, p=0.138). HD evolution revealed a marginally inverse correlation with inflammation grade (r=-0.794, p=0.108). No correlations could be established for other parameters with either inflammation grade or fibrosis stage.Our study shows that MDA elevation offers the best prediction potential for fibrosis, while marginal prediction fiability could be attributed to high levels of plasma PC and low levels of HD.

  16. Systemic inflammation is associated with myocardial fibrosis, diastolic dysfunction, and cardiac hypertrophy in patients with hypertrophic cardiomyopathy

    PubMed Central

    Fang, Lu; Ellims, Andris H; Beale, Anna L; Taylor, Andrew J; Murphy, Andrew; Dart, Anthony M

    2017-01-01

    Background: Regional or diffuse fibrosis is an early feature of hypertrophic cardiomyopathy (HCM) and is related to poor prognosis. Previous studies have documented low-grade inflammation in HCM. The aim of this study was to examine the relationships between circulating inflammatory markers and myocardial fibrosis, systolic and diastolic dysfunction, and the degree of cardiac hypertrophy in HCM patients. Methods and results: Fifty HCM patients were recruited while 20 healthy subjects served as the control group. Seventeen inflammatory cytokines/chemokines were measured in plasma. Cardiac magnetic resonance imaging and echocardiography were used to assess cardiac phenotypes. Tumour necrosis factor (TNF)-α, interleukin (IL)-6 and serum amyloid P (SAP) were significantly increased in HCM patients compared to controls. IL-6, IL-4, and monocyte chemotactic protein (MCP)-1 were correlated with regional fibrosis while stromal cell-derived factor-1 and MCP-1 were correlated with diffuse fibrosis. Fractalkine and interferon-γ were associated with left ventricular wall thickness. The above associations remained significant in a linear regression model including age, gender, body mass index and family history. TNF-α, IL-6, SAP, MCP-1 and IL-10 were associated with parameters of diastolic dysfunction. White blood cells were also increased in HCM patients and correlated with diffuse fibrosis and diastolic dysfunction. However the associations between parameters of systemic inflammation and diastolic dysfunction were weakened in the linear regression analysis. Conclusions: Systemic inflammation is associated with parameters of the disease severity of HCM patients, particularly regional and diffuse fibrosis. Modifying inflammation may reduce myocardial fibrosis in HCM patients. PMID:29218105

  17. Activation of chloride channels in normal and cystic fibrosis airway epithelial cells by multifunctional calcium/calmodulin-dependent protein kinase

    NASA Astrophysics Data System (ADS)

    Wagner, John A.; Cozens, Alison L.; Schulman, Howard; Gruenert, Dieter C.; Stryer, Lubert; Gardner, Phyllis

    1991-02-01

    CYSTIC fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase1,2 and protein kinase C3,4. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels1-4. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2+-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2+-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.

  18. Identification of a Cell-of-Origin for Fibroblasts Comprising the Fibrotic Reticulum in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Xia, Hong; Bodempudi, Vidya; Benyumov, Alexey; Hergert, Polla; Tank, Damien; Herrera, Jeremy; Braziunas, Jeff; Larsson, Ola; Parker, Matthew; Rossi, Daniel; Smith, Karen; Peterson, Mark; Limper, Andrew; Jessurun, Jose; Connett, John; Ingbar, David; Phan, Sem; Bitterman, Peter B.; Henke, Craig A.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease of the middle aged and elderly with a prevalence of one million persons worldwide. The fibrosis spreads from affected alveoli into contiguous alveoli, creating a reticular network that leads to death by asphyxiation. Lung fibroblasts from patients with IPF have phenotypic hallmarks, distinguishing them from their normal counterparts: pathologically activated Akt signaling axis, increased collagen and α-smooth muscle actin expression, distinct gene expression profile, and ability to form fibrotic lesions in model organisms. Despite the centrality of these fibroblasts in disease pathogenesis, their origin remains uncertain. Here, we report the identification of cells in the lungs of patients with IPF with the properties of mesenchymal progenitors. In contrast to progenitors isolated from nonfibrotic lungs, IPF mesenchymal progenitor cells produce daughter cells manifesting the full spectrum of IPF hallmarks, including the ability to form fibrotic lesions in zebrafish embryos and mouse lungs, and a transcriptional profile reflecting these properties. Morphological analysis of IPF lung tissue revealed that mesenchymal progenitor cells and cells with the characteristics of their progeny comprised the fibrotic reticulum. These data establish that the lungs of patients with IPF contain pathological mesenchymal progenitor cells that are cells of origin for fibrosis-mediating fibroblasts. These fibrogenic mesenchymal progenitors and their progeny represent an unexplored target for novel therapies to interdict fibrosis. PMID:24631025

  19. Primary proximal tubule injury leads to epithelial cell cycle arrest, fibrosis, vascular rarefaction, and glomerulosclerosis

    PubMed Central

    Bonventre, Joseph V

    2014-01-01

    Tubular injury has a major etiological role in fibrosis. For many years, this relationship has been dominated by the perception that epithelial cells are transformed into myofibroblasts that proliferate and generate fibrotic matrix—the so-called epithelial-to-mesenchymal transition. Here we focus on mechanisms by which injury to the tubule results in fibrosis because of paracrine mechanisms. Specific injury to the proximal tubule results in inflammation, reversible injury, and adaptive repair if the insult is mild, self-limited in time, and occurs in a background of a normal kidney. Repeated injury, in contrast, leads to maladaptive repair with sustained tubule injury, chronic inflammation, proliferation of interstitial myofibroblasts, vascular rarefaction, interstitial fibrosis, and glomerular sclerosis. During the maladaptive repair process after the renal insult, many tubular cells become arrested in the G2/M phase of the cell cycle. This results in activation of the DNA repair response with the resultant synthesis and secretion of pro-fibrotic factors. Pharmacologic interventions that enhance the movement through G2/M or facilitate apoptosis of cells that otherwise would be blocked in G2/M may reduce the development of fibrosis after kidney injury and reduce the progression of chronic kidney disease. PMID:26310195

  20. Hepatic fibrosis: It is time to go with hepatic stellate cell-specific therapeutic targets.

    PubMed

    Ezhilarasan, Devaraj; Sokal, Etienne; Najimi, Mustapha

    2018-06-01

    Hepatic fibrosis is a pathological lesion, characterized by the progressive accumulation of extracellular matrix (ECM) in the perisinusoidal space and it is a major problem in chronic liver diseases. Phenotypic activation of hepatic stellate cells (HSC) plays a central role in the progression of hepatic fibrosis. Retardation of proliferation and clearance of activated HSCs from the injured liver is an appropriate therapeutic strategy for the resolution and treatment of hepatic fibrosis. Clearance of activated HSCs from the injured liver by autophagy inhibitors, proapoptotic agents and senescence inducers with the high affinity toward the activated HSCs may be the novel therapeutic strategy for the treatment of hepatic fibrosis in the near future. Copyright © 2018. Published by Elsevier B.V.

  1. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis

    PubMed Central

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P.; Williams, David B.; Kamp, David W.

    2015-01-01

    Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer. PMID:26370974

  2. Mesothelial cells in tissue repair and fibrosis.

    PubMed

    Mutsaers, Steven E; Birnie, Kimberly; Lansley, Sally; Herrick, Sarah E; Lim, Chuan-Bian; Prêle, Cecilia M

    2015-01-01

    Mesothelial cells are fundamental to the maintenance of serosal integrity and homeostasis and play a critical role in normal serosal repair following injury. However, when normal repair mechanisms breakdown, mesothelial cells take on a profibrotic role, secreting inflammatory, and profibrotic mediators, differentiating and migrating into the injured tissues where they contribute to fibrogenesis. The development of new molecular and cell tracking techniques has made it possible to examine the origin of fibrotic cells within damaged tissues and to elucidate the roles they play in inflammation and fibrosis. In addition to secreting proinflammatory mediators and contributing to both coagulation and fibrinolysis, mesothelial cells undergo mesothelial-to-mesenchymal transition, a process analogous to epithelial-to-mesenchymal transition, and become fibrogenic cells. Fibrogenic mesothelial cells have now been identified in tissues where they have not previously been thought to occur, such as within the parenchyma of the fibrotic lung. These findings show a direct role for mesothelial cells in fibrogenesis and open therapeutic strategies to prevent or reverse the fibrotic process.

  3. Syndecans in heart fibrosis.

    PubMed

    Lunde, Ida G; Herum, Kate M; Carlson, Cathrine C; Christensen, Geir

    2016-09-01

    Heart disease is a deadly syndrome affecting millions worldwide. It reflects an unmet clinical need, and the disease mechanisms are poorly understood. Cardiac fibrosis is central to heart disease. The four-membered family of transmembrane proteoglycans, syndecan-1 to -4, is believed to regulate fibrosis. We review the current literature concerning syndecans in cardiac fibrosis. Syndecan expression is up-regulated in response to pro-inflammatory stimuli in various forms of heart disease with fibrosis. Mice lacking syndecan-1 and -4 show reduced activation of pro-fibrotic signaling and increased cardiac rupture upon infarction indicating an important role for these molecules. Whereas the short cytoplasmic tail of syndecans regulates signaling, their extracellular part, substituted with heparan sulfate glycosaminoglycan chains, binds a plethora of extracellular matrix (ECM) molecules involved in fibrosis, e.g., collagens, growth factors, cytokines, and immune cell adhesion proteins. Full-length syndecans induce pro-fibrotic signaling, increasing the expression of collagens, myofibroblast differentiation factors, ECM enzymes, growth factors, and immune cell adhesion molecules, thereby also increasing cardiac stiffness and preventing cardiac rupture. Upon pro-inflammatory stimuli, syndecan ectodomains are enzymatically released from heart cells (syndecan shedding). Shed ectodomains affect the expression of ECM molecules, promoting ECM degradation and cardiac rupture upon myocardial infarction. Blood levels of shed syndecan-1 and -4 ectodomains are associated with hospitalization, mortality, and heart remodeling in patients with heart failure. Improved understanding of syndecans and their modifying enzymes in cardiac fibrosis might contribute to the development of compounds with therapeutic potential, and enzymatically shed syndecan ectodomains might constitute a future prognostic tool for heart diseases with fibrosis. Graphical Abstract Graphical abstract summarizing

  4. Detection of Hepatic Fibrosis in Ex Vivo Liver Samples Using an Open-Photoacoustic-Cell Method: Feasibility Study

    NASA Astrophysics Data System (ADS)

    Stolik, S.; Fabila, D. A.; de la Rosa, J. M.; Escobedo, G.; Suárez-Álvarez, K.; Tomás, S. A.

    2015-09-01

    Design of non-invasive and accurate novel methods for liver fibrosis diagnosis has gained growing interest. Different stages of liver fibrosis were induced in Wistar rats by intraperitoneally administering different doses of carbon tetrachloride. The liver fibrosis degree was conventionally determined by means of histological examination. An open-photoacoustic-cell (OPC) technique for the assessment of liver fibrosis was developed and is reported here. The OPC technique is based on the fact that the thermal diffusivity can be accurately measured by photoacoustics taking into consideration the photoacoustic signal amplitude versus the modulation frequency. This technique measures directly the heat generated in a sample, due to non-radiative de-excitation processes, following the absorption of light. The thermal diffusivity was measured with a home-made open-photoacoustic-cell system that was specially designed to perform the measurement from ex vivo liver samples. The human liver tissue showed a significant increase in the thermal diffusivity depending on the fibrosis stage. Specifically, liver samples from rats exhibiting hepatic fibrosis showed a significantly higher value of the thermal diffusivity than for control animals.

  5. 22-Oxacalcitriol Prevents Progression of Peritoneal Fibrosis in a Mouse Model

    PubMed Central

    Hirose, Misaki; Nishino, Tomoya; Obata, Yoko; Nakazawa, Masayuki; Nakazawa, Yuka; Furusu, Akira; Abe, Katsushige; Miyazaki, Masanobu; Koji, Takehiko; Kohno, Shigeru

    2013-01-01

    ♦ Objective: Vitamin D plays an important role in calcium homeostasis and is used to treat secondary hyperparathyroidism among dialysis patients. The biologic activity of vitamin D and its analogs is mediated by vitamin D receptor (VDR), which is distributed widely throughout the body. Recent papers have revealed that low vitamin D levels are correlated with severe fibrosis in chronic diseases, including cystic fibrosis and hepatitis. The aim of the present study was to evaluate the protective effects of vitamin D against the progression of peritoneal fibrosis. ♦ Methods: Peritoneal fibrosis was induced by injection of chlorhexidine gluconate (CG) into the peritoneal cavity of mice every other day for 3 weeks. An analog of vitamin D, 22-oxacalcitriol (OCT), was administered subcutaneously daily from initiation of the CG injections. The peritoneal tissue was excised at 3 weeks. Changes in morphology were assessed by hematoxylin and eosin staining. Expression of VDR, alpha smooth muscle actin (as a marker of myofibroblasts), type III collagen, transforming growth factor β(TGF-β), phosphorylated Smad2/3, F4/80 (as a marker of macrophages), and monocyte chemoattractant protein-1 (MCP-1) was examined by immunohistochemistry. Southwestern histochemistry was used to detect activated nuclear factor κB (NF-κB). ♦ Results: In the CG-injected mice, immunohistochemical analysis revealed expression of VDR in mesothelial cells, myofibroblasts, and macrophages in the thickened submesothelial zone. Treatment with OCT significantly prevented peritoneal fibrosis and reduced the accumulation of type III collagen in CG-treated mice. Among the markers of fibrosis, the numbers of myofibroblasts, cells positive for TGF-β, and cells positive for phosphorylated Smad2/3 were significantly decreased in the OCT-treated group compared with the vehicle-treated group. Furthermore, OCT suppressed inflammatory mediators of fibrosis, as shown by the reduced numbers of activated NF

  6. Cystic fibrosis epithelial cells are primed for apoptosis as a result of increased Fas (CD95).

    PubMed

    Chen, Qiwei; Pandi, Sudha Priya Soundara; Kerrigan, Lauren; McElvaney, Noel G; Greene, Catherine M; Elborn, J Stuart; Taggart, Clifford C; Weldon, Sinéad

    2018-02-24

    Previous work suggests that apoptosis is dysfunctional in cystic fibrosis (CF) airways with conflicting results. We evaluated the relationship between dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) and apoptosis in CF airway epithelial cells. Apoptosis and associated caspase activity were analysed in non-CF and CF tracheal and bronchial epithelial cell lines. Basal levels of apoptosis and activity of caspase-3 and caspase-8 were significantly increased in CF epithelial cells compared to controls, suggesting involvement of extrinsic apoptosis signalling, which is mediated by the activation of death receptors, such as Fas (CD95). Increased levels of Fas were observed in CF epithelial cells and bronchial brushings from CF patients compared to non-CF controls. Neutralisation of Fas significantly inhibited caspase-3 activity in CF epithelial cells compared to untreated cells. In addition, activation of Fas significantly increased caspase-3 activity and apoptosis in CF epithelial cells compared to control cells. Overall, these results suggest that CF airway epithelial cells are more sensitive to apoptosis via increased levels of Fas and subsequent activation of the Fas death receptor pathway, which may be associated with dysfunctional CFTR. Copyright © 2018 European Cystic Fibrosis Society. All rights reserved.

  7. Silent information regulator 1 (SIRT1) ameliorates liver fibrosis via promoting activated stellate cell apoptosis and reversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yuting, E-mail: wuyuting1302@sina.com; Liu, Xuejiao; Zhou, Qun

    SIRT1 (silent information regulator 1), a conserved NAD +-dependent histone deacetylase, is closely related with various biological processes. Moreover, the important role of SIRT1 in alcoholic liver disease, nonalcoholic fatty liver and HCC had been widely reported. Recently, a novel role of SIRT1 was uncovered in organ fibrosis diseases. Here, we investigated the inhibitory effect of SIRT1 in liver fibrogenesis. SIRT1 protein was dramatically decreased in CCl4-treated mice livers. Stimulation of LX-2 cells with TGF-β1 also resulted in a significant suppression of SIRT1 protein. Nevertheless, TGF-β1-induced LX-2 cell activation was inhibited by SIRT1 plasmid, and this was accompanied by up-regulationmore » of cell apoptosis-related proteins. Overexpression of SIRT1 also attenuated TGF-β1-induced expression of myofibroblast markers α-SMA and COL1a. However, the important characteristic of the recovery of liver fibrosis is not only the apoptosis of activated stellate cells but also the reversal of the myofibroblast-like phenotype to a quiescent-like phenotype. Restoration of SIRT1 protein was observed in the in vivo spontaneously liver fibrosis reversion model and in vitro MDI (isobutylmethylxanthine, dexamethasone, and insulin)-induced reversed stellate cells, and forced expression of SIRT1 also promoted the reversal of activated stellate cells. Furthermore, lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) was increased in liver fibrosis. RNAi-mediated suppression of MALAT1 resulted in a decrease of myofibroblast markers and restoration of SIRT1 protein. These observations suggested that SIRT1 contributed to apoptosis and reversion of activated LX-2 cells and SIRT1 might be regulated by MALAT1 in liver fibrosis. Therefore, SIRT1 could be considered as a valuable therapeutic target for translational studies of liver fibrosis. - Highlights: • This is the first report of SIRT1 expression and function in liver fibrogenesis and reversion.

  8. United Kingdom immune thrombocytopenia registry: retrospective evaluation of bone marrow fibrosis in adult patients with primary immune thrombocytopenia and correlation with clinical findings.

    PubMed

    Rizvi, Hasan; Butler, Tom; Calaminici, Mariarita; Doobaree, Indraraj U; Nandigam, Raghava C; Bennett, Dimitri; Provan, Drew; Newland, Adrian C

    2015-05-01

    Fibrosis has been reported in some patients with immune thrombocytopenia (ITP) treated with thrombopoietin receptor agonists (TPO-RA). However, fibrosis has also been reported in patients with various stages of ITP, who were TPO-RA treatment-naïve. In our study, we looked for fibrosis in bone marrow trephine biopsies taken at initial diagnosis from 32 adult patients with ITP. Ten of the 32 evaluated samples (31·25%) showed increased reticulin (Grade 1-2 on Bauermeister scale and Grade 0-1 on the European Consensus scale), which showed a positive correlation with ethnicity (0·3%) but did not correlate with disease severity, any clinical features or co-morbidities. © 2015 John Wiley & Sons Ltd.

  9. MiR-29a Assists in Preventing the Activation of Human Stellate Cells and Promotes Recovery From Liver Fibrosis in Mice.

    PubMed

    Matsumoto, Yoshinari; Itami, Saori; Kuroda, Masahiko; Yoshizato, Katsutoshi; Kawada, Norifumi; Murakami, Yoshiki

    2016-10-01

    The microRNA-29 (miR-29) family is known to suppress the activation of hepatic stellate cells (HSCs) and reversibly control liver fibrosis; however, the mechanism of how miR-29a controls liver fibrosis remains largely unknown. This study was conducted to clarify the mechanism of anti-fibrotic effect of miR-29a and to explore if miR-29a is a promising candidate for nucleic acid medicine against liver fibrosis. Two liver fibrosis murine models (carbon tetrachloride or thioacetamide) were used. MiR-29a mixed with atelocollagen was systemically administered. Hepatic fibrosis was evaluated by histological analysis and the expression levels of fibrosis-related genes. We observed that miR-29a treatment dramatically accelerated the reversion of liver fibrosis in vivo. Additionally, miR-29a regulated the mRNA expression of collagen type I alpha 1 (COL1A1) and platelet-derived growth factor C (PDGFC). We also noted that miR-29a significantly suppressed COL1A1 mRNA expression and cell viability and significantly increased caspase-9 activity (P < 0.05) in LX-2 cells. Pretreatment of miR-29a inhibited activation of LX-2 cell by transforming growth factor beta treatment. MiR-29a exhibited anti-fibrotic effect without cell toxicity in vivo and directly suppressed the expression of PDGF-related genes as well as COL1A1 and induced apoptosis of LX-2 cells. MiR-29a is a promising nucleic acid inhibitor to target liver fibrosis.

  10. Lung Ultrasonography in Patients With Idiopathic Pulmonary Fibrosis: Evaluation of a Simplified Protocol With High-Resolution Computed Tomographic Correlation.

    PubMed

    Vassalou, Evangelia E; Raissaki, Maria; Magkanas, Eleftherios; Antoniou, Katerina M; Karantanas, Apostolos H

    2018-03-01

    To compare a simplified ultrasonographic (US) protocol in 2 patient positions with the same-positioned comprehensive US assessments and high-resolution computed tomographic (CT) findings in patients with idiopathic pulmonary fibrosis. Twenty-five consecutive patients with idiopathic pulmonary fibrosis were prospectively enrolled and examined in 2 sessions. During session 1, patients were examined with a US protocol including 56 lung intercostal spaces in supine/sitting (supine/sitting comprehensive protocol) and lateral decubitus (decubitus comprehensive protocol) positions. During session 2, patients were evaluated with a 16-intercostal space US protocol in sitting (sitting simplified protocol) and left/right decubitus (decubitus simplified protocol) positions. The 16 intercostal spaces were chosen according to the prevalence of idiopathic pulmonary fibrosis-related changes on high-resolution CT. The sum of B-lines counted in each intercostal space formed the US scores for all 4 US protocols: supine/sitting and decubitus comprehensive US scores and sitting and decubitus simplified US scores. High-resolution CT-related Warrick scores (J Rheumatol 1991; 18:1520-1528) were compared to US scores. The duration of each protocol was recorded. A significant correlation was found between all US scores and Warrick scores and between simplified and corresponding comprehensive scores (P < .0001). Decubitus simplified US scores showed a slightly higher correlation with Warrick scores compared to sitting simplified US scores. Mean durations of decubitus and sitting simplified protocols were 4.76 and 6.20 minutes, respectively (P < .005). Simplified 16-intercostal space protocols correlated with comprehensive protocols and high-resolution CT findings in patients with idiopathic pulmonary fibrosis. The 16-intercostal space simplified protocol in the lateral decubitus position correlated better with high-resolution CT findings and was less time-consuming compared to the

  11. Preconception risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease.

    PubMed

    Hussein, Norita; Weng, Stephen F; Kai, Joe; Kleijnen, Jos; Qureshi, Nadeem

    2015-08-12

    Globally, about five per cent of children are born with congenital or genetic disorders. The most common autosomal recessive conditions are thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease, with higher carrier rates in specific patient populations. Identifying and counselling couples at genetic risk of the conditions before pregnancy enables them to make fully informed reproductive decisions, with some of these choices not being available if genetic counselling is only offered in an antenatal setting. To assess the effectiveness of systematic preconception genetic risk assessment to improve reproductive outcomes in women and their partners who are identified as carriers of thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease in healthcare settings when compared to usual care. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Trials Registers. In addition, we searched for all relevant trials from 1970 (or the date at which the database was first available if after 1970) to date using electronic databases (MEDLINE, Embase, CINAHL, PsycINFO), clinical trial databases (National Institutes of Health, Clinical Trials Search portal of the World Health Organization, metaRegister of controlled clinical trials), and hand searching of key journals and conference abstract books from 1998 to date (European Journal of Human Genetics, Genetics in Medicine, Journal of Community Genetics). We also searched the reference lists of relevant articles, reviews and guidelines and also contacted subject experts in the field to request any unpublished or other published trials.Date of latest search of the registers: 25 June 2015.Date of latest search of all other sources: 10 December 2014. Any randomised or quasi-randomised control trials (published or unpublished) comparing reproductive outcomes of systematic preconception genetic risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease

  12. Preconception risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease.

    PubMed

    Hussein, Norita; Weng, Stephen F; Kai, Joe; Kleijnen, Jos; Qureshi, Nadeem

    2018-03-14

    Globally, about five per cent of children are born with congenital or genetic disorders. The most common autosomal recessive conditions are thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease, with higher carrier rates in specific patient populations. Identifying and counselling couples at genetic risk of the conditions before pregnancy enables them to make fully informed reproductive decisions, with some of these choices not being available if genetic counselling is only offered in an antenatal setting. This is an update of a previously published review. To assess the effectiveness of systematic preconception genetic risk assessment to improve reproductive outcomes in women and their partners who are identified as carriers of thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease in healthcare settings when compared to usual care. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Trials Registers. In addition, we searched for all relevant trials from 1970 (or the date at which the database was first available if after 1970) to date using electronic databases (MEDLINE, Embase, CINAHL, PsycINFO), clinical trial databases (National Institutes of Health, Clinical Trials Search portal of the World Health Organization, metaRegister of controlled clinical trials), and hand searching of key journals and conference abstract books from 1998 to date (European Journal of Human Genetics, Genetics in Medicine, Journal of Community Genetics). We also searched the reference lists of relevant articles, reviews and guidelines and also contacted subject experts in the field to request any unpublished or other published trials.Date of latest search of the registers: 20 June 2017.Date of latest search of all other sources: 16 November 2017. Any randomised or quasi-randomised controlled trials (published or unpublished) comparing reproductive outcomes of systematic preconception genetic risk assessment for thalassaemia, sickle

  13. Glial Fibrillary Acidic Protein (GFAP) as a Mesenchymal marker of Early Hepatic Stellate Cells Activation in Liver Fibrosis in Chronic Hepatitis C Infection

    PubMed Central

    Hassan, Sobia; Syed, Serajuddaula; Kehar, Shahnaz Imdad

    2014-01-01

    Objective: This study aims to determine expression of Glial Fibrillary Acidic Protein and of Alpha Smooth Muscle Actin (α-SMA) in hepatic stellate cells of CHC cases and their association with stage of fibrosis. Methods: The study was conducted at Ziauddin University, Clifton Campus during the year 2010-2012. Sixty Chronic Hepatitis C cases were immmunostained using anti α-SMA antibody and anti-GFAP antibody. Semi quantitative scoring in pericentral, periportal and perisinusoidal area of each case was done to assess immunoexpression of each marker. Results : Immunoexpression of GFAP showed significant association with α-SMA. GFAP expression was inversely correlated with progression of fibrosis. Conclusion : GFAP could represent a useful marker for early hepatic stellate cells activation. Follow up biopsies showing decline in GFAP levels may help identify the target group requiring aggressive therapy. PMID:25225520

  14. Mesenchymal Stromal Cells Engineered to Produce IGF-I by Recombinant Adenovirus Ameliorate Liver Fibrosis in Mice

    PubMed Central

    Fiore, Esteban J.; Bayo, Juan M.; Garcia, Mariana G.; Malvicini, Mariana; Lloyd, Rodrigo; Piccioni, Flavia; Rizzo, Manglio; Peixoto, Estanislao; Sola, M. Beatriz; Atorrasagasti, Catalina; Alaniz, Laura; Camilletti, María A.; Enguita, Mónica; Prieto, Jesús; Aquino, Jorge B.

    2015-01-01

    Liver cirrhosis involves chronic wound healing and fibrotic processes. Mesenchymal stromal cells (MSCs) are multipotent adult progenitor cells that are used as vehicles of therapeutic genes. Insulin growth factor like-I (IGF-I) was shown to counteract liver fibrosis. We aimed at analyzing the effect of applying IGF-I overexpressing mouse bone marrow-derived MSCs on hepatic fibrosis. Fibrosis was induced by chronic thioacetamide application or bile duct ligation. MSCs engineered to produce green fluorescent protein (GFP) (AdGFP-MSCs) or IGF-I (AdIGF-I-MSCs) were applied systemically, and changes in collagen deposition and in the expression of key pro-fibrogenic and pro-regenerative genes/proteins were assessed. In addition, immunogenicity of transduced cells was analyzed. Liver fibrosis was further ameliorated after a single-dose application of AdIGF-I-MSCs when compared with AdGFP-MSCs and/or recombinant IGF-I treatments. Interestingly, an early and transitory upregulation in IGF-I and hepatocyte growth factor (HGF) mRNA expression was found in the liver of MSC-treated animals, which was more pronounced in AdIGF-I-MSCs condition. A reduction in hepatic stellate cell activation status was found after incubation with MSCs conditioned media. In addition, the AdIGF-I-MSCs cell-free supernatant induced the expression of IGF-I and HGF in primary cultured hepatocytes. From day 1 after transplantation, the proliferation marker proliferating cell nuclear antigen was upregulated in the liver of AdIGF-I-MSCs group, mainly in hepatocytes. MSCs were in vivo traced till day 14 after injection. In addition, multiple doses of Ad-IGF-I-MSCs likely suppressed antiviral immune response and it further reduced collagen deposition. Our results uncover early events that are likely involved in the anti-fibrogenic effect of genetically modified MSCs and overall would support the use of AdIGF-I-MSCs in treatment of liver fibrosis. PMID:25315017

  15. Enhancement of CD147 on M1 macrophages induces differentiation of Th17 cells in the lung interstitial fibrosis.

    PubMed

    Geng, Jie-jie; Zhang, Kui; Chen, Li-na; Miao, Jin-lin; Yao, Meng; Ren, Ying; Fu, Zhi-guang; Chen, Zhi-nan; Zhu, Ping

    2014-09-01

    Lung interstitial fibrosis is a chronic lung disease, and few effective therapies are available to halt or reverse the progression of the disease. In murine and human lung fibrosis, the expression of CD147 is increased. However, the role of CD147 in lung fibrosis has not been identified, and it remains to be determined whether lung fibrosis would be improved by decreasing the expression of CD147. A murine bleomycin-induced lung interstitial fibrosis model was used in the experiments, and HAb18 mAbs and CsA were administered during the induction of lung fibrosis. In our study, we found that the HAb18 mAbs markedly reduced the collagen score and down-regulated M1 macrophages and Th17 cells. In vitro, flow cytometry analysis showed that M1 macrophages induced higher Th17 differentiation than M2 macrophages. After treatment with HAb18 mAbs or after reducing the expression of CD147 by lentivirus interference in M1 macrophages, the level of Th17 cells were significantly inhibited. In conclusion, HAb18 mAbs or CsA treatment ameliorates lung interstitial fibrosis. CD147 promoted M1 macrophage and induced the differentiation of Th17 cells in lung interstitial fibrosis, perhaps by regulating some cytokines such as IL-6, IL-1β, IL-12 and IL-23. These results indicated that CD147 may play an important role in the development of lung interstitial fibrosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. [Notch signaling pathway participates in the differentiation of hepatic progenitor cells into bile duct epithelial cells and progression of hepatic fibrosis in cholestatic liver fibrosis rat].

    PubMed

    Mu, Y P; Zhang, X; Xu, Y; Fan, W W; Li, X W; Chen, J M; Chen, G F; Liu, P

    2017-06-08

    Objective: To investigate differentiation direction of hepatic progenitor cells (HPCs) in cholestatic liver fibrosis (CLF), and the role of Notch signaling pathway in the differentiation of HPCs. Methods: A CLF rat model was established by bile duct ligation (BDL) followed by monitoring changes of Notch signal pathway and the cellular origin of proliferating cholangiocytes. After intraperitoneal injection of DAPT (a Notch signaling inhibitor) after bile duct ligation, the progress of liver fibrosis and the proliferation of cholangiocytes after inhibition of the Notch pathway were analyzed. Results: Data showed that bile duct proliferation gradually increased along with inflammatory cell infiltration and proliferating bile duct cells surrounded by abundant collagen in the BDL group. Immunostaining confirmed markedly increased expression of CK19, OV6, Sox9 and EpCAM. In addition, RT-PCR results showed that Notch signaling pathway was activated significantly. Once the Notch signaling pathway was inhibited by DAPT, bile duct proliferation markedly suppressed along with significantly decreased the mRNA expression of CK19, OV6, Sox9 and EpCAM, compared with BDL group [(10.2±0.7) vs . (22.3±0.8), (7.6±1.5) vs . (18.1±3.7), (1.4±0.4) vs . (4.1±1.1), (1.3±0.3) vs . (5.0±1.4), respectively, P <0.01]. Moreover, liver fibrosis was also reduced significantly. Conclusion: Notch signaling activation is required for HPCs differentiation into cholangiocytes in CLF and inhibition of the Notch signaling pathway may offer a therapeutic option for treating CLF.

  17. Competitive inhibition of leptin signaling results in amelioration of liver fibrosis through modulation of stellate cell function.

    PubMed

    Elinav, Eran; Ali, Mohammad; Bruck, Rafi; Brazowski, Eli; Phillips, Adam; Shapira, Yami; Katz, Meirav; Solomon, Gila; Halpern, Zamir; Gertler, Arieh

    2009-01-01

    Leptin signaling is involved in T-cell polarization and is required for profibrotic function of hepatic stellate cells (HSCs). Leptin-deficient ob/ob mice do not develop liver fibrosis despite the presence of severe long-standing steatohepatitis. Here, we blocked leptin signaling with our recently generated mouse leptin antagonist (MLA), and examined the effects on chronic liver fibrosis in vivo using the chronic thioacetamide (TAA) fibrosis model, and in vitro using freshly-isolated primary HSCs. In the chronic TAA fibrosis model, leptin administration was associated with significantly enhanced liver disease and a 100% 5-week to 8-week mortality rate, while administration or coadministration of MLA markedly improved survival, attenuated liver fibrosis, and reduced interferon gamma (IFN-gamma) levels. No significant changes in weight, serum cholesterol, or triglycerides were noted. In vitro administration of rat leptin antagonist (RLA), either alone or with leptin, to rat primary HSCs reduced leptin-stimulated effects such as increased expression of alpha-smooth muscle actin (alpha-SMA), and activation of alpha1 procollagen promoter. Inhibition of leptin-enhanced hepatic fibrosis may hold promise as a future antifibrotic therapeutic modality.

  18. Chloride and potassium channels in cystic fibrosis airway epithelia

    NASA Astrophysics Data System (ADS)

    Welsh, Michael J.; Liedtke, Carole M.

    1986-07-01

    Cystic fibrosis, the most common lethal genetic disease in Caucasians, is characterized by a decreased permeability in sweat gland duct and airway epithelia. In sweat duct epithelium, a decreased Cl- permeability accounts for the abnormally increased salt content of sweat1. In airway epithelia a decreased Cl- permeability, and possibly increased sodium absorption, may account for the abnormal respiratory tract fluid2,3. The Cl- impermeability has been localized to the apical membrane of cystic fibrosis airway epithelial cells4. The finding that hormonally regulated Cl- channels make the apical membrane Cl- permeable in normal airway epithelial cells5 suggested abnormal Cl- channel function in cystic fibrosis. Here we report that excised, cell-free patches of membrane from cystic fibrosis epithelial cells contain Cl- channels that have the same conductive properties as Cl- channels from normal cells. However, Cl- channels from cystic fibrosis cells did not open when they were attached to the cell. These findings suggest defective regulation of Cl- channels in cystic fibrosis epithelia; to begin to address this issue, we performed two studies. First, we found that isoprenaline, which stimulates Cl- secretion, increases cellular levels of cyclic AMP in a similar manner in cystic fibrosis and non-cystic fibrosis epithelial cells. Second, we show that adrenergic agonists open calcium-activated potassium channels, indirectly suggesting that calcium-dependent stimulus-response coupling is intact in cystic fibrosis. These data suggest defective regulation of Cl- channels at a site distal to cAMP accumulation.

  19. Utility of texture analysis for quantifying hepatic fibrosis on proton density MRI.

    PubMed

    Yu, HeiShun; Buch, Karen; Li, Baojun; O'Brien, Michael; Soto, Jorge; Jara, Hernan; Anderson, Stephan W

    2015-11-01

    To evaluate the potential utility of texture analysis of proton density maps for quantifying hepatic fibrosis in a murine model of hepatic fibrosis. Following Institutional Animal Care and Use Committee (IACUC) approval, a dietary model of hepatic fibrosis was used and 15 ex vivo murine liver tissues were examined. All images were acquired using a 30 mm bore 11.7T magnetic resonance imaging (MRI) scanner with a multiecho spin-echo sequence. A texture analysis was employed extracting multiple texture features including histogram-based, gray-level co-occurrence matrix-based (GLCM), gray-level run-length-based features (GLRL), gray level gradient matrix (GLGM), and Laws' features. Texture features were correlated with histopathologic and digital image analysis of hepatic fibrosis. Histogram features demonstrated very weak to moderate correlations (r = -0.29 to 0.51) with hepatic fibrosis. GLCM features correlation and contrast demonstrated moderate-to-strong correlations (r = -0.71 and 0.59, respectively) with hepatic fibrosis. Moderate correlations were seen between hepatic fibrosis and the GLRL feature short run low gray-level emphasis (SRLGE) (r = -0. 51). GLGM features demonstrate very weak to weak correlations with hepatic fibrosis (r = -0.27 to 0.09). Moderate correlations were seen between hepatic fibrosis and Laws' features L6 and L7 (r = 0.58). This study demonstrates the utility of texture analysis applied to proton density MRI in a murine liver fibrosis model and validates the potential utility of texture-based features for the noninvasive, quantitative assessment of hepatic fibrosis. © 2015 Wiley Periodicals, Inc.

  20. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers.

    PubMed

    Selman, Moisés; Pardo, Annie

    2006-06-01

    Idiopathic pulmonary fibrosis (IPF), a progressive and relentless lung scarring of unknown etiology, has been recognized as the most lethal interstitial lung disease. Despite the growing interest in IPF, the precise molecular mechanisms underlying the development of fibrosis and leading to the irreversible destruction of the lung are still unknown. Recently, it has been proposed that IPF, instead of being a chronic inflammatory disorder, results from multiple cycles of epithelial cell injury and activation. In turn, active alveolar epithelial cells provoke the migration, proliferation, and activation of mesenchymal cells with the formation of fibroblastic/myofibroblastic foci and the exaggerated accumulation of extracellular matrix, mirroring abnormal wound repair. In this article, some characteristics of the alveolar epithelium are briefly outlined, and the fibrogenic mechanisms specifically operated by active abnormal epithelial cells are examined.

  1. Atg5-mediated autophagy deficiency in proximal tubules promotes cell cycle G2/M arrest and renal fibrosis.

    PubMed

    Li, Huiyan; Peng, Xuan; Wang, Yating; Cao, Shirong; Xiong, Liping; Fan, Jinjin; Wang, Yihan; Zhuang, Shougang; Yu, Xueqing; Mao, Haiping

    2016-09-01

    Macroautophagy/autophagy protects against cellular stress. Renal sublethal injury-triggered tubular epithelial cell cycle arrest at G2/M is associated with interstitial fibrosis. However, the role of autophagy in renal fibrosis is elusive. Here, we hypothesized that autophagy activity in tubular epithelial cells is pivotal for inhibition of cell cycle G2/M arrest and subsequent fibrogenic response. In both renal epithelial cells stimulated by angiotensin II (AGT II) and the murine kidney after unilateral ureteral obstruction (UUO), we observed that occurrence of autophagy preceded increased production of COL1 (collagen, type I). Pharmacological enhancement of autophagy by rapamycin suppressed COL1 accumulation and renal fibrosis. In contrast, genetic ablation of autophagy by proximal tubular epithelial cell-specific deletion of Atg5, with reduction of the LC3-II protein level and degradation of SQSTM1/p62, showed marked cell cycle arrest at the G2/M phase, robust COL1 deposition, and severe interstitial fibrosis in a UUO model, as compared with wild-type mice. In vitro, AGT II exposure triggered autophagy preferentially in the G1/S phase, and increased COL1 expression in the G2/M phase in renal epithelial cells. Stimulation of Atg5-deficient primary proximal tubular cells with AGT II also resulted in elevated G2/M arrest and COL1 production. Pharmacological or genetic inhibition of autophagy increased AGT II-mediated G2/M arrest. Enhanced expression of ATG5, but not the autophagy-deficient ATG5 mutant K130R, rescued the G2/M arrest, suggesting the regulation of cell cycle progression by ATG5 is autophagy dependent. In conclusion, Atg5-mediated autophagy in proximal epithelial cells is a critical host-defense mechanism that prevents renal fibrosis by blocking G2/M arrest.

  2. Impaired Cell Volume Regulation in Intestinal Crypt Epithelia of Cystic Fibrosis Mice

    NASA Astrophysics Data System (ADS)

    Valverde, M. A.; O'Brien, J. A.; Sepulveda, F. V.; Ratcliff, R. A.; Evans, M. J.; Colledge, W. H.

    1995-09-01

    Cystic fibrosis is a disease characterized by abnormalities in the epithelia of the lungs, intestine, salivary and sweat glands, liver, and reproductive systems, often as a result of inadequate hydration of their secretions. The primary defect in cystic fibrosis is the altered activity of a cAMP-activated Cl^- channel, the cystic fibrosis transmembrane conductance regulator (CFTR) channel. However, it is not clear how a defect in the CFTR Cl^- channel function leads to the observed pathological changes. Although much is known about the structural properties and regulation of the CFTR, little is known of its relationship to cellular functions other than the cAMP-dependent Cl^- secretion. Here we report that cell volume regulation after hypotonic challenge is also defective in intestinal crypt epithelial cells isolated from CFTR -/- mutant mice. Moreover, the impairment of the regulatory volume decrease in CFTR -/- crypts appears to be related to the inability of a K^+ conductance to provide a pathway for the exit of this cation during the volume adjustments. This provides evidence that the lack of CFTR protein may have additional consequences for the cellular function other than the abnormal cAMP-mediated Cl^- secretion.

  3. Parabiosis and single-cell RNA sequencing reveal a limited contribution of monocytes to myofibroblasts in kidney fibrosis.

    PubMed

    Kramann, Rafael; Machado, Flavia; Wu, Haojia; Kusaba, Tetsuro; Hoeft, Konrad; Schneider, Rebekka K; Humphreys, Benjamin D

    2018-05-03

    Fibrosis is the common final pathway of virtually all chronic injury to the kidney. While it is well accepted that myofibroblasts are the scar-producing cells in the kidney, their cellular origin is still hotly debated. The relative contribution of proximal tubular epithelium and circulating cells, including mesenchymal stem cells, macrophages, and fibrocytes, to the myofibroblast pool remains highly controversial. Using inducible genetic fate tracing of proximal tubular epithelium, we confirm that the proximal tubule does not contribute to the myofibroblast pool. However, in parabiosis models in which one parabiont is genetically labeled and the other is unlabeled and undergoes kidney fibrosis, we demonstrate that a small fraction of genetically labeled renal myofibroblasts derive from the circulation. Single-cell RNA sequencing confirms this finding but indicates that these cells are circulating monocytes, express few extracellular matrix or other myofibroblast genes, and express many proinflammatory cytokines. We conclude that this small circulating myofibroblast progenitor population contributes to renal fibrosis by paracrine rather than direct mechanisms.

  4. Heterogenic transplantation of bone marrow-derived rhesus macaque mesenchymal stem cells ameliorates liver fibrosis induced by carbon tetrachloride in mouse

    PubMed Central

    Yan, Yaping; Wang, Junfeng; Duan, Yanchao; Li, Shanshan; Yan, Li; Wang, Hong; Chen, Bingbing; Sang, Xiongbo; Ji, Weizhi

    2018-01-01

    Liver fibrosis is a disease that causes high morbidity and has become a major health problem. Liver fibrosis can lead to the end stage of liver diseases (livercirrhosisand hepatocellularcarcinoma). Currently, liver transplantation is the only effective treatment for end-stage liver disease. However, the shortage of organ donors, high cost of medical surgery, immunological rejection and transplantation complications severely hamper liver transplantation therapy. Mesenchymal stem cells (MSCs) have been regarded as promising cells for clinical applications in stem cell therapy in the treatment of liver diseases due to their unique multipotent differentiation capacity, immunoregulation and paracrine effects. Although liver fibrosis improvements by MSC transplantation in preclinical experiments as well as clinical trials have been reported, the in vivo fate of MSCs after transportation and their therapeutic mechanisms remain unclear. In this present study, we isolated MSCs from the bone marrow of rhesus macaques. The cells exhibited typical MSC markers and could differentiate into chondrocytes, osteocytes, and adipocytes, which were not affected by labeling with enhanced green fluorescent protein (EGFP). The harvested MSCs respond to interferon-γ stimulation and have the ability to inhibit lymphocyte proliferation in vitro. EGFP-labeled MSCs (1 × 106 cells) were transplanted into mice with carbon tetrachloride-induced liver fibrosis via tail vein injection. The ability of the heterogenic MSC infusion to ameliorate liver fibrosis in mice was evaluated by a blood plasma chemistry index, pathological examination and liver fibrosis-associated gene expression. Additionally, a small number of MSCs that homed and engrafted in the mouse liver tissues were evaluated by immunofluorescence analysis. Our results showed that the transplantation of heterogenic MSCs derived from monkey bone marrow can be used to treat liver fibrosis in the mouse model and that the paracrine

  5. Intestinal decontamination inhibits TLR4 dependent fibronectin mediated crosstalk between stellate cells and endothelial cells in liver fibrosis in mice

    PubMed Central

    Zhu, Qiang; Zou, Li; Jagavelu, Kumaravelu; Simonetto, Douglas A.; Huebert, Robert C.; Jiang, Zhi-Dong; DuPont, Herbert L.; Shah, Vijay H.

    2012-01-01

    Background/Aims Liver fibrosis is associated with angiogenesis and leads to portal hypertension. Certain antibiotics reduce complications of liver failure in humans, however, effect of antibiotics on the pathologic alterations of the disease are not fully understood. The aim of this study was to test whether the non-absorbable antibiotic rifaximin could attenuate fibrosis progression and portal hypertension in vivo, and explore potential mechanisms in vitro. Methods Effect of rifaximin on portal pressure, fibrosis, and angiogenesis was examined in wild type and toll like receptor 4 (TLR4) mutant mice after bile duct ligation (BDL). In vitro studies were carried out to evaluate the effect of the bacterial product and TLR agonist, lipopolysaccharide (LPS) on paracrine interactions between hepatic stellate cells (HSC) and liver endothelial cells (LEC) that lead to fibrosis and portal hypertension. Results Portal pressure, fibrosis, and angiogenesis were significantly lower in BDL mice receiving rifaximin compared to BDL mice receiving vehicle. Studies in TLR4 mutant mice confirmed that the effect of rifaximin was dependent on LPS/TLR4 pathway. Fibronectin (FN) was increased in BDL liver and was reduced by rifaximin administration and thus was explored further in vitro as a potential mediator of paracrine interactions of HSC and LEC. In vitro, LPS promoted FN production from HSC. Furthermore, HSC-derived FN promoted LEC migration and angiogenesis. Conclusion These studies expand our understanding of the relationship of intestinal microbiota with fibrosis development by identifying FN as a TLR4 dependent mediator of the matrix and vascular changes that characterize cirrhosis. PMID:22173161

  6. Schizandrin inhibits fibrosis and epithelial-mesenchymal transition in transforming growth factor-β1-stimulated AML12 cells.

    PubMed

    Park, Ji-hyun; Yoon, Jaewoo

    2015-04-01

    The transforming growth factor (TGF)-β1 plays a crucial role in the induction of the epithelial-to-mesenchymal transition (EMT) in hepatocytes, which contributes to the pathogenesis of liver fibrosis. The inhibition of the TGF-β1 cascade suppresses EMT and the resultant fibrosis. Schizandrin (Sch) has various therapeutic effects on a range of medical conditions such as anti-asthmatic, anti-cancer, and anti-inflammatory effects. However, the effect of Sch on TGF-β1-stimulated hepatic fibrosis and EMT is still unknown. In the present investigation, we evaluated the anti-fibrotic and anti-EMT properties of Sch and its underlying mechanisms in murine hepatocyte AML12 cells. Overall, we found that Sch inhibited the pro-fibrotic activity of TGF-β1 in AML12 cells; thus, it suppressed the accumulation of ECM proteins. Also, Sch inhibited the EMT as assessed by reduced expression of vimentin and fibronectin, and increased E-cadherin and ZO-1 in TGF-β1 induced AML12 cells. Sch reduced TGF-β1-mediated phosphorylation of Smad2/3 and Smad3/4 DNA binding activity. On the other hand, Sch reduced TGF-β1-induced ERK1/2 and PI3K/Akt phosphorylation in the non-Smad pathway. In conclusion, Sch can antagonize TGF-β1-mediated fibrosis and EMT in AML12 cells. Sch may possess potential as an anti-fibrotic molecule in the treatment of liver fibrosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Hepatitis C Genotypes in Libya: Correlation with Patients' Characteristics, Level of Viremia, and Degree of Liver Fibrosis.

    PubMed

    Elzuoki, Abdel-Naser; Elzouki, Islam; Albarassi, Sabah; Gammo, Mohamed; Burwaiss, Abdalla

    2017-09-01

    Our study sought to determine the distribution of hepatitis C virus (HCV)-genotypes among patients attending two tertiary care hospitals in Benghazi and Tripoli, Libya, and correlate this with patient's characteristics, viral load, and degree of fibrosis. We conducted a retrospective study of 286 HCV-RNA positive Libyan patients referred from different health care facilities in east and west Libya for specific HCV treatment. HCV genotyping was carried out by gene amplification. Liver histology was graded by Metavir score according to the stage of fibrosis. HCV genotypes 1, 2, 3, and 4 were found in 24.1%, 10.8%, 3.4%, and 61.5% of the patients, respectively. Genotype 4 was detected more frequently in patients from east Libya (Benghazi) compared to west Libya (Tripoli) (75.9% vs. 41.6%, p = 0.245). Genotype 1 was more frequent in patients from west Libya compared to east Libya (34.1% vs. 16.8%, p = 0.657). There was a significant correlation between HCV genotype distribution and viral load. Patients with genotype 4 exhibited a higher degree of liver fibrosis ( p < 0.001). HCV genotype 4 is the predominant genotype in Libya followed by genotype 1. However, as we go from the east to the west of the country, genotype 1 increases. Genotype 4 was associated with higher level of viremia and higher stage of liver fibrosis. It is important to note that both genotypes 1 and 4 are associated with a poor response to pegylated interferon and ribavirin combination therapy. The findings emphasize the need to develop improved strategies in Libya for the successful treatment of HCV infection with novel newly available antiviral drugs.

  8. SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice.

    PubMed

    Li, Min; Hong, Wenxuan; Hao, Chenzhi; Li, Luyang; Wu, Dongmei; Shen, Aiguo; Lu, Jun; Zheng, Yuanlin; Li, Ping; Xu, Yong

    2018-01-01

    Hepatic stellate cells (HSCs) are a major source of fibrogenesis in the liver, contributing to cirrhosis. When activated, HSCs transdifferentiate into myofibroblasts and undergo profound functional alterations paralleling an overhaul of the transcriptome, the mechanism of which remains largely undefined. We investigated the involvement of the class III deacetylase sirtuin [silent information regulator 1 (SIRT1)] in HSC activation and liver fibrosis. SIRT1 levels were down-regulated in the livers in mouse models of liver fibrosis, in patients with cirrhosis, and in activated HSCs as opposed to quiescent HSCs. SIRT1 activation halted, whereas SIRT1 inhibition promoted, HSC transdifferentiation into myofibroblasts. Liver fibrosis was exacerbated in mice with HSC-specific deletion of SIRT1 [conditional knockout (cKO)], receiving CCl 4 (1 mg/kg) injection or subjected to bile duct ligation, compared to wild-type littermates. SIRT1 regulated peroxisome proliferator activated receptor γ (PPARγ) transcription by deacetylating enhancer of zeste homolog 2 (EZH2) in quiescent HSCs. Finally, EZH2 inhibition or PPARγ activation ameliorated fibrogenesis in cKO mice. In summary, our data suggest that SIRT1 plays an essential role guiding the transition of HSC phenotypes.-Li, M., Hong, W., Hao, C., Li, L., Wu, D., Shen, A., Lu, J., Zheng, Y., Li, P., Xu, Y. SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice. © FASEB.

  9. Curcumin attenuates angiogenesis in liver fibrosis and inhibits angiogenic properties of hepatic stellate cells

    PubMed Central

    Zhang, Feng; Zhang, Zili; Chen, Li; Kong, Desong; Zhang, Xiaoping; Lu, Chunfeng; Lu, Yin; Zheng, Shizhong

    2014-01-01

    Hepatic fibrosis is concomitant with sinusoidal pathological angiogenesis, which has been highlighted as novel therapeutic targets for the treatment of chronic liver disease. Our prior studies have demonstrated that curcumin has potent antifibrotic activity, but the mechanisms remain to be elucidated. The current work demonstrated that curcumin ameliorated fibrotic injury and sinusoidal angiogenesis in rat liver with fibrosis caused by carbon tetrachloride. Curcumin reduced the expression of a number of angiogenic markers in fibrotic liver. Experiments in vitro showed that the viability and vascularization of rat liver sinusoidal endothelial cells and rat aortic ring angiogenesis were not impaired by curcumin. These results indicated that hepatic stellate cells (HSCs) that are characterized as liver-specific pericytes could be potential target cells for curcumin. Further investigations showed that curcumin inhibited VEGF expression in HSCs associated with disrupting platelet-derived growth factor-β receptor (PDGF-βR)/ERK and mTOR pathways. HSC motility and vascularization were also suppressed by curcumin associated with blocking PDGF-βR/focal adhesion kinase/RhoA cascade. Gain- or loss-of-function analyses revealed that activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) was required for curcumin to inhibit angiogenic properties of HSCs. We concluded that curcumin attenuated sinusoidal angiogenesis in liver fibrosis possibly by targeting HSCs via a PPAR-γ activation-dependent mechanism. PPAR-γ could be a target molecule for reducing pathological angiogenesis during liver fibrosis. PMID:24779927

  10. Protein S is protective in pulmonary fibrosis.

    PubMed

    Urawa, M; Kobayashi, T; D'Alessandro-Gabazza, C N; Fujimoto, H; Toda, M; Roeen, Z; Hinneh, J A; Yasuma, T; Takei, Y; Taguchi, O; Gabazza, E C

    2016-08-01

    Essentials Epithelial cell apoptosis is critical in the pathogenesis of idiopathic pulmonary fibrosis. Protein S, a circulating anticoagulant, inhibited apoptosis of lung epithelial cells. Overexpression of protein S in lung cells reduced bleomycin-induced pulmonary fibrosis. Intranasal therapy with exogenous protein S ameliorated bleomycin-induced pulmonary fibrosis. Background Pulmonary fibrosis is the terminal stage of interstitial lung diseases, some of them being incurable and of unknown etiology. Apoptosis plays a critical role in lung fibrogenesis. Protein S is a plasma anticoagulant with potent antiapoptotic activity. The role of protein S in pulmonary fibrosis is unknown. Objectives To evaluate the clinical relevance of protein S and its protective role in pulmonary fibrosis. Methods and Results The circulating level of protein S was measured in patients with pulmonary fibrosis and controls by the use of enzyme immunoassays. Pulmonary fibrosis was induced with bleomycin in transgenic mice overexpressing human protein S and wild-type mice, and exogenous protein S or vehicle was administered to wild-type mice; fibrosis was then compared in both models. Patients with pulmonary fibrosis had reduced circulating levels of protein S as compared with controls. Inflammatory changes, the levels of profibrotic cytokines, fibrosis score, hydroxyproline content in the lungs and oxygen desaturation were significantly reduced in protein S-transgenic mice as compared with wild-type mice. Wild-type mice treated with exogenous protein S showed significant decreases in the levels of inflammatory and profibrotic markers and fibrosis in the lungs as compared with untreated control mice. After bleomycin infusion, mice overexpressing human protein S showed significantly low caspase-3 activity, enhanced expression of antiapoptotic molecules and enhanced Akt and Axl kinase phosphorylation as compared with wild-type counterparts. Protein S also inhibited apoptosis of alveolar

  11. Mitochondrial catalase overexpressed transgenic mice are protected against lung fibrosis in part via preventing alveolar epithelial cell mitochondrial DNA damage.

    PubMed

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P; Morales-Nebreda, Luisa; Cheng, Yuan; Hogan, Erin; Yeldandi, Anjana; Chi, Monica; Piseaux, Raul; Ridge, Karen; Michael Hart, C; Chandel, Navdeep; Scott Budinger, G R; Kamp, David W

    2016-12-01

    Alveolar epithelial cell (AEC) injury and mitochondrial dysfunction are important in the development of lung fibrosis. Our group has shown that in the asbestos exposed lung, the generation of mitochondrial reactive oxygen species (ROS) in AEC mediate mitochondrial DNA (mtDNA) damage and apoptosis which are necessary for lung fibrosis. These data suggest that mitochondrial-targeted antioxidants should ameliorate asbestos-induced lung. To determine whether transgenic mice that express mitochondrial-targeted catalase (MCAT) have reduced lung fibrosis following exposure to asbestos or bleomycin and, if so, whether this occurs in association with reduced AEC mtDNA damage and apoptosis. Crocidolite asbestos (100µg/50µL), TiO 2 (negative control), bleomycin (0.025 units/50µL), or PBS was instilled intratracheally in 8-10 week-old wild-type (WT - C57Bl/6J) or MCAT mice. The lungs were harvested at 21d. Lung fibrosis was quantified by collagen levels (Sircol) and lung fibrosis scores. AEC apoptosis was assessed by cleaved caspase-3 (CC-3)/Surfactant protein C (SFTPC) immunohistochemistry (IHC) and semi-quantitative analysis. AEC (primary AT2 cells from WT and MCAT mice and MLE-12 cells) mtDNA damage was assessed by a quantitative PCR-based assay, apoptosis was assessed by DNA fragmentation, and ROS production was assessed by a Mito-Sox assay. Compared to WT, crocidolite-exposed MCAT mice exhibit reduced pulmonary fibrosis as measured by lung collagen levels and lung fibrosis score. The protective effects in MCAT mice were accompanied by reduced AEC mtDNA damage and apoptosis. Similar findings were noted following bleomycin exposure. Euk-134, a mitochondrial SOD/catalase mimetic, attenuated MLE-12 cell DNA damage and apoptosis. Finally, compared to WT, asbestos-induced MCAT AT2 cell ROS production was reduced. Our finding that MCAT mice have reduced pulmonary fibrosis, AEC mtDNA damage and apoptosis following exposure to asbestos or bleomycin suggests an important role

  12. Mitochondrial catalase overexpressed transgenic mice are protected against lung fibrosis in part via preventing alveolar epithelial cell mitochondrial DNA damage

    PubMed Central

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P.; Morales-Nebreda, Luisa; Cheng, Yuan; Hogan, Erin; Yeldandi, Anjana; Chi, Monica; Piseaux, Raul; Ridge, Karen; Hart, C. Michael; Chandel, Navdeep; Budinger, G.R. Scott; Kamp, David W.

    2018-01-01

    Rationale Alveolar epithelial cell (AEC) injury and mitochondrial dysfunction are important in the development of lung fibrosis. Our group has shown that in the asbestos exposed lung, the generation of mitochondrial reactive oxygen species (ROS) in AEC mediate mitochondrial DNA (mtDNA) damage and apoptosis which are necessary for lung fibrosis. These data suggest that mitochondrial-targeted antioxidants should ameliorate asbestos-induced lung. Objective To determine whether transgenic mice that express mitochondrial-targeted catalase (MCAT) have reduced lung fibrosis following exposure to asbestos or bleomycin and, if so, whether this occurs in association with reduced AEC mtDNA damage and apoptosis. Methods Crocidolite asbestos (100 μg/50 μL), TiO2 (negative control), bleomycin (0.025 units/50 μL), or PBS was instilled intratracheally in 8–10 week-old wild-type (WT - C57Bl/6 J) or MCAT mice. The lungs were harvested at 21 d. Lung fibrosis was quantified by collagen levels (Sircol) and lung fibrosis scores. AEC apoptosis was assessed by cleaved caspase-3 (CC-3)/Surfactant protein C (SFTPC) immunohistochemistry (IHC) and semi-quantitative analysis. AEC (primary AT2 cells from WT and MCAT mice and MLE-12 cells) mtDNA damage was assessed by a quantitative PCR-based assay, apoptosis was assessed by DNA fragmentation, and ROS production was assessed by a Mito-Sox assay. Results Compared to WT, crocidolite-exposed MCAT mice exhibit reduced pulmonary fibrosis as measured by lung collagen levels and lung fibrosis score. The protective effects in MCAT mice were accompanied by reduced AEC mtDNA damage and apoptosis. Similar findings were noted following bleomycin exposure. Euk-134, a mitochondrial SOD/catalase mimetic, attenuated MLE-12 cell DNA damage and apoptosis. Finally, compared to WT, asbestos-induced MCAT AT2 cell ROS production was reduced. Conclusions Our finding that MCAT mice have reduced pulmonary fibrosis, AEC mtDNA damage and apoptosis following exposure

  13. Decreased collagen types I and IV, laminin, CK-19 and α-SMA expression after bone marrow cell transplantation in rats with liver fibrosis.

    PubMed

    Carvalho, S N; Lira, D C; Oliveira, G P; Thole, A A; Stumbo, A C; Caetano, C E; Marques, R G; Carvalho, L

    2010-11-01

    Bone marrow cells have frequently been tested in animal models of liver fibrosis to assess their role in hepatic regeneration. The mononuclear fraction of bone marrow cells is of particular interest, as many studies show that these cells may be beneficial to treat hepatic fibrosis. In this study, we used the bile duct ligation model to induce hepatic fibrosis in an irreversible manner, and rats were treated with bone marrow mononuclear (BMMN) cells after fibrosis was established. Analysis of collagen types I and IV, laminin and α-SMA showed a decreased expression of these proteins in fibrotic livers after 7 days of BMMN cell injection. Moreover, cytokeratin-19 analysis showed a reduction in bile ducts in the BMMN cell-treated group. These results were accompanied by ameliorated levels of hepatic enzymes GPT (Glutamic-pyruvic transaminase), GOT (glutamic-oxaloacetic transaminase) and alkaline phosphatase (AP). Therefore, we showed that BMMN cells decrease hepatic fibrosis by significantly reducing myofibroblast numbers and through reduction of the collagen and laminin-rich extracellular matrix of fibrotic septa and hepatic sinusoids.

  14. MALDI imaging reveals NCOA7 as a potential biomarker in oral squamous cell carcinoma arising from oral submucous fibrosis.

    PubMed

    Xie, Xiaoyan; Jiang, Yuchen; Yuan, Yao; Wang, Peiqi; Li, Xinyi; Chen, Fangman; Sun, Chongkui; Zhao, Hang; Zeng, Xin; Jiang, Lu; Zhou, Yu; Dan, Hongxia; Feng, Mingye; Liu, Rui; Chen, Qianming

    2016-09-13

    Oral squamous cell carcinoma (OSCC) ranks among the most common cancer worldwide, and is associated with severe morbidity and high mortality. Oral submucous fibrosis (OSF), characterized by fibrosis of the mucosa of the upper digestive tract, is a pre-malignant lesion, but the molecular mechanisms underlying this malignant transformation remains to be elucidated. In this study, matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS)-based proteomic strategy was employed to profile the differentially expressed peptides/proteins between OSCC tissues and the corresponding adjacent non-cancerous OSF tissues. Sixty-five unique peptide peaks and nine proteins were identified with altered expression levels. Of them, expression of NCOA7 was found to be up-regulated in OSCC tissues by immunohistochemistry staining and western blotting, and correlated with a pan of clinicopathologic parameters, including lesion site, tumor differentiation status and lymph node metastasis. Further, we show that overexpression of NCOA7 promotes OSCC cell proliferation in either in vitro or in vivo models. Mechanistic study demonstrates that NCOA7 induces OSCC cell proliferation probably by activating aryl hydrocarbon receptor (AHR). The present study suggests that NCOA7 is a potential biomarker for early diagnosis of OSF malignant transformation, and leads to a better understanding of the molecular mechanisms responsible for OSCC development.

  15. Heparanase and macrophage interplay in the onset of liver fibrosis.

    PubMed

    Secchi, Maria Francesca; Crescenzi, Marika; Masola, Valentina; Russo, Francesco Paolo; Floreani, Annarosa; Onisto, Maurizio

    2017-11-02

    The heparan sulfate endoglycosidase heparanase (HPSE) is involved in tumor growth, chronic inflammation and fibrosis. Since a role for HPSE in chronic liver disease has not been demonstrated to date, the current study was aimed at investigating the involvement of HPSE in the pathogenesis of chronic liver injury. Herein, we revealed that HPSE expression increased in mouse livers after carbon tetrachloride (CCl 4 )-mediated chronic induction of fibrosis, but with a trend to decline during progression of the disease. In mouse fibrotic liver tissues HPSE immunostaining was restricted in necro-inflammatory areas, co-localizing with F4/80 macrophage marker and TNF-α. TNF-α treatment induced HPSE expression as well as HPSE secretion in U937 macrophages. Moreover, macrophage-secreted HPSE regulated the expression of α-SMA and fibronectin in hepatic stellate LX-2 cells. Finally, HPSE activity increased in the plasma of patients with liver fibrosis but it inversely correlated with liver stiffness. Our results suggest the involvement of HPSE in early phases of reaction to liver damage and inflammatory macrophages as an important source of HPSE. HPSE seems to play a key role in the macrophage-mediated activation of hepatic stellate cells (HSCs), thus suggesting that HPSE targeting could be a new therapeutic option in the treatment of liver fibrosis.

  16. Dysregulation of Galectin-3. Implications for Hermansky-Pudlak Syndrome Pulmonary Fibrosis

    PubMed Central

    Cullinane, Andrew R.; Yeager, Caroline; Dorward, Heidi; Carmona-Rivera, Carmelo; Wu, Hai Ping; Moss, Joel; O’Brien, Kevin J.; Nathan, Steven D.; Meyer, Keith C.; Rosas, Ivan O.; Helip-Wooley, Amanda; Huizing, Marjan; Gahl, William A.

    2014-01-01

    The etiology of Hermansky-Pudlak syndrome (HPS) pulmonary fibrosis (HPSPF), a progressive interstitial lung disease with high mortality, is unknown. Galectin-3 is a β-galactoside–binding lectin with profibrotic effects. The objective of this study was to investigate the involvement of galectin-3 in HPSPF. Galectin-3 was measured by ELISA, immunohistochemistry, and immunoblotting in human specimens from subjects with HPS and control subjects. Mechanisms of galectin-3 accumulation were studied by quantitative RT-PCR, Northern blot analysis, membrane biotinylation assays, and rescue of HPS1-deficient cells by transfection. Bronchoalveolar lavage galectin-3 concentrations were significantly higher in HPSPF compared with idiopathic pulmonary fibrosis or that from normal volunteers, and correlated with disease severity. Galectin-3 immunostaining was increased in HPSPF compared with idiopathic pulmonary fibrosis or normal lung tissue. Fibroblasts from subjects with HPS subtypes associated with pulmonary fibrosis had increased galectin-3 protein expression compared with cells from nonfibrotic HPS subtypes. Galectin-3 protein accumulation was associated with reduced Galectin-3 mRNA, normal Mucin 1 levels, and up-regulated microRNA-322 in HPSPF cells. Membrane biotinylation assays showed reduced galectin-3 and normal Mucin 1 expression at the plasma membrane in HPSPF cells compared with control cells, which suggests that galectin-3 is mistrafficked in these cells. Reconstitution of HPS1 cDNA into HPS1-deficient cells normalized galectin-3 protein and mRNA levels, as well as corrected galectin-3 trafficking to the membrane. Intracellular galectin-3 levels are regulated by HPS1 protein. Abnormal accumulation of galectin-3 may contribute to the pathogenesis of HPSPF. PMID:24134621

  17. Molecular diagnosis of cystic fibrosis.

    PubMed

    Shrimpton, Antony E

    2002-05-01

    A review of the current molecular diagnosis of cystic fibrosis including an introduction to cystic fibrosis, the gene function, the phenotypic variation, who should be screened for which mutation, newborn and couple screening, quality assurance, phenotype-genotype correlation, methods and method limitations, options, statements, recommendations, useful Websites and treatments.

  18. Correlations of Hepatic Hemodynamics, Liver Function, and Fibrosis Markers in Nonalcoholic Fatty Liver Disease: Comparison with Chronic Hepatitis Related to Hepatitis C Virus.

    PubMed

    Shigefuku, Ryuta; Takahashi, Hideaki; Nakano, Hiroyasu; Watanabe, Tsunamasa; Matsunaga, Kotaro; Matsumoto, Nobuyuki; Kato, Masaki; Morita, Ryo; Michikawa, Yousuke; Tamura, Tomohiro; Hiraishi, Tetsuya; Hattori, Nobuhiro; Noguchi, Yohei; Nakahara, Kazunari; Ikeda, Hiroki; Ishii, Toshiya; Okuse, Chiaki; Sase, Shigeru; Itoh, Fumio; Suzuki, Michihiro

    2016-09-14

    The progression of chronic liver disease differs by etiology. The aim of this study was to elucidate the difference in disease progression between chronic hepatitis C (CHC) and nonalcoholic fatty liver disease (NAFLD) by means of fibrosis markers, liver function, and hepatic tissue blood flow (TBF). Xenon computed tomography (Xe-CT) was performed in 139 patients with NAFLD and 152 patients with CHC (including liver cirrhosis (LC)). The cutoff values for fibrosis markers were compared between NAFLD and CHC, and correlations between hepatic TBF and liver function tests were examined at each fibrosis stage. The cutoff values for detection of the advanced fibrosis stage were lower in NAFLD than in CHC. Although portal venous TBF (PVTBF) correlated with liver function tests, PVTBF in initial LC caused by nonalcoholic steatohepatitis (NASH-LC) was significantly lower than that in hepatitis C virus (C-LC) (p = 0.014). Conversely, the liver function tests in NASH-LC were higher than those in C-LC (p < 0.05). It is important to recognize the difference between NAFLD and CHC. We concluded that changes in hepatic blood flow occurred during the earliest stage of hepatic fibrosis in patients with NAFLD; therefore, patients with NAFLD need to be followed carefully.

  19. Liver injury and fibrosis induced by dietary challenge in the Ossabaw miniature Swine.

    PubMed

    Liang, Tiebing; Alloosh, Mouhamad; Bell, Lauren N; Fullenkamp, Allison; Saxena, Romil; Van Alstine, William; Bybee, Phelan; Werling, Klára; Sturek, Michael; Chalasani, Naga; Masuoka, Howard C

    2015-01-01

    Ossabaw miniature swine when fed a diet high in fructose, saturated fat and cholesterol (NASH diet) develop metabolic syndrome and nonalcoholic steatohepatitis (NASH) characterized by liver injury and fibrosis. This study was conducted to further characterize the development of NASH in this large animal model. Ossabaw swine were fed standard chow (control group; n = 6) or NASH diet (n = 6) for 24 weeks. Blood and liver tissue were collected and liver histology were characterized at 0, 8, 16 and 24 weeks of dietary intervention. Hepatic apoptosis and lipid levels were assessed at week 24. The NASH diet group developed metabolic syndrome and progressive histologic features of NASH including: (a) hepatocyte ballooning at 8 weeks which progressed to extensive ballooning (>90% hepatocytes), (b) hepatic fibrosis at week 16, which progressed to moderate fibrosis, and (c) Kupffer cell accumulation with vacuolization at 8 weeks which progressed through week 24. The NASH diet group showed increased hepatocyte apoptosis that correlated with hepatic total and free cholesterol and free fatty acids, but not esterified cholesterol or triglycerides. This report further characterizes the progression of diet-induced NASH in the Ossabaw swine model. In Ossabaw swine fed the NASH diet: (a) hepatocyte injury and fibrosis can occur without macrovesicular steatosis or excess triglyceride accumulation; (b) hepatocyte ballooning generally precedes the development of fibrosis; (c) there is increased hepatocyte apoptosis, and it is correlated more significantly with hepatic free cholesterol than hepatic free fatty acids and had no correlation with hepatic triglycerides.

  20. Themes in fibrosis and gastrointestinal inflammation

    PubMed Central

    Lund, P. Kay

    2011-01-01

    Wound healing is an appropriate response to inflammation and tissue injury in the gastrointestinal tract. If wound healing responses are excessive, perpetuated, or prolonged, they lead to fibrosis, distortion of tissue architecture, and loss of function. This introductory editorial and the minireviews or reviews in this themes series highlight the diversity in severity and location of fibrosis in response to gastrointestinal inflammation. The multiplicity of cellular and molecular mediators and new players, including stem cells or extracellular matrix-producing cells derived from nonmesenchymal cell types, is reviewed. Comparisons of inflammation-induced fibrosis across organ systems and the need for integrated and systems-based molecular approaches, new imaging modalities, well-characterized animal models, cell culture models, and improved diagnostic or predictive markers are reviewed. To date, intestinal fibrosis has received much less attention than inflammation in terms of defining mechanisms and underlying causes. This themes series aims to illustrate the importance of research in this area in gastrointestinal health and disease. PMID:21415411

  1. Remodeling of the transverse tubular system after myocardial infarction in rabbit correlates with local fibrosis: A potential role of biomechanics.

    PubMed

    Seidel, T; Sankarankutty, A C; Sachse, F B

    2017-11-01

    The transverse tubular system (t-system) of ventricular cardiomyocytes is essential for efficient excitation-contraction coupling. In cardiac diseases, such as heart failure, remodeling of the t-system contributes to reduced cardiac contractility. However, mechanisms of t-system remodeling are incompletely understood. Prior studies suggested an association with altered cardiac biomechanics and gene expression in disease. Since fibrosis may alter tissue biomechanics, we investigated the local microscopic association of t-system remodeling with fibrosis in a rabbit model of myocardial infarction (MI). Biopsies were taken from the MI border zone of 6 infarcted hearts and from 6 control hearts. Using confocal microscopy and automated image analysis, we quantified t-system integrity (I TT ) and the local fraction of extracellular matrix (f ECM ). In control, f ECM was 18 ± 0.3%. I TT was high and homogeneous (0.07 ± 0.006), and did not correlate with f ECM (R 2  = 0.05 ± 0.02). The MI border zone exhibited increased f ECM within 3 mm from the infarct scar (30 ± 3.5%, p < 0.01 vs control), indicating fibrosis. Myocytes in the MI border zone exhibited significant t-system remodeling, with dilated, sheet-like components, resulting in low I TT (0.03 ± 0.008, p < 0.001 vs control). While both f ECM and t-system remodeling decreased with infarct distance, I TT correlated better with decreasing f ECM (R 2  = 0.44) than with infarct distance (R 2  = 0.24, p < 0.05). Our results show that t-system remodeling in the rabbit MI border zone resembles a phenotype previously described in human heart failure. T-system remodeling correlated with the amount of local fibrosis, which is known to stiffen cardiac tissue, but was not found in regions without fibrosis. Thus, locally altered tissue mechanics may contribute to t-system remodeling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The correlation between pulmonary fibrosis and methylation of peripheral Smad3 in cases of pigeon breeder's lung in a Chinese Uygur population.

    PubMed

    Wu, Chao; Ding, Wei; Li, Qifeng; Wang, Wenyi; Deng, Mingqin; Jin, Rong; Pang, Baosen; Yang, Xiaohong

    2017-06-27

    Smad3 is a key protein in the transforming growth factor-beta (TGF-β)/Smad signaling pathway, which is involved in fibrosis in many organs. We investigated the relationship between Smad3 gene methylation and pulmonary fibrosis in pigeon breeder's lung (PBL). Twenty Uygur PBL patients with pulmonary fibrosis in Kashi between October 2015 and March 2016 were enrolled. Twenty PBL-free pigeon breeders and 20 healthy non-pigeon breeders enrolled during the same period constituted the negative and normal control groups, respectively. Participants' data and peripheral blood samples were collected, and three Smad3 CpG loci were examined. Distributions of CpG_2 and CpG_4 methylation rates did not differ across groups, whereas distributions of CpG_3 methylation rates were significantly different among the three groups. The CpG_3 methylation rate was significantly lower in the patient group than in the negative control group. Smad3 mRNA expression was significantly higher in the patient group than in the negative control group but did not differ between the two control groups. TGF-βlevels were significantly higher in the patient group than in either control group (both P<0.01). Smad3 gene methylation and Smad3 mRNA expression were negatively correlated, with a correlation coefficient of -0.84. The number of pigeons bred during the preceding three months was positively correlated with Smad3 mRNA expression, with a correlation coefficient of 0.77. Smad3 gene hypomethylation might promote pulmonary fibrosis in Uygur PBL patients via increased Smad3 mRNA expression. Smad3 methylation, Smad3 mRNA expression and TGF-β level were correlated with the number of pigeons bred by patients.

  3. The Epidemiology and Management of Lung Diseases in Sickle Cell Disease: Lessons Learned from Acute and Chronic Lung Disease in Cystic Fibrosis.

    PubMed

    Willen, Shaina M; DeBaun, Michael R

    2018-06-01

    Although sickle cell disease and cystic fibrosis are two of the most common monogenic diseases presenting in childhood worldwide, cystic fibrosis and sickle cell disease enjoy vastly different funding and collaborative research efforts. Pulmonary complications in cystic fibrosis have well established guidelines and multidisciplinary involvement focusing on comorbidities, routine monitoring, infectious complications, nutrition, and treatment recommendations. These guidelines can provide a framework on which to build knowledge of lung disease in sickle cell disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. GDF11 induces kidney fibrosis, renal cell epithelial-to-mesenchymal transition, and kidney dysfunction and failure.

    PubMed

    Pons, Marianne; Koniaris, Leonidas G; Moe, Sharon M; Gutierrez, Juan C; Esquela-Kerscher, Aurora; Zimmers, Teresa A

    2018-05-03

    GDF11 modulates embryonic patterning and kidney organogenesis. Herein, we sought to define GDF11 function in the adult kidney and in renal diseases. In vitro renal cell lines, genetic, and murine in vivo renal injury models were examined. Among tissues tested, Gdf11 was highest in normal adult mouse kidney. Expression was increased acutely after 5/6 nephrectomy, ischemia-reperfusion injury, kanamycin toxicity, or unilateral ureteric obstruction. Systemic, high-dose GDF11 administration in adult mice led to renal failure, with accompanying kidney atrophy, interstitial fibrosis, epithelial-to-mesenchymal transition of renal tubular cells, and eventually death. These effects were associated with phosphorylation of SMAD2 and could be blocked by follistatin. In contrast, Gdf11 heterozygous mice showed reduced renal Gdf11 expression, renal fibrosis, and expression of fibrosis-associated genes both at baseline and after unilateral ureteric obstruction compared with wild-type littermates. The kidney-specific consequences of GDF11 dose modulation are direct effects on kidney cells. GDF11 induced proliferation and activation of NRK49f renal fibroblasts and also promoted epithelial-to-mesenchymal transition of IMCD-3 tubular epithelial cells in a SMAD3-dependent manner. Taken together, these data suggest that GDF11 and its downstream signals are critical in vivo mediators of renal injury. These effects are through direct actions of GDF11 on renal tubular cells and fibroblasts. Thus, regulation of GDF11 presents a therapeutic target for diseases involving renal fibrosis and impaired tubular function. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Respiratory syncytial virus infection disrupts monolayer integrity and function in cystic fibrosis airway cells.

    PubMed

    Kong, Michele; Maeng, Patrick; Hong, Jeong; Szczesniak, Rhonda; Sorscher, Eric; Sullender, Wayne; Clancy, John Paul

    2013-09-19

    Respiratory Syncytial Virus (RSV) infection is a common contributor to pulmonary symptoms in children with cystic fibrosis (CF). Here we examined RSV infection in immortalized bronchial epithelial cells (CFBE41o-) expressing wild-type (wt) or F508del cystic fibrosis transmembrane conductance regulator (CFTR), for monolayer integrity and RSV replication. CFBE41o- monolayers expressing wt or F508del CFTR were grown on permeable supports and inoculated with RSV A2 strain. Control experiments utilized UV-inactivated RSV and heat-killed RSV. Monolayer resistance and RSV production was monitored for up to six days post-infection. Within 24 h, a progressive decrease in monolayer resistance was observed in RSV infected F508del CFBE41o- cells, while the monolayer integrity of RSV infected wt CFTR CFBE41o- cells remained stable. RSV replication was necessary to disrupt F508del CFBE41o- monolayers as UV-irradiated and heat killed RSV had no effect on monolayer integrity, with an earlier and much more pronounced peak in RSV titer noted in F508del relative to wt CFTR-expressing cells. RSV infection of wt CFBE41o- monolayers also resulted in blunting of CFTR response. These findings identify an enhanced sensitivity of CFBE41o- cells expressing F508del CFTR to RSV infection, replication and monolayer disruption independent of the cellular immune response, and provide a novel mechanism by which cystic fibrosis airway epithelia are susceptible to RSV-dependent injury.

  6. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, inflammatory and cell death signaling pathways in diabetic cardiomyopathy

    PubMed Central

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Bátkai, Sándor; Patel, Vivek; Saito, Keita; Matsumoto, Shingo; Kashiwaya, Yoshihiro; Horváth, Béla; Mukhopadhyay, Bani; Becker, Lauren; Haskó, György; Liaudet, Lucas; Wink, David A; Veves, Aristidis; Mechoulam, Raphael; Pacher, Pál

    2010-01-01

    Objectives In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrosative stress, cell death and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose. Background CBD, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts antiinflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans. Methods Left ventricular function was measured by pressure-volume system. Oxidative stress, cell death and fibrosis markers were evaluated by molecular biology/biochemical techniques, electron spin resonance spectroscopy and flow cytometry. Results Diabetic cardiomyopathy was characterized by declined diastolic and systolic myocardial performance associated with increased oxidative-nitrosative stress, NF-κB and MAPK (JNK and p-38, p38α) activation, enhanced expression of adhesion molecules (ICAM-1, VCAM-1), TNF-α, markers of fibrosis (TGF-β, CTGF, fibronectin, collagen-1, MMP-2 and MMP-9), enhanced cell death (caspase 3/7 and PARP activity, chromatin fragmentation and TUNEL) and diminished Akt phosphorylation. Remarkably, CBD attenuated myocardial dysfunction, cardiac fibrosis, oxidative/nitrosative stress, inflammation, cell death, and interrelated signaling pathways. Furthermore, CBD also attenuated the high glucose-induced increased reactive oxygen species generation, NF-κB activation and cell death in primary human cardiomyocytes. Conclusions Collectively, these results coupled with the excellent safety and tolerability profile of cannabidiol in humans, strongly suggest that it may have great therapeutic potential in the treatment of diabetic complications, and perhaps other cardiovascular disorders, by attenuating oxidative/nitrosative stress, inflammation, cell death and fibrosis. PMID:21144973

  7. Activation of deltaF508 CFTR in a cystic fibrosis respiratory epithelial cell line by 4-phenylbutyrate, genistein and CPX.

    PubMed

    Andersson, C; Roomans, G M

    2000-05-01

    The cellular basis of cystic fibrosis (CF) is a defect in a cyclic adenosine monophosphate (cAMP)-activated chloride channel (CF transmembrane conductance regulator) in epithelial cells that leads to decreased chloride ion transport and impaired water transport across the cell membrane. This study investigated whether it was possible to activate the defective chloride channel in cystic fibrosis respiratory epithelial cells with 4-phenylbutyrate (4PBA), genistein and 8-cyclopentyl-1,3-dipropylxanthine (CPX). The CF bronchial epithelial cell line CFBE41o-, which expresses the deltaF508 mutation, was treated with these agents and loss of Cl-, indicating Cl- efflux, measured by X-ray microanalysis. 8-bromo-cAMP alone did not induce Cl- efflux in CFBE41o- cells, but after incubation with 4PBA a significant efflux of Cl- occurred. Stimulation of cells with a combination of genistein and cAMP also induced Cl- efflux, whereas a combination of pretreatment with 4PBA and a combined stimulation with genistein and cAMP induced an even larger Cl- efflux. Cl- efflux could also be stimulated by CPX, but this effect was not enhanced by 4PBA pretreatment. The deltaF508 mutation leads to impaired processing of the cystic fibrosis transmembrane conductance regulator. The increased efflux of chloride after 4-phenylbutyrate treatment can be explained by the fact that 4-phenylbutyrate allows the deltaF508 cystic fibrosis transmembrane conductance regulator to escape degradation and to be transported to the cell surface. Genistein and 8-cyclopentyl-1,3-dipropylxanthine act by stimulating chloride ion efflux by increasing the probability of the cystic fibrosis transmembrane conductance regulator being open. The combination of 4-phenylbutyrate and genistein may be useful in a potential pharmacological therapy for cystic fibrosis patients with the deltaF508 mutation.

  8. Multimodal nonlinear optical imaging of obesity-induced liver steatosis and fibrosis

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Lu, Fake; Zheng, Wei; Tai, Dean C. S.; Yu, Hanry; Sheppard, Colin; Huang, Zhiwei

    2011-03-01

    Liver steatosis/fibrosis represents the major conditions and symptoms for many liver diseases. Nonlinear optical microscopy has emerged as a powerful tool for label-free tissue imaging with high sensitivity and chemical specificity for several typical biochemical compounds. Three nonlinear microscopy imaging modalities are implemented on the sectioned tissues from diseased livers induced by high fat diet (HFD). Coherent anti-Stokes Raman scattering (CARS) imaging visualizes and quantifies the lipid droplets accumulated in the liver, Second harmonic generation (SHG) is used to map the distribution of aggregated collagen fibers, and two-photon excitation fluorescence (TPEF) reveals the morphology of hepatic cells based on the autofluorescence signals from NADH and flavins within the hepatocytes. Our results demonstrate that obesity induces liver steatosis in the beginning stage, which may progress into liver fibrosis with high risk. There is a certain correlation between liver steatosis and fibrosis. This study may provide new insights into the understanding of the mechanisms of steatosis/fibrosis transformations at the cellular and molecular levels.

  9. Epithelial NEMO/IKKγ limits fibrosis and promotes regeneration during pancreatitis.

    PubMed

    Chan, Lap Kwan; Gerstenlauer, Melanie; Konukiewitz, Björn; Steiger, Katja; Weichert, Wilko; Wirth, Thomas; Maier, Harald Jakob

    2017-11-01

    Inhibitory κB kinase (IKK)/nuclear factor κB (NF-κB) signalling has been implicated in the pathogenesis of pancreatitis, but its precise function has remained controversial. Here, we analyse the contribution of IKK/NF-κB signalling in epithelial cells to the pathogenesis of pancreatitis by targeting the IKK subunit NF-κB essential modulator (NEMO) (IKKγ), which is essential for canonical NF-κB activation. Mice with a targeted deletion of NEMO in the pancreas were subjected to caerulein pancreatitis. Pancreata were examined at several time points and analysed for inflammation, fibrosis, cell death, cell proliferation, as well as cellular differentiation. Human samples were used to corroborate findings established in mice. In acute pancreatitis, NEMO deletion in the pancreatic parenchyma resulted in minor changes during the early phase but led to the persistence of inflammatory and fibrotic foci in the recovery phase. In chronic pancreatitis, NEMO deletion aggravated inflammation and fibrosis, inhibited compensatory acinar cell proliferation, and enhanced acinar atrophy and acinar-ductal metaplasia. Gene expression analysis revealed sustained activation of profibrogenic genes and the CXCL12/CXCR4 axis in the absence of epithelial NEMO. In human chronic pancreatitis samples, the CXCL12/CXCR4 axis was activated as well, with CXCR4 expression correlating with the degree of fibrosis. The aggravating effects of NEMO deletion were attenuated by the administration of the CXCR4 antagonist AMD3100. Our results suggest that NEMO in epithelial cells exerts a protective effect during pancreatitis by limiting inflammation and fibrosis and improving acinar cell regeneration. The CXCL12/CXCR4 axis is an important mediator of that effect and may also be of importance in human chronic pancreatitis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Computational modeling predicts simultaneous targeting of fibroblasts and epithelial cells is necessary for treatment of pulmonary fibrosis

    DOE PAGES

    Warsinske, Hayley C.; Wheaton, Amanda K.; Kim, Kevin K.; ...

    2016-06-23

    Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited withmore » enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGFβ1 receptor ligand signaling in fibroblasts. PGE 2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE 2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. In conclusion, a two-hit therapeutic

  11. CD11b+ Gr1+ Bone Marrow Cells Ameliorate Liver Fibrosis by Producing Interleukin-10 in Mice

    PubMed Central

    Suh, Yang-Gun; Kim, Ja Kyung; Byun, Jin-Seok; Yi, Hyon-Seung; Lee, Young-Sun; Eun, Hyuk Soo; Kim, So Yeon; Han, Kwang-Hyub; Lee, Kwan Sik; Duester, Gregg; Friedman, Scott L.; Jeong, Won-Il

    2012-01-01

    Clinical trials and animal models suggest that infusion of bone marrow cells (BMC) is effective therapy for liver fibrosis, but the underlying mechanisms are obscure, especially those associated with early effects of BMC. Here, we analyzed the early impact of BMC infusion and identified the subsets of BMC showing antifibrotic effects in mice with carbon tetrachloride-induced liver fibrosis. An interaction between BMC and activated hepatic stellate cells (HSCs) was investigated using in vitro co-culturing system. Within 24 hours, infused BMC were in close contact with activated HSCs, which was associated with reduced liver fibrosis, enhanced hepatic expression of interleukin (IL)-10, expanded regulatory T cells but decreased macrophage infiltration in the liver at 24 hours after BMC infusion. In contrast, IL-10-deficient (IL-10−/−) BMC failed to reproduce these effects in the fibrotic livers. Intriguingly, in isolated cells, CD11b+Gr1highF4/80− and CD11b+Gr1+F4/80+ BMC expressed more IL-10 after co-culturing with activated HSCs, leading to suppressed expression of collagen and α-smooth muscle actin in HSCs. Moreover, these effects were either enhanced or abrogated, respectively, when BMC were co-cultured with IL-6−/− and retinaldehyde dehydrogenase 1−/− HSCs. Similar to murine data, human BMC expressed more IL-10 after co-culturing with human HSC lines (LX-2 or hTERT), and serum IL-10 levels were significantly elevated in patients with liver cirrhosis after autologous BMC infusion. Conclusion Activated HSCs increase IL-10 expression in BMC (CD11b+Gr1highF4/80− and CD11b+Gr1+F4/80+ cells), which in turn ameliorates liver fibrosis. Our findings could enhance the design of BMC therapy for liver fibrosis. PMID:22544759

  12. Computational modeling predicts simultaneous targeting of fibroblasts and epithelial cells is necessary for treatment of pulmonary fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warsinske, Hayley C.; Wheaton, Amanda K.; Kim, Kevin K.

    Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited withmore » enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGFβ1 receptor ligand signaling in fibroblasts. PGE 2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE 2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. In conclusion, a two-hit therapeutic

  13. The pathway to muscle fibrosis depends on myostatin stimulating the differentiation of fibro/adipogenic progenitor cells in chronic kidney disease

    PubMed Central

    Dong, Jiangling; Dong, Yanjun; Chen, Zihong; Mitch, William E.; Zhang, Liping

    2016-01-01

    Fibrosis in skeletal muscle develops after injury or in response to chronic kidney disease (CKD) but the origin of cells becoming fibrous tissue and the initiating and sustaining mechanisms causing muscle fibrosis are unclear. We have identified muscle fibro/adipogenic progenitor cells (FAPs) that potentially differentiate into adipose tissues or fibrosis. We also demonstrated that CKD stimulates myostatin production in muscle. Therefore, we tested whether CKD induces myostatin which stimulates fibrotic differentiation of FAPs leading to fibrosis in skeletal muscles. We isolated FAPs from mouse muscles and found that myostatin stimulates their proliferation and conversion into fibrocytes. In vivo, FAPs isolated from EGFP-transgenic mice (FAPs-EGFP) were transplanted into muscles of mice with CKD or into mouse muscles that were treated with myostatin. CKD or myostatin stimulated FAPs-EGFP proliferation in muscle and increased α-smooth muscle actin expression in FAP-EGFP cells. When myostatin was inhibited with a neutralizing peptibody (a chimeric peptide-Fc fusion protein), the FAP proliferation and muscle fibrosis induced by CKD were both suppressed. Knocking down Smad3 in cultured FAPs interrupted their conversion into fibrocytes indicating that myostatin directly converts FAPs into fibrocytes. Thus, counteracting myostatin may be a strategy for preventing the development of fibrosis in skeletal muscles of patients with CKD. PMID:27653838

  14. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis.

    PubMed

    Chapman, Mark A; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David; Lieber, Richard L

    2017-02-01

    Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173-183, 2009; Kjaer M. Physiol Rev 84: 649-98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins-fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. Copyright © 2017 the American Physiological Society.

  15. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis

    PubMed Central

    Chapman, Mark A.; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David

    2017-01-01

    Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173–183, 2009; Kjaer M. Physiol Rev 84: 649–98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins—fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. PMID:27881411

  16. Activation of calpain by renin-angiotensin system in pleural mesothelial cells mediates tuberculous pleural fibrosis

    PubMed Central

    Yang, Jie; Xiang, Fei; Cai, Peng-Cheng; Lu, Yu-Zhi; Xu, Xiao-Xiao; Yu, Fan; Li, Feng-Zhi; Greer, Peter A.; Shi, Huan-Zhong; Zhou, Qiong; Xin, Jian-Bao; Ye, Hong; Su, Yunchao

    2016-01-01

    Pleural fibrosis is defined as an excessive deposition of extracellular matrix (ECM) components that results in destruction of the normal pleural tissue architecture. It can result from diverse inflammatory conditions, especially tuberculous pleurisy. Pleural mesothelial cells (PMCs) play a pivotal role in pleural fibrosis. Calpain is a family of calcium-dependent endopeptidases, which plays an important role in ECM remodeling. However, the role of calpain in pleural fibrosis remains unknown. In the present study, we found that tuberculous pleural effusion (TPE) induced calpain activation in PMCs and that inhibition of calpain prevented TPE-induced collagen-I synthesis and cell proliferation of PMCs. Moreover, our data revealed that the levels of angiotensin (ANG)-converting enzyme (ACE) were significantly higher in pleural fluid of patients with TPE than those with malignant pleural effusion, and ACE-ANG II in TPE resulted in activation of calpain and subsequent triggering of the phosphatidylinositol 3-kinase (PI3K)/Akt/NF-κB signaling pathway in PMCs. Finally, calpain activation in PMCs and collagen depositions were confirmed in pleural biopsy specimens from patients with tuberculous pleurisy. Together, these studies demonstrated that calpain is activated by renin-angiotensin system in pleural fibrosis and mediates TPE-induced collagen-I synthesis and proliferation of PMCs via the PI3K/Akt/NF-κB signaling pathway. Calpain in PMCs might be a novel target for intervention in tuberculous pleural fibrosis. PMID:27261452

  17. Anti-fibrotic potential of human umbilical cord mononuclear cells and mouse bone marrow cells in CCl4- induced liver fibrosis in mice.

    PubMed

    Elmahdy, Nageh Ahmed; Sokar, Samia Salem; Salem, Mohamed Labib; Sarhan, Naglaa Ibrahim; Abou-Elela, Sherin Hamed

    2017-05-01

    Liver fibrosis is the consequence of hepatocyte injury that leads to the activation of hepatic stellate cells (HSC). The treatment of choice is Liver transplantation; however, it has many problems such as surgery-related complications, immunological rejection and high costs associated with the procedure. Stem cell-based therapy would be a potential alternative, so the aim of this study is to investigate the therapeutic potential of human umbilical cord mononuclear cells (MNC) and mouse bone marrow cells (BMC) against carbon tetrachloride (CCl 4 ) induced liver fibrosis in mice and compare it with that of silymarin. In the present study, male albino mice (N=60) were divided into six groups (10 mice each), the first group served as the normal control group while the remaining five groups were rendered fibrotic by intraperitoneal injections of CCl 4 and being left for 6 weeks to develop hepatic fibrosis. Thereafter, the mice were divided into CCl 4 group, CCl 4 group receiving MNC or BMC or silymarin or MNC and silymarin combination. After the specified treatment period, animals were then euthanized, blood and tissue samples were collected for measurement of alanine aminotransferase(ALT), aspartate aminotransferase(AST), malondialdehyde(MDA), reduced glutathione(GSH), collagen, Laminin, transforming growth factor β1(TGFβ1), tumor necrosis factor alpha(TNFα). MNC, BMC, and the combination therapy showed a significant decrease in ALT, AST, MDA, collagen, Laminin, TGFβ1, and TNFα and a significant increase in GSH. The data displayed a similar regression of fibrosis with the histological and immunohistological parameters. In conclusion, MNC, BMC and the combination therapy showed a potential therapeutic effect against liver fibrosis via reducing oxidative stress, inflammatory mediators, and fibrogenic markers. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung

    PubMed Central

    Florez‐Sampedro, Laura; Song, Shanshan

    2018-01-01

    Abstract In healthy circumstances the immune system coordinates tissue repair responses in a tight balance that entails efficient inflammation for removal of potential threats, proper wound closure, and regeneration to regain tissue function. Pathological conditions, continuous exposure to noxious agents, and even ageing can dysregulate immune responses after injury. This dysregulation can lead to a chronic repair mechanism known as fibrosis. Alterations in wound healing can occur in many organs, but our focus lies with the lung as it requires highly regulated immune and repair responses with its continuous exposure to airborne threats. Dysregulated repair responses can lead to pulmonary fibrosis but the exact reason for its development is often not known. Here, we review the diversity of innate immune cells of myeloid origin that are involved in tissue repair and we illustrate how these cell types can contribute to the development of pulmonary fibrosis. Moreover, we briefly discuss the effect of age on innate immune responses and therefore on wound healing and we conclude with the implications of current knowledge on the avenues for future research. PMID:29721324

  19. Non-invasive fibrosis tests are correlated with necroinflammatory actvity of liver in patients with chronic hepatitis B.

    PubMed

    Ozyalvacli, G; Kucukbayrak, A; Kurt, M; Gurel, K; Gunes, O; Ustun, C; Akdeniz, H

    2014-01-01

    The gold standarda method used for assessing necroinflammatory activity and fibrosis in the liver is a liver biopsy which has many disadvantages. Therefore, many investigators have been trying to develop non-invasive tests for predicting liver fibrosis score (LFS) of these patients. The aim of this study is to describe the relationship between certain non-invasive fibrosis markers with LFS and histological activity index (HAI) detected histopathologically by liver biopsy in chronic hepatitis B patients. A total of 54 patients who had undergone a liver biopsy with the diagnosis of chronic HBV infection were included in the study. Ishak scoring was used for the evaluation of liver fibrosis, and a modified Knodell HAI was used for demonstration of necroinflammation. In this study, non-invasive fibrosis tests were calculated as described in previous studies. Histological acitivity index was positively correlated with age, age/platelet index, cirrhosis discriminant score (CDS), AST/platelet ratio index (APRI), AST/platelet/GGT/AFP index (APGA), fibro-quotient (Fibro-Q), Goteburg University Cirrhosis Index (Guci), and Platelet/Age/Phosphatase/AFP/AST index (PAPAS). When divided into two groups according to HAI, Guci and APGA were found significantly different both in >4 and >4 HAI groups than the other group. In ROC analysis performed for LFS; PAPAS, APGA, FFI and APRI were the markers having the highest AUC levels, and in ROC analysis performed for HAI; Guci, APRI and APGA were the markers with the highest AUC levels. APRI, APGA and GUCI tests may be helpful in prediction of necroinflammatory scores in the liver.

  20. Inhibition of inhibitor of kappaB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis.

    PubMed

    Oakley, Fiona; Meso, Muriel; Iredale, John P; Green, Karen; Marek, Carylyn J; Zhou, Xiaoying; May, Michael J; Millward-Sadler, Harry; Wright, Matthew C; Mann, Derek A

    2005-01-01

    Resolution of liver fibrosis is associated with clearance of hepatic myofibroblasts by apoptosis; development of strategies that promote this process in a selective way is therefore important. The aim of this study was to determine whether the inhibitor of kappaB kinase suppressor sulfasalazine stimulates hepatic myofibroblast apoptosis and recovery from fibrosis. Hepatic myofibroblasts were generated by culture activation of rat and human hepatic stellate cells. Fibrosis was established in rat livers by chronic injury with carbon tetrachloride followed by recovery with or without sulfasalazine (150 mg/kg) treatment. Treatment of hepatic stellate cells with sulfasalazine (0.5-2.0 mmol/L) induced apoptosis of activated rat and human hepatic stellate cells. A single in vivo administration of sulfasalazine promoted accelerated recovery from fibrosis as assessed by improved fibrosis score, selective clearance of smooth muscle alpha-actin-positive myofibroblasts, reduced hepatic procollagen I and tissue inhibitor of metalloproteinase 1 messenger RNA expression, and increased matrix metalloproteinase 2 activity. Mechanistic studies showed that sulfasalazine selectively blocks nuclear factor-kappaB-dependent gene transcription, inhibits hepatic stellate cell expression of Gadd45beta, stimulates phosphorylation of Jun N-terminal kinase 2, and promotes apoptosis by a mechanism that is prevented by the Jun N-terminal kinase inhibitor SP600125. As further evidence for a survival role for the inhibitor of kappaB kinase/nuclear factor-kappaB pathway in activated hepatic stellate cells, a highly selective cell-permeable peptide inhibitor of kappaB kinase activation also stimulated hepatic stellate cell apoptosis via a Jun N-terminal kinase-dependent mechanism. Inhibition of the inhibitor of kappaB kinase/nuclear factor-kappaB pathway is sufficient to increase the rate at which activated hepatic stellate cells undergo apoptosis both in vitro and in vivo, and drugs that

  1. Advances in Cell and Gene-based Therapies for Cystic Fibrosis Lung Disease

    PubMed Central

    Oakland, Mayumi; Sinn, Patrick L; McCray Jr, Paul B

    2012-01-01

    Cystic fibrosis (CF) is a disease characterized by airway infection, inflammation, remodeling, and obstruction that gradually destroy the lungs. Direct delivery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene to airway epithelia may offer advantages, as the tissue is accessible for topical delivery of vectors. Yet, physical and host immune barriers in the lung present challenges for successful gene transfer to the respiratory tract. Advances in gene transfer approaches, tissue engineering, and novel animal models are generating excitement within the CF research field. This review discusses current challenges and advancements in viral and nonviral vectors, cell-based therapies, and CF animal models. PMID:22371844

  2. Lack of Siglec-7 expression identifies a dysfunctional natural killer cell subset associated with liver inflammation and fibrosis in chronic HCV infection.

    PubMed

    Varchetta, Stefania; Mele, Dalila; Lombardi, Andrea; Oliviero, Barbara; Mantovani, Stefania; Tinelli, Carmine; Spreafico, Marta; Prati, Daniele; Ludovisi, Serena; Ferraioli, Giovanna; Filice, Carlo; Aghemo, Alessio; Lampertico, Pietro; Facchetti, Floriana; Bernuzzi, Francesca; Invernizzi, Pietro; Mondelli, Mario U

    2016-12-01

    Sialic-acid-binding immunoglobulin-like lectin-7 (Siglec-7) is a natural killer (NK) cell inhibitory receptor associated with NK phenotypic and functional abnormalities in HIV-1 infection. We investigated the significance of NK-expressed and serum soluble Siglec-7 in relation to NK functional ability and parameters of liver necroinflammation and fibrosis in chronic HCV infection. NK-expressed and serum Siglec-7 were evaluated in 130 and 166 HCV-infected individuals by flow cytometry and ELISA, respectively. NK cell degranulation and cytokine secretion were determined by flow cytometry. 65 patients with chronic HBV infection, 84 with chronic biliary disorders and 168 healthy donors served as controls. Expression of Siglec-7 was significantly decreased on NK cells from HCV-infected and HBV-infected patients and, conversely, serum Siglec-7 was significantly increased in these patients compared with controls. The frequency of Siglec-7pos NK cells was significantly higher at baseline in sustained virological responders to pegylated interferon-α/ribavirin treatment than in non-responders. Activating receptor expression was significantly higher in Siglec-7pos NK cells and was associated with increased degranulation and cytokine secretion compared with Siglec-7 neg cells. In chronic HCV infection, there was an inverse correlation between Siglec-7 expression and serum aminotransferases, γ-glutamyl transpeptidase, liver stiffness, aspartate aminotransferase to platelet ratio index and fibrosis-4 scores, and a positive correlation between serum Siglec-7 and the same clinical parameters, including histological staging. These findings identify Siglec-7 neg NK cells as a dysfunctional subpopulation associated with severe liver disease in chronic HCV infection. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment - A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine.

    PubMed

    Koli, Katri; Sutinen, Eva; Rönty, Mikko; Rantakari, Pia; Fortino, Vittorio; Pulkkinen, Ville; Greco, Dario; Sipilä, Petra; Myllärniemi, Marjukka

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung.

  4. Diffuse myocardial fibrosis among healthy pediatric heart transplant recipients: Correlation of histology, cardiovascular magnetic resonance, and clinical phenotype.

    PubMed

    Feingold, Brian; Salgado, Cláudia M; Reyes-Múgica, Miguel; Drant, Stacey E; Miller, Susan A; Kennedy, Mark; Kellman, Peter; Schelbert, Erik B; Wong, Timothy C

    2017-08-01

    Fibrosis is commonly described in heart allografts lost late after transplantation. CMR-derived ECV is a validated measure of DMF in native adult hearts that may predict heart failure and mortality. We explored associations of ECV with histologic myocardial fibrosis and clinical features after pediatric heart transplantation. Twenty-five recipients (7.0±6.3 years at transplant and 10.7±6.5 years post-transplant) were prospectively recruited for CMR and BNP measurement at the time of surveillance biopsy. All had normal ejection fractions and lacked heart failure symptoms. Fibrosis was quantified on biopsy after picrosirius red staining as CVF. ECV was quantified using contemporaneous hematocrit on basal and mid-short-axis slices. ECV was moderately correlated with CVF (r=.47; P=.019). We found no associations of ECV with hemodynamics, ischemic time, time since transplantation, or number of prior biopsies or acute rejections. Compared to healthy non-transplant controls, there was no significant difference in ECV (25.1±3.0 vs 23.7±2.0%, P=.09). Log-transformed BNP was correlated with ECV (recipients: r=.46, P=.02; recipients and controls: r=.45, P=.006). These findings suggest ECV quantifies DMF and relates to biological indicators of cardiac function after pediatric heart transplantation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. MiR-21 promotes fibrosis and hypertrophy of ligamentum flavum in lumbar spinal canal stenosis by activating IL-6 expression.

    PubMed

    Sun, Chao; Tian, Jiwei; Liu, Xinhui; Guan, Guoping

    2017-08-26

    The molecular mechanism underlying the fibrosis of ligamentum flavum(LF) in patients with lumbar spinal canal stenosis(LSCS) remains unknown. MicroRNAs are reported to play important roles in regulating fibrosis in different organs. The present study aimed to identify fibrosis related miR-21 expression profile and investigate the pathological process of miR-21 in the fibrosis of LF hypertrophy and associated regulatory mechanisms. 15 patients with LSCS underwent surgical treatment were enrolled in this study. For the control group, 11 patients with lumbar disc herniation(LDH) was included. The LF thickness was measured on MRI. LF samples were obtained during the surgery. Fibrosis score was assessed by Masson's trichrome staining. The expression of miR-21 in LF tissues were determined by RT-PCR. Correlation among LF thickness, fibrosis score, and miR-21 expression was analyzed. In addition, Lentiviral vectors for miR-21 mimic were constructed and transfected into LF cells to examine the role of miR-21 in LF fibrosis. Types I and III collagen were used as indicators of fibrosis. IL-6 expression in LF cells after transfection was investigated by RT-PCR and ELISA. Patients in two groups showed similar outcomes regarding age, gender, level of LF tissue. The thickness and fibrosis score of LF in the LSCS group were significantly greater than those in LDH group (all P < 0.05). Similarly, the expression of miR-21 in LSCS group was substantially higher than that in LDH group(P < 0.05). Furthermore, the miR-21 expression exhibited positive correlations with the LF thickness (r = 0.595, P < 0.05) and fibrosis score (r = 0.608, P < 0.05). Of note, miR-21 over-expression increased the expression levels of collagen I and III (P < 0.05). Also, IL-6 expression and secretion in LF cells was elevated after transfection of miR-21 mimic. MiR-21 is a fibrosis-associated miRNA and promotes inflammation in LF tissue by activating IL-6 expression, leading to LF fibrosis and

  6. Therapeutic Effects of Human Amniotic Fluid-Derived Stem Cells on Renal Interstitial Fibrosis in a Murine Model of Unilateral Ureteral Obstruction

    PubMed Central

    Yin, Zhongcheng; Zhou, Xudong; Li, Xiaoju; Xiao, Aiguo

    2013-01-01

    Interstitial fibrosis is regarded as the main pathway for the progression of chronic kidney disease (CKD) and is often associated with severe renal dysfunction. Stem cell-based therapies may provide alternative approaches for the treatment of CKD. Human amniotic fluid-derived stem cells (hAFSCs) are a novel stem cell population, which exhibit both embryonic and mesenchymal stem cell characteristics. Herein, the present study investigated whether the transplantation of hAFSCs into renal tissues could improve renal interstitial fibrosis in a murine model of unilateral ureteral obstruction (UUO). We showed that hAFSCs provided a protective effect and alleviated interstitial fibrosis as reflected by an increase in microvascular density; additionally, hAFSCs treatment beneficially modulated protein levels of vascular endothelial growth factor (VEGF), hypoxia inducible factor-1α (HIF-1α) and transforming growth factor-β1 (TGF-β1). Therefore, we hypothesize that hAFSCs could represent an alternative, readily available source of stem cells that can be applied for the treatment of renal interstitial fibrosis. PMID:23724119

  7. Advanced glycation end products are elevated in cystic fibrosis-related diabetes and correlate with worse lung function.

    PubMed

    Hunt, William R; Helfman, Beth R; McCarty, Nael A; Hansen, Jason M

    2016-09-01

    The onset of cystic fibrosis-related diabetes (CFRD) exacerbates lung function decline and increases mortality. One pathway that may worsen the lung dysfunction associated with CFRD is that of the receptor for advanced glycation end products (RAGE) and its ligands. Human plasma was obtained from age-matched healthy, CF and CFRD patients. Plasma RAGE ligands (i.e. advanced glycation end products, S100A12, and high-mobility group protein B1) and soluble RAGE (sRAGE) levels were measured. CFRD patients had elevated plasma levels of AGEs and S100A12. Soluble RAGE, a RAGE ligand decoy receptor, was not significantly different between groups. Plasma AGE levels and S100A12 levels had significantly negative correlations with FEV1. AGEs are significantly elevated in CFRD and correlate negatively with FEV1. CFRD patients did not have significant increases in the decoy sRAGE, suggesting there may be heightened binding and activation of RAGE in CFRD exacerbating activation of proinflammatory pathways. Copyright © 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  8. Liver Injury and Fibrosis Induced by Dietary Challenge in the Ossabaw Miniature Swine

    PubMed Central

    Liang, Tiebing; Alloosh, Mouhamad; Bell, Lauren N.; Fullenkamp, Allison; Saxena, Romil; Van Alstine, William; Bybee, Phelan; Werling, Klára; Sturek, Michael; Chalasani, Naga; Masuoka, Howard C.

    2015-01-01

    Background Ossabaw miniature swine when fed a diet high in fructose, saturated fat and cholesterol (NASH diet) develop metabolic syndrome and nonalcoholic steatohepatitis (NASH) characterized by liver injury and fibrosis. This study was conducted to further characterize the development of NASH in this large animal model. Methods Ossabaw swine were fed standard chow (control group; n = 6) or NASH diet (n = 6) for 24 weeks. Blood and liver tissue were collected and liver histology were characterized at 0, 8, 16 and 24 weeks of dietary intervention. Hepatic apoptosis and lipid levels were assessed at week 24. Results The NASH diet group developed metabolic syndrome and progressive histologic features of NASH including: (a) hepatocyte ballooning at 8 weeks which progressed to extensive ballooning (>90% hepatocytes), (b) hepatic fibrosis at week 16, which progressed to moderate fibrosis, and (c) Kupffer cell accumulation with vacuolization at 8 weeks which progressed through week 24. The NASH diet group showed increased hepatocyte apoptosis that correlated with hepatic total and free cholesterol and free fatty acids, but not esterified cholesterol or triglycerides. Conclusions This report further characterizes the progression of diet-induced NASH in the Ossabaw swine model. In Ossabaw swine fed the NASH diet: (a) hepatocyte injury and fibrosis can occur without macrovesicular steatosis or excess triglyceride accumulation; (b) hepatocyte ballooning generally precedes the development of fibrosis; (c) there is increased hepatocyte apoptosis, and it is correlated more significantly with hepatic free cholesterol than hepatic free fatty acids and had no correlation with hepatic triglycerides. PMID:25978364

  9. When does germ cell loss and fibrosis occur in patients with Klinefelter syndrome?

    PubMed

    Van Saen, D; Vloeberghs, V; Gies, I; Mateizel, I; Sermon, K; De Schepper, Jean; Tournaye, H; Goossens, E

    2018-06-01

    When does germ cell loss and fibrosis occur in patients with Klinefelter syndrome (KS)? In KS, germ cell loss is not observed in testicular tissue from fetuses in the second semester of pregnancy but present at a prepubertal age when the testicular architecture is still normal, while fibrosis is highly present at an adolescent age. Most KS patients are azoospermic at adult age because of a massive germ cell loss. However, the timing when this germ cell loss starts is not known. It is assumed that germ cell loss increases at puberty. Therefore, testicular sperm extraction (TESE) at an adolescent age has been suggested to increase the chances of sperm retrieval at onset of spermatogenesis. However, recent data indicate that testicular biopsies from peripubertal KS patients contain only a few germ cells. In this study, we give an update on fertility preservation in adolescent KS patients and evaluate whether fertility preservation would be beneficial at prepubertal age. The possibility of retrieving testicular spermatozoa by TESE was evaluated in adolescent and adult KS men. The presence of spermatogonia and the degree of fibrosis were also analysed in testicular biopsies from KS patients at different ages. The patients were divided into four age groups: foetal (n = 5), prepubertal (aged 4-7 years; n = 4), peripubertal (aged 12-16 years; n = 20) and adult (aged 18-41 years; n = 27) KS patients. In peripubertal and adult KS patients, retrieval of spermatozoa was attempted by semen analysis after masturbation, vibrostimulation, electroejaculation or by TESE. MAGE-A4 immunohistochemistry was performed to evaluate the presence of germ cells in testicular biopsies from foetal, prepubertal, peripubertal and adult KS patients. Tissue morphology was evaluated by haematoxylin-periodic acid Schiff (H/PAS) staining. Testicular spermatozoa were collected by TESE in 48.1% of the adult KS patients, while spermatozoa were recovered after TESE in only one peripubertal patient (5

  10. Calcium-binding protein S100A4 confers mesenchymal progenitor cell fibrogenicity in idiopathic pulmonary fibrosis

    PubMed Central

    Xia, Hong; Gilbertsen, Adam; Herrera, Jeremy; Racila, Emilian; Peterson, Mark; Griffin, Timothy; Benyumov, Alexey; Yang, Libang; Bitterman, Peter B.; Henke, Craig A.

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease with a prevalence of 1 million persons worldwide. The fibrosis spreads from affected alveoli into contiguous alveoli and leads to death by asphyxiation. We previously discovered that the IPF lung harbors fibrogenic mesenchymal progenitor cells (MPCs) that serve as a cell of origin for disease-mediating myofibroblasts. In a prior genomewide transcriptional analysis, we found that IPF MPCs displayed increased expression of S100 calcium-binding A4 (S100A4), a protein linked to cancer cell proliferation and invasiveness. Here, we have examined whether S100A4 mediates MPC fibrogenicity. Ex vivo analysis revealed that IPF MPCs had increased levels of nuclear S100A4, which interacts with L-isoaspartyl methyltransferase to promote p53 degradation and MPC self-renewal. In vivo, injection of human IPF MPCs converted a self-limited bleomycin-induced mouse model of lung fibrosis to a model of persistent fibrosis in an S100A4-dependent manner. S100A4 gain of function was sufficient to confer fibrotic properties to non-IPF MPCs. In IPF tissue, fibroblastic foci contained cells expressing Ki67 and the MPC markers SSEA4 and S100A4. The expression colocalized in an interface region between myofibroblasts in the focus core and normal alveolar structures, defining this region as an active fibrotic front. Our findings indicate that IPF MPCs are intrinsically fibrogenic and that S100A4 confers MPCs with fibrogenicity. PMID:28530639

  11. The pathway to muscle fibrosis depends on myostatin stimulating the differentiation of fibro/adipogenic progenitor cells in chronic kidney disease.

    PubMed

    Dong, Jiangling; Dong, Yanjun; Chen, Zihong; Mitch, William E; Zhang, Liping

    2017-01-01

    Fibrosis in skeletal muscle develops after injury or in response to chronic kidney disease (CKD), but the origin of cells becoming fibrous tissue and the initiating and sustaining mechanisms causing muscle fibrosis are unclear. We identified muscle fibro/adipogenic progenitor cells (FAPs) that potentially differentiate into adipose tissues or fibrosis. We also demonstrated that CKD stimulates myostatin production in muscle. Therefore, we tested whether CKD induces myostatin, which stimulates fibrotic differentiation of FAPs leading to fibrosis in skeletal muscles. We isolated FAPs from mouse muscles and found that myostatin stimulates their proliferation and conversion into fibrocytes. In vivo, FAPs isolated from EGFP-transgenic mice (FAPs-EGFP) were transplanted into muscles of mice with CKD or into mouse muscles that were treated with myostatin. CKD or myostatin stimulated FAPs-EGFP proliferation in muscle and increased α-smooth muscle actin expression in FAP-EGFP cells. When myostatin was inhibited with a neutralizing peptibody (a chimeric peptide-Fc fusion protein), the FAP proliferation and muscle fibrosis induced by CKD were both suppressed. Knocking down Smad3 in cultured FAPs interrupted their conversion into fibrocytes, indicating that myostatin directly converts FAPs into fibrocytes. Thus, counteracting myostatin may be a strategy for preventing the development of fibrosis in skeletal muscles of patients with CKD. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  12. CFTR-dependent chloride efflux in cystic fibrosis mononuclear cells is increased by ivacaftor therapy.

    PubMed

    Guerra, Lorenzo; D'Oria, Susanna; Favia, Maria; Castellani, Stefano; Santostasi, Teresa; Polizzi, Angela M; Mariggiò, Maria A; Gallo, Crescenzio; Casavola, Valeria; Montemurro, Pasqualina; Leonetti, Giuseppina; Manca, Antonio; Conese, Massimo

    2017-07-01

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) potentiator ivacaftor (Kalydeco®) improves clinical outcome in G551D cystic fibrosis (CF) patients. Here, we have investigated whether ivacaftor has a clinical impact on non-G551D gating mutations and function of circulating leukocytes as well. Seven patients were treated with ivacaftor and evaluated at baseline, and at 1-3 and 6 months. Besides clinical and systemic inflammatory parameters, circulating mononuclear cells (MNC) were evaluated for CFTR-dependent chloride efflux by spectrofluorimetry, neutrophils for oxidative burst by cytofluorimetry and HVCN1 mRNA expression by real time PCR. Ivacaftor determined a significant decrease in sweat chloride concentrations at all time points during treatment. Body mass index (BMI), FEV 1 , and FVC showed an increasing trend. While C-reactive protein decreased significantly at 2 months, the opposite behavior was noticed for circulating monocytes. CFTR activity in MNC was found to increase significantly at 3 and 6 months. Neutrophil oxidative burst peaked at 2 months and then decreased to baseline. HVCN1 mRNA expression was significantly higher than baseline at 1-3 months and decreased after 6 months of treatment. The chloride efflux in MNC correlated positively with both FEV 1 and FVC. On the other hand, sweat chloride correlated positively with CRP and WBC, and negatively with both respiratory function tests. A cluster analysis confirmed that sweat chloride, FEV 1 , FVC, BMI, and MNC chloride efflux behaved as a single entity over time. In patients with non-G551D mutations, ivacaftor improved both chloride transport in sweat ducts and chloride efflux in MNC, that is, functions directly imputed to CFTR. © 2017 Wiley Periodicals, Inc.

  13. Pathophysiology of gadolinium-associated systemic fibrosis

    PubMed Central

    Drel, Viktor; Gorin, Yves

    2016-01-01

    Systemic fibrosis from gadolinium-based magnetic resonance imaging contrast is a scourge for the afflicted. Although gadolinium-associated systemic fibrosis is a rare condition, the threat of litigation has vastly altered clinical practice. Most theories concerning the etiology of the fibrosis are grounded in case reports rather than experiment. This has led to the widely accepted conjecture that the relative affinity of certain contrast agents for the gadolinium ion inversely correlates with the risk of succumbing to the disease. How gadolinium-containing contrast agents trigger widespread and site-specific systemic fibrosis and how chronicity is maintained are largely unknown. This review highlights experimentally-derived information from our laboratory and others that pertain to our understanding of the pathophysiology of gadolinium-associated systemic fibrosis. PMID:27147669

  14. Computed tomography correlates with improvement with ivacaftor in cystic fibrosis patients with G551D mutation.

    PubMed

    Sheikh, Shahid I; Long, Frederick R; McCoy, Karen S; Johnson, Terri; Ryan-Wenger, Nancy A; Hayes, Don

    2015-01-01

    Ivacaftor corrects the cystic fibrosis transmembrane conductance regulator (CFTR) gating defect associated with G551D mutation and is quickly becoming an important treatment in patients with cystic fibrosis (CF) due to this genetic mutation. A single-center study was performed in CF patients receiving ivacaftor to evaluate the usefulness of high resolution computed tomography (HRCT) of the chest as a way to gauge response to ivacaftor therapy. Ten patients with CF were enrolled for at least one year before and after starting ivacaftor. At time of enrollment, mean age was 20.9 ± 10.8 (range 10-44) years. There were significant improvements from baseline to 6 months in mean %FVC (93 ± 16 to 99 ± 16) and %FEV1 (79 ± 26 to 87 ± 28) but reverted to baseline at one year. Mean sweat chloride levels decreased significantly from baseline to one year. Mean weight and BMI improved at 6 months. Weight continued to improve with stabilization of BMI at one year. Chest HRCT showed significant improvement at one year in mean modified Brody scores for bronchiectasis, mucous plugging, airway wall thickness, and total Brody scores. Elevated bronchiectasis and airway wall thickness scores correlated significantly with lower %FEV1, while higher airway wall thickness and mucus plugging scores correlated with more pulmonary exacerbations requiring IV and oral antibiotics respectively. Based on our findings, HRCT imaging is a useful tool in monitoring response to ivacaftor therapy that corrects the gating defect associated with the G551D-CFTR mutation. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  15. Clinical significance of preoperative serum albumin level for prognosis in surgically resected patients with non-small cell lung cancer: Comparative study of normal lung, emphysema, and pulmonary fibrosis.

    PubMed

    Miura, Kentaro; Hamanaka, Kazutoshi; Koizumi, Tomonobu; Kitaguchi, Yoshiaki; Terada, Yukihiro; Nakamura, Daisuke; Kumeda, Hirotaka; Agatsuma, Hiroyuki; Hyogotani, Akira; Kawakami, Satoshi; Yoshizawa, Akihiko; Asaka, Shiho; Ito, Ken-Ichi

    2017-09-01

    This study was performed to clarify whether preoperative serum albumin level is related to the prognosis of non-small cell lung cancer patients undergoing surgical resection, and the relationships between serum albumin level and clinicopathological characteristics of lung cancer patients with emphysema or pulmonary fibrosis. We retrospectively evaluated 556 patients that underwent surgical resection for non-small cell lung cancer. The correlation between preoperative serum albumin level and survival was evaluated. Patients were divided into three groups according to the findings on chest high-resolution computed tomography (normal lung, emphysema, and pulmonary fibrosis), and the relationships between serum albumin level and clinicopathological characteristics, including prognosis, were evaluated. The cut-off value of serum albumin level was set at 4.2g/dL. Patients with low albumin levels (albumin <4.2) had significantly poorer prognosis than those with high albumin levels (albumin ≥4.2) with regard to both overall survival and recurrence-free survival. Serum albumin levels in the emphysema group (n=48) and pulmonary fibrosis group (n=45) were significantly lower than that in the normal lung group (n=463) (p=0.009 and <0.001, respectively). Low serum albumin level was a risk factor in normal lung and pulmonary fibrosis groups, but not in the emphysema group. Preoperative serum albumin level was an important prognostic factor for overall survival and recurrence-free survival in patients with resected non-small cell lung cancer. Divided into normal lung, emphysema, and pulmonary fibrosis groups, serum albumin level showed no influence only in patients in the emphysema group. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Targeted delivery of drugs for liver fibrosis.

    PubMed

    Li, Feng; Wang, Ji-yao

    2009-05-01

    Liver fibrosis and its end stage disease cirrhosis are a major cause of mortality and morbidity around the world. There is no effective pharmaceutical intervention for liver fibrosis at present. Many drugs that show potent antifibrotic activities in vitro often show only minor effects in vivo because of insufficient concentrations of drugs accumulating around the target cell and their adverse effects as a result of affecting other non-target cells. Hepatic stellate cells (HSC) play a critical role in the fibrogenesis of liver, so they are the target cells of antifibrotic therapy. Several kinds of targeted delivery system that could target the receptors expressed on HSC have been designed, and have shown an attractive targeted potential in vivo. After being carried by these delivery systems, many agents showed a powerful antifibrotic effect in animal models of liver fibrosis. These targeted delivery systems provide a new pathway for the therapy of liver fibrosis. The characteristics of theses targeted carriers are reviewed in this paper.

  17. Experimental models of liver fibrosis.

    PubMed

    Yanguas, Sara Crespo; Cogliati, Bruno; Willebrords, Joost; Maes, Michaël; Colle, Isabelle; van den Bossche, Bert; de Oliveira, Claudia Pinto Marques Souza; Andraus, Wellington; Alves, Venâncio Avancini Ferreira; Leclercq, Isabelle; Vinken, Mathieu

    2016-05-01

    Hepatic fibrosis is a wound healing response to insults and as such affects the entire world population. In industrialized countries, the main causes of liver fibrosis include alcohol abuse, chronic hepatitis virus infection and non-alcoholic steatohepatitis. A central event in liver fibrosis is the activation of hepatic stellate cells, which is triggered by a plethora of signaling pathways. Liver fibrosis can progress into more severe stages, known as cirrhosis, when liver acini are substituted by nodules, and further to hepatocellular carcinoma. Considerable efforts are currently devoted to liver fibrosis research, not only with the goal of further elucidating the molecular mechanisms that drive this disease, but equally in view of establishing effective diagnostic and therapeutic strategies. The present paper provides a state-of-the-art overview of in vivo and in vitro models used in the field of experimental liver fibrosis research.

  18. [Correlation between the mRNA expression of tissue inhibitor of metalloproteinase-1 and apparent diffusion coefficient on diffusion-weighted imaging in rats' liver fibrosis].

    PubMed

    Zhan, Yuefu; Liang, Xianwen; Han, Xiangjun; Chen, Jianqiang; Zhang, Shufang; Tan, Shun; Li, Qun; Wang, Xiong; Liu, Fan

    2017-02-28

    To explore the correlation between the apparent diffusion coefficient (ADC) and mRNA expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in different stages of liver fibrosis in rats.
 Methods: A model of liver fibrosis in rats was established by intraperitoneal injection of high-fat diet combined with porcine serum. After drug administration for 4 weeks, 48 rats served as a model group and 12 rats served as a control group, then they underwent diffusion weighted imaging (DWI) scanning. The value of ADC was calculated at b value=800 s/mm2. The rats were sacrificed and carried out pathologic examination after DWI scanning immediately. The mRNA expression of TIMP-1 was detected by real time-polymerase chain reaction (RT-PCR). The rats of hepatic fibrosis were also divided into a S0 group (n=4), a S1 group (n=11), a S2 group (n=12), a S3 group (n=10), and a S4 group (n=9) according to their pathological stage. The value of ADC and the expression of TIMP-1 mRNA among the different stage groups of liver fibrosis were compared, and the correlation between ADC and the TIMP-1 mRNA were analyzed.
 Results: The ADC value and the TIMP-1 mRNA expression were significantly different between the control group and the liver fibrosis group (F=46.54 and 53.87, P<0.05). There were significant differences in the value of ADC between every two groups (all P<0.05), except the control group vs the S1 group, the S1 group vs the S2 group, and the S2 group vs the S3 group (all P>0.05). For the comparison of TIMP-1 mRNA, there was no significant difference between the S1 group and the S2 group, the S3 group and the S4 group (both P>0.05). There were significant differences among the rest of the groups (all P<0.05). Rank correlation analysis showed that there was a negative correlation between the ADC value and the TIMP-1 mRNA expression (r=-0.76, P<0.01).
 Conclusion: When the value of ADC decreases in the progress of rats' liver fibrosis, the mRNA expression of TIMP-1

  19. Modulation of the Unfolded Protein Response by Tauroursodeoxycholic Acid Counteracts Apoptotic Cell Death and Fibrosis in a Mouse Model for Secondary Biliary Liver Fibrosis

    PubMed Central

    Paridaens, Annelies; Raevens, Sarah; Devisscher, Lindsey; Bogaerts, Eliene; Verhelst, Xavier; Hoorens, Anne; van Vlierberghe, Hans; Van Grunsven, Leo A.; Geerts, Anja; Colle, Isabelle

    2017-01-01

    The role of endoplasmic reticulum stress and the unfolded protein response (UPR) in cholestatic liver disease and fibrosis is not fully unraveled. Tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid, has been shown to reduce endoplasmic reticulum (ER) stress and counteract apoptosis in different pathologies. We aimed to investigate the therapeutic potential of TUDCA in experimental secondary biliary liver fibrosis in mice, induced by common bile duct ligation. The kinetics of the hepatic UPR and apoptosis during the development of biliary fibrosis was studied by measuring markers at six different timepoints post-surgery by qPCR and Western blot. Next, we investigated the therapeutic potential of TUDCA, 10 mg/kg/day in drinking water, on liver damage (AST/ALT levels) and fibrosis (Sirius red-staining), in both a preventive and therapeutic setting. Common bile duct ligation resulted in the increased protein expression of CCAAT/enhancer-binding protein homologous protein (CHOP) at all timepoints, along with upregulation of pro-apoptotic caspase 3 and 12, tumor necrosis factor receptor superfamily, member 1A (TNFRsf1a) and Fas-Associated protein with Death Domain (FADD) expression. Treatment with TUDCA led to a significant reduction of liver fibrosis, accompanied by a slight reduction of liver damage, decreased hepatic protein expression of CHOP and reduced gene and protein expression of pro-apoptotic markers. These data indicate that TUDCA exerts a beneficial effect on liver fibrosis in a model of cholestatic liver disease, and suggest that this effect might, at least in part, be attributed to decreased hepatic UPR signaling and apoptotic cell death. PMID:28117681

  20. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment – A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine

    PubMed Central

    Koli, Katri; Sutinen, Eva; Rönty, Mikko; Rantakari, Pia; Fortino, Vittorio; Pulkkinen, Ville; Greco, Dario; Sipilä, Petra; Myllärniemi, Marjukka

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung. PMID:27428020

  1. Expression of Fibroblast Growth Factor 21 and β-Klotho Regulates Hepatic Fibrosis through the Nuclear Factor-κB and c-Jun N-Terminal Kinase Pathways.

    PubMed

    Lee, Kyong Joo; Jang, Yoon Ok; Cha, Seung-Kuy; Kim, Moon Young; Park, Kyu-Sang; Eom, Young Woo; Baik, Soon Koo

    2018-04-27

    Fibroblast growth factor (FGF) 21 is associated with hepatic inflammation and fibrosis. However, little is known regarding the effects of inflammation and fibrosis on the β-Klotho and FGF21 pathway in the liver. Enrolled patients had biopsy-confirmed viral or alcoholic hepatitis. FGF19, FGF21 and β-Klotho levels were evaluated using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blotting. Furthermore, we explored the underlying mechanisms for this process by evaluating nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) pathway involvement in Huh-7 cells. We observed that the FGF19 and FGF21 serum and mRNA levels in the biopsied liver tissue gradually increased and were correlated with fibrosis stage. Inflammatory markers (interleukin 1β [IL-1β], IL-6, and tumor necrosis factor-α) were positively correlated, while β-Klotho expression was negatively correlated with the degree of fibrosis. In Huh-7 cells, IL-1β increased FGF21 levels and decreased β-Klotho levels. NF-κB and JNK inhibitors abolished the effect of IL-1β on both FGF21 and β-Klotho expression. FGF21 protected IL-1β-induced growth retardation in Huh-7 cells. These results indicate that the inflammatory response during fibrogenesis increases FGF21 levels and suppresses β-Klotho via the NF-κB and JNK pathway. In addition, FGF21 likely protects hepatocytes from hepatic inflammation and fibrosis.

  2. An autopsy study of combined pulmonary fibrosis and emphysema: correlations among clinical, radiological, and pathological features

    PubMed Central

    2014-01-01

    Background Clinical evaluation to differentiate the characteristic features of pulmonary fibrosis and emphysema is often difficult in patients with combined pulmonary fibrosis and emphysema (CPFE), but diagnosis of pulmonary fibrosis is important for evaluating treatment options and the risk of acute exacerbation of interstitial pneumonia of such patients. As far as we know, it is the first report describing a correlation among clinical, radiological, and whole-lung pathological features in an autopsy cases of CPFE patients. Methods Experts retrospectively reviewed the clinical charts and examined chest computed tomography (CT) images and pathological findings of an autopsy series of 22 CPFE patients, and compared these with findings from 8 idiopathic pulmonary fibrosis (IPF) patients and 17 emphysema-alone patients. Results All patients had a history of heavy smoking. Forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC%) was significantly lower in the emphysema-alone group than the CPFE and IPF-alone groups. The percent predicted diffusing capacity of the lung for carbon monoxide (DLCO%) was significantly lower in the CPFE group than the IPF- and emphysema-alone groups. Usual interstitial pneumonia (UIP) pattern was observed radiologically in 15 (68.2%) CPFE and 8 (100%) IPF-alone patients and was pathologically observed in all patients from both groups. Pathologically thick-cystic lesions involving one or more acini with dense wall fibrosis and occasional fibroblastic foci surrounded by honeycombing and normal alveoli were confirmed by post-mortem observation as thick-walled cystic lesions (TWCLs). Emphysematous destruction and enlargement of membranous and respiratory bronchioles with fibrosis were observed in the TWCLs. The cystic lesions were always larger than the cysts of honeycombing. The prevalence of both radiological and pathological TWCLs was 72.7% among CPFE patients, but no such lesions were observed in patients with IPF or emphysema

  3. A network model of correlated growth of tissue stiffening in pulmonary fibrosis

    NASA Astrophysics Data System (ADS)

    Oliveira, Cláudio L. N.; Bates, Jason H. T.; Suki, Béla

    2014-06-01

    During the progression of pulmonary fibrosis, initially isolated regions of high stiffness form and grow in the lung tissue due to collagen deposition by fibroblast cells. We have previously shown that ongoing collagen deposition may not lead to significant increases in the bulk modulus of the lung until these local remodeled regions have become sufficiently numerous and extensive to percolate in a continuous path across the entire tissue (Bates et al 2007 Am. J. Respir. Crit. Care Med. 176 617). This model, however, did not include the possibility of spatially correlated deposition of collagen. In the present study, we investigate whether spatial correlations influence the bulk modulus in a two-dimensional elastic network model of lung tissue. Random collagen deposition at a single site is modeled by increasing the elastic constant of the spring at that site by a factor of 100. By contrast, correlated collagen deposition is represented by stiffening the springs encountered along a random walk starting from some initial spring, the rationale being that excess collagen deposition is more likely in the vicinity of an already stiff region. A combination of random and correlated deposition is modeled by performing random walks of length N from randomly selected initial sites, the balance between the two processes being determined by N. We found that the dependence of bulk modulus, B(N,c), on both N and the fraction of stiff springs, c, can be described by a strikingly simple set of empirical equations. For c<0.3, B(N,c) exhibits exponential growth from its initial value according to B(N,c)\\approx {{B}_{0}}exp (2c)\\left[ 1+{{c}^{\\beta }}ln \\left( {{N}^{{{a}_{I}}}} \\right) \\right], where \\beta =0.994+/- 0.024 and {{a}_{I}}=0.54+/- 0.026. For intermediate concentrations of stiffening, 0.3\\leqslant c\\leqslant 0.8, another exponential rule describes the bulk modulus as B(N,c)=4{{B}_{0}}exp \\left[ {{a}_{II}}\\left( c-{{c}_{c}} \\right) \\right], where {{a

  4. Repetitive intradermal bleomycin injections evoke T-helper cell 2 cytokine-driven pulmonary fibrosis.

    PubMed

    Singh, Brijendra; Kasam, Rajesh K; Sontake, Vishwaraj; Wynn, Thomas A; Madala, Satish K

    2017-11-01

    IL-4 and IL-13 are major T-helper cell (Th) 2 cytokines implicated in the pathogenesis of several lung diseases, including pulmonary fibrosis. In this study, using a novel repetitive intradermal bleomycin model in which mice develop extensive lung fibrosis and a progressive decline in lung function compared with saline-treated control mice, we investigated profibrotic functions of Th2 cytokines. To determine the role of IL-13 signaling in the pathogenesis of bleomycin-induced pulmonary fibrosis, wild-type, IL-13, and IL-4Rα-deficient mice were treated with bleomycin, and lungs were assessed for changes in lung function and pulmonary fibrosis. Histological staining and lung function measurements demonstrated that collagen deposition and lung function decline were attenuated in mice deficient in either IL-13 or IL-4Rα-driven signaling compared with wild-type mice treated with bleomycin. Furthermore, our results demonstrated that IL-13 and IL-4Rα-driven signaling are involved in excessive migration of macrophages and fibroblasts. Notably, our findings demonstrated that IL-13-driven migration involves increased phospho-focal adhesion kinase signaling and F-actin polymerization. Importantly, in vivo findings demonstrated that IL-13 augments matrix metalloproteinase (MMP)-2 and MMP9 activity that has also been shown to increase migration and invasiveness of fibroblasts in the lungs during bleomycin-induced pulmonary fibrosis. Together, our findings demonstrate a pathogenic role for Th2-cytokine signaling that includes excessive migration and protease activity involved in severe fibrotic lung disease.

  5. Mechanisms of fibrosis: therapeutic translation for fibrotic disease

    PubMed Central

    Wynn, Thomas A; Ramalingam, Thirumalai R

    2012-01-01

    Fibrosis is a pathological feature of most chronic inflammatory diseases. Fibrosis, or scarring, is defined by the accumulation of excess extracellular matrix components. If highly progressive, the fibrotic process eventually leads to organ malfunction and death. Fibrosis affects nearly every tissue in the body. Here we discuss how key components of the innate and adaptive immune response contribute to the pathogenesis of fibrosis. We also describe how cell-intrinsic changes in important structural cells can perpetuate the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix–producing myofibroblasts. Finally, we highlight some of the key mechanisms and pathways of fibrosis that are being targeted as potential therapies for a variety of important human diseases. PMID:22772564

  6. Altered Regulation of Airway Epithelial Cell Chloride Channels in Cystic Fibrosis

    NASA Astrophysics Data System (ADS)

    Frizzell, Raymond A.; Rechkemmer, Gerhard; Shoemaker, Richard L.

    1986-08-01

    In many epithelial cells the chloride conductance of the apical membrane increases during the stimulation of electrolyte secretion. Single-channel recordings from human airway epithelial cells showed that β -adrenergic stimulation evoked apical membrane chloride channel activity, but this response was absent in cells from patients with cystic fibrosis (CF). However, when membrane patches were excised from CF cells into media containing sufficient free calcium (approximately 180 nanomolar), chloride channels were activated. The chloride channels of CF cells were similar to those of normal cells as judged by their current-voltage relations, ion selectivity, and kinetic behavior. These findings demonstrate the presence of chloride channels in the apical membranes of CF airway cells. Their regulation by calcium appears to be intact, but cyclic adenosine monophosphate (cAMP)-dependent control of their activity is defective.

  7. Mesenchymal stem cell-derived inflammatory fibroblasts mediate interstitial fibrosis in the aging heart.

    PubMed

    Trial, JoAnn; Entman, Mark L; Cieslik, Katarzyna A

    2016-02-01

    Pathologic fibrosis in the aging mouse heart is associated with dysregulated resident mesenchymal stem cells (MSC) arising from reduced stemness and aberrant differentiation into dysfunctional inflammatory fibroblasts. Fibroblasts derived from aging MSC secrete higher levels of 1) collagen type 1 (Col1) that directly contributes to fibrosis, 2) monocyte chemoattractant protein-1 (MCP-1) that attracts leukocytes from the blood and 3) interleukin-6 (IL-6) that facilitates transition of monocytes into myeloid fibroblasts. The transcriptional activation of these proteins is controlled via the farnesyltransferase (FTase)-Ras-Erk pathway. The intrinsic change in the MSC phenotype acquired by advanced age is specific for the heart since MSC originating from bone wall (BW-MSC) or fibroblasts derived from them were free of these defects. The potential therapeutic interventions other than clinically approved strategies based on findings presented in this review are discussed as well. This article is a part of a Special Issue entitled "Fibrosis and Myocardial Remodeling". Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Thin-Section CT Features of Idiopathic Pulmonary Fibrosis Correlated with Micro-CT and Histologic Analysis.

    PubMed

    Mai, Cindy; Verleden, Stijn E; McDonough, John E; Willems, Stijn; De Wever, Walter; Coolen, Johan; Dubbeldam, Adriana; Van Raemdonck, Dirk E; Verbeken, Eric K; Verleden, Geert M; Hogg, James C; Vanaudenaerde, Bart M; Wuyts, Wim A; Verschakelen, Johny A

    2017-04-01

    Purpose To elucidate the underlying lung changes responsible for the computed tomographic (CT) features of idiopathic pulmonary fibrosis (IPF) and to gain insight into the way IPF proceeds through the lungs and progresses over time. Materials and Methods Micro-CT studies of tissue cores obtained from explant lungs were examined and were correlated 1:1 with a CT study obtained immediately before transplantation. Samples for histologic analysis were obtained from selected cores. Results In areas with no or minimal abnormalities on CT images, small areas of increased attenuation located in or near the interlobular septa can be seen on micro-CT studies. In more involved lung areas, the number of opacities increases and opacities enlarge and approach each other along the interlobular septa, causing a fine reticular pattern on CT images. Simultaneously, air-containing structures in and around these opacities arise, corresponding with small cysts on CT images. Honeycombing is caused by a progressive increase in the number and size of these cystic structures and tissue opacities that gradually extend toward the centrilobular region and finally replace the entire lobule. At histologic analysis, the small islands of increased attenuation very likely correspond with fibroblastic foci. Near these fibroblastic foci, an abnormal adjacency of alveolar walls was seen, suggesting alveolar collapse. In later stages, normal lung tissue is replaced by a large amount of young collagen, as seen in patients with advanced fibrosis. Conclusion Fibrosis and cyst formation in patients with IPF seem to start at the periphery of the pulmonary lobule and progressively extend toward the core of this anatomic lung unit. Evidence was found that alveolar collapse might already be present in an early stage when there is only little pulmonary fibrosis. © RSNA, 2016.

  9. Thin-Section CT Features of Idiopathic Pulmonary Fibrosis Correlated with Micro-CT and Histologic Analysis

    PubMed Central

    Mai, Cindy; Verleden, Stijn E.; McDonough, John E.; Willems, Stijn; De Wever, Walter; Coolen, Johan; Dubbeldam, Adriana; Van Raemdonck, Dirk E.; Verbeken, Eric K.; Verleden, Geert M.; Hogg, James C.; Vanaudenaerde, Bart M.; Wuyts, Wim A.

    2017-01-01

    Purpose To elucidate the underlying lung changes responsible for the computed tomographic (CT) features of idiopathic pulmonary fibrosis (IPF) and to gain insight into the way IPF proceeds through the lungs and progresses over time. Materials and Methods Micro-CT studies of tissue cores obtained from explant lungs were examined and were correlated 1:1 with a CT study obtained immediately before transplantation. Samples for histologic analysis were obtained from selected cores. Results In areas with no or minimal abnormalities on CT images, small areas of increased attenuation located in or near the interlobular septa can be seen on micro-CT studies. In more involved lung areas, the number of opacities increases and opacities enlarge and approach each other along the interlobular septa, causing a fine reticular pattern on CT images. Simultaneously, air-containing structures in and around these opacities arise, corresponding with small cysts on CT images. Honeycombing is caused by a progressive increase in the number and size of these cystic structures and tissue opacities that gradually extend toward the centrilobular region and finally replace the entire lobule. At histologic analysis, the small islands of increased attenuation very likely correspond with fibroblastic foci. Near these fibroblastic foci, an abnormal adjacency of alveolar walls was seen, suggesting alveolar collapse. In later stages, normal lung tissue is replaced by a large amount of young collagen, as seen in patients with advanced fibrosis. Conclusion Fibrosis and cyst formation in patients with IPF seem to start at the periphery of the pulmonary lobule and progressively extend toward the core of this anatomic lung unit. Evidence was found that alveolar collapse might already be present in an early stage when there is only little pulmonary fibrosis. © RSNA, 2016 PMID:27715655

  10. Clinical predictors of silent but substantial liver fibrosis in primary Sjogren's syndrome.

    PubMed

    Lee, Sang-Won; Kim, Beom Kyung; Park, Jun Yong; Kim, Do Young; Ahn, Sang Hoon; Song, Jungsik; Park, Yong-Beom; Lee, Soo-Kon; Han, Kwang-Hyub; Kim, Seung Up

    2016-07-01

    To investigate the prevalence and the predictors of silent but substantial liver fibrosis in patients with primary Sjogren's syndrome (pSS). We enrolled 101 pSS patients with normal liver function and structures, and without significant liver diseases or other conditions affecting liver fibrosis. The European league against rheumatism (EULAR) SS patients reported index (ESSPRI) and the EULAR SS disease activity index (ESSDAI) were analyzed. Liver stiffness (LS) was measured using transient elastography and 7.4 kPa was determined as the cutoff value for significant liver fibrosis. The median age of patients (91women) was 53 years and the median LS value was 4.7 kPa. The median ESSPRI and ESSDAI showed no correlation with LS values. Twelve patients (11.9%) had significant liver fibrosis. In multivariate logistic regression, white blood cells count ≤4000.0/mm(3) (Odds ratio [OR] 9.821), serum albumin ≤3.8 mg/dL (OR 16.770) and aspartate aminotransferase (AST) ≥ 27.0 IU/L (OR 20.858) independently predicted silent but substantial liver fibrosis in pSS patients. The prevalence of silent but substantial liver fibrosis was 11.9% in pSS and its predictors were leukopenia, decreased serum albumin and increased AST levels.

  11. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis.

    PubMed

    Ding, Hao; Jiang, Lei; Xu, Jing; Bai, Feng; Zhou, Yang; Yuan, Qi; Luo, Jing; Zen, Ke; Yang, Junwei

    2017-09-01

    Chronic kidney diseases generally lead to renal fibrosis. Despite great progress having been made in identifying molecular mediators of fibrosis, the mechanism that governs renal fibrosis remains unclear, and so far no effective therapeutic antifibrosis strategy is available. Here we demonstrated that a switch of metabolism from oxidative phosphorylation to aerobic glycolysis (Warburg effect) in renal fibroblasts was the primary feature of fibroblast activation during renal fibrosis and that suppressing renal fibroblast aerobic glycolysis could significantly reduce renal fibrosis. Both gene and protein assay showed that the expression of glycolysis enzymes was upregulated in mouse kidneys with unilateral ureter obstruction (UUO) surgery or in transforming growth factor-β1 (TGF-β1)-treated renal interstitial fibroblasts. Aerobic glycolysis flux, indicated by glucose uptake and lactate production, was increased in mouse kidney with UUO nephropathy or TGF-β1-treated renal interstitial fibroblasts and positively correlated with fibrosis process. In line with this, we found that increasing aerobic glycolysis can remarkably induce myofibroblast activation while aerobic glycolysis inhibitors shikonin and 2-deoxyglucose attenuate UUO-induced mouse renal fibrosis and TGF-β1-stimulated myofibroblast activation. Furthermore, mechanistic study indicated that shikonin inhibits renal aerobic glycolysis via reducing phosphorylation of pyruvate kinase type M2, a rate-limiting glycolytic enzyme associated with cell reliance on aerobic glycolysis. In conclusion, our findings demonstrate the critical role of aerobic glycolysis in renal fibrosis and support treatment with aerobic glycolysis inhibitors as a potential antifibrotic strategy. Copyright © 2017 the American Physiological Society.

  12. Andrographolide attenuates skeletal muscle dystrophy in mdx mice and increases efficiency of cell therapy by reducing fibrosis.

    PubMed

    Cabrera, Daniel; Gutiérrez, Jaime; Cabello-Verrugio, Claudio; Morales, Maria Gabriela; Mezzano, Sergio; Fadic, Ricardo; Casar, Juan Carlos; Hancke, Juan L; Brandan, Enrique

    2014-01-01

    Duchenne muscular dystrophy (DMD) is characterized by the absence of the cytoskeletal protein dystrophin, muscle wasting, increased transforming growth factor type beta (TGF-β) signaling, and fibrosis. At the present time, the only clinically validated treatments for DMD are glucocorticoids. These drugs prolong muscle strength and ambulation of patients for a short term only and have severe adverse effects. Andrographolide, a bicyclic diterpenoid lactone, has traditionally been used for the treatment of colds, fever, laryngitis, and other infections with no or minimal side effects. We determined whether andrographolide treatment of mdx mice, an animal model for DMD, affects muscle damage, physiology, fibrosis, and efficiency of cell therapy. mdx mice were treated with andrographolide for three months and skeletal muscle histology, creatine kinase activity, and permeability of muscle fibers were evaluated. Fibrosis and TGF-β signaling were evaluated by indirect immunofluorescence and Western blot analyses. Muscle strength was determined in isolated skeletal muscles and by a running test. Efficiency of cell therapy was determined by grafting isolated skeletal muscle satellite cells onto the tibialis anterior of mdx mice. mdx mice treated with andrographolide exhibited less severe muscular dystrophy than untreated dystrophic mice. They performed better in an exercise endurance test and had improved muscle strength in isolated muscles, reduced skeletal muscle impairment, diminished fibrosis and a significant reduction in TGF-β signaling. Moreover, andrographolide treatment of mdx mice improved grafting efficiency upon intramuscular injection of dystrophin-positive satellite cells. These results suggest that andrographolide could be used to improve quality of life in individuals with DMD.

  13. Corona-directed nucleic acid delivery into hepatic stellate cells for liver fibrosis therapy.

    PubMed

    Zhang, Zhengping; Wang, Chunming; Zha, Yinhe; Hu, Wei; Gao, Zhongfei; Zang, Yuhui; Chen, Jiangning; Zhang, Junfeng; Dong, Lei

    2015-03-24

    Strategies to modify nanoparticles with biological ligands for targeted drug delivery in vivo have been widely studied but met with limited clinical success. A possible reason is that, in the blood circulation, serum proteins could rapidly form a layer of protein "corona" on the vehicle surface, which might block the modified ligands and hamper their targeting functions. We speculate that strategies for drug delivery can be designed based upon elegant control of the corona formation on the vehicle surfaces. In this study, we demonstrate a retinol-conjugated polyetherimine (RcP) nanoparticle system that selectively recruited the retinol binding protein 4 (RBP) in its corona components. RBP was found to bind retinol, and direct the antisense oligonucleotide (ASO)-laden RcP carrier to hepatic stellate cells (HSC), which play essential roles in the progression of hepatic fibrosis. In both mouse fibrosis models, induced by carbon tetrachloride (CCl4) and bile duct ligation (BDL), respectively, the ASO-laden RcP particles effectively suppressed the expression of type I collagen (collagen I), and consequently ameliorated hepatic fibrosis. Such findings suggest that this delivery system, designed to exploit the power of corona proteins, can serve as a promising tool for targeted delivery of therapeutic agents for the treatment of hepatic fibrosis.

  14. Hepatic stellate cell-specific deletion of SIRT1 exacerbates liver fibrosis in mice.

    PubMed

    Li, Min; Hong, Wenxuan; Hao, Chenzhi; Li, Luyang; Xu, Huihui; Li, Ping; Xu, Yong

    2017-12-01

    Liver fibrosis is widely perceived as a host defense mechanism that aids tissue repair following liver injury. Excessive fibrogenesis, however, serves to disrupt normal liver structure and precedes such irrevocable human pathologies as cirrhosis and hepatocellular carcinoma. Activation of hepatic stellate cells (HSCs) is a hallmark event during liver fibrosis. In the present study we investigated the mechanism by which the lysine deacetylase SIRT1 regulates HSC activation. We report here that SIRT1 levels were decreased in the liver in different mouse models and in cultured HSCs undergoing activation. SIRT1 down-regulation paralleled HDAC4 up-regulation. HDAC4 was recruited to the SIRT1 promoter during HSC activation and removed acetylated histones H3 and H4 from the SIRT1 promoter leading to SIRT1 trans-repression. HDAC4 silencing restored SIRT1 expression and attenuated HSC activation in SIRT1-dependent manner. More important, selective deletion of SIRT1 in HSCs exacerbated CCl 4 -induced liver fibrosis in mice. Mechanistically, SIRT1 deacetylated PPARγ to block HSC activation. Together, our data reveal an HDAC4-SIRT1-PPARγ axis that contributes to the regulation of HSC activation and liver fibrosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Stromal cells in tissue homeostasis: balancing regeneration and fibrosis.

    PubMed

    Rabelink, Ton J; Little, Melissa H

    2013-12-01

    The ageing population and the increasing prevalence of noncommunicable diseases such as diabetes and hypertension have led to an increased prevalence of chronic kidney disease. The generation of de novo kidney tissue from embryonic tissue and stem cells using tissue engineering approaches is being explored as an alternative to renal replacement therapy for treating the disease. It is, however, becoming clear that resident cells can not only induce fibrotic repair, but can also restore damaged kidney tissue. Mobilizing this innate capacity of the kidney to regenerate is of particular interest in the prevention of irreversible kidney failure. A novel concept is that the interaction of interstitial stromal cells with the local immune system may regulate tissue homeostasis and the balance between tissue repair and fibrosis. Mesenchymal stromal cells (MSCs), in particular, may enhance the intrinsic reparative capabilities of the kidney. This Perspectives article considers the innate regenerative potential of the kidney in the context of ongoing studies of MSC therapy.

  16. Quantitative CT analysis of honeycombing area in idiopathic pulmonary fibrosis: Correlations with pulmonary function tests.

    PubMed

    Nakagawa, Hiroaki; Nagatani, Yukihiro; Takahashi, Masashi; Ogawa, Emiko; Tho, Nguyen Van; Ryujin, Yasushi; Nagao, Taishi; Nakano, Yasutaka

    2016-01-01

    The 2011 official statement of idiopathic pulmonary fibrosis (IPF) mentions that the extent of honeycombing and the worsening of fibrosis on high-resolution computed tomography (HRCT) in IPF are associated with the increased risk of mortality. However, there are few reports about the quantitative computed tomography (CT) analysis of honeycombing area. In this study, we first proposed a computer-aided method for quantitative CT analysis of honeycombing area in patients with IPF. We then evaluated the correlations between honeycombing area measured by the proposed method with that estimated by radiologists or with parameters of PFTs. Chest HRCTs and pulmonary function tests (PFTs) of 36 IPF patients, who were diagnosed using HRCT alone, were retrospectively evaluated. Two thoracic radiologists independently estimated the honeycombing area as Identified Area (IA) and the percentage of honeycombing area to total lung area as Percent Area (PA) on 3 axial CT slices for each patient. We also developed a computer-aided method to measure the honeycombing area on CT images of those patients. The total honeycombing area as CT honeycombing area (HA) and the percentage of honeycombing area to total lung area as CT %honeycombing area (%HA) were derived from the computer-aided method for each patient. HA derived from three CT slices was significantly correlated with IA (ρ=0.65 for Radiologist 1 and ρ=0.68 for Radiologist 2). %HA derived from three CT slices was also significantly correlated with PA (ρ=0.68 for Radiologist 1 and ρ=0.70 for Radiologist 2). HA and %HA derived from all CT slices were significantly correlated with FVC (%pred.), DLCO (%pred.), and the composite physiologic index (CPI) (HA: ρ=-0.43, ρ=-0.56, ρ=0.63 and %HA: ρ=-0.60, ρ=-0.49, ρ=0.69, respectively). The honeycombing area measured by the proposed computer-aided method was correlated with that estimated by expert radiologists and with parameters of PFTs. This quantitative CT analysis of

  17. Host responses in tissue repair and fibrosis.

    PubMed

    Duffield, Jeremy S; Lupher, Mark; Thannickal, Victor J; Wynn, Thomas A

    2013-01-24

    Myofibroblasts accumulate in the spaces between organ structures and produce extracellular matrix (ECM) proteins, including collagen I. They are the primary "effector" cells in tissue remodeling and fibrosis. Previously, leukocyte progenitors termed fibrocytes and myofibroblasts generated from epithelial cells through epithelial-to-mesenchymal transition (EMT) were considered the primary sources of ECM-producing myofibroblasts in injured tissues. However, genetic fate mapping experiments suggest that mesenchyme-derived cells, known as resident fibroblasts, and pericytes are the primary precursors of scar-forming myofibroblasts, whereas epithelial cells, endothelial cells, and myeloid leukocytes contribute to fibrogenesis predominantly by producing key fibrogenic cytokines and by promoting cell-to-cell communication. Numerous cytokines derived from T cells, macrophages, and other myeloid cell populations are important drivers of myofibroblast differentiation. Monocyte-derived cell populations are key regulators of the fibrotic process: They act as a brake on the processes driving fibrogenesis, and they dismantle and degrade established fibrosis. We discuss the origins, modes of activation, and fate of myofibroblasts in various important fibrotic diseases and describe how manipulation of macrophage activation could help ameliorate fibrosis.

  18. Toward surface quantification of liver fibrosis progression

    NASA Astrophysics Data System (ADS)

    He, Yuting; Kang, Chiang Huen; Xu, Shuoyu; Tuo, Xiaoye; Trasti, Scott; Tai, Dean C. S.; Raja, Anju Mythreyi; Peng, Qiwen; So, Peter T. C.; Rajapakse, Jagath C.; Welsch, Roy; Yu, Hanry

    2010-09-01

    Monitoring liver fibrosis progression by liver biopsy is important for certain treatment decisions, but repeated biopsy is invasive. We envision redefinition or elimination of liver biopsy with surface scanning of the liver with minimally invasive optical methods. This would be possible only if the information contained on or near liver surfaces accurately reflects the liver fibrosis progression in the liver interior. In our study, we acquired the second-harmonic generation and two-photon excitation fluorescence microscopy images of liver tissues from bile duct-ligated rat model of liver fibrosis. We extracted morphology-based features, such as total collagen, collagen in bile duct areas, bile duct proliferation, and areas occupied by remnant hepatocytes, and defined the capsule and subcapsular regions on the liver surface based on image analysis of features. We discovered a strong correlation between the liver fibrosis progression on the anterior surface and interior in both liver lobes, where biopsy is typically obtained. The posterior surface exhibits less correlation with the rest of the liver. Therefore, scanning the anterior liver surface would obtain similar information to that obtained from biopsy for monitoring liver fibrosis progression.

  19. Vitamin D Attenuates Kidney Fibrosis via Reducing Fibroblast Expansion, Inflammation, and Epithelial Cell Apoptosis.

    PubMed

    Arfian, Nur; Muflikhah, Khusnul; Soeyono, Sri Kadarsih; Sari, Dwi Cahyani Ratna; Tranggono, Untung; Anggorowati, Nungki; Romi, Muhammad Mansyur

    2016-07-05

    Kidney fibrosis is the common final pathway of chronic kidney diseases (CKD). It is characterized by myofibroblast formation, inflammation, and epithelial architecture damage. Vitamin D is known as a renoprotective agent, although the precise mechanism is not well understood. This study aimed to elucidate the effect of vitamin D in fibroblast expansion, inflammation, and apoptosis in kidney fibrosis. We performed unilateral ureteral obstruction (UUO) in male Swiss-Webster background mice (3 months, 30-40 grams) to induce kidney fibrosis. The mice (n=25) were divided into five groups: UUO, 3 groups treated with different oral vitamin D doses (0.125 µg/kg (UUO+VD1), 0.25 µg/kg (UUO+VD2), and 0.5 µg/kg (UUO+VD3), and a Sham operation (SO) group with ethanol 0.2% supplementation. We sacrificed the mice on day14 after the operation and harvested the kidney. We made paraffin sections for histological analysis. Tubular injury and fibrosis were quantified based on periodic acid-Schiff (PAS) and Sirius Red (SR) staining. Immunostaining was done for examination of myofibroblasts (αSMA), fibroblasts (PDGFRβ), TLR4, and apoptosis (TUNEL). We did RNA extraction and cDNA for Reverse transcriptase PCR (RT-PCR) experiment for measuring MCP-1, ICAM-1, TLR4, and collagen 1 expression. TGFβ1 level was quantified using ELISA. We observed a significantly lower levels of fibrosis (p<0.001), tubular injury scores (p<0.001), and myofibroblast areas (p<0.001) in the groups treated with vitamin D compared with the UUO group. The TGFβ1 levels and the fibroblast quantifications were also significantly lower in the former group. However, we did not find any significant difference among the various vitamin D-treated groups. Concerning the dose-independent effect, we only compared the UUO+VD-1 group with SO group and found by TUNEL assay that UUO+VD-1 had a significantly lower epithelial cell apoptosis. RT-PCR analysis showed lower expression of collagen1, as well as inflammation

  20. Progenitor-like cells derived from mouse kidney protect against renal fibrosis in a remnant kidney model via decreased endothelial mesenchymal transition.

    PubMed

    Chen, C L; Chou, K J; Fang, H C; Hsu, C Y; Huang, W C; Huang, C W; Huang, C K; Chen, H Y; Lee, P T

    2015-12-02

    Pathophysiological changes associated with chronic kidney disease impair angiogenic processes and increase renal fibrosis. Progenitor-like cells derived from adult kidney have been previously used to promote regeneration in acute kidney injury, even though it remained unclear whether the cells could be beneficial in chronic kidney disease (CKD). In this study, we established a CKD model by five-sixths nephrectomy and mouse kidney progenitor-like cells (MKPCs) were intravenously administered weekly for 5 weeks after establishing CKD. We examined the impact of MKPCs on the progression of renal fibrosis and the potential of MKPCs to preserve the angiogenic process and prevent endothelial mesenchymal transition in vivo and in vitro. Our results demonstrate that the MKPCs delayed interstitial fibrosis and the progression of glomerular sclerosis and ameliorated the decline of kidney function. At 17 weeks, the treated mice exhibited lower blood pressures, higher hematocrit levels, and larger kidney sizes than the control mice. In addition, the MKPC treatment prolonged the survival of the mice with chronic kidney injuries. We observed a decreased recruitment of macrophages and myofibroblasts in the interstitium and the increased tubular proliferation. Notably, MKPC both decreased the level of vascular rarefaction and prevented endothelial mesenchymal transition (EndoMT) in the remnant kidneys. Moreover, the conditioned medium from the MKPCs ameliorated endothelial cell death under hypoxic culture conditions and prevented TGF-β-induced EndoMT through downregulation of phosphorylated Smad 3 in vitro. MKPCs may be a beneficial treatment for kidney diseases characterized by progressive renal fibrosis. The enhanced preservation of angiogenic processes following MKPC injections may be associated with decreased fibrosis in the remnant kidney. These findings provide further understanding of the mechanisms involved in these processes and will help develop new cell

  1. Modulation of surgical fibrosis by microbial zwitterionic polysaccharides

    NASA Astrophysics Data System (ADS)

    Ruiz-Perez, Begonia; Chung, Doo R.; Sharpe, Arlene H.; Yagita, Hideo; Kalka-Moll, Wiltrud M.; Sayegh, Mohamed H.; Kasper, Dennis L.; Tzianabos, Arthur O.

    2005-11-01

    Bacterial carbohydrates have long been considered T cell-independent antigens that primarily induce humoral immune responses. Recently, it has been demonstrated that bacterial capsules that possess a zwitterionic charge motif can activate CD4+ T cells after processing and presentation by antigen-presenting cells. Here we show that these zwitterionic polysaccharides can prevent T helper 1-mediated fibrosis by signaling for the release of IL-10 from CD4+ T cells in vivo. IL-10 production by these T cells and their ability to prevent fibrosis is controlled by the inducible costimulator (ICOS)-ICOS ligand pathway. These data demonstrate that the interaction of the zwitterionic polysaccharides with T cells results in modulation of surgical fibrosis in vivo and suggest a previously undescribed approach to "harnessing" T cell function to prevent inflammatory tissue disorders in humans. IL-10 | microbial polysaccharides | inducible costimulator

  2. Substance P increases liver fibrosis by differential changes in senescence of cholangiocytes and hepatic stellate cells.

    PubMed

    Wan, Ying; Meng, Fanyin; Wu, Nan; Zhou, Tianhao; Venter, Julie; Francis, Heather; Kennedy, Lindsey; Glaser, Trenton; Bernuzzi, Francesca; Invernizzi, Pietro; Glaser, Shannon; Huang, Qiaobing; Alpini, Gianfranco

    2017-08-01

    Substance P (SP) is involved in the proliferation of cholangiocytes in bile duct-ligated (BDL) mice and human cholangiocarcinoma growth by interacting with the neurokinin-1 receptor (NK-1R). To identify whether SP regulates liver fibrosis during cholestasis, wild-type or NK-1R knockout (NK-1R -/- ) mice that received BDL or sham surgery and multidrug resistance protein 2 knockout (Mdr2 -/- ) mice treated with either an NK-1R antagonist (L-733,060) or saline were used. Additionally, wild-type mice were treated with SP or saline intraperitoneally. In vivo, there was increased expression of tachykinin precursor 1 (coding SP) and NK-1R in both BDL and Mdr2 -/- mice compared to wild-type mice. Expression of tachykinin precursor 1 and NK-1R was significantly higher in liver samples from primary sclerosing cholangitis patients compared to healthy controls. Knockout of NK-1R decreased BDL-induced liver fibrosis, and treatment with L-733,060 resulted in decreased liver fibrosis in Mdr2 -/- mice, which was shown by decreased sirius red staining, fibrosis gene and protein expression, and reduced transforming growth factor-β1 levels in serum and cholangiocyte supernatants. Furthermore, we observed that reduced liver fibrosis in NK-1R -/- mice with BDL surgery or Mdr2 -/- mice treated with L-733,060 was associated with enhanced cellular senescence of hepatic stellate cells and decreased senescence of cholangiocytes. In vitro, L-733,060 inhibited SP-induced expression of fibrotic genes in hepatic stellate cells and cholangiocytes; treatment with L-733,060 partially reversed the SP-induced decrease of senescence gene expression in cultured hepatic stellate cells and the SP-induced increase of senescence-related gene expression in cultured cholangiocytes. Collectively, our results demonstrate the regulatory effects of the SP/NK-1R axis on liver fibrosis through changes in cellular senescence during cholestatic liver injury. (Hepatology 2017;66:528-541). © 2017 by the American

  3. Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis

    PubMed Central

    2010-01-01

    Background No effective treatment for acute lung injury and fibrosis currently exists. Aim of this study was to investigate the time-dependent effect of bone marrow-derived mesenchymal stem cells (BMDMSCs) on bleomycin (BLM)-induced acute lung injury and fibrosis and nitric oxide metabolites and inflammatory cytokine production. Methods BMDMSCs were transferred 4 days after BLM inhalation. Wet/dry ratio, bronchoalveolar lavage cell profiles, histologic changes and deposition of collagen were analyzed. Results Nitrite, nitrate and cytokines were measured weekly through day 28. At day 7, the wet/dry ratio, neutrophilic inflammation, and amount of collagen were elevated in BLM-treated rats compared to sham rats (p = 0.05-0.002). Levels nitrite, nitrate, IL-1β, IL-6, TNF-α, TGF-β and VEGF were also higher at day 7 (p < 0.05). Degree of lymphocyte and macrophage infiltration increased steadily over time. BMDMSC transfer significantly reduced the BLM-induced increase in wet/dry ratio, degree of neutrophilic infiltration, collagen deposition, and levels of the cytokines, nitrite, and nitrate to those in sham-treated rats (p < 0.05). Fluorescence in situ hybridization localized the engrafted cells to areas of lung injury. Conclusion Systemic transfer of BMDMSCs effectively reduced the BLM-induced lung injury and fibrosis through the down-regulation of nitric oxide metabolites, and proinflammatory and angiogenic cytokines. PMID:20137099

  4. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling

    PubMed Central

    Micheletti, Rudi; Plaisance, Isabelle; Abraham, Brian J.; Sarre, Alexandre; Ting, Ching-Chia; Alexanian, Michael; Maric, Daniel; Maison, Damien; Nemir, Mohamed; Young, Richard A.; Schroen, Blanche; González, Arantxa; Ounzain, Samir; Pedrazzini, Thierry

    2017-01-01

    Long noncoding RNAs (lncRNAs) are emerging as powerful regulators of cardiac development and disease. However, our understanding of the importance of these molecules in cardiac fibrosis is limited. Using an integrated genomic screen, we identified Wisper (Wisp2 super-enhancer–associated RNA) as a cardiac fibroblast–enriched lncRNA that regulates cardiac fibrosis after injury. Wisper expression was correlated with cardiac fibrosis both in a murine model of myocardial infarction (MI) and in heart tissue from human patients suffering from aortic stenosis. Loss-of-function approaches in vitro using modified antisense oligonucleotides (ASOs) demonstrated that Wisper is a specific regulator of cardiac fibroblast proliferation, migration, and survival. Accordingly, ASO-mediated silencing of Wisper in vivo attenuated MI-induced fibrosis and cardiac dysfunction. Functionally, Wisper regulates cardiac fibroblast gene expression programs critical for cell identity, extracellular matrix deposition, proliferation, and survival. In addition, its association with TIA1-related protein allows it to control the expression of a profibrotic form of lysyl hydroxylase 2, implicated in collagen cross-linking and stabilization of the matrix. Together, our findings identify Wisper as a cardiac fibroblast–enriched super-enhancer–associated lncRNA that represents an attractive therapeutic target to reduce the pathological development of cardiac fibrosis in response to MI and prevent adverse remodeling in the damaged heart. PMID:28637928

  5. Morphometric study of the fibrosis and mast cell count in the circular colon musculature of chronic Chagas patients with and without megacolon.

    PubMed

    Pinheiro, Simone Wanderley; Rua, Adilha Misson de Oliveira; Etchebehere, Renata Margarida; Cançado, Cristiane Gobbo; Chica, Javier Em lio Lazo; Lopes, Edison Reis; Adad, Sheila Jorge

    2003-01-01

    A morphometric study of the circular colon musculature was performed, in which the mast cell count was determined and the connective fibrous tissue in this layer was measured. The objective was to gain better understanding of Chagas megacolon morphology and contribute towards the knowledge of fibrosis pathogenesis in Chagas megas. An evaluation was made of 15 distal sigmoid rings from Chagas patients with megacolon (MCC), 15 without megacolon (CSMC) and 15 non-Chagas patients (NC). The rings were fixed in formol, embedded in paraffin, and 7mm thick sections were cut and stained using Azan-Heidenhain and Giemsa. The mast cell count and fibrosis were greater in the MCC group than in the CSMC and NC groups (p< 0,05; Kruskal-Wallis test) and there was no significant difference between the latter two. The fibrosis and increased mast cell count in the colon musculature of the MCC group possibly indicates that there is a relationship between mastocytosis and fibrosis, as has already been demonstrated in other pathologies.

  6. Cultured Mycelium Cordyceps sinensis allevi¬ates CCl4-induced liver inflammation and fibrosis in mice by activating hepatic natural killer cells.

    PubMed

    Peng, Yuan; Huang, Kai; Shen, Li; Tao, Yan-yan; Liu, Cheng-hai

    2016-02-01

    Recent evidence shows that cultured mycelium Cordyceps sinensis (CMCS) effectively protects against liver fibrosis in mice. Here, we investigated whether the anti-fibrotic action of CMCS was related to its regulation of the activity of hepatic natural killer (NK) cells in CCl4-treated mice. C57BL/6 mice were injected with 10% CCl4 (2 mL/kg, ip) 3 times per week for 4 weeks, and received CMCS (120 mg·kg(-1)·d(-1), ig) during this period. In another part of experiments, the mice were also injected with an NK cell-deleting antibody ASGM-1 (20 μg, ip) 5 times in the first 3 weeks. After the mice were sacrificed, serum liver function, and liver inflammation, hydroxyproline content and collagen deposition were assessed. The numbers of hepatic NK cells and expression of NKG2D (activation receptor of NK cells) on isolated liver lymphocytes were analyzed using flow cytometry. Desmin expression and cell apoptosis in liver tissues were studied using desmin staining and TUNEL assay, respectively. The levels of α-SMA, TGF-β, RAE-1δ and RAE-1ε in liver tissues were determined by RT-qPCR. In CCl4-treated mice, CMCS administration significantly improved liver function, attenuated liver inflammation and fibrosis, and increased the numbers of hepatic NK cells and expression level of NKG2D on hepatic NK cells. Furthermore, CMCS administration significantly decreased desmin expression in liver tissues, and increased TUNEL staining adjacent to hepatic stellate cells. Injection with NK cell-deleting ASGM-1 not only diminished the numbers of hepatic NK cells, but also greatly accelerated liver inflammation and fibrosis in CCl4-treated mice. In CCl4-treated mice with NK cell depletion, CMCS administration decelerated the rate of liver fibrosis development, and mildly upregulated the numbers of hepatic NK cells but without changing NKG2D expression. CMCS alleviates CCl4-induced liver inflammation and fibrosis via promoting activation of hepatic NK cells. CMCS partially reverses ASGM

  7. Bone marrow multipotent mesenchymal stromal cells do not reduce fibrosis or improve function in a rat model of severe chronic liver injury.

    PubMed

    Carvalho, Adriana B; Quintanilha, Luiz Fernando; Dias, Juliana V; Paredes, Bruno D; Mannheimer, Elida G; Carvalho, Felipe G; Asensi, Karina D; Gutfilen, Bianca; Fonseca, Lea Mirian B; Resende, Celia Maria C; Rezende, Guilherme F M; Takiya, Christina M; de Carvalho, Antonio Carlos Campos; Goldenberg, Regina C S

    2008-05-01

    The objective of our study was to evaluate the therapeutic potential of bone marrow mesenchymal stromal cells (MSC) in a rat model of severe chronic liver injury. Fourteen female Wistar rats were fed exclusively an alcoholic liquid diet and received intraperitoneal injections of carbon tetrachloride every other day during 15 weeks. After this period, eight animals (MSC group) had 1 x 10(7) cells injected into the portal vein while six animals (placebo group) received vehicle. Blood analysis was performed to evaluate alanine aminotransferase (ALT), aspartate aminotransferase (AST), and albumin before cell therapy and 1 and 2 months after cell or placebo infusion. Fibrosis was evaluated before and 1 month after cell or placebo injection by liver biopsies. Two months after cell delivery, animals were sacrificed and histological analysis of the livers was performed. Fibrosis was quantified by histomorphometry. Biopsies obtained before cell infusion showed intense collagen deposition and septa interconnecting regenerative nodules. One month after cell injection, this result was unaltered and differences in fibrosis quantification were not found between MSC and placebo groups. ALT and AST returned to normal values 2 weeks after cell or placebo infusion, without significant differences between experimental groups. Two months after cell or placebo injection, albumin had also returned to normal values and histological results were maintained, again without differences between MSC and placebo groups. Therefore, under our experimental conditions, MSC were unable to reduce fibrosis or improve liver function in a rat model of severe chronic liver injury.

  8. Leptin promotes pulmonary fibrosis development by inhibiting autophagy via PI3K/Akt/mTOR pathway.

    PubMed

    Gui, Xianhua; Chen, Hongwei; Cai, Hourong; Sun, Lingyun; Gu, Luo

    2018-04-06

    Leptin, a protein-related product of the obesity gene, plays an important role in the pathogenesis of fibrotic diseases including pulmonary fibrosis. As a highly conservative process, autophagy regulates various biological functions. Otherwise, insufficient autophagy has been described in alveolar epithelial cells (AEC) to cope with the progression of pulmonary fibrosis. Hence, this study is to investigate the effects of leptin on fibrosis in TGF-β1 induced epithelial mesenchymal transition (EMT) and the potential roles of autophagy in this processes. Our results showed that the elevated leptin level in serum correlated with the severity of lung fibrosis and leptin significantly promoted the EMT in A549 cells as evidenced by promoting collagen I and α-SMA production. Additionally, treatment with leptin decreased autophagosome formation, inhibited the lipidation of LC3I to LC3II, and up-regulated the expression of p62 via activating PI3K/Akt/mTOR pathway, which is indicative of inhibition of autophagy by leptin. Finally, rapmycin pretreatment reversed the pro-fibrogenic effects of leptin. Taken together, our study suggested that leptin accelerated the EMT of A549 cells through inhibiting autophagy via PI3K/Akt/mTOR pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Skin elasticity as a measure of radiation fibrosis: is it reproducible and does it correlate with patient and physician-reported measures?

    PubMed

    Nguyen, Nhu-Tram A; Roberge, David; Freeman, Carolyn R; Wong, Cindy; Hines, Jerod; Turcotte, Robert E

    2014-10-01

    Current means of measuring RT-induced fibrosis are subjective. We evaluated the DermaLab suction cup system to measure objectively skin deflection as a surrogate for fibrosis. Sixty-nine patients with E-STS were treated with limb-sparing surgery and 50-66 Grays (Gy) of RT. Using a "scleroderma" DermaLab Suction Cup, the skin stiffness was measured by two clinicians. The National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE) scale, the Musculoskeletal Tumor Rating Scale (MSTS) and Toronto Extremity Salvage Score (TESS) questionnaires were completed for each patient. Levels of agreement between measurers were estimated using the Kappa (k) coefficient and the concordance correlation coefficient (CCC). All sixty-nine patients were included. The level of agreement between measurers for NCI-CTCAE grading was moderate (range k = 0.41-0.59). The CCC for the elasticity measurements were higher, with CCC = 0.82 for fibrotic skin and CCC 5 0.84 for normal skin. The elasticity measurements were significantly higher when MSTS scores were <30 and or TESS scores were <90. Suction Cup measurement of skin elasticity is more reproducible than CTCAE grading and shows promise in generating reproducible measurements for radiation-induced skin fibrosis. Furthermore, it correlates well with the MSTS and TESS.

  10. Cyanide levels found in infected cystic fibrosis sputum inhibit airway ciliary function.

    PubMed

    Nair, Chandrika; Shoemark, Amelia; Chan, Mario; Ollosson, Sarah; Dixon, Mellissa; Hogg, Claire; Alton, Eric W F W; Davies, Jane C; Williams, Huw D

    2014-11-01

    We have previously reported cyanide at concentrations of up to 150 μM in the sputum of cystic fibrosis patients infected with Pseudomonas aeruginosa and a negative correlation with lung function. Our aim was to investigate possible mechanisms for this association, focusing on the effect of pathophysiologically relevant cyanide levels on human respiratory cell function. Ciliary beat frequency measurements were performed on nasal brushings and nasal air-liquid interface (ALI) cultures obtained from healthy volunteers and cystic fibrosis patients. Potassium cyanide decreased ciliary beat frequency in healthy nasal brushings (n = 6) after 60 min (150 μM: 47% fall, p<0.0012; 75 μM: 32% fall, p<0.0001). Samples from cystic fibrosis patients (n = 3) showed similar results (150 μM: 55% fall, p = 0.001). Ciliary beat frequency inhibition was not due to loss of cell viability and was reversible. The inhibitory mechanism was independent of ATP levels. KCN also significantly inhibited ciliary beat frequency in ALI cultures, albeit to a lesser extent. Ciliary beat frequency measurements on ALI cultures treated with culture supernatants from P. aeruginosa mutants defective in virulence factor production implicated cyanide as a key component inhibiting the ciliary beat frequency. If cyanide production similarly impairs mucocilliary clearance in vivo, it could explain the link with increased disease severity observed in cystic fibrosis patients with detectable cyanide in their airway. ©ERS 2014.

  11. Dihydroartemisinin alleviates bile duct ligation-induced liver fibrosis and hepatic stellate cell activation by interfering with the PDGF-βR/ERK signaling pathway.

    PubMed

    Chen, Qin; Chen, Lianyun; Kong, Desong; Shao, Jiangjuan; Wu, Li; Zheng, Shizhong

    2016-05-01

    Liver fibrosis represents a frequent event following chronic insult to trigger wound healing responses in the liver. Activation of hepatic stellate cells (HSCs), which is a pivotal event during liver fibrogenesis, is accompanied by enhanced expressions of a series of marker proteins and pro-fibrogenic signaling molecules. Artemisinin, a powerful antimalarial medicine, is extracted from the Chinese herb Artemisia annua L., and can inhibit the proliferation of cancer cells. Dihydroartemisinin (DHA), the major active metabolite of artemisinin, is able to attenuate lung injury and fibrosis. However, the effect of DHA on liver fibrosis remains unclear. The aim of this study was to investigate the effect of DHA on bile duct ligation-induced injury and fibrosis in rats. DHA improved the liver histological architecture and attenuated collagen deposition in the fibrotic rat liver. Experiments in vitro showed that DHA inhibited the proliferation of HSCs and arrested the cell cycle at the S checkpoint by altering several cell-cycle regulatory proteins. Moreover, DHA reduced the protein expressions of a-SMA, α1 (I) collagen and fibronectin, being associated with interference of the platelet-derived growth factor β receptor (PDGF-βR)-mediated ERK pathway. These data collectively revealed that DHA relieved liver fibrosis possibly by targeting HSCs via the PDGF-βR/ERK pathway. DHA may be a therapeutic antifibrotic agent for the treatment of hepatic fibrosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Evolving therapies for liver fibrosis

    PubMed Central

    Schuppan, Detlef; Kim, Yong Ook

    2013-01-01

    Fibrosis is an intrinsic response to chronic injury, maintaining organ integrity when extensive necrosis or apoptosis occurs. With protracted damage, fibrosis can progress toward excessive scarring and organ failure, as in liver cirrhosis. To date, antifibrotic treatment of fibrosis represents an unconquered area for drug development, with enormous potential but also high risks. Preclinical research has yielded numerous targets for antifibrotic agents, some of which have entered early-phase clinical studies, but progress has been hampered due to the relative lack of sensitive and specific biomarkers to measure fibrosis progression or reversal. Here we focus on antifibrotic approaches for liver that address specific cell types and functional units that orchestrate fibrotic wound healing responses and have a sound preclinical database or antifibrotic activity in early clinical trials. We also touch upon relevant clinical study endpoints, optimal study design, and developments in fibrosis imaging and biomarkers. PMID:23635787

  13. Fibrosis of the pancreas: the initial tissue damage and the resulting pattern.

    PubMed

    Klöppel, Günter; Detlefsen, Sönke; Feyerabend, Bernd

    2004-07-01

    Fibrosis in the pancreas is caused by such processes as necrosis/apoptosis, inflammation or duct obstruction. The initial event that induces fibrogenesis in the pancreas is an injury that may involve the interstitial mesenchymal cells, the duct cells and/or the acinar cells. Damage to any one of these tissue compartments of the pancreas is associated with cytokine-triggered transformation of resident fibroblasts/pancreatic stellate cells into myofibroblasts and the subsequent production and deposition of extracellular matrix. Depending on the site of injury in the pancreas and the involved tissue compartment, predominantly inter(peri)lobular fibrosis (as in alcoholic chronic pancreatitis), periductal fibrosis (as in hereditary pancreatitis), periductal and interlobular fibrosis (as in autoimmune pancreatitis) or diffuse inter- and intralobular fibrosis (as in obstructive chronic pancreatitis) develops.

  14. SAHA Suppresses Peritoneal Fibrosis in Mice

    PubMed Central

    Io, Kumiko; Nishino, Tomoya; Obata, Yoko; Kitamura, Mineaki; Koji, Takehiko; Kohno, Shigeru

    2015-01-01

    ♦ Objective: Long-term peritoneal dialysis causes peritoneal fibrosis in submesothelial areas. However, the mechanism of peritoneal fibrosis is unclear. Epigenetics is the mechanism to induce heritable changes without any changes in DNA sequences. Among epigenetic modifications, histone acetylation leads to the transcriptional activation of genes. Recent studies indicate that histone acetylation is involved in the progression of fibrosis. Therefore, we examined the effect of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on the progression of peritoneal fibrosis in mice. ♦ Methods: Peritoneal fibrosis was induced by the injection of chlorhexidine gluconate (CG) into the peritoneal cavity of mice every other day for 3 weeks. SAHA, or a dimethylsulfoxide and saline vehicle, was administered subcutaneously every day from the start of the CG injections for 3 weeks. Morphologic peritoneal changes were assessed by Masson’s trichrome staining, and fibrosis-associated factors were assessed by immunohistochemistry. ♦ Results: In CG-injected mice, a marked thickening of the submesothelial compact zone was observed. In contrast, the administration of SAHA suppressed the progression of submesothelial thickening and type III collagen accumulation in CG-injected mice. The numbers of fibroblast-specific protein-1-positive cells and α-smooth muscle actin α-positive cells were significantly decreased in the CG + SAHA group compared to that of the CG group. The level of histone acetylation was reduced in the peritoneum of the CG group, whereas it was increased in the CG + SAHA group. ♦ Conclusions: Our results indicate that SAHA can suppress peritoneal thickening and fibrosis in mice through up-regulation of histone acetylation. These results suggest that SAHA may have therapeutic potential for treating peritoneal fibrosis. PMID:24584598

  15. Elucidation of the therapeutic role of mitochondrial biogenesis transducers NRF-1 in the regulation of renal fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Pei-Fang; Graduate Institute of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan; Liu, Shu-Fen

    Background: Mitochondrial dysfunction is a newly established risk factor for the development of renal fibrosis. Cell survival and injury repair is facilitated by mitochondrial biogenesis. Nuclear respiratory factor 1 (NRF-1) is a transcriptional regulation factor that plays a central role in the regulation of mitochondrial biogenesis. However, the transcription factor of this process in renal fibrosis is unknown. Thus, we hereby discussed the correlations of NRF-1 and renal interstitial fibrosis. Materials and methods: In vitro fibrosis model was established by treatment with transforming growth factor-β1 (TGF-β1) in NRK-49F (Normal Rat kidney fibroblast). We investigated the ROS production, mitochondrial biogenesis andmore » fibrogenic marker (e.q. fibronectin) during the progression of renal fibrosis by kit and Western blotting assay. Here, we used that two distinct mechanisms regulate NRF-1 activation and degradation of NRF-1. NRF-1 was transfect by pcDNA-NRF-1 overexpression gene to evaluate the NRF-1 activity of the therapeutic effect in renal fibrosis. In addition, NRF-1 was silenced by shRNA-NRF-1 to evaluate the significance of NRF-1. ELISA was used to evaluate the secreted fibronectin. Immunofluorescence staining was used to assay the in situ expression of proteins (e.g. fibronectin, NRF-1). Results: Under renal fibrosis conditions, TGF-β1 (5 ng/ml) increased ROS. Simultaneously, TGF-β1-induced extracellular fibronectin by ELISA assay. In addition, TGF-β1 decreased expression of mitochondrial biogenesis. This is the first time to demonstrate that expression of NRF-1 is significantly decreased in renal fibrosis. However, NRK49F was a transfection with pcDNA-NRF-1 (2 μg/ml) expression vector dramatically reverse TGF-β1-induced cellular fibrosis concomitantly with the suppression of fibronectin (both intracellular and extracellular fibronectin). More importantly, transfection with shRNA-NRF-1 (2 μg/ml) significantly increased the expression of

  16. Elucidation of the therapeutic role of mitochondrial biogenesis transducers NRF-1 in the regulation of renal fibrosis.

    PubMed

    Hsieh, Pei-Fang; Liu, Shu-Fen; Hung, Tsung-Jen; Hung, Chien-Ya; Liu, Guo-Zheng; Chuang, Lea-Yea; Chen, Mei-Fen; Wang, Jue-Long; Shi, Ming-Der; Hsu, Chen Hung; Shiue, Yow-Ling; Yang, Yu-Lin

    2016-11-15

    Mitochondrial dysfunction is a newly established risk factor for the development of renal fibrosis. Cell survival and injury repair is facilitated by mitochondrial biogenesis. Nuclear respiratory factor 1 (NRF-1) is a transcriptional regulation factor that plays a central role in the regulation of mitochondrial biogenesis. However, the transcription factor of this process in renal fibrosis is unknown. Thus, we hereby discussed the correlations of NRF-1 and renal interstitial fibrosis. In vitro fibrosis model was established by treatment with transforming growth factor-β1 (TGF-β1) in NRK-49F (Normal Rat kidney fibroblast). We investigated the ROS production, mitochondrial biogenesis and fibrogenic marker (e.q. fibronectin) during the progression of renal fibrosis by kit and Western blotting assay. Here, we used that two distinct mechanisms regulate NRF-1 activation and degradation of NRF-1. NRF-1 was transfect by pcDNA-NRF-1 overexpression gene to evaluate the NRF-1 activity of the therapeutic effect in renal fibrosis. In addition, NRF-1 was silenced by shRNA-NRF-1 to evaluate the significance of NRF-1. ELISA was used to evaluate the secreted fibronectin. Immunofluorescence staining was used to assay the in situ expression of proteins (e.g. fibronectin, NRF-1). Under renal fibrosis conditions, TGF-β1 (5ng/ml) increased ROS. Simultaneously, TGF-β1-induced extracellular fibronectin by ELISA assay. In addition, TGF-β1 decreased expression of mitochondrial biogenesis. This is the first time to demonstrate that expression of NRF-1 is significantly decreased in renal fibrosis. However, NRK49F was a transfection with pcDNA-NRF-1 (2μg/ml) expression vector dramatically reverse TGF-β1-induced cellular fibrosis concomitantly with the suppression of fibronectin (both intracellular and extracellular fibronectin). More importantly, transfection with shRNA-NRF-1 (2μg/ml) significantly increased the expression of fibronectin of both intercellular and extracellular origins

  17. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna

    2011-02-15

    Arsenic is an environmental toxicant and carcinogen. Exposure to arsenic is associated with development of liver fibrosis and portal hypertension through ill defined mechanisms. We evaluated hepatic fibrogenesis after long term arsenic exposure in a murine model. BALB/c mice were exposed to arsenic by daily gavages of 6 {mu}g/gm body weight for 1 year and were evaluated for markers of hepatic oxidative stress and fibrosis, as well as pro-inflammatory, pro-apoptotic and pro-fibrogenic factors at 9 and 12 months. Hepatic NADPH oxidase activity progressively increased in arsenic exposure with concomitant development of hepatic oxidative stress. Hepatic steatosis with occasional collection ofmore » mononuclear inflammatory cells and mild portal fibrosis were the predominant liver lesion observed after 9 months of arsenic exposure, while at 12 months, the changes included mild hepatic steatosis, inflammation, necrosis and significant fibrosis in periportal areas. The pathologic changes in the liver were associated with markers of hepatic stellate cells (HSCs) activation, matrix reorganization and fibrosis including {alpha}-smooth muscle actin, transforming growth factor-{beta}1, PDGF-R{beta}, pro-inflammatory cytokines and enhanced expression of tissue inhibitor of metalloproteinase-1 and pro({alpha}) collagen type I. Moreover, pro-apoptotic protein Bax was dominantly expressed and Bcl-2 was down-regulated along with increased number of TUNEL positive hepatocytes in liver of arsenic exposed mice. Furthermore, HSCs activation due to increased hepatic oxidative stress observed after in vivo arsenic exposure was recapitulated in co-culture model of isolated HSCs and hepatocytes exposed to arsenic. These findings have implications not only for the understanding of the pathology of arsenic related liver fibrosis but also for the design of preventive strategies in chronic arsenicosis.« less

  18. Pathobiology of liver fibrosis: a translational success story

    PubMed Central

    Lee, Youngmin A; Wallace, Michael C; Friedman, Scott L

    2015-01-01

    Reversibility of hepatic fibrosis and cirrhosis following antiviral therapy for hepatitis B or C has advanced the prospect of developing antifibrotic therapies for patients with chronic liver diseases, especially non-alcoholic steatohepatitis. Mechanisms of fibrosis have focused on hepatic stellate cells, which become fibrogenic myofibroblasts during injury through ‘activation’, and are at the nexus of efforts to define novel drug targets. Recent studies have clarified pathways of stellate cell gene regulation and epigenetics, emerging pathways of fibrosis regression through the recruitment and amplification of fibrolytic macrophages, nuanced responses of discrete inflammatory cell subsets and the identification of the ‘ductular reaction’ as a marker of severe injury and repair. Based on our expanded knowledge of fibrosis pathogenesis, attention is now directed towards strategies for antifibrotic therapies and regulatory challenges for conducting clinical trials with these agents. New therapies are attempting to: 1) Control or cure the primary disease or reduce tissue injury; 2) Target receptor-ligand interactions and intracellular signaling; 3) Inhibit fibrogenesis; and 4) Promote resolution of fibrosis. Progress is urgently needed in validating non-invasive markers of fibrosis progression and regression that can supplant biopsy and shorten the duration of clinical trials. Both scientific and clinical challenges remain, however the past three decades of steady progress in understanding liver fibrosis have contributed to an emerging translational success story, with realistic hopes for antifibrotic therapies to treat patients with chronic liver disease in the near future. PMID:25681399

  19. Tissue mechanics and fibrosis.

    PubMed

    Wells, Rebecca G

    2013-07-01

    Mechanical forces are essential to the development and progression of fibrosis, and are likely to be as important as soluble factors. These forces regulate the phenotype and proliferation of myofibroblasts and other cells in damaged tissues, the activation of growth factors, the structure and mechanics of the matrix, and, potentially, tissue patterning. Better understanding of the variety and magnitude of forces, the characteristics of those forces in biological tissues, and their impact on fibrosis in multiple tissues is needed and may lead to identification of important new therapeutic targets. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Modeling the mechanical properties of liver fibrosis in rats.

    PubMed

    Zhu, Ying; Chen, Xin; Zhang, Xinyu; Chen, Siping; Shen, Yuanyuan; Song, Liang

    2016-06-14

    The progression of liver fibrosis changes the biomechanical properties of liver tissue. This study characterized and compared different liver fibrosis stages in rats in terms of viscoelasticity. Three viscoelastic models, the Voigt, Maxwell, and Zener models, were applied to experimental data from rheometer tests and then the elasticity and viscosity were estimated for each fibrosis stage. The study found that both elasticity and viscosity are correlated with the various stages of liver fibrosis. The study revealed that the Zener model is the optimal model for describing the mechanical properties of each fibrosis stage, but there is no significant difference between the Zener and Voigt models in their performance on liver fibrosis staging. Therefore the Voigt model can still be effectively used for liver fibrosis grading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. IL30 (IL27p28) attenuates liver fibrosis through inducing NKG2D-Rae1 interaction between NKT and activated hepatic stellate cells

    PubMed Central

    Mitra, Abhisek; Satelli, Arun; Yan, Jun; Xueqing, Xia; Gagea, Mihai; Hunter, Christopher A.; Mishra, Lopa; Li, Shulin

    2014-01-01

    Chronic hepatic diseases such as cirrhosis, hepatocellular carcinoma and virus mediated immunopathogenic infections are affecting billions of people worldwide. These diseases commonly initiate with fibrosis. Owing to the various side effects of anti-fibrotic therapy and the difficulty of diagnosing asymptomatic patients, suitable medication remains a major concern. To overcome this drawback, the use of cytokine-based sustained therapy might be a suitable alternative with minimal side effects. Here, we studied the therapeutic efficacy and potential mechanisms of IL30 as anti-fibrosis therapy in murine liver fibrosis models. Carbon tetrachloride (CCl4) mixed with corn oil at a ratio 1:3 was injected intraperitoneally (IP) 1µl/gm body weight twice per week for 1 month or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) 0.1% (wt/wt) Purnima 5015 Chow was fed for 3 weeks to induce liver fibrosis. Either control vector (pCtr) or pIL30 was injected hydrodynamically once per week. A significant decrease in collagen deposition and reduced expression of α-smooth muscle Actin (αSMA) protein indicated that IL30–based gene therapy dramatically reduced bridging fibrosis that was induced by CCl4 or DDC. Immunophenotyping and knockout studies showed that IL30 recruits NKT cells to the liver to decrease activated hepatic stellate cells (HSCs) significantly and ameliorate liver fibrosis. Both flow cytometric and antibody mediated neutralization studies showed NKT cells alleviate liver fibrosis in an NKG2D dependent manner. Furthermore, chronic treatment with CCl4 showed inducible surface expression of the NKG2D ligand Rae1 on activated HSCs as compared to quiescent ones. Taken together, our results show that highly target specific liver NKT cells selectively remove activated HSCs via an NKG2D-Rae1 interaction to ameliorate liver fibrosis after IL30 treatment. PMID:25351459

  2. Infection-induced airway fibrosis in two rat strains with differential susceptibility.

    PubMed Central

    McIntosh, J C; Simecka, J W; Ross, S E; Davis, J K; Miller, E J; Cassell, G H

    1992-01-01

    Chronic infections play a significant role in the morbidity and mortality of patients with chronic airflow limitation. By stimulating airway inflammation, persistent infection has the potential to cause airway fibrosis. However, in patient this condition is most typically found in lungs damaged by other factors, such as smoking, abnormal secretions, or barotrauma. We report the characterization of Mycoplasma pulmonis infection-induced lung fibrosis in two immunocompetent rat strains with no preexisting lung disease. The fibrosis was predominantly in the airways, as demonstrated by the findings for infected animals of increased airway inflammation, airway fibrosis, and airway wall thickness, which correlated with the collagen content of the lungs. Also, the physiological alterations were the opposite of those found in interstitial fibrosis, with a positive correlation between lung compliance and collagen content. The airway fibrosis was noted earlier and to a greater extent in Lewis rats than in Fisher rats, and this result apparently was related to regulation of the inflammatory response. Airway wall thickness, airway inflammation, and airway fibrosis are commonly reported in tissue specimens from patients with chronic airway diseases and have been shown to correlate with airflow limitation in patients with chronic obstructive pulmonary disease. Thus, this model may be useful in furthering our understanding of the role of chronic infection and airway inflammation in airflow obstruction. Images PMID:1612760

  3. The atypical chemokine receptor ACKR2 drives pulmonary fibrosis by tuning influx of CCR2+ and CCR5+ IFNγ-producing γδT cells in mice.

    PubMed

    Russo, Remo Castro; Savino, Benedetta; Mirolo, Massimiliano; Buracchi, Chiara; Germano, Giovanni; Anselmo, Achille; Zammataro, Luca; Pasqualini, Fabio; Mantovani, Alberto; Locati, Massimo; Teixeira, Mauro M

    2018-02-22

    Chemokines coordinate lung inflammation and fibrosis by acting on chemokine receptors expressed on leukocytes and other cell types. Atypical chemokine receptors (ACKRs) bind, internalize and degrade chemokines, tuning homeostasis and immune responses. ACKR2 recognizes and decreases levels of inflammatory CC chemokines. The role of ACKR2 in fibrogenesis is unknown. Investigate the role of ACKR2 in the context of pulmonary fibrosis. The effects of ACKR2 expression and deficiency during inflammation and fibrosis were analyzed using a bleomycin-model of fibrosis, ACKR2-deficient mice, bone marrow chimeras and antibody-mediated leukocyte depletion. ACKR2 was up-regulated acutely in response to bleomycin and normalized over time. ACKR2-/- mice showed reduced lethality and lung fibrosis. Bone marrow chimeras showed that lethality and fibrosis depended on ACKR2 expression in pulmonary resident (non-hematopoietic) cells but not on leukocytes. ACKR2-/- mice exhibited decreased expression of tissue remodeling genes, reduced leukocyte influx, pulmonary injury, and dysfunction. ACKR2-/- mice had early-increased levels of CCL5, CCL12, CCL17 and IFNγ, and increased number of CCR2+ and CCR5+ IFNγ-producing γδT cells in the airways counterbalanced by low Th17 lymphocyte influx. There was reduced accumulation of IFNγ-producing γδT cells in CCR2-/- and CCR5-/- mice. Moreover, depletion of γδT cells worsened the clinical symptoms induced by bleomycin and reversed the phenotype of ACKR2-/- mice exposed to bleomycin. ACKR2 controls the CC chemokine expression that drives the influx of CCR2+ and CCR5+ IFNγ-producing γδT cells tuning the Th17 response that mediate pulmonary fibrosis triggered by bleomycin instillation.

  4. Thrombin and factor Xa link the coagulation system with liver fibrosis.

    PubMed

    Dhar, Ameet; Sadiq, Fouzia; Anstee, Quentin M; Levene, Adam P; Goldin, Robert D; Thursz, Mark R

    2018-05-08

    Thrombin activates hepatic stellate cells via protease-activated receptor-1. The role of Factor Xa (FXa) in hepatic fibrosis has not been elucidated. We aimed to evaluate the impact of FXa and thrombin in vitro on stellate cells and their respective inhibition in vivo using a rodent model of hepatic fibrosis. HSC-LX2 cells were incubated with FXa and/or thrombin in cell culture, stained for αSMA and relative gene expression and gel contraction calculated. C57BL/6 J mice were administered thioacetamide (TAA) for 8 weeks with Rivaroxaban (n = 15) or Dabigatran (n = 15). Control animals received TAA alone (n = 15). Fibrosis was scored and quantified using digital image analysis and hepatic tissue hydroxyproline estimated. Stellate cells treated with FXa and thrombin demonstrated upregulation of procollagen, TGF-beta, αSMA and significant cell contraction (43.48%+/- 4.12) compared to culturing with FXa or thrombin alone (26.90%+/- 8.90, p = 0.02; 13.1%+/- 9.84, p < 0.001). Mean fibrosis score, percentage area of fibrosis and hepatic hydroxyproline content (2.46 vs 4.08, p = 0.008; 2.02% vs 3.76%, p = 0.012; 276.0 vs 651.3, p = 0.0001) were significantly reduced in mice treated with the FXa inhibitor compared to control mice. FXa inhibition was significantly more effective than thrombin inhibition in reducing percentage area of fibrosis and hepatic hydroxyproline content (2.02% vs 3.70%,p = 0.031; 276.0 vs 413.1,p = 0.001). FXa promotes stellate cell contractility and activation. Early inhibition of coagulation using a FXa inhibitor significantly reduces TAA induced murine liver fibrosis and may be a viable treatment for liver fibrosis in patients.

  5. Role of bone marrow-derived CD11c+ dendritic cells in systolic overload-induced left ventricular inflammation, fibrosis and hypertrophy.

    PubMed

    Wang, Huan; Kwak, Dongmin; Fassett, John; Liu, Xiaohong; Yao, Wu; Weng, Xinyu; Xu, Xin; Xu, Yawei; Bache, Robert J; Mueller, Daniel L; Chen, Yingjie

    2017-05-01

    Inflammatory responses play an important role in the development of left ventricular (LV) hypertrophy and dysfunction. Recent studies demonstrated that increased T-cell infiltration and T-cell activation contribute to LV hypertrophy and dysfunction. Dendritic cells (DCs) are professional antigen-presenting cells that orchestrate immune responses, especially by modulating T-cell function. In this study, we investigated the role of bone marrow-derived CD11c + DCs in transverse aortic constriction (TAC)-induced LV fibrosis and hypertrophy in mice. We observed that TAC increased the number of CD11c + cells and the percentage of CD11c + MHCII + (major histocompatibility complex class II molecule positive) DCs in the LV, spleen and peripheral blood in mice. Using bone marrow chimeras and an inducible CD11c + DC ablation model, we found that depletion of bone marrow-derived CD11c + DCs significantly attenuated LV fibrosis and hypertrophy in mice exposed to 24 weeks of moderate TAC. CD11c + DC ablation significantly reduced TAC-induced myocardial inflammation as indicated by reduced myocardial CD45 + cells, CD11b + cells, CD8 + T cells and activated effector CD8 + CD44 + T cells in LV tissues. Moreover, pulsing of autologous DCs with LV homogenates from TAC mice promoted T-cell proliferation. These data indicate that bone marrow-derived CD11c + DCs play a maladaptive role in hemodynamic overload-induced cardiac inflammation, hypertrophy and fibrosis through the presentation of cardiac self-antigens to T cells.

  6. Topoisomerase I peptide-loaded dendritic cells induce autoantibody response as well as skin and lung fibrosis.

    PubMed

    Mehta, Heena; Goulet, Philippe-Olivier; Nguyen, Vinh; Pérez, Gemma; Koenig, Martial; Senécal, Jean-Luc; Sarfati, Marika

    2016-12-01

    DNA Topoisomerase I (TopoI) is a candidate autoantigen for diffuse cutaneous systemic sclerosis (dcSSc) associated with fatal lung disease. Dendritic cells (DCs) contribute to bleomycin-induced lung fibrosis. However, the possibility that TopoI-loaded DCs are involved in the initiation and/or perpetuation of dcSSc has not been explored. Here, we show that immunization with TopoI peptide-loaded DCs induces anti-TopoI autoantibody response and long-term fibrosis. Mice were repeatedly immunized with unpulsed DCs or DCs loaded with either TOPOIA or TOPOIB peptides, selected from different regions of TopoI. At week 12 after initial DC immunization, TOPOIA DCs but not TOPOIB DCs immunization induced mixed inflammation and fibrosis in lungs and skin. At a late time point (week 18), both TOPOIA DCs and TOPOIB DCs groups displayed increased alpha-smooth muscle actin expression in lungs and dermis along with skin fibrosis distal from the site of injection when compared with unpulsed DCs. Both TopoI peptide-DC-immunized groups developed IgG2a anti-TopoI autoantibody response. At week 10, signs of perivascular, peribronchial, and parenchymal pulmonary inflammation were already observed in the TOPOIA DCs group, together with transient elevation in bronchoalveolar lavage cell counts, IL-17A expression, and CXCL4 production, a biomarker of early human dcSSc. Collectively, TopoI peptide DCs induce progressive autoantibody response as well as development of protracted skin and lung dcSSc-like disease. Pronounced lung inflammation, transient IL-17A, and CXCL4 expression precede fibrosis development. Our immunization strategy, that uses self immune system and autoantigen, will help to further investigate the pathogenesis of this complex autoimmune disorder with unmet medical needs.

  7. Genistein modifies liver fibrosis and improves liver function by inducing uPA expression and proteolytic activity in CCl4-treated rats.

    PubMed

    Salas, Alfonso Leija; Montezuma, Tania Díaz; Fariña, German Garrido; Reyes-Esparza, Jorge; Rodríguez-Fragoso, Lourdes

    2008-01-01

    To evaluate the effect of genistein on the fibrosis and matrix degradation caused by experimentally induced fibrosis in rats. Hepatic fibrosis was brought about by chronic administration of carbon tetrachloride to rats. To evaluate the effect of genistein on liver fibrosis and function, total collagen content and proteolytic activity in the liver were quantified. Urokinase-type plasminogen activator (uPA) expression during experimental fibrosis was localized by immunohistochemistry. Histopathological changes were evaluated using light and electron microscopy. Animals with fibrosis and treated with genistein showed an important reduction (73%) in hepatic collagen content as well as an improvement in liver function (p < 0.001). Genistein increased the capacity of the liver to degrade type I collagen and Matrigel (3.1- and 3.7-fold, respectively; p < 0.001) in animals with liver fibrosis. Genistein increased the number of uPA-immunoreactive cells. The increase in the uPA expression correlated with an increase in proteolytic activity. Histological analysis revealed a reduction in the number of fiber septa in pericentral and perisinusoidal areas. Transmission electron micrographs of livers from animals with fibrosis and treated with genistein showed a reduction in the number of hepatic stellate cells activated and a smaller number of collagen fibers. Genistein is able to improve the liver after injury and fibrosis induced by chronic administration of carbon tetrachloride. This finding suggests that genistein has antifibrogenic potential and could therefore be useful for treating chronic liver disease. (c) 2008 S. Karger AG, Basel.

  8. Idiopathic Pulmonary Fibrosis: The Association between the Adaptive Multiple Features Method and Fibrosis Outcomes.

    PubMed

    Salisbury, Margaret L; Lynch, David A; van Beek, Edwin J R; Kazerooni, Ella A; Guo, Junfeng; Xia, Meng; Murray, Susan; Anstrom, Kevin J; Yow, Eric; Martinez, Fernando J; Hoffman, Eric A; Flaherty, Kevin R

    2017-04-01

    Adaptive multiple features method (AMFM) lung texture analysis software recognizes high-resolution computed tomography (HRCT) patterns. To evaluate AMFM and visual quantification of HRCT patterns and their relationship with disease progression in idiopathic pulmonary fibrosis. Patients with idiopathic pulmonary fibrosis in a clinical trial of prednisone, azathioprine, and N-acetylcysteine underwent HRCT at study start and finish. Proportion of lung occupied by ground glass, ground glass-reticular (GGR), honeycombing, emphysema, and normal lung densities were measured by AMFM and three radiologists, documenting baseline disease extent and postbaseline change. Disease progression includes composite mortality, hospitalization, and 10% FVC decline. Agreement between visual and AMFM measurements was moderate for GGR (Pearson's correlation r = 0.60, P < 0.0001; mean difference = -0.03 with 95% limits of agreement of -0.19 to 0.14). Baseline extent of GGR was independently associated with disease progression when adjusting for baseline Gender-Age-Physiology stage and smoking status (hazard ratio per 10% visual GGR increase = 1.98, 95% confidence interval [CI] = 1.20-3.28, P = 0.008; and hazard ratio per 10% AMFM GGR increase = 1.36, 95% CI = 1.01-1.84, P = 0.04). Postbaseline visual and AMFM GGR trajectories were correlated with postbaseline FVC trajectory (r = -0.30, 95% CI = -0.46 to -0.11, P = 0.002; and r = -0.25, 95% CI = -0.42 to -0.06, P = 0.01, respectively). More extensive baseline visual and AMFM fibrosis (as measured by GGR densities) is independently associated with elevated hazard for disease progression. Postbaseline change in AMFM-measured and visually measured GGR densities are modestly correlated with change in FVC. AMFM-measured fibrosis is an automated adjunct to existing prognostic markers and may allow for study enrichment with subjects at increased disease progression risk.

  9. Matrix Remodeling in Pulmonary Fibrosis and Emphysema

    PubMed Central

    O’Reilly, Philip; Antony, Veena B.; Gaggar, Amit

    2016-01-01

    Pulmonary fibrosis and emphysema are chronic lung diseases characterized by a progressive decline in lung function, resulting in significant morbidity and mortality. A hallmark of these diseases is recurrent or persistent alveolar epithelial injury, typically caused by common environmental exposures such as cigarette smoke. We propose that critical determinants of the outcome of the injury-repair processes that result in fibrosis versus emphysema are mesenchymal cell fate and associated extracellular matrix dynamics. In this review, we explore the concept that regulation of mesenchymal cells under the influence of soluble factors, in particular transforming growth factor-β1, and the extracellular matrix determine the divergent tissue remodeling responses seen in pulmonary fibrosis and emphysema. PMID:26741177

  10. BIOCONJUGATION OF OLIGONUCLEOTIDES FOR TREATING LIVER FIBROSIS

    PubMed Central

    Ye, Zhaoyang; Hajj Houssein, Houssam S.; Mahato, Ram I.

    2009-01-01

    Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is in urgent need to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remains the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of α1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed. PMID:18154454

  11. Quantification of Fibrosis and Osteosclerosis in Myeloproliferative Neoplasms: A Computer-Assisted Image Study

    PubMed Central

    Teman, Carolin J.; Wilson, Andrew R.; Perkins, Sherrie L.; Hickman, Kimberly; Prchal, Josef T.; Salama, Mohamed E.

    2010-01-01

    Evaluation of bone marrow fibrosis and osteosclerosis in myeloproliferative neoplasms (MPN) is subject to interobserver inconsistency. Performance data for currently utilized fibrosis grading systems are lacking, and classification scales for osteosclerosis do not exist. Digital imaging can serve as a quantification method for fibrosis and osteosclerosis. We used digital imaging techniques for trabecular area assessment and reticulin-fiber quantification. Patients with all Philadelphia negative MPN subtypes had higher trabecular volume than controls (p ≤0.0015). Results suggest that the degree of osteosclerosis helps differentiate primary myelofibrosis from other MPN. Numerical quantification of fibrosis highly correlated with subjective scores, and interobserver correlation was satisfactory. Digital imaging provides accurate quantification for osteosclerosis and fibrosis. PMID:20122729

  12. IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice

    PubMed Central

    Li, Dong; Guabiraba, Rodrigo; Besnard, Anne-Gaëlle; Komai-Koma, Mousa; Jabir, Majid S.; Zhang, Li; Graham, Gerard J.; Kurowska-Stolarska, Mariola; Liew, Foo Y.; McSharry, Charles; Xu, Damo

    2014-01-01

    Background The initiation and regulation of pulmonary fibrosis are not well understood. IL-33, an important cytokine for respiratory diseases, is overexpressed in the lungs of patients with idiopathic pulmonary fibrosis. Objectives We aimed to determine the effects and mechanism of IL-33 on the development and severity of pulmonary fibrosis in murine bleomycin-induced fibrosis. Methods Lung fibrosis was induced by bleomycin in wild-type or Il33r (St2)−/− C57BL/6 mice treated with the recombinant mature form of IL-33 or anti–IL-33 antibody or transferred with type 2 innate lymphoid cells (ILC2s). The development and severity of fibrosis was evaluated based on lung histology, collagen levels, and lavage cytology. Cytokine and chemokine levels were quantified by using quantitative PCR, ELISA, and cytometry. Results IL-33 is constitutively expressed in lung epithelial cells but is induced in macrophages by bleomycin. Bleomycin enhanced the production of the mature but reduced full-length form of IL-33 in lung tissue. ST2 deficiency, anti–IL-33 antibody treatment, or alveolar macrophage depletion attenuated and exogenous IL-33 or adoptive transfer of ILC2s enhanced bleomycin-induced lung inflammation and fibrosis. These pathologic changes were accompanied, respectively, by reduced or increased IL-33, IL-13, TGF-β1, and inflammatory chemokine production in the lung. Furthermore, IL-33 polarized M2 macrophages to produce IL-13 and TGF-β1 and induced the expansion of ILC2s to produce IL-13 in vitro and in vivo. Conclusions IL-33 is a novel profibrogenic cytokine that signals through ST2 to promote the initiation and progression of pulmonary fibrosis by recruiting and directing inflammatory cell function and enhancing profibrogenic cytokine production in an ST2- and macrophage-dependent manner. PMID:24985397

  13. IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice.

    PubMed

    Li, Dong; Guabiraba, Rodrigo; Besnard, Anne-Gaëlle; Komai-Koma, Mousa; Jabir, Majid S; Zhang, Li; Graham, Gerard J; Kurowska-Stolarska, Mariola; Liew, Foo Y; McSharry, Charles; Xu, Damo

    2014-12-01

    The initiation and regulation of pulmonary fibrosis are not well understood. IL-33, an important cytokine for respiratory diseases, is overexpressed in the lungs of patients with idiopathic pulmonary fibrosis. We aimed to determine the effects and mechanism of IL-33 on the development and severity of pulmonary fibrosis in murine bleomycin-induced fibrosis. Lung fibrosis was induced by bleomycin in wild-type or Il33r (St2)(-/-) C57BL/6 mice treated with the recombinant mature form of IL-33 or anti-IL-33 antibody or transferred with type 2 innate lymphoid cells (ILC2s). The development and severity of fibrosis was evaluated based on lung histology, collagen levels, and lavage cytology. Cytokine and chemokine levels were quantified by using quantitative PCR, ELISA, and cytometry. IL-33 is constitutively expressed in lung epithelial cells but is induced in macrophages by bleomycin. Bleomycin enhanced the production of the mature but reduced full-length form of IL-33 in lung tissue. ST2 deficiency, anti-IL-33 antibody treatment, or alveolar macrophage depletion attenuated and exogenous IL-33 or adoptive transfer of ILC2s enhanced bleomycin-induced lung inflammation and fibrosis. These pathologic changes were accompanied, respectively, by reduced or increased IL-33, IL-13, TGF-β1, and inflammatory chemokine production in the lung. Furthermore, IL-33 polarized M2 macrophages to produce IL-13 and TGF-β1 and induced the expansion of ILC2s to produce IL-13 in vitro and in vivo. IL-33 is a novel profibrogenic cytokine that signals through ST2 to promote the initiation and progression of pulmonary fibrosis by recruiting and directing inflammatory cell function and enhancing profibrogenic cytokine production in an ST2- and macrophage-dependent manner. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. ω-3 PUFAs ameliorate liver fibrosis and inhibit hepatic stellate cells proliferation and activation by promoting YAP/TAZ degradation.

    PubMed

    Zhang, Kun; Chang, Yanan; Shi, Zhemin; Han, Xiaohui; Han, Yawei; Yao, Qingbin; Hu, Zhimei; Cui, Hongmei; Zheng, Lina; Han, Tao; Hong, Wei

    2016-07-20

    Elevated levels of the transcriptional regulators Yes-associated protein (YAP) and transcriptional coactivators with PDZ-binding motif (TAZ), key effectors of the Hippo pathway, have been shown to play essential roles in controlling liver cell fate and the activation of hepatic stellate cells (HSCs). The dietary intake of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) has been positively associated with a number of health benefits including prevention and reduction of cardiovascular diseases, inflammation and cancers. However, little is known about the impact of ω-3 PUFAs on liver fibrosis. In this study, we used CCl4-induced liver fibrosis mouse model and found that YAP/TAZ is over-expressed in the fibrotic liver and activated HSCs. Fish oil administration to the model mouse attenuates CCl4-induced liver fibrosis. Further study revealed that ω-3 PUFAs down-regulate the expression of pro-fibrogenic genes in activated HSCs and fibrotic liver, and the down-regulation is mediated via YAP, thus identifying YAP as a target of ω-3 PUFAs. Moreover, ω-3 PUFAs promote YAP/TAZ degradation in a proteasome-dependent manner. Our data have identified a mechanism of ω-3 PUFAs in ameliorating liver fibrosis.

  15. Free DNA in Cystic Fibrosis Airway Fluids Correlates with Airflow Obstruction

    PubMed Central

    Marcos, Veronica; Zhou-Suckow, Zhe; Önder Yildirim, Ali; Bohla, Alexander; Hector, Andreas; Vitkov, Ljubomir; Krautgartner, Wolf Dietrich; Stoiber, Walter; Griese, Matthias; Eickelberg, Oliver; Mall, Marcus A.; Hartl, Dominik

    2015-01-01

    Chronic obstructive lung disease determines morbidity and mortality of patients with cystic fibrosis (CF). CF airways are characterized by a nonresolving neutrophilic inflammation. After pathogen contact or prolonged activation, neutrophils release DNA fibres decorated with antimicrobial proteins, forming neutrophil extracellular traps (NETs). NETs have been described to act in a beneficial way for innate host defense by bactericidal, fungicidal, and virucidal actions. On the other hand, excessive NET formation has been linked to the pathogenesis of autoinflammatory and autoimmune disease conditions. We quantified free DNA structures characteristic of NETs in airway fluids of CF patients and a mouse model with CF-like lung disease. Free DNA levels correlated with airflow obstruction, fungal colonization, and CXC chemokine levels in CF patients and CF-like mice. When viewed in combination, our results demonstrate that neutrophilic inflammation in CF airways is associated with abundant free DNA characteristic for NETosis, and suggest that free DNA may be implicated in lung function decline in patients with CF. PMID:25918476

  16. Deep learning for staging liver fibrosis on CT: a pilot study.

    PubMed

    Yasaka, Koichiro; Akai, Hiroyuki; Kunimatsu, Akira; Abe, Osamu; Kiryu, Shigeru

    2018-05-14

    To investigate whether liver fibrosis can be staged by deep learning techniques based on CT images. This clinical retrospective study, approved by our institutional review board, included 496 CT examinations of 286 patients who underwent dynamic contrast-enhanced CT for evaluations of the liver and for whom histopathological information regarding liver fibrosis stage was available. The 396 portal phase images with age and sex data of patients (F0/F1/F2/F3/F4 = 113/36/56/66/125) were used for training a deep convolutional neural network (DCNN); the data for the other 100 (F0/F1/F2/F3/F4 = 29/9/14/16/32) were utilised for testing the trained network, with the histopathological fibrosis stage used as reference. To improve robustness, additional images for training data were generated by rotating or parallel shifting the images, or adding Gaussian noise. Supervised training was used to minimise the difference between the liver fibrosis stage and the fibrosis score obtained from deep learning based on CT images (F DLCT score) output by the model. Testing data were input into the trained DCNNs to evaluate their performance. The F DLCT scores showed a significant correlation with liver fibrosis stage (Spearman's correlation coefficient = 0.48, p < 0.001). The areas under the receiver operating characteristic curves (with 95% confidence intervals) for diagnosing significant fibrosis (≥ F2), advanced fibrosis (≥ F3) and cirrhosis (F4) by using F DLCT scores were 0.74 (0.64-0.85), 0.76 (0.66-0.85) and 0.73 (0.62-0.84), respectively. Liver fibrosis can be staged by using a deep learning model based on CT images, with moderate performance. • Liver fibrosis can be staged by a deep learning model based on magnified CT images including the liver surface, with moderate performance. • Scores from a trained deep learning model showed moderate correlation with histopathological liver fibrosis staging. • Further improvement are necessary before utilisation in clinical

  17. Restoration of Chloride Efflux by Azithromycin in Airway Epithelial Cells of Cystic Fibrosis Patients▿

    PubMed Central

    Saint-Criq, Vinciane; Rebeyrol, Carine; Ruffin, Manon; Roque, Telma; Guillot, Loïc; Jacquot, Jacky; Clement, Annick; Tabary, Olivier

    2011-01-01

    Azithromycin (AZM) has shown promising anti-inflammatory properties in chronic obstructive pulmonary diseases, and clinical studies have presented an improvement in the respiratory condition of cystic fibrosis (CF) patients. The aim of this study was to investigate, in human airway cells, the mechanism by which AZM has beneficial effects in CF. We demonstrated that AZM did not have any anti-inflammatory effect on CF airway cells but restored Cl− efflux. PMID:21220528

  18. Epigenetic regulation of cardiac fibrosis

    PubMed Central

    Stratton, Matthew S.; McKinsey, Timothy A.

    2016-01-01

    Fibrosis is defined as excess deposition of extracellular matrix (ECM), resulting in tissue scarring and organ dysfunction. In the heart, fibrosis may be reparative, replacing areas of myocyte loss with a structural scar following infarction, or reactive, which is triggered in the absence of cell death and involves interstitial ECM deposition in response to long-lasting stress. Interstitial fibrosis can increase the passive stiffness of the myocardium, resulting in impaired relaxation and diastolic dysfunction. Additionally, fibrosis can lead to disruption of electrical conduction in the heart, causing arrhythmias, and can limit myocyte oxygen availability and thus exacerbate myocardial ischemia. Here, we review recent studies that have illustrated key roles for epigenetic events in the control of pro-fibrotic gene expression, and highlight the potential of small molecules that target epigenetic regulators as a means of treating fibrotic cardiac diseases. PMID:26876451

  19. Hepatic Inflammation and Fibrosis: Functional Links and Key Pathways

    PubMed Central

    Seki, Ekihiro; Schwabe, Robert F.

    2014-01-01

    Inflammation is one of the most characteristic features of chronic liver disease of viral, alcoholic, fatty and autoimmune origin. Inflammation is typically present in all disease stages, and associated with the development of fibrosis, cirrhosis and hepatocellular carcinoma. In the past decade, numerous studies have contributed to improved understanding of the links between hepatic inflammation and fibrosis. Here, we review mechanisms that link inflammation with the development of liver fibrosis, focusing on the role of inflammatory mediators in hepatic stellate cell (HSC) activation and HSC survival during fibrogenesis and fibrosis regression. We will summarize the contributions of different inflammatory cells, including hepatic macrophages, T- and B-lymphocytes, NK cells and platelets, as well as key effectors such as cytokines, chemokines, and damage-associated molecular patterns. Furthermore, we will discuss the relevance of inflammatory signaling pathways for clinical liver disease and for the development of anti-fibrogenic strategies. PMID:25066777

  20. MR enterography-histology comparison in resected pediatric small bowel Crohn disease strictures: can imaging predict fibrosis?

    PubMed

    Barkmeier, Daniel T; Dillman, Jonathan R; Al-Hawary, Mahmoud; Heider, Amer; Davenport, Matthew S; Smith, Ethan A; Adler, Jeremy

    2016-04-01

    Crohn disease is a chronic inflammatory condition that can lead to intestinal strictures. The presence of fibrosis within strictures alters optimal management but is not reliably detected by current imaging methods. To correlate the MRI features of surgically resected small-bowel strictures in pediatric Crohn disease with histological inflammation and fibrosis scoring. We included children with Crohn disease who had symptomatic small-bowel strictures requiring surgical resection and had preoperative MR enterography (MRE) within 3 months of surgery (n = 20). Two blinded radiologists reviewed MRE examinations to document stricture-related findings. A pediatric pathologist scored stricture histological specimens for fibrosis (0-4) and inflammation (0-4). MRE findings were correlated with histological data using Spearman correlation (ρ) and exact logistic regression analysis. There was significant positive correlation between histological bowel wall fibrosis and inflammation in resected strictures (ρ = 0.55; P = 0.01). Confluent transmural histological fibrosis was associated with pre-stricture upstream small-bowel dilatation >3 cm at univariate (odds ratio [OR] = 51.7; 95% confidence interval [CI]: 7.6- > 999.9; P = 0.0002) and multivariate (OR = 43.4; 95% CI: 6.1- > 999.9; P = 0.0006, adjusted for age) analysis. The degree of bowel wall T2-weighted signal intensity failed to correlate with histological bowel wall fibrosis or inflammation (P-values >0.05). There were significant negative correlations between histological fibrosis score and patient age at resection (ρ = -0.48, P = 0.03), and time from diagnosis to surgery (ρ = -0.73, P = 0.0002). Histological fibrosis and inflammation co-exist in symptomatic pediatric Crohn disease small-bowel strictures and are positively correlated. Pre-stenotic upstream small-bowel dilatation greater than 3 cm is significantly associated with confluent transmural fibrosis.

  1. Novel and optimized strategies for inducing fibrosis in vivo: focus on Duchenne Muscular Dystrophy

    PubMed Central

    2014-01-01

    Background Fibrosis, an excessive collagen accumulation, results in scar formation, impairing function of vital organs and tissues. Fibrosis is a hallmark of muscular dystrophies, including the lethal Duchenne muscular dystrophy (DMD), which remains incurable. Substitution of muscle by fibrotic tissue also complicates gene/cell therapies for DMD. Yet, no optimal models to study muscle fibrosis are available. In the widely used mdx mouse model for DMD, extensive fibrosis develops in the diaphragm only at advanced adulthood, and at about two years of age in the ‘easy-to-access’ limb muscles, thus precluding fibrosis research and the testing of novel therapies. Methods We developed distinct experimental strategies, ranging from chronic exercise to increasing muscle damage on limb muscles of young mdx mice, by myotoxin injection, surgically induced trauma (laceration or denervation) or intramuscular delivery of profibrotic growth factors (such as TGFβ). We also extended these approaches to muscle of normal non-dystrophic mice. Results These strategies resulted in advanced and enhanced muscle fibrosis in young mdx mice, which persisted over time, and correlated with reduced muscle force, thus mimicking the severe DMD phenotype. Furthermore, increased fibrosis was also obtained by combining these procedures in muscles of normal mice, mirroring aberrant repair after severe trauma. Conclusions We have developed new and improved experimental strategies to accelerate and enhance muscle fibrosis in vivo. These strategies will allow rapidly assessing fibrosis in the easily accessible limb muscles of young mdx mice, without necessarily having to use old animals. The extension of these fibrogenic regimes to the muscle of non-dystrophic wild-type mice will allow fibrosis assessment in a wide array of pre-existing transgenic mouse lines, which in turn will facilitate understanding the mechanisms of fibrogenesis. These strategies should improve our ability to combat fibrosis

  2. Serum adiponectin is increased in advancing liver fibrosis and declines with reduction in fibrosis in chronic hepatitis B.

    PubMed

    Hui, Chee-Kin; Zhang, Hai-Ying; Lee, Nikki P; Chan, Weng; Yueng, Yui-Hung; Leung, Kar-Wai; Lu, Lei; Leung, Nancy; Lo, Chung-Mau; Fan, Sheung-Tat; Luk, John M; Xu, Aimin; Lam, Karen S; Kwong, Yok-Lam; Lau, George K K

    2007-08-01

    Despite the possible role of adiponectin in the pathogenesis of liver cirrhosis, few data have been collected from patients in different stages of liver fibrosis. We studied the role of adiponectin in 2 chronic hepatitis B (CHB)-patient cohorts. Serum adiponectin was quantified by enzyme-linked immunosorbent assay. One-hundred liver biopsy specimens from CHB patients with different stages of fibrosis and 38 paired liver biopsies from hepatitis B e antigen-positive patients randomized to lamivudine (n=15), pegylated interferon alfa-2a (n=15) or pegylated interferon alfa-2a plus lamivudine (n=8) therapy for 48 weeks were assessed. Serum adiponectin was detected at levels ranging over fourfold magnitude with advancing fibrosis stage and correlated positively with fibrosis stage [r=0.45, p<0.001]. CHB patients with stage 0-1 fibrosis had higher composition of high molecular weight (HMW) form of adiponectin when compared with CHB patients with liver cirrhosis [mean+/-SEM 51.2+/-2.1% vs. 40.9+/-1.7%, respectively, p=0.001]. After antiviral therapy, patients with fibrosis reduction had marked decline in serum adiponectin level and increase in HMW form of adiponectin [mean+/-SEM 43.5+/-1.2% vs. 37.0+/-3.0%, respectively, p=0.04]. Serum adiponectin may have a role in fibrosis progression in CHB infection. A marked decline in serum adiponectin after antiviral therapy is associated with fibrosis reduction.

  3. Mesenchymal stem cells: In vivo therapeutic application ameliorates carbon tetrachloride induced liver fibrosis in rats.

    PubMed

    Raafat, Nermin; Abdel Aal, Sara M; Abdo, Fadia K; El Ghonaimy, Nabila M

    2015-11-01

    Egypt has the highest prevalence of hepatitis C virus in the world with infection rate up to 60%, for which liver fibrosis or hepatic carcinoma is the final outcome. Stem cell therapy provides a new hope for hepatic repair instead of traditional treatment, liver transplantation, as it is safer, gives long term engraftment and avoid expensive immunosuppressive drugs and unexpected hazardous effects. This work aimed at determining the therapeutic potential of mesenchymal stem cells (MSC) in hepatic repair as a new line of therapy for liver fibrosis. 33 female albino rats were divided into three groups: Group I: 10 rats injected subcutaneously with olive oil, Group II: 13 rats injected with carbon tetrachloride (CCl4) and Group III: 10 rats injected with CCl4 then bone marrow derived MSC from male rats. Blood and liver tissue samples were taken from all rats for biochemical and histological study. Liver functions for group II rats showed significant deterioration in response to CCl4 in addition to significant histological changes in liver lobules and portal areas. Those parameters tend to be normal in MSC-treated group. Group III rats revealed normalized liver function and histological picture. Meanwhile, most of the pathological lesions were still detected in rats of second group. Undifferentiated MSCs have the ability to ameliorate CCl4 induced liver injury in albino rats in terms of liver functions and histological features. So, stem cell therapy can be considered clinically to offer a hope for patients suffering from liver fibrosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Liver fibrosis in bile duct-ligated rats correlates with increased hepatic IL-17 and TGF-β2 expression.

    PubMed

    Zepeda-Morales, Adelaida Sara M; Del Toro-Arreola, Susana; García-Benavides, Leonel; Bastidas-Ramírez, Blanca E; Fafutis-Morris, Mary; Pereira-Suárez, Ana L; Bueno-Topete, Miriam R

    2016-01-01

    BACKGROUND AND RATIONALE FOR THE STUDY: IL-17, TGF-β1/2 are cytokines involved in the development of kidney, pulmonary and liver fibrosis. However, their expression kinetics in the pathogenesis of cholestatic liver fibrosis have not yet been fully explored. The aim of the study was to analyze the expression of IL-17, RORγt, NKp46, TGF-β1, and TGF-β2 in the liver of rats with bile duct ligation (BDL). Hepatic IL-17A gene expression analyzed by qRT-PCR showed a dramatic increase of 350 and 10 fold, at 8 and 30 days post BDL, respectively. TGFβ1 and TGFβ2 gene expression significantly increased throughout the whole fibrotic process. At the protein level in liver homogenates, IL-17, TGF-β1, and RORγt significantly increased at 8 and 30 days after BDL. Interestingly, a significant increase in the protein levels of TGF-β2 and decrease of NKp46 was observed only 30 days after BDL. Unexpectedly, TGF-β2 exhibited stronger signals than TGF-β1 at the gene expression and protein levels. Histological analysis showed bile duct proliferation and collagen deposition. Our results suggest that pro-fibrogenic cytokines IL-17, TGF-β1 and, strikingly, TGF-β2 might be important players of liver damage in the pathogenesis of early and advanced experimental cholestatic fibrosis. Th17 cells might represent an important source of IL-17, while NK cell depletion may account for the perpetuation of liver damage in the BDL model.

  5. Role of atrial endothelial cells in the development of atrial fibrosis and fibrillation in response to pressure overload.

    PubMed

    Kume, Osamu; Teshima, Yasushi; Abe, Ichitaro; Ikebe, Yuki; Oniki, Takahiro; Kondo, Hidekazu; Saito, Shotaro; Fukui, Akira; Yufu, Kunio; Miura, Masahiro; Shimada, Tatsuo; Takahashi, Naohiko

    Monocyte chemoattractant protein-1 (MCP-1)-mediated inflammatory mechanisms have been shown to play a crucial role in atrial fibrosis induced by pressure overload. In the present study, we investigated whether left atrial endothelial cells would quickly respond structurally and functionally to pressure overload to trigger atrial fibrosis and fibrillation. Six-week-old male Sprague-Dawley rats underwent suprarenal abdominal aortic constriction (AAC) or a sham operation. By day 3 after surgery, macrophages were observed to infiltrate into the endocardium. The expression of MCP-1 and E-selectin in atrial endothelium and the expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and ED1 in left atrial tissue were enhanced. Atrial endothelial cells were irregularly hypertrophied with the disarrangement of lines of cells by scanning electron microscopy. Various-sized gap formations appeared along the border in atrial endothelial cells, and several macrophages were located just in the endothelial gap. Along with the development of heterogeneous interstitial fibrosis, interatrial conduction time was prolonged and the inducibility of atrial fibrillation by programmed extrastimuli was increased in the AAC rats compared to the sham-operated rats. Atrial endothelium responds rapidly to pressure overload by expressing adhesion molecules and MCP-1, which induce macrophage infiltration into the atrial tissues. These processes could be an initial step in the development of atrial remodeling for atrial fibrillation. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Macrophage heterogeneity in liver injury and fibrosis.

    PubMed

    Tacke, Frank; Zimmermann, Henning W

    2014-05-01

    Hepatic macrophages are central in the pathogenesis of chronic liver injury and have been proposed as potential targets in combatting fibrosis. Recent experimental studies in animal models revealed that hepatic macrophages are a remarkably heterogeneous population of immune cells that fulfill diverse functions in homeostasis, disease progression, and regression from injury. These range from clearance of pathogens or cellular debris and maintenance of immunological tolerance in steady state conditions; central roles in initiating and perpetuating inflammation in response to injury; promoting liver fibrosis via activating hepatic stellate cells in chronic liver damage; and, finally, resolution of inflammation and fibrosis by degradation of extracellular matrix and release of anti-inflammatory cytokines. Cellular heterogeneity in the liver is partly explained by the origin of macrophages. Hepatic macrophages can either arise from circulating monocytes, which are recruited to the injured liver via chemokine signals, or from self-renewing embryo-derived local macrophages, termed Kupffer cells. Kupffer cells appear essential for sensing tissue injury and initiating inflammatory responses, while infiltrating Ly-6C(+) monocyte-derived macrophages are linked to chronic inflammation and fibrogenesis. In addition, proliferation of local or recruited macrophages may possibly further contribute to their accumulation in injured liver. During fibrosis regression, monocyte-derived cells differentiate into Ly-6C (Ly6C, Gr1) low expressing 'restorative' macrophages and promote resolution from injury. Understanding the mechanisms that regulate hepatic macrophage heterogeneity, either by monocyte subset recruitment, by promoting restorative macrophage polarization or by impacting distinctive macrophage effector functions, may help to develop novel macrophage subset-targeted therapies for liver injury and fibrosis. Copyright © 2014 European Association for the Study of the Liver

  7. Can diffusion-weighted imaging serve as a biomarker of fibrosis in pancreatic adenocarcinoma?

    PubMed

    Hecht, Elizabeth M; Liu, Michael Z; Prince, Martin R; Jambawalikar, Sachin; Remotti, Helen E; Weisberg, Stuart W; Garmon, Donald; Lopez-Pintado, Sara; Woo, Yanghee; Kluger, Michael D; Chabot, John A

    2017-08-01

    To assess the relationship between diffusion-weighted imaging (DWI) and intravoxel incoherent motion (IVIM)-derived quantitative parameters (apparent diffusion coefficient [ADC], perfusion fraction [f], D slow , diffusion coefficient [D], and D fast , pseudodiffusion coefficient [D*]) and histopathology in pancreatic adenocarcinoma (PAC). Subjects with suspected surgically resectable PAC were prospectively enrolled in this Health Insurance Portability and Accountability Act (HIPAA)-compliant, Institutional Review Board-approved study. Imaging was performed at 1.5T with a respiratory-triggered echo planar DWI sequence using 10 b values. Two readers drew regions of interest (ROIs) over the tumor and adjacent nontumoral tissue. Monoexponential and biexponential fits were used to derive ADC 2b , ADC all , f, D, and D*, which were compared to quantitative histopathology of fibrosis, mean vascular density, and cellularity. Two biexponential IVIM models were investigated and compared: 1) nonlinear least-square fitting based on the Levenberg-Marquardt algorithm, and 2) linear fit using a fixed D* (20 mm 2 /s). Statistical analysis included Student's t-test, Pearson correlation (P < 0.05 was considered significant), intraclass correlation, and coefficients of variance. Twenty subjects with PAC were included in the final cohort. Negative correlation between D and fibrosis (Reader 2: r = -0.57 P = 0.01; pooled P = -0.46, P = 0.04) was observed with a trend toward positive correlation between f and fibrosis (r = 0.44, P = 0.05). ADC 2b was significantly lower in PAC with dense fibrosis than with loose fibrosis ADC 2b (P = 0.03). Inter- and intrareader agreement was excellent for ADC, D, and f. In PAC, D negatively correlates with fibrosis, with a trend toward positive correlation with f suggesting both perfusion and diffusion effects contribute to stromal desmoplasia. ADC 2b is significantly lower in tumors with dense fibrosis and may serve as a

  8. Image Analysis Algorithms for Immunohistochemical Assessment of Cell Death Events and Fibrosis in Tissue Sections

    PubMed Central

    Krajewska, Maryla; Smith, Layton H.; Rong, Juan; Huang, Xianshu; Hyer, Marc L.; Zeps, Nikolajs; Iacopetta, Barry; Linke, Steven P.; Olson, Allen H.; Reed, John C.; Krajewski, Stan

    2009-01-01

    Cell death is of broad physiological and pathological importance, making quantification of biochemical events associated with cell demise a high priority for experimental pathology. Fibrosis is a common consequence of tissue injury involving necrotic cell death. Using tissue specimens from experimental mouse models of traumatic brain injury, cardiac fibrosis, and cancer, as well as human tumor specimens assembled in tissue microarray (TMA) format, we undertook computer-assisted quantification of specific immunohistochemical and histological parameters that characterize processes associated with cell death. In this study, we demonstrated the utility of image analysis algorithms for color deconvolution, colocalization, and nuclear morphometry to characterize cell death events in tissue specimens: (a) subjected to immunostaining for detecting cleaved caspase-3, cleaved poly(ADP-ribose)-polymerase, cleaved lamin-A, phosphorylated histone H2AX, and Bcl-2; (b) analyzed by terminal deoxyribonucleotidyl transferase–mediated dUTP nick end labeling assay to detect DNA fragmentation; and (c) evaluated with Masson's trichrome staining. We developed novel algorithm-based scoring methods and validated them using TMAs as a high-throughput format. The proposed computer-assisted scoring methods for digital images by brightfield microscopy permit linear quantification of immunohistochemical and histochemical stainings. Examples are provided of digital image analysis performed in automated or semiautomated fashion for successful quantification of molecular events associated with cell death in tissue sections. (J Histochem Cytochem 57:649–663, 2009) PMID:19289554

  9. Parental care and overprotection of children with cystic fibrosis.

    PubMed

    Cappelli, M; McGrath, P J; MacDonald, N E; Katsanis, J; Lascelles, M

    1989-09-01

    Parental overprotection has often been clinically associated with the psychological maladjustment of children with a chronic disease. The purpose of this study was to examine parental care and overprotection in children with cystic fibrosis compared to healthy controls. Results indicated no differences in the level of parental care or overprotection between controls and children with cystic fibrosis. However, a number of significant correlations were found between parental care and overprotection and children's psychosocial functioning. In particular, positive correlations were found between parental overprotection and poor psychosocial functioning in children with cystic fibrosis, whereas, poor psychosocial functioning in healthy children was associated with lack of parental care. Parental overprotection and care appear to play important roles in the emotional and psychological functioning of healthy and chronically ill children.

  10. Angiostatin inhibits experimental liver fibrosis in mice.

    PubMed

    Vogten, J Mathys; Drixler, Tamas A; te Velde, Elisabeth A; Schipper, Marguerite E; van Vroonhoven, Theo J M V; Voest, Emile E; Borel Rinkes, Inne H M

    2004-07-01

    Liver fibrosis is a response to chronic hepatic damage, which ultimately leads to liver failure and necessitates liver transplantation. A characteristic of fibrosis is pathological vessel growth. This type of angiogenesis may contribute to the disturbance of hepatocyte perfusion dynamics and lead to aggravation of disease. We hypothesized that angiostatin can inhibit pathological vessel growth and, consequently, the development of hepatic fibrosis. Hepatic fibrosis was induced by injection of carbon tetrachloride for 5 weeks. Angiostatin mice received carbon tetrachloride for 5 weeks and angiostatin during weeks 4 and 5. After 5 weeks, immunohistochemistry for endothelial cell marker von Willebrand factor and for cell proliferation was performed. Angiogenesis was quantified by counting the number of immunopositive microvessels. Also, the relative fibrotic surface was determined using Sirius Red histostaining and computer image analysis. Immunohistochemistry revealed increased expression for von Willebrand factor in fibrotic livers. Immunopositive microvessels were localized in fibrotic areas surrounding larger vessels and in emerging fibrotic septa. Angiostatin reduced the number of immunopositive microvessels by 69% (p<0.001). In addition, angiostatin reduced the relative fibrotic area in the liver by 63+/-0.1% (p<0.001). Finally, angiostatin treatment was not associated with differences in cell proliferation. Angiostatin inhibits the development of pathological angiogenesis and liver fibrosis in mice. These results warrant further evaluation of angiostatin as an antifibrotic agent, potentially contributing to the deferment of liver transplantation and reduced recurrence of fibrotic disease in the transplanted liver.

  11. The Role of Immune and Inflammatory Cells in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Desai, Omkar; Winkler, Julia; Minasyan, Maksym; Herzog, Erica L.

    2018-01-01

    The contribution of the immune system to idiopathic pulmonary fibrosis (IPF) remains poorly understood. While most sources agree that IPF does not result from a primary immunopathogenic mechanism, evidence gleaned from animal modeling and human studies suggests that innate and adaptive immune processes can orchestrate existing fibrotic responses. This review will synthesize the available data regarding the complex role of professional immune cells in IPF. The role of innate immune populations such as monocytes, macrophages, myeloid suppressor cells, and innate lymphoid cells will be discussed, as will the activation of these cells via pathogen-associated molecular patterns derived from invading or commensural microbes, and danger-associated molecular patterns derived from injured cells and tissues. The contribution of adaptive immune responses driven by T-helper cells and B cells will be reviewed as well. Each form of immune activation will be discussed in the context of its relationship to environmental and genetic factors, disease outcomes, and potential therapies. We conclude with discussion of unanswered questions and opportunities for future study in this area. PMID:29616220

  12. OX40L blockade protects against inflammation-driven fibrosis

    PubMed Central

    Elhai, Muriel; Avouac, Jérôme; Hoffmann-Vold, Anna Maria; Ruzehaji, Nadira; Amiar, Olivia; Ruiz, Barbara; Brahiti, Hassina; Ponsoye, Matthieu; Fréchet, Maxime; Burgevin, Anne; Pezet, Sonia; Sadoine, Jérémy; Guilbert, Thomas; Nicco, Carole; Akiba, Hisaya; Heissmeyer, Vigo; Subramaniam, Arun; Resnick, Robert; Molberg, Øyvind; Kahan, André; Chiocchia, Gilles; Allanore, Yannick

    2016-01-01

    Treatment for fibrosis represents a critical unmet need, because fibrosis is the leading cause of death in industrialized countries, and there is no effective therapy to counteract the fibrotic process. The development of fibrosis relates to the interplay between vessel injury, immune cell activation, and fibroblast stimulation, which can occur in various tissues. Immunotherapies have provided a breakthrough in the treatment of immune diseases. The glycoprotein OX40–OX40 ligand (OX40L) axis offers the advantage of a targeted approach to costimulatory signals with limited impact on the whole immune response. Using systemic sclerosis (SSc) as a prototypic disease, we report compelling evidence that blockade of OX40L is a promising strategy for the treatment of inflammation-driven fibrosis. OX40L is overexpressed in the fibrotic skin and serum of patients with SSc, particularly in patients with diffuse cutaneous forms. Soluble OX40L was identified as a promising serum biomarker to predict the worsening of lung and skin fibrosis, highlighting the role of this pathway in fibrosis. In vivo, OX40L blockade prevents inflammation-driven skin, lung, and vessel fibrosis and induces the regression of established dermal fibrosis in different complementary mouse models. OX40L exerts potent profibrotic effects by promoting the infiltration of inflammatory cells into lesional tissues and therefore the release of proinflammatory mediators, thereafter leading to fibroblast activation. PMID:27298374

  13. Interferon gamma peptidomimetic targeted to hepatic stellate cells ameliorates acute and chronic liver fibrosis in vivo.

    PubMed

    Bansal, Ruchi; Prakash, Jai; De Ruiter, Marieke; Poelstra, Klaas

    2014-04-10

    Hepatic stellate cells play a crucial role in the pathogenesis of hepatic fibrosis. Thus, pharmacological inhibition of pro-fibrotic activities of these cells might lead to an effective therapy for this disease. Among the potent anti-fibrotics, interferon gamma (IFNγ), a proinflammatory cytokine, is highly efficacious but it failed in clinical trials due to the poor efficacy and multiple adverse effects attributed to the ubiquitous IFNγ receptor (IFNγR) expression. To resolve these drawbacks, we chemically synthesized a chimeric molecule containing (a) IFNγ signaling peptide (IFNγ peptidomimetic, mimγ) that retains the agonistic activities of IFNγ but lacks an extracellular receptor recognition sequence for IFNγR; coupled via heterobifunctional PEG linker to (b) bicyclic platelet derived growth factor beta receptor (PDGFβR)-binding peptide (BiPPB) to induce internalization into the stellate cells that express PDGFβR. The synthesized targeted IFNγ peptidomimetic (mimγ-BiPPB) was extensively investigated for its anti-fibrotic and adverse effects in acute and chronic CCl4-induced liver fibrosis models in mice. Treatment with mimγ-BiPPB, after the onset of disease, markedly inhibited both early and established hepatic fibrosis as reflected by a reduced intrahepatic α-SMA, desmin and collagen-I mRNA expression and protein levels. While untargeted mimγ and BiPPB had no effect, and native IFNγ only induced a moderate reduction. Additionally, no off-target effects, e.g. systemic inflammation, were found with mimγ-BiPPB, which were substantially observed in mice treated with native IFNγ. The present study highlights the beneficial effects of a novel BiPPB mediated cell-specific targeting of IFNγ peptidomimetic to the disease-inducing cells and therefore represents a highly potential therapeutic approach to treat fibrotic diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Histological evidence of inflammatory reaction associated with fibrosis in the atrial and ventricular walls in a case-control study of patients with history of atrial fibrillation.

    PubMed

    Mitrofanova, Lubov B; Orshanskaya, Victoria; Ho, Siew Yen; Platonov, Pyotr G

    2016-12-01

    Chronic inflammation in the atrial myocardium was shown to play an important role in the development of atrial fibrosis in patients with atrial fibrillation (AF). However, it is not clear to what extent atrial inflammatory reaction associated with AF extends on the ventricular myocardium. Our aim was to assess the extent of fibrosis and lymphomononuclear infiltration in human ventricular myocardium and explore its association with AF. Medical records from consecutive autopsies were checked for presence of AF. Heart specimens from 30 patients died from cardiovascular causes (64 ± 12 years, 17 men) were collected in three equal groups: no AF, paroxysmal AF, and permanent AF. Tissue samples were taken from the Bachmann's bundle, crista terminalis, posterior left atrium, left ventricle and right ventricle free walls and stained with Masson's trichrome for analysis of fibrosis extent. Immunohistochemistry was performed using antibodies against CD3- and CD45-antigens and quantified as number of antigen-positive cells per 1 mm 2 . Fibrosis extent, CD3+ and CD45+ cell counts were elevated in AF patients at all sites (P < 0.001 for all). Fibrosis extent demonstrated correlation with both CD3+ and CD45+ cell counts in the right (r = 0.781, P < 0.001 for CD45+ and r = 0.720, P < 0.001 for CD3+) and the left (r = 0.515, P = 0.004 for CD45+ and r = 0.573, P = 0.001 for CD3+) ventricles. Neither fibrosis nor inflammatory cell count showed association with either age or comorbidities. Histological signs of chronic inflammation affecting ventricular myocardium are strongly associated with AF and demonstrate significant correlation with fibrosis extent that cannot be explained by cardiovascular comorbidities otherwise. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.

  15. HS-173, a Novel PI3K Inhibitor, Attenuates the Activation of Hepatic Stellate Cells in Liver Fibrosis

    PubMed Central

    Son, Mi Kwon; Ryu, Ye-Lim; Jung, Kyung Hee; Lee, Hyunseung; Lee, Hee Seung; Yan, Hong Hua; Park, Heon Joo; Ryu, Ji-Kan; Suh, Jun–Kyu; Hong, Sungwoo; Hong, Soon-Sun

    2013-01-01

    Hepatic stellate cells (HSCs) are the primary source of matrix components in liver disease such as fibrosis. Phosphatidylinositol 3-kinase (PI3K) signaling in HSCs has been shown to induce fibrogenesis. In this study, we evaluated the anti-fibrotic activity of a novel imidazopyridine analogue (HS-173) in human HSCs as well as mouse liver fibrosis. HS-173 strongly suppressed the growth and proliferation of HSCs and induced the arrest at the G2/M phase and apoptosis in HSCs. Furthermore, it reduced the expression of extracellular matrix components such as collagen type I, which was confirmed by an in vivo study. We also observed that HS-173 blocked the PI3K/Akt signaling pathway in vitro and in vivo. Taken together, HS-173 suppressed fibrotic responses such as cell proliferation and collagen synthesis by blocking PI3K/Akt signaling. Therefore, we suggest that this compound may be an effective therapeutic agent for ameliorating liver fibrosis through the inhibition of PI3K signaling. PMID:24326778

  16. Na and K Dependence of the Na/K Pump in Cystic Fibrosis Fibroblasts

    NASA Astrophysics Data System (ADS)

    Reznik, Vivian M.; Schneider, Jerry A.; Mendoza, Stanley A.

    1981-11-01

    The Na and K dependence of the Na/K pump was measured in skin fibroblasts from patients with cystic fibrosis and age/sex-matched controls. Under basal conditions, there was no difference between control and cystic fibrosis cells in protein per cell, intracellular Na and K content, or Na/K pump activity (measured as ouabain-sensitive 86Rb uptake). There was no difference in the Na dependence of the Na/K pump between cystic fibrosis cells and control cells. In cells from patients with cystic fibrosis, the Na/K pump had a significantly lower affinity for K (Km = 1.6 mM) when compared to normals (Km = 0.9 mM). This difference was demonstrated by using two independent experimental designs.

  17. Modulation of CD11c+ lung dendritic cells in respect to TGF-β in experimental pulmonary fibrosis.

    PubMed

    Chakraborty, Kaustav; Chatterjee, Soumya; Bhattacharyya, Arindam

    2017-09-01

    Idiopathic pulmonary fibrosis (IPF) is a deadly, progressive lung disease with very few treatment options till now. Bleomycin-induced pulmonary fibrosis (BIPF) is a commonly used mice model in IPF research. TGF-β1 has been shown to play a key role in pulmonary fibrosis (PF). Dendritic cell (DC) acts as a bridge between innate and adaptive immune systems. The coexistence of chronic inflammation sustained by mature DCs with fibrosis suggests that inflammatory phenomenon has key importance in the pathogenesis of pulmonary fibrosis. Here, we investigated the modulation of DCs phenotypic maturation, accumulation in lung tissue, and expression of other lung DC subsets in respect to TGF-β in PF. First, we established BIPF model in mice and blocked TGF-β expression by the use of inhibitor SB431542. Accumulation of lung CD11c+ DCs is significantly higher in both inflammatory and fibrotic phases of the disease but that percentages got reduced in the absence of TGF-β. TGF-β initiates up-regulation of costimulatory molecules CD86 and CD80 in the inflammatory phases of the disease but not so at fibrotic stage. Expression of lung DC subset CD11c+CD103+ is significantly increased in inflammatory phase and also in fibrotic phase of BIPF. Blocking of TGF-β causes decreased expression of CD11c+CD103+ DCs. Another important lung DC subset CD11c+CD11b+ expression is suppressed by the absence of TGF-β after bleomycin administration. CD11c+CD103+ DCs might have anti-inflammatory as well as anti-fibrotic nature in PF. All these data demonstrate differential modulation of CD11c+ lung DCs by TGF-β in experimental PF. © 2017 International Federation for Cell Biology.

  18. Sphingosine-1-Phosphate Prevents Egress of Hematopoietic Stem Cells From Liver to Reduce Fibrosis.

    PubMed

    King, Andrew; Houlihan, Diarmaid D; Kavanagh, Dean; Haldar, Debashis; Luu, Nguyet; Owen, Andrew; Suresh, Shankar; Than, Nwe Ni; Reynolds, Gary; Penny, Jasmine; Sumption, Henry; Ramachandran, Prakash; Henderson, Neil C; Kalia, Neena; Frampton, Jon; Adams, David H; Newsome, Philip N

    2017-07-01

    There is growing interest in the use of bone marrow cells to treat liver fibrosis, however, little is known about their antifibrotic efficacy or the identity of their effector cell(s). Sphingosine-1-phosphate (S1P) mediates egress of immune cells from the lymphoid organs into the lymphatic vessels; we investigated its role in the response of hematopoietic stem cells (HSCs) to liver fibrosis in mice. Purified (c-kit+/sca1+/lin-) HSCs were infused repeatedly into mice undergoing fibrotic liver injury. Chronic liver injury was induced in BoyJ mice by injection of carbon tetrachloride (CCl 4 ) or placement on a methionine-choline-deficient diet. Some mice were irradiated and given transplants of bone marrow cells from C57BL6 mice, with or without the S1P antagonist FTY720; we then studied HSC mobilization and localization. Migration of HSC lines was quantified in Transwell assays. Levels of S1P in liver, bone marrow, and lymph fluid were measured using an enzyme-linked immunosorbent assay. Liver tissues were collected and analyzed by immunohistochemical quantitative polymerase chain reaction and sphingosine kinase activity assays. We performed quantitative polymerase chain reaction analyses of the expression of sphingosine kinase 1 and 2, sphingosine-1-phosphate lyase 1, and sphingosine-1-phosphate phosphatase 1 in normal human liver and cirrhotic liver from patients with alcohol-related liver disease (n = 6). Infusions of HSCs into mice with liver injury reduced liver scarring based on picrosirius red staining (49.7% reduction in mice given HSCs vs control mice; P < .001), and hepatic hydroxyproline content (328 mg/g in mice given HSCs vs 428 mg/g in control mice; P < .01). HSC infusion also reduced hepatic expression of α-smooth muscle actin (0.19 ± 0.007-fold compared with controls; P < .0001) and collagen type I α 1 chain (0.29 ± 0.17-fold compared with controls; P < .0001). These antifibrotic effects were maintained with infusion of lymphoid progenitors

  19. Inhibition of SET Domain–Containing Lysine Methyltransferase 7/9 Ameliorates Renal Fibrosis

    PubMed Central

    Sasaki, Kensuke; Nakashima, Ayumu; Irifuku, Taisuke; Yamada, Kyoko; Kokoroishi, Keiko; Ueno, Toshinori; Doi, Toshiki; Hida, Eisuke; Arihiro, Koji; Kohno, Nobuoki

    2016-01-01

    TGF-β1 activity results in methylation of lysine 4 of histone H3 (H3K4) through SET domain–containing lysine methyltransferase 7/9 (SET7/9) induction, which is important for the transcriptional activation of fibrotic genes in vitro. However, in vivo studies utilizing an experimental model of renal fibrosis are required to develop therapeutic interventions that target SET7/9. In this study, we investigated the signaling pathway of TGF-β1-induced SET7/9 expression and whether inhibition of SET7/9 suppresses renal fibrosis in unilateral ureteral obstruction (UUO) mice and kidney cell lines. Among the SET family, SET7/9 was upregulated on days 3 and 7 in UUO mice, and the upregulation was suppressed by TGF-β1 neutralizing antibody. TGF-β1 induced SET7/9 expression via Smad3 in normal rat kidney (NRK)-52E cells. In human kidney biopsy specimens from patients diagnosed with IgA nephropathy and membranous nephropathy, SET7/9 expression was positively correlated with the degree of interstitial fibrosis (r=0.59, P=0.001 in patients with IgA nephropathy; and r=0.58, P<0.05 in patients with membranous nephropathy). In addition, small interfering RNA-mediated knockdown of SET7/9 expression significantly attenuated renal fibrosis in UUO mice. Sinefungin, an inhibitor of SET7/9, also suppressed the expression of mesenchymal markers and extracellular matrix proteins and inhibited H3K4 mono-methylation (H3K4me1) in kidneys of UUO mice. Moreover, sinefungin had an inhibitory effect on TGF-β1-induced α-smooth muscle actin expression and H3K4me1 in both NRK-52E and NRK-49F cells. In conclusion, sinefungin, a SET7/9 inhibitor, ameliorates renal fibrosis by inhibiting H3K4me1 and may be a candidate therapeutic agent. PMID:26045091

  20. Exocrine cell-derived microparticles in response to lipopolysaccharide promote endocrine dysfunction in cystic fibrosis.

    PubMed

    Constantinescu, Andrei Alexandru; Gleizes, Céline; Alhosin, Mahmoud; Yala, Elhassan; Zobairi, Fatiha; Leclercq, Alexandre; Stoian, Gheorghe; Mitrea, Ioan Liviu; Prévost, Gilles; Toti, Florence; Kessler, Laurence

    2014-03-01

    Diabetes in cystic fibrosis (CF) is a result of exocrine pancreas alteration followed by endocrine dysfunction at a later stage. Microparticles (MPs) are plasma membrane fragments shed from stimulated or damaged cells that act as cellular effectors. Our aim was to identify a new form of interaction between exocrine and endocrine pancreatic cells mediated by exocrine MPs, in the context of recurrent infection in CF. MPs from either human exocrine CFTRΔF508-mutated (CFPAC-1) cells or exocrine normal pancreatic (PANC-1) cells were collected after treatment by LPS from Pseudomonas aeruginosa and applied to rat endocrine normal insulin-secreting RIN-m5F cells. MP membrane integration in target cells was established by confocal microscopy and flow cytometry using PKH26 lipid probe. Apoptosis, lysosomal activity, insulin secretion were measured after 18 h. MP-mediated NF-κB activation was measured in HEK-Blue reporter cells by SEAP reporter gene system and in RIN-m5F cells by Western blot. In endocrine normal cells, CFTR inhibition was achieved using Inhibitor-172. Compared to PANC-1, MPs from CFPAC-1 significantly reduced insulin secretion and lysosomal activity in RIN-m5F. MPs induced NF-κB activation by increasing the level of IκB phosphorylation. Moreover, the inhibition of NF-κB activation using specific inhibitors was associated with a restored insulin secretion. Interestingly, CFTR inhibition in normal RIN-m5F cells promoted apoptosis and decreased insulin secretion. During recurrent infections associated with CF, exocrine MPs may contribute to endocrine cell dysfunction via NF-κB pathways. Membrane CFTR dysfunction is associated with decreased insulin secretion. © 2013. Published by Elsevier B.V. on behalf of European Cystic Fibrosis Society. All rights reserved.

  1. Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flechsig, Paul; Hartenstein, Bettina; Teurich, Sybille

    2010-06-01

    Purpose: Pulmonary fibrosis is a disorder of the lungs with limited treatment options. Matrix metalloproteinases (MMPs) constitute a family of proteases that degrade extracellular matrix with roles in fibrosis. Here we studied the role of MMP13 in a radiation-induced lung fibrosis model using a MMP13 knockout mouse. Methods and Materials: We investigated the role of MMP13 in lung fibrosis by investigating the effects of MMP13 deficiency in C57Bl/6 mice after 20-Gy thoracic irradiation (6-MV Linac). The morphologic results in histology were correlated with qualitative and quantitative results of volume computed tomography (VCT), magnetic resonance imaging (MRI), and clinical outcome. Results:more » We found that MMP13 deficient mice developed less pulmonary fibrosis than their wildtype counterparts, showed attenuated acute pulmonary inflammation (days after irradiation), and a reduction of inflammation during the later fibrogenic phase (5-6 months after irradiation). The reduced fibrosis in MMP13 deficient mice was evident in histology with reduced thickening of alveolar septi and reduced remodeling of the lung architecture in good correlation with reduced features of lung fibrosis in qualitative and quantitative VCT and MRI studies. The partial resistance of MMP13-deficient mice to fibrosis was associated with a tendency towards a prolonged mouse survival. Conclusions: Our data indicate that MMP13 has a role in the development of radiation-induced pulmonary fibrosis. Further, our findings suggest that MMP13 constitutes a potential drug target to attenuate radiation-induced lung fibrosis.« less

  2. Dysregulation of the ADAM17/Notch signalling pathways in endometriosis: from oxidative stress to fibrosis.

    PubMed

    González-Foruria, Iñaki; Santulli, Pietro; Chouzenoux, Sandrine; Carmona, Francisco; Chapron, Charles; Batteux, Frédéric

    2017-07-01

    Is oxidative stress associated with the A disintegrin and metalloproteases (ADAM) metallopeptidase domain 17 (ADAM17)/Notch signalling pathway and fibrosis in the development of endometriosis? Oxidative stress is correlated with hyperactivation of the ADAM17/Notch signalling pathway and a consequent increase in fibrosis in patients with endometriosis. It is nowadays accepted that oxidative stress plays an important role in the onset and progression of endometriosis. Oxidative stress is able to induce the synthesis of some members of the 'ADAM' family, such as ADAM17. ADAM17/Notch signalling is dysregulated in other profibrotic and inflammatory diseases. This was a prospective laboratory study conducted in a tertiary-care university hospital between January 2011 and April 2013. We investigated non-pregnant, younger than 42-year-old patients (n = 202) during surgery for a benign gynaecological condition. After complete surgical exploration of the abdominopelvic cavity, 121 women with histologically proven endometriosis and 81 endometriosis-free control women were enrolled. Peritoneal fluid (PF) samples were obtained from all the study participants during surgery in order to detect advanced oxidation protein products (AOPPs) and metalloproteinase activity of ADAM17. Stromal cells from endometrial specimens (n = 8) were obtained from endometrium of control patients (Cs), and from eutopic (Es) and ectopic (Ps) endometrium of patients with deep infiltrating endometriosis (DIE) (n = 8). ADAM17, Notch and the fibrosis markers α-smooth muscle actin (α-SMA) and type-I collagen were assessed using immunoblotting in all the endometrial samples obtained. Additionally, fibrosis was assessed after using Notch cleavage inhibitors (DAPT and FLI-06). Notch and fibrosis were also evaluated after stimulation of stromal endometrial cells with ADAM17 purified protein, increasing concentrations of H2O2 and primary cell culture supernatants. Patients with DIE presented higher PF AOPP

  3. In vivo hepatic differentiation potential of human umbilical cord-derived mesenchymal stem cells: Therapeutic effect on liver fibrosis/cirrhosis.

    PubMed

    Zhang, Guo-Zun; Sun, Hui-Cong; Zheng, Li-Bo; Guo, Jin-Bo; Zhang, Xiao-Lan

    2017-12-14

    To investigate the hepatic differentiation potential of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and to evaluate their therapeutic effect on liver fibrosis/cirrhosis. A CCl 4 -induced liver fibrotic/cirrhotic rat model was used to assess the effect of hUC-MSCs. Histopathology was assessed by hematoxylin and eosin (H&E), Masson trichrome and Sirius red staining. The liver biochemical profile was measured using a Beckman Coulter analyzer. Expression analysis was performed using immunofluorescent staining, immunohistochemistry, Western blot, and real-time PCR. We demonstrated that the infused hUC-MSCs could differentiate into hepatocytes in vivo . Functionally, the transplantation of hUC-MSCs to CCl 4 -treated rats improved liver transaminases and synthetic function, reduced liver histopathology and reversed hepatobiliary fibrosis. The reversal of hepatobiliary fibrosis was likely due to the reduced activation state of hepatic stellate cells, decreased collagen deposition, and enhanced extracellular matrix remodeling via the up-regulation of MMP-13 and down-regulation of TIMP-1. Transplanted hUC-MSCs could differentiate into functional hepatocytes that improved both the biochemical and histopathologic changes in a CCl 4 -induced rat liver fibrosis model. hUC-MSCs may offer therapeutic opportunities for treating hepatobiliary diseases, including cirrhosis.

  4. In vivo hepatic differentiation potential of human umbilical cord-derived mesenchymal stem cells: Therapeutic effect on liver fibrosis/cirrhosis

    PubMed Central

    Zhang, Guo-Zun; Sun, Hui-Cong; Zheng, Li-Bo; Guo, Jin-Bo; Zhang, Xiao-Lan

    2017-01-01

    AIM To investigate the hepatic differentiation potential of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and to evaluate their therapeutic effect on liver fibrosis/cirrhosis. METHODS A CCl4-induced liver fibrotic/cirrhotic rat model was used to assess the effect of hUC-MSCs. Histopathology was assessed by hematoxylin and eosin (H&E), Masson trichrome and Sirius red staining. The liver biochemical profile was measured using a Beckman Coulter analyzer. Expression analysis was performed using immunofluorescent staining, immunohistochemistry, Western blot, and real-time PCR. RESULTS We demonstrated that the infused hUC-MSCs could differentiate into hepatocytes in vivo. Functionally, the transplantation of hUC-MSCs to CCl4-treated rats improved liver transaminases and synthetic function, reduced liver histopathology and reversed hepatobiliary fibrosis. The reversal of hepatobiliary fibrosis was likely due to the reduced activation state of hepatic stellate cells, decreased collagen deposition, and enhanced extracellular matrix remodeling via the up-regulation of MMP-13 and down-regulation of TIMP-1. CONCLUSION Transplanted hUC-MSCs could differentiate into functional hepatocytes that improved both the biochemical and histopathologic changes in a CCl4-induced rat liver fibrosis model. hUC-MSCs may offer therapeutic opportunities for treating hepatobiliary diseases, including cirrhosis. PMID:29290652

  5. Liver fibrosis markers in alcoholic liver disease.

    PubMed

    Chrostek, Lech; Panasiuk, Anatol

    2014-07-07

    Alcohol is one of the main factors of liver damage. The evaluation of the degree of liver fibrosis is of great value for therapeutic decision making in patients with alcoholic liver disease (ALD). Staging of liver fibrosis is essential to define prognosis and management of the disease. Liver biopsy is a gold standard as it has high sensitivity and specificity in fibrosis diagnostics. Taking into account the limitations of liver biopsy, there is an exigency to introduce non-invasive serum markers for fibrosis that would be able to replace liver biopsy. Ideal serum markers should be specific for the liver, easy to perform and independent to inflammation and fibrosis in other organs. Serum markers of hepatic fibrosis are divided into direct and indirect. Indirect markers reflect alterations in hepatic function, direct markers reflect extracellular matrix turnover. These markers should correlate with dynamic changes in fibrogenesis and fibrosis resolution. The assessment of the degree of liver fibrosis in alcoholic liver disease has diagnostic and prognostic implications, therefore noninvasive assessment of fibrosis remains important. There are only a few studies evaluating the diagnostic and prognostic values of noninvasive biomarkers of fibrosis in patients with ALD. Several noninvasive laboratory tests have been used to assess liver fibrosis in patients with alcoholic liver disease, including the hyaluronic acid, FibroTest, FibrometerA, Hepascore, Forns and APRI indexes, FIB4, an algorithm combining Prothrombin index (PI), α-2 macroglobulin and hyaluronic acid. Among these tests, Fibrotest, FibrometerA and Hepascore demonstrated excellent diagnostic accuracy in identifying advanced fibrosis and cirrhosis, and additionally, Fibrotest was independently associated with survival. Therefore, the use of biomarkers may reduce the need for liver biopsy and permit an earlier treatment of alcoholic patients.

  6. Retroperitoneal fibrosis as a result of signet ring cell gastric cancer: a case-based review.

    PubMed

    Karbasi, Ashraf; Karbasi-Afshar, Reza; Ahmadi, Javad; Saburi, Amin

    2013-03-01

    Retroperitoneal fibrosis is a rare and obvious condition in the abdominopelvic cavity. Signet ring cell carcinoma of the stomach with gross appearance of linitis plastica is another rare association. We present a rare case of a 49-year-old woman presenting with persistent nausea and vomiting for 20 days. Three months ago, she was admitted with severe flank pain and was referred to the urology service. She was placed with stents for strictures in both ureters. She underwent endoscopy for heartburn, melena, dyspepsia, and weight loss (7 kg/5 month), which revealed congestion of the mucosa of the fundus and body with fine linear erosion and decreased distensibility of the stomach suggesting linitis plastica. A biopsy indicated full-thickness infiltration by signet ring cell gastric cancer. A CT scan showed evidence of retroperitoneal fibrosis with large lymph nodes around the aorta. This paper shows that the gastric linitis plastica can present with many deceptive clinical presentations, raising the risk of postponed diagnosis.

  7. Progress toward generating a ferret model of cystic fibrosis by somatic cell nuclear transfer

    PubMed Central

    Li, Ziyi; Engelhardt, John F

    2003-01-01

    Mammalian cloning by nuclear transfer from somatic cells has created new opportunities to generate animal models of genetic diseases in species other than mice. Although genetic mouse models play a critical role in basic and applied research for numerous diseases, often mouse models do not adequately reproduce the human disease phenotype. Cystic fibrosis (CF) is one such disease. Targeted ablation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in mice does not adequately replicate spontaneous bacterial infections observed in the human CF lung. Hence, several laboratories are pursuing alternative animal models of CF in larger species such as the pig, sheep, rabbits, and ferrets. Our laboratory has focused on developing the ferret as a CF animal model. Over the past few years, we have investigated several experimental parameters required for gene targeting and nuclear transfer (NT) cloning in the ferret using somatic cells. In this review, we will discuss our progress and the hurdles to NT cloning and gene-targeting that accompany efforts to generate animal models of genetic diseases in species such as the ferret. PMID:14613541

  8. Pancreatic stellate cell: physiologic role, role in fibrosis and cancer.

    PubMed

    Apte, Minote; Pirola, Romano C; Wilson, Jeremy S

    2015-09-01

    Ever since the first descriptions of methods to isolate pancreatic stellate cells (PSCs) from rodent and human pancreas 17 years ago, rapid advances have been made in our understanding of the biology of these cells and their functions in health and disease. This review updates recent literature in the field, which indicates an increasingly complex role for the cells in normal pancreas, pancreatitis and pancreatic cancer. Work reported over the past 12 months includes improved methods of PSC immortalization, a role for PSCs in islet fibrosis, novel factors causing PSC activation as well as those inducing quiescence, and translational research aimed at inhibiting the facilitatory effects of PSCs on disease progression in chronic pancreatitis as well as pancreatic cancer. Improved understanding of the role of PSCs in pancreatic pathophysiology has prompted a focus on translational studies aimed at developing novel approaches to modulate PSC function in a bid to improve clinical outcomes of two major fibrotic diseases of the pancreas: chronic pancreatitis and pancreatic cancer.

  9. Increased Expression of TGF-β1 in Correlation with Liver Fibrosis during Echinococcus granulosus Infection in Mice.

    PubMed

    Liu, Yumei; Abudounnasier, Gulizhaer; Zhang, Taochun; Liu, Xuelei; Wang, Qian; Yan, Yi; Ding, Jianbing; Wen, Hao; Yimiti, Delixiati; Ma, Xiumin

    2016-08-01

    To investigate the potential role of transforming growth factor (TGF)-β1 in liver fibrosis during Echinococcus granulosus infection, 96 BALB/c mice were randomly divided into 2 groups, experimental group infected by intraperitoneal injection with a metacestode suspension and control group given sterile physiological saline. The liver and blood samples were collected at days 2, 8, 30, 90, 180, and 270 post infection (PI), and the expression of TGF-β1 mRNA and protein was determined by real-time quantitative RT-PCR and ELISA, respectively. We also evaluated the pathological changes in the liver during the infection using hematoxylin and eosin (H-E) and Masson staining of the liver sections. Pathological analysis of H-E stained infected liver sections revealed liver cell edema, bile duct proliferation, and structural damages of the liver as evidenced by not clearly visible lobular architecture of the infected liver, degeneration of liver cell vacuoles, and infiltration of lymphocytes at late stages of infection. The liver tissue sections from control mice remained normal. Masson staining showed worsening of liver fibrosis at the end stages of the infection. The levels of TGF-β1 did not show significant changes at the early stages of infection, but there were significant increases in the levels of TGF-β1 at the middle and late stages of infection (P<0.05). RT-PCR results showed that, when compared with the control group, TGF-β1 mRNA was low and comparable with that in control mice at the early stages of infection, and that it was significantly increased at day 30 PI and remained at high levels until day 270 PI (P<0.05). The results of this study suggested that increased expression of TGF-β1 during E. granulosus infection may play a significant role in liver fibrosis associated with E. granulosus infection.

  10. Osteopontin in Systemic Sclerosis and its Role in Dermal Fibrosis

    PubMed Central

    Wu, Minghua; Schneider, Daniel J.; Mayes, Maureen D; Assassi, Shervin; Arnett, Frank C.; Tan, Filemon K.; Blackburn, Michael R.; Agarwal, Sandeep K.

    2012-01-01

    Osteopontin (OPN) is a matricellular protein with proinflammatory and profibrotic properties. Previous reports demonstrate a role for OPN in wound healing and pulmonary fibrosis. Herein, we determined if OPN levels are increased in a large cohort of systemic sclerosis (SSc) patients and if OPN contributes dermal fibrosis. Plasma OPN levels were increased in SSc patients, including patients with limited and diffuse disease, compared to healthy controls. Immunohistology demonstrated OPN on fibroblast-like and inflammatory cells in SSc skin and lesional skin from mice in the bleomycin-induced dermal fibrosis model. OPN deficient (OPN−/−) mice developed less dermal fibrosis compared to wild-type mice in the bleomycin-induced dermal fibrosis model. Additional in vivo studies demonstrated that lesional skin from OPN−/− mice had fewer Mac-3+ cells, fewer myofibroblasts, decreased TGF-beta (TGFβ) and genes in the TGFβ pathway and decreased numbers of cells expressing phosphorylated SMAD2 (pSMAD) and ERK. In vitro, OPN−/− dermal fibroblasts had decreased migratory capacity but similar phosphorylation of SMAD2 by TGFβ. Finally, TGFβ production by OPN deficient macrophages was reduced compared to wild type. These data demonstrate an important role for OPN in the development of dermal fibrosis and suggest that OPN may be a novel therapeutic target in SSc. PMID:22402440

  11. Angiotensin II type 1 and 2 receptors and lymphatic vessels modulate lung remodeling and fibrosis in systemic sclerosis and idiopathic pulmonary fibrosis.

    PubMed

    Parra, Edwin Roger; Ruppert, Aline Domingos Pinto; Capelozzi, Vera Luiza

    2014-01-01

    To validate the importance of the angiotensin II receptor isotypes and the lymphatic vessels in systemic sclerosis and idiopathic pulmonary fibrosis. We examined angiotensin II type 1 and 2 receptors and lymphatic vessels in the pulmonary tissues obtained from open lung biopsies of 30 patients with systemic sclerosis and 28 patients with idiopathic pulmonary fibrosis. Their histologic patterns included cellular and fibrotic non-specific interstitial pneumonia for systemic sclerosis and usual interstitial pneumonia for idiopathic pulmonary fibrosis. We used immunohistochemistry and histomorphometry to evaluate the number of cells in the alveolar septae and the vessels stained by these markers. Survival curves were also used. We found a significantly increased percentage of septal and vessel cells immunostained for the angiotensin type 1 and 2 receptors in the systemic sclerosis and idiopathic pulmonary fibrosis patients compared with the controls. A similar percentage of angiotensin 2 receptor positive vessel cells was observed in fibrotic non-specific interstitial pneumonia and usual interstitial pneumonia. A significantly increased percentage of lymphatic vessels was present in the usual interstitial pneumonia group compared with the non-specific interstitial pneumonia and control groups. A Cox regression analysis showed a high risk of death for the patients with usual interstitial pneumonia and a high percentage of vessel cells immunostained for the angiotensin 2 receptor in the lymphatic vessels. We concluded that angiotensin II receptor expression in the lung parenchyma can potentially control organ remodeling and fibrosis, which suggests that strategies aimed at preventing high angiotensin 2 receptor expression may be used as potential therapeutic target in patients with pulmonary systemic sclerosis and idiopathic pulmonary fibrosis.

  12. Hepatic stellate cell-targeted imatinib nanomedicine versus conventional imatinib: A novel strategy with potent efficacy in experimental liver fibrosis.

    PubMed

    El-Mezayen, Nesrine S; El-Hadidy, Wessam F; El-Refaie, Wessam M; Shalaby, Th I; Khattab, Mahmoud M; El-Khatib, Aiman S

    2017-11-28

    Liver fibrosis is a global health problem without approved treatment. Imatinib inhibits two key profibrotic pathways; platelet-derived growth factor (PDGF) and transforming growth factor-beta (TGF-β) and thus can be used to treat liver fibrosis. However, conventional imatinib therapy is hampered by low concentration at target tissue and increased toxicity to other tissues especially heart, lung and liver. Since hepatic stellate cells (HSCs) are the main contributors to liver fibrosis pathogenesis and sole hepatic vitamin A (V A ) storage cells, they can be actively targeted by coupling liposomes to V A . In this study, novel V A -coupled imatinib-loaded liposomes (ILC) were prepared and optimized regarding V A -coupling efficiency, imatinib entrapment efficiency, and particle size. Preferential accumulation of the selected formula in liver was proved by tracing intraperitoneally (i.p.)-injected V A -coupled liposomes loaded with Nile Red (LCNR) to rats with CCl 4 -induced liver fibrosis using live animal imaging. Co-localization of LCNR with immunofluorescently-labeled PDGFR-β in frozen liver tissue sections confirmed HSCs targeting. ILC bio-distribution, following single i.p. injection, revealed 13.5 folds higher hepatic accumulation than conventional imatinib in addition to limited bio-distribution to other organs including heart and lung reflecting diminished adverse effects. ILC therapy resulted in a potent inhibition of phosphorylated PDGFR-β expression when compared to conventional imatinib. Subsequently, there was a statistically significant improvement in liver function tests and reversal of hepatotoxicity along with liver fibrosis. Anti-fibrotic effect was evident from histopathologic Ishak score reduction as well as normalization of the level of profibrotic mediators (hydroxyproline, TGF-B and matrix metalloproteinase-2). Thus, HSC-targeted imatinib therapy shows outstanding anti-fibrotic effects with reduced cytotoxicity compared to conventional

  13. Endotoxin induces fibrosis in vascular endothelial cells through a mechanism dependent on transient receptor protein melastatin 7 activity.

    PubMed

    Echeverría, Cesar; Montorfano, Ignacio; Hermosilla, Tamara; Armisén, Ricardo; Velásquez, Luis A; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe

    2014-01-01

    The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelial-to-mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis.

  14. Cystic fibrosis transmembrane conductance regulator-emerging regulator of cancer.

    PubMed

    Zhang, Jieting; Wang, Yan; Jiang, Xiaohua; Chan, Hsiao Chang

    2018-05-01

    Mutations of cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis, the most common life-limiting recessive genetic disease among Caucasians. CFTR mutations have also been linked to increased risk of various cancers but remained controversial for a long time. Recent studies have begun to reveal that CFTR is not merely an ion channel but also an important regulator of cancer development and progression with multiple signaling pathways identified. In this review, we will first present clinical findings showing the correlation of genetic mutations or aberrant expression of CFTR with cancer incidence in multiple cancers. We will then focus on the roles of CFTR in fundamental cellular processes including transformation, survival, proliferation, migration, invasion and epithelial-mesenchymal transition in cancer cells, highlighting the signaling pathways involved. Finally, the association of CFTR expression levels with patient prognosis, and the potential of CFTR as a cancer prognosis indicator in human malignancies will be discussed.

  15. Type 2 Immune Mechanisms in Carbon Nanotube-Induced Lung Fibrosis.

    PubMed

    Dong, Jie; Ma, Qiang

    2018-01-01

    T helper (Th) 2-dependent type 2 immune pathways have been recognized as an important driver for the development of fibrosis. Upon stimulation, activated Th2 immune cells and type 2 cytokines interact with inflammatory and tissue repair functions to stimulate an overzealous reparative response to tissue damage, leading to organ fibrosis and destruction. In this connection, type 2 pathways are activated by a variety of insults and pathological conditions to modulate the response. Carbon nanotubes (CNTs) are nanomaterials with a wide range of applications. However, pulmonary exposure to CNTs causes a number of pathologic outcomes in animal lungs, dominated by inflammation and fibrosis. These findings, alongside the rapidly expanding production and commercialization of CNTs and CNT-containing materials in recent years, have raised concerns on the health risk of CNT exposure in humans. The CNT-induced pulmonary fibrotic lesions resemble those of human fibrotic lung diseases, such as idiopathic pulmonary fibrosis and pneumoconiosis, to a certain extent with regard to disease development and pathological features. In fibrotic scenarios, immune cells are activated including varying immune pathways, ranging from innate immune cell activation to autoimmune disease. These events often precede and/or accompany the occurrence of fibrosis. Upon CNT exposure, significant induction and activation of Th2 cells and type 2 cytokines in the lungs are observed. Moreover, type 2 pathways are shown to play important roles in promoting CNT-induced lung fibrosis by producing type 2 pro-fibrotic factors and inducing the reparative phenotypes of macrophages in response to CNTs. In light of the vastly increased demand for nanosafety and the apparent induction and multiple roles of type 2 immune pathways in lung fibrosis, we review the current literature on CNT-induced lung fibrosis, with a focus on the induction and activation of type 2 responses by CNTs and the stimulating function of type

  16. Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice

    PubMed Central

    Mazagova, Magdalena; Wang, Lirui; Anfora, Andrew T.; Wissmueller, Max; Lesley, Scott A.; Miyamoto, Yukiko; Eckmann, Lars; Dhungana, Suraj; Pathmasiri, Wimal; Sumner, Susan; Westwater, Caroline; Brenner, David A.; Schnabl, Bernd

    2015-01-01

    Translocation of bacteria and their products across the intestinal barrier is common in patients with liver disease, and there is evidence that experimental liver fibrosis depends on bacterial translocation. The purpose of our study was to investigate liver fibrosis in conventional and germ-free (GF) C57BL/6 mice. Chronic liver injury was induced by administration of thioacetamide (TAA) in the drinking water for 21 wk or by repeated intraperitoneal injections of carbon tetrachloride (CCl4). Increased liver fibrosis was observed in GF mice compared with conventional mice. Hepatocytes showed more toxin-induced oxidative stress and cell death. This was accompanied by increased activation of hepatic stellate cells, but hepatic mediators of inflammation were not significantly different. Similarly, a genetic model using Myd88/Trif-deficient mice, which lack downstream innate immunity signaling, had more severe fibrosis than wild-type mice. Isolated Myd88/Trif-deficient hepatocytes were more susceptible to toxin-induced cell death in culture. In conclusion, the commensal microbiota prevents fibrosis upon chronic liver injury in mice. This is the first study describing a beneficial role of the commensal microbiota in maintaining liver homeostasis and preventing liver fibrosis.—Mazagova, M., Wang, L., Anfora, A. T., Wissmueller, M., Lesley, S. A., Miyamoto, Y., Eckmann, L., Dhungana, S., Pathmasiri, W., Sumner, S., Westwater, C., Brenner, D. A., Schnabl, B. Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice. PMID:25466902

  17. Severely Impaired Control of Bacterial Infections in a Patient With Cystic Fibrosis Defective in Mucosal-Associated Invariant T Cells.

    PubMed

    Pincikova, Terezia; Paquin-Proulx, Dominic; Moll, Markus; Flodström-Tullberg, Malin; Hjelte, Lena; Sandberg, Johan K

    2018-05-01

    Here we report a unique case of a patient with cystic fibrosis characterized by severely impaired control of bacterial respiratory infections. This patient's susceptibility to such infections was much worse than expected from a cystic fibrosis clinical perspective, and he died at age 22 years despite extensive efforts and massive use of antibiotics. We found that this severe condition was associated with a near-complete deficiency in circulating mucosal-associated invariant T (MAIT) cells as measured at several time points. MAIT cells are a large, recently described subset of T cells that recognize microbial riboflavin metabolites presented by the highly evolutionarily conserved MR1 molecules. The MAIT cell deficiency was specific; other T-cell subsets were intact. Even though this is only one unique case, the findings lend significant support to the emerging role of MAIT cells in mucosal immune defense and suggest that MAIT cells may significantly modify the clinical phenotype of respiratory diseases. Copyright © 2018 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  18. Origin and function of myofibroblasts in kidney fibrosis.

    PubMed

    LeBleu, Valerie S; Taduri, Gangadhar; O'Connell, Joyce; Teng, Yingqi; Cooke, Vesselina G; Woda, Craig; Sugimoto, Hikaru; Kalluri, Raghu

    2013-08-01

    Myofibroblasts are associated with organ fibrosis, but their precise origin and functional role remain unknown. We used multiple genetically engineered mice to track, fate map and ablate cells to determine the source and function of myofibroblasts in kidney fibrosis. Through this comprehensive analysis, we identified that the total pool of myofibroblasts is split, with 50% arising from local resident fibroblasts through proliferation. The nonproliferating myofibroblasts derive through differentiation from bone marrow (35%), the endothelial-to-mesenchymal transition program (10%) and the epithelial-to-mesenchymal transition program (5%). Specific deletion of Tgfbr2 in α-smooth muscle actin (αSMA)(+) cells revealed the importance of this pathway in the recruitment of myofibroblasts through differentiation. Using genetic mouse models and a fate-mapping strategy, we determined that vascular pericytes probably do not contribute to the emergence of myofibroblasts or fibrosis. Our data suggest that targeting diverse pathways is required to substantially inhibit the composite accumulation of myofibroblasts in kidney fibrosis.

  19. Origin and Function of Myofibroblasts in Kidney Fibrosis

    PubMed Central

    LeBleu, Valerie S.; Taduri, Gangadhar; O’Connell, Joyce; Teng, Yingqi; Cooke, Vesselina G.; Woda, Craig; Sugimoto, Hikaru; Kalluri, Raghu

    2014-01-01

    Myofibroblasts are associated with organ fibrosis but their precise origin and functional role remain unknown. We employed multiple genetically engineered mice to track, fate-map and ablate cells to determine the source and function of myofibroblasts in kidney fibrosis. Such comprehensive analysis identified that the total pool of myofibroblasts is split, with 50% arising from local resident fibroblasts via proliferation. The non-proliferating myofibroblasts derive via differentiation from bone marrow (35%), endothelial to mesenchymal transition (EndMT) program (10%) and epithelial to mesenchymal transition (EMT) program (5%). Specific deletion of Tgfbr2 in αSMA+ cells revealed the importance of this pathway in recruitment of myofibroblasts via differentiation. Using genetic mouse models and fate-mapping strategy we determined that vascular pericytes likely do not contribute to the emergence of myofibroblasts or fibrosis. This study suggests that targeting diverse pathways is required to significantly inhibit composite accumulation of myofibroblasts in kidney fibrosis. PMID:23817022

  20. Mineralogic parameters related to amosite asbestos-induced fibrosis in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churg, A.; Wright, J.; Wiggs, B.

    1990-12-01

    We have previously shown that in the lungs of a group of chrysotile miners and millers, grade of interstitial fibrosis (asbestosis) is directly proportional to tremolite fiber or chrysotile fiber concentration but is inversely proportional to mean fiber length and length-related parameters. To compare the effects of the commercial amphibole asbestos amosite on parenchymal fibrosis, we histologically graded fibrosis in four different sites in the lungs of 20 shipyard and insulation workers with heavy amosite exposure and measured by analytic electron microscopy fiber concentration and size in corresponding portions of lung tissue. Fibrosis grade was found to be strongly positivelymore » correlated with amosite concentration and negatively correlated with mean fiber size parameters, including fiber length, width, surface area, and mass. A comparison of our present results with our data on the chrysotile miners and millers showed that the regression lines of fibrosis grade versus concentration for amosite, chrysotile, and tremolite were statistically different. These findings indicate that amosite concentration, like chrysotile and tremolite concentration, is closely and directly related to fibrosis at the local lung level. Furthermore, these observations again raise the possibility that short fibers may be more important than is commonly believed in the genesis of fibrosis in man. Last, the concentration comparison data indicate that, fiber for fiber, amosite is more fibrogenic than is chrysotile or tremolite, and indirectly suggest that tremolite is more fibrogenic than is chrysotile.« less

  1. Inhibitory effect of dietary capsaicin on liver fibrosis in mice.

    PubMed

    Bitencourt, Shanna; Stradiot, Leslie; Verhulst, Stefaan; Thoen, Lien; Mannaerts, Inge; van Grunsven, Leo A

    2015-06-01

    Virtually all chronic liver injuries result in the activation of hepatic stellate cells (HSCs). In their activated state, these cells are the main collagen-producing cells implicated in liver fibrosis. Capsaicin (CPS), the active compound of chili peppers, can modulate the activation and migration of HSCs in vitro. Here, we evaluated the potential protective and prophylactic effects of CPS related to cholestatic and hepatotoxic-induced liver fibrosis and its possible underlying mechanism of action. Male Balb/c mice received dietary CPS after 3 days of bile duct ligation (BDL) or before and during carbon tetrachloride (CCl4 ) injections. Mice receiving dietary CPS after BDL had a significant improvement of liver fibrosis accompanied by a decrease in collagen deposition and downregulation of activation markers in isolated HSCs. In the CCl4 model, dietary CPS inhibited the upregulation of profibrogenic markers. However, CPS could not attenuate the CCl4 -induced fibrosis when it was already established. Furthermore, in vitro CPS treatment inhibited the autophagic process during HSC activation. Dietary CPS has potential benefits in the therapy of cholestatic liver fibrosis and in the prophylaxis of hepatotoxic-induced liver injury. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Muscle Weakness and Fibrosis Due to Cell Autonomous and Non-cell Autonomous Events in Collagen VI Deficient Congenital Muscular Dystrophy.

    PubMed

    Noguchi, Satoru; Ogawa, Megumu; Malicdan, May Christine; Nonaka, Ikuya; Nishino, Ichizo

    2017-02-01

    Congenital muscular dystrophies with collagen VI deficiency are inherited muscle disorders with a broad spectrum of clinical presentation and are caused by mutations in one of COL6A1-3 genes. Muscle pathology is characterized by fiber size variation and increased interstitial fibrosis and adipogenesis. In this study, we define critical events that contribute to muscle weakness and fibrosis in a mouse model with collagen VI deficiency. The Col6a1 GT/GT mice develop non-progressive weakness from younger age, accompanied by stunted muscle growth due to reduced IGF-1 signaling activity. In addition, the Col6a1 GT/GT mice have high numbers of interstitial skeletal muscle mesenchymal progenitor cells, which dramatically increase with repeated myofiber necrosis/regeneration. Our results suggest that impaired neonatal muscle growth and the activation of the mesenchymal cells in skeletal muscles contribute to the pathology of collagen VI deficient muscular dystrophy, and more importantly, provide the insights on the therapeutic strategies for collagen VI deficiency. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. An inexpensive and worldwide available digital image analysis technique for histological fibrosis quantification in chronic hepatitis C.

    PubMed

    Campos, C F F; Paiva, D D; Perazzo, H; Moreira, P S; Areco, L F F; Terra, C; Perez, R; Figueiredo, F A F

    2014-03-01

    Hepatic fibrosis staging is based on semiquantitative scores. Digital imaging analysis (DIA) appears more accurate because fibrosis is quantified in a continuous scale. However, high cost, lack of standardization and worldwide unavailability restrict its use in clinical practice. We developed an inexpensive and widely available DIA technique for fibrosis quantification in hepatitis C, and here, we evaluate its reproducibility and correlation with semiquantitative scores, and determine the fibrosis percentage associated with septal fibrosis and cirrhosis. 282 needle biopsies staged by Ishak and METAVIR scores were included. Images of trichrome-stained sections were captured and processed using Adobe(®) Photoshop(®) CS3 and Adobe(®) Bridge(®) softwares. The percentage of fibrosis (fibrosis index) was determined by the ratio between the fibrosis area and the total sample area, expressed in pixels calculated in an automated way. An excellent correlation between DIA fibrosis index and Ishak and METAVIR scores was observed (Spearman's r = 0.95 and 0.92; P < 0.001, respectively). Excellent intra-observer reproducibility was observed in a randomly chosen subset of 39 biopsies with an intraclass correlation index of 0.99 (95% CI, 0.95-0.99). The best cut-offs associated with septal fibrosis and cirrhosis were 6% (AUROC 0.97, 95% CI, 0.95-0.99) and 27% (AUROC 1.0, 95% CI, 0.99-1), respectively. This new DIA technique had high correlation with semiquantitative scores in hepatitis C. This method is reproducible, inexpensive and available worldwide allowing its use in clinical practice. The incorporation of DIA technique provides a more complete evaluation of fibrosis adding the quantification to architectural patterns. © 2013 John Wiley & Sons Ltd.

  4. Cytokines, hepatic cell profiling and cell interactions during bone marrow cell therapy for liver fibrosis in cholestatic mice

    PubMed Central

    Pinheiro, Daphne; Leirós, Luana; Dáu, Juliana Barbosa Torreão; Stumbo, Ana Carolina; Thole, Alessandra Alves; Cortez, Erika Afonso Costa; Mandarim-de-Lacerda, Carlos Alberto; de Carvalho, Lais

    2017-01-01

    Bone marrow cells (BMC) migrate to the injured liver after transplantation, contributing to regeneration through multiple pathways, but mechanisms involved are unclear. This work aimed to study BMC migration, characterize cytokine profile, cell populations and proliferation in mice with liver fibrosis transplanted with GFP+ BMC. Confocal microscopy analysis showed GFP+ BMC near regions expressing HGF and SDF-1 in the fibrotic liver. Impaired liver cell proliferation in fibrotic groups was restored after BMC transplantation. Regarding total cell populations, there was a significant reduction in CD68+ cells and increased Ly6G+ cells in transplanted fibrotic group. BMC contributed to the total populations of CD144, CD11b and Ly6G cells in the fibrotic liver, related to an increment of anti-fibrotic cytokines (IL-10, IL-13, IFN-γ and HGF) and reduction of pro-inflammatory cytokines (IL-17A and IL-6). Therefore, HGF and SDF-1 may represent important chemoattractants for transplanted BMC in the injured liver, where these cells can give rise to populations of extrahepatic macrophages, neutrophils and endothelial progenitor cells that can interact synergistically with other liver cells towards the modulation of an anti-fibrotic cytokine profile promoting the onset of liver regeneration. PMID:29176797

  5. Leptin-induced inflammation by activating IL-6 expression contributes to the fibrosis and hypertrophy of ligamentum flavum in lumbar spinal canal stenosis.

    PubMed

    Sun, Chao; Wang, Zhen; Tian, Ji-Wei; Wang, Yun-Hao

    2018-04-27

    The ongoing chronic inflammation and subsequent fibrosis play an important role in ligamentum flavum (LF) fibrosis and hypertrophy in patients with lumbar spinal canal stenosis (LSCS). Leptin is a chronic inflammatory mediator and involved in the fibrotic process in multiple organ systems. The present study aimed to investigate the role of leptin in LF fibrosis and its related regulatory mechanisms. The LF specimens were obtained during the surgery from 12 patients with LSCS (LSCS group) and 12 control patients with lumbar disc herniation (LDH) group. The morphologic changes and fibrosis score of LF were assessed by Hematoxylin and eosin (H&E) and Masson's trichrome staining respectively. The location and expression of leptin in LF tissues were determined. Then, the LF cells were cultured and exposed to recombinant human leptin (rhleptin). Collagen I and III were used as fibrosis markers and IL-6 was used as the inflammatory factor. As a result, the LF thickness and fibrosis score in the LSCS group were significantly higher than those in the LDH group ( P <0.05). Leptin was detected in the hypertrophied LF and its expression was substantially increased in the LSCS group and positively correlated with LF thickness and fibrosis score ( P <0.05). Moreover, our in vitro experiments revealed that rhleptin treated LF cells elevated the expression of collagen I and III. Finally, leptin administration induced IL-6 expression via nuclear factor-κB (NF-κB) pathway in LF cell ( P <0.05). Our study demonstrated novel molecular events for leptin-induced inflammation in LF tissue by promoting IL-6 expression and thus might have potential implications for clarifying the mechanism underlying LF fibrosis and hypertrophy. © 2018 The Author(s).

  6. Streptococcus pneumoniae triggers progression of pulmonary fibrosis through pneumolysin.

    PubMed

    Knippenberg, Sarah; Ueberberg, Bianca; Maus, Regina; Bohling, Jennifer; Ding, Nadine; Tort Tarres, Meritxell; Hoymann, Heinz-Gerd; Jonigk, Danny; Izykowski, Nicole; Paton, James C; Ogunniyi, Abiodun D; Lindig, Sandro; Bauer, Michael; Welte, Tobias; Seeger, Werner; Guenther, Andreas; Sisson, Thomas H; Gauldie, Jack; Kolb, Martin; Maus, Ulrich A

    2015-07-01

    Respiratory tract infections are common in patients suffering from pulmonary fibrosis. The interplay between bacterial infection and fibrosis is characterised poorly. To assess the effect of Gram-positive bacterial infection on fibrosis exacerbation in mice. Fibrosis progression in response to Streptococcus pneumoniae was examined in two different mouse models of pulmonary fibrosis. We demonstrate that wild-type mice exposed to adenoviral vector delivery of active transforming growth factor-β1 (TGFß1) or diphteria toxin (DT) treatment of transgenic mice expressing the DT receptor (DTR) under control of the surfactant protein C (SPC) promoter (SPC-DTR) to induce pulmonary fibrosis developed progressive fibrosis following infection with Spn, without exhibiting impaired lung protective immunity against Spn. Antibiotic treatment abolished infection-induced fibrosis progression. The cytotoxin pneumolysin (Ply) of Spn caused this phenomenon in a TLR4-independent manner, as Spn lacking Ply (SpnΔply) failed to trigger progressive fibrogenesis, whereas purified recombinant Ply did. Progressive fibrogenesis was also observed in AdTGFβ1-exposed Ply-challenged TLR4 KO mice. Increased apoptotic cell death of alveolar epithelial cells along with an attenuated intrapulmonary release of antifibrogenic prostaglandin E2 was found to underlie progressive fibrogenesis in Ply-challenged AdTGFβ1-exposed mice. Importantly, vaccination of mice with the non-cytotoxic Ply derivative B (PdB) substantially attenuated Ply-induced progression of lung fibrosis in AdTGFβ1-exposed mice. Our data unravel a novel mechanism by which infection with Spn through Ply release induces progression of established lung fibrosis, which can be attenuated by protein-based vaccination of mice. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Stage scoring of liver fibrosis using Mueller matrix microscope

    NASA Astrophysics Data System (ADS)

    Zhou, Jialing; He, Honghui; Wang, Ye; Ma, Hui

    2016-10-01

    Liver fibrosis is a common pathological process of varied chronic liver diseases including alcoholic hepatitis, virus hepatitis, and so on. Accurate evaluation of liver fibrosis is necessary for effective therapy and a five-stage grading system was developed. Currently, experienced pathologists use stained liver biopsies to assess the degree of liver fibrosis. But it is difficult to obtain highly reproducible results because of huge discrepancy among different observers. Polarization imaging technique has the potential of scoring liver fibrosis since it is capable of probing the structural and optical properties of samples. Considering that the Mueller matrix measurement can provide comprehensive microstructural information of the tissues, in this paper, we apply the Mueller matrix microscope to human liver fibrosis slices in different fibrosis stages. We extract the valid regions and adopt the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters for quantitative analysis. We also use the Monte Carlo simulation to analyze the relationship between the microscopic Mueller matrix parameters and the characteristic structural changes during the fibrosis process. The experimental and Monte Carlo simulated results show good consistency. We get a positive correlation between the parameters and the stage of liver fibrosis. The results presented in this paper indicate that the Mueller matrix microscope can provide additional information for the detections and fibrosis scorings of liver tissues and has great potential in liver fibrosis diagnosis.

  8. Sinomenine attenuates renal fibrosis through Nrf2-mediated inhibition of oxidative stress and TGFβ signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Tian

    Renal fibrosis is the common feature of chronic kidney disease and mainly mediated by TGFβ-associated pro-fibrogenic signaling, which causes excessive extracellular matrix accumulation and successive loss of kidney functions. Sinomenine (SIN), an alkaloid derived from medicinal herb extensively used in treatment of rheumatoid arthritis and various inflammatory disorders, displays renal protective properties in experimental animals; however its pharmacological potency against renal fibrosis is not explored. In this study we report that SIN possesses strong anti-renal fibrosis functions in kidney cell and in mouse fibrotic kidney. SIN beneficially modulated the pro-fibrogenic protein expression in TGFβ-treated kidney cells and attenuated the renalmore » fibrotic pathogenesis incurred by unilateral ureteral obstruction (UUO), which correlated with its activation of Nrf2 signaling - the key defender against oxidative stress with anti-fibrotic potentials. Further investigation on its regulation of Nrf2 downstream events revealed that SIN significantly balanced oxidative stress via improving the expression and activity of anti-oxidant and detoxifying enzymes, and interrupted the pro-fibrogenic signaling of TGFβ/Smad and Wnt/β-catenin. Even more impressively SIN achieved its anti-fibrotic activities in an Nrf2-dependent manner, suggesting that SIN regulation of Nrf2-associated anti-fibrotic activities constitutes a critical component of SIN's renoprotective functions. Collectively our studies have demonstrated a novel anti-fibrotic property of SIN and its upstream events and provided a molecular basis for SIN's potential applications in treatment of renal fibrosis-associated kidney disorders. - Highlights: • Sinomenine has strong potency of inhibiting renal fibrosis in UUO mouse kidney. • Sinomenine attenuates the expression of profibrogenic proteins. • Sinomenine balances renal fibrosis-associated oxidative stress. • Sinomenine mitigates profibrogenic

  9. Evaluation of transient elastography in assessing liver fibrosis in patients with autoimmune hepatitis.

    PubMed

    Xu, Qinyu; Sheng, Li; Bao, Han; Chen, Xiaoyu; Guo, Canjie; Li, Hai; Ma, Xiong; Qiu, Dekai; Hua, Jing

    2017-03-01

    Transient elastography (TE) can reliably stage liver fibrosis via liver stiffness measurement (LSM) in chronic liver disease. However, the accuracy of TE for assessment of liver fibrosis in patients with autoimmune hepatitis (AIH) is still limited. We evaluate TE in staging liver fibrosis in AIH patients and compare with other noninvasive diagnostic tools. A total of 100 patients with biopsy-proven AIH were included. The correlation between LSM and fibrosis stage was analyzed using Spearman correlation test. The optimal cut-off values of LSM were calculated for predicting individual fibrosis stages using receiver-operating characteristic curve. The diagnostic accuracy of LSM for severe fibrosis was compared with those of serum biochemical scores. Median LSM in AIH patients was higher than that of healthy controls (11.2 ± 8.2 kPa vs 4.3 ± 1.4 kPa, P < 0.01). LSM had significant correlation with fibrosis (r = 0.752, P < 0.01) and increased progressively with increasing fibrosis stages in AIH patients. AUROC values of LSM for stages F ≥ 2, F ≥ 3, and F4 were 0.878 (95%CI: 0.789-0.967), 0.883 (0.820-0.946), and 0.914 (0.852-0.976), respectively. The optimal cut-off values of LSM for fibrosis stages F ≥ 2, F ≥ 3, and F4 were 6.45, 8.75, and 12.50 kPa, respectively. LSM was superior to APRI score and FIB-4 score in detecting severe fibrosis (F ≥ 3). Serum ALT levels had minor effect on LSM values. Transient elastography is an accurate and reliable noninvasive tool in assessing liver fibrosis in AIH. Hepatic inflammatory activity had no significant effect on LSM determination. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  10. Human Umbilical Cord Mesenchymal Stem Cells Reduce Fibrosis of Bleomycin-Induced Lung Injury

    PubMed Central

    Moodley, Yuben; Atienza, Daniel; Manuelpillai, Ursula; Samuel, Chrishan S.; Tchongue, Jorge; Ilancheran, Sivakami; Boyd, Richard; Trounson, Alan

    2009-01-01

    Acute respiratory distress syndrome is characterized by loss of lung tissue as a result of inflammation and fibrosis. Augmenting tissue repair by the use of mesenchymal stem cells may be an important advance in treating this condition. We evaluated the role of term human umbilical cord cells derived from Wharton’s jelly with a phenotype consistent with mesenchymal stem cells (uMSCs) in the treatment of a bleomycin-induced mouse model of lung injury. uMSCs were administered systemically, and lungs were harvested at 7, 14, and 28 days post-bleomycin. Injected uMSCs were located in the lung 2 weeks later only in areas of inflammation and fibrosis but not in healthy lung tissue. The administration of uMSCs reduced inflammation and inhibited the expression of transforming growth factor-β, interferon-γ, and the proinflammatory cytokines macrophage migratory inhibitory factor and tumor necrosis factor-α. Collagen concentration in the lung was significantly reduced by uMSC treatment, which may have been a consequence of the simultaneous reduction in Smad2 phosphorylation (transforming growth factor-β activity). uMSCs also increased matrix metalloproteinase-2 levels and reduced their endogenous inhibitors, tissue inhibitors of matrix metalloproteinases, favoring a pro-degradative milieu following collagen deposition. Notably, injected human lung fibroblasts did not influence either collagen or matrix metalloproteinase levels in the lung. The results of this study suggest that uMSCs have antifibrotic properties and may augment lung repair if used to treat acute respiratory distress syndrome. PMID:19497992

  11. Myocardial Fibrosis in Competitive Triathletes Detected by Contrast-Enhanced CMR Correlates With Exercise-Induced Hypertension and Competition History.

    PubMed

    Tahir, Enver; Starekova, Jitka; Muellerleile, Kai; von Stritzky, Alexandra; Münch, Julia; Avanesov, Maxim; Weinrich, Julius M; Stehning, Christian; Bohnen, Sebastian; Radunski, Ulf K; Freiwald, Eric; Blankenberg, Stefan; Adam, Gerhard; Pressler, Axel; Patten, Monica; Lund, Gunnar K

    2017-12-08

    This study analyzed the presence of myocardial fibrosis detected by late gadolinium-enhancement (LGE) cardiac magnetic resonance (CMR) in correlation with the performance of competitive triathletes objectified by an exercise test and individual competition history. Myocardial fibrosis detected by LGE CMR has been reported to occur in 0% to 50% of asymptomatic athletes. However, the cause and mechanisms of myocardial fibrosis are unclear. Eighty-three asymptomatic triathletes undergoing >10 training h per week (43 ± 10 years of age; 65% male) and 36 sedentary controls were studied by using LGE and extracellular volume (ECV) CMR. Parameters of physical fitness were measured by spiroergometry. Triathletes reported their lifetime competition results. LGE CMR revealed focal nonischemic myocardial fibrosis in 9 of 54 (17%) male triathletes (LGE + ) but in none of the female triathletes (p < 0.05). LGE + triathletes had higher peak exercise systolic blood pressure (213 ± 24 mm Hg) than LGE - triathletes (194 ± 26 mm Hg; p < 0.05). Furthermore, left ventricular mass index was higher in LGE + triathletes (93 ± 7 g/m 2 ) than in LGE - triathletes (84 ± 11 g/m 2 ; p < 0.05). ECV in LGE - myocardium was higher in LGE + triathletes (26.3 ± 1.8%) than in LGE - triathletes (24.4 ± 2.2%; p < 0.05). LGE + triathletes completed longer cumulative distances in swimming and cycling races and participated more often in middle and Iron Man distances than LGE - triathletes. A cycling race distance of >1,880 km completed during competition had the highest accuracy to predict LGE, with an area under the curve value of 0.876 (p < 0.0001), resulting in high sensitivity (89%) and specificity (79%). Multivariate analysis identified peak exercise systolic blood pressure (p < 0.05) and the swimming race distance (p < 0.01) as independent predictors of LGE presence. Myocardial fibrosis in asymptomatic triathletes seems to be associated with exercise-induced hypertension and

  12. Verrucoid Variant of Invasive Squamous Cell Carcinoma in Oral Submucous Fibrosis: A Clinicopathological Challenge.

    PubMed

    Ramani, Priya; Krithika, C; Ananthalakshmi, R; Singaram, Mamta; Jagdish, Praveena; Janardhanan, Sunitha; Jeevakarunyam, Sathiyajeeva

    2016-11-04

    Verrucous carcinoma (VC) is an exophytic, low-grade, well-differentiated variant of squamous cell carcinoma. It is described as a lesion appearing in the sixth or seventh decade of life that has minimal aggressive potential and, in long-standing cases, has been shown to transform into squamous cell carcinoma. Oral submucous fibrosis (OSMF) is a potentially malignant disorder, and about one-third of the affected population develop oral squamous cell carcinoma. The histopathological diagnosis of verrucous carcinoma is challenging, and the interpretation of early squamous cell carcinoma requires immense experience. Here we present a rare case of a 24-year-old male with OSMF transforming to verrucous carcinoma with invasive squamous cell carcinoma. Even though the case had a straightforward clinical diagnosis, the serial sectioning done for pathological diagnosis disclosed the squamous cell carcinoma.

  13. Grainyhead-like 2 (GRHL2) distribution reveals novel pathophysiological differences between human idiopathic pulmonary fibrosis and mouse models of pulmonary fibrosis

    PubMed Central

    Mahavadi, Poornima; Sasikumar, Satish; Cushing, Leah; Hyland, Tessa; Rosser, Ann E.; Riccardi, Daniela; Lu, Jining; Kalin, Tanya V.; Kalinichenko, Vladimir V.; Guenther, Andreas; Ramirez, Maria I.; Pardo, Annie; Selman, Moisés; Warburton, David

    2013-01-01

    Chronic injury of alveolar lung epithelium leads to epithelial disintegrity in idiopathic pulmonary fibrosis (IPF). We had reported earlier that Grhl2, a transcriptional factor, maintains alveolar epithelial cell integrity by directly regulating components of adherens and tight junctions and thus hypothesized an important role of GRHL2 in pathogenesis of IPF. Comparison of GRHL2 distribution at different stages of human lung development showed its abundance in developing lung epithelium and in adult lung epithelium. However, GRHL2 is detected in normal human lung mesenchyme only at early fetal stage (week 9). Similar mesenchymal reexpression of GRHL2 was also observed in IPF. Immunofluorescence analysis in serial sections from three IPF patients revealed at least two subsets of alveolar epithelial cells (AEC), based on differential GRHL2 expression and the converse fluorescence intensities for epithelial vs. mesenchymal markers. Grhl2 was not detected in mesenchyme in intraperitoneal bleomycin-induced injury as well as in spontaneously occurring fibrosis in double-mutant HPS1 and HPS2 mice, whereas in contrast in a radiation-induced fibrosis model, with forced Forkhead box M1 (Foxm1) expression, an overlap of Grhl2 with a mesenchymal marker was observed in fibrotic regions. Grhl2's role in alveolar epithelial cell plasticity was confirmed by altered Grhl2 gene expression analysis in IPF and further validated by in vitro manipulation of its expression in alveolar epithelial cell lines. Our findings reveal important pathophysiological differences between human IPF and specific mouse models of fibrosis and support a crucial role of GRHL2 in epithelial activation in lung fibrosis and perhaps also in epithelial plasticity. PMID:24375798

  14. Increased hepatic Th2 and Treg subsets are associated with biliary fibrosis in different strains of mice caused by Clonorchis sinensis

    PubMed Central

    Fang, Fan; Du, Ying; Ma, Rui; Li, Xiang-Yang; Yu, Qian; Meng, Di; Tang, Ren-Xian; Zheng, Kui-Yang

    2017-01-01

    Previous studies showed that CD4+T cells responses might be involved in the process of biliary fibrosis. However, the underlying mechanism resulting in biliary fibrosis caused by Clonorchis sinensis remains not yet fully elucidated. The objectives of the present study were to investigate the different profiles of hepatic CD4+T cell subsets (Th1, Th2, Th17 and Treg cells) and their possible roles in the biliary fibrosis of different strains of mice (C57BL/6, BALB/c and FVB mice) induced by C. sinensis infection. C57BL/6, BALB/c and FVB mice were orally gavaged with 45 metacercariae. All mice were sacrificed on 28 days post infection in deep anesthesia conditions. The leukocytes in the liver were separated to examine CD4+T cell subsets by flow cytometry and the left lobe of liver was used to observe pathological changes, collagen depositions and the concentrations of hydroxyproline. The most serious cystic and fibrotic changes appeared in FVB infected mice indicated by gross observation, Masson’s trichrome staining and hydroxyproline content detection. In contrast to C57BL/6 infected mice, diffuse nodules and more intensive fibrosis were observed in the BALB/c infected mice. No differences of the hepatic Th1 subset and Th17 subset were found among the three strains, but the hepatic Th2 and Treg cells and their relative cytokines were dramatically increased in the BALB/c and FVB infected groups compared with the C57BL/6 infected group (P<0.01). Importantly, increased Th2 subset and Treg subset all positively correlated with hydroxyproline contents (P<0.01). This result for the first time implied that the increased hepatic Th2 and Treg cell subsets were likely to play potential roles in the formation of biliary fibrosis in C. sinensis-infected mice. PMID:28151995

  15. Mefunidone Attenuates Tubulointerstitial Fibrosis in a Rat Model of Unilateral Ureteral Obstruction

    PubMed Central

    Liu, Chunyan; Mei, Wenjuan; Tang, Juan; Yuan, Qiongjing; Huang, Ling; Lu, Miaomiao; Wu, Lin; Peng, Zhangzhe; Meng, Jie; Yang, Huixiang; Shen, Hong; Lv, Ben; Hu, Gaoyun; Tao, Lijian

    2015-01-01

    Background Inflammation has a crucial role in renal interstitial fibrosis, which is the common pathway of chronic kidney diseases. Mefunidone (MFD) is a new compound which could effectively inhibit the proliferation of renal fibroblasts in vitro. However, the overall effect of Mefunidone in renal fibrosis remains unknown. Methods Sprague-Dawley rats were randomly divided intro 6 groups: sham operation, unilateral ureteral obstruction (UUO), UUO/Mefunidone (25, 50, 100mg/kg/day) and UUO/PFD (500mg/kg/day). The rats were sacrificed respectively on days 3, 7, and 14 after the operation. Tubulointerstitial injury index, interstitial collagen deposition, expression of fibronectin (FN), α-smooth muscle actin (α-SMA), type I and III collagen and the number of CD3+ and CD68+ cells were determined. The expressions of proinflammatory cytokines, p-ERK, p-IκB, and p-STAT3 were measured in human renal proximal tubular epithelial cells of HK-2 or macrophages. Results Mefunidone treatment significantly attenuated tubulointerstitial injury, interstitial collagen deposition, expression of FN, α-SMA, type I and III collagen in the obstructive kidneys, which correlated with significantly reduced the number of T cells and macrophages in the obstructive kidneys. Mechanistically, Mefunidone significantly inhibited tumor necrosis factor-α (TNF-α-) or lipopolysaccharide (LPS)-induced production of proinflammatory cytokines. This effect is possibly due to the inhibition of phosphorylation of ERK, IκB, and STAT3. Conclusion Mefunidone treatment attenuated tubulointerstitial fibrosis in a rat model of UUO, at least in part, through inhibition of inflammation. PMID:26042668

  16. The Role of the Mammalian Target of Rapamycin (mTOR) in Pulmonary Fibrosis

    PubMed Central

    Nho, Richard

    2018-01-01

    The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR)-dependent pathway is one of the most integral pathways linked to cell metabolism, proliferation, differentiation, and survival. This pathway is dysregulated in a variety of diseases, including neoplasia, immune-mediated diseases, and fibroproliferative diseases such as pulmonary fibrosis. The mTOR kinase is frequently referred to as the master regulator of this pathway. Alterations in mTOR signaling are closely associated with dysregulation of autophagy, inflammation, and cell growth and survival, leading to the development of lung fibrosis. Inhibitors of mTOR have been widely studied in cancer therapy, as they may sensitize cancer cells to radiation therapy. Studies also suggest that mTOR inhibitors are promising modulators of fibroproliferative diseases such as idiopathic pulmonary fibrosis (IPF) and radiation-induced pulmonary fibrosis (RIPF). Therefore, mTOR represents an attractive and unique therapeutic target in pulmonary fibrosis. In this review, we discuss the pathological role of mTOR kinase in pulmonary fibrosis and examine how mTOR inhibitors may mitigate fibrotic progression. PMID:29518028

  17. Human Adipose-derived Mesenchymal Stem Cells Attenuate Early Stage of Bleomycin Induced Pulmonary Fibrosis: Comparison with Pirfenidone

    PubMed Central

    Reddy, Manoj; Fonseca, Lyle; Gowda, Shashank; Chougule, Basavraj; Hari, Aarya; Totey, Satish

    2016-01-01

    Background and Objectives Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, invariably fatal fibrotic lung disease with no lasting option for therapy. Mesenchymal stem cells (MSCs) could be a promising modality for the treatment of IPF. Aim of the study was to investigate improvement in survivability and anti-fibrotic efficacy of human adipose-derived mesenchymal stem cells (AD-MSCs) in comparison with pirfenidone in the bleomycin-induced pulmonary fibrosis model. Methods Human AD-MSCs were administered intravenously on day 3, 6 and 9 after an intra-tracheal challenge with bleomycin, whereas, pirfenidone was given orally in drinking water at the rate of 100 mg/kg body weight three times a day daily from day 3 onward. AD-MSCs were labelled with PKH-67 before administration to detect engraftment. Disease severity and improvement was assessed and compared between sham control and vehicle control groups using Kaplan-Meier survival analysis, biochemical and molecular analysis, histopathology and high resolution computed tomography (HRCT) parameters at the end of study. Results Results demonstrated that AD-MSCs significantly increase survivability; reduce organ weight and collagen deposition better than pirfenidone group. Histological analyses and HRCT of the lung revealed that AD-MSCs afforded protection against bleomycin induced fibrosis and protect architecture of the lung. Gene expression analysis revealed that AD-MSCs potently suppressed pro-fibrotic genes induced by bleomycin. More importantly, AD-MSCs were found to inhibit pro-inflammatory related transcripts. Conclusions Our results provided direct evidence that AD-MSC-mediated immunomodulation and anti-fibrotic effect in the lungs resulted in marked protection in pulmonary fibrosis, but at an early stage of disease. PMID:27871152

  18. Translational Profiles of Medullary Myofibroblasts during Kidney Fibrosis

    PubMed Central

    Grgic, Ivica; Krautzberger, A. Michaela; Hofmeister, Andreas; Lalli, Matthew; DiRocco, Derek P.; Fleig, Susanne V.; Liu, Jing; Duffield, Jeremy S.; McMahon, Andrew P.; Aronow, Bruce

    2014-01-01

    Myofibroblasts secrete matrix during chronic injury, and their ablation ameliorates fibrosis. Development of new biomarkers and therapies for CKD will be aided by a detailed analysis of myofibroblast gene expression during the early stages of fibrosis. However, dissociating myofibroblasts from fibrotic kidney is challenging. We therefore adapted translational ribosome affinity purification (TRAP) to isolate and profile mRNA from myofibroblasts and their precursors during kidney fibrosis. We generated and characterized a transgenic mouse expressing an enhanced green fluorescent protein (eGFP)–tagged L10a ribosomal subunit protein under control of the collagen1α1 promoter. We developed a one-step procedure for isolation of polysomal RNA from collagen1α1-eGFPL10a mice subject to unilateral ureteral obstruction and analyzed and validated the resulting transcriptional profiles. Pathway analysis revealed strong gene signatures for cell proliferation, migration, and shape change. Numerous novel genes and candidate biomarkers were upregulated during fibrosis, specifically in myofibroblasts, and we validated these results by quantitative PCR, in situ, and Western blot analysis. This study provides a comprehensive analysis of early myofibroblast gene expression during kidney fibrosis and introduces a new technique for cell-specific polysomal mRNA isolation in kidney injury models that is suited for RNA-sequencing technologies. PMID:24652793

  19. Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis.

    PubMed

    Contreras, Osvaldo; Rebolledo, Daniela L; Oyarzún, Juan Esteban; Olguín, Hugo C; Brandan, Enrique

    2016-06-01

    Fibrosis occurs in skeletal muscle under various pathophysiological conditions such as Duchenne muscular dystrophy (DMD), a devastating disease characterized by fiber degeneration that results in progressive loss of muscle mass, weakness and increased extracellular matrix (ECM) accumulation. Fibrosis is also observed after skeletal muscle denervation and repeated cycles of damage followed by regeneration. The ECM is synthesized largely by fibroblasts in the muscle connective tissue under normal conditions. Myofibroblasts, cells that express α-smooth muscle actin (α-SMA), play a role in many tissues affected by fibrosis. In skeletal muscle, fibro/adipogenic progenitors (FAPs) that express cell-surface platelet-derived growth factor receptor-α (PDGFR-α) and the transcription factor Tcf4 seem to be responsible for connective tissue synthesis and are good candidates for the origin of myofibroblasts. We show that cells positive for Tcf4 and PDGFR-α are expressed in skeletal muscle under normal conditions and are increased in various skeletal muscles of mdx mice, a murine model for DMD, wild type muscle after sciatic denervation and muscle subjected to chronic damage. These cells co-label with the myofibroblast marker α-SMA in dystrophic muscle but not in normal tissue. The Tcf4-positive cells lie near macrophages mainly concentrated in dystrophic necrotic-regenerating foci. The close proximity of Tcf4-positive cells to inflammatory cells and their previously described role in muscle regeneration might reflect an active interaction between these cell types and growth factors, possibly resulting in a muscular regenerative or fibrotic condition.

  20. How the airway smooth muscle in cystic fibrosis reacts in proinflammatory conditions: implications for airway hyper-responsiveness and asthma in cystic fibrosis.

    PubMed

    McCuaig, Sarah; Martin, James G

    2013-04-01

    Among patients with cystic fibrosis there is a high prevalence (40-70%) of asthma signs and symptoms such as cough and wheezing and airway hyper-responsiveness to inhaled histamine or methacholine. Whether these abnormal airway responses are due to a primary deficiency in the cystic fibrosis transmembrane conductance regulator (CFTR) or are secondary to the inflammatory environment in the cystic fibrosis lungs is not clear. A role for the CFTR in smooth muscle function is emerging, and alterations in contractile signalling have been reported in CFTR-deficient airway smooth muscle. Persistent bacterial infection, especially with Pseudomonas aeruginosa, stimulates interleukin-8 release from the airway epithelium, resulting in neutrophilic inflammation. Increased neutrophilia and skewing of CFTR-deficient T-helper cells to type 2 helper T cells creates an inflammatory environment characterised by high concentrations of tumour necrosis factor α, interleukin-8, and interleukin-13, which might all contribute to increased contractility of airway smooth muscle in cystic fibrosis. An emerging role of interleukin-17, which is raised in patients with cystic fibrosis, in airway smooth muscle proliferation and hyper-responsiveness is apparent. Increased understanding of the molecular mechanisms responsible for the altered smooth muscle physiology in patients with cystic fibrosis might provide insight into airway dysfunction in this disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Airway transplantation of adipose stem cells protects against bleomycin-induced pulmonary fibrosis.

    PubMed

    Llontop, Pedro; Lopez-Fernandez, Daniel; Clavo, Bernardino; Afonso Martín, Juan Luis; Fiuza-Pérez, María D; García Arranz, Mariano; Calatayud, Joaquín; Molins López-Rodó, Laureano; Alshehri, Khalid; Ayub, Adil; Raad, Wissam; Bhora, Faiz; Santana-Rodríguez, Norberto

    2018-04-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with poor prognosis. Adipose-derived stem cells (ADSC) have demonstrated regenerative properties in several tissues. The hypothesis of this study was that airway transplantation of ADSC could protect against bleomycin (BLM)-induced pulmonary fibrosis (PF). Fifty-eight lungs from 29 male Sprague-Dawley rats were analyzed. Animals were randomly divided into five groups: a) control (n=3); b) sham (n=6); c) BLM (n=6); d) BLM+ADSC-2d (n=6); and e) BLM+ADSC-14d (n=8). Animals received 500 µL saline (sham), 2.5 UI/kg BLM in 500 µL saline (BLM), and 2×10 6  ADSC in 100 µL saline intratracheally at 2 (BLM+ADSC-2d) and 14 days (BLM+ADSC-14d) after BLM. Animals were sacrificed at 28 days. Blinded Ashcroft score was used to determine pulmonary fibrosis extent on histology. Hsp27, Vegf, Nfkβ, IL-1, IL-6, Col4, and Tgfβ1 mRNA gene expression were determined using real-time quantitative-PCR. Ashcroft index was: control=0; sham=0.37±0.07; BLM=6.55±0.34 vs sham (P=0.006). BLM vs BLM+ADSC-2d=4.63±0.38 (P=0.005) and BLM+ADSC-14d=3.77±0.46 (P=0.005). BLM vs sham significantly increased Hsp27 (P=0.018), Nfkβ (P=0.009), Col4 (P=0.004), Tgfβ1 (P=0.006) and decreased IL-1 (P=0.006). BLM+ADSC-2d vs BLM significantly decreased Hsp27 (P=0.009) and increased Vegf (P=0.006), Nfkβ (P=0.009). BLM+ADSC-14d vs BLM significantly decreased Hsp27 (P=0.028), IL-6 (P=0.013), Col4 (P=0.002), and increased Nfkβ (P=0.040) and Tgfβ1 (P=0.002). Airway transplantation of ADSC significantly decreased the fibrosis rate in both early and established pulmonary fibrosis, modulating the expression of Hsp27, Vegfa, Nfkβ, IL-6, Col4, and Tgfβ1. From a translational perspective, this technique could become a new adjuvant treatment for patients with IPF. © American Federation for Medical Research (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless

  2. Multiplex transcriptional analysis of paraffin-embedded liver needle biopsy from patients with liver fibrosis

    PubMed Central

    2012-01-01

    Background The possibility of extracting RNA and measuring RNA expression from paraffin sections can allow extensive investigations on stored paraffin samples obtained from diseased livers and could help with studies of the natural history of liver fibrosis and inflammation, and in particular, correlate basic mechanisms to clinical outcomes. Results To address this issue, a pilot study of multiplex gene expression using branched-chain DNA technology was conducted to directly measure mRNA expression in formalin-fixed paraffin-embedded needle biopsy samples of human liver. Twenty-five genes were selected for evaluation based on evidence obtained from human fibrotic liver, a rat BDL model and in vitro cultures of immortalized human hepatic stellate cells. The expression levels of these 25 genes were then correlated with liver fibrosis and inflammation activity scores. Statistical analysis revealed that three genes (COL3A1, KRT18, and TUBB) could separate fibrotic from non-fibrotic samples and that the expression of ten genes (ANXA2, TIMP1, CTGF, COL4A1, KRT18, COL1A1, COL3A1, ACTA2, TGFB1, LOXL2) were positively correlated with the level of liver inflammation activity. Conclusion This is the first report describing this multiplex technique for liver fibrosis and has provided the proof of concept of the suitability of RNA extracted from paraffin sections for investigating the modulation of a panel of proinflammatory and profibrogenic genes. This pilot study suggests that this technique will allow extensive investigations on paraffin samples from diseased livers and possibly from any other tissue. Using identical or other genes, this multiplex expression technique could be applied to samples obtained from extensive patient cohorts with stored paraffin samples in order to correlate gene expression with valuable clinically relevant information. This method could be used to provide a better understanding of the mechanisms of liver fibrosis and inflammation, its progression

  3. Immune-Regulatory Molecule CD69 Controls Peritoneal Fibrosis

    PubMed Central

    Liappas, Georgios; González-Mateo, Guadalupe Tirma; Sánchez-Díaz, Raquel; Lazcano, Juan José; Lasarte, Sandra; Matesanz-Marín, Adela; Zur, Rafal; Ferrantelli, Evelina; Ramírez, Laura García; Aguilera, Abelardo; Fernández-Ruiz, Elena; Beelen, Robert H.J.; Selgas, Rafael; Sánchez-Madrid, Francisco

    2016-01-01

    Patients with ESRD undergoing peritoneal dialysis develop progressive peritoneal fibrosis, which may lead to technique failure. Recent data point to Th17-mediated inflammation as a key contributor in peritoneal damage. The leukocyte antigen CD69 modulates the setting and progression of autoimmune and inflammatory diseases by controlling the balance between Th17 and regulatory T cells (Tregs). However, the relevance of CD69 in tissue fibrosis remains largely unknown. Thus, we explored the role of CD69 in fibroproliferative responses using a mouse model of peritoneal fibrosis induced by dialysis fluid exposure under either normal or uremic status. We found that cd69−/− mice compared with wild-type (WT) mice showed enhanced fibrosis, mesothelial to mesenchymal transition, IL-17 production, and Th17 cell infiltration in response to dialysis fluid treatment. Uremia contributed partially to peritoneal inflammatory and fibrotic responses. Additionally, antibody–mediated CD69 blockade in WT mice mimicked the fibrotic response of cd69−/− mice. Finally, IL-17 blockade in cd69−/− mice decreased peritoneal fibrosis to the WT levels, and mixed bone marrow from cd69−/− and Rag2−/−γc−/− mice transplanted into WT mice reproduced the severity of the response to dialysis fluid observed in cd69−/− mice, showing that CD69 exerts its regulatory function within the lymphocyte compartment. Overall, our results indicate that CD69 controls tissue fibrosis by regulating Th17-mediated inflammation. PMID:27151919

  4. Periostin promotes fibrosis and predicts progression in patients with idiopathic pulmonary fibrosis

    PubMed Central

    Naik, Payal K.; Bozyk, Paul D.; Bentley, J. Kelley; Popova, Antonia P.; Birch, Carolyn M.; Wilke, Carol A.; Fry, Christopher D.; White, Eric S.; Sisson, Thomas H.; Tayob, Nabihah; Carnemolla, Barbara; Orecchia, Paola; Flaherty, Kevin R.; Hershenson, Marc B.; Murray, Susan; Martinez, Fernando J.

    2012-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease without effective therapeutics. Periostin has been reported to be elevated in IPF patients relative to controls, but its sources and mechanisms of action remain unclear. We confirm excess periostin in lungs of IPF patients and show that IPF fibroblasts produce periostin. Blood was obtained from 54 IPF patients (all but 1 with 48 wk of follow-up). We show that periostin levels predict clinical progression at 48 wk (hazard ratio = 1.47, 95% confidence interval = 1.03–2.10, P < 0.05). Monocytes and fibrocytes are sources of periostin in circulation in IPF patients. Previous studies suggest that periostin may regulate the inflammatory phase of bleomycin-induced lung injury, but periostin effects during the fibroproliferative phase of the disease are unknown. Wild-type and periostin-deficient (periostin−/−) mice were anesthetized and challenged with bleomycin. Wild-type mice were injected with bleomycin and then treated with OC-20 Ab (which blocks periostin and integrin interactions) or control Ab during the fibroproliferative phase of disease, and fibrosis and survival were assessed. Periostin expression was upregulated quickly after treatment with bleomycin and remained elevated. Periostin−/− mice were protected from bleomycin-induced fibrosis. Instillation of OC-20 during the fibroproliferative phase improved survival and limited collagen deposition. Chimeric mouse studies suggest that hematopoietic and structural sources of periostin contribute to lung fibrogenesis. Periostin was upregulated by transforming growth factor-β in lung mesenchymal cells, and periostin promoted extracellular matrix deposition, mesenchymal cell proliferation, and wound closure. Thus periostin plays a vital role in late stages of pulmonary fibrosis and is a potential biomarker for disease progression and a target for therapeutic intervention. PMID:23043074

  5. Modified citrus pectin stops progression of liver fibrosis by inhibiting galectin-3 and inducing apoptosis of stellate cells.

    PubMed

    Abu-Elsaad, Nashwa M; Elkashef, Wagdi Fawzi

    2016-05-01

    Modified citrus pectin (MCP) is a pH modified form of the dietary soluble citrus peel fiber known as pectin. The current study aims at testing its effect on liver fibrosis progression. Rats were injected with CCl4 (1 mL/kg, 40% v/v, i.p., twice a week for 8 weeks). Concurrently, MCP (400 or 1200 mg/kg) was administered daily in drinking water from the first week in groups I and II (prophylactic model) and in the beginning of week 5 in groups III and IV (therapeutic model). Liver function biomarkers (ATL, AST, and ALP), fibrosis markers (laminin and hyaluronic acid), and antioxidant biomarkers (reduced glutathione (GSH) and superoxide dismutase (SOD)) were measured. Stained liver sections were scored for fibrosis and necroinflammation. Additionally, expression of galectin-3 (Gal-3), α-smooth muscle actin (SMA), tissue inhibitor metalloproteinase (TIMP)-1, collagen (Col)1A1, caspase (Cas)-3, and apoptosis related factor (FAS) were assigned. Modified pectin late administration significantly (p < 0.05) decreased malondialdehyde (MDA), TIMP-1, Col1A1, α-SMA, and Gal-3 levels and increased levels of FAS, Cas-3, GSH, and SOD. It also decreased percentage of fibrosis and necroinflammation significantly (p < 0.05). It can be concluded that MCP can attenuate liver fibrosis through an antioxidant effect, inhibition of Gal-3 mediated hepatic stellate cells activation, and induction of apoptosis.

  6. Regulation of Cl^- Channels in Normal and Cystic Fibrosis Airway Epithelial Cells by Extracellular ATP

    NASA Astrophysics Data System (ADS)

    Stutts, M. J.; Chinet, T. C.; Mason, S. J.; Fullton, J. M.; Clarke, L. L.; Boucher, R. C.

    1992-03-01

    The rate of Cl^- secretion by human airway epithelium is determined, in part, by apical cell membrane Cl^- conductance. In cystic fibrosis airway epithelia, defective regulation of Cl^- conductance decreases the capability to secrete Cl^-. Here we report that extracytosolic ATP in the luminal bath of cultured human airway epithelia increased transepithelial Cl^- secretion and apical membrane Cl^- permeability. Single-channel studies in excised membrane patches revealed that ATP increased the open probability of outward rectifying Cl^- channels. The latter effect occurs through a receptor mechanism that requires no identified soluble second messengers and is insensitive to probes of G protein function. These results demonstrate a mode of regulation of anion channels by binding ATP at the extracellular surface. Regulation of Cl^- conductance by external ATP is preserved in cystic fibrosis airway epithelia.

  7. Reversal of hepatic fibrosis: pathophysiological basis of antifibrotic therapies

    PubMed Central

    Ismail, Mona H; Pinzani, Massimo

    2011-01-01

    Chronic liver injuries of different etiologies eventually lead to fibrosis, a scarring process associated with increased and altered deposition of extracellular matrix in the liver. Progression of fibrosis has a major worldwide clinical impact due to the high number of patients affected by chronic liver disease which can lead to severe complications, expensive treatment, a possible need for liver transplantation, and death. Liver fibrogenesis is characterized by activation of hepatic stellate cells and other extracellular matrix producing cells. Liver fibrosis may regress following specific therapeutic interventions. Other than removing agents causing chronic liver damage, no antifibrotic drug is currently available in clinical practice. The extent of liver fibrosis is variable between individuals, even after controlling for exogenous factors. Thus, host genetic factors are considered to play an important role in the process of liver scarring. Until recently it was believed that this process was irreversible. However, emerging experimental and clinical evidence is starting to show that even cirrhosis in its early stages is potentially reversible. PMID:24367223

  8. Interleukin-22 ameliorates liver fibrosis through miR-200a/beta-catenin

    PubMed Central

    Hu, Bang-li; Shi, Cheng; Lei, Rong-e; Lu, Dong-hong; Luo, Wei; Qin, Shan-yu; Zhou, You; Jiang, Hai-xing

    2016-01-01

    IL-22 ameliorates liver fibrosis by inhibiting hepatic stellate cells (HSC), and loss of miR-200a is associated with the development of liver fibrosis. The study aimed to investigate the interplay between IL-22 and miR-200a in regulating liver fibrosis in vivo and in vitro. We observed that IL-22 significantly reduced the proliferation of HSC and increased the expression of p-STAT3. β-catenin was identified as a target gene of miR-200a by luciferase reporter assay, and upregulation of miR-200a significantly attenuated the proliferation of HSC and reduced β-catenin expression. IL-22 treatment increased expression of miR-200a and decreased expression of β-catenin in HSC. The expression of p-STAT3 and miR-200a was elevated while β-catenin was decreased in fibrotic rat liver after IL-22 treatment. Expression levels of β-catenin and p-STAT3 were inversely correlated in fibrotic rat liver and HSC. Upregulation of β-catenin suppressed expression of p-STAT3 in HSC. We concluded that IL-22 inhibits HSC activation and ameliorates liver fibrosis through enhancing expression of miR-200a and reducing expression of β-catenin, suggesting there may be a crosstalk between IL-22/STAT3 and β-catenin pathway. PMID:27819314

  9. Cytokines and STATs in Liver Fibrosis.

    PubMed

    Kong, Xiaoni; Horiguchi, Norio; Mori, Masatomo; Gao, Bin

    2012-01-01

    Liver fibrosis, or cirrhosis, is a common end-stage condition of many chronic liver diseases after incomplete recovery from hepatocyte damage. During fibrosis progression, hepatocellular damage and inflammation trigger complex cellular events that result in collagen deposition and the disruption of the normal liver architecture. Hepatic stellate cell activation and transdifferentiation into myofibroblasts are key events in liver fibrogenesis. Research findings from cell culture and animal models have revealed that the Janus kinase-signal transducer and activator of transcription (Jak-STAT) signaling pathway, which can be activated by many cytokines, growth factors, and hormones, plays a critical role in hepatic fibrogenesis. This review summarizes the biological significance of diverse cytokines and their downstream signaling protein STATs in hepatic fibrogenesis.

  10. Assessment of myocardial fibrosis with T1 mapping MRI.

    PubMed

    Everett, R J; Stirrat, C G; Semple, S I R; Newby, D E; Dweck, M R; Mirsadraee, S

    2016-08-01

    Myocardial fibrosis can arise from a range of pathological processes and its presence correlates with adverse clinical outcomes. Cardiac magnetic resonance (CMR) can provide a non-invasive assessment of cardiac structure, function, and tissue characteristics, which includes late gadolinium enhancement (LGE) techniques to identify focal irreversible replacement fibrosis with a high degree of accuracy and reproducibility. Importantly the presence of LGE is consistently associated with adverse outcomes in a range of common cardiac conditions; however, LGE techniques are qualitative and unable to detect diffuse myocardial fibrosis, which is an earlier form of fibrosis preceding replacement fibrosis that may be reversible. Novel T1 mapping techniques allow quantitative CMR assessment of diffuse myocardial fibrosis with the two most common measures being native T1 and extracellular volume (ECV) fraction. Native T1 differentiates normal from infarcted myocardium, is abnormal in hypertrophic cardiomyopathy, and may be particularly useful in the diagnosis of Anderson-Fabry disease and amyloidosis. ECV is a surrogate measure of the extracellular space and is equivalent to the myocardial volume of distribution of the gadolinium-based contrast medium. It is reproducible and correlates well with fibrosis on histology. ECV is abnormal in patients with cardiac failure and aortic stenosis, and is associated with functional impairment in these groups. T1 mapping techniques promise to allow earlier detection of disease, monitor disease progression, and inform prognosis; however, limitations remain. In particular, reference ranges are lacking for T1 mapping values as these are influenced by specific CMR techniques and magnetic field strength. In addition, there is significant overlap between T1 mapping values in healthy controls and most disease states, particularly using native T1, limiting the clinical application of these techniques at present. Copyright © 2016 The Royal College

  11. The prognostic impact of combined pulmonary fibrosis and emphysema in patients with clinical stage IA non-small cell lung cancer.

    PubMed

    Takenaka, Tomoyoshi; Furuya, Kiyomi; Yamazaki, Koji; Miura, Naoko; Tsutsui, Kana; Takeo, Sadanori

    2018-02-01

    We evaluated the long-term outcomes of clinical stage IA non-small cell lung cancer (NSCLC) patients with combined pulmonary fibrosis and emphysema (CPFE) who underwent lobectomy. We reviewed the chest computed tomography (CT) findings and divided the patients into normal, fibrosis, emphysema and CPFE groups. We evaluated the relationships among the CT findings, the clinicopathological findings and postoperative survival. The patients were classified into the following groups based on the preoperative chest CT findings: normal lung, n = 187; emphysema, n = 62; fibrosis, n = 8; and CPFE, n = 17. The patients with CPFE were significantly older, more likely to be men and smokers, had a higher KL-6 level and lower FEV 1.0% value and had a higher rate of squamous cell carcinoma. The 5-year overall survival (OS) and disease-free survival rates were as follows: normal group, 82.5 and 76.8%; emphysema group, 80.0 and 74.9%; fibrosis group, 46.9 and 50%; and CPFE group, 36.9 and 27.9%, respectively (p < 0.01). A univariate and multivariate analysis determined that the pathological stage and CT findings were associated with OS. CPFE is a significantly unfavorable prognostic factor after lobectomy, even in early-stage NSCLC patients with a preserved lung function.

  12. The orphan nuclear receptor RORα and group 3 innate lymphoid cells drive fibrosis in a mouse model of Crohn's disease.

    PubMed

    Lo, Bernard C; Gold, Matthew J; Hughes, Michael R; Antignano, Frann; Valdez, Yanet; Zaph, Colby; Harder, Kenneth W; McNagny, Kelly M

    2016-09-02

    Fibrosis is the result of dysregulated tissue regeneration and is characterized by excessive accumulation of matrix proteins that become detrimental to tissue function. In Crohn's disease, this manifests itself as recurrent gastrointestinal strictures for which there is no effective therapy beyond surgical intervention. Using a model of infection-induced chronic gut inflammation, we show that Rora -deficient mice are protected from fibrosis; infected intestinal tissues display diminished pathology, attenuated collagen deposition, and reduced fibroblast accumulation. Although Rora is best known for its role in group 2 innate lymphoid cell (ILC2) development, we find that Salmonella -induced fibrosis is independent of eosinophils, signal transducer and activator of transcription 6 signaling, and T helper 2 cytokine production, arguing that this process is largely ILC2-independent. Instead, we observe reduced levels of ILC3- and T cell-derived interleukin-17A (IL-17A) and IL-22 in infected gut tissues. Furthermore, using Rora sg/sg / Rag1 -/- bone marrow chimeric mice, we show that restoring ILC function is sufficient to reestablish IL-17A and IL-22 production and a profibrotic phenotype. Our results show that RORα (retinoic acid receptor-related orphan receptor α)-dependent ILC3 functions are pivotal in mediating gut fibrosis, and they offer an avenue for therapeutic intervention in Crohn's-like diseases. Copyright © 2016, American Association for the Advancement of Science.

  13. Assessing liver fibrosis: comparison of arterial enhancement fraction and diffusion-weighted imaging.

    PubMed

    Bonekamp, David; Bonekamp, Susanne; Ou, Hsin-You; Torbenson, Michael S; Corona-Villalobos, Celia Pamela; Mezey, Esteban; Kamel, Ihab R

    2014-11-01

    Noninvasive markers have been developed to reduce the need for liver biopsy. The aim of this study was to compare the strength of association of the arterial enhancement fraction (AEF), apparent diffusion coefficient (ADC), and serum biomarkers for staging hepatic fibrosis. Eighty-five patients with chronic liver disease underwent triple-phase contrast-enhanced MRI, used to calculate AEF, and diffusion-weighted MRI (b = 0,750 s/mm(2) ), used to calculate ADC. Hepatic fibrosis was staged according METAVIR criteria. The overall association of the four biomarkers (AEF, ADC, aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio, and aspartate aminotransferase to platelet ratio index [APRI]) was compared using nonparametric tests and receiver operating characteristic (ROC) curve, using histopathologic analysis as the reference standard. AEF and ADC values differed significantly between histopathologic fibrosis stages. AEF values correlated with fibrosis stage, ADC values correlated negatively with fibrosis stage. Compared with ADC, AEF showed a trend toward an improved capability of discriminating fibrosis stages. A weighted composite score of AEF and ADC had significantly better diagnostic accuracy than ADC alone (P ≤ 0.023). Imaging parameters had a significantly better diagnostic accuracy than AST/ALT ratio or APRI. AEF may be able to detect the presence of mild, moderate, and advanced liver fibrosis, and its value is increased with concomitant use of ADC. © 2013 Wiley Periodicals, Inc.

  14. The therapeutic effects of bone marrow-derived mesenchymal stem cells and simvastatin in a rat model of liver fibrosis.

    PubMed

    Motawi, Tarek M K; Atta, Hazem M; Sadik, Nermin A H; Azzam, May

    2014-01-01

    Liver fibrosis is the excessive accumulation of extracellular matrix (ECM) proteins including collagen that occurs in most types of chronic liver diseases. Studies concerning the capacity of mesenchymal stem cells (MSCs) and simvasatain (SIMV) to repair fibrotic tissues through reducing inflammation, collagen deposition, are still controversial. This study aimed to investigate the therapeutic efficacy of bone marrow (BM)-derived MSCs and SIMV on carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Rats were divided into: normal, CCl4, CCl4/MSCs, CCl4/SIMV, CCl4/MSCs/SIMV, and SIMV groups. BM-derived MSCs were detected by RT-PCR of CD29 and were then infused into the tail vein of female rats that received CCl4 injection to induce liver fibrosis. Sex-determining region Y (SRY) gene on Y-chromosome gene was assessed by PCR to confirm homing of the male stem cells in liver tissue of the female recipients. Serum liver function tests, liver procollagens I and III, tissue inhibitors of metalloproteinase-1 (TIMP-1), endoglin, matrix metalloproteinase-1 (MMP-1) gene expressions, transforming growth factor-beta (TGF-β1) immunostaining, and histopathologicl examination were performed. MSCs and SIMV decreased liver procollagens I and III, TIMP-1 and endoglin gene expressions, TGF-β1 immunostaining, and serum liver function tests compared with the CCl4 group. MMP-1 expression was increased in the CCl4/MSCs group. Histopathological examination as well as fibrosis score supports the biochemical and molecular findings. It can be concluded that MSCs and SIMV were effective in the treatment of hepatic CCl4-induced fibrosis-rat model. Treatment with MSCs was superior to SIMV. This antifibrotic effect can be attributed to their effect on the MMPs/TIMPs balance which is central in fibrogenesis.

  15. Recent advancement of molecular mechanisms of liver fibrosis.

    PubMed

    Seki, Ekihiro; Brenner, David A

    2015-07-01

    Liver fibrosis occurs in response to any etiology of chronic liver injury including hepatitis B and C, alcohol consumption, fatty liver disease, cholestasis, and autoimmune hepatitis. Hepatic stellate cells (HSCs) are the primary source of activated myofibroblasts that produce extracellular matrix (ECM) in the liver. Various inflammatory and fibrogenic pathways contribute to the activation of HSCs. Recent studies also discovered that liver fibrosis is reversible and activated HSCs can revert to quiescent HSCs when causative agents are removed. Although the basic research for liver fibrosis has progressed remarkably, sensitive and specific biomarkers as non-invasive diagnostic tools, and effective anti-fibrotic agents have not been developed yet. This review highlights the recent advances in cellular and molecular mechanisms of liver fibrosis, especially focusing on origin of myofibroblasts, inflammatory signaling, autophagy, cellular senescence, HSC inactivation, angiogenesis, and reversibility of liver fibrosis. © 2015 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  16. Neuroendocrine tumors and fibrosis: An unsolved mystery?

    PubMed

    Laskaratos, Faidon-Marios; Rombouts, Krista; Caplin, Martyn; Toumpanakis, Christos; Thirlwell, Christina; Mandair, Dalvinder

    2017-12-15

    Neuroendocrine tumors are a heterogeneous group of slow-growing neoplasms arising mainly from the enterochromaffin cells of the digestive and respiratory tract. Although they are relatively rare, their incidence is rising. It has long been observed that they often are associated with the development of fibrosis, both local and distant. Fibrotic complications, such as carcinoid heart disease and mesenteric desmoplasia, may lead to considerable morbidity or even affect prognosis. The elucidation of the pathophysiology of fibrosis would be of critical importance for the development of targeted therapeutic strategies. In this article, the authors review the available evidence regarding the biological basis of fibrosis in neuroendocrine tumors. They explore the role of the tumor microenvironment and the interplay between tumor cells and fibroblasts as a key factor in fibrogenesis and tumor development/progression. They also review the role of serotonin, growth factors, and other peptides in the development of carcinoid-related fibrotic reactions. Cancer 2017;123:4770-90. © 2017 American Cancer Society. © 2017 American Cancer Society.

  17. L-Cysteine Administration Attenuates Pancreatic Fibrosis Induced by TNBS in Rats by Inhibiting the Activation of Pancreatic Stellate Cell

    PubMed Central

    Hu, GuoYong; Shen, Jie; Wang, Feng; Xu, Ling; Dai, WeiQi; Xiong, Jie; Ni, JianBo; Guo, ChuanYong; Wan, Rong; Wang, XingPeng

    2012-01-01

    Background and Aims Recent studies have shown that activated pancreatic stellate cells (PSCs) play a major role in pancreatic fibrogenesis. We aimed to study the effect of L-cysteine administration on fibrosis in chronic pancreatitis (CP) induced by trinitrobenzene sulfonic acid (TNBS) in rats and on the function of cultured PSCs. Methods CP was induced by TNBS infusion into rat pancreatic ducts. L-cysteine was administrated for the duration of the experiment. Histological analysis and the contents of hydroxyproline were used to evaluate pancreatic damage and fibrosis. Immunohistochemical analysis of α-SMA in the pancreas was performed to detect the activation of PSCs in vivo. The collagen deposition related proteins and cytokines were determined by western blot analysis. DNA synthesis of cultured PSCs was evaluated by BrdU incorporation. We also evaluated the effect of L-cysteine on the cell cycle and cell activation by flow cytometry and immunocytochemistry. The expression of PDGFRβ, TGFβRII, collagen 1α1 and α-SMA of PSCs treated with different concentrations of L-cysteine was determined by western blot. Parameters of oxidant stress were evaluated in vitro and in vivo. Nrf2, NQO1, HO-1, IL-1β expression were evaluated in pancreas tissues by qRT-PCR. Results The inhibition of pancreatic fibrosis by L-cysteine was confirmed by histological observation and hydroxyproline assay. α-SMA, TIMP1, IL-1β and TGF-β1 production decreased compared with the untreated group along with an increase in MMP2 production. L-cysteine suppressed the proliferation and extracellular matrix production of PSCs through down-regulating of PDGFRβ and TGFβRII. Concentrations of MDA+4-HNE were decreased by L-cysteine administration along with an increase in GSH levels both in tissues and cells. In addition, L-cysteine increased the mRNA expression of Nrf2, NQO1 and HO-1 and reduced the expression of IL-1β in L-cysteine treated group when compared with control group. Conclusion L

  18. [Effects of fasudil on bleomycin-induced pulmonary fibrosis in mice and on the biological behaviors in NIH3T3 mouse fibroblast cell line].

    PubMed

    Jiang, Chunguo; Huang, Hui; Liu, Jia; Wang, Yanxun; Zhao, Yuyue; Xu, Zuojun

    2014-09-01

    To determine the beneficial effects and mechanisms of fasudil, a selective ROCK inhibitor, on bleomycin-induced pulmonary fibrosis in mice and to determine the effects and mechanisms of fasudil on the biological behaviors in NIH3T3 mouse fibroblast cell line. The BPF model was induced by a single dosage of 2.5 mg/kg bleomycin intratracheal injection in mice and fasudil intraperitoneal injection was given to the mice. The fibrosis degree was determined pathologically by using the Ashcroft scoring method and biochemically by hydroxyproline assay in lung tissue. NIH3T3 mouse fibroblast cell line was cultured in vitro and fasudil was given to the cell. The proliferation activity in NIH3T3 cells were detected by MTT assay and flat colony forming experiment. The migration activity in NIH3T3 cells were detected by scratch test and transwell chamber experiment. The expression of CyclinD1, MMP2 and TIMP1 mRNA in NIH3T3 cells was detected by RT-PCR. The expression of CyclinD1, MMP2 and TIMP1 protein and the level of MYPT1 phosphorylation in NIH3T3 cells was detected by Western blot. Compare to the mice administrated by bleomycin, the Ashcroft score and hydroxyproline content were significantly decreased in the mice administered fasudil. Administration of fasudil can reduce the ability of proliferation and migration in a dose-dependent manner in NIH3T3 cells. The effect of fasudil was possibly related to increase the production of TIMP1 and decrease the production of CyclinD1 and MMP2. Administration of fasudil can attenuate pulmonary fibrosis both in vivo and in vitro. These findings suggest that fasudil may be a potential therapeutic candidate for the treatment of pulmonary fibrosis.

  19. Stable expression of HIF-1α in tubular epithelial cells promotes interstitial fibrosis

    PubMed Central

    Kimura, Kuniko; Iwano, Masayuki; Higgins, Debra F.; Yamaguchi, Yukinari; Nakatani, Kimihiko; Harada, Koji; Kubo, Atsushi; Akai, Yasuhiro; Rankin, Erinn B.; Neilson, Eric G.; Haase, Volker H.; Saito, Yoshihiko

    2008-01-01

    Chronic hypoxia accelerates renal fibrosis. The chief mediator of the hypoxic response is hypoxia-inducible factor 1 (HIF-1) and its oxygen-sensitive component HIF-1α. HIF-1 regulates a wide variety of genes, some of which are closely associated with tissue fibrosis. To determine the specific role of HIF-1 in renal fibrosis, we generated a knockout mouse in which tubular epithelial expression of von Hippel-Lindau tumor suppressor (VHL), which acts as a ubiquitin ligase to promote proteolysis of HIF-1α, was targeted. We investigated the effect of VHL deletion (i.e., stable expression of HIF-1α) histologically and used the anti-HIF-1α agent [3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole] (YC-1) to test whether inhibition of HIF-1α could represent a novel approach to treating renal fibrosis. The area of renal fibrosis was significantly increased in a 5/6 renal ablation model of VHL−/− mice and in all VHL−/− mice at least 60 wk of age. Injection of YC-1 inhibited the progression of renal fibrosis in unilateral ureteral obstruction model mice. In conclusion, HIF-1α appears to be a critical contributor to the progression of renal fibrosis and could be a useful target for its treatment. PMID:18667485

  20. Cardiac Magnetic Resonance-Verified Myocardial Fibrosis in Chagas Disease: Clinical Correlates and Risk Stratification

    PubMed Central

    Uellendahl, Marly; de Siqueira, Maria Eduarda Menezes; Calado, Eveline Barros; Kalil-Filho, Roberto; Sobral, Dário; Ribeiro, Clébia; Oliveira, Wilson; Martins, Silvia; Narula, Jagat; Rochitte, Carlos Eduardo

    2016-01-01

    Background Chagas disease (CD) is an important cause of heart failure and mortality, mainly in Latin America. This study evaluated the morphological and functional characteristics of the heart as well the extent of myocardial fibrosis (MF) in patients with CD by cardiac magnetic resonance (CMR). The prognostic value of MF evaluated by myocardial-delayed enhancement (MDE) was compared with that via Rassi score. Methods This study assessed 39 patients divided into 2 groups: 28 asymptomatic patients as indeterminate form group (IND); and symptomatic patients as Chagas Heart Disease (CHD) group. All patients underwent CMR using the techniques of cine-MRI and MDE, and the amount of MF was compared with the Rassi score. Results Regarding the morphological and functional analysis, significant differences were observed between both groups (p < 0.001). Furthermore, there was a strong correlation between the extent of MF and the Rassi score (r = 0.76). Conclusions CMR is an important technique for evaluating patients with CD, stressing morphological and functional differences in all clinical presentations. The strong correlation with the Rassi score and the extent of MF detected by CMR emphasizes its role in the prognostic stratification of patients with CD. PMID:27982271

  1. Cystic fibrosis - resources

    MedlinePlus

    Resources - cystic fibrosis ... The following organizations are good resources for information on cystic fibrosis : Cystic Fibrosis Foundation -- www.cff.org March of Dimes -- www.marchofdimes.org/baby/cystic-fibrosis-and- ...

  2. Complement Effectors of Inflammation in Cystic Fibrosis Lung Fluid Correlate with Clinical Measures of Disease.

    PubMed

    Sass, Laura A; Hair, Pamela S; Perkins, Amy M; Shah, Tushar A; Krishna, Neel K; Cunnion, Kenji M

    2015-01-01

    In cystic fibrosis (CF), lung damage is mediated by a cycle of obstruction, infection, and inflammation. Here we explored complement inflammatory effectors in CF lung fluid. In this study soluble fractions (sols) from sputum samples of 15 CF patients were assayed for complement effectors and analyzed with clinical measurements. The pro-inflammatory peptide C5a was increased 4.8-fold (P = 0.04) in CF sols compared with controls. Incubation of CF sols with P. aeruginosa or S. aureus increased C5a concentration 2.3-fold (P = 0.02). A peptide inhibitor of complement C1 (PIC1) completely blocked the increase in C5a concentration from P. aeruginosa in CF sol in vitro (P = 0.001). C5a concentration in CF sol correlated inversely with body mass index (BMI) percentile in children (r = -0.77, P = 0.04). C3a, which has anti-inflammatory effects, correlated positively with FEV1% predicted (rs = 0.63, P = 0.02). These results suggest that complement effectors may significantly impact inflammation in CF lung fluid.

  3. Failure of the Cystic Fibrosis Transmembrane Conductance Regulator to Conduct ATP

    NASA Astrophysics Data System (ADS)

    Reddy, M. M.; Quinton, P. M.; Haws, C.; Wine, J. J.; Grygorczyk, R.; Tabcharani, J. A.; Hanrahan, J. W.; Gunderson, K. L.; Kopito, R. R.

    1996-03-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is chloride ion channel regulated by protein kinase A and adenosine triphosphate (ATP). Loss of CFTR-mediated chloride ion conductance from the apical plasma membrane of epithelial cells is a primary physiological lesion in cystic fibrosis. CFTR has also been suggested to function as an ATP channel, although the size of the ATP anion is much larger than the estimated size of the CFTR pore. ATP was not conducted through CFTR in intact organs, polarized human lung cell lines, stably transfected mammalian cell lines, or planar lipid bilayers reconstituted with CFTR protein. These findings suggest that ATP permeation through the CFTR is unlikely to contribute to the normal function of CFTR or to the pathogenesis of cystic fibrosis.

  4. Caveolin-1 regulates chemokine receptor 5-mediated contribution of bone marrow-derived cells to dermal fibrosis

    PubMed Central

    Lee, Rebecca; Perry, Beth; Heywood, Jonathan; Reese, Charles; Bonner, Michael; Hatfield, Corey M.; Silver, Richard M.; Visconti, Richard P.; Hoffman, Stanley; Tourkina, Elena

    2014-01-01

    In fibrotic diseases caveolin-1 underexpression in fibroblasts results in collagen overexpression and in monocytes leads to hypermigration. These profibrotic behaviors are blocked by the caveolin-1 scaffolding domain peptide (CSD) which compensates for caveolin-1 deficiency. Monocytes and fibroblasts are related in that monocytes are the progenitors of fibrocytes (CD45+/Collagen I+ cells) that, in turn, are the progenitors of many fibroblasts in fibrotic tissues. In an additional anti-fibrotic activity, CSD blocks monocyte differentiation into fibrocytes. We studied a mouse fibrosis model (Pump Model) involving systemic bleomycin delivery that closely models scleroderma (SSc) in several ways, the most important of which for this study is that fibrosis is observed in the lungs, skin, and internal organs. We show here that dermal thickness is increased 2-fold in the Pump Model and that this effect is almost completely blocked by CSD (p < 0.001). Concomitantly, the subcutaneous fat layer becomes >80% thinner. This effect is also blocked by CSD (p < 0.001). Even in mice receiving vehicle instead of bleomycin, CSD increases the thickness of the fat layer. To study the mechanisms of action of bleomycin and CSD, we examined the accumulation of the chemokine receptor CCR5 and its ligands MIP1α and MIP1β in fibrotic tissue and their roles in monocyte migration. Fibrocytes and other leukocytes expressing CCR5 and its ligands were present at high levels in the fibrotic dermis of SSc patients and Pump Model mice while CSD blocked their accumulation in mouse dermis. Migration toward CCR5 ligands of SSc monocytes and Pump Model bone marrow cells was 3-fold greater than cells from control subjects. This enhanced migration was almost completely blocked by CSD. These results suggest that low monocyte caveolin-1 promotes fibrosis by enhancing the recruitment of fibrocytes and their progenitors into affected tissue. PMID:24966836

  5. Overview of the cellular and molecular basis of kidney fibrosis

    PubMed Central

    Eddy, Allison A

    2014-01-01

    The common pathogenetic pathway of progressive injury in patients with chronic kidney disease (CKD) is epitomized as normal kidney parenchymal destruction due to scarring (fibrosis). Understanding the fundamental pathways that lead to renal fibrosis is essential in order to develop better therapeutic options for human CKD. Although complex, four cellular responses are pivotal. (1) An interstitial inflammatory response that has multiple consequences—some harmful and others healing. (2) The appearance of a unique interstitial cell population of myofibroblasts, primarily derived from kidney stromal cells (fibroblasts and pericytes), that are the primary source of the various extracellular matrix proteins that form interstitial scars. (3) Tubular epithelial cells that have variable and time-dependent roles as early responders to injury and later as victims of fibrosis due to the loss of their regenerative abilities. (4) Loss of interstitial capillary integrity that compromises oxygen delivery and leads to a vicious cascade of hypoxia–oxidant stress that accentuates injury and fibrosis. In the absence of adequate angiogenic responses, a healthy interstitial capillary network is not maintained. The fibrotic ‘scar' that typifies CKD is an interesting consortium of multifunctional macromolecules that not only change in composition and structure over time, but can be degraded via extracellular and intracellular proteases. Although transforming growth factor beta appears to be the primary driver of kidney fibrosis, a vast array of additional molecules may have modulating roles. The importance of genetic and epigenetic factors is increasingly appreciated. An intriguing but incompletely understood cardiorenal syndrome underlies the high morbidity and mortality rates that develop in association with progressive kidney fibrosis. PMID:25401038

  6. Liver fibrosis markers of nonalcoholic steatohepatitis

    PubMed Central

    Enomoto, Hirayuki; Bando, Yukihiro; Nakamura, Hideji; Nishiguchi, Shuhei; Koga, Masafumi

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is one of the major causes of chronic liver injury. NAFLD includes a wide range of clinical conditions from simple steatosis to nonalcoholic steatohepatitis (NASH), advanced fibrosis, and liver cirrhosis. The histological findings of NASH indicate hepatic steatosis and inflammation with characteristic hepatocyte injury (e.g., ballooning degeneration), as is observed in the patients with alcoholic liver disease. NASH is considered to be a potentially health-threatening disease that can progress to cirrhosis. A liver biopsy remains the most reliable diagnostic method to appropriately diagnose NASH, evaluate the severity of liver fibrosis, and determine the prognosis and optimal treatment. However, this invasive technique is associated with several limitations in routine use, and a number of biomarkers have been developed in order to predict the degree of liver fibrosis. In the present article, we review the current status of noninvasive biomarkers available to estimate liver fibrosis in the patients with NASH. We also discuss our recent findings on the use of the glycated albumin-to-glycated hemoglobin ratio, which is a new index that correlates to various chronic liver diseases, including NASH. PMID:26139988

  7. Liver fibrosis markers of nonalcoholic steatohepatitis.

    PubMed

    Enomoto, Hirayuki; Bando, Yukihiro; Nakamura, Hideji; Nishiguchi, Shuhei; Koga, Masafumi

    2015-06-28

    Nonalcoholic fatty liver disease (NAFLD) is one of the major causes of chronic liver injury. NAFLD includes a wide range of clinical conditions from simple steatosis to nonalcoholic steatohepatitis (NASH), advanced fibrosis, and liver cirrhosis. The histological findings of NASH indicate hepatic steatosis and inflammation with characteristic hepatocyte injury (e.g., ballooning degeneration), as is observed in the patients with alcoholic liver disease. NASH is considered to be a potentially health-threatening disease that can progress to cirrhosis. A liver biopsy remains the most reliable diagnostic method to appropriately diagnose NASH, evaluate the severity of liver fibrosis, and determine the prognosis and optimal treatment. However, this invasive technique is associated with several limitations in routine use, and a number of biomarkers have been developed in order to predict the degree of liver fibrosis. In the present article, we review the current status of noninvasive biomarkers available to estimate liver fibrosis in the patients with NASH. We also discuss our recent findings on the use of the glycated albumin-to-glycated hemoglobin ratio, which is a new index that correlates to various chronic liver diseases, including NASH.

  8. Deletion of H-Ras decreases renal fibrosis and myofibroblast activation following ureteral obstruction in mice.

    PubMed

    Grande, M Teresa; Fuentes-Calvo, Isabel; Arévalo, Miguel; Heredia, Fabiana; Santos, Eugenio; Martínez-Salgado, Carlos; Rodríguez-Puyol, Diego; Nieto, M Angela; López-Novoa, José M

    2010-03-01

    Tubulointerstitial fibrosis is characterized by the presence of myofibroblasts that contribute to extracellular matrix accumulation. These cells may originate from resident fibroblasts, bone-marrow-derived cells, or renal epithelial cells converting to a mesenchymal phenotype. Ras GTPases are activated during renal fibrosis and play crucial roles in regulating both cell proliferation and TGF-beta-induced epithelial-mesenchymal transition. Here we set out to assess the contribution of Ras to experimental renal fibrosis using the well-established model of unilateral ureteral obstruction. Fifteen days after obstruction, both fibroblast proliferation and inducers of epithelial-mesenchymal transition were lower in obstructed kidneys of H-ras knockout mice and in fibroblast cell lines derived from these mice. Interestingly, fibronectin, collagen I accumulation, overall interstitial fibrosis, and the myofibroblast population were also lower in the knockout than in the wild-type mice. As expected, we found lower levels of activated Akt in the kidneys and cultured fibroblasts of the knockout. Whether Ras inhibition will turn out to prevent progression of renal fibrosis will require more direct studies.

  9. Orphan nuclear receptor NR4A2 inhibits hepatic stellate cell proliferation through MAPK pathway in liver fibrosis.

    PubMed

    Chen, Pengguo; Li, Jie; Huo, Yan; Lu, Jin; Wan, Lili; Li, Bin; Gan, Run; Guo, Cheng

    2015-01-01

    Hepatic stellate cells (HSCs) play a crucial role in liver fibrosis, which is a pathological process characterized by extracellular matrix accumulation. NR4A2 is a nuclear receptor belonging to the NR4A subfamily and vital in regulating cell growth, metabolism, inflammation and other biological functions. However, its role in HSCs is unclear. We analyzed NR4A2 expression in fibrotic liver and stimulated HSCs compared with control group and studied the influence on cell proliferation, cell cycle, cell apoptosis and MAPK pathway after NR4A2 knockdown. NR4A2 expression was examined by real-time polymerase chain reaction, Western blotting, immunohistochemistry and immunofluorescence analyses. NR4A2 expression was significantly lower in fibrotic liver tissues and PDGF BB or TGF-β stimulated HSCs compared with control group. After NR4A2 knockdown α-smooth muscle actin and Col1 expression increased. In addition, NR4A2 silencing led to the promotion of cell proliferation, increase of cell percentage in S phase and reduced phosphorylation of ERK1/2, P38 and JNK in HSCs. These results indicate that NR4A2 can inhibit HSC proliferation through MAPK pathway and decrease extracellular matrix in liver fibrogenesis. NR4A2 may be a promising therapeutic target for liver fibrosis.

  10. A single blood test adjusted for different liver fibrosis targets improves fibrosis staging and especially cirrhosis diagnosis.

    PubMed

    Calès, Paul; Boursier, Jérôme; Oberti, Frédéric; Moal, Valérie; Fouchard Hubert, Isabelle; Bertrais, Sandrine; Hunault, Gilles; Rousselet, Marie Christine

    2018-04-01

    .366). Multi-FibroMeter V2G had the highest correlation with the area of portoseptal fibrosis and the highest reproducibility over time. Correct classification rates of Multi-FibroMeter with hyaluronate (V2G, 86.0%) or without (V3G, 86.1%) did not differ ( P = 0.938). Conclusion: Multitargeting biomarkers significantly improves fibrosis staging and especially cirrhosis diagnosis compared to classical single-targeted blood tests. ( Hepatology Communications 2018;2:455-466).

  11. Cytokines and STATs in Liver Fibrosis

    PubMed Central

    Kong, Xiaoni; Horiguchi, Norio; Mori, Masatomo; Gao, Bin

    2012-01-01

    Liver fibrosis, or cirrhosis, is a common end-stage condition of many chronic liver diseases after incomplete recovery from hepatocyte damage. During fibrosis progression, hepatocellular damage and inflammation trigger complex cellular events that result in collagen deposition and the disruption of the normal liver architecture. Hepatic stellate cell activation and transdifferentiation into myofibroblasts are key events in liver fibrogenesis. Research findings from cell culture and animal models have revealed that the Janus kinase-signal transducer and activator of transcription (Jak-STAT) signaling pathway, which can be activated by many cytokines, growth factors, and hormones, plays a critical role in hepatic fibrogenesis. This review summarizes the biological significance of diverse cytokines and their downstream signaling protein STATs in hepatic fibrogenesis. PMID:22493582

  12. Ductular reaction in hereditary hemochromatosis: the link between hepatocyte senescence and fibrosis progression.

    PubMed

    Wood, Marnie J; Gadd, Victoria L; Powell, Lawrie W; Ramm, Grant A; Clouston, Andrew D

    2014-03-01

    The development of portal fibrosis following the iron loading of hepatocytes is the first stage of fibrogenesis in hereditary hemochromatosis. In other chronic liver diseases it has been shown that a ductular reaction (DR) appears early, correlates with fibrosis progression, and is a consequence of activation of an alternative pathway of hepatocyte replication. This study was designed to investigate the presence of the DR in hemochromatosis and describe its associations. Liver biopsies from 63 C282Y homozygous patients were assessed for hepatic iron concentration (HIC) and graded for iron loading, fibrosis stage, steatosis, and inflammation. Immunostaining allowed quantification of the DR, hepatocyte senescence and proliferation, and analysis incorporated clinical data. Hepatocyte senescence was positively correlated with HIC, serum ferritin, and oxidative stress. A DR was demonstrated and occurred prior to histological fibrosis. HIC, age, hepatocyte senescence and proliferation, portal inflammation, and excessive alcohol consumption all had significant associations with the extent of the DR. In multivariate analysis, iron loading, hepatocyte replicative arrest, and portal inflammation remained independently and significantly associated with the DR. Of factors associated with fibrosis progression, the DR (odds ratio [OR] 10.86 P<0.0001) and the presence of portal inflammation (OR 4.31, P=0.028) remained significant after adjustment for cofactors. The extent of the DR regressed following therapeutic venesection. Iron loading of hepatocytes leads to impaired replication, stimulating the development of the DR in hemochromatosis and this correlates strongly with hepatic fibrosis. Portal inflammation occurs in hemochromatosis and is independently associated with the DR and fibrosis, and thus its role in this disease should be evaluated further. © 2014 by the American Association for the Study of Liver Diseases.

  13. Reversal of liver fibrosis: From fiction to reality.

    PubMed

    Zoubek, Miguel Eugenio; Trautwein, Christian; Strnad, Pavel

    2017-04-01

    In chronic liver diseases, an ongoing hepatocellular injury together with inflammatory reaction results in activation of hepatic stellate cells (HSCs) and increased deposition of extracellular matrix (ECM) termed as liver fibrosis. It can progress to cirrhosis that is characterized by parenchymal and vascular architectural changes together with the presence of regenerative nodules. Even at late stage, liver fibrosis is reversible and the underlying mechanisms include a switch in the inflammatory environment, elimination or regression of activated HSCs and degradation of ECM. While animal models have been indispensable for our understanding of liver fibrosis, they possess several important limitations and need to be further refined. A better insight into the liver fibrogenesis resulted in a large number of clinical trials aiming at reversing liver fibrosis, particularly in patients with non-alcoholic steatohepatitis. Collectively, the current developments demonstrate that reversal of liver fibrosis is turning from fiction to reality. Copyright © 2017. Published by Elsevier Ltd.

  14. The wound healing, chronic fibrosis, and cancer progression triad

    PubMed Central

    Rybinski, Brad; Franco-Barraza, Janusz

    2014-01-01

    For decades tumors have been recognized as “wounds that do not heal.” Besides the commonalities that tumors and wounded tissues share, the process of wound healing also portrays similar characteristics with chronic fibrosis. In this review, we suggest a tight interrelationship, which is governed as a concurrence of cellular and microenvironmental reactivity among wound healing, chronic fibrosis, and cancer development/progression (i.e., the WHFC triad). It is clear that the same cell types, as well as soluble and matrix elements that drive wound healing (including regeneration) via distinct signaling pathways, also fuel chronic fibrosis and tumor progression. Hence, here we review the relationship between fibrosis and cancer through the lens of wound healing. PMID:24520152

  15. Mean Platelet Volume, Red Cell Distribution Width to Platelet Count Ratio, Globulin Platelet Index, and 16 Other Indirect Noninvasive Fibrosis Scores: How Much Do Routine Blood Tests Tell About Liver Fibrosis in Chronic Hepatitis C?

    PubMed

    Thandassery, Ragesh B; Al Kaabi, Saad; Soofi, Madiha E; Mohiuddin, Syed A; John, Anil K; Al Mohannadi, Muneera; Al Ejji, Khalid; Yakoob, Rafie; Derbala, Moutaz F; Wani, Hamidullah; Sharma, Manik; Al Dweik, Nazeeh; Butt, Mohammed T; Kamel, Yasser M; Sultan, Khaleel; Pasic, Fuad; Singh, Rajvir

    2016-07-01

    Many indirect noninvasive scores to predict liver fibrosis are calculated from routine blood investigations. Only limited studies have compared their efficacy head to head. We aimed to compare these scores with liver biopsy fibrosis stages in patients with chronic hepatitis C. From blood investigations of 1602 patients with chronic hepatitis C who underwent a liver biopsy before initiation of antiviral treatment, 19 simple noninvasive scores were calculated. The area under the receiver operating characteristic curves and diagnostic accuracy of each of these scores were calculated (with reference to the Scheuer staging) and compared. The mean age of the patients was 41.8±9.6 years (1365 men). The most common genotype was genotype 4 (65.6%). Significant fibrosis, advanced fibrosis, and cirrhosis were seen in 65.1%, 25.6, and 6.6% of patients, respectively. All the scores except the aspartate transaminase (AST) alanine transaminase ratio, Pohl score, mean platelet volume, fibro-alpha, and red cell distribution width to platelet count ratio index showed high predictive accuracy for the stages of fibrosis. King's score (cutoff, 17.5) showed the highest predictive accuracy for significant and advanced fibrosis. King's score, Göteborg university cirrhosis index, APRI (the AST/platelet count ratio index), and Fibrosis-4 (FIB-4) had the highest predictive accuracy for cirrhosis, with the APRI (cutoff, 2) and FIB-4 (cutoff, 3.25) showing the highest diagnostic accuracy.We derived the study score 8.5 - 0.2(albumin, g/dL) +0.01(AST, IU/L) -0.02(platelet count, 10/L), which at a cutoff of >4.7 had a predictive accuracy of 0.868 (95% confidence interval, 0.833-0.904) for cirrhosis. King's score for significant and advanced fibrosis and the APRI or FIB-4 score for cirrhosis could be the best simple indirect noninvasive scores.

  16. Origin of Matrix-Producing Cells That Contribute to Aortic Fibrosis in Hypertension.

    PubMed

    Wu, Jing; Montaniel, Kim Ramil C; Saleh, Mohamed A; Xiao, Liang; Chen, Wei; Owens, Gary K; Humphrey, Jay D; Majesky, Mark W; Paik, David T; Hatzopoulos, Antonis K; Madhur, Meena S; Harrison, David G

    2016-02-01

    Various hypertensive stimuli lead to exuberant adventitial collagen deposition in large arteries, exacerbating blood pressure elevation and end-organ damage. Collagen production is generally attributed to resident fibroblasts; however, other cells, including resident and bone marrow-derived stem cell antigen positive (Sca-1(+)) cells and endothelial and vascular smooth muscle cells, can produce collagen and contribute to vascular stiffening. Using flow cytometry and immunofluorescence, we found that adventitial Sca-1(+) progenitor cells begin to produce collagen and acquire a fibroblast-like phenotype in hypertension. We also found that bone marrow-derived cells represent more than half of the matrix-producing cells in hypertension, and that one-third of these are Sca-1(+). Cell sorting and lineage-tracing studies showed that cells of endothelial origin contribute to no more than one fourth of adventitial collagen I(+) cells, whereas those of vascular smooth muscle lineage do not contribute. Our findings indicate that Sca-1(+) progenitor cells and bone marrow-derived infiltrating fibrocytes are major sources of arterial fibrosis in hypertension. Endothelial to mesenchymal transition likely also contributes, albeit to a lesser extent and pre-existing resident fibroblasts represent a minority of aortic collagen-producing cells in hypertension. This study shows that vascular stiffening represents a complex process involving recruitment and transformation of multiple cells types that ultimately elaborate adventitial extracellular matrix. © 2015 American Heart Association, Inc.

  17. Mechanotransduction-modulated fibrotic microniches reveal the contribution of angiogenesis in liver fibrosis

    NASA Astrophysics Data System (ADS)

    Liu, Longwei; You, Zhifeng; Yu, Hongsheng; Zhou, Lyu; Zhao, Hui; Yan, Xiaojun; Li, Dulei; Wang, Bingjie; Zhu, Lu; Xu, Yuzhou; Xia, Tie; Shi, Yan; Huang, Chenyu; Hou, Wei; Du, Yanan

    2017-12-01

    The role of pathological angiogenesis on liver fibrogenesis is still unknown. Here, we developed fibrotic microniches (FμNs) that recapitulate the interaction of liver sinusoid endothelial cells (LSECs) and hepatic stellate cells (HSCs). We investigated how the mechanical properties of their substrates affect the formation of capillary-like structures and how they relate to the progression of angiogenesis during liver fibrosis. Differences in cell response in the FμNs were synonymous of the early and late stages of liver fibrosis. The stiffness of the early-stage FμNs was significantly elevated due to condensation of collagen fibrils induced by angiogenesis, and led to activation of HSCs by LSECs. We utilized these FμNs to understand the response to anti-angiogenic drugs, and it was evident that these drugs were effective only for early-stage liver fibrosis in vitro and in an in vivo mouse model of liver fibrosis. Late-stage liver fibrosis was not reversed following treatment with anti-angiogenic drugs but rather with inhibitors of collagen condensation. Our work reveals stage-specific angiogenesis-induced liver fibrogenesis via a previously unrevealed mechanotransduction mechanism which may offer precise intervention strategies targeting stage-specific disease progression.

  18. Circulating biomarkers of hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy assessed by cardiac magnetic resonance.

    PubMed

    Gawor, Monika; Śpiewak, Mateusz; Kubik, Agata; Wróbel, Aleksandra; Lutyńska, Anna; Marczak, Magdalena; Grzybowski, Jacek

    2018-05-23

    Myocardial fibrosis in hypertrophic cardiomyopathy (HCM) is associated with worse clinical outcomes. The availability of circulating biomarkers of myocardial fibrosis and hypertrophy would be helpful in clinical practice. The aim of this study was to evaluate usefulness of various biomarkers of myocardial fibrosis and hypertrophy in HCM. Levels of biomarkers: soluble ST2 (sST2), galectin-3 (Gal-3), growth differentiation factor-15 (GDF-15), NT-proBNP and high-sensitivity cardiac troponin T (hs-cTnT) were measured in 60 patients with HCM. All patients underwent cardiac magnetic resonance imaging to calculate parameters of hypertrophy and fibrosis. We observed positive correlations among sST2 levels and left ventricular mass (LVM) (r = 0.32, p = 0.012), LV mass indexed for the body surface area (LVMI) (r = 0.27, p = 0.036) and maximal wall thickness (MWT) (r = 0.31, p = 0.015). No correlation was found between Gal-3 and GDF-15 levels and hypertrophy and fibrosis parameters. We observed positive correlations among hs-cTnT levels and LVM (r = 0.58, p < 0.0001), LVMI (r = 0.48, p = 0.0001), MWT (r = 0.31, p = 0.015) and late gadolinium enhancement (LGE) mass (r = 0.37, p = 0.003). There were positive correlations between NT-proBNP levels and LVM (r = 0.33, p = 0.01), LVMI (r = 0.41, p = 0.001), MWT (r = 0.42, p < 0.001) and LGE mass (r = 0.44, p < 0.001). Although no correlation between sST2 levels and myocardial fibrosis was found, sST2 may provide some additional information about hypertrophy extension. NT-proBNP and hs-cTnT are useful biomarkers in assessment of hypertrophy and fibrosis in HCM.

  19. Inflammation and Fibrosis in Polycystic Kidney Disease.

    PubMed

    Song, Cheng Jack; Zimmerman, Kurt A; Henke, Scott J; Yoder, Bradley K

    Polycystic kidney disease (PKD) is a commonly inherited disorder characterized by cyst formation and fibrosis (Wilson, N Engl J Med 350:151-164, 2004) and is caused by mutations in cilia or cilia-related proteins, such as polycystin 1 or 2 (Oh and Katsanis, Development 139:443-448, 2012; Kotsis et al., Nephrol Dial Transplant 28:518-526, 2013). A major pathological feature of PKD is the development of interstitial inflammation and fibrosis with an associated accumulation of inflammatory cells (Grantham, N Engl J Med 359:1477-1485, 2008; Zeier et al., Kidney Int 42:1259-1265, 1992; Ibrahim, Sci World J 7:1757-1767, 2007). It is unclear whether inflammation is a driving force for cyst formation or a consequence of the pathology (Ta et al., Nephrology 18:317-330, 2013) as in some murine models cysts are present prior to the increase in inflammatory cells (Phillips et al., Kidney Blood Press Res 30:129-144, 2007; Takahashi et al., J Am Soc Nephrol JASN 1:980-989, 1991), while in other models the increase in inflammatory cells is present prior to or coincident with cyst initiation (Cowley et al., Kidney Int 43:522-534, 1993, Kidney Int 60:2087-2096, 2001). Additional support for inflammation as an important contributor to cystic kidney disease is the increased expression of many pro-inflammatory cytokines in murine models and human patients with cystic kidney disease (Karihaloo et al., J Am Soc Nephrol JASN 22:1809-1814, 2011; Swenson-Fields et al., Kidney Int, 2013; Li et al., Nat Med 14:863-868, 2008a). Based on these data, an emerging model in the field is that disruption of primary cilia on tubule epithelial cells leads to abnormal cytokine cross talk between the epithelium and the inflammatory cells contributing to cyst growth and fibrosis (Ta et al., Nephrology 18:317-330, 2013). These cytokines are produced by interstitial fibroblasts, inflammatory cells, and tubule epithelial cells and activate multiple pathways including the JAK-STAT and NF-κB signaling (Qin

  20. Correlation of pulmonary function and usual interstitial pneumonia computed tomography patterns in idiopathic pulmonary fibrosis.

    PubMed

    Arcadu, Antonella; Byrne, Suzanne C; Pirina, Pietro; Hartman, Thomas E; Bartholmai, Brian J; Moua, Teng

    2017-08-01

    Little is known about presenting 'inconsistent' or 'possible' usual interstitial pneumonia (UIP) computed tomography (CT) patterns advancing to 'consistent' UIP as disease progresses in idiopathic pulmonary fibrosis (IPF). We hypothesized that if 'consistent' UIP represented more advanced disease, such a pattern on presentation should also correlate with more severe pulmonary function test (PFT) abnormalities. Consecutive IPF patients (2005-2013) diagnosed by international criteria with baseline PFT and CT were included. Presenting CTs were assessed by three expert radiologists for consensus UIP pattern ('consistent', 'possible', and 'inconsistent'). Approximation of individual and combined interstitial abnormalities was also performed with correlation of interstitial abnormalities and UIP CT pattern made with PFT findings and survival. Three-hundred and fifty patients (70% male) were included with a mean age of 68.3 years. Mean percent predicted forced vital capacity (FVC%) and diffusion capacity (DLCO%) was 64% and 45.5% respectively. Older age and male gender correlated more with 'consistent' UIP CT pattern. FVC% was not associated with any UIP pattern but did correlate with total volume of radiologist assessed interstitial abnormalities. DLCO% was lower in those with 'consistent' UIP pattern. A 'consistent' UIP CT pattern was also not independently predictive of survival after correction for age, gender, FVC%, and DLCO%. PFT findings appear to correlate with extent of radiologic disease but not specific morphologic patterns. Whether such UIP patterns represent different stages of disease severity or radiologic progression is not supported by coinciding pulmonary function decline. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis

    PubMed Central

    Fransén-Pettersson, Nina; Duarte, Nadia; Nilsson, Julia; Lundholm, Marie; Mayans, Sofia; Larefalk, Åsa; Hannibal, Tine D.; Hansen, Lisbeth; Schmidt-Christensen, Anja; Ivars, Fredrik; Cardell, Susanna; Palmqvist, Richard; Rozell, Björn

    2016-01-01

    Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF) mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT) induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders. PMID:27441847

  2. Magnetomotive optical coherence elastography for relating lung structure and function in cystic fibrosis

    NASA Astrophysics Data System (ADS)

    Chhetri, Raghav K.; Carpenter, Jerome; Superfine, Richard; Randell, Scott H.; Oldenburg, Amy L.

    2010-02-01

    Cystic fibrosis (CF) is a genetic defect in the cystic fibrosis transmembrane conductance regulator protein and is the most common life-limiting genetic condition affecting the Caucasian population. It is an autosomal recessive, monogenic inherited disorder characterized by failure of airway host defense against bacterial infection, which results in bronchiectasis, the breakdown of airway wall extracellular matrix (ECM). In this study, we show that the in vitro models consisting of human tracheo-bronchial-epithelial (hBE) cells grown on porous supports with embedded magnetic nanoparticles (MNPs) at an air-liquid interface are suitable for long term, non-invasive assessment of ECM remodeling using magnetomotive optical coherence elastography (MMOCE). The morphology of ex vivo CF and normal lung tissues using OCT and correlative study with histology is also examined. We also demonstrate a quantitative measure of normal and CF airway elasticity using MMOCE. The improved understanding of pathologic changes in CF lung structure and function and the novel method of longitudinal in vitro ECM assessment demonstrated in this study may lead to new in vivo imaging and elastography methods to monitor disease progression and treatment in cystic fibrosis.

  3. Controlled attenuation parameter is correlated with actual hepatic fat content in patients with non-alcoholic fatty liver disease with none-to-mild obesity and liver fibrosis.

    PubMed

    Fujimori, Naoyuki; Tanaka, Naoki; Shibata, Soichiro; Sano, Kenji; Yamazaki, Tomoo; Sekiguchi, Tomohiro; Kitabatake, Hiroyuki; Ichikawa, Yuki; Kimura, Takefumi; Komatsu, Michiharu; Umemura, Takeji; Matsumoto, Akihiro; Tanaka, Eiji

    2016-09-01

    Non-invasive steatosis-quantifying methods are required for non-alcoholic fatty liver disease (NAFLD) patients in order to monitor disease severity and assess therapeutic efficacy. Controlled attenuation parameter (CAP) evaluated with vibration-controlled transient elastography can predict the presence of steatosis, but its application to absolute hepatic fat quantitation remains unclear. The aim of this st\\udy was to examine whether CAP is correlated with real hepatic fat content in NAFLD patients. Eighty-two NAFLD patients who had undergone percutaneous liver biopsy were enrolled. CAP was measured using FibroScan(®) just before liver biopsy. The percentage of fat droplet area to hepatocyte area in biopsied specimen was determined morphometrically using computerized optical image analyzing system. The correlation between CAP and liver histology was examined. CAP showed an excellent correlation with actual liver fat percentage in the NAFLD patients with body mass index (BMI) of less than 28 kg/m(2) (r = 0.579, P < 0.0001), especially less than 25 kg/m(2) (r = 0.708, P < 0.01), but the meaningful correlation disappeared in the patients with BMI of 28 kg/m(2) or more. In the patients with BMI of less than 28 kg/m(2) , CAP quantitativeness was affected by the presence of stage 2-4 fibrosis, but not the presence of hepatocyte ballooning and severity of lobular inflammation. CAP may be a promising tool for quantifying hepatic fat content in NAFLD patients with none-to-mild obesity and liver fibrosis. Further improvement of CAP performance is needed for the NAFLD patients with BMI of more than 28 kg/m(2) or significant hepatic fibrosis. © 2016 The Japan Society of Hepatology.

  4. Integrin αvβ6 critically regulates hepatic progenitor cell function and promotes ductular reaction, fibrosis, and tumorigenesis.

    PubMed

    Peng, Zhen-Wei; Ikenaga, Naoki; Liu, Susan B; Sverdlov, Deanna Y; Vaid, Kahini A; Dixit, Richa; Weinreb, Paul H; Violette, Shelia; Sheppard, Dean; Schuppan, Detlef; Popov, Yury

    2016-01-01

    Integrin αvβ6 is rapidly up-regulated on cells of epithelial lineage during tissue injury, where one of its primary functions is activation of latent transforming growth factor beta 1 (TGFβ1). In human liver cirrhosis, αvβ6 is overexpressed by cells comprising the ductular reaction, and its inhibition suppresses experimental biliary fibrosis in rodents. Here, we show that αvβ6 is expressed on the actively proliferating subset of hepatic progenitor cells and is required for their progenitor function in vivo and in vitro through integrin αvβ6-dependent TGFβ1 activation. Freshly isolated αvβ6(+) liver cells demonstrate clonogenic potential and differentiate into cholangiocytes and functional hepatocytes in vitro, whereas colony formation by epithelial cell adhesion molecule-positive progenitor cells is blocked by αvβ6-neutralizing antibody and in integrin beta 6-deficient cells. Inhibition of progenitors by anti-αvβ6 antibody is recapitulated by TGFβ1 neutralization and rescued by addition of bioactive TGFβ1. Genetic disruption or selective targeting of αvβ6 with 3G9 antibody potently inhibits progenitor cell responses in mouse models of chronic biliary injury and protects from liver fibrosis and tumorigenesis, two conditions clinically associated with exacerbated ductular reaction. These results suggest that αvβ6 is a promising target for chronic fibrotic liver diseases and associated cancers. © 2015 by the American Association for the Study of Liver Diseases.

  5. Silymarin reduces profibrogenic cytokines and reverses hepatic fibrosis in chronic murine schistosomiasis.

    PubMed

    Mata-Santos, Hílton Antônio; Dutra, Fabianno Ferreira; Rocha, Carolina Carneiro; Lino, Fabiana Gonçalves; Xavier, Fabiola Ramos; Chinalia, Leandro Andrade; Hossy, Bryan Hudson; Castelo-Branco, Morgana Teixeira Lima; Teodoro, Anderson Junger; Paiva, Claudia N; dos Santos Pyrrho, Alexandre

    2014-01-01

    In chronic schistosomiasis, hepatic fibrosis is linked to the portal hypertension that causes morbidity in Schistosoma mansoni infection. Silymarin (SIL) is a hepatoprotective and antioxidant medicament largely prescribed against liver diseases that has previously been shown to prevent fibrosis during acute murine schistosomiasis. Here we employed silymarin to try to reverse established hepatic fibrosis in chronic schistosomiasis. Silymarin or vehicle was administered to BALB/c mice every 48 h, starting on the 40th (80 days of treatment), 70th (50 days), or 110th (10 days) day postinfection (dpi). All mice were sacrificed and analyzed at 120 dpi. Treatment with silymarin reduced liver weight and granuloma sizes, reduced the increase in alanine aminotransferase and aspartate aminotransferase levels, and reduced the established hepatic fibrosis (assessed by hydroxyproline contents and picrosirius staining). Treatment with silymarin also reduced the levels of interleukin-13 (IL-13) in serum and increased the gamma interferon (IFN-γ)/IL-13 ratio. There was a linear correlation between IL-13 levels in serum and hydroxyproline hepatic content in both infected untreated and SIL-treated mice, with decreased IL-13 levels corresponding to decreased hydroxyproline hepatic contents. Treatment with either SIL or N-acetylcysteine reduced both proliferation of fibroblast cell lines and basal/IL-13-induced production of collagen I, indicating that besides inhibiting IL-13 production during infection, SIL antioxidant properties most likely contribute to inhibition of collagen production downstream of IL-13. These results show that silymarin interferes with fibrogenic cytokines, reduces established fibrosis, and inhibits downstream effects of IL-13 on fibrogenesis, indicating the drug as a safe and cheap treatment to liver fibrotic disease in schistosomiasis.

  6. Silymarin Reduces Profibrogenic Cytokines and Reverses Hepatic Fibrosis in Chronic Murine Schistosomiasis

    PubMed Central

    Mata-Santos, Hílton Antônio; Dutra, Fabianno Ferreira; Rocha, Carolina Carneiro; Lino, Fabiana Gonçalves; Xavier, Fabiola Ramos; Chinalia, Leandro Andrade; Hossy, Bryan Hudson; Castelo-Branco, Morgana Teixeira Lima; Teodoro, Anderson Junger; Paiva, Claudia N.

    2014-01-01

    In chronic schistosomiasis, hepatic fibrosis is linked to the portal hypertension that causes morbidity in Schistosoma mansoni infection. Silymarin (SIL) is a hepatoprotective and antioxidant medicament largely prescribed against liver diseases that has previously been shown to prevent fibrosis during acute murine schistosomiasis. Here we employed silymarin to try to reverse established hepatic fibrosis in chronic schistosomiasis. Silymarin or vehicle was administered to BALB/c mice every 48 h, starting on the 40th (80 days of treatment), 70th (50 days), or 110th (10 days) day postinfection (dpi). All mice were sacrificed and analyzed at 120 dpi. Treatment with silymarin reduced liver weight and granuloma sizes, reduced the increase in alanine aminotransferase and aspartate aminotransferase levels, and reduced the established hepatic fibrosis (assessed by hydroxyproline contents and picrosirius staining). Treatment with silymarin also reduced the levels of interleukin-13 (IL-13) in serum and increased the gamma interferon (IFN-γ)/IL-13 ratio. There was a linear correlation between IL-13 levels in serum and hydroxyproline hepatic content in both infected untreated and SIL-treated mice, with decreased IL-13 levels corresponding to decreased hydroxyproline hepatic contents. Treatment with either SIL or N-acetylcysteine reduced both proliferation of fibroblast cell lines and basal/IL-13-induced production of collagen I, indicating that besides inhibiting IL-13 production during infection, SIL antioxidant properties most likely contribute to inhibition of collagen production downstream of IL-13. These results show that silymarin interferes with fibrogenic cytokines, reduces established fibrosis, and inhibits downstream effects of IL-13 on fibrogenesis, indicating the drug as a safe and cheap treatment to liver fibrotic disease in schistosomiasis. PMID:24449779

  7. Vitamin B12 supplement alleviates N'-nitrosodimethylamine-induced hepatic fibrosis in rats.

    PubMed

    Ahmad, Areeba; Afroz, Nishat; Gupta, Umesh D; Ahmad, Riaz

    2014-01-10

    Abstract Context: Altered vitamin B 12 levels have been correlated with hepatotoxicity; however, further evidence is required to establish its protective role. Objective: To evaluate the effects of vitamin B 12 supplement in protecting N'-nitrosodimethylamine (NDMA)-induced hepatic fibrosis in Wistar rats. Materials and methods: Hepatic fibrosis was induced by administering NDMA in doses of 10 mg/kg body weight thrice a week for 21 days. Another group received equal doses (10 mg/kg body weight) of vitamin B 12 subsequent to NDMA treatment. Animals from either group were sacrificed weekly from the start of the treatment along with their respective controls. Progression of hepatic fibrosis, in addition to the effect of vitamin B 12 , was assessed biochemically for liver function biomarkers, liver glycogen, hydroxyproline (HP) and B 12 reserves along with histopathologically by hematoxylin and eosin (H & E) as well immunohistochemical staining for α-SMA expression. Results and discussion: Elevation in the levels of aminotransferases, SALP, total bilirubin and HP was observed in NDMA treated rats, which was concomitant with remarkable depletion in liver glycogen and B 12 reserves (p < 0.05). Liver biopsies also demonstrated disrupted lobular architecture, collagen amassing and intense fibrosis by NDMA treatment. Immunohistochemical staining showed the presence of activated stellate cells that was dramatically increased up to day 21 in fibrotic rats. Following vitamin B 12 treatment, liver function biomarkers, glycogen contents and hepatic vitamin B 12 reserves were restored in fibrotic rats, significantly. Vitamin B 12 administration also facilitated restoration of normal liver architecture. Conclusion: These findings provide interesting new evidence in favor of protective role for vitamin B 12 against NDMA-induced hepatic fibrosis in rats.

  8. Tactile sensor is useful for estimating liver hardness and liver fibrosis compared with ultrasonography and computed tomography.

    PubMed

    Suzuki, Satoshi; Watanabe, Yohei; Yazawa, Takashi; Ishigame, Teruhide; Sassa, Motoki; Monma, Tomoyuki; Takawa, Tadashi; Kumamoto, Kensuke; Nakamura, Izumi; Ohoki, Shinji; Hatakeyama, Yuichi; Sakuma, Hiroshi; Ono, Toshiyuki; Omata, Sadao; Takenoshita, Seiichi

    2014-01-01

    We examined whether conventional ultrasonography (US) and computed tomography (CT) were useful to evaluate liver hardness and hepatic fibrosis by comparing the results with those obtained by a tactile sensor using rats with liver fibrosis. We used 44 Wistar rats in which liver fibrosis was induced by intraperitoneal administration of thioacetamide. The CT and US values of each liver were measured before laparotomy. After laparotomy, a tactile sensor was used to measure liver hardness. We prepared Azan stained sections of each excised liver specimen and calculated the degree of liver fibrosis (HFI: hepatic fibrosis index) by computed color image analysis. The stiffness values and HFI showed a positive correlation (r=0.690, p<0.001), as did the tactile values and HFI (r=0.709, p<0.001).In addition, the stiffness and tactile values correlated positively with each other (r=0.814, p<0.001). There was no correlation between the CT values and HFI, as well as no correlation between the US values and HFI. We confirmed that it was difficult to evaluate liver hardness and HFI by CT or US examination, and considered that, at present, a tactile sensor is useful method for evaluating HFI.

  9. Hormonal abnormalities of the pancreas and gut in cystic fibrosis.

    PubMed

    Adrian, T E; McKiernan, J; Johnstone, D I; Hiller, E J; Vyas, H; Sarson, D L; Bloom, S R

    1980-09-01

    We have investigated the effect of cystic fibrosis on alimentary hormones in 10 children by measuring the pancreatic and gut hormone rsponse to a milk drink. Plasma insulin and gastric inhibitory peptide were both significantly reduced (P < 0.05 and P < 0.005, respectively, at 15 min) in the patients with cystic fibrosis, compared with controls, even though the early glucose rise was greater in the former group (P < 0.05 at 15 min). Fasting levels of pancreatic polypeptide were significantly lower in the fibrocystic children (P < 0.01), and the normal response to milk was completely abolished in these patients (P < 0.001). Fasting plasma enteroglucagon concentrations were grossly abolished in the cystic fibrosis patients (P < 0.001) and these remained elevated throughout the test. No significant differences were seen in basal or postmilk responses of plasma glucagon, gastrin, secretin, vasoactive intestinal peptide, or motilin in cystic fibrosis. It would thus appear that the pancreatic polypeptide cell is more susceptible to the effects of the disease process than the beta or alpha cell in cystic fibrosis. Some aspects of the abnormalities in the gastrointestinal endocrine system were similar to those seen in celiac disease and tropical sprue and may, therefore, effect a similar hormonal response in these patients with cystic fibrosis to those with mucosal damage.

  10. Adverse fibrosis in the aging heart depends on signaling between myeloid and mesenchymal cells; role of inflammatory fibroblasts.

    PubMed

    Cieslik, Katarzyna A; Trial, JoAnn; Crawford, Jeffrey R; Taffet, George E; Entman, Mark L

    2014-05-01

    Aging has been associated with adverse fibrosis. Here we formulate a new hypothesis and present new evidence that unresponsiveness of mesenchymal stem cells (MSC) and fibroblasts to transforming growth factor beta (TGF-β), due to reduced expression of TGF-β receptor I (TβRI), provides a foundation for cardiac fibrosis in the aging heart via two mechanisms. 1) TGF-β promotes expression of Nanog, a transcription factor that retains MSC in a primitive state. In MSC derived from the aging heart, Nanog expression is reduced and therefore MSC gradually differentiate and the number of mesenchymal fibroblasts expressing collagen increases. 2) As TGF-β signaling pathway components negatively regulate transcription of monocyte chemoattractant protein-1 (MCP-1), a reduced expression of TβRI prevents aging mesenchymal cells from shutting down their own MCP-1 expression. Elevated MCP-1 levels that originated from MSC attract transendothelial migration of mononuclear leukocytes from blood to the tissue. MCP-1 expressed by mesenchymal fibroblasts promotes further migration of monocytes and T lymphocytes away from the endothelial barrier and supports the monocyte transition into macrophages and finally into myeloid fibroblasts. Both myeloid and mesenchymal fibroblasts contribute to fibrosis in the aging heart via collagen synthesis. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium ". © 2013. Published by Elsevier Ltd. All rights reserved.

  11. Intestinal bile acid malabsorption in cystic fibrosis.

    PubMed

    O'Brien, S; Mulcahy, H; Fenlon, H; O'Broin, A; Casey, M; Burke, A; FitzGerald, M X; Hegarty, J E

    1993-08-01

    This study aimed at examining the mechanisms participating in excessive faecal bile acid loss in cystic fibrosis. The study was designed to define the relation between faecal fat and faecal bile acid loss in patients with and without cystic fibrosis related liver disease; to assess terminal ileal bile acid absorption by a seven day whole body retention of selenium labelled homotaurocholic acid (SeHCAT); and to determine if small intestinal bacterial overgrowth contributes to faecal bile acid loss. The study population comprised 40 patients (27 men; median age 18 years) with cystic fibrosis (n = 8) and without (n = 32) liver disease and eight control subjects. Faecal bile acid excretion was significantly higher in cystic fibrosis patients without liver disease compared with control subjects (mean (SEM) 21.5 (2.4) and 7.3 (1.2) micromoles/kg/24 hours respectively; p < 0.01) and patients with liver disease (7.9 (1.3) micromoles/kg/24 hours; p < 0.01). No correlation was found between faecal fat (g fat/24 hours) and faecal bile acid (micromoles 24 hours) excretion. Eight (33%) of cystic fibrosis patients had seven day SeHCAT retention < 10% (normal retention > 20%). SeHCAT retention in cystic fibrosis patients with liver disease was comparable with control subjects (30.0 (SEM) 8.3% v 36.8 (5.9)%; p = NS) while SeHCAT retention in cystic fibrosis patients who did not have liver disease was significantly reduced (19.9 (3.8); p < 0.05). Although evidence of small bowel bacterial overgrowth was present in 40% of patients no relation was found between breath hydrogen excretion, faecal fat, and faecal bile acid loss. The results are consistent with the presence of an abnormality in terminal ideal function in patients with cystic fibrosis who do not have liver disease and that a defect in the ileal absorption of bile acids may be a contributory factor to excessive faecal bile acid loss. Faecal bile acid loss in cystic fibrosis is unrelated to the presence of intraluminal fat

  12. Intestinal bile acid malabsorption in cystic fibrosis.

    PubMed Central

    O'Brien, S; Mulcahy, H; Fenlon, H; O'Broin, A; Casey, M; Burke, A; FitzGerald, M X; Hegarty, J E

    1993-01-01

    This study aimed at examining the mechanisms participating in excessive faecal bile acid loss in cystic fibrosis. The study was designed to define the relation between faecal fat and faecal bile acid loss in patients with and without cystic fibrosis related liver disease; to assess terminal ileal bile acid absorption by a seven day whole body retention of selenium labelled homotaurocholic acid (SeHCAT); and to determine if small intestinal bacterial overgrowth contributes to faecal bile acid loss. The study population comprised 40 patients (27 men; median age 18 years) with cystic fibrosis (n = 8) and without (n = 32) liver disease and eight control subjects. Faecal bile acid excretion was significantly higher in cystic fibrosis patients without liver disease compared with control subjects (mean (SEM) 21.5 (2.4) and 7.3 (1.2) micromoles/kg/24 hours respectively; p < 0.01) and patients with liver disease (7.9 (1.3) micromoles/kg/24 hours; p < 0.01). No correlation was found between faecal fat (g fat/24 hours) and faecal bile acid (micromoles 24 hours) excretion. Eight (33%) of cystic fibrosis patients had seven day SeHCAT retention < 10% (normal retention > 20%). SeHCAT retention in cystic fibrosis patients with liver disease was comparable with control subjects (30.0 (SEM) 8.3% v 36.8 (5.9)%; p = NS) while SeHCAT retention in cystic fibrosis patients who did not have liver disease was significantly reduced (19.9 (3.8); p < 0.05). Although evidence of small bowel bacterial overgrowth was present in 40% of patients no relation was found between breath hydrogen excretion, faecal fat, and faecal bile acid loss. The results are consistent with the presence of an abnormality in terminal ideal function in patients with cystic fibrosis who do not have liver disease and that a defect in the ileal absorption of bile acids may be a contributory factor to excessive faecal bile acid loss. Faecal bile acid loss in cystic fibrosis is unrelated to the presence of intraluminal fat

  13. Nrf2 and Snail-1 in the prevention of experimental liver fibrosis by caffeine

    PubMed Central

    Gordillo-Bastidas, Daniela; Oceguera-Contreras, Edén; Salazar-Montes, Adriana; González-Cuevas, Jaime; Hernández-Ortega, Luis Daniel; Armendáriz-Borunda, Juan

    2013-01-01

    AIM: To determine the molecular mechanisms involved in experimental hepatic fibrosis prevention by caffeine (CFA). METHODS: Liver fibrosis was induced in Wistar rats by intraperitoneal thioacetamide or bile duct ligation and they were concomitantly treated with CFA (15 mg/kg per day). Fibrosis and inflammatory cell infiltrate were evaluated and classified by Knodell index. Inflammatory infiltrate was quantified by immunohistochemistry (anti-CD11b). Gene expression was analyzed by quantitative reverse transcription-polymerase chain reaction for collagen I (Col-1), connective tissue growth factor (CTGF), transforming growth factor β1 (TGF-β1), tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), IL-6, superoxide dismutase (SOD) and catalase (CAT). Activation of Nrf2 and Snail-1 was analyzed by Western-blot. TNF-α expression was proved by enzyme-linked immunosorbant assay, CAT activity was performed by zymography. RESULTS: CFA treatment diminished fibrosis index in treated animals. The Knodell index showed both lower fibrosis and necroinflammation. Expression of profibrogenic genes CTGF, Col-1 and TGF-β1 and proinflammatory genes TNF-α, IL-6 and IL-1 was substantially diminished with CFA treatment with less CD11b positive areas. Significantly lower values of transcriptional factor Snail-1 were detected in CFA treated rats compared with cirrhotic rats without treatment; in contrast Nrf2 was increased in the presence of CFA. Expression of SOD and CAT was greater in animals treated with CFA showing a strong correlation between mRNA expression and enzyme activity. CONCLUSION: Our results suggest that CFA inhibits the transcriptional factor Snail-1, down-regulating profibrogenic genes, and activates Nrf2 inducing antioxidant enzymes system, preventing inflammation and fibrosis. PMID:24379627

  14. Molecular and cellular mechanisms of pulmonary fibrosis

    PubMed Central

    2012-01-01

    Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM) and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated over the past 35 years. In this review, we discuss three broad areas which have been explored that may be responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly significant interplay will occur amongst these pathways in patients with this disease. PMID:22824096

  15. Diagnostic accuracy of APRI and FIB-4 for predicting hepatitis B virus-related liver fibrosis accompanied with hepatocellular carcinoma.

    PubMed

    Xiao, Guangqin; Zhu, Feng; Wang, Min; Zhang, Hang; Ye, Dawei; Yang, Jiayin; Jiang, Li; Liu, Chang; Yan, Lunan; Qin, Renyi

    2016-10-01

    Aspartate aminotransferase to platelet ratio index (APRI) and the fibrosis index based on four factors (FIB-4) are the two most focused non-invasive models to assess liver fibrosis. We aimed to examine the validity of these two models for predicting hepatitis B virus (HBV)-related liver fibrosis accompanied with hepatocellular carcinoma (HCC). We enrolled HBV-infected patients with liver cancer who had received hepatectomy. The accuracy of APRI and FIB-4 for diagnosing liver fibrosis was assessed based on their sensitivity, specificity, diagnostic efficiency, positive predictive value (PPV), negative predictive value (NPV), kappa (κ) value and area under the receiver-operating characteristic curve (AUC). Finally 2176 patients were included, with 1682 retrospective subjects and 494 prospective subjects. APRI (rs=0.310) and FIB-4 (rs=0.278) were positively correlated with liver fibrosis. And χ(2) analysis demonstrated that APRI and FIB-4 values correlated with different levels of liver fibrosis with all P values less than 0.01. The AUC values for APRI and FIB-4 were 0.685 and 0.626 (P=0.73) for predicting significant fibrosis, 0.681 and 0.648 (P=0.81) for differentiation of advanced fibrosis and 0.676 and 0.652 (P=0.77) for diagnosing cirrhosis. APRI and FIB-4 correlate with liver fibrosis. However these two models have low accuracy for predicting HBV-related liver fibrosis in HCC patients. Copyright © 2016. Published by Elsevier Ltd.

  16. Contribution of Fetal, but Not Adult, Pulmonary Mesothelium to Mesenchymal Lineages in Lung Homeostasis and Fibrosis.

    PubMed

    von Gise, Alexander; Stevens, Sean M; Honor, Leah B; Oh, Jin Hee; Gao, Chi; Zhou, Bin; Pu, William T

    2016-02-01

    The lung is enveloped by a layer of specialized epithelium, the pulmonary mesothelium. In other organs, mesothelial cells undergo epithelial-mesenchymal transition and contribute to organ stromal cells. The contribution of pulmonary mesothelial cells (PMCs) to the developing lung has been evaluated with differing conclusions. PMCs have also been indirectly implicated in lung fibrosis in the progressive, fatal lung disease idiopathic pulmonary fibrosis. We used fetal or postnatal genetic pulse labeling of PMCs to assess their fate in murine development, normal lung homeostasis, and models of pulmonary fibrosis. We found that most fetal PMC-derived mesenchymal cells (PMCDCs) expressed markers of pericytes and fibroblasts, only a small minority expressed smooth muscle markers, and none expressed endothelial cell markers. Postnatal PMCs did not contribute to lung mesenchyme during normal lung homeostasis or in models of lung fibrosis. However, fetal PMCDCs were abundant and actively proliferating within fibrotic regions in lung fibrosis models, suggesting that they actively participate in the fibrotic process. These data clarify the role of fetal and postnatal PMCDCs in lung development and disease.

  17. miR-200a controls hepatic stellate cell activation and fibrosis via SIRT1/Notch1 signal pathway.

    PubMed

    Yang, Jing-Jing; Tao, Hui; Liu, Li-Ping; Hu, Wei; Deng, Zi-Yu; Li, Jun

    2017-04-01

    miR-200a has been established as a key regulator of HSC activation processes in liver fibrosis. Epigenetic silencing of miR-200a contributing to SIRT1 over-expression has been discussed in breast cancer; however, whether miR-200a controls SIRT1 gene expression in hepatic fibrosis is still unknown. We analyzed miR-200a regulation of SIRT1 expression in CCl 4 -induced liver fibrosis and TGF-β1-mediated activation of HSC. miR-200a, SIRT1, α-SMA, Col1A1, Notch1 and NICD expression were estimated by Western blotting, qRT-PCR and Immunohistochemistry. HSCs were transfected with miR-200a mimic, miR-200a inhibitor and SIRT1-RNAi. Luciferase reporter assays further confirmed the interaction between miR-200a and the SIRT1 mRNA 3'-UTR. Cell proliferation ability was assessed by MTT and cell cycle. We found that treatment activated HSC with miR-200a mimics, restored miR-200a expression and reduced SIRT1 levels. Conversely, treatment activated HSC with miR-200a inhibitors, decreased miR-200a expression and up-regulated SIRT1 levels. Restoration of miR-200a or the knockdown of SIRT1 prevented HSC activation and proliferation. We have established the SIRT1 transcript as subject to regulation by miR-200a, through miR-200a targeting of SIRT1 3'-UTR. Finally, HSC transfected with SIRT1-siRNA increased the levels of Notch1 protein and mRNA expression. Our study demonstrated that miR-200a regulates SIRT1/Notch1 expression during HSC activation and fibrosis.

  18. Basigin/CD147 promotes renal fibrosis after unilateral ureteral obstruction.

    PubMed

    Kato, Noritoshi; Kosugi, Tomoki; Sato, Waichi; Ishimoto, Takuji; Kojima, Hiroshi; Sato, Yuka; Sakamoto, Kazuma; Maruyama, Shoichi; Yuzawa, Yukio; Matsuo, Seiichi; Kadomatsu, Kenji

    2011-02-01

    Regardless of their primary causes, progressive renal fibrosis and tubular atrophy are the main predictors of progression to end-stage renal disease. Basigin/CD147 is a multifunctional molecule-it induces matrix metalloproteinases and hyaluronan, for example-and has been implicated in organ fibrosis. However, the relationship between basigin and organ fibrosis has been poorly studied. We investigated basigin's role in renal fibrosis using a unilateral ureteral obstruction model. Basigin-deficient mice (Bsg(-/-)) demonstrated significantly less fibrosis after surgery than Bsg(+/+) mice. Fewer macrophages had infiltrated in Bsg(-/-) kidneys. Consistent with these in vivo data, primary cultured tubular epithelial cells from Bsg(-/-) mice produced less matrix metalloproteinase and exhibited less motility on stimulation with transforming growth factor β. Furthermore, Bsg(-/-) embryonic fibro blasts produced less hyaluronan and α-smooth muscle actin after transforming growth factor β stimulation. Together, these results demonstrate for the first time that basigin is a key regulator of renal fibrosis. Basigin could be a candidate target molecule for the prevention of organ fibrosis. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Genetic Regulation of Fibroblast Activation and Proliferation in Cardiac Fibrosis.

    PubMed

    Park, Shuin; Ranjbarvazirj, Sara; Lay, Fides D; Zhao, Peng; Miller, Mark J; Dhaliwal, Jasmeet S; Huertas-Vazquez, Adriana; Wu, Xiuju; Qiao, Rong; Soffer, Justin M; Mikkola, Hanna K A; Lusis, Aldons J; Ardehali, Reza

    2018-06-27

    Background -Genetic diversity and the heterogeneous nature of cardiac fibroblasts (CFbs) have hindered characterization of the molecular mechanisms that regulate cardiac fibrosis. The Hybrid Mouse Diversity Panel (HMDP) offers a valuable tool to examine genetically diverse cardiac fibroblasts and their role in fibrosis. Methods -Three strains of mice (C57BL/6J, C3H/HeJ, and KK/HlJ) were selected from the HMDP and treated with either isoproterenol (ISO) or saline by an intraperitoneally implanted osmotic pump. After 21 days, cardiac function and levels of fibrosis were measured by echocardiography and trichrome staining, respectively. Activation and proliferation of CFbs were measured by in vitro and in vivo assays under normal and injury conditions. RNA-sequencing was done on isolated CFbs from each strain and results were analyzed by Ingenuity Pathway Analysis (IPA) and validated by reverse transcription-qPCR, immunohistochemistry, and ELISA. Results -ISO treatment in C57BL/6J, C3H/HeJ, and KK/HlJ mice resulted in minimal, moderate, and extensive levels of fibrosis, respectively (n = 7-8 hearts/condition). Isolated CFbs treated with ISO exhibited strain-specific increases in the levels of activation but showed comparable levels of proliferation. Similar results were found in vivo , with fibroblast activation, and not proliferation, correlating with the differential levels of cardiac fibrosis after ISO treatment. RNA-sequencing revealed that CFbs from each strain exhibit unique gene expression changes in response to ISO. We identified Ltbp2 as a commonly upregulated gene after ISO treatment. Expression of LTBP2 was elevated and specifically localized in the fibrotic regions of the myocardium after injury in mice and in human heart failure patients. Conclusions -This study highlights the importance of genetic variation in cardiac fibrosis by using multiple inbred mouse strains to characterize CFbs and their response to ISO treatment. Our data suggest that, while

  20. Identification and Fibrosis Staging of Hepatitis C Patients Using the Electronic Medical Record System.

    PubMed

    Anand, Vijay; Hyun, Christian; Khan, Qasim M; Hall, Curtis; Hessefort, Norbert; Sonnenberg, Amnon; Fimmel, Claus J

    2016-09-01

    The aim of this study was to noninvasively assess the severity of chronic hepatitis C virus (HCV) in large patient populations. It would be helpful if fibrosis scores could be calculated solely on the basis of data contained in the patients' electronic medical records (EMR). We performed a pilot study to identify all HCV-infected patients in a large health care system, and predict their fibrosis stage on the basis of demographic and laboratory data using common data from their EMR. HCV-infected patients were identified using the EMR. The liver biopsies of 191 HCV patients were graded using the Ishak and Metavir scoring systems. Demographic and laboratory data were extracted from the EMR and used to calculate the aminotransferase to platelet ratio index, Fib-4, Fibrosis Index, Forns, Göteborg University Cirrhosis Index, Lok Index, and Vira-HepC. In total, 869 HCV-infected patients were identified from a population of over 1 million. In the subgroup of patients with liver biopsies, all 7 algorithms were significantly correlated with the fibrosis stage. The degree of correlation was moderate, with correlation coefficients ranging from 0.22 to 0.60. For the detection of advanced fibrosis (Metavir 3 or 4), the areas under the receiver operating characteristic curve ranged from 0.71 to 0.84, with no significant differences between the individual scores. Sensitivities, specificities, and positive and negative predictive values were within the previously reported range. All scores tended to perform better for higher fibrosis stages. Our study demonstrates that HCV-infected patients can be identified and their fibrosis staged using commonly available EMR-based algorithms.

  1. Heart involvement in cystic fibrosis: A specific cystic fibrosis-related myocardial changes?

    PubMed

    Labombarda, Fabien; Saloux, Eric; Brouard, Jacques; Bergot, Emmanuel; Milliez, Paul

    2016-09-01

    Cystic fibrosis is a complex multi-systemic chronic disease characterized by progressive organ dysfunction with development of fibrosis, possibly affecting the heart. Over the last four decades pathological, experimental, and clinical evidence points towards the existence of a specific myocardial involvement in cystic fibrosis. Multi-modality cardiac imaging, especially recent echocardiographic techniques, evidenced diastolic and/or systolic ventricular dysfunction in cystic fibrosis leading to the concept of a cystic fibrosis-related cardiomyopathy. Hypoxemia and inflammation are among the most important factors for heart involvement in cystic fibrosis. Cystic Fibrosis Transmembrane Regulator was found to be involved in the regulation of cardiomyocyte contraction and may also account for cystic fibrosis-related myocardial dysfunction. This review, mainly focused on echocardiographic studies, seeks to synthesize the existing literature for and against the existence of heart involvement in cystic fibrosis, its mechanisms and prognostic implications. Careful investigation of the heart function may be helpful for risk stratification and therapeutic decisions in patients with cystic fibrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Vitamin A-coupled liposome system targeting free cholesterol accumulation in hepatic stellate cells offers a beneficial therapeutic strategy for liver fibrosis.

    PubMed

    Furuhashi, Hirotaka; Tomita, Kengo; Teratani, Toshiaki; Shimizu, Motonori; Nishikawa, Makoto; Higashiyama, Masaaki; Takajo, Takeshi; Shirakabe, Kazuhiko; Maruta, Koji; Okada, Yoshikiyo; Kurihara, Chie; Watanabe, Chikako; Komoto, Shunsuke; Aosasa, Suefumi; Nagao, Shigeaki; Yamamoto, Junji; Miura, Soichiro; Hokari, Ryota

    2018-04-01

    Liver fibrosis is a life-threatening disorder for which no approved therapy is available. Recently, we reported that mouse hepatic stellate cell (HSC) activation increased free cholesterol (FC) accumulation, partly by enhancing signaling through sterol regulatory element-binding protein 2 (SREBP2) and microRNA-33a (miR-33a), which resulted in HSC sensitization to transforming growth factor-β (TGFβ)-induced activation in a "vicious cycle" of liver fibrosis. Human HSCs were isolated from surgical liver specimens from control patients and patients with liver fibrosis. C57BL/6 mice were treated with carbon tetrachloride for 4 weeks and concurrently given SREBP2-siRNA- or anti-miR-33a-bearing vitamin A-coupled liposomes. In human activated HSCs obtained from patients with liver fibrosis, FC accumulation was enhanced independently of serum cholesterol levels through increased signaling by both SREBP2 and miR-33a. This increased FC accumulation enhanced Toll-like receptor 4 (TLR4) protein levels and lowered the TGFβ-pseudoreceptor Bambi (bone morphogenetic protein and activin membrane-bound inhibitor) mRNA levels in HSCs. Notably, in a mouse liver fibrosis model, reduction of FC accumulation, specifically in activated HSCs by suppression of SREBP2 or miR-33a expression using SREBP2-siRNA- or anti-miR-33a-bearing vitamin A-coupled liposomes, downregulated TLR4 signaling, increased Bambi expression, and consequently ameliorated liver fibrosis. Our results suggest that FC accumulation in HSCs, as an intracellular mediator promoting HSC activation, contributes to a vicious cycle of HSC activation in human and mouse liver fibrosis independent of serum cholesterol levels. Targeting FC accumulation-related molecules in HSCs through a vitamin A-coupled liposomal system represents a favorable therapeutic strategy for liver fibrosis. © 2017 The Japan Society of Hepatology.

  3. Pleiotrophin triggers inflammation and increased peritoneal permeability leading to peritoneal fibrosis.

    PubMed

    Yokoi, Hideki; Kasahara, Masato; Mori, Kiyoshi; Ogawa, Yoshihisa; Kuwabara, Takashige; Imamaki, Hirotaka; Kawanishi, Tomoko; Koga, Kenichi; Ishii, Akira; Kato, Yukiko; Mori, Keita P; Toda, Naohiro; Ohno, Shoko; Muramatsu, Hisako; Muramatsu, Takashi; Sugawara, Akira; Mukoyama, Masashi; Nakao, Kazuwa

    2012-01-01

    Long-term peritoneal dialysis induces peritoneal fibrosis with submesothelial fibrotic tissue. Although angiogenesis and inflammatory mediators are involved in peritoneal fibrosis, precise molecular mechanisms are undefined. To study this, we used microarray analysis and compared gene expression profiles of the peritoneum in control and chlorhexidine gluconate (CG)-induced peritoneal fibrosis mice. One of the 43 highly upregulated genes was pleiotrophin, a midkine family member, the expression of which was also upregulated by the solution used to treat mice by peritoneal dialysis. This growth factor was found in fibroblasts and mesothelial cells within the underlying submesothelial compact zones of mice, and in human peritoneal biopsy samples and peritoneal dialysate effluent. Recombinant pleiotrophin stimulated mitogenesis and migration of mouse mesothelial cells in culture. We found that in wild-type mice, CG treatment increased peritoneal permeability (measured by equilibration), increased mRNA expression of TGF-β1, connective tissue growth factor and fibronectin, TNF-α and IL-1β expression, and resulted in infiltration of CD3-positive T cells, and caused a high number of Ki-67-positive proliferating cells. All of these parameters were decreased in peritoneal tissues of CG-treated pleiotrophin-knockout mice. Thus, an upregulation of pleiotrophin appears to play a role in fibrosis and inflammation during peritoneal injury.

  4. Preoperatively staging liver fibrosis using noninvasive method in Hepatitis B virus-infected hepatocellular carcinoma patients

    PubMed Central

    Gao, Hengyi; Zhu, Feng; Wang, Min; Zhang, Hang; Ye, Dawei; Yang, Jiayin; Jiang, Li; Liu, Chang; Qin, Renyi; Yan, Lunan; Xiao, Guangqin

    2017-01-01

    Background Advanced liver fibrosis can result in serious complications (even patient’s death) after partial hepatectomy. Preoperatively percutaneous liver biopsy is an invasive and expensive method to assess liver fibrosis. We aim to establish a noninvasive model, on the basis of preoperative biomarkers, to predict liver fibrosis in hepatocellular carcinoma (HCC) patients with hepatitis B virus (HBV) infection. Methods The HBV-infected liver cancer patients who had received hepatectomy were retrospectively and prospectively enrolled in this study. Univariate analysis was used to compare the variables of the patients with mild to moderate liver fibrosis and with severe liver fibrosis. The significant factors were selected into binary logistic regression analysis. Factors determined to be significant were used to establish a noninvasive model. Then the diagnostic accuracy of this novel model was examined based on sensitivity, specificity and area under the receiver-operating characteristic curve (AUC). Results This study included 2,176 HBV-infected HCC patients who had undergone partial hepatectomy (1,682 retrospective subjects and 494 prospective subjects). Regression analysis indicated that total bilirubin and prothrombin time had positive correlation with liver fibrosis. It also demonstrated that blood platelet count and fibrinogen had negative correlation with liver fibrosis. The AUC values of the model based on these four factors for predicting significant fibrosis, advanced fibrosis and cirrhosis were 0.79-0.83, 0.83-0.85 and 0.85-0.88, respectively. Conclusion The results showed that this novel preoperative model was an excellent noninvasive method for assessing liver fibrosis in HBV-infected HCC patients. PMID:28008144

  5. Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition.

    PubMed

    Cabrera-Benítez, Nuria E; Parotto, Matteo; Post, Martin; Han, Bing; Spieth, Peter M; Cheng, Wei-Erh; Valladares, Francisco; Villar, Jesús; Liu, Mingayo; Sato, Masaaki; Zhang, Haibo; Slutsky, Arthur S

    2012-02-01

    Many mechanically ventilated patients with acute respiratory distress syndrome develop pulmonary fibrosis. Stresses induced by mechanical ventilation may explain the development of fibrosis by a number of mechanisms (e.g., damage the alveolar epithelium, biotrauma). The objective of this study was t test the hypothesis that mechanical ventilation plays an important role in the pathogenesis of lung fibrosis. C57BL/6 mice were randomized into four groups: healthy controls; hydrochloric acid aspiration alone; vehicle control solution followed 24 hrs later by mechanical ventilation (peak inspiratory pressure 22 cm H(2)O and positive end-expiratory pressure 2 cm H(2)O for 2 hrs); and acid aspiration followed 24 hrs later by mechanical ventilation. The animals were monitored for up to 15 days after acid aspiration. To explore the direct effects of mechanical stress on lung fibrotic formation, human lung epithelial cells (BEAS-2B) were exposed to mechanical stretch for up to 48 hrs. Impaired lung mechanics after mechanical ventilation was associated with increased lung hydroxyproline content, and increased expression of transforming growth factor-β, β-catenin, and mesenchymal markers (α-smooth muscle actin and vimentin) at both the gene and protein levels. Expression of epithelial markers including cytokeratin-8, E-cadherin, and prosurfactant protein B decreased. Lung histology demonstrated fibrosis formation and potential epithelia-mesenchymal transition. In vitro direct mechanical stretch of BEAS-2B cells resulted in similar fibrotic and epithelia-mesenchymal transition formation. Mechanical stress induces lung fibrosis, and epithelia-mesenchymal transition may play an important role in mediating the ventilator-induced lung fibrosis.

  6. Thalidomide Prevents the Progression of Peritoneal Fibrosis in Mice

    PubMed Central

    Arai, Hideyuki; Furusu, Akira; Nishino, Tomoya; Obata, Yoko; Nakazawa, Yuka; Nakazawa, Masayuki; Hirose, Misaki; Abe, Katsushige; Koji, Takehiko; Kohno, Shigeru

    2011-01-01

    Thalidomide is clinically recognized as a therapeutic agent for multiple myeloma and has been known to exert anti-angiogenic actions. Recent studies have suggested the involvement of angiogenesis in the progression of peritoneal fibrosis. The present study investigated the effects of thalidomide on the development of peritoneal fibrosis induced by injection of chlorhexidine gluconate (CG) into the mouse peritoneal cavity every other day for 3 weeks. Thalidomide was given orally every day. Peritoneal tissues were dissected out 21 days after CG injection. Expression of CD31 (as a marker of endothelial cells), proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor (VEGF), α-smooth muscle actin (as a marker of myofibroblasts), type III collagen and transforming growth factor (TGF)-β was examined using immunohistochemistry. CG group showed thickening of the submesothelial zone and increased numbers of vessels and myofibroblasts. Large numbers of VEGF-, PCNA-, and TGF-β-positive cells were observed in the submesothelial area. Thalidomide treatment significantly ameliorated submesothelial thickening and angiogenesis, and decreased numbers of PCNA- and VEGF-expressing cells, myofibroblasts, and TGF-β-positive cells. Moreover, thalidomide attenuated peritoneal permeability for creatinine, compared to the CG group. Our results indicate the potential utility of thalidomide for preventing peritoneal fibrosis. PMID:21614166

  7. Continuous Grading of Early Fibrosis in NAFLD Using Label-Free Imaging: A Proof-of-Concept Study.

    PubMed

    Pirhonen, Juho; Arola, Johanna; Sädevirta, Sanja; Luukkonen, Panu; Karppinen, Sanna-Maria; Pihlajaniemi, Taina; Isomäki, Antti; Hukkanen, Mika; Yki-Järvinen, Hannele; Ikonen, Elina

    2016-01-01

    Early detection of fibrosis is important in identifying individuals at risk for advanced liver disease in non-alcoholic fatty liver disease (NAFLD). We tested whether second-harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) microscopy, detecting fibrillar collagen and fat in a label-free manner, might allow automated and sensitive quantification of early fibrosis in NAFLD. We analyzed 32 surgical biopsies from patients covering histological fibrosis stages 0-4, using multimodal label-free microscopy. Native samples were visualized by SHG and CARS imaging for detecting fibrillar collagen and fat. Furthermore, we developed a method for quantitative assessment of early fibrosis using automated analysis of SHG signals. We found that the SHG mean signal intensity correlated well with fibrosis stage and the mean CARS signal intensity with liver fat. Little overlap in SHG signal intensities between fibrosis stages 0 and 1 was observed. A specific fibrillar SHG signal was detected in the liver parenchyma outside portal areas in all samples histologically classified as having no fibrosis. This signal correlated with immunohistochemical location of fibrillar collagens I and III. This study demonstrates that label-free SHG imaging detects fibrillar collagen deposition in NAFLD more sensitively than routine histological staging and enables observer-independent quantification of early fibrosis in NAFLD with continuous grading.

  8. Quantitative evaluation of pancreatic tumor fibrosis using shear wave elastography.

    PubMed

    Kuwahara, Takamichi; Hirooka, Yoshiki; Kawashima, Hiroki; Ohno, Eizaburo; Sugimoto, Hiroyuki; Hayashi, Daijuro; Morishima, Tomomasa; Kawai, Manabu; Suhara, Hiroki; Takeyama, Tomoaki; Yamamura, Takeshi; Funasaka, Kohei; Nakamura, Masanao; Miyahara, Ryoji; Watanabe, Osamu; Ishigami, Masatoshi; Shimoyama, Yoshie; Nakamura, Shigeo; Hashimoto, Senju; Goto, Hidemi

    There is no established non-invasive method for diagnosis of pancreatic fibrosis. Shear wave elastography (SW-EG) may be a candidate for this purpose. The aims of this study were to assess the reproducibility of SW-EG in the normal imaging pancreas (Phase 1) and to evaluate the diagnostic performance of SW-EG for pancreatic fibrosis classified histologically (Phase 2). Phase 1: This included 127 cases that underwent SW-EG of the normal imaging pancreas. SW-EG was measured at least five times in the pancreatic parenchyma and the median of repeated measurements was defined as the pancreatic elastic modulus (PEM). Phase 2: This included 53 cases that underwent SW-EG of the pancreatic parenchyma preoperatively and in which pancreas parenchyma were evaluated histologically. Histological fibrosis was graded in 4 stages: normal, mild, moderate, and severe. Phase 1: Median PEM in the head, body, and tail of the pancreas were 3.23, 3.17, and 2.91 kPa, respectively, with no significant difference among regions (P = 0.554). The intraclass correlation coefficient showed good reproducibility (ρ = 0.71) after 5 measurements. Phase 2: There was a significant positive correlation between PEM and the histological pancreatic fibrosis stage (r s  = 0.63, P < 0.001). Areas under the receiver operating characteristic curve for the accuracy of SW-EG for diagnosis of pancreatic fibrosis were 0.85 (≥mild), 0.84 (≥moderate), and 0.87 (severe). SW-EG can be used to determine the stage of pancreatic fibrosis non-invasively with high accuracy and reproducibility. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  9. MFAP4: a candidate biomarker for hepatic and pulmonary fibrosis?

    PubMed

    Mölleken, Christian; Poschmann, Gereon; Bonella, Francesco; Costabel, Ulrich; Sitek, Barbara; Stühler, Kai; Meyer, Helmut E; Schmiegel, Wolff H; Marcussen, Niels; Helmer, Michael; Nielsen, Ole; Hansen, Søren; Schlosser, Anders; Holmskov, Uffe; Sorensen, Grith Lykke

    2016-03-29

    Several comparable mechanisms have been identified for hepatic and pulmonary fibrosis. The human microfibrillar associated glycoprotein 4 (MFAP4), produced by activated myofibroblasts, is a ubiquitous protein playing a potential role in extracellular matrix (ECM) turnover and was recently identified as biomarker for hepatic fibrosis in hepatitis C patients. The current study aimed to evaluate serum levels of MFAP4 in patients with pulmonary fibrosis in order to test its potential as biomarker in clinical practice. A further aim was to determine whether MFAP4 deficiency in mice affects the formation of pulmonary fibrosis in the bleomycin model of lung fibrosis. 91 patients with idiopathic pulmonary fibrosis (IPF), 23 with hypersensitivity pneumonitis (HP) and 31 healthy subjects were studied. In the mouse model, C57BL/6 Mfap4+/+ and Mfap4-/- mice between 6-8 weeks of age were studied. Serum levels of MFAP4 were measured by ELISA in patients and in mice. Surfactant protein D (SP-D) and LDH were measured as comparison biomarkers in patients with pulmonary fibrosis. Morphometric assessment and the Sircol kit were used to determine the amount of collagen in the lung tissue in the mouse model. Serum levels of MFAP4 were not elevated in lung fibrosis - neither in the patients with IPF or HP nor in the animal model. Furthermore no significant correlations with pulmonary function tests of IPF patients could be found for MFAP4. MFAP4 levels were increased in BAL of bleomycin treated mice with pulmonary fibrosis. MFAP4 is not elevated in sera of patients with pulmonary fibrosis or bleomycin treated mice with pulmonary fibrosis. This may be due to different pathogenic mechanisms of liver and lung fibrogenesis. MFAP4 seems to be useful as serum biomarker for hepatic but not for lung fibrosis.

  10. Paracellular transport through healthy and cystic fibrosis bronchial epithelial cell lines--do we have a proper model?

    PubMed

    Molenda, Natalia; Urbanova, Katarina; Weiser, Nelly; Kusche-Vihrog, Kristina; Günzel, Dorothee; Schillers, Hermann

    2014-01-01

    It has been reported recently that the cystic fibrosis transmembrane conductance regulator (CFTR) besides transcellular chloride transport, also controls the paracellular permeability of bronchial epithelium. The aim of this study was to test whether overexpressing wtCFTR solely regulates paracellular permeability of cell monolayers. To answer this question we used a CFBE41o- cell line transfected with wtCFTR or mutant F508del-CFTR and compered them with parental line and healthy 16HBE14o- cells. Transepithelial electrical resistance (TER) and paracellular fluorescein flux were measured under control and CFTR-stimulating conditions. CFTR stimulation significant decreased TER in 16HBE14o- and also in CFBE41o- cells transfected with wtCFTR. In contrast, TER increased upon stimulation in CFBE41o- cells and CFBE41o- cells transfected with F508del-CFTR. Under non-stimulated conditions, all four cell lines had similar paracellular fluorescein flux. Stimulation increased only the paracellular permeability of the 16HBE14o- cell monolayers. We observed that 16HBE14o- cells were significantly smaller and showed a different structure of cell-cell contacts than CFBE41o- and its overexpressing clones. Consequently, 16HBE14o- cells have about 80% more cell-cell contacts through which electrical current and solutes can leak. Also tight junction protein composition is different in 'healthy' 16HBE14o- cells compared to 'cystic fibrosis' CFBE41o- cells. We found that claudin-3 expression was considerably stronger in 16HBE14o- cells than in the three CFBE41o- cell clones and thus independent of the presence of functional CFTR. Together, CFBE41o- cell line transfection with wtCFTR modifies transcellular conductance, but not the paracellular permeability. We conclude that CFTR overexpression is not sufficient to fully reconstitute transport in CF bronchial epithelium. Hence, it is not recommended to use those cell lines to study CFTR-dependent epithelial transport.

  11. Idiopathic Pulmonary Fibrosis: Data-driven Textural Analysis of Extent of Fibrosis at Baseline and 15-Month Follow-up.

    PubMed

    Humphries, Stephen M; Yagihashi, Kunihiro; Huckleberry, Jason; Rho, Byung-Hak; Schroeder, Joyce D; Strand, Matthew; Schwarz, Marvin I; Flaherty, Kevin R; Kazerooni, Ella A; van Beek, Edwin J R; Lynch, David A

    2017-10-01

    Purpose To evaluate associations between pulmonary function and both quantitative analysis and visual assessment of thin-section computed tomography (CT) images at baseline and at 15-month follow-up in subjects with idiopathic pulmonary fibrosis (IPF). Materials and Methods This retrospective analysis of preexisting anonymized data, collected prospectively between 2007 and 2013 in a HIPAA-compliant study, was exempt from additional institutional review board approval. The extent of lung fibrosis at baseline inspiratory chest CT in 280 subjects enrolled in the IPF Network was evaluated. Visual analysis was performed by using a semiquantitative scoring system. Computer-based quantitative analysis included CT histogram-based measurements and a data-driven textural analysis (DTA). Follow-up CT images in 72 of these subjects were also analyzed. Univariate comparisons were performed by using Spearman rank correlation. Multivariate and longitudinal analyses were performed by using a linear mixed model approach, in which models were compared by using asymptotic χ 2 tests. Results At baseline, all CT-derived measures showed moderate significant correlation (P < .001) with pulmonary function. At follow-up CT, changes in DTA scores showed significant correlation with changes in both forced vital capacity percentage predicted (ρ = -0.41, P < .001) and diffusing capacity for carbon monoxide percentage predicted (ρ = -0.40, P < .001). Asymptotic χ 2 tests showed that inclusion of DTA score significantly improved fit of both baseline and longitudinal linear mixed models in the prediction of pulmonary function (P < .001 for both). Conclusion When compared with semiquantitative visual assessment and CT histogram-based measurements, DTA score provides additional information that can be used to predict diminished function. Automatic quantification of lung fibrosis at CT yields an index of severity that correlates with visual assessment and functional change in subjects with IPF

  12. Quantitative analysis of diagnosing pancreatic fibrosis using EUS-elastography (comparison with surgical specimens).

    PubMed

    Itoh, Yuya; Itoh, Akihiro; Kawashima, Hiroki; Ohno, Eizaburo; Nakamura, Yosuke; Hiramatsu, Takeshi; Sugimoto, Hiroyuki; Sumi, Hajime; Hayashi, Daijuro; Kuwahara, Takamichi; Morishima, Tomomasa; Funasaka, Kohei; Nakamura, Masanao; Miyahara, Ryoji; Ohmiya, Naoki; Katano, Yoshiaki; Ishigami, Masatoshi; Goto, Hidemi; Hirooka, Yoshiki

    2014-07-01

    An accurate diagnosis of pancreatic fibrosis is clinically important and may have potential for staging chronic pancreatitis. The aim of this study was to diagnose the grade of pancreatic fibrosis through a quantitative analysis of endoscopic ultrasound elastography (EUS-EG). From September 2004 to October 2010, 58 consecutive patients examined by EUS-EG for both pancreatic tumors and their upstream pancreas before pancreatectomy were enrolled. Preoperative EUS-EG images in the upstream pancreas were statistically quantified, and the results were retrospectively compared with postoperative histological fibrosis in the same area. For the quantification of EUS-EG images, 4 parameters (mean, standard deviation, skewness, and kurtosis) were calculated using novel software. Histological fibrosis was graded into 4 categories (normal, mild fibrosis, marked fibrosis, and severe fibrosis) according to a previously reported scoring system. The fibrosis grade in the upstream pancreas was normal in 24 patients, mild fibrosis in 19, marked fibrosis in 6, and severe fibrosis in 9. Fibrosis grade was significantly correlated with all 4 quantification parameters (mean r = -0.75, standard deviation r = -0.54, skewness r = 0.69, kurtosis r = 0.67). According to the receiver operating characteristic analysis, the mean was the most useful parameter for diagnosing pancreatic fibrosis. Using the mean, the area under the ROC curves for the diagnosis of mild or higher-grade fibrosis, marked or higher-grade fibrosis and severe fibrosis were 0.90, 0.90, and 0.90, respectively. An accurate diagnosis of pancreatic fibrosis may be possible by analyzing EUS-EG images.

  13. Cystic fibrosis transmembrane conductance regulator regulates epithelial cell response to Aspergillus and resultant pulmonary inflammation.

    PubMed

    Chaudhary, Neelkamal; Datta, Kausik; Askin, Frederic B; Staab, Janet F; Marr, Kieren A

    2012-02-01

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) alter epithelial cell (EC) interactions with multiple microbes, such that dysregulated inflammation and injury occur with airway colonization in people with cystic fibrosis (CF). Aspergillus fumigatus frequently colonizes CF airways, but it has been assumed to be an innocent saprophyte; its potential role as a cause of lung disease is controversial. To study the interactions between Aspergillus and EC, and the role of the fungus in evoking inflammatory responses. A. fumigatus expressing green fluorescent protein was developed for in vitro and in vivo models, which used cell lines and mouse tracheal EC. Fungal spores (conidia) are rapidly ingested by ECs derived from bronchial cell lines and murine tracheas, supporting a role for EC in early airway clearance. Bronchial ECs harboring CFTR mutations (ΔF508) or deletion demonstrate impaired uptake and killing of conidia, and ECs with CFTR mutation undergo more conidial-induced apoptosis. Germinated (hyphal) forms of the fungus evoke secretion of inflammatory mediators, with CFTR mutation resulting in increased airway levels of macrophage inflammatory protein 2 and KC, and higher lung monocyte chemotactic protein-1. After A. fumigatus inhalation, CFTR(-/-) mice develop exaggerated lymphocytic inflammation, mucin accumulation, and lung injury. Data demonstrate a critical role for CFTR in mediating EC responses to A. fumigatus. Results suggest that the fungus elicits aberrant pulmonary inflammation in the setting of CFTR mutation, supporting the potential role of antifungals to halt progressive CF lung disease.

  14. Diagnostic accuracy of liver fibrosis based on red cell distribution width (RDW) to platelet ratio with fibroscan in chronic hepatitis B

    NASA Astrophysics Data System (ADS)

    Sembiring, J.; Jones, F.

    2018-03-01

    Red cell Distribution Width (RDW) and platelet ratio (RPR) can predict liver fibrosis and cirrhosis in chronic hepatitis B with relatively high accuracy. RPR was superior to other non-invasive methods to predict liver fibrosis, such as AST and ALT ratio, AST and platelet ratio Index and FIB-4. The aim of this study was to assess diagnostic accuracy liver fibrosis by using RDW and platelets ratio in chronic hepatitis B patients based on compared with Fibroscan. This cross-sectional study was conducted at Adam Malik Hospital from January-June 2015. We examine 34 patients hepatitis B chronic, screen RDW, platelet, and fibroscan. Data were statistically analyzed. The result RPR with ROC procedure has an accuracy of 72.3% (95% CI: 84.1% - 97%). In this study, the RPR had a moderate ability to predict fibrosis degree (p = 0.029 with AUC> 70%). The cutoff value RPR was 0.0591, sensitivity and spesificity were 71.4% and 60%, Positive Prediction Value (PPV) was 55.6% and Negative Predictions Value (NPV) was 75%, positive likelihood ratio was 1.79 and negative likelihood ratio was 0.48. RPR have the ability to predict the degree of liver fibrosis in chronic hepatitis B patients with moderate accuracy.

  15. Epithelial-mesenchymal transition: An emerging target in tissue fibrosis

    PubMed Central

    Li, Meirong; Luan, Fuxin; Zhao, Yali; Hao, Haojie; Zhou, Yong; Han, Weidong

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is involved in a variety of tissue fibroses. Fibroblasts/myofibroblasts derived from epithelial cells contribute to the excessive accumulation of fibrous connective tissue in damaged tissue, which can lead to permanent scarring or organ malfunction. Therefore, EMT-related fibrosis cannot be neglected. This review highlights the findings that demonstrate the EMT to be a direct contributor to the fibroblast/myofibroblast population in the development of tissue fibrosis and helps to elucidate EMT-related anti-fibrotic strategies, which may enable the development of therapeutic interventions to suppress EMT and potentially reverse organ fibrosis. PMID:26361988

  16. Prospective comparison of magnetic resonance imaging to transient elastography and serum markers for liver fibrosis detection.

    PubMed

    Dyvorne, Hadrien A; Jajamovich, Guido H; Bane, Octavia; Fiel, M Isabel; Chou, Hsin; Schiano, Thomas D; Dieterich, Douglas; Babb, James S; Friedman, Scott L; Taouli, Bachir

    2016-05-01

    Establishing accurate non-invasive methods of liver fibrosis quantification remains a major unmet need. Here, we assessed the diagnostic value of a multiparametric magnetic resonance imaging (MRI) protocol including diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE)-MRI and magnetic resonance elastography (MRE) in comparison with transient elastography (TE) and blood tests [including ELF (Enhanced Liver Fibrosis) and APRI] for liver fibrosis detection. In this single centre cross-sectional study, we prospectively enrolled 60 subjects with liver disease who underwent multiparametric MRI (DWI, DCE-MRI and MRE), TE and blood tests. Correlation was assessed between non-invasive modalities and histopathologic findings including stage, grade and collagen content, while accounting for covariates such as age, sex, BMI, HCV status and MRI-derived fat and iron content. ROC curve analysis evaluated the performance of each technique for detection of moderate-to-advanced liver fibrosis (F2-F4) and advanced fibrosis (F3-F4). Magnetic resonance elastography provided the strongest correlation with fibrosis stage (r = 0.66, P < 0.001), inflammation grade (r = 0.52, P < 0.001) and collagen content (r = 0.53, P = 0.036). For detection of moderate-to-advanced fibrosis (F2-F4), AUCs were 0.78, 0.82, 0.72, 0.79, 0.71 for MRE, TE, DCE-MRI, DWI and APRI, respectively. For detection of advanced fibrosis (F3-F4), AUCs were 0.94, 0.77, 0.79, 0.79 and 0.70, respectively. Magnetic resonance elastography provides the highest correlation with histopathologic markers and yields high diagnostic performance for detection of advanced liver fibrosis and cirrhosis, compared to DWI, DCE-MRI, TE and serum markers. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Differential susceptibility of inbred mouse strains to chlorine-induced airway fibrosis

    PubMed Central

    Mo, Yiqun; Chen, Jing; Schlueter, Connie F.

    2013-01-01

    Chlorine is a reactive gas that is considered a chemical threat agent. Humans who develop acute lung injury from chlorine inhalation typically recover normal lung function; however, a subset can experience chronic airway disease. To examine pathological changes following chlorine-induced lung injury, mice were exposed to a single high dose of chlorine, and repair of the lung was analyzed at multiple times after exposure. In FVB/NJ mice, chlorine inhalation caused pronounced fibrosis of larger airways that developed by day 7 after exposure and was associated with airway hyperreactivity. In contrast, A/J mice had little or no airway fibrosis and had normal lung function at day 7. Unexposed FVB/NJ mice had less keratin 5 staining (basal cell marker) than A/J mice in large intrapulmonary airways where epithelial repair was poor and fibrosis developed after chlorine exposure. FVB/NJ mice had large areas devoid of epithelium on day 1 after exposure leading to fibroproliferative lesions on days 4 and 7. A/J mice had airways covered by squamous keratin 5-stained cells on day 1 that transitioned to a highly proliferative reparative epithelium by day 4 followed by the reappearance of ciliated and Clara cells by day 7. The data suggest that lack of basal cells in the large intrapulmonary airways and failure to effect epithelial repair at these sites are factors contributing to the development of airway fibrosis in FVB/NJ mice. The observed differences in susceptibility to chlorine-induced airway disease provide a model in which mechanisms and treatment of airway fibrosis can be investigated. PMID:23171502

  18. Differential susceptibility of inbred mouse strains to chlorine-induced airway fibrosis.

    PubMed

    Mo, Yiqun; Chen, Jing; Schlueter, Connie F; Hoyle, Gary W

    2013-01-15

    Chlorine is a reactive gas that is considered a chemical threat agent. Humans who develop acute lung injury from chlorine inhalation typically recover normal lung function; however, a subset can experience chronic airway disease. To examine pathological changes following chlorine-induced lung injury, mice were exposed to a single high dose of chlorine, and repair of the lung was analyzed at multiple times after exposure. In FVB/NJ mice, chlorine inhalation caused pronounced fibrosis of larger airways that developed by day 7 after exposure and was associated with airway hyperreactivity. In contrast, A/J mice had little or no airway fibrosis and had normal lung function at day 7. Unexposed FVB/NJ mice had less keratin 5 staining (basal cell marker) than A/J mice in large intrapulmonary airways where epithelial repair was poor and fibrosis developed after chlorine exposure. FVB/NJ mice had large areas devoid of epithelium on day 1 after exposure leading to fibroproliferative lesions on days 4 and 7. A/J mice had airways covered by squamous keratin 5-stained cells on day 1 that transitioned to a highly proliferative reparative epithelium by day 4 followed by the reappearance of ciliated and Clara cells by day 7. The data suggest that lack of basal cells in the large intrapulmonary airways and failure to effect epithelial repair at these sites are factors contributing to the development of airway fibrosis in FVB/NJ mice. The observed differences in susceptibility to chlorine-induced airway disease provide a model in which mechanisms and treatment of airway fibrosis can be investigated.

  19. Physiological correlates of pulmonary function in children with cystic fibrosis.

    PubMed

    Wells, Greg D; Wilkes, Donna L; Schneiderman, Jane E; Thompson, Sara; Coates, Allan L; Ratjen, Felix

    2014-09-01

    Although peak aerobic capacity (VO(2peak)) has been linked to outcome in patients with cystic fibrosis (CF), measuring is time consuming, and requires expensive equipment and expertise that is not readily available in all centers. Other fitness parameters such as peak anaerobic power, measures of power and strength may be simpler to deliver in the clinic. The relationship between these measures and established outcomes such as forced expiratory volume in one second (FEV(1)) and peak aerobic power (VO(2peak)) in CF remains unclear. Therefore we evaluated (a) aerobic fitness, (b) anaerobic fitness, and (c) upper and lower body muscle strength to determine their relationship to FEV(1) and VO(2peak) in children with CF. Eighty-two patients (7-18 years) with CF (40 female) from the CF clinic at The Hospital for Sick Children in Toronto performed a maximal incremental cycling test to exhaustion. Anaerobic power (W) for 10 and 30 sec cycling trials as well as vertical jump (VJ) and hand grip strength (HG) were compared to FEV(1) and VO(2peak). Absolute VO(2peak) (R(2)  = 0.16, P < 0.001), anaerobic power (R(2)  = 0.21, P < 0.001), and hand grip strength (R(2)  = 0.10, P = 0.003) were significantly correlated to lung function whereas measures of explosive lower body strength (VJ) were not. Anaerobic power (R(2)  = 0.16, P = 0.001) and hand grip strength (R(2)  = 0.08, P = 0.01) were related to VO(2peak). Vertical jump was correlated with VO(2peak) (R(2)  = 0.29, P < 0.001) but not FEV(1). Simple fitness tests such as hand grip strength and anaerobic cycle tests may be useful indicators of lung health and fitness. © 2013 Wiley Periodicals, Inc.

  20. Transient elastography compared to liver biopsy and morphometry for predicting fibrosis in pediatric chronic liver disease: Does etiology matter?

    PubMed Central

    Behairy, Behairy El-Sayed; Sira, Mostafa Mohamed; Zalata, Khaled Refat; Salama, El-Sayed Ebrahem; Abd-Allah, Mohamed Ahmed

    2016-01-01

    AIM: To evaluate transient elastography (TE) as a noninvasive tool in staging liver fibrosis compared with liver biopsy and morphometry in children with different chronic liver diseases. METHODS: A total of 90 children [50 with chronic hepatitis C virus (HCV), 20 with autoimmune hepatitis (AIH) and 20 with Wilson disease] were included in the study and underwent liver stiffness measurement (LSM) using TE. Liver biopsies were evaluated for fibrosis, qualitatively, by Ishak score and quantitatively by fibrosis area fraction (FAF) using digital image analysis (morphometry). LSM was correlated with fibrosis and other studied variables using spearman correlation. A stepwise multiple regression analysis was also performed to examine independent factors associated with LSM. Different cut-off values of LSM were calculated for predicting individual fibrosis stages using receiver-operating characteristic curve. Cut-off values with optimal clinical performance (optimal sensitivity and specificity simultaneously) were selected. RESULTS: The majority of HCV group had minimal activity (80%) and no/mild fibrosis (72%). On the other hand, the majority of AIH group had mild to moderate activity (70%) and moderate to severe fibrosis (95%) and all Wilson disease group had mild to moderate activity (100%) and moderate to severe fibrosis (100%). LSM correlated significantly with both FAF and Ishak scores and the correlation appeared better with the latter (r = 0.839 vs 0.879, P < 0.0001 for both). LSM discriminated individual stages of fibrosis with high performance. Sensitivity ranged from 81.4% to 100% and specificity ranged from 75.0% to 97.2%. When we compared LSM values for the same stage of fibrosis, they varied according to the different etiologies. Higher values were in AIH (16.15 ± 7.23 kPa) compared to Wilson disease (8.30 ± 0.84 kPa) and HCV groups (7.43 ± 1.73 kPa). Multiple regression analysis revealed that Ishak fibrosis stage was the only independent variable

  1. Inhibition of muscle fibrosis results in increases in both utrophin levels and the number of revertant myofibers in Duchenne muscular dystrophy.

    PubMed

    Levi, Oshrat; Genin, Olga; Angelini, Corrado; Halevy, Orna; Pines, Mark

    2015-09-15

    Duchenne Muscular Dystrophy is characterized by: near absence of dystrophin in skeletal muscles; low percentage of revertant myofibers; up-regulation of utrophin synthesis; and a high degree of muscle fibrosis. In patient quadriceps femoris biopsies (n = 6, ages between 3-9 years) an inverse correlation was observed between the levels of collagen type I - representing fibrosis - and the levels of utrophin. This correlation was independent of the patient's age and was observed in the entire muscle biopsy sections. In the mdx mice diaphragm (n = 6/group), inhibition of fibrosis by halofuginone resulted in increases in the levels of utrophin. The utrophin/fibrosis relationships were not limited to collagen type I, but also applied to other constituents of the fibrosis machinery. The inverse correlation was found also in old mdx mice with established fibrosis. In addition, inhibition of collagen type I levels was associated with increases in the numbers of revertant myofibers, both as single myofibers and in clusters in the diaphragm and the gastrocnemius. In summary, our results demonstrate an inverse correlation between the level of muscle fibrosis and the level of utrophin and that of the number of revertant myofibers. These findings may reveal common links between the fibrotic and utrophin-synthesis pathways and offer new insights into the regulation of utrophin synthesis.

  2. Angiotensin II receptor blocker valsartan ameliorates cardiac fibrosis partly by inhibiting miR-21 expression in diabetic nephropathy mice.

    PubMed

    Wang, Jinyang; Duan, Lijun; Gao, Yanbin; Zhou, Shuhong; Liu, Yongming; Wei, Suhong; An, Siqin; Liu, Jing; Tian, Liming; Wang, Shaocheng

    2017-12-09

    Cardiac fibrosis with diabetic nephropathy (DN) is one of major diabetic complications. miR-21 and MMP-9 were closely associated with fibrosis diseases. Angiotensin II receptor blockers (ARB) have cardioprotective effects. However, it remains unclear whether miR-21 was involved in the mechanism of cardiac fibrosis with DN by target MMP-9 and ARB ameliorates cardiac fibrosis partly by inhibiting miR-21 expression. In this study, In Situ Hybridization(ISH), RT-PCR, cell transfection, western blotting and laser confocal telescope were used, respectively. ISH showed that miR-21, concentrated in cytoplasmic foci in the proximity of the nucleus, was mainly localized in cardiac fibroblasts and at relatively low levels in cardiomyocytes within cardiac tissue with DN. RT-PCR showed that miR-21 expression was significantly enhanced in cardiac tissue with DN, accompanied by the increase of col-IV, FN, CVF, PVCA, LVMI, HWI and NT-pro-BNP (p < 0.05). Bioinformatics analysis and Luciferase reporter gene assays showed that MMP-9 was a validated target of miR-21. Furthermore, cell transfection experiments showed that miR-21 overexpression directly decreased MMP-9 expression. Interestingly, miR-21 levels in cardiac tissue was positively correlated with ACR (r = -0.870, P = 0.003), whereas, uncorrelated with SBP, HbA1C and T-Cho (p > 0.05). More importantly, ARB can significantly decrease miR-21 expression in cardiac tissue, cardiac fibroblasts and serum. Overall, our results suggested that miR-21 may contribute to the pathogenesis of cardiac fibrosis with DN by target MMP-9, and that miR-21 may be a new possible therapeutic target for ARB in cardiac fibrosis with DN. Copyright © 2017. Published by Elsevier B.V.

  3. Liver Disease in Cystic Fibrosis: an Update

    PubMed Central

    Parisi, Giuseppe Fabio; Di Dio, Giovanna; Franzonello, Chiara; Gennaro, Alessia; Rotolo, Novella; Lionetti, Elena; Leonardi, Salvatore

    2013-01-01

    Context Cystic fibrosis (CF) is the most widespread autosomal recessive genetic disorder that limits life expectation amongst the Caucasian population. As the median survival has increased related to early multidisciplinary intervention, other manifestations of CF have emergedespecially for the broad spectrum of hepatobiliary involvement. The present study reviews the existing literature on liver disease in cystic fibrosis and describes the key issues for an adequate clinical evaluation and management of patients, with a focus on the pathogenetic, clinical and diagnostic-therapeutic aspects of liver disease in CF. Evidence Acquisition A literature search of electronic databases was undertaken for relevant studies published from 1990 about liver disease in cystic fibrosis. The databases searched were: EMBASE, PubMed and Cochrane Library. Results CF is due to mutations in the gene on chromosome 7 that encodes an amino acidic polypeptide named CFTR (cystic fibrosis transmembrane regulator). The hepatic manifestations include particular changes referring to the basic CFTR defect, iatrogenic lesions or consequences of the multisystem disease. Even though hepatobiliary disease is the most common non-pulmonary cause ofmortalityin CF (the third after pulmonary disease and transplant complications), only about the 33%ofCF patients presents clinically significant hepatobiliary disease. Conclusions Liver disease will have a growing impact on survival and quality of life of cystic fibrosis patients because a longer life expectancy and for this it is important its early recognition and a correct clinical management aimed atdelaying the onset of complications. This review could represent an opportunity to encourage researchers to better investigate genotype-phenotype correlation associated with the development of cystic fibrosis liver disease, especially for non-CFTR genetic polymorphisms, and detect predisposed individuals. Therapeutic trials are needed to find strategies of

  4. [Comparative study on clinical and pathological changes of liver fibrosis with diffusion-weighted imaging].

    PubMed

    Zhou, Mei-Ling; Yan, Fu-Hua; Xu, Peng-Ju; Chen, Cai-Zhong; Shen, Ji-Zhang; Li, Ren-Chen; Ji, Yuan; Shi, Jian-Ying

    2009-07-07

    To evaluate the clinical practical value of apparent diffusion coefficient (ADC) measurements based on diffusion-weighted MR imaging (DWI) for quantification of liver fibrosis and inflammation for hepatitis viral infection. Diffusion-weighted MRI with parallel imaging was prospectively performed on 85 patients with chronic hepatitis and on 22 healthy volunteers within a single breath-hold using a single-shot spin-echo echo-planar sequence at b values of 100, 300, 500, 800 and 1000 s/mm2 respectively. ADC values of liver were measured with five different b values. The inflammation grades and fibrosis stages were evaluated histologically by biopsy. One-way analysis of variance and Spearman' s rank correlation test were used for statistical analysis. Receiver operating characteristics analysis was used to assess the performance of ADC in predicting the presence of stage > or = 2 and stage > or = 3 hepatic fibrosis, and grade > or = 1 hepatic inflammation. There was moderate negative correlation between hepatic ADC values and fibrosis stage. And the best correlation was obtained for a b value of 800 s/mm2 (r = -0.697, P = 0. 000). At all b values there was a significant decrease in hepatic ADC in patients with stage < or = 1 versus stage > or = 2 fibrosis and stage < or = 2 versus stage > or = 3 fibrosis (P < 0.05). Hepatic ADC was a significant predictor of stage > or = 2 and > or = 3 fibrosis. The areas under the curve were 0.909 vs 0.917, sensitivity 76.6% vs 80.0% and specificity 88.3% vs 91.5% (ADC with a b value of 800 s/mm2, 1.26 x 10(-3) mm2/s or less and 1.19 x 10(-3) mm2/s or less). There was weak to moderate negative correlation between ADCs and inflammation grade. Hepatic ADC was a significant predictor of grade > 1 inflammation with an area under the curve of 0.781, sensitivity of 60.0% and specificity of 86.4% (ADC with a b value of 500 s/mm2, 1.54 x 10(-3) mm2/s or less). The DWI measurement of hepatic ADC can be used to quantify liver fibrosis and

  5. The expression of Mirc1/Mir17-92 cluster in sputum samples correlates with pulmonary exacerbations in cystic fibrosis patients.

    PubMed

    Krause, Kathrin; Kopp, Benjamin T; Tazi, Mia F; Caution, Kyle; Hamilton, Kaitlin; Badr, Asmaa; Shrestha, Chandra; Tumin, Dmitry; Hayes, Don; Robledo-Avila, Frank; Hall-Stoodley, Luanne; Klamer, Brett G; Zhang, Xiaoli; Partida-Sanchez, Santiago; Parinandi, Narasimham L; Kirkby, Stephen E; Dakhlallah, Duaa; McCoy, Karen S; Cormet-Boyaka, Estelle; Amer, Amal O

    2018-07-01

    Cystic fibrosis (CF) is a multi-organ disorder characterized by chronic sino-pulmonary infections and inflammation. Many patients with CF suffer from repeated pulmonary exacerbations that are predictors of worsened long-term morbidity and mortality. There are no reliable markers that associate with the onset or progression of an exacerbation or pulmonary deterioration. Previously, we found that the Mirc1/Mir17-92a cluster which is comprised of 6 microRNAs (Mirs) is highly expressed in CF mice and negatively regulates autophagy which in turn improves CF transmembrane conductance regulator (CFTR) function. Therefore, here we sought to examine the expression of individual Mirs within the Mirc1/Mir17-92 cluster in human cells and biological fluids and determine their role as biomarkers of pulmonary exacerbations and response to treatment. Mirc1/Mir17-92 cluster expression was measured in human CF and non-CF plasma, blood-derived neutrophils, and sputum samples. Values were correlated with pulmonary function, exacerbations and use of CFTR modulators. Mirc1/Mir17-92 cluster expression was not significantly elevated in CF neutrophils nor plasma when compared to the non-CF cohort. Cluster expression in CF sputum was significantly higher than its expression in plasma. Elevated CF sputum Mirc1/Mir17-92 cluster expression positively correlated with pulmonary exacerbations and negatively correlated with lung function. Patients with CF undergoing treatment with the CFTR modulator Ivacaftor/Lumacaftor did not demonstrate significant change in the expression Mirc1/Mir17-92 cluster after six months of treatment. Mirc1/Mir17-92 cluster expression is a promising biomarker of respiratory status in patients with CF including pulmonary exacerbation. Published by Elsevier B.V.

  6. Correlation of cell-free DNA plasma concentration with severity of non-alcoholic fatty liver disease.

    PubMed

    Karlas, Thomas; Weise, Lara; Kuhn, Stephanie; Krenzien, Felix; Mehdorn, Matthias; Petroff, David; Linder, Nicolas; Schaudinn, Alexander; Busse, Harald; Keim, Volker; Pratschke, Johann; Wiegand, Johannes; Splith, Katrin; Schmelzle, Moritz

    2017-05-19

    The assessment of fibrosis and inflammatory activity is essential to identify patients with non-alcoholic fatty liver disease (NAFLD) at risk for progressive disease. Serum markers and ultrasound-based methods can replace liver biopsy for fibrosis staging, whereas non-invasive characterization of inflammatory activity remains a clinical challenge. Cell-free DNA (cfDNA) is a novel non-invasive biomarker for assessing cellular inflammation and cell death, which has not been evaluated in NAFLD. Patients and healthy controls from two previous studies were included. NAFLD disease activity and severity were non-invasively characterized by liver stiffness measurement (transient elastography, TE) including steatosis assessment with controlled attenuation parameter (CAP), single-proton magnetic resonance spectroscopy ( 1 H-MRS) for determination of hepatic fat fraction, aminotransferases and serum ferritin. cfDNA levels (90 and 222 bp fragments) were analyzed using quantitative real-time PCR. Fifty-eight NAFLD patients (age 62 ± 11 years, BMI 28.2 ± 3.5 kg/m 2 ) and 13 healthy controls (age 38 ± 12 years, BMI 22.4 ± 2.1 kg/m 2 ) were included. 90 bp cfDNA levels were significantly higher in NAFLD patients compared to healthy controls: 3.7 (1.3-23.1) vs. 2.9 (1.4-4.1) ng/mL (p = 0.014). In the NAFLD cohort, circulating cfDNA correlated significantly with disease activity and severity, especially in patients with elevated liver stiffness (n = 13, 22%) compared to cases with TE values ≤7 kPa: cf90 bp 6.05 (2.41-23.13) vs. 3.16 (1.29-7.31) ng/mL (p < 0.001), and cf222 bp 14.41 (9.27-22.90) vs. 11.32 (6.05-18.28) ng/mL (p = 0.0041). Cell-free DNA plasma concentration correlates with established non-invasive markers of NAFLD activity and severity. Therefore, cfDNA should be further evaluated as biomarker for identifying patients at risk for progressive NAFLD.

  7. Foxm1 transcription factor is required for lung fibrosis and epithelial-to-mesenchymal transition

    PubMed Central

    Balli, David; Ustiyan, Vladimir; Zhang, Yufang; Wang, I-Ching; Masino, Alex J; Ren, Xiaomeng; Whitsett, Jeffrey A; Kalinichenko, Vladimir V; Kalin, Tanya V

    2013-01-01

    Alveolar epithelial cells (AECs) participate in the pathogenesis of pulmonary fibrosis, producing pro-inflammatory mediators and undergoing epithelial-to-mesenchymal transition (EMT). Herein, we demonstrated the critical role of Forkhead Box M1 (Foxm1) transcription factor in radiation-induced pulmonary fibrosis. Foxm1 was induced in AECs following lung irradiation. Transgenic expression of an activated Foxm1 transcript in AECs enhanced radiation-induced pneumonitis and pulmonary fibrosis, and increased the expression of IL-1β, Ccl2, Cxcl5, Snail1, Zeb1, Zeb2 and Foxf1. Conditional deletion of Foxm1 from respiratory epithelial cells decreased radiation-induced pulmonary fibrosis and prevented the increase in EMT-associated gene expression. siRNA-mediated inhibition of Foxm1 prevented TGF-β-induced EMT in vitro. Foxm1 bound to and increased promoter activity of the Snail1 gene, a critical transcriptional regulator of EMT. Expression of Snail1 restored TGF-β-induced loss of E-cadherin in Foxm1-deficient cells in vitro. Lineage-tracing studies demonstrated that Foxm1 increased EMT during radiation-induced pulmonary fibrosis in vivo. Foxm1 is required for radiation-induced pulmonary fibrosis by enhancing the expression of genes critical for lung inflammation and EMT. PMID:23288041

  8. Immunohistochemical study of p21 and Bcl-2 in leukoplakia, oral submucous fibrosis and oral squamous cell carcinoma.

    PubMed

    Sutariya, Rakesh V; Manjunatha, Bhari Sharanesha

    2016-11-01

    Oral Squamous cell carcinoma (OSCC) results from genetic damage, leading to uncontrolled cell proliferation of damaged cells and the cell death. In the course of its progression, visible changes are taking place at the cellular level (atypical) and the resultant at the tissue level (epithelial dysplasia). The Aim of the present study was to evaluate and compare the expressions of intensity of p21 and Bcl-2 in Leukoplakia, oralsubmucous fibrosis (OSMF) and oral squamous cell carcinoma. Total 60 cases, 30 cases of oral squamous cell carcinoma, 15 cases of oral submucous fibrosis and 15 cases of Leukoplakia were evaluated immunohistochemically for p21 and Bcl-2 expression. p21 showed positive expression in 13 (86.67%) cases out of 15 cases of OSMF, 12 (80%) cases of leukoplakia out of 15 cases and 24 (80%) cases out of 30 cases of OSCC. The Bcl-2 expression was positive in 13 (86.67%) cases of OSMF, all cases of Leukoplakia and 25 (83.33%) cases of OSCC. No statistical significance was noted in the expression of p21 and Bcl-2 positive expression between OSMF, Leukoplakia and OSCC. Statistical analysis for comparison of intensity of p21 expression in different grades of OSCC showed no significance. Statistical significance difference was found between the expressions of Bcl-2 in moderately and poorly differentiated SCC. The intensity of p21 and Bcl-2 expressions in different grades of OSCC indicates a key role in progression of oral neoplasia.

  9. PHP14 regulates hepatic stellate cells migration in liver fibrosis via mediating TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway.

    PubMed

    Xu, Anjian; Li, Yanmeng; Zhao, Wenshan; Hou, Fei; Li, Xiaojin; Sun, Lan; Chen, Wei; Yang, Aiting; Wu, Shanna; Zhang, Bei; Yao, Jingyi; Wang, Huan; Huang, Jian

    2018-02-01

    Hepatic fibrosis is characterized by the activation of hepatic stellate cells (HSCs). Migration of the activated HSCs to the site of injury is one of the key characteristics during the wound healing process. We have previously demonstrated that 14 kDa phosphohistidine phosphatase (PHP14) is involved in migration and lamellipodia formation of HSCs. However, the role of PHP14 in liver fibrosis remains unknown. In this study, we first assessed PHP14 expression and distribution in liver fibrotic tissues using western blot, immunohistochemistry, and double immunofluorescence staining. Next, we investigated the role of PHP14 in liver fibrosis and, more specifically, the migration of HSCs by Transwell assay and 3D collagen matrices assay. Finally, we explored the possible molecular mechanisms of the effects of PHP14 on these processes. Our results show that the PHP14 expression is up-regulated in fibrotic liver and mainly in HSCs. Importantly, TGF-β1 can induce PHP14 expression in HSCs accompanied with the activation of HSCs. Consistent with the previous study, PHP14 promotes HSCs migration, especially, promotes 3D floating collagen matrices contraction but inhibits stressed-released matrices contraction. Mechanistically, the PI3Kγ/AKT/Rac1 pathway is involved in migration regulated by PHP14. Moreover, PHP14 specifically mediates the TGF-β1 signaling to PI3Kγ/AKT pathway and regulates HSC migration, and thus participates in liver fibrosis. Our study identified the role of PHP14 in liver fibrosis, particularly HSC migration, and suggested a novel mediator of transducting TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway. PHP14 is up-regulated in fibrotic liver and activated hepatic stellate cells. The expression of PHP14 is induced by TGF-β1. The migration of hepatic stellate cells is regulated by PHP14. PHP14 is a mediator of TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway in hepatic stellate cells.

  10. Mechanisms of fibrosis in acute liver failure.

    PubMed

    He, Yingli; Jin, Li; Wang, Jing; Yan, Zhi; Chen, Tianyan; Zhao, Yingren

    2015-07-01

    Acute liver failure (ALF) is a condition with high mortality and morbidity. Fibrosis in chronic liver disease was extensively researched, whereas fibrosis and underlying mechanism in acute liver failure remains unclear. Hepatitis B virus related ALF patients were recruited to investigate if there was ongoing fibrosis by liver histology and liver stiffness measurement(LSM) analysis as well as fibrosis markers assay. Sera HMGB1 were kinetically detected in progression and remission stage of ALF. Hepatic stellate cell(HSC) activation by HMGB1 was explored by testing mRNA and protein level of α-SMA and collagen 1a1 by using qPCR and western blot. Autophagy induction by HMGB1 was explored by LC3-II conversion, autophagy flux and fluorescence. Firstly, ongoing fibrosis in progression stage of ALF was confirmed by histological analysis, LS measurement as well as fibrosis markers detection. HSC activation and autophagy induction in explanted liver tissue also revealed. Next, kinetic monitoring sera HMGB1 revealed elevated HMGB1 in progression stage of ALF vs HBsAg carrier, and drop back to base level in remission stage. Thirdly, rHMGB1 dose dependently activated HSCs, as indicated by increased mRNA and proteins level in α-SMA and collagen 1a1. Moreover, autophagy was induced in HSC treated with rHMGB1, as illustrated by increased LC3 lipidation, elevated autophagy flux and GFP-LC3 puncta. Acute liver failure is accompanied by ongoing fibrosis, HSC activation and autophagy induction. Increased HMGB1 activates HSC via autophagy induction. Those findings integrate HMGB1, HSCs activation, autophagy into a common framework that underlies the fibrosis in ALF. © 2014 The Authors. Liver International Published by John Wiley & Sons Ltd.

  11. Assessment of Correlation between Sweat Chloride Levels and Clinical Features of Cystic Fibrosis Patients.

    PubMed

    Raina, Manzoor A; Khan, Mosin S; Malik, Showkat A; Raina, Ab Hameed; Makhdoomi, Mudassir J; Bhat, Javed I; Mudassar, Syed

    2016-12-01

    Cystic Fibrosis (CF) is an autosomal recessive disorder and the incidence of this disease is undermined in Northern India. The distinguishable salty character of the sweat belonging to individuals suffering from CF makes sweat chloride estimation essential for diagnosis of CF disease. The aim of this prospective study was to elucidate the relationship of sweat chloride levels with clinical features and pattern of CF. A total of 182 patients, with clinical features of CF were included in this study for quantitative measurement of sweat chloride. Sweat stimulation and collection involved pilocarpine iontophoresis based on the Gibson and Cooks methodology. The quantitative estimation of chloride was done by Schales and Schales method with some modifications. Cystic Fibrosis Trans Membrane Conductance Regulator (CFTR) mutation status was recorded in case of patients with borderline sweat chloride levels to correlate the results and for follow-up. Out of 182 patients having clinical features consistent with CF, borderline and elevated sweat chloride levels were present in 9 (5%) and 41 (22.5%) subjects respectively. Elevated sweat chloride levels were significantly associated with wheeze, Failure To Thrive (FTT), history of CF in Siblings, product of Consanguineous Marriage (CM), digital clubbing and steatorrhoea on univariate analysis. On multivariate analysis only wheeze, FTT and steatorrhoea were found to be significantly associated with elevated sweat chloride levels (p<0.05). Among the nine borderline cases six cases were positive for at least two CFTR mutations and rest of the three cases were not having any mutation in CFTR gene. The diagnosis is often delayed and the disease is advanced in most patients at the time of diagnosis. Sweat testing is a gold standard for diagnosis of CF patients as genetic mutation profile being heterozygous and unlikely to become diagnostic test.

  12. MicroRNA regulatory networks reflective of polyhexamethylene guanidine phosphate-induced fibrosis in A549 human alveolar adenocarcinoma cells.

    PubMed

    Shin, Da Young; Jeong, Mi Ho; Bang, In Jae; Kim, Ha Ryong; Chung, Kyu Hyuck

    2018-05-01

    Polyhexamethylene guanidine phosphate (PHMG-phosphate), an active component of humidifier disinfectant, is suspected to be a major cause of pulmonary fibrosis. Fibrosis, induced by recurrent epithelial damage, is significantly affected by epigenetic regulation, including microRNAs (miRNAs). The aim of this study was to investigate the fibrogenic mechanisms of PHMG-phosphate through the profiling of miRNAs and their target genes. A549 cells were treated with 0.75 μg/mL PHMG-phosphate for 24 and 48 h and miRNA microarray expression analysis was conducted. The putative mRNA targets of the miRNAs were identified and subjected to Gene Ontology analysis. After exposure to PHMG-phosphate for 24 and 48 h, 46 and 33 miRNAs, respectively, showed a significant change in expression over 1.5-fold compared with the control. The integrated analysis of miRNA and mRNA microarray results revealed the putative targets that were prominently enriched were associated with the epithelial-mesenchymal transition (EMT), cell cycle changes, and apoptosis. The dose-dependent induction of EMT by PHMG-phosphate exposure was confirmed by western blot. We identified 13 putative EMT-related targets that may play a role in PHMG-phosphate-induced fibrosis according to the Comparative Toxicogenomic Database. Our findings contribute to the comprehension of the fibrogenic mechanism of PHMG-phosphate and will aid further study on PHMG-phosphate-induced toxicity. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Macrophages in tissue repair, regeneration, and fibrosis

    PubMed Central

    Wynn, Thomas A.; Vannella, Kevin M.

    2016-01-01

    Inflammatory monocytes and resident tissue macrophages are key regulators of tissue repair, regeneration, and fibrosis. Following tissue injury, monocytes and macrophages undergo marked phenotypic and functional changes to play critical roles during the initiation, maintenance, and resolution phases of tissue repair. Disturbances in macrophage function can lead to aberrant repair, with uncontrolled inflammatory mediator and growth factor production, deficient generation of anti-inflammatory macrophages, or failed communication between macrophages and epithelial cells, endothelial cells, fibroblasts, and stem or tissue progenitor cells all contributing to a state of persistent injury, which may lead to the development of pathological fibrosis. In this review, we discuss the mechanisms that instruct macrophages to adopt pro-inflammatory, pro-wound healing, pro-fibrotic, anti-inflammatory, anti-fibrotic, pro-resolving, and tissue regenerating phenotypes following injury, and highlight how some of these mechanisms and macrophage activation states could be exploited therapeutically. PMID:26982353

  14. ERp29 Regulates ΔF508 and Wild-type Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Trafficking to the Plasma Membrane in Cystic Fibrosis (CF) and Non-CF Epithelial Cells*

    PubMed Central

    Suaud, Laurence; Miller, Katelyn; Alvey, Lora; Yan, Wusheng; Robay, Amal; Kebler, Catherine; Kreindler, James L.; Guttentag, Susan; Hubbard, Michael J.; Rubenstein, Ronald C.

    2011-01-01

    Sodium 4-phenylbutyrate (4PBA) improves the intracellular trafficking of ΔF508-CFTR in cystic fibrosis (CF) epithelial cells. The underlying mechanism is uncertain, but 4PBA modulates the expression of some cytosolic molecular chaperones. To identify other 4PBA-regulated proteins that might regulate ΔF508-CFTR trafficking, we performed a differential display RT-PCR screen on IB3-1 CF bronchiolar epithelial cells exposed to 4PBA. One transcript up-regulated by 4PBA encoded ERp29, a luminal resident of the endoplasmic reticulum (ER) thought to be a novel molecular chaperone. We tested the hypothesis that ERp29 is a 4PBA-regulated ER chaperone that influences ΔF508-CFTR trafficking. ERp29 mRNA and protein expression was significantly increased (∼1.5-fold) in 4PBA-treated IB3-1 cells. In Xenopus oocytes, ERp29 overexpression increased the functional expression of both wild-type and ΔF508-CFTR over 3-fold and increased wild-type cystic fibrosis transmembrane conductance regulator (CFTR) plasma membrane expression. In CFBE41o− WT-CFTR cells, expression of and short circuit currents mediated by CFTR decreased upon depletion of ERp29 as did maturation of newly synthesized CFTR. In IB3-1 cells, ΔF508-CFTR co-immunoprecipitated with endogenous ERp29, and overexpression of ERp29 led to increased ΔF508-CFTR expression at the plasma membrane. These data suggest that ERp29 is a 4PBA-regulated ER chaperone that regulates WT-CFTR biogenesis and can promote ΔF508-CFTR trafficking in CF epithelial cells. PMID:21525008

  15. ERp29 regulates DeltaF508 and wild-type cystic fibrosis transmembrane conductance regulator (CFTR) trafficking to the plasma membrane in cystic fibrosis (CF) and non-CF epithelial cells.

    PubMed

    Suaud, Laurence; Miller, Katelyn; Alvey, Lora; Yan, Wusheng; Robay, Amal; Kebler, Catherine; Kreindler, James L; Guttentag, Susan; Hubbard, Michael J; Rubenstein, Ronald C

    2011-06-17

    Sodium 4-phenylbutyrate (4PBA) improves the intracellular trafficking of ΔF508-CFTR in cystic fibrosis (CF) epithelial cells. The underlying mechanism is uncertain, but 4PBA modulates the expression of some cytosolic molecular chaperones. To identify other 4PBA-regulated proteins that might regulate ΔF508-CFTR trafficking, we performed a differential display RT-PCR screen on IB3-1 CF bronchiolar epithelial cells exposed to 4PBA. One transcript up-regulated by 4PBA encoded ERp29, a luminal resident of the endoplasmic reticulum (ER) thought to be a novel molecular chaperone. We tested the hypothesis that ERp29 is a 4PBA-regulated ER chaperone that influences ΔF508-CFTR trafficking. ERp29 mRNA and protein expression was significantly increased (∼1.5-fold) in 4PBA-treated IB3-1 cells. In Xenopus oocytes, ERp29 overexpression increased the functional expression of both wild-type and ΔF508-CFTR over 3-fold and increased wild-type cystic fibrosis transmembrane conductance regulator (CFTR) plasma membrane expression. In CFBE41o- WT-CFTR cells, expression of and short circuit currents mediated by CFTR decreased upon depletion of ERp29 as did maturation of newly synthesized CFTR. In IB3-1 cells, ΔF508-CFTR co-immunoprecipitated with endogenous ERp29, and overexpression of ERp29 led to increased ΔF508-CFTR expression at the plasma membrane. These data suggest that ERp29 is a 4PBA-regulated ER chaperone that regulates WT-CFTR biogenesis and can promote ΔF508-CFTR trafficking in CF epithelial cells.

  16. Relaxin suppresses atrial fibrillation in aged rats by reversing fibrosis and upregulating Na+ channels.

    PubMed

    Henry, Brian L; Gabris, Beth; Li, Qiao; Martin, Brian; Giannini, Marianna; Parikh, Ashish; Patel, Divyang; Haney, Jamie; Schwartzman, David S; Shroff, Sanjeev G; Salama, Guy

    2016-04-01

    Atrial fibrillation (AF) contributes significantly to morbidity and mortality in elderly patients and has been correlated with enhanced age-dependent atrial fibrosis. Reversal of atrial fibrosis has been proposed as therapeutic strategy to suppress AF. To test the ability of relaxin to reverse age-dependent atrial fibrosis and suppress AF. Aged F-344 rats (24 months old) were treated with subcutaneous infusion of vehicle or relaxin (0.4 mg/kg/day) for 2 weeks. Rat hearts were excised, perfused on a Langendorff apparatus, and stained with voltage and Ca(2+) indicator dyes. Optical mapping and programmed electrical stimulation was used to test arrhythmia vulnerability and changes in electrophysiological characteristics. Changes in protein expression and Na(+) current density (INa) were measured by tissue immunofluorescence and whole-cell patch clamp technique. In aged rats, sustained AF was readily induced with a premature pulse (n = 7/8) and relaxin treatment suppressed sustained AF by a premature impulse or burst pacing (n = 1/6) (P < .01). Relaxin significantly increased atrial action potential conduction velocity and decreased atrial fibrosis. Relaxin treatment increased Nav1.5 expression (n = 6; 36% ± 10%) and decreased total collagen and collagen I (n = 5-6; 55%-66% ± 15%) in aged atria (P < .05) and decreased collagen I and III and TGF-β1 mRNA (P < .05). Voltage-clamp experiments demonstrated that relaxin treatment (100 nM for 2 days) increased atrial INa by 46% ± 4% (n = 12-13/group, P < .02). Relaxin suppresses AF through an increase in atrial conduction velocity by decreasing atrial fibrosis and increasing INa. These data provide compelling evidence that relaxin may serve as an effective therapy to manage AF in geriatric patients by reversing fibrosis and modulating cardiac ionic currents. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  17. Chloride and sodium ion concentrations in saliva and sweat as a method to diagnose cystic fibrosis.

    PubMed

    Gonçalves, Aline Cristina; Marson, Fernando Augusto Lima; Mendonça, Regina Maria Holanda; Bertuzzo, Carmen Sílvia; Paschoal, Ilma Aparecida; Ribeiro, José Dirceu; Ribeiro, Antônio Fernando; Levy, Carlos Emílio

    2018-05-19

    Cystic fibrosis diagnosis is dependent on the chloride ion concentration in the sweat test (≥60mEq/mL - recognized as the gold standard indicator for cystic fibrosis diagnosis). Moreover, the salivary glands express the CFTR protein in the same manner as sweat glands. Given this context, the objective was to verify the correlation of saliva chloride concentration and sweat chloride concentration, and between saliva sodium concentration and sweat sodium concentration, in patients with cystic fibrosis and healthy control subjects, as a tool for cystic fibrosis diagnosis. There were 160 subjects enrolled: 57/160 (35.70%) patients with cystic fibrosis and two known CFTR mutations and 103/160 (64.40%) healthy controls subjects. Saliva ion concentration was analyzed by ABL 835 Radiometer ® equipment and, sweat chloride concentration and sweat sodium concentration, respectively, by manual titration using the mercurimetric procedure of Schales & Schales and flame photometry. Statistical analysis was performed by the chi-squared test, the Mann-Whitney test, and Spearman's correlation. Alpha=0.05. Patients with cystic fibrosis showed higher values of sweat chloride concentration, sweat sodium concentration, saliva chloride concentration, and saliva sodium concentration than healthy controls subjects (p-value<0.001). The correlation between saliva chloride concentration and sweat chloride concentration showed a positive Spearman's Rho (correlation coefficient)=0.475 (95% CI=0.346 to 0.587). Also, the correlation between saliva sodium concentration and sweat sodium concentration showed a positive Spearman's Rho=0.306 (95% CI=0.158 to 0.440). Saliva chloride concentration and saliva sodium concentration are candidates to be used in cystic fibrosis diagnosis, mainly in cases where it is difficult to achieve the correct sweat amount, and/or CFTR mutation screening is difficult, and/or reference methods for sweat test are unavailable to implement or are not easily accessible by

  18. Regulation of Chloride Channels by Protein Kinase C in Normal and Cystic Fibrosis Airway Epithelia

    NASA Astrophysics Data System (ADS)

    Li, Ming; McCann, John D.; Anderson, Matthew P.; Clancy, John P.; Liedtke, Carole M.; Nairn, Angus C.; Greengard, Paul; Welsh, Michael J.

    1989-06-01

    Apical membrane chloride channels control chloride secretion by airway epithelial cells. Defective regulation of these channels is a prominent characteristic of cystic fibrosis. In normal intact cells, activation of protein kinase C (PKC) by phorbol ester either stimulated or inhibited chloride secretion, depending on the physiological status of the cell. In cell-free membrane patches, PKC also had a dual effect: at a high calcium concentration, PKC inactivated chloride channels; at a low calcium concentration, PKC activated chloride channels. In cystic fibrosis cells, PKC-dependent channel inactivation was normal, but activation was defective. Thus it appears that PKC phosphorylates and regulates two different sites on the channel or on an associated membrane protein, one of which is defective in cystic fibrosis.

  19. A single blood test adjusted for different liver fibrosis targets improves fibrosis staging and especially cirrhosis diagnosis

    PubMed Central

    Boursier, Jérôme; Oberti, Frédéric; Moal, Valérie; Fouchard Hubert, Isabelle; Bertrais, Sandrine; Hunault, Gilles; Rousselet, Marie Christine

    2018-01-01

    .366). Multi‐FibroMeterV2G had the highest correlation with the area of portoseptal fibrosis and the highest reproducibility over time. Correct classification rates of Multi‐FibroMeter with hyaluronate (V2G, 86.0%) or without (V3G, 86.1%) did not differ (P = 0.938). Conclusion: Multitargeting biomarkers significantly improves fibrosis staging and especially cirrhosis diagnosis compared to classical single‐targeted blood tests. (Hepatology Communications 2018;2:455‐466) PMID:29619423

  20. Docosahexaenoic acid attenuates Western diet-induced hepatic fibrosis in Ldlr−/− mice by targeting the TGFβ-Smad3 pathway[S

    PubMed Central

    Lytle, Kelli A.; Depner, Christopher M.; Wong, Carmen P.; Jump, Donald B.

    2015-01-01

    DHA (22:6,ω3), but not EPA (20:5,ω3), attenuates Western diet (WD)-induced hepatic fibrosis in a Ldlr−/− mouse model of nonalcoholic steatohepatitis. We examined the molecular basis for the differential effect of dietary EPA and DHA on WD-induced hepatic fibrosis. DHA was more effective than EPA at preventing WD-induced effects on hepatic transcripts linked to fibrosis, including collagen 1A1 (Col1A1), transforming growth factor-β (TGFβ) signaling and proteins involved in remodeling the extracellular matrix, including metalloproteases, tissue inhibitors of metalloproteases, and lysyl oxidase subtypes. Examination of the TGFβ pathway showed that mice fed the WD supplemented with either olive oil or EPA had a significant (≥2.5-fold) increase in hepatic nuclear abundance of phospho-mothers against decapentaplegic homolog (Smad)3 when compared with mice fed the reference diet (RD); Smad3 is a key regulator of Col1A1 expression in stellate cells. In contrast, mice fed the WD supplemented with DHA had no increase in phospho-Smad3 when compared with mice fed the RD. Changes in hepatic phospho-Smad3 nuclear content correlated with proCol1A1 mRNA and protein abundance. Pretreatment of human LX2 stellate cells with DHA, but not other unsaturated fatty acids, blocked TGFβ1-mediated induction of Col1A1. In conclusion, DHA attenuates WD-induced fibrosis by targeting the TGFβ-Smad3-Col1A1 pathway in stellate cells. PMID:26315048

  1. A Multiscale Agent-Based in silico Model of Liver Fibrosis Progression

    PubMed Central

    Dutta-Moscato, Joyeeta; Solovyev, Alexey; Mi, Qi; Nishikawa, Taichiro; Soto-Gutierrez, Alejandro; Fox, Ira J.; Vodovotz, Yoram

    2014-01-01

    Chronic hepatic inflammation involves a complex interplay of inflammatory and mechanical influences, ultimately manifesting in a characteristic histopathology of liver fibrosis. We created an agent-based model (ABM) of liver tissue in order to computationally examine the consequence of liver inflammation. Our liver fibrosis ABM (LFABM) is comprised of literature-derived rules describing molecular and histopathological aspects of inflammation and fibrosis in a section of chemically injured liver. Hepatocytes are modeled as agents within hexagonal lobules. Injury triggers an inflammatory reaction, which leads to activation of local Kupffer cells and recruitment of monocytes from circulation. Portal fibroblasts and hepatic stellate cells are activated locally by the products of inflammation. The various agents in the simulation are regulated by above-threshold concentrations of pro- and anti-inflammatory cytokines and damage-associated molecular pattern molecules. The simulation progresses from chronic inflammation to collagen deposition, exhibiting periportal fibrosis followed by bridging fibrosis, and culminating in disruption of the regular lobular structure. The ABM exhibited key histopathological features observed in liver sections from rats treated with carbon tetrachloride (CCl4). An in silico “tension test” for the hepatic lobules predicted an overall increase in tissue stiffness, in line with clinical elastography literature and published studies in CCl4-treated rats. Therapy simulations suggested differential anti-fibrotic effects of neutralizing tumor necrosis factor alpha vs. enhancing M2 Kupffer cells. We conclude that a computational model of liver inflammation on a structural skeleton of physical forces can recapitulate key histopathological and macroscopic properties of CCl4-injured liver. This multiscale approach linking molecular and chemomechanical stimuli enables a model that could be used to gain translationally relevant insights into liver

  2. Biomarkers for liver fibrosis

    DOEpatents

    Jacobs, Jon M.; Burnum-Johnson, Kristin E.; Baker, Erin M.; Smith, Richard D.; Gritsenko, Marina A.; Orton, Daniel

    2017-05-16

    Methods and systems for diagnosing or prognosing liver fibrosis in a subject are provided. In some examples, such methods and systems can include detecting liver fibrosis-related molecules in a sample obtained from the subject, comparing expression of the molecules in the sample to controls representing expression values expected in a subject who does not have liver fibrosis or who has non-progressing fibrosis, and diagnosing or prognosing liver fibrosis in the subject when differential expression of the molecules between the sample and the controls is detected. Kits for the diagnosis or prognosis of liver fibrosis in a subject are also provided which include reagents for detecting liver fibrosis related molecules.

  3. Biomarkers for liver fibrosis

    DOEpatents

    Jacobs, Jon M.; Burnum-Johnson, Kristin E.; Baker, Erin M.; Smith, Richard D.; Gritsenko, Marina A.; Orton, Daniel

    2015-09-15

    Methods and systems for diagnosing or prognosing liver fibrosis in a subject are provided. In some examples, such methods and systems can include detecting liver fibrosis-related molecules in a sample obtained from the subject, comparing expression of the molecules in the sample to controls representing expression values expected in a subject who does not have liver fibrosis or who has non-progressing fibrosis, and diagnosing or prognosing liver fibrosis in the subject when differential expression of the molecules between the sample and the controls is detected. Kits for the diagnosis or prognosis of liver fibrosis in a subject are also provided which include reagents for detecting liver fibrosis related molecules.

  4. Percutaneous intraportal application of adipose tissue-derived mesenchymal stem cells using a balloon occlusion catheter in a porcine model of liver fibrosis.

    PubMed

    Avritscher, Rony; Abdelsalam, Mohamed E; Javadi, Sanaz; Ensor, Joe; Wallace, Michael J; Alt, Eckhard; Madoff, David C; Vykoukal, Jody V

    2013-12-01

    To investigate the safety and effectiveness of a novel endovascular approach for therapeutic cell delivery using a balloon occlusion catheter in a large animal model of liver fibrosis. Transcatheter arterial embolization with ethiodized oil (Ethiodol) and ethanol was used to induce liver damage in 11 pigs. Mesenchymal stem cells (MSCs) were harvested from adipose tissue and engineered to express green fluorescent protein (GFP). A balloon occlusion catheter was positioned in the bilateral first-order portal vein branches 2 weeks after embolization to allow intraportal application of MSCs in six experimental animals. MSCs were allowed to dwell for 10 minutes using prolonged balloon inflation. Five control animals received a sham injection of normal saline in a similar fashion. Hepatic venous pressure gradient (HVPG) was measured immediately before necropsy. Specimens from all accessible lobes were obtained with ultrasound-guided percutaneous 18-gauge biopsy 2 hours after cell application. All animals were euthanized within 4 weeks. Fluorescent microscopy was used to assess the presence and distribution of cells. Liver injury and fibrosis were successfully induced in all animals. MSCs (6-10 × 10(7)) were successfully delivered into the portal vein in the six experimental animals. Cell application was not associated with vascular complications. HVPG showed no instances of portal hypertension. GFP-expressing MSCs were visualized in biopsy specimens and were distributed primarily within the sinusoidal spaces; however, 4 weeks after implantation, MSCs could not be identified in histologic specimens. A percutaneous endovascular approach for cell delivery using a balloon occlusion catheter proved safe for intraportal MSC application in a large animal model of liver fibrosis. © 2013 SIR Published by SIR All rights reserved.

  5. Automated morphometry provides accurate and reproducible virtual staging of liver fibrosis in chronic hepatitis C

    PubMed Central

    Calès, Paul; Chaigneau, Julien; Hunault, Gilles; Michalak, Sophie; Cavaro-Menard, Christine; Fasquel, Jean-Baptiste; Bertrais, Sandrine; Rousselet, Marie-Christine

    2015-01-01

    Background: Liver fibrosis staging provides prognostic value, although hampered by observer variability. We used digital analysis to develop diagnostic morphometric scores for significant fibrosis, cirrhosis and fibrosis staging in chronic hepatitis C. Materials and Methods: We automated the measurement of 44 classical and new morphometric descriptors. The reference was histological METAVIR fibrosis (F) staging (F0 to F4) on liver biopsies. The derivation population included 416 patients and liver biopsies ≥20 mm-length. Two validation population included 438 patients. Results: In the derivation population, the area under the receiver operating characteristic (AUROC) for clinically significant fibrosis (F stage ≥2) of a logistic score combining 5 new descriptors (stellar fibrosis area, edge linearity, bridge thickness, bridge number, nodularity) was 0.957. The AUROC for cirrhosis of 6 new descriptors (edge linearity, nodularity, portal stellar fibrosis area, portal distance, granularity, fragmentation) was 0.994. Predicted METAVIR F staging combining 8 morphometric descriptors agreed well with METAVIR F staging by pathologists: κ = 0.868. Morphometric score of clinically significant fibrosis had a higher correlation with porto-septal fibrosis area (rs = 0.835) than METAVIR F staging (rs = 0.756, P < 0.001) and the same correlations with fibrosis biomarkers, e.g., serum hyaluronate: rs = 0.484 versus rs = 0.476 for METAVIR F (P = 0.862). In the validation population, the AUROCs of clinically significant fibrosis and cirrhosis scores were, respectively: 0.893 and 0.993 in 153 patients (biopsy < 20 mm); 0.955 and 0.994 in 285 patients (biopsy ≥ 20 mm). The three morphometric diagnoses agreed with consensus expert reference as well as or better than diagnoses by first-line pathologists in 285 patients, respectively: significant fibrosis: 0.733 versus 0.733 (κ), cirrhosis: 0.900 versus 0.827, METAVIR F: 0.881 versus 0.865. Conclusion: The new automated

  6. Continuous Grading of Early Fibrosis in NAFLD Using Label-Free Imaging: A Proof-of-Concept Study

    PubMed Central

    Pirhonen, Juho; Arola, Johanna; Sädevirta, Sanja; Luukkonen, Panu; Karppinen, Sanna-Maria; Pihlajaniemi, Taina; Isomäki, Antti; Hukkanen, Mika

    2016-01-01

    Background and Aims Early detection of fibrosis is important in identifying individuals at risk for advanced liver disease in non-alcoholic fatty liver disease (NAFLD). We tested whether second-harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) microscopy, detecting fibrillar collagen and fat in a label-free manner, might allow automated and sensitive quantification of early fibrosis in NAFLD. Methods We analyzed 32 surgical biopsies from patients covering histological fibrosis stages 0–4, using multimodal label-free microscopy. Native samples were visualized by SHG and CARS imaging for detecting fibrillar collagen and fat. Furthermore, we developed a method for quantitative assessment of early fibrosis using automated analysis of SHG signals. Results We found that the SHG mean signal intensity correlated well with fibrosis stage and the mean CARS signal intensity with liver fat. Little overlap in SHG signal intensities between fibrosis stages 0 and 1 was observed. A specific fibrillar SHG signal was detected in the liver parenchyma outside portal areas in all samples histologically classified as having no fibrosis. This signal correlated with immunohistochemical location of fibrillar collagens I and III. Conclusions This study demonstrates that label-free SHG imaging detects fibrillar collagen deposition in NAFLD more sensitively than routine histological staging and enables observer-independent quantification of early fibrosis in NAFLD with continuous grading. PMID:26808140

  7. Enhanced liver fibrosis test using ELISA assay accurately discriminates advanced stage of liver fibrosis as determined by transient elastography fibroscan in treatment naïve chronic HCV patients.

    PubMed

    Omran, Dalia; Yosry, Ayman; Darweesh, Samar K; Nabeel, Mohammed M; El-Beshlawey, Mohammed; Saif, Sameh; Fared, Azza; Hassany, Mohamed; Zayed, Rania A

    2018-02-01

    Evaluation of liver fibrosis stage is crucial in the assessment of chronic HCV patients, regarding decision to start treatment and during follow-up. Our aim was to assess the validity of the enhanced liver fibrosis (ELF) score in discrimination of advanced stage of liver fibrosis in naïve chronic HCV patients. We prospectively evaluated liver fibrosis stage in one hundred eighty-one naïve chronic HCV Egyptian patients by transient elastography (TE)-FibroScan. Patients were categorized into mild to moderate fibrosis (≤F2) group and advanced fibrosis (≥F3) group. The ELF score components, hyaluronic acid (HA), amino-terminal propeptide of type-III-procollagen (PIIINP) and tissue inhibitor of metalloproteinase type-1 (TIMP-1), were done using ELISA test. The mean values of ELF and its individual components significantly correlated with the hepatic fibrosis stage as measured by TE-FibroScan (P value 0.001). ELF cutoff value of 9.8 generated a sensitivity of 77.8%, specificity of 67.1%, area under the receiver operator characteristic curve (AUROC) of 0.76 with 95% confidence interval [CI] (0.68-0.83) for detecting advanced fibrosis (F ≥ 3). ELF panel is a good, reliable noninvasive test and showed comparable results to TE-FibroScan in detecting liver fibrosis stage in treatment naïve chronic HCV patients.

  8. Therapeutic effects of telomerase in mice with pulmonary fibrosis induced by damage to the lungs and short telomeres.

    PubMed

    Povedano, Juan Manuel; Martinez, Paula; Serrano, Rosa; Tejera, Águeda; Gómez-López, Gonzalo; Bobadilla, Maria; Flores, Juana Maria; Bosch, Fátima; Blasco, Maria A

    2018-01-30

    Pulmonary fibrosis is a fatal lung disease characterized by fibrotic foci and inflammatory infiltrates. Short telomeres can impair tissue regeneration and are found both in hereditary and sporadic cases. We show here that telomerase expression using AAV9 vectors shows therapeutic effects in a mouse model of pulmonary fibrosis owing to a low-dose bleomycin insult and short telomeres. AAV9 preferentially targets regenerative alveolar type II cells (ATII). AAV9- Tert -treated mice show improved lung function and lower inflammation and fibrosis at 1-3 weeks after viral treatment, and improvement or disappearance of the fibrosis at 8 weeks after treatment. AAV9- Tert treatment leads to longer telomeres and increased proliferation of ATII cells, as well as lower DNA damage, apoptosis, and senescence. Transcriptome analysis of ATII cells confirms downregulation of fibrosis and inflammation pathways. We provide a proof-of-principle that telomerase activation may represent an effective treatment for pulmonary fibrosis provoked or associated with short telomeres. © 2018, Povedano et al.

  9. Therapeutic effects of telomerase in mice with pulmonary fibrosis induced by damage to the lungs and short telomeres

    PubMed Central

    Serrano, Rosa; Tejera, Águeda; Gómez-López, Gonzalo; Bobadilla, Maria; Flores, Juana Maria; Bosch, Fátima

    2018-01-01

    Pulmonary fibrosis is a fatal lung disease characterized by fibrotic foci and inflammatory infiltrates. Short telomeres can impair tissue regeneration and are found both in hereditary and sporadic cases. We show here that telomerase expression using AAV9 vectors shows therapeutic effects in a mouse model of pulmonary fibrosis owing to a low-dose bleomycin insult and short telomeres. AAV9 preferentially targets regenerative alveolar type II cells (ATII). AAV9-Tert-treated mice show improved lung function and lower inflammation and fibrosis at 1–3 weeks after viral treatment, and improvement or disappearance of the fibrosis at 8 weeks after treatment. AAV9-Tert treatment leads to longer telomeres and increased proliferation of ATII cells, as well as lower DNA damage, apoptosis, and senescence. Transcriptome analysis of ATII cells confirms downregulation of fibrosis and inflammation pathways. We provide a proof-of-principle that telomerase activation may represent an effective treatment for pulmonary fibrosis provoked or associated with short telomeres. PMID:29378675

  10. Eotaxin/CCL11 in idiopathic retroperitoneal fibrosis.

    PubMed

    Mangieri, Domenica; Corradi, Domenico; Martorana, Davide; Malerba, Giovanni; Palmisano, Alessandra; Libri, Irene; Bartoli, Veronica; Carnevali, Maria L; Goldoni, Matteo; Govoni, Paolo; Alinovi, Rossella; Buzio, Carlo; Vaglio, Augusto

    2012-10-01

    Idiopathic retroperitoneal fibrosis (IRF) is a rare fibro-inflammatory disorder characterized by a periaortic tissue which often encases the ureters causing acute renal failure. IRF histology shows fibrosis and a chronic inflammatory infiltrate with frequent tissue eosinophilia. We assessed a panel of molecules promoting eosinophilia and fibrosis in IRF patients and performed an immunogenetic study. Serum levels of eotaxin/CCL11, regulated and normal T-cell expressed and secreted (RANTES), granulocyte colony-stimulating factor (G-CSF), interleukin (IL)-5, platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) were measured using a multiplex assay in 24 newly diagnosed, untreated IRF patients and 14 healthy controls. Retroperitoneal biopsies (available in 8/24 patients) were histologically evaluated to assess eosinophil infiltration, whereas mast cells (MCs) were identified by immunohistochemical analysis for human tryptase. Immunohistochemistry for eotaxin/CCL11 and its receptor CCR3 was also performed. Six single nucleotide polymorphisms (SNPs) within the CCL11 gene (rs6505403, rs1860184, rs4795896, rs17735961, rs16969415 and rs17809012) were investigated in 142 IRF patients and 214 healthy controls. Serum levels of eotaxin/CCL11 were higher in IRF patients than in controls (P = 0.009). Eotaxin/CCL11 drives tissue infiltration of eosinophils and MCs, which can promote fibrosis. Eosinophilic infiltration was prominent (>5 cells/hpf) in five (62.5%) cases, and abundant tryptase-positive MCs were found in all cases; notably, MCs were in a degranulating state. Immunohistochemistry showed that CCL11 was highly produced by infiltrating mononuclear cells and that its receptor CCR3 was expressed by infiltrating eosinophils, MCs, lymphocytes and fibroblasts. None of the tested CCL11 SNPs showed disease association, but the TTCCAT haplotype was significantly associated with IRF (P = 0.0005). These findings suggest that the eotaxin/CCL11-CCR3 axis is active

  11. Vitamin A absorption in cystic fibrosis: risk of hypervitaminosis A.

    PubMed Central

    James, D R; Owen, G; Campbell, I A; Goodchild, M C

    1992-01-01

    Vitamin A status was examined in nine adult cystic fibrosis patients and six adult control subjects, together with an assessment of their ability to absorb 10,000 IU of retinyl palmitate from a test meal, taken with appropriate pancreatic enzyme supplements. Median baseline values for plasma retinol and carotene, as well as median serum retinol binding protein concentrations, were significantly lower in cystic fibrosis patients than in control subjects. One cystic fibrosis patient had a raised fasting plasma retinyl ester concentration suggestive of chronic hypervitaminosis A, but no symptoms of toxicity. Measures of vitamin A absorption were also significantly lower in cystic fibrosis patients, although there was considerable overlap with control values. No correlation was observed between measures of baseline status and vitamin A absorption. Measurement of plasma retinyl esters may be an appropriate investigation in those patients considered to be at risk of chronic hypervitaminosis A. PMID:1612491

  12. CD147 promotes liver fibrosis progression via VEGF-A/VEGFR2 signalling-mediated cross-talk between hepatocytes and sinusoidal endothelial cells.

    PubMed

    Yan, Zhaoyong; Qu, Kai; Zhang, Jing; Huang, Qichao; Qu, Ping; Xu, Xinsen; Yuan, Peng; Huang, Xiaojun; Shao, Yongping; Liu, Chang; Zhang, Hongxin; Xing, Jinliang

    2015-10-01

    Although previous evidence indicates close involvement of CD147 in the pathogenesis of liver fibrosis, the underlying molecular mechanisms and its therapeutic value remain largely unknown. In the present study, we investigated the biological roles of CD147 in liver fibrosis and assessed its therapeutic value as a target molecule in the CCl4-induced liver fibrosis mouse model. We found that CD147 was highly expressed in both hepatocytes and SECs (sinusoidal endothelial cells) in fibrotic liver tissues. Additionally, it was significantly associated with the fibrosis stage. TGF-β1 (transforming growth factor β1) was found to be mainly responsible for the up-regulation of CD147. Bioinformatic and experimental data suggest a functional link between CD147 expression and VEGF-A (vascular endothelial growth factor A)/VEGR-2 (VEGF receptor 2) signalling-mediated angiogenesis in fibrotic liver tissues. Furthermore, we observed that the CD147-induced activation of the PI3K (phosphoinositide 3-kinase)/Akt signalling pathway promotes the production of VEGF-A in hepatocytes and expression of VEGFR-2 in SECs, which was found to enhance the angiogenic capability of SECs. Finally, our data indicate that blocking of CD147 using an mAb (monoclonal antibody) attenuated liver fibrosis progression via inhibition of VEGF-A/VEGFR-2 signalling and subsequent amelioration of microvascular abnormality in the CCl4-induced mouse model. Our findings suggest a novel functional mechanism that CD147 may promote liver fibrosis progression via inducing the VEGF-A/VEGFR-2 signalling pathway-mediated cross-talk between hepatocytes and SECs. New strategies based on the intervention of CD147 can be expected for prevention of liver fibrosis. © 2015 Authors; published by Portland Press Limited.

  13. Cystic Fibrosis Transmembrane Conductance Regulator Regulates Epithelial Cell Response to Aspergillus and Resultant Pulmonary Inflammation

    PubMed Central

    Chaudhary, Neelkamal; Datta, Kausik; Askin, Frederic B.; Staab, Janet F.

    2012-01-01

    Rationale: Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) alter epithelial cell (EC) interactions with multiple microbes, such that dysregulated inflammation and injury occur with airway colonization in people with cystic fibrosis (CF). Aspergillus fumigatus frequently colonizes CF airways, but it has been assumed to be an innocent saprophyte; its potential role as a cause of lung disease is controversial. Objectives: To study the interactions between Aspergillus and EC, and the role of the fungus in evoking inflammatory responses. Methods: A. fumigatus expressing green fluorescent protein was developed for in vitro and in vivo models, which used cell lines and mouse tracheal EC. Measurements and Main Results: Fungal spores (conidia) are rapidly ingested by ECs derived from bronchial cell lines and murine tracheas, supporting a role for EC in early airway clearance. Bronchial ECs harboring CFTR mutations (ΔF508) or deletion demonstrate impaired uptake and killing of conidia, and ECs with CFTR mutation undergo more conidial-induced apoptosis. Germinated (hyphal) forms of the fungus evoke secretion of inflammatory mediators, with CFTR mutation resulting in increased airway levels of macrophage inflammatory protein 2 and KC, and higher lung monocyte chemotactic protein-1. After A. fumigatus inhalation, CFTR−/− mice develop exaggerated lymphocytic inflammation, mucin accumulation, and lung injury. Conclusions: Data demonstrate a critical role for CFTR in mediating EC responses to A. fumigatus. Results suggest that the fungus elicits aberrant pulmonary inflammation in the setting of CFTR mutation, supporting the potential role of antifungals to halt progressive CF lung disease. PMID:22135344

  14. Toward an animal model of cystic fibrosis: Targeted interruption of exon 10 of the cystic fibrosis transmembrane regulator gene in embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koller, B.H.; Hyungsuk Kim; Latour, A.M.

    1991-12-01

    A gene-targeting construct was made containing 7.8 kilobases of DNA spanning exon 10 of the mouse cystic fibrosis transmembrane regulator (CFTR) gene in which part of the exon has been replaced by two neomycin-resistance (Neo) genes driven by different promoters. (This replacement introduces a chain-termination codon at amino acid position 489 in the CFTR sequence). A herpes simplex thymidine kinase gene was on each end of the construct, which was electroporated into embryonic stem (ES) cells. Colonies resistant to G418, or to G418 plus ganciclovir, were selected and screened by Southern blotting or by PCR amplification. Five pools of G418-resistantmore » cells gave PCR products diagnostic of targeting. Four independent clones of ES cells with a disrupted CFTR gene have been isolated from these pools. The frequency of targeting was 1/2500 G418-resistant colonies. This low frequency is not the consequence of marginal expression of the Neo genes in the targeted cells. The CFTR targeting events were clustered among our experiments in a manner suggesting that some unidentified factor(s), possible passage number, influences the recovery of CFTR-targeted cells.« less

  15. Vocational Rehabilitation of the Person with Cystic Fibrosis.

    ERIC Educational Resources Information Center

    Isralsky, Marc; And Others

    1979-01-01

    Explored vocational development, self-concept, and vocational adjustment of persons with cystic fibrosis. The following measures of vocational development correlated with work adjustment: vocational plans, educational plans, initiative, occupational information, and average vocational development score. Vocational development did not correlate…

  16. Respiratory syncytial virus infection accelerates lung fibrosis through the unfolded protein response in a bleomycin-induced pulmonary fibrosis animal model.

    PubMed

    Wang, Lina; Cheng, Wei; Zhang, Zhimin

    2017-07-01

    Emerging evidence has demonstrated that endoplasmic reticulum stress (ER) is involved in the pathogenesis of idiopathic pulmonary fibrosis, however, the underlying mechanism remains unclear. Viral infection often triggers a hyperinflammatory response by an expansion of the ER. The present study was designed to observe the role of respiratory syncytial virus infection (RSV)‑induced ER stress on lung fibrosis. In order to determine the role of ER stress on the onset and progression of pulmonary fibrosis, mice received an intratracheal combined injection of RSV and bleomycin on day 0. At day 7, 14 and 21 following combined injection, RSV in the lung tissues was assayed by immunohistochemistry, cellular classification was assayed by direct microscopic observation after Wright staining and the secretion of cytokines in the broncho‑alveolar lavage fluid (BALF) was assayed by ELISA. The expression of collagen type I was assayed by immunofluorescence and western blot analysis. The expression of ER stress related proteins was analyzed by western blot. In addition, the correlations of ER‑stress related proteins with collagen type‑1 were examined. RSV administration resulted in increased inflammation, as demonstrated by increased levels of leukocytes and pro‑inflammatory cytokines in the BALF, and increased collagen type‑1 deposition in the lung tissues of bleomycin-induced pulmonary fibrosis animal model at 7, 14 and 21 days. RSV promoted the expression of phosphorylated protein kinase R‑like endoplasmic reticulum kinase (p‑PERK), 78 kDa glucose‑regulated protein (GRP78) and activating transcription factor 6α (ATF6α), which accelerated the severity and process of fibrosis in bleomycin‑induced animal models. The present study provides evidence that RSV infection accelerated the unfolded protein response and bleomycin‑induced lung fibrosis, which may improve our understanding of the pathogenesis of pulmonary fibrosis.

  17. Role of bone marrow cells in the development of pancreatic fibrosis in a rat model of pancreatitis induced by a choline-deficient/ethionine-supplemented diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akita, Shingo; Kubota, Koji; Kobayashi, Akira, E-mail: kbys@shinshu-u.ac.jp

    Highlights: Black-Right-Pointing-Pointer BMC-derived PSCs play a role in a rat CDE diet-induced pancreatitis model. Black-Right-Pointing-Pointer BMC-derived PSCs contribute mainly to the early stage of pancreatic fibrosis. Black-Right-Pointing-Pointer BMC-derived activated PSCs can produce PDGF and TGF {beta}1. -- Abstract: Bone marrow cell (BMC)-derived myofibroblast-like cells have been reported in various organs, including the pancreas. However, the contribution of these cells to pancreatic fibrosis has not been fully discussed. The present study examined the possible involvement of pancreatic stellate cells (PSCs) originating from BMCs in the development of pancreatic fibrosis in a clinically relevant rat model of acute pancreatitis induced by amore » choline-deficient/ethionine-supplemented (CDE) diet. BMCs from female transgenic mice ubiquitously expressing green fluorescent protein (GFP) were transplanted into lethally irradiated male rats. Once chimerism was established, acute pancreatitis was induced by a CDE diet. Chronological changes in the number of PSCs originating from the donor BMCs were examined using double immunofluorescence for GFP and markers for PSCs, such as desmin and alpha smooth muscle actin ({alpha}SMA), 1, 3 and 8 weeks after the initiation of CDE feeding. We also used immunohistochemical staining to evaluate whether the PSCs from the BMCs produce growth factors, such as platelet-derived growth factor (PDGF) and transforming growth factor (TGF) {beta}1. The percentage of BMC-derived activated PSCs increased significantly, peaking after 1 week of CDE treatment (accounting for 23.3 {+-} 0.9% of the total population of activated PSCs) and then decreasing. These cells produced both PDGF and TGF{beta}1 during the early stage of pancreatic fibrosis. Our results suggest that PSCs originating from BMCs contribute mainly to the early stage of pancreatic injury, at least in part, by producing growth factors in a rat CDE diet-induced pancreatitis

  18. Class I HDACs Regulate Angiotensin II-Dependent Cardiac Fibrosis via Fibroblasts and Circulating Fibrocytes

    PubMed Central

    Williams, Sarah M.; Golden-Mason, Lucy; Ferguson, Bradley S.; Douglas, Katherine B.; Cavasin, Maria A.; Demos-Davies, Kim; Yeager, Michael E.; Stenmark, Kurt R.; McKinsey, Timothy A.

    2014-01-01

    Fibrosis, which is defined as excessive accumulation of fibrous connective tissue, contributes to the pathogenesis of numerous diseases involving diverse organ systems. Cardiac fibrosis predisposes individuals to myocardial ischemia, arrhythmias and sudden death, and is commonly associated with diastolic dysfunction. Histone deacetylase (HDAC) inhibitors block cardiac fibrosis in pre-clinical models of heart failure. However, which HDAC isoforms govern cardiac fibrosis, and the mechanisms by which they do so, remains unclear. Here, we show that selective inhibition of class I HDACs potently suppresses angiotensin II (Ang II)-mediated cardiac fibrosis by targeting two key effector cell populations, cardiac fibroblasts and bone marrow-derived fibrocytes. Class I HDAC inhibition blocks cardiac fibroblast cell cycle progression through derepression of the genes encoding the cyclin-dependent kinase (CDK) inhibitors, p15 and p57. In contrast, class I HDAC inhibitors block agonist-dependent differentiation of fibrocytes through a mechanism involving repression of ERK1/2 signaling. These findings define novel roles for class I HDACs in the control of pathological cardiac fibrosis. Furthermore, since fibrocytes have been implicated in the pathogenesis of a variety of human diseases, including heart, lung and kidney failure, our results suggest broad utility for isoform-selective HDAC inhibitors as anti-fibrotic agents that function, in part, by targeting these circulating mesenchymal cells. PMID:24374140

  19. Non-Invasive Evaluation of Cystic Fibrosis Related Liver Disease in Adults with ARFI, Transient Elastography and Different Fibrosis Scores

    PubMed Central

    Oltmanns, Annett; Güttler, Andrea; Petroff, David; Wirtz, Hubert; Mainz, Jochen G.; Mössner, Joachim; Berg, Thomas; Tröltzsch, Michael; Keim, Volker; Wiegand, Johannes

    2012-01-01

    Background Cystic fibrosis-related liver disease (CFLD) is present in up to 30% of cystic fibrosis patients and can result in progressive liver failure. Diagnosis of CFLD is challenging. Non-invasive methods for staging of liver fibrosis display an interesting diagnostic approach for CFLD detection. Aim We evaluated transient elastography (TE), acoustic radiation force impulse imaging (ARFI), and fibrosis indices for CFLD detection. Methods TE and ARFI were performed in 55 adult CF patients. In addition, AST/Platelets-Ratio-Index (APRI), and Forns' score were calculated. Healthy probands and patients with alcoholic liver cirrhosis served as controls. Results Fourteen CF patients met CFLD criteria, six had liver cirrhosis. Elastography acquisition was successful in >89% of cases. Non-cirrhotic CFLD individuals showed elastography values similar to CF patients without liver involvement. Cases with liver cirrhosis differed significantly from other CFLD patients (ARFI: 1.49 vs. 1.13 m/s; p = 0.031; TE: 7.95 vs. 4.16 kPa; p = 0.020) and had significantly lower results than individuals with alcoholic liver cirrhosis (ARFI: 1.49 vs. 2.99 m/s; p = 0.002). APRI showed the best diagnostic performance for CFLD detection (AUROC 0.815; sensitivity 85.7%, specificity 70.7%). Conclusions ARFI, TE, and laboratory based fibrosis indices correlate with each other and reliably detect CFLD related liver cirrhosis in adult CF patients. CF specific cut-off values for cirrhosis in adults are lower than in alcoholic cirrhosis. PMID:22848732

  20. A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis.

    PubMed

    Le Saux, Claude Jourdan; Davy, Philip; Brampton, Christopher; Ahuja, Seema S; Fauce, Steven; Shivshankar, Pooja; Nguyen, Hieu; Ramaseshan, Mahesh; Tressler, Robert; Pirot, Zhu; Harley, Calvin B; Allsopp, Richard

    2013-01-01

    The emergence of diseases associated with telomere dysfunction, including AIDS, aplastic anemia and pulmonary fibrosis, has bolstered interest in telomerase activators. We report identification of a new small molecule activator, GRN510, with activity ex vivo and in vivo. Using a novel mouse model, we tested the potential of GRN510 to limit fibrosis induced by bleomycin in mTERT heterozygous mice. Treatment with GRN510 at 10 mg/kg/day activated telomerase 2-4 fold both in hematopoietic progenitors ex vivo and in bone marrow and lung tissue in vivo, respectively. Telomerase activation was countered by co-treatment with Imetelstat (GRN163L), a potent telomerase inhibitor. In this model of bleomycin-induced fibrosis, treatment with GRN510 suppressed the development of fibrosis and accumulation of senescent cells in the lung via a mechanism dependent upon telomerase activation. Treatment of small airway epithelial cells (SAEC) or lung fibroblasts ex vivo with GRN510 revealed telomerase activating and replicative lifespan promoting effects only in the SAEC, suggesting that the mechanism accounting for the protective effects of GRN510 against induced lung fibrosis involves specific types of lung cells. Together, these results support the use of small molecule activators of telomerase in therapies to treat idiopathic pulmonary fibrosis.

  1. Fibrocytes: Bringing New Insights Into Mechanisms of Inflammation and Fibrosis

    PubMed Central

    Keeley, Ellen C.; Mehrad, Borna; Strieter, Robert M.

    2009-01-01

    Regeneration and fibrosis are integral parts of the recovery process following tissue injury, and impaired regulation of these mechanisms is a hallmark of many chronic diseases. A population of bone marrow-derived mesenchymal progenitor cells known as fibrocytes, play an important role in tissue remodeling and fibrosis in both physiologic and pathologic settings. In this review we summarize the key concepts regarding the pathophysiology of wound healing and fibrosis, and present data to support the contention that circulating fibrocytes are important in both normal repair process and aberrant healing and fibrotic damage associated with a diverse set of disease states. PMID:19850147

  2. The orphan nuclear receptor ROR alpha and group 3 innate lymphoid cells drive fibrosis in a mouse model of Crohn's disease.

    PubMed

    Lo, Bernard C; Gold, Matthew J; Hughes, Michael R; Antignano, Frann; Valdez, Yanet; Zaph, Colby; Harder, Kenneth W; McNagny, Kelly M

    2016-09-02

    Fibrosis is the result of dysregulated tissue regeneration and is characterized by excessive accumulation of matrix proteins that become detrimental to tissue function. In Crohn's disease, this manifests itself as recurrent gastrointestinal strictures for which there is no effective therapy beyond surgical intervention. Using a model of infection-induced chronic gut inflammation, we show that Rora -deficient mice are protected from fibrosis; infected intestinal tissues display diminished pathology, attenuated collagen deposition and reduced fibroblast accumulation. Although Rora is best known for its role in ILC2 development, we find that Salmonella -induced fibrosis is independent of eosinophils, STAT6 signaling and Th2 cytokine production arguing that this process is largely ILC2-independent. Instead, we observe reduced levels of ILC3- and T cell-derived IL-17A and IL-22 in infected gut tissues. Furthermore, using Rora sg/sg / Rag1 -/- bone marrow chimeric mice, we show that restoring ILC function is sufficient to re-establish IL-17A and IL-22 production and a profibrotic phenotype. Our results show that RORα-dependent ILC3 functions are pivotal in mediating gut fibrosis and they offer an avenue for therapeutic intervention in Crohn's-like diseases.

  3. Elevated expression of NEU1 sialidase in idiopathic pulmonary fibrosis provokes pulmonary collagen deposition, lymphocytosis, and fibrosis.

    PubMed

    Luzina, Irina G; Lockatell, Virginia; Hyun, Sang W; Kopach, Pavel; Kang, Phillip H; Noor, Zahid; Liu, Anguo; Lillehoj, Erik P; Lee, Chunsik; Miranda-Ribera, Alba; Todd, Nevins W; Goldblum, Simeon E; Atamas, Sergei P

    2016-05-15

    Idiopathic pulmonary fibrosis (IPF) poses challenges to understanding its underlying cellular and molecular mechanisms and the development of better therapies. Previous studies suggest a pathophysiological role for neuraminidase 1 (NEU1), an enzyme that removes terminal sialic acid from glycoproteins. We observed increased NEU1 expression in epithelial and endothelial cells, as well as fibroblasts, in the lungs of patients with IPF compared with healthy control lungs. Recombinant adenovirus-mediated gene delivery of NEU1 to cultured primary human cells elicited profound changes in cellular phenotypes. Small airway epithelial cell migration was impaired in wounding assays, whereas, in pulmonary microvascular endothelial cells, NEU1 overexpression strongly impacted global gene expression, increased T cell adhesion to endothelial monolayers, and disrupted endothelial capillary-like tube formation. NEU1 overexpression in fibroblasts provoked increased levels of collagen types I and III, substantial changes in global gene expression, and accelerated degradation of matrix metalloproteinase-14. Intratracheal instillation of NEU1 encoding, but not control adenovirus, induced lymphocyte accumulation in bronchoalveolar lavage samples and lung tissues and elevations of pulmonary transforming growth factor-β and collagen. The lymphocytes were predominantly T cells, with CD8(+) cells exceeding CD4(+) cells by nearly twofold. These combined data indicate that elevated NEU1 expression alters functional activities of distinct lung cell types in vitro and recapitulates lymphocytic infiltration and collagen accumulation in vivo, consistent with mechanisms implicated in lung fibrosis.

  4. Mineral metabolism in dimethylnitrosamine-induced hepatic fibrosis.

    PubMed

    George, Joseph

    2006-10-01

    Complications such as ascites during the pathogenesis of hepatic fibrosis and cirrhosis may lead to several abnormalities in mineral metabolism. In the present investigation, we have monitored serum and liver concentrations of calcium, magnesium, sodium and potassium during experimentally induced hepatic fibrosis in rats. The liver injury was induced by intraperitoneal injections of dimethylnitrosamine (DMN; N-nitrosodimethylamine, NDMA) in doses 1 mg/100 g body weight on 3 consecutive days of each week over a period of 21 days. Calcium, magnesium, sodium and potassium were measured by atomic absorption spectrophotometry in the serum and liver on days 7, 14 and 21 after the start of DMN administration. Negative correlations were observed between liver function tests and serum mineral levels, except with albumin. Calcium, magnesium, potassium and sodium concentrations in the serum were decreased after the induction of liver injury. The liver calcium content was increased after DMN treatment. No change occurred in liver sodium content. However, magnesium and potassium content was significantly reduced in the hepatic tissue. The results suggest that DMN-induced hepatic fibrosis plays certain role in the alteration of essential elements. The low levels of albumin and the related ascites may be one of the major causes of the imbalance of mineral metabolism in hepatic fibrosis and further aggravation of the disease.

  5. Detecting liver fibrosis with Gd-EOB-DTPA-enhanced MRI: A confirmatory study.

    PubMed

    Verloh, Niklas; Utpatel, Kirsten; Haimerl, Michael; Zeman, Florian; Beyer, Lukas; Fellner, Claudia; Brennfleck, Frank; Dahlke, Marc H; Stroszczynski, Christian; Evert, Matthias; Wiggermann, Philipp

    2018-04-18

    Strong correlations between the grade of fibrosis and cirrhosis, classified using the Ishak scoring system, and the uptake characteristics of Gd-EOB-DTPA with the relative enhancement (RE) of the liver parenchyma have been reported. To confirm the results of a retrospective analysis, patients undergoing liver surgery were prospectively examined with Gd-EOB-DTPA-enhanced liver 3 Tesla MRI to determine the degree of liver fibrosis. Correlations between the grade of fibrosis and cirrhosis, classified using the Ishak scoring system, and RE were investigated and compared with those derived from an initial retrospective study. After validating the cut-off values in the retrospective study (Ishak ≥ 1, RE-cut-off 0.90; Ishak ≥ 2, RE-cut-off 0.79; Ishak ≥ 4, RE-cut-off 0.60; and Ishak = 6, RE-cut-off 0.47), we showed that Gd-EOB-DTPA has a high sensitivity (≥86%) and a high positive predictive value (≥86%). These results support the use of Gd-EOB-DTPA-enhanced liver MRI as a non-invasive method for determining the degree of liver fibrosis and cirrhosis.

  6. Evaluation of TGF-β1 and MCP-1 expression and tubulointerstitial fibrosis in children with Henoch-Schönlein purpura nephritis and IgA nephropathy: A clinical correlation.

    PubMed

    Shuiai, Zhao; Huijun, Shen; Weizhong, Gu; Aimin, Liu; Jianhua, Mao

    2017-02-01

    Henoch-Schönlein purpura nephritis and immunoglobulin A nephropathy are two diseases with similar clinical presentations but very different prognoses. Transforming growth factor β1 and monocyte chemoattractant protein-1 have been associated with the development of tissue fibrosis. We examined the development of tubulointerstitial fibrosis and its relationship with Transforming growth factor β1 and monocyte chemoattractant protein-1 expression in these patients. Renal tissue samples were collected by renal biopsy from 50 children with Henoch-Schönlein purpura nephritis and 50 children with immunoglobulin A nephropathy. Hematoxylin and eosin and Masson's trichrome-stained tissues were examined using light microscopy. Tubulointerstitial fibrosis was graded using the method described by Bohle et al. (1). The immunohistochemical detection of Transforming growth factor β1 and monocyte chemoattractant protein-1 expression was correlated with the tubulointerstitial fibrosis grade. Clinical Trial registration number: ZJCH-2012-0105. Transforming growth factor β1 and monocyte chemoattractant protein-1 expression in the renal tissues was significantly greater in the patients with immunoglobulin A nephropathy than in the patients with Henoch-Schönlein purpura nephritis (both p<0.001). The immunoglobulin A nephropathy patients had a higher tubulointerstitial fibrosis grade than the Henoch-Schönlein purpura nephritis patients (p<0.001). The tubulointerstitial fibrosis grade was in accordance with the Transforming growth factor β1 and monocyte chemoattractant protein-1 expression levels in both diseases (both p<0.001). Transforming growth factor β1 and monocyte chemoattractant protein-1 expression was associated with the development of immunoglobulin A nephropathy and Henoch-Schönlein purpura nephritis. Further studies are needed to better evaluate this association.

  7. FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis

    PubMed Central

    Verbeke, Len; Mannaerts, Inge; Schierwagen, Robert; Govaere, Olivier; Klein, Sabine; Vander Elst, Ingrid; Windmolders, Petra; Farre, Ricard; Wenes, Mathias; Mazzone, Massimiliano; Nevens, Frederik; van Grunsven, Leo A.; Trebicka, Jonel; Laleman, Wim

    2016-01-01

    Hepatic inflammation drives hepatic stellate cells (HSC), resulting in liver fibrosis. The Farnesoid-X receptor (FXR) antagonizes inflammation through NF-κB inhibition. We investigated preventive and therapeutic effects of FXR agonist obeticholic acid (OCA) on hepatic inflammation and fibrosis in toxic cirrhotic rats. Cirrhosis was induced by thioacetamide (TAA) intoxication. OCA was given during or after intoxication with vehicle-treated rats as controls. At sacrifice, fibrosis, hemodynamic and biochemical parameters were assessed. HSC activation, cell turn-over, hepatic NF-κB activation, pro-inflammatory and pro-fibrotic cytokines were determined. The effect of OCA was further evaluated in isolated HSC, Kupffer cells, hepatocytes and liver sinusoidal endothelial cells (LSEC). OCA decreased hepatic inflammation and fibrogenesis during TAA-administration and reversed fibrosis in established cirrhosis. Portal pressure decreased through reduced intrahepatic vascular resistance. This was paralleled by decreased expression of pro-fibrotic cytokines (transforming growth-factor β, connective tissue growth factor, platelet-derived growth factor β-receptor) as well as markers of hepatic cell turn-over, by blunting effects of pro-inflammatory cytokines (e.g. monocyte chemo-attractant protein-1). In vitro, OCA inhibited both LSEC and Kupffer cell activation; while HSC remained unaffected. This related to NF-κB inhibition via up-regulated IκBα. In conclusion, OCA inhibits hepatic inflammation in toxic cirrhotic rats resulting in decreased HSC activation and fibrosis. PMID:27634375

  8. Babao Dan attenuates hepatic fibrosis by inhibiting hepatic stellate cells activation and proliferation via TLR4 signaling pathway.

    PubMed

    Liang, Lei; Yang, Xue; Yu, Yang; Li, Xiaoyong; Wu, Yechen; Shi, Rongyu; Jiang, Jinghua; Gao, Lu; Ye, Fei; Zhao, Qiudong; Li, Rong; Wei, Lixin; Han, Zhipeng

    2016-12-13

    Babao Dan (BBD), a traditional Chinese medicine, has been widely used as a complementary and alternative medicine to treat chronic liver diseases. In this study, we aimed to observe the protective effect of BBD on rat hepatic fibrosis induced by diethylnitrosamine (DEN) and explore it possible mechanism. BBD was administrated while DEN was given. After eight weeks, values of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) indicated that BBD significantly protected liver from damaging by DEN and had no obvious side effect on normal rat livers. Meanwhile, BBD attenuated hepatic inflammation and fibrosis in DEN-induced rat livers through histopathological examination and hepatic hydroxyproline content. Furthermore, we found that BBD inhibited hepatic stellate cells activation and proliferation without altering the concentration of lipopolysaccharide (LPS) in portal vein. In vitro study, serum from BBD treated rats (BBD-serum) could also significantly suppress LPS-induced HSCs activation through TLR4/NF-κB pathway. In addition, BBD-serum also inhibited the proliferation of HSCs by regulating TLR4/ERK pathway. Our study demonstrated that BBD may provide a new therapy strategy of hepatic injury and hepatic fibrosis.

  9. Inhibition by TNF-alpha and IL-4 of cationic lipid mediated gene transfer in cystic fibrosis tracheal gland cells.

    PubMed

    Bastonero, Sonia; Gargouri, Myriem; Ortiou, Sandrine; Guéant, Jean-Louis; Merten, Marc D

    2005-11-01

    In vivo, tracheal gland serous cells highly express the cystic fibrosis transmembrane conductance regulator (cftr) gene. This gene is mutated in the lethal monogenic disease cystic fibrosis (CF). Clinical trials in which the human CFTR cDNA was delivered to the respiratory epithelia of CF patients have resulted in weak and transient gene expression. As CF is characterized by mucus inspissation, airway infection, and severe inflammation, we tested the hypothesis that inflammation and especially two cytokines involved in the Th1/Th2 inflammatory response, interleukin 4 (IL-4) and TNFalpha, could inhibit gene transfer efficiency using a model of human CF tracheal gland cells (CF-KM4) and Lipofectamine reagent as a transfection reagent. The specific secretory defects of CF-KM4 cells were corrected by Lipofectamine-mediated human CFTR gene transfer. However, this was altered when cells were pre-treated with IL-4 and TNFalpha. Inhibition of luciferase reporter gene expression by IL-4 and TNFalpha pre-treated CF-KM4 cells was measured by activity and real-time RT-PCR. Both cytokines induced similar and synergistic inhibition of transgene expression and activity. This cytokine-mediated inhibition could be prevented by anti-inflammatory agents such as glucocorticoids but not by non-steroidal (NSAI) agents. This data suggests that an inflammatory context generated by IL-4 and TNFalpha can inhibit human CFTR gene transfer in CF tracheal gland cells and that glucocorticoids may have a protecting action. Copyright (c) 2005 John Wiley & Sons, Ltd.

  10. Triptolide suppresses paraquat induced idiopathic pulmonary fibrosis by inhibiting TGFB1-dependent epithelial mesenchymal transition.

    PubMed

    Chen, Hong; Chen, Qun; Jiang, Chun-Ming; Shi, Guang-Yue; Sui, Bo-Wen; Zhang, Wei; Yang, Li-Zhen; Li, Zhu-Ying; Liu, Li; Su, Yu-Ming; Zhao, Wen-Cheng; Sun, Hong-Qiang; Li, Zhen-Zi; Fu, Zhou

    2018-03-01

    Idiopathic pulmonary fibrosis (IPF) and tumor are highly similar to abnormal cell proliferation that damages the body. This malignant cell evolution in a stressful environment closely resembles that of epithelial-mesenchymal transition (EMT). As a popular EMT-inducing factor, TGFβ plays an important role in the progression of multiple diseases. However, the drugs that target TGFB1 are limited. In this study, we found that triptolide (TPL), a Chinese medicine extract, exerts an anti-lung fibrosis effect by inhibiting the EMT of lung epithelial cells. In addition, triptolide directly binds to TGFβ and subsequently increase E-cadherin expression and decrease vimentin expression. In in vivo studies, TPL improves the survival state and inhibits lung fibrosis in mice. In summary, this study revealed the potential therapeutic effect of paraquat induced TPL in lung fibrosis by regulating TGFβ-dependent EMT progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Inadequate erythroid response to hypoxia in cystic fibrosis.

    PubMed

    Vichinsky, E P; Pennathur-Das, R; Nickerson, B; Minor, M; Kleman, K; Higashino, S; Lubin, B

    1984-07-01

    An increase in hemoglobin concentration characterizes the normal compensatory response to chronic tissue hypoxia. We observed no such increase in 42 chronically hypoxic patients with cystic fibrosis, in whom the mean concentration was 12.6 gm/dl; one third of the patients were anemic. Compared with patients with cyanotic heart disease, patients with cystic fibrosis did not have a compensatory increase in P50 or 2,3-diphosphoglycerate. Despite anemia, erythropoietin levels in patients with cystic fibrosis were not significantly different from normal control values. The growth of colony-forming units-erythroid in patients with cystic fibrosis was similar to that in control subjects, and there was no inhibition of growth with the addition of autologous serum. Erythropoietin sensitivity, determined by measuring the CFUe dose response curve, was normal in both patients and controls. Results of iron studies were consistent with iron deficiency in the majority of patients. Impaired absorption of iron was observed in six of 13 iron-deficient patients with cystic fibrosis. An inverse correlation between erythrocyte sedimentation rate and peak serum iron was obtained during the iron absorption study. Eight patients who underwent a therapeutic trial of iron demonstrated a 1.8 gm/dl rise in hemoglobin concentration. Two patients with previously documented iron malabsorption responded to parenteral iron therapy after failure to respond to oral supplementation. These studies demonstrate that patients with cystic fibrosis not only have an impaired erythroid response to hypoxia, but are frequently anemic. Their inadequate erythroid response to hypoxia results in part from disturbances in erythropoietin regulation and iron availability.

  12. Targeting a genetic defect: cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis.

    PubMed

    Derichs, Nico

    2013-03-01

    Cystic fibrosis (CF) is caused by genetic mutations that affect the cystic fibrosis transmembrane conductance regulator (CFTR) protein. These mutations can impact the synthesis and transfer of the CFTR protein to the apical membrane of epithelial cells, as well as influencing the gating or conductance of chloride and bicarbonate ions through the channel. CFTR dysfunction results in ionic imbalance of epithelial secretions in several organ systems, such as the pancreas, gastrointestinal tract, liver and the respiratory system. Since discovery of the CFTR gene in 1989, research has focussed on targeting the underlying genetic defect to identify a disease-modifying treatment for CF. Investigated management strategies have included gene therapy and the development of small molecules that target CFTR mutations, known as CFTR modulators. CFTR modulators are typically identified by high-throughput screening assays, followed by preclinical validation using cell culture systems. Recently, one such modulator, the CFTR potentiator ivacaftor, was approved as an oral therapy for CF patients with the G551D-CFTR mutation. The clinical development of ivacaftor not only represents a breakthrough in CF care but also serves as a noteworthy example of personalised medicine.

  13. Improving liver fibrosis diagnosis based on forward and backward second harmonic generation signals

    NASA Astrophysics Data System (ADS)

    Peng, Qiwen; Zhuo, Shuangmu; So, Peter T. C.; Yu, Hanry

    2015-02-01

    The correlation of forward second harmonic generation (SHG) signal and backward SHG signal in different liver fibrosis stages was investigated. We found that three features, including the collagen percentage for forward SHG, the collagen percentage for backward SHG, and the average intensity ratio of two kinds of SHG signals, can quantitatively stage liver fibrosis in thioacetamide-induced rat model. We demonstrated that the combination of all three features by using a support vector machine classification algorithm can provide a more accurate prediction than each feature alone in fibrosis diagnosis.

  14. Neuroinflammatory Mechanisms of Connective Tissue Fibrosis: Targeting Neurogenic and Mast Cell Contributions

    PubMed Central

    Monument, Michael J.; Hart, David A.; Salo, Paul T.; Befus, A. Dean; Hildebrand, Kevin A.

    2015-01-01

    Significance: The pathogenesis of fibrogenic wound and connective tissue healing is complex and incompletely understood. Common observations across a vast array of human and animal models of fibroproliferative conditions suggest neuroinflammatory mechanisms are important upstream fibrogenic events. Recent Advances: As detailed in this review, mast cell hyperplasia is a common observation in fibrotic tissue. Recent investigations in human and preclinical models of hypertrophic wound healing and post-traumatic joint fibrosis provides evidence that fibrogenesis is governed by a maladaptive neuropeptide-mast cell-myofibroblast signaling pathway. Critical Issues: The blockade and manipulation of these factors is providing promising evidence that if timed correctly, the fibrogenic process can be appropriately regulated. Clinically, abnormal fibrogenic healing responses are not ubiquitous to all patients and the identification of those at-risk remains an area of priority. Future Directions: Ultimately, an integrated appreciation of the common pathobiology shared by many fibrogenic connective tissue conditions may provide a scientific framework to facilitate the development of novel antifibrotic prevention and treatment strategies. PMID:25785237

  15. Mycobacterium chimaera pulmonary infection complicating cystic fibrosis: a case report.

    PubMed

    Cohen-Bacrie, Stéphan; David, Marion; Stremler, Nathalie; Dubus, Jean-Christophe; Rolain, Jean-Marc; Drancourt, Michel

    2011-09-22

    Mycobacterium chimaera is a recently described species within the Mycobacterium avium complex. Its pathogenicity in respiratory tract infection remains disputed. It has never been isolated during cystic fibrosis respiratory tract infection. An 11-year-old boy of Asian ethnicity who was born on Réunion Island presented to our hospital with cystic fibrosis after a decline in his respiratory function over the course of seven years. We found that the decline in his respiratory function was correlated with the persistent presence of a Mycobacterium avium complex organism further identified as M. chimaera. Using sequencing-based methods of identification, we observed that M. chimaera organisms contributed equally to respiratory tract infections in patients with cystic fibrosis when compared with M. avium subsp. hominissuis isolates. We believe that M. chimaera should be regarded as an emerging opportunistic respiratory pathogen in patients with cystic fibrosis, including young children, and that its detection warrants long-lasting appropriate anti-mycobacterial treatment to eradicate it.

  16. New Concepts on Pathogenesis and Diagnosis of Liver Fibrosis; A Review Article

    PubMed Central

    Ebrahimi, Hedyeh; Naderian, Mohammadreza; Sohrabpour, Amir Ali

    2016-01-01

    Liver fibrosis is a potentially reversible response to hepatic insults, triggered by different chronic diseases most importantly viral hepatitis, alcoholic, and nonalcoholic fatty liver disease. In the course of the chronic liver disease, hepatic fibrogenesis may develop, which is attributed to various types of cells, molecules, and pathways. Activated hepatic stellate cell (HSC), the primary source of extracellular matrix (ECM), is fundamental in pathophysiology of fibrogenesis, and thus is the most attractable target for reversing liver fibrosis. Although, liver biopsy has long been considered as the gold standard for diagnosis and staging of hepatic fibrosis, assessing progression and regression by biopsy is hampered by its limitations. We provide recent views on noninvasive approaches including serum biomarkers and radiologic techniques. PMID:27698966

  17. αvβ6 Integrin Regulates Renal Fibrosis and Inflammation in Alport Mouse

    PubMed Central

    Hahm, Kyungmin; Lukashev, Matvey E.; Luo, Yi; Yang, William J.; Dolinski, Brian M.; Weinreb, Paul H.; Simon, Kenneth J.; Chun Wang, Li; Leone, Diane R.; Lobb, Roy R.; McCrann, Donald J.; Allaire, Normand E.; Horan, Gerald S.; Fogo, Agnes; Kalluri, Raghu; Shield, Charles F.; Sheppard, Dean; Gardner, Humphrey A.; Violette, Shelia M.

    2007-01-01

    The transforming growth factor (TGF)-β-inducible integrin αvβ6 is preferentially expressed at sites of epithelial remodeling and has been shown to bind and activate latent precursor TGF-β. Herein, we show that αvβ6 is overexpressed in human kidney epithelium in membranous glomerulonephritis, diabetes mellitus, IgA nephropathy, Goodpasture’s syndrome, and Alport syndrome renal epithelium. To assess the potential regulatory role of αvβ6 in renal disease, we studied the effects of function-blocking αvβ6 monoclonal antibodies (mAbs) and genetic ablation of the β6 subunit on kidney fibrosis in Col4A3−/− mice, a mouse model of Alport syndrome. Expression of αvβ6 in Alport mouse kidneys was observed primarily in cortical tubular epithelial cells and in correlation with the progression of fibrosis. Treatment with αvβ6-blocking mAbs inhibited accumulation of activated fibroblasts and deposition of interstitial collagen matrix. Similar inhibition of renal fibrosis was observed in β6-deficient Alport mice. Transcript profiling of kidney tissues showed that αvβ6-blocking mAbs significantly inhibited disease-associated changes in expression of fibrotic and inflammatory mediators. Similar patterns of transcript modulation were produced with recombinant soluble TGF-β RII treatment, suggesting shared regulatory functions of αvβ6 and TGF-β. These findings demonstrate that αvβ6 can contribute to the regulation of renal fibrosis and suggest this integrin as a potential therapeutic target. PMID:17200187

  18. Detection of KI WU and Merkel cell polyomavirus in respiratory tract of cystic fibrosis patients.

    PubMed

    Iaria, M; Caccuri, F; Apostoli, P; Giagulli, C; Pelucchi, F; Padoan, R F; Caruso, A; Fiorentini, S

    2015-06-01

    In the last few years, many reports have confirmed the presence of WU, KI and Merkel cell (MC) polyomaviruses (PyV) in respiratory samples wordwide, but their pathogenic role in patients with underlying conditions such as cystic fibrosis is still debated. To determine the prevalence of MCPyV, WUPyV and KIPyV, we conducted a 1-year-long microbiological testing of respiratory specimens from 93 patients with cystic fibrosis in Brescia, Italy. We detected PyV DNA in 94 out of 337 analysed specimens. KIPyV was the most common virus detected (12.1%), followed by WUPyV (8.9%) and MCPyV (6.8%). We found an intriguing association between the presence of MCPyV and the concurrent isolation of Pseudomonas aeruginosa, as well as with the patient status, classified as chronically colonized with P. aeruginosa. Our study adds perspective on the prevalence and the potential pathogenic role of PyV infections. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  19. Magnolol Attenuates Concanavalin A-induced Hepatic Fibrosis, Inhibits CD4+ T Helper 17 (Th17) Cell Differentiation and Suppresses Hepatic Stellate Cell Activation: Blockade of Smad3/Smad4 Signalling.

    PubMed

    Zhang, Hongjun; Ju, Baoling; Zhang, Xiaoli; Zhu, Yanfei; Nie, Ying; Xu, Yuanhong; Lei, Qiuxia

    2017-06-01

    Magnolol is a pharmacological biphenolic compound extracted from Chinese herb Magnolia officinalis, which displays anti-inflammatory and antioxidant effects. This study was aimed at exploring the potential effect of magnolol on immune-related liver fibrosis. Herein, BALB/c mice were injected with concanavalin A (ConA, 8 mg/kg/week) up to 6 weeks to establish hepatic fibrosis, and magnolol (10, 20, 30 mg/kg/day) was given to these mice orally throughout the whole experiment. We found that magnolol preserved liver function and attenuated liver fibrotic injury in vivo. In response to ConA stimulation, the CD4 + T cells preferred to polarizing towards CD4 + T helper 17 (Th17) cells in liver. Magnolol was observed to inhibit Th17 cell differentiation in ConA-treated liver in addition to suppressing interleukin (IL)-17A generation. Hepatic stellate cells were activated in fibrotic liver as demonstrated by increased alpha smooth muscle actin (α-SMA) and desmin. More transforming growth factor (TGF)-β1 and activin A were secreted into the serum. Magnolol suppressed this abnormal HSC activation. Furthermore, the phosphorylation of Smad3 in its linker area (Thr179, Ser 204/208/213) was inhibited by magnolol. In vitro, the recombinant IL-17A plus TGF-β1 or activin A induced activation of human LX2 HSCs and promoted their collagen production. Smad3/Smad4 signalling pathway was activated in LX2 cells exposed to the fibrotic stimuli, as illustrated by the up-regulated phospho-Smad3 and the enhanced interaction between Smad3 and Smad4. These alterations were suppressed by magnolol. Collectively, our study reveals a novel antifibrotic effect of magnolol on Th17 cell-mediated fibrosis. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  20. Radiotherapy induced dermatitis is a strong predictor for late fibrosis in head and neck cancer. The development of a predictive model for late fibrosis.

    PubMed

    Nevens, Daan; Duprez, Fréderic; Daisne, Jean Francois; Laenen, Annouschka; De Neve, Wilfried; Nuyts, Sandra

    2017-02-01

    To determine if the severity of radiodermatitis at the end of radio(chemo)therapy (R(C)T) for head and neck cancer (HNC) is a predictive factor for late fibrosis of the neck and to find a model to predict neck fibrosis grade⩾2 (fibrosis RTOG 2-4 ) at 6months following R(C)T for HNC. 161 patients were prospectively included. We correlated radiodermatitis at the end of RCT, age, sex, T/N stage, tumor site, concomitant chemotherapy, upfront neck dissection, neo-adjuvant chemotherapy, accelerated RT, smoking, alcohol consumption, HPV status and the dose prescribed to the elective neck with fibrosis RTOG 2-4 6months after the end of treatment. Radiodermatitis at the end of R(C)T ⩾grade 3 proved to be associated with the incidence of fibrosis RTOG 2-4 at 6months (p<0.01). Furthermore, upfront neck dissection (p<0.01), increasing N stage (p<0.01) and tumor site (p=0.02) are significantly associated in univariate analysis with fibrosis RTOG 2-4 at 6months of follow-up. Upfront neck dissection and radiodermatitis grade⩾3 at the end of R(C)T were identified by our multivariate model. Additionally, increasing N stage was selected as an independent predictor variable. The AUC for this model was 0.92. A model for the prediction of fibrosis RTOG 2-4 following R(C)T for head and neck cancer is presented with an AUC of 0.92. Interestingly, radiodermatitis grade⩾3 at the end of R(C)T is associated with RTOG 2-4 fibrosis at 6months. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Supersonic shearwave elastography in the assessment of liver fibrosis for postoperative patients with biliary atresia

    PubMed Central

    Chen, Shuling; Liao, Bing; Zhong, Zhihai; Zheng, Yanling; Liu, Baoxian; Shan, Quanyuan; Xie, Xiaoyan; Zhou, Luyao

    2016-01-01

    To explore an effective noninvasive tool for monitoring liver fibrosis of children with biliary atresia (BA) is important but evidences are limited. This study is to investigate the predictive accuracy of supersonic shearwave elastography (SSWE) in liver fibrosis for postoperative patients with BA and to compare it with aspartate aminotransferase to platelet ratio index (APRI) and fibrosis-4 (FIB-4). 24 patients with BA received SSWE and laboratory tests before scheduled for liver biopsy. Spearman rank coefficient and receiver operating characteristic (ROC) were used to analyze data. Metavir scores were F0 in 3, F1 in 2, F2 in 4, F3 in 7 and F4 in 8 patients. FIB-4 failed to correlate with fibrosis stage. The areas under the ROC curves of SSWE, APRI and their combination were 0.79, 0.65 and 0.78 for significant fibrosis, 0.81, 0.64 and 0.76 for advanced fibrosis, 0.82, 0.56 and 0.84 for cirrhosis. SSWE values at biopsy was correlated with platelet count (r = −0.426, P = 0.038), serum albumin (r = −0.670, P < 0.001), total bilirubin (r = 0.419, P = 0.041) and direct bilirubin levels (r = 0.518, P = 0.010) measured at 6 months after liver biopsy. Our results indicate that SSWE is a more promising tool to assess liver fibrosis than APRI and FIB-4 in children with BA. PMID:27511435

  2. Mannose Receptor 2 Attenuates Renal Fibrosis

    PubMed Central

    López-Guisa, Jesús M.; Cai, Xiaohe; Collins, Sarah J.; Yamaguchi, Ikuyo; Okamura, Daryl M.; Bugge, Thomas H.; Isacke, Clare M.; Emson, Claire L.; Turner, Scott M.; Shankland, Stuart J.

    2012-01-01

    Mannose receptor 2 (Mrc2) expresses an extracellular fibronectin type II domain that binds to and internalizes collagen, suggesting that it may play a role in modulating renal fibrosis. Here, we found that Mrc2 levels were very low in normal kidneys but subsets of interstitial myofibroblasts and macrophages upregulated Mrc2 after unilateral ureteral obstruction (UUO). Renal fibrosis and renal parenchymal damage were significantly worse in Mrc2-deficient mice. Similarly, Mrc2-deficient Col4α3−/− mice with hereditary nephritis had significantly higher levels of total kidney collagen, serum BUN, and urinary protein than Mrc2-sufficient Col4α3−/− mice. The more severe phenotype seemed to be the result of reduced collagen turnover, because procollagen III (α1) mRNA levels and fractional collagen synthesis in the wild-type and Mrc2-deficient kidneys were similar after UUO. Although Mrc2 associates with the urokinase receptor, differences in renal urokinase activity did not account for the increased fibrosis in the Mrc2-deficient mice. Treating wild-type mice with a cathepsin inhibitor, which blocks proteases implicated in Mrc2-mediated collagen degradation, worsened UUO-induced renal fibrosis. Cathepsin mRNA profiles were similar in Mrc2-positive fibroblasts and macrophages, and Mrc2 genotype did not alter relative cathepsin mRNA levels. Taken together, these data establish an important fibrosis-attenuating role for Mrc2-expressing renal interstitial cells and suggest the involvement of a lysosomal collagen turnover pathway. PMID:22095946

  3. Upregulation of RGS2: a new mechanism for pirfenidone amelioration of pulmonary fibrosis.

    PubMed

    Xie, Yan; Jiang, Haihong; Zhang, Qian; Mehrotra, Suneet; Abel, Peter W; Toews, Myron L; Wolff, Dennis W; Rennard, Stephen; Panettieri, Reynold A; Casale, Thomas B; Tu, Yaping

    2016-08-22

    Pirfenidone was recently approved for treatment of idiopathic pulmonary fibrosis. However, the therapeutic dose of pirfenidone is very high, causing side effects that limit its doses and therapeutic effectiveness. Understanding the molecular mechanisms of action of pirfenidone could improve its safety and efficacy. Because activated fibroblasts are critical effector cells associated with the progression of fibrosis, this study investigated the genes that change expression rapidly in response to pirfenidone treatment of pulmonary fibroblasts and explored their contributions to the anti-fibrotic effects of pirfenidone. We used the GeneChip microarray to screen for genes that were rapidly up-regulated upon exposure of human lung fibroblast cells to pirfenidone, with confirmation for specific genes by real-time PCR and western blots. Biochemical and functional analyses were used to establish their anti-fibrotic effects in cellular and animal models of pulmonary fibrosis. We identified Regulator of G-protein Signaling 2 (RGS2) as an early pirfenidone-induced gene. Treatment with pirfenidone significantly increased RGS2 mRNA and protein expression in both a human fetal lung fibroblast cell line and primary pulmonary fibroblasts isolated from patients without or with idiopathic pulmonary fibrosis. Pirfenidone treatment or direct overexpression of recombinant RGS2 in human lung fibroblasts inhibited the profibrotic effects of thrombin, whereas loss of RGS2 exacerbated bleomycin-induced pulmonary fibrosis and mortality in mice. Pirfenidone treatment reduced bleomycin-induced pulmonary fibrosis in wild-type but not RGS2 knockout mice. Endogenous RGS2 exhibits anti-fibrotic functions. Upregulated RGS2 contributes significantly to the anti-fibrotic effects of pirfenidone.

  4. Ultrastructural Characteristics of Rat Hepatic Oval Cells and Their Intercellular Contacts in the Model of Biliary Fibrosis: New Insights into Experimental Liver Fibrogenesis

    PubMed Central

    Lebensztejn, Dariusz Marek; Daniluk, Urszula; Sobaniec, Piotr; Sendrowski, Krzysztof; Daniluk, Jaroslaw; Debek, Wojciech

    2017-01-01

    Purpose Recently, it has been emphasized that hepatic progenitor/oval cells (HPCs) are significantly involved in liver fibrogenesis. We evaluated the multipotential population of HPCs by transmission electron microscope (TEM), including relations with adherent hepatic nonparenchymal cells (NPCs) in rats with biliary fibrosis induced by bile duct ligation (BDL). Methods The study used 6-week-old Wistar Crl: WI(Han) rats after BDL for 1, 6, and 8 weeks. Results Current ultrastructural analysis showed considerable proliferation of HPCs in experimental intensive biliary fibrosis. HPCs formed proliferating bile ductules and were scattered in periportal connective tissue. We distinguished 4 main types of HPCs: 0, I, II (bile duct-like cells; most common), and III (hepatocyte-like cells). We observed, very seldom presented in literature, cellular interactions between HPCs and adjacent NPCs, especially commonly found transitional hepatic stellate cells (T-HSCs) and Kupffer cells/macrophages. We showed the phenomenon of penetration of the basement membrane of proliferating bile ductules by cytoplasmic processes sent by T-HSCs and the formation of direct cell-cell contact with ductular epithelial cells related to HPCs. Conclusions HPC proliferation induced by BDL evidently promotes portal fibrogenesis. Better understanding of the complex cellular interactions between HPCs and adjacent NPCs, especially T-HSCs, may help develop antifibrotic therapies in the future. PMID:28769978

  5. MR elastography of the liver at 3.0 T in diagnosing liver fibrosis grades; preliminary clinical experience.

    PubMed

    Yoshimitsu, Kengo; Mitsufuji, Toshimichi; Shinagawa, Yoshinobu; Fujimitsu, Ritsuko; Morita, Ayako; Urakawa, Hiroshi; Hayashi, Hiroyuki; Takano, Koichi

    2016-03-01

    To clarify the usefulness of 3.0-T MR elastography (MRE) in diagnosing the histological grades of liver fibrosis using preliminary clinical data. Between November 2012 and March 2014, MRE was applied to all patients who underwent liver MR study at a 3.0-T clinical unit. Among them, those who had pathological evaluation of liver tissue within 3 months from MR examinations were retrospectively recruited, and the liver stiffness measured by MRE was correlated with histological results. Institutional review board approved this study, waiving informed consent. There were 70 patients who met the inclusion criteria. Liver stiffness showed significant correlation with the pathological grades of liver fibrosis (rho = 0.89, p < 0.0001, Spearman's rank correlation). Areas under the receiver operating characteristic curve were 0.93, 0.95, 0.99 and 0.95 for fibrosis score greater than or equal to F1, F2, F3 and F4, with cut-off values of 3.13, 3.85, 4.28 and 5.38 kPa, respectively. Multivariate analysis suggested that grades of necroinflammation also affected liver stiffness, but to a significantly lesser degree as compared to fibrosis. 3.0-T clinical MRE was suggested to be sufficiently useful in assessing the grades of liver fibrosis. MR elastography may help clinicians assess patients with chronic liver diseases. Usefulness of 3.0-T MR elastography has rarely been reported. Measured liver stiffness correlated well with the histological grades of liver fibrosis. Measured liver stiffness was also affected by necroinflammation, but to a lesser degree. 3.0-T MRE could be a non-invasive alternative to liver biopsy.

  6. Fibrosis in nonalcoholic fatty liver disease: Noninvasive assessment using computed tomography volumetry.

    PubMed

    Fujita, Nobuhiro; Nishie, Akihiro; Asayama, Yoshiki; Ishigami, Kousei; Ushijima, Yasuhiro; Takayama, Yukihisa; Okamoto, Daisuke; Shirabe, Ken; Yoshizumi, Tomoharu; Kotoh, Kazuhiro; Furusyo, Norihiro; Hida, Tomoyuki; Oda, Yoshinao; Fujioka, Taisuke; Honda, Hiroshi

    2016-10-28

    To evaluate the diagnostic performance of computed tomography (CT) volumetry for discriminating the fibrosis stage in patients with nonalcoholic fatty liver disease (NAFLD). A total of 38 NAFLD patients were enrolled. On the basis of CT imaging, the volumes of total, left lateral segment (LLS), left medial segment, caudate lobe, and right lobe (RL) of the liver were calculated with a dedicated liver application. The relationship between the volume percentage of each area and fibrosis stage was analyzed using Spearman's rank correlation coefficient. A receiver operating characteristic (ROC) curve analysis was performed to determine the accuracy of CT volumetry for discriminating fibrosis stage. The volume percentages of the caudate lobe and the LLS significantly increased with the fibrosis stage ( r = 0.815, P < 0.001; and r = 0.465, P = 0.003, respectively). Contrarily, the volume percentage of the RL significantly decreased with fibrosis stage ( r = -0.563, P < 0.001). The volume percentage of the caudate lobe had the best diagnostic accuracy for staging fibrosis, and the area under the ROC curve values for discriminating fibrosis stage were as follows: ≥ F1, 0.896; ≥ F2, 0.929; ≥ F3, 0.955; and ≥ F4, 0.923. The best cut-off for advanced fibrosis (F3-F4) was 4.789%, 85.7% sensitivity and 94.1% specificity. The volume percentage of the caudate lobe calculated by CT volumetry is a useful diagnostic parameter for staging fibrosis in NAFLD patients.

  7. Inhibition of bleomycin-induced pulmonary fibrosis by bone marrow-derived mesenchymal stem cells might be mediated by decreasing MMP9, TIMP-1, INF-γ and TGF-β.

    PubMed

    Yu, Shi-huan; Liu, Li-jie; Lv, Bin; Che, Chun-li; Fan, Da-ping; Wang, Li-feng; Zhang, Yi-mei

    2015-08-01

    The study was aimed to investigate the mechanism and administration timing of bone marrow-derived mesenchymal stem cells (BMSCs) in bleomycin (BLM)-induced pulmonary fibrosis mice. Thirty-six mice were divided into six groups: control group (saline), model group (intratracheal administration of BLM), day 1, day 3 and day 6 BMSCs treatment groups and hormone group (hydrocortisone after BLM treatment). BMSCs treatment groups received BMSCs at day 1, 3 or 6 following BLM treatment, respectively. Haematoxylin and eosin and Masson staining were conducted to measure lung injury and fibrosis, respectively. Matrix metalloproteinase (MMP9), tissue inhibitor of metalloproteinase-1 (TIMP-1), γ-interferon (INF-γ) and transforming growth factor β1 (TGF-β) were detected in both lung tissue and serum. Histologically, the model group had pronounced lung injury, increased inflammatory cells and collagenous fibres and up-regulated MMP9, TIMP-1, INF-γ and TGF-β compared with control group. The histological appearance of lung inflammation and fibrosis and elevation of these parameters were inhibited in BMSCs treatment groups, among which, day 3 and day 6 treatment groups had less inflammatory cells and collagenous fibres than day 1 treatment group. BMSCs might suppress lung fibrosis and inflammation through down-regulating MMP9, TIMP-1, INF-γ and TGF-β. Delayed BMSCs treatment might exhibit a better therapeutic effect. Highlights are as follows: 1. BMSCs repair lung injury induced by BLM. 2. BMSCs attenuate pulmonary fibrosis induced by BLM. 3. BMSCs transplantation down-regulates MMP9 and TIMP-1. 4. BMSCs transplantation down-regulates INF-γ and TGF-β. 5. Delayed transplantation timing of BMSCs might exhibit a better effect against BLM. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Obesity, metabolic dysfunction and cardiac fibrosis: pathophysiologic pathways, molecular mechanisms and therapeutic opportunities

    PubMed Central

    Cavalera, Michele; Wang, Junhong; Frangogiannis, Nikolaos G

    2014-01-01

    Cardiac fibrosis is strongly associated with obesity and metabolic dysfunction and may contribute to the increased incidence of heart failure, atrial arrhythmias and sudden cardiac death in obese subjects. Our review discusses the evidence linking obesity and myocardial fibrosis in animal models and human patients, focusing on the fundamental pathophysiologic alterations that may trigger fibrogenic signaling, the cellular effectors of fibrosis and the molecular signals that may regulate the fibrotic response. Obesity is associated with a wide range of pathophysiologic alterations (such as pressure and volume overload, metabolic dysregulation, neurohumoral activation and systemic inflammation); their relative role in mediating cardiac fibrosis is poorly defined. Activation of fibroblasts likely plays a major role in obesity-associated fibrosis; however, inflammatory cells, cardiomyocytes and vascular cells may also contribute to fibrogenic signaling. Several molecular processes have been implicated in regulation of the fibrotic response in obesity. Activation of the Renin-Angiotensin-Aldosterone System, induction of Transforming Growth Factor-β, oxidative stress, advanced glycation end-products (AGEs), endothelin-1, Rho-kinase signaling, leptin-mediated actions and upregulation of matricellular proteins (such as thrombospondin-1) may play a role in the development of fibrosis in models of obesity and metabolic dysfunction. Moreover, experimental evidence suggests that obesity and insulin resistance profoundly affect the fibrotic and remodeling response following cardiac injury. Understanding the pathways implicated in obesity-associated fibrosis may lead to development of novel therapies to prevent heart failure and to attenuate post-infarction cardiac remodeling in obese patients. PMID:24880146

  9. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice.

    PubMed

    Kong, Xiaoni; Feng, Dechun; Wang, Hua; Hong, Feng; Bertola, Adeline; Wang, Fu-Sheng; Gao, Bin

    2012-09-01

    Interleukin (IL)-22 is known to play a key role in promoting antimicrobial immunity, inflammation, and tissue repair at barrier surfaces by binding to the receptors, IL-10R2 and IL-22R1. IL-22R1 is generally thought to be expressed exclusively in epithelial cells. In this study, we identified high levels of IL-10R2 and IL-22R1 expression on hepatic stellate cells (HSCs), the predominant cell type involved in liver fibrogenesis in response to liver damage. In vitro treatment with IL-22 induced the activation of signal transducer and activator of transcription (STAT) 3 in primary mouse and human HSCs. IL-22 administration prevented HSC apoptosis in vitro and in vivo, but surprisingly, the overexpression of IL-22 by either gene targeting (e.g., IL-22 transgenic mice) or exogenous administration of adenovirus expressing IL-22 reduced liver fibrosis and accelerated the resolution of liver fibrosis during recovery. Furthermore, IL-22 overexpression or treatment increased the number of senescence-associated beta-galactosidase-positive HSCs and decreased alpha-smooth muscle actin expression in fibrotic livers in vivo and cultured HSCs in vitro. Deletion of STAT3 prevented IL-22-induced HSC senescence in vitro, whereas the overexpression of a constitutively activated form of STAT3 promoted HSC senescence through p53- and p21-dependent pathways. Finally, IL-22 treatment up-regulated the suppressor of cytokine signaling (SOCS) 3 expression in HSCs. Immunoprecipitation analyses revealed that SOCS3 bound p53 and subsequently increased the expression of p53 and its target genes, contributing to IL-22-mediated HSC senescence. IL-22 induces the senescence of HSCs, which express both IL-10R2 and IL-22R1, thereby ameliorating liver fibrogenesis. The antifibrotic effect of IL-22 is likely mediated by the induction of HSC senescence, in addition to the previously discovered hepatoprotective functions of IL-22. Copyright © 2012 American Association for the Study of Liver Diseases.

  10. Reduced β-Cell Secretory Capacity in Pancreatic-Insufficient, but Not Pancreatic-Sufficient, Cystic Fibrosis Despite Normal Glucose Tolerance.

    PubMed

    Sheikh, Saba; Gudipaty, Lalitha; De Leon, Diva D; Hadjiliadis, Denis; Kubrak, Christina; Rosenfeld, Nora K; Nyirjesy, Sarah C; Peleckis, Amy J; Malik, Saloni; Stefanovski, Darko; Cuchel, Marina; Rubenstein, Ronald C; Kelly, Andrea; Rickels, Michael R

    2017-01-01

    Patients with pancreatic-insufficient cystic fibrosis (PI-CF) are at increased risk for developing diabetes. We determined β-cell secretory capacity and insulin secretory rates from glucose-potentiated arginine and mixed-meal tolerance tests (MMTTs), respectively, in pancreatic-sufficient cystic fibrosis (PS-CF), PI-CF, and normal control subjects, all with normal glucose tolerance, in order to identify early pathophysiologic defects. Acute islet cell secretory responses were determined under fasting, 230 mg/dL, and 340 mg/dL hyperglycemia clamp conditions. PI-CF subjects had lower acute insulin, C-peptide, and glucagon responses compared with PS-CF and normal control subjects, indicating reduced β-cell secretory capacity and α-cell function. Fasting proinsulin-to-C-peptide and proinsulin secretory ratios during glucose potentiation were higher in PI-CF, suggesting impaired proinsulin processing. In the first 30 min of the MMTT, insulin secretion was lower in PI-CF compared with PS-CF and normal control subjects, and glucagon-like peptide 1 and gastric inhibitory polypeptide were lower compared with PS-CF, and after 180 min, glucose was higher in PI-CF compared with normal control subjects. These findings indicate that despite "normal" glucose tolerance, adolescents and adults with PI-CF have impairments in functional islet mass and associated early-phase insulin secretion, which with decreased incretin responses likely leads to the early development of postprandial hyperglycemia in CF. © 2017 by the American Diabetes Association.

  11. SNP in TXNRD2 Associated With Radiation-Induced Fibrosis: A Study of Genetic Variation in Reactive Oxygen Species Metabolism and Signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edvardsen, Hege, E-mail: hege.edvardsen@rr-research.no; K. G. Jebsen Breast cancer centre, Institute for Clinical Medicine, University of Oslo, Oslo; Landmark-Høyvik, Hege

    Purpose: The aim of the study was to identify noninvasive markers of treatment-induced side effects. Reactive oxygen species (ROS) are generated after irradiation, and genetic variation in genes related to ROS metabolism might influence the level of radiation-induced adverse effects (AEs). Methods and Materials: 92 breast cancer (BC) survivors previously treated with hypofractionated radiation therapy were assessed for the AEs subcutaneous atrophy and fibrosis, costal fractures, lung fibrosis, pleural thickening, and telangiectasias (median follow-up time 17.1 years). Single-nucleotide polymorphisms (SNPs) in 203 genes were analyzed for association to AE grade. SNPs associated with subcutaneous fibrosis were validated in an independentmore » BC survivor material (n=283). The influence of the studied genetic variation on messenger ribonucleic acid (mRNA) expression level of 18 genes previously associated with fibrosis was assessed in fibroblast cell lines from BC patients. Results: Subcutaneous fibrosis and atrophy had the highest correlation (r=0.76) of all assessed AEs. The nonsynonymous SNP rs1139793 in TXNRD2 was associated with grade of subcutaneous fibrosis, the reference T-allele being more prevalent in the group experiencing severe levels of fibrosis. This was confirmed in another sample cohort of 283 BC survivors, and rs1139793 was found significantly associated with mRNA expression level of TXNRD2 in blood. Genetic variation in 24 ROS-related genes, including EGFR, CENPE, APEX1, and GSTP1, was associated with mRNA expression of 14 genes previously linked to fibrosis (P≤.005). Conclusion: Development of subcutaneous fibrosis can be associated with genetic variation in the mitochondrial enzyme TXNRD2, critically involved in removal of ROS, and maintenance of the intracellular redox balance.« less

  12. A comprehensive review of noninvasive liver fibrosis tests in pediatric nonalcoholic Fatty liver disease.

    PubMed

    Mansoor, Sana; Collyer, Elizabeth; Alkhouri, Naim

    2015-06-01

    Nonalcoholic fatty liver disease (NAFLD) and its spectrum ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) and fibrosis have been increasing in the pediatric population. The presence and severity of fibrosis in patients with NAFLD are important prognostic factors for the risk of disease progression to cirrhosis. The gold standard for staging liver fibrosis is a liver biopsy. However, given the risks of this procedure, especially in the pediatric population, the development of noninvasive markers to diagnose and monitor progression of NAFLD is desirable. This paper will review recently developed noninvasive methods for diagnosing liver fibrosis in children with NAFLD. These include simple fibrosis scores, advanced biochemical markers, and radiologic imaging studies. Simple fibrosis scores use readily available laboratory tests; available one include AST/ALT ratio, AST to platelet ratio index (APRI), fibrosis (FIB)-4 index, NAFLD fibrosis score (NFS), pediatric NAFLD fibrosis index (PNFI), and pediatric NALFD fibrosis score (PNFS). Advanced biochemical markers include biomarkers of hepatocyte cell death such as cytokeratin 18 fragment levels, and markers of extracellular matrix turnover such as the Enhanced Liver Fibrosis (ELF) test and hyaluronic acid. Radiologic imaging studies estimate liver stiffness as a surrogate for liver fibrosis; these include transient elastography (TE), magnetic resonance elastography (MRE), and acoustic radiation force impulse imaging (ARFI).

  13. Current Understanding of the Pathophysiology of Myocardial Fibrosis and Its Quantitative Assessment in Heart Failure

    PubMed Central

    Liu, Tong; Song, Deli; Dong, Jianzeng; Zhu, Pinghui; Liu, Jie; Liu, Wei; Ma, Xiaohai; Zhao, Lei; Ling, Shukuan

    2017-01-01

    Myocardial fibrosis is an important part of cardiac remodeling that leads to heart failure and death. Myocardial fibrosis results from increased myofibroblast activity and excessive extracellular matrix deposition. Various cells and molecules are involved in this process, providing targets for potential drug therapies. Currently, the main detection methods of myocardial fibrosis rely on serum markers, cardiac magnetic resonance imaging, and endomyocardial biopsy. This review summarizes our current knowledge regarding the pathophysiology, quantitative assessment, and novel therapeutic strategies of myocardial fibrosis. PMID:28484397

  14. Chymase: a multifunctional player in pulmonary hypertension associated with lung fibrosis.

    PubMed

    Kosanovic, Djuro; Luitel, Himal; Dahal, Bhola Kumar; Cornitescu, Teodora; Janssen, Wiebke; Danser, A H Jan; Garrelds, Ingrid M; De Mey, Jo G R; Fazzi, Gregorio; Schiffers, Paul; Iglarz, Marc; Fischli, Walter; Ghofrani, Hossein Ardeschir; Weissmann, Norbert; Grimminger, Friedrich; Seeger, Werner; Reiss, Irwin; Schermuly, Ralph Theo

    2015-10-01

    Limited literature sources implicate mast-cell mediator chymase in the pathologies of pulmonary hypertension and pulmonary fibrosis. However, there is no evidence on the contribution of chymase to the development of pulmonary hypertension associated with lung fibrosis, which is an important medical condition linked with increased mortality of patients who already suffer from a life-threatening interstitial lung disease.The aim of this study was to investigate the role of chymase in this particular pulmonary hypertension form, by using a bleomycin-induced pulmonary hypertension model.Chymase inhibition resulted in attenuation of pulmonary hypertension and pulmonary fibrosis, as evident from improved haemodynamics, decreased right ventricular remodelling/hypertrophy, pulmonary vascular remodelling and lung fibrosis. These beneficial effects were associated with a strong tendency of reduction in mast cell number and activity, and significantly diminished chymase expression levels. Mechanistically, chymase inhibition led to attenuation of transforming growth factor β1 and matrix-metalloproteinase-2 contents in the lungs. Furthermore, chymase inhibition prevented big endothelin-1-induced vasoconstriction of the pulmonary arteries.Therefore, chymase plays a role in the pathogenesis of pulmonary hypertension associated with pulmonary fibrosis and may represent a promising therapeutic target. In addition, this study may provide valuable insights on the contribution of chymase in the pulmonary hypertension context, in general, regardless of the pulmonary hypertension form. Copyright ©ERS 2015.

  15. Rheb/mTORC1 Signaling Promotes Kidney Fibroblast Activation and Fibrosis

    PubMed Central

    Jiang, Lei; Xu, Lingling; Mao, Junhua; Li, Jianzhong; Fang, Li; Zhou, Yang; Liu, Wei; He, Weichun; Zhao, Allan Zijian

    2013-01-01

    Ras homolog enriched in brain (Rheb) is a small GTPase that regulates cell growth, differentiation, and survival by upregulating mammalian target of rapamycin complex 1 (mTORC1) signaling. The role of Rheb/mTORC1 signaling in the activation of kidney fibroblasts and the development of kidney fibrosis remains largely unknown. In this study, we found that Rheb/mTORC1 signaling was activated in interstitial myofibroblasts from fibrotic kidneys. Treatment of rat kidney interstitial fibroblasts (NRK-49F cell line) with TGFβ1 also activated Rheb/mTORC1 signaling. Blocking Rheb/mTORC1 signaling with rapamycin or Rheb small interfering RNA abolished TGFβ1-induced fibroblast activation. In a transgenic mouse, ectopic expression of Rheb activated kidney fibroblasts. These Rheb transgenic mice exhibited increased activation of mTORC1 signaling in both kidney tubular and interstitial cells as well as progressive interstitial renal fibrosis; rapamycin inhibited these effects. Similarly, mice with fibroblast-specific deletion of Tsc1, a negative regulator of Rheb, exhibited activated mTORC1 signaling in kidney interstitial fibroblasts and increased renal fibrosis, both of which rapamycin abolished. Taken together, these results suggest that Rheb/mTORC1 signaling promotes the activation of kidney fibroblasts and contributes to the development of interstitial fibrosis, possibly providing a therapeutic target for progressive renal disease. PMID:23661807

  16. Interstitial pulmonary fibrosis and progressive massive fibrosis related to smoking methamphetamine with talc as filler.

    PubMed

    Baylor, Peter A; Sobenes, Juan R; Vallyathan, Val

    2013-05-01

    We present a case of interstitial pulmonary fibrosis accompanied by radiographic evidence of progressive massive fibrosis in a patient who had a 15-20 year history of almost daily recreational inhalation of methamphetamine. Mineralogical analysis confirmed the presence of talc on biopsy of the area of progressive massive fibrosis. The coexistence of interstitial pulmonary fibrosis and progressive massive fibrosis suggests that prolonged recreational inhalation of methamphetamine that has been "cut" with talc can result in sufficient amount of talc being inhaled to result in interstitial pulmonary fibrosis and progressive massive fibrosis in the absence of other causes.

  17. Kinetic parameters of rubidium transport pathways are normal in cystic fibrosis red cells.

    PubMed

    Joiner, C H

    1988-10-01

    The abnormalities in ion transport in cystic fibrosis (CF) respiratory and sweat duct epithelia have prompted studies of ion permeability in CF red blood cells (RBC) although previous reports have been contradictory. In this study, the kinetic characteristics of the three major cation transport systems in RBC were evaluated by measuring rubidium (Rb) uptake at various external Rb concentrations. The maximal velocity and affinity for external Rb (K1/2) of the NaK pump were normal in CF RBC, as were the maximal velocity and Km for Rb of the NaK cotransport system. Residual (ouabain and bumetanide insensitive) Rb uptake, and steady state RBC Na and K contents were also normal. These data indicate the NaK pump and cotransport system do not exhibit primary or secondary perturbations in CF RBC, and suggest that the noncarrier-mediated membrane permeability to cations is also normal in these cells.

  18. CXCR4 pos circulating progenitor cells coexpressing monocytic and endothelial markers correlating with fibrotic clinical features are present in the peripheral blood of patients affected by systemic sclerosis.

    PubMed

    Campioni, Diana; Lo Monaco, Andrea; Lanza, Francesco; Moretti, Sabrina; Ferrari, Luisa; Fotinidi, Maria; La Corte, Renato; Cuneo, Antonio; Trotta, Francesco

    2008-08-01

    There is still controversy regarding the role of circulating endothelial and progenitor cells (CECs/CEPs) in the pathogenesis of systemic sclerosis (SSc). Using a sequential Boolean gating strategy based on a 4-color flow cytometric protocol, an increased number of CD31(pos)/CD184(pos)(CXCR4)/CD34(pos)/CD45(pos) and CD31(pos)/CD117(pos) (c-kit-R) /CD34(pos)/ CD45(pos) hematopoietic circulating progenitor cells (HCPCs) was detected in SSc patients compared with healthy subjects. In SSc, no circulating mature and progenitor endothelial cells were observed, while an enhanced generation of erythroid progenitor cells was found to be correlated with the presence of CD117+ HCPCs. The presence of freshly detected CXCR4posHCPC was correlated either to the in vitro cultured spindle-shaped endothelial like cells (SELC) with an endo/myelomonocytic profile or to SDF-1 and VEGF serum level. These data are related to more fibrotic clinical features of the disease, thus supporting a possible role of these cells in fibrosis.

  19. Drugs and Targets in Fibrosis

    PubMed Central

    Li, Xiaoyi; Zhu, Lixin; Wang, Beibei; Yuan, Meifei; Zhu, Ruixin

    2017-01-01

    Fibrosis contributes to the development of many diseases and many target molecules are involved in fibrosis. Currently, the majority of fibrosis treatment strategies are limited to specific diseases or organs. However, accumulating evidence demonstrates great similarities among fibroproliferative diseases, and more and more drugs are proved to be effective anti-fibrotic therapies across different diseases and organs. Here we comprehensively review the current knowledge on the pathological mechanisms of fibrosis, and divide factors mediating fibrosis progression into extracellular and intracellular groups. Furthermore, we systematically summarize both single and multiple component drugs that target fibrosis. Future directions of fibrosis drug discovery are also proposed. PMID:29218009

  20. A new method to improve the clinical evaluation of cystic fibrosis patients by mucus viscoelastic properties.

    PubMed

    Tomaiuolo, Giovanna; Rusciano, Giulia; Caserta, Sergio; Carciati, Antonio; Carnovale, Vincenzo; Abete, Pasquale; Sasso, Antonio; Guido, Stefano

    2014-01-01

    In cystic fibrosis (CF) patients airways mucus shows an increased viscoelasticity due to the concentration of high molecular weight components. Such mucus thickening eventually leads to bacterial overgrowth and prevents mucus clearance. The altered rheological behavior of mucus results in chronic lung infection and inflammation, which causes most of the cases of morbidity and mortality, although the cystic fibrosis complications affect other organs as well. Here, we present a quantitative study on the correlation between cystic fibrosis mucus viscoelasticity and patients clinical status. In particular, a new diagnostic parameter based on the correlation between CF sputum viscoelastic properties and the severity of the disease, expressed in terms of FEV1 and bacterial colonization, was developed. By using principal component analysis, we show that the types of colonization and FEV1 classes are significantly correlated to the elastic modulus, and that the latter can be used for CF severity classification with a high predictive efficiency (88%). The data presented here show that the elastic modulus of airways mucus, given the high predictive efficiency, could be used as a new clinical parameter in the prognostic evaluation of cystic fibrosis.

  1. Effect of disease progression on liver apparent diffusion coefficient and T2 values in a murine model of hepatic fibrosis at 11.7 Tesla MRI.

    PubMed

    Anderson, Stephan W; Jara, Hernan; Ozonoff, Al; O'Brien, Michael; Hamilton, James A; Soto, Jorge A

    2012-01-01

    To evaluate the effects of hepatic fibrosis on ADC and T(2) values of ex vivo murine liver specimens imaged using 11.7 Tesla (T) MRI. This animal study was IACUC approved. Seventeen male, C57BL/6 mice were divided into control (n = 2) and experimental groups (n = 15), the latter fed a 3, 5-dicarbethoxy-1, 4-dihydrocollidine (DDC) supplemented diet, inducing hepatic fibrosis. Ex vivo liver specimens were imaged using an 11.7T MRI scanner. Spin-echo pulsed field gradient and multi-echo spin-echo acquisitions were used to generate parametric ADC and T(2) maps, respectively. Degrees of fibrosis were determined by the evaluation of a pathologist as well as digital image analysis. Scatterplot graphs comparing ADC and T(2) to degrees of fibrosis were generated and correlation coefficients were calculated. Strong correlation was found between degrees of hepatic fibrosis and ADC with higher degrees of fibrosis associated with lower hepatic ADC values. Moderate correlation between hepatic fibrosis and T(2) values was seen with higher degrees of fibrosis associated with lower T(2) values. Inverse relationships between degrees of fibrosis and both ADC and T(2) are seen, highlighting the utility of these parameters in the ongoing development of an MRI methodology to quantify hepatic fibrosis. Copyright © 2011 Wiley Periodicals, Inc.

  2. Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis

    PubMed Central

    Xie, Ting; Liang, Jiurong; Liu, Ningshan; Huan, Caijuan; Zhang, Yanli; Liu, Weijia; Kumar, Maya; Xiao, Rui; D’Armiento, Jeanine; Metzger, Daniel; Chambon, Pierre; Papaioannou, Virginia E.; Stripp, Barry R.; Jiang, Dianhua

    2016-01-01

    Progressive tissue fibrosis is a major cause of the morbidity and mortality associated with repeated epithelial injuries and accumulation of myofibroblasts. Successful treatment options are limited by an incomplete understanding of the molecular mechanisms that regulate myofibroblast accumulation. Here, we employed in vivo lineage tracing and real-time gene expression transgenic reporting methods to analyze the early embryonic transcription factor T-box gene 4 (TBX4), and determined that TBX4-lineage mesenchymal progenitors are the predominant source of myofibroblasts in injured adult lung. In a murine model, ablation of TBX4-expressing cells or disruption of TBX4 signaling attenuated lung fibrosis after bleomycin-induced injury. Furthermore, TBX4 regulated hyaluronan synthase 2 production to enable fibroblast invasion of matrix both in murine models and in fibroblasts from patients with severe pulmonary fibrosis. These data identify TBX4 as a mesenchymal transcription factor that drives accumulation of myofibroblasts and the development of lung fibrosis. Targeting TBX4 and downstream factors that regulate fibroblast invasiveness could lead to therapeutic approaches in lung fibrosis. PMID:27400124

  3. The Th17 Pathway in Cystic Fibrosis Lung Disease

    PubMed Central

    Tan, Hui-Leng; Regamey, Nicolas; Brown, Sarah; Bush, Andrew; Lloyd, Clare M.; Davies, Jane C.

    2012-01-01

    Rationale Cystic fibrosis (CF) is characterized by bronchoalveolar neutrophilia and submucosal lymphocytosis. We hypothesized that Th17 lymphocytes are part of this submucosal infiltrate. Objectives Quantification and phenotyping of the lymphocytic infiltrate in the bronchial submucosa of patients with CF (n=53, of which 20 were newly diagnosed), non-CF bronchiectasis (n = 17), and healthy control subjects (n = 13). Methods We measured IL-17 levels in bronchoalveolar lavage and CD4+, CD8+, and IL-17+ cell counts in endobronchial biopsies. Correlations were made with infection status and other inflammatory markers. Potential cellular sources of IL-17 were determined by double staining. Measurements and Main Results IL-17+ cell counts (median [interquartile range] cells/mm2) were significantly higher in patients with established CF (205 [115–551]) and non-CF bronchiectasis (245 [183–436]) than in control subjects (53 [12–82]) (P<0.01 for both). Patients with newly diagnosed CF had intermediate counts (171 [91–252]). IL-17–positive CD4+ T cells, γδT cells, natural killer T cells, and neutrophils were identified. Bronchoalveolar lavage IL-17 levels (pg/ml) were highest in established CF (14.6 [2.2–38.4]), low in newly diagnosed CF and control subjects (1.7 [1.7–1.74]; 1.7 [1.7–3]), and intermediate in non-CF bronchiectasis (9.1 [1.7–34] pg/ml) (Kruskal-Wallis P = 0.001). There was a significant correlation between IL-17 and neutrophil counts (P < 0.001, R = 0.6) as well as IL-4 (P < 0.001, R = 0.84). Conclusions Th17 lymphocytes are present in the airway submucosa in CF, even in a young, newly diagnosed group. Other IL-17+ cells include neutrophils, γδ T cells, and natural killer T cells. PMID:21474644

  4. Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications.

    PubMed

    Cohen-Cymberknoh, Malena; Kerem, Eitan; Ferkol, Thomas; Elizur, Arnon

    2013-12-01

    Airway epithelial cells and immune cells participate in the inflammatory process responsible for much of the pathology found in the lung of patients with cystic fibrosis (CF). Intense bronchial neutrophilic inflammation and release of proteases and oxygen radicals perpetuate the vicious cycle and progressively damage the airways. In vitro studies suggest that CF transmembrane conductance regulator (CFTR)-deficient airway epithelial cells display signalling abnormalities and aberrant intracellular processes which lead to transcription of inflammatory mediators. Several transcription factors, especially nuclear factor-κB, are activated. In addition, the accumulation of abnormally processed CFTR in the endoplasmic reticulum results in unfolded protein responses that trigger 'cell stress' and apoptosis leading to dysregulation of the epithelial cells and innate immune function in the lung, resulting in exaggerated and ineffective airway inflammation. Measuring airway inflammation is crucial for initiating treatment and monitoring its effect. No inflammatory biomarker predictive for the clinical course of CF lung disease is currently known, although neutrophil elastase seems to correlate with lung function decline. CF animal models mimicking human lung disease may provide an important insight into the pathogenesis of lung inflammation in CF and identify new therapeutic targets.

  5. HIV mono-infection is associated with FIB-4 - A noninvasive index of liver fibrosis - in women.

    PubMed

    Blackard, Jason T; Welge, Jeffrey A; Taylor, Lynn E; Mayer, Kenneth H; Klein, Robert S; Celentano, David D; Jamieson, Denise J; Gardner, Lytt; Sherman, Kenneth E

    2011-03-01

    FIB-4 represents a noninvasive, composite index that is a validated measure of hepatic fibrosis, which is an important indicator of liver disease. To date, there are limited data regarding hepatic fibrosis in women. FIB-4 was evaluated in a cohort of 1227 women, and associations were evaluated in univariate and multivariate regression models among 4 groups of subjects classified by their human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infection status. The median FIB-4 scores were 0.60 in HIV-/HCV- women, 0.83 in HIV-/HCV+ women, 0.86 in HIV+/HCV- women, and 1.30 in HIV+/HCV+ women. In the HIV/HCV co-infected group, multivariate analysis showed that CD4(+) cell count and albumin level were negatively associated with FIB-4 (P <.0001), whereas antiretroviral therapy (ART) was positively associated with FIB-4 score (P =.0008). For the HIV mono-infected group, multivariate analysis showed that CD4(+) cell count (P <.0001) and albumin level (P =.0019) were negatively correlated with FIB-4 score, ART was positively associated with FIB-4 score (P =.0008), and plasma HIV RNA level was marginally associated with FIB-4 score (P =.080). In 72 HIV mono-infected women who were also hepatitis B surface antigen negative, ART naive, and reported no recent alcohol intake, plasma HIV RNA level was associated with increased FIB-4 score (P =.030). HIV RNA level was associated with increased FIB-4 score in the absence of hepatitis B, hepatitis C, ART, or alcohol use, suggesting a potential relationship between HIV infection and hepatic fibrosis in vivo. A better understanding of the various demographic and virologic variables that contribute to hepatic fibrosis may lead to more effective treatment of HIV infection and its co-morbid conditions.

  6. Suppression of innate immunity (natural killer cell/interferon-γ) in the advanced stages of liver fibrosis in mice

    PubMed Central

    Jeong, Won-Il; Park, Ogyi; Suh, Yang-Gun; Byun, Jin-Seok; Park, So-Young; Choi, Earl; Kim, Ja-Kyung; Ko, Hyojin; Wang, Hua; Miller, Andrew M.; Gao, Bin

    2011-01-01

    Activation of innate immunity (natural killer cell/interferon-γ: NK cell/IFN-γ) has been shown to play an important role in anti-viral and anti-tumor defenses as well as anti-fibrogenesis. However, little is known about the regulation of innate immunity during chronic liver injury. Here, we compared the functions of NK cells in early and advanced liver fibrosis induced by a 2-week or a 10 week-carbon tetrachloride (CCl4) challenge, respectively. Injection of poly I:C or IFN-γ induced NK cell activation and NK cell killing of hepatic stellate cells (HSCs) in the 2-week CCl4 model. Such activation was diminished in the 10-week CCl4 model. Consistent with these findings, the inhibitory effect of poly I:C and IFN-γ on liver fibrosis was markedly reduced in the 10-week vs. the 2-week CCl4 model. In vitro co-culture experiments demonstrated that 4-day cultured (early-activated) HSCs induce NK cell activation via an NKG2D-retinoic acid-induced early gene 1 (RAE1)-dependent mechanism. Such activation was reduced when co-cultured with 8-day cultured (intermediately-activated) HSCs due to the production of transforming growth factor-β (TGF-β) by HSCs. Moreover, early-activated HSCs were sensitive, while intermediately-activated HSCs were resistant to IFN-γ mediated inhibition of cell proliferation, likely due to elevated expression of suppressor of cytokine signaling 1 (SOCS1). Disruption of the SOCS1 gene restored the IFN-γ inhibition of cell proliferation in intermediately-activated HSCs. Production of retinol metabolites by HSCs contributed to SOCS1 induction and subsequently inhibited IFN-γ signaling and functioning, while production of TGF-β by HSCs inhibited NK cell function and cytotoxicity against HSCs. Conclusion The anti-fibrogenic effects of NK cell/IFN-γ are suppressed during advanced liver injury, which is likely due to the increased production of TGF-β and expression of SOCS1 in intermediately-activated HSCs. PMID:21480338

  7. 31Phosphorus magnetic resonance spectroscopy of the liver for evaluating inflammation and fibrosis in autoimmune hepatitis.

    PubMed

    Puustinen, Lauri; Hakkarainen, Antti; Kivisaari, Reetta; Boyd, Sonja; Nieminen, Urpo; Färkkilä, Martti; Lundbom, Nina; Arkkila, Perttu

    2017-08-01

    Liver biopsy is the gold standard in evaluating inflammation and fibrosis in autoimmune hepatitis. In search of non-invasive follow-up tools in autoimmune hepatitis, we evaluated 31 phosphorus magnetic resonance spectroscopy ( 31 P MRS). Twelve consecutive AIH patients (mean age 42.8 years, 10 women) underwent liver biopsy, routine laboratory liver function tests, which were compared to findings in 31 P MRS and transient elastography (TE). Phosphoenolpuryvate (PEP) correlated with the grade of inflammation (r = 0.746, p = .005) and thromboplastin time (r = 0.592, p = .043). It also differentiated patients with active inflammation from patients without (t = 3.781, p = .009). There was no correlation between PEP and aminotransferase or immunoglobulin G levels. The phosphoethanolamine (PE)/phosphocholine (PC) ratio, PE/glyserophosphoethanolamine (GPE) ratio and PC/[total phosphomonoester (PME) + phosphodiester (PDE)] ratios correlated with immunoglobulin G (r = 0.764, p = .006; r = 0.618, p = .043; and r= -0.636, p = .035, respectively). PME/PDE and PE/GPE correlated with fibrosis (r = 0.668, p = .018 and r = 0.604, p = .037). PE/GPE also differentiated F3 from F0-2 patients (t = 3.810, p = .003). Phosphorus metabolites did not correlate with TE results and TE did not correlate with liver histology or laboratory parameters. 31 P MRS seems to detect active inflammation and advanced fibrosis in AIH patients. TE was ineffective in fibrosis quantification.

  8. Human umbilical cord mesenchymal stem cells alleviate interstitial fibrosis and cardiac dysfunction in a dilated cardiomyopathy rat model by inhibiting TNF-α and TGF-β1/ERK1/2 signaling pathways

    PubMed Central

    Zhang, Changyi; Zhou, Guichi; Chen, Yezeng; Liu, Sizheng; Chen, Fen; Xie, Lichun; Wang, Wei; Zhang, Yonggang; Wang, Tianyou; Lai, Xiulan; Ma, Lian

    2018-01-01

    Dilated cardiomyopathy (DCM) is a disease of the heart characterized by pathological remodeling, including patchy interstitial fibrosis and degeneration of cardiomyocytes. In the present study, the beneficial role of human umbilical cord-derived mesenchymal stem cells (HuMSCs) derived from Wharton's jelly was evaluated in the myosin-induced rat model of DCM. Male Lewis rats (aged 8-weeks) were injected with porcine myosin to induce DCM. Cultured HuMSCs (1×106 cells/rat) were intravenously injected 28 days after myosin injection and the effects on myocardial fibrosis and the underlying signaling pathways were investigated and compared with vehicle-injected and negative control rats. Myosin injections in rats (vehicle group and experimental group) for 28 days led to severe fibrosis and significant deterioration of cardiac function indicative of DCM. HuMSC treatment reduced fibrosis as determined by Masson's staining of collagen deposits, as well as quantification of molecular markers of myocardial fibrosis such as collagen I/III, profibrotic factors transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), and connective tissue growth factor (CTGF). HuMSC treatment restored cardiac function as observed using echocardiography. In addition, western blot analysis indicated that HuMSC injections in DCM rats inhibited the expression of TNF-α, extracellular-signal regulated kinase 1/2 (ERK1/2) and TGF-β1, which is a master switch for inducing myocardial fibrosis. These findings suggested that HuMSC injections attenuated myocardial fibrosis and dysfunction in a rat model of DCM, likely by inhibiting TNF-α and the TGF-β1/ERK1/2 fibrosis pathways. Therefore, HuMSC treatment may represent a potential therapeutic method for treatment of DCM. PMID:29115435

  9. Pulmonary Fibrosis

    MedlinePlus

    ... and your blood may not get enough oxygen. Causes of pulmonary fibrosis include environmental pollutants, some medicines, some connective tissue ... or scar the lungs. In most cases, the cause cannot be found. This is called ... fibrosis. Symptoms include Shortness of breath A dry, hacking ...

  10. Intestinal organoids: A model of intestinal fibrosis for evaluating anti-fibrotic drugs

    PubMed Central

    Rodansky, Eva S.; Johnson, Laura A.; Huang, Sha; Spence, Jason R.; Higgins, Peter D. R.

    2016-01-01

    Background & Aims Intestinal fibrosis is a critical complication of Crohn’s disease (CD). Current in vitro models of intestinal fibrosis cannot model the complex intestinal architecture, while in vivo rodent models do not fully recapitulate human disease and have limited utility for large-scale screening. Here, we exploit recent advances in stem cell derived human intestinal organoids (HIOs) as a new human model of fibrosis in CD. Methods Human pluripotent stem cells were differentiated into HIOs. We identified myofibroblasts, the key effector cells of fibrosis, by immunofluorescence staining for alpha-smooth muscle actin (αSMA), vimentin, and desmin. We examined the fibrogenic response of HIOs by treatment with transforming growth factor beta (TGFβ) in the presence or absence of the anti-fibrotic drug spironolactone. Fibrotic response was assayed by expression of fibrogenic genes (COL1A1 (collagen, type I, alpha 1), ACTA2 (alpha smooth muscle actin), FN1 (fibronectin 1), MYLK (myosin light chain kinase), and MKL1 (megakaryoblastic leukemia (translocation) 1)) and proteins (αSMA). Results Immunofluorescent staining of organoids identified a population of myofibroblasts within the HIO mesenchyme. TGFβ stimulation of HIOs produced a dose-dependent pro-fibrotic response. Spironolactone treatment blocked the fibrogenic response of HIOs to TGFβ. Conclusions HIOs contain myofibroblasts and respond to a pro-fibrotic stimulus in a manner that is consistent with isolated human myofibroblasts. HIOs are a promising model system that might bridge the gap between current in vitro and in vivo models of intestinal fibrosis in IBD. PMID:25828392

  11. Combined pulmonary fibrosis and emphysema: an increasingly recognized condition* **

    PubMed Central

    Dias, Olívia Meira; Baldi, Bruno Guedes; Costa, André Nathan; Carvalho, Carlos Roberto Ribeiro

    2014-01-01

    Combined pulmonary fibrosis and emphysema (CPFE) has been increasingly recognized in the literature. Patients with CPFE are usually heavy smokers or former smokers with concomitant lower lobe fibrosis and upper lobe emphysema on chest HRCT scans. They commonly present with severe breathlessness and low DLCO, despite spirometry showing relatively preserved lung volumes. Moderate to severe pulmonary arterial hypertension is common in such patients, who are also at an increased risk of developing lung cancer. Unfortunately, there is currently no effective treatment for CPFE. In this review, we discuss the current knowledge of the pathogenesis, clinical characteristics, and prognostic factors of CPFE. Given that most of the published data on CPFE are based on retrospective analysis, more studies are needed in order to address the role of emphysema and its subtypes; the progression of fibrosis/emphysema and its correlation with inflammation; treatment options; and prognosis. PMID:25029654

  12. Mesenchymal stem cells protect against obstruction-induced renal fibrosis by decreasing STAT3 activation and STAT3-dependent MMP-9 production.

    PubMed

    Matsui, Futoshi; Babitz, Stephen A; Rhee, Audrey; Hile, Karen L; Zhang, Hongji; Meldrum, Kirstan K

    2017-01-01

    STAT3 is a transcription factor implicated in renal fibrotic injury, but the role of STAT3 in mesenchymal stem cell (MSC)-induced renoprotection during renal fibrosis remains unknown. We hypothesized that MSCs protect against obstruction-induced renal fibrosis by downregulating STAT3 activation and STAT3-induced matrix metalloproteinase-9 (MMP-9) expression. Male Sprague-Dawley rats underwent renal arterial injection of vehicle or MSCs (1 × 10 6 /rat) immediately before sham operation or induction of unilateral ureteral obstruction (UUO). The kidneys were harvested after 4 wk and analyzed for collagen I and III gene expression, collagen deposition (Masson's trichrome), fibronectin, α-smooth muscle actin, active STAT3 (p-STAT3), MMP-9, and tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) expression. In a separate arm, the STAT3 inhibitor S3I-201 (10 mg/kg) vs. vehicle was administered to rats intraperitoneally just after induction of UUO and daily for 14 days thereafter. The kidneys were harvested after 2 wk and analyzed for p-STAT3 and MMP-9 expression, and collagen and fibronectin deposition. Renal obstruction induced a significant increase in collagen, fibronectin, α-SMA, p-STAT3, MMP-9, and TIMP-1 expression while exogenously administered MSCs significantly reduced these indicators of obstruction-induced renal fibrosis. STAT3 inhibition with S3I-201 significantly reduced obstruction-induced MMP-9 expression and tubulointerstitial fibrosis. These results demonstrate that MSCs protect against obstruction-induced renal fibrosis, in part, by decreasing STAT3 activation and STAT3-dependent MMP-9 production. Copyright © 2017 the American Physiological Society.

  13. Mesenchymal stem cells protect against obstruction-induced renal fibrosis by decreasing STAT3 activation and STAT3-dependent MMP-9 production

    PubMed Central

    Matsui, Futoshi; Babitz, Stephen A.; Rhee, Audrey; Hile, Karen L.; Zhang, Hongji

    2017-01-01

    STAT3 is a transcription factor implicated in renal fibrotic injury, but the role of STAT3 in mesenchymal stem cell (MSC)-induced renoprotection during renal fibrosis remains unknown. We hypothesized that MSCs protect against obstruction-induced renal fibrosis by downregulating STAT3 activation and STAT3-induced matrix metalloproteinase-9 (MMP-9) expression. Male Sprague-Dawley rats underwent renal arterial injection of vehicle or MSCs (1 × 106/rat) immediately before sham operation or induction of unilateral ureteral obstruction (UUO). The kidneys were harvested after 4 wk and analyzed for collagen I and III gene expression, collagen deposition (Masson’s trichrome), fibronectin, α-smooth muscle actin, active STAT3 (p-STAT3), MMP-9, and tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) expression. In a separate arm, the STAT3 inhibitor S3I-201 (10 mg/kg) vs. vehicle was administered to rats intraperitoneally just after induction of UUO and daily for 14 days thereafter. The kidneys were harvested after 2 wk and analyzed for p-STAT3 and MMP-9 expression, and collagen and fibronectin deposition. Renal obstruction induced a significant increase in collagen, fibronectin, α-SMA, p-STAT3, MMP-9, and TIMP-1 expression while exogenously administered MSCs significantly reduced these indicators of obstruction-induced renal fibrosis. STAT3 inhibition with S3I-201 significantly reduced obstruction-induced MMP-9 expression and tubulointerstitial fibrosis. These results demonstrate that MSCs protect against obstruction-induced renal fibrosis, in part, by decreasing STAT3 activation and STAT3-dependent MMP-9 production. PMID:27760767

  14. Epithelial-Mesenchymal Transition in Tissue Repair and Fibrosis

    PubMed Central

    Stone, Rivka C.; Pastar, Irena; Ojeh, Nkemcho; Chen, Vivien; Liu, Sophia; Garzon, Karen I.; Tomic-Canic, Marjana

    2016-01-01

    Epithelial-mesenchymal transition (EMT) describes the global process by which stationary epithelial cells undergo phenotypic changes, including loss of cell-cell adhesion and apical-basal polarity, and acquire mesenchymal characteristics which confer migratory capacity. EMT and its converse, MET (mesenchymal-to-epithelial transition), are integral stages of many physiologic processes, and as such are tightly coordinated by a host of molecular regulators. Converging lines of evidence have identified EMT as a component of cutaneous wound healing, during which otherwise stationary keratinocytes - the resident skin epithelial cells - migrate across the wound bed to restore the epidermal barrier. Moreover, EMT also plays a role in the development of scarring and fibrosis, as the matrix-producing myofibroblast arises from cells of epithelial lineage in response to injury but is pathologically sustained instead of undergoing MET or apoptosis. In this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues and organs. We conclude that further investigation into the contribution of EMT to the impaired repair of fibrotic wounds may identify components of EMT signaling as common therapeutic targets for impaired healing in many tissues. PMID:27461257

  15. S100A8/A9 promotes parenchymal damage and renal fibrosis in obstructive nephropathy.

    PubMed

    Tammaro, Alessandra; Florquin, Sandrine; Brok, Mascha; Claessen, Nike; Butter, Loes M; Teske, Gwendoline J D; de Boer, Onno J; Vogl, Thomas; Leemans, Jaklien C; Dessing, Mark C

    2018-05-10

    Despite advances in our understanding of the mechanisms underlying progression of chronic kidney disease and the development of fibrosis, only limited efficacious therapies exist. The calcium binding protein S100A8/A9, is a damage-associated molecular pattern which can activate TLR4 or RAGE. Activation of these receptors is involved in the progression of renal fibrosis, however the role of S100A8/A9 herein remains unknown. Therefore, we analyzed S100A8/A9 expression in patients and mice with obstructive nephropathy and subjected wild-type and S100A9 KO mice lacking the heterodimer S100A8/A9 to Unilateral Ureteral Obstruction (UUO). We found profound S100A8/A9 expression in granulocytes that infiltrated human and murine kidney, together with enhanced renal expression over time, following UUO. S100A9 KO mice were protected from UUO-induced renal fibrosis, independently of leukocyte infiltration and inflammation. Loss of S100A8/A9 protected tubular epithelial cells from UUO-induced apoptosis and critical epithelial-mesenchymal transition steps. In vitro studies revealed S100A8/A9 as a novel mediator of epithelial cell injury, through loss of cell polarity, cell cycle arrest and subsequent cell death. In conclusion, we demonstrate that S100A8/A9 mediates renal damage and fibrosis presumably through loss of tubular epithelial cell contacts and irreversible damage. Suppression of S100A8/A9 could be a therapeutic strategy to halt renal fibrosis in patients with chronic kidney disease. This article is protected by copyright. All rights reserved. © 2018 British Society for Immunology.

  16. Genotype-phenotype correlation and functional studies in patients with cystic fibrosis bearing CFTR complex alleles.

    PubMed

    Terlizzi, Vito; Castaldo, Giuseppe; Salvatore, Donatello; Lucarelli, Marco; Raia, Valeria; Angioni, Adriano; Carnovale, Vincenzo; Cirilli, Natalia; Casciaro, Rosaria; Colombo, Carla; Di Lullo, Antonella Miriam; Elce, Ausilia; Iacotucci, Paola; Comegna, Marika; Scorza, Manuela; Lucidi, Vincenzina; Perfetti, Anna; Cimino, Roberta; Quattrucci, Serena; Seia, Manuela; Sofia, Valentina Maria; Zarrilli, Federica; Amato, Felice

    2017-04-01

    The effect of complex alleles in cystic fibrosis (CF) is poorly defined for the lack of functional studies. To describe the genotype-phenotype correlation and the results of either in vitro and ex vivo studies performed on nasal epithelial cells (NEC) in a cohort of patients with CF carrying cystic fibrosis transmembrane conductance regulator ( CFTR ) complex alleles. We studied 70 homozygous, compound heterozygous or heterozygous for CFTR mutations: p.[Arg74Trp;Val201Met;Asp1270Asn], n=8; p.[Ile148Thr;Ile1023_Val1024del], n=5; p.[Arg117Leu;Leu997Phe], n=6; c.[1210-34TG[12];1210-12T[5];2930C>T], n=3; p.[Arg74Trp;Asp1270Asn], n=4; p.Asp1270Asn, n=2; p.Ile148Thr, n=6; p.Leu997Phe, n=36. In 39 patients, we analysed the CFTR gating activity on NEC in comparison with patients with CF (n=8) and carriers (n=4). Finally, we analysed in vitro the p.[Arg74Trp;Val201Met;Asp1270Asn] complex allele. The p.[Ile148Thr;Ile1023_Val1024del] caused severe CF in five compound heterozygous with a class I-II mutation. Their CFTR activity on NEC was comparable with patients with two class I-II mutations (mean 7.3% vs 6.9%). The p.[Arg74Trp;Asp1270Asn] and the p.Asp1270Asn have scarce functional effects, while p.[Arg74Trp;Val201Met;Asp1270Asn] caused mild CF in four of five subjects carrying a class I-II mutation in trans , or CFTR-related disorders (CFTR-RD) in three having in trans a class IV-V mutation. The p.[Arg74Trp;Val201Met;Asp1270Asn] causes significantly (p<0.001) higher CFTR activity compared with compound heterozygous for class I-II mutations. Furthermore, five of six compounds heterozygous with the p.[Arg117Leu;Leu997Phe] had mild CF, whereas the p.Leu997Phe, in trans with a class I-II CFTR mutation, caused CFTR-RD or a healthy status (CFTR activity: 21.3-36.9%). Finally, compounds heterozygous for the c.[1210-34TG[12];1210-12T[5];2930C>T] and a class I-II mutation had mild CF or CFTR-RD (gating activity: 18.5-19.0%). The effect of complex alleles partially depends on the

  17. TGF-β/SMAD Pathway and Its Regulation in Hepatic Fibrosis

    PubMed Central

    Xu, Fengyun; Liu, Changwei; Zhou, Dandan; Zhang, Lei

    2016-01-01

    Transforming growth factor-beta1 (TGF-β1), a key member in the TGF-β superfamily, plays a critical role in the development of hepatic fibrosis. Its expression is consistently elevated in affected organs, which correlates with increased extracellular matrix deposition. SMAD proteins have been studied extensively as pivotal intracellular effectors of TGF-β1, acting as transcription factors. In the context of hepatic fibrosis, SMAD3 and SMAD4 are pro-fibrotic, whereas SMAD2 and SMAD7 are protective. Deletion of SMAD3 inhibits type I collagen expression and blocks epithelial-myofibroblast transition. In contrast, disruption of SMAD2 upregulates type I collagen expression. SMAD4 plays an essential role in fibrosis disease by enhancing SMAD3 responsive promoter activity, whereas SMAD7 negatively mediates SMAD3-induced fibrogenesis. Accumulating evidence suggests that divergent miRNAs participate in the liver fibrotic process, which partially regulates members of the TGF-β/SMAD signaling pathway. In this review, we focus on the TGF-β/SMAD and other relative signaling pathways, and discussed the role and molecular mechanisms of TGF-β/SMAD in the pathogenesis of hepatic fibrosis. Moreover, we address the possibility of novel therapeutic approaches to hepatic fibrosis by targeting to TGF-β/SMAD signaling. PMID:26747705

  18. Endometrial biopsy in Holstein-Friesian dairy cows. II. Correlations between histological criteria.

    PubMed Central

    Bonnett, B N; Miller, R B; Martin, S W; Etherington, W G; Buckrell, B C

    1991-01-01

    Endometrial biopsies were taken for histological assessment from 97 cows which calved in a commercial dairy herd between April and August 1984. The main objectives of this study were to analyze the interrelationships among histological criteria and to identify a shortlist of histological parameters to be included in subsequent analysis of associations with results of bacteriological culture, clinical findings and reproductive performance. Epithelial height and segmented cell counts were highly correlated within biopsy, between horns and between days. Subjective assessment of inflammation in the epithelium and/or stratum compactum generally identified biopsies which had any inflammation present. Cows which had inflammation in a biopsy from day 26 were likely to show inflammatory changes at day 40. Quantitative and subjective assessments of gland number, dilation and fibrosis were highly correlated. There was a positive association between the number of cross sections and the diameter of glands, and both of these criteria were negatively correlated with fibrosis and inflammatory changes. There may be different functional significance of the same histological finding at a different number of days postpartum. PMID:1884296

  19. FibroMeters: a family of blood tests for liver fibrosis.

    PubMed

    Calès, P; Boursier, J; Oberti, F; Hubert, I; Gallois, Y; Rousselet, M-C; Dib, N; Moal, V; Macchi, L; Chevailler, A; Michalak, S; Hunault, G; Chaigneau, J; Sawadogo, A; Lunel, F

    2008-09-01

    FibroMeters are blood tests for liver fibrosis with several specificities: two main diagnostic targets (fibrosis stage and area of fibrosis); adaptation to specific causes; and results confirmed by an expert system. Thus, FibroMeters comprise six different tests: one for staging and one for quantitation of liver fibrosis in each of the three main causes of chronic liver disease-chronic viral hepatitis, alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). FibroMeters display a high overall diagnostic accuracy and are the only tests to correctly classify 100% of HCV patients without fibrosis or with cirrhosis. They have 90% predictive values in a higher proportion of patients than with other usual blood tests. A 90% correct classification is available in 100% of HCV patients with the following reliable diagnostic intervals: F0/1, F1/2, F2+/-1, F3+/-1. In real-life conditions, the reproducibility of FibroMeters is higher than that of liver biopsy or ultrasonographic elastometry. FibroMeters are robust tests with the most stable diagnostic performance across different centers. Optional tests are also available, such as a specific one for cirrhosis, which has a diagnostic accuracy of 93.0% (AUROC: 0.92) and a 100% positive predictive value for diagnosis of HCV cirrhosis. Determination by FibroMeters of the area of fibrosis - the only direct, non-invasive, quantitative measurement of liver fibrosis - are especially useful for following-up cirrhosis as it correlates well with clinical events. FibroMeters are also very accurate in HVB or HIV-HCV co-infected patients. The tests specific for ALD and NAFLD also have a high diagnostic accuracy (AUROCs: 0.96 and 0.94, respectively, for significant fibrosis).

  20. Losartan attenuates paraquat-induced pulmonary fibrosis in rats.

    PubMed

    Guo, F; Sun, Y B; Su, L; Li, S; Liu, Z F; Li, J; Hu, X T; Li, J

    2015-05-01

    Paraquat (PQ) is one of the most widely used herbicides in the world and can cause pulmonary fibrosis in the cases with intoxication. Losartan, an angiotensin II type 1 receptor antagonist, has beneficial effects on the treatment of fibrosis. The aim of this study was to examine the effect of losartan on pulmonary fibrosis in PQ-intoxicated rats. Adult male Sprague Dawley rats (n = 32, 180-220 g) were randomly assigned to four groups: (i) control group; (ii) PQ group; (iii) PQ + losartan 7d group; and (iv) PQ + losartan 14d group. Losartan treatment (intragastrically (i.g.), 10 mg/kg) was performed for 7 and 14 days after a single i.g. dose of 40 mg/kg PQ. All rats were killed on the 16th day, and hematoxylin-eosin and Masson's trichrome staining were used to examine lung injury and fibrosis. The levels of hydroxyproline and transforming growth factor β1 (TGF-β1), matrix metallopeptidase 9 (Mmp9), and tissue inhibitor of metalloproteinase 1 (TIMP-1) messenger RNA (mRNA) expression and relative expression levels of collagen type I and III were also detected. PQ caused a significant increase in hydroxyproline content, mRNA expression of TGF-β1, Mmp9, and TIMP-1, and relative expression levels of collagen type I and III ( p < 0.05), while losartan significantly decreased the amount of hydroxyproline and downregulated TGF-β1, Mmp9, and TIMP-1 mRNA and collagen type I and III expressions ( p < 0.05). Histological examination of PQ-treated rats showed lung injury and widespread inflammatory cell infiltration in the alveolar space and pulmonary fibrosis, while losartan could markedly reduce such damage and prevent pulmonary fibrosis. The results of this study indicated that losartan could reduce lung damage and prevent pulmonary fibrosis induced by PQ. © The Author(s) 2014.

  1. Role of Mutant CFTR in Hypersusceptibility of Cystic Fibrosis Patients to Lung Infections

    NASA Astrophysics Data System (ADS)

    Pier, Gerald B.; Grout, Martha; Zaidi, Tanweer S.; Olsen, John C.; Johnson, Larry G.; Yankaskas, James R.; Goldberg, Joanna B.

    1996-01-01

    Cystic fibrosis (CF) patients are hypersusceptible to chronic Pseudomonas aeruginosa lung infections. Cultured human airway epithelial cells expressing the ΔF508 allele of the cystic fibrosis transmembrane conductance regulator (CFTR) were defective in uptake of P. aeruginosa compared with cells expressing the wild-type allele. Pseudomonas aeruginosa lipopolysaccharide (LPS)-core oligosaccharide was identified as the bacterial ligand for epithelial cell ingestion; exogenous oligosaccharide inhibited bacterial ingestion in a neonatal mouse model, resulting in increased amounts of bacteria in the lungs. CFTR may contribute to a host-defense mechanism that is important for clearance of P. aeruginosa from the respiratory tract.

  2. Implication of NADPH Oxidases in the Early Inflammation Process Generated by Cystic Fibrosis Cells

    PubMed Central

    Pongnimitprasert, Nushjira; Hurtado, Margarita; Lamari, Foudil; El Benna, Jamel; Dupuy, Corinne; Fay, Michèle; Foglietti, Marie-José; Bernard, Maguy; Gougerot-Pocidalo, Marie-Anne; Braut-Boucher, Françoise

    2012-01-01

    In cystic fibrosis (CF) patients, pulmonary inflammation is a major cause of morbidity and mortality. The aim of this study was to further investigate whether oxidative stress could be involved in the early inflammatory process associated with CF pathogenesis. We used a model of CFTR defective epithelial cell line (IB3-1) and its reconstituted CFTR control (S9) cell line cultured in various ionic conditions. This study showed that IB3-1 and S9 cells expressed the NADPH oxidases (NOXs) DUOX1/2 and NOX2 at the same level. Nevertheless, several parameters participating in oxidative stress (increased ROS production and apoptosis, decreased total thiol content) were observed in IB3-1 cells cultured in hypertonic environment as compared to S9 cells and were inhibited by diphenyleneiodonium (DPI), a well-known inhibitor of NOXs; besides, increased production of the proinflammatory cytokines IL-6 and IL-8 by IB3-1 cells was also inhibited by DPI as compared to S9 cells. Furthermore, calcium ionophore (A23187), which upregulates DUOX and NOX2 activities, strongly induced oxidative stress and IL-8 and IL-6 overexpression in IB3-1 cells. All these events were suppressed by DPI, supporting the involvement of NOXs in the oxidative stress, which can upregulate proinflammatory cytokine production by the airway CFTR-deficient cells and trigger early pulmonary inflammation in CF patients. PMID:24049649

  3. Disease-causing Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator Determine the Functional Responses of Alveolar Macrophages*

    PubMed Central

    Deriy, Ludmila V.; Gomez, Erwin A.; Zhang, Guangping; Beacham, Daniel W.; Hopson, Jessika A.; Gallan, Alexander J.; Shevchenko, Pavel D.; Bindokas, Vytautas P.; Nelson, Deborah J.

    2009-01-01

    Alveolar macrophages (AMs) play a major role in host defense against microbial infections in the lung. To perform this function, these cells must ingest and destroy pathogens, generally in phagosomes, as well as secrete a number of products that signal other immune cells to respond. Recently, we demonstrated that murine alveolar macrophages employ the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel as a determinant in lysosomal acidification (Di, A., Brown, M. E., Deriy, L. V., Li, C., Szeto, F. L., Chen, Y., Huang, P., Tong, J., Naren, A. P., Bindokas, V., Palfrey, H. C., and Nelson, D. J. (2006) Nat. Cell Biol. 8, 933–944). Lysosomes and phagosomes in murine cftr−/− AMs failed to acidify, and the cells were deficient in bacterial killing compared with wild type controls. Cystic fibrosis is caused by mutations in CFTR and is characterized by chronic lung infections. The information about relationships between the CFTR genotype and the disease phenotype is scarce both on the organismal and cellular level. The most common disease-causing mutation, ΔF508, is found in 70% of patients with cystic fibrosis. The mutant protein fails to fold properly and is targeted for proteosomal degradation. G551D, the second most common mutation, causes loss of function of the protein at the plasma membrane. In this study, we have investigated the impact of CFTR ΔF508 and G551D on a set of core intracellular functions, including organellar acidification, granule secretion, and microbicidal activity in the AM. Utilizing primary AMs from wild type, cftr−/−, as well as mutant mice, we show a tight correlation between CFTR genotype and levels of lysosomal acidification, bacterial killing, and agonist-induced secretory responses, all of which would be expected to contribute to a significant impact on microbial clearance in the lung. PMID:19837664

  4. Pulmonary Fibrosis Foundation

    MedlinePlus

    ... know Host an event, engage legislators, or distribute educational materials about pulmonary fibrosis. Get Involved ... CARE, RESEARCH AND TECHNOLOGY REPORTED AT PULMONARY FIBROSIS FOUNDATION CONFERENCE Physicians and ...

  5. Type I collagen-targeted PET probe for pulmonary fibrosis detection and staging in preclinical models

    PubMed Central

    Désogère, Pauline; Tapias, Luis F.; Hariri, Lida P.; Rotile, Nicholas J.; Rietz, Tyson A.; Probst, Clemens K.; Blasi, Francesco; Day, Helen; Mino-Kenudson, Mari; Weinreb, Paul; Violette, Shelia M.; Fuchs, Bryan C.; Tager, Andrew M.; Lanuti, Michael; Caravan, Peter

    2017-01-01

    Pulmonary fibrosis is a scarring of the lungs that can arise from radiation injury, drug toxicity, environmental or genetic causes, and for unknown reasons [idiopathic pulmonary fibrosis (IPF)]. Overexpression of collagen is a hallmark of organ fibrosis. Here, we describe a peptide-based PET probe (68Ga-CBP8) that targets collagen type I. We evaluated 68Ga-CBP8 in vivo in the bleomycin-induced mouse model of pulmonary fibrosis. 68Ga-CBP8 showed high specificity for pulmonary fibrosis and high target:background ratios in diseased animals. The lung PET signal and lung 68Ga-CBP8 uptake (quantified ex vivo) correlated linearly (r2=0.80) with the amount of lung collagen in mice with fibrosis. We further demonstrated that the 68Ga-CBP8 probe could be used to monitor response to treatment in a second mouse model of pulmonary fibrosis associated with vascular leak. Ex vivo analysis of lung tissue from patients with IPF supported the animal findings. These studies indicate that 68Ga-CBP8 is a promising candidate for non-invasive imaging of human pulmonary fibrosis. PMID:28381537

  6. Lysyl oxidase‑like 2 is expressed in kidney tissue and is associated with the progression of tubulointerstitial fibrosis.

    PubMed

    Choi, Sung-Eun; Jeon, Nara; Choi, Hoon Young; Shin, Jae Il; Jeong, Hyeon Joo; Lim, Beom Jin

    2017-09-01

    Tubulointerstitial fibrosis is a common end point of chronic kidney diseases, and preventing its progression is key to avoiding renal failure. Transforming growth factor‑β (TGF‑β) and associated molecules promote tubulointerstitial fibrosis; however, effective therapies targeting these molecules have yet to be developed. Lysyl oxidase‑like 2 (LOXL2), which is involved in invasive growth and metastasis of malignant neoplasms, has recently been reported to serve a key role in hepatic and pulmonary fibrosis. However, little is currently known regarding LOXL2 expression in the kidney and its involvement in tubulointerstitial fibrosis. The present study evaluated LOXL2 expression in human and mouse kidney tissues, as well as in cultured renal cells. LOXL2 protein expression was detected in glomerular capillary loops and tubular epithelial cells in human and mouse kidneys. Glomerular LOXL2 was localized to the cytoplasm of podocytes, as determined by double immunofluorescence microscopy using a podocyte marker (synaptopodin). This result was supported by western blot analysis, which demonstrated that LOXL2 protein expression is present in cultured human podocytes and HK‑2 human proximal tubular cells. In addition, the mRNA and protein expression levels of LOXL2 were higher in a mouse model of tubulointerstitial fibrosis compared with in control mice. In addition, immunohistochemistry results demonstrated that LOXL2 is present in the fibrous interstitium and infiltrating mononuclear cells in a mouse model of tubulointerstitial fibrosis. The present study demonstrated that LOXL2 is expressed in compartments of renal tissue, where it appears to contribute to the progression of tubulointerstitial fibrosis.

  7. Evaluation of APRI and FIB-4 scoring systems for non-invasive assessment of hepatic fibrosis in chronic hepatitis B patients.

    PubMed

    Kim, W Ray; Berg, Thomas; Asselah, Tarik; Flisiak, Robert; Fung, Scott; Gordon, Stuart C; Janssen, Harry L A; Lampertico, Pietro; Lau, Daryl; Bornstein, Jeffrey D; Schall, Raul E Aguilar; Dinh, Phillip; Yee, Leland J; Martins, Eduardo B; Lim, Seng Gee; Loomba, Rohit; Petersen, Jörg; Buti, Maria; Marcellin, Patrick

    2016-04-01

    While the gold standard in the assessment of liver fibrosis remains liver biopsy, non-invasive methods have been increasingly used for chronic hepatitis B (CHB). This study aimed to evaluate the performance of two commonly used non-invasive scoring systems (aspartate aminotransferase-to-platelet ratio index (APRI) and fibrosis index based on four factors (FIB-4)) to predict fibrosis stage in CHB patients. Demographic, histologic and clinical laboratory data from two trials investigating tenofovir disoproxil fumarate in CHB were analyzed. Predicted fibrosis stage, based on established scales and cut-off values for APRI and FIB-4 scores, was compared with Ishak scores obtained from liver biopsy at baseline and at 240 week follow-up. In the 575 patients with a baseline liver biopsy, APRI and FIB-4 scores correlated with Ishak stage (p<0.01); however extensive overlap in the distribution of both scores across Ishak stages prevented accurate determination of fibrosis. The majority (81-89%) of patients with advanced fibrosis or cirrhosis were missed by the scores. Similarly, 71% patients without fibrosis were misclassified as having clinically significant fibrosis. APRI and FIB-4 scores at week 240 tended to be low and underestimate fibrosis stage in the patients with liver biopsies after 240 weeks of therapy. APRI or FIB-4 reduction did not correlate with fibrosis regression after 240 weeks of antiviral therapy. APRI and FIB-4 scores are not suitable for use in clinical practice in CHB patients for assessment of hepatic fibrosis according to Ishak stage, especially in gauging improvements in liver fibrosis following therapy. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  8. Comparative study of two models of combined pulmonary fibrosis and emphysema in mice.

    PubMed

    Zhang, Wan-Guang; Wu, Si-Si; He, Li; Yang, Qun; Feng, Yi-Kuan; Chen, Yue-Tao; Zhen, Guo-Hua; Xu, Yong-Jian; Zhang, Zhen-Xiang; Zhao, Jian-Ping; Zhang, Hui-Lan

    2017-04-01

    Combined pulmonary fibrosis and emphysema (CPFE) is an "umbrella term" encompassing emphysema and pulmonary fibrosis, but its pathogenesis is not known. We established two models of CPFE in mice using tracheal instillation with bleomycin (BLM) or murine gammaherpesvirus 68 (MHV-68). Experimental mice were divided randomly into four groups: A (normal control, n=6), B (emphysema, n=6), C (emphysema+MHV-68, n=24), D (emphysema+BLM, n=6). Group C was subdivided into four groups: C1 (sacrificed on day 367, 7 days after tracheal instillation of MHV-68); C2 (day 374; 14days); C3 (day 381; 21days); C4 (day 388; 28days). Conspicuous emphysema and interstitial fibrosis were observed in BLM and MHV-68 CPFE mouse models. However, BLM induced diffuse pulmonary interstitial fibrosis with severely diffuse pulmonary inflammation; MHV-68 induced relatively modest inflammation and fibrosis, and the inflammation and fibrosis were not diffuse, but instead around bronchioles. Inflammation and fibrosis were detectable in the day-7 subgroup and reached a peak in the day-28 subgroup in the emphysema + MHV-68 group. Levels of macrophage chemoattractant protein-1, macrophage inflammatory protein-1α, interleukin-13, and transforming growth factor-β1 in bronchoalveolar lavage fluid were increased significantly in both models. Percentage of apoptotic type-2 lung epithelial cells was significantly higher; however, all four types of cytokine and number of macrophages were significantly lower in the emphysema+MHV-68 group compared with the emphysema +BLM group. The different changes in pathology between BLM and MHV-68 mice models demonstrated different pathology subtypes of CPFE: macrophage infiltration and apoptosis of type-II lung epithelial cells increased with increasing pathology score for pulmonary fibrosis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Multifaceted Therapeutic Benefits of Factors Derived From Dental Pulp Stem Cells for Mouse Liver Fibrosis.

    PubMed

    Hirata, Marina; Ishigami, Masatoshi; Matsushita, Yoshihiro; Ito, Takanori; Hattori, Hisashi; Hibi, Hideharu; Goto, Hidemi; Ueda, Minoru; Yamamoto, Akihito

    2016-10-01

    : Chronic liver injury from various causes often results in liver fibrosis (LF). Although the liver possesses endogenous tissue-repairing activities, these can be overcome by sustained inflammation and excessive fibrotic scar formation. Advanced LF leads to irreversible cirrhosis and subsequent liver failure and/or hepatic cancer. Here, using the mouse carbon tetrachloride (CCl 4 )-induced LF model, we showed that a single intravenous administration of stem cells derived from human exfoliated deciduous teeth (SHEDs) or of SHED-derived serum-free conditioned medium (SHED-CM) resulted in fibrotic scar resolution. SHED-CM suppressed the gene expression of proinflammatory mediators, such as TNF-α, IL-1β, and iNOS, and eliminated activated hepatic stellate cells by inducing their apoptosis, but protected parenchymal hepatocytes from undergoing apoptosis. In addition, SHED-CM induced tissue-repairing macrophages that expressed high levels of the profibrinolytic factor, matrix metalloproteinase 13. Furthermore, SHED-CM suppressed the CCl 4 -induced apoptosis of primary cultured hepatocytes. SHED-CM contained a high level of hepatocyte growth factor (HGF). Notably, HGF-depleted SHED-CM (dHGF-CM) did not suppress the proinflammatory response or resolve fibrotic scarring. Furthermore, SHED-CM, but not dHGF-CM, inhibited CCl 4 -induced hepatocyte apoptosis. These results suggest that HGF plays a central role in the SHED-CM-mediated resolution of LF. Taken together, our findings suggest that SHED-CM provides multifaceted therapeutic benefits for the treatment of LF. This study demonstrated that a single intravenous administration of stem cells from human exfoliated deciduous teeth (SHEDs) or of the serum-free conditioned medium (CM) derived from SHEDs markedly improved mouse liver fibrosis (LF). SHED-CM suppressed chronic inflammation, eliminated activated hepatic stellate cells by inducing their apoptosis, protected hepatocytes from undergoing apoptosis, and induced

  10. Comparison of FibroTest-ActiTest with histopathology in demonstrating fibrosis and necroinflammatory activity in chronic hepatitis B and C.

    PubMed

    Uyar, Cemile; Akcam, Fusun Zeynep; Ciris, Metin; Kaya, Onur; Kockar, Cem; Isler, Mehmet

    2010-01-01

    FibroTest and ActiTest are noninvasive tests used in determining the level of fibrosis and the degree of necroinflammatory activity in the liver. In our study, we aimed to investigate whether these tests could be alternative to liver biopsy. Fifty patients were included in the study. Serum samples were obtained and liver needle biopsy was performed on the same day. Levels of fibrosis in FibroTest and levels of activity in ActiTest, both determined via serum biochemical markers, were compared with levels of fibrosis and activity in histopathological examination. For statistical analyses, Mc Nemar chi square test and Spearman's correlation tests were used. There was a significant positive correlation between fibrosis in biopsy and the level of fibrosis in FibroTest in patients with hepatitis B virus (HBV) (rho: 0.67, P < 0.0001). However, no significant correlation was determined between the activity in biopsy and the degree of activity in ActiTest (rho: 0.29, P < 0.05). No significant correlation was determined between both fibrosis and activity established in biopsy and the results of FibroTest and ActiTest in the group of patients with hepatitis C virus (HCV) (rho: 0.22, P < 0.05 and rho: 0.15, P < 0.05, respectively). Our results suggest that novel and safer noninvasive biochemical tests are needed as an alternative to histopathology in patients infected with HBV and HCV. Consequently, we believe that liver biopsy maintains its place as a gold standard in determining the histopathological condition of the liver.

  11. Restoring homeostasis of CD4+ T cells in hepatitis-B-virus-related liver fibrosis

    PubMed Central

    Cheng, Li-Sha; Liu, Yun; Jiang, Wei

    2015-01-01

    Immune-mediated liver injury is widely seen during hepatitis B virus (HBV) infection. Unsuccessful immune clearance of HBV results in chronic hepatitis and increases the risk of liver cirrhosis and hepatocellular carcinoma. HBV-related liver fibrosis (HBVLF), occurring as a result of HBV-induced chronic hepatitis, is a reversible, intermediate stage of chronic hepatitis B (CHB) and liver cirrhosis. Therefore, defining the pathogenesis of HBVLF is of practical significance for achieving better clinical outcomes. Recently, the homeostasis of CD4+ T cells was considered to be pivotal in the process of HBVLF. To better uncover the underlying mechanisms, in this review, we systematically retrospect the impacts of different CD4+ T-cell subsets on CHB and HBVLF. We emphasize CD4+ T-cell homeostasis and the important balance between regulatory T (Treg) and T helper 17 (Th17) cells. We discuss some cytokines associated with Treg and Th17 cells such as interleukin (IL)-17, IL-22, IL-21, IL-23, IL-10, IL-35 and IL-33, as well as surface molecules such as programmed cell death protein 1, cytotoxic T lymphocyte-associated antigen 4, T cell immunoglobulin domain and mucin domain-containing molecule 3 and cannabinoid receptor 2 that have potential therapeutic implications for the homeostasis of CD4+ T cells in CHB and HBVLF. PMID:26478664

  12. Genomic analysis of lung cell lines exposures to space radiation and the effect of lunar dust on selected fibrosis gene using RT2 PCR Array

    NASA Astrophysics Data System (ADS)

    Yeshitla, Samrawit

    In the United States (U.S.), lung cancer is the number one cause of cancer death among men and women. Previous studies on human and animal epithelial lung cells showed that ionizing radiation and certain environmental pollutants are carcinogens. The surface area of the lungs and the slow turnover rate of the epithelial cells are suggested to play a role in the vulnerability of the cells, which lead to increase in the progenitor cell of the lung. It has been proposed that these progenitor cells, when exposed to radiation undergo multiple alterations that cause the cells to become cancerous. The current thought is that the lungs contain several facultative progenitor cells that are situated throughout the lung epithelium and are regionally restricted in their regenerative capacity. In this study, normal Human Bronchial Epithelial Cells (HBECs) were immortalized through the expression of Cdk4 and hTERT and evaluated for the effects radiation using in vitro study. The HBECs retained its novel multipotent capacity in vitro and represented unrestricted progenitor cells of the adult lungs, which resemble an embryonic progenitor. Analysis of the transformed clones of human bronchial epithelial cell line, HEBC3KT exposed to Fe ions and gamma rays revealed chromosomal abnormality, which was detected with the Multi-color Fluorescent In Situ Hybridization (mFish). In Part two of this study the F344 rats exposed to lunar dust, for 4 weeks (6h/d; 5d/wk.) in nose-only inhalation chambers at concentrations of 0 (control air), 2.1, 6.8, 20.8, and 61 mg/m3 of lunar dust, were used to determine the lunar dust toxicity on the lung tissues and total RNA were prepared from the tissues and used for gene expression. Analysis of gene expression data using Ingenuity Pathway Analysis tool identified multiple pathways of which fibrosis was one of the pathways. The Rat Fibrosis RT 2 Profile PCR Array was used to profile the expression of 84 genes that are relevant to fibrosis in the lung

  13. Effects and mechanisms of pirfenidone, prednisone and acetylcysteine on pulmonary fibrosis in rat idiopathic pulmonary fibrosis models.

    PubMed

    Yu, Wencheng; Guo, Fang; Song, Xiaoxia

    2017-12-01

    Previous studies have reported that caveolin-1 (Cav-1) is associated with lung fibrosis. However, the role of Cav-1 expression in pirfenidone-treated idiopathic pulmonary fibrosis (IPF) is unknown. This study investigated Cav-1 expression in pirfenidone-treated IPF, and compared the effects of pirfenidone with acetylcysteine and prednisone on IPF. Rat IPF model was established by endotracheal injection of 5 mg/kg bleomycin A5 into the specific pathogen-free Wistar male rats. Pirfenidone (P, 100 mg/kg once daily), prednisone (H, 5 mg/kg once daily) and acetylcysteine (N, 4 mg/kg 3 times per day) were used to treat the rat model by intragastric administration for 45 consecutive days, respectively. The normal rats without IPF were used as the controls. After 15, 30 and 45 days of drug treatment, lung histopathology was assessed. The expression of Cav-1 was determined using real-time quantitative PCR and Western blot; the expression of tumour necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor (PDGF) was determined by enzyme-linked immunosorbent assay. After 15, 30 and 45 days of drug treatment, comparison of the three drug-treated groups with the model group showed significantly lower (p < 0.05) significance of airsacculitis and fibrosis scores of lung tissues, as well as expression of TGF-β1, TNF-α and PDGF, but the expression of Cav-1 was higher (p < 0.05). Compared with the N group, the fibrosis score was significantly lower and the protein expression of Cav-1 was significantly higher in the P group (p < 0.05). Additionally, the expression of Cav-1 was negatively correlated with the airsacculitis and fibrosis scores (r = -0.506, p < 0.01; r = -0.676, p < 0.01) as well as expression of TGF-β1, TNF-α and PDGF (r = -0.590, p < 0.01; r = -0.530, p < 0.01; r = -0.553, p < 0.01). Pirfenidone, prednisone and acetylcysteine can inhibit airsacculitis and

  14. Ablation of biglycan attenuates cardiac hypertrophy and fibrosis after left ventricular pressure overload.

    PubMed

    Beetz, Nadine; Rommel, Carolin; Schnick, Tilman; Neumann, Elena; Lother, Achim; Monroy-Ordonez, Elsa Beatriz; Zeeb, Martin; Preissl, Sebastian; Gilsbach, Ralf; Melchior-Becker, Ariane; Rylski, Bartosz; Stoll, Monika; Schaefer, Liliana; Beyersdorf, Friedhelm; Stiller, Brigitte; Hein, Lutz

    2016-12-01

    Biglycan, a small leucine-rich proteoglycan, has been shown to play an important role in stabilizing fibrotic scars after experimental myocardial infarction. However, the role of biglycan in the development and regression of cardiomyocyte hypertrophy and fibrosis during cardiac pressure overload and unloading remains elusive. Thus, the aim of the present study was to assess the effect of biglycan on cardiac remodeling in a mouse model of left ventricular pressure overload and unloading. Left ventricular pressure overload induced by transverse aortic constriction (TAC) in mice resulted in left ventricular dysfunction, fibrosis and increased biglycan expression. Fluorescence- and magnetic-assisted sorting of cardiac cell types revealed upregulation of biglycan in the fibroblast population, but not in cardiomyocytes, endothelial cells or leukocytes after TAC. Removal of the aortic constriction (rTAC) after short-term pressure overload (3weeks) improved cardiac contractility and reversed ventricular hypertrophy but not fibrosis in wild-type (WT) mice. Biglycan ablation (KO) enhanced functional recovery but did not resolve cardiac fibrosis. After long-term TAC for 9weeks, ablation of biglycan attenuated the development of cardiac hypertrophy and fibrosis. In vitro, biglycan induced hypertrophy of neonatal rat cardiomyocytes and led to activation of a hypertrophic gene program. Putative downstream mediators of biglycan signaling include Rcan1, Abra and Tnfrsf12a. These genes were concordantly induced by TAC in WT but not in biglycan KO mice. Left ventricular pressure overload induces biglycan expression in cardiac fibroblasts. Ablation of biglycan improves cardiac function and attenuates left ventricular hypertrophy and fibrosis after long-term pressure overload. In vitro biglycan induces hypertrophy of cardiomyocytes, suggesting that biglycan may act as a signaling molecule between cell types to modulate cardiac remodeling. Copyright © 2016 Elsevier Ltd. All rights

  15. Longitudinal cystic fibrosis care.

    PubMed

    Antunovic, S S; Lukac, M; Vujovic, D

    2013-01-01

    Cystic fibrosis is a complex disease entity that presents considerable lifelong challenges. Implementation of medical and surgical treatment options involves multisystem interventions to prevent and treat lung and gastrointestinal manifestations of cystic fibrosis and associated comorbidities. From birth through adulthood, cystic fibrosis care entails a longitudinal regimen aimed at achieving relief of disease symptoms and enhanced life expectancy. With increased knowledge of the molecular behavior of the cystic fibrosis transmembrane conductance regulator (CFTR) in health and disease, clinical practice has been enriched by the prospect of novel strategies, including mutation-specific drug and gene therapy targeting restoration of corrupted transepithelial ion transport. Emerging paradigms of comprehensive care increasingly enable personalized solutions to address the root cause of disease-transforming management options for individuals with cystic fibrosis.

  16. Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model.

    PubMed

    Semedo, Patricia; Correa-Costa, Matheus; Antonio Cenedeze, Marcos; Maria Avancini Costa Malheiros, Denise; Antonia dos Reis, Marlene; Shimizu, Maria Heloisa; Seguro, Antonio Carlos; Pacheco-Silva, Alvaro; Saraiva Camara, Niels Olsen

    2009-12-01

    Mesenchymal stem cells (MSCs) have regenerative properties in acute kidney injury, but their role in chronic kidney diseases is still unknown. More specifically, it is not known whether MSCs halt fibrosis. The purpose of this work was to investigate the role of MSCs in fibrogenesis using a model of chronic renal failure. MSCs were obtained from the tibias and femurs of male Wistar-EPM rats. Female Wistar rats were subjected to the remnant model, and 2|x|10(5) MSCs were intravenously administrated to each rat every other week for 8 weeks or only once and followed for 12 weeks. SRY gene expression was observed in female rats treated with male MSCs, and immune localization of CD73(+)CD90(+) cells at 8 weeks was also assessed. Serum and urine analyses showed an amelioration of functional parameters in MSC-treated animals at 8 weeks, but not at 12 weeks. Masson's trichrome and Sirius red staining demonstrated reduced levels of fibrosis in MSC-treated animals. These results were corroborated by reduced vimentin, type I collagen, transforming growth factor beta, fibroblast specific protein 1 (FSP-1), monocyte chemoattractant protein 1, and Smad3 mRNA expression and alpha smooth muscle actin and FSP-1 protein expression. Renal interleukin (IL)-6 and tumor necrosis factor alpha mRNA expression levels were significantly decreased after MSC treatment, whereas IL-4 and IL-10 expression levels were increased. All serum cytokine expression levels were decreased in MSC-treated animals. Taken together, these results suggested that MSC therapy can indeed modulate the inflammatory response that follows the initial phase of a chronic renal injury. The immunosuppressive and remodeling properties of MSCs may be involved in the decreased fibrosis in the kidney.

  17. EGF receptor tyrosine kinase inhibitors diminish transforming growth factor-alpha-induced pulmonary fibrosis.

    PubMed

    Hardie, William D; Davidson, Cynthia; Ikegami, Machiko; Leikauf, George D; Le Cras, Timothy D; Prestridge, Adrienne; Whitsett, Jeffrey A; Korfhagen, Thomas R

    2008-06-01

    Transforming growth factor-alpha (TGF-alpha) is a ligand for the EGF receptor (EGFR). EGFR activation is associated with fibroproliferative processes in human lung disease and animal models of pulmonary fibrosis. We determined the effects of EGFR tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva) on the development and progression of TGF-alpha-induced pulmonary fibrosis. Using a doxycycline-regulatable transgenic mouse model of lung-specific TGF-alpha expression, we determined effects of treatment with gefitinib and erlotinib on changes in lung histology, total lung collagen, pulmonary mechanics, pulmonary hypertension, and expression of genes associated with synthesis of ECM and vascular remodeling. Induction in the lung of TGF-alpha caused progressive pulmonary fibrosis over an 8-wk period. Daily administration of gefitinib or erlotinib prevented development of fibrosis, reduced accumulation of total lung collagen, prevented weight loss, and prevented changes in pulmonary mechanics. Treatment of mice with gefitinib 4 wk after the induction of TGF-alpha prevented further increases in and partially reversed total collagen levels and changes in pulmonary mechanics and pulmonary hypertension. Increases in expression of genes associated with synthesis of ECM as well as decreases of genes associated with vascular remodeling were also prevented or partially reversed. Administration of gefitinib or erlotinib did not cause interstitial fibrosis or increases in lavage cell counts. Administration of small molecule EGFR tyrosine kinase inhibitors prevented further increases in and partially reversed pulmonary fibrosis induced directly by EGFR activation without inducing inflammatory cell influx or additional lung injury.

  18. Topical cystic fibrosis transmembrane conductance regulator gene replacement for cystic fibrosis-related lung disease.

    PubMed

    Lee, T; Southern, K W

    2007-04-18

    measured ion transport in the lower airways and demonstrated significant changes toward normal values in the participants who received gene transfer agents (P < 0.0001), weighted mean difference 6.86 (95% CI of 3.77 to 9.95). In these participants there was also evidence of increased salt transport in cells obtained by brushing the lower airway. These outcomes, whilst important, are not of direct clinical relevance. There is currently no evidence to support the use of CFTR gene transfer reagents as a treatment for lung disease in people with cystic fibrosis. Future studies need to investigate clinically important outcome measures.

  19. Increased plasma membrane cholesterol in cystic fibrosis cells correlates with CFTR genotype and depends on de novo cholesterol synthesis

    PubMed Central

    2010-01-01

    Background Previous observations demonstrate that Cftr-null cells and tissues exhibit alterations in cholesterol processing including perinuclear cholesterol accumulation, increased de novo synthesis, and an increase in plasma membrane cholesterol accessibility compared to wild type controls. The hypothesis of this study is that membrane cholesterol accessibility correlates with CFTR genotype and is in part influenced by de novo cholesterol synthesis. Methods Electrochemical detection of cholesterol at the plasma membrane is achieved with capillary microelectrodes with a modified platinum coil that accepts covalent attachment of cholesterol oxidase. Modified electrodes absent cholesterol oxidase serves as a baseline control. Cholesterol synthesis is determined by deuterium incorporation into lipids over time. Incorporation into cholesterol specifically is determined by mass spectrometry analysis. All mice used in the study are on a C57Bl/6 background and are between 6 and 8 weeks of age. Results Membrane cholesterol measurements are elevated in both R117H and ΔF508 mouse nasal epithelium compared to age-matched sibling wt controls demonstrating a genotype correlation to membrane cholesterol detection. Expression of wt CFTR in CF epithelial cells reverts membrane cholesterol to WT levels further demonstrating the impact of CFTR on these processes. In wt epithelial cell, the addition of the CFTR inhibitors, Gly H101 or CFTRinh-172, for 24 h surprisingly results in an initial drop in membrane cholesterol measurement followed by a rebound at 72 h suggesting a feedback mechanism may be driving the increase in membrane cholesterol. De novo cholesterol synthesis contributes to membrane cholesterol accessibility. Conclusions The data in this study suggest that CFTR influences cholesterol trafficking to the plasma membrane, which when depleted, leads to an increase in de novo cholesterol synthesis to restore membrane content. PMID:20487541

  20. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis

    PubMed Central

    Bueno, Marta; Lai, Yen-Chun; Romero, Yair; Brands, Judith; St. Croix, Claudette M.; Kamga, Christelle; Corey, Catherine; Herazo-Maya, Jose D.; Sembrat, John; Lee, Janet S.; Duncan, Steve R.; Rojas, Mauricio; Shiva, Sruti; Chu, Charleen T.; Mora, Ana L.

    2014-01-01

    Although aging is a known risk factor for idiopathic pulmonary fibrosis (IPF), the pathogenic mechanisms that underlie the effects of advancing age remain largely unexplained. Some age-related neurodegenerative diseases have an etiology that is related to mitochondrial dysfunction. Here, we found that alveolar type II cells (AECIIs) in the lungs of IPF patients exhibit marked accumulation of dysmorphic and dysfunctional mitochondria. These mitochondrial abnormalities in AECIIs of IPF lungs were associated with upregulation of ER stress markers and were recapitulated in normal mice with advancing age in response to stimulation of ER stress. We found that impaired mitochondria in IPF and aging lungs were associated with low expression of PTEN-induced putative kinase 1 (PINK1). Knockdown of PINK1 expression in lung epithelial cells resulted in mitochondria depolarization and expression of profibrotic factors. Moreover, young PINK1-deficient mice developed similarly dysmorphic, dysfunctional mitochondria in the AECIIs and were vulnerable to apoptosis and development of lung fibrosis. Our data indicate that PINK1 deficiency results in swollen, dysfunctional mitochondria and defective mitophagy, and promotes fibrosis in the aging lung. PMID:25562319