Kjaer, Troels R.; Hansen, Annette G.; Sørensen, Uffe B. S.; Holm, Anne T.; Sørensen, Grith L.; Jensenius, Jens C.
2013-01-01
The three human ficolins (H-, L-, and M-ficolins) and mannan-binding lectin are pattern recognition molecules of the innate immune system mediating activation of the lectin pathway of the complement system. These four human proteins bind to some microorganisms and may be involved in the resolution of infections. We investigated binding selectivity by examining the binding of M-ficolin to a panel of more than 100 different streptococcal strains (Streptococcus pneumoniae and Streptococcus mitis), each expressing distinct polysaccharide structures. M-ficolin binding was observed for three strains only: strains of the pneumococcal serotypes 19B and 19C and a single S. mitis strain expressing a similar polysaccharide structure. The bound M-ficolin, in association with MASP-2, mediated the cleavage of complement factor C4. Binding to the bacteria was inhibitable by N-acetylglucosamine, indicating that the interaction with the bacterial surface takes place via the fibrinogen-like domain. The common N-acetylmannosamine residue present in the structures of the four capsular polysaccharides of group 19 is linked via a phosphodiester bond. This residue is apparently not a ligand for M-ficolin, since the lectin binds to two of the group 19 polysaccharides only. M-ficolin bound strongly to serotype 19B and 19C polysaccharides. In contrast to those of serotypes 19A and 19F, serotype 19B and 19C polysaccharides contain an extra N-acetylmannosamine residue linked via glycoside linkage only. Thus, this extra residue seems to be the M-ficolin ligand. In conclusion, we were able to demonstrate specific binding of M-ficolin to some capsular polysaccharides of the opportunistic pathogen S. pneumoniae and of the commensal bacterium S. mitis. PMID:23184524
Favier, Anne-Laure; Gout, Evelyne; Reynard, Olivier; Ferraris, Olivier; Kleman, Jean-Philippe; Volchkov, Viktor; Peyrefitte, Christophe; Thielens, Nicole M
2016-06-01
Ebola virus infection requires the surface viral glycoprotein to initiate entry into the target cells. The trimeric glycoprotein is a highly glycosylated viral protein which has been shown to interact with host C-type lectin receptors and the soluble complement recognition protein mannose-binding lectin, thereby enhancing viral infection. Similarly to mannose-binding lectin, ficolins are soluble effectors of the innate immune system that recognize particular glycans at the pathogen surface. In this study, we demonstrate that ficolin-1 interacts with the Zaire Ebola virus (EBOV) glycoprotein, and we characterized this interaction by surface plasmon resonance spectroscopy. Ficolin-1 was shown to bind to the viral glycoprotein with a high affinity. This interaction was mediated by the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of the viral glycoprotein. Using a ficolin-1 control mutant devoid of sialic acid-binding capacity, we identified sialylated moieties of the mucin domain to be potential ligands on the glycoprotein. In cell culture, using both pseudotyped viruses and EBOV, ficolin-1 was shown to enhance EBOV infection independently of the serum complement. We also observed that ficolin-1 enhanced EBOV infection on human monocyte-derived macrophages, described to be major viral target cells,. Competition experiments suggested that although ficolin-1 and mannose-binding lectin recognized different carbohydrate moieties on the EBOV glycoprotein, the observed enhancement of the infection likely depended on a common cellular receptor/partner. In conclusion, ficolin-1 could provide an alternative receptor-mediated mechanism for enhancing EBOV infection, thereby contributing to viral subversion of the host innate immune system. A specific interaction involving ficolin-1 (M-ficolin), a soluble effector of the innate immune response, and the glycoprotein (GP) of EBOV was identified. Ficolin-1 enhanced virus infection instead of tipping the balance toward its elimination. An interaction between the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of Ebola virus GP occurred. In this model, the enhancement of infection was shown to be independent of the serum complement. The facilitation of EBOV entry into target host cells by the interaction with ficolin-1 and other host lectins shunts virus elimination, which likely facilitates the survival of the virus in infected host cells and contributes to the virus strategy to subvert the innate immune response. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Adler Sørensen, Camilla; Rosbjerg, Anne; Hebbelstrup Jensen, Betina; Krogfelt, Karen Angeliki; Garred, Peter
2018-01-01
Enteroaggregative Escherichia coli (EAEC) causes acute and persistent diarrhea worldwide. Still, the involvement of host factors in EAEC infections is unresolved. Binding of recognition molecules from the lectin pathway of complement to EAEC strains have been observed, but the importance is not known. Our aim was to uncover the involvement of these molecules in innate complement dependent immune protection toward EAEC. Binding of mannose-binding lectin, ficolin-1, -2, and -3 to four prototypic EAEC strains, and ficolin-2 binding to 56 clinical EAEC isolates were screened by a consumption-based ELISA method. Flow cytometry was used to determine deposition of C4b, C3b, and the bactericidal C5b-9 membrane attack complex (MAC) on the bacteria in combination with different complement inhibitors. In addition, the direct serum bactericidal effect was assessed. Screening of the prototypic EAEC strains revealed that ficolin-2 was the major binder among the lectin pathway recognition molecules. However, among the clinical EAEC isolates only a restricted number ( n = 5) of the isolates bound ficolin-2. Using the ficolin-2 binding isolate C322-17 as a model, we found that incubation with normal human serum led to deposition of C4b, C3b, and to MAC formation. No inhibition of complement deposition was observed when a C1q inhibitor was added, while partial inhibition was observed when ficolin-2 or factor D inhibitors were used separately. Combining the inhibitors against ficolin-2 and factor D led to virtually complete inhibition of complement deposition and protection against direct bacterial killing. These results demonstrate that ficolin-2 may play an important role in innate immune protection against EAEC when an appropriate ligand is exposed, but many EAEC strains evade lectin pathway recognition and may, therefore, circumvent this strategy of innate host immune protection.
Ali, Youssif M; Kenawy, Hany I; Muhammad, Adnan; Sim, Robert B; Andrew, Peter W; Schwaeble, Wilhelm J
2013-01-01
The complement system is an essential component of the immune response, providing a critical line of defense against different pathogens including S. pneumoniae. Complement is activated via three distinct pathways: the classical (CP), the alternative (AP) and the lectin pathway (LP). The role of Pneumolysin (PLY), a bacterial toxin released by S. pneumoniae, in triggering complement activation has been studied in vitro. Our results demonstrate that in both human and mouse sera complement was activated via the CP, initiated by direct binding of even non-specific IgM and IgG3 to PLY. Absence of CP activity in C1q(-/-) mouse serum completely abolished any C3 deposition. However, C1q depleted human serum strongly opsonized PLY through abundant deposition of C3 activation products, indicating that the LP may have a vital role in activating the human complement system on PLY. We identified that human L-ficolin is the critical LP recognition molecule that drives LP activation on PLY, while all of the murine LP recognition components fail to bind and activate complement on PLY. This work elucidates the detailed interactions between PLY and complement and shows for the first time a specific role of the LP in PLY-mediated complement activation in human serum.
Ali, Youssif M.; Kenawy, Hany I.; Muhammad, Adnan; Sim, Robert B.
2013-01-01
The complement system is an essential component of the immune response, providing a critical line of defense against different pathogens including S. pneumoniae. Complement is activated via three distinct pathways: the classical (CP), the alternative (AP) and the lectin pathway (LP). The role of Pneumolysin (PLY), a bacterial toxin released by S. pneumoniae, in triggering complement activation has been studied in vitro. Our results demonstrate that in both human and mouse sera complement was activated via the CP, initiated by direct binding of even non-specific IgM and IgG3 to PLY. Absence of CP activity in C1q−/− mouse serum completely abolished any C3 deposition. However, C1q depleted human serum strongly opsonized PLY through abundant deposition of C3 activation products, indicating that the LP may have a vital role in activating the human complement system on PLY. We identified that human L-ficolin is the critical LP recognition molecule that drives LP activation on PLY, while all of the murine LP recognition components fail to bind and activate complement on PLY. This work elucidates the detailed interactions between PLY and complement and shows for the first time a specific role of the LP in PLY-mediated complement activation in human serum. PMID:24349316
The Lectin Pathway of Complement and Rheumatic Heart Disease
Beltrame, Marcia Holsbach; Catarino, Sandra Jeremias; Goeldner, Isabela; Boldt, Angelica Beate Winter; de Messias-Reason, Iara José
2014-01-01
The innate immune system is the first line of host defense against infection and is comprised of humoral and cellular mechanisms that recognize potential pathogens within minutes or hours of entry. The effector components of innate immunity include epithelial barriers, phagocytes, and natural killer cells, as well as cytokines and the complement system. Complement plays an important role in the immediate response against microorganisms, including Streptococcus sp. The lectin pathway is one of three pathways by which the complement system can be activated. This pathway is initiated by the binding of mannose-binding lectin (MBL), collectin 11 (CL-K1), and ficolins (Ficolin-1, Ficolin-2, and Ficolin-3) to microbial surface oligosaccharides and acetylated residues, respectively. Upon binding to target molecules, MBL, CL-K1, and ficolins form complexes with MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2), which cleave C4 and C2 forming the C3 convertase (C4b2a). Subsequent activation of complement cascade leads to opsonization, phagocytosis, and lysis of target microorganisms through the formation of the membrane-attack complex. In addition, activation of complement may induce several inflammatory effects, such as expression of adhesion molecules, chemotaxis and activation of leukocytes, release of reactive oxygen species, and secretion of cytokines and chemokines. In this chapter, we review the general aspects of the structure, function, and genetic polymorphism of lectin-pathway components and discuss most recent understanding on the role of the lectin pathway in the predisposition and clinical progression of Rheumatic Fever. PMID:25654073
Bidula, Stefan; Kenawy, Hany; Ali, Youssif M.; Sexton, Darren; Schwaeble, Wilhelm J.
2013-01-01
Aspergillus species are saprophytic molds causing life-threatening invasive fungal infections in the immunocompromised host. Innate immune recognition, in particular, the mechanisms of opsonization and complement activation, has been reported to be an integral part of the defense against fungi. We have shown that the complement component ficolin-A significantly binds to Aspergillus conidia and hyphae in a concentration-dependent manner and was inhibited by N-acetylglucosamine and N-acetylgalactosamine. Calcium-independent binding to Aspergillus fumigatus and A. terreus was observed, but binding to A. flavus and A. niger was calcium dependent. Ficolin-A binding to conidia was increased under low-pH conditions, and opsonization led to enhanced binding of conidia to A549 airway epithelial cells. In investigations of the lectin pathway of complement activation, ficolin-A-opsonized conidia did not lead to lectin pathway-specific C4 deposition. In contrast, the collectin mannose binding lectin C (MBL-C) but not MBL-A led to efficient lectin pathway activation on A. fumigatus in the absence of ficolin-A. In addition, ficolin-A opsonization led to a modulation of the proinflammatory cytokine interleukin-8. We conclude that ficolin-A may play an important role in the innate defense against Aspergillus by opsonizing conidia, immobilizing this fungus through enhanced adherence to epithelial cells and modulation of inflammation. However, it appears that other immune pattern recognition molecules, i.e., those of the collectin MBL-C, are involved in the Aspergillus-lectin complement pathway activation rather than ficolin-A. PMID:23478320
Man-Kupisinska, Aleksandra; Michalski, Mateusz; Maciejewska, Anna; Swierzko, Anna S.; Cedzynski, Maciej; Lugowski, Czeslaw; Lukasiewicz, Jolanta
2016-01-01
Despite recombinant protein technology development, proteins isolated from natural sources remain important for structure and activity determination. Ficolins represent a class of proteins that are difficult to isolate. To date, three methods for purifying ficolin-3 from plasma/serum have been proposed, defined by most critical step: (i) hydroxyapatite absorption chromatography (ii) N-acetylated human serum albumin affinity chromatography and (iii) anti-ficolin-3 monoclonal antibody-based affinity chromatography. We present a new protocol for purifying ficolin-3 complexes from human plasma that is based on an exclusive ligand: the O-specific polysaccharide of Hafnia alvei PCM 1200 LPS (O-PS 1200). The protocol includes (i) poly(ethylene glycol) precipitation; (ii) yeast and l-fucose incubation, for depletion of mannose-binding lectin; (iii) affinity chromatography using O-PS 1200-Sepharose; (iv) size-exclusion chromatography. Application of this protocol yielded average 2.2 mg of ficolin-3 preparation free of mannose-binding lectin (MBL), ficolin-1 and -2 from 500 ml of plasma. The protein was complexed with MBL-associated serine proteases (MASPs) and was able to activate the complement in vitro. In-process monitoring of MBL, ficolins, and total protein content revealed the presence of difficult-to-remove immunoglobulin G, M and A, in some extent in agreement with recent findings suggesting crosstalk between IgG and ficolin-3. We demonstrated that recombinant ficolin-3 interacts with IgG and IgM in a concentration-dependent manner. Although this association does not appear to influence ficolin-3-ligand interactions in vitro, it may have numerous consequences in vivo. Thus our purification procedure provides Ig-ficolin-3/MASP complexes that might be useful for gaining further insight into the crosstalk and biological activity of ficolin-3. PMID:27232184
Changes in the levels of mannan-binding lectin and ficolins during head-down tilted bed rest.
Kelsen, Jens; Sandahl, Thomas D; Storm, Line; Frings-Meuthen, Petra; Dahlerup, Jens F; Thiel, Steffen
2014-08-01
Spaceflight studies and ground-based analogues of microgravity indicate a weakening of human immunity. Mannan-binding lectin (MBL) and H-, L-, and M-ficolin together constitute the lectin pathway and mediate the clearance of pathogens through complement activation. We hypothesized that simulated microgravity may weaken human innate immune functions and studied the impact of 6° head-down tilted bed rest (HDT) for 21 d on MBL and ficolin levels. Within a 6-mo period, seven men underwent two periods of HDT. Blood samples were analyzed for MBL, H-, L-, and M-ficolin, mannose-binding lectin-associated protein of 44 kDa (MAp44), and collectin liver 1 (CL-L1) by time-resolved immunofluorometric assays (TRIFMA). We observed well-defined individual preintervention levels of MBL and ficolins. Remarkably similar intraindividual changes occurred for MBL and MBL levels decreased (mean 282 ng · ml⁻¹) in the recovery phase. Conversely, CL-L1, a protein with MBL-like properties, increased (mean 102 ng · ml⁻¹) during the recovery phase. M-ficolin increased (mean 79 ng · ml⁻¹) within the first 2 d of HDT, followed by a decrease (mean 112 ng · ml⁻¹) during the recovery phase. L-ficolin increased (mean 304 ng · ml⁻¹) during HDT, while H-ficolin was essentially unaffected. MAp44, a down-regulator of the lectin pathway, decreased initially (mean 78 ng · ml⁻¹) in the recovery phase followed by an increase (mean 131 ng · ml⁻¹). Alterations in MBL and ficolin levels were modest and with our current knowledge do not lead to overt immunodeficiency. Pronounced changes occurred when the subjects resumed the upright position. In selected individuals, these changes appear to be a conserved response to HDT.
Eppa, Łukasz; Pągowska-Klimek, Izabela; Świerzko, Anna S; Moll, Maciej; Krajewski, Wojciech R; Cedzyński, Maciej
2018-04-01
The artificial surface used for cardiopulmonary bypass (CPB) is a crucial factor activating the complement system and thus contributing to the generation of a systemic inflammatory response. The activation of classical and alternative pathways on this artificial surface is well known. In contrast, lectin pathway (LP) activation has not been fully investigated, although noted during CPB in several studies. Moreover, we have recently proved the contribution of the LP to the generation of the systemic inflammatory response syndrome after pediatric cardiac surgery. The aim of this study was to assess LP-mediated complement activation on the surface of polyurethane CPB circuit tubing (noncoated Chalice ® ), used for CPB procedures in children with congenital heart disease. We found deposition of mannose-binding lectin, ficolin-1, -2, and -3 on the surface of unused tubing and on tubing used for CPB from a small minority of patients. Furthermore, we observed deposition of complement C4 activation products on tubing used for CPB and previously unused tubing after incubation with normal serum. The latter finding indicates LP activation in vitro on the polyurethane surface. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1202-1208, 2018. © 2017 Wiley Periodicals, Inc.
Association of a new FCN3 haplotype with high ficolin-3 levels in leprosy.
Andrade, Fabiana Antunes; Beltrame, Marcia Holsbach; Bini, Valéria Bumiller; Gonçalves, Letícia Boslooper; Boldt, Angelica Beate Winter; Messias-Reason, Iara Jose de
2017-02-01
Leprosy is a chronic inflammatory disease caused by Mycobacterium leprae that mainly affects the skin and peripheral nervous system, leading to a high disability rate and social stigma. Previous studies have shown a contribution of genes encoding products of the lectin pathway of complement in the modulation of the susceptibility to leprosy; however, the ficolin-3/FCN3 gene impact on leprosy is currently unknown. The aim of the present study was to investigate if FCN3 polymorphisms (rs532781899: g.1637delC, rs28362807: g.3524_3532insTATTTGGCC and rs4494157: g.4473C>A) and ficolin-3 serum levels play a role in the susceptibility to leprosy. We genotyped up to 190 leprosy patients (being 114 (60%) lepromatous), and up to 245 controls with sequence-specific PCR. We also measured protein levels using ELISA in 61 leprosy and 73 controls. FCN3 polymorphisms were not associated with disease, but ficolin-3 levels were higher in patients with FCN3 *2B1 (CinsA) haplotype (p = 0.032). Median concentration of ficolin-3 was higher in leprosy per se (26034 ng/mL, p = 0.005) and lepromatous patients (28295 ng/mL, p = 0.016) than controls (18231 ng/mL). In addition, high ficolin-3 levels (>33362 ng/mL) were more common in leprosy per se (34.4%) and in lepromatous patients (35.5%) than controls (19.2%; p = 0.045 and p = 0.047, respectively). Our results lead us to suggest that polymorphisms in the FCN3 gene cooperate to increase ficolin-3 concentration and that it might contribute to leprosy susceptibility by favoring M. leprae infection.
Laursen, Tea L; Sandahl, Thomas D; Støy, Sidsel; Schiødt, Frank V; Lee, William M; Vilstrup, Hendrik; Thiel, Steffen; Grønbaek, Henning
2015-03-01
The complement system is activated in liver diseases including acute liver failure (ALF); however, the role of the lectin pathway of complement has scarcely been investigated in ALF. The pathway is initiated by soluble pattern recognition molecules: mannan-binding lectin (MBL), M-, L-, and H-ficolin and collectin-liver-1 (CL-L1), which are predominantly synthesized in the liver. We aimed to study lectin levels in ALF patients and associations with clinical outcome. Serum samples from 75 patients enrolled by the US ALF Study Group were collected on days 1 and 3. We included 75 healthy blood donors and 20 cirrhosis patients as controls. Analyses were performed using sandwich-type immunoassays (ELISA, TRIFMA). At day 1, the MBL level in ALF patients was 40% lower compared with healthy controls {[median (interquartile range) 0.72 μg/ml(0.91) vs. 1.15 (1.92)(P = 0.02]}, and increased significantly by day 3 [0.83 μg/ml(0.94)(P = 0.01)]. The M-ficolin level was 60% lower [0.54 μg/ml(0.50) vs. 1.48(1.01)(P < 0.0001)]. The CL-L1 level at day 1 was slightly higher compared with healthy controls [3.20 μg/ml(2.37) vs. 2.64(0.72)(P = 0.11)]; this was significant at day 3 [3.35(1.84)(P = 0.006)]. H- and L-ficolin levels were similar to healthy controls. Spontaneous ALF survivors had higher levels of MBL at day 1 [0.96 μg/ml(1.15) vs. 0.60(0.60)(P = 0.02)] and lower levels of L-ficolin by day 3 compared with patients who died or were transplanted [1.61 μg/ml(1.19) vs. 2.17(2.19)(P = 0.02)]. We observed significant dynamics in lectin levels in ALF patients, which may suggest they play a role in ALF pathogenesis. High MBL and low L-ficolin levels are associated with survival. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Swierzko, Anna St; Atkinson, Anne P M; Cedzynski, Maciej; Macdonald, Shirley L; Szala, Agnieszka; Domzalska-Popadiuk, Iwona; Borkowska-Klos, Monika; Jopek, Aleksandra; Szczapa, Jerzy; Matsushita, Misao; Szemraj, Janusz; Turner, Marc L; Kilpatrick, David C
2009-02-01
Ficolins and one collectin, mannan-binding lectin (MBL), are the only factors known to activate the lectin pathway (LP) of complement. There is considerable circumstantial evidence that MBL insufficiency can increase susceptibility to various infections and influence the course of several non-infectious diseases complicated by infections. Much less information is available concerning l-ficolin. We report the results of a prospective study to investigate any association between either MBL deficiency or l-ficolin deficiency with prematurity, low birthweight or perinatal infections in a large cohort of Polish neonates, representing an ethnically homogenous population (n=1832). Cord blood samples were analysed to determine mbl-2 gene variants, MBL concentrations and MBL-MASP-2 complex activities (MBL-dependent lectin pathway activity) as well as l-ficolin levels. Median concentrations of l-ficolin and MBL were 2500 and 1124 ng/ml, respectively, while median LP activity was 272 mU/ml. After genotyping, 60.6% of babies were mbl-2 A/A, 35.4% were A/O and 4% were O/O genotypes. We found relative l-ficolin deficiency to be associated with prematurity, low birthweight and infections. l-Ficolin concentration correlated with gestational age and with birthweight, independently of gestational age. Preterm deliveries (<38 weeks) occurred more frequently among neonates with low LP activity but not with those having low serum MBL levels. Similarly, no association of serum MBL deficiency with low birthweight was found, but there was a correlation between LP activity and birthweight. Genotypes conferring very low serum MBL concentrations were associated with perinatal infections, and high-MBL-conferring genotypes were associated with prematurity. Our findings suggest that l-ficolin participates in host defence during the perinatal period and constitute the first evidence that relative l-ficolin deficiency may contribute to the adverse consequences of prematurity. Some similar trends were found with facets of MBL deficiency, but the observed relationships were weaker and less consistent.
Schlapbach, Luregn J; Kjaer, Troels R; Thiel, Steffen; Mattmann, Maika; Nelle, Mathias; Wagner, Bendicht P; Ammann, Roland A; Aebi, Christoph; Jensenius, Jens C
2012-04-01
The pattern-recognition molecule M-ficolin is synthesized by monocytes and neutrophils. M-ficolin activates the complement system in a manner similar to mannan-binding lectin (MBL), but little is known about its role in host defense. Neonates are highly vulnerable to bacterial sepsis, in particular, due to their decreased phagocytic function. M-ficolin cord blood concentration was positively correlated with the absolute phagocyte count (ρ 0.51, P < 0.001) and with immature/total neutrophil ratio (ρ 0.34, P < 0.001). When comparing infants with sepsis and controls, a high M-ficolin cord blood concentration (>1,000 ng/ml) was associated with early-onset sepsis (EOS) (multivariate odds ratio 10.92, 95% confidence interval 2.21-54.02, P = 0.003). Experimental exposure of phagocytes isolated from adult donors to Escherichia coli resulted in a significant time- and dose-dependent release of M-ficolin. In conclusion, M-ficolin concentrations were related to circulating phagocytes and EOS. Our results indicate that bacterial sepsis can trigger M-ficolin release by phagocytes. Future studies should investigate whether M-ficolin may be used as a marker of neutrophil activation during invasive infections. We investigated M-ficolin in 47 infants with culture-positive sepsis during the first 30 days of life (13 with EOS and in 94 matched controls. M-ficolin was measured in cord blood using time-resolved immunofluorometric assay (TRIFMA). Multivariate logistic regression was performed.
Ribeiro, Carolina H.; Lynch, Nicholas J.; Stover, Cordula M.; Ali, Youssif M.; Valck, Carolina; Noya-Leal, Francisca; Schwaeble, Wilhelm J.; Ferreira, Arturo
2015-01-01
Trypanosoma cruzi is the causative agent of Chagas' disease, a chronic illness affecting 10 million people around the world. The complement system plays an important role in fighting microbial infections. The recognition molecules of the lectin pathway of complement activation, mannose-binding lectin (MBL), ficolins, and CL-11, bind to specific carbohydrates on pathogens, triggering complement activation through MBL-associated serine protease-2 (MASP-2). Previous in vitro work showed that human MBL and ficolins contribute to T. cruzi lysis. However, MBL-deficient mice are only moderately compromised in their defense against the parasite, as they may still activate the lectin pathway through ficolins and CL-11. Here, we assessed MASP-2-deficient mice, the only presently available mouse line with total lectin pathway deficiency, for a phenotype in T. cruzi infection. Total absence of lectin pathway functional activity did not confer higher susceptibility to T. cruzi infection, suggesting that it plays a minor role in the immune response against this parasite. PMID:25548381
Quach, Quang Huy; Kah, James Chen Yong
2017-04-01
The complement system is a key humoral component of innate immunity, serving as the first line of defense against intruders, including foreign synthetic nanomaterials. Although gold nanomaterials (AuNMs) are widely used in nanomedicine, their immunological response is not well understood. Using AuNMs of three shapes commonly used in biomedical applications: spherical gold nanoparticles, gold nanostars and gold nanorods, we demonstrated that AuNMs activated whole complement system, leading to the formation of SC5b-9 complex. All three complement pathways were simultaneously activated by all the AuNMs. Recognition molecules of the complement system interacted with all AuNMs in vitro, except for l-ficolin, but the correlation between these interactions and corresponding complement pathway activation was only observed in the classical and alternative pathways. We also observed the mediating role of complement activation in cellular uptake of all AuNMs by human U937 promonocytic cells, which expresses complement receptors. Taken together, our results highlighted the potential immunological challenges for clinical applications of AuNMs that were often overlooked.
USDA-ARS?s Scientific Manuscript database
The lectin pathway of the complement system is characterized by two groups of soluble pattern recognition molecules, mannose-binding lectins (MBLs) and ficolins. These molecules recognize and bind carbohydrates in pathogens and activate complement leading to opsonization, leukocyte activation, and d...
An electrochemical immunosensor for quantitative detection of ficolin-3
NASA Astrophysics Data System (ADS)
San, Lili; Zeng, Dongdong; Song, Shiping; Zuo, Xiaolei; Zhang, Huan; Wang, Chenguang; Wu, Jiarui; Mi, Xianqiang
2016-06-01
Diabetes mellitus (DM) is one of the most common metabolic disorders in the world, of which more than 90% is type-2 diabetes mellitus (T2DM). There is a rather urgent need for reliable, sensitive and quick detection techniques in clinical application of T2DM. Ficolin-3 is a potential biomarker of T2DM, because serum ficolin-3 levels are associated with insulin resistance and predict the incidence of T2DM. Herein, a sandwich-type electrochemical immunosensor was developed for the detection of ficolin-3 in human serum. Cyclic voltammetry and the amperometric current versus time were used to characterize the performance of the immunosensor. Under optimal conditions, the detection limitation of ficolin-3 was 100 ng ml-1 and the linear dynamic range was between 2 and 50 μg ml-1. The method has ideal accuracy, excellent stability and selectivity and has wide application prospects in clinical research.
Fraser, D A; Tenner, A J
2008-02-01
Defense collagens and other soluble pattern recognition receptors contain the ability to recognize and bind molecular patterns associated with pathogens (PAMPs) or apoptotic cells (ACAMPs) and signal appropriate effector-function responses. PAMP recognition by defense collagens C1q, MBL and ficolins leads to rapid containment of infection via complement activation. However, in the absence of danger, such as during the clearance of apoptotic cells, defense collagens such as C1q, MBL, ficolins, SP-A, SP-D and even adiponectin have all been shown to facilitate enhanced phagocytosis and modulate induction of cytokines towards an anti-inflammatory profile. In this way, cellular debris can be removed without provoking an inflammatory immune response which may be important in the prevention of autoimmunity and/or resolving inflammation. Indeed, deficiencies and/or knock-out mouse studies have highlighted critical roles for soluble pattern recognition receptors in the clearance of apoptotic bodies and protection from autoimmune diseases along with mediating protection from specific infections. Understanding the mechanisms involved in defense collagen and other soluble pattern recognition receptor modulation of the immune response may provide important novel insights into therapeutic targets for infectious and/or autoimmune diseases and additionally may identify avenues for more effective vaccine design.
Schaffer, Thomas; Schoepfer, Alain M; Seibold, Frank
2014-09-01
Ficolin-2 is an acute phase reactant produced by the liver and targeted to recognize N-acetyl-glucosamine which is present in bacterial and fungal cell walls. We recently showed that ficolin-2 serum levels were significantly higher in CD patients compared to healthy controls. We aimed to evaluate serum ficolin-2 concentrations in CD patients regarding their correlation with endoscopic severity and to compare them with clinical activity, fecal calprotectin, and CRP. Patients provided fecal and blood samples before undergoing ileo-colonoscopy. Disease activity was scored clinically according to the Harvey-Bradshaw Index (HBI) and endoscopically according to the simplified endoscopic score for CD (SES-CD). Ficolin-2 serum levels and fecal calprotectin levels were measured by ELISA. A total of 136 CD patients were prospectively included (mean age at inclusion 41.5±15.4 years, 37.5% females). Median HBI was 3 [2-6] points, median SES-CD was 5 [2-8], median fecal calprotectin was 301 [120-703] μg/g, and median serum ficolin-2 was 2.69 [2.02-3.83] μg/mL. SES-CD correlated significantly with calprotectin (R=0.676, P<0.001), CRP (R=0.458, P<0.001), HBI (R=0.385, P<0.001), and serum ficolin-2 levels (R=0.171, P=0.047). Ficolin-2 levels were higher in CD patients with mild endoscopic disease compared to patients in endoscopic remission (P=0.015) but no difference was found between patients with mild, moderate, and severe endoscopic disease. Ficolin-2 serum levels correlate worse with endoscopic CD activity when compared to fecal calprotectin or CRP. Copyright © 2014 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.
KILPATRICK, D C; MCLINTOCK, L A; ALLAN, E K; COPLAND, M; FUJITA, T; JORDANIDES, N E; KOCH, C; MATSUSHITA, M; SHIRAKI, H; STEWART, K; TSUJIMURA, M; TURNER, M L; FRANKLIN, I M; HOLYOAKE, T L
2003-01-01
Chemotherapy causes neutropenia and an increased susceptibility to infection. Recent reports indicate that mannan-binding lectin (MBL) insufficiency is associated with an increased duration of febrile neutropenia and incidence of serious infections following chemotherapy for haematological malignancies. We aimed to confirm or refute this finding and to extend the investigation to the plasma ficolins, P35 (L-ficolin) and the Hakata antigen (H-ficolin). MBL, L-ficolin and H-ficolin were measured in 128 patients with haematological malignancies treated by chemotherapy alone or combined with bone marrow transplantation. Protein concentrations were related to clinical data retrieved from medical records. MBL concentrations were elevated compared with healthy controls in patients who received chemotherapy, while L-ficolin concentrations were decreased and H-ficolin levels were unchanged. There was no correlation between MBL, L-ficolin or H-ficolin concentration and febrile neutropenia expressed as the proportion of neutropenic periods in which patients experienced fever, and there was no relation between abnormally low (deficiency) levels of MBL, L-ficolin or H-ficolin and febrile neutropenia so expressed. Patients with MBL ≤ 0·1 µg/ml had significantly more major infections than no infections within the follow-up period (P < 0·05), but overall most patients had signs or symptoms of minor infections irrespective of MBL concentration. Neither L-ficolin nor H-ficolin deficiencies were associated with infections individually, in combination or in combination with MBL deficiency. MBL, L-ficolin and H-ficolin, independently or in combination, did not have a major influence on susceptibility to infection in these patients rendered neutropenic by chemotherapy. These results cast doubt on the potential value of MBL replacement therapy in this clinical context. PMID:14616788
Complement activation by ligand-driven juxtaposition of discrete pattern recognition complexes
Degn, Søren E.; Kjaer, Troels R.; Kidmose, Rune T.; Jensen, Lisbeth; Hansen, Annette G.; Tekin, Mustafa; Jensenius, Jens C.; Andersen, Gregers R.; Thiel, Steffen
2014-01-01
Defining mechanisms governing translation of molecular binding events into immune activation is central to understanding immune function. In the lectin pathway of complement, the pattern recognition molecules (PRMs) mannan-binding lectin (MBL) and ficolins complexed with the MBL-associated serine proteases (MASP)-1 and MASP-2 cleave C4 and C2 to generate C3 convertase. MASP-1 was recently found to be the exclusive activator of MASP-2 under physiological conditions, yet the predominant oligomeric forms of MBL carry only a single MASP homodimer. This prompted us to investigate whether activation of MASP-2 by MASP-1 occurs through PRM-driven juxtaposition on ligand surfaces. We demonstrate that intercomplex activation occurs between discrete PRM/MASP complexes. PRM ligand binding does not directly escort the transition of MASP from zymogen to active enzyme in the PRM/MASP complex; rather, clustering of PRM/MASP complexes directly causes activation. Our results support a clustering-based mechanism of activation, fundamentally different from the conformational model suggested for the classical pathway of complement. PMID:25197071
Michelow, Ian C; Dong, Mingdong; Mungall, Bruce A; Yantosca, L Michael; Lear, Calli; Ji, Xin; Karpel, Marshall; Rootes, Christina L; Brudner, Matthew; Houen, Gunnar; Eisen, Damon P; Kinane, T Bernard; Takahashi, Kazue; Stahl, Gregory L; Olinger, Gene G; Spear, Gregory T; Ezekowitz, R Alan B; Schmidt, Emmett V
2010-08-06
Ebola viruses constitute a newly emerging public threat because they cause rapidly fatal hemorrhagic fevers for which no treatment exists, and they can be manipulated as bioweapons. We targeted conserved N-glycosylated carbohydrate ligands on viral envelope surfaces using novel immune therapies. Mannose-binding lectin (MBL) and L-ficolin (L-FCN) were selected because they function as opsonins and activate complement. Given that MBL has a complex quaternary structure unsuitable for large scale cost-effective production, we sought to develop a less complex chimeric fusion protein with similar ligand recognition and enhanced effector functions. We tested recombinant human MBL and three L-FCN/MBL variants that contained the MBL carbohydrate recognition domain and varying lengths of the L-FCN collagenous domain. Non-reduced chimeric proteins formed predominantly nona- and dodecameric oligomers, whereas recombinant human MBL formed octadecameric and larger oligomers. Surface plasmon resonance revealed that L-FCN/MBL76 had the highest binding affinities for N-acetylglucosamine-bovine serum albumin and mannan. The same chimeric protein displayed superior complement C4 cleavage and binding to calreticulin (cC1qR), a putative receptor for MBL. L-FCN/MBL76 reduced infection by wild type Ebola virus Zaire significantly greater than the other molecules. Tapping mode atomic force microscopy revealed that L-FCN/MBL76 was significantly less tall than the other molecules despite similar polypeptide lengths. We propose that alterations in the quaternary structure of L-FCN/MBL76 resulted in greater flexibility in the collagenous or neck region. Similarly, a more pliable molecule might enhance cooperativity between the carbohydrate recognition domains and their cognate ligands, complement activation, and calreticulin binding dynamics. L-FCN/MBL chimeric proteins should be considered as potential novel therapeutics.
Işlak Mutcalı, Sibel; Saltoğlu, Neşe; Balkan, İlker İnanç; Özaras, Reşat; Yemişen, Mücahit; Tabak, Fehmi; Mert, Ali; Öztürk, Recep; Öngören, Şeniz; Başlar, Zafer; Aydın, Yıldız; Ferhanoğlu, Burhan; Soysal, Teoman
2016-12-01
The significance of mannose-binding lectin (MBL) and H-ficolin deficiency in febrile neutropenic (FN) patients and the correlation of these markers along with consecutive C-reactive protein (CRP) and procalcitonin (PCT) levels during the infectious process are investigated. Patients with any hematological malignancies who were defined to have "microbiologically confirmed infection", "clinically documented infection", or "fever of unknown origin" were included in this single-center prospective observational study. Serum levels of CRP, PCT, MBL, and H-ficolin were determined on 3 separate occasions: at baseline (between hospital admission and chemotherapy), at the onset of fever, and at the 72nd hour of fever. Forty-six patients (54% male, mean age 41.7 years) with 61 separate episodes of FN were evaluated. Eleven patients (23.9%) had "microbiologically confirmed infection", 17 (37%) had "clinically documented infection", and 18 (39.1%) had "fever of unknown origin". Fourteen (30.4%) patients had low (<500 ng/mL) initial MBL levels and 7 (15.21%) had low (<12,000 ng/mL) H-ficolin levels. Baseline MBL and H-ficolin levels did not significantly change on the first and third days of fever (p=0.076). Gram-negative bacteremia more frequently occurred in those with low initial MBL levels (p=0.006). PCT levels were significantly higher in those with microbiologically documented infections. Mean and median PCT levels were significantly higher in cases with bacteremia. There was no significant difference between hemoculture-positive and-negative patients in terms of CRP levels. Monitoring serum H-ficolin levels was shown to be of no benefit in terms of predicting severe infection. Low baseline MBL levels were correlated with high risk of gram-negative bacteremia; however, no significant correlation was shown in the follow-up. Close monitoring of PCT levels is warranted to provide more accurate and specific data while monitoring cases of bacteremia.
Golshayan, Déla; Wójtowicz, Agnieszka; Bibert, Stéphanie; Pyndiah, Nitisha; Manuel, Oriol; Binet, Isabelle; Buhler, Leo H; Huynh-Do, Uyen; Mueller, Thomas; Steiger, Jürg; Pascual, Manuel; Meylan, Pascal; Bochud, Pierre-Yves
2016-04-01
There are conflicting data on the role of the lectin pathway of complement activation and its recognition molecules in acute rejection and outcome after transplantation. To help resolve this we analyzed polymorphisms and serum levels of lectin pathway components in 710 consecutive kidney transplant recipients enrolled in the nationwide Swiss Transplant Cohort Study, together with all biopsy-proven rejection episodes and 1-year graft and patient survival. Functional mannose-binding lectin (MBL) levels were determined in serum samples, and previously described MBL2, ficolin 2, and MBL-associated serine protease 2 polymorphisms were genotyped. Low MBL serum levels and deficient MBL2 diplotypes were associated with a higher incidence of acute cellular rejection during the first year, in particular in recipients of deceased-donor kidneys. This association remained significant (hazard ratio 1.75, 95% confidence interval 1.18-2.60) in a Cox regression model after adjustment for relevant covariates. In contrast, there was no significant association with rates of antibody-mediated rejection, patient death, early graft dysfunction or loss. Thus, results in a prospective multicenter contemporary cohort suggest that MBL2 polymorphisms result in low MBL serum levels and are associated with acute cellular rejection after kidney transplantation. Since MBL deficiency is a relatively frequent trait in the normal population, our findings may lead to individual risk stratification and customized immunosuppression. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Clay, Corey D.; Soni, Shilpa; Gunn, John S.; Schlesinger, Larry S.
2009-01-01
The bacterium Francisella tularensis (Ft) is a potential weapon of bioterrorism when aerosolized. Macrophage infection is necessary for disease progression and efficient phagocytosis by human macrophages requires serum opsonization by complement. Microbial complement activation leads to surface deposition of a highly regulated protein complex resulting in opsonization or membrane lysis. The nature of complement component C3 deposition, i.e., C3b (opsonization and lysis) or C3bi (opsonization only) fragment deposition, is central to the outcome of activation. In this study, we examine the mechanisms of Ft resistance to complement-mediated lysis, C3 component deposition on the Ft surface, and complement activation. Upon incubation in fresh nonimmune human serum, Schu S4 (Ft subsp. tularensis), Fn (Ft subsp. novicida), and LVS (Ft subsp. holarctica live vaccine strain) were resistant to complement-mediated lysis, but LVSG and LVSR (LVS strains altered in surface carbohydrate structures) were susceptible. C3 deposition, however, occurred on all strains. Complement-susceptible strains had markedly increased C3 fragment deposition, including the persistent presence of C3b compared with C3bi, which indicates that C3b inactivation results in survival of complement-resistant strains. C1q, an essential component of the classical activation pathway, was necessary for lysis of complement-susceptible strains and optimal C3 deposition on all strains. Finally, use of Francisella LPS mutants confirmed O Ag as a major regulator of complement resistance. These data provide evidence that pathogenic Francisella activate complement, but are resistant to complement-mediated lysis in part due to limited C3 deposition, rapid conversion of surface-bound C3b to C3bi, and the presence of LPS O Ag. PMID:18832715
MBL-associated serine proteases (MASPs) and infectious diseases.
Beltrame, Marcia H; Boldt, Angelica B W; Catarino, Sandra J; Mendes, Hellen C; Boschmann, Stefanie E; Goeldner, Isabela; Messias-Reason, Iara
2015-09-01
The lectin pathway of the complement system has a pivotal role in the defense against infectious organisms. After binding of mannan-binding lectin (MBL), ficolins or collectin 11 to carbohydrates or acetylated residues on pathogen surfaces, dimers of MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2) activate a proteolytic cascade, which culminates in the formation of the membrane attack complex and pathogen lysis. Alternative splicing of the pre-mRNA encoding MASP-1 results in two other products, MASP-3 and MAp44, which regulate activation of the cascade. A similar mechanism allows the gene encoding MASP-2 to produce the truncated MAp19 protein. Polymorphisms in MASP1 and MASP2 genes are associated with protein serum levels and functional activity. Since the first report of a MASP deficiency in 2003, deficiencies in lectin pathway proteins have been associated with recurrent infections and several polymorphisms were associated with the susceptibility or protection to infectious diseases. In this review, we summarize the findings on the role of MASP polymorphisms and serum levels in bacterial, viral and protozoan infectious diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yuen, Joshua; Pluthero, Fred G.; Douda, David N.; Riedl, Magdalena; Cherry, Ahmed; Ulanova, Marina; Kahr, Walter H. A.; Palaniyar, Nades; Licht, Christoph
2016-01-01
Neutrophils deposit antimicrobial proteins, such as myeloperoxidase and proteases on chromatin, which they release as neutrophil extracellular traps (NETs). Neutrophils also carry key components of the complement alternative pathway (AP) such as properdin or complement factor P (CFP), complement factor B (CFB), and C3. However, the contribution of these complement components and complement activation during NET formation in the presence and absence of bacteria is poorly understood. We studied complement activation on NETs and a Gram-negative opportunistic bacterial pathogen Pseudomonas aeruginosa (PA01, PAKwt, and PAKgfp). Here, we show that anaphylatoxin C5a, formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol myristate acetate (PMA), which activates NADPH oxidase, induce the release of CFP, CFB, and C3 from neutrophils. In response to PMA or P. aeruginosa, neutrophils secrete CFP, deposit it on NETs and bacteria, and induce the formation of terminal complement complexes (C5b–9). A blocking anti-CFP antibody inhibited AP-mediated but not non-AP-mediated complement activation on NETs and P. aeruginosa. Therefore, NET-mediated complement activation occurs via both AP- and non AP-based mechanisms, and AP-mediated complement activation during NETosis is dependent on CFP. These findings suggest that neutrophils could use their “AP tool kit” to readily activate complement on NETs and Gram-negative bacteria, such as P. aeruginosa, whereas additional components present in the serum help to fix non-AP-mediated complement both on NETs and bacteria. This unique mechanism may play important roles in host defense and help to explain specific roles of complement activation in NET-related diseases. PMID:27148258
Unmasking of complements using proteinase-K in formalin fixed paraffin embedded renal biopsies.
Nada, R; Kumar, A; Kumar, V G; Gupta, K L; Joshi, K
2016-01-01
Renal biopsy interpretation requires histopathology, direct immunofluorescence (DIF) and electron microscopy. Formalin-fixed, paraffin-embedded tissue (FFPE) sent for light microscopy can be used for DIF after antigen retrieval. However, complement staining has not been satisfactory. We standardized DIF using proteinase-K for antigen retrieval in FFPE renal biopsies. A pilot study was conducted on known cases of membranous glomerulonephritis (MGN), membranoproliferative type-1 (MPGN-1), immunoglobulin A nephropathy (IgAN), and anti-glomerular basement disease (anti-GBM). Immunofluorescence panel included fluorescein isothiocyanate (FITC) conjugated IgG, IgA, IgM, complements (C3 and C1q), light chains (kappa, lambda) and fibrinogen antibodies. After standardization of the technique, 75 renal biopsies and 43 autopsies cases were stained. Out of 43 autopsy cases, immune-complex mediated glomerulonephritis (GN) was confirmed in 18 cases (Lupus nephritis-11, IgAN-6, MGN-1), complement-mediated dense deposit disease (DDD-1) and monoclonal diseases in 4 cases (amyloidosis-3, cast nephropathy-1). Immune-mediated injury was excluded in 17 cases (focal segmental glomerulosclerosis -3, crescentic GN-6 [pauci-immune-3, anti-GBM-3], thrombotic microangiopathy-5, atherosclerosis-3). Renal biopsies (n-75) where inadequate or no frozen sample was available; this technique classified 52 mesangiocapillary pattern as MPGN type-1-46, DDD-2 and (C3GN-4). Others were diagnosed as IgAN-3, lupus nephritis-2, MGN-4, diffuse proliferative glomerulonephritis (DPGN)-1, Non-IC crescentic GN-1, monoclonal diseases-3. In nine cases, DIF on FFPE tissue could not help in making diagnosis. Proteinase-K enzymatic digestion of FFPE renal biopsies can unmask complements (both C3 and C1q) in immune-complexes mediated and complement-mediated diseases. This method showed good results on autopsy tissues archived for as long as 15 years.
2017-01-01
Tamm-Horsfall protein (THP) is an abundant urinary protein of renal origin. We hypothesize that THP can act as an inhibitor of complement since THP binds complement 1q (C1q) of the classical complement pathway, inhibits activation of this pathway, and is important in decreasing renal ischemia-reperfusion injury (a complement-mediated condition). In this study, we began to investigate whether THP interacted with the alternate complement pathway via complement factor H (CFH). THP was shown to bind CFH using ligand blots and in an ELISA (KD of 1 × 10−6 M). Next, the ability of THP to alter CFH’s normal action as it functioned as a cofactor in complement factor I (CFI)–mediated complement 3b (C3b) degradation was investigated. Unexpectedly, control experiments in these in vitro assays suggested that THP, without added CFH, could act as a cofactor in CFI-mediated C3b degradation. This cofactor activity was present equally in THP isolated from 10 different individuals. While an ELISA demonstrated small amounts of CFH contaminating THP samples, these CFH amounts were insufficient to explain the degree of cofactor activity present in THP. An ELISA demonstrated that THP directly bound C3b (KD ~ 5 × 10−8 m), a prerequisite for a protein acting as a C3b degradation cofactor. The cofactor activity of THP likely resides in the protein portion of THP since partially deglycosylated THP still retained cofactor activity. In conclusion, THP appears to participate directly in complement inactivation by its ability to act as a cofactor for C3b degradation, thus adding support to the hypothesis that THP might act as an endogenous urinary tract inhibitor of complement. PMID:28742158
Herbert, Jenny; Thomas, Stephen; Brookes, Charlotte; Turner, Claudia; Turner, Paul; Nosten, Francois; Le Doare, Kirsty; Hudson, Michael; Heath, Paul T.; Gorringe, Andrew
2015-01-01
Streptococcus agalactiae (group B streptococcus [GBS]) is the leading cause of neonatal sepsis and meningitis. In this study, we determined antibody-mediated deposition of complement C3b/iC3b onto the bacterial cell surface of GBS serotypes Ia, Ib, II, III, and V. This was determined for 520 mother and umbilical cord serum sample pairs obtained at the time of birth from a population on the Thailand-Myanmar border. Antibody-mediated deposition of complement C3b/iC3b was detected to at least one serotype in 91% of mothers, despite a known carriage rate in this population of only 12%. Antibody-mediated C3b/iC3b deposition corresponded to known carriage rates, with the highest levels of complement deposition observed onto the most prevalent serotype (serotype II) followed by serotypes Ia, III, V, and Ib. Finally, neonates born to mothers carrying serotype II GBS at the time of birth showed higher antibody-mediated C3b/iC3b deposition against serotype II GBS than neonates born to mothers with no serotype II carriage. Assessment of antibody-mediated C3b/iC3b deposition against GBS may provide insights into the seroepidemiology of anti-GBS antibodies in mothers and infants in different populations. PMID:25589553
Mesophilic Aeromonas sp. serogroup O:11 resistance to complement-mediated killing.
Merino, S; Rubires, X; Aguilar, A; Albertí, S; Hernandez-Allés, S; Benedí, V J; Tomas, J M
1996-01-01
The complement activation by and resistance to complement-mediated killing of Aeromonas sp. strains from serogroup O:11 were investigated by using different wild-type strains (with an S-layer characteristic of this serogroup) and their isogenic mutants characterized for their surface components (S-layer and lipopolysaccharide [LPS]). All of the Aeromonas sp. serogroup O:11 wild-type strains are unable to activate complement, which suggested that the S-layer completely covered the LPS molecules. We found that the classical complement pathway is involved in serum killing of susceptible Aeromonas sp. mutant strains of serogroup O11, while the alternative complement pathway seems not to be involved, and that the complement activation seems to be independent of antibody. The smooth mutant strains devoid of the S-layer (S-layer isogenic mutants) or isogenic LPS mutant strains with a complete or rather complete LPS core (also without the S-layer) are able to activate complement but are resistant to complement-mediated killing. The reasons for this resistance are that C3b is rapidly degraded, and therefore the lytic membrane attack complex (C5b-9) is not formed. Isogenic LPS rough mutants with an incomplete LPS core are serum sensitive because they bind more C3b than the resistant strains, the C3b is not completely degraded, and therefore the lytic complex (C5b-9) is formed. PMID:8945581
Zhang, Jing; Yang, Lifeng; Anand, Ganesh Srinivasan; Ho, Bow; Ding, Jeak Ling
2011-10-01
Although homeostatic disturbance of the blood pH and calcium in the vicinity of tissue injury/malignancy/local infection seems subtle, it can cause substantial pathophysiological consequences, a phenomenon which has remained largely unexplored. The fibrinogen-related proteins (FREPs) containing fibrinogen-like domain (FBG) represent a conserved protein family with a common calcium-binding region, implying the presence of elements responsive to physiological perturbation. Here, we studied the molecular interaction between a representative FREP, the M-ficolin, and an acute phase blood protein, the C-reactive protein (CRP), both of which are known to trigger and control seminal pathways in infection and injury. Using hydrogen-deuterium exchange mass spectrometry, we showed that the C-terminal region of M-ficolin FBG underwent dramatic conformational change upon pH and calcium perturbations. Biochemical and biophysical assays showed that under defined pathophysiological condition (pH 6.5, 2.0 mM calcium), the FBG:CRP interaction occurred more strongly compared to that under physiological condition (pH 7.4, 2.5 mM calcium). We identified the binding interface between CRP and FBG, locating it to the pH- and calcium-sensitive C-terminal region of FBG. By site-directed mutagenesis, we determined H284 in the N-acetylglucosamine (GlcNAc)-binding pocket of the FBG, to be the critical CRP-binding residue. This conformational switch involving H284, explains how the pathophysiologically-driven FBG:CRP interaction diverts the M-ficolin away from GlcNAc/pathogen-recognition to host protein-protein interaction, thus enabling the host to regain homeostatic control. Our elucidation of the binding interface at the flexible FBG domain provides insights into the bioactive centre of the M-ficolin, and possibly other FREPs, which might aid future development of immunomodulators. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Mastellos, D C; Ricklin, D; Hajishengallis, E; Hajishengallis, G; Lambris, J D
2016-02-01
There is increasing appreciation that complement dysregulation lies at the heart of numerous immune-mediated and inflammatory disorders. Complement inhibitors are therefore being evaluated as new therapeutic options in various clinical translation programs and the first clinically approved complement-targeted drugs have profoundly impacted the management of certain complement-mediated diseases. Among the many members of the intricate protein network of complement, the central component C3 represents a 'hot-spot' for complement-targeted therapeutic intervention. C3 modulates both innate and adaptive immune responses and is linked to diverse immunomodulatory systems and biological processes that affect human pathophysiology. Compelling evidence from preclinical disease models has shown that C3 interception may offer multiple benefits over existing therapies or even reveal novel therapeutic avenues in disorders that are not commonly regarded as complement-driven, such as periodontal disease. Using the clinically developed compstatin family of C3 inhibitors and periodontitis as illustrative examples, this review highlights emerging therapeutic concepts and developments in the design of C3-targeted drug candidates as novel immunotherapeutics for oral and systemic inflammatory diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Banda, Nirmal K.; Takahashi, Minoru; Takahashi, Kazue; Stahl, Gregory L.; Hyatt, Stephanie; Glogowska, Magdalena; Wiles, Timothy A.; Endo, Yuichi; Fujita, Teizo; Holers, V. Michael; Arend, William P.
2011-01-01
Mannose-binding lectin-associated serine proteases-1/3 (MASP-1/3) are essential in activating the alternative pathway (AP) of complement through cleaving pro-factor D (pro-Df) into mature Df. MASP are believed to require binding to mannose binding lectins (MBL) or ficolins (FCN) to carry out their biological activities. Murine sera have been reported to contain MBL-A, MBL-C, and FCN-A, but not FCN-B that exists endogenously in monocytes and is thought not to bind MASP-1. We examined some possible mechanisms whereby MASP-1/3 might activate the AP. Collagen antibody-induced arthritis, a murine model of inflammatory arthritis dependent on the AP, was unchanged in mice lacking MBL-A, MBL-C, and FCN-A (MBL−/−/FCN A−/− mice) in comparison to wild-type mice. The in vitro induction of the AP by adherent mAb to collagen II was intact using sera from MBL−/−/FCN A−/− mice. Furthermore, sera from MBL−/−/FCN A−/− mice lacked pro-Df and possessed only mature Df. Gel filtration of sera from MBL−/−/FCN A−/− mice showed the presence of MASP-1 protein in fractions containing proteins smaller than the migration of MBL-A and MBL-C in sera from C4−/− mice, suggesting possible binding of MASP-1 to an unknown protein. Lastly, we show that FCN-B was present in the sera of MBL−/−/FCN A−/−mice and that it was bound to MASP-1. We conclude that MASP-1 does not require binding to MBL-A, MBL-C, or FCN-A to activate the AP. MASP-1 may cleave pro-Df into mature Df through binding to FCN-B or to an unknown protein, or may function as an unbound soluble protein. PMID:21943708
Salam, Kazi Abdus; Wang, Richard Y; Grandinetti, Teresa; De Giorgi, Valeria; Alter, Harvey J; Allison, Robert D
2018-05-09
Erythrocytes bind circulating immune complexes (IC) and facilitate IC clearance from the circulation. Chronic hepatitis C virus (HCV) infection is associated with IC-related disorders. In this study we investigated the kinetics and mechanism of HCV and HCV-IC binding to and dissociation from erythrocytes. Cell culture-produced HCV was mixed with erythrocytes from healthy blood donors and erythrocyte-associated virus particles were quantified. Purified complement proteins, complement-depleted serum, and complement receptor antibodies were used to investigate complement-mediated HCV-erythrocyte binding. Purified HCV-specific immunoglobulin G from a chronic HCV-infected patient was used to study complement-mediated HCV-IC-erythrocyte binding. Binding of HCV to erythrocytes increased 200 to 1,000 fold after adding complement active human serum in the absence of antibody. Opsonization of free HCV occurred within 10 minutes and peak binding to erythrocytes was observed at 20-30 minutes. Complement protein C1 was required for binding, while C2, C3 and C4 significantly enhanced binding. Complement receptor 1 (CR1, CD35) antibodies blocked the binding of HCV to erythrocytes isolated from chronically infected HCV patients and healthy blood donors. HCV-ICs significantly enhanced complement-mediated binding to erythrocytes compared to unbound HCV. Dissociation of complement-opsonized HCV from erythrocytes depended on the presence of Factor I. HCV released by Factor I bound preferentially to CD19+ B cells compared to other leukocytes. These results demonstrate that complement mediates the binding of free and IC-associated HCV to CR1 on erythrocytes, and provide a mechanistic rationale for investigating the differential phenotypic expression of HCV-IC-related disease. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.
Reglinski, Mark; Calay, Damien; Siggins, Matthew K.; Mason, Justin C.; Botto, Marina; Sriskandan, Shiranee
2017-01-01
The complement cascade is crucial for clearance and control of invading pathogens, and as such is a key target for pathogen mediated host modulation. C3 is the central molecule of the complement cascade, and plays a vital role in opsonization of bacteria and recruitment of neutrophils to the site of infection. Streptococcal species have evolved multiple mechanisms to disrupt complement-mediated innate immunity, among which ScpA (C5a peptidase), a C5a inactivating enzyme, is widely conserved. Here we demonstrate for the first time that pyogenic streptococcal species are capable of cleaving C3, and identify C3 and C3a as novel substrates for the streptococcal ScpA, which are functionally inactivated as a result of cleavage 7 amino acids upstream of the natural C3 convertase. Cleavage of C3a by ScpA resulted in disruption of human neutrophil activation, phagocytosis and chemotaxis, while cleavage of C3 generated abnormally-sized C3a and C3b moieties with impaired function, in particular reducing C3 deposition on the bacterial surface. Despite clear effects on human complement, expression of ScpA reduced clearance of group A streptococci in vivo in wildtype and C5 deficient mice, and promoted systemic bacterial dissemination in mice that lacked both C3 and C5, suggesting an additional complement-independent role for ScpA in streptococcal pathogenesis. ScpA was shown to mediate streptococcal adhesion to both human epithelial and endothelial cells, consistent with a role in promoting bacterial invasion within the host. Taken together, these data show that ScpA is a multi-functional virulence factor with both complement-dependent and independent roles in streptococcal pathogenesis. PMID:28806402
Complement in Non-Antibody-Mediated Kidney Diseases
Angeletti, Andrea; Reyes-Bahamonde, Joselyn; Cravedi, Paolo; Campbell, Kirk N.
2017-01-01
The complement system is part of the innate immune response that plays important roles in protecting the host from foreign pathogens. The complement components and relative fragment deposition have long been recognized to be strongly involved also in the pathogenesis of autoantibody-related kidney glomerulopathies, leading to direct glomerular injury and recruitment of infiltrating inflammation pathways. More recently, unregulated complement activation has been shown to be associated with progression of non-antibody-mediated kidney diseases, including focal segmental glomerulosclerosis, C3 glomerular disease, thrombotic microangiopathies, or general fibrosis generation in progressive chronic kidney diseases. Some of the specific mechanisms associated with complement activation in these diseases were recently clarified, showing a dominant role of alternative activation pathway. Over the last decade, a growing number of anticomplement agents have been developed, and some of them are being approved for clinical use or already in use. Therefore, anticomplement therapies represent a realistic choice of therapeutic approaches for complement-related diseases. Herein, we review the complement system activation, regulatory mechanisms, their involvement in non-antibody-mediated glomerular diseases, and the recent advances in complement-targeting agents as potential therapeutic strategies. PMID:28748184
Ulex europaeus agglutinin II (UEA-II) is a novel, potent inhibitor of complement activation.
Lekowski, R; Collard, C D; Reenstra, W R; Stahl, G L
2001-02-01
Complement is an important mediator of vascular injury following oxidative stress. We recently demonstrated that complement activation following endothelial oxidative stress is mediated by mannose-binding lectin (MBL) and activation of the lectin complement pathway. Here, we investigated whether nine plant lectins which have a binding profile similar to that of MBL competitively inhibit MBL deposition and subsequent complement activation following human umbilical vein endothelial cell (HUVEC) oxidative stress. HUVEC oxidative stress (1% O(2), 24 hr) significantly increased Ulex europaeus agglutinin II (UEA-II) binding by 72 +/- 9% compared to normoxic cells. UEA-II inhibited MBL binding to HUVEC in a concentration-dependent manner following oxidative stress. Further, MBL inhibited UEA-II binding to HUVEC in a concentration-dependent manner following oxidative stress, suggesting a common ligand. UEA-II (< or = 100 micromol/L) did not attenuate the hemolytic activity, nor did it inhibit C3a des Arg formation from alternative or classical complement pathway-specific hemolytic assays. C3 deposition (measured by ELISA) following HUVEC oxidative stress was inhibited by UEA-II in a concentration-dependent manner (IC(50) = 10 pmol/L). UEA-II inhibited C3 and MBL co-localization (confocal microscopy) in a concentration-dependent manner on HUVEC following oxidative stress (IC(50) approximately 1 pmol/L). Finally, UEA-II significantly inhibited complement-dependent neutrophil chemotaxis, but failed to inhibit fMLP-mediated chemotaxis, following endothelial oxidative stress. These data demonstrate that UEA-II is a novel, potent inhibitor of human MBL deposition and complement activation following human endothelial oxidative stress.
Ulex europaeus agglutinin II (UEA-II) is a novel, potent inhibitor of complement activation
Lekowski, Robert; Collard, Charles D.; Reenstra, Wende R.; Stahl, Gregory L.
2001-01-01
Complement is an important mediator of vascular injury following oxidative stress. We recently demonstrated that complement activation following endothelial oxidative stress is mediated by mannose-binding lectin (MBL) and activation of the lectin complement pathway. Here, we investigated whether nine plant lectins which have a binding profile similar to that of MBL competitively inhibit MBL deposition and subsequent complement activation following human umbilical vein endothelial cell (HUVEC) oxidative stress. HUVEC oxidative stress (1% O2, 24 hr) significantly increased Ulex europaeus agglutinin II (UEA-II) binding by 72 ± 9% compared to normoxic cells. UEA-II inhibited MBL binding to HUVEC in a concentration-dependent manner following oxidative stress. Further, MBL inhibited UEA-II binding to HUVEC in a concentration-dependent manner following oxidative stress, suggesting a common ligand. UEA-II (≤ 100 μmol/L) did not attenuate the hemolytic activity, nor did it inhibit C3a des Arg formation from alternative or classical complement pathway-specific hemolytic assays. C3 deposition (measured by ELISA) following HUVEC oxidative stress was inhibited by UEA-II in a concentration-dependent manner (IC50 = 10 pmol/L). UEA-II inhibited C3 and MBL co-localization (confocal microscopy) in a concentration-dependent manner on HUVEC following oxidative stress (IC50 ≈ 1 pmol/L). Finally, UEA-II significantly inhibited complement-dependent neutrophil chemotaxis, but failed to inhibit fMLP-mediated chemotaxis, following endothelial oxidative stress. These data demonstrate that UEA-II is a novel, potent inhibitor of human MBL deposition and complement activation following human endothelial oxidative stress. PMID:11266613
1992-05-01
COMPLEMENT-LYSIS-ENHANCING MONOCLONAL ANTIBODY, 3D12, ON THE GALACTOSE ADHERENCE LECTIN OF ENTAMOEBA HISTOLYTICA, USING BIAcore Sheila J. Wood...Binding 5. FUNDING NUMBERS Site for a Complement-Lysis-Enhancing Monoclonal Antibody, 3D12, on the Galactose Adherence Lectin of Entamoeba Hiiutolitica...Mechani sms of pathogenicity used by Entamoeba histolytica to invade the bloodstream and cause liver abscess, include complement mediated lysis
Valenzuela, Nicole M.; Thomas, Kimberly A.; Mulder, Arend; Parry, Graham C.; Panicker, Sandip; Reed, Elaine F.
2017-01-01
Background Antibody-mediated rejection (AMR) of most solid organs is characterized by evidence of complement activation and/or intragraft macrophages (C4d + and CD68+ biopsies). We previously demonstrated that crosslinking of HLA I by antibodies triggered endothelial activation and monocyte adhesion. We hypothesized that activation of the classical complement pathway at the endothelial cell surface by HLA antibodies would enhance monocyte adhesion through soluble split product generation, in parallel with direct endothelial activation downstream of HLA signaling. Methods Primary human aortic endothelial cells (HAEC) were stimulated with HLA class I antibodies in the presence of intact human serum complement. C3a and C5a generation, endothelial P-selectin expression, and adhesion of human primary and immortalized monocytes (Mono Mac 6) were measured. Alternatively, HAEC or monocytes were directly stimulated with purified C3a or C5a. Classical complement activation was inhibited by pretreatment of complement with an anti-C1s antibody (TNT003). Results Treatment of HAEC with HLA antibody and human complement increased the formation of C3a and C5a. Monocyte recruitment by human HLA antibodies was enhanced in the presence of intact human serum complement or purified C3a or C5a. Specific inhibition of the classical complement pathway using TNT003 or C1q-depleted serum significantly reduced adhesion of monocytes in the presence of human complement. Conclusions Despite persistent endothelial viability in the presence of HLA antibodies and complement, upstream complement anaphylatoxin production exacerbates endothelial exocytosis and leukocyte recruitment. Upstream inhibition of classical complement may be therapeutic to dampen mononuclear cell recruitment and endothelial activation characteristic of microvascular inflammation during AMR. PMID:28640789
Susceptibility of pathogenic and nonpathogenic Naegleria ssp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteman, L.Y.
1988-01-01
The susceptibility of four species of Naegleria amoebae to complement-mediated lysis was determined. The amoebicidal activity of normal human serum (NHS) and normal guinea pig serum (NGPS) for Naegleria amoebae was measured by an in vitro cytotoxicity assay. Release of radioactivity from amoebae labeled with {sup 3}H-uridine and visual observation with a compound microscope were used as indices of lysis. Susceptibility or resistance to complement-mediated lysis in vitro correlated with the in vivo pathogenic potential. Nonpathogenic Naegleria amoebae were lysed at a faster rate and at higher cell concentrations than were pathogenic amoebae. Electrophoretic analysis of NHS incubated with pathogenicmore » or nonpathogenic Naegleria spp. demonstrated that amoebae activate the complement cascade resulting in the production of C3 and C5 complement cleavage products. Treatment with papain or trypsin for 1 h, but not with sialidase, increase the susceptibility of highly pathogenic, mouse-passaged N. fowleri to lysis. Treatment with actinomycin D, cycloheximide or various protease inhibitors for 4 h did not increase susceptibility to lysis. Neither a repair process involving de novo protein synthesis nor a complement-inactivating protease appear to account for the increase resistance of N. fowleri amoebae to complement-mediated lysis. A binding study with {sup 125}I radiolabeled C9 indicated that the terminal complement component does not remain stably bound to the membrane of pathogenic amoebae.« less
Ojurongbe, Olusola; Antony, Justin S; Van Tong, Hoang; Meyer, Christian G; Akindele, Akeem A; Sina-Agbaje, Olawumi R; Kremsner, Peter G; Velavan, Thirumalaisamy P
2015-10-01
The human mannose-binding lectin (MBL) and ficolins (FCN) are involved in pathogen recognition in the first line of defence. They support activation of the complement lectin cascade in the presence of MBL-associated serine protease 2 (MASP-2), a protein that cleaves the C4 and C2 complement components. Recent studies found that distinct MBL2 and FCN2 promoter variants and their corresponding serum levels are associated with relative protection from urogenital schistosomiasis. We investigated the contribution of MASP-2 levels and MASP2 polymorphisms in a Nigerian study group, of 163 individuals infected with Schistosoma haematobium and 183 healthy subjects. MASP-2 serum levels varied between younger children (≤12 years) and older children (>12 years) and adults (P = 0.0001). Younger children with a patent infection had significantly lower MASP-2 serum levels than uninfected children (P = 0.0074). Older children and adults (>12 years) with a current infection had higher serum MASP-2 levels than controls (P = 0.032). MBL serum levels correlated positively with MASP-2 serum levels (P = 0.01). MASP2 secretor haplotypes were associated with MASP-2 serum levels in healthy subjects. The heterozygous MASP2 p.P126L variant was associated with reduced serum MASP-2 levels (P = 0.01). The findings indicate that higher MASP-2 serum levels are associated with relative protection from urogenital schistosomiasis in Nigerian children. © 2015 John Wiley & Sons Ltd.
Complement anaphylatoxins as immune regulators in cancer.
Sayegh, Eli T; Bloch, Orin; Parsa, Andrew T
2014-08-01
The role of the complement system in innate immunity is well characterized. However, a recent body of research implicates the complement anaphylatoxins C3a and C5a as insidious propagators of tumor growth and progression. It is now recognized that certain tumors elaborate C3a and C5a and that complement, as a mediator of chronic inflammation and regulator of immune function, may in fact foster rather than defend against tumor growth. A putative mechanism for this function is complement-mediated suppression of immune effector cells responsible for immunosurveillance within the tumor microenvironment. This paradigm accords with models of immune dysregulation, such as autoimmunity and infectious disease, which have defined a pathophysiological role for abnormal complement signaling. Several types of immune cells express the cognate receptors for the complement anaphylatoxins, C3aR and C5aR, and demonstrate functional modulation in response to complement stimulation. In turn, impairment of antitumor immunity has been intimately tied to tumor progression in animal models of cancer. In this article, the literature was systematically reviewed to identify studies that have characterized the effects of the complement anaphylatoxins on the composition and function of immune cells within the tumor microenvironment. The search identified six studies based upon models of lymphoma and ovarian, cervical, lung, breast, and mammary cancer, which collectively support the paradigm of complement as an immune regulator in the tumor microenvironment. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
An Anti-C1s Monoclonal, TNT003, Inhibits Complement Activation Induced by Antibodies Against HLA.
Thomas, K A; Valenzuela, N M; Gjertson, D; Mulder, A; Fishbein, M C; Parry, G C; Panicker, S; Reed, E F
2015-08-01
Antibody-mediated rejection (AMR) of solid organ transplants (SOT) is characterized by damage triggered by donor-specific antibodies (DSA) binding donor Class I and II HLA (HLA-I and HLA-II) expressed on endothelial cells. While F(ab')2 portions of DSA cause cellular activation and proliferation, Fc regions activate the classical complement cascade, resulting in complement deposition and leukocyte recruitment, both hallmark features of AMR. We characterized the ability of an anti-C1s monoclonal antibody, TNT003, to inhibit HLA antibody (HLA-Ab)-induced complement activation. Complement deposition induced by HLA-Ab was evaluated using novel cell- and bead-based assays. Human aortic endothelial cells (HAEC) were cultured with HLA-Ab and human complement; production of activated complement proteins was measured by flow cytometry. Additionally, C3d deposition was measured on single antigen beads (SAB) mixed with HLA-Ab and human complement. TNT003 inhibited HLA-Ab mediated complement deposition on HAEC in a concentration-dependent manner; C3a, C4a and C5a anaphylatoxin production was also diminished by TNT003. Finally, TNT003 blocked C3d deposition induced by Class I (HLAI-Ab)- and Class II (HLAII-Ab)-specific antibodies on SAB. These data suggest TNT003 may be useful for modulating the effects of DSA, as TNT003 inhibits complement deposition and split product formation generated by HLA-I/II-Ab in vitro. © 2015 The Authors. American Journal of Transplantation Published by Wiley Periodicals, Inc.
An Anti-C1s Monoclonal, TNT003, Inhibits Complement Activation Induced by Antibodies Against HLA
Thomas, K A; Valenzuela, N M; Gjertson, D; Mulder, A; Fishbein, M C; Parry, G C; Panicker, S; Reed, E F
2015-01-01
Antibody-mediated rejection (AMR) of solid organ transplants (SOT) is characterized by damage triggered by donor-specific antibodies (DSA) binding donor Class I and II HLA (HLA-I and HLA-II) expressed on endothelial cells. While F(ab′)2 portions of DSA cause cellular activation and proliferation, Fc regions activate the classical complement cascade, resulting in complement deposition and leukocyte recruitment, both hallmark features of AMR. We characterized the ability of an anti-C1s monoclonal antibody, TNT003, to inhibit HLA antibody (HLA-Ab)-induced complement activation. Complement deposition induced by HLA-Ab was evaluated using novel cell- and bead-based assays. Human aortic endothelial cells (HAEC) were cultured with HLA-Ab and human complement; production of activated complement proteins was measured by flow cytometry. Additionally, C3d deposition was measured on single antigen beads (SAB) mixed with HLA-Ab and human complement. TNT003 inhibited HLA-Ab mediated complement deposition on HAEC in a concentration-dependent manner; C3a, C4a and C5a anaphylatoxin production was also diminished by TNT003. Finally, TNT003 blocked C3d deposition induced by Class I (HLAI-Ab)- and Class II (HLAII-Ab)-specific antibodies on SAB. These data suggest TNT003 may be useful for modulating the effects of DSA, as TNT003 inhibits complement deposition and split product formation generated by HLA-I/II-Ab in vitro. PMID:25904443
Wang, Yu; Sun, Sheng-Nan; Liu, Qing; Yu, Yang-Yang; Guo, Jian; Wang, Kun; Xing, Bao-Cai; Zheng, Qing-Feng; Campa, Michael J.; Patz, Edward F.; Li, Shi-You; He, You-Wen
2016-01-01
In contrast to its inhibitory effects on many cells, IL-10 activates CD8+ tumor infiltrating lymphocytes (TILs) and enhances their antitumor activity. However, CD8+ TILs do not routinely express IL-10 as autocrine complement C3 inhibits IL-10 production through complement receptors C3aR and C5aR. CD8+ TILs from C3-deficient mice, however, express IL-10 and exhibit enhanced effector function. C3-deficient mice are resistant to tumor development in a T cell- and IL-10-dependent manner; human TILs expanded with IL-2 plus IL-10 increase the killing of primary tumors in vitro compared to IL-2 treated TILs. Complement-mediated inhibition of antitumor immunity is independent of the PD-1/PD-L1 immune checkpoint pathway. Our findings suggest that complement receptors C3aR and C5aR expressed on CD8+ TILs represent a novel class of immune checkpoints that could be targeted for tumor immunotherapy. Moreover, incorporation of IL-10 in the expansion of TILs and in gene-engineered T cells for adoptive cell therapy enhances their antitumor efficacy. PMID:27297552
Cunnion, Kenji M; Hair, Pamela S; Krishna, Neel K; Sass, Megan A; Enos, Clinton W; Whitley, Pamela H; Maes, Lanne Y; Goldberg, Corinne L
2017-03-01
The agglutination-based cross-matching method is sensitive for antibody binding to red blood cells but is only partially predictive of complement-mediated hemolysis, which is important in many acute hemolytic transfusion reactions. Here, we describe complement hemolysis using human erythrocytes (CHUHE) assays that directly evaluate complement-mediated hemolysis between individual serum-plasma and red blood cell combinations. The CHUHE assay is used to evaluate correlations between agglutination titers and complement-mediated hemolysis as well as the hemolytic potential of plasma from type A blood donors. Plasma or serum from each type A blood donor was incubated with AB or B red blood cells in the CHUHE assay and measured for free hemoglobin release. CHUHE assays for serum or plasma demonstrate a wide, dynamic range and high sensitivity for complement-mediated hemolysis for individual serum/plasma and red blood cell combinations. CHUHE results suggest that agglutination assays alone are only moderately predictive of complement-mediated hemolysis. CHUHE results also suggest that plasma from particular type A blood donors produce minimal complement-mediated hemolysis, whereas plasma from other type A blood donors produce moderate to high-level complement-mediated hemolysis, depending on the red blood cell donor. The current results indicate that the CHUHE assay can be used to assess complement-mediated hemolysis for plasma or serum from a type A blood donor, providing additional risk discrimination over agglutination titers alone. © 2016 AABB.
Iatropoulos, Paraskevas; Daina, Erica; Curreri, Manuela; Piras, Rossella; Valoti, Elisabetta; Mele, Caterina; Bresin, Elena; Gamba, Sara; Alberti, Marta; Breno, Matteo; Perna, Annalisa; Bettoni, Serena; Sabadini, Ettore; Murer, Luisa; Vivarelli, Marina; Noris, Marina; Remuzzi, Giuseppe
2018-01-01
Membranoproliferative GN (MPGN) was recently reclassified as alternative pathway complement-mediated C3 glomerulopathy (C3G) and immune complex-mediated membranoproliferative GN (IC-MPGN). However, genetic and acquired alternative pathway abnormalities are also observed in IC-MPGN. Here, we explored the presence of distinct disease entities characterized by specific pathophysiologic mechanisms. We performed unsupervised hierarchical clustering, a data-driven statistical approach, on histologic, genetic, and clinical data and data regarding serum/plasma complement parameters from 173 patients with C3G/IC-MPGN. This approach divided patients into four clusters, indicating the existence of four different pathogenetic patterns. Specifically, this analysis separated patients with fluid-phase complement activation (clusters 1-3) who had low serum C3 levels and a high prevalence of genetic and acquired alternative pathway abnormalities from patients with solid-phase complement activation (cluster 4) who had normal or mildly altered serum C3, late disease onset, and poor renal survival. In patients with fluid-phase complement activation, those in clusters 1 and 2 had massive activation of the alternative pathway, including activation of the terminal pathway, and the highest prevalence of subendothelial deposits, but those in cluster 2 had additional activation of the classic pathway and the highest prevalence of nephrotic syndrome at disease onset. Patients in cluster 3 had prevalent activation of C3 convertase and highly electron-dense intramembranous deposits. In addition, we provide a simple algorithm to assign patients with C3G/IC-MPGN to specific clusters. These distinct clusters may facilitate clarification of disease etiology, improve risk assessment for ESRD, and pave the way for personalized treatment. Copyright © 2018 by the American Society of Nephrology.
Breaking down the complement system: a review and update on novel therapies.
Reddy, Yuvaram N V; Siedlecki, Andrew M; Francis, Jean M
2017-03-01
The complement system represents one of the more primitive forms of innate immunity. It has increasingly been found to contribute to pathologies in the native and transplanted kidney. We provide a concise review of the physiology of the complement cascade, and discuss current and upcoming complement-based therapies. Current agents in clinical use either bind to complement components directly or prevent complement from binding to antibodies affixed to the endothelial surface. These include C1 esterase inhibitors, anti-C5 mAbs, anti-CD20 mAbs, and proteasome inhibitors. Treatment continues to show efficacy in the atypical hemolytic uremic syndrome and antibody-mediated rejection. Promising agents not currently available include CCX168, TP10, AMY-101, factor D inhibitors, coversin, and compstatin. Several new trials are targeting complement inhibition to treat antineutrophilic cystoplasmic antibody (ANCA)-associated vasculitis, C3 glomerulopathy, thrombotic microangiopathy, and IgA nephropathy. New agents for the treatment of the atypical hemolytic uremic syndrome are also in development. Complement-based therapies are being considered for targeted therapy in the atypical hemolytic uremic syndrome and antibody-mediated rejection, C3 glomerulopathy, and ANCA-associated vasculitis. A few agents are currently in use as orphan drugs. A number of other drugs are in clinical trials and, overall, are showing promising preliminary results.
Binding of Soluble Yeast β-Glucan to Human Neutrophils and Monocytes is Complement-Dependent
Bose, Nandita; Chan, Anissa S. H.; Guerrero, Faimola; Maristany, Carolyn M.; Qiu, Xiaohong; Walsh, Richard M.; Ertelt, Kathleen E.; Jonas, Adria Bykowski; Gorden, Keith B.; Dudney, Christine M.; Wurst, Lindsay R.; Danielson, Michael E.; Elmasry, Natalie; Magee, Andrew S.; Patchen, Myra L.; Vasilakos, John P.
2013-01-01
The immunomodulatory properties of yeast β-1,3/1,6 glucans are mediated through their ability to be recognized by human innate immune cells. While several studies have investigated binding of opsonized and unopsonized particulate β-glucans to human immune cells mainly via complement receptor 3 (CR3) or Dectin-1, few have focused on understanding the binding characteristics of soluble β-glucans. Using a well-characterized, pharmaceutical-grade, soluble yeast β-glucan, this study evaluated and characterized the binding of soluble β-glucan to human neutrophils and monocytes. The results demonstrated that soluble β-glucan bound to both human neutrophils and monocytes in a concentration-dependent and receptor-specific manner. Antibodies blocking the CD11b and CD18 chains of CR3 significantly inhibited binding to both cell types, establishing CR3 as the key receptor recognizing the soluble β-glucan in these cells. Binding of soluble β-glucan to human neutrophils and monocytes required serum and was also dependent on incubation time and temperature, strongly suggesting that binding was complement-mediated. Indeed, binding was reduced in heat-inactivated serum, or in serum treated with methylamine or in serum reacted with the C3-specific inhibitor compstatin. Opsonization of soluble β-glucan was demonstrated by detection of iC3b, the complement opsonin on β-glucan-bound cells, as well as by the direct binding of iC3b to β-glucan in the absence of cells. Binding of β-glucan to cells was partially inhibited by blockade of the alternative pathway of complement, suggesting that the C3 activation amplification step mediated by this pathway also contributed to binding. PMID:23964276
Schwartz, Justin T.; Barker, Jason H.; Long, Matthew E.; Kaufman, Justin; McCracken, Jenna; Allen, Lee-Ann H.
2012-01-01
A fundamental step in the life cycle of F. tularensis is bacterial entry into host cells. F. tularensis activates complement, and recent data suggest that the classical pathway is required for complement factor C3 deposition on the bacterial surface. Nevertheless, C3 deposition is inefficient and neither the specific serum components necessary for classical pathway activation by F. tularensis in nonimmune human serum, nor the receptors that mediate infection of neutrophils has been defined. Herein human neutrophil uptake of GFP-expressing F. tularensis strains LVS and Schu S4 was quantified with high efficiency by flow cytometry. Using depleted sera and purified complement components we demonstrated first that C1q and C3 were essential for F. tularensis phagocytosis whereas C5 was not. Second, we used purification and immuno-depletion approaches to identify a critical role for natural IgM in this process, and then used a wbtA2 mutant to identify LPS O-antigen and capsule as prominent targets of these antibodies on the bacterial surface. Finally, we demonstrate using receptor-blocking antibodies that CR1 (CD35) and CR3 (CD11b/CD18) acted in concert for phagocytosis of opsonized F. tularensis by human neutrophils, whereas CR3 and CR4 (CD11c/CD18) mediated infection of human monocyte-derived macrophages. Altogether, our data provide fundamental insight into mechanisms of F. tularensis phagocytosis and support a model whereby natural IgM binds to surface capsular and O-antigen polysaccharides of F. tularensis and initiates the classical complement cascade via C1q to promote C3-opsonization of the bacterium and phagocytosis via CR3 and either CR1 or CR4 in a phagocyte-specific manner. PMID:22888138
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, R.P.; Horgan, C.; Buschbacher, R.
1983-06-01
The complement mediated binding of prepared antibody//sup 3/H-dsDNA immune complexes to the red blood cells obtained from a number of patient populations has been investigated. Patients with solid tumors have binding activity similar to that seen in a normal group of individuals. However, a significant fraction of patients with systemic lupus erythematosus, rheumatoid arthritis, and hematologic malignancies have lowered binding activity compared with normal subjects. Quantitative studies indicate the lowered activity probably arises due to a decrease in complement receptors on the respective red blood cells. The potential importance and implications of these findings are briefly discussed.
Osthoff, Michael; Walder, Bernhard; Delhumeau, Cécile; Trendelenburg, Marten; Turck, Natacha
2017-09-01
The lectin pathway of the complement system has been implicated in secondary ischemic/inflammatory injury after traumatic brain injury (TBI). However, previous experimental studies have yielded conflicting results, and human studies are scarce. In this exploratory study, we investigated associations of several lectin pathway proteins early after injury and single-nucleotide polymorphisms (SNP) with outcomes after severe TBI (mortality at 14 days [primary outcome] and consciousness assessed with the Glasgow Coma Scale [GCS] at 14 days, disability assessed with the Glasgow Outcome Scale Extended [GOSE] at 90 days). Forty-four patients with severe TBI were included. Plasma levels of lectin pathway proteins were sampled at 6, 12, 24, and 48 h after injury and eight mannose-binding lectin (MBL) and ficolin (FCN)2 SNPs were analyzed by enzyme-linked immunosorbent assay (ELISA) and genotyping, respectively. Plasma protein levels were stable with only a slight increase in mannose-binding protein-associated serine protease (MASP)-2 and FCN2 levels after 48 h (p < 0.05), respectively. Neither lectin protein plasma levels (6 h or mean levels) nor MBL2 genotypes or FCN2 variant alleles were associated with 14 day mortality or 14 day consciousness. However, FCN2, FCN3, and MASP-2 levels were higher in patients with an unfavorable outcome (GOSE 1-4) at 90 days (p < 0.05), whereas there was no difference in MBL2 genotypes or FCN2 variant alleles. In particular, higher mean MASP-2 levels over 48 h were independently associated with a GOSE score < 4 at 90 days after adjustment (odds ratio 3.46 [95% confidence interval 1.12-10.68] per 100 ng/mL increase, p = 0.03). No association was observed between the lectin pathway of the complement system and 14 day mortality or 14 day consciousness. However, higher plasma FCN2, FCN3, and, in particular, MASP-2 levels early after injury were associated with an unfavorable outcome at 90 days (death, vegetative state, and severe disability) which may be related to an increased activation of the lectin pathway.
Ji, Xin; Olinger, Gene G; Aris, Sheena; Chen, Ying; Gewurz, Henry; Spear, Gregory T
2005-09-01
Mannose-binding lectin (MBL), a serum lectin that mediates innate immune functions including activation of the lectin complement pathway, binds to carbohydrates expressed on some viral glycoproteins. In this study, the ability of MBL to bind to virus particles pseudotyped with Ebola and Marburg envelope glycoproteins was evaluated. Virus particles bearing either Ebola (Zaire strain) or Marburg (Musoke strain) envelope glycoproteins bound at significantly higher levels to immobilized MBL compared with virus particles pseudotyped with vesicular stomatitis virus glycoprotein or with no virus glycoprotein. As observed in previous studies, Ebola-pseudotyped virus bound to cells expressing the lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin). However, pre-incubation of virus with MBL blocked DC-SIGN-mediated binding to cells, suggesting that the two lectins bind at the same or overlapping sites on the Ebola glycoprotein. Neutralization experiments showed that virus pseudotyped with Ebola or Marburg (Musoke) glycoprotein was neutralized by complement, while the Marburg (Ravn strain) glycoprotein-pseudotyped virus was less sensitive to neutralization. Neutralization was partially mediated through the lectin complement pathway, since a complement source deficient in MBL was significantly less effective at neutralizing viruses pseudotyped with filovirus glycoproteins and addition of purified MBL to the MBL-deficient complement increased neutralization. These experiments demonstrated that MBL binds to filovirus envelope glycoproteins resulting in important biological effects and suggest that MBL can interact with filoviruses during infection in humans.
Li, Yujia; Parks, Griffith D.
2018-01-01
The complement system is a part of the innate immune system that viruses need to face during infections. Many viruses incorporate cellular regulators of complement activation (RCA) to block complement pathways and our prior work has shown that Parainfluenza virus 5 (PIV5) incorporates CD55 and CD46 to delay complement-mediated neutralization. In this paper, we tested the role of a third individual RCA inhibitor CD59 in PIV5 interactions with complement pathways. Using a cell line engineered to express CD59, we show that small levels of functional CD59 are associated with progeny PIV5, which is capable of blocking assembly of the C5b-C9 membrane attack complex (MAC). PIV5 containing CD59 (PIV5-CD59) showed increased resistance to complement-mediated neutralization in vitro comparing to PIV5 lacking regulators. Infection of A549 cells with PIV5 and RSV upregulated CD59 expression. TGF-beta treatment of PIV5-infected cells also increased cell surface CD59 expression and progeny virions were more resistant to complement-mediated neutralization. A comparison of individual viruses containing only CD55, CD46, or CD59 showed a potency of inhibiting complement-mediated neutralization, which followed a pattern of CD55 > CD46 > CD59. PMID:29693588
Sewell, Diane L.; Nacewicz, Brendon; Liu, Frances; Macvilay, Sinarack; Erdei, Anna; Lambris, John D.; Sandor, Matyas; Fabry, Zsuzsa
2016-01-01
The role of complement components in traumatic brain injury is poorly understood. Here we show that secondary damage after acute cryoinjury is significantly reduced in C3−/− or C5−/− mice or in mice treated with C5a receptor antagonist peptides. Injury sizes and neutrophil extravasation were compared. While neutrophil density increased following traumatic brain injury in wild type (C57BL/6) mice, C3-deficient mice demonstrated lower neutrophil extravasation and injury sizes in the brain. RNase protection assay indicated that C3 contributes to the induction of brain inflammatory mediators, MIF, RANTES (CCL5) and MCP-1 (CCL2). Intracranial C3 injection induced neutrophil extravasation in injured brains of C3−/− mice suggesting locally produced C3 is important in brain inflammation. We show that neutrophil extravasation is significantly reduced in both C5−/− mice and C5a receptor antagonist treated cryoinjured mice suggesting that one of the possible mechanisms of C3 effect on neutrophil extravasation is mediated via downstream complement activation products such as C5a. Our data indicates that complement inhibitors may ameliorate traumatic brain injury. PMID:15342196
Schmidt, C Q; Herbert, A P; Hocking, H G; Uhrín, D; Barlow, P N
2008-01-01
The 155-kDa glycoprotein, complement factor H (CFH), is a regulator of complement activation that is abundant in human plasma. Three-dimensional structures of over half the 20 complement control protein (CCP) modules in CFH have been solved in the context of single-, double- and triple-module segments. Proven binding sites for C3b occupy the N and C termini of this elongated molecule and may be brought together by a bend in CFH mediated by its central CCP modules. The C-terminal CCP 20 is key to the ability of the molecule to adhere to polyanionic markers on self-surfaces where CFH acts to regulate amplification of the alternative pathway of complement. The surface patch on CCP 20 that binds to model glycosaminoglycans has been mapped using nuclear magnetic resonance (NMR), as has a second glycosaminoglycan-binding patch on CCP 7. These patches include many of the residue positions at which sequence variations have been linked to three complement-mediated disorders: dense deposit disease, age-related macular degeneration and atypical haemolytic uraemic syndrome. In one plausible model, CCP 20 anchors CFH to self-surfaces via a C3b/polyanion composite binding site, CCP 7 acts as a ‘proof-reader’ to help discriminate self- from non-self patterns of sulphation, and CCPs 1–4 disrupt C3/C5 convertase formation and stability. PMID:18081691
Noone, D; Al-Matrafi, J; Tinckam, K; Zipfel, P F; Herzenberg, A M; Thorner, P S; Pluthero, F G; Kahr, W H A; Filler, G; Hebert, D; Harvey, E; Licht, C
2012-09-01
Antibody mediated rejection (AMR) activates the classical complement pathway and can be detrimental to graft survival. AMR can be accompanied by thrombotic microangiopathy (TMA). Eculizumab, a monoclonal C5 antibody prevents induction of the terminal complement cascade (TCC) and has recently emerged as a therapeutic option for AMR. We present a highly sensitized 13-year-old female with end-stage kidney disease secondary to spina bifida-associated reflux nephropathy, who developed severe steroid-, ATG- and plasmapheresis-resistant AMR with TMA 1 week post second kidney transplant despite previous desensitization therapy with immunoglobulin infusions. Eculizumab rescue therapy resulted in a dramatic improvement in biochemical (C3; creatinine) and hematological (platelets) parameters within 6 days. The patient was proven to be deficient in complement Factor H-related protein 3/1 (CFHR3/1), a plasma protein that regulates the complement cascade at the level of C5 conversion and has been involved in the pathogenesis of atypical hemolytic uremic syndrome caused by CFH autoantibodies (DEAP-HUS). CFHR1 deficiency may have worsened the severe clinical progression of AMR and possibly contributed to the development of donor-specific antibodies. Thus, screening for CFHR3/1 deficiency should be considered in patients with severe AMR associated with TMA. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.
A comparison of the human and mouse protein corona profiles of functionalized SiO2 nanocarriers.
Solorio-Rodríguez, A; Escamilla-Rivera, V; Uribe-Ramírez, M; Chagolla, A; Winkler, R; García-Cuellar, C M; De Vizcaya-Ruiz, A
2017-09-21
Nanoparticles are a promising cancer therapy for their use as drug carriers given their versatile functionalization with polyethylene glycol and proteins that can be recognized by overexpressed receptors in tumor cells. However, it has been suggested that in biological fluids, proteins cover nanoparticles, which gives the proteins a biological identity that could be responsible for unexpected biological responses: the so-called protein corona. A relevant biological event that is usually ignored in protein-corona formation is the interspecies differences in protein binding, which can be involved in the discrepancies observed in preclinical studies and the nanoparticle safety and efficiency. Hence, the aim of this study was to determine the differences between human and mouse plasma protein corona profiles in an active therapy model using silicon dioxide nanoparticles (SiO 2 nanoparticles) functionalized with polyethylene glycol and transferrin. Functionalized SiO 2 nanoparticles were made with a primary particle size of 25 nm and a transferrin content of 50 μg mg -1 of nanoparticles and were PEGylated with a cross-linker. The proteomic analysis by nanoliquid chromatography tandem-mass spectrometry (nanoLC-MS/MS) showed interspecies differences. The most abundant proteins found in the human protein corona profile were immunoglobulins, actin cytoplasmic 1, hemoglobin subunit beta, serotransferrin, ficolin-3, complement C3, and apolipoprotein A-1. Meanwhile, the mouse protein corona adsorbed the serine protease inhibitor A3K, serotransferrin, alpha-1-antitrypsin 1-2, hemoglobin subunit beta, and fibrinogen gamma and beta chains. These protein-corona profile differences in the functionalized SiO 2 nanoparticles indicate that biological responses observed in in vivo models could not be translated to clinical use and must be considered in the interpretation of preclinical trials in order to design more efficient and safer nanomedicines.
Complement Activation in Arterial and Venous Thrombosis is Mediated by Plasmin
Foley, Jonathan H.; Walton, Bethany L.; Aleman, Maria M.; O'Byrne, Alice M.; Lei, Victor; Harrasser, Micaela; Foley, Kimberley A.; Wolberg, Alisa S.; Conway, Edward M.
2016-01-01
Thrombus formation leading to vaso-occlusive events is a major cause of death, and involves complex interactions between coagulation, fibrinolytic and innate immune systems. Leukocyte recruitment is a key step, mediated partly by chemotactic complement activation factors C3a and C5a. However, mechanisms mediating C3a/C5a generation during thrombosis have not been studied. In a murine venous thrombosis model, levels of thrombin–antithrombin complexes poorly correlated with C3a and C5a, excluding a central role for thrombin in C3a/C5a production. However, clot weight strongly correlated with C5a, suggesting processes triggered during thrombosis promote C5a generation. Since thrombosis elicits fibrinolysis, we hypothesized that plasmin activates C5 during thrombosis. In vitro, the catalytic efficiency of plasmin-mediated C5a generation greatly exceeded that of thrombin or factor Xa, but was similar to the recognized complement C5 convertases. Plasmin-activated C5 yielded a functional membrane attack complex (MAC). In an arterial thrombosis model, plasminogen activator administration increased C5a levels. Overall, these findings suggest plasmin bridges thrombosis and the immune response by liberating C5a and inducing MAC assembly. These new insights may lead to the development of strategies to limit thrombus formation and/or enhance resolution. PMID:27077125
Guo, Bo; Ma, Zheng-wei; Li, Hua; Xu, Gui-lian; Zheng, Ping; Zhu, Bo; Wu, Yu-Zhang; Zou, Qiang
2008-08-01
Complement-dependent cytotoxicity (CDC) is thought to be one of the most important mechanisms of action of therapeutic monoclonal antibodies (mAbs). The decay-accelerating factor (DAF) overexpressed in certain tumors limits the CDC effect of the therapeutic anticancer antibodies. The use of DAF blocking antibodies targeted specifically at cancer cells in combination with immunotherapeutic mAbs of cancer may improve the therapeutic effect in cancer patients. In this study, the lysis of Raji cells mediated by CDC was determined after blocking DAF function by anti-DAF polyclonal antibody and 3 mAbs (DG3, DG9, DA11) prepared in our laboratory, respectively, in the presence of the anti-CD20 chimeric mAb rituximab. The binding domains of the three anti-DAF mAbs were identified using yeast surface display technique, and the mimic epitopes of mAb DG3 were screened from a random phage-display nonapeptide library. The results showed that blocking DAF function by anti-DAF polyclonal antibody enhanced complement-mediated killing of Raji cells. Among the 3 mAbs against DAF, only DG3 was found to be able to remarkably enhance the CDC effect of the therapeutic mAb rituximab. DG3 bound to the third short consensus repeat (SCR) of DAF. Binding of DG3 to immobilized DAF was inhibited by mimic epitope peptides screened from the peptide library. Our results suggest that a higher level of DAF expressed by certain tumor cells is significant to abolish the CDC effect of therapeutic anticancer antibodies, and mAbs binding to SCR3 can enhance the complement-mediated killing of Raji cells. It is of significance to identify the DAF epitopes required in inhibiting CDC not only for better understanding of the relationship between the structure and function of DAF, but also for designing and developing anti-DAF mAbs capable of enhancing CDC.
Giuntini, Serena; Reason, Donald C; Granoff, Dan M
2011-09-01
Binding of the complement-downregulating protein factor H (fH) to the surface of the meningococcus is important for survival of the organism in human serum. The meningococcal vaccine candidate factor H binding protein (fHbp) is an important ligand for human fH. While some fHbp-specific monoclonal antibodies (MAbs) block binding of fH to fHbp, the stoichiometry of blocking in the presence of high serum concentrations of fH and its effect on complement-mediated bactericidal activity are unknown. To investigate this question, we constructed chimeric antibodies in which the human IgG1 constant region was paired with three murine fHbp-specific binding domains designated JAR 3, JAR 5, and MAb502. By surface plasmon resonance, the association rates for binding of all three MAbs to immobilized fHbp were >50-fold higher than that for binding of fH to fHbp, and the MAb dissociation rates were >500-fold lower than that for fH. While all three MAbs elicited similar C1q-dependent C4b deposition on live bacteria (classical complement pathway), only those antibodies that inhibited binding of fH to fHbp (JAR 3 and JAR 5) had bactericidal activity with human complement. MAb502, which did not inhibit fH binding, had complement-mediated bactericidal activity only when tested with fH-depleted human complement. When an IgG1 anti-fHbp MAb binds to sparsely exposed fHbp on the bacterial surface, there appears to be insufficient complement activation for bacteriolysis unless fH binding also is inhibited. The ability of fHbp vaccines to elicit protective antibodies, therefore, is likely to be enhanced if the antibody repertoire is of high avidity and includes fH-blocking activity.
Swe, Pearl M; Fischer, Katja
2014-06-01
Scabies is a contagious skin disease caused by the parasitic mite Sarcoptes scabiei. The disease is highly prevalent worldwide and known to predispose to secondary bacterial infections, in particular by Streptococcus pyogenes and Staphylococcus aureus. Reports of scabies patients co-infected with methicillin resistant S. aureus (MRSA) pose a major concern for serious down-stream complications. We previously reported that a range of complement inhibitors secreted by the mites promoted the growth of S. pyogenes. Here, we show that a recently characterized mite serine protease inhibitor (SMSB4) inhibits the complement-mediated blood killing of S. aureus. Blood killing of S. aureus was measured in whole blood bactericidal assays, counting viable bacteria recovered after treatment in fresh blood containing active complement and phagocytes, treated with recombinant SMSB4. SMSB4 inhibited the blood killing of various strains of S. aureus including methicillin-resistant and methicillin-sensitive isolates. Staphylococcal growth was promoted in a dose-dependent manner. We investigated the effect of SMSB4 on the complement-mediated neutrophil functions, namely phagocytosis, opsonization and anaphylatoxin release, by flow cytometry and in enzyme linked immuno sorbent assays (ELISA). SMSB4 reduced phagocytosis of S. aureus by neutrophils. It inhibited the deposition of C3b, C4b and properdin on the bacteria surface, but did not affect the depositions of C1q and MBL. SMSB4 also inhibited C5 cleavage as indicated by a reduced C5b-9 deposition. We postulate that SMSB4 interferes with the activation of all three complement pathways by reducing the amount of C3 convertase formed. We conclude that SMSB4 interferes with the complement-dependent killing function of neutrophils, thereby reducing opsonization, phagocytosis and further recruitment of neutrophils to the site of infection. As a consequence secreted scabies mites complement inhibitors, such as SMSB4, provide favorable conditions for the onset of S. aureus co-infection in the scabies-infected microenvironment by suppressing the immediate host immune response.
Toropainen, Maija; Saarinen, Leena; Vidarsson, Gestur; Käyhty, Helena
2006-05-01
The relative contributions of antibody-induced complement-mediated bacterial lysis and antibody/complement-mediated phagocytosis to host immunity against meningococcal infections are currently unclear. Further, the in vivo effector functions of antibodies may vary depending on their specificity and Fc heavy-chain isotype. In this study, a mouse immunoglobulin G2a (mIgG2a) monoclonal antibody (MN12H2) to meningococcal outer membrane protein PorA (P1.16), its human IgG subclass derivatives (hIgG1 to hIgG4), and an mIgG2a monoclonal antibody (Nmb735) to serogroup B capsular polysaccharide (B-PS) were evaluated for passive protection against meningococcal serogroup B strain 44/76-SL (B:15:P1.7,16) in an infant rat infection model. Complement component C6-deficient (PVG/c-) rats were used to assess the importance of complement-mediated bacterial lysis for protection. The PorA-specific parental mIgG2a and the hIgG1 to hIgG3 derivatives all induced efficient bactericidal activity in vitro in the presence of human or infant rat complement and augmented bacterial clearance in complement-sufficient HsdBrlHan:WIST rats, while the hIgG4 was unable to do so. In C6-deficient PVG/c- rats, lacking complement-mediated bacterial lysis, the augmentation of bacterial clearance by PorA-specific mIgG2a and hIgG1 antibodies was impaired compared to that in the syngeneic complement-sufficient PVG/c+ rat strain. This was in contrast to the case for B-PS-specific mIgG2a, which conferred similar protective activity in both rat strains. These data suggest that while anti-B-PS antibody can provide protection in the infant rats without membrane attack complex formation, the protection afforded by anti-PorA antibody is more dependent on the activation of the whole complement pathway and subsequent bacterial lysis.
Homologous species restriction of the complement-mediated killing of nucleated cells.
Yamamoto, H; Blaas, P; Nicholson-Weller, A; Hänsch, G M
1990-01-01
The homologous restriction of complement (C) lysis is attributed to membrane proteins: decay-accelerating factor (DAF), C8 binding protein (C8bp) and P18/CD59. Since these proteins are also expressed on peripheral blood cells, species restriction was tested for in the complement-mediated killing of antibody-coated human leucocytes by human or rabbit complement. Killing was more efficient when rabbit complement was used. Preincubation of cells with an antibody to DAF abolished the difference. When C1-7 sites were first attached to the cells and either rabbit or human C8, C9 were added, the killing of monocytes and lymphocytes was equally efficient; only in polymorphonuclear neutrophils was a higher efficiency of rabbit C8, C9 seen. Thus, in contrast to haemolysis, restriction occurred predominantly at the C3 level and the action of the terminal complement components was not inhibited. Since C8bp isolated from peripheral blood cells showed essentially similar characteristics as the erythrocyte-derived C8bp, the failure of C8bp to inhibit the action of the terminal components on nucleated cells might reflect differences of the complement membrane interactions between erythrocytes or nucleated cells, respectively. Images Figure 5 PMID:1697561
Novel Scabies Mite Serpins Inhibit the Three Pathways of the Human Complement System
Mika, Angela; Reynolds, Simone L.; Mohlin, Frida C.; Willis, Charlene; Swe, Pearl M.; Pickering, Darren A.; Halilovic, Vanja; Wijeyewickrema, Lakshmi C.; Pike, Robert N.; Blom, Anna M.; Kemp, David J.; Fischer, Katja
2012-01-01
Scabies is a parasitic infestation of the skin by the mite Sarcoptes scabiei that causes significant morbidity worldwide, in particular within socially disadvantaged populations. In order to identify mechanisms that enable the scabies mite to evade human immune defenses, we have studied molecules associated with proteolytic systems in the mite, including two novel scabies mite serine protease inhibitors (SMSs) of the serpin superfamily. Immunohistochemical studies revealed that within mite-infected human skin SMSB4 (54 kDa) and SMSB3 (47 kDa) were both localized in the mite gut and feces. Recombinant purified SMSB3 and SMSB4 did not inhibit mite serine and cysteine proteases, but did inhibit mammalian serine proteases, such as chymotrypsin, albeit inefficiently. Detailed functional analysis revealed that both serpins interfered with all three pathways of the human complement system at different stages of their activation. SMSB4 inhibited mostly the initial and progressing steps of the cascades, while SMSB3 showed the strongest effects at the C9 level in the terminal pathway. Additive effects of both serpins were shown at the C9 level in the lectin pathway. Both SMSs were able to interfere with complement factors without protease function. A range of binding assays showed direct binding between SMSB4 and seven complement proteins (C1, properdin, MBL, C4, C3, C6 and C8), while significant binding of SMSB3 occurred exclusively to complement factors without protease function (C4, C3, C8). Direct binding was observed between SMSB4 and the complement proteases C1s and C1r. However no complex formation was observed between either mite serpin and the complement serine proteases C1r, C1s, MASP-1, MASP-2 and MASP-3. No catalytic inhibition by either serpin was observed for any of these enzymes. In summary, the SMSs were acting at several levels mediating overall inhibition of the complement system and thus we propose that they may protect scabies mites from complement-mediated gut damage. PMID:22792350
Boyle, Michelle J; Reiling, Linda; Feng, Gaoqian; Langer, Christine; Osier, Faith H; Aspeling-Jones, Harvey; Cheng, Yik Sheng; Stubbs, Janine; Tetteh, Kevin K A; Conway, David J; McCarthy, James S; Muller, Ivo; Marsh, Kevin; Anders, Robin F; Beeson, James G
2015-03-17
Antibodies play major roles in immunity to malaria; however, a limited understanding of mechanisms mediating protection is a major barrier to vaccine development. We have demonstrated that acquired human anti-malarial antibodies promote complement deposition on the merozoite to mediate inhibition of erythrocyte invasion through C1q fixation and activation of the classical complement pathway. Antibody-mediated complement-dependent (Ab-C') inhibition was the predominant invasion-inhibitory activity of human antibodies; most antibodies were non-inhibitory without complement. Inhibitory activity was mediated predominately via C1q fixation, and merozoite surface proteins 1 and 2 were identified as major targets. Complement fixation by antibodies was very strongly associated with protection from both clinical malaria and high-density parasitemia in a prospective longitudinal study of children. Ab-C' inhibitory activity could be induced by human immunization with a candidate merozoite surface-protein vaccine. Our findings demonstrate that human anti-malarial antibodies have evolved to function by fixing complement for potent invasion-inhibitory activity and protective immunity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Lee, Chang-Han; Romain, Gabrielle; Yan, Wupeng; Watanabe, Makiko; Charab, Wissam; Todorova, Biliana; Lee, Jiwon; Triplett, Kendra; Donkor, Moses; Lungu, Oana I; Lux, Anja; Marshall, Nicholas; Lindorfer, Margaret A; Goff, Odile Richard-Le; Balbino, Bianca; Kang, Tae Hyun; Tanno, Hidetaka; Delidakis, George; Alford, Corrine; Taylor, Ronald P; Nimmerjahn, Falk; Varadarajan, Navin; Bruhns, Pierre; Zhang, Yan Jessie; Georgiou, George
2017-08-01
Engineered crystallizable fragment (Fc) regions of antibody domains, which assume a unique and unprecedented asymmetric structure within the homodimeric Fc polypeptide, enable completely selective binding to the complement component C1q and activation of complement via the classical pathway without any concomitant engagement of the Fcγ receptor (FcγR). We used the engineered Fc domains to demonstrate in vitro and in mouse models that for therapeutic antibodies, complement-dependent cell-mediated cytotoxicity (CDCC) and complement-dependent cell-mediated phagocytosis (CDCP) by immunological effector molecules mediated the clearance of target cells with kinetics and efficacy comparable to those of the FcγR-dependent effector functions that are much better studied, while they circumvented certain adverse reactions associated with FcγR engagement. Collectively, our data highlight the importance of CDCC and CDCP in monoclonal-antibody function and provide an experimental approach for delineating the effect of complement-dependent effector-cell engagement in various therapeutic settings.
Sublytic complement protects prostate cancer cells from tumour necrosis factor-α-induced cell death.
Liu, L; Li, W; Li, Z; Kirschfink, M
2012-08-01
Inflammation is a critical component of tumour progression. Although complement and tumour necrosis factor (TNF)-α potentially exert significant anti-tumour effects, both mediators may also promote tumour progression. It has been demonstrated that sublytic complement confers resistance on tumour cells not only against lytic complement, but also other danger molecules such as perforin. In low concentrations, TNF promotes survival of malignant cells rather than exerting cytotoxic activity. In this study, we tested if sublytic complement is able to interfere with TNF-mediated tumour cell killing. Our results demonstrate that either subcytotoxic concentrations of TNF or sublytic complement rescue prostate carcinoma cells (DU145) from TNF-α-mediated cell death. Upon pretreatment with low-dose TNF-α, but not upon pre-exposure to sublytic complement, TNF resistance was associated with the down-regulation of TNF receptor 1 (TNF-R1) expression. Complement-induced protection against TNF-mediated apoptosis accompanied the induction of anti-apoptotic proteins [B cell leukaemia/lymphoma (Bcl)-2 and Bcl-xL] at an early stage followed by inhibition of the TNF-induced decrease in the amount of Bcl-2 and Bcl-xL. Cell protection also accompanied the inhibition of caspase-8 activation, poly (ADP-ribose) polymerase (PARP)-1 cleavage and the activation of nuclear factor (NF)-κB. Our data extend our current view on the induction of tumour cell resistance against cytotoxic mediators supporting the role of the tumour microenvironment in mediating protection against the anti-cancer immune response. © 2012 The Authors. Clinical and Experimental Immunology © 2012 British Society for Immunology.
Lohman, Rink-Jan; Hamidon, Johan K; Reid, Robert C; Rowley, Jessica A; Yau, Mei-Kwan; Halili, Maria A; Nielsen, Daniel S; Lim, Junxian; Wu, Kai-Chen; Loh, Zhixuan; Do, Anh; Suen, Jacky Y; Iyer, Abishek; Fairlie, David P
2017-08-24
Complement C3a is an important protein in innate and adaptive immunity, but its specific roles in vivo remain uncertain because C3a degrades rapidly to form the C3a-desArg protein, which does not bind to the C3a receptor and is indistinguishable from C3a using antibodies. Here we develop the most potent, stable and highly selective small molecule modulators of C3a receptor, using a heterocyclic hinge to switch between agonist and antagonist ligand conformations. This enables characterization of C3 areceptor-selective pro- vs. anti-inflammatory actions in human mast cells and macrophages, and in rats. A C3a receptor-selective agonist induces acute rat paw inflammation by first degranulating mast cells before activating macrophages and neutrophils. An orally administered C3a receptor-selective antagonist inhibits mast cell degranulation, thereby blocking recruitment and activation of macrophages and neutrophils, expression of inflammatory mediators and inflammation in a rat paw edema model. These novel tools reveal the mechanism of C3a-induced inflammation and provide new insights to complement-based medicines.Complement C3a is an important protein in innate and adaptive immunity, but its roles in vivo are unclear. Here the authors develop novel chemical agonists and antagonists for the C3a receptor, and show that they modulate mast cell degranulation and inflammation in a rat paw edema model.
Brocklebank, Vicky
2017-01-01
Abstract Thrombotic microangiopathy (TMA), characterized by organ injury occurring consequent to severe endothelial damage, can manifest in a diverse range of diseases. In complement-mediated atypical haemolytic uraemic syndrome (aHUS) a primary defect in complement, such as a mutation or autoantibody leading to over activation of the alternative pathway, predisposes to the development of disease, usually following exposure to an environmental trigger. The elucidation of the pathogenesis of aHUS resulted in the successful introduction of the complement inhibitor eculizumab into clinical practice. In other TMAs, although complement activation may be seen, its role in the pathogenesis remains to be confirmed by an interventional trial. Although many case reports in TMAs other than complement-mediated aHUS hint at efficacy, publication bias, concurrent therapies and in some cases the self-limiting nature of disease make broader interpretation difficult. In this article, we will review the evidence for the role of complement inhibition in complement-mediated aHUS and other TMAs. PMID:28980670
Giuntini, Serena; Beernink, Peter T; Reason, Donald C; Granoff, Dan M
2012-01-01
Meningococcal factor H binding protein (fHbp) is a promising vaccine candidate. Anti-fHbp antibodies can bind to meningococci and elicit complement-mediated bactericidal activity directly. The antibodies also can block binding of the human complement down-regulator, factor H (fH). Without bound fH, the organism would be expected to have increased susceptibility to bacteriolysis. Here we describe bactericidal activity of two anti-fHbp mAbs with overlapping epitopes in relation to their different effects on fH binding and bactericidal activity. Both mAbs recognized prevalent fHbp sequence variants in variant group 1. Using yeast display and site-specific mutagenesis, binding of one of the mAbs (JAR 1, IgG3) to fHbp was eliminated by a single amino acid substitution, R204A, and was decreased by K143A but not by R204H or D142A. The JAR 1 epitope overlapped that of previously described mAb (mAb502, IgG2a) whose binding to fHbp was eliminated by R204A or R204H substitutions, and was decreased by D142A but not by K143A. Although JAR 1 and mAb502 appeared to have overlapping epitopes, only JAR 1 inhibited binding of fH to fHbp and had human complement-mediated bactericidal activity. mAb502 enhanced fH binding and lacked human complement-mediated bactericidal activity. To control for confounding effects of different mouse IgG subclasses on complement activation, we created chimeric mAbs in which the mouse mAb502 or JAR 1 paratopes were paired with human IgG1 constant regions. While both chimeric mAbs showed similar binding to fHbp, only JAR 1, which inhibited fH binding, had human complement-mediated bactericidal activity. The lack of human complement-mediated bactericidal activity by anti-fHbp mAb502 appeared to result from an inability to inhibit binding of fH. These results underscore the importance of inhibition of fH binding for anti-fHbp mAb bactericidal activity.
Challis, Rachel C; Araujo, Geisilaine S R; Wong, Edwin K S; Anderson, Holly E; Awan, Atif; Dorman, Anthony M; Waldron, Mary; Wilson, Valerie; Brocklebank, Vicky; Strain, Lisa; Morgan, B Paul; Harris, Claire L; Marchbank, Kevin J; Goodship, Timothy H J; Kavanagh, David
2016-06-01
The regulators of complement activation cluster at chromosome 1q32 contains the complement factor H (CFH) and five complement factor H-related (CFHR) genes. This area of the genome arose from several large genomic duplications, and these low-copy repeats can cause genome instability in this region. Genomic disorders affecting these genes have been described in atypical hemolytic uremic syndrome, arising commonly through nonallelic homologous recombination. We describe a novel CFH/CFHR3 hybrid gene secondary to a de novo 6.3-kb deletion that arose through microhomology-mediated end joining rather than nonallelic homologous recombination. We confirmed a transcript from this hybrid gene and showed a secreted protein product that lacks the recognition domain of factor H and exhibits impaired cell surface complement regulation. The fact that the formation of this hybrid gene arose as a de novo event suggests that this cluster is a dynamic area of the genome in which additional genomic disorders may arise. Copyright © 2016 by the American Society of Nephrology.
Novel roles of complement in renal diseases and their therapeutic consequences.
Wada, Takehiko; Nangaku, Masaomi
2013-09-01
The complement system functions as a part of the innate immune system. Inappropriate activation of the complement pathways has a deleterious effect on kidneys. Recent advances in complement research have provided new insights into the pathogenesis of glomerular and tubulointerstitial injury associated with complement activation. A new disease entity termed 'C3 glomerulopathy' has recently been proposed and is characterized by isolated C3 deposition in glomeruli without positive staining for immunoglobulins. Genetic and functional studies have demonstrated that several different mutations and disease variants, as well as the generation of autoantibodies, are potentially associated with its pathogenesis. The data from comprehensive analyses suggest that complement dysregulation can also be associated with hemolytic uremic syndrome and more common glomerular diseases, such as IgA nephropathy and diabetic kidney disease. In addition, animal studies utilizing genetically modified mice have begun to elucidate the molecular pathomechanisms associated with the complement system. From a diagnostic point of view, a noninvasive, MRI-based method for detecting C3 has recently been developed to serve as a novel tool for diagnosing complement-mediated kidney diseases. While novel therapeutic tools related to complement regulation are emerging, studies evaluating the precise roles of the complement system in kidney diseases will still be useful for developing new therapeutic approaches.
Pondman, Kirsten M; Sobik, Martin; Nayak, Annapurna; Tsolaki, Anthony G; Jäkel, Anne; Flahaut, Emmanuel; Hampel, Silke; Ten Haken, Bennie; Sim, Robert B; Kishore, Uday
2014-08-01
Carbon nanotubes (CNTs) have promised a range of applications in biomedicine. Although influenced by the dispersants used, CNTs are recognized by the innate immune system, predominantly by the classical pathway of the complement system. Here, we confirm that complement activation by the CNT used continues up to C3 and C5, indicating that the entire complement system is activated including the formation of membrane-attack complexes. Using recombinant forms of the globular regions of human C1q (gC1q) as inhibitors of CNT-mediated classical pathway activation, we show that C1q, the first recognition subcomponent of the classical pathway, binds CNTs via the gC1q domain. Complement opsonisation of CNTs significantly enhances their uptake by U937 cells, with concomitant downregulation of pro-inflammatory cytokines and up-regulation of anti-inflammatory cytokines in both U937 cells and human monocytes. We propose that CNT-mediated complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. This study highlights the importance of the complement system in response to carbon nanontube administration, suggesting that the ensuing complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. Copyright © 2014 Elsevier Inc. All rights reserved.
Rodriguez, E. R.; Skojec, Diane V.; Tan, Carmela D.; Zachary, Andrea A.; Kasper, Edward K.; Conte, John V.; Baldwin, William M.
2005-01-01
Antibody-mediated rejection (AMR) in human heart transplantation is an immunopathologic process in which injury to the graft is in part the result of activation of complement and it is poorly responsive to conventional therapy. We evaluated by immunofluorescence (IF), 665 consecutive endomyocardial biopsies from 165 patients for deposits of immunoglobulins and complement. Diffuse IF deposits in a linear capillary pattern greater than 2+ were considered significant. Clinical evidence of graft dysfunction was correlated with complement deposits. IF 2+ or higher was positive for IgG, 66%; IgM, 12%; IgA, 0.6%; C1q, 1.8%; C4d, 9% and C3d, 10%. In 3% of patients, concomitant C4d and C3d correlated with graft dysfunction or heart failure. In these 5 patients AMR occurred 56–163 months after transplantation, and they responded well to therapy for AMR but not to treatment with steroids. Systematic evaluation of endomyocardial biopsies is not improved by the use of antibodies for immunoglobulins or C1q. Concomitant use of C4d and C3d is very useful to diagnose AMR, when correlated with clinical parameters of graft function. AMR in heart transplant patients can occur many months or years after transplant. PMID:16212640
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jin-Yeon; Loh, SoHee; Cho, Eun-hee
Although SIGN-R1-mediated complement activation pathway has been shown to enhance the systemic clearance of apoptotic cells, the role of SIGN-R1 in the clearance of radiation-induced apoptotic cells has not been characterized and was investigated in this study. Our data indicated that whole-body γ-irradiation of mice increased caspase-3{sup +} apoptotic lymphocyte numbers in secondary lymphoid organs. Following γ-irradiation, SIGN-R1 and complements (C4 and C3) were simultaneously increased only in the mice spleen tissue among the assessed tissues. In particular, C3 was exclusively activated in the spleen. The delayed clearance of apoptotic cells was markedly prevalent in the spleen and liver ofmore » SIGN-R1 KO mice, followed by a significant increase of CD11b{sup +} cells. These results indicate that SIGN-R1 and complement factors play an important role in the systemic clearance of radiation-induced apoptotic innate immune cells to maintain tissue homeostasis after γ-irradiation. - Highlights: • Splenic SIGN-R1{sup +} macrophages are activated after γ-irradiation. • C3 and C4 levels increased and C3 was activated in the spleen after γ-irradiation. • SIGN-R1 mediated the systemic clearance of radiation-induced apoptotic cells in spleen and liver.« less
Meulenbroek, Elisabeth M.; de Haas, Masja; Brouwer, Conny; Folman, Claudia; Zeerleder, Sacha S.; Wouters, Diana
2015-01-01
In autoimmune hemolytic anemia autoantibodies against erythrocytes lead to increased clearance of the erythrocytes, which in turn results in a potentially fatal hemolytic anemia. Depending on whether IgG or IgM antibodies are involved, response to therapy is different. Proper identification of the isotype of the anti-erythrocyte autoantibodies is, therefore, crucial. However, detection of IgM autoantibodies can be challenging. We, therefore, set out to improve the detection of anti-erythrocyte IgM. Direct detection using a flow cytometry-based approach did not yield satisfactory improvements. Next, we analyzed whether the presence of complement C3 on a patient’s erythrocytes could be used for indirect detection of anti-erythrocyte IgM. To this end, we fractionated patients’ sera by size exclusion chromatography and tested which fractions yielded complement deposition on erythrocytes. Strikingly, we found that all patients with C3 on their erythrocytes according to standard diagnostic tests had an IgM anti-erythrocyte component that could activate complement, even if no such autoantibody had been detected with any other test. This also included all tested patients with only IgG and C3 on their erythrocytes, who would previously have been classified as having an IgG-only mediated autoimmune hemolytic anemia. Depleting patients’ sera of either IgG or IgM and testing the remaining complement activation confirmed this result. In conclusion, complement activation in autoimmune hemolytic anemia is mostly IgM-mediated and the presence of covalent C3 on patients’ erythrocytes can be taken as a footprint of the presence of anti-erythrocyte IgM. Based on this finding, we propose a diagnostic workflow that will aid in choosing the optimal treatment strategy. PMID:26354757
Tavano, Regina; Gabrielli, Luca; Lubian, Elisa; Fedeli, Chiara; Visentin, Silvia; Polverino De Laureto, Patrizia; Arrigoni, Giorgio; Geffner-Smith, Alessandra; Chen, Fangfang; Simberg, Dmitri; Morgese, Giulia; Benetti, Edmondo M; Wu, Linping; Moghimi, Seyed Moein; Mancin, Fabrizio; Papini, Emanuele
2018-05-23
Poly(2-methyl-2-oxazoline) (PMOXA) is an alternative promising polymer to poly(ethylene glycol) (PEG) for design and engineering of macrophage-evading nanoparticles (NPs). Although PMOXA-engineered NPs have shown comparable pharmacokinetics and in vivo performance to PEGylated stealth NPs in the murine model, its interaction with elements of the human innate immune system has not been studied. From a translational angle, we studied the interaction of fully characterized PMOXA-coated vinyltriethoxysilane-derived organically modified silica NPs (PMOXA-coated NPs) of approximately 100 nm in diameter with human complement system, blood leukocytes, and macrophages and compared their performance with PEGylated and uncoated NP counterparts. Through detailed immunological and proteomic profiling, we show that PMOXA-coated NPs extensively trigger complement activation in human sera exclusively through the classical pathway. Complement activation is initiated by the sensing molecule C1q, where C1q binds with high affinity ( K d = 11 ± 1 nM) to NP surfaces independent of immunoglobulin binding. C1q-mediated complement activation accelerates PMOXA opsonization with the third complement protein (C3) through the amplification loop of the alternative pathway. This promoted NP recognition by human blood leukocytes and monocyte-derived macrophages. The macrophage capture of PMOXA-coated NPs correlates with sera donor variability in complement activation and opsonization but not with other major corona proteins, including clusterin and a wide range of apolipoproteins. In contrast to these observations, PMOXA-coated NPs poorly activated the murine complement system and were marginally recognized by mouse macrophages. These studies provide important insights into compatibility of engineered NPs with elements of the human innate immune system for translational steps.
Guilty as charged: all available evidence implicates complement's role in fetal demise.
Girardi, Guillermina
2008-03-01
Appropriate complement inhibition is an absolute requirement for normal pregancy. Uncontrolled complement activation in the maternal-fetal interface leads to fetal death. Here we show that complement activation is a crucial and early mediator of pregnancy loss in two different mouse models of pregnancy loss. Using a mouse model of fetal loss and growth restriction (IUGR) induced by antiphospholipid antibodies (aPL), we examined the role of complement activation in fetal loss and IUGR. We found that C5a-C5aR interaction and neutrophils are key mediators of fetal injury. Treatment with heparin, the standard therapy for pregnant patients with aPL, prevents complement activation and protects mice from pregnancy complications induced by aPL, and anticoagulants that do not inhibit complement do not protect pregnancies. In an antibody-independent mouse model of spontaneous miscarriage and IUGR (CBA/JxDBA/2) we also identified C5a as an essential mediator. Complement activation caused dysregulation of the angiogenic factors required for normal placental development. In CBA/JxDBA/2 mice, we observed inflammatory infiltrates in placentas, functional deficiency of free vascular endothelial growth factor (VEGF), elevated levels of soluble VEGF receptor-1 (sVEGFR-1, also known as sFlt-1; a potent anti-angiogenic molecule), and defective placental development. Inhibition of complement activation blocked the increase in sVEGFR-1 and rescued pregnancies. Our studies in antibody-dependent and antibody-independent models of pregnancy complications identified complement activation as the key mediator of damage and will allow development of new interventions to prevent pregnancy loss and IUGR.
Correlating structure and function during the evolution of fibrinogen-related domains
Doolittle, Russell F; McNamara, Kyle; Lin, Kevin
2012-01-01
Fibrinogen-related domains (FReDs) are found in a variety of animal proteins with widely different functions, ranging from non-self recognition to clot formation. All appear to have a common surface where binding of one sort or other occurs. An examination of 19 completed animal genomes—including a sponge and sea anemone, six protostomes, and 11 deuterostomes—has allowed phylogenies to be constructed that show where various types of FReP (proteins containing FReDs) first made their appearance. Comparisons of sequences and structures also reveal particular features that correlate with function, including the influence of neighbor-domains. A particular set of insertions in the carboxyl-terminal subdomain was involved in the transition from structures known to bind sugars to those known to bind amino-terminal peptides. Perhaps not unexpectedly, FReDs with different functions have changed at different rates, with ficolins by far the fastest changing group. Significantly, the greatest amount of change in ficolin FReDs occurs in the third subdomain (“P domain”), the very opposite of the situation in most other vertebrate FReDs. The unbalanced style of change was also observed in FReDs from non-chordates, many of which have been implicated in innate immunity. PMID:23076991
Wang, Yu; Sun, Sheng-Nan; Liu, Qing; Yu, Yang-Yang; Guo, Jian; Wang, Kun; Xing, Bao-Cai; Zheng, Qing-Feng; Campa, Michael J; Patz, Edward F; Li, Shi-You; He, You-Wen
2016-09-01
In contrast to its inhibitory effects on many cells, IL10 activates CD8(+) tumor-infiltrating lymphocytes (TIL) and enhances their antitumor activity. However, CD8(+) TILs do not routinely express IL10, as autocrine complement C3 inhibits IL10 production through complement receptors C3aR and C5aR. CD8(+) TILs from C3-deficient mice, however, express IL10 and exhibit enhanced effector function. C3-deficient mice are resistant to tumor development in a T-cell- and IL10-dependent manner; human TILs expanded with IL2 plus IL10 increase the killing of primary tumors in vitro compared with IL2-treated TILs. Complement-mediated inhibition of antitumor immunity is independent of the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) immune checkpoint pathway. Our findings suggest that complement receptors C3aR and C5aR expressed on CD8(+) TILs represent a novel class of immune checkpoints that could be targeted for tumor immunotherapy. Moreover, incorporation of IL10 in the expansion of TILs and in gene-engineered T cells for adoptive cell therapy enhances their antitumor efficacy. Our data suggest novel strategies to enhance immunotherapies: a combined blockade of complement signaling by antagonists to C3aR, C5aR, and anti-PD-1 to enhance anti-PD-1 efficacy; a targeted IL10 delivery to CD8(+) TILs using anti-PD-1-IL10 or anti-CTLA4-IL10 fusion proteins; and the addition of IL10 in TIL expansion for adoptive cellular therapy. Cancer Discov; 6(9); 1022-35. ©2016 AACR.See related commentary by Peng et al., p. 953This article is highlighted in the In This Issue feature, p. 932. ©2016 American Association for Cancer Research.
Schirmer, W J; Schirmer, J M; Naff, G B; Fry, D E
1988-12-01
Complement, activated during infection and injury, has been implicated as a mediator of microvascular injury and obstruction. This study examines how two potent activators of complement, zymosan, and cobra venom factor (CVF), affect systemic and visceral perfusion. Rats were injected with either saline (1 ml/kg), zymosan (5 mg/kg) or CVF (5 units/kg) at t = 0 and 30 minutes. Thermodilution cardiac output, mean arterial pressure, heart rate, systemic vascular resistance, and hematocrit were determined at t = 2 hours. Effective hepatic and renal blood flows, by clearance of galactose and p-aminohippurate respectively, were determined over the next hour. The per cent change in total hemolytic complement from t = 0 to t = 3 hours was determined by immune hemolysis of sheep erythrocytes. There was no difference in systemic hemodynamic parameters between the three groups. Hepatic blood flow was depressed in both the zymosan (3.83 +/- 0.23 ml/min/100 g) and CVF (3.72 +/- 0.20 ml/min/100 g) groups compared with controls (4.62 +/- 0.19 ml/min/100 g, P less than 0.05). Renal blood flow in the zymosan-treated group (6.40 +/- 0.24 ml/min/100 g) increased over control (4.80 +/- 0.40 ml/min/100 g, P less than 0.05) but was unchanged in the CVF group (5.06 +/- 0.23 ml/min/100 g). The amount of complement activated correlated with the change in hepatic (r = -0.419, P less than 0.05) but not renal (r = -0.008, P = 0.917) flow. Complement activation may occupy a proximal position in the pathogenesis of hepatic ischemia associated with trauma and sepsis.
Lillegard, Kathryn E.; Loeks-Johnson, Alex C.; Opacich, Jonathan W.; Peterson, Jenna M.; Bauer, Ashley J.; Elmquist, Barbara J.; Regal, Ronald R.; Gilbert, Jeffrey S.
2014-01-01
Early-onset pre-eclampsia is characterized by decreased placental perfusion, new-onset hypertension, angiogenic imbalance, and endothelial dysfunction associated with excessive activation of the innate immune complement system. Although our previous studies demonstrated that inhibition of complement activation attenuates placental ischemia–induced hypertension using the rat reduced uterine perfusion pressure (RUPP) model, the important product(s) of complement activation has yet to be identified. We hypothesized that antagonism of receptors for complement activation products C3a and C5a would improve vascular function and attenuate RUPP hypertension. On gestational day (GD) 14, rats underwent sham surgery or vascular clip placement on ovarian arteries and abdominal aorta (RUPP). Rats were treated once daily with the C5a receptor antagonist (C5aRA), PMX51 (acetyl-F-[Orn-P-(D-Cha)-WR]), the C3a receptor antagonist (C3aRA), SB290157 (N2-[(2,2-diphenylethoxy)acetyl]-l-arginine), or vehicle from GD 14–18. Both the C3aRA and C5aRA attenuated placental ischemia–induced hypertension without affecting the decreased fetal weight or decreased concentration of free circulating vascular endothelial growth factor (VEGF) also present in this model. The C5aRA, but not the C3aRA, attenuated placental ischemia–induced increase in heart rate and impaired endothelial-dependent relaxation. The C3aRA abrogated the acute pressor response to C3a peptide injection, but it also unexpectedly attenuated the placental ischemia–induced increase in C3a, suggesting nonreceptor-mediated effects. Overall, these results indicate that both C3a and C5a are important products of complement activation that mediate the hypertension regardless of the reduction in free plasma VEGF. The mechanism by which C3a contributes to placental ischemia–induced hypertension appears to be distinct from that of C5a, and management of pregnancy-induced hypertension is likely to require a broad anti-inflammatory approach. PMID:25150279
McGonigal, Rhona; Cunningham, Madeleine E; Yao, Denggao; Barrie, Jennifer A; Sankaranarayanan, Sethu; Fewou, Simon N; Furukawa, Koichi; Yednock, Ted A; Willison, Hugh J
2016-03-02
Guillain-Barré syndrome (GBS) is an autoimmune disease that results in acute paralysis through inflammatory attack on peripheral nerves, and currently has limited, non-specific treatment options. The pathogenesis of the acute motor axonal neuropathy (AMAN) variant is mediated by complement-fixing anti-ganglioside antibodies that directly bind and injure the axon at sites of vulnerability such as nodes of Ranvier and nerve terminals. Consequently, the complement cascade is an attractive target to reduce disease severity. Recently, C5 complement component inhibitors that block the formation of the membrane attack complex and subsequent downstream injury have been shown to be efficacious in an in vivo anti-GQ1b antibody-mediated mouse model of the GBS variant Miller Fisher syndrome (MFS). However, since gangliosides are widely expressed in neurons and glial cells, injury in this model was not targeted exclusively to the axon and there are currently no pure mouse models for AMAN. Additionally, C5 inhibition does not prevent the production of early complement fragments such as C3a and C3b that can be deleterious via their known role in immune cell and macrophage recruitment to sites of neuronal damage. In this study, we first developed a new in vivo transgenic mouse model of AMAN using mice that express complex gangliosides exclusively in neurons, thereby enabling specific targeting of axons with anti-ganglioside antibodies. Secondly, we have evaluated the efficacy of a novel anti-C1q antibody (M1) that blocks initiation of the classical complement cascade, in both the newly developed anti-GM1 antibody-mediated AMAN model and our established MFS model in vivo. Anti-C1q monoclonal antibody treatment attenuated complement cascade activation and deposition, reduced immune cell recruitment and axonal injury, in both mouse models of GBS, along with improvement in respiratory function. These results demonstrate that neutralising C1q function attenuates injury with a consequent neuroprotective effect in acute GBS models and promises to be a useful new target for human therapy.
From orphan drugs to adopted therapies: Advancing C3-targeted intervention to the clinical stage
Mastellos, Dimitrios C.; Reis, Edimara S.; Yancopoulou, Despina; Hajishengallis, George; Ricklin, Daniel; Lambris, John D.
2016-01-01
Complement dysregulation is increasingly recognized as an important pathogenic driver in a number of clinical disorders. Complement-triggered pathways intertwine with key inflammatory and tissue destructive processes that can either increase the risk of disease or exacerbate pathology in acute or chronic conditions. The launch of the first complement-targeted drugs in the clinic has undeniably stirred the field of complement therapeutic design, providing new insights into complement's contribution to disease pathogenesis and also helping to leverage a more personalized, comprehensive approach to patient management. In this regard, a rapidly expanding toolbox of complement therapeutics is being developed to address unmet clinical needs in several immune-mediated and inflammatory diseases. Elegant approaches employing both surface-directed and fluid-phase inhibitors have exploited diverse components of the complement cascade as putative points of therapeutic intervention. Targeting C3, the central hub of the system, has proven to be a promising strategy for developing biologics as well as small-molecule inhibitors with clinical potential. Complement modulation at the level of C3 has recently shown promise in preclinical primate models, opening up new avenues for therapeutic intervention in both acute and chronic indications fueled by uncontrolled C3 turnover. This review highlights recent developments in the field of complement therapeutics, focusing on C3-directed inhibitors and alternative pathway (AP) regulator-based approaches. Translational perspectives and considerations are discussed, particularly with regard to the structure-guided drug optimization and clinical advancement of a new generation of C3-targeted peptidic inhibitors. PMID:27353192
Cox, Dianne; Dale, Benjamin M.; Kashiwada, Masaki; Helgason, Cheryl D.; Greenberg, Steven
2001-01-01
The Src homology 2 domain–containing inositol 5′-phosphatase (SHIP) is recruited to immunoreceptor tyrosine-based inhibition motif (ITIM)–containing proteins, thereby suppressing phosphatidylinositol 3-kinase (PI 3-kinase)–dependent pathways. The role of SHIP in phagocytosis, a PI 3-kinase–dependent pathway, is unknown. Overexpression of SHIP in macrophages led to an inhibition of phagocytosis mediated by receptors for the Fc portion of IgG (FcγRs). In contrast, macrophages expressing catalytically inactive SHIP or lacking SHIP expression demonstrated enhanced phagocytosis. To determine whether SHIP regulates phagocytosis mediated by receptors that are not known to recruit ITIMs, we determined the effect of SHIP expression on complement receptor 3 (CR3; CD11b/CD18; αMβ2)–dependent phagocytosis. Macrophages overexpressing SHIP demonstrated impaired CR3-mediated phagocytosis, whereas macrophages expressing catalytically inactive SHIP demonstrated enhanced phagocytosis. CR3-mediated phagocytosis in macrophages derived from SHIP−/− mice was up to 2.5 times as efficient as that observed in macrophages derived from littermate controls. SHIP was localized to FcγR- and CR3-containing phagocytic cups and was recruited to the cytoskeleton upon clustering of CR3. In a transfected COS cell model of activation-independent CR3-mediated phagocytosis, catalytically active but not inactive SHIP also inhibited phagocytosis. We conclude that PI 3-kinase(s) and SHIP regulate multiple forms of phagocytosis and that endogenous SHIP plays a role in modulating β2 integrin outside-in signaling. PMID:11136821
Kunchithapautham, Kannan; Atkinson, Carl; Rohrer, Bärbel
2014-01-01
Age-related macular degeneration (AMD) is a complex disease caused by genetic and environmental factors, including genetic variants in complement components and smoking. Smoke exposure leads to oxidative stress, complement activation, endoplasmic reticulum (ER) stress, and lipid dysregulation, which have all been proposed to be associated with AMD pathogenesis. Here we examine the effects of smoke exposure on the retinal pigment epithelium (RPE). Mice were exposed to cigarette smoke or filtered air for 6 months. RPE cells grown as stable monolayers were exposed to 5% cigarette smoke extract (CSE). Effects of smoke were determined by biochemical, molecular, and histological measures. Effects of the alternative pathway (AP) of complement and complement C3a anaphylatoxin receptor signaling were analyzed using knock-out mice or specific inhibitors. ER stress markers were elevated after smoke exposure in RPE of intact mice, which was eliminated in AP-deficient mice. To examine this relationship further, RPE monolayers were exposed to CSE. Short term smoke exposure resulted in production and release of complement C3, the generation of C3a, oxidative stress, complement activation on the cell membrane, and ER stress. Long term exposure to CSE resulted in lipid accumulation, and secretion. All measures were reversed by blocking C3a complement receptor (C3aR), alternative complement pathway signaling, and antioxidant therapy. Taken together, our results provide clear evidence that smoke exposure results in oxidative stress and complement activation via the AP, resulting in ER stress-mediated lipid accumulation, and further suggesting that oxidative stress and complement act synergistically in the pathogenesis of AMD. PMID:24711457
C1 inhibitor-mediated myocardial protection from chronic intermittent hypoxia-induced injury
Fu, Jinrong; Guo, Furong; Chen, Cheng; Yu, Xiaoman; Hu, Ke; Li, Mingjiang
2016-01-01
The optimal treatment for chronic intermittent hypoxia (CIH)-induced cardiovascular injuries has yet to be determined. The aim of the current study was to explore the potential protective effect and mechanism of a C1 inhibitor in CIH in the myocardium. The present study used a rat model of CIH in which complement regulatory protein, known as C1 inhibitor (C1INH), was administered to the rats in the intervention groups. Cardiomyocyte apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. The expression of proteins associated with the apoptotic pathway, such as B-cell lymphoma 2 (Bcl-2), Bax and caspase-3 were detected by western blot analysis. The expression of complement C3 protein and RNA were also analyzed. C1INH was observed to improve the cardiac function in rats with CIH. Myocardial myeloperoxidase activity, a marker of neutrophil infiltration, was significantly decreased in the C1INH intervention group compared with the CIH control group, and cardiomyocyte apoptosis was significantly attenuated (P<0.05). Western blotting and reverse transcription-polymerase chain reaction analysis indicated that the protein expression levels of Bcl-2 were decreased and those of Bax were increased in the CIH group compared with the normal control group, but the protein expression levels of Bcl-2 were increased and those of Bax were decreased in the C1INH intervention group, as compared with the CIH group. Furthermore, the CIH-induced expression and synthesis of complement C3 in the myocardium were also reduced in the C1INH intervention group. C1INH, in addition to inhibiting complement activation and inflammation, preserved cardiac function in CIH-mediated myocardial cell injury through an anti-apoptotic mechanism. PMID:27698713
Complement Activation in Inflammatory Skin Diseases
Giang, Jenny; Seelen, Marc A. J.; van Doorn, Martijn B. A.; Rissmann, Robert; Prens, Errol P.; Damman, Jeffrey
2018-01-01
The complement system is a fundamental part of the innate immune system, playing a crucial role in host defense against various pathogens, such as bacteria, viruses, and fungi. Activation of complement results in production of several molecules mediating chemotaxis, opsonization, and mast cell degranulation, which can contribute to the elimination of pathogenic organisms and inflammation. Furthermore, the complement system also has regulating properties in inflammatory and immune responses. Complement activity in diseases is rather complex and may involve both aberrant expression of complement and genetic deficiencies of complement components or regulators. The skin represents an active immune organ with complex interactions between cellular components and various mediators. Complement involvement has been associated with several skin diseases, such as psoriasis, lupus erythematosus, cutaneous vasculitis, urticaria, and bullous dermatoses. Several triggers including auto-antibodies and micro-organisms can activate complement, while on the other hand complement deficiencies can contribute to impaired immune complex clearance, leading to disease. This review provides an overview of the role of complement in inflammatory skin diseases and discusses complement factors as potential new targets for therapeutic intervention. PMID:29713318
Clinical roundtable monograph: Paroxysmal nocturnal hemoglobinuria: a case-based discussion.
Szer, Jeff; Hill, Anita; Weitz, Ilene Ceil
2012-11-01
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, acquired disorder characterized by chronic intravascular hemolysis as the primary clinical manifestation and morbidities that include anemia, thrombosis, renal impairment, pulmonary hypertension, and bone marrow failure. The prevalence of the PNH clone (from <1-100% PNH granulocytes) is approximately 16 per million, and careful monitoring is required. The average age of onset of the clinical disease is the early 30s, although it can present at all ages. PNH is caused by the acquisition of a somatic mutation of the gene phosphatidylinositol glycan anchor (PIG-A) in a multipotent hematopoietic stem cell (HSC), with clonal expansion of the mutated HSC. The mutation causes a deficiency in the synthesis of glycosylphosphatidylinositol (GPI). In cells derived from normal HSCs, the complement regulatory proteins CD55 and CD59 are anchored to the hematopoietic cell membrane surface via GPI, protecting the cells from complement-mediated lysis. However, in patients with PNH, these 2 proteins, along with numerous other GPI-linked proteins, are absent from the cell surface of red cells, granulocytes, monocytes, and platelets, resulting in complement-mediated intravascular hemolysis and other complications. Lysis of red blood cells is the most obvious manifestation, but as other cell lineages are also affected, this complement-mediated attack contributes to additional complications, such as thrombosis. Eculizumab, a humanized monoclonal antibody against the C5 complement protein, is the only effective drug therapy for PNH patients. The antibody prevents cleavage of the C5 protein by C5 convertase, in turn preventing generation of C5b-9 and release of C5a, thereby protecting from hemolysis of cells lacking the CD59 surface protein and other complications associated with complement activation. Drs. Ilene C. Weitz, Anita Hill, and Jeff Szer discuss 3 recent cases of patients with PNH.
Complement activation and liver impairment in trichloroethylene-sensitized BALB/c mice.
Zhang, Jiaxiang; Zha, Wansheng; Wang, Feng; Jiang, Tao; Xu, Shuhai; Yu, Junfeng; Zhou, Chengfan; Shen, Tong; Wu, Changhao; Zhu, Qixing
2013-01-01
Our recent studies have shown that trichloroethylene (TCE) was able to induce multisystem injuries in the form of occupational medicamentosa-like dermatitis, including skin, kidney, and liver damages. However, the role of complement activation in the immune-mediated liver injury is not known. This study examined the role of complement activation in the liver injury in a mouse model of TCE-induced sensitization. Treatment of female BALB/c mice with TCE under specific dosing protocols resulted in skin inflammation and sensitization. Skin edema and erythema occurred in TCE-sensitized groups. Trichloroethylene sensitization produced liver histopathological lesions, increased serum alanine aminotransferase, aspartate transaminase activities, and the relative liver weight. The concentrations of serum complement components C3a-desArg, C5a-desArg, and C5b-9 were significantly increased in 24-hour, 48-hour, and 72-hour sensitization-positive groups treated with TCE and peaked in the 72-hour sensitization-positive group. Depositions of C3a, C5a, and C5b-9 into the liver tissue were also revealed by immunohistochemistry. Immunofluorescence further verified high C5b-9 expression in 24-hour, 48-hour, and 72-hour sensitization-positive groups in response to TCE treatment. Reverse transcription-polymerase chain reaction detected C3 messenger RNA expression in the liver, and this was significantly increased in 24-hour and 48-hour sensitization-positive groups with a transient reduction at 72 hours. These results provide the first experimental evidence that complement activation may play a key role in the generation and progression of immune-mediated hepatic injury by exposure to TCE.
Mäenpää, A.; Junnikkala, S.; Hakulinen, J.; Timonen, T.; Meri, S.
1996-01-01
Gliomas are malignant brain tumors, which, despite recent progress in surgical and radiological treatment, still have a poor prognosis. Since gliomas apparently resist immunological clearance mechanisms, we became interested in examining bow gliomas resist killing by the human complement system. The resistance of human cells to complement-mediated damage is, in large part, mediated by specific inhibitors of complement:membrane cofactor protein (CD46), decay-accelerating factor (CD55), and protectin (CD59). In the present study we examined the expression of complement regulators in 14 human glioma tumors and in 7 glioma cell lines (U251, U87, HS683, U373, U138, U118, and H2). Protectin was found to be strongly expressed by all glioma tumors and cell lines. Northern blotting analysis demonstrated the typical pattern of four to five protectin mRNAs in the glioma cells. Except for blood vessels, the expression of decay-accelerating factor was weak or absent in the tumors in situ, whereas in the cell lines its expression varied, ranging from negative to intermediate. Membrane cofactor protein was moderately expressed by all the cell lines but only weakly in the tumors. Cell-killing experiments demonstrated that the glioma cell lines were exceptionally resistant to C-mediated lysis. Five of the seven cell lines (U373, HS683, U118, U138, and H2) resisted complement lysis under conditions where most other cell lines were sensitive to killing. Neutralization experiments using specific monoclonal antibodies indicated that protectin was functionally the most important complement regulator in the glioma cells. The killing of the U87 and U251 cells could be significantly increased by a blocking anti-protectin monoclonal antibody, whereas for the other cell lines only moderate or no response was observed. The H2 cell line resisted killing by all antibodies and by complement. These results show that protectin is the most important complement regulator on human glioma cells. The exceptional complement resistance of some glioma cell lines suggests that they may utilize other, hitherto less well characterized, mechanisms to resist complement killing. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 PMID:8644856
Structure of C3b reveals conformational changes that underlie complement activity.
Janssen, Bert J C; Christodoulidou, Agni; McCarthy, Andrew; Lambris, John D; Gros, Piet
2006-11-09
Resistance to infection and clearance of cell debris in mammals depend on the activation of the complement system, which is an important component of innate and adaptive immunity. Central to the complement system is the activated form of C3, called C3b, which attaches covalently to target surfaces to amplify complement response, label cells for phagocytosis and stimulate the adaptive immune response. C3b consists of 1,560 amino-acid residues and has 12 domains. It binds various proteins and receptors to effect its functions. However, it is not known how C3 changes its conformation into C3b and thereby exposes its many binding sites. Here we present the crystal structure at 4-A resolution of the activated complement protein C3b and describe the conformational rearrangements of the 12 domains that take place upon proteolytic activation. In the activated form the thioester is fully exposed for covalent attachment to target surfaces and is more than 85 A away from the buried site in native C3 (ref. 5). Marked domain rearrangements in the alpha-chain present an altered molecular surface, exposing hidden and cryptic sites that are consistent with known putative binding sites of factor B and several complement regulators. The structural data indicate that the large conformational changes in the proteolytic activation and regulation of C3 take place mainly in the first conversion step, from C3 to C3b. These insights are important for the development of strategies to treat immune disorders that involve complement-mediated inflammation.
Elvington, Michelle; Huang, Yuxiang; Morgan, B. Paul; Qiao, Fei; van Rooijen, Nico; Atkinson, Carl
2012-01-01
Complement inhibitors expressed on tumor cells provide an evasion mechanism against mAb therapy and may modulate the development of an acquired antitumor immune response. Here we investigate a strategy to amplify mAb-targeted complement activation on a tumor cell, independent of a requirement to target and block complement inhibitor expression or function, which is difficult to achieve in vivo. We constructed a murine fusion protein, CR2Fc, and demonstrated that the protein targets to C3 activation products deposited on a tumor cell by a specific mAb, and amplifies mAb-dependent complement activation and tumor cell lysis in vitro. In syngeneic models of metastatic lymphoma (EL4) and melanoma (B16), CR2Fc significantly enhanced the outcome of mAb therapy. Subsequent studies using the EL4 model with various genetically modified mice and macrophage-depleted mice revealed that CR2Fc enhanced the therapeutic effect of mAb therapy via both macrophage-dependent FcγR-mediated antibody-dependent cellular cytotoxicity, and by direct complement-mediated lysis. Complement activation products can also modulate adaptive immunity, but we found no evidence that either mAb or CR2Fc treatment had any effect on an antitumor humoral or cellular immune response. CR2Fc represents a potential adjuvant treatment to increase the effectiveness of mAb therapy of cancer. PMID:22442351
Tüzün, Erdem; Scott, Benjamin G; Goluszko, Elzbieta; Higgs, Stephen; Christadoss, Premkumar
2003-10-01
Abs to acetylcholine receptor (AChR) and complement are the major constituents of pathogenic events causing neuromuscular junction destruction in both myasthenia gravis (MG) and experimental autoimmune MG (EAMG). To analyze the differential roles of the classical vs alternative complement pathways in EAMG induction, we immunized C3(-/-), C4(-/-), C3(+/-), and C4(+/-) mice and their control littermates (C3(+/+) and C4(+/+) mice) with AChR in CFA. C3(-/-) and C4(-/-) mice were resistant to disease, whereas mice heterozygous for C3 or C4 displayed intermediate susceptibility. Although C3(-/-) and C4(-/-) mice had anti-AChR Abs in their sera, anti-AChR IgG production by C3(-/-) mice was significantly suppressed. Both C3(-/-) and C4(-/-) mice had reduced levels of B cells and increased expression of apoptotis inducers (Fas ligand, CD69) and apoptotic cells in lymph nodes. Immunofluorescence studies showed that the neuromuscular junction of C3(-/-) and C4(-/-) mice lacked C3 or membrane attack complex deposits, despite having IgG deposits, thus providing in vivo evidence for the incapacity of anti-AChR IgGs to induce full-blown EAMG without the aid of complements. The data provide the first direct genetic evidence for the classical complement pathway in the induction of EAMG induced by AChR immunization. Accordingly, severe MG and other Ab- and complement-mediated diseases could be effectively treated by inhibiting C4, thus leaving the alternative complement pathway intact.
Moulton, Elizabeth A; Bertram, Paula; Chen, Nanhai; Buller, R Mark L; Atkinson, John P
2010-09-01
Poxviruses produce complement regulatory proteins to subvert the host's immune response. Similar to the human pathogen variola virus, ectromelia virus has a limited host range and provides a mouse model where the virus and the host's immune response have coevolved. We previously demonstrated that multiple components (C3, C4, and factor B) of the classical and alternative pathways are required to survive ectromelia virus infection. Complement's role in the innate and adaptive immune responses likely drove the evolution of a virus-encoded virulence factor that regulates complement activation. In this study, we characterized the ectromelia virus inhibitor of complement enzymes (EMICE). Recombinant EMICE regulated complement activation on the surface of CHO cells, and it protected complement-sensitive intracellular mature virions (IMV) from neutralization in vitro. It accomplished this by serving as a cofactor for the inactivation of C3b and C4b and by dissociating the catalytic domain of the classical pathway C3 convertase. Infected murine cells initiated synthesis of EMICE within 4 to 6 h postinoculation. The levels were sufficient in the supernatant to protect the IMV, upon release, from complement-mediated neutralization. EMICE on the surface of infected murine cells also reduced complement activation by the alternative pathway. In contrast, classical pathway activation by high-titer antibody overwhelmed EMICE's regulatory capacity. These results suggest that EMICE's role is early during infection when it counteracts the innate immune response. In summary, ectromelia virus produced EMICE within a few hours of an infection, and EMICE in turn decreased complement activation on IMV and infected cells.
Sethi, Sanjeev; Gamez, Jeffrey D.; Vrana, Julie A.; Theis, Jason D.; Bergen, H. Robert; Zipfel, Peter F.; Dogan, Ahmet; Smith, Richard J. H.
2009-01-01
Dense Deposit Disease (DDD), or membranoproliferative glomerulonephritis type II, is a rare renal disease characterized by dense deposits in the mesangium and along the glomerular basement membranes that can be seen by electron microscopy. Although these deposits contain complement factor C3, as determined by immunofluorescence microscopy, their precise composition remains unknown. To address this question, we used mass spectrometry to identify the proteins in laser microdissected glomeruli isolated from paraffin-embedded tissue of eight confirmed cases of DDD. Compared to glomeruli from five control patients, we found that all of the glomeruli from patients with DDD contain components of the alternative pathway and terminal complement complex. Factor C9 was uniformly present as well as the two fluid-phase regulators of terminal complement complex clusterin and vitronectin. In contrast, in nine patients with immune complex–mediated membranoproliferative glomerulonephritis, glomerular samples contained mainly immunoglobulins and complement factors C3 and C4. Our study shows that in addition to fluid-phase dysregulation of the alternative pathway, soluble components of the terminal complement complex contribute to glomerular lesions found in DDD. PMID:19177158
Barrio, Maria Belén; Rainard, Pascal; Poutrel, Bernard
2003-01-01
Phagocytosis of bacteria by bovine polymorphonuclear neutrophils (PMN) has long been regarded as essential for host defense against mastitis infection. Complement-mediated opsonisation by complement component 3 (C3) binding is an important component of the innate immune system. We investigated the role of milk complement as an opsonin and its involvement in the phagocytosis and killing of Staphylococcus aureus isolates from cases of bovine mastitis by bovine blood PMN. We show that deposition of milk C3 component occurred on six different isolates of S. aureus and that the alternative pathway was the sole complement pathway operating in milk of uninflamed mammary gland. This deposition was shown to occur at the same location as the capsule, but not on capsular antigen. Milk complement enhanced the chemiluminescence response of PMN induced by S. aureus. Nevertheless, the association of S. aureus to cells and the overall killing of bacteria by bovine PMN were not affected by the presence of milk complement. Therefore, as all milk samples contained antibodies to capsular polysaccharide type 5 and to other surface antigens, it is likely that milk antibodies were responsible for these two phagocytic events. Results of this study suggest that the deposition of milk complement components on the surface of S. aureus does not contribute to the defence of the mammary gland against S. aureus.
Glucose-6-Phosphate Dehydrogenase Deficiency Mimicking Atypical Hemolytic Uremic Syndrome.
Walsh, Patrick R; Johnson, Sally; Brocklebank, Vicky; Salvatore, Jacobo; Christian, Martin; Kavanagh, David
2018-02-01
A 4-year-old boy presented with nonimmune hemolysis, thrombocytopenia, and acute kidney injury. Investigations for an underlying cause failed to identify a definitive cause and a putative diagnosis of complement-mediated atypical hemolytic uremic syndrome (aHUS) was made. The patient was started initially on plasma exchange and subsequently eculizumab therapy, after which his kidney function rapidly improved. While on eculizumab therapy, despite adequate complement blockade, he presented 2 more times with hemolytic anemia and thrombocytopenia, but without renal involvement. Genetic analysis did not uncover a mutation in any known aHUS gene (CFH, CFI, CFB, C3, CD46, THBD, INF2, and DGKE) and anti-factor H antibodies were undetectable. Whole-exome sequencing was undertaken to identify a cause for the eculizumab resistance. This revealed a pathogenic variant in G6PD (glucose-6-phosphate dehydrogenase), which was confirmed by functional analysis demonstrating decreased erythrocyte G6PD activity. Eculizumab therapy was withdrawn. Complement-mediated aHUS is a diagnosis of exclusion and this case highlights the diagnostic difficulty that remains without an immediately available biomarker for confirmation. This case of G6PD deficiency presented with a phenotype clinically indistinguishable from complement-mediated aHUS. We recommend that G6PD deficiency be included in the differential diagnosis of patients presenting with aHUS and suggest measuring erythrocyte G6PD concentrations in these patients. Copyright © 2017. Published by Elsevier Inc.
Caswell, Clayton C; Han, Runlin; Hovis, Kelley M; Ciborowski, Pawel; Keene, Douglas R; Marconi, Richard T; Lukomski, Slawomir
2008-02-01
Non-specific activation of the complement system is regulated by the plasma glycoprotein factor H (FH). Bacteria can avoid complement-mediated opsonization and phagocytosis through acquiring FH to the cell surface. Here, we characterize an interaction between the streptococcal collagen-like protein Scl1.6 of M6-type group A Streptococcus (GAS) and FH. Using affinity chromatography with immobilized recombinant Scl1.6 protein, we co-eluted human plasma proteins with molecular weight of 155 kDa, 43 kDa and 38 kDa. Mass spectrometry identified the 155 kDa band as FH and two other bands as isoforms of the FH-related protein-1. The identities of all three bands were confirmed by Western immunoblotting with specific antibodies. Structure-function relation studies determined that the globular domain of the Scl1.6 variant specifically binds FH while fused to collagenous tails of various lengths. This binding is not restricted to Scl1.6 as the phylogenetically linked Scl1.55 variant also binds FH. Functional analyses demonstrated the cofactor activity of the rScl1.6-bound FH for factor I-mediated cleavage of C3b. Finally, purified FH bound to the Scl1.6 protein present in the cell wall material obtained from M6-type GAS. In conclusion, we have identified a functional interaction between Scl1 and plasma FH, which may contribute to GAS evasion of complement-mediated opsonization and phagocytosis.
Hylton, Diana J.; Phillips, Lauren M.; Hoffman, Sara M.; Fleming, Sherry D.
2010-01-01
With over half of the world population infected, Helicobacter infection is an important public health issue associated with gastrointestinal cancers and inflammatory bowel disease. Animal studies indicate that complement and oxidative stress play a role in Helicobacter infections. Hemorrhage induces tissue damage which is attenuated by blockade of either complement activation or oxidative stress products. Therefore, we hypothesized that chronic Helicobacter hepaticus infection would modulate hemorrhage-induced intestinal damage and inflammation. To test this hypothesis, we examined hemorrhage-induced jejunal damage and inflammation in uninfected and H. hepaticus infected mice. H. hepaticus infection increased hemorrhage-induced mid-jejunal mucosal damage despite attenuating complement activation. In addition, infection alone increased chemokine secretion, changing the hemorrhage-induced neutrophil infiltration to a macrophage-mediated inflammatory response. The hemorrhage-induced macrophage infiltration correlated with increased secretion of tumor necrosis factor-α (TNF-α3) and nitric oxide (NO) in the infected mice. Together these data indicate that Helicobacter infection modulates the mechanism of hemorrhage-induced intestinal damage and inflammation from a complement-mediated response to a macrophage response with elevated TNF-α and NO. These data indicate that chronic, low level infections change the response to trauma and should be considered when designing and administering therapeutics. PMID:20220569
Georgoutsou-Spyridonos, Maria; Ricklin, Daniel; Pratsinis, Haris; Perivolioti, Eustathia; Pirmettis, Ioannis; Garcia, Brandon L.; Geisbrecht, Brian V.; Foukas, Periklis G.; Lambris, John D.; Mastellos, Dimitrios C.; Sfyroera, Georgia
2015-01-01
Staphylococcus aureus (S. aureus) can cause a broad range of potentially fatal inflammatory complications (e.g. sepsis, endocarditis). Its emerging antibiotic resistance and formidable immune evasion arsenal have emphasized the need for more effective antimicrobial approaches. Complement is an innate immune sensor that rapidly responds to bacterial infection eliciting C3-mediated opsonophagocytic and immunomodulatory responses. Extracellular Fibrinogen-binding Protein (Efb) is a key immune evasion protein of S. aureus that intercepts complement at the level of C3. To date, Efb has not been explored as a target for monoclonal antibody (mAb)-based antimicrobial therapeutics. Herein we have isolated donor-derived anti-Efb IgGs that attenuate S. aureus survival through enhanced neutrophil killing. A phage library screen yielded mAbs (miniAbs) that selectively inhibit the interaction of Efb with C3 partly by disrupting contacts essential for complex formation. Surface Plasmon Resonance-based kinetic analysis enabled the selection of miniAbs with favorable Efb-binding profiles as therapeutic leads. MiniAb-mediated blockade of Efb attenuated S aureus survival in a whole blood model of bacteremia. This neutralizing effect was associated with enhanced neutrophil-mediated killing of S. aureus, increased C5a release and modulation of IL-6 secretion. Finally, these miniAbs afforded protection from S. aureus-induced bacteremia in a murine renal abscess model, attenuating bacterial inflammation in kidneys. Overall, these findings are anticipated to pave the way towards novel antibody-based therapeutics for S. aureus-related diseases. PMID:26342032
Wang, Qianli; Zhang, Junping; Guo, Zhongwu
2007-01-01
To verify the principal of a new immunotherapeutic strategy for cancer, a monoclonal antibody 2H3 against N-phenylacetyl GM3, an unnatural form of the tumor-associated antigen GM3, was prepared and employed to demonstrate that murine melanoma cell B16F0 could be effectively glycoengineered by N-phenylacetyl-d-mannosamine to express N-phenylacetyl GM3 and that 2H3 was highly cytotoxic to the glycoengineered B16F0 cell in the presence of complements. It was further demonstrated that B16F0 cell could be glycoengineered 4-5 times more effectively than 3T3 A31 cell, a normal murine embryo fibroblast cell, and that the antibody and complement mediated cytotoxicity was at least 200 times more potent to the glycoengineered B16F0 cell than to the N-phenylacetyl-d-mannosamine-treated 3T3 A31 cell. These results show the promise for developing useful melanoma immunotherapies based on vaccination against N-phenylacetyl GM3 followed by treatment with N-phenylacetyl-d-mannosamine. PMID:17892942
Wang, Qianli; Zhang, Junping; Guo, Zhongwu
2007-12-15
To verify the principal of a new immunotherapeutic strategy for cancer, a monoclonal antibody 2H3 against N-phenylacetyl GM3, an unnatural form of the tumor-associated antigen GM3, was prepared and employed to demonstrate that murine melanoma cell B16F0 could be effectively glycoengineered by N-phenylacetyl-d-mannosamine to express N-phenylacetyl GM3 and that 2H3 was highly cytotoxic to the glycoengineered B16F0 cell in the presence of complements. It was further demonstrated that B16F0 cell could be glycoengineered 4-5 times more effectively than 3T3 A31 cell, a normal murine embryo fibroblast cell, and that the antibody and complement mediated cytotoxicity was at least 200 times more potent to the glycoengineered B16F0 cell than to the N-phenylacetyl-d-mannosamine-treated 3T3 A31 cell. These results show the promise for developing useful melanoma immunotherapies based on vaccination against N-phenylacetyl GM3 followed by treatment with N-phenylacetyl-d-mannosamine.
Yuan, Xuan; Gavriilaki, Eleni; Thanassi, Jane A; Yang, Guangwei; Baines, Andrea C; Podos, Steven D; Huang, Yongqing; Huang, Mingjun; Brodsky, Robert A
2017-03-01
Paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome are diseases of excess activation of the alternative pathway of complement that are treated with eculizumab, a humanized monoclonal antibody against the terminal complement component C5. Eculizumab must be administered intravenously, and moreover some patients with paroxysmal nocturnal hemoglobinuria on eculizumab have symptomatic extravascular hemolysis, indicating an unmet need for additional therapeutic approaches. We report the activity of two novel small-molecule inhibitors of the alternative pathway component Factor D using in vitro correlates of both paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Both compounds bind human Factor D with high affinity and effectively inhibit its proteolytic activity against purified Factor B in complex with C3b. When tested using the traditional Ham test with cells from paroxysmal nocturnal hemoglobinuria patients, the Factor D inhibitors significantly reduced complement-mediated hemolysis at concentrations as low as 0.01 μM. Additionally the compound ACH-4471 significantly decreased C3 fragment deposition on paroxysmal nocturnal hemoglobinuria erythrocytes, indicating a reduced potential relative to eculizumab for extravascular hemolysis. Using the recently described modified Ham test with serum from patients with atypical hemolytic uremic syndrome, the compounds reduced the alternative pathway-mediated killing of PIGA -null reagent cells, thus establishing their potential utility for this disease of alternative pathway of complement dysregulation and validating the modified Ham test as a system for pre-clinical drug development for atypical hemolytic uremic syndrome. Finally, ACH-4471 blocked alternative pathway activity when administered orally to cynomolgus monkeys. In conclusion, the small-molecule Factor D inhibitors show potential as oral therapeutics for human diseases driven by the alternative pathway of complement, including paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Copyright© Ferrata Storti Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, John B.; Capraro, Gerald A.; Parks, Griffith D.
2008-06-20
The complement system is an important component of the innate immune response to virus infection. The role of human complement pathways in the in vitro neutralization of three closely related paramyxoviruses, Simian Virus 5 (SV5), Mumps virus (MuV) and Human Parainfluenza virus type 2 (HPIV2) was investigated. Sera from ten donors showed high levels of neutralization against HPIV2 that was largely complement-independent, whereas nine of ten donor sera were found to neutralize SV5 and MuV only in the presence of active complement pathways. SV5 and MuV neutralization proceeded through the alternative pathway of the complement cascade. Electron microscopy studies andmore » biochemical analyses showed that treatment of purified SV5 with human serum resulted in C3 deposition on virions and the formation of massive aggregates, but there was relatively little evidence of virion lysis. Treatment of MuV with human serum also resulted in C3 deposition on virions, however in contrast to SV5, MuV particles were lysed by serum complement and there was relatively little aggregation. Assays using serum depleted of complement factors showed that SV5 and MuV neutralization in vitro was absolutely dependent on complement factor C3, but was not dependent on downstream complement factors C5 or C8. Our results indicate that even though antibodies exist that recognize both SV5 and MuV, they are mostly non-neutralizing and viral inactivation in vitro occurs through the alternative pathway of complement. The implications of our work for development of paramyxovirus vectors and vaccines are discussed.« less
Complement Inhibition Alleviates Paraquat-Induced Acute Lung Injury
Sun, Shihui; Wang, Hanbin; Zhao, Guangyu; An, Yingbo; Guo, Yan; Du, Lanying; Song, Hongbin; Qiao, Fei; Yu, Hong; Wu, Xiaohong; Atkinson, Carl; Jiang, Shibo; Tomlinson, Stephen
2011-01-01
The widely used herbicide, paraquat (PQ), is highly toxic and claims thousands of lives from both accidental and voluntary ingestion. The pathological mechanisms of PQ poisoning–induced acute lung injury (ALI) are not well understood, and the role of complement in PQ-induced ALI has not been elucidated. We developed and characterized a mouse model of PQ-induced ALI and studied the role of complement in the pathogenesis of PQ poisoning. Intraperitoneal administration of PQ caused dose- and time-dependent lung damage and mortality, with associated inflammatory response. Within 24 hours of PQ-induced ALI, there was significantly increased expression of the complement proteins, C1q and C3, in the lung. Expression of the anaphylatoxin receptors, C3aR and C5aR, was also increased. Compared with wild-type mice, C3-deficient mice survived significantly longer and displayed significantly reduced lung inflammation and pathology after PQ treatment. Similar reductions in PQ-induced inflammation, pathology, and mortality were recorded in mice treated with the C3 inhibitors, CR2-Crry, and alternative pathway specific CR2-fH. A similar therapeutic effect was also observed by treatment with either C3a receptor antagonist or a blocking C5a receptor monoclonal antibody. Together, these studies indicate that PQ-induced ALI is mediated through receptor signaling by the C3a and C5a complement activation products that are generated via the alternative complement pathway, and that complement inhibition may be an effective clinical intervention for postexposure treatment of PQ-induced ALI. PMID:21421909
Giuntini, Serena; Reason, Donald C; Granoff, Dan M
2012-01-01
Meningococcal vaccines containing factor H binding protein (fHbp) are in clinical development. fHbp binds human fH, which enables the meningococcus to resist complement-mediated bacteriolysis. Previously, we found that chimeric human IgG1 mouse anti-fHbp monoclonal antibodies (MAbs) had human complement-mediated bactericidal activity only if the MAb inhibited fH binding. Since IgG subclasses differ in their ability to activate complement, we investigated the role of human IgG subclasses on antibody functional activity. We constructed chimeric MAbs in which three different murine fHbp-specific binding domains were each paired with human IgG1, IgG2, or IgG3. Against a wild-type group B isolate, all three IgG3 MAbs, irrespective of their ability to inhibit fH binding, had bactericidal activity that was >5-fold higher than the respective IgG1 MAbs, while the IgG2 MAbs had the least activity. Against a mutant with increased fHbp expression, the anti-fHbp MAbs elicited greater C4b deposition (classical pathway) and greater bactericidal activity than against the wild-type strain, and the IgG1 MAbs had similar or greater activity than the respective IgG3 MAbs. The bactericidal activity against both wild-type and mutant strains also was dependent, in part, on activation of the alternative complement pathway. Thus, at lower epitope density in the wild-type strain, the IgG3 anti-fHbp MAbs had the greatest bactericidal activity. At a higher epitope density in the mutant, the IgG1 MAbs had similar or greater bactericidal activity than the IgG3 MAbs, and the activity was less dependent on the inhibition of fH binding than at a lower epitope density.
Ramos-Sevillano, Elisa; Urzainqui, Ana; Campuzano, Susana; Moscoso, Miriam; González-Camacho, Fernando; Domenech, Mirian; Rodríguez de Córdoba, Santiago; Sánchez-Madrid, Francisco; Brown, Jeremy S.; García, Ernesto
2014-01-01
The complement system is a key component of the host immune response for the recognition and clearance of Streptococcus pneumoniae. In this study, we demonstrate that the amidase LytA, the main pneumococcal autolysin, inhibits complement-mediated immunity independently of effects on pneumolysin by a complex process of impaired complement activation, increased binding of complement regulators, and direct degradation of complement C3. The use of human sera depleted of either C1q or factor B confirmed that LytA prevented activation of both the classical and alternative pathways, whereas pneumolysin inhibited only the classical pathway. LytA prevented binding of C1q and the acute-phase protein C-reactive protein to S. pneumoniae, thereby reducing activation of the classical pathway on the bacterial surface. In addition, LytA increased recruitment of the complement downregulators C4BP and factor H to the pneumococcal cell wall and directly cleaved C3b and iC3b to generate degradation products. As a consequence, C3b deposition and phagocytosis increased in the absence of LytA and were markedly enhanced for the lytA ply double mutant, confirming that a combination of LytA and Ply is essential for the establishment of pneumococcal pneumonia and sepsis in a murine model of infection. These data demonstrate that LytA has pleiotropic effects on complement activation, a finding which, in combination with the effects of pneumolysin on complement to assist with pneumococcal complement evasion, confirms a major role of both proteins for the full virulence of the microorganism during septicemia. PMID:25404032
Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan
2016-08-12
Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan
2016-01-01
Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778
Sass, Laura A; Hair, Pamela S; Perkins, Amy M; Shah, Tushar A; Krishna, Neel K; Cunnion, Kenji M
2015-01-01
In cystic fibrosis (CF), lung damage is mediated by a cycle of obstruction, infection, and inflammation. Here we explored complement inflammatory effectors in CF lung fluid. In this study soluble fractions (sols) from sputum samples of 15 CF patients were assayed for complement effectors and analyzed with clinical measurements. The pro-inflammatory peptide C5a was increased 4.8-fold (P = 0.04) in CF sols compared with controls. Incubation of CF sols with P. aeruginosa or S. aureus increased C5a concentration 2.3-fold (P = 0.02). A peptide inhibitor of complement C1 (PIC1) completely blocked the increase in C5a concentration from P. aeruginosa in CF sol in vitro (P = 0.001). C5a concentration in CF sol correlated inversely with body mass index (BMI) percentile in children (r = -0.77, P = 0.04). C3a, which has anti-inflammatory effects, correlated positively with FEV1% predicted (rs = 0.63, P = 0.02). These results suggest that complement effectors may significantly impact inflammation in CF lung fluid.
Complement Evasion by Pathogenic Leptospira.
Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva
2016-01-01
Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira . Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira , have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host.
Complement Evasion by Pathogenic Leptospira
Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva
2016-01-01
Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira. Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira, have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host. PMID:28066433
Honda-Ogawa, Mariko; Sumitomo, Tomoko; Mori, Yasushi; Hamd, Dalia Talat; Ogawa, Taiji; Yamaguchi, Masaya; Nakata, Masanobu; Kawabata, Shigetada
2017-01-01
Streptococcus pyogenes secretes various virulence factors for evasion from complement-mediated bacteriolysis. However, full understanding of the molecules possessed by this organism that interact with complement C1q, an initiator of the classical complement pathway, remains elusive. In this study, we identified an endopeptidase of S. pyogenes, PepO, as an interacting molecule, and investigated its effects on complement immunity and pathogenesis. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis findings revealed that S. pyogenes recombinant PepO bound to human C1q in a concentration-dependent manner under physiological conditions. Sites of inflammation are known to have decreased pH levels, thus the effects of PepO on bacterial evasion from complement immunity was analyzed in a low pH condition. Notably, under low pH conditions, PepO exhibited a higher affinity for C1q as compared with IgG, and PepO inhibited the binding of IgG to C1q. In addition, pepO deletion rendered S. pyogenes more susceptible to the bacteriocidal activity of human serum. Also, observations of the morphological features of the pepO mutant strain (ΔpepO) showed damaged irregular surfaces as compared with the wild-type strain (WT). WT-infected tissues exhibited greater severity and lower complement activity as compared with those infected by ΔpepO in a mouse skin infection model. Furthermore, WT infection resulted in a larger accumulation of C1q than that with ΔpepO. Our results suggest that interaction of S. pyogenes PepO with C1q interferes with the complement pathway, which enables S. pyogenes to evade complement-mediated bacteriolysis under acidic conditions, such as seen in inflammatory sites. PMID:28154192
Georgoutsou-Spyridonos, Maria; Ricklin, Daniel; Pratsinis, Haris; Perivolioti, Eustathia; Pirmettis, Ioannis; Garcia, Brandon L; Geisbrecht, Brian V; Foukas, Periklis G; Lambris, John D; Mastellos, Dimitrios C; Sfyroera, Georgia
2015-10-15
Staphylococcus aureus can cause a broad range of potentially fatal inflammatory complications (e.g., sepsis and endocarditis). Its emerging antibiotic resistance and formidable immune evasion arsenal have emphasized the need for more effective antimicrobial approaches. Complement is an innate immune sensor that rapidly responds to bacterial infection eliciting C3-mediated opsonophagocytic and immunomodulatory responses. Extracellular fibrinogen-binding protein (Efb) is a key immune evasion protein of S. aureus that intercepts complement at the level of C3. To date, Efb has not been explored as a target for mAb-based antimicrobial therapeutics. In this study, we have isolated donor-derived anti-Efb IgGs that attenuate S. aureus survival through enhanced neutrophil killing. A phage library screen yielded mini-Abs that selectively inhibit the interaction of Efb with C3 partly by disrupting contacts essential for complex formation. Surface plasmon resonance-based kinetic analysis enabled the selection of mini-Abs with favorable Efb-binding profiles as therapeutic leads. Mini-Ab-mediated blockade of Efb attenuated S. aureus survival in a whole blood model of bacteremia. This neutralizing effect was associated with enhanced neutrophil-mediated killing of S. aureus, increased C5a release, and modulation of IL-6 secretion. Finally, these mini-Abs afforded protection from S. aureus-induced bacteremia in a murine renal abscess model, attenuating bacterial inflammation in kidneys. Overall, these findings are anticipated to pave the way toward novel Ab-based therapeutics for S. aureus-related diseases. Copyright © 2015 by The American Association of Immunologists, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tennenberg, S.D.; Jacobs, M.P.; Solomkin, J.S.
Complement-mediated neutrophil activation (CMNA) has been proposed as an important pathogenic mechanism causing acute microvascular lung injury in the adult respiratory distress syndrome (ARDS). To clarify the relationship between CMNA and evolving lung injury, we studied 26 patients with multiple trauma and sepsis within 24 hours of risk establishment for ARDS. Pulmonary alveolar-capillary permeability (PACP) was quantified as the clearance rate of a particulate radioaerosol. Seventeen patients (65%) had increased PACP (six developed ARDS) while nine (35%) had normal PACP (none developed ARDS; clearance rates of 3.4%/min and 1.5%/min, respectively). These patients, regardless of evidence of early lung injury, hadmore » elevated plasma C3adesArg levels and neutrophil chemotactic desensitization to C5a/C5adesArg. Plasma C3adesArg levels correlated weakly, but significantly, with PACP. Thus, CMNA may be a necessary, but not a sufficient, pathogenic mechanism in the evolution of ARDS.« less
Potential influences of complement factor H in autoimmune inflammatory and thrombotic disorders.
Ferluga, Janez; Kouser, Lubna; Murugaiah, Valarmathy; Sim, Robert B; Kishore, Uday
2017-04-01
Complement system homeostasis is important for host self-protection and anti-microbial immune surveillance, and recent research indicates roles in tissue development and remodelling. Complement also appears to have several points of interaction with the blood coagulation system. Deficiency and altered function due to gene mutations and polymorphisms in complement effectors and regulators, including Factor H, have been associated with familial and sporadic autoimmune inflammatory - thrombotic disorders, in which autoantibodies play a part. These include systemic lupus erythematosus, rheumatoid arthritis, atypical haemolytic uremic syndrome, anti-phospholipid syndrome and age-related macular degeneration. Such diseases are generally complex - multigenic and heterogeneous in their symptoms and predisposition/susceptibility. They usually need to be triggered by vascular trauma, drugs or infection and non-complement genetic factors also play a part. Underlying events seem to include decline in peripheral regulatory T cells, dendritic cell, and B cell tolerance, associated with alterations in lymphoid organ microenvironment. Factor H is an abundant protein, synthesised in many cell types, and its reported binding to many different ligands, even if not of high affinity, may influence a large number of molecular interactions, together with the accepted role of Factor H within the complement system. Factor H is involved in mesenchymal stem cell mediated tolerance and also contributes to self-tolerance by augmenting iC3b production and opsonisation of apoptotic cells for their silent dendritic cell engulfment via complement receptor CR3, which mediates anti-inflammatory-tolerogenic effects in the apoptotic cell context. There may be co-operation with other phagocytic receptors, such as complement C1q receptors, and the Tim glycoprotein family, which specifically bind phosphatidylserine expressed on the apoptotic cell surface. Factor H is able to discriminate between self and nonself surfaces for self-protection and anti-microbe defence. Factor H, particularly as an abundant platelet protein, may also modulate blood coagulation, having an anti-thrombotic role. Here, we review a number of interaction pathways in coagulation and in immunity, together with associated diseases, and indicate where Factor H may be expected to exert an influence, based on reports of the diversity of ligands for Factor H. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mannose Binding Lectin Is Required for Alphavirus-Induced Arthritis/Myositis
Whitmore, Alan C.; Blevins, Lance K.; Hueston, Linda; Fraser, Robert J.; Herrero, Lara J.; Ramirez, Ruben; Smith, Paul N.; Mahalingam, Suresh; Heise, Mark T.
2012-01-01
Mosquito-borne alphaviruses such as chikungunya virus and Ross River virus (RRV) are emerging pathogens capable of causing large-scale epidemics of virus-induced arthritis and myositis. The pathology of RRV-induced disease in both humans and mice is associated with induction of the host inflammatory response within the muscle and joints, and prior studies have demonstrated that the host complement system contributes to development of disease. In this study, we have used a mouse model of RRV-induced disease to identify and characterize which complement activation pathways mediate disease progression after infection, and we have identified the mannose binding lectin (MBL) pathway, but not the classical or alternative complement activation pathways, as essential for development of RRV-induced disease. MBL deposition was enhanced in RRV infected muscle tissue from wild type mice and RRV infected MBL deficient mice exhibited reduced disease, tissue damage, and complement deposition compared to wild-type mice. In contrast, mice deficient for key components of the classical or alternative complement activation pathways still developed severe RRV-induced disease. Further characterization of MBL deficient mice demonstrated that similar to C3−/− mice, viral replication and inflammatory cell recruitment were equivalent to wild type animals, suggesting that RRV-mediated induction of complement dependent immune pathology is largely MBL dependent. Consistent with these findings, human patients diagnosed with RRV disease had elevated serum MBL levels compared to healthy controls, and MBL levels in the serum and synovial fluid correlated with severity of disease. These findings demonstrate a role for MBL in promoting RRV-induced disease in both mice and humans and suggest that the MBL pathway of complement activation may be an effective target for therapeutic intervention for humans suffering from RRV-induced arthritis and myositis. PMID:22457620
Tong, Hua Hua; Li, Yong Xing; Stahl, Gregory L; Thurman, Joshua M
2010-03-01
To define the roles of specific complement activation pathways in host defense against Streptococcus pneumoniae in acute otitis media (AOM), we investigated the susceptibility to AOM in mice deficient in complement factor B and C2 (Bf/C2(-/)(-)), C1qa (C1qa(-/)(-)), and factor B (Bf(-)(/)(-)). Bacterial titers of both S. pneumoniae serotype 6A and 14 in the middle ear lavage fluid samples from Bf/C2(-/)(-), Bf(-)(/)(-), and C1qa(-/)(-) mice were significantly higher than in samples from wild-type mice 24 h after transtympanical infection (P < 0.05) and remained persistently higher in samples from Bf/C2(-/)(-) mice than in samples from wild-type mice. Bacteremia occurred in Bf/C2(-/)(-), Bf(-)(/)(-), and C1qa(-/)(-) mice infected with both strains, but not in wild-type mice. Recruitment of inflammatory cells was paralleled by enhanced production of inflammatory mediators in the middle ear lavage samples from Bf/C2(-/)(-) mice. C3b deposition on both strains was greatest for sera obtained from wild-type mice, followed by C1qa(-)(/)(-) and Bf(-)(/)(-) mice, and least for Bf/C2(-)(/)(-) mice. Opsonophagocytosis and whole-blood killing capacity of both strains were significantly decreased in the presence of sera or whole blood from complement-deficient mice compared to wild-type mice. These findings indicate that both the classical and alternative complement pathways are critical for middle ear immune defense against S. pneumoniae. The reduced capacity of complement-mediated opsonization and phagocytosis in the complement-deficient mice appears to be responsible for the impaired clearance of S. pneumoniae from the middle ear and dissemination to the bloodstream during AOM.
Roit, Fabio Da; Engelberts, Patrick J.; Taylor, Ronald P.; Breij, Esther C.W.; Gritti, Giuseppe; Rambaldi, Alessandro; Introna, Martino; Parren, Paul W.H.I.; Beurskens, Frank J.; Golay, Josée
2015-01-01
The novel Bruton tyrosine kinase inhibitor ibrutinib and phosphatidyl-4-5-biphosphate 3-kinase-δ inhibitor idelalisib are promising drugs for the treatment of chronic lymphocytic leukemia and B-cell non-Hodgkin lymphoma, either alone or in combination with anti-CD20 antibodies. We investigated the possible positive or negative impact of these drugs on all known mechanisms of action of both type I and type II anti-CD20 antibodies. Pretreatment with ibrutinib for 1 hour did not increase direct cell death of cell lines or chronic lymphocytic leukemia samples mediated by anti-CD20 antibodies. Pre-treatment with ibrutinib did not inhibit complement activation or complement-mediated lysis. In contrast, ibrutinib strongly inhibited all cell-mediated mechanisms induced by anti-CD20 antibodies rituximab, ofatumumab or obinutuzumab, either in purified systems or whole blood assays. Activation of natural killer cells, and antibody-dependent cellular cytotoxicity by these cells, as well as phagocytosis by macrophages or neutrophils were inhibited by ibrutinib with a half maximal effective concentration of 0.3–3 μM. Analysis of anti-CD20 mediated activation of natural killer cells isolated from patients on continued oral ibrutinib treatment suggested that repeated drug dosing inhibits these cells in vivo. Finally we show that the phosphatidyl-4-5-biphosphate 3-kinase-δ inhibitor idelalisib similarly inhibited the immune cell-mediated mechanisms induced by anti-CD20 antibodies, although the effects of this drug at 10 μM were weaker than those observed with ibrutinib at the same concentration. We conclude that the design of combined treatment schedules of anti-CD20 antibodies with these kinase inhibitors should consider the multiple negative interactions between these two classes of drugs. PMID:25344523
Sprong, Tom; Brandtzaeg, Petter; Fung, Michael; Pharo, Anne M; Høiby, E Arne; Michaelsen, Terje E; Aase, Audun; van der Meer, Jos W M; van Deuren, Marcel; Mollnes, Tom E
2003-11-15
The complement system plays an important role in the initial defense against Neisseria meningitidis. In contrast, uncontrolled activation in meningococcal sepsis contributes to the development of tissue damage and shock. In a novel human whole blood model of meningococcal sepsis, we studied the effect of complement inhibition on inflammation and bacterial killing. Monoclonal antibodies (mAbs) blocking lectin and alternative pathways inhibited complement activation by N meningitidis and oxidative burst induced in granulocytes and monocytes. Oxidative burst was critically dependent on CD11b/CD18 (CR3) expression but not on Fc gamma-receptors. Specific inhibition of C5a using mAb 137-26 binding the C5a moiety of C5 before cleavage prohibited CR3 up-regulation, phagocytosis, and oxidative burst but had no effect on C5b-9 (TCC) formation, lysis, and bacterial killing. An mAb-blocking cleavage of C5, preventing C5a and TCC formation, showed the same effect on CR3, phagocytosis, and oxidative burst as the anti-C5a mAb but additionally inhibited TCC formation, lysis, and bacterial killing, consistent with a C5b-9-dependent killing mechanism. In conclusion, the anti-C5a mAb 137-26 inhibits the potentially harmful effects of N meningitidis-induced C5a formation while preserving complement-mediated bacterial killing. We suggest that this may be an attractive approach for the treatment of meningococcal sepsis.
A local complement response by RPE causes early-stage macular degeneration
Fernandez-Godino, Rosario; Garland, Donita L.; Pierce, Eric A.
2015-01-01
Inherited and age-related macular degenerations (AMDs) are important causes of vision loss. An early hallmark of these disorders is the formation of sub-retinal pigment epithelium (RPE) basal deposits. A role for the complement system in MDs was suggested by genetic association studies, but direct functional connections between alterations in the complement system and the pathogenesis of MD remain to be defined. We used primary RPE cells from a mouse model of inherited MD due to a p.R345W mutation in EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1) to investigate the role of the RPE in early MD pathogenesis. Efemp1R345W RPE cells recapitulate the basal deposit formation observed in vivo by producing sub-RPE deposits in vitro. The deposits share features with basal deposits, and their formation was mediated by EFEMP1R345W or complement component 3a (C3a), but not by complement component 5a (C5a). Increased activation of complement appears to occur in response to an abnormal extracellular matrix (ECM), generated by the mutant EFEMP1R345W protein and reduced ECM turnover due to inhibition of matrix metalloproteinase 2 by EFEMP1R345W and C3a. Increased production of C3a also stimulated the release of cytokines such as interleukin (IL)-6 and IL-1B, which appear to have a role in deposit formation, albeit downstream of C3a. These studies provide the first direct indication that complement components produced locally by the RPE are involved in the formation of basal deposits. Furthermore, these results suggest that C3a generated by RPE is a potential therapeutic target for the treatment of EFEMP1-associated MD as well as AMD. PMID:26199322
Complement Activation in Relation to Capillary Leakage in Children with Septic Shock and Purpura
Hazelzet, Jan A.; de Groot, Ronald; van Mierlo, Gerard; Joosten, Koen F. M.; van der Voort, Edwin; Eerenberg, Anke; Suur, Marja H.; Hop, Wim C. J.; Hack, C. Erik
1998-01-01
To assess the relationship between capillary leakage and inflammatory mediators during sepsis, blood samples were taken on hospital admission, as well as 24 and 72 h later, from 52 children (median age, 3.3 years) with severe meningococcal sepsis, of whom 38 survived and 14 died. Parameters related to cytokines (interleukin 6 [IL-6] IL-8, plasma phospholipase A2, and C-reactive protein [CRP]), to neutrophil degranulation (elastase and lactoferrin), to complement activation (C3a, C3b/c, C4b/c, and C3- and C4-CRP complexes), and to complement regulation (functional and inactivated C1 inhibitor and C4BP) were determined. The degree of capillary leakage was derived from the amount of plasma infused and the severity of disease by assessing the pediatric risk of mortality (PRISM) score. Levels of IL-6, IL-8, C3b/c, C3-CRP complexes, and C4BP on admission, adjusted for the duration of skin lesions, were significantly different in survivors and nonsurvivors (C3b/c levels were on average 2.2 times higher in nonsurvivors, and C3-CRP levels were 1.9 times higher in survivors). Mortality was independently related to the levels of C3b/c and C3-CRP complexes. In agreement with this, levels of complement activation products correlated well with the PRISM score or capillary leakage. Thus, these data show that complement activation in patients with severe meningococcal sepsis is associated with a poor outcome and a more severe disease course. Further studies should reveal whether complement activation may be a target for therapeutical intervention in this disease. PMID:9784543
Anti-GM2 gangliosides IgM paraprotein induces neuromuscular block without neuromuscular damage.
Santafé, Manel M; Sabaté, M Mar; Garcia, Neus; Ortiz, Nico; Lanuza, M Angel; Tomàs, Josep
2008-11-15
We analyzed the effect on the mouse neuromuscular synapses of a human monoclonal IgM, which binds specifically to gangliosides with the common epitope [GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-]. We focused on the role of the complement. Evoked neurotransmission was partially blocked by IgM both acutely (1 h) and chronically (10 days). Transmission electron microscopy shows important nerve terminal growth and retraction remodelling though axonal injury can be ruled out. Synapses did not show mouse C5b-9 immunofluorescence and were only immunolabelled when human complement was added. Therefore, the IgM-induced synaptic changes occur without complement-mediated membrane attack.
Gao, Zhan; Li, Mengyang; Ma, Jie; Zhang, Shicui
2014-12-01
The origin of the classical complement pathway remains open during chordate evolution. A C1q-like member, BjC1q, was identified in the basal chordate amphioxus. It is predominantly expressed in the hepatic caecum, hindgut, and notochord, and is significantly upregulated following challenge with bacteria or lipoteichoic acid and LPS. Recombinant BjC1q and its globular head domain specifically interact with lipoteichoic acid and LPS, but BjC1q displays little lectin activity. Moreover, rBjC1q can assemble to form the high molecular weight oligomers necessary for binding to proteases C1r/C1s and for complement activation, and binds human C1r/C1s/mannan-binding lectin-associated serine protease-2 as well as amphioxus serine proteases involved in the cleavage of C4/C2, and C3 activation. Importantly, rBjC1q binds with human IgG as well as an amphioxus Ig domain containing protein, resulting in the activation of the classical complement pathway. This is the first report showing that a C1q-like protein in invertebrates is able to initiate classical pathway, raising the possibility that amphioxus possesses a C1q-mediated complement system. It also suggests a new scenario for the emergence of the classical complement pathway, in contrast to the proposal that the lectin pathway evolved into the classical pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Yingjie; Wu, Minhao; Hang, Tianrong; Wang, Chengliang; Yang, Ye; Pan, Weimin; Zang, Jianye
2017-01-01
Complement factor H (CFH) is a soluble complement regulatory protein essential for the down-regulation of the alternative pathway on interaction with specific markers on the host cell surface. It recognizes the complement component 3b (C3b) and 3d (C3d) fragments in addition to self cell markers (i.e. glycosaminoglycans, sialic acid) to distinguish host cells that deserve protection from pathogens that should be eliminated. The Staphylococcus aureus surface protein serine–aspartate repeat protein E (SdrE) was previously reported to bind human CFH as an immune-evasion tactic. However, the molecular mechanism underlying SdrE–CFH-mediated immune evasion remains unknown. In the present study, we identified a novel region at CFH's C-terminus (CFH1206–1226), which binds SdrE N2 and N3 domains (SdrEN2N3) with high affinity, and determined the crystal structures of apo-SdrEN2N3 and the SdrEN2N3–CFH1206–1226 complex. Comparison of the structure of the CFH–SdrE complex with other CFH structures reveals that CFH's C-terminal tail flips from the main body to insert into the ligand-binding groove of SdrE. In addition, SdrEN2N3 adopts a ‘close’ state in the absence of CFH, which undergoes a large conformational change on CFH binding, suggesting a novel ‘close, dock, lock and latch' (CDLL) mechanism for SdrE to recognize its ligand. Our findings imply that SdrE functions as a ‘clamp' to capture CFH's C-terminal tail via a unique CDLL mechanism and sequesters CFH on the surface of S. aureus for complement evasion. PMID:28258151
Zhang, Yingjie; Wu, Minhao; Hang, Tianrong; Wang, Chengliang; Yang, Ye; Pan, Weimin; Zang, Jianye; Zhang, Min; Zhang, Xuan
2017-05-04
Complement factor H (CFH) is a soluble complement regulatory protein essential for the down-regulation of the alternative pathway on interaction with specific markers on the host cell surface. It recognizes the complement component 3b (C3b) and 3d (C3d) fragments in addition to self cell markers (i.e. glycosaminoglycans, sialic acid) to distinguish host cells that deserve protection from pathogens that should be eliminated. The Staphylococcus aureus surface protein serine-aspartate repeat protein E (SdrE) was previously reported to bind human CFH as an immune-evasion tactic. However, the molecular mechanism underlying SdrE-CFH-mediated immune evasion remains unknown. In the present study, we identified a novel region at CFH's C-terminus (CFH 1206-1226 ), which binds SdrE N2 and N3 domains (SdrE N2N3 ) with high affinity, and determined the crystal structures of apo-SdrE N2N3 and the SdrE N2N3 -CFH 1206-1226 complex. Comparison of the structure of the CFH-SdrE complex with other CFH structures reveals that CFH's C-terminal tail flips from the main body to insert into the ligand-binding groove of SdrE. In addition, SdrE N2N3 adopts a 'close' state in the absence of CFH, which undergoes a large conformational change on CFH binding, suggesting a novel 'close, dock, lock and latch' (CDLL) mechanism for SdrE to recognize its ligand. Our findings imply that SdrE functions as a 'clamp' to capture CFH's C-terminal tail via a unique CDLL mechanism and sequesters CFH on the surface of S. aureus for complement evasion. © 2017 The Author(s).
Katschke, Kenneth J; Xi, Hongkang; Cox, Christian; Truong, Tom; Malato, Yann; Lee, Wyne P; McKenzie, Brent; Arceo, Rommel; Tao, Jianhua; Rangell, Linda; Reichelt, Mike; Diehl, Lauri; Elstrott, Justin; Weimer, Robby M; Campagne, Menno van Lookeren
2018-05-09
Geographic atrophy (GA), the advanced form of dry age-related macular degeneration (AMD), is characterized by progressive loss of retinal pigment epithelium cells and photoreceptors in the setting of characteristic extracellular deposits and remains a serious unmet medical need. While genetic predisposition to AMD is dominated by polymorphisms in complement genes, it remains unclear how complement activation contributes to retinal atrophy. Here we demonstrate that complement is activated on photoreceptor outer segments (POS) in the retina peripheral to atrophic lesions associated with GA. When exposed to human serum following outer blood-retinal barrier breakdown, POS act as potent activators of the classical and alternative complement pathway. In mouse models of retinal degeneration, classical and alternative pathway complement activation on photoreceptors contributed to the loss of photoreceptor function. This was dependent on C5a-mediated recruitment of peripheral blood monocytes but independent of resident microglia. Genetic or pharmacologic inhibition of both classical and alternative complement C3 and C5 convertases was required to reduce progressive degeneration of photoreceptor rods and cones. Our study implicates systemic classical and alternative complement proteins and peripheral blood monocytes as critical effectors of localized retinal degeneration with potential relevance for the contribution of complement activation to GA.
Complement and the control of HIV infection: an evolving story.
Frank, Michael M; Hester, Christopher; Jiang, Haixiang
2014-05-01
Thirty years ago, investigators isolated and later determined the structure of HIV-1 and its envelope proteins. Using techniques that were effective with other viruses, they prepared vaccines designed to generate antibody or T-cell responses, but they were ineffective in clinical trials. In this article, we consider the role of complement in host defense against enveloped viruses, the role it might play in the antibody response and why complement has not controlled HIV-1 infection. Complement consists of a large group of cell-bound and plasma proteins that are an integral part of the innate immune system. They provide a first line of defense against microbes and also play a role in the immune response. Here we review the studies of complement-mediated HIV destruction and the role of complement in the HIV antibody response. HIV-1 has evolved a complex defense to prevent complement-mediated killing reviewed here. As part of these studies, we have discovered that HIV-1 envelope, on administration into animals, is rapidly broken down into small peptides that may prove to be very inefficient at provident the type of antigenic stimulation that leads to an effective immune response. Improving complement binding and stabilizing envelope may improve the vaccine response.
Factor H: A Complement Regulator in Health and Disease, and a Mediator of Cellular Interactions
Kopp, Anne; Hebecker, Mario; Svobodová, Eliška; Józsi, Mihály
2012-01-01
Complement is an essential part of innate immunity as it participates in host defense against infections, disposal of cellular debris and apoptotic cells, inflammatory processes and modulation of adaptive immune responses. Several soluble and membrane-bound regulators protect the host from the potentially deleterious effects of uncontrolled and misdirected complement activation. Factor H is a major soluble regulator of the alternative complement pathway, but it can also bind to host cells and tissues, protecting them from complement attack. Interactions of factor H with various endogenous ligands, such as pentraxins, extracellular matrix proteins and DNA are important in limiting local complement-mediated inflammation. Impaired regulatory as well as ligand and cell recognition functions of factor H, caused by mutations or autoantibodies, are associated with the kidney diseases: atypical hemolytic uremic syndrome and dense deposit disease and the eye disorder: age-related macular degeneration. In addition, factor H binds to receptors on host cells and is involved in adhesion, phagocytosis and modulation of cell activation. In this review we discuss current concepts on the physiological and pathophysiological roles of factor H in light of new data and recent developments in our understanding of the versatile roles of factor H as an inhibitor of complement activation and inflammation, as well as a mediator of cellular interactions. A detailed knowledge of the functions of factor H in health and disease is expected to unravel novel therapeutic intervention possibilities and to facilitate the development or improvement of therapies. PMID:24970127
Granoff, Dan M
2009-06-24
Killing of Neisseria meningitidis can result from complement-mediated serum bactericidal activity (SBA) or opsonophagocytosis (OPA), or a combination of the two mechanisms. While SBA titers > or =1:4 confer protection, recent evidence suggests that this threshold titer may not be required. For example, the incidence of meningococcal disease declines between ages 1 and 4 years without evidence of acquisition of SBA titers > or =1:4. Meningococcal polysaccharide vaccination also elicited OPA and lowered the risk of disease in patients with late complement component deficiencies whose sera did not support SBA. Sera from healthy adults immunized with an outer membrane vesicle vaccine showed OPA killing of N. meningitidis with C6-depleted complement, and whole blood from complement-sufficient non-immunized adults with SBA titers <1:4 also frequently had killing activity. Collectively the data indicate that SBA titers <1:4 and/or vaccine-induced OPA can confer protection against meningococcal disease.
Granoff, Dan M.
2009-01-01
Killing of Neisseria meningitidis can result from complement-mediated bactericidal activity (SBA) or opsonophagocytosis (OPA), or a combination of the two mechanisms. While SBA titers ≥1:4 confer protection, recent evidence suggests that this threshold titer may not be required. For example, the incidence of meningococcal disease declines between ages 1 and 4 years without evidence of acquisition of SBA titers ≥1:4. Meningococcal polysaccharide vaccination also elicited OPA and lowered the risk of disease in patients with late complement component deficiencies whose sera did not support SBA. Sera from healthy adults immunized with an outer membrane vesicle vaccine showed OPA killing of N. meningitidis with C6-depleted complement, and whole blood from complement-sufficient non-immunized adults with SBA titers <1:4 also frequently had killing activity. Collectively the data indicate that SBA titers <1:4 and/or vaccine-induced OPA can confer protection against meningococcal disease. PMID:19477054
Prechl, József; Papp, Krisztián; Hérincs, Zoltán; Péterfy, Hajna; Lóránd, Veronika; Szittner, Zoltán; Estonba, Andone; Rovero, Paolo; Paolini, Ilaria; Del Amo, Jokin; Uribarri, Maria; Alcaro, Maria Claudia; Ruiz-Larrañaga, Otsanda; Migliorini, Paola; Czirják, László
2016-01-01
Systemic lupus erythematosus is a chronic autoimmune disease with multifactorial ethiopathogenesis. The complement system is involved in both the early and late stages of disease development and organ damage. To better understand autoantibody mediated complement consumption we examined ex vivo immune complex formation on autoantigen arrays. We recruited patients with SLE (n = 211), with other systemic autoimmune diseases (n = 65) and non-autoimmune control subjects (n = 149). Standard clinical and laboratory data were collected and serum complement levels were determined. The genotype of SNP rs1143679 in the ITGAM gene was also determined. Ex vivo formation of immune complexes, with respect to IgM, IgG, complement C4 and C3 binding, was examined using a functional immunoassay on autoantigen microarray comprising nucleic acids, proteins and lipids. Complement consumption of nucleic acids increased upon binding of IgM and IgG even when serum complement levels were decreased due to consumption in SLE patients. A negative correlation between serum complement levels and ex vivo complement deposition on nucleic acid autoantigens is demonstrated. On the contrary, complement deposition on tested protein and lipid autoantigens showed positive correlation with C4 levels. Genetic analysis revealed that the non-synonymous variant rs1143679 in complement receptor type 3 is associated with an increased production of anti-dsDNA IgG antibodies. Notwithstanding, homozygous carriers of the previously reported susceptible allele (AA) had lower levels of dsDNA specific IgM among SLE patients. Both the non-synonymous variant rs1143679 and the high ratio of nucleic acid specific IgG/IgM were associated with multiple organ involvement. In summary, secondary complement deficiency in SLE does not impair opsonization of nucleic-acid-containing autoantigens but does affect other antigens and potentially other complement dependent processes. Dysfunction of the receptor recognizing complement opsonized immune complexes promotes the development of class-switched autoantibodies targeting nucleic acids.
Rich, Megan C; Keene, Chesleigh N; Neher, Miriam D; Johnson, Krista; Yu, Zhao-Xue; Ganivet, Antoine; Holers, V Michael; Stahel, Philip F
2016-03-23
Intracerebral complement activation after severe traumatic brain injury (TBI) leads to a cascade of neuroinflammatory pathological sequelae that propagate host-mediated secondary brain injury and adverse outcomes. There are currently no specific pharmacological agents on the market to prevent or mitigate the development of secondary cerebral insults after TBI. A novel chimeric CR2-fH compound (mTT30) provides targeted inhibition of the alternative complement pathway at the site of tissue injury. This experimental study was designed to test the neuroprotective effects of mTT30 in a mouse model of closed head injury. The administration of 500 μg mTT30 i.v. at 1 h, 4 h and 24 h after head injury attenuated complement C3 deposition in injured brains, reduced the extent of neuronal cell death, and decreased post-injury microglial activation, compared to vehicle-injected placebo controls. These data imply that site-targeted alternative pathway complement inhibition may represent a new promising therapeutic avenue for the future management of severe TBI. Copyright © 2016. Published by Elsevier Ireland Ltd.
Szott, Luisa M.; Horbett, Thomas A.
2010-01-01
The role of complement C3 in mediating adhesion of monocytes to plasma deposited tetraglyme surfaces was studied. Although fibrinogen (Fg) is usually considered the main factor in mediating phagocyte attachment, plasma deposited PEO-like tetraethylene glycol dimethyl ether (tetraglyme) coatings that have ultra-low Fg adsorption (< 10 ng/cm2) from low concentration solutions and low monocyte adhesion in vitro still show high phagocyte adhesion after short implantations and later become encapsulated when tested in vivo. To test whether higher Fg adsorption under in vivo conditions could explain the higher in vivo reactivity, we again measured the resistance of tetraglyme films to Fg adsorption. We found a surprising and previously unreported increased amount of adsorbed Fg on tetraglyme surfaces from higher concentration protein solutions. However, monocyte adhesion to tetraglyme did not markedly increase despite the increased Fg adsorption. We thus suspected proteins other than Fg must be responsible for the increased in vivo reactivity. We found that on tetraglyme pre-adsorbed with C3-depleted serum, monocyte adhesion was greatly reduced as compared to samples adsorbed with normal serum. Addition of exogenous pure C3 to the serum used to pre-adsorb the surfaces restored monocyte adhesion to tetraglyme coatings. While Fg clearly plays an important role in mediating monocyte adhesion to tetraglyme surfaces, the results show an additional role for adsorbed C3 in monocyte adhesion. PMID:20939050
Nicolay, Nils H; Carter, Rebecca; Hatch, Stephanie B; Schultz, Niklas; Prevo, Remko; McKenna, W Gillies; Helleday, Thomas; Sharma, Ricky A
2012-11-01
DNA polymerase eta (pol η) is the only DNA polymerase causally linked to carcinogenesis in humans. Inherited deficiency of pol η in the variant form of xeroderma pigmentosum (XPV) predisposes to UV-light-induced skin cancer. Pol η-deficient cells demonstrate increased sensitivity to cisplatin and oxaliplatin chemotherapy. We have found that XP30R0 fibroblasts derived from a patient with XPV are more resistant to cell kill by ionising radiation (IR) than the same cells complemented with wild-type pol η. This phenomenon has been confirmed in Burkitt's lymphoma cells, which either expressed wild-type pol η or harboured a pol η deletion. Pol η deficiency was associated with accumulation of cells in S-phase, which persisted after IR. Cells deficient in pol η demonstrated increased homologous recombination (HR)-directed repair of double strand breaks created by IR. Depletion of the HR protein, X-ray repair cross-complementing protein 3 (XRCC3), abrogated the radioresistance observed in pol η-deficient cells as compared with pol η-complemented cells. These findings suggest that HR mediates S-phase-dependent radioresistance associated with pol η deficiency. We propose that pol η protein levels in tumours may potentially be used to identify patients who require treatment with chemo-radiotherapy rather than radiotherapy alone for adequate tumour control.
Honda-Ogawa, Mariko; Sumitomo, Tomoko; Mori, Yasushi; Hamd, Dalia Talat; Ogawa, Taiji; Yamaguchi, Masaya; Nakata, Masanobu; Kawabata, Shigetada
2017-03-10
Streptococcus pyogenes secretes various virulence factors for evasion from complement-mediated bacteriolysis. However, full understanding of the molecules possessed by this organism that interact with complement C1q, an initiator of the classical complement pathway, remains elusive. In this study, we identified an endopeptidase of S. pyogenes , PepO, as an interacting molecule, and investigated its effects on complement immunity and pathogenesis. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis findings revealed that S. pyogenes recombinant PepO bound to human C1q in a concentration-dependent manner under physiological conditions. Sites of inflammation are known to have decreased pH levels, thus the effects of PepO on bacterial evasion from complement immunity was analyzed in a low pH condition. Notably, under low pH conditions, PepO exhibited a higher affinity for C1q as compared with IgG, and PepO inhibited the binding of IgG to C1q. In addition, pepO deletion rendered S. pyogenes more susceptible to the bacteriocidal activity of human serum. Also, observations of the morphological features of the pepO mutant strain (Δ pepO ) showed damaged irregular surfaces as compared with the wild-type strain (WT). WT-infected tissues exhibited greater severity and lower complement activity as compared with those infected by Δ pepO in a mouse skin infection model. Furthermore, WT infection resulted in a larger accumulation of C1q than that with Δ pepO. Our results suggest that interaction of S. pyogenes PepO with C1q interferes with the complement pathway, which enables S. pyogenes to evade complement-mediated bacteriolysis under acidic conditions, such as seen in inflammatory sites. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Hamad, Islam; Al-Hanbali, Othman; Hunter, A Christy; Rutt, Kenneth J; Andresen, Thomas L; Moghimi, S Moein
2010-11-23
Nanoparticles with surface projected polyethyleneoxide (PEO) chains in "mushroom-brush" and "brush" configurations display stealth properties in systemic circulation and have numerous applications in site-specific targeting for controlled drug delivery and release as well as diagnostic imaging. We report on the "structure-activity" relationship pertaining to surface-immobilized PEO of various configurations on model nanoparticles, and the initiation of complement cascade, which is the most ancient component of innate human immunity, and its activation may induce clinically significant adverse reactions in some individuals. Conformational states of surface-projected PEO chains, arising from the block copolymer poloxamine 908 adsorption, on polystyrene nanoparticles trigger complement activation differently. Alteration of copolymer architecture on nanospheres from mushroom to brush configuration not only switches complement activation from C1q-dependent classical to lectin pathway but also reduces the level of generated complement activation products C4d, Bb, C5a, and SC5b-9. Also, changes in adsorbed polymer configuration trigger alternative pathway activation differently and through different initiators. Notably, the role for properdin-mediated activation of alternative pathway was only restricted to particles displaying PEO chains in a transition mushroom-brush configuration. Since nanoparticle-mediated complement activation is of clinical concern, our findings provide a rational basis for improved surface engineering and design of immunologically safer stealth and targetable nanosystems with polymers for use in clinical medicine.
Alcorlo, Martín; Tortajada, Agustín; Rodríguez de Córdoba, Santiago; Llorca, Oscar
2013-01-01
Complement is an essential component of innate immunity. Its activation results in the assembly of unstable protease complexes, denominated C3/C5 convertases, leading to inflammation and lysis. Regulatory proteins inactivate C3/C5 convertases on host surfaces to avoid collateral tissue damage. On pathogen surfaces, properdin stabilizes C3/C5 convertases to efficiently fight infection. How properdin performs this function is, however, unclear. Using electron microscopy we show that the N- and C-terminal ends of adjacent monomers in properdin oligomers conform a curly vertex that holds together the AP convertase, interacting with both the C345C and vWA domains of C3b and Bb, respectively. Properdin also promotes a large displacement of the TED (thioester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domains of C3b, which likely impairs C3-convertase inactivation by regulatory proteins. The combined effect of molecular cross-linking and structural reorganization increases stability of the C3 convertase and facilitates recruitment of fluid-phase C3 convertase to the cell surfaces. Our model explains how properdin mediates the assembly of stabilized C3/C5-convertase clusters, which helps to localize complement amplification to pathogen surfaces. PMID:23901101
Trichinella spiralis Calreticulin Binds Human Complement C1q As an Immune Evasion Strategy.
Zhao, Limei; Shao, Shuai; Chen, Yi; Sun, Ximeng; Sun, Ran; Huang, Jingjing; Zhan, Bin; Zhu, Xinping
2017-01-01
As a multicellular parasitic nematode, Trichinella spiralis regulates host immune responses by producing a variety of immunomodulatory molecules to escape from host immune attack, but the mechanisms underlying the immune evasion are not well understood. Here, we identified that T. spiralis calreticulin ( Ts -CRT), a Ca 2+ -binding protein, facilitated T. spiralis immune evasion by interacting with the first component of human classical complement pathway, C1q. In the present study, Ts -CRT was found to be expressed on the surface of different developmental stages of T. spiralis as well as in the secreted products of adult and muscle larval worms. Functional analysis identified that Ts -CRT was able to bind to human C1q, resulting in the inhibition of C1q-initiated complement classical activation pathway reflected by reduced C4/C3 generation and C1q-dependent lysis of antibody-sensitized sheep erythrocytes. Moreover, recombinant Ts -CRT (r Ts -CRT) binding to C1q suppressed C1q-induced THP-1-derived macrophages chemotaxis and reduced monocyte-macrophages release of reactive oxygen intermediates (ROIs). Blocking Ts -CRT on the surface of newborn larvae (NBL) of T. spiralis with anti- Ts -CRT antibody increased the C1q-mediated adherence of monocyte-macrophages to larvae and impaired larval infectivity. All of these results suggest that T. spiralis -expressed Ts -CRT plays crucial roles in T. spiralis immune evasion and survival in host mostly by directly binding to host complement C1q, which not only reduces C1q-mediated activation of classical complement pathway but also inhibits the C1q-induced non-complement activation of macrophages.
Trichinella spiralis Calreticulin Binds Human Complement C1q As an Immune Evasion Strategy
Zhao, Limei; Shao, Shuai; Chen, Yi; Sun, Ximeng; Sun, Ran; Huang, Jingjing; Zhan, Bin; Zhu, Xinping
2017-01-01
As a multicellular parasitic nematode, Trichinella spiralis regulates host immune responses by producing a variety of immunomodulatory molecules to escape from host immune attack, but the mechanisms underlying the immune evasion are not well understood. Here, we identified that T. spiralis calreticulin (Ts-CRT), a Ca2+-binding protein, facilitated T. spiralis immune evasion by interacting with the first component of human classical complement pathway, C1q. In the present study, Ts-CRT was found to be expressed on the surface of different developmental stages of T. spiralis as well as in the secreted products of adult and muscle larval worms. Functional analysis identified that Ts-CRT was able to bind to human C1q, resulting in the inhibition of C1q-initiated complement classical activation pathway reflected by reduced C4/C3 generation and C1q-dependent lysis of antibody-sensitized sheep erythrocytes. Moreover, recombinant Ts-CRT (rTs-CRT) binding to C1q suppressed C1q-induced THP-1-derived macrophages chemotaxis and reduced monocyte–macrophages release of reactive oxygen intermediates (ROIs). Blocking Ts-CRT on the surface of newborn larvae (NBL) of T. spiralis with anti-Ts-CRT antibody increased the C1q-mediated adherence of monocyte–macrophages to larvae and impaired larval infectivity. All of these results suggest that T. spiralis-expressed Ts-CRT plays crucial roles in T. spiralis immune evasion and survival in host mostly by directly binding to host complement C1q, which not only reduces C1q-mediated activation of classical complement pathway but also inhibits the C1q-induced non-complement activation of macrophages. PMID:28620388
Ly6G-mediated depletion of neutrophils is dependent on macrophages.
Bruhn, Kevin W; Dekitani, Ken; Nielsen, Travis B; Pantapalangkoor, Paul; Spellberg, Brad
2016-01-01
Antibody-mediated depletion of neutrophils is commonly used to study neutropenia. However, the mechanisms by which antibodies deplete neutrophils have not been well defined. We noticed that mice deficient in complement and macrophages had blunted neutrophil depletion in response to anti-Ly6G monoclonal antibody (MAb) treatment. In vitro, exposure of murine neutrophils to anti-Ly6G MAb in the presence of plasma did not result in significant depletion of cells, either in the presence or absence of complement. In vivo, anti-Ly6G-mediated neutrophil depletion was abrogated following macrophage depletion, but not complement depletion, indicating a requirement for macrophages to induce neutropenia by this method. These results inform the use and limitations of anti-Ly6G antibody as an experimental tool for depleting neutrophils in various immunological settings.
More than just immune evasion: Hijacking complement by Plasmodium falciparum.
Schmidt, Christoph Q; Kennedy, Alexander T; Tham, Wai-Hong
2015-09-01
Malaria remains one of the world's deadliest diseases. Plasmodium falciparum is responsible for the most severe and lethal form of human malaria. P. falciparum's life cycle involves two obligate hosts: human and mosquito. From initial entry into these hosts, malaria parasites face the onslaught of the first line of host defence, the complement system. In this review, we discuss the complex interaction between complement and malaria infection in terms of hosts immune responses, parasite survival and pathogenesis of severe forms of malaria. We will focus on the role of complement receptor 1 and its associated polymorphisms in malaria immune complex clearance, as a mediator of parasite rosetting and as an entry receptor for P. falciparum invasion. Complement evasion strategies of P. falciparum parasites will also be highlighted. The sexual forms of the malaria parasites recruit the soluble human complement regulator Factor H to evade complement-mediated killing within the mosquito host. A novel evasion strategy is the deployment of parasite organelles to divert complement attack from infective blood stage parasites. Finally we outline the future challenge to understand the implications of these exploitation mechanisms in the interplay between successful infection of the host and pathogenesis observed in severe malaria. Copyright © 2015 Elsevier Ltd. All rights reserved.
Complement Interaction with Trypanosomatid Promastigotes in Normal Human Serum
Domínguez, Mercedes; Moreno, Inmaculada; López-Trascasa, Margarita; Toraño, Alfredo
2002-01-01
In normal human serum (NHS), axenic promastigotes of Crithidia, Phytomonas, and Leishmania trigger complement activation, and from 1.2 to 1.8 × 105 C3 molecules are deposited per promastigote within 2.5 min. In Leishmania, promastigote C3 binding capacity remains constant during in vitro metacyclogenesis. C3 deposition on promastigotes activated through the classical complement pathway reaches a 50% maximum after ∼50 s, and represents >85% of total C3 bound. In C1q- and C2-deficient human sera, promastigotes cannot activate the classical pathway (CP) unless purified C1q or C2 factors, respectively, are supplemented, demonstrating a requirement for CP factor in promastigote C3 opsonization. NHS depleted of natural anti-Leishmania antibodies cannot trigger promastigote CP activation, but IgM addition restores C3 binding. Furthermore, Leishmania binds natural antibodies in ethylenediaminetetracetic acid (EDTA)-treated NHS; after EDTA removal, promastigote-bound IgM triggers C3 deposition in natural antibody-depleted NHS. Serum collectins and pentraxins thus do not participate significantly in NHS promastigote C3 opsonization. Real-time kinetic analysis of promastigote CP-mediated lysis indicates that between 85–95% of parasites are killed within 2.5 min of serum contact. These data indicate that successful Leishmania infection in man must immediately follow promastigote transmission, and that Leishmania evasion strategies are shaped by the selective pressure exerted by complement. PMID:11854358
Exploring the Innate Immune System: Using Complement-Medicated Cell Lysis in the Classroom
ERIC Educational Resources Information Center
Fuller, Kevin G.
2008-01-01
The protein complement pathway comprises an important part of the innate immunity. The use of serum to demonstrate complement-mediated destruction across a series of bacterial dilutions allows an instructor to introduce a number of important biological concepts such as bacterial growth, activation cascades, and adaptive versus innate immunity.
Dalia, Ankur B.; Weiser, Jeffrey N.
2011-01-01
SUMMARY The complement system, which functions by lysing pathogens directly or by promoting their uptake by phagocytes, is critical for controlling many microbial infections. Here we show that in Streptococcus pneumoniae, increasing bacterial chain length sensitizes this pathogen to complement deposition and subsequent uptake by human neutrophils. Consistent with this, we show that minimizing chain length provides wild-type bacteria with a competitive advantage in vivo in a model of systemic infection. Investigating how the host overcomes this virulence strategy, we find that antibody promotes complement-dependent opsonophagocytic killing of Streptococcus pneumoniae and lysis of Haemophilus influenzae independent of Fc-mediated effector functions. Consistent with the agglutinating effect of antibody, F(ab′)2 but not Fab could promote this effect. Therefore, increasing pathogen size, whether by natural changes in cellular morphology or via antibody-mediated agglutination, promotes complement-dependent killing. These observations have broad implications for how cell size and morphology can affect virulence among pathogenic microbes. PMID:22100164
2011-01-01
Trauma represents the leading cause of death among young people in industrialized countries. Recent clinical and experimental studies have brought increasing evidence for activation of the innate immune system in contributing to the pathogenesis of trauma-induced sequelae and adverse outcome. As the "first line of defense", the complement system represents a potent effector arm of innate immunity, and has been implicated in mediating the early posttraumatic inflammatory response. Despite its generic beneficial functions, including pathogen elimination and immediate response to danger signals, complement activation may exert detrimental effects after trauma, in terms of mounting an "innocent bystander" attack on host tissue. Posttraumatic ischemia/reperfusion injuries represent the classic entity of complement-mediated tissue damage, adding to the "antigenic load" by exacerbation of local and systemic inflammation and release of toxic mediators. These pathophysiological sequelae have been shown to sustain the systemic inflammatory response syndrome after major trauma, and can ultimately contribute to remote organ injury and death. Numerous experimental models have been designed in recent years with the aim of mimicking the inflammatory reaction after trauma and to allow the testing of new pharmacological approaches, including the emergent concept of site-targeted complement inhibition. The present review provides an overview on the current understanding of the cellular and molecular mechanisms of complement activation after major trauma, with an emphasis of emerging therapeutic concepts which may provide the rationale for a "bench-to-bedside" approach in the design of future pharmacological strategies. PMID:22129197
High-Mobility Group Box 1-Induced Complement Activation Causes Sterile Inflammation.
Kim, Sook Young; Son, Myoungsun; Lee, Sang Eun; Park, In Ho; Kwak, Man Sup; Han, Myeonggil; Lee, Hyun Sook; Kim, Eun Sook; Kim, Jae-Young; Lee, Jong Eun; Choi, Ji Eun; Diamond, Betty; Shin, Jeon-Soo
2018-01-01
High-mobility group box 1 (HMGB1), a well-known danger-associated molecular pattern molecule, acts as a pro-inflammatory molecule when secreted by activated immune cells or released after necrotic cell damage. HMGB1 binds to immunogenic bacterial components and augments septic inflammation. In this study, we show how HMGB1 mediates complement activation, promoting sterile inflammation. We show that HMGB1 activates the classical pathway of complement system in an antibody-independent manner after binding to C1q. The C3a complement activation product in human plasma and C5b-9 membrane attack complexes on cell membrane surface are detected after the addition of HMGB1. In an acetaminophen (APAP)-induced hepatotoxicity model, APAP injection reduced HMGB1 levels and elevated C3 levels in C1q-deficient mouse serum samples, compared to that in wild-type (WT) mice. APAP-induced C3 consumption was inhibited by sRAGE treatment in WT mice. Moreover, in a mouse model of brain ischemia-reperfusion injury based on middle cerebral arterial occlusion, C5b-9 complexes were deposited on vessels where HMGB1 was accumulated, an effect that was suppressed upon HMGB1 neutralization. We propose that the HMGB1 released after cell necrosis and in ischemic condition can trigger the classical pathway of complement activation to exacerbate sterile inflammation.
High-Mobility Group Box 1-Induced Complement Activation Causes Sterile Inflammation
Kim, Sook Young; Son, Myoungsun; Lee, Sang Eun; Park, In Ho; Kwak, Man Sup; Han, Myeonggil; Lee, Hyun Sook; Kim, Eun Sook; Kim, Jae-Young; Lee, Jong Eun; Choi, Ji Eun; Diamond, Betty; Shin, Jeon-Soo
2018-01-01
High-mobility group box 1 (HMGB1), a well-known danger-associated molecular pattern molecule, acts as a pro-inflammatory molecule when secreted by activated immune cells or released after necrotic cell damage. HMGB1 binds to immunogenic bacterial components and augments septic inflammation. In this study, we show how HMGB1 mediates complement activation, promoting sterile inflammation. We show that HMGB1 activates the classical pathway of complement system in an antibody-independent manner after binding to C1q. The C3a complement activation product in human plasma and C5b-9 membrane attack complexes on cell membrane surface are detected after the addition of HMGB1. In an acetaminophen (APAP)-induced hepatotoxicity model, APAP injection reduced HMGB1 levels and elevated C3 levels in C1q-deficient mouse serum samples, compared to that in wild-type (WT) mice. APAP-induced C3 consumption was inhibited by sRAGE treatment in WT mice. Moreover, in a mouse model of brain ischemia–reperfusion injury based on middle cerebral arterial occlusion, C5b-9 complexes were deposited on vessels where HMGB1 was accumulated, an effect that was suppressed upon HMGB1 neutralization. We propose that the HMGB1 released after cell necrosis and in ischemic condition can trigger the classical pathway of complement activation to exacerbate sterile inflammation. PMID:29696019
Hovland, Anders; Jonasson, Lena; Garred, Peter; Yndestad, Arne; Aukrust, Pål; Lappegård, Knut T; Espevik, Terje; Mollnes, Tom E
2015-08-01
Despite recent medical advances, atherosclerosis is a global burden accounting for numerous deaths and hospital admissions. Immune-mediated inflammation is a major component of the atherosclerotic process, but earlier research focus on adaptive immunity has gradually switched towards the role of innate immunity. The complement system and toll-like receptors (TLRs), and the crosstalk between them, may be of particular interest both with respect to pathogenesis and as therapeutic targets in atherosclerosis. Animal studies indicate that inhibition of C3a and C5a reduces atherosclerosis. In humans modified LDL-cholesterol activate complement and TLRs leading to downstream inflammation, and histopathological studies indicate that the innate immune system is present in atherosclerotic lesions. Moreover, clinical studies have demonstrated that both complement and TLRs are upregulated in atherosclerotic diseases, although interventional trials have this far been disappointing. However, based on recent research showing an intimate interplay between complement and TLRs we propose a model in which combined inhibition of both complement and TLRs may represent a potent anti-inflammatory therapeutic approach to reduce atherosclerosis. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Neisseria meningitidis: pathogenesis and immunity.
Pizza, Mariagrazia; Rappuoli, Rino
2015-02-01
The recent advances in cellular microbiology, genomics, and immunology has opened new horizons in the understanding of meningococcal pathogenesis and in the definition of new prophylactic intervention. It is now clear that Neissera meningitidis has evolved a number of surface structures to mediate interaction with host cells and a number of mechanisms to subvert the immune system and escape complement-mediated killing. In this review we report the more recent findings on meningococcal adhesion and on the bacteria-complement interaction highlighting the redundancy of these mechanisms. An effective vaccine against meningococcus B, based on multiple antigens with different function, has been recently licensed. The antibodies induced by the 4CMenB vaccine could mediate bacterial killing by activating directly the classical complement pathway or, indirectly, by preventing binding of fH on the bacterial surface and interfering with colonization. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.
Complement Regulator Factor H Mediates a Two-step Uptake of Streptococcus pneumoniae by Human Cells*
Agarwal, Vaibhav; Asmat, Tauseef M.; Luo, Shanshan; Jensch, Inga; Zipfel, Peter F.; Hammerschmidt, Sven
2010-01-01
Streptococcus pneumoniae, a human pathogen, recruits complement regulator factor H to its bacterial cell surface. The bacterial PspC protein binds Factor H via short consensus repeats (SCR) 8–11 and SCR19–20. In this study, we define how bacterially bound Factor H promotes pneumococcal adherence to and uptake by epithelial cells or human polymorphonuclear leukocytes (PMNs) via a two-step process. First, pneumococcal adherence to epithelial cells was significantly reduced by heparin and dermatan sulfate. However, none of the glycosaminoglycans affected binding of Factor H to pneumococci. Adherence of pneumococci to human epithelial cells was inhibited by monoclonal antibodies recognizing SCR19–20 of Factor H suggesting that the C-terminal glycosaminoglycan-binding region of Factor H mediates the contact between pneumococci and human cells. Blocking of the integrin CR3 receptor, i.e. CD11b and CD18, of PMNs or CR3-expressing epithelial cells reduced significantly the interaction of pneumococci with both cell types. Similarly, an additional CR3 ligand, Pra1, derived from Candida albicans, blocked the interaction of pneumococci with PMNs. Strikingly, Pra1 inhibited also pneumococcal uptake by lung epithelial cells but not adherence. In addition, invasion of Factor H-coated pneumococci required the dynamics of host-cell actin microfilaments and was affected by inhibitors of protein-tyrosine kinases and phosphatidylinositol 3-kinase. In conclusion, pneumococcal entry into host cells via Factor H is based on a two-step mechanism. The first and initial contact of Factor H-coated pneumococci is mediated by glycosaminoglycans expressed on the surface of human cells, and the second step, pneumococcal uptake, is integrin-mediated and depends on host signaling molecules such as phosphatidylinositol 3-kinase. PMID:20504767
Complement factor h is critical in the maintenance of retinal perfusion.
Lundh von Leithner, Peter; Kam, Jaimie Hoh; Bainbridge, James; Catchpole, Ian; Gough, Gerald; Coffey, Peter; Jeffery, Glen
2009-07-01
Vascular pathologies are known to be associated with age-related macular degeneration. Recently, age-related macular degeneration was associated with a single-nucleotide substitution of the complement factor H (CFH) gene, part of the alternative pathway of the complement system, a critical element in the innate immune response. Such polymorphisms are found in more than 50% of cases of age-related macular degeneration. Here we show that the absence of CFH causes an autoimmune response that targets the vascular endothelium of both the inner and outer retinal vascular networks. In CFH-knockout (cfh(-/-)) mice, C3 and C3b, key components of the complement system, are progressively deposited on retinal vessels, which subsequently become restricted and wither, resulting in a reduction of retinal blood supply. This result leads to increased oxygen stress. While such effects are not systemic, these structural changes are mirrored in functional changes with a substantial decline in retinal blood flow dynamics. When the system is challenged functionally by laser-induced choroidal neovascularization, fluorescein leakage was significantly smaller in cfh(-/-) mice compared with controls, likely due to reduced retinal perfusion. These data reveal that in both the presence and absence of exogenous challenge to the innate immune system, CFH is required to maintain normal levels of retinal perfusion. It is likely that C3 and C3b accumulation in the aged CFH-deficient retina is associated with complement-mediated retinal endothelium destruction.
Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M.
2012-01-01
Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with 125I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases. PMID:22514678
Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M
2012-01-01
Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.
Sharma, Ricky A.
2012-01-01
DNA polymerase eta (pol η) is the only DNA polymerase causally linked to carcinogenesis in humans. Inherited deficiency of pol η in the variant form of xeroderma pigmentosum (XPV) predisposes to UV-light-induced skin cancer. Pol η-deficient cells demonstrate increased sensitivity to cisplatin and oxaliplatin chemotherapy. We have found that XP30R0 fibroblasts derived from a patient with XPV are more resistant to cell kill by ionising radiation (IR) than the same cells complemented with wild-type pol η. This phenomenon has been confirmed in Burkitt’s lymphoma cells, which either expressed wild-type pol η or harboured a pol η deletion. Pol η deficiency was associated with accumulation of cells in S-phase, which persisted after IR. Cells deficient in pol η demonstrated increased homologous recombination (HR)-directed repair of double strand breaks created by IR. Depletion of the HR protein, X-ray repair cross-complementing protein 3 (XRCC3), abrogated the radioresistance observed in pol η-deficient cells as compared with pol η-complemented cells. These findings suggest that HR mediates S-phase-dependent radioresistance associated with pol η deficiency. We propose that pol η protein levels in tumours may potentially be used to identify patients who require treatment with chemo-radiotherapy rather than radiotherapy alone for adequate tumour control. PMID:22822095
Cyclosporine Induces Endothelial Cell Release of Complement-Activating Microparticles
Renner, Brandon; Klawitter, Jelena; Goldberg, Ryan; McCullough, James W.; Ferreira, Viviana P.; Cooper, James E.; Christians, Uwe
2013-01-01
Defective control of the alternative pathway of complement is an important risk factor for several renal diseases, including atypical hemolytic uremic syndrome. Infections, drugs, pregnancy, and hemodynamic insults can trigger episodes of atypical hemolytic uremic syndrome in susceptible patients. Although the mechanisms linking these clinical events with disease flares are unknown, recent work has revealed that each of these clinical conditions causes cells to release microparticles. We hypothesized that microparticles released from injured endothelial cells promote intrarenal complement activation. Calcineurin inhibitors cause vascular and renal injury and can trigger hemolytic uremic syndrome. Here, we show that endothelial cells exposed to cyclosporine in vitro and in vivo release microparticles that activate the alternative pathway of complement. Cyclosporine-induced microparticles caused injury to bystander endothelial cells and are associated with complement-mediated injury of the kidneys and vasculature in cyclosporine-treated mice. Cyclosporine-induced microparticles did not bind factor H, an alternative pathway regulatory protein present in plasma, explaining their complement-activating phenotype. Finally, we found that in renal transplant patients, the number of endothelial microparticles in plasma increases 2 weeks after starting tacrolimus, and treatment with tacrolimus associated with increased C3 deposition on endothelial microparticles in the plasma of some patients. These results suggest that injury-associated release of endothelial microparticles is an important mechanism by which systemic insults trigger intravascular complement activation and complement-dependent renal diseases. PMID:24092930
Ayalew, Sahlu; Confer, Anthony W; Shrestha, Binu; Payton, Mark E
2012-05-01
In this study, we describe a rapid microtiter serum bactericidal assay (RMSBA) that can be used to measure the functionality of immune sera. It quantifies bactericidal activity of immune sera in the presence of complement against a homologous bacterium, M. haemolytica in this case. There is high correlation between data from RMSBA and standard complement-mediated bacterial killing assay (r=0.756; p<0.0001). The RMSBA activity of sera can be generated in less than 5 h instead of overnight incubation. RMSBA costs substantially less in terms of time, labor, and resources and is highly reproducible. Copyright © 2012 Elsevier B.V. All rights reserved.
Kistler, Andreas D.; Singh, Geetika; Altintas, Mehmet M.; Yu, Hao; Fernandez, Isabel C.; Gu, Changkyu; Wilson, Cory; Srivastava, Sandeep Kumar; Dietrich, Alexander; Walz, Katherina; Kerjaschki, Dontscho; Ruiz, Phillip; Dryer, Stuart; Sever, Sanja; Dinda, Amit K.; Faul, Christian; Reiser, Jochen
2013-01-01
Gain-of-function mutations in the calcium channel TRPC6 lead to autosomal dominant focal segmental glomerulosclerosis and podocyte expression of TRPC6 is increased in some acquired human glomerular diseases, particularly in membranous nephropathy. These observations led to the hypothesis that TRPC6 overactivation is deleterious to podocytes through pathological calcium signaling, both in genetic and acquired diseases. Here, we show that the effects of TRPC6 on podocyte function are context-dependent. Overexpression of TRPC6 alone did not directly affect podocyte morphology and cytoskeletal structure. Unexpectedly, however, overexpression of TRPC6 protected podocytes from complement-mediated injury, whereas genetic or pharmacological TRPC6 inactivation increased podocyte susceptibility to complement. Mechanistically, this effect was mediated by Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation. Podocyte-specific TRPC6 transgenic mice showed stronger CaMKII activation, reduced podocyte foot process effacement and reduced levels of proteinuria during nephrotoxic serum nephritis, whereas TRPC6 null mice exhibited reduced CaMKII activation and higher levels of proteinuria compared with wild type littermates. Human membranous nephropathy biopsy samples showed podocyte staining for active CaMKII, which correlated with the degree of TRPC6 expression. Together, these data suggest a dual and context dependent role of TRPC6 in podocytes where acute activation protects from complement-mediated damage, but chronic overactivation leads to focal segmental glomerulosclerosis. PMID:24194522
Bartko, Johann; Schoergenhofer, Christian; Schwameis, Michael; Firbas, Christa; Beliveau, Martin; Chang, Colin; Marier, Jean-Francois; Nix, Darrell; Gilbert, James C; Panicker, Sandip; Jilma, Bernd
2018-05-08
Aberrant activation of the classical complement pathway is the common underlying pathophysiology of orphan diseases such as bullous pemphigoid, antibody-mediated rejection of organ transplants, cold agglutinin disease and warm autoimmune haemolytic anaemia. Therapeutic options for these complement-mediated disorders are limited and BIVV009, a humanized monoclonal antibody directed against complement factor C1s, may be potentially useful for inhibition of the classical complement pathway. A phase-1, first-in-human, double-blind, randomized, placebo-controlled, dose-escalation trial of single and multiple doses of BIVV009 or placebo was conducted in 64 volunteers to evaluate safety, tolerability, pharmacokinetic, and pharmacodynamic profiles. Single and multiple infusions of BIVV009 were well tolerated without any safety concerns. BIVV009 exhibited a steep concentration-effect relationship with a Hill coefficient of 2.4, and an IC90 of 15.5 µg/mL. This study establishes the foundation for using BIVV009 as a highly selective inhibitor of the classical complement pathway in different diseases. This article is protected by copyright. All rights reserved. © 2018 American Society for Clinical Pharmacology and Therapeutics.
Winkler, Mark T; Bushey, Ryan T; Gottlin, Elizabeth B; Campa, Michael J; Guadalupe, Eross S; Volkheimer, Alicia D; Weinberg, J Brice; Patz, Edward F
2017-01-01
Rituximab therapy for B cell chronic lymphocytic leukemia (B-CLL) has met with mixed success. Among several factors to which resistance can be attributed is failure to activate complement dependent cytotoxicity (CDC) due to protective complement regulatory proteins, including the soluble regulator complement factor H (CFH). We hypothesized that rituximab killing of non-responsive B-CLL cells could be augmented by a novel human monoclonal antibody against CFH. The B cells from 11 patients with B-CLL were tested ex vivo in CDC assays with combinations of CFH monoclonal antibody, rituximab, and a negative control antibody. CDC of rituximab non-responsive malignant B cells from CLL patients could in some cases be augmented by the CFH monoclonal antibody. Antibody-mediated cytotoxicity of cells was dependent upon functional complement. In one case where B-CLL cells were refractory to CDC by the combination of rituximab plus CFH monoclonal antibody, additionally neutralizing the membrane complement regulatory protein CD59 allowed CDC to occur. Inhibiting CDC regulatory proteins such as CFH holds promise for overcoming resistance to rituximab therapy in B-CLL.
The expression of Fc and complement receptors in young, adult and aged mice.
Vĕtvicka, V; Fornůsek, L; Zídková, J
1985-01-01
Age-dependent changes in the expression of Fc receptors (FcR) for different isotypes of immunoglobulins and receptors for C3b, C5b and C3bi fragments of complement on the membranes of peritoneal macrophages were studied with mice of different ages. An age-related increase in expression of Fc receptors for IgM, IgE, IgA, IgG2b and IgG3, and a decrease in the expression of Fc receptors for IgG1 was observed. The expression of FcR on macrophages of donors of different ages corresponded with Fc-receptor mediated phagocytosis. The highest number of C3b-binding macrophages was found in aged mice, in contrast to low numbers of C3bi-binding macrophages at this age. The percentage of C5b-binding macrophages was lowest in adult animals. We also observed effective inhibition of binding of the C3b component of complement by preincubation of macrophages with aggregated IgG and vice versa. These observations suggest that fluctuation in expression of Fc but not C receptors may be important to the generalized changes that occur in macrophage function during development and ageing. PMID:2931351
Variola virus immune evasion design: expression of a highly efficient inhibitor of human complement.
Rosengard, Ariella M; Liu, Yu; Nie, Zhiping; Jimenez, Robert
2002-06-25
Variola virus, the most virulent member of the genus Orthopoxvirus, specifically infects humans and has no other animal reservoir. Variola causes the contagious disease smallpox, which has a 30-40% mortality rate. Conversely, the prototype orthopoxvirus, vaccinia, causes no disease in immunocompetent humans and was used in the global eradication of smallpox, which ended in 1977. However, the threat of smallpox persists because clandestine stockpiles of variola still exist. Although variola and vaccinia share remarkable DNA homology, the strict human tropism of variola suggests that its proteins are better suited than those of vaccinia to overcome the human immune response. Here, we demonstrate the functional advantage of a variola complement regulatory protein over that of its vaccinia homologue. Because authentic variola proteins are not available for study, we molecularly engineered and characterized the smallpox inhibitor of complement enzymes (SPICE), a homologue of a vaccinia virulence factor, vaccinia virus complement control protein (VCP). SPICE is nearly 100-fold more potent than VCP at inactivating human C3b and 6-fold more potent at inactivating C4b. SPICE is also more human complement-specific than is VCP. By inactivating complement components, SPICE serves to inhibit the formation of the C3/C5 convertases necessary for complement-mediated viral clearance. SPICE provides the first evidence that variola proteins are particularly adept at overcoming human immunity, and the decreased function of VCP suggests one reason why the vaccinia virus vaccine was associated with relatively low mortality. Disabling SPICE may be therapeutically useful if smallpox reemerges.
Variola virus immune evasion design: Expression of a highly efficient inhibitor of human complement
Rosengard, Ariella M.; Liu, Yu; Nie, Zhiping; Jimenez, Robert
2002-01-01
Variola virus, the most virulent member of the genus Orthopoxvirus, specifically infects humans and has no other animal reservoir. Variola causes the contagious disease smallpox, which has a 30–40% mortality rate. Conversely, the prototype orthopoxvirus, vaccinia, causes no disease in immunocompetent humans and was used in the global eradication of smallpox, which ended in 1977. However, the threat of smallpox persists because clandestine stockpiles of variola still exist. Although variola and vaccinia share remarkable DNA homology, the strict human tropism of variola suggests that its proteins are better suited than those of vaccinia to overcome the human immune response. Here, we demonstrate the functional advantage of a variola complement regulatory protein over that of its vaccinia homologue. Because authentic variola proteins are not available for study, we molecularly engineered and characterized the smallpox inhibitor of complement enzymes (SPICE), a homologue of a vaccinia virulence factor, vaccinia virus complement control protein (VCP). SPICE is nearly 100-fold more potent than VCP at inactivating human C3b and 6-fold more potent at inactivating C4b. SPICE is also more human complement-specific than is VCP. By inactivating complement components, SPICE serves to inhibit the formation of the C3/C5 convertases necessary for complement-mediated viral clearance. SPICE provides the first evidence that variola proteins are particularly adept at overcoming human immunity, and the decreased function of VCP suggests one reason why the vaccinia virus vaccine was associated with relatively low mortality. Disabling SPICE may be therapeutically useful if smallpox reemerges. PMID:12034872
Surace, Laura; Lysenko, Veronika; Fontana, Andrea Orlando; Cecconi, Virginia; Janssen, Hans; Bicvic, Antonela; Okoniewski, Michal; Pruschy, Martin; Dummer, Reinhard; Neefjes, Jacques; Knuth, Alexander; Gupta, Anurag; van den Broek, Maries
2015-04-21
Radiotherapy induces DNA damage and cell death, but recent data suggest that concomitant immune stimulation is an integral part of the therapeutic action of ionizing radiation. It is poorly understood how radiotherapy supports tumor-specific immunity. Here we report that radiotherapy induced tumor cell death and transiently activated complement both in murine and human tumors. The local production of pro-inflammatory anaphylatoxins C3a and C5a was crucial to the tumor response to radiotherapy and concomitant stimulation of tumor-specific immunity. Dexamethasone, a drug frequently given during radiotherapy, limited complement activation and the anti-tumor effects of the immune system. Overall, our findings indicate that anaphylatoxins are key players in radiotherapy-induced tumor-specific immunity and the ensuing clinical responses. Copyright © 2015 Elsevier Inc. All rights reserved.
Devarapu, Satish Kumar; Mamidi, Srinivas; Plöger, Frank; Dill, Othmar; Blixt, Ola; Kirschfink, Michael; Schwartz-Albiez, Reinhard
2016-06-15
A small percentage of healthy donors identified in the Western population carry antibodies in their peripheral blood which convey cytotoxic activity against certain human melanoma and neuroblastoma cell lines. We measured the cytotoxic activity of sera and plasmas from healthy donors on the human neuroblastoma cell line Kelly and various melanoma cell lines. Antibodies of IgM isotype, presumably belonging to the class of naturally occurring antibodies, exerted cytotoxic activity in a complement-dependent fashion. Apart from complement-dependent tumor cell lysis, we observed C3 opsonization in all tumor cell lines upon treatment with cytotoxic plasmas. Cell lines tested primarily expressed membrane complement regulatory proteins (mCRP) CD46, CD55 and CD59 to various extents. Blocking of mCRPs by monoclonal antibodies enhanced cell lysis and opsonization, though some melanoma cells remained resistant to complement attack. Epitopes recognized by cytotoxic antibodies were represented by gangliosides such as GD2 and GD3, as evidenced by cellular sialidase pretreatment and enhanced expression of distinct gangliosides. It remains to be clarified why only a small fraction of healthy persons carry these antitumor cytotoxic antibodies. © 2016 UICC.
Marrón-Liñares, Grecia M; Núñez, Lucía; Crespo-Leiro, María G; Álvarez-López, Eloy; Barge-Caballero, Eduardo; Barge-Caballero, Gonzalo; Couto-Mallón, David; Pradas-Irun, Concepción; Muñiz, Javier; Tan, Carmela; Rodríguez, E Rene; Vázquez-Rodríguez, José Manuel; Hermida-Prieto, Manuel
2018-04-25
Heart transplantation (HT) is a well-established lifesaving treatment for endstage cardiac failure. Antibody-mediated rejection (AMR) represents one of the main problems after HT because of its diagnostic complexity and the poor evidence for supporting treatments. Complement cascade and B-cells play a key role in AMR and contribute to graft damage. This study explored the importance of variants in genes related to complement pathway and B-cell biology in HT and AMR in donors and in donor-recipient pairs.Methods and Results:Genetic variants in 112 genes (51 complement and 61 B-cell biology genes) were analyzed on next-generation sequencing in 28 donor-recipient pairs, 14 recipients with and 14 recipients without AMR. Statistical analysis was performed with SNPStats, R, and EPIDAT3.1. We identified one single nucleotide polymorphism (SNP) in donors in genes related to B-cell biology,interleukin-4 receptor subunitα (p.Ile75Val-IL4Rα), which correlated with the development of AMR. Moreover, in the analysis of recipient-donor genotype discrepancies, we identified another SNP, in this case inadenosine deaminase(ADA; p.Val178(p=)), which was related to B-cell biology, associated with the absence of AMR. Donor polymorphisms and recipient-donor discrepancies in genes related to the biology of B-cells, could have an important role in the development of AMR. In contrast, no variants in donor or in donor-recipient pairs in complement pathways seem to have an impact on AMR.
Nishiya, Casey T.; Boxx, Gayle M.; Robison, Kerry; Itatani, Carol; Kozel, Thomas R.
2015-01-01
Candida albicans is a yeast-like pathogen and can cause life-threatening systemic candidiasis. Its cell surface is enriched with mannan that is resistant to complement activation. Previously, we developed the recombinant human IgG1 antimannan antibody M1g1. M1g1 was found to promote complement activation and phagocytosis and protect mice from systemic candidiasis. Here, we evaluate the influence of IgG subclass on antimannan antibody-mediated protection. Three IgG subclass variants of M1g1 were constructed: M1g2, M1g3, and M1g4. The IgG subclass identity for each variant was confirmed with DNA sequence and subclass-specific antibodies. These variants contain identical M1 Fabs and exhibited similar binding affinities for C. albicans yeast and purified mannan. Yeast cells and hyphae recovered from the kidney of antibody-treated mice with systemic candidiasis showed uniform binding of each variant, indicating constitutive expression of the M1 epitope and antibody opsonization in the kidney. All variants promoted deposition of both murine and human C3 onto the yeast cell surface, with M1g4 showing delayed activation, as determined by flow cytometry and immunofluorescence microscopy. M1g4-mediated complement activation was found to be associated with its M1 Fab that activates the alternative pathway in an Fc-independent manner. Treatment with each subclass variant extended the survival of mice with systemic candidiasis (P < 0.001). However, treatment with M1g1, M1g3, or M1g4, but not with M1g2, also reduced the kidney fungal burden (P < 0.001). Thus, the role of human antimannan antibody in host resistance to systemic candidiasis is influenced by its IgG subclass. PMID:26573736
Effect of complement and its regulation on myasthenia gravis pathogenesis
Kusner, Linda L; Kaminski, Henry J; Soltys, Jindrich
2015-01-01
Myasthenia gravis (MG) is primarily caused by antibodies directed towards the skeletal muscle acetylcholine receptor, leading to muscle weakness. Although these antibodies may induce compromise of neuromuscular transmission by blocking acetylcholine receptor function or antigenic modulation, the predominant mechanism of injury to the neuromuscular junction is complement-mediated lysis of the postsynaptic membrane. The vast majority of data to support the role of complement derives from experimentally acquired MG (EAMG). In this article, we review studies that demonstrate the central role of complement in EAMG and MG pathogenesis along with the emerging role of complement in T- and B-cell function, as well as the potential for complement inhibitor-based therapy to treat human MG. PMID:20477586
Zhou, Jingling; Feng, Gaoqian; Beeson, James; Hogarth, P Mark; Rogerson, Stephen J; Yan, Yan; Jaworowski, Anthony
2015-07-07
With more than 600,000 deaths from malaria, mainly of children under five years old and caused by infection with Plasmodium falciparum, comes an urgent need for an effective anti-malaria vaccine. Limited details on the mechanisms of protective immunity are a barrier to vaccine development. Antibodies play an important role in immunity to malaria and monocytes are key effectors in antibody-mediated protection by phagocytosing antibody-opsonised infected erythrocytes (IE). Eliciting antibodies that enhance phagocytosis of IE is therefore an important potential component of an effective vaccine, requiring robust assays to determine the ability of elicited antibodies to stimulate this in vivo. The mechanisms by which monocytes ingest IE and the nature of the monocytes which do so are unknown. Purified trophozoite-stage P. falciparum IE were stained with ethidium bromide, opsonised with anti-erythrocyte antibodies and incubated with fresh whole blood. Phagocytosis of IE and TNF production by individual monocyte subsets was measured by flow cytometry. Ingestion of IE was confirmed by imaging flow cytometry. CD14(hi)CD16+ monocytes phagocytosed antibody-opsonised IE and produced TNF more efficiently than CD14(hi)CD16- and CD14(lo)CD16+ monocytes. Blocking experiments showed that Fcγ receptor IIIa (CD16) but not Fcγ receptor IIa (CD32a) or Fcγ receptor I (CD64) was necessary for phagocytosis. CD14(hi)CD16+ monocytes ingested antibody-opsonised IE when peripheral blood mononuclear cells were reconstituted with autologous serum but not heat-inactivated autologous serum. Antibody-opsonised IE were rapidly opsonised with complement component C3 in serum (t1/2 = 2-3 minutes) and phagocytosis of antibody-opsonised IE was inhibited in a dose-dependent manner by an inhibitor of C3 activation, compstatin. Compared to other monocyte subsets, CD14(hi)CD16+ monocytes expressed the highest levels of complement receptor 4 (CD11c) and activated complement receptor 3 (CD11b) subunits. We show a special role for CD14(hi)CD16+ monocytes in phagocytosing opsonised P. falciparum IE and production of TNF. While ingestion was mediated by Fcγ receptor IIIa, this receptor was not sufficient to allow phagocytosis; despite opsonisation with antibody, phagocytosis of IE also required complement opsonisation. Assays which measure the ability of vaccines to elicit a protective antibody response to P. falciparum should consider their ability to promote phagocytosis and fix complement.
Skipping of exon 27 in C3 gene compromises TED domain and results in complete human C3 deficiency.
da Silva, Karina Ribeiro; Fraga, Tatiana Rodrigues; Lucatelli, Juliana Faggion; Grumach, Anete Sevciovic; Isaac, Lourdes
2016-05-01
Primary deficiency of complement C3 is rare and usually associated with increased susceptibility to bacterial infections. In this work, we investigated the molecular basis of complete C3 deficiency in a Brazilian 9-year old female patient with a family history of consanguinity. Hemolytic assays revealed complete lack of complement-mediated hemolytic activity in the patient's serum. While levels of the complement regulatory proteins Factor I, Factor H and Factor B were normal in the patient's and family members' sera, complement C3 levels were undetectable in the patient's serum and were reduced by at least 50% in the sera of the patient's parents and brother. Additionally, no C3 could be observed in the patient's plasma and cell culture supernatants by Western blot. We also observed that patient's skin fibroblasts stimulated with Escherichia coli LPS were unable to secrete C3, which might be accumulated within the cells before being intracellularly degraded. Sequencing analysis of the patient's C3 cDNA revealed a genetic mutation responsible for the complete skipping of exon 27, resulting in the loss of 99 nucleotides (3450-3549) located in the TED domain. Sequencing of the intronic region between the exons 26 and 27 of the C3 gene (nucleotides 6690313-6690961) showed a nucleotide exchange (T→C) at position 6690626 located in a splicing donor site, resulting in the complete skipping of exon 27 in the C3 mRNA. Copyright © 2016. Published by Elsevier GmbH.
Alves, Livia A; Harth-Chu, Erika N; Palma, Thais H; Stipp, Rafael N; Mariano, Flávia S; Höfling, José F; Abranches, Jacqueline; Mattos-Graner, Renata O
2017-10-01
Streptococcus mutans, a dental caries pathogen, can promote systemic infections upon reaching the bloodstream. The two-component system (TCS) VicRK Sm of S. mutans regulates the synthesis of and interaction with sucrose-derived exopolysaccharides (EPS), processes associated with oral and systemic virulence. In this study, we investigated the mechanisms by which VicRK Sm affects S. mutans susceptibility to blood-mediated immunity. Compared with parent strain UA159, the vicK Sm isogenic mutant (UAvic) showed reduced susceptibility to deposition of C3b of complement, low binding to serum immunoglobulin G (IgG), and low frequency of C3b/IgG-mediated opsonophagocytosis by polymorphonuclear cells in a sucrose-independent way (P<.05). Reverse transcriptase quantitative polymerase chain reaction analysis comparing gene expression in UA159 and UAvic revealed that genes encoding putative peptidases of the complement (pepO and smu.399) were upregulated in UAvic in the presence of serum, although genes encoding murein hydrolases (SmaA and Smu.2146c) or metabolic/surface proteins involved in bacterial interactions with host components (enolase, GAPDH) were mostly affected in a serum-independent way. Among vicK Sm -downstream genes (smaA, smu.2146c, lysM, atlA, pepO, smu.399), only pepO and smu.399 were associated with UAvic phenotypes; deletion of both genes in UA159 significantly enhanced levels of C3b deposition and opsonophagocytosis (P<.05). Moreover, consistent with the fibronectin-binding function of PepO orthologues, UAvic showed increased binding to fibronectin. Reduced susceptibility to opsonophagocytosis was insufficient to enhance ex vivo persistence of UAvic in blood, which was associated with growth defects of this mutant under limited nutrient conditions. Our findings revealed that S. mutans employs mechanisms of complement evasion through peptidases, which are controlled by VicRK Sm. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Complement C3 participation in monocyte adhesion to different surfaces.
McNally, A K; Anderson, J M
1994-01-01
As part of an ongoing investigation into the role of the monocyte/macrophage in biocompatibility, a major goal is to identify the adhesion mechanisms that initiate and promote the observed in vivo morphologic progression of monocyte-to-macrophage-to-foreign body giant cell on biomaterials. We have exploited differently modified polystyrenes, specific component-depleted sera, and monoclonal antibodies (mAbs) to leukocyte integrins to ask what adhesion mechanisms mediate human blood monocyte adhesion to different surfaces in vitro. Preliminary findings are that monocyte interactions with fluorinated, siliconized, nitrogenated, and oxygenated surfaces are reduced by 50-100% when complement component C3-depleted serum is used for adsorption; reductions vary with material surface properties. Adhesion is restored on all surfaces when C3-depleted serum is replenished with purified C3. Monocyte adhesion to serum-adsorbed surfaces is inhibited by mAbs to the leukocyte integrin beta subunit, CD18 (mAbs 60.3 and MHM23), and partially inhibited by a mAb to the alpha subunit, CD11b (mAb 60.1), suggesting adhesive interactions between adsorbed C3bi (the hemolytically inactive form of the C3b fragment) and the leukocyte integrin CD11b/CD18. However, adsorbed fibrinogen reduces the effectiveness of these mAbs, indicating that alternative adhesion mechanisms may operate depending on the propensities of critical adhesion-mediating components to be adsorbed onto different surfaces. Images PMID:7937848
Jang, Byung-Hyun; Chang, Seo-Hyuk; Yun, Ui Jeong; Park, Ki-Moon; Waki, Hironori; Li, Dean Y.; Tontonoz, Peter; Park, Kye Won
2016-01-01
Adipocytes are differentiated by various transcriptional cascades integrated on the master regulator, Pparγ. To discover new genes involved in adipocyte differentiation, preadipocytes were treated with three newly identified pro-adipogenic small molecules and GW7845 (a Pparγ agonist) for 24 hours and transcriptional profiling was analyzed. Four genes, Peroxisome proliferator-activated receptor γ (Pparγ), human complement factor D homolog (Cfd), Chemokine (C-C motif) ligand 9 (Ccl9), and GIPC PDZ Domain Containing Family Member 2 (Gipc2) were induced by at least two different small molecules but not by GW7845. Cfd and Ccl9 expressions were specific to adipocytes and they were altered in obese mice. Small hairpin RNA (shRNA) mediated knockdown of Cfd in preadipocytes inhibited lipid accumulation and expression of adipocyte markers during adipocyte differentiation. Overexpression of Cfd promoted adipocyte differentiation, increased C3a production, and led to induction of C3a receptor (C3aR) target gene expression. Similarly, treatments with C3a or C3aR agonist (C4494) also promoted adipogenesis. C3aR knockdown suppressed adipogenesis and impaired the pro-adipogenic effects of Cfd, further suggesting the necessity for C3aR signaling in Cfd-mediated pro-adipogenic axis. Together, these data show the action of Cfd in adipogenesis and underscore the application of small molecules to identify genes in adipocytes. PMID:27611793
Richter, Corinna; Mukherjee, Oindrilla; Ermert, David; Singh, Birendra; Su, Yu-Ching; Agarwal, Vaibhav; Blom, Anna M.; Riesbeck, Kristian
2016-01-01
Helicobacter pylori is an important human pathogen and a common cause of peptic ulcers and gastric cancer. Despite H. pylori provoking strong innate and adaptive immune responses, the bacterium is able to successfully establish long-term infections. Vitronectin (Vn), a component of both the extracellular matrix and plasma, is involved in many physiological processes, including regulation of the complement system. The aim of this study was to define a receptor in H. pylori that binds Vn and determine the significance of the interaction for virulence. Surprisingly, by using proteomics, we found that the hydrogen peroxide-neutralizing enzyme catalase KatA is a major Vn-binding protein. Deletion of the katA gene in three different strains resulted in impaired binding of Vn. Recombinant KatA was generated and shown to bind with high affinity to a region between heparin-binding domain 2 and 3 of Vn that differs from previously characterised bacterial binding sites on the molecule. In terms of function, KatA protected H. pylori from complement-mediated killing in a Vn-dependent manner. Taken together, the virulence factor KatA is a Vn-binding protein that moonlights on the surface of H. pylori to promote bacterial evasion of host innate immunity. PMID:27087644
Beeton, Michael L; Daha, Mohamed R; El-Shanawany, Tariq; Jolles, Stephen R; Kotecha, Sailesh; Spiller, O Brad
2012-02-01
Many Gram-negative bacteria, unlike Gram-positive, are directly lysed by complement. Ureaplasma can cause septic arthritis and meningitis in immunocompromised individuals and induce premature birth. Ureaplasma has no cell wall, cannot be Gram-stain classified and its serum susceptibility is unknown. Survival of Ureaplasma serovars (SV) 1, 3, 6 and 14 (collectively Ureaplasma parvum) were measured following incubation with normal or immunoglobulin-deficient patient serum (relative to heat-inactivated controls). Blocking monoclonal anti-C1q antibody and depletion of calcium, immunoglobulins, or lectins were used to determine the complement pathway responsible for killing. Eighty-three percent of normal sera killed SV1, 67% killed SV6 and 25% killed SV14; greater killing correlating to strong immunoblot identification of anti-Ureaplasma antibodies; killing was abrogated following ProteinA removal of IgG1. All normal sera killed SV3 in a C1q-dependent fashion, irrespective of immunoblot identification of anti-Ureaplasma antibodies; SV3 killing was unaffected by total IgG removal by ProteinG, where complement activity was retained. Only one of four common variable immunodeficient (CVID) patient sera failed to kill SV3, despite profound IgM and IgG deficiency for all; however, killing of SV3 and SV1 was restored with therapeutic intravenous immunoglobulin therapy. Only the classical complement pathway mediated Ureaplasma-cidal activity, sometimes in the absence of observable immunoblot reactive bands. Copyright © 2011 Elsevier GmbH. All rights reserved.
Burn wound sepsis may be promoted by a failure of local antibacterial host defenses.
Deitch, E A; Bridges, R M; Dobke, M; McDonald, J C
1987-01-01
Little attention has been focused on the local burn wound environment, even though burn wound sepsis is a common cause of death in the burn victim. To characterize the effect of the local burn wound environment on neutrophil function and metabolism, the opsonic activity of blister fluid specimens against Pseudomonas aeruginosa was measured as was the effect of blister fluid on control neutrophil oxygen consumption using preopsonized zymosan and f-met-leu-phe (FMLP) as stimuli. Blister fluid did not support the killing of P. aeruginosa by normal neutrophils as well as normal serum. Additionally, blister fluid inhibited zymosan-stimulated, but not FMLP-stimulated, neutrophil oxygen consumption. The inhibitory effect of blister fluid on zymosan-stimulated oxygen consumption correlated with the extent of complement activation, measured as C3d or C3AI (p less than 0.01). That blister fluid did not inhibit the FMLP-mediated respiratory burst supports the concept that the blister fluid inhibitory effect on the zymosan-mediated respiratory burst was mediated through the complement receptor. These findings that blister fluid can affect the bactericidal and metabolic activity of normal neutrophils support the concept that cellular function can be altered by the microenvironment in which the cells are bathed. This potential impairment of host defenses within the burn wound could predispose the burn victim to burn wound sepsis. PMID:3115207
Zhao, Qi; Ahmed, Mahiuddin; Guo, Hong-fen; Cheung, Irene Y; Cheung, Nai-Kong V
2015-05-22
Ganglioside GD2 is highly expressed on neuroectodermal tumors and an attractive therapeutic target for antibodies that have already shown some clinical efficacy. To further improve the current antibodies, which have modest affinity, we sought to improve affinity by using a combined method of random mutagenesis and in silico assisted design to affinity-mature the anti-GD2 monoclonal antibody hu3F8. Using yeast display, mutants in the Fv with enhanced binding over the parental clone were FACS-sorted and cloned. In silico modeling identified the minimal key interacting residues involved in the important charged interactions with the sialic acid groups of GD2. Two mutations, D32H (L-CDR1) and E1K (L-FR1) altered the electrostatic surface potential of the antigen binding site, allowing for an increase in positive charge to enhance the interaction with the negatively charged GD2-pentasaccharide headgroup. Purified scFv and IgG mutant forms were then tested for antigen specificity by ELISA, for tissue specificity by immunohistochemistry, for affinity by BIACORE, for antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-mediated cytotoxicity in vitro, and for anti-tumor efficacy in xenografted humanized mice. The nearly 7-fold improvement in affinity of hu3F8 with a single D32H (L-CDR1) mutation translated into a ∼12-fold improvement in NK92MI-transfected CD16-mediated ADCC, a 6-fold improvement in CD32-mediated ADCC, and a 2.5-fold improvement in complement-mediated cytotoxicity while maintaining restricted normal tissue cross-reactivity and achieving substantial improvement in tumor ablation in vivo. Despite increasing GD2 affinity, the double mutation D32H (L-CDR1) and E1K (L-FR1) did not further improve anti-tumor efficacy. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Diao, Jingyu; Bouwman, Catrien; Yan, Donghong; Kang, Jing; Katakam, Anand K; Liu, Peter; Pantua, Homer; Abbas, Alexander R; Nickerson, Nicholas N; Austin, Cary; Reichelt, Mike; Sandoval, Wendy; Xu, Min; Whitfield, Chris; Kapadia, Sharookh B
2017-05-23
Murein lipoprotein (Lpp) and peptidoglycan-associated lipoprotein (Pal) are major outer membrane lipoproteins in Escherichia coli Their roles in cell-envelope integrity have been documented in E. coli laboratory strains, and while Lpp has been linked to serum resistance in vitro , the underlying mechanism has not been established. Here, lpp and pal mutants of uropathogenic E. coli strain CFT073 showed reduced survival in a mouse bacteremia model, but only the lpp mutant was sensitive to serum killing in vitro The peptidoglycan-bound Lpp form was specifically required for preventing complement-mediated bacterial lysis in vitro and complement-mediated clearance in vivo Compared to the wild-type strain, the lpp mutant had impaired K2 capsular polysaccharide production and was unable to respond to exposure to serum by elevating capsular polysaccharide amounts. These properties correlated with altered cellular distribution of KpsD, the predicted outer membrane translocon for "group 2" capsular polysaccharides. We identified a novel Lpp-dependent association between functional KpsD and peptidoglycan, highlighting important interplay between cell envelope components required for resistance to complement-mediated lysis in uropathogenic E. coli isolates. IMPORTANCE Uropathogenic E. coli (UPEC) isolates represent a significant cause of nosocomial urinary tract and bloodstream infections. Many UPEC isolates are resistant to serum killing. Here, we show that a major cell-envelope lipoprotein (murein lipoprotein) is required for serum resistance in vitro and for complement-mediated bacterial clearance in vivo This is mediated, in part, through a novel mechanism by which murein lipoprotein affects the proper assembly of a key component of the machinery involved in production of "group 2" capsules. The absence of murein lipoprotein results in impaired production of the capsule layer, a known participant in complement resistance. These results demonstrate an important role for murein lipoprotein in complex interactions between different outer membrane biogenesis pathways and further highlight the importance of lipoprotein assembly and transport in bacterial pathogenesis. Copyright © 2017 Diao et al.
Dengue virus induces increased activity of the complement alternative pathway in infected cells.
Cabezas, Sheila; Bracho, Gustavo; L Aloia, Amanda; Adamson, Penelope J; Bonder, Claudine S; Smith, Justine R; Gordon, David L; Carr, Jillian M
2018-05-09
Severe dengue virus (DENV) infection is associated with overactivity of the complement alternative pathway (AP) in patient studies. Here, the molecular changes in components of the AP during DENV infection in vitro are investigated. mRNA for factor H (FH) a major negative regulator of the AP, is significantly increased in DENV-infected endothelial cells (EC) and macrophages but in contrast production of extracellular FH protein is not. This discord is not seen for the AP activator, factor B (FB), with DENV induction of both FB mRNA and protein, nor with Toll-like receptor 3 or 4 stimulation of EC and macrophages, which induces both FH and FB mRNA and protein. Surface bound and intracellular FH protein is however induced by DENV, but only in DENV antigen-positive cells, while in two other DENV-susceptible immortalised cell lines (ARPE-19 and HREC) FH protein is induced both intracellularly and extracellularly by DENV infection. Regardless of the cell type, there is an imbalance in AP components and an increase in markers of complement AP activity associated with DENV-infected cells - with lower FH relative to FB protein, increased ability to promote AP-mediated lytic activity and increased deposition of complement component C3b on the surface of DENV-infected cells. For EC in particular, these changes are predicted to result in higher complement activity in the local cellular microenvironment, with the potential to induce functional changes that may result in increased vascular permeability, a hallmark of dengue disease. IMPORTANCE Dengue virus (DENV) is a significant human viral pathogen with global medical and economic impact. DENV may cause serious and life-threatening disease with increased vascular permeability and plasma leakage. The pathogenic mechanisms underlying these features remain unclear; however overactivity of the complement alternative pathway has been suggested to play a role. In this study we investigate the molecular events that may be responsible for this observed alternative pathway overactivity and provide novel findings of changes in the complement system in response to DENV infection in primary cell types that are a major target for DENV infection (macrophages) and pathogenesis (endothelial cells) in vivo Our results suggest a new dimension of cellular events that may influence endothelial cell barrier function during DENV infection that could expand strategies for developing therapeutics to prevent or control DENV-mediated vascular disease. Copyright © 2018 American Society for Microbiology.
Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis.
Bien, Christian G; Vincent, Angela; Barnett, Michael H; Becker, Albert J; Blümcke, Ingmar; Graus, Francesc; Jellinger, Kurt A; Reuss, David E; Ribalta, Teresa; Schlegel, Jürgen; Sutton, Ian; Lassmann, Hans; Bauer, Jan
2012-05-01
Classical paraneoplastic encephalitis syndromes with 'onconeural' antibodies directed to intracellular antigens, and the recently described paraneoplastic or non-paraneoplastic encephalitides and antibodies against both neural surface antigens (voltage-gated potassium channel-complexes, N-methyl-d-aspartate receptors) and intracellular antigens (glutamic acid decarboxylase-65), constitute an increasingly recognized group of immune-mediated brain diseases. Evidence for specific immune mechanisms, however, is scarce. Here, we report qualitative and quantitative immunopathology in brain tissue (biopsy or autopsy material) of 17 cases with encephalitis and antibodies to either intracellular (Hu, Ma2, glutamic acid decarboxylase) or surface antigenic targets (voltage-gated potassium channel-complex or N-methyl-d-aspartate receptors). We hypothesized that the encephalitides with antibodies against intracellular antigens (intracellular antigen-onconeural and intracellular antigen-glutamic acid decarboxylase groups) would show neurodegeneration mediated by T cell cytotoxicity and the encephalitides with antibodies against surface antigens would be antibody-mediated and would show less T cell involvement. We found a higher CD8/CD3 ratio and more frequent appositions of granzyme-B(+) cytotoxic T cells to neurons, with associated neuronal loss, in the intracellular antigen-onconeural group (anti-Hu and anti-Ma2 cases) compared to the patients with surface antigens (anti-N-methyl-d-aspartate receptors and anti-voltage-gated potassium channel complex cases). One of the glutamic acid decarboxylase antibody encephalitis cases (intracellular antigen-glutamic acid decarboxylase group) showed multiple appositions of GrB-positive T cells to neurons. Generally, however, the glutamic acid decarboxylase antibody cases showed less intense inflammation and also had relatively low CD8/CD3 ratios compared with the intracellular antigen-onconeural cases. Conversely, we found complement C9neo deposition on neurons associated with acute neuronal cell death in the surface antigen group only, specifically in the voltage-gated potassium channel-complex antibody patients. N-methyl-d-aspartate receptors-antibody cases showed no evidence of antibody and complement-mediated tissue injury and were distinguished from all other encephalitides by the absence of clear neuronal pathology and a low density of inflammatory cells. Although tissue samples varied in location and in the stage of disease, our findings strongly support a central role for T cell-mediated neuronal cytotoxicity in encephalitides with antibodies against intracellular antigens. In voltage-gated potassium channel-complex encephalitis, a subset of the surface antigen antibody encephalitides, an antibody- and complement-mediated immune response appears to be responsible for neuronal loss and cerebral atrophy; the apparent absence of these mechanisms in N-methyl-d-aspartate receptors antibody encephalitis is intriguing and requires further study.
Complement-Mediated Regulation of Metabolism and Basic Cellular Processes.
Hess, Christoph; Kemper, Claudia
2016-08-16
Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings. Copyright © 2016 Elsevier Inc. All rights reserved.
Hovingh, Elise S.; Kuipers, Betsy; Pinelli, Elena; Rooijakkers, Suzan H. M.
2017-01-01
Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis. PMID:28742139
Hovingh, Elise S; van den Broek, Bryan; Kuipers, Betsy; Pinelli, Elena; Rooijakkers, Suzan H M; Jongerius, Ilse
2017-07-01
Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis.
Alawieh, Ali; Elvington, Andrew; Zhu, Hong; Yu, Jin; Kindy, Mark S; Atkinson, Carl; Tomlinson, Stephen
2015-12-30
Complement promotes neuroinflammation and injury in models of stroke. However, complement is also being increasingly implicated in repair and regeneration after central nervous system (CNS) injury, and some complement deficiencies have been shown to provide acute, but not subacute, protection after murine stroke. Here, we investigate the dual role of complement in injury and repair after cerebral ischemia and reperfusion. We used complement-deficient mice and different complement inhibitors in a model of transient middle cerebral artery occlusion to investigate complement-dependent cellular and molecular changes that occur through the subacute phase after stroke. C3 deficiency and site-targeted complement inhibition with either CR2-Crry (inhibits all pathways) or CR2-fH (inhibits alternative pathway) significantly reduced infarct size, reduced apoptotic cell death, and improved neurological deficit score in the acute phase after stroke. However, only in CR2-fH-treated mice was there sustained protection with no evolution of injury in the subacute phase. Whereas both inhibitors significantly reduced microglia/macrophage activation and astrogliosis in the subacute phase, only CR2-fH improved neurological deficit and locomotor function, maintained neurogenesis markers, enhanced neuronal migration, and increased VEGF expression. These findings in CR2-fH-treated mice correlated with improved performance in spatial learning and passive avoidance tasks. The complement anaphylatoxins have been implicated in repair and regenerative mechanisms after CNS injury, and in this context CR2-fH significantly reduced, but did not eliminate the generation of C5a within the brain, unlike CR2-Crry that completely blocked C5a generation. Gene expression profiling revealed that CR2-fH treatment downregulated genes associated with apoptosis, TGFβ signaling, and neutrophil activation, and decreased neutrophil infiltration was confirmed by immunohistochemistry. CR2-fH upregulated genes for neural growth factor and mediators of neurogenesis and neuronal migration. Live animal imaging demonstrated that following intravenous injection, CR2-fH targeted specifically to the post-ischemic brain, with a tissue half-life of 48.5 h. Finally, unlike C3 deficiency, targeted complement inhibition did not increase susceptibility to lethal post-stroke infection, an important consideration for stroke patients. Ischemic brain tissue-targeted and selective inhibition of alternative complement pathway provide self-limiting inhibition of complement activation and reduces acute injury while maintaining complement-dependent recovery mechanisms into the subacute phase after stroke.
Interaction between Pseudomonas aeruginosa and host defenses in cystic fibrosis.
Marshall, B C; Carroll, K C
1991-03-01
The major causes of morbidity and mortality in cystic fibrosis are chronic pulmonary obstruction and infection. Mucoid Pseudomonas aeruginosa is the primary pathogen in up to 90% of these patients. Once Pseudomonas organisms colonize the airways, they are virtually never eradicated. No defect in systemic host defense has been elucidated, however, several mechanisms contribute to the breakdown in host defenses that allow persistence of this organism in the endobronchial space. These mechanisms involve both bacterial adaptation to an unfavorable host environment and impaired host response. P aeruginosa adapts to the host by expressing excessive mucoid exopolysaccharide and a less virulent form of lipopolysaccharide. These features make it less likely to cause systemic infection, yet still enable it to resist local host defenses. Mucociliary clearance becomes impaired due to abnormal viscoelastic properties of sputum, squamous metaplasia of the respiratory epithelium, and bronchiectasis. Despite a brisk antibody response to a variety of Pseudomonas antigens, several defects in antibody-mediated opsonophagocytosis have been identified. These include (1) development of antibody isotypes that are suboptimal at promoting phagocytosis, (2) formation of immune complexes that inhibit phagocytosis, and (3) proteolytic fragmentation of immunoglobulins in the endobronchial space. Complement-mediated opsonophagocytosis is also compromised by proteolytic cleavage of complement receptors from the cell surface of neutrophils and complement opsonins from the surface of Pseudomonas. The resultant chronic inflammation and infection lead to eventual obliteration of the airways.
Abbas, Fedaey; El Kossi, Mohsen; Jin, Jon Kim; Sharma, Ajay; Halawa, Ahmed
2017-01-01
The glomerular diseases after renal transplantation can occur de novo, i.e., with no relation to the native kidney disease, or more frequently occur as a recurrence of the original disease in the native kidney. There may not be any difference in clinical features and histological pattern between de novo glomerular disease and recurrence of original glomerular disease. However, structural alterations in transplanted kidney add to dilemma in diagnosis. These changes in architecture of histopathology can happen due to: (1) exposure to the immunosuppression specifically the calcineurin inhibitors (CNI); (2) in vascular and tubulointerstitial alterations as a result of antibody mediated or cell-mediated immunological onslaught; (3) post-transplant viral infections; (4) ischemia-reperfusion injury; and (5) hyperfiltration injury. The pathogenesis of the de novo glomerular diseases differs with each type. Stimulation of B-cell clones with subsequent production of the monoclonal IgG, particularly IgG3 subtype that has higher affinity to the negatively charged glomerular tissue, is suggested to be included in PGNMID pathogenesis. De novo membranous nephropathy can be seen after exposure to the cryptogenic podocyte antigens. The role of the toxic effects of CNI including tissue fibrosis and the hemodynamic alterations may be involved in the de novo FSGS pathophysiology. The well-known deleterious effects of HCV infection and its relation to MPGN disease are frequently reported. The new concepts have emerged that demonstrate the role of dysregulation of alternative complement pathway in evolution of MPGN that led to classifying into two subgroups, immune complex mediated MPGN and complement-mediated MPGN. The latter comprises of the dense deposit disease and the C3 GN disease. De novo C3 disease is rather rare. Prognosis of de novo diseases varies with each type and their management continues to be empirical to a large extent. PMID:29312858
Sequestration of host-CD59 as potential immune evasion strategy of Trichomonas vaginalis.
Ibáñez-Escribano, Alexandra; Nogal-Ruiz, Juan José; Pérez-Serrano, Jorge; Gómez-Barrio, Alicia; Escario, J Antonio; Alderete, J F
2015-09-01
Trichomonas vaginalis is known to evade complement-mediated lysis. Because the genome of T. vaginalis does not possess DNA sequence with homology to human protectin (CD59), a complement lysis restricting factor, we tested the hypothesis that host CD59 acquisition by T. vaginalis organisms mediates resistance to complement killing. This hypothesis was based on the fact that trichomonads are known to associate with host proteins. No CD59 was detected on the surface of T. vaginalis grown in serum-based medium using as probe anti-CD59 monoclonal antibody (MAb). We, therefore, infected mice intraperitoneally with live T. vaginalis, and trichomonads harvested from ascites were tested for binding of CD59. Immunofluorescence showed that parasites had surface CD59. Furthermore, as mouse erythrocytes (RBCs) possess membrane-associated CD59, and trichomonads use RBCs as a nutrient source, organisms were co-cultured with murine RBCs for one week. Parasites were shown to have detectable surface CD59. Importantly, live T. vaginalis with bound CD59 were compared with batch-grown parasites without surface-associated CD59 for sensitivity to complement in human serum. Trichomonads without surface-bound CD59 had a higher level of killing by complement than did parasites with surface CD59. These data show that host CD59 acquired onto the surface by live T. vaginalis may be an alternative mechanism for complement evasion. We describe a novel strategy by T. vaginalis consistent with host protein procurement by this parasite to evade the lytic action of complement. Copyright © 2015 Elsevier B.V. All rights reserved.
Lippolis, John D; Holman, Devin B; Brunelle, Brian W; Thacker, Tyler C; Bearson, Bradley L; Reinhardt, Timothy A; Sacco, Randy E; Casey, Thomas A
2018-01-01
Escherichia coli is a leading cause of bacterial mastitis in dairy cattle. It is most often transient in nature, causing an infection that lasts 2 to 3 days. However, E. coli has been shown to cause a persistent infection in a minority of cases. Mechanisms that allow for a persistent E. coli infection are not fully understood. The goal of this work was to determine differences between E. coli strains originally isolated from dairy cattle with transient and persistent mastitis. Using RNA sequencing, we show gene expression differences in nearly 200 genes when bacteria from the two clinical phenotypes are compared. We sequenced the genomes of the E. coli strains and report genes unique to the two phenotypes. Differences in the wca operon, which encodes colanic acid, were identified by DNA as well as RNA sequencing and differentiated the two phenotypes. Previous work demonstrated that E. coli strains that cause persistent infections were more motile than those that cause transient infections. Deletion of genes in the wca operon from a persistent-infection strain resulted in a reduction of motility as measured in swimming and swarming assays. Furthermore, colanic acid has been shown to protect bacteria from complement-mediated killing. We show that transient-infection E. coli strains were more sensitive to complement-mediated killing. The deletion of genes from the wca operon caused a persistent-infection E. coli strain to become sensitive to complement-mediated killing. This work identifies important differences between E. coli strains that cause persistent and transient mammary infections in dairy cattle. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
Unique structure of iC3b resolved at a resolution of 24 Å by 3D-electron microscopy.
Alcorlo, Martin; Martínez-Barricarte, Ruben; Fernández, Francisco J; Rodríguez-Gallego, César; Round, Adam; Vega, M Cristina; Harris, Claire L; de Cordoba, Santiago Rodríguez; Llorca, Oscar
2011-08-09
Activation of C3, deposition of C3b on the target surface, and subsequent amplification by formation of a C3-cleaving enzyme (C3-convertase; C3bBb) triggers the effector functions of complement that result in inflammation and cell lysis. Concurrently, surface-bound C3b is proteolyzed to iC3b by factor I and appropriate cofactors. iC3b then interacts with the complement receptors (CR) of the Ig superfamily, CR2 (CD21), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) on leukocytes, down-modulating inflammation, enhancing B cell-mediated immunity, and targeting pathogens for clearance by phagocytosis. Using EM and small-angle X-ray scattering, we now present a medium-resolution structure of iC3b (24 Å). iC3b displays a unique conformation with structural features distinct from any other C3 fragment. The macroglobulin ring in iC3b is similar to that in C3b, whereas the TED (thioester-containing domain) domain and the remnants of the CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain have moved to locations more similar to where they were in native C3. A consequence of this large conformational change is the disruption of the factor B binding site, which renders iC3b unable to assemble a C3-convertase. This structural model also justifies the decreased interaction between iC3b and complement regulators and the recognition of iC3b by the CR of the Ig superfamily, CR2, CR3, and CR4. These data further illustrate the extraordinary conformational versatility of C3 to accommodate a great diversity of functional activities.
Innate Immune Mechanisms in Transplant Allograft Vasculopathy
Jane-wit, D; Fang, C; Goldstein, DR
2016-01-01
Purpose of Review Allograft vasculopathy (AV) is the leading cause of late allograft loss following solid organ transplantation. Ischemia reperfusion injury (IRI) and donor specific antibody (DSA)-induced complement activation confer heightened risk for AV via numerous innate immune mechanisms including MyD88, HMGB1, and complement induced non-canonical NF-kB signaling. Recent Findings The role of MyD88, a signal adaptor downstream of the toll-like receptors (TLR), has been defined in an experimental heart transplant model, which demonstrated that recipient MyD88 enhanced AV. Importantly, triggering receptor on myeloid receptor 1(Trem1), a MyD88 amplifying signal, was present in rejecting human cardiac transplant biopsies and enhanced the development of AV in mice. HMGB1, a nuclear protein that activates TLRs, also enhanced the development of AV. Complement activation elicits assembly of membrane attack complexes (MAC) on endothelial cells which activate non-canonical NF-kB signaling, a novel complement effector pathway that induces pro-inflammatory genes and potentiates endothelial cell mediated alloimmune T cell activation, processes which enhance AV. Summary Innate immune mediators including HMGB1, MyD88, and non-canonical NFκB signaling via complement activation contribute to AV. These pathways represent potential therapeutic targets to reduce AV after solid organ transplantation. PMID:27077602
Burnel, Morgane Clémentine; Perrone-Bertolotti, Marcela; Durrleman, Stephanie; Reboul, Anne C.; Baciu, Monica
2017-01-01
The role of syntax in belief attribution (BA) is not completely understood in healthy adults and understudied in adults with autism spectrum disorder. Embedded syntax could be useful either for the development of Theory of Mind (ToM) (Emergence account) or more generally over the lifespan (Reasoning account). Two hypotheses have been explored, one suggesting that embedding itself (Relatives and Complement sentences and Metarepresentation account) is important for ToM and another one considering that the embedding of a false proposition into a true one (Complement sentences and Misrepresentation account) is important. The goals of this study were to evaluate (1) the role of syntax in ToM (Emergence vs. Reasoning account), (2) the type of syntax implied in ToM (Metarepresentation vs. Misrepresentation account), and (3) the verbally mediated strategies which compensate for ToM deficits in adults with Asperger Syndrome (AS). Fifty NeuroTypical (NT) adults and 22 adults with AS were involved in a forced-choice task including ±ToM tasks (BA and a control task, physical causation, PC) under four Interference conditions (silence, syllable repetition, relative sentences repetition, and complement sentences repetition). The non-significant ±ToM × Interference interaction effect in the NT group did not support the Reasoning account and thus suggests that syntax is useful only for ToM development (i.e., Emergence account). Results also indicated that repeating complement clauses put NT participants in a dual task whereas repeating relative clauses did not, suggesting that repeating relatives is easier for NT than repeating complements. This could be an argument in favor of the Misrepresentation account. However, this result should be interpreted with caution because our results did not support the Reasoning account. Moreover, AS participants (but not NT participants) were more disrupted by ±ToM tasks when asked to repeat complement sentences compared to relative clause sentences. This result is in favor of the Misrepresentation account and indirectly suggests verbally mediated strategies for ToM in AS. To summarize, our results are in favor of the Emergence account in NT and of Reasoning and Misrepresentation accounts in adults with AS. Overall, this suggests that adults with AS use complement syntax to compensate for ToM deficits. PMID:28553246
Burnel, Morgane Clémentine; Perrone-Bertolotti, Marcela; Durrleman, Stephanie; Reboul, Anne C; Baciu, Monica
2017-01-01
The role of syntax in belief attribution (BA) is not completely understood in healthy adults and understudied in adults with autism spectrum disorder. Embedded syntax could be useful either for the development of Theory of Mind (ToM) ( Emergence account) or more generally over the lifespan ( Reasoning account). Two hypotheses have been explored, one suggesting that embedding itself (Relatives and Complement sentences and Metarepresentation account) is important for ToM and another one considering that the embedding of a false proposition into a true one (Complement sentences and Misrepresentation account) is important. The goals of this study were to evaluate (1) the role of syntax in ToM ( Emergence vs. Reasoning account), (2) the type of syntax implied in ToM ( Metarepresentation vs. Misrepresentation account), and (3) the verbally mediated strategies which compensate for ToM deficits in adults with Asperger Syndrome (AS). Fifty NeuroTypical (NT) adults and 22 adults with AS were involved in a forced-choice task including ±ToM tasks (BA and a control task, physical causation, PC) under four Interference conditions (silence, syllable repetition, relative sentences repetition, and complement sentences repetition). The non-significant ±ToM × Interference interaction effect in the NT group did not support the Reasoning account and thus suggests that syntax is useful only for ToM development (i.e., Emergence account). Results also indicated that repeating complement clauses put NT participants in a dual task whereas repeating relative clauses did not, suggesting that repeating relatives is easier for NT than repeating complements. This could be an argument in favor of the Misrepresentation account. However, this result should be interpreted with caution because our results did not support the Reasoning account. Moreover, AS participants (but not NT participants) were more disrupted by ±ToM tasks when asked to repeat complement sentences compared to relative clause sentences. This result is in favor of the Misrepresentation account and indirectly suggests verbally mediated strategies for ToM in AS. To summarize, our results are in favor of the Emergence account in NT and of Reasoning and Misrepresentation accounts in adults with AS. Overall, this suggests that adults with AS use complement syntax to compensate for ToM deficits.
A previously unrecognized role of C3a in proteinuric progressive nephropathy
Morigi, Marina; Locatelli, Monica; Rota, Cinzia; Buelli, Simona; Corna, Daniela; Rizzo, Paola; Abbate, Mauro; Conti, Debora; Perico, Luca; Longaretti, Lorena; Benigni, Ariela; Zoja, Carlamaria; Remuzzi, Giuseppe
2016-01-01
Podocyte loss is the initial event in the development of glomerulosclerosis, the structural hallmark of progressive proteinuric nephropathies. Understanding mechanisms underlying glomerular injury is the key challenge for identifying novel therapeutic targets. In mice with protein-overload induced by bovine serum albumin (BSA), we evaluated whether the alternative pathway (AP) of complement mediated podocyte depletion and podocyte-dependent parietal epithelial cell (PEC) activation causing glomerulosclerosis. Factor H (Cfh−/−) or factor B-deficient mice were studied in comparison with wild-type (WT) littermates. WT+BSA mice showed podocyte depletion accompanied by glomerular complement C3 and C3a deposits, PEC migration to capillary tuft, proliferation, and glomerulosclerosis. These changes were more prominent in Cfh−/− +BSA mice. The pathogenic role of AP was documented by data that factor B deficiency preserved glomerular integrity. In protein-overload mice, PEC dysregulation was associated with upregulation of CXCR4 and GDNF/c-Ret axis. In vitro studies provided additional evidence of a direct action of C3a on proliferation and CXCR4-related migration of PECs. These effects were enhanced by podocyte-derived GDNF. In patients with proteinuric nephropathy, glomerular C3/C3a paralleled PEC activation, CXCR4 and GDNF upregulation. These results indicate that mechanistically uncontrolled AP complement activation is not dispensable for podocyte-dependent PEC activation resulting in glomerulosclerosis. PMID:27345360
Garland, Donita L.; Fernandez-Godino, Rosario; Kaur, Inderjeet; Speicher, Kaye D.; Harnly, James M.; Lambris, John D.; Speicher, David W.; Pierce, Eric A.
2014-01-01
Macular degenerations, inherited and age related, are important causes of vision loss. Human genetic studies have suggested perturbation of the complement system is important in the pathogenesis of age-related macular degeneration. The mechanisms underlying the involvement of the complement system are not understood, although complement and inflammation have been implicated in drusen formation. Drusen are an early clinical hallmark of inherited and age-related forms of macular degeneration. We studied one of the earliest stages of macular degeneration which precedes and leads to the formation of drusen, i.e. the formation of basal deposits. The studies were done using a mouse model of the inherited macular dystrophy Doyne Honeycomb Retinal Dystrophy/Malattia Leventinese (DHRD/ML) which is caused by a p.Arg345Trp mutation in EFEMP1. The hallmark of DHRD/ML is the formation of drusen at an early age, and gene targeted Efemp1R345W/R345W mice develop extensive basal deposits. Proteomic analyses of Bruch's membrane/choroid and Bruch's membrane in the Efemp1R345W/R345W mice indicate that the basal deposits comprise normal extracellular matrix (ECM) components present in abnormal amounts. The proteomic analyses also identified significant changes in proteins with immune-related function, including complement components, in the diseased tissue samples. Genetic ablation of the complement response via generation of Efemp1R345W/R345W:C3−/− double-mutant mice inhibited the formation of basal deposits. The results demonstrate a critical role for the complement system in basal deposit formation, and suggest that complement-mediated recognition of abnormal ECM may participate in basal deposit formation in DHRD/ML and perhaps other macular degenerations. PMID:23943789
Yoshida, Yoko; Miyata, Toshiyuki; Matsumoto, Masanori; Shirotani-Ikejima, Hiroko; Uchida, Yumiko; Ohyama, Yoshifumi; Kokubo, Tetsuro; Fujimura, Yoshihiro
2015-01-01
For thrombotic microangiopathies (TMAs), the diagnosis of atypical hemolytic uremic syndrome (aHUS) is made by ruling out Shiga toxin-producing Escherichia coli (STEC)-associated HUS and ADAMTS13 activity-deficient thrombotic thrombocytopenic purpura (TTP), often using the exclusion criteria for secondary TMAs. Nowadays, assays for ADAMTS13 activity and evaluation for STEC infection can be performed within a few hours. However, a confident diagnosis of aHUS often requires comprehensive gene analysis of the alternative complement activation pathway, which usually takes at least several weeks. However, predisposing genetic abnormalities are only identified in approximately 70% of aHUS. To facilitate the diagnosis of complement-mediated aHUS, we describe a quantitative hemolytic assay using sheep red blood cells (RBCs) and human citrated plasma, spiked with or without a novel inhibitory anti-complement factor H (CFH) monoclonal antibody. Among 45 aHUS patients in Japan, 24% (11/45) had moderate-to-severe (≥50%) hemolysis, whereas the remaining 76% (34/45) patients had mild or no hemolysis (<50%). The former group is largely attributed to CFH-related abnormalities, and the latter group has C3-p.I1157T mutations (16/34), which were identified by restriction fragment length polymorphism (RFLP) analysis. Thus, a quantitative hemolytic assay coupled with RFLP analysis enabled the early diagnosis of complement-mediated aHUS in 60% (27/45) of patients in Japan within a week of presentation. We hypothesize that this novel quantitative hemolytic assay would be more useful in a Caucasian population, who may have a higher proportion of CFH mutations than Japanese patients. PMID:25951460
Complement evasion by Bordetella pertussis: implications for improving current vaccines.
Jongerius, Ilse; Schuijt, Tim J; Mooi, Frits R; Pinelli, Elena
2015-04-01
Bordetella pertussis causes whooping cough or pertussis, a highly contagious disease of the respiratory tract. Despite high vaccination coverage, reported cases of pertussis are rising worldwide and it has become clear that the current vaccines must be improved. In addition to the well-known protective role of antibodies and T cells during B. pertussis infection, innate immune responses such as the complement system play an essential role in B. pertussis killing. In order to evade this complement activation and colonize the human host, B. pertussis expresses several molecules that inhibit complement activation. Interestingly, one of the known complement evasion proteins, autotransporter Vag8, is highly expressed in the recently emerged B. pertussis isolates. Here, we describe the current knowledge on how B. pertussis evades complement-mediated killing. In addition, we compare this to complement evasion strategies used by other bacterial species. Finally, we discuss the consequences of complement evasion by B. pertussis on adaptive immunity and how identification of the bacterial molecules and the mechanisms involved in complement evasion might help improve pertussis vaccines.
Bekkari, Nadjia; Martin-Eauclaire, Marie-France; Laraba-Djebari, Fatima
2015-01-01
Androctonus australis hector scorpion venom is well known by its high toxicity, it induces massive release of neurotransmitters that lead to pathophysiological disorders in cardiovascular, neuro-hormonal and immune systems. Previous studies have shown the relationship between the severity of scorpion envenoming and immune system activation. This study was assessed to investigate the involvement of complement system and inflammatory mediators after sublethal injection of Aah venom, its toxic fraction (FtoxG50) and its main toxins (AahI and AahII) into NMRI mice. The Activation complement system by the venom is also compared to that induced of lipopolysaccharides (LPS). Obtained results showed that seric complement system (CS) is activated by the venom and by its toxic components; this activation is more pronounced into liver tissue when toxic components (FtoxG50, AahI or AahII) are used. Increase of cytokine levels (IL1β, TNFα and ICAM) into hepatic tissue induced by AahI or AahII neurotoxins is correlated with tissue alterations. Aprotinin, a non specific inhibitor of complement system seems to be able to reduce CS consumption and to restore partially the induced tissue damage by venom. The mechanisms by which toxic fraction or LPS induced the activation of complement system seem to be different. Sensitivity of hepatic tissue is more pronounced after FtoxG50 injection; however lung tissue is more sensible to LPS than FoxG50. Copyright © 2015 Elsevier GmbH. All rights reserved.
Barbosa, Angela S.; Monaris, Denize; Silva, Ludmila B.; Morais, Zenaide M.; Vasconcellos, Sílvio A.; Cianciarullo, Aurora M.; Isaac, Lourdes; Abreu, Patricia A. E.
2010-01-01
We have previously shown that pathogenic leptospiral strains are able to bind C4b binding protein (C4BP). Surface-bound C4BP retains its cofactor activity, indicating that acquisition of this complement regulator may contribute to leptospiral serum resistance. In the present study, the abilities of seven recombinant putative leptospiral outer membrane proteins to interact with C4BP were evaluated. The protein encoded by LIC11947 interacted with this human complement regulator in a dose-dependent manner. The cofactor activity of C4BP bound to immobilized recombinant LIC11947 (rLIC11947) was confirmed by detecting factor I-mediated cleavage of C4b. rLIC11947 was therefore named LcpA (for leptospiral complement regulator-acquiring protein A). LcpA was shown to be an outer membrane protein by using immunoelectron microscopy, cell surface proteolysis, and Triton X-114 fractionation. The gene coding for LcpA is conserved among pathogenic leptospiral strains. This is the first characterization of a Leptospira surface protein that binds to the human complement regulator C4BP in a manner that allows this important regulator to control complement system activation mediated either by the classical pathway or by the lectin pathway. This newly identified protein may play a role in immune evasion by Leptospira spp. and may therefore represent a target for the development of a human vaccine against leptospirosis. PMID:20404075
Kaufman, T S; Srivastava, R P; Sindelar, R D; Scesney, S M; Marsh, H C
1995-04-28
The terpenoid 6,7-diformyl-3',4',4a',5',6',7',8',8a'-octahydro-4,6',7'-trihydrox y-2',5',5', 8a'-tetramethylspiro[1'(2'H)-naphthalene-2(3H)-benzofuran] (1a; K-76), a natural product of fungal origin, and its monocarboxylate sodium salt 1c (R = COONa; K-76COONa) inhibit the classical and alternative pathways of complement, and 1c was shown to inhibit the classical pathway at the C5 activation step. In an attempt to elucidate the essential pharmacophore of 1a,c, the natural product was used as a "topographical model" for the design of partial analogs retaining the desired complement inhibiting potency. Therefore, A/C/D-ring analogs have been synthesized, as shown in Scheme 1 using 3-methoxyphenol (3) and limonene chloride (5) as starting materials, which contain functional groups similar to those found on the natural product. The use of (4R)-(+)- and (4S)(-)-limonene chloride (5a,b, respectively) provided two series of compounds differing in the stereochemistry of the C-4 chiral center (limonene moiety numbering). The in vitro assay results of the inhibition of anaphylatoxin production and classical complement-mediated hemolysis revealed that 7-carboxy-2-(R,S)-methyl-2-(1'-methylcyclohexen-(4'R)-yl)-4-met hoxybenzofuran (13a) and 7-carboxy-2-(R,S)-methyl-2-(1'-methylcyclohexen-(4'S)-yl)-4-met hoxybenzofuran (13b) were active in the same range of concentrations as the natural product.
Yamamoto, Tsunehisa; Tamaki, Kayoko; Shirakawa, Kohsuke; Ito, Kentaro; Yan, Xiaoxiang; Katsumata, Yoshinori; Anzai, Atsushi; Matsuhashi, Tomohiro; Endo, Jin; Inaba, Takaaki; Tsubota, Kazuo; Sano, Motoaki; Fukuda, Keiichi; Shinmura, Ken
2016-04-15
Caloric restriction (CR) confers cardioprotection against ischemia-reperfusion (I/R) injury. We previously found the essential roles of endothelial nitric oxide synthase in the development of CR-induced cardioprotection and Sirt1 activation during CR (Shinmura K, Tamaki K, Ito K, Yan X, Yamamoto T, Katsumata Y, Matsuhashi T, Sano M, Fukuda K, Suematsu M, Ishii I. Indispensable role of endothelial nitric oxide synthase in caloric restriction-induced cardioprotection against ischemia-reperfusion injury.Am J Physiol Heart Circ Physiol 308: H894-H903, 2015). However, the exact mechanism by which Sirt1 in cardiomyocytes mediates the cardioprotective effect of CR remains undetermined. We subjected cardiomyocyte-specific Sirt1 knockout (CM-Sirt1(-/-)) mice and the corresponding control mice to either 3-mo ad libitum feeding or CR (-40%). Isolated perfused hearts were subjected to 25-min global ischemia, followed by 60-min reperfusion. The recovery of left ventricle function after I/R was improved, and total lactate dehydrogenase release into the perfusate during reperfusion was attenuated in the control mice treated with CR, but a similar cardioprotective effect of CR was not observed in the CM-Sirt1(-/-)mice. The expression levels of cardiac complement component 3 (C3) at baseline and the accumulation of C3 and its fragments in the ischemia-reperfused myocardium were attenuated by CR in the control mice, but not in the CM-Sirt1(-/-)mice. Resveratrol treatment also attenuated the expression levels of C3 protein in cultured neonatal rat ventricular cardiomyocytes. Moreover, the degree of myocardial I/R injury in conventional C3 knockout (C3(-/-)) mice treated with CR was similar to that in the ad libitum-fed C3(-/-)mice, although the expression levels of Sirt1 were enhanced by CR. These results demonstrate that cardiac Sirt1 plays an essential role in CR-induced cardioprotection against I/R injury by suppressing cardiac C3 expression. This is the first report suggesting that cardiac Sirt1 regulates the local complement system during CR. Copyright © 2016 the American Physiological Society.
Molecular Imaging of Phosphorylation Events for Drug Development
Chan, C. T.; Paulmurugan, R.; Reeves, R. E.; Solow-Cordero, D.; Gambhir, S. S.
2014-01-01
Purpose Protein phosphorylation mediated by protein kinases controls numerous cellular processes. A genetically encoded, generalizable split firefly luciferase (FL)-assisted complementation system was developed for noninvasive monitoring phosphorylation events and efficacies of kinase inhibitors in cell culture and in small living subjects by optical bioluminescence imaging. Procedures An Akt sensor (AST) was constructed to monitor Akt phosphorylation and the effect of different PI-3K and Akt inhibitors. Specificity of AST was determined using a non-phosphorylable mutant sensor containing an alanine substitution (ASA). Results The PI-3K inhibitor LY294002 and Akt kinase inhibitor perifosine led to temporal- and dose-dependent increases in complemented FL activities in 293T human kidney cancer cells stably expressing AST (293T/AST) but not in 293T/ASA cells. Inhibition of endogenous Akt phosphorylation and kinase activities by perifosine also correlated with increase in complemented FL activities in 293T/AST cells but not in 293T/ASA cells. Treatment of nude mice bearing 293T/AST xenografts with perifosine led to a 2-fold increase in complemented FL activities compared to that of 293T/ASA xenografts. Our system was used to screen a small chemical library for novel modulators of Akt kinase activity. Conclusion This generalizable approach for noninvasive monitoring of phosphorylation events will accelerate the discovery and validation of novel kinase inhibitors and modulators of phosphorylation events. PMID:19048345
Immunological response to nitroglycerin-loaded shear-responsive liposomes in vitro and in vivo.
Buscema, Marzia; Matviykiv, Sofiya; Mészáros, Tamás; Gerganova, Gabriela; Weinberger, Andreas; Mettal, Ute; Mueller, Dennis; Neuhaus, Frederik; Stalder, Etienne; Ishikawa, Takashi; Urbanics, Rudolf; Saxer, Till; Pfohl, Thomas; Szebeni, János; Zumbuehl, Andreas; Müller, Bert
2017-10-28
Liposomes formulated from the 1,3-diamidophospholipid Pad-PC-Pad are shear-responsive and thus promising nano-containers to specifically release a vasodilator at stenotic arteries. The recommended preclinical safety tests for therapeutic liposomes of nanometer size include the in vitro assessment of complement activation and the evaluation of the associated risk of complement activation-related pseudo-allergy (CARPA) in vivo. For this reason, we measured complement activation by Pad-PC-Pad formulations in human and porcine sera, along with the nanopharmaceutical-mediated cardiopulmonary responses in pigs. The evaluated formulations comprised of Pad-PC-Pad liposomes, with and without polyethylene glycol on the surface of the liposomes, and nitroglycerin as a model vasodilator. The nitroglycerin incorporation efficiency ranged from 25% to 50%. In human sera, liposome formulations with 20mg/mL phospholipid gave rise to complement activation, mainly via the alternative pathway, as reflected by the rises in SC5b-9 and Bb protein complex concentrations. Formulations having a factor of ten lower phospholipid content did not result in measurable complement activation. The weak complement activation induced by Pad-PC-Pad liposomal formulations was confirmed by the results obtained by performing an in vivo study in a porcine model, where hemodynamic parameters were monitored continuously. Our study suggests that, compared to FDA-approved liposomal drugs, Pad-PC-Pad exhibits less or similar risks of CARPA. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Novel Evasion Mechanisms of the Classical Complement Pathway
Garcia, Brandon L.; Zwarthoff, Seline A.; Rooijakkers, Suzan H. M.; Geisbrecht, Brian V.
2016-01-01
Complement is a network of soluble and cell surface-associated proteins which gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of ‘non-self’ cells by one of three initiating mechanisms known as the classical, lectin, or alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. While many complement inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review we focus on several recent investigations which have revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules. PMID:27591336
Novel Evasion Mechanisms of the Classical Complement Pathway.
Garcia, Brandon L; Zwarthoff, Seline A; Rooijakkers, Suzan H M; Geisbrecht, Brian V
2016-09-15
Complement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. Although many complement-inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review, we focus on several recent investigations that revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules. Copyright © 2016 by The American Association of Immunologists, Inc.
Yuan, Yujie; Ren, Jianan; Cao, Shougen; Zhang, Weiwei; Li, Jieshou
2012-01-01
The role of complement system in bridging innate and adaptive immunity has been confirmed in various invasive pathogens. It is still obscure how complement proteins promote T cell-mediated immune response during sepsis. The aim of this study is to investigate the role of exogenous C3 protein in the T-cell responses to sepsis. Sepsis was induced by colon ascendens stent peritonitis (CASP) in wild-type C57BL/6 mice, sham-operated mice for control. Human purified C3 protein (HuC3, 1 mg) was intraperitoneally injected at 6 h post-surgery, with 200 μl phosphate-buffered saline as control. The levels of C3 and cytokines, the expression of FOXP3 and NF-κB, and the percentages of CD4(+) T-cell subsets were compared among the groups at given time points. The polymicrobial sepsis produced considerable release of TNF-α and IL-10, and caused complement C3 exhaustion. Exogenous C3 administration markedly improved the 48 h survival rate, as compared with nontreatment (40% vs. 5%, P<0.01). The expression of FOXP3 protein was increased during sepsis, but can be suppressed by HuC3 administration. A single injection of HuC3 postponed the decline of differentiated Th1 cells, and depressed the activation of Th2/Th17 cells. Besides, the Th1-Th2 shift in late stage of sepsis can be controlled under C3 supplementation. The suppression of NF-κB pathway might be related to the appearance of immunocompromise. The study confirmed the important role of exogenous C3 in up-regulation of adaptive immune response to sepsis. The complement pathway would be a pivotal target for severe sepsis management. Copyright © 2011 Elsevier B.V. All rights reserved.
Binks, Michael; Sriprakash, K. S.
2004-01-01
An extracellular protein of Streptococcus pyogenes, streptococcal inhibitor of complement (SIC), and its variant, called DRS (distantly related to SIC), are expressed by some S. pyogenes strains. SIC from type 1 (M1) isolates of S. pyogenes interferes with complement-mediated cell lysis, reportedly via its interaction with complement proteins. In this study we demonstrate that S. pyogenes strains carrying emm12 and emm55 (the genes for the M12 and M55 proteins, respectively) express and secrete DRS. This protein, like SIC, binds to the C6 and C7 complement proteins, and competition enzyme-linked immunosorbent assay experiments demonstrate that DRS competes with SIC for C6 and C7 binding. Similarly, SIC competes with DRS for binding to the complement proteins. Despite this, the recombinant DRS preparation showed no significant effect on complement function, as determined by lysis of sensitized sheep erythrocytes. Furthermore, the presence of DRS is not inhibitory to SIC activity. PMID:15213143
Binks, Michael; Sriprakash, K S
2004-07-01
An extracellular protein of Streptococcus pyogenes, streptococcal inhibitor of complement (SIC), and its variant, called DRS (distantly related to SIC), are expressed by some S. pyogenes strains. SIC from type 1 (M1) isolates of S. pyogenes interferes with complement-mediated cell lysis, reportedly via its interaction with complement proteins. In this study we demonstrate that S. pyogenes strains carrying emm12 and emm55 (the genes for the M12 and M55 proteins, respectively) express and secrete DRS. This protein, like SIC, binds to the C6 and C7 complement proteins, and competition enzyme-linked immunosorbent assay experiments demonstrate that DRS competes with SIC for C6 and C7 binding. Similarly, SIC competes with DRS for binding to the complement proteins. Despite this, the recombinant DRS preparation showed no significant effect on complement function, as determined by lysis of sensitized sheep erythrocytes. Furthermore, the presence of DRS is not inhibitory to SIC activity.
Abe, Cecília M.; Monaris, Denize; Morais, Zenaide M.; Souza, Gisele O.; Vasconcellos, Sílvio A.; Isaac, Lourdes; Abreu, Patrícia A. E.; Barbosa, Angela S.
2013-01-01
The elongation factor Tu (EF-Tu), an abundant bacterial protein involved in protein synthesis, has been shown to display moonlighting activities. Known to perform more than one function at different times or in different places, it is found in several subcellular locations in a single organism, and may serve as a virulence factor in a range of important human pathogens. Here we demonstrate that Leptospira EF-Tu is surface-exposed and performs additional roles as a cell-surface receptor for host plasma proteins. It binds plasminogen in a dose-dependent manner, and lysine residues are critical for this interaction. Bound plasminogen is converted to active plasmin, which, in turn, is able to cleave the natural substrates C3b and fibrinogen. Leptospira EF-Tu also acquires the complement regulator Factor H (FH). FH bound to immobilized EF-Tu displays cofactor activity, mediating C3b degradation by Factor I (FI). In this manner, EF-Tu may contribute to leptospiral tissue invasion and complement inactivation. To our knowledge, this is the first description of a leptospiral protein exhibiting moonlighting activities. PMID:24312361
Wooster, David G; Maruvada, Ravi; Blom, Anna M; Prasadarao, Nemani V
2006-01-01
Meningitis caused by Escherichia coli K1 is a serious illness in neonates with neurological sequelae in up to 50% of survivors. A high degree of bacteremia is required for E. coli K1 to cross the blood–brain barrier, which suggests that the bacterium must evade the host defence mechanisms and survive in the bloodstream. We previously showed that outer membrane protein A (OmpA) of E. coli binds C4b-binding protein (C4bp), an inhibitor of complement activation via the classical pathway. Nevertheless, the exact mechanism by which E. coli K1 survives in serum remains elusive. Here, we demonstrate that log phase (LP) OmpA+E. coli K1 avoids serum bactericidal activity more effectively than postexponential phase bacteria. OmpA–E. coli cannot survive in serum grown to either phase. The increased serum resistance of LP OmpA+E. coli is the result of increased binding of C4bp, with a concomitant decrease in the deposition of C3b and the downstream complement proteins responsible for the formation of the membrane attack complex. C4bp bound to E. coli K1 acts as a cofactor to factor I in the cleavage of both C3b and C4b, which shuts down the ensuing complement cascade. Accordingly, a peptide corresponding to the complement control protein domain 3 of C4bp sequence, was able to compete with C4bp binding to OmpA and cause increased deposition of C3b. Thus, binding of C4bp appears to be responsible for survival of E. coli K1 in human serum. PMID:16556262
Beum, Paul V; Lindorfer, Margaret A; Beurskens, Frank; Stukenberg, P Todd; Lokhorst, Henk M; Pawluczkowycz, Andrew W; Parren, Paul W H I; van de Winkel, Jan G J; Taylor, Ronald P
2008-07-01
Binding of the CD20 mAb rituximab (RTX) to B lymphocytes in normal human serum (NHS) activates complement (C) and promotes C3b deposition on or in close proximity to cell-bound RTX. Based on spinning disk confocal microscopy analyses, we report the first real-time visualization of C3b deposition and C-mediated killing of RTX-opsonized B cells. C activation by RTX-opsonized Daudi B cells induces rapid membrane blebbing and generation of long, thin structures protruding from cell surfaces, which we call streamers. Ofatumumab, a unique mAb that targets a distinct binding site (the small loop epitope) of the CD20 Ag, induces more rapid killing and streaming on Daudi cells than RTX. In contrast to RTX, ofatumumab promotes streamer formation and killing of ARH77 cells and primary B cells from patients with chronic lymphocytic leukemia. Generation of streamers requires C activation; no streaming occurs in media, NHS-EDTA, or in sera depleted of C5 or C9. Streamers can be visualized in bright field by phase imaging, and fluorescence-staining patterns indicate they contain membrane lipids and polymerized actin. Streaming also occurs if cells are reacted in medium with bee venom melittin, which penetrates cells and forms membrane pores in a manner similar to the membrane-attack complex of C. Structures similar to streamers are demonstrable when Ab-opsonized sheep erythrocytes (non-nucleated cells) are reacted with NHS. Taken together, our findings indicate that the membrane-attack complex is a key mediator of streaming. Streamer formation may, thus, represent a membrane structural change that can occur shortly before complement-induced cell death.
Lamontagne, Anne; Long, Ronald E.; Comunale, Mary Ann; Hafner, Julie; Rodemich-Betesh, Lucy; Wang, Mengjun; Marrero, Jorge; Di Bisceglie, Adrian M.; Block, Timothy; Mehta, Anand
2013-01-01
Background Using comparative glycoproteomics, we have previously identified a glycoprotein that is altered in both amount and glycosylation as a function of liver cirrhosis. The altered glycoprotein is an agalactosylated (G0) immunoglobulin G molecule (IgG) that recognizes the heterophilic alpha-gal epitope. Since the alpha gal epitope is found on gut enterobacteria, it has been hypothesized that anti-gal antibodies are generated as a result of increased bacterial exposure in patients with liver disease. Methods The N-linked glycosylation of anti-gal IgG molecules from patients with fibrosis and cirrhosis was determined and the effector function of anti-bacterial antibodies from over 100 patients examined. In addition, markers of microbial exposure were determined. Results Surprisingly, the subset of agalactosylated anti-gal antibodies described here, was impaired in their ability to mediate complement mediated lysis and inhibited the complement-mediated destruction of common gut bacteria. In an analysis of serum from more than 100 patients with liver disease, we have shown that those with increased levels of this modified anti-gal antibody had increased levels of markers of bacterial exposure. Conclusions Anti-gal antibodies in patients with liver cirrhosis were reduced in their ability to mediate complement mediated lysis of target cells. As bacterial infection is a major complication in patients with cirrhosis and bacterial products such as LPS are thought to play a major role in the development and progression of liver fibrosis, this finding has many clinical implications in the etiology, prognosis and treatment of liver disease. PMID:23750224
Moore, Gregory L; Chen, Hsing; Karki, Sher
2010-01-01
Engineering the antibody Fc region to enhance the cytotoxic activity of therapeutic antibodies is currently an active area of investigation. The contribution of complement to the mechanism of action of some antibodies that target cancers and pathogens makes a compelling case for its optimization. Here we describe the generation of a series of Fc variants with enhanced ability to recruit complement. Variants enhanced the cytotoxic potency of an anti-CD20 antibody up to 23-fold against tumor cells in CDC assays, and demonstrated a correlated increase in C1q binding affinity. Complementenhancing substitutions combined additively, and in one case synergistically, with substitutions previously engineered for improved binding to Fc gamma receptors. The engineered combinations provided a range of effector function activities, including simultaneously enhanced CDC, ADCC, and phagocytosis. Variants were also effective at boosting the effector function of antibodies targeting the antigens CD40 and CD19, in the former case enhancing CDC over 600-fold, and in the latter case imparting complement-mediated activity onto an IgG1 antibody that was otherwise incapable of it. This work expands the toolkit of modifications for generating monoclonal antibodies with improved therapeutic potential and enables the exploration of optimized synergy between Fc gamma receptors and complement pathways for the destruction of tumors and infectious pathogens. PMID:20150767
Avasare, Rupali S; Canetta, Pietro A; Bomback, Andrew S; Marasa, Maddalena; Caliskan, Yasar; Ozluk, Yasemin; Li, Yifu; Gharavi, Ali G; Appel, Gerald B
2018-03-07
C3 glomerulopathy is a form of complement-mediated GN. Immunosuppressive therapy may be beneficial in the treatment of C3 glomerulopathy. Mycophenolate mofetil is an attractive treatment option given its role in the treatment of other complement-mediated diseases and the results of the Spanish Group for the Study of Glomerular Diseases C3 Study. Here, we study the outcomes of patients with C3 glomerulopathy treated with steroids and mycophenolate mofetil. We conducted a retrospective chart review of patients in the C3 glomerulopathy registry at Columbia University and identified patients treated with mycophenolate mofetil for at least 3 months and follow-up for at least 1 year. We studied clinical, histologic, and genetic data for the whole group and compared data for those who achieved complete or partial remission (responders) with those who did not achieve remission (nonresponders). We compared remission with mycophenolate mofetil with remission with other immunosuppressive regimens. We identified 30 patients who met inclusion criteria. Median age was 25 years old (interquartile range, 18-36), median creatinine was 1.07 mg/dl (interquartile range, 0.79-1.69), and median proteinuria was 3200 mg/g creatinine (interquartile range, 1720-6759). The median follow-up time was 32 months (interquartile range, 21-68). Twenty (67%) patients were classified as responders. There were no significant differences in baseline characteristics between responders and nonresponders, although initial proteinuria was lower (median 2468 mg/g creatinine) in responders compared with nonresponders (median 5000 mg/g creatinine) and soluble membrane attack complex levels were higher in responders compared with nonresponders. For those tapered off mycophenolate mofetil, relapse rate was 50%. Genome-wide analysis on complement genes was done, and in 12 patients, we found 18 variants predicted to be damaging. None of these variants were previously reported to be pathogenic. Mycophenolate mofetil with steroids outperformed other immunosuppressive regimens. Among patients who tolerated mycophenolate mofetil, combination therapy with steroids induced remission in 67% of this cohort. Heavier proteinuria at the start of therapy and lower soluble membrane attack complex levels were associated with treatment resistance. Copyright © 2018 by the American Society of Nephrology.
Thrombomodulin Mutations in Atypical Hemolytic–Uremic Syndrome
Delvaeye, Mieke; Noris, Marina; De Vriese, Astrid; Esmon, Charles T.; Esmon, Naomi L.; Ferrell, Gary; Del-Favero, Jurgen; Plaisance, Stephane; Claes, Bart; Lambrechts, Diether; Zoja, Carla; Remuzzi, Giuseppe; Conway, Edward M.
2012-01-01
BACKGROUND The hemolytic–uremic syndrome consists of the triad of microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. The common form of the syndrome is triggered by infection with Shiga toxin–producing bacteria and has a favorable outcome. The less common form of the syndrome, called atypical hemolytic–uremic syndrome, accounts for about 10% of cases, and patients with this form of the syndrome have a poor prognosis. Approximately half of the patients with atypical hemolytic–uremic syndrome have mutations in genes that regulate the complement system. Genetic factors in the remaining cases are unknown. We studied the role of thrombomodulin, an endothelial glycoprotein with anticoagulant, antiinflammatory, and cytoprotective properties, in atypical hemolytic–uremic syndrome. METHODS We sequenced the entire thrombomodulin gene (THBD) in 152 patients with atypical hemolytic–uremic syndrome and in 380 controls. Using purified proteins and cell-expression systems, we investigated whether thrombomodulin regulates the complement system, and we characterized the mechanisms. We evaluated the effects of thrombomodulin missense mutations associated with atypical hemolytic–uremic syndrome on complement activation by expressing thrombomodulin variants in cultured cells. RESULTS Of 152 patients with atypical hemolytic–uremic syndrome, 7 unrelated patients had six different heterozygous missense THBD mutations. In vitro, thrombomodulin binds to C3b and factor H (CFH) and negatively regulates complement by accelerating factor I–mediated inactivation of C3b in the presence of cofactors, CFH or C4b binding protein. By promoting activation of the plasma procarboxypeptidase B, thrombomodulin also accelerates the inactivation of anaphylatoxins C3a and C5a. Cultured cells expressing thrombomodulin variants associated with atypical hemolytic–uremic syndrome had diminished capacity to inactivate C3b and to activate procarboxypeptidase B and were thus less protected from activated complement. CONCLUSIONS Mutations that impair the function of thrombomodulin occur in about 5% of patients with atypical hemolytic–uremic syndrome. PMID:19625716
Targeting complement-mediated immunoregulation for cancer immunotherapy.
Kolev, Martin; Markiewski, Maciej M
2018-06-01
Complement was initially discovered as an assembly of plasma proteins "complementing" the cytolytic activity of antibodies. However, our current knowledge places this complex system of several plasma proteins, receptors, and regulators in the center of innate immunity as a bridge between the initial innate responses and adaptive immune reactions. Consequently, complement appears to be pivotal for elimination of pathogens, not only as an early response defense, but by directing the subsequent adaptive immune response. The discovery of functional intracellular complement and its roles in cellular metabolism opened novel avenues for research and potential therapeutic implications. The recent studies demonstrating immunoregulatory functions of complement in the tumor microenvironment and the premetastatic niche shifted the paradigm on our understanding of functions of the complement system in regulating immunity. Several complement proteins, through their interaction with cells in the tumor microenvironment and in metastasis-targeted organs, contribute to modulating tumor growth, antitumor immunity, angiogenesis, and therefore, the overall progression of malignancy and, perhaps, responsiveness of cancer to different therapies. Here, we focus on recent progress in our understanding of immunostimulatory vs. immunoregulatory functions of complement and potential applications of these findings to the design of novel therapies for cancer patients. Copyright © 2018 Elsevier Ltd. All rights reserved.
Protection of host cells by complement regulators.
Schmidt, Christoph Q; Lambris, John D; Ricklin, Daniel
2016-11-01
The complement cascade is an ancient immune-surveillance system that not only provides protection from pathogen invasion but has also evolved to participate in physiological processes to maintain tissue homeostasis. The alternative pathway (AP) of complement activation is the evolutionarily oldest part of this innate immune cascade. It is unique in that it is continuously activated at a low level and arbitrarily probes foreign, modified-self, and also unaltered self-structures. This indiscriminate activation necessitates the presence of preformed regulators on autologous surfaces to spare self-cells from the undirected nature of AP activation. Although the other two canonical complement activation routes, the classical and lectin pathways, initiate the cascade more specifically through pattern recognition, their activity still needs to be tightly controlled to avoid excessive reactivity. It is the perpetual duty of complement regulators to protect the self from damage inflicted by inadequate complement activation. Here, we review the role of complement regulators as preformed mediators of defense, explain their common and specialized functions, and discuss selected cases in which alterations in complement regulators lead to disease. Finally, rational engineering approaches using natural complement inhibitors as potential therapeutics are highlighted. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Peterson, Sheri L.; Nguyen, Hal X.; Mendez, Oscar A.
2015-01-01
Traumatic injury to CNS fiber tracts is accompanied by failure of severed axons to regenerate and results in lifelong functional deficits. The inflammatory response to CNS trauma is mediated by a diverse set of cells and proteins with varied, overlapping, and opposing effects on histological and behavioral recovery. Importantly, the contribution of individual inflammatory complement proteins to spinal cord injury (SCI) pathology is not well understood. Although the presence of complement components increases after SCI in association with axons and myelin, it is unknown whether complement proteins affect axon growth or regeneration. We report a novel role for complement C1q in neurite outgrowth in vitro and axon regrowth after SCI. In culture, C1q increased neurite length on myelin. Protein and molecular assays revealed that C1q interacts directly with myelin associated glycoprotein (MAG) in myelin, resulting in reduced activation of growth inhibitory signaling in neurons. In agreement with a C1q-outgrowth-enhancing mechanism in which C1q binding to MAG reduces MAG signaling to neurons, complement C1q blocked both the growth inhibitory and repulsive turning effects of MAG in vitro. Furthermore, C1q KO mice demonstrated increased sensory axon turning within the spinal cord lesion after SCI with peripheral conditioning injury, consistent with C1q-mediated neutralization of MAG. Finally, we present data that extend the role for C1q in axon growth and guidance to include the sprouting patterns of descending corticospinal tract axons into spinal gray matter after dorsal column transection SCI. PMID:25762679
A novel factor H-Fc chimeric immunotherapeutic molecule against Neisseria gonorrhoeae
Shaughnessy, Jutamas; Gulati, Sunita; Agarwal, Sarika; Unemo, Magnus; Ohnishi, Makoto; Su, Xia-Hong; Monks, Brian G.; Visintin, Alberto; Madico, Guillermo; Lewis, Lisa A.; Golenbock, Douglas T.; Reed, George W.; Rice, Peter A.; Ram, Sanjay
2015-01-01
Neisseria gonorrhoeae (Ng), the causative agent of the sexually transmitted infection gonorrhea, has developed resistance to almost every conventional antibiotic. There is an urgent need to develop novel therapies against gonorrhea. Many pathogens, including Ng, bind the complement inhibitor factor H (FH) to evade complement-dependent killing. Sialylation of gonococcal lipooligosaccharide, as occurs in vivo, augments binding of human FH through its domains 18-20 (FH18-20). We explored the utility of fusing FH18-20 with IgG Fc (FH18-20/Fc) to create a novel anti-infective immunotherapeutic. FH18-20 also binds to select host glycosaminoglycans to limit unwanted complement activation on host cells. To identify mutation(s) in FH18-20 that eliminated complement activation on host cells, yet maintained binding to Ng, we created four mutations in domains 19 or 20 described in atypical hemolytic uremic syndrome that prevented binding of mutated fH to human erythrocytes. One of the mutant proteins (D to G at position 1119 in domain 19; FHD1119G/Fc) facilitated complement-dependent killing of gonococci similar to unmodified FH18-20/Fc, but unlike FH18-20/Fc, did not lyse human erythrocytes. FHD1119G/Fc bound to all (100%) of 15 sialylated clinical Ng isolates tested (including three contemporary ceftriaxone-resistant strains), mediated complement-dependent killing of 10/15 (67%) strains and enhanced C3 deposition (≥10-fold above baseline levels) on each of the five isolates not directly killed by complement. FHD1119G/Fc facilitated opsonophagocytic killing of a serum-resistant strain by human polymorphonuclear neutrophils. FHD1119G/Fc administered intravaginally significantly reduced the duration and burden of gonococcal infection in the mouse vaginal colonization model. FHD1119G/Fc represents a novel immunotherapeutic against multidrug-resistant Ng. PMID:26773149
Ganesan, Sandhya; Rathinam, Vijay A. K.; Bossaller, Lukas; Army, Kelly; Kaiser, William J.; Mocarski, Edward S.; Dillon, Christopher P.; Green, Douglas R.; Mayadas, Tanya N.; Levitz, Stuart M.; Hise, Amy G.
2014-01-01
Inflammasomes are central mediators of host defense to a wide range of microbial pathogens. The NLRP3 inflammasome plays a key role in triggering caspase-1 dependent IL-1β maturation and resistance to fungal dissemination in Candida albicans infection. β-glucans are major components of fungal cell walls that trigger IL-1β secretion in both murine and human immune cells. In this study, we sought to determine the contribution of β-glucans to C. albicans-induced inflammasome responses in mouse dendritic cells. We show that the NLRP3-ASC-caspase-1 inflammasome is absolutely critical for IL-1β production in response to β-glucans. Interestingly, we also found that both Complement Receptor 3 (CR3/Mac-1) and dectin-1 play a crucial role in coordinating β-glucan-induced IL-1β processing as well as a cell death response. In addition to the essential role of caspase-1, we identify an important role for the pro-apoptotic protease caspase-8 in promoting β-glucan-induced cell death and NLRP3 inflammasome-dependent IL-1β maturation. A strong requirement for Complement Receptor 3 and caspase-8 was also found for NLRP3 dependent IL-1β production in response to heat killed Candida albicans. Together, these results define the importance of dectin-1, CR3 and caspase-8, in addition to the canonical NLRP3 inflammasome, in mediating β-glucan and C. albicans induced innate responses in dendritic cells. Collectively, these findings establish a novel link between β-glucan recognition receptors and the inflammatory proteases caspase-8 and caspase-1 in coordinating cytokine secretion and cell death in response to immunostimulatory fungal components. PMID:25063877
Arend, William P.; Mehta, Gaurav; Antonioli, Alexandra H.; Takahashi, Minoru; Takahashi, Kazue; Stahl, Gregory L.; Holers, V. Michael; Banda, Nirmal K.
2013-01-01
The complement system is involved in mediation of joint damage in rheumatoid arthritis, with evidence suggesting activation of both the classical and alternative pathways (AP). The AP is both necessary and sufficient to mediate collagen antibody-induced arthritis (CAIA), an experimental animal model of immune complex (IC)-induced joint disease. The AP in mice is dependent on MASP-1/3 cleavage of pro-factor D (pro-FD) into mature FD. The objectives of the present study were to determine the cells synthesizing MASP-1/3 and pro-FD in synovial tissue. CAIA was studied in wild-type C57BL/6 mice, and the localization of mRNA and protein for FD and MASP-1/3 in synovial adipose tissue (SAT) and fibroblast-like synoviocytes (FLS) was determined using various techniques, including laser capture micro-dissection (LCM). SAT was the sole source of mRNA for pro-FD. Cultured differentiated 3T3 adipocytes, a surrogate for SAT, produced pro-FD but no mature FD. FLS were the main source of MASP-1/3 mRNA and protein. Using cartilage micro-particles (CMP) coated with anti-collagen mAb and serum from MASP-1/3−/− mice as a source of factor B, pro-FD in 3T3 supernatants was cleaved into mature FD by MASP-1/3 in FLS supernatants. The mature FD was eluted from the CMP, and was not present in the supernatants from the incubation with CMP, indicating that cleavage of pro-FD into mature FD by MASP-1 occurred on the CMP. These results demonstrate that pathogenic activation of the AP may occur in the joint through IC adherent to cartilage and the local production of necessary AP proteins by adipocytes and FLS. PMID:23650618
Studies of Altered Response to Infection Induced by Thermal Injury.
1984-05-01
beginning to examine various prophylactic treatments for their efficacy in reversing a number of burn mediated immune defects. We expect even more interesting...with fluoresceinated antibody (OKM5) and FACS sorting or negative selection by Sephadex G-l0 passage and/or antibody and -3- complement treatment ... infectious episode. This mitogen hyperimmunity is typical of a normal immune system dealing with an infectious challenge. The Group II patients have a
Billecocq, A
1987-09-01
Schistosoma mansoni schistosomula cultured in the presence of phospholipids showed a decreased sensitivity to the lethal complement-mediated action of anti-schistosome antibodies. Phosphatidyl choline, sphingomyelin and phosphatidyl ethanolamine had a protective action on the schistosomula transformed in vitro by passage through the skin or by a mechanical procedure. Phosphatidyl choline acted regardless of its fatty acid composition. Phosphatidyl serine and phosphatidic acid did not protect. Thus, it appears that phospholipids can play a role in parasite resistance to immune attack by cytotoxic antibodies and complement, and that this role is specific to certain phospholipid types.
A zebrafish model for uremic toxicity: role of the complement pathway.
Berman, Nathaniel; Lectura, Melisa; Thurman, Josh; Reinecke, James; Raff, Amanda C; Melamed, Michal L; Reinecke, James; Quan, Zhe; Evans, Todd; Meyer, Timothy W; Hostetter, Thomas H
2013-01-01
Many organic solutes accumulate in end-stage renal disease (ESRD) and some are poorly removed with urea-based prescriptions for hemodialysis. However, their toxicities have been difficult to assess. We have employed an animal model, the zebrafish embryo, to test the toxicity of uremic serum compared to control. Serum was obtained from stable ESRD patients predialysis or from normal subjects. Zebrafish embryos 24 h postfertilization were exposed to experimental media at a water:human serum ratio of 3:1. Those exposed to serum from uremic subjects had significantly reduced survival at 8 h (19 ± 18 vs. 94 ± 6%, p < 0.05, uremic serum vs. control, respectively). Embryos exposed to serum from ESRD subjects fractionated at 50 kDa showed significantly greater toxicity with the larger molecular weight fraction (83 ± 11 vs. 7 ± 17% survival, p < 0.05, <50 vs. >50 kDa, respectively). Heating serum abrogated its toxicity. EDTA, a potent inhibitor of complement by virtue of calcium chelation, reduced the toxicity of uremic serum compared to untreated uremic serum (96 ± 5 vs. 28 ± 20% survival, p < 0.016, chelated vs. nonchelated serum, respectively). Anti-factor B, a specific inhibitor of the alternative complement pathway, reduced the toxicity of uremic serum, compared to untreated uremic serum (98 ± 6 vs. 3 ± 9% survival, p < 0.016, anti-factor B treated vs. nontreated, respectively). Uremic serum is thus more toxic to zebrafish embryos than normal serum. Furthermore, this toxicity is associated with a fraction of large size, is inactivated by heat, and is reduced by both specific and nonspecific inhibitors of complement activation. Together these data lend support to the hypothesis that at least some uremic toxicities may be mediated by complement. Copyright © 2013 S. Karger AG, Basel.
A Zebrafish Model for Uremic Toxicity: Role of the Complement Pathway
Thurman, Josh; Reinecke, James; Raff, Amanda C.; Melamed, Michal L.; Reinecke, James; Quan, Zhe; Evans, Todd; Meyer, Timothy W.; Hostetter, Thomas H
2016-01-01
Many organic solutes accumulate in ESRD and some are poorly removed removed with urea based prescriptions for hemodialysis. However, their toxicities have been difficult to assess. We have employed an animal model, the zebrafish embryo, to test the toxicity of uremic serum compared to control. Serum was obtained from stable ESRD patients pre-dialysis or from normal subjects. Zebrafish embryos 24 hours post fertilization were exposed to experimental media at a ratio of 3:1 water:human serum. Those exposed to serum from uremic subjects had significantly reduced survival at 8 hours (19% +/− 18% vs. 94% +/− 6%; p < 0.05, uremic serum vs control, respectively). Embryos exposed to serum from ESRD subjects fractionated at 50kD showed significantly greater toxicity with the larger molecular weight fraction (83% +/− 11% vs 7% +/−17% survival, p < 0.05, <50kD vs >50 kD, respectively). Heating serum abrogated its toxicity. EDTA, a potent inhibitor of complement by virtue of calcium chelation, reduced the toxicity of uremic serum compared to untreated uremic serum (96%+/− 5% vs 28%+/− 20% survival, p < 0.016, chelated vs non chelated serum respectively). Anti- factor B, a specific inhibitor of the alternative complement pathway, reduced the toxicity of uremic serum, compared to untreated uremic serum (98% +/− 6% vs. 3% +/− 9% survival, p < 0.016, anti- factor B treated vs non treated, respectively).Uremic serum is thus more toxic to zebrafish embryos than normal serum. Furthermore, this toxicity is associated with a fraction of large size, is inactivated by heat, and is reduced by both specific and non-specific inhibitors of complement activation. Together these data lend support to the hypothesis that at least some uremic toxicities may be mediated by complement. PMID:23689420
Future perspectives in target-specific immunotherapies of myasthenia gravis
Dalakas, Marinos C.
2015-01-01
Myasthenia gravis (MG) is an autoimmune disease caused by complement-fixing antibodies against acetylcholine receptors (AChR); antigen-specific CD4+ T cells, regulatory T cells (Tregs) and T helper (Th) 17+ cells are essential in antibody production. Target-specific therapeutic interventions should therefore be directed against antibodies, B cells, complement and molecules associated with T cell signaling. Even though the progress in the immunopathogenesis of the disease probably exceeds any other autoimmune disorder, MG is still treated with traditional drugs or procedures that exert a non-antigen specific immunosuppression or immunomodulation. Novel biological agents currently on the market, directed against the following molecular pathways, are relevant and specific therapeutic targets that can be tested in MG: (a) T cell intracellular signaling molecules, such as anti-CD52, anti-interleukin (IL) 2 receptors, anti- costimulatory molecules, and anti-Janus tyrosine kinases (JAK1, JAK3) that block the intracellular cascade associated with T-cell activation; (b) B cells and their trophic factors, directed against key B-cell molecules; (c) complement C3 or C5, intercepting the destructive effect of complement-fixing antibodies; (d) cytokines and cytokine receptors, such as those targeting IL-6 which promotes antibody production and IL-17, or the p40 subunit of IL-12/1L-23 that affect regulatory T cells; and (e) T and B cell transmigration molecules associated with lymphocyte egress from the lymphoid organs. All drugs against these molecular pathways require testing in controlled trials, although some have already been tried in small case series. Construction of recombinant AChR antibodies that block binding of the pathogenic antibodies, thereby eliminating complement and antibody-depended-cell-mediated cytotoxicity, are additional novel molecular tools that require exploration in experimental MG. PMID:26600875
Polyanion-Induced Self Association of Complement Factor H1
Pangburn, Michael K.; Rawal, Nenoo; Cortes, Claudio; Alam, M. Nurul; Ferreira, Viviana P.; Atkinson, Mark A. L.
2008-01-01
Factor H is the primary soluble regulator of activation of the alternative pathway of complement. It prevents activation of complement on host cells and tissues upon association with C3b and surface polyanions such as sialic acids, heparin and other glycosaminoglycans. Here we show that interaction with polyanions causes self-association forming tetramers of the 155,000 Da glycosylated protein. Monomeric human factor H is an extended flexible protein that exhibits an apparent size of 330,000 Da, relative to globular standards, during gel filtration chromatography in the absence of polyanions. In the presence of dextran sulfate (5,000 Da) or heparin an intermediate species of apparent m.w. 700,000 and a limit species of m.w. 1,400,000 were observed by gel filtration. Sedimentation equilibrium analysis by analytical ultracentrifugation indicated a monomer Mr of 163,000 in the absence of polyanions and a Mr of 607,000, corresponding to a tetramer, in the presence of less than a 2-fold molar excess of dextran sulfate. Increasing concentrations of dextran sulfate increased binding of factor H to zymosan-C3b 4.5-fold. This was accompanied by an increase in both the decay accelerating and cofactor activity of factor H on these cells. An expressed fragment encompassing the C-terminal polyanion binding site (complement control protein domains 18–20) also exhibited polyanion-induced self association, suggesting that the C-terminal ends of factor H mediate self-association. The results suggest that recognition of polyanionic markers on host cells and tissues by factor H, and the resulting regulation of complement activation, may involve formation of dimers and tetramers of factor H. PMID:19124749
Diao, Jingyu; Bouwman, Catrien; Yan, Donghong; Kang, Jing; Katakam, Anand K.; Liu, Peter; Pantua, Homer; Abbas, Alexander R.; Nickerson, Nicholas N.; Austin, Cary; Reichelt, Mike; Sandoval, Wendy; Xu, Min
2017-01-01
ABSTRACT Murein lipoprotein (Lpp) and peptidoglycan-associated lipoprotein (Pal) are major outer membrane lipoproteins in Escherichia coli. Their roles in cell-envelope integrity have been documented in E. coli laboratory strains, and while Lpp has been linked to serum resistance in vitro, the underlying mechanism has not been established. Here, lpp and pal mutants of uropathogenic E. coli strain CFT073 showed reduced survival in a mouse bacteremia model, but only the lpp mutant was sensitive to serum killing in vitro. The peptidoglycan-bound Lpp form was specifically required for preventing complement-mediated bacterial lysis in vitro and complement-mediated clearance in vivo. Compared to the wild-type strain, the lpp mutant had impaired K2 capsular polysaccharide production and was unable to respond to exposure to serum by elevating capsular polysaccharide amounts. These properties correlated with altered cellular distribution of KpsD, the predicted outer membrane translocon for “group 2” capsular polysaccharides. We identified a novel Lpp-dependent association between functional KpsD and peptidoglycan, highlighting important interplay between cell envelope components required for resistance to complement-mediated lysis in uropathogenic E. coli isolates. PMID:28536290
Molecular dynamics in drug design: new generations of compstatin analogs.
Tamamis, Phanourios; López de Victoria, Aliana; Gorham, Ronald D; Bellows-Peterson, Meghan L; Pierou, Panayiota; Floudas, Christodoulos A; Morikis, Dimitrios; Archontis, Georgios
2012-05-01
We report the computational and rational design of new generations of potential peptide-based inhibitors of the complement protein C3 from the compstatin family. The binding efficacy of the peptides is tested by extensive molecular dynamics-based structural and physicochemical analysis, using 32 atomic detail trajectories in explicit water for 22 peptides bound to human, rat or mouse target protein C3, with a total of 257 ns. The criteria for the new design are: (i) optimization for C3 affinity and for the balance between hydrophobicity and polarity to improve solubility compared to known compstatin analogs; and (ii) development of dual specificity, human-rat/mouse C3 inhibitors, which could be used in animal disease models. Three of the new analogs are analyzed in more detail as they possess strong and novel binding characteristics and are promising candidates for further optimization. This work paves the way for the development of an improved therapeutic for age-related macular degeneration, and other complement system-mediated diseases, compared to known compstatin variants. © 2012 John Wiley & Sons A/S.
Paulmurugan, Ramasamy; Gambhir, Sanjiv S.
2014-01-01
Networks of protein interactions execute many different intracellular pathways. Small molecules either synthesized within the cell or obtained from the external environment mediate many of these protein-protein interactions. The study of these small molecule–mediated protein-protein interactions is important in understanding abnormal signal transduction pathways in a variety of disorders, as well as in optimizing the process of drug development and validation. In this study, we evaluated the rapamycin-mediated interaction of the human proteins FK506-binding protein (FKBP12) rapamycin-binding domain (FRB) and FKBP12 by constructing a fusion of these proteins with a split-Renilla luciferase or a split enhanced green fluorescent protein (split-EGFP) such that complementation of the reporter fragments occurs in the presence of rapamycin. Different linker peptides in the fusion protein were evaluated for the efficient maintenance of complemented reporter activity. This system was studied in both cell culture and xenografts in living animals. We found that peptide linkers with two or four EAAAR repeat showed higher protein-protein interaction–mediated signal with lower background signal compared with having no linker or linkers with amino acid sequences GGGGSGGGGS, ACGSLSCGSF, and ACGSLSCGS-FACGSLSCGSF. A 9 ± 2-fold increase in signal intensity both in cell culture and in living mice was seen compared with a system that expresses both reporter fragments and the interacting proteins separately. In this fusion system, rapamycin induced heterodimerization of the FRB and FKBP12 moieties occurred rapidly even at very lower concentrations (0.00001 nmol/L) of rapamycin. For a similar fusion system employing split-EGFP, flow cytometry analysis showed significant level of rapamycin-induced complementation. PMID:16103094
Paulmurugan, Ramasamy; Gambhir, Sanjiv S
2005-08-15
Networks of protein interactions execute many different intracellular pathways. Small molecules either synthesized within the cell or obtained from the external environment mediate many of these protein-protein interactions. The study of these small molecule-mediated protein-protein interactions is important in understanding abnormal signal transduction pathways in a variety of disorders, as well as in optimizing the process of drug development and validation. In this study, we evaluated the rapamycin-mediated interaction of the human proteins FK506-binding protein (FKBP12) rapamycin-binding domain (FRB) and FKBP12 by constructing a fusion of these proteins with a split-Renilla luciferase or a split enhanced green fluorescent protein (split-EGFP) such that complementation of the reporter fragments occurs in the presence of rapamycin. Different linker peptides in the fusion protein were evaluated for the efficient maintenance of complemented reporter activity. This system was studied in both cell culture and xenografts in living animals. We found that peptide linkers with two or four EAAAR repeat showed higher protein-protein interaction-mediated signal with lower background signal compared with having no linker or linkers with amino acid sequences GGGGSGGGGS, ACGSLSCGSF, and ACGSLSCGSFACGSLSCGSF. A 9 +/- 2-fold increase in signal intensity both in cell culture and in living mice was seen compared with a system that expresses both reporter fragments and the interacting proteins separately. In this fusion system, rapamycin induced heterodimerization of the FRB and FKBP12 moieties occurred rapidly even at very lower concentrations (0.00001 nmol/L) of rapamycin. For a similar fusion system employing split-EGFP, flow cytometry analysis showed significant level of rapamycin-induced complementation.
Tran, Giang T; Hodgkinson, Suzanne J; Carter, Nicole M; Killingsworth, Murray; Nomura, Masaru; Verma, Nirupama D; Plain, Karren M; Boyd, Rochelle; Hall, Bruce M
2010-12-15
Antibody deposition and complement activation, especially membrane attack complex (MAC) formation are considered central for immune mediated demyelination. To examine the role of MAC in immune mediated demyelination, we studied experimental allergic neuritis (EAN) in Lewis rats deficient in complement component 6 (C6) that cannot form MAC. A C6 deficient Lewis (Lewis/C6-) strain of rats was bred by backcrossing the defective C6 gene, from PVG/C6- rats, onto the Lewis background. Lewis/C6- rats had the same C6 gene deletion as PVG/C6- rats and their sera did not support immune mediated haemolysis unless C6 was added. Active EAN was induced in Lewis and Lewis/C6- rats by immunization with bovine peripheral nerve myelin in complete Freund's adjuvant (CFA), and Lewis/C6- rats had delayed clinical EAN compared to the Lewis rats. Peripheral nerve demyelination in Lewis/C6- was also delayed but was similar in extent at the peak of disease. Compared to Lewis, Lewis/C6- nerves had no MAC deposition, reduced macrophage infiltrate and IL-17A, but similar T cell infiltrate and Th1 cytokine mRNA expression. ICAM-1 and P-selectin mRNA expression and immunostaining on vascular endothelium were delayed in Lewis C6- compared to Lewis rats' nerves. This study found that MAC was not required for immune mediated demyelination; but that MAC enhanced early symptoms and early demyelination in EAN, either by direct lysis or by sub-lytic induction of vascular endothelial expression of ICAM-1 and P-selectin. Copyright © 2010 Elsevier B.V. All rights reserved.
Sugihara, T; Kobori, A; Imaeda, H; Tsujikawa, T; Amagase, K; Takeuchi, K; Fujiyama, Y; Andoh, A
2010-01-01
Recent studies have demonstrated that the complement system participates in the regulation of T cell functions. To address the local biosynthesis of complement components in inflammatory bowel disease (IBD) mucosa, we investigated C3 and interleukin (IL)-17 mRNA expression in mucosal samples obtained from patients with IBD. The molecular mechanisms underlying C3 induction were investigated in human colonic subepithelial myofibroblasts (SEMFs). IL-17 and C3 mRNA expressions in the IBD mucosa were evaluated by real-time polymerase chain reaction. The C3 levels in the supernatant were determined by enzyme-linked immunosorbent assay. IL-17 and C3 mRNA expressions were elevated significantly in the active lesions from ulcerative colitis (UC) and Crohn's disease (CD) patients. There was a significant positive correlation between IL-17 and C3 mRNA expression in the IBD mucosa. IL-17 stimulated a dose- and time-dependent increase in C3 mRNA expression and C3 secretion in colonic SEMFs. The C3 molecules secreted by colonic SEMFs were a 115-kDa α-chain linked to a 70-kDa β-chain by disulphide bonds, which was identical to serum C3. The IL-17-induced C3 mRNA expression was blocked by p42/44 mitogen-activated protein kinase (MAPK) inhibitors (PD98059 and U0216) and a p38 MAPK inhibitor (SB203580). Furthermore, IL-17-induced C3 mRNA expression was inhibited by an adenovirus containing a stable mutant form of IκBα. C3 and IL-17 mRNA expressions are enhanced, with a strong correlation, in the inflamed mucosa of IBD patients. Part of these clinical findings was considered to be mediated by the colonic SEMF response to IL-17. PMID:20089077
Gan, Poh-Yi; Kitching, A. Richard; Holdsworth, Stephen R.
2018-01-01
The anti-neutrophil cytoplasmic antibody (ANCA) associated vasculitides are autoimmune diseases associated with significant morbidity and mortality. They often affect the kidney causing rapidly progressive glomerulonephritis. While signalling by complement anaphylatoxin C5a though the C5a receptor is important in this disease, the role of the anaphylatoxin C3a signalling via the C3a receptor (C3aR) is not known. Using two different murine models of anti-myeloperoxidase (MPO) glomerulonephritis, one mediated by passive transfer of anti-MPO antibodies, the other by cell-mediated immunity, we found that the C3aR did not alter histological disease severity. However, it promoted macrophage recruitment to the inflamed glomerulus and inhibited the generation of MPO-ANCA whilst not influencing T cell autoimmunity. Thus, whilst the C3aR modulates some elements of disease pathogenesis, overall it is not critical in effector responses and glomerular injury caused by autoimmunity to MPO. PMID:29315316
Ferreira, Viviana P.; Fazito Vale, Vladimir; Pangburn, Michael K.; Abdeladhim, Maha; Ferreira Mendes-Sousa, Antonio; Coutinho-Abreu, Iliano V.; Rasouli, Manoochehr; Brandt, Elizabeth A.; Meneses, Claudio; Lima, Kolyvan Ferreira; Nascimento Araújo, Ricardo; Horácio Pereira, Marcos; Kotsyfakis, Michalis; Oliveira, Fabiano; Kamhawi, Shaden; Ribeiro, Jose M. C.; Gontijo, Nelder F.; Collin, Nicolas; Valenzuela, Jesus G.
2016-01-01
Blood-feeding insects inject potent salivary components including complement inhibitors into their host’s skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases. PMID:26758086
Lynn, Freyja; Mocca, Brian; Borrow, Ray; Findlow, Helen; Hassan-King, Musa; Preziosi, Marie-Pierre; Idoko, Olubukola; Sow, Samba; Kulkarni, Prasad; LaForce, F. Marc
2014-01-01
A meningococcal group A polysaccharide (PS) conjugate vaccine (PsA-TT) has been developed for African countries affected by epidemic meningitis caused by Neisseria meningitidis. Complement-mediated serum bactericidal antibody (SBA) assays are used to assess protective immune responses to meningococcal vaccination. Human complement (hC′) was used in early studies demonstrating antibody-mediated protection against disease, but it is difficult to obtain and standardize. We developed and evaluated a method for sourcing hC′ and then used the SBA assay with hC′ (hSBA) to measure bactericidal responses to PsA-TT vaccination in 12- to 23-month-old African children. Sera with active complement from 100 unvaccinated blood donors were tested for intrinsic bactericidal activity, SBA titer using rabbit complement (rSBA), and anti-group A PS antibody concentration. Performance criteria and pooling strategies were examined and then verified by comparisons of three independently prepared hC′ lots in two laboratories. hSBA titers of clinical trial sera were then determined using this complement sourcing method. Two different functional antibody tests were necessary for screening hC′. hSBA titers determined using three independent lots of pooled hC′ were within expected assay variation among lots and between laboratories. In African toddlers, PsA-TT elicited higher hSBA titers than meningococcal polysaccharide or Hib vaccines. PsA-TT immunization or PS challenge of PsA-TT-primed subjects resulted in vigorous hSBA memory responses, and titers persisted in boosted groups for over a year. Quantifying SBA using pooled hC′ is feasible and showed that PsA-TT was highly immunogenic in African toddlers. PMID:24671551
Wiley, L M; Obasaju, M F; Overstreet, J W; Cross, N L; Hanson, F W; Chang, R J
1987-08-01
The authors have developed an extension of the sperm penetration assay for detecting serum immunoglobulins to sperm antigens that are transferred to the plasma membrane of a sperm-penetrated hamster oocyte. After the hamster oocytes have been scored for sperm penetration by observing for the presence of swollen sperm heads, they are incubated in serum followed by either a 20-minute treatment with rhodamine-conjugated protein A (which binds to most subclasses of IgA, IgG, and IgM) or a 2-hour incubation in guinea pig serum (complement). Positive fluorescence indicates that the serum contains antibodies to sperm antigens that were transferred to the surface of an oocyte during gamete fusion. Complement-mediated lysis indicates that the immunoglobulin that is bound can also fix complement. The advantages of this assay for detection of serum antisperm antibodies are that it is an extension of a widely used assay, is rapid and requires readily available reagents and equipment, can detect most subclasses of IgA, IgG, and IgM, detects antibodies to those sperm antigens that may be transferred to the oocyte during fertilization, and indicates whether the detected antisperm antibodies can mediate complement-dependent lysis of the fertilized oocyte.
Franco, A A; Kothary, M H; Gopinath, G; Jarvis, K G; Grim, C J; Hu, L; Datta, A R; McCardell, B A; Tall, B D
2011-04-01
Cronobacter spp. are emerging neonatal pathogens in humans, associated with outbreaks of meningitis and sepsis. To cause disease, they must survive in blood and invade the central nervous system by penetrating the blood-brain barrier. C. sakazakii BAA-894 possesses an ~131-kb plasmid (pESA3) that encodes an outer membrane protease (Cpa) that has significant identity to proteins that belong to the Pla subfamily of omptins. Members of this subfamily of proteins degrade a number of serum proteins, including circulating complement, providing protection from the complement-dependent serum killing. Moreover, proteins of the Pla subfamily can cause uncontrolled plasmin activity by converting plasminogen to plasmin and inactivating the plasmin inhibitor α2-antiplasmin (α2-AP). These reactions enhance the spread and invasion of bacteria in the host. In this study, we found that an isogenic cpa mutant showed reduced resistance to serum in comparison to its parent C. sakazakii BAA-894 strain. Overexpression of Cpa in C. sakazakii or Escherichia coli DH5α showed that Cpa proteolytically cleaved complement components C3, C3a, and C4b. Furthermore, a strain of C. sakazakii overexpressing Cpa caused a rapid activation of plasminogen and inactivation of α2-AP. These results strongly suggest that Cpa may be an important virulence factor involved in serum resistance, as well as in the spread and invasion of C. sakazakii.
Therapeutic inhibition of the complement system. Y2K update.
Asghar, S S; Pasch, M C
2000-09-01
Activation of complement is an essential part of the mechanism of pathogenesis of a large number of human diseases; its inhibition by pharmacological means is likely to suppress disease processes in complement mediated diseases. From this point of view low molecular weight synthetic inhibitors of complement are being developed and high molecular weight natural inhibitors of human origin present in plasma or embedded in cell membrane are being purified or produced in their recombinant forms. This review is concerned with high molecular weight inhibitors, some of which are already in clinical use but may be efficacious in many other diseases in which they have not yet been tried. C1-esterase inhibitor (C1-INH) concentrate prepared from human plasma is being successfully used for the treatment of hereditary angioneurotic edema. Recently, C1-INH has been found to be consumed in severe inflammation and has been shown to exert beneficial effects in several inflammatory conditions such as human sepsis, post-operative myocardial dysfunction due to reperfusion injury, severe capillary leakage syndrome after bone marrow transplantation, reperfusion injury after lung transplantation, burn, and cytotoxicity caused by IL-2 therapy in cancer. Factor I has been used for the treatment of factor I deficiency. Recombinant soluble forms of membrane cofactor protein (MCP), and decay accelerating factor (DAF) have not yet been tried in humans but have been shown to be effective in immune complex mediate inflammation in animals. Organs of pigs transgenic for one or more of human membrane regulators of complement namely membrane cofactor protein (MCP), decay accelerating factor (DAF) or CD59, are being produced for transplantation into humans. They have been shown to be resistant to hyperacute rejection in non-human primates; acute vascular rejection is still a problem in their clinical use. It is hoped that these observations together with future developments will make xeno-transplantation in clinical practice a reality. Several recombinant variants of complement receptor 1 (CR1) have been produced. The most effective of these appears to be sCR1-SLe x, sCR1 part of which inhibits complement and carbohydrate Sle x moiety inhibits selectin mediated interactions of neutrophils and lymphocytes with endothelium. Although clinical trials of sCR1 in humans is eagerly awaited, several of the recombinant versions of sCR1 have been shown to suppress ischemia/reperfusion injury, thermal trauma, and immune complex mediated inflammation. They have also been shown to be effective in experimental models of systemic sclerosis, arthritis, myasthenia gravis, Guillain Barré syndrome and glomerulonephritis. Intravenous immunoglobulin, three of the most prominent properties of which are neutralization of autoantibody activity, suppression of autoantibody production and inhibition of complement activity, is being used in several diseases. These include autoimmune thrombocyopenic purpura, Kawasaki disease and several neurological diseases such as myasthenia gravis and Guillain Barre syndrome. In many uncontrolled small scale studies intravenous immunoglobulin has been shown to be effective in many immunological including dermatological diseases; controlled clinical trials in a large number of patients with these diseases is needed to establish the efficacy. It is hoped that in future therapeutic inhibition of complement will be one of the major approaches to combat many human diseases.
Villiers, M B; Villiers, C L; Jacquier-Sarlin, M R; Gabert, F M; Journet, A M; Colomb, M G
1996-01-01
Antigen opsonization by the C3b fragment of complement is a significant event in the modulation of cell-mediated immune response, but its mechanism is still largely unknown. The structural characteristics of C3b allow it to act as a bifunctional ligand between antigen and cells via their membrane C3b receptors. It was thus of interest to study the influence of the covalent link between C3b and antigen on the fixation and internalization of this antigen by antigen-presenting cells. Tetanus toxin (TT) was used as antigen, either free or covalently linked to C3b (TT-C3b). The antigen-presenting cells were TT-specific (4.2) or non-specific (BL15) Epstein-Barr virus (EBV)-transformed B cells. C3b was found to play an important role in antigen fixation and internalization by both antigen-specific and antigen non-specific cells. Covalent binding of C3b on TT (1) permitted fixation and internalization of this antigen by non-specific cells via their complement receptors; (2) enhanced antigen fixation and resulted in cross-linking between membrane immunoglobulins and complement receptors on antigen-specific cells. The consequences of covalent C3b binding to TT were analysed using antigen-specific and antigen-nonspecific cells. In both cases, a net increase in antigen fixation was observed. At the intracellular level, covalent C3b binding to TT resulted in a large TT incorporation in endosomes of nonspecific cells, similar to that observed in antigen-specific cells. Thus, C3b covalently linked to antigen enlarges the array of B-cell types capable of presenting antigen, including non-specific cells. Images Figure 2 PMID:8958046
Liu, Ming; Gao, Yue; Xiao, Rui; Zhang, Bo-li
2009-01-01
This study is to analyze microcosmic significance of Chinese medicine composing principle "principal, assistant, complement and mediating guide" and it's fuzzy mathematic quantitative law. According to molecular biology and maximal membership principle, fuzzy subset and membership functions were proposed. Using in vivo experiment on the effects of SiWu Decoction and its ingredients on mice with radiation-induced blood deficiency, it is concluded that DiHuang and DangGui belonged to the principal and assistant subset, BaiShao belonged to the contrary complement subset, ChuanXiong belonged to the mediating guide subset by maximal membership principle. It is discussed that traditional Chinese medicine will be consummate medical science when its theory can be described by mathematic language.
Jodele, Sonata; Dandoy, Christopher E; Danziger-Isakov, Lara; Myers, Kasiani C; El-Bietar, Javier; Nelson, Adam; Wallace, Gregory; Teusink-Cross, Ashley; Davies, Stella M
2016-07-01
Eculizumab inhibits terminal complement-mediated intravascular hemolysis in patients with paroxysmal nocturnal hemoglobinuria and complement-mediated thrombotic microangiopathy (TMA) in patients with atypical hemolytic uremic syndrome and is now used as a first-line therapy in these diseases. Eculizumab is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) because of an increased risk of meningococcal infections in persons without adequate functional complement. Administration of meningococcal vaccine is required at least 2 weeks before administering the first dose of eculizumab, and this advice is included in the product label. Eculizumab use for treatment of TMA in hematopoietic stem cell transplantation (HSCT) recipients brings a significant dilemma regarding REMS required meningococcal vaccination. TMA after HSCT usually occurs within the first 100 days after transplantation when patients are severely immunocompromised and are not able to mount a response to vaccines. We evaluated 30 HSCT recipients treated with eculizumab for high-risk TMA without meningococcal vaccine. All patients received antimicrobial prophylaxis adequate for Neisseria meningitides during eculizumab therapy and for 8 weeks after discontinuation of the drug. Median time to TMA diagnosis was 28 days after transplant (range, 13.8 to 48.5). Study subjects received a median of 14 eculizumab doses (range, 2 to 38 doses) for HSCT-associated TMA therapy. There were no incidences of meningococcal infections. The incidences of bacterial and fungal bloodstream infections were similar in patients treated with eculizumab (n = 30) as compared with those with HSCT-associated TMA who did not receive any complement blocking therapy (n = 39). Our data indicate that terminal complement blockade in the early post-transplant period can be performed without meningococcal vaccination while using appropriate antimicrobial prophylaxis until complement function is restored after therapy completion. Copyright © 2016 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Bellone, S; Roque, D; Cocco, E; Gasparrini, S; Bortolomai, I; Buza, N; Abu-Khalaf, M; Silasi, D-A; Ratner, E; Azodi, M; Schwartz, P E; Rutherford, T J; Pecorelli, S; Santin, A D
2012-04-24
We evaluated the expression of CD46, CD55 and CD59 membrane-bound complement-regulatory proteins (mCRPs) in primary uterine serous carcinoma (USC) and the ability of small interfering RNA (siRNA) against these mCRPs to sensitise USC to complement-dependent cytotoxicity (CDC) and antibody (trastuzumab)-dependent cellular cytotoxicity (ADCC) in vitro. Membrane-bound complement-regulatory proteins expression was evaluated using real-time PCR (RT-PCR) and flow cytometry, whereas Her2/neu expression and c-erbB2 gene amplification were assessed using immunohistochemistry, flow cytometry and fluorescent in-situ hybridisation. The biological effect of siRNA-mediated knockdown of mCRPs on HER2/neu-overexpressing USC cell lines was evaluated in CDC and ADCC 4-h chromium-release assays. High expression of mCRPs was found in USC cell lines when compared with normal endometrial cells (P<0.05). RT-PCR and FACS analyses demonstrated that anti-mCRP siRNAs were effective in reducing CD46, CD55 and CD59 expression on USC (P<0.05). Baseline complement-dependent cytotoxicity (CDC) against USC cell lines was low (mean ± s.e.m.=6.8 ± 0.9%) but significantly increased upon CD55 and CD59 knockdown (11.6 ± 0.8% and 10.7 ± 0.9%, respectively, P<0.05). Importantly, in the absence of complement, both CD55 and CD59, but not CD46, knockdowns significantly augmented ADCC against USC overexpressing Her2/neu. Uterine serous carcinoma express high levels of the mCRPs CD46, CD55 and CD59. Small interfering RNA inhibition of CD55 and CD59, but not CD46, sensitises USC to both CDC and ADCC in vitro, and if specifically targeted to tumour cells, may significantly increase trastuzumab-mediated therapeutic effect in vivo.
Identification of Tetranectin as a Potential Biomarker for Metastatic Oral Cancer
Arellano-Garcia, Martha E.; Li, Roger; Liu, Xiaojun; Xie, Yongming; Yan, Xiaofei; Loo, Joseph A.; Hu, Shen
2010-01-01
Lymph node involvement is the most important predictor of survival rates in patients with oral squamous cell carcinoma (OSCC). A biomarker that can indicate lymph node metastasis would be valuable to classify patients with OSCC for optimal treatment. In this study, we have performed a serum proteomic analysis of OSCC using 2-D gel electrophoresis and liquid chromatography/tandem mass spectrometry. One of the down-regulated proteins in OSCC was identified as tetranectin, which is a protein encoded by the CLEC3B gene (C-type lectin domain family 3, member B). We further tested the protein level in serum and saliva from patients with lymph-node metastatic and primary OSCC. Tetranectin was found significantly under-expressed in both serum and saliva of metastatic OSCC compared to primary OSCC. Our results suggest that serum or saliva tetranectin may serve as a potential biomarker for metastatic OSCC. Other candidate serum biomarkers for OSCC included superoxide dismutase, ficolin 2, CD-5 antigen-like protein, RalA binding protein 1, plasma retinol-binding protein and transthyretin. Their clinical utility for OSCC detection remains to be further tested in cancer patients. PMID:20957082
Woodman, Michael E.; Worth, Randall G.; Wooten, R. Mark
2012-01-01
Burkholderia pseudomallei is the causative agent of melioidosis and is a major mediator of sepsis in its endemic areas. Because of the low LD50 via aerosols and resistance to multiple antibiotics, it is considered a Tier 1 select agent by the CDC and APHIS. B. pseudomallei is an encapsulated bacterium that can infect, multiply, and persist within a variety of host cell types. In vivo studies suggest that macrophages and neutrophils are important for controlling B. pseudomallei infections, however few details are known regarding how neutrophils respond to these bacteria. Our goal is to describe the capacity of human neutrophils to control highly virulent B. pseudomallei compared to the relatively avirulent, acapsular B. thailandensis using in vitro analyses. B. thailandensis was more readily phagocytosed than B. pseudomallei, but both displayed similar rates of persistence within neutrophils, indicating they possess similar inherent abilities to escape neutrophil clearance. Serum opsonization studies showed that both were resistant to direct killing by complement, although B. thailandensis acquired significantly more C3 on its surface than B. pseudomallei, whose polysaccharide capsule significantly decreased the levels of complement deposition on the bacterial surface. Both Burkholderia species showed significantly enhanced uptake and killing by neutrophils after critical levels of C3 were deposited. Serum-opsonized Burkholderia induced a significant respiratory burst by neutrophils compared to unopsonized bacteria, and neutrophil killing was prevented by inhibiting NADPH-oxidase. In summary, neutrophils can efficiently kill B. pseudomallei and B. thailandensis that possess a critical threshold of complement deposition, and the relative differences in their ability to resist surface opsonization may contribute to the distinct virulence phenotypes observed in vivo. PMID:23251706
Complement inhibition decreases early fibrogenic events in the lung of septic baboons.
Silasi-Mansat, Robert; Zhu, Hua; Georgescu, Constantin; Popescu, Narcis; Keshari, Ravi S; Peer, Glenn; Lupu, Cristina; Taylor, Fletcher B; Pereira, Heloise Anne; Kinasewitz, Gary; Lambris, John D; Lupu, Florea
2015-11-01
Acute respiratory distress syndrome (ARDS) induced by severe sepsis can trigger persistent inflammation and fibrosis. We have shown that experimental sepsis in baboons recapitulates ARDS progression in humans, including chronic inflammation and long-lasting fibrosis in the lung. Complement activation products may contribute to the fibroproliferative response, suggesting that complement inhibitors are potential therapeutic agents. We have been suggested that treatment of septic baboons with compstatin, a C3 convertase inhibitor protects against ARDS-induced fibroproliferation. Baboons challenged with 10(9) cfu/kg (LD50) live E. coli by intravenous infusion were treated or not with compstatin at the time of challenge or 5 hrs thereafter. Changes in the fibroproliferative response at 24 hrs post-challenge were analysed at both transcript and protein levels. Gene expression analysis showed that sepsis induced fibrotic responses in the lung as early as 24 hrs post-bacterial challenge. Immunochemical and biochemical analysis revealed enhanced collagen synthesis, induction of profibrotic factors and increased cell recruitment and proliferation. Specific inhibition of complement with compstatin down-regulated sepsis-induced fibrosis genes, including transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), tissue inhibitor of metalloproteinase 1 (TIMP1), various collagens and chemokines responsible for fibrocyte recruitment (e.g. chemokine (C-C motif) ligand 2 (CCL2) and 12 (CCL12)). Compstatin decreased the accumulation of myofibroblasts and proliferating cells, reduced the production of fibrosis mediators (TGF-β, phospho-Smad-2 and CTGF) and inhibited collagen deposition. Our data demonstrate that complement inhibition effectively attenuates collagen deposition and fibrotic responses in the lung after severe sepsis. Inhibiting complement could prove an attractive strategy for preventing sepsis-induced fibrosis of the lung. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Santa-Marta, Mariana; da Silva, Frederico Aires; Fonseca, Ana Margarida; Goncalves, Joao
2005-03-11
The human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G), also known as CEM-15, is a host-cell factor involved in innate resistance to retroviral infection. HIV-1 viral infectivity factor (Vif) protein was shown to protect the virus from APOBEC3G-mediated viral cDNA hypermutation. The mechanism proposed for protection of the virus by HIV-1 Vif is mediated by APOBEC3G degradation through ubiquitination and the proteasomal pathway. Here we show that in Escherichia coli the APOBEC3G-induced cytidine deamination is inhibited by expression of Vif without depletion of deaminase. Moreover, inhibition of deaminase-mediated bacterial hypermutation is dependent on a single amino acid substitution D128K that renders APOBEC3G resistant to Vif inhibition. This single amino acid was elegantly proven by other authors to determine species-specific sensitivity. Our results show that in bacteria this single amino acid substitution controls Vif-dependent blocking of APOBEC3G that is dependent on a strong protein interaction. The C-terminal region of Vif is responsible for this strong protein-protein interaction. In conclusion, our experiments suggest a complement to the model of Vif-induced degradation of APOBEC3G by bringing to relevance that deaminase inhibition can also result from a direct interaction with Vif protein.
Galectin 3 complements BNP in risk stratification in acute heart failure.
Fermann, Gregory J; Lindsell, Christopher J; Storrow, Alan B; Hart, Kimberly; Sperling, Matthew; Roll, Susan; Weintraub, Neal L; Miller, Karen F; Maron, David J; Naftilan, Allen J; McPherson, John A; Sawyer, Douglas B; Christenson, Robert; Collins, Sean P
2012-12-01
Galectin 3 (G3) is a mediator of fibrosis and remodeling in heart failure. Patients diagnosed with and treated for Acute Heart Failure Syndromes were prospectively enrolled in the Decision Making in Acute Decompensated Heart Failure multicenter trial. Patients with a higher G3 had a history of renal disease, a lower heart rate and acute kidney injury. They also tended to have a history of HF and 30-day adverse events compared with B-type natriuretic peptide. In Acute Heart Failure Syndromes, G3 levels do not provide prognostic value, but when used complementary to B-type natriuretic peptide, G3 is associated with renal dysfunction and may predict 30-day events.
Effects of CTLA4-Fc on glomerular injury in humorally-mediated glomerulonephritis in BALB/c mice
Kitching, A R; Huang, X R; Ruth, A-J; Tipping, P G; Holdsworth, S R
2002-01-01
The effect of cytotoxic T-lymphocyte-associated molecule 4-immunoglobulin fusion protein (CTLA4-Fc) on humorally-mediated glomerulonephritis was studied in accelerated anti-glomerular basement membrane (anti-GBM) glomerulonephritis induced in BALB/c mice. This strain of mice develops antibody and complement dependent glomerulonephritis under this protocol. Sensitized BALB/c mice developed high levels of circulating autologous antibody titres, intense glomerular deposition of mouse immunoglobulin and complement, significant proteinuria, renal impairment, significant glomerular necrosis and a minor component of crescent formation 10 days after challenge with a nephritogenic antigen (sheep anti-GBM globulin). Early treatment during the primary immune response, or continuous treatment throughout the disease with CTLA4-Fc, significantly suppressed mouse anti-sheep globulin antibody titres in serum, and immunoglobulin and complement deposition in glomeruli. The degree of glomerular necrosis was improved and proteinuria was reduced, particularly in the earlier stages of disease. Late treatment by CTLA4-Fc starting one day after challenge with sheep anti-mouse GBM did not affect antibody production and did not attenuate glomerulonephritis. The low level of crescent formation found in BALB/c mice developing glomerulonephritis was not prevented by the administration of CTLA4-Fc. These results demonstrate that CTLA4-Fc is of benefit in this model of glomerulonephritis by its capacity to attenuate antibody production, without affecting the minor degree of cell-mediated glomerular injury. PMID:12067297
Effects of CTLA4-Fc on glomerular injury in humorally-mediated glomerulonephritis in BALB/c mice.
Kitching, A R; Huang, X R; Ruth, A-J; Tipping, P G; Holdsworth, S R
2002-06-01
The effect of cytotoxic T-lymphocyte-associated molecule 4-immunoglobulin fusion protein (CTLA4-Fc) on humorally-mediated glomerulonephritis was studied in accelerated anti-glomerular basement membrane (anti-GBM) glomerulonephritis induced in BALB/c mice. This strain of mice develops antibody and complement dependent glomerulonephritis under this protocol. Sensitized BALB/c mice developed high levels of circulating autologous antibody titres, intense glomerular deposition of mouse immunoglobulin and complement, significant proteinuria, renal impairment, significant glomerular necrosis and a minor component of crescent formation 10 days after challenge with a nephritogenic antigen (sheep anti-GBM globulin). Early treatment during the primary immune response, or continuous treatment throughout the disease with CTLA4-Fc, significantly suppressed mouse anti-sheep globulin antibody titres in serum, and immunoglobulin and complement deposition in glomeruli. The degree of glomerular necrosis was improved and proteinuria was reduced, particularly in the earlier stages of disease. Late treatment by CTLA4-Fc starting one day after challenge with sheep anti-mouse GBM did not affect antibody production and did not attenuate glomerulonephritis. The low level of crescent formation found in BALB/c mice developing glomerulonephritis was not prevented by the administration of CTLA4-Fc. These results demonstrate that CTLA4-Fc is of benefit in this model of glomerulonephritis by its capacity to attenuate antibody production, without affecting the minor degree of cell-mediated glomerular injury.
Roy Choudhury, Swarup; Wang, Yuqi; Pandey, Sona
2014-07-01
Signalling pathways mediated by heterotrimeric G-proteins are common to all eukaryotes. Plants have a limited number of each of the G-protein subunits, with the most elaborate G-protein network discovered so far in soya bean (Glycine max, also known as soybean) which has four Gα, four Gβ and ten Gγ proteins. Biochemical characterization of Gα proteins from plants suggests significant variation in their properties compared with the well-characterized non-plant proteins. Furthermore, the four soya bean Gα (GmGα) proteins exhibit distinct biochemical activities among themselves, but the extent to which such biochemical differences contribute to their in vivo function is also not known. We used the yeast gpa1 mutant which displays constitutive signalling and growth arrest in the pheromone-response pathway as an in vivo model to evaluate the effect of distinct biochemical activities of GmGα proteins. We showed that specific GmGα proteins can be activated during pheromone-dependent receptor-mediated signalling in yeast and they display different strengths towards complementation of yeast gpa1 phenotypes. We also identified amino acids that are responsible for differential complementation abilities of specific Gα proteins. These data establish that specific plant Gα proteins are functional in the receptor-mediated pheromone-response pathway in yeast and that the subtle biochemical differences in their activity are physiologically relevant.
Wardhan, Vijay; Pandey, Aarti; Chakraborty, Subhra; Chakraborty, Niranjan
2016-01-01
Tubby and Tubby-like proteins (TLPs), in mammals, play critical roles in neural development, while its function in plants is largely unknown. We previously demonstrated that the chickpea TLP, CaTLP1, participates in osmotic stress response and might be associated with ABA-dependent network. However, how CaTLP1 is connected to ABA signaling remains unclear. The CaTLP1 was found to be engaged in ABA-mediated gene expression and stomatal closure. Complementation of the yeast yap1 mutant with CaTLP1 revealed its role in ROS scavenging. Furthermore, complementation of Arabidopsis attlp2 mutant displayed enhanced stress tolerance, indicating the functional conservation of TLPs across the species. The presence of ABA-responsive element along with other motifs in the proximal promoter regions of TLPs firmly established their involvement in stress signalling pathways. The CaTLP1 promoter driven GUS expression was restricted to the vegetative organs, especially stem and rosette leaves. Global protein expression profiling of wild-type, attlp2 and complemented Arabidopsis plants revealed 95 differentially expressed proteins, presumably involved in maintaining physiological and biological processes under dehydration. Immunoprecipitation assay revealed that protein kinases are most likely to interact with CaTLP1. This study provides the first demonstration that the TLPs act as module for ABA-mediated stomatal closure possibly via interaction with protein kinase. PMID:27934866
Xu, Heping; Chen, Mei
2016-09-15
The retina, an immune privileged tissue, has specialized immune defense mechanisms against noxious insults that may exist in diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR), uveoretinitis and glaucoma. The defense system consists of retinal innate immune cells (including microglia, perivascular macrophages, and a small population of dendritic cells) and the complement system. Under normal aging conditions, retinal innate immune cells and the complement system undergo a low-grade activation (parainflammation) which is important for retinal homeostasis. In disease states such as AMD and DR, the parainflammatory response is dysregulated and develops into detrimental chronic inflammation. Complement activation in the retina is an important part of chronic inflammation and may contribute to retinal pathology in these disease states. Here, we review the evidence that supports the role of uncontrolled or dysregulated complement activation in various retinal degenerative and angiogenic conditions. We also discuss current strategies that are used to develop complement-based therapies for retinal diseases such as AMD. The potential benefits of complement inhibition in DR, uveoretinitis and glaucoma are also discussed, as well as the need for further research to better understand the mechanisms of complement-mediated retinal damage in these disease states. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Functional anatomy of complement factor H.
Makou, Elisavet; Herbert, Andrew P; Barlow, Paul N
2013-06-11
Factor H (FH) is a soluble regulator of the proteolytic cascade at the core of the evolutionarily ancient vertebrate complement system. Although FH consists of a single chain of similar protein modules, it has a demanding job description. Its chief role is to prevent complement-mediated injury to healthy host cells and tissues. This entails recognition of molecular patterns on host surfaces combined with control of one of nature's most dangerous examples of a positive-feedback loop. In this way, FH modulates, where and when needed, an amplification process that otherwise exponentially escalates the production of the pro-inflammatory, pro-phagocytic, and pro-cytolytic cleavage products of complement proteins C3 and C5. Mutations and single-nucleotide polymorphisms in the FH gene and autoantibodies against FH predispose individuals to diseases, including age-related macular degeneration, dense-deposit disease, and atypical hemolytic uremic syndrome. Moreover, deletions or variations of genes for FH-related proteins also influence the risk of disease. Numerous pathogens hijack FH and use it for self-defense. As reviewed herein, a molecular understanding of FH function is emerging. While its functional oligomeric status remains uncertain, progress has been achieved in characterizing its three-dimensional architecture and, to a lesser extent, its intermodular flexibility. Models are proposed, based on the reconciliation of older data with a wealth of recent evidence, in which a latent circulating form of FH is activated by its principal target, C3b tethered to a self-surface. Such models suggest hypotheses linking sequence variations to pathophysiology, but improved, more quantitative, functional assays and rigorous data analysis are required to test these ideas.
Zangenah, Salah; Bergman, Peter
2015-01-01
Capnocytophaga canimorsus (Cani) and Capnocytophaga cynodegmi (Cyno) are found in the oral cavities of dogs and cats. They can be transmitted to humans via licks or bites and cause wound infections as well as severe systemic infections. Cani is considered to be more pathogenic than Cyno, but the pathophysiological mechanisms are not elucidated. Cani has been suggested to be resistant to serum bactericidal effects. Thus, we hypothesized that the more invasive Cani would exhibit a higher degree of serum-resistance than the less pathogenic Cyno. Whole blood and serum bactericidal assays were performed against Cani- (n = 8) and Cyno-strains (n = 15) isolated from blood and wound-specimens, respectively. Analysis of complement-function was performed by heat-inactivation, EGTA-treatment and by using C1q-depleted serum. Serum and whole blood were collected from healthy individuals and from patients (n = 3) with a history of sepsis caused by Cani. Both Cani and Cyno were equally susceptible to human whole blood and serum. Cani was preferentially killed by the classical pathway of the complement-system whereas Cyno was killed by a partly different mechanism. Serum from 2/3 Cani-infected patients were deficient in MBL-activity but still exhibited the same killing effect as control sera. Both Cani and Cyno were readily killed by human whole blood and serum in a complement-dependent way. Thus, it is not likely that serum bactericidal capacity is the key determinant for the clinical outcome in Cani or Cyno-infections.
Martz, Eric; Burakoff, Steven J.; Benacerraf, Baruj
1974-01-01
Specific lysis of tumor cells by thymus-derived lymphocytes from alloimmunized mice (T-effector specific lysis) was studied with target cells labeled with isotopes attached to both small (14C-labeled nicotinamide) and large (51Cr-labeled) molecules. The results confirm and extend previous reports that target cells release small molecules considerably earlier than large molecules during T-effector specific lysis. After interruption of T-effector specific lysis by specific antibody and complement directed against the killer cells, or by ethylenediaminetetraacetic acid, release of both isotopes continued, eventually reaching identical levels of specific release, the value of which represents the fraction of the target cell population which had been committed to die at the time these treatments were applied. On the other hand, release of both isotopes during T-effector specific lysis stops immediately when the cultures are cooled to 0°. Thus, while ethylenediaminetetraacetic acid or specific complement-mediated lysis of the killer cells merely prevents the initiation of any new damage to target cells, cooling to 0° also stops the lytic process in already-damaged target cells. The colloid osmotic phase of target cell lysis induced by specific antibody and complement was similarly stopped at 0° in tumor cells, but not in erythrocytes. Thus, in tumor target cells, both T-effector specific lysis and complement cause a sequential release of progressively larger molecules which can be immediately stopped at any point by cooling to 0°. PMID:4359327
Myasthenia gravis: the role of complement at the neuromuscular junction.
Howard, James F
2018-01-01
Generalized myasthenia gravis (gMG) is a rare autoimmune disorder characterized by skeletal muscle weakness caused by disrupted neurotransmission at the neuromuscular junction (NMJ). Approximately 74-88% of patients with gMG have acetylcholine receptor (AChR) autoantibodies. Complement plays an important role in innate and antibody-mediated immunity, and activation and amplification of complement results in the formation of membrane attack complexes (MACs), lipophilic proteins that damage cell membranes. The role of complement in gMG has been demonstrated in animal models and patients. Studies in animals lacking specific complement proteins have confirmed that MAC formation is required to induce experimental autoimmune MG (EAMG) and NMJ damage. Complement inhibition in EAMG models can prevent disease induction and reverse its progression. Patients with anti-AChR + MG have autoantibodies and MACs present at NMJs. Damaged NMJs are associated with more severe disease, fewer AChRs, and MACs in synaptic debris. Current MG therapies do not target complement directly. Eculizumab is a humanized monoclonal antibody that inhibits cleavage of complement protein C5, preventing MAC formation. Eculizumab treatment improved symptoms compared with placebo in a phase II study in patients with refractory gMG. Direct complement inhibition could preserve NMJ physiology and muscle function in patients with anti-AChR + gMG. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.
The Perfect Storm: HLA Antibodies, Complement, FcγRs and Endothelium in Transplant Rejection
Thomas, Kimberly A.; Valenzuela, Nicole M.; Reed, Elaine F.
2015-01-01
The pathophysiology of antibody-mediated rejection (AMR) in solid organ transplants is multi-faceted and predominantly caused by antibodies directed against polymorphic donor human leukocyte antigens (HLA). Despite the clearly detrimental impact of HLA antibodies (HLA-Ab) on graft function and survival, the prevention, diagnosis and treatment of AMR remain a challenge. Histological manifestations of AMR reflect signatures of HLA-Ab-triggered injury, specifically endothelial changes, recipient leukocytic infiltrate, and complement deposition. We review the interconnected mechanisms of HLA-Ab-mediated injury that might synergize in a “perfect storm” of inflammation. Characterization of antibody features that are critical for effector functions may help identify HLA-Ab more likely to cause rejection. We also highlight recent advancements that may pave the way for new, more effective therapeutics. PMID:25801125
Mochizuki, Masami; Motoyoshi, Megumi; Maeda, Ken; Kai, Kazunari
2002-01-01
The properties of neutralization of antigens of canine distemper virus Onderstepoort and a recent field isolate, KDK-1, were investigated with strain-specific dog sera. A conventional neutralization assay indicated antigenic dissimilarity between the strains; however, when guinea pig complement was included in the reaction mixture, the strains were neutralized with not only the homologous but also the heterologous antibodies. PMID:12093697
Peerschke, Ellinor I.B.; Andemariam, Biree; Yin, Wei; Bussel, James B.
2010-01-01
The role of the complement system in immune thrombocytopenic purpura (ITP) is not well defined. We examined plasma from 79 patients with ITP, 50 healthy volunteers, and 25 patients with non-immune mediated thrombocytopenia, to investigate their complement activation/fixation capacity (CAC) on immobilized heterologous platelets. Enhanced CAC was found in 46 plasma samples (59%) from patients with ITP, but no samples from patients with non-immune mediated thrombocytopenia. Plasma from healthy volunteers was used for comparison. In patients with ITP, an enhanced plasma CAC was associated with a decreased circulating absolute immature platelet fraction (A-IPF) (<15 × 109/L) (p = 0.027) and thrombocytopenia (platelet count less than 100K/μl) (p= 0.024). The positive predictive value of an enhanced CAC for a low A-IPF was 93%, with a specificity of 77%. The specificity and positive predictive values increased to 100% when plasma CAC was defined strictly by enhanced C1q and/or C4d deposition on test platelets. Although no statistically significant correlation emerged between CAC and response to different pharmacologic therapies, an enhanced response to splenectomy was noted (p <0.063). Thus, complement fixation may contribute to the thrombocytopenia of ITP by enhancing clearance of opsonized platelets from the circulation, and/or directly damaging platelets and megakaryocytes. PMID:19925495
Jocks, T; Freudenberg, J; Zahner, G; Stahl, R A
1998-01-01
These studies were designed to determine the possible role of platelet-activating factor (PAF) in the production of monocyte chemoattractant protein-1 (MCP-1) in glomerular immune injury. The glomerular lesion was induced in isolated perfused rat kidneys by a rabbit anti-rat-thymocyte serum (ATS) and rat serum (RS) as a complement source. Perfusion of kidneys with ATS and RS results in the selective binding of the antiserum to the glomerular mesangium with consecutive intraglomerular activation of complement. Antibody binding and complement activation induced a significant increase in glomerular MCP-1 mRNA levels when assessed by Northern blotting or RT-PCR. Decomplemented RS or non antibody rabbit IgG had only moderate effects on glomerular MCP-1 mRNA levels. The PAF receptor antagonist WEB 2170 almost completely blocked the ATS and RS induced MCP-1 mRNA levels. Perfusion of control kidneys with PAF increased MCP-1 mRNA expression, an effect which was blocked by WEB 2170. Glomerular MCP-1 protein formation, assessed by Western blotting, was stimulated following ATS and RS and PAF, respectively, was blocked by WEB 2170. These data show that PAF, derived from glomerular resident cells following antibody and complement induced injury, stimulates MCP-1 expression. In addition to the direct effects on leukocyte adhesion and activation PAF may mediate inflammatory cell influx in glomerular injuries due to the release of MCP-1.
Keeping It All Going-Complement Meets Metabolism.
Kolev, Martin; Kemper, Claudia
2017-01-01
The complement system is an evolutionary old and crucial component of innate immunity, which is key to the detection and removal of invading pathogens. It was initially discovered as a liver-derived sentinel system circulating in serum, the lymph, and interstitial fluids that mediate the opsonization and lytic killing of bacteria, fungi, and viruses and the initiation of the general inflammatory responses. Although work performed specifically in the last five decades identified complement also as a critical instructor of adaptive immunity-indicating that complement's function is likely broader than initially anticipated-the dominant opinion among researchers and clinicians was that the key complement functions were in principle defined. However, there is now a growing realization that complement activity goes well beyond "classic" immune functions and that this system is also required for normal (neuronal) development and activity and general cell and tissue integrity and homeostasis. Furthermore, the recent discovery that complement activation is not confined to the extracellular space but occurs within cells led to the surprising understanding that complement is involved in the regulation of basic processes of the cell, particularly those of metabolic nature-mostly via novel crosstalks between complement and intracellular sensor, and effector, pathways that had been overlooked because of their spatial separation. These paradigm shifts in the field led to a renaissance in complement research and provide new platforms to now better understand the molecular pathways underlying the wide-reaching effects of complement functions in immunity and beyond. In this review, we will cover the current knowledge about complement's emerging relationship with the cellular metabolism machinery with a focus on the functional differences between serum-circulating versus intracellularly active complement during normal cell survival and induction of effector functions. We will also discuss how taking a closer look into the evolution of key complement components not only made the functional connection between complement and metabolism rather "predictable" but how it may also give clues for the discovery of additional roles for complement in basic cellular processes.
Complement in Lupus Nephritis: New Perspectives.
Bao, Lihua; Cunningham, Patrick N; Quigg, Richard J
2015-09-01
Systemic lupus erythematosus (SLE) is an autoimmune disorder caused by loss of tolerance to self-antigens, the production of autoantibodies and deposition of complement-fixing immune complexes (ICs) in injured tissues. SLE is characterized by a wide range of clinical manifestations and targeted organs, with lupus nephritis being one of the most serious complications. The complement system consists of three pathways and is tightly controlled by a set of regulatory proteins to prevent injudicious complement activation on host tissue. The involvement of the complement system in the pathogenesis of SLE is well accepted; yet, its exact role is still not clear. Complement plays dual roles in the pathogenesis of SLE. On the one hand, the complement system appears to have protective features in that hereditary homozygous deficiencies of classical pathway components, such as C1q and C4, are associated with an increased risk for SLE. On the other hand, IC-mediated activation of complement in affected tissues is clearly evident in both experimental and human SLE along with pathological features that are logical consequences of complement activation. Studies in genetically altered mice have shown that lack of complement inhibitors, such as complement factor H (CFH) or decay-accelerating factor (DAF) accelerates the development of experimental lupus nephritis, while treatment with recombinant protein inhibitors, such as Crry-Ig, CR2-Crry, CR2-DAF and CR2-CFH, ameliorates the disease development. Complement-targeted drugs, including soluble complement receptor 1 (TP10), C1 esterase inhibitor and a monoclonal anti-C5 antibody (eculizumab), have been shown to inhibit complement safely, and are now being investigated in a variety of clinical conditions. SLE is an autoimmune disorder which targets multiple systems. Complement is centrally involved and plays dual roles in the pathogenesis of SLE. Studies from experimental lupus models and clinical trials support the use of complement-targeted therapy in the treatment of SLE.
García Santos, William H; Puerto Galvis, Carlos E; Kouznetsov, Vladimir V
2015-02-07
A selective and mild method for the esterification of a variety of carboxylic acids with geraniol is developed. We demonstrated that the use of triphenylphosphine, I2, 2-methylimidazole or imidazole and a catalytic amount of Gd(OTf)3 resulted to be more active than the previous protocols, providing a 16-membered library of geranyl esters in higher yields and in shorter reaction times. The use of essential oil of palmarosa (Cymbopogon martinii), enriched with geraniol, as a raw material for the synthesis of the target compounds complemented and proved how sustainable and eco-friendly this protocol is. Finally, the selective 6,7-epoxidation of the obtained geranyl esters led us to study their regio-controlled radical cyclization mediated by titanocene(III) for the synthesis of novel (8-hydroxy-9,9-dimethyl-5-methylene cyclohexyl)methyl esters in moderate yields and with excellent stereoselectivities.
Kim, Miae; Martin, Spencer T; Townsend, Keri R; Gabardi, Steven
2014-07-01
Antibody-mediated rejection (AMR), also known as B-cell-mediated or humoral rejection, is a significant complication after kidney transplantation that carries a poor prognosis. Although fewer than 10% of kidney transplant patients experience AMR, as many as 30% of these patients experience graft loss as a consequence. Although AMR is mediated by antibodies against an allograft and results in histologic changes in allograft vasculature that differ from cellular rejection, it has not been recognized as a separate disease process until recently. With an improved understanding about the importance of the development of antibodies against allografts as well as complement activation, significant advances have occurred in the treatment of AMR. The standard of care for AMR includes plasmapheresis and intravenous immunoglobulin that remove and neutralize antibodies, respectively. Agents targeting B cells (rituximab and alemtuzumab), plasma cells (bortezomib), and the complement system (eculizumab) have also been used successfully to treat AMR in kidney transplant recipients. However, the high cost of these medications, their use for unlabeled indications, and a lack of prospective studies evaluating their efficacy and safety limit the routine use of these agents in the treatment of AMR in kidney transplant recipients. © 2014 Pharmacotherapy Publications, Inc.
Bernard, Louis; Vaudaux, Pierre; Huggler, Elzbieta; Stern, Richard; Fréhel, Claude; Francois, Patrice; Lew, Daniel; Hoffmeyer, Pierre
2007-04-01
Polymorphonuclear neutrophils, a first line of defence against invading microbial pathogens, may be attracted by inflammatory mediators triggered by ultrahigh-molecular-weight polyethylene (UHMWPE) wear particles released from orthopaedic prostheses. Phagocytosis of UHMWPE particles by neutrophils may indirectly compromise their phagocytic-bactericidal mechanisms, thus enhancing host susceptibility to microbial infections. In an in vitro assay, pre-exposure of purified human neutrophils to UHMWPE micrometre- and submicrometre-sized wear particles interfered with subsequent Staphylococcos aureus uptake in a heterogeneous way, as assessed by a dual label fluorescence microscopic assay that discriminated intracellular rhodamine-labelled UHMWPE particles from fluorescein isothiocyanate-labelled S. aureus. Indeed, a higher percentage (44%) of neutrophils having engulfed UHMWPE particles lost the ability to phagocytize S. aureus, compared with UHMWPE-free neutrophils (<3%). Pre-exposure of neutrophils to UHMWPE wear particles did not impair but rather stimulated their oxidative burst response in a chemoluminescence assay. The presence of UHMWPE wear particles did not lead to significant overall consumption of complement-mediated opsonic factors nor decreased surface membrane display of neutrophil complement receptors. In conclusion, engulfment of UHMWPE wear particles led to inactivation of S. aureus uptake in nearly half of the neutrophil population, which may potentially impair host clearance mechanisms against pyogenic infections.
Franco, A. A.; Kothary, M. H.; Gopinath, G.; Jarvis, K. G.; Grim, C. J.; Hu, L.; Datta, A. R.; McCardell, B. A.; Tall, B. D.
2011-01-01
Cronobacter spp. are emerging neonatal pathogens in humans, associated with outbreaks of meningitis and sepsis. To cause disease, they must survive in blood and invade the central nervous system by penetrating the blood-brain barrier. C. sakazakii BAA-894 possesses an ∼131-kb plasmid (pESA3) that encodes an outer membrane protease (Cpa) that has significant identity to proteins that belong to the Pla subfamily of omptins. Members of this subfamily of proteins degrade a number of serum proteins, including circulating complement, providing protection from the complement-dependent serum killing. Moreover, proteins of the Pla subfamily can cause uncontrolled plasmin activity by converting plasminogen to plasmin and inactivating the plasmin inhibitor α2-antiplasmin (α2-AP). These reactions enhance the spread and invasion of bacteria in the host. In this study, we found that an isogenic cpa mutant showed reduced resistance to serum in comparison to its parent C. sakazakii BAA-894 strain. Overexpression of Cpa in C. sakazakii or Escherichia coli DH5α showed that Cpa proteolytically cleaved complement components C3, C3a, and C4b. Furthermore, a strain of C. sakazakii overexpressing Cpa caused a rapid activation of plasminogen and inactivation of α2-AP. These results strongly suggest that Cpa may be an important virulence factor involved in serum resistance, as well as in the spread and invasion of C. sakazakii. PMID:21245266
Interaction of Human Complement Factor H Variants Tyr402 and His402 with Leptospira spp.
Silva, Aldacilene Souza; Valencia, Mónica Marcela Castiblanco; Cianciarullo, Aurora Marques; Vasconcellos, Sílvio Arruda; Barbosa, Angela Silva; Isaac, Lourdes
2011-01-01
Leptospirosis is a zoonosis caused by pathogenic bacteria from the genus Leptospira. The disease represents a serious public health problem in underdeveloped tropical countries. Leptospires infect hosts through small abrasions in the skin or mucous membranes and they rapidly disseminate to target organs. The capacity of some pathogenic leptospiral strains to acquire the negative complement regulators factor H (FH) and C4b binding protein correlates with their ability to survive in human serum. In this study we assessed the functional consequences of the age macular degeneration-associated polymorphism FH His402 or FH Tyr402 on FH–Leptospira interactions. In binding assays using sub-saturating amounts of FH, the FH Tyr402 variant interacted with all the strains tested more strongly than the FH His402 variant. At higher concentrations, differences tended to disappear. We then compared cofactor activities displayed by FH His402 and FH Tyr402 bound to the surface of L. interrogans. Both variants exhibit similar activity as cofactors for Factor I-mediated cleavage of C3b, thus indicating that they do not differ in their capacity to regulate the complement cascade. PMID:22566834
Jung, Hye-Seon; Jeong, Si-Yeon; Yang, Jiwon; Kim, So-Dam; Zhang, Baojin; Yoo, Hyun Seung; Song, Sun U; Jeon, Myung-Shin; Song, Yun Seon
2016-10-28
Bone marrow-derived mesenchymal stem cells (MSCs) are used in stroke treatment despite the poor understanding of its mode of action. The immune suppressive and anti-inflammatory properties of MSCs possibly play important roles in regulating neuroinflammation after stroke. We investigated whether MSCs reduce the inflammatory complement component 3 (C3) levels, thus, providing neuroprotection during stroke. Mice were subjected to transient focal cerebral ischemia (tFCI), after which MSCs were intravenously injected. The infarct volume of the brain was reduced in MSC-injected tFCI mice, and C3 expression was significantly reduced in both the brain and the blood. Additionally, the profiles of other inflammatory mediators demonstrated neuroprotective changes in the MSCs-treated group. In order to analyze the effect of MSCs on neurons during cerebral ischemia, primary cortical neurons were co-cultured with MSCs under oxygen-glucose deprivation (OGD). Primary neurons co-cultured with MSCs exhibited reduced levels of C3 expression and increased protection against OGD, indicating that treatment with MSCs reduces excessive C3 expression and rescues ischemia-induced neuronal damage. Our finding suggests that reduction of C3 expression by MSCs can help to ameliorate ischemic brain damage, offering a new neuroprotective strategy in stroke therapy. Copyright © 2016. Published by Elsevier Ireland Ltd.
Zuliani-Alvarez, Lorena; Midwood, Kim S
2015-05-01
Significance: Fibrinogen-related proteins (FRePs) comprise an intriguing collection of extracellular molecules, each containing a conserved fibrinogen-like globe (FBG). This group includes the eponymous fibrinogen as well as the tenascin, angiopoietin, and ficolin families. Many of these proteins are upregulated during tissue repair and exhibit diverse roles during wound healing. Recent Advances: An increasing body of evidence highlights the specific expression of a number of FRePs following tissue injury and infection. Upon induction, each FReP uses its FBG domain to mediate quite distinct effects that contribute to different stages of tissue repair, such as driving coagulation, pathogen detection, inflammation, angiogenesis, and tissue remodeling. Critical Issues: Despite a high degree of homology among FRePs, each contains unique sequences that enable their diversification of function. Comparative analysis of the structure and function of FRePs and precise mapping of regions that interact with a variety of ligands has started to reveal the underlying molecular mechanisms by which these proteins play very different roles using their common domain. Future Directions: Fibrinogen has long been used in the clinic as a synthetic matrix serving as a scaffold or a delivery system to aid tissue repair. Novel therapeutic strategies are now emerging that harness the use of other FRePs to improve wound healing outcomes. As we learn more about the underlying mechanisms by which each FReP contributes to the repair response, specific blockade, or indeed potentiation, of their function offers real potential to enable regulation of distinct processes during pathological wound healing.
Insulin signaling pathway protects neuronal cell lines by Sirt3 mediated IRS2 activation.
Mishra, Neha; Lata, Sonam; Deshmukh, Priyanka; Kamat, Kajal; Surolia, Avadhesha; Banerjee, Tanushree
2018-05-01
Cellular stress like ER and oxidative stress are the principle causative agents of various proteinopathies. Multifunctional protein PARK7/DJ-1 provides protection against cellular stress. Recently, insulin/IGF also has emerged as a neuro-protective molecule. However, it is not known whether DJ-1 and insulin/IGF complement each other for cellular protection in response to stress. In this study, we show for the first time, that in human and mouse neuronal cell lines, down regulation of DJ-1 for 48 h leads to compensatory upregulation of insulin/IGF signaling (IIS) pathway genes, namely, insulin receptor, insulin receptor substrate, and Akt under normal physiological conditions as well as in cellular stress conditions. Moreover, upon exogenous supply of insulin there is a marked increase in the IIS components both at gene and protein levels leading to down regulation and inactivation of GSK3β. By immunoprecipitation, it was observed that Sirt3 mediated deacetylation and activation of FoxO3a could not occur under DJ-1 downregulation. Transient DJ-1 downregulation also led to Akt mediated increased phosphorylation and nuclear exclusion of FoxO3a. When DJ-1 was downregulated increased interaction of Sirt3 with IRS2 was observed leading to its activation resulting in IIS upregulation. Thus, transient downregulation of DJ-1 leads to stimulation of IIS pathway by Sirt3 mediated IRS2 activation. Consequently, antiapoptotic program is triggered in neuronal cells via Akt-GSK3β-FoxO3a axis. © 2018 BioFactors, 44(3):224-236, 2018. © 2018 International Union of Biochemistry and Molecular Biology.
Yarimizu, Tohru; Nonklang, Sanom; Nakamura, Junpei; Tokuda, Shuya; Nakagawa, Takaaki; Lorreungsil, Sasithorn; Sutthikhumpha, Surasit; Pukahuta, Charida; Kitagawa, Takao; Nakamura, Mikiko; Cha-Aim, Kamonchai; Limtong, Savitree; Hoshida, Hisashi; Akada, Rinji
2013-12-01
The isolation and application of auxotrophic mutants for gene manipulations, such as genetic transformation, mating selection and tetrad analysis, form the basis of yeast genetics. For the development of these genetic methods in the thermotolerant fermentative yeast Kluyveromyces marxianus, we isolated a series of auxotrophic mutants with defects in amino acid or nucleic acid metabolism. To identify the mutated genes, linear DNA fragments of nutrient biosynthetic pathway genes were amplified from Saccharomyces cerevisiae chromosomal DNA and used to directly transform the K. marxianus auxotrophic mutants by random integration into chromosomes through non-homologous end joining (NHEJ). The appearance of transformant colonies indicated that the specific S. cerevisiae gene complemented the K. marxianus mutant. Using this interspecific complementation approach with linear PCR-amplified DNA, we identified auxotrophic mutations of ADE2, ADE5,7, ADE6, HIS2, HIS3, HIS4, HIS5, HIS6, HIS7, LYS1, LYS2, LYS4, LYS9, LEU1, LEU2, MET2, MET6, MET17, TRP3, TRP4 and TRP5 without the labour-intensive requirement of plasmid construction. Mating, sporulation and tetrad analysis techniques for K. marxianus were also established. With the identified auxotrophic mutant strains and S. cerevisiae genes as selective markers, NHEJ-mediated integrative transformation with PCR-amplified DNA is an attractive system for facilitating genetic analyses in the yeast K. marxianus. Copyright © 2013 John Wiley & Sons, Ltd.
The Klebsiella pneumoniae O Antigen Contributes to Bacteremia and Lethality during Murine Pneumonia
Shankar-Sinha, Sunita; Valencia, Gabriel A.; Janes, Brian K.; Rosenberg, Jessica K.; Whitfield, Chris; Bender, Robert A.; Standiford, Ted J.; Younger, John G.
2004-01-01
Bacterial surface carbohydrates are important pathogenic factors in gram-negative pneumonia infections. Among these factors, O antigen has been reported to protect pathogens against complement-mediated killing. To examine further the role of O antigen, we insertionally inactivated the gene encoding a galactosyltransferase necessary for serotype O1 O-antigen synthesis (wbbO) from Klebsiella pneumoniae 43816. Analysis of the mutant lipopolysaccharide by sodium dodecyl sulfate-polyacrylamide gel electrophoresis confirmed the absence of O antigen. In vitro, there were no detectable differences between wild-type K. pneumoniae and the O-antigen-deficient mutant in regard to avid binding by murine complement C3 or resistance to serum- or whole-blood-mediated killing. Nevertheless, the 72-h 50% lethal dose of the wild-type strain was 30-fold greater than that of the mutant (2 × 103 versus 6 × 104 CFU) after intratracheal injection in ICR strain mice. Despite being less lethal, the mutant organism exhibited comparable intrapulmonary proliferation at 24 h compared to the level of the wild type. Whole-lung chemokine expression (CCL3 and CXCL2) and bronchoalveolar inflammatory cell content were also similar between the two infections. However, whereas the wild-type organism produced bacteremia within 24 h of infection in every instance, bacteremia was not seen in mutant-infected mice. These results suggest that during murine pneumonia caused by K. pneumoniae, O antigen contributes to lethality by increasing the propensity for bacteremia and not by significantly changing the early course of intrapulmonary infection. PMID:14977947
Role of Tellurite Resistance Operon in Filamentous Growth of Yersinia pestis in Macrophages.
Ponnusamy, Duraisamy; Clinkenbeard, Kenneth D
2015-01-01
Yersinia pestis initiates infection by parasitism of host macrophages. In response to macrophage infections, intracellular Y. pestis can assume a filamentous cellular morphology which may mediate resistance to host cell innate immune responses. We previously observed the expression of Y. pestis tellurite resistance proteins TerD and TerE from the terZABCDE operon during macrophage infections. Others have observed a filamentous response associated with expression of tellurite resistance operon in Escherichia coli exposed to tellurite. Therefore, in this study we examine the potential role of Y. pestis tellurite resistance operon in filamentous cellular morphology during macrophage infections. In vitro treatment of Y. pestis culture with sodium tellurite (Na2TeO3) caused the bacterial cells to assume a filamentous phenotype similar to the filamentous phenotype observed during macrophage infections. A deletion mutant for genes terZAB abolished the filamentous morphologic response to tellurite exposure or intracellular parasitism, but without affecting tellurite resistance. However, a terZABCDE deletion mutant abolished both filamentous morphologic response and tellurite resistance. Complementation of the terZABCDE deletion mutant with terCDE, but not terZAB, partially restored tellurite resistance. When the terZABCDE deletion mutant was complemented with terZAB or terCDE, Y. pestis exhibited filamentous morphology during macrophage infections as well as while these complemented genes were being expressed under an in vitro condition. Further in E. coli, expression of Y. pestis terZAB, but not terCDE, conferred a filamentous phenotype. These findings support the role of Y. pestis terZAB mediation of the filamentous response phenotype; whereas, terCDE confers tellurite resistance. Although the beneficial role of filamentous morphological responses by Y. pestis during macrophage infections is yet to be fully defined, it may be a bacterial adaptive strategy to macrophage associated stresses.
Zou, Lin; Feng, Yan; Li, Yan; Zhang, Ming; Chen, Chan; Cai, Jiayan; Gong, Yu; Wang, Larry; Thurman, Joshua M.; Wu, Xiaobo; Atkinson, John P.; Chao, Wei
2013-01-01
Severe sepsis involves massive activation of the innate immune system and leads to high mortality. Previous studies have demonstrated that various types of Toll-like receptors (TLRs) mediate a systemic inflammatory response and contribute to organ injury and mortality in animal models of severe sepsis. However, the downstream mechanisms responsible for TLR-mediated septic injury are poorly understood. Here, we show that activation of TLR2, TLR3 and TLR4 markedly enhanced complement factor B (cfB) synthesis and release by macrophages and cardiac cells. Polymicrobial sepsis, created by cecal ligation and puncture (CLP) in a mouse model, augmented cfB levels in the serum, peritoneal cavity and major organs including the kidney and heart. CLP also led to the alternative pathway (AP) activation, C3 fragment deposition in the kidney and heart, and cfB-dependent C3dg elevation. Bacteria isolated from septic mice activated the serum AP via a factor D-dependent manner. MyD88 deletion attenuated cfB/C3 up-regulation as well as cleavage induced by polymicrobial infection. Importantly, during sepsis, absence of cfB conferred a protective effect with improved survival and cardiac function, and markedly attenuated acute kidney injury. cfB deletion also led to increased neutrophil migratory function during the early phase of sepsis, decreased local and systemic bacterial load, attenuated cytokine production and reduced neutrophil reactive oxygen species production. Together, our data indicate that cfB acts as a downstream effector of TLR signaling and plays a critical role in the pathogenesis of severe bacterial sepsis. PMID:24154627
Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z
2017-01-01
As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK–HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated. PMID:27451975
Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z
2017-02-01
As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK-HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated.
DeAngelis, Robert A.; Reis, Edimara S.; Ricklin, Daniel; Lambris, John D.
2012-01-01
Hemodialysis is the most common method used to remove waste and hazardous products of metabolism in patients suffering from renal failure. Hundreds of thousands of people with end-stage renal disease undergo hemodialysis treatment in the United States each year. Strikingly, the 5-year survival rate for all dialysis patients is only 35%. Most of the patients succumb to cardiovascular disease that is exacerbated by the chronic induction of inflammation caused by contact of the blood with the dialysis membrane. The complement system, a strong mediator of pro-inflammatory networks, is a key contributor to such biomaterial-induced inflammation. Though only evaluated in experimental ex vivo settings, specific targeting of complement activation during hemodialysis has uncovered valuable information that points towards the therapeutic use of complement inhibitors as means to control the unwelcomed inflammatory responses and consequent pathologies in hemodialysis patients. PMID:22964235
Shi, Kaibin; Wang, Zhen; Liu, Yuanchu; Gong, Ye; Fu, Ying; Li, Shaowu; Wood, Kristofer; Hao, Junwei; Zhang, Guang-Xian; Shi, Fu-Dong; Yan, Yaping
2016-11-01
A major hurdle for effective stem cell therapy is ongoing inflammation in the target organ. Reconditioning the lesion microenvironment may be an effective way to promote stem cell therapy. In this study, we showed that engineered neural stem cells (NSCs) with complement factor H-related protein 1, a complement inhibitor protein, can attenuate inflammatory infiltration and immune-mediated damage of astrocytes, an important pathogenic progress in patients with neuromyelitis optica spectrum disorders. Furthermore, we demonstrated that transplantation of the complement factor H-related protein 1-modified NSCs effectively blocked the complement activation cascade and inhibited formation of the membrane attack complex, thus contributing to the protection of endogenous and transplanted NSC-differentiated astrocytes. Therefore, manipulation of the lesion microenvironment contributes to a more effective cell replacement therapeutic strategy for autoimmune diseases of the CNS. Copyright © 2016 by The American Association of Immunologists, Inc.
A pore-forming protein implements VLR-activated complement cytotoxicity in lamprey.
Wu, Fenfang; Feng, Bo; Ren, Yong; Wu, Di; Chen, Yue; Huang, Shengfeng; Chen, Shangwu; Xu, Anlong
2017-01-01
Lamprey is a basal vertebrate with a unique adaptive immune system, which uses variable lymphocyte receptors (VLRs) for antigen recognition. Our previous study has shown that lamprey possessed a distinctive complement pathway activated by VLR. In this study, we identified a natterin family member-lamprey pore-forming protein (LPFP) with a jacalin-like lectin domain and an aerolysin-like pore-forming domain. LPFP had a high affinity with mannan and could form oligomer in the presence of mannan. LPFP could deposit on the surface of target cells, form pore-like complex resembling a wheel with hub and spokes, and mediate powerful cytotoxicity on target cells. These pore-forming proteins along with VLRs and complement molecules were essential for the specific cytotoxicity against exogenous pathogens and tumor cells. This unique cytotoxicity implemented by LPFP might emerge before or in parallel with the IgG-based classical complement lytic pathway completed by polyC9.
Galectin 3 complements BNP in risk stratification in acute heart failure
Fermann, Gregory J.; Lindsell, Christopher J.; Storrow, Alan B.; Hart, Kimberly; Sperling, Matthew; Roll, Susan; Weintraub, Neal L.; Miller, Karen F.; Maron, David J.; Naftilan, Allen J.; Mcpherson, John A.; Sawyer, Douglas B.; Christenson, Robert; Collins, Sean P.
2013-01-01
Background Galectin 3 (G3) is a mediator of fibrosis and remodeling in heart failure. Methods Patients diagnosed with and treated for Acute Heart Failure Syndromes were prospectively enrolled in the Decision Making in Acute Decompensated Heart Failure multicenter trial. Results Patients with a higher G3 had a history of renal disease, a lower heart rate and acute kidney injury. They also tended to have a history of HF and 30-day adverse events compared with B-type natriuretic peptide. Conclusion In Acute Heart Failure Syndromes, G3 levels do not provide prognostic value, but when used complementary to B-type natriuretic peptide, G3 is associated with renal dysfunction and may predict 30-day events. PMID:22998064
Identification of a central role for complement in osteoarthritis
Wang, Qian; Rozelle, Andrew L.; Lepus, Christin M.; Scanzello, Carla R.; Song, Jason J.; Larsen, D. Meegan; Crish, James F.; Bebek, Gurkan; Ritter, Susan Y.; Lindstrom, Tamsin M.; Hwang, Inyong; Wong, Heidi H.; Punzi, Leonardo; Encarnacion, Angelo; Shamloo, Mehrdad; Goodman, Stuart B.; Wyss-Coray, Tony; Goldring, Steven R.; Banda, Nirmal K.; Thurman, Joshua M.; Gobezie, Reuben; Crow, Mary K.; Holers, V. Michael; Lee, David M.; Robinson, William H.
2011-01-01
Osteoarthritis, characterized by the breakdown of articular cartilage in synovial joints, has long been viewed as the result of “wear and tear”1. Although low-grade inflammation is detected in osteoarthritis, its role is unclear2–4. Here we identify a central role for the inflammatory complement system in the pathogenesis of osteoarthritis. Through proteomic and transcriptomic analyses of synovial fluids and membranes from individuals with osteoarthritis, we find that expression and activation of complement is abnormally high in human osteoarthritic joints. Using mice genetically deficient in C5, C6, or CD59a, we show that complement, and specifically the membrane attack complex (MAC)-mediated arm of complement, is critical to the development of arthritis in three different mouse models of osteoarthritis. Pharmacological modulation of complement in wild-type mice confirmed the results obtained with genetically deficient mice. Expression of inflammatory and degradative molecules was lower in chondrocytes from destabilized joints of C5-deficient mice than C5-sufficient mice, and MAC induced production of these molecules in cultured chondrocytes. Furthermore, MAC co-localized with matrix metalloprotease (MMP)-13 and with activated extracellular signal-regulated kinase (ERK) around chondrocytes in human osteoarthritic cartilage. Our findings indicate that dysregulation of complement in synovial joints plays a critical role in the pathogenesis of osteoarthritis. PMID:22057346
Graham, Matthew; Shin, Dong-Ho; Smith, Sylvia L
2009-07-01
We present the complete cDNA sequence of shark (Ginglymostoma cirratum) pro-C5 and its molecular characterization with a descriptive analysis of the structural elements necessary for its potential functional role as a potent mediator of inflammation (fragment C5a) and initiator molecule (fragment C5b) for the assembly of the membrane attack complex (MAC) upon activation by C5 convertase. In mammals the three complement activation cascades, the classical, alternative and lectin pathways, converge at the activation of C3, a pivotal complement protein. It is, however, the subsequent activation of the next complement component, C5, which is the focal point at which the initiation of the terminal lytic pathway takes place and involves the stepwise assembly of the MAC. The effector cytolytic function of complement occurs with the insertion of MAC into target membranes causing dough-nut like holes and cell leakage. The lytic activity of shark complement results in structurally similar holes in target membranes suggesting the assembly of a shark MAC that likely involves a functional analogue of C5. The composition of shark MAC remains unresolved and to date conclusive evidence has been lacking for shark C5. The gene has not been cloned nor has the serum protein been characterized for any elasmobranch species. This report is the first to confirm the presence of C5 homologue in the shark. GcC5 is remarkably similar to human C5 in overall structure and domain arrangement. The GcC5 cDNA measured 5160-bp with 5' and 3' UTRs of 35 bp and 79 bp, respectively. Structural analysis of the derived protein sequence predicts a molecule that is a two-chain structure which lacks a thiolester bond and contains a C5 convertase cleavage site indicating that activation will generate two peptides, akin to C5b and C5a. The putative GcC5 molecule also contains the C-terminal C345C/Netrin module that characterizes C3, C4 and C5. Multiple alignment of deduced amino acid sequences shows that GcC5 shares more amino acid identities/similarities with mammals than that with bony fish. We conclude that at the time of emergence of sharks the elaborate mosaic structure of C5 had already evolved.
Graham, Matthew; Shin, Dong-Ho; Smith, Sylvia L.
2009-01-01
We present the complete cDNA sequence of shark (Ginglymostoma cirratum) pro-C5 and its molecular characterization with a descriptive analysis of the structural elements necessary for its potential functional role as a potent mediator of inflammation (fragment C5a) and initiator molecule (fragment C5b) for the assembly of the membrane attack complex (MAC) upon activation by C5 convertase. In mammals the three complement activation cascades, the classical, alternative and lectin pathways, converge at the activation of C3, a pivotal complement protein. It is, however, the subsequent activation of the next complement component, C5, which is the focal point at which the initiation of the terminal lytic pathway takes place and involves the stepwise assembly of the MAC. The effector cytolytic function of complement occurs with the insertion of MAC into target membranes causing dough-nut like holes and cell leakage. The lytic activity of shark complement results in structurally similar holes in target membranes suggesting the assembly of a shark MAC that likely involves a functional analogue of C5. The composition of shark MAC remains unresolved and to date conclusive evidence has been lacking for shark C5. The gene has not been cloned nor has the serum protein been characterized for any elasmobranch species. This report is the first to confirm the presence of C5 homologue in the shark. GcC5 is remarkably similar to human C5 in overall structure and domain arrangement. The GcC5 cDNA measured 5160-bp with 5′ and 3′ UTRs of 35bp and 79bp, respectively. Structural analysis of the derived protein sequence predicts a molecule that is a two-chain structure which lacks a thiolester bond and contains a C5 convertase cleavage site indicating that activation will generate two peptides, akin to C5b and C5a. The putative GcC5 molecule also contains the C-terminal C345C/Netrin module that characterizes C3, C4 and C5. Multiple alignment of deduced amino acid sequences show that GcC5 shares more amino acid identities/similarities with mammals than that with bony fish. We conclude that at the time of emergence of sharks the elaborate mosaic structure of C5 had already evolved. PMID:19410004
Targeting C-reactive protein for the treatment of cardiovascular disease
NASA Astrophysics Data System (ADS)
Pepys, Mark B.; Hirschfield, Gideon M.; Tennent, Glenys A.; Ruth Gallimore, J.; Kahan, Melvyn C.; Bellotti, Vittorio; Hawkins, Philip N.; Myers, Rebecca M.; Smith, Martin D.; Polara, Alessandra; Cobb, Alexander J. A.; Ley, Steven V.; Andrew Aquilina, J.; Robinson, Carol V.; Sharif, Isam; Gray, Gillian A.; Sabin, Caroline A.; Jenvey, Michelle C.; Kolstoe, Simon E.; Thompson, Darren; Wood, Stephen P.
2006-04-01
Complement-mediated inflammation exacerbates the tissue injury of ischaemic necrosis in heart attacks and strokes, the most common causes of death in developed countries. Large infarct size increases immediate morbidity and mortality and, in survivors of the acute event, larger non-functional scars adversely affect long-term prognosis. There is thus an important unmet medical need for new cardioprotective and neuroprotective treatments. We have previously shown that human C-reactive protein (CRP), the classical acute-phase protein that binds to ligands exposed in damaged tissue and then activates complement, increases myocardial and cerebral infarct size in rats subjected to coronary or cerebral artery ligation, respectively. Rat CRP does not activate rat complement, whereas human CRP activates both rat and human complement. Administration of human CRP to rats is thus an excellent model for the actions of endogenous human CRP. Here we report the design, synthesis and efficacy of 1,6-bis(phosphocholine)-hexane as a specific small-molecule inhibitor of CRP. Five molecules of this palindromic compound are bound by two pentameric CRP molecules, crosslinking and occluding the ligand-binding B-face of CRP and blocking its functions. Administration of 1,6-bis(phosphocholine)-hexane to rats undergoing acute myocardial infarction abrogated the increase in infarct size and cardiac dysfunction produced by injection of human CRP. Therapeutic inhibition of CRP is thus a promising new approach to cardioprotection in acute myocardial infarction, and may also provide neuroprotection in stroke. Potential wider applications include other inflammatory, infective and tissue-damaging conditions characterized by increased CRP production, in which binding of CRP to exposed ligands in damaged cells may lead to complement-mediated exacerbation of tissue injury.
Hua, Ying; Sun, Qi; Wang, Xiangyu; DU, Yanli; Shao, Na; Zhang, Qiwei; Zhao, Wei; Wan, Chengsong
2015-11-01
To construct enterohemorrhagic Escherichia coli (EHEC) O157:H7 strains with delection espF gene and its nucleotide fragment and with espF gene complementation. A pair of homologous arm primers was designed to amplify the gene fragment of kanamycin resistance, which was transformed into EHEC O157:H7 EDL933w strain via the PKD46 plasmid by electroporation. The replacement of the espF gene by kanamycin resistance gene through the PKD46-mediated red recombination system was confirmed by PCR and sequencing. The entire coding region of espF along with its nucleotide fragment was amplified by PCR and cloned into pBAD33 plasmid, which was transformed into a mutant strain to construct the strain with espF complementation. RT-PCR was used to verify the transcription of espF and its nucleotide fragment in the complemented mutant strain. We established EHEC O157:H7 EDL933w strains with espF gene deletion and with espF gene complementation. Both espF and its nucleotide fragment were transcribed in the complemented mutant strain. The two strains provide a basis for further study of the regulatory mechanism of espF.
A novel model for studies of blood-mediated long-term responses to cellular transplants
Lindblom, Susanne; Hong, Jaan; Nilsson, Bo; Korsgren, Olle; Ronquist, Gunnar
2015-01-01
Aims Interaction between blood and bio-surfaces is important in many medical fields. With the aim of studying blood-mediated reactions to cellular transplants, we developed a whole-blood model for incubation of small volumes for up to 48 h. Methods Heparinized polyvinyl chloride tubing was cut in suitable lengths and sealed to create small bags. Multiple bags, with fresh venous blood, were incubated attached to a rotating wheel at 37°C. Physiological variables in blood were monitored: glucose, blood gases, mono- and divalent cations and chloride ions, osmolality, coagulation (platelet consumption, thrombin-antithrombin complexes (TAT)), and complement activation (C3a and SC5b-9), haemolysis, and leukocyte viability. Results Basic glucose consumption was high. Glucose depletion resulted in successive elevation of extracellular potassium, while sodium and calcium ions decreased due to inhibition of energy-requiring ion pumps. Addition of glucose improved ion balance but led to metabolic acidosis. To maintain a balanced physiological environment beyond 6 h, glucose and sodium hydrogen carbonate were added regularly based on analyses of glucose, pH, ions, and osmotic pressure. With these additives haemolysis was prevented for up to 72 h and leukocyte viability better preserved. Despite using non-heparinized blood, coagulation and complement activation were lower during long-term incubations compared with addition of thromboplastin and collagen. Conclusion A novel whole-blood model for studies of blood-mediated responses to a cellular transplant is presented allowing extended observations for up to 48 h and highlights the importance of stringent evaluations and adjustment of physiological conditions. PMID:25322825
Anti-GK1 antibodies damage Taenia crassiceps cysticerci through complement activation.
Núñez, Guadalupe; Villalobos, Nelly; Herrera, Cinthia P; Navarrete-Perea, José; Méndez, Adriana; Martinez-Maya, José J; Bobes, Raúl J; Fragoso, Gladis; Sciutto, Edda; Aguilar, Laura; Del Arenal, Irene P
2018-06-06
Taeniasis-cysticercosis, a zoonosis caused by Taenia solium, is prevalent in underdeveloped countries, where marginalization promotes its continued transmission. Pig cysticercosis, an essential stage for transmission, is preventable by vaccination. An efficient multiepitope vaccine against pig cysticercosis, S3Pvac, was developed. Previous studies showed that antibodies against one of the S3Pvac components, GK-1, are capable of damaging T. solium cysticerci, inhibiting their ability to transform into the adult stage in golden hamster gut. This study is aimed to evaluate one of the mechanisms that could mediate anti-GK-1 antibody-dependent protection. To this end, pig anti-GK-1 antibodies were produced and purified by using protein A. Proteomic analysis showed that the induced antibodies recognized the respective native cysticercal protein KE7 (Bobes et al. Infect Immun 85:e00395-17, 2017) and two additional T. solium proteins (endophilin B1 and Gp50). A new procedure to evaluate cysticercus viability, based on quantifying the cytochrome c released after parasite damage, was developed. Taenia crassiceps cysticerci were cultured in the presence of differing amounts of anti-GK-1 antibody and complement in a saturating concentration, along with the respective controls. Cysticercus viability was assessed by recording parasite motility, trypan blue exclusion, and cytochrome c levels in cysticercal soluble extract. Anti-GK-1 antibody significantly increased cysticercus damage as measured by all three methods. Parasite evaluation by electron microscopy after treatment with anti-GK-1 antibody plus complement demonstrated cysticercus damage as shorter, capsule-severed microtrichia; a decrease in glycocalyx length with respect to untreated cysts; and disaggregated desmosomes. These results demonstrate that anti-GK-1 antibodies damage cysticerci through classic complement activation.
Yersinia pestis targets neutrophils via complement receptor 3
Merritt, Peter M.; Nero, Thomas; Bohman, Lesley; Felek, Suleyman; Krukonis, Eric S.; Marketon, Melanie M.
2015-01-01
Yersinia species display a tropism for lymphoid tissues during infection, and the bacteria select innate immune cells for delivery of cytotoxic effectors by the type III secretion system. Yet the mechanism for target cell selection remains a mystery. Here we investigate the interaction of Yersinia pestis with murine splenocytes to identify factors that participate in the targeting process. We find that interactions with primary immune cells rely on multiple factors. First, the bacterial adhesin Ail is required for efficient targeting of neutrophils in vivo. However, Ail does not appear to directly mediate binding to a specific cell type. Instead, we find that host serum factors direct Y. pestis to specific innate immune cells, particularly neutrophils. Importantly, specificity towards neutrophils was increased in the absence of bacterial adhesins due to reduced targeting of other cell types, but this phenotype was only visible in the presence of mouse serum. Addition of antibodies against complement receptor 3 and CD14 blocked target cell selection, suggesting that a combination of host factors participate in steering bacteria toward neutrophils during plague infection. PMID:25359083
Rituximab for Treatment of Membranoproliferative Glomerulonephritis and C3 Glomerulopathies
2017-01-01
Membranoproliferative glomerulonephritis (MPGN) is a histological pattern of injury resulting from predominantly subendothelial and mesangial deposition of immunoglobulins or complement factors with subsequent inflammation and proliferation particularly of the glomerular basement membrane. Recent classification of MPGN is based on pathogenesis dividing MPGN into immunoglobulin-associated MPGN and complement-mediated C3 glomerulonephritis (C3GN) and dense deposit disease (DDD). Current guidelines suggest treatment with steroids, cytotoxic agents with or without plasmapheresis only for subjects with progressive disease, that is, nephrotic range proteinuria and decline of renal function. Rituximab, a chimeric B-cell depleting anti-CD20 antibody, has emerged in the last decade as a treatment option for patients with primary glomerular diseases such as minimal change disease, focal-segmental glomerulosclerosis, or idiopathic membranous nephropathy. However, data on the use of rituximab in MPGN, C3GN, and DDD are limited to case reports and retrospective case series. Patients with immunoglobulin-associated and idiopathic MPGN who were treated with rituximab showed partial and complete responses in the majorities of cases. However, rituximab was not effective in few cases of C3GN and DDD. Despite promising results in immunoglobulin-associated and idiopathic MPGN, current evidence on this treatment remains weak, and controlled and prospective data are urgently needed. PMID:28573137
Loh, Y S; Dean, M M; Johnson, L; Marks, D C
2015-11-01
Pathogen inactivation (PI) and storage may alter the immunomodulatory capacity of platelets (PLTs). The aim of this study was to examine the effect of PI (Riboflavin and ultraviolet light treatment) and storage on the capacity of PLTs to induce cytokine responses in recipient inflammatory cells. A pool and split design was used to prepare untreated and PI-treated buffy coat-derived platelet concentrates (PCs). Samples were taken on days 2 and 7 postcollection and incubated with ABO/RhD-matched fresh whole blood for 6 h with or without lipopolysaccharide (LPS). The intracellular production of IP-10, MCP-1, MIP-1α, IL-8, IL-6, IL-10, IL-12, TNF-α and MIP-1β in monocytes and neutrophils was assessed using flow cytometry. Complement proteins in PLT supernatants were measured using a cytometric bead array. PLTs and PLT supernatant (both untreated and PI-treated) resulted in modulation of intracellular MIP-1β and IL-12 production in monocytes. Compared to untreated PLTs, PI-treated PLTs resulted in significantly lower LPS-induced monocyte IL-12 production (day 7). The concentration of C3a and C5a (and their desArg forms) was significantly increased in PLT supernatants following PI. PI results in decreased LPS-induced monocyte IL-12 production and increased complement activation. The association between platelet-induced complement activation and IL-12 production warrants further investigation. © 2015 International Society of Blood Transfusion.
Complement Membrane Attack and Tumorigenesis: A SYSTEMS BIOLOGY APPROACH.
Towner, Laurence D; Wheat, Richard A; Hughes, Timothy R; Morgan, B Paul
2016-07-15
Tumor development driven by inflammation is now an established phenomenon, but the role that complement plays remains uncertain. Recent evidence has suggested that various components of the complement (C) cascade may influence tumor development in disparate ways; however, little attention has been paid to that of the membrane attack complex (MAC). This is despite abundant evidence documenting the effects of this complex on cell behavior, including cell activation, protection from/induction of apoptosis, release of inflammatory cytokines, growth factors, and ECM components and regulators, and the triggering of the NLRP3 inflammasome. Here we present a novel approach to this issue by using global gene expression studies in conjunction with a systems biology analysis. Using network analysis of MAC-responsive expression changes, we demonstrate a cluster of co-regulated genes known to have impact in the extracellular space and on the supporting stroma and with well characterized tumor-promoting roles. Network analysis highlighted the central role for EGF receptor activation in mediating the observed responses to MAC exposure. Overall, the study sheds light on the mechanisms by which sublytic MAC causes tumor cell responses and exposes a gene expression signature that implicates MAC as a driver of tumor progression. These findings have implications for understanding of the roles of complement and the MAC in tumor development and progression, which in turn will inform future therapeutic strategies in cancer. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Chen, Ying; Liu, Fangwei; Weng, Dong; Song, Laiyu; Li, Cuiying; Tang, Wen; Yu, Ye; Dai, Wujing; Chen, Jie
2013-01-01
1,3-β-glucan is considered a fungal biomarker and exposure to this agent can induce lung inflammation. Complement activation plays an important role in early immune responses to β-glucan. Previous studies showed that T-regulatory cells (Tregs) regulated 1,3-β-glucan-induced lung inflammation by modulating the maintenance of immune homeostasis in the lung. Both interleukin (IL)-17 and TH17 cells play pivotal roles in inflammation associated with lung disease and share reciprocal developmental pathways with Tregs. However, the effect of Tregs on IL-17 and TH17 responses in 1,3-β-glucan-induced lung inflammation remains unclear. In this study, mice were exposed to 1,3-β-glucan by intratracheal instillation. To investigate the effects of Tregs on IL-17 and TH17 cells in the induced lung inflammation, a Treg-depleted mice model was generated by administration of anti-CD25 mAb. The results indicated that Treg-depleted mice showed more severe pathological inflammatory changes in lung tissues. Tregs depletion reduced IL-17 expression in these tissues, and increased those of TH1 cytokines. The expression of IL-17 increased at the early phase of the inflammation response. There were no significant effects of the Tregs on expression of RORγt and IL-6 or the amount of CD4(+)IL-17(+) cells in the lungs. When taken together, the late phase of the 1,3-β-glucan-induced inflammatory response in the mice was primarily mediated by TH1 cytokines rather than IL-17. In contrast, the early phase of the inflammatory response might be mediated in part by IL-17 along with activated complement. Tregs might be required for IL-17 expression during the late phase inflammatory response in mice. The increased IL-17 mRNA observed during the 1,3-β-glucan induced inflammatory response were attributed to cells other than TH17 cells.
Pérez-Díaz, Ricardo; Madrid-Espinoza, José; Salinas-Cornejo, Josselyn; González-Villanueva, Enrique; Ruiz-Lara, Simón
2016-01-01
In plant cells, flavonoids are synthesized in the cytosol and then are transported and accumulated in the vacuole. Glutathione S-transferase-mediated transport has been proposed as a mechanism involved in flavonoid transport, however, whether binding of flavonoids to glutathione S-transferase (GST) or their transport is glutathione-dependent is not well understood. Glutathione S-transferases from Vitis vinífera (VviGSTs) have been associated with the transport of anthocyanins, however, their ability to transport other flavonoids such as proanthocyanidins (PAs) has not been established. Following bioinformatics approaches, we analyzed the capability of VviGST1, VviGST3, VviGST4, and Arabidopsis TT19 to bind different flavonoids. Analyses of protein-ligand interactions indicate that these GSTs can bind glutathione and monomers of anthocyanin, PAs and flavonols. A total or partial overlap of the binding sites for glutathione and flavonoids was found in VviGST1, and a similar condition was observed in VviGST3 using anthocyanin and flavonols as ligands, whereas VviGST4 and TT19 have both sites for GSH and flavonoids separated. To validate the bioinformatics predictions, functional complementation assays using the Arabidopsis tt19 mutant were performed. Overexpression of VviGST3 in tt19-1 specifically rescued the dark seed coat phenotype associated to correct PA transport, which correlated with higher binding affinity for PA precursors. VviGST4, originally characterized as an anthocyanin-related GST, complemented both the anthocyanin and PA deposition, resembling the function of TT19. By contrast, VviGST1 only partially rescued the normal seed color. Furthermore the expression pattern of these VviGSTs showed that each of these genes could be associated with the accumulation of different flavonoids in specific tissues during grapevine fruit development. These results provide new insights into GST-mediated PA transport in grapevine and suggest that VviGSTs present different specificities for flavonoid ligands. In addition, our data provide evidence to suggest that GST-mediate flavonoid transport is glutathione-dependent. PMID:27536314
21 CFR 866.5260 - Complement C3b inactivator immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in the...
21 CFR 866.5260 - Complement C3b inactivator immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in the...
21 CFR 866.5260 - Complement C3b inactivator immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in the...
21 CFR 866.5260 - Complement C3b inactivator immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in the...
Arabidopsis G-protein β subunit AGB1 interacts with NPH3 and is involved in phototropism.
Kansup, Jeeraporn; Tsugama, Daisuke; Liu, Shenkui; Takano, Tetsuo
2014-02-28
Heterotrimeric G proteins (Gα, Gβ and Gγ) have pleiotropic roles in plants, but molecular mechanisms underlying them remain to be elucidated. Here we show that Arabidopsis Gβ (AGB1) interacts with NPH3, a regulator of phototropism. Yeast two-hybrid assays, in vitro pull-down assays and bimolecular fluorescence complementation assays showed that AGB1 and NPH3 physically interact. NPH3-null mutation (nph3) is known to completely abolish hypocotyl phototropism. Loss-of-function mutants of AGB1 (agb1-1 and agb1-2) showed decreased hypocotyl phototropism, and agb1/nph3 double mutants showed no hypocotyl phototropism. These results suggest that AGB1 is involved in the NPH3-mediated regulation of phototropism. Copyright © 2014 Elsevier Inc. All rights reserved.
Du, Yiqun; Teng, Xiaoyan; Wang, Na; Zhang, Xin; Chen, Jianfeng; Ding, Peipei; Qiao, Qian; Wang, Qingkai; Zhang, Long; Yang, Chaoqun; Yang, Zhangmin; Chu, Yiwei; Du, Xiang; Zhou, Xuhui; Hu, Weiguo
2014-01-31
The complement system can be activated spontaneously for immune surveillance or induced to clear invading pathogens, in which the membrane attack complex (MAC, C5b-9) plays a critical role. CD59 is the sole membrane complement regulatory protein (mCRP) that restricts MAC assembly. CD59, therefore, protects innocent host cells from attacks by the complement system, and host cells require the constitutive and inducible expression of CD59 to protect themselves from deleterious destruction by complement. However, the mechanisms that underlie CD59 regulation remain largely unknown. In this study we demonstrate that the widely expressed transcription factor Sp1 may regulate the constitutive expression of CD59, whereas CREB-binding protein (CBP)/p300 bridge NF-κB and CREB, which surprisingly functions as an enhancer-binding protein to induce the up-regulation of CD59 during in lipopolysaccharide (LPS)-triggered complement activation, thus conferring host defense against further MAC-mediated destruction. Moreover, individual treatment with LPS, TNF-α, and the complement activation products (sublytic MAC (SC5b-9) and C5a) could increase the expression of CD59 mainly by activating NF-κB and CREB signaling pathways. Together, our findings identify a novel gene regulation mechanism involving CBP/p300, NF-κB, and CREB; this mechanism suggests potential drug targets for controlling various complement-related human diseases.
Goetz, Lindsey; Laskowski, Jennifer; Renner, Brandon; Pickering, Matthew C; Kulik, Liudmila; Klawitter, Jelena; Stites, Erik; Christians, Uwe; van der Vlag, Johan; Ravichandran, Kameswaran; Holers, V Michael; Thurman, Joshua M
2018-05-01
Natural IgM binds to glomerular epitopes in several progressive kidney diseases. Previous work has shown that IgM also binds within the glomerulus after ischemia/reperfusion (I/R) but does not fully activate the complement system. Factor H is a circulating complement regulatory protein, and congenital or acquired deficiency of factor H is a strong risk factor for several types of kidney disease. We hypothesized that factor H controls complement activation by IgM in the kidney after I/R, and that heterozygous factor H deficiency would permit IgM-mediated complement activation and injury at this location. We found that mice with targeted heterozygous deletion of the gene for factor H developed more severe kidney injury after I/R than wild-type controls, as expected, but that complement activation within the glomeruli remained well controlled. Furthermore, mice that are unable to generate soluble IgM were not protected from renal I/R, even in the setting of heterozygous factor H deficiency. These results demonstrate that factor H is important for limiting injury in the kidney after I/R, but it is not critical for controlling complement activation by immunoglobulin within the glomerulus in this setting. IgM binds to glomerular epitopes after I/R, but it is not a significant source of injury. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Jong-Shyan; Chiu, Ya-Ting
2009-10-01
Phagocytosis and oxidative burst are critical host defense mechanisms in which neutrophils clear invading pathogens. Clearing phagocytic neutrophils by triggering apoptosis is an essential process for controlling inflammation. This study elucidates how various exercise bouts with/without hypoxia affected neutrophil bactericidal activity and subsequent apoptosis in humans. Fifteen sedentary males performed six distinct experimental tests in an air-conditioned normobaric hypoxia chamber: two normoxic exercises [strenuous exercise (SE; up to maximal O2 consumption) and moderate exercise (ME; 50% maximal O2 consumption for 30 min) while exposed to 21% O2], two hypoxic exercises (ME for 30 min while exposed to 12% and 15% O2), and two hypoxic exposures (resting for 30 min while exposed to 12% and 15% O2). The results showed that 1) plasma complement-C3a desArg/C4a desArg/C5a concentrations were increased, 2) expressions of L-selectin/lymphocyte functin-associated antigen-1/Mac-1/C5aR on neutrophils were enhanced, 3) phagocytosis of neutrophils to Esherichia coli and release of neutrophil oxidant products by E. coli were elevated, and 4) E. coli-induced phosphotidylserine exposure or caspase-3 activation of neutrophils were promoted immediately and 2 h after both 12% O2 exposure at rest and with ME as well as normoxic SE. Although neither normoxic ME nor breathing 15% O2 at rest influenced these complement- and neutrophil-related immune responses, ME at both 12% and 15% O2 resulted in enhanced complement activation in the blood, expressions of opsonic/complement receptors on neutrophils, or the bactericidal activity and apoptosis of neutrophils. Moreover, the increased neutrophil oxidant production and apoptosis by normoxic SE and hypoxic ME were ameliorated by treating neutrophils with diphenylene iodonium (a NADPH oxidase inhibitor). Therefore, we conclude that ME at 12-15% O2 enhances bactericidal capacity and facilitates the subsequent apoptosis of neutrophils.
The perfect storm: HLA antibodies, complement, FcγRs, and endothelium in transplant rejection.
Thomas, Kimberly A; Valenzuela, Nicole M; Reed, Elaine F
2015-05-01
The pathophysiology of antibody-mediated rejection (AMR) in solid organ transplants is multifaceted and predominantly caused by antibodies directed against polymorphic donor human leukocyte antigens (HLAs). Despite the clearly detrimental impact of HLA antibodies (HLA-Abs) on graft function and survival, the prevention, diagnosis, and treatment of AMR remain a challenge. The histological manifestations of AMR reflect the signatures of HLA-Ab-triggered injury, specifically endothelial changes, recipient leukocytic infiltrate, and complement deposition. We review the interconnected mechanisms of HLA-Ab-mediated injury that might synergize in a 'perfect storm' of inflammation. Characterization of antibody features that are critical for effector functions may help to identify HLA-Abs that are more likely to cause rejection. We also highlight recent advances that may pave the way for new, more effective therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Influenza-associated thrombotic microangiopathies.
Bitzan, Martin; Zieg, Jakub
2017-09-07
Thrombotic microangiopathy (TMA) refers to phenotypically similar disorders, including hemolytic uremic syndromes (HUS) and thrombotic thrombocytopenic purpura (TTP). This review explores the role of the influenza virus as trigger of HUS or TTP. We conducted a literature survey in PubMed and Google Scholar using HUS, TTP, TMA, and influenza as keywords, and extracted and analyzed reported epidemiological and clinical data. We identified 25 cases of influenza-associated TMA. Five additional cases were linked to influenza vaccination and analyzed separately. Influenza A was found in 83%, 10 out of 25 during the 2009 A(H1N1) pandemic. Two patients had bona fide TTP with ADAMTS13 activity <10%. Median age was 15 years (range 0.5-68 years), two thirds were male. Oligoanuria was documented in 81% and neurological involvement in 40% of patients. Serum C3 was reduced in 5 out of 14 patients (36%); Coombs test was negative in 7 out of 7 and elevated fibrin/fibrinogen degradation products were documented in 6 out of 8 patients. Pathogenic complement gene mutations were found in 7 out of 8 patients tested (C3, MCP, or MCP combined with CFB or clusterin). Twenty out of 24 patients recovered completely, but 3 died (12%). Ten of the surviving patients underwent plasma exchange (PLEX) therapy, 5 plasma infusions. Influenza-mediated HUS or TTP is rare. A sizable proportion of tested patients demonstrated mutations associated with alternative pathway of complement dysregulation that was uncovered by this infection. Further research is warranted targeting the roles of viral neuraminidase, enhanced virus-induced complement activation and/or ADAMTS13 antibodies, and rational treatment approaches.
Klei, T R; Chapman, M R; Dennis, V A
1992-06-01
The adherence of equine leukocytes to Strongylus vulgaris infective larvae (L3) in the presence of normal and immune sera was examined in vitro. Immune sera promoted adherence of buffy coat cells from ponies with S. vulgaris-induced eosinophilia (eosinophilic ponies) to S. vulgaris L3. However, eosinophils in the buffy coat cells were the predominant adherent cell type. Studies using leukocyte populations enriched for eosinophils, neutrophils, and mononuclear cells from eosinophilic ponies support the observations using buffy coat cells that eosinophils were the main effector cells. Adherent eosinophils from eosinophilic ponies immobilized L3. Neutrophils were less adherent and did not immobilize L3. Mononuclear cells failed to adhere. Normal eosinophils from strongly-naive ponies did not immobilize S. vulgaris L3 in the presence of immune serum, suggesting the in vivo activation of eosinophils in eosinophilic animals. Immune serum promoted less adherence of buffy coat cells to Strongylus edentatus or mixed species of Cyathostominae L3, suggesting that the serum-mediated cellular adherence phenomenon was species-specific. Normal serum promoted less cellular adherence to S. vulgaris L3 than immune serum. The adherence mediated by normal serum was removed by heat inactivation, suggesting that this nonspecific phenomenon was a complement-mediated reaction. Immune globulins promoted reactions similar to that seen using heat-inactivated immune serum, whereas normal globulins did not promote adherence. Immune globulins absorbed with pieces of S. vulgaris adult worms did not promote the adherence of buffy coat cells to S. vulgaris L3, suggesting that adult and L3 stages share antigens important in this phenomenon that resulted in the removal of specific adherence antibody during absorption.
Hsieh, Yu-Chia; Lin, Tzu-Lung; Lin, Che-Ming; Wang, Jin-Town
2015-01-01
The pneumococcal genome is variable and there are minimal data on the influence of the accessory genome on phenotype. Pneumococcal serotype 14 sequence type (ST) 46 had been the most prevalent clone causing pneumonia in children in Taiwan. A microarray was constructed using the genomic DNA of a clinical strain (NTUH-P15) of serotype 14 ST46. Using DNA hybridization, genomic variations in NTUH-P15 were compared to those of 3 control strains. Microarray analysis identified 7 genomic regions that had significant increases in hybridization signals in the NTUH-P15 strain compared to control strains. One of these regions encoded PblB, a phage-encoded virulence factor implicated (in Streptococcus mitis) in infective endocarditis. The isogenic pblB mutant decreased adherence to A549 human lung epithelial cell compared to wild-type NTUH-P15 strain (P = 0.01). Complementation with pblB restored the adherence. PblB is predicted to contain a galactose-binding domain-like region. Preincubation of NTUH-P15 with D-galactose resulted in decreases of adherence to A549 cell in a dose-dependent manner. Challenge of mice with NTUH-P15, isogenic pblB mutant and pblB complementation strains determined that PblB was required for bacterial persistence in the nasopharynx and lung. PblB, as an adhesin mediating the galactose-specific adhesion activity of pneumococci, promote pneumococcal clonal success. PMID:26193794
The Biology of IgG Subclasses and Their Clinical Relevance to Transplantation.
Valenzuela, Nicole M; Schaub, Stefan
2018-01-01
Immunoglobulin G (IgG) is the dominant immunoglobulin and can be divided into 4 distinct subclasses. The evolution of IgG subclass switches is regulated by interaction with T cells and follows a 1-way direction (IgG3 → IgG1 → IgG2 → IgG4). Based on their structure, the 4 IgG subclasses can initiate different effector function such as complement activation, recruitment of various cells by Fc receptors, and agonistic signaling. Using current assays for HLA antibody detection as a template and replacing the generic reporter antibody with IgG subclass-specific reporter antibodies, it is possible to investigate the IgG subclasses of HLA antibodies. There are 15 different IgG subclass compositions possible. Based on the capability to activate the complement system and the class switch direction, 3 arbitrary patterns can be defined (ie, only complement-binding subclasses [IgG3 and/or IgG1], expansion to noncomplement-binding subclasses [IgG3 and/or IgG1 plus IgG2 and/or IgG4], and switch to noncomplement-binding subclasses [IgG2 and/or IgG4]). The latter group accounts for less than 5%, whereas the former 2 groups have a similar prevalence close to 50%. In the past 5 years, several studies correlated the IgG subclass pattern with occurrence of antibody-mediated rejection and allograft outcomes. Because of differences of the used IgG subclass assay, the time point of analyses, and the definition of outcomes, a clear picture has not emerged yet. Future needs are standardization of the assay, a more detailed knowledge of the initiated effector functions, and more well-designed clinical studies also looking at changes of the IgG subclass pattern over time.
Saito, Makoto; Takano, Takashi; Nishimura, Tomohiro; Kohara, Michinori; Tsukiyama-Kohara, Kyoko
2015-01-01
In our previous study, we demonstrated that 3β-hydroxysterol Δ24-reductase (DHCR24) was overexpressed in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), and that its expression was induced by HCV. Using a monoclonal antibody against DHCR24 (2-152a MAb), we found that DHCR24 was specifically expressed on the surface of HCC cell lines. Based on these findings, we aimed to establish a novel targeting strategy using 2-152a MAb to treat HCV-related HCC. In the present study, we examined the antitumor activity of 2-152a MAb. In the presence of complement, HCC-derived HuH-7 cells were killed by treatment with 2-152a MAb, which was mediated by complement-dependent cytotoxicity (CDC). In addition, the antigen recognition domain of 2-152a MAb was responsible for the unique anti-HCV activity. These findings demonstrate the feasibility of using 2-152a MAb for antibody therapy against HCV-related HCC. In addition, surface DHCR24 on HCC cells exhibited a functional property, agonist-induced internalization. We showed that 2-152a MAb-mediated binding of a cytotoxic agent (a saponin-conjugated secondary antibody) to surface DHCR24 led to significant cytotoxicity. This suggests that surface DHCR24 on HCC cells can function as a carrier for internalization. Therefore, surface DHCR24 could be a valuable target for HCV-related HCC therapy, and 2-152a MAb appears to be useful for this targeted therapy. PMID:25875901
Structural basis for complement evasion by Lyme disease pathogen Borrelia burgdorferi.
Bhattacharjee, Arnab; Oeemig, Jesper S; Kolodziejczyk, Robert; Meri, Taru; Kajander, Tommi; Lehtinen, Markus J; Iwaï, Hideo; Jokiranta, T Sakari; Goldman, Adrian
2013-06-28
Borrelia burgdorferi spirochetes that cause Lyme borreliosis survive for a long time in human serum because they successfully evade the complement system, an important arm of innate immunity. The outer surface protein E (OspE) of B. burgdorferi is needed for this because it recruits complement regulator factor H (FH) onto the bacterial surface to evade complement-mediated cell lysis. To understand this process at the molecular level, we used a structural approach. First, we solved the solution structure of OspE by NMR, revealing a fold that has not been seen before in proteins involved in complement regulation. Next, we solved the x-ray structure of the complex between OspE and the FH C-terminal domains 19 and 20 (FH19-20) at 2.83 Å resolution. The structure shows that OspE binds FH19-20 in a way similar to, but not identical with, that used by endothelial cells to bind FH via glycosaminoglycans. The observed interaction of OspE with FH19-20 allows the full function of FH in down-regulation of complement activation on the bacteria. This reveals the molecular basis for how B. burgdorferi evades innate immunity and suggests how OspE could be used as a potential vaccine antigen.
A Review of Therapeutic Aptamer Conjugates with Emphasis on New Approaches
Bruno, John G.
2013-01-01
The potential to emulate or enhance antibodies with nucleic acid aptamers while lowering costs has prompted development of new aptamer-protein, siRNA, drug, and nanoparticle conjugates. Specific focal points of this review discuss DNA aptamers covalently bound at their 3' ends to various proteins for enhanced stability and greater pharmacokinetic lifetimes in vivo. The proteins can include Fc tails of IgG for opsonization, and the first component of complement (C1q) to trigger complement-mediated lysis of antibiotic-resistant Gram negative bacteria, cancer cells and possibly some parasites during vulnerable stages. In addition, the 3' protein adduct may be a biotoxin, enzyme, or may simply be human serum albumin (HSA) or a drug known to bind HSA, thereby retarding kidney and other organ clearance and inhibiting serum exonucleases. In this review, the author summarizes existing therapeutic aptamer conjugate categories and describes his patented concept for PCR-based amplification of double-stranded aptamers followed by covalent attachment of proteins or other agents to the chemically vulnerable overhanging 3' adenine added by Taq polymerase. PCR amplification of aptamers could dramatically lower the current $2,000/gram cost of parallel chemical oligonucleotide synthesis, thereby enabling mass production of aptamer-3'-protein or drug conjugates to better compete against expensive humanized monoclonal antibodies. PMID:24276022
Inoue, K; Yano, K; Amano, T
1974-12-01
When an antibody-sensitized, phospholipase A-deficient mutant of Escherichia coli B/SM was treated with complement in the absence of lysozyme, bacterial phosphatidylethanolamine (PE) was liberated into the lipid fraction of the surrounding medium, but only traces of its degradation products were found in this fraction. Therefore, most of the degradation of bacterial PE to FFA and LPE observed in the usual immune bactericidal reaction (Inoue et al., 1974) must be the result of the action of bacterial phospholipase A which is activated or becomes accessible to its substrate on formation of lesions by complement. The mechanism of complement-mediated formation of membrane lesions is discussed on the basis of these results.
Breivik, T; Gundersen, Y; Gjermo, P; Taylor, S M; Woodruff, T M; Opstad, P K
2011-12-01
The complement activation product 5a (C5a) is a potent mediator of the innate immune response to infection, and may thus also importantly determine the development of periodontitis. The present study was designed to explore the effect of several novel, potent and orally active C5a receptor (CD88) antagonists (C5aRAs) on the development of ligature-induced periodontitis in an animal model. Three different cyclic peptide C5aRAs, termed PMX205, PMX218 and PMX273, were investigated. Four groups of Wistar rats (n = 10 in each group) were used. Starting 3 d before induction of experimental periodontitis, rats either received one of the C5aRas (1-2 mg/kg) in the drinking water or received drinking water only. Periodontitis was assessed when the ligatures had been in place for 14 d. Compared with control rats, PMX205- and PMX218-treated rats had significantly reduced periodontal bone loss. The findings suggest that complement activation, and particularly C5a generation, may play a significant role in the development and progression of periodontitis. Blockade of the major C5a receptor, CD88, with specific inhibitors such as PMX205, may offer novel treatment options for periodontitis. © 2011 John Wiley & Sons A/S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myhre, Marit Renee; Olsen, Gunn-Hege; Gosert, Rainer
High-level replication of polyomavirus BK (BKV) in kidney transplant recipients is associated with the emergence of BKV variants with rearranged (rr) non-coding control region (NCCR) increasing viral early gene expression and cytopathology. Cloning and sequencing revealed the presence of a BKV quasispecies which included non-functional variants when assayed in a recombinant virus assay. Here we report that the rr-NCCR of BKV variants RH-3 and RH-12, both bearing a NCCR deletion including the 5' end of the agnoprotein coding sequence, mediated early and late viral reporter gene expression in kidney cells. However, in a recombinant virus they failed to produce infectiousmore » progeny despite large T-antigen and VP1 expression and the formation of nuclear virus-like particles. Infectious progeny was generated when the agnogene was reconstructed in cis or agnoprotein provided in trans from a co-existing BKV rr-NCCR variant. We conclude that complementation can rescue non-functional BKV variants in vitro and possibly in vivo.« less
21 CFR 866.5260 - Complement C3b inactivator immunological test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5260 Complement C3b inactivator immunological test system. (a) Identification. A complement... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Complement C3b inactivator immunological test...
Shi, Haojun; Fang, Winston; Liu, Minda; Fu, Deliang
2017-10-01
Pancreatic cancer shows a remarkable predilection for hepatic metastasis. Complement component 1, q subcomponent binding protein (C1QBP) can mediate growth factor-induced cancer cell chemotaxis and distant metastasis by activation of receptor tyrosine kinases. Coincidentally, insulin-like growth factor-1 (IGF-1) derived from the liver and cancer cells itself has been recognized as a critical inducer of hepatic metastasis. However, the mechanism underlying IGF-1-dependent hepatic metastasis of pancreatic cancer, in which C1QBP may be involved, remains unknown. In the study, we demonstrated a significant association between C1QBP expression and hepatic metastasis in patients with pancreatic cancer. IGF-1 induced the translocation of C1QBP from cytoplasm to lipid rafts and further drove the formation of CD44 variant 6 (CD44v6)/C1QBP complex in pancreatic cancer cells. C1QBP interacting with CD44v6 in lipid rafts promoted phosphorylation of IGF-1R and thus activated downstream PI3K and MAPK signaling pathways which mediated metastatic potential of pancreatic cancer cells including proliferation, apoptosis, invasion, adhesion and energy metabolism. Furthermore, C1QBP knockdown suppressed hepatic metastasis of pancreatic cancer cells in nude mice. We therefore conclude that C1QBP in lipid rafts serves a key regulator of IGF-1/IGF-1R-induced hepatic metastasis from pancreatic cancer. Our findings about C1QBP in lipid rafts provide a novel strategy to block IGF-1/IGF-1R signaling in pancreatic cancer and a reliable premise for more efficient combined modality therapies. © 2017 UICC.
Molecular imaging of drug-modulated protein-protein interactions in living subjects.
Paulmurugan, Ramasamy; Massoud, Tarik F; Huang, Jing; Gambhir, Sanjiv S
2004-03-15
Networks of protein interactions mediate cellular responses to environmental stimuli and direct the execution of many different cellular functional pathways. Small molecules synthesized within cells or recruited from the external environment mediate many protein interactions. The study of small molecule-mediated interactions of proteins is important to understand abnormal signal transduction pathways in cancer and in drug development and validation. In this study, we used split synthetic renilla luciferase (hRLUC) protein fragment-assisted complementation to evaluate heterodimerization of the human proteins FRB and FKBP12 mediated by the small molecule rapamycin. The concentration of rapamycin required for efficient dimerization and that of its competitive binder ascomycin required for dimerization inhibition were studied in cell lines. The system was dually modulated in cell culture at the transcription level, by controlling nuclear factor kappaB promoter/enhancer elements using tumor necrosis factor alpha, and at the interaction level, by controlling the concentration of the dimerizer rapamycin. The rapamycin-mediated dimerization of FRB and FKBP12 also was studied in living mice by locating, quantifying, and timing the hRLUC complementation-based bioluminescence imaging signal using a cooled charged coupled device camera. This split reporter system can be used to efficiently screen small molecule drugs that modulate protein-protein interactions and also to assess drugs in living animals. Both are essential steps in the preclinical evaluation of candidate pharmaceutical agents targeting protein-protein interactions, including signaling pathways in cancer cells.
Nitric Oxide Is an Activity-Dependent Regulator of Target Neuron Intrinsic Excitability
Steinert, Joern R.; Robinson, Susan W.; Tong, Huaxia; Haustein, Martin D.; Kopp-Scheinpflug, Cornelia; Forsythe, Ian D.
2011-01-01
Summary Activity-dependent changes in synaptic strength are well established as mediating long-term plasticity underlying learning and memory, but modulation of target neuron excitability could complement changes in synaptic strength and regulate network activity. It is thought that homeostatic mechanisms match intrinsic excitability to the incoming synaptic drive, but evidence for involvement of voltage-gated conductances is sparse. Here, we show that glutamatergic synaptic activity modulates target neuron excitability and switches the basis of action potential repolarization from Kv3 to Kv2 potassium channel dominance, thereby adjusting neuronal signaling between low and high activity states, respectively. This nitric oxide-mediated signaling dramatically increases Kv2 currents in both the auditory brain stem and hippocampus (>3-fold) transforming synaptic integration and information transmission but with only modest changes in action potential waveform. We conclude that nitric oxide is a homeostatic regulator, tuning neuronal excitability to the recent history of excitatory synaptic inputs over intervals of minutes to hours. PMID:21791288
β2 integrin mediates hantavirus-induced release of neutrophil extracellular traps
Raftery, Martin J.; Lalwani, Pritesh; Krautkrӓmer, Ellen; Peters, Thorsten; Scharffetter-Kochanek, Karin; Krüger, Renate; Hofmann, Jörg; Seeger, Karl; Krüger, Detlev H.
2014-01-01
Rodent-borne hantaviruses are emerging human pathogens that cause severe human disease. The underlying mechanisms are not well understood, as hantaviruses replicate in endothelial and epithelial cells without causing any cytopathic effect. We demonstrate that hantaviruses strongly stimulated neutrophils to release neutrophil extracellular traps (NETs). Hantavirus infection induced high systemic levels of circulating NETs in patients and this systemic NET overflow was accompanied by production of autoantibodies to nuclear antigens. Analysis of the responsible mechanism using neutrophils from β2 null mice identified β2 integrin receptors as a master switch for NET induction. Further experiments suggested that β2 integrin receptors such as complement receptor 3 (CR3) and 4 (CR4) may act as novel hantavirus entry receptors. Using adenoviruses, we confirmed that viral interaction with β2 integrin induced strong NET formation. Collectively, β2 integrin–mediated systemic NET overflow is a novel viral mechanism of immunopathology that may be responsible for characteristic aspects of hantavirus-associated disease such as kidney and lung damage. PMID:24889201
Depressed spontaneous cell-mediated cytotoxicity in Crohn's disease.
Beeken, W L; Macpherson, B R; Gundel, R M; St Andre-Ukena, S; Wood, S G; Sylwester, D L
1983-02-01
Cytotoxicity of peripheral blood mononuclear cells of 30 patients with Crohn's disease (CD) and 30 matched controls was assayed by measuring isotope release from 75Se-L-methionine labelled RPMI 4788 human colon cancer cells. Effector populations were studied with and without monocyte depletion after 4 and 24 hr incubations in 10% fetal calf serum or autologous serum or plasma. Cytotoxicity was negligible at 4 hr. Twenty-four hour cytotoxicity was consistently lower in CD patients than in healthy controls, mean values ranging from 13.6 +/- 2.7% (s.e.m.) to 19.5 +/- 3.7% in patients and from 27.2 +/- 4.1% to 33.6 +/- 5.3% in controls. Cytotoxicity of disease controls was not significantly different from that of healthy subjects. Cytotoxicity was reduced by monocyte depletion, was weakly and inversely related to disease activity, was relatively stable for up to 24 months and was not HLA restricted. Cell lysis was attributable to spontaneous cell-mediated cytotoxicity. Antibody-dependent cellular cytotoxicity and antibody-complement-dependent cytotoxicity were not detected.
Depressed spontaneous cell-mediated cytotoxicity in Crohn's disease.
Beeken, W L; Macpherson, B R; Gundel, R M; St Andre-Ukena, S; Wood, S G; Sylwester, D L
1983-01-01
Cytotoxicity of peripheral blood mononuclear cells of 30 patients with Crohn's disease (CD) and 30 matched controls was assayed by measuring isotope release from 75Se-L-methionine labelled RPMI 4788 human colon cancer cells. Effector populations were studied with and without monocyte depletion after 4 and 24 hr incubations in 10% fetal calf serum or autologous serum or plasma. Cytotoxicity was negligible at 4 hr. Twenty-four hour cytotoxicity was consistently lower in CD patients than in healthy controls, mean values ranging from 13.6 +/- 2.7% (s.e.m.) to 19.5 +/- 3.7% in patients and from 27.2 +/- 4.1% to 33.6 +/- 5.3% in controls. Cytotoxicity of disease controls was not significantly different from that of healthy subjects. Cytotoxicity was reduced by monocyte depletion, was weakly and inversely related to disease activity, was relatively stable for up to 24 months and was not HLA restricted. Cell lysis was attributable to spontaneous cell-mediated cytotoxicity. Antibody-dependent cellular cytotoxicity and antibody-complement-dependent cytotoxicity were not detected. PMID:6601555
Rojko, Jennifer L; Evans, Mark G; Price, Shari A; Han, Bora; Waine, Gary; DeWitte, Mark; Haynes, Jill; Freimark, Bruce; Martin, Pauline; Raymond, James T; Evering, Winston; Rebelatto, Marlon C; Schenck, Emanuel; Horvath, Christopher
2014-06-01
Vascular inflammation, infusion reactions, glomerulopathies, and other potentially adverse effects may be observed in laboratory animals, including monkeys, on toxicity studies of therapeutic monoclonal antibodies and recombinant human protein drugs. Histopathologic and immunohistochemical (IHC) evaluation suggests these effects may be mediated by deposition of immune complexes (ICs) containing the drug, endogenous immunoglobulin, and/or complement components in the affected tissues. ICs may be observed in glomerulus, blood vessels, synovium, lung, liver, skin, eye, choroid plexus, or other tissues or bound to neutrophils, monocytes/macrophages, or platelets. IC deposition may activate complement, kinin, and/or coagulation/fibrinolytic pathways and result in a systemic proinflammatory response. IC clearance is biphasic in humans and monkeys (first from plasma to liver and/or spleen, second from liver or spleen). IC deposition/clearance is affected by IC composition, immunomodulation, and/or complement activation. Case studies are presented from toxicity study monkeys or rats and indicate IHC-IC deposition patterns similar to those predicted by experimental studies of IC-mediated reactions to heterologous protein administration to monkeys and other species. The IHC-staining patterns are consistent with findings associated with generalized and localized IC-associated pathology in humans. However, manifestations of immunogenicity in preclinical species are generally not considered predictive to humans. © 2014 by The Author(s).
The antigenic complex in HIT binds to B cells via complement and complement receptor 2 (CD21)
Khandelwal, Sanjay; Lee, Grace M.; Hester, C. Garren; Poncz, Mortimer; McKenzie, Steven E.; Sachais, Bruce S.; Rauova, Lubica; Kelsoe, Garnett; Cines, Douglas B.; Frank, Michael
2016-01-01
Heparin-induced thrombocytopenia is a prothrombotic disorder caused by antibodies to platelet factor 4 (PF4)/heparin complexes. The mechanism that incites such prevalent anti-PF4/heparin antibody production in more than 50% of patients exposed to heparin in some clinical settings is poorly understood. To investigate early events associated with antigen exposure, we first examined the interaction of PF4/heparin complexes with cells circulating in whole blood. In healthy donors, PF4/heparin complexes bind preferentially to B cells (>90% of B cells bind to PF4/heparin in vitro) relative to neutrophils, monocytes, or T cells. Binding of PF4 to B cells is heparin dependent, and PF4/heparin complexes are found on circulating B cells from some, but not all, patients receiving heparin. Given the high proportion of B cells that bind PF4/heparin, we investigated complement as a mechanism for noncognate antigen recognition. Complement is activated by PF4/heparin complexes, co-localizes with antigen on B cells from healthy donors, and is present on antigen-positive B cells in patients receiving heparin. Binding of PF4/heparin complexes to B cells is mediated through the interaction between complement and complement receptor 2 (CR2 [CD21]). To the best of our knowledge, these are the first studies to demonstrate complement activation by PF4/heparin complexes, opsonization of PF4/heparin to B cells via CD21, and the presence of complement activation fragments on circulating B cells in some patients receiving heparin. Given the critical contribution of complement to humoral immunity, our observations provide new mechanistic insights into the immunogenicity of PF4/heparin complexes. PMID:27412887
... of a certain protein. This protein is part of the complement system. The complement system is a group of proteins ... system and play a role in the development of inflammation. The complement system protects the body from infections, dead cells and ...
Wang, Jialin; Shine, M.B.; Gao, Qing-Ming; Navarre, Duroy; Jiang, Wei; Liu, Chunyan; Chen, Qingshan; Hu, Guohua; Kachroo, Aardra
2014-01-01
Enhanced disease susceptibility1 (EDS1) and phytoalexin deficient4 (PAD4) are well-known regulators of both basal and resistance (R) protein-mediated plant defense. We identified two EDS1-like (GmEDS1a/GmEDS1b) proteins and one PAD4-like (GmPAD4) protein that are required for resistance signaling in soybean (Glycine max). Consistent with their significant structural conservation to Arabidopsis (Arabidopsis thaliana) counterparts, constitutive expression of GmEDS1 or GmPAD4 complemented the pathogen resistance defects of Arabidopsis eds1 and pad4 mutants, respectively. Interestingly, however, the GmEDS1 and GmPAD4 did not complement pathogen-inducible salicylic acid accumulation in the eds1/pad4 mutants. Furthermore, the GmEDS1a/GmEDS1b proteins were unable to complement the turnip crinkle virus coat protein-mediated activation of the Arabidopsis R protein Hypersensitive reaction to Turnip crinkle virus (HRT), even though both interacted with HRT. Silencing GmEDS1a/GmEDS1b or GmPAD4 reduced basal and pathogen-inducible salicylic acid accumulation and enhanced soybean susceptibility to virulent pathogens. The GmEDS1a/GmEDS1b and GmPAD4 genes were also required for Resistance to Pseudomonas syringae pv glycinea2 (Rpg2)-mediated resistance to Pseudomonas syringae. Notably, the GmEDS1a/GmEDS1b proteins interacted with the cognate bacterial effector AvrA1 and were required for its virulence function in rpg2 plants. Together, these results show that despite significant structural similarities, conserved defense signaling components from diverse plants can differ in their functionalities. In addition, we demonstrate a role for GmEDS1 in regulating the virulence function of a bacterial effector. PMID:24872380
Mark, Linda; Spiller, O Brad; Okroj, Marcin; Chanas, Simon; Aitken, Jim A; Wong, Scott W; Damania, Blossom; Blom, Anna M; Blackbourn, David J
2007-04-01
The diversity of viral strategies to modulate complement activation indicates that this component of the immune system has significant antiviral potential. One example is the Kaposi's sarcoma-associated herpesvirus (KSHV) complement control protein (KCP), which inhibits progression of the complement cascade. Rhesus rhadinovirus (RRV), like KSHV, is a member of the subfamily Gammaherpesvirinae and currently provides the only in vivo model of KSHV pathobiology in primates. In the present study, we characterized the KCP homologue encoded by RRV, RRV complement control protein (RCP). Two strains of RRV have been sequenced to date (H26-95 and 17577), and the RCPs they encode differ substantially in structure: RCP from strain H26-95 has four complement control protein (CCP) domains, whereas RCP from strain 17577 has eight CCP domains. Transcriptional analyses of the RCP gene (ORF4, referred to herein as RCP) in infected rhesus macaque fibroblasts mapped the ends of the transcripts of both strains. They revealed that H26-95 encodes a full-length, unspliced RCP transcript, while 17577 RCP generates a full-length unspliced mRNA and two alternatively spliced transcripts. Western blotting confirmed that infected cells express RCP, and immune electron microscopy disclosed this protein on the surface of RRV virions. Functional studies of RCP encoded by both RRV strains revealed their ability to suppress complement activation by the classical (antibody-mediated) pathway. These data provide the foundation for studies into the biological significance of gammaherpesvirus complement regulatory proteins in a tractable, non-human primate model.
Mark, Linda; Spiller, O. Brad; Okroj, Marcin; Chanas, Simon; Aitken, Jim A.; Wong, Scott W.; Damania, Blossom; Blom, Anna M.; Blackbourn, David J.
2007-01-01
The diversity of viral strategies to modulate complement activation indicates that this component of the immune system has significant antiviral potential. One example is the Kaposi's sarcoma-associated herpesvirus (KSHV) complement control protein (KCP), which inhibits progression of the complement cascade. Rhesus rhadinovirus (RRV), like KSHV, is a member of the subfamily Gammaherpesvirinae and currently provides the only in vivo model of KSHV pathobiology in primates. In the present study, we characterized the KCP homologue encoded by RRV, RRV complement control protein (RCP). Two strains of RRV have been sequenced to date (H26-95 and 17577), and the RCPs they encode differ substantially in structure: RCP from strain H26-95 has four complement control protein (CCP) domains, whereas RCP from strain 17577 has eight CCP domains. Transcriptional analyses of the RCP gene (ORF4, referred to herein as RCP) in infected rhesus macaque fibroblasts mapped the ends of the transcripts of both strains. They revealed that H26-95 encodes a full-length, unspliced RCP transcript, while 17577 RCP generates a full-length unspliced mRNA and two alternatively spliced transcripts. Western blotting confirmed that infected cells express RCP, and immune electron microscopy disclosed this protein on the surface of RRV virions. Functional studies of RCP encoded by both RRV strains revealed their ability to suppress complement activation by the classical (antibody-mediated) pathway. These data provide the foundation for studies into the biological significance of gammaherpesvirus complement regulatory proteins in a tractable, non-human primate model. PMID:17287274
Loss of CD11b Exacerbates Murine Complement-Mediated Tubulointerstitial Nephritis
Wang, Ying; Chang, Anthony; Haas, Mark; Quigg, Richard John
2014-01-01
Acute complement activation occurs in the tubulointerstitium (TI) of kidneys transplanted from Crry−/−C3−/− mice into complement-sufficient wildtype mice, followed by marked inflammatory cell infiltration, tubular damage and interstitial fibrosis. We postulated iC3b-CD11b interactions were critical in this TI nephritis model. We transplanted Crry−/−C3−/− mouse kidneys into CD11b−/− and wildtype C57BL/6 mice. Surprisingly, there was greater inflammation in Crry−/−C3−/− kidneys in CD11b−/− recipients compared to those in wildtype hosts. Kidneys in CD11b−/− recipients had large numbers of CD11b−Ly6ChiCCR2hiF4/80+ cells consistent with inflammatory (M1) macrophages recruited from circulating monocytes of the host CD11b−/− animal. There was also an expanded population of CD11b+CD11c+Ly6C−F4/80hi cells. Since these cells were CD11b+, they must have originated from the transplanted kidney; their surface protein expression and appearance within the kidney were consistent with the intrinsic renal mononuclear cellular population. These cells were markedly expanded relative to all relevant controls, including the contralateral donor kidney and Crry−/−C3−/− mouse kidneys in CD11b+/+ wildtype recipients. Direct evidence for their in situ proliferation was the presence of nuclear Ki67 and PCNA in CD11b+F4/80+ cells. Thus, in this experimental model in which there is unrestricted C3 activation, CD11b+ monocytes limit their own infiltration into the kidney and prevent proliferation of endogenous mononuclear cells. This suggests a role for outside-in iC3b-CD11b signals in limiting intrinsic organ inflammation. PMID:24632830
Yu, Zhiqian; Ono, Chiaki; Aiba, Setsuya; Kikuchi, Yoshie; Sora, Ichiro; Matsuoka, Hiroo; Tomita, Hiroaki
2015-02-01
Evidence indicates that widely prescribed mood stabilizer, lithium (Li), mediates cellular functions of differentiated monocytic cells, including microglial migration, monocyte-derived dendritic cell (MoDC) differentiation, and amelioration of monocytic malfunctions observed in neuropsychiatric diseases. Here, we surveyed molecules which take major roles in regulating these monocytic cellular functions. MoDCs treated with 1 and 5 mM Li, and microglia separated from Li-treated mice were subjected to microarray-based comprehensive gene expression analyses. Findings were validated using multiple experiments, including quantitative PCR, ELISA and immunostaining studies. Differing effects of Li on the two cell types were observed. Inflammation- and chemotaxis-relevant genes were significantly over-represented among Li-induced genes in MoDCs, whereas no specific category of genes was over-represented in microglia. The third component of complement (C3) was the only gene which was significantly induced by a therapeutic concentration of Li in both MoDCs and microglia. C3 production was increased by Li via GSK-3 inhibition. Li-induced C3 production was seen only in differentiated monocytic cells, but not in circulating monocytes. Our findings highlight a link between Li treatment and C3 production in differentiated monocytic cells, and reveal a regulatory role of GSK-3 in C3 production. Induction of microglial C3 production might be a novel neuroprotective mechanism of Li via regulating interactions between microglia and neurons. GLIA 2015;63:257-270. © 2014 Wiley Periodicals, Inc.
Takahashi, Kazue; Chang, Wei-Chuan; Takahashi, Minoru; Pavlov, Vasile; Ishida, Yumi; La Bonte, Laura; Shi, Lei; Fujita, Teizo; Stahl, Gregory L.; Van Cott, Elizabeth M.
2010-01-01
The first line of host defense is the innate immune system that includes coagulation factors and pattern recognition molecules, one of which is mannose-binding lectin (MBL). Previous studies have demonstrated that MBL deficiency increases susceptibility to infection. Several mechanisms are associated with increased susceptibility to infection, including reduced opsonophagocytic killing and reduced lectin complement pathway activation. In this study, we demonstrate that MBL and MBL-associated serine protease (MASP)-1/3 together mediate coagulation factor-like activities, including thrombin-like activity. MBL and/or MASP-1/3 deficient hosts demonstrate in vivo evidence that MBL and MASP-1/3 are involved with hemostasis following injury. Staphylococcus aureus infected MBL null mice developed disseminated intravascular coagulation (DIC), which was associated with elevated blood IL-6 levels (but not TNF-α and multi-organ inflammatory responses). Infected MBL null mice also develop liver injury. These findings suggest that MBL deficiency may manifest into DIC and organ failure during infectious diseases. PMID:20399528
Lintner, Katherine E.; Patwardhan, Anjali; Rider, Lisa G.; Abdul-Aziz, Rabheh; Wu, Yee Ling; Lundström, Emeli; Padyukov, Leonid; Zhou, Bi; Alhomosh, Alaaedin; Newsom, David; White, Peter; Jones, Karla B.; O’Hanlon, Terrance P.; Miller, Frederick W.; Spencer, Charles H.; Yu, C. Yung
2017-01-01
Objective Complement-mediated vasculopathy of muscle and skin are clinical features of juvenile dermatomyositis (JDM). We assess gene copy-number variations (CNVs) for complement C4 and its isotypes, C4A and C4B, in genetic risks and pathogenesis of JDM. Methods The study population included 105 JDM patients and 500 healthy European Americans. Gene copy-numbers (GCNs) for total C4, C4A, C4B and HLA-DRB1 genotypes were determined by Southern blots and PCRs. Processed activation product C4d bound to erythrocytes (E-C4d) was measured by flow cytometry. Global gene-expression microarrays were performed in 19 JDM and 7 controls using PAXgene-blood RNA. Differential expression levels for selected genes were validated by qPCR. Results Significantly lower GCNs and differences in distribution of GCN groups for total C4 and C4A were observed between JDM and controls. Lower GCN of C4A in JDM remained among HLA DR3-positive subjects (p=0.015). Homozygous or heterozygous C4A-deficiency was present in 40.0% of JDM compared to 18.2% of controls [odds ratio (OR)=3.00 (1.87–4.79), p=8.2x10−6]. JDM had higher levels of E-C4d than controls (p=0.004). In JDM, C4A-deficient subjects had higher levels of E-C4d (p=0.0003) and higher frequency of elevated levels of multiple serum muscle enzymes at diagnosis (p=0.004). Microarray profiling of blood RNA revealed upregulation of type I Interferon-stimulated genes and lower abundance of transcripts for T-cell and chemokine function genes in JDM, but this was less prominent among C4A-deficient or DR3-positive patients. Conclusions Complement C4A-deficiency appears to be an important factor for the genetic risk and pathogenesis of JDM, particularly in patients with a DR3-positive background. PMID:26493816
Identification of C1q as a Binding Protein for Advanced Glycation End Products.
Chikazawa, Miho; Shibata, Takahiro; Hatasa, Yukinori; Hirose, Sayumi; Otaki, Natsuki; Nakashima, Fumie; Ito, Mika; Machida, Sachiko; Maruyama, Shoichi; Uchida, Koji
2016-01-26
Advanced glycation end products (AGEs) make up a heterogeneous group of molecules formed from the nonenzymatic reaction of reducing sugars with the free amino groups of proteins. The abundance of AGEs in a variety of age-related diseases, including diabetic complications and atherosclerosis, and their pathophysiological effects suggest the existence of innate defense mechanisms. Here we examined the presence of serum proteins that are capable of binding glycated bovine serum albumin (AGEs-BSA), prepared upon incubation of BSA with dehydroascorbate, and identified complement component C1q subcomponent subunit A as a novel AGE-binding protein in human serum. A molecular interaction analysis showed the specific binding of C1q to the AGEs-BSA. In addition, we identified DNA-binding regions of C1q, including a collagen-like domain, as the AGE-binding site and established that the amount of positive charge on the binding site was the determining factor. C1q indeed recognized several other modified proteins, including acylated proteins, suggesting that the binding specificity of C1q might be ascribed, at least in part, to the electronegative potential of the ligand proteins. We also observed that C1q was involved in the AGEs-BSA-activated deposition of complement proteins, C3b and C4b. In addition, the AGEs-BSA mediated the proteolytic cleavage of complement protein 5 to release C5a. These findings provide the first evidence of AGEs as a new ligand recognized by C1q, stimulating the C1q-dependent classical complement pathway.
Roy, Ruchi; Parashar, Vyom; Chauhan, L K S; Shanker, Rishi; Das, Mukul; Tripathi, Anurag; Dwivedi, Premendra Dhar
2014-04-01
The inflammatory responses after exposure to zinc oxide nanoparticles (ZNPs) are known, however, the molecular mechanisms and direct consequences of particle uptake are still unclear. Dose and time-dependent increase in the uptake of ZNPs by macrophages has been observed by flow cytometry. Macrophages treated with ZNPs showed a significantly enhanced phagocytic activity. Inhibition of different internalization receptors caused a reduction in uptake of ZNPs in macrophages. The strongest inhibition in internalization was observed by blocking clathrin, caveolae and scavenger receptor mediated endocytic pathways. However, FcR and complement receptor-mediated phagocytic pathways also contributed significantly to control. Further, exposure of primary macrophages to ZNPs (2.5 μg/ml) caused (i) significant enhancement of Ras, PI3K, (ii) enhanced phosphorylation and subsequent activation of its downstream signaling pathways via ERK1/2, p38 and JNK MAPKs (iii) overexpression of c-Jun, c-Fos and NF-κB. Our results demonstrate that ZNPs induce the generation of reactive nitrogen species and overexpression of Cox-2, iNOS, pro-inflammatory cytokines (IL-6, IFN-γ, TNF-α, IL-17 and regulatory cytokine IL-10) and MAPKs which were found to be inhibited after blocking internalization of ZNPs through caveolae receptor pathway. These results indicate that ZNPs are internalized through caveolae pathway and the inflammatory responses involve PI3K mediated MAPKs signaling cascade. Copyright © 2013 Elsevier Ltd. All rights reserved.
MuSK induced experimental autoimmune myasthenia gravis does not require IgG1 antibody to MuSK.
Küçükerden, Melike; Huda, Ruksana; Tüzün, Erdem; Yılmaz, Abdullah; Skriapa, Lamprini; Trakas, Nikos; Strait, Richard T; Finkelman, Fred D; Kabadayı, Sevil; Zisimopoulou, Paraskevi; Tzartos, Socrates; Christadoss, Premkumar
2016-06-15
Sera of myasthenia gravis (MG) patients with muscle-specific receptor kinase-antibody (MuSK-Ab) predominantly display the non-complement fixing IgG4 isotype. Similarly, mouse IgG1, which is the analog of human IgG4, is the predominant isotype in mice with experimental autoimmune myasthenia gravis (EAMG) induced by MuSK immunization. The present study was performed to determine whether IgG1 anti-MuSK antibody is required for immunized mice to develop EAMG. Results demonstrated a significant correlation between clinical severity of EAMG and levels of MuSK-binding IgG1+, IgG2+ and IgG3+ peripheral blood B cells in MuSK-immunized wild-type (WT) mice. Moreover, MuSK-immunized IgG1 knockout (KO) and WT mice showed similar EAMG severity, serum MuSK-Ab levels, muscle acetylcholine receptor concentrations, neuromuscular junction immunoglobulin and complement deposit ratios. IgG1 and IgG3 were the predominant anti-MuSK isotypes in WT and IgG1 KO mice, respectively. These observations demonstrate that non-IgG1 isotypes can mediate MuSK-EAMG pathogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.
Goh, Jessamine G; Ravikumar, Sharada; Win, Mar Soe; Cao, Qiong; Tan, Ai Ling; Lim, Joan H J; Leong, Winnie; Herbrecht, Raoul; Troke, Peter F; Kullberg, Bart Jan; Netea, Mihai G; Chng, Wee Joo; Dan, Yock Young; Chai, Louis Y A
2018-03-01
Invasive aspergillosis (IA) remains a major cause of morbidity in immunocompromised hosts. This is due to the inability of the host immunity to respond appropriately to Aspergillus. An established risk factor for IA is neutropenia that is encountered by patients undergoing chemotherapy. Herein, we investigate the role of neutrophils in modulating host response to Aspergillus. We found that neutrophils had the propensity to suppress proinflammatory cytokine production but through different mechanisms for specific cytokines. Cellular contact was requisite for the modulation of interleukin-1 beta production by Aspergillus with the involvement of complement receptor 3. On the other hand, inhibition of tumour necrosis factor-alpha production (TNF-α) was cell contact-independent and mediated by secreted myeloperoxidase. Specifically, the inhibition of TNF-α by myeloperoxidase was through the TLR4 pathway and involved interference with the mRNA transcription of TNF receptor-associated factor 6/interferon regulatory factor 5. Our study illustrates the extended immune modulatory role of neutrophils beyond its primary phagocytic function. The absence of neutrophils and loss of its inhibitory effect on cytokine production explains the hypercytokinemia seen in neutropenic patients when infected with Aspergillus. © 2017 John Wiley & Sons Ltd.
Lee, Hyun; Park, Jung-Jin; Nguyen, Nga; Park, Jun Sub; Hong, Jin; Kim, Seung-Hyeob; Song, Woon Young; Kim, Hak Joong; Choi, Kwangman; Cho, Sungchan; Lee, Jae-Seon; Kim, Bong-Woo; Ko, Young-Gyu
2016-12-23
Mitsugumin 53 (MG53) is an E3 ligase that interacts with and ubiquitinates insulin receptor substrate-1 (IRS-1) in skeletal muscle; thus, an MG53-IRS-1 interaction disruptor (MID), which potentially sensitizes insulin signaling with an elevated level of IRS-1 in skeletal muscle, is an excellent candidate for treating insulin resistance. To screen for an MID, we developed a bimolecular luminescence complementation system using an N-terminal luciferase fragment fused with IRS-1 and a C-terminal luciferase fragment fused with an MG53 C14A mutant that binds to IRS-1 but does not have E3 ligase activity. An MID, which was discovered using the bimolecular luminescence complementation system, disrupted the molecular association of MG53 with IRS-1, thus abolishing MG53-mediated IRS-1 ubiquitination and degradation. Thus, the MID sensitized insulin signaling and increased insulin-elicited glucose uptake with an elevated level of IRS-1 in C2C12 myotubes. These data indicate that this MID holds promise as a drug candidate for treating insulin resistance. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Bychkov, Evgeny; Zurkovsky, Lilia; Garret, Mika B.; Ahmed, Mohamed R.; Gurevich, Eugenia V.
2012-01-01
G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling. PMID:23139825
Bychkov, Evgeny; Zurkovsky, Lilia; Garret, Mika B; Ahmed, Mohamed R; Gurevich, Eugenia V
2012-01-01
G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.
Mahtout, Hayette; Chandad, Fatiha; Rojo, Jose M; Grenier, Daniel
2011-02-01
Periodontitis is a chronic inflammatory disease that results in the destruction of the supporting tissues of the teeth. Gingival epithelial cells are an important mechanical barrier and participate in the host inflammatory response to periodontopathogens. The aim of the present study is to investigate the capacity of Fusobacterium nucleatum to bind to the complement regulatory protein CD46 expressed by oral epithelial cells and to determine the impact of the binding on the gene expression and protein secretion of interleukin (IL)-6, IL-8, and matrix metalloproteinase (MMP)-9 by oral epithelial cells. Binding of recombinant human CD46 to the surface of F. nucleatum was demonstrated by immunologic assays. After stimulation of oral epithelial cells with F. nucleatum, gene expression was determined by real-time polymerase chain reaction analysis while protein secretion was monitored by enzyme-linked immunosorbent assays. Heat and protease treatments of bacterial cells reduced CD46 binding. F. nucleatum-bound CD46 mediated the cleavage of C3b in the presence of factor I. Stimulating oral epithelial cells with F. nucleatum at a multiplicity of infection of 50 resulted in a significant upregulation of the gene expression and protein secretion of IL-6, IL-8, and MMP-9 by oral epithelial cells. However, pretreating the epithelial cells with an anti-CD46 polyclonal antibody attenuated the production of IL-6, IL-8, and MMP-9 in response to F. nucleatum. Such an inhibitory effect was not observed with non-specific antibodies. The present study demonstrates that F. nucleatum can bind the complement regulatory protein CD46. The interaction of F. nucleatum with epithelial cell surface CD46 may contribute to increasing the levels of proinflammatory mediators and MMPs in periodontal sites and consequently modulate tissue destruction.
Seward, David J; Koh, Albert S; Boyer, James L; Ballatori, Nazzareno
2003-07-25
These studies identify an organic solute transporter (OST) that is generated when two novel gene products are co-expressed, namely human OSTalpha and OSTbeta or mouse OSTalpha and OSTbeta. The results also demonstrate that the mammalian proteins are functionally complemented by evolutionarily divergent Ostalpha-Ostbeta proteins recently identified in the little skate, Raja erinacea, even though the latter exhibit only 25-41% predicted amino acid identity with the mammalian proteins. Human, mouse, and skate OSTalpha proteins are predicted to contain seven transmembrane helices, whereas the OSTbeta sequences are predicted to have a single transmembrane helix. Human OSTalpha-OSTbeta and mouse Ostalpha-Ostbeta cDNAs were cloned from liver mRNA, sequenced, expressed in Xenopus laevis oocytes, and tested for their ability to functionally complement the corresponding skate proteins by measuring transport of [3H]estrone 3-sulfate. None of the proteins elicited a transport signal when expressed individually in oocytes; however, all nine OSTalpha-OSTbeta combinations (i.e. OSTalpha-OSTbeta pairs from human, mouse, or skate) generated robust estrone 3-sulfate transport activity. Transport was sodium-independent, saturable, and inhibited by other steroids and anionic drugs. Human and mouse OSTalpha-OSTbeta also were able to mediate transport of taurocholate, digoxin, and prostaglandin E2 but not of estradiol 17beta-d-glucuronide or p-aminohippurate. OSTalpha and OSTbeta were able to reach the oocyte plasma membrane when expressed either individually or in pairs, indicating that co-expression is not required for proper membrane targeting. Interestingly, OSTalpha and OSTbeta mRNAs were highly expressed and widely distributed in human tissues, with the highest levels occurring in the testis, colon, liver, small intestine, kidney, ovary, and adrenal gland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yun; Kwon, Young-Chan; Kim, Soo-In
Hantaan virus (HTNV) is a pathogenic hantavirus that causes hemorrhagic fever with renal syndrome (HFRS). HTNV infection is mediated by {alpha}v{beta}3 integrin. We used protein blots of Vero E6 cell homogenates to demonstrate that radiolabeled HTNV virions bind to gC1qR/p32, the acidic 32-kDa protein known as the receptor for the globular head domain of complement C1q. RNAi-mediated suppression of gC1qR/p32 markedly reduced HTNV binding and infection in human lung epithelial A549 cells. Conversely, transient expression of either simian or human gC1qR/p32 rendered non-permissive CHO cells susceptible to HTNV infection. These results suggest an important role for gC1qR/p32 in HTNV infectionmore » and pathogenesis.« less
O'Donoghue, Robert J J; Knight, Darryl A; Richards, Carl D; Prêle, Cecilia M; Lau, Hui Ling; Jarnicki, Andrew G; Jones, Jessica; Bozinovski, Steven; Vlahos, Ross; Thiem, Stefan; McKenzie, Brent S; Wang, Bo; Stumbles, Philip; Laurent, Geoffrey J; McAnulty, Robin J; Rose-John, Stefan; Zhu, Hong Jian; Anderson, Gary P; Ernst, Matthias R; Mutsaers, Steven E
2012-01-01
Idiopathic pulmonary fibrosis (IPF) is a fatal disease that is unresponsive to current therapies and characterized by excessive collagen deposition and subsequent fibrosis. While inflammatory cytokines, including interleukin (IL)-6, are elevated in IPF, the molecular mechanisms that underlie this disease are incompletely understood, although the development of fibrosis is believed to depend on canonical transforming growth factor (TGF)-β signalling. We examined bleomycin-induced inflammation and fibrosis in mice carrying a mutation in the shared IL-6 family receptor gp130. Using genetic complementation, we directly correlate the extent of IL-6-mediated, excessive Stat3 activity with inflammatory infiltrates in the lung and the severity of fibrosis in corresponding gp130757F mice. The extent of fibrosis was attenuated in B lymphocyte-deficient gp130757F;µMT−/− compound mutant mice, but fibrosis still occurred in their Smad3−/− counterparts consistent with the capacity of excessive Stat3 activity to induce collagen 1α1 gene transcription independently of canonical TGF-β/Smad3 signalling. These findings are of therapeutic relevance, since we confirmed abundant STAT3 activation in fibrotic lungs from IPF patients and showed that genetic reduction of Stat3 protected mice from bleomycin-induced lung fibrosis. PMID:22684844
Lintner, Katherine E.; Wu, Yee Ling; Yang, Yan; Spencer, Charles H.; Hauptmann, Georges; Hebert, Lee A.; Atkinson, John P.; Yu, C. Yung
2016-01-01
The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy-number (GCN) variation and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low GCNs of total C4, and heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein deficiencies for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases and immune-mediated diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases. PMID:26913032
Yang, Lina; McLellan, Hazel; Naqvi, Shaista; He, Qin; Boevink, Petra C; Armstrong, Miles; Giuliani, Licida M; Zhang, Wei; Tian, Zhendong; Zhan, Jiasui; Gilroy, Eleanor M; Birch, Paul R J
2016-05-01
Plant pathogens deliver effectors to manipulate host processes. We know little about how fungal and oomycete effectors target host proteins to promote susceptibility, yet such knowledge is vital to understand crop disease. We show that either transient expression in Nicotiana benthamiana, or stable transgenic expression in potato (Solanum tuberosum), of the Phytophthora infestans RXLR effector Pi02860 enhances leaf colonization by the pathogen. Expression of Pi02860 also attenuates cell death triggered by the P. infestans microbe-associated molecular pattern INF1, indicating that the effector suppresses pattern-triggered immunity. However, the effector does not attenuate cell death triggered by Cf4/Avr4 coexpression, showing that it does not suppress all cell death activated by cell surface receptors. Pi02860 interacts in yeast two-hybrid assays with potato NPH3/RPT2-LIKE1 (NRL1), a predicted CULLIN3-associated ubiquitin E3 ligase. Interaction of Pi02860 in planta was confirmed by coimmunoprecipitation and bimolecular fluorescence complementation assays. Virus-induced gene silencing of NRL1 in N. benthamiana resulted in reduced P. infestans colonization and accelerated INF1-mediated cell death, indicating that this host protein acts as a negative regulator of immunity. Moreover, whereas NRL1 virus-induced gene silencing had no effect on the ability of the P. infestans effector Avr3a to suppress INF1-mediated cell death, such suppression by Pi02860 was significantly attenuated, indicating that this activity of Pi02860 is mediated by NRL1. Transient overexpression of NRL1 resulted in the suppression of INF1-mediated cell death and enhanced P. infestans leaf colonization, demonstrating that NRL1 acts as a susceptibility factor to promote late blight disease. © 2016 American Society of Plant Biologists. All Rights Reserved.
PpsA-mediated alternative pathway to complement RNase E essentiality in Escherichia coli.
Tamura, Masaru; Honda, Naoko; Fujimoto, Hirofumi; Cohen, Stanley N; Kato, Atsushi
2016-07-01
Escherichia coli cells require RNase E, encoded by the essential gene rne, to propagate. The growth properties on different carbon sources of E. coli cells undergoing suppression of RNase E production suggested that reduction in RNase E is associated with decreased expression of phosphoenolpyruvate synthetase (PpsA), which converts pyruvate to phosphoenolpyruvate during gluconeogenesis. Western blotting and genetic complementation confirmed the role of RNase E in PpsA expression. Adventitious ppsA overexpression from a multicopy plasmid was sufficient to restore colony formation of ∆rne E. coli on minimal media containing glycerol or succinate as the sole carbon source. Complementation of ∆rne by ppsA overproduction was observed during growth on solid media but was only partial, and bacteria showed slowed cell division and grew as filamentous chains. We found that restoration of colony-forming ability by ppsA complementation occurred independent of the presence of endogenous RNase G or second-site suppressors of RNase E essentiality. Our investigations demonstrate the role of phosphoryl transfer catalyzable by PpsA as a determinant of RNase E essentiality in E. coli.
Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M.; Liu, Jie; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.
2011-01-01
The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (Vmax/km) for any of the complexes is 70–6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex–mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis. PMID:22160716
Gorgani, Nick N.; Thathaisong, Umaporn; Mukaro, Violet R.S.; Poungpair, Ornnuthchar; Tirimacco, Amanda; Hii, Charles S.T.; Ferrante, Antonio
2011-01-01
Although the importance of the macrophage complement receptor immunoglobulin (CRIg) in the phagocytosis of complement opsonized bacteria and in inflammation has been established, the regulation of CRIg expression remains undefined. Because cellular activation during inflammation leads to the release of arachidonate, a stimulator of leukocyte function, we sought to determine whether arachidonate regulates CRIg expression. Adding arachidonate to maturing human macrophages and to prematured CRIg+ macrophages caused a significant decrease in the expression of cell-surface CRIg and CRIg mRNA. This effect was independent of the metabolism of arachidonate via the cyclooxygenase and lipoxygenase pathways, because it was not inhibited by the nonsteroidal anti-inflammatory drugs indomethacin and nordihydroguaiaretic acid. Studies with specific pharmacological inhibitors of arachidonate-mediated signaling pathways showed that protein kinase C was involved. Administration of dexamethasone to macrophages caused an increase in CRIg expression. Studies with proinflammatory and immunosuppressive cytokines showed that IL-10 increased, but interferon-γ, IL-4, and transforming growth factor-β1 decreased CRIg expression on macrophages. This down- and up-regulation of CRIg expression was reflected in a decrease and increase, respectively, in the phagocytosis of complement opsonized Candida albicans. These data suggest that a unique inflammatory mediator network regulates CRIg expression and point to a mechanism by which arachidonate and dexamethasone have reciprocal effects on inflammation. PMID:21741936
Identification of C3b-Binding Small-Molecule Complement Inhibitors Using Cheminformatics.
Garcia, Brandon L; Skaff, D Andrew; Chatterjee, Arindam; Hanning, Anders; Walker, John K; Wyckoff, Gerald J; Geisbrecht, Brian V
2017-05-01
The complement system is an elegantly regulated biochemical cascade formed by the collective molecular recognition properties and proteolytic activities of more than two dozen membrane-bound or serum proteins. Complement plays diverse roles in human physiology, such as acting as a sentry against invading microorganisms, priming of the adaptive immune response, and removal of immune complexes. However, dysregulation of complement can serve as a trigger for a wide range of human diseases, which include autoimmune, inflammatory, and degenerative conditions. Despite several potential advantages of modulating complement with small-molecule inhibitors, small-molecule drugs are highly underrepresented in the current complement-directed therapeutics pipeline. In this study, we have employed a cheminformatics drug discovery approach based on the extensive structural and functional knowledge available for the central proteolytic fragment of the cascade, C3b. Using parallel in silico screening methodologies, we identified 45 small molecules that putatively bind C3b near ligand-guided functional hot spots. Surface plasmon resonance experiments resulted in the validation of seven dose-dependent C3b-binding compounds. Competition-based biochemical assays demonstrated the ability of several C3b-binding compounds to interfere with binding of the original C3b ligand that guided their discovery. In vitro assays of complement function identified a single complement inhibitory compound, termed cmp-5, and mechanistic studies of the cmp-5 inhibitory mode revealed it acts at the level of C5 activation. This study has led to the identification of a promising new class of C3b-binding small-molecule complement inhibitors and, to our knowledge, provides the first demonstration of cheminformatics-based, complement-directed drug discovery. Copyright © 2017 by The American Association of Immunologists, Inc.
Identification of C3b-binding Small Molecule Complement Inhibitors Using Cheminformatics
Garcia, Brandon L.; Skaff, D. Andrew; Chatterjee, Arindam; Hanning, Anders; Walker, John K.; Wyckoff, Gerald J.; Geisbrecht, Brian V.
2017-01-01
The complement system is an elegantly regulated biochemical cascade formed by the collective molecular recognition properties and proteolytic activities of over two dozen membrane-bound or serum proteins. Complement plays diverse roles in human physiology which include acting as a sentry against invading microorganisms, priming of the adaptive immune response, and removal of immune complexes. However, dysregulation of complement can serve as a trigger for a wide range of human diseases which include autoimmune, inflammatory, and degenerative conditions. Despite several potential advantages of modulating complement with small molecule inhibitors, small molecule drugs are highly underrepresented in the current complement-directed therapeutics pipeline. In this study we have employed a cheminformatics drug discovery approach based on the extensive structural and functional knowledge available for the central proteolytic fragment of the cascade, C3b. Using parallel in silico screening methodologies we identified 45 small molecules which putatively bind C3b near ligand-guided functional hot-spots. Surface plasmon resonance experiments resulted in the validation of seven dose-dependent C3b-binding compounds. Competition-based biochemical assays demonstrated the ability of several C3b-binding compounds to interfere with binding of the original C3b ligand which guided their discovery. In vitro assays of complement function identified a single complement inhibitory compound, termed cmp-5, and mechanistic studies of the cmp-5 inhibitory mode revealed it acts at the level of C5 activation. This study has led to the identification of a promising new class of C3b-binding small molecule complement inhibitors, and to our knowledge, provides the first demonstration of cheminformatics-based complement-directed drug discovery. PMID:28298523
Biró, E; van den Goor, J M; de Mol, B A; Schaap, M C; Ko, L-Y; Sturk, A; Hack, C E; Nieuwland, R
2011-01-01
To investigate whether cell-derived microparticles play a role in complement activation in pericardial blood of patients undergoing cardiac surgery with cardiopulmonary bypass (CPB) and whether microparticles in pericardial blood contribute to systemic complement activation upon retransfusion. Pericardial blood of 13 patients was retransfused in 9 and discarded in 4 cases. Microparticles were isolated from systemic blood collected before anesthesia (T1) and at the end of CPB (T2), and from pericardial blood. The microparticles were analyzed by flow cytometry for bound complement components C1q, C4 and C3, and bound complement activator molecules C-reactive protein (CRP), serum amyloid P-component (SAP), immunoglobulin (Ig)M and IgG. Fluid-phase complement activation products (C4b/c, C3b/c) and activator molecules were determined by ELISA. Compared with systemic T1 blood, pericardial blood contained increased C4b/c and C3b/c, and increased levels of microparticles with bound complement components. In systemic T1 samples, microparticle-bound CRP, whereas in pericardial blood, microparticle-bound SAP and IgM were associated with complement activation. At the end of CPB, increased C3b/c (but not C4b/c) was present in systemic T2 blood compared with T1, while concentrations of microparticles binding complement components and of those binding complement activator molecules were similar. Concentrations of fluid-phase complement activation products and microparticles were similar in patients whether or not retransfused with pericardial blood. In pericardial blood of patients undergoing cardiac surgery with CPB, microparticles contribute to activation of the complement system via bound SAP and IgM. Retransfusion of pericardial blood, however, does not contribute to systemic complement activation.
Braun, L; Ghebrehiwet, B; Cossart, P
2000-04-03
InlB is a Listeria monocytogenes protein that promotes entry of the bacterium into mammalian cells by stimulating tyrosine phosphorylation of the adaptor proteins Gab1, Cbl and Shc, and activation of phosphatidyl- inositol (PI) 3-kinase. Using affinity chromatography and enzyme-linked immunosorbent assay, we demonstrate a direct interaction between InlB and the mammalian protein gC1q-R, the receptor of the globular part of the complement component C1q. Soluble C1q or anti-gC1q-R antibodies impair InlB-mediated entry. Transient transfection of GPC16 cells, which are non-permissive to InlB-mediated entry, with a plasmid-expressing human gC1q-R promotes entry of InlB-coated beads. Furthermore, several experiments indicate that membrane recruitment and activation of PI 3-kinase involve an InlB-gC1q-R interaction and that gC1q-R associates with Gab1 upon stimulation of Vero cells with InlB. Thus, gC1q-R constitutes a cellular receptor involved in InlB-mediated activation of PI 3-kinase and tyrosine phosphorylation of the adaptor protein Gab1. After E-cadherin, the receptor for internalin, gC1q-R is the second identified mammalian receptor promoting entry of L. monocytogenes into mammalian cells.
Cancer-Associated Mutants of RNA Helicase DDX3X Are Defective in RNA-Stimulated ATP Hydrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epling, Leslie B.; Grace, Christy R.; Lowe, Brandon R.
The DEAD-box RNA helicase DDX3X is frequently mutated in pediatric medulloblastoma. We dissect how these mutants affect DDX3X function with structural, biochemical, and genetic experiments. We identify an N-terminal extension (“ATP-binding loop”, ABL) that is critical for the stimulation of ATP hydrolysis by RNA. We present crystal structures suggesting that the ABL interacts dynamically with ATP and confirming that the interaction occurs in solution by NMR chemical shift perturbation and isothermal titration calorimetry. DEAD-box helicases require interaction between two conserved RecA-like helicase domains, D1 and D2 for function. We use NMR chemical shift perturbation to show that DDX3X interacts specificallymore » with double-stranded RNA through its D1 domain, with contact mediated by residues G302 and G325. Mutants of these residues, G302V and G325E, are associated with pediatric medulloblastoma. These mutants are defective in RNA-stimulated ATP hydrolysis. We show that DDX3X complements the growth defect in a ded1 temperature-sensitive strain of Schizosaccharomyces pombe, but the cancer-associated mutants G302V and G325E do not complement and exhibit protein expression defects. In conclusion, taken together, our results suggest that impaired translation of important mRNA targets by mutant DDX3X represents a key step in the development of medulloblastoma.« less
Cancer-Associated Mutants of RNA Helicase DDX3X Are Defective in RNA-Stimulated ATP Hydrolysis
Epling, Leslie B.; Grace, Christy R.; Lowe, Brandon R.; ...
2015-02-25
The DEAD-box RNA helicase DDX3X is frequently mutated in pediatric medulloblastoma. We dissect how these mutants affect DDX3X function with structural, biochemical, and genetic experiments. We identify an N-terminal extension (“ATP-binding loop”, ABL) that is critical for the stimulation of ATP hydrolysis by RNA. We present crystal structures suggesting that the ABL interacts dynamically with ATP and confirming that the interaction occurs in solution by NMR chemical shift perturbation and isothermal titration calorimetry. DEAD-box helicases require interaction between two conserved RecA-like helicase domains, D1 and D2 for function. We use NMR chemical shift perturbation to show that DDX3X interacts specificallymore » with double-stranded RNA through its D1 domain, with contact mediated by residues G302 and G325. Mutants of these residues, G302V and G325E, are associated with pediatric medulloblastoma. These mutants are defective in RNA-stimulated ATP hydrolysis. We show that DDX3X complements the growth defect in a ded1 temperature-sensitive strain of Schizosaccharomyces pombe, but the cancer-associated mutants G302V and G325E do not complement and exhibit protein expression defects. In conclusion, taken together, our results suggest that impaired translation of important mRNA targets by mutant DDX3X represents a key step in the development of medulloblastoma.« less
Hecker, Laura A.; Edwards, Albert O.; Ryu, Euijung; Tosakulwong, Nirubol; Baratz, Keith H.; Brown, William L.; Issa, Peter Charbel; Scholl, Hendrik P.; Pollok-Kopp, Beatrix; Schmid-Kubista, Katharina E.; Bailey, Kent R.; Oppermann, Martin
2010-01-01
Activation of the alternative pathway of complement is implicated in common neurodegenerative diseases including age-related macular degeneration (AMD). We explored the impact of common variation in genes encoding proteins of the alternative pathway on complement activation in human blood and in AMD. Genetic variation across the genes encoding complement factor H (CFH), factor B (CFB) and component 3 (C3) was determined. The influence of common haplotypes defining transcriptional and translational units on complement activation in blood was determined in a quantitative genomic association study. Individual haplotypes in CFH and CFB were associated with distinct and novel effects on plasma levels of precursors, regulators and activation products of the alternative pathway of complement in human blood. Further, genetic variation in CFH thought to influence cell surface regulation of complement did not alter plasma complement levels in human blood. Plasma markers of chronic activation (split-products Ba and C3d) and an activating enzyme (factor D) were elevated in AMD subjects. Most of the elevation in AMD was accounted for by the genetic variation controlling complement activation in human blood. Activation of the alternative pathway of complement in blood is under genetic control and increases with age. The genetic variation associated with increased activation of complement in human blood also increased the risk of AMD. Our data are consistent with a disease model in which genetic variation in the complement system increases the risk of AMD by a combination of systemic complement activation and abnormal regulation of complement activation in local tissues. PMID:19825847
Pratheeshkumar, Poyil; Kuttan, Girija
2012-02-01
Effect of Vernonia cinerea L. and vernolide-A on cell-mediated immune (CMI) response was studied in normal as well as tumor-bearing BALB/c mice. Administration of V. cinerea and vernolide-A significantly enhanced natural killer (NK) cell activity in both normal as well as tumor-bearing animals, and the activity was observed earlier than in tumor-bearing control animals. Antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent complement-mediated cytotoxicity (ACC) were also enhanced significantly in both normal as well as tumor-bearing animals after V. cinerea and vernolide-A administration compared with untreated control tumor-bearing animals. Extract and vernolide-A showed a significant increase in cytotoxic T lymphocyte (CTL) production in both the in vivo and in vitro models. The level of cytokines such as interleukin (IL)-2 and interferon (IFN)-γ were also enhanced by the treatment of V. cinerea and vernolide-A in both normal as well as tumor-bearing animals. This study demonstrated that V. cinerea extract and vernolide-A stimulate the CTL, NK cell, ADCC, and ADCC through enhanced secretion of IL-2 and IFN-γ.
Li, Hua-Fei; Wu, Cong; Chen, Ting; Zhang, Ge; Zhao, He; Ke, Chang-Hong; Xu, Zheng
2015-01-01
The CD20-directed monoclonal antibody rituximab (RTX) established a new era in the treatment of non-Hodgkin lymphoma (NHL); however, suboptimal response and/or resistance to RTX still limit its clinical merits. Although four effector mechanisms are validated to participate in CD20-based immunotherapy, including complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, caspase-dependent apoptosis, and lysosome-mediated programmed cell death (PCD), they could hardly be synchronously activated by any anti-CD20 mAb or mAb derivative until now. Herein, a novel mAb nanocomb (polyethylenimine polymer-RTX-tositumomab [PPRT nanocomb]) was firstly constructed through mass arming two different anti-CD20 mAbs (RTX and tositumomab) to one polymer by nanotechnology. Comparing with free mAbs, PPRT nanocomb possesses a comparable binding ability and reduced "off-rate" to surface CD20 of NHL cells. When treated by PPRT nanocomb, the caspase-dependent apoptosis was remarkably enhanced except for concurrently eliciting complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and lysosome-mediated PCD. Besides, "cross-cell link"-assisted homotypic adhesion by PPRT nanocomb further enhanced the susceptibility to PCD of lymphoma cells. Pharmacokinetic assays revealed that PPRT nanocomb experienced a relatively reduced clearance from peripheral blood compared with free antibodies. With the cooperation of all the abovementioned superiorities, PPRT nanocomb exhibits exceptionally excellent in vivo antitumor activities in both disseminated and localized human NHL xenotransplant models.
Li, Hua-Fei; Wu, Cong; Chen, Ting; Zhang, Ge; Zhao, He; Ke, Chang-Hong; Xu, Zheng
2015-01-01
The CD20-directed monoclonal antibody rituximab (RTX) established a new era in the treatment of non-Hodgkin lymphoma (NHL); however, suboptimal response and/or resistance to RTX still limit its clinical merits. Although four effector mechanisms are validated to participate in CD20-based immunotherapy, including complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, caspase-dependent apoptosis, and lysosome-mediated programmed cell death (PCD), they could hardly be synchronously activated by any anti-CD20 mAb or mAb derivative until now. Herein, a novel mAb nanocomb (polyethylenimine polymer–RTX–tositumomab [PPRT nanocomb]) was firstly constructed through mass arming two different anti-CD20 mAbs (RTX and tositumomab) to one polymer by nanotechnology. Comparing with free mAbs, PPRT nanocomb possesses a comparable binding ability and reduced “off-rate” to surface CD20 of NHL cells. When treated by PPRT nanocomb, the caspase-dependent apoptosis was remarkably enhanced except for concurrently eliciting complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and lysosome-mediated PCD. Besides, “cross-cell link”-assisted homotypic adhesion by PPRT nanocomb further enhanced the susceptibility to PCD of lymphoma cells. Pharmacokinetic assays revealed that PPRT nanocomb experienced a relatively reduced clearance from peripheral blood compared with free antibodies. With the cooperation of all the abovementioned superiorities, PPRT nanocomb exhibits exceptionally excellent in vivo antitumor activities in both disseminated and localized human NHL xenotransplant models. PMID:26257518
Primary immunodeficiency diseases in children treated in the Children's Memorial Hospital, Poland.
Bernatowska, E; Madalinski, K; Michalkiewicz, J; Gregorek, H
1988-04-01
One hundred and three cases of primary immunodeficiency diseases were diagnosed among children suffering mainly from chronic and severe infections in the period 1980-1987. Predominantly antibody defects were recognized in 48 patients (46.6%), combined immunodeficiencies in 36 patients (35%), phagocytic disorders in 12 patients (11.6%), complement defects in 6 patients (5.8%), and cell-mediated disease (Di George syndrome) in 1 patient. Allergic complications were observed in 25 patients (24.2%) and malignancy-in 3 patients (2.9%). More detailed immunological studies were performed in children with X-linked agammaglobulinemia in the course of intravenous immunoglobulin therapy and in children with ataxia telangiectasia.
Zaware, Nilesh; Laporte, Matthew G; Farid, Ramy; Liu, Lei; Wipf, Peter; Floreancig, Paul E
2011-05-02
Eighteen (2RS,6RS)-2-(4-methoxyphenyl)-6-(substituted ethyl)dihydro-2H-pyran-4(3H)ones were synthesized via a DDQ-mediated oxidative carbon-hydrogen bond activation reaction. Fourteen of these tetrahydropyrans were substituted with triazoles readily assembled via azide-alkyne click-chemistry reactions. Examples of a linked benzotriazole and pyrazole motif were also prepared. To complement the structural diversity, the alcohol substrates were obtained from stereoselective reductions of the tetrahydropyrone. This library provides rapid access to structurally diverse non-natural compounds to be screened against a variety of biological targets.
Complement component C5a mediates hemorrhage-induced intestinal damage
Fleming, Sherry D.; Phillips, Lauren M.; Lambris, John D.; Tsokos, George C.
2008-01-01
Background Complement has been implicated in the pathogenesis of intestinal damage and inflammation in multiple animal models. Although the exact mechanism is unknown, inhibition of complement prevents hemodynamic alterations in hemorrhage. Materials/Methods C57Bl/6, complement 5 deficient (C5−/−) and sufficient (C5+/+) mice were subjected to 25% blood loss. In some cases, C57Bl/6 mice were treated with C5a receptor antagonist (C5aRa) post-hemorrhage. Intestinal injury, leukotriene B4, and myeloperoxidase production were assessed for each treatment group of mice. Results Mice subjected to significant blood loss without major trauma develop intestinal inflammation and tissue damage within two hours. We report here that complement 5 (C5) deficient mice are protected from intestinal tissue damage when subjected to hemorrhage (Injury score = 0.36 compared to wildtype hemorrhaged animal injury score = 2.89; p<0.05). We present evidence that C5a represents the effector molecule because C57Bl/6 mice treated with a C5a receptor antagonist displayed limited intestinal injury (Injury score = 0.88), leukotriene B4 (13.16 pg/mg tissue) and myeloperoxidase (115.6 pg/mg tissue) production compared to hemorrhaged C57Bl/6 mice (p<0.05). Conclusion Complement activation is important in the development of hemorrhage-induced tissue injury and C5a generation is critical for tissue inflammation and damage. Thus, therapeutics targeting C5a may be useful therapeutics for hemorrhage-associated injury. PMID:18639891
Langereis, Jeroen D; Weiser, Jeffrey N
2014-07-22
Nontypeable Haemophilus influenzae is a frequent cause of noninvasive mucosal inflammatory diseases but may also cause invasive diseases, such as sepsis and meningitis, especially in children and the elderly. Infection by nontypeable Haemophilus influenzae is characterized by recruitment of neutrophilic granulocytes. Despite the presence of a large number of neutrophils, infections with nontypeable Haemophilus influenzae are often not cleared effectively by the antimicrobial activity of these immune cells. Herein, we examined how nontypeable Haemophilus influenzae evades neutrophil-mediated killing. Transposon sequencing (Tn-seq) was used on an isolate resistant to neutrophil-mediated killing to identify genes required for its survival in the presence of human neutrophils and serum, which provided a source of complement and antibodies. Results show that nontypeable Haemophilus influenzae prevents complement-dependent neutrophil-mediated killing by expression of surface galactose-containing oligosaccharide structures. These outer-core structures block recognition of an inner-core lipooligosaccharide epitope containing glucose attached to heptose HepIII-β1,2-Glc by replacement with galactose attached to HepIII or through shielding HepIII-β1,2-Glc by phase-variable attachment of oligosaccharide chain extensions. When the HepIII-β1,2-Glc-containing epitope is expressed and exposed, nontypeable Haemophilus influenzae is opsonized by naturally acquired IgM generally present in human serum and subsequently phagocytosed and killed by human neutrophils. Clinical nontypeable Haemophilus influenzae isolates containing galactose attached to HepIII that are not recognized by this IgM are more often found to cause invasive infections. Importance: Neutrophils are white blood cells that specialize in killing pathogens and are recruited to sites of inflammation. However, despite the presence of large numbers of neutrophils in the middle ear cavity and lungs of patients with otitis media or chronic obstructive pulmonary disease, respectively, the bacterium nontypeable Haemophilus influenzae is often not effectively cleared from these locations by these immune cells. In order to understand how nontypeable Haemophilus influenzae is able to cause inflammatory diseases in the presence of neutrophils, we determined the mechanism that underlies resistance to neutrophil-mediated killing. We have shown that nontypeable Haemophilus influenzae prevents binding of antibodies of the IgM subtype through changes in their surface lipooligosaccharide structure, thereby preventing complement activation and clearance by human neutrophils. Copyright © 2014 Langereis and Weiser.
Defining the Complement Biomarker Profile of C3 Glomerulopathy
Zhang, Yuzhou; Nester, Carla M.; Martin, Bertha; Skjoedt, Mikkel-Ole; Meyer, Nicole C.; Shao, Dingwu; Borsa, Nicolò; Palarasah, Yaseelan
2014-01-01
Background and objectives C3 glomerulopathy (C3G) applies to a group of renal diseases defined by a specific renal biopsy finding: a dominant pattern of C3 fragment deposition on immunofluorescence. The primary pathogenic mechanism involves abnormal control of the alternative complement pathway, although a full description of the disease spectrum remains to be determined. This study sought to validate and define the association of complement dysregulation with C3G and to determine whether specific complement pathway abnormalities could inform disease definition. Design, setting, participants, & measurements This study included 34 patients with C3G (17 with C3 glomerulonephritis [C3GN] and 17 with dense deposit disease [DDD]) diagnosed between 2008 and 2013 selected from the C3G Registry. Control samples (n=100) were recruited from regional blood drives. Nineteen complement biomarkers were assayed on all samples. Results were compared between C3G disease categories and with normal controls. Results Assessment of the alternative complement pathway showed that compared with controls, patients with C3G had lower levels of serum C3 (P<0.001 for both DDD and C3GN) and factor B (P<0.001 for both DDD and C3GN) as well as higher levels of complement breakdown products including C3d (P<0.001 for both DDD and C3GN) and Bb (P<0.001 for both DDD and C3GN). A comparison of terminal complement pathway proteins showed that although C5 levels were significantly suppressed (P<0.001 for both DDD and C3GN) its breakdown product C5a was significantly higher only in patients with C3GN (P<0.05). Of the other terminal pathway components (C6–C9), the only significant difference was in C7 levels between patients with C3GN and controls (P<0.01). Soluble C5b-9 was elevated in both diseases but only the difference between patients with C3GN and controls reached statistical significance (P<0.001). Levels of C3 nephritic factor activity were qualitatively higher in patients with DDD compared with patients with C3GN. Conclusions Complement biomarkers are significantly abnormal in patients with C3G compared with controls. These data substantiate the link between complement dysregulation and C3G and identify C3G interdisease differences. PMID:25341722
Griffioen, A W; Rijkers, G T; Janssens-Korpela, P; Zegers, B J
1991-01-01
The immunoregulatory function of the complement system has been the focus of many investigations. In particular, fragments of complement factor C3 have been shown to play a role in B-lymphocyte activation and proliferation, lymphokine production, and the generation of in vitro antibody production. Purified pneumococcal polysaccharides (PS) can induce direct activation of C3 via the alternative pathway. Using sera of C1q-deficient patients and healthy subjects, we demonstrated that C3d, a split product of C3 that is generated after degradation of iC3b, can be bound to PS antigens. The binding of C3d to PS can occur in the absence of specific antibodies. Subsequently, we showed that PS complexed with C3d can be recognized by complement receptor type 2 that is expressed on B cells. Treatment of B cells with a monoclonal antibody recognizing the C3d-binding site of complement receptor type 2 reduces the binding of PS-C3d to the cells. In addition, we showed that PS4 complexed with C3d exerted an increased immunogenicity compared with free PS4. Our results show that the complement system plays a role in the activation of PS-specific B cells, carrying membrane receptors for C3d. Consequently, the complement system plays a regulatory role in the antibody response to T-cell-independent type 2 antigens such as PS. PMID:1826897
c-Cbl regulates αPix-mediated cell migration and invasion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seong, Min Woo; Park, Ji Ho; Yoo, Hee Min
2014-12-12
Highlights: • c-Cbl ubiquitinates αPix for proteasome-mediated degradation. • C6 and A172 glioma cells lack c-Cbl, which leads to stabilization of αPix. • The accumulated αPix promotes migration and invasion of the cancer cells. • The lack of c-Cbl in the cells appears responsible for their malignant behavior. - Abstract: c-Cbl, a RING-type ubiquitin E3 ligase, down-regulates receptor tyrosine kinases, including EGF receptor, and inhibits cell proliferation. Moreover, c-Cbl mutations are frequently found in patients with myeloid neoplasm. Therefore, c-Cbl is known as a tumor suppressor. αPix is expressed only in highly proliferative and mobile cells, including immune cells, andmore » up-regulated in certain invasive tumors, such as glioblastoma multiforme. Here, we showed that c-Cbl serves as an ubiquitin E3 ligase for proteasome-mediated degradation of αPix, but not βPix. Remarkably, the rat C6 and human A172 glioma cells were unable to express c-Cbl, which leads to a dramatic accumulation of αPix. Depletion of αPix by shRNA markedly reduced the ability of the glioma cells to migrate and invade, whereas complementation of shRNA-insensitive αPix promoted it. These results indicate that c-Cbl negatively regulates αPix-mediated cell migration and invasion and the lack of c-Cbl in the C6 and A172 glioma cells is responsible for their malignant behavior.« less
Non-ionic iodinated contrast media related immediate reactions: A mechanism study of 27 patients.
Zhai, Liqin; Guo, Xiangjie; Zhang, Haoyue; Jin, Qianqian; Zeng, Qiang; Tang, Xiaoxian; Gao, Cairong
2017-01-01
The underlying mechanism of non-ionic iodinated contrast media-related immediate reactions was evaluated in this study. Patients presenting at least grade II immediate reactions after non-ionic iodinated contrast media injection were enrolled. Basophil activation was evaluated by flow cytometry. The plasma concentration of human terminal complement complex SC5b-9, as well as concentrations of serum chymase, tryptase, human mast cell carboxypeptidase A3, human prostaglandin D2, and total IgE were measured by enzyme-linked immunosorbent assay. The basophil activation percentage was significantly higher in the study group than in the control group (17.94±21.06% vs 3.45±1.49%). The plasma concentration of human terminal complement complex SC5b-9 and concentrations of serum chymase, human mast cell carboxypeptidase A3, prostaglandin D2, tryptase, and total IgE were also significantly increased (236.99±318.21 vs 49.70±30.41ng/mL, 0.41±0.49 vs 0.09±0.06ng/mL, 1.17±0.67 vs 0.30±0.17ng/mL, 203.52±137.27 vs 102.28±48.72pg/mL, 3.81±0.22 vs 2.70±0.16ng/mL, 102.00±51.84 vs 19.97±2.75ng/mL, respectively). Both mast cells and basophils were activated in non-ionic iodinated contrast media to mediate immediate hypersensitivity, and mast cells may be involved. Different mechanisms, including IgE-dependent, complement-dependent, and direct membrane effects, contributed to mast cell and basophil activation. Individual patients may use a single or combined mechanism involving single or combined mast cells and basophils. Immediate reactions following non-ionic iodinated contrast media injection may be a mechanically heterogenous disease. Copyright © 2016. Published by Elsevier B.V.
Baumann, U; Chouchakova, N; Gewecke, B; Köhl, J; Carroll, M C; Schmidt, R E; Gessner, J E
2001-07-15
We induced the passive reverse Arthus reaction to IgG immune complexes (IC) at different tissue sites in mice lacking C3 treated or not with a C5aR-specific antagonist, or in mice lacking mast cells (Kit(W)/Kit(W-v) mice), and compared the inflammatory responses with those in the corresponding wild-type mice. We confirmed that IC inflammation of skin can be mediated largely by mast cells expressing C5aR and FcgammaRIII. In addition, we provided evidence for C3-independent C5aR triggering, which may explain why the cutaneous Arthus reaction develops normally in C3(-/-) mice. Furthermore, some, but not all, of the acute changes associated with the Arthus response in the lung were significantly more intense in normal mice than in C3(-/-) or Kit(W)/Kit(W-v) mice, indicating for C3- and mast cell-dependent and -independent components. Finally, we demonstrated that C3 contributed to the elicitation of neutrophils to alveoli, which corresponded to an increased synthesis of TNF-alpha, macrophage-inflammatory protein-2, and cytokine-induced neutrophil chemoattractant. While mast cells similarly influenced alveolar polymorphonuclear leukocyte influx, the levels of these cytokines remained largely unaffected in mast cell deficiency. Together, the phenotypes of C3(-/-) mice and Kit(W)/Kit(W-v) mice suggest that complement and mast cells have distinct tissue site-specific requirements acting by apparently distinct mechanisms in the initiation of IC inflammation.
Downing, Chris; Marks, Michael J.; Larson, Colin; Johnson, Thomas E.
2010-01-01
Objective Inbred Long-Sleep and Short-Sleep mice (ILS and ISS) were selectively bred for differential sensitivity to the sedative effects of ethanol. Lines of mice derived from these progenitors have been used to identify several Quantitative Trait Loci (QTLs) mediating Loss Of the Righting reflex due to Ethanol (LORE). The present study investigated mGluR5 as a candidate gene underlying Lore7, a QTL mediating differential LORE sensitivity. Methods We used knockout mice, a quantitative complementation test, pharmacological antagonism of mGluR5, real-time quantitative PCR, radioligand binding, DNA sequencing and bioinformatics to examine the role of mGluR5 in ethanol-induced sedation. Results mGluR5 knockout mice had a significantly longer LORE duration than wild-type controls. Administration of the mGluR5 antagonist 2-methyl-6-(phenylethyl)-pyridine (MPEP) had differential effects on LORE in ILS and ISS mice. A quantitative complementation test also supported mGluR5 mediating LORE. Two intronic single-nucleotide polymorphisms in mGluR5 were highly correlated with LORE in recombinant inbred mice derived from a cross between ILS and ISS (LXS RIs). Differences in mGluR5 mRNA level and receptor density were observed between ILS and ISS in distinct brain regions. Finally, data from WebQTL showed that mGluR5 expression was highly correlated with several LORE phenotypes in the LXS RIs. Conclusions Taken together, this data provides convincing evidence that mGluR5 mediates differential sensitivity to the sedative effects of ethanol. Studies from the human literature have also identified MGLUR5 as a potential candidate gene for ethanol sensitivity. PMID:20657349
Okroj, Marcin; Mark, Linda; Stokowska, Anna; Wong, Scott W; Rose, Nicola; Blackbourn, David J; Villoutreix, Bruno O; Spiller, O Brad; Blom, Anna M
2009-01-02
Rhesus rhadinovirus (RRV) is currently the closest known, fully sequenced homolog of human Kaposi sarcoma-associated herpesvirus. Both these viruses encode complement inhibitors as follows: Kaposi sarcoma-associated herpesvirus-complement control protein (KCP) and RRV-complement control protein (RCP). Previously we characterized in detail the functional properties of KCP as a complement inhibitor. Here, we performed comparative analyses for two variants of RCP protein, encoded by RRV strains H26-95 and 17577. Both RCP variants and KCP inhibited human and rhesus complement when tested in hemolytic assays measuring all steps of activation via the classical and the alternative pathway. RCP variants from both RRV strains supported C3b and C4b degradation by factor I and decay acceleration of the classical C3 convertase, similar to KCP. Additionally, the 17577 RCP variant accelerated decay of the alternative C3 convertase, which was not seen for KCP. In contrast to KCP, RCP showed no affinity to heparin and is the first described complement inhibitor in which the binding site for C3b/C4b does not interact with heparin. Molecular modeling shows a structural disruption in the region of RCP that corresponds to the KCP-heparin-binding site. This makes RRV a superior model for future in vivo investigations of complement evasion, as RCP does not play a supportive role in viral attachment as KCP does.
van Vuuren, B Jansen; Bergseth, G; Mollnes, T E; Shaw, A M
2014-01-15
Electroluminescent assays for epitopes on the complement components C3dg, terminal complement complex (TCC) and factor B/Bb (fB/Bb) have been developed with capture and detection antibodies to produce detection limits C3dg=91±9ng/mL, TCC=3±0.1ng/mL and fB=55.7±0.1ng/mL. The assay performance was assessed against a series of zymosan and heat aggregated IgG (HAIgG) in vitro activations of complement using a calibrated activated complement serum (ACS) as calibration standard. The ACS standard was stable within 20% accuracy over a 6-month period with freeze-thaw cycles as required. Differential activation of the complement cascade was observed for TCC showing a pseudo-first order formation half-life of 3.5h after activation with zymosan. The C3dg activation fragment indicates a 10% total activation for both activation agents. The kinetic-epitope analysis for fB indicates that the capture epitope is on the fB/Bb protein fragment which can then become covered by the formation of C3bBb or C3bBbP complexes during the time course of the cascade. Copyright © 2013 Elsevier B.V. All rights reserved.
Park, Shin Yong; Kim, Kyoung Mi; Lee, Joon Ha; Seo, Sook Jae; Lee, In Hee
2007-01-01
We isolated Enterococcus faecalis from the body fluids of dead larvae of the greater wax moth, Galleria mellonella. Extracellular gelatinase (GelE) and serine protease (SprE), both of which are considered putative virulence factors of E. faecalis, were purified from the culture supernatant of E. faecalis. In an attempt to elucidate their virulence mechanisms, purified GelE and SprE were injected into hemolymph of G. mellonella and evaluated with regard to their effects on the immune system of insect hemolymph. As a result, it was determined that E. faecalis GelE degraded an inducible antimicrobial peptide (Gm cecropin) which is known to perform a critical role in host defense during the early phase of microbial infection. The results obtained from the G. mellonella-E. faecalis infection model compelled us to assess the virulence activity of GelE against the complement system in human serum. E. faecalis GelE hydrolyzed C3a and also mediated the degradation of the alpha chain of C3b, thereby inhibiting opsonization and the formation of the membrane attack complex resultant from the activation of the complement cascade triggered by C3 activation. In contrast, E. faecalis SprE exhibited no virulence effect against the immune system of insect hemolymph or human serum tested in this study. PMID:17261598
The role of hemocytes in A. gambiae antiplasmodial immunity
Ramirez, Jose Luis; Garver, Lindsey S.; Brayner, Fábio André; Alves, Luiz Carlos; Rodrigues, Janneth; Molina-Cruz, Alvaro; Barillas-Mury, Carolina
2013-01-01
Hemocytes synthesize key components of the mosquito complement-like system, but their role in the activation of antiplasmodial responses has not been established. The effect of activating Toll signaling in hemocytes on Plasmodium survival was investigated by transferring hemocytes or cell-free hemolymph from donor mosquitoes in which the suppressor cactus was silenced. These transfers greatly enhanced antiplasmodial immunity, indicating that hemocytes are active players in the activation of the complement-like system, through an effector(s) regulated by the Toll pathway. A comparative analysis of hemocyte populations between susceptible (S) G3 and the refractory (R) L3-5 A. gambiae mosquito strains did not reveal significant differences under basal conditions or in response to Plasmodium berghei infection. The response of S mosquitoes to different Plasmodium species revealed similar kinetics following infection with P. berghei, P. yoelii or P. falciparum, but the strength of the priming response was stronger in less compatible mosquito-parasite pairs. The Toll, Imd, STAT or JNK signaling cascades were not essential for the production of hemocyte differentiation factor (HDF) in response to P. berghei infection, but disruption of Toll, STAT or JNK abolished hemocyte differentiation in response to HDF. We conclude that hemocytes are key mediators of A. gambiae antiplasmodial responses. PMID:23886925
Macrophages phagocytose nonopsonized silica particles using a unique microtubule-dependent pathway
Gilberti, Renée M.; Knecht, David A.
2015-01-01
Silica inhalation leads to the development of the chronic lung disease silicosis. Macrophages are killed by uptake of nonopsonized silica particles, and this is believed to play a critical role in the etiology of silicosis. However, the mechanism of nonopsonized-particle uptake is not well understood. We compared the molecular events associated with nonopsonized- and opsonized-particle phagocytosis. Both Rac and RhoA GTPases are activated upon nonopsonized-particle exposure, whereas opsonized particles activate either Rac or RhoA. All types of particles quickly generate a PI(3,4,5)P3 and F-actin response at the particle attachment site. After formation of a phagosome, the events related to endolysosome-to-phagosome fusion do not significantly differ between the pathways. Inhibitors of tyrosine kinases, actin polymerization, and the phosphatidylinositol cascade prevent opsonized- and nonopsonized-particle uptake similarly. Inhibition of silica particle uptake prevents silica-induced cell death. Microtubule depolymerization abolished uptake of complement-opsonized and nonopsonized particles but not Ab-opsonized particles. Of interest, regrowth of microtubules allowed uptake of new nonopsonized particles but not ones bound to cells in the absence of microtubules. Although complement-mediated uptake requires macrophages to be PMA-primed, untreated cells phagocytose nonopsonized silica and latex. Thus it appears that nonopsonized-particle uptake is accomplished by a pathway with unique characteristics. PMID:25428990
Mapping the Complement Factor H-Related Protein 1 (CFHR1):C3b/C3d Interactions
Laskowski, Jennifer; Thurman, Joshua M.; Hageman, Gregory S.; Holers, V. Michael
2016-01-01
Complement factor H-related protein 1 (CFHR1) is a complement regulator which has been reported to regulate complement by blocking C5 convertase activity and interfering with C5b surface association. CFHR1 also competes with complement factor H (CFH) for binding to C3b, and may act as an antagonist of CFH-directed regulation on cell surfaces. We have employed site-directed mutagenesis in conjunction with ELISA-based and functional assays to isolate the binding interaction that CFHR1 undertakes with complement components C3b and C3d to a single shared interface. The C3b/C3d:CFHR1 interface is identical to that which occurs between the two C-terminal domains (SCR19-20) of CFH and C3b. Moreover, we have been able to corroborate that dimerization of CFHR1 is necessary for this molecule to bind effectively to C3b and C3d, or compete with CFH. Finally, we have established that CFHR1 competes with complement factor H-like protein 1 (CFHL-1) for binding to C3b. CFHL-1 is a CFH gene splice variant, which is almost identical to the N-terminal 7 domains of CFH (SCR1-7). CFHR1, therefore, not only competes with the C-terminus of CFH for binding to C3b, but also sterically blocks the interaction that the N-terminus of CFH undertakes with C3b, and which is required for CFH-regulation. PMID:27814381
2017-01-01
Purpose Inflammatory rheumatic diseases (IRD) are associated with accelerated coronary artery disease (CAD), which may result from both systemic and vascular wall inflammation. There are indications that complement may be involved in the pathogenesis of CAD in Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA). This study aimed to evaluate the associations between circulating complement and complement activation products with mononuclear cell infiltrates (MCI, surrogate marker of vascular inflammation) in the aortic media and adventitia in IRDCAD and non-IRDCAD patients undergoing coronary artery bypass grafting (CABG). Furthermore, we compared complement activation product deposition patterns in rare aorta adventitial and medial biopsies from SLE, RA and non-IRD patients. Methods We examined plasma C3 (p-C3) and terminal complement complexes (p-TCC) in 28 IRDCAD (SLE = 3; RA = 25), 52 non-IRDCAD patients, and 32 IRDNo CAD (RA = 32) from the Feiring Heart Biopsy Study. Aortic biopsies taken from the CAD only patients during CABG were previously evaluated for adventitial MCIs. The rare aortic biopsies from 3 SLE, 3 RA and 3 non-IRDCAD were assessed for the presence of C3 and C3d using immunohistochemistry. Results IRDCAD patients had higher p-TCC than non-IRDCAD or IRDNo CAD patients (p<0.0001), but a similar p-C3 level (p = 0.42). Circulating C3 was associated with IRD duration (ρ, p-value: 0.46, 0.03). In multiple logistic regression analysis, IRD remained significantly related to the presence and size of MCI (p<0.05). C3 was present in all tissue samples. C3d was detected in the media of all patients and only in the adventitia of IRD patients (diffuse in all SLE and focal in one RA). Conclusion The independent association of IRD status with MCI and the observed C3d deposition supports the unique relationship between rheumatic disease, and, in particular, SLE with the complement system. Exaggerated systemic and vascular complement activation may accelerate CVD, serve as a CVD biomarker, and represent a target for new therapies. PMID:28362874
2011-01-01
Background Serum autoantibodies against the water channel aquaporin-4 (AQP4) are important diagnostic biomarkers and pathogenic factors for neuromyelitis optica (NMO). However, AQP4-IgG are absent in 5-40% of all NMO patients and the target of the autoimmune response in these patients is unknown. Since recent studies indicate that autoimmune responses to myelin oligodendrocyte glycoprotein (MOG) can induce an NMO-like disease in experimental animal models, we speculate that MOG might be an autoantigen in AQP4-IgG seronegative NMO. Although high-titer autoantibodies to human native MOG were mainly detected in a subgroup of pediatric acute disseminated encephalomyelitis (ADEM) and multiple sclerosis (MS) patients, their role in NMO and High-risk NMO (HR-NMO; recurrent optic neuritis-rON or longitudinally extensive transverse myelitis-LETM) remains unresolved. Results We analyzed patients with definite NMO (n = 45), HR-NMO (n = 53), ADEM (n = 33), clinically isolated syndromes presenting with myelitis or optic neuritis (CIS, n = 32), MS (n = 71) and controls (n = 101; 24 other neurological diseases-OND, 27 systemic lupus erythematosus-SLE and 50 healthy subjects) for serum IgG to MOG and AQP4. Furthermore, we investigated whether these antibodies can mediate complement dependent cytotoxicity (CDC). AQP4-IgG was found in patients with NMO (n = 43, 96%), HR-NMO (n = 32, 60%) and in one CIS patient (3%), but was absent in ADEM, MS and controls. High-titer MOG-IgG was found in patients with ADEM (n = 14, 42%), NMO (n = 3, 7%), HR-NMO (n = 7, 13%, 5 rON and 2 LETM), CIS (n = 2, 6%), MS (n = 2, 3%) and controls (n = 3, 3%, two SLE and one OND). Two of the three MOG-IgG positive NMO patients and all seven MOG-IgG positive HR-NMO patients were negative for AQP4-IgG. Thus, MOG-IgG were found in both AQP4-IgG seronegative NMO patients and seven of 21 (33%) AQP4-IgG negative HR-NMO patients. Antibodies to MOG and AQP4 were predominantly of the IgG1 subtype, and were able to mediate CDC at high-titer levels. Conclusions We could show for the first time that a subset of AQP4-IgG seronegative patients with NMO and HR-NMO exhibit a MOG-IgG mediated immune response, whereas MOG is not a target antigen in cases with an AQP4-directed humoral immune response. PMID:22204662
Abbitt, Katherine B; Cotter, Matthew J; Ridger, Victoria C; Crossman, David C; Hellewell, Paul G; Norman, Keith E
2009-01-01
Ly-6G is a member of the Ly-6 family of GPI-linked proteins, which is expressed on murine neutrophils. Antibodies against Ly-6G cause neutropenia, and fatal reactions also develop if mice are primed with TNF-alpha prior to antibody treatment. We have investigated the mechanisms behind these responses to Ly-6G ligation in the belief that similar mechanisms may be involved in neutropenia and respiratory disorders associated with alloantibody ligation of the related Ly-6 family member, NB1, in humans. Neutrophil adhesion, microvascular obstruction, breathing difficulties, and death initiated by anti-Ly-6G antibodies in TNF-alpha-primed mice were shown to be highly complement-dependent, partly mediated by CD11b, CD18, and FcgammaR and associated with clustering of Ly-6G. Neutrophil depletion, on the other hand, was only partly complement-dependent and was not altered by blockade of CD11b, CD18, or FcgammaR. Unlike other neutrophil-activating agents, Ly-6G ligation did not induce neutropenia via sequestration in the lungs. Cross-linking Ly-6G mimicked the responses seen with whole antibody in vivo and also activated murine neutrophils in vitro. Although this suggests that the responses are, in part, mediated by nonspecific properties of antibody ligation, neutrophil depletion requires an additional mechanism possibly specific to the natural function of Ly-6G.
Functional basis for complement evasion by staphylococcal superantigen-like 7.
Bestebroer, Jovanka; Aerts, Piet C; Rooijakkers, Suzan H M; Pandey, Manoj K; Köhl, Jörg; van Strijp, Jos A G; de Haas, Carla J C
2010-10-01
The human pathogen Staphylococcus aureus has a plethora of virulence factors that promote its colonization and survival in the host. Among such immune modulators are staphylococcal superantigen-like (SSL) proteins, comprising a family of 14 small, secreted molecules that seem to interfere with the host innate immune system. SSL7 has been described to bind immunoglobulin A (IgA) and complement C5, thereby inhibiting IgA-FcαRI binding and serum killing of Escherichia coli. As C5a generation, in contrast to C5b-9-mediated lysis, is crucial for immune defence against staphylococci, we investigated the impact of SSL7 on staphylococcal-induced C5a-mediated effects. Here, we show that SSL7 inhibits C5a generation induced by staphylococcal opsonization, slightly enhanced by its IgA-binding capacity. Moreover, we demonstrate a strong protective activity of SSL7 against staphylococcal clearance in human whole blood. SSL7 strongly inhibited the C5a-induced phagocytosis of S. aureus and oxidative burst in an in vitro whole-blood inflammation model. Furthermore, we found that SSL7 affects all three pathways of complement activation and inhibits the cleavage of C5 by interference of its binding to C5 convertases. Finally, SSL7 effects were also demonstrated in vivo. In a murine model of immune complex peritonitis, SSL7 abrogated the C5a-driven influx of neutrophils in mouse peritoneum. © 2010 Blackwell Publishing Ltd.
Functional basis for complement evasion by staphylococcal superantigen-like 7
Bestebroer, Jovanka; Aerts, Piet C.; Rooijakkers, Suzan H.M.; Pandey, Manoj K.; Köhl, Jörg; van Strijp, Jos A. G.; de Haas, Carla J. C.
2010-01-01
Summary The human pathogen Staphylococcus aureus has a plethora of virulence factors that promote its colonization and survival in the host. Among such immune modulators are staphylococcal superantigen-like (SSL) proteins, comprising a family of 14 small, secreted molecules that seem to interfere with the host innate immune system. SSL7 has been described to bind immunoglobulin A (IgA) and complement C5, thereby inhibiting IgA-FcαRI binding and serum killing of E. coli. As C5a generation, in contrast to C5b-9-mediated lysis, is crucial for immune defense against staphylococci, we investigated the impact of SSL7 on staphylococcal-induced C5a-mediated effects. Here, we show that SSL7 inhibits C5a generation induced by staphylococcal opsonization, slightly enhanced by its IgA-binding capacity. Moreover, we demonstrate a strong protective activity of SSL7 against staphylococcal clearance in human whole blood. SSL7 strongly inhibited the C5a-induced phagocytosis of S. aureus and oxidative burst in an in vitro whole blood inflammation model. Furthermore, we found that SSL7 affects all three pathways of complement activation and inhibits the cleavage of C5 by interference of its binding to C5 convertases. Finally, SSL7 effects were also demonstrated in vivo. In a murine model of immune complex peritonitis, SSL7 abrogated the C5a-driven influx of neutrophils in mouse peritoneum. PMID:20545943
van der Maten, Erika; de Bont, Cynthia M; de Groot, Ronald; de Jonge, Marien I; Langereis, Jeroen D; van der Flier, Michiel
2016-12-01
Bacterial pathogens not only stimulate innate immune receptors, but also activate the complement system. Crosstalk between complement C5a receptor (C5aR) and other innate immune receptors is known to enhance the proinflammatory cytokine response. An important determinant of the magnitude of complement activation is the activity of the alternative pathway, which serves as an amplification mechanism for complement activation. Both alternative pathway activity as well as plasma levels of factor H, a key inhibitor of the alternative pathway, show large variation within the human population. Here, we studied the effect of factor H-mediated regulation of the alternative pathway on bacterial-induced proinflammatory cytokine responses. We used the human pathogen Streptococcus pneumoniae as a model stimulus to induce proinflammatory cytokine responses in human peripheral blood mononuclear cells. Serum containing active complement enhanced pneumococcal induced proinflammatory cytokine production through C5a release and C5aR crosstalk. We found that inhibition of the alternative pathway by factor H, with a concentration equivalent to a high physiological level, strongly reduced C5a levels and decreased proinflammatory cytokine production in human peripheral blood mononuclear cells. This suggests that variation in alternative pathway activity due to variation in factor H plasma levels affects individual cytokine responses during infection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Barata, Lidia; Miwa, Takashi; Sato, Sayaka; Kim, David; Mohammed, Imran; Song, Wen-Chao
2013-03-15
Complement receptor 1-related gene/protein y (Crry) and decay-accelerating factor (DAF) are two murine membrane C3 complement regulators with overlapping functions. Crry deletion is embryonically lethal whereas DAF-deficient mice are generally healthy. Crry(-/-)DAF(-/-) mice were viable on a C3(-/-) background, but platelets from such mice were rapidly destroyed when transfused into C3-sufficient mice. In this study, we used the cre-lox system to delete platelet Crry in DAF(-/-) mice and studied Crry/DAF-deficient platelet development in vivo. Rather than displaying thrombocytopenia, Pf4-Cre(+)-Crry(flox/flox) mice had normal platelet counts and their peripheral platelets were resistant to complement attack. However, chimera mice generated with Pf4-Cre(+)-Crry(flox/flox) bone marrows showed platelets from C3(-/-) but not C3(+/+) recipients to be sensitive to complement activation, suggesting that circulating platelets in Pf4-Cre(+)-Crry(flox/flox) mice were naturally selected in a complement-sufficient environment. Notably, Pf4-Cre(+)-Crry(flox/flox) mouse platelets became complement susceptible when factor H function was blocked. Examination of Pf4-Cre(+)-Crry(flox/flox) mouse bone marrows revealed exceedingly active thrombopoiesis. Thus, under in vivo conditions, Crry/DAF deficiency on platelets led to abnormal platelet turnover, but peripheral platelet count was compensated for by increased thrombopoiesis. Selective survival of Crry/DAF-deficient platelets aided by factor H protection and compensatory thrombopoiesis demonstrates the cooperation between membrane and fluid phase complement inhibitors and the body's ability to adaptively respond to complement regulator deficiencies.
Zhang, Yan; Guo, Jingjing; Li, Lanlan; Liu, Xuewei; Yao, Xiaojun; Liu, Huanxiang
2016-10-01
The interactions of complement receptor 2 (CR2) and the degradation fragment C3d of complement component C3 play important links between the innate and adaptive immune systems. Due to the importance of C3d-CR2 interaction in the design of vaccines and inhibitors, a number of studies have been performed to investigate C3d-CR2 interaction. Many studies have indicated C3d-CR2 interactions are ionic strength-dependent. To investigate the molecular mechanism of C3d-CR2 interaction and the origin of effects of ionic strength, molecular dynamics simulations for C3d-CR2 complex together with the energetic and structural analysis were performed. Our results revealed the increased interactions between charged protein and ions weaken C3d-CR2 association, as ionic strengths increase. Moreover, ion strengths have similar effects on antigen-binding site and CR2 binding site. Meanwhile, Ala17 and Gln20 will transform between the activated and non-activated states mediated by His133 and Glu135 at different ion strengths. Our results reveal the origins of the effects of ionic strengths on C3d-CR2 interactions are due to the changes of water, ion occupancies and distributions. This study uncovers the origin of the effect of ionic strength on C3d-CR2 interaction and deepens the understanding of the molecular mechanism of their interaction, which is valuable for the design of vaccines and small molecule inhibitors. Copyright © 2016 Elsevier B.V. All rights reserved.
Wirth, Eva K; Roth, Stephan; Blechschmidt, Cristiane; Hölter, Sabine M; Becker, Lore; Racz, Ildiko; Zimmer, Andreas; Klopstock, Thomas; Gailus-Durner, Valerie; Fuchs, Helmut; Wurst, Wolfgang; Naumann, Thomas; Bräuer, Anja; de Angelis, Martin Hrabé; Köhrle, Josef; Grüters, Annette; Schweizer, Ulrich
2009-07-29
Thyroid hormone transport into cells requires plasma membrane transport proteins. Mutations in one of these, monocarboxylate transporter 8 (MCT8), have been identified as underlying cause for the Allan-Herndon-Dudley syndrome, an X-linked mental retardation in which the patients also present with abnormally high 3',3,5-triiodothyronine (T(3)) plasma levels. Mice deficient in Mct8 replicate the thyroid hormone abnormalities observed in the human condition. However, no neurological deficits have been described in mice lacking Mct8. Therefore, we subjected Mct8-deficient mice to a comprehensive immunohistochemical, neurological, and behavioral screen. Several behavioral abnormalities were found in the mutants. Interestingly, some of these behavioral changes are compatible with hypothyroidism, whereas others rather indicate hyperthyroidism. We thus hypothesized that neurons exclusively dependent on Mct8 are in a hypothyroid state, whereas neurons expressing other T(3) transporters become hyperthyroid, if they are exposed directly to the high plasma T(3). The majority of T(3) uptake in primary cortical neurons is mediated by Mct8, but pharmacological inhibition suggested functional expression of additional T(3) transporter classes. mRNAs encoding six T(3) transporters, including L-type amino acid transporters (LATs), were coexpressed with Mct8 in isolated neurons. We then demonstrated Lat2 expression in cultured neurons and throughout murine brain development. In contrast, LAT2 is expressed in microglia in the developing human brain during gestation, but not in neurons. We suggest that lack of functional complementation by alternative thyroid hormone transporters in developing human neurons precipitates the devastating neurodevelopmental phenotype in MCT8-deficient patients, whereas Mct8-deficient mouse neurons are functionally complemented by other transporters, for possibly Lat2.
RAN Translation as a Therapeutic in ALS
2017-05-01
allow for HTS via CRISPR or drug screens to complement the in vitro screens using high-throughput microscopy or FACS. Figure 5: Mammalian G4C2...poly-GP in yeast (Figure 6A). [filler about RPS25 here?] This effect was further investigated in mammalian Hap1 cell lines with a CRISPR -mediated
Transfer of T-cell mediated immunity to Hymenolepis nana from mother mice to their neonates.
Asano, K; Okamoto, K
1992-01-15
Administration of lymph node cells from Hymenolepis nana-infected mice into lactating mothers, or directly suckling neonates successfully transferred immunity to the neonates. The capacity of lymph node cells to transfer immunity was completely abrogated by pretreatment with anti-Thy-1.2 monoclonal antibody and complement.
Complement and Antibody-Mediated Enhancement of Erythrocyte Invasion by Plasmodium Falciparum
2015-09-01
Long, C. A. (1998) J. Immunol. 161, 1908-1912. 40. Waki , S., Uehara, S., Kanbe, K., Nariuch, H. & Suzuki, M. (1995) Parasite Immunol. 17, 503-508...41. Yoneto, T., Waki , S., Takai, T., Tagawa, Y., Iwakura, Y., Mizuguchi, J., Nariuchi, H. & Yoshimoto, T. (2001) J. Immunol. 166, 6236-6241. 42
ERIC Educational Resources Information Center
Kelcey, Benjamin; Dong, Nianbo; Spybrook, Jessaca; Cox, Kyle
2017-01-01
Designs that facilitate inferences concerning both the total and indirect effects of a treatment potentially offer a more holistic description of interventions because they can complement "what works" questions with the comprehensive study of the causal connections implied by substantive theories. Mapping the sensitivity of designs to…
Is Research Mediating the Relationship between Teaching Experience and Student Satisfaction?
ERIC Educational Resources Information Center
Berbegal-Mirabent, Jasmina; Mas-Machuca, Marta; Marimon, Frederic
2018-01-01
Universities must ensure that academic staff are qualified and competent for performing their job. Teaching and research are two key activities in which lecturers should excel. While some authors suggest teaching and research complement each other and positively influence student satisfaction, some others point to a rivalry effect between the two.…
Souza, Natalie M; Vieira, Monica L; Alves, Ivy J; de Morais, Zenaide M; Vasconcellos, Silvio A; Nascimento, Ana L T O
2012-09-01
Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Surface proteins have the potential to promote several activities, including adhesion. This work aimed to study the leptospiral coding sequence (CDS) LIC11087, genome annotated as hypothetical outer membrane protein. The LIC11087 gene was cloned and expressed in Escherichia coli BL21 (DE3) strain by using the expression vector pAE. The recombinant protein tagged with N-terminal 6XHis was purified by metal-charged chromatography and characterized by circular dichroism (CD) spectroscopy. The recombinant protein has the ability to mediate attachment to the extracellular matrix (ECM) components, laminin and plasma fibronectin, and was named Lsa30 (Leptospiral surface adhesin of 30 kDa). Lsa30 binds to laminin and to plasma fibronectin in a dose-dependent and saturable manner, with dissociation equilibrium constants (K(D)) of 292 ± 24 nm and 157 ± 35 nm, respectively. Moreover, the Lsa30 is a plasminogen (PLG) receptor, capable of generating plasmin, in the presence of activator. This protein may interfere with the complement cascade by interacting with C4bp regulator. The Lsa30 is probably a new surface protein of Leptospira as revealed by immunofluorescence assays with living organisms and the reactivity with antibodies present in serum samples of experimentally infected hamsters. Thus, Lsa30 is a novel versatile protein that may play a role in mediating adhesion and may help pathogenic Leptospira to overcome tissue barriers and to escape the immune system. Copyright © 2012 Elsevier Ltd. All rights reserved.
Houdijk, A P; Nijveldt, R J; van Leeuwen, P A
1999-01-01
Recently we have shown that glutamine-enriched enteral nutrition in trauma patients reduced the occurrence of pneumonia, bacteremia, and sepsis. In that study, no clear explanation for these results was found except for lower tumor necrosis factor (TNF)-soluble receptors, suggesting immunomodulation. Here we present data on the course of endocrine and metabolic plasma mediators that were analyzed to provide more insight into the working mechanism of glutamine. Endocrine and metabolic mediators were measured in plasma samples taken on admission (day 0) and on days 1, 2, 3, 7, and 10. Glucose, prealbumin, albumin, alanine, C-reactive protein, alpha1-antitrypsin, complement factors, cortisol, glucagon, insulin, and growth hormone were assessed by standard techniques. The rate of feeding, demography, and injury severity did not differ between the glutamine and control group. There was a sustained hyperglycemic response in both groups. Insulin levels rose in the second phase of the period of observation. A moderate cortisol and glucagon response was seen in both groups. There was no alteration in growth hormone levels in either group. C-reactive protein, alpha1-antitrypsin, and complement factors showed similar increases in both groups but levels remained in the normal range. The course of alanine, albumin, and prealbumin also showed no difference between the groups. Glutamine-enriched enteral nutrition had no influence on the endocrine and metabolic response in trauma patients. Therefore, the reduction in infectious morbidity seen in glutamine-supplemented trauma patients is most likely not explained by a modulation of the humoral stress response and its metabolic consequences.
Farsky, S H; Gonçalves, L R; Gutiérrez, J M; Correa, A P; Rucavado, A; Gasque, P; Tambourgi, D V
2000-01-01
The venom of the snake Bothrops asper, the most important poisonous snake in Central America, evokes an inflammatory response, the mechanisms of which are not well characterized. The objectives of this study were to investigate whether B. asper venom and its purified toxins--phospholipases and metalloproteinase--activate the complement system and the contribution of the effect on leucocyte recruitment. In vitro chemotaxis assays were performed using Boyden's chamber model to investigate the ability of serum incubated with venom and its purified toxins to induce neutrophil migration. The complement consumption by the venom was evaluated using an in vitro haemolytic assay. The importance of complement activation by the venom on neutrophil migration was investigated in vivo by injecting the venom into the peritoneal cavity of C5-deficient mice. Data obtained demonstrated that serum incubated with crude venom and its purified metalloproteinase BaP-1 are able to induce rat neutrophil chemotaxis, probably mediated by agent(s) derived from the complement system. This hypothesis was corroborated by the capacity of the venom to activate this system in vitro. The involvement of C5a in neutrophil chemotaxis induced by venom-activated serum was demonstrated by abolishing migration when neutrophils were pre-incubated with antirat C5a receptor antibody. The relevance of the complement system in in vivo leucocyte mobilization was further demonstrated by the drastic decrease of this response in C5-deficient mice. Pre-incubation of serum with the soluble human recombinant complement receptor type 1 (sCR 1) did not prevent the response induced by the venom, but abolished the migration evoked by metalloproteinase-activated serum. These data show the role of the complement system in bothropic envenomation and the participation of metalloproteinase in the effect. Also, they suggest that the venom may contain other component(s) which can cause direct activation of C5a. PMID:11200361
Arabidopsis TAF15b Localizes to RNA Processing Bodies and Contributes to snc1-Mediated Autoimmunity.
Dong, Oliver X; Meteignier, Louis-Valentin; Plourde, Melodie B; Ahmed, Bulbul; Wang, Ming; Jensen, Cassandra; Jin, Hailing; Moffett, Peter; Li, Xin; Germain, Hugo
2016-04-01
In both animals and plants, messenger (m)RNA export has been shown to contribute to immune response regulation. The Arabidopsis nuclear protein MOS11, along with the nucleoporins MOS3/Nup96/SAR3 and Nup160/SAR1 are components of the mRNA export machinery and contribute to immunity mediated by nucleotide binding leucine-rich repeat immune receptors (NLR). The human MOS11 ortholog CIP29 is part of a small protein complex with three additional members: the RNA helicase DDX39, ALY, and TAF15b. We systematically assessed the biological roles of the Arabidopsis homologs of these proteins in toll interleukin 1 receptor-type NLR (TNL)-mediated immunity using reverse genetics. Although mutations in ALY and DDX39 did not result in obvious defects, taf15b mutation partially suppressed the autoimmune phenotypes of a gain-of-function TNL mutant, snc1. An additive effect on snc1 suppression was observed in mos11-1 taf15b snc1 triple mutant plants, suggesting that MOS11 and TAF15b have independent functions. TAF15b-GFP fusion protein, which fully complemented taf15b mutant phenotypes, localized to nuclei similarly to MOS11. However, it was also targeted to cytosolic granules identified as processing bodies. In addition, we observed no change in SNC1 mRNA levels, whereas less SNC1 protein accumulated in taf15b mutant, suggesting that TAF15b contributes to SNC1 homeostasis through posttranscriptional mechanisms. In summary, this study highlights the importance of posttranscriptional RNA processing mediated by TAF15b in the regulation of TNL-mediated immunity.
Differentiation of direct and indirect socioeconomic effects on suicide attempts in South Korea
Ki, Myung; Seong Sohn, Eui; An, Byungduck; Lim, Jiseun
2017-01-01
Abstract Despite the wide recognition of the inverse association between socioeconomic position (SEP) and suicidal behaviors, its underlying process and potential mediators are little known. This study investigated the pathway from SEP to suicide attempts with attention to potential mediators. From the Korean Health and Nutrition Examination Survey 2007–2013, which is a nationwide cross-sectional survey of the health and nutritional status, a total of 34,565 participants (≥30 years) were included in the analysis. To unfold the pathways linking SEP to suicide attempts, the direct and indirect effects of 3 SEP measures (educational attainment, household income, and occupational group) and 3 mediators (physical illness, mental health problems, and problematic drinking) were differentiated using structured equation model (SEM). Most of direct and indirect effects of educational attainment, household income, and occupational group on suicide attempts were significant; Nonemployment status had the largest total (β = 0.291, P < .01) and direct effects (β = 0.212, P < .01), while educational attainment had the largest indirect effect (β = −0.124, P < .01). Educational attainment was mainly mediated by physical illness and problem drinking, whereas household income and occupational group were mainly mediated by anxious or depressed mood and problem drinking. Physical illness played a major role in explaining suicide attempts, compared to mental health problem and problem drinking. Overall, experience of socioeconomic disadvantage increased suicide attempts independently of mental and physical problems. An extension of suicide prevention program is required for comprehensively targeting people with general problems such as physical illness and low SEP, complemented to narrowly targeting high risk group with, such as mental health problem. PMID:29390510
Rao, Sambasiva P.; Sancho, Jose; Campos-Rivera, Juanita; Boutin, Paula M.; Severy, Peter B.; Weeden, Timothy; Shankara, Srinivas; Roberts, Bruce L.; Kaplan, Johanne M.
2012-01-01
Alemtuzumab is a monoclonal antibody that targets cell surface CD52 and is effective in depleting lymphocytes by cytolytic effects in vivo. Although the cytolytic effects of alemtuzumab are dependent on the density of CD52 antigen on cells, there is scant information regarding the expression levels of CD52 on different cell types. In this study, CD52 expression was assessed on phenotypically distinct subsets of lymphoid and myeloid cells in peripheral blood mononuclear cells (PBMCs) from normal donors. Results demonstrate that subsets of PBMCs express differing levels of CD52. Quantitative analysis showed that memory B cells and myeloid dendritic cells (mDCs) display the highest number while natural killer (NK) cells, plasmacytoid dendritic cells (pDCs) and basophils have the lowest number of CD52 molecules per cell amongst lymphoid and myeloid cell populations respectively. Results of complement dependent cytolysis (CDC) studies indicated that alemtuzumab mediated profound cytolytic effects on B and T cells with minimal effect on NK cells, basophils and pDCs, correlating with the density of CD52 on these cells. Interestingly, despite high CD52 levels, mDCs and monocytes were less susceptible to alemtuzumab-mediated CDC indicating that antigen density alone does not define susceptibility. Additional studies indicated that higher expression levels of complement inhibitory proteins (CIPs) on these cells partially contributes to their resistance to alemtuzumab mediated CDC. These results indicate that alemtuzumab is most effective in depleting cells of the adaptive immune system while leaving innate immune cells relatively intact. PMID:22761788
Returns to scientific publications for pharmaceutical products in the United States.
Slejko, Julia F; Basu, Anirban; Sullivan, Sean D
2018-02-01
Drug-specific clinical and health economic and outcomes research (HEOR) publications have amassed, but their effect on drug sales is largely unknown. We estimated the impact of publications on pharmaceutical sales in 3 markets (statins, rheumatoid arthritis, and asthma drugs) with varying generic competition. An event-study approach with fixed effects and difference-in-fixed-effects modeling was used to estimate the causal effects of drug-specific publications on subsequent quarter's drug-specific sales and volume. High-impact clinical and HEOR publications have significant positive effects on sales (mediated through price) and volume in the statin market (high generic competition). High-impact clinical publications have a significant positive effect on sales (mediated through volume) in low-generic competition market (asthma). The effects of publications in the rheumatoid arthritis market (no generic competition) on sales were null. Manufacturers' investment in clinical and HEOR publications needs to be strategic and should be anticipated and complemented by public investments in such studies. Copyright © 2017 John Wiley & Sons, Ltd.
Apollo contributes to G overhang maintenance and protects leading-end telomeres.
Wu, Peng; van Overbeek, Megan; Rooney, Sean; de Lange, Titia
2010-08-27
Mammalian telomeres contain a single-stranded 3' overhang that is thought to mediate telomere protection. Here we identify the TRF2-interacting factor Apollo as a nuclease that contributes to the generation/maintenance of this overhang. The function of mouse Apollo was determined using Cre-mediated gene deletion, complementation with Apollo mutants, and the TRF2-F120A mutant that cannot bind Apollo. Cells lacking Apollo activated the ATM kinase at their telomeres in S phase and showed leading-end telomere fusions. These telomere dysfunction phenotypes were accompanied by a reduction in the telomeric overhang signal. The telomeric functions of Apollo required its TRF2-interaction and nuclease motifs. Thus, TRF2 recruits the Apollo nuclease to process telomere ends synthesized by leading-strand DNA synthesis, thereby creating a terminal structure that avoids ATM activation and resists end-joining. These data establish that the telomeric overhang is required for the protection of telomeres from the DNA damage response. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Zetterberg, Craig; Maltais, Francois; Laitinen, Leena; Liao, Shengkai; Tsao, Hong; Chakilam, Ananthsrinivas; Hariparsad, Niresh
2016-08-01
(R)-2-((2-(1H-pyrrolo[2,3-b]pyridin-3-yl)pyrimidin-4-yl)amino)-2-methyl-N-(2,2,2-trifluoroethyl)butanamide (VX-509, decernotinib) is an oral Janus kinase 3 inhibitor that has been studied in patients with rheumatoid arthritis. Patients with rheumatoid arthritis often receive multiple medications, such as statins and steroids, to manage the signs and symptoms of comorbidities, which increases the chances of drug-drug interactions (DDIs). Mechanism-based inhibition is a subset of time-dependent inhibition (TDI) and occurs when a molecule forms a reactive metabolite which irreversibly binds and inactivates drug-metabolizing enzymes, potentially increasing the systemic load to toxic concentrations. Traditionally, perpetrating compounds are screened using human liver microsomes (HLMs); however, this system may be inadequate when the precipitant is activated by a non-cytochrome P450 (P450)-mediated pathway. Even though studies assessing competitive inhibition and TDI using HLM suggested a low risk for CYP3A4-mediated DDI in the clinic, VX-509 increased the area under the curve of midazolam, atorvastatin, and methyl-prednisolone by approximately 12.0-, 2.7-, and 4.3-fold, respectively. Metabolite identification studies using human liver cytosol indicated that VX-509 is converted to an oxidative metabolite, which is the perpetrator of the DDIs observed in the clinic. As opposed to HLM, hepatocytes contain the full complement of drug-metabolizing enzymes and transporters and can be used to assess TDI arising from non-P450-mediated metabolic pathways. In the current study, we highlight the role of aldehyde oxidase in the formation of the hydroxyl-metabolite of VX-509, which is involved in clinically significant TDI-based DDIs and represents an additional example in which a system-dependent prediction of TDI would be evident. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
The role of complement in myasthenia gravis: serological evidence of complement consumption in vivo.
Romi, Fredrik; Kristoffersen, Einar K; Aarli, Johan A; Gilhus, Nils Erik
2005-01-01
Antibodies to the acetylcholine receptor (AChR) titin and the ryanodine receptor (RyR) occur in myasthenia gravis (MG). These antibodies are capable of complement activation in vitro. The involvement of the complement system should cause consumption of complement components such as C3 and C4 in vivo. Complement components C3 and C4 were assayed in sera from 78 AChR antibody-positive MG patients and 52 healthy controls. Forty-eight of the patient sera contained titin antibodies as well, and 20 were also RyR antibody-positive. MG patients with AChR antibody concentrations above the median (11.2 nmol/l) had significantly lower mean C3 and C4 concentrations in serum compared to those with AChR antibody concentrations below the median. Titin antibody-positive MG patients, titin antibody-negative early-onset MG patients, titin antibody-negative late-onset MG patients, and controls had similar C3 and C4 concentrations. Nor did mean C3 and C4 concentrations differ in MG patients with RyR antibodies. Patients with severe MG (grades 4 and 5) had similar C3 and similar C4 levels compared to those with mild MG (grades 1 and 2). An increased in vivo complement consumption was detected in MG patients with high AChR antibody concentrations, unrelated to MG severity and non-AChR muscle antibodies.
Zhou, Zhao-hua; Wild, Teresa; Xiong, Ying; Sylvers, Peter; Zhang, Yahong; Zhang, Luxia; Wahl, Larry; Wahl, Sharon M.; Kozlowski, Steven; Notkins, Abner L.
2013-01-01
Polyreactive antibodies are a major component of the natural antibody repertoire and are capable of binding a variety of structurally unrelated antigens. Many of the properties attributed to natural antibodies, in fact, are turning out to be due to polyreactive antibodies. In humans, each day, billions of cells undergo apoptosis. In the present experiments, we show by ImageStream technology that although polyreactive antibodies do not bind to live T cells they bind to both the plasma membrane and cytoplasm of late apoptotic cells, fix complement, generate the anaphylatoxin C5a and increase by as much as 5 fold complement-mediated phagocytosis by macrophages. Of particular importance, T cells undergoing apoptosis following infection with HIV also bind polyreactive antibodies and are phagocytosed. We conclude that the polyreactive antibodies in the natural antibody repertoire contribute in a major way to the clearance of cells made apoptotic by a variety of natural and infectious processes. PMID:23881356
Interspecies Chimerism with Mammalian Pluripotent Stem Cells.
Wu, Jun; Platero-Luengo, Aida; Sakurai, Masahiro; Sugawara, Atsushi; Gil, Maria Antonia; Yamauchi, Takayoshi; Suzuki, Keiichiro; Bogliotti, Yanina Soledad; Cuello, Cristina; Morales Valencia, Mariana; Okumura, Daiji; Luo, Jingping; Vilariño, Marcela; Parrilla, Inmaculada; Soto, Delia Alba; Martinez, Cristina A; Hishida, Tomoaki; Sánchez-Bautista, Sonia; Martinez-Martinez, M Llanos; Wang, Huili; Nohalez, Alicia; Aizawa, Emi; Martinez-Redondo, Paloma; Ocampo, Alejandro; Reddy, Pradeep; Roca, Jordi; Maga, Elizabeth A; Esteban, Concepcion Rodriguez; Berggren, W Travis; Nuñez Delicado, Estrella; Lajara, Jeronimo; Guillen, Isabel; Guillen, Pedro; Campistol, Josep M; Martinez, Emilio A; Ross, Pablo Juan; Izpisua Belmonte, Juan Carlos
2017-01-26
Interspecies blastocyst complementation enables organ-specific enrichment of xenogenic pluripotent stem cell (PSC) derivatives. Here, we establish a versatile blastocyst complementation platform based on CRISPR-Cas9-mediated zygote genome editing and show enrichment of rat PSC-derivatives in several tissues of gene-edited organogenesis-disabled mice. Besides gaining insights into species evolution, embryogenesis, and human disease, interspecies blastocyst complementation might allow human organ generation in animals whose organ size, anatomy, and physiology are closer to humans. To date, however, whether human PSCs (hPSCs) can contribute to chimera formation in non-rodent species remains unknown. We systematically evaluate the chimeric competency of several types of hPSCs using a more diversified clade of mammals, the ungulates. We find that naïve hPSCs robustly engraft in both pig and cattle pre-implantation blastocysts but show limited contribution to post-implantation pig embryos. Instead, an intermediate hPSC type exhibits higher degree of chimerism and is able to generate differentiated progenies in post-implantation pig embryos. Copyright © 2017 Elsevier Inc. All rights reserved.
In vitro C3 Deposition on Cryptococcus Capsule Occurs Via Multiple Complement Activation Pathways
Mershon-Shier, Kileen L.; Vasuthasawat, Alex; Takahashi, Kazue; Morrison, Sherie L.; Beenhouwer, David O.
2011-01-01
Complement can be activated via three pathways: classical, alternative, and lectin. Cryptococcus gattii and C. neoformans are closely related fungal pathogens possessing a polysaccharide capsule composed mainly of glucuronoxylomannan (GXM), which serves as a site for complement activation and deposition of complement components. We determined C3 deposition on Cryptococcus spp. by flow cytometry and confocal microscopy after incubation with serum from C57BL/6J mice as well as mice deficient in complement components C4, C3, factor B, and mannose binding lectin (MBL). C. gattii and C. neoformans activate complement in EGTA-treated serum indicating that they can activate the alternative pathway. However, complement activation was seen with factor B−/− serum suggesting activation could also take place in the absence of a functional alternative pathway. Furthermore, we uncovered a role for C4 in the alternative pathway activation by Cryptococcus spp. We also identified an unexpected and complex role for MBL in complement activation by Cryptococcus spp. No complement activation occurred in the absence of MBL-A and -C proteins although activation took place when the lectin binding activity of MBL was disrupted by calcium chelation. In addition, alternative pathway activation by C. neoformans required both MBL-A and -C, while either MBL-A or -C was sufficient for alternative pathway activation by C. gattii. Thus, complement activation by Cryptococcus spp. can take place through multiple pathways and complement activation via the alternative pathway requires the presence of C4 and MBL proteins. PMID:21723612
Towards understanding the pathology of erythema nodosum leprosum.
Kahawita, I P; Lockwood, D N J
2008-04-01
Erythema nodosum leprosum (ENL) is an immune-mediated complication of leprosy presenting with inflammatory skin nodules and involvement of multiple organ systems, often running a protracted course. Immune complex production and deposition as well as complement activation have long been regarded as the principal aetiology of ENL. However, new data show that cell-mediated immunity is also important. We have performed a critical analysis of studies on the pathology of ENL. Our main findings are as follows. ENL is characterised by an inflammatory infiltrate of neutrophils with vasculitis and/or panniculitis. There is deposition of immune complexes and complement together with Mycobacterium leprae antigens in the skin. Changes in serum levels of Igs indicate a transient, localised immune response. The major T-cell subtype in ENL is the CD4 cell, in contrast to lepromatous leprosy where CD8 cells predominate. The cytokines TNFalpha and IL-6 are consistently found whilst IL-4 is low or absent in ENL lesions, indicating a T(H)1 type response. Keratinocyte 1a and intercellular adhesion molecule-1 (ICAM-1) have been shown to be present in the epidermis in ENL, which is evidence of a cell-mediated immune response. Co-stimulatory molecules such as B7-1 have also been studied but further work is needed to draw strong conclusions. We also highlight potential areas for future research.
Complement system studies in systemic lupus erythematosus (SLE)
Teisberg, P
1975-01-01
Complement system involvement has been studied in 16 patients with systemic lupus erythematosus (SLE). Circulating conversion products of C3 were observed in 4 cases. Low mean values of C4 and C3 were found, while C3 proactivator (properdin factor B) levels were low in only a few of the patients. The levels of C4, C3 and C3 proactivator were not lower in the 4 patients in whom C3 conversion products could be demonstrated than in the others. It is concluded that the low complement values found in SLE may be caused mainly by deficient synthesis. Signs of complement activation are in this patient material demonstrated early in the disease, and chiefly in patients not receiving immunosuppressive therapy.
Snx3 regulates recycling of the transferrin receptor and iron assimilation
Chen, Caiyong; Garcia-Santos, Daniel; Ishikawa, Yuichi; Seguin, Alexandra; Li, Liangtao; Fegan, Katherine H.; Hildick-Smith, Gordon J.; Shah, Dhvanit I.; Cooney, Jeffrey D.; Chen, Wen; King, Matthew J.; Yien, Yvette Y.; Schultz, Iman J.; Anderson, Heidi; Dalton, Arthur J.; Freedman, Matthew L.; Kingsley, Paul D.; Palis, James; Hattangadi, Shilpa M.; Lodish, Harvey F.; Ward, Diane M.; Kaplan, Jerry; Maeda, Takahiro; Ponka, Prem; Paw, Barry H.
2013-01-01
SUMMARY Sorting of endocytic ligands and receptors is critical for diverse cellular processes. The physiological significance of endosomal sorting proteins in vertebrates, however, remains largely unknown. Here we report that sorting nexin 3 (Snx3) facilitates the recycling of transferrin receptor (Tfrc), and thus is required for the proper delivery of iron to erythroid progenitors. Snx3 is highly expressed in vertebrate hematopoietic tissues. Silencing of Snx3 results in anemia and hemoglobin defects in vertebrates due to impaired transferrin (Tf)-mediated iron uptake and its accumulation in early endosomes. This impaired iron assimilation can be complemented with non-Tf iron chelates. We show that Snx3 and Vps35, a component of the retromer, interact with Tfrc to sort it to the recycling endosomes. Our findings uncover a role of Snx3 in regulating Tfrc recycling, iron homeostasis, and erythropoiesis. Thus, the identification of Snx3 provides a genetic tool for exploring erythropoiesis and disorders of iron metabolism. PMID:23416069
Role of Complement in a Rat Model of Paclitaxel-Induced Peripheral Neuropathy.
Xu, Jijun; Zhang, Lingjun; Xie, Mian; Li, Yan; Huang, Ping; Saunders, Thomas L; Fox, David A; Rosenquist, Richard; Lin, Feng
2018-06-15
Chemotherapy-induced peripheral neuropathy (CIPN) is a painful and debilitating side effect of cancer chemotherapy with an unclear pathogenesis. Consequently, the available therapies for this neuropathic pain syndrome are inadequate, leading to a significantly reduced quality of life in many patients. Complement, a key component of the innate immune system, has been associated with neuroinflammation, a potentially important trigger of some types of neuropathic pain. However, the role of complement in CIPN remains unclear. To address this issue, we developed a C3 knockout (KO) rat model and induced CIPN in these KO rats and wild-type littermates via the i.p. administration of paclitaxel, a chemotherapeutic agent associated with CIPN. We then compared the severity of mechanical allodynia, complement activation, and intradermal nerve fiber loss between the groups. We found that 1) i.p. paclitaxel administration activated complement in wild-type rats, 2) paclitaxel-induced mechanical allodynia was significantly reduced in C3 KO rats, and 3) the paclitaxel-induced loss of intradermal nerve fibers was markedly attenuated in C3 KO rats. In in vitro studies, we found that paclitaxel-treated rat neuronal cells activated complement, leading to cellular injury. Our findings demonstrate a previously unknown but pivotal role of complement in CIPN and suggest that complement may be a new target for the development of novel therapeutics to manage this painful disease. Copyright © 2018 by The American Association of Immunologists, Inc.
Head and neck mucosal melanoma: a review.
Lourenço, Silvia V; Fernandes, Juliana D; Hsieh, Ricardo; Coutinho-Camillo, Claudia M; Bologna, Sheyla; Sangueza, Martin; Nico, Marcello M S
2014-07-01
Head and neck mucosal melanoma (MM) is an aggressive and rare neoplasm of melanocytic origin. To date, few retrospective series and case reports have been reported on MM. This article reviews the current evidence on head and neck MM and the molecular pathways that mediate the pathogenesis of this disease. Head and neck MM accounts for 0.7%-3.8% of all melanomas and involve (in decreasing order of frequency) the sinonasal cavity, oral cavity, pharynx, larynx, and upper esophagus. Although many studies have examined MM of the head and neck and the underlying molecular pathways, individual genetic and molecular alterations were less investigated. Further studies are needed to complement existing data and to increase our understanding of melanocytes tumorigenesis.
de Bruin, Marijn; Sheeran, Paschal; Kok, Gerjo; Hiemstra, Anneke; Prins, Jan M; Hospers, Harm J; van Breukelen, Gerard J P
2012-11-01
Understanding the gap between people's intentions and actual health behavior is an important issue in health psychology. Our aim in this study was to investigate whether self-regulatory processes (monitoring goal progress and responding to discrepancies) mediate the intention-behavior relation in relation to HIV medication adherence (Study 1) and intensive exercise behavior (Study 2). In Study 1, questionnaire and electronically monitored adherence data were collected at baseline and 3 months later from patients in the control arm of an HIV-adherence intervention study. In Study 2, questionnaire data was collected at 3 time points 6-weeks apart in a cohort study of physical activity. Complete data at all time points were obtained from 51 HIV-infected patients and 499 intensive exercise participants. Intentions were good predictors of behavior and explained 25 to 30% of the variance. Self-regulatory processes explained an additional 11% (Study 1) and 6% (Study 2) of variance in behavior on top of intentions. Regression and bootstrap analyses revealed at least partial, and possibly full, mediation of the intention-behavior relation by self-regulatory processes. The present studies indicate that self-regulatory processes may explain how intentions drive behavior. Future tests, using different health behaviors and experimental designs, could firmly establish whether self-regulatory processes complement current health behavior theories and should become routine targets for intervention. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
Loeschenberger, Beatrix; Niess, Lea; Würzner, Reinhard; Schwelberger, Hubert; Eder, Iris E; Puhr, Martin; Guenther, Julia; Troppmair, Jakob; Rudnicki, Michael; Neuwirt, Hannes
2018-02-01
One factor that significantly contributes to renal allograft loss is chronic calcineurin inhibitor (CNI) nephrotoxicity (CIN). Among other factors, the complement (C-) system has been proposed to be involved CIN development. Hence, we investigated the impact of CNIs on intracellular signalling and the effects on the C-system in human renal tubule cells. In a qPCR array, CNI treatment upregulated C-factors and downregulated SOCS-3 and the complement inhibitors CD46 and CD55. Additionally, ERK1/-2 was required for these regulations. Following knock-down and overexpression of SOCS-3, we found that SOCS-3 inhibits ERK1/-2 signalling. Finally, we assessed terminal complement complex formation, cell viability and apoptosis. Terminal complement complex formation was induced by CNIs. Cell viability was significantly decreased, whereas apoptosis was increased. Both effects were reversed under complement component-depleted conditions. In vivo, increased ERK1/-2 phosphorylation and SOCS-3 downregulation were observed at the time of transplantation in renal allograft patients who developed a progressive decline of renal function in the follow-up compared to stable patients. The progressive cohort also had lower total C3 levels, suggesting higher complement activity at baseline. In conclusion, our data suggest that SOCS-3 inhibits CNI-induced ERK1/-2 signalling, thereby blunting the negative control of C-system activation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, Li; Zhai, Ya-Ling; Wang, Feng-Mei; Hou, Ping; Lv, Ji-Cheng; Xu, Da-Min; Shi, Su-Fang; Liu, Li-Jun; Yu, Feng; Zhao, Ming-Hui; Novak, Jan; Gharavi, Ali G; Zhang, Hong
2015-05-01
Complement activation is common in patients with IgA nephropathy (IgAN) and associated with disease severity. Our recent genome-wide association study of IgAN identified susceptibility loci on 1q32 containing the complement regulatory protein-encoding genes CFH and CFHR1-5, with rs6677604 in CFH as the top single-nucleotide polymorphism and CFHR3-1 deletion (CFHR3-1∆) as the top signal for copy number variation. In this study, to explore the clinical effects of variation in CFH, CFHR3, and CFHR1 on IgAN susceptibility and progression, we enrolled two populations. Group 1 included 1178 subjects with IgAN and available genome-wide association study data. Group 2 included 365 subjects with IgAN and available clinical follow-up data. In group 1, rs6677604 was associated with mesangial C3 deposition by genotype-phenotype correlation analysis. In group 2, we detected a linkage between the rs6677604-A allele and CFHR3-1∆ and found that the rs6677604-A allele was associated with higher serum levels of CFH and lower levels of the complement activation split product C3a. Furthermore, CFH levels were positively associated with circulating C3 levels and negatively associated with mesangial C3 deposition. Moreover, serum levels of the pathogenic galactose-deficient glycoform of IgA1 were also associated with the degree of mesangial C3 deposition in patients with IgAN. Our findings suggest that genetic variants in CFH, CFHR3, and CFHR1 affect complement activation and thereby, predispose patients to develop IgAN. Copyright © 2015 by the American Society of Nephrology.
Dodd, I; Mossakowska, D E; Camilleri, P; Haran, M; Hensley, P; Lawlor, E J; McBay, D L; Pindar, W; Smith, R A
1995-12-01
We have developed a simple expression, isolation, and folding protocol for an SCR oligomer comprising the first three SCRs of complement receptor Type 1 (C3b/C4b receptor, CD35). A T7 RNA polymerase expression system in Escherichia coli was used to express the oligomer as inclusion bodies. The oligomer was recovered from solubilized inclusion bodies using batch adsorption on SP-Sepharose. The oligomer was folded by one-step dilution in 20 mM ethanolamine/1 mM EDTA supplemented with 1 mM GSH/0.5 mM GSSG. The folded material was processed to a concentrated (> 20 mg/ml), usable product of greater than 98% purity using a combination of ultrafiltration, ammonium sulfate treatment, hydrophobic interaction, and size-exclusion chromatography. The yield of folded material varied between 6 and 15 mg/liter culture. The oxidation states of the 12 cysteine residues in SCR(1-3) were identified by HPLC of peptide fragments from a tryptic digest using dual UV/fluorescence detection, collection of selected peaks, and N-terminal sequencing. This methodology confirmed the expected location of disulfide bridges. Equilibrium and velocity sedimentation studies are interpreted in terms of a single sedimenting species with molecular weights of 21,629 and 21,063 by these respective techniques. These values compare to the predicted molecular weight, from amino acid composition, of 21,817. The hydrodynamic properties of the molecule indicate that it is asymmetric with an axial ratio of 1:5.2 or equivalent dimensions of 21 x 110 A. SCR(1-3) has an unusual CD spectrum exhibiting a broad maximum at 220-230 nm and a minimum at 190 nm. There was little evidence of classical secondary structure. The product exhibited concentration-dependent inhibition of complement-mediated lysis of sensitized sheep red blood cells.
Complement in autoimmune diseases.
Vignesh, Pandiarajan; Rawat, Amit; Sharma, Madhubala; Singh, Surjit
2017-02-01
The complement system is an ancient and evolutionary conserved element of the innate immune mechanism. It comprises of more than 20 serum proteins most of which are synthesized in the liver. These proteins are synthesized as inactive precursor proteins which are activated by appropriate stimuli. The activated forms of these proteins act as proteases and cleave other components successively in amplification pathways leading to exponential generation of final effectors. Three major pathways of complement pathways have been described, namely the classical, alternative and lectin pathways which are activated by different stimuli. However, all the 3 pathways converge on Complement C3. Cleavage of C3 and C5 successively leads to the production of the membrane attack complex which is final common effector. Excessive and uncontrolled activation of the complement has been implicated in the host of autoimmune diseases. But the complement has also been bemusedly described as the proverbial "double edged sword". On one hand, complement is the final effector of tissue injury in autoimmune diseases and on the other, deficiencies of some components of the complement can result in autoimmune diseases. Currently available tools such as enzyme based immunoassays for functional assessment of complement pathways, flow cytometry, next generation sequencing and proteomics-based approaches provide an exciting opportunity to study this ancient yet mysterious element of innate immunity. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso-García, Noelia; García-Rubio, Inés; Academia General Militar, Carretera de Huesca s/n, 50090 Zaragoza
The structure of the FnIII-3, 4 region of integrin β4 was solved using a hybrid approach that combines crystallographic structures, SAXS, DEER and molecular modelling. The structure helps in understanding how integrin β4 might bind to other hemidesmosomal proteins and mediate signalling. Integrin α6β4 is a major component of hemidesmosomes that mediate the stable anchorage of epithelial cells to the underlying basement membrane. Integrin α6β4 has also been implicated in cell proliferation and migration and in carcinoma progression. The third and fourth fibronectin type III domains (FnIII-3, 4) of integrin β4 mediate binding to the hemidesmosomal proteins BPAG1e and BPAG2,more » and participate in signalling. Here, it is demonstrated that X-ray crystallography, small-angle X-ray scattering and double electron–electron resonance (DEER) complement each other to solve the structure of the FnIII-3, 4 region. The crystal structures of the individual FnIII-3 and FnIII-4 domains were solved and the relative arrangement of the FnIII domains was elucidated by combining DEER with site-directed spin labelling. Multiple structures of the interdomain linker were modelled by Monte Carlo methods complying with DEER constraints, and the final structures were selected against experimental scattering data. FnIII-3, 4 has a compact and cambered flat structure with an evolutionary conserved surface that is likely to correspond to a protein-interaction site. Finally, this hybrid method is of general application for the study of other macromolecules and complexes.« less
Narasaki, Craig T; Mertens, Katja; Samuel, James E
2011-01-01
Coxiella burnetii, the etiologic agent of human Q fever, is a gram-negative and naturally obligate intracellular bacterium. The O-specific polysaccharide chain (O-PS) of the lipopolysaccharide (LPS) of C. burnetii is considered a heteropolymer of the two unusual sugars β-D-virenose and dihydrohydroxystreptose and mannose. We hypothesize that GDP-D-mannose is a metabolic intermediate to GDP-β-D-virenose. GDP-D-mannose is synthesized from fructose-6-phosphate in 3 successive reactions; Isomerization to mannose-6-phosphate catalyzed by a phosphomannose isomerase (PMI), followed by conversion to mannose-1-phosphate mediated by a phosphomannomutase (PMM) and addition of GDP by a GDP-mannose pyrophosphorylase (GMP). GDP-D-mannose is then likely converted to GDP-6-deoxy-D-lyxo-hex-4-ulopyranose (GDP-Sug), a virenose intermediate, by a GDP-mannose-4,6-dehydratase (GMD). To test the validity of this pathway in C. burnetii, three open reading frames (CBU0671, CBU0294 and CBU0689) annotated as bifunctional type II PMI, as PMM or GMD were functionally characterized by complementation of corresponding E. coli mutant strains and in enzymatic assays. CBU0671, failed to complement an Escherichia coli manA (PMM) mutant strain. However, complementation of an E. coli manC (GMP) mutant strain restored capsular polysaccharide biosynthesis. CBU0294 complemented a Pseudomonas aeruginosa algC (GMP) mutant strain and showed phosphoglucomutase activity (PGM) in a pgm E. coli mutant strain. Despite the inability to complement a manA mutant, recombinant C. burnetii PMI protein showed PMM enzymatic activity in biochemical assays. CBU0689 showed dehydratase activity and determined kinetic parameters were consistent with previously reported data from other organisms. These results show the biological function of three C. burnetii LPS biosynthesis enzymes required for the formation of GDP-D-mannose and GDP-Sug. A fundamental understanding of C. burnetii genes that encode PMI, PMM and GMP is critical to fully understand the biosynthesic pathway of GDP-β-D-virenose and LPS structure in C. burnetii.
Kerr, Heather; Wong, Edwin; Makou, Elisavet; Yang, Yi; Marchbank, Kevin; Kavanagh, David; Richards, Anna; Herbert, Andrew P; Barlow, Paul N
2017-08-11
Spontaneous activation enables the complement system to respond very rapidly to diverse threats. This activation is efficiently suppressed by complement factor H (CFH) on self-surfaces but not on foreign surfaces. The surface selectivity of CFH, a soluble protein containing 20 complement-control protein modules (CCPs 1-20), may be compromised by disease-linked mutations. However, which of the several functions of CFH drives this self-surface selectivity remains unknown. To address this, we expressed human CFH mutants in Pichia pastoris We found that recombinant I62-CFH (protective against age-related macular degeneration) and V62-CFH functioned equivalently, matching or outperforming plasma-derived CFH, whereas R53H-CFH, linked to atypical hemolytic uremic syndrome (aHUS), was defective in C3bBb decay-accelerating activity (DAA) and factor I cofactor activity (CA). The aHUS-linked CCP 19 mutant D1119G-CFH had virtually no CA on (self-like) sheep erythrocytes ( E S ) but retained DAA. The aHUS-linked CCP 20 mutant S1191L/V1197A-CFH (LA-CFH) had dramatically reduced CA on E S but was less compromised in DAA. D1119G-CFH and LA-CFH both performed poorly at preventing complement-mediated hemolysis of E S PspCN, a CFH-binding Streptococcus pneumoniae protein domain, binds CFH tightly and increases accessibility of CCPs 19 and 20. PspCN did not improve the DAA of any CFH variant on E S Conversely, PspCN boosted the CA, on E S , of I62-CFH, R53H-CFH, and LA-CFH and also enhanced hemolysis protection by I62-CFH and LA-CFH. We conclude that CCPs 19 and 20 are critical for efficient CA on self-surfaces but less important for DAA. Exposing CCPs 19 and 20 with PspCN and thus enhancing CA on self-surfaces may reverse deficiencies of some CFH variants. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Mediating HIV/AIDS Strategies in Children's Literature in Zimbabwe
ERIC Educational Resources Information Center
Ngoshi, Hazel Tafadzwa; Pasi, Juliet Sylvia
2007-01-01
The Ministry of Education and Culture in Zimbabwe has introduced an intervention into the school curricula to complement the already existing mechanisms in the fight against HIV/AIDS. The literature in this programme is said to be designed to develop children's knowledge of HIV/AIDS and to maximise both individual and community commitment to the…
ERIC Educational Resources Information Center
Wong, L. -H.; Chen, W.; Jan, M.
2012-01-01
The rich learning resources and contexts learners experience in their everyday life could play important roles in complementing formal learning, but are often neglected by learners and teachers. In this paper, we present an intervention study in "Move, Idioms!", a mobile-assisted Chinese language learning approach that emphasizes contextualized…
USDA-ARS?s Scientific Manuscript database
Queensland fruit fly, Bactrocera tryoni (Froggatt), is the most significant pest of Australia’s $9 billion horticulture industry. The sterile insect technique (SIT) and male annihilation technique (MAT) based on traps baited with a synthetic analogue of raspberry ketone (RK) are two of the most effe...
High-throughput in vitro assays offer a rapid, cost-efficient means to screen thousands of chemicals across hundreds of pathway-based toxicity endpoints. However, one main concern involved with the use of in vitro assays is the erroneous omission of chemicals that are inactive un...
USDA-ARS?s Scientific Manuscript database
Transformation of a Drosophila virilis white mutant host strain was attempted by using a hobo vector containing the D. melanogaster mini-white+ cassette (H[w+, hawN]) and an unmodified or heat shock regulated hobo transposase helper. Two transformant lines were recovered with the unmodified helper (...
Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo
NASA Astrophysics Data System (ADS)
Chen, Fangfang; Wang, Guankui; Griffin, James I.; Brenneman, Barbara; Banda, Nirmal K.; Holers, V. Michael; Backos, Donald S.; Wu, Linping; Moghimi, Seyed Moein; Simberg, Dmitri
2017-05-01
When nanoparticles are intravenously injected into the body, complement proteins deposit on the surface of nanoparticles in a process called opsonization. These proteins prime the particle for removal by immune cells and may contribute toward infusion-related adverse effects such as allergic responses. The ways complement proteins assemble on nanoparticles have remained unclear. Here, we show that dextran-coated superparamagnetic iron oxide core-shell nanoworms incubated in human serum and plasma are rapidly opsonized with the third complement component (C3) via the alternative pathway. Serum and plasma proteins bound to the nanoworms are mostly intercalated into the nanoworm shell. We show that C3 covalently binds to these absorbed proteins rather than the dextran shell and the protein-bound C3 undergoes dynamic exchange in vitro. Surface-bound proteins accelerate the assembly of the complement components of the alternative pathway on the nanoworm surface. When nanoworms pre-coated with human plasma were injected into mice, C3 and other adsorbed proteins undergo rapid loss. Our results provide important insight into dynamics of protein adsorption and complement opsonization of nanomedicines.
Quantitative pilomotor axon reflex test: a novel test of pilomotor function.
Siepmann, Timo; Gibbons, Christopher H; Illigens, Ben M; Lafo, Jacob A; Brown, Christopher M; Freeman, Roy
2012-11-01
Cutaneous autonomic function can be quantified by the assessment of sudomotor and vasomotor responses. Although piloerector muscles are innervated by the sympathetic nervous system, there are at present no methods to quantify pilomotor function. To quantify piloerection using phenylephrine hydrochloride in humans. Pilot study. Hospital-based study. Twenty-two healthy volunteers (18 males,4 females) aged 24 to 48 years participated in 6 studies. Piloerection was stimulated by iontophoresis of 1% phenylephrine. Silicone impressions of piloerection were quantified by number and area. The direct and indirect responses to phenylephrine iontophoresis were compared on both forearms after pre treatment to topical and subcutaneous lidocaine and iontophoresis of normal saline. Iontophoresis of phenylephrine induced piloerection in both the direct and axon reflex–mediated regions, with similar responses in both arms. Topical lidocaine blocked axon reflex–mediated piloerection post-iontophoresis (mean [SD], 66.6 [19.2] for control impressions vs 7.2 [4.3] for lidocaine impressions;P.001). Subcutaneous lidocaine completely blocked piloerection.The area of axon reflex–mediated piloerection was also attenuated in the lidocaine-treated region postiontophoresis (mean [SD], 46.2 [16.1]cm2 vs 7.2 [3.9]cm2; P.001). Piloerection was delayed in the axon reflex region compared with the direct region. Normal saline did not cause piloerection. Phenylephrine provoked piloerection directly and indirectly through an axon reflex–mediated response that is attenuated by lidocaine. Piloerection is not stimulated by iontophoresis of normal saline alone.The quantitative pilomotor axon reflex test (QPART) may complement other measures of cutaneous autonomic nerve fiber function.
Damage-dependent regulation of MUS81-EME1 by Fanconi anemia complementation group A protein
Benitez, Anaid; Yuan, Fenghua; Nakajima, Satoshi; Wei, Leizhen; Qian, Liangyue; Myers, Richard; Hu, Jennifer J.; Lan, Li; Zhang, Yanbin
2014-01-01
MUS81-EME1 is a DNA endonuclease involved in replication-coupled repair of DNA interstrand cross-links (ICLs). A prevalent hypothetical role of MUS81-EME1 in ICL repair is to unhook the damage by incising the leading strand at the 3′ side of an ICL lesion. In this study, we report that purified MUS81-EME1 incises DNA at the 5′ side of a psoralen ICL residing in fork structures. Intriguingly, ICL repair protein, Fanconi anemia complementation group A protein (FANCA), greatly enhances MUS81-EME1-mediated ICL incision. On the contrary, FANCA exhibits a two-phase incision regulation when DNA is undamaged or the damage affects only one DNA strand. Studies using truncated FANCA proteins indicate that both the N- and C-moieties of the protein are required for the incision regulation. Using laser-induced psoralen ICL formation in cells, we find that FANCA interacts with and recruits MUS81 to ICL lesions. This report clarifies the incision specificity of MUS81-EME1 on ICL damage and establishes that FANCA regulates the incision activity of MUS81-EME1 in a damage-dependent manner. PMID:24170812
Lynch, Anne M; Eckel, Robert H; Murphy, James R; Gibbs, Ronald S; West, Nancy A; Giclas, Patricia C; Salmon, Jane E; Holers, V Michael
2012-05-01
We hypothesized that women who are obese before they become pregnant and also have elevations of complement Bb and C3a in the top quartile in early pregnancy would have the highest risk of preeclampsia compared with a referent group of women who were not obese and had levels of complement less than the top quartile. This was a prospective study of 1013 women recruited at less than 20 weeks' gestation. An EDTA-plasma sample was obtained, and complement fragments were measured using enzyme-linked immunosorbent assays. The data were analyzed using univariable and multivariable logistic regression analysis. Women who were obese with levels of Bb or C3a in the top quartile were 10.0 (95% confidence interval, 3.3-30) and 8.8 (95% confidence interval, 3-24) times, respectively, more likely to develop preeclampsia compared with the referent group. We demonstrate a combined impact of obesity and elevated complement on the development of preeclampsia. Copyright © 2012. Published by Mosby, Inc.
Cropley, Vanessa; Laskaris, Liliana; Zalesky, Andrew; Weickert, Cynthia Shannon; Biase, Maria Di; Chana, Gursharan; Baune, Bernhard; Bousman, Chad; Nelson, Barnaby; McGorry, Patrick D; Everall, Ian; Pantelis, Christos
2018-01-01
Abstract Background The complement system - a key component of the innate immune system, has been proposed to contribute to the pathogenesis of schizophrenia. Recently, complement C4 was associated with increased risk of schizophrenia, and in a mouse model, developmentally-timed synaptic pruning. These observations have led to proposals that abnormal activation of the complement system might contribute to the development of schizophrenia by disrupting synaptic pruning during key developmental periods. However, despite renewed interest in the complement system in schizophrenia it remains unclear whether peripheral complement levels differ in cases compared to controls, change over the course of illness and whether they are associated with current symptomatology and brain cortical thickness. This study aimed to: i) investigate whether peripheral complement protein levels are altered at different stages of illness, and ii) identify patterns among complement protein levels that predict clinical symptoms and grey matter thickness across the cortex. Methods Complement factors C1q, C3 and C4 were quantified in 183 participants [n=83 Healthy Controls (HC), n=10 Ultra-High Risk (UHR) for psychosis, n=40 First Episode Psychosis (FEP), n=50 Chronic schizophrenia] using Multiplex ELISA. Permutation-based t-tests were used to assess between-group differences in complement protein levels at each of the three illness stages, relative to age- and gender-matched healthy controls. Canonical correlation analysis was used to identify patterns of complement protein levels that correlated with clinical symptoms and regional thickness across the cortex. Results C3 and C4 were significantly increased in FEP and UHR patients, whereas only C4 was significantly increased in chronic patients. A molecular pattern of increased C4 and decreased C3 was associated with positive and negative symptom severity in the pooled patient sample. Increased C4 levels alone, or decreased C3 levels alone, did not correlate with symptom severity as strongly as the pattern of increased C4 in combination with decreased C3. Preliminary canonical correlation analyses revealed that, in healthy controls, a molecular pattern characterised by increased C3 and decreased C4 was associated with relatively thinner paracentral, inferior parietal and inferior temporal cortices, but relatively thicker insular, in the left hemisphere. In the pooled patient group, a trend for increased C3 in combination with decreased C1q was associated with relatively thinner left lateral occipital cortex and pars orbitalis but relatively thicker pars opercularis and precuneus. Discussion Our findings indicate that peripheral complement concentration is particularly increased early and preceding psychosis and its imbalance may be associated with symptom severity and variation in regional grey matter thickness across the cortex.
Stephanie, Durrleman; Julie, Franck
2015-01-01
A growing body of work indicates a close relation between complement clause sentences and Theory of Mind (ToM) in children with autism (e.g., Tager-Flusberg, & Joseph (2005). In Astington, & Baird (Eds.), Why language matters for theory of mind (pp. 298-318). New York, NY, US: Oxford University Press, Lind, & Bowler (2009). Journal of Autism and Developmental Disorders, 39(6), 929). However, this link is based primarily on success at a specific complement clause task and a verbal false-belief (FB) task. One cannot exclude that the link found between these tasks may be a by-product of their both presupposing similar levels of language skills. It is also an open question if the role of complementation in ToM success is a privileged one as compared to that of other abilities which have been claimed to be an important factor for ToM understanding in autism, namely executive functioning (EF) (Pellicano (2007). Developmental Psychology 43, 974). Indeed the role played by complementation may be conceived of as an indirect one, mediated by some more general cognitive function related to EF. This study is the first to examine the relation between theory of mind assessed both verbally and non-verbally and various types of complement clause sentences as well as executive functions in children with autism spectrum disorder (ASD). Our participants included 17 children and adolescents with ASD (aged 6 to 16) and a younger TD control group matched on non-verbal IQ (aged 4 to 9 years). Three tasks assessing complements of verbs of cognition, verbs of communication and verbs of perception were conducted. ToM tasks involved a verbal ToM task (Sally-Anne, Baron-Cohen et al. (1985). Cognition, 21(1), 37) as well as a non-verbal one (Colle et al. (2007). Journal of Autism and Developmental Disorders, 37(4), 716). Indexes of executive functions were collected via a computerized version of the Dimensional Change Card-Sorting task (Frye et al., 1995). Standardized measures of vocabulary, morphosyntax and non-verbal IQ were also administered. Results show similar performance by children with ASD and TD controls for the understanding of complement sentences, for non-verbal ToM and for executive functions. However, children with ASD were significantly impaired for false belief when this was measured verbally. For both ASD and TD, correlations controlling for IQ were found between the verbal FB task and complement sentences of verbs of communication and cognition, but not with verbs of perception. EF indexes did not significantly correlate with either of the ToM tasks, nor did any of the general language scores. These findings provide support for the view that knowledge of certain specific types of complement clause may serve as a privileged means of 'hacking out' solutions to verbal false belief tasks for individuals on the autistic spectrum. More specifically, complements with a truth-value that is independent of that of the matrix clause (i.e. those occurring with verbs of cognition and of communication, but not of perception) may describe a false event while the whole sentence remains true, making these linguistic structures particularly well suited for representing the minds of others (de Villiers, 2007). Readers will be able to (1) describe and evaluate the hypothesis that complement sentences play a privileged role in false belief task success in autism; (2) describe performance on complement sentences, executive functioning and false belief tasks by children with autism as compared to IQ-matched peers; (3) explain which types of complements specifically relate to false belief task performance and why; and (4) understand that differences in performance by children with autism at different types of false-belief tasks may be related to the nature of the task conducted and the underlying mechanisms involved. Copyright © 2015 Elsevier Inc. All rights reserved.
Inactivation of complement by Loxosceles reclusa spider venom.
Gebel, H M; Finke, J H; Elgert, K D; Cambell, B J; Barrett, J T
1979-07-01
Zymosan depletion of serum complement in guinea pigs rendered them highly resistant to lesion by Loxosceles reclusa spider venom. Guinea pigs deficient in C4 of the complement system are as sensitive to the venom as normal guinea pigs. The injection of 35 micrograms of whole recluse venom intradermally into guinea pigs lowered their complement level by 35.7%. Brown recluse spider venom in concentrations as slight as 0.02 micrograms protein/ml can totally inactivate one CH50 of guinea pig complement in vitro. Bee, scorpion, and other spider venoms had no influence on the hemolytic titer of complement. Fractionation of recluse spider venom by Sephadex G-200 filtration separated the complement-inactivating property of the venom into three major regions which could be distinguished on the basis of heat stability as well as size. None was neutralized by antivenom. Polyacrylamide gel electrophoresis of venom resolved the complement inactivators into five fractions. Complement inactivated by whole venom or the Sephadex fractions could be restored to hemolytic activity by supplements of fresh serum but not by heat-inactivated serum, pure C3, pure C5, or C3 and C5 in combination.
Marta, Cecilia B.; Bansal, Rashmi; Pfeiffer, Steven E.
2009-01-01
Antibodies to myelin oligodendrocyte glycoprotein (MOG) have been implicated in Multiple Sclerosis demyelination through activation of complement and/or macrophage-effector processes. We presented a novel mechanism, whereby MOG on oligodendrocytes, when cross-linked with anti-MOG and secondary antibody resulted in its repartitioning into lipid rafts, and changes in protein phosphorylation and morphology. Here, we show that similar events occur when anti-MOG is cross-linked with Fc receptors (FcRs) present on microglia but not with complement. These results indicate that FcRs are endogenous antigen/antibody cross-linkers in vitro, suggesting that FcRs could be physiologically relevant in vivo and possible targets for therapy in Multiple Sclerosis. PMID:18406472
Feliciani, C; Toto, P; Amerio, P
1999-01-01
Pemphigus vulgaris (PV) is a potentially life-threatening disease, characterized immunohistologically by IgG deposits and complement activation on the surface of keratinocytes. Complement activation has been implicated in the pathogenesis with C3 deposits in about 90% of patients. In order to further elucidate the role of complement in PV and to define which cytokines play a role in C3 mRNA expression, we performed an in vitro study in human keratinocytes. Normal human epidermal keratinocytes (NHuK) were incubated with PV serum and C3 mRNA was measured. We previously had shown that IL-1alpha and TNF-alpha are expressed in PV in vivo and in vitro. Since cytokines are able to modulate complement activation, mRNA expression was evaluated in a similar experiment after pretreatment using antibodies against IL-1alpha and TNF-alpha. Incubation of NHuK with PV sera caused their detachment from the plates after 20-30 minutes with a complete acantholysis within 12 hours. An early C3 mRNA expression was seen after 30 minutes with a peak level after 1 hour. Blocking studies, using antibodies against human IL-1alpha and TNF-alpha in NHuK together with PV-IgG, showed reduction of in vitro induced acantholysis and inhibition of C3 mRNA expression. This study supports the hypothesis that complement C3 is important in PV acantholysis and that complement activation is increased by IL-1alpha and TNF-alpha.
Thanabalasuriar, Ajitha; Surewaard, Bas Gj; Willson, Michelle E; Neupane, Arpan S; Stover, Charles K; Warrener, Paul; Wilson, George; Keller, Ashley E; Sellman, Bret R; DiGiandomenico, Antonio; Kubes, Paul
2017-06-01
Pseudomonas aeruginosa is a major cause of severe infections that lead to bacteremia and high patient mortality. P. aeruginosa has evolved numerous evasion and subversion mechanisms that work in concert to overcome immune recognition and effector functions in hospitalized and immunosuppressed individuals. Here, we have used multilaser spinning-disk intravital microscopy to monitor the blood-borne stage in a murine bacteremic model of P. aeruginosa infection. P. aeruginosa adhered avidly to lung vasculature, where patrolling neutrophils and other immune cells were virtually blind to the pathogen's presence. This cloaking phenomenon was attributed to expression of Psl exopolysaccharide. Although an anti-Psl mAb activated complement and enhanced neutrophil recognition of P. aeruginosa, neutrophil-mediated clearance of the pathogen was suboptimal owing to a second subversion mechanism, namely the type 3 secretion (T3S) injectisome. Indeed, T3S prevented phagosome acidification and resisted killing inside these compartments. Antibody-mediated inhibition of the T3S protein PcrV did not enhance bacterial phagocytosis but did enhance killing of the few bacteria ingested by neutrophils. A bispecific mAb targeting both Psl and PcrV enhanced neutrophil uptake of P. aeruginosa and also greatly increased inhibition of T3S function, allowing for phagosome acidification and bacterial killing. These data highlight the need to block multiple evasion and subversion mechanisms in tandem to kill P. aeruginosa.
Bent, Eric H.; Gilbert, Luke A.; Hemann, Michael T.
2016-01-01
Cancer therapy targets malignant cells that are surrounded by a diverse complement of nonmalignant stromal cells. Therapy-induced damage of normal cells can alter the tumor microenvironment, causing cellular senescence and activating cancer-promoting inflammation. However, how these damage responses are regulated (both induced and resolved) to preserve tissue homeostasis and prevent chronic inflammation is poorly understood. Here, we detail an acute chemotherapy-induced secretory response that is self-limiting in vitro and in vivo despite the induction of cellular senescence. We used tissue-specific knockout mice to demonstrate that endothelial production of the proinflammatory cytokine IL-6 promotes chemoresistance and show that the chemotherapeutic doxorubicin induces acute IL-6 release through reactive oxygen species-mediated p38 activation in vitro. Doxorubicin causes endothelial senescence but, surprisingly, without a typical senescence secretory response. We found that endothelial cells repress senescence-associated inflammation through the down-regulation of PI3K/AKT/mTOR signaling and that reactivation of this pathway restores senescence-associated inflammation. Thus, we describe a mechanism by which damage-associated paracrine secretory responses are restrained to preserve tissue homeostasis and prevent chronic inflammation. PMID:27566778
Excessive innate immune response and mutant D222G/N in severe A (H1N1) pandemic influenza.
Berdal, Jan-Erik; Mollnes, Tom E; Wæhre, Torgun; Olstad, Ole K; Halvorsen, Bente; Ueland, Thor; Laake, Jon H; Furuseth, May T; Maagaard, Anne; Kjekshus, Harald; Aukrust, Pål; Jonassen, Christine M
2011-10-01
Explore the role of viral factors and immune response in patients with severe pandemic pdmH1N1 illness without significant co-morbidity. Seven patients with pdmH1N1 influenza, bilateral chest X-rays infiltrates, requiring mechanical ventilator support were consecutively recruited. Seven age- and gender-matched healthy individuals served as controls. Four patients were viremic, two with the mutant D222G/N pdmH1N1.Microarray analyses of peripheral blood leukocytes suggested a marked granulocytes activation, but no up-regulation of inflammatory cytokine mRNA. Patients with severe pdmH1NI had a marked systemic complement activation, and in contrast to the lack of cytokine mRNA up-regulation in blood leukocytes, plasma levels of a broad range of inflammatory mediators, including IP-10, and mediators involved in pulmonary remodelling were markedly elevated. Patients with mutant virus had particularly high IP-10 levels, and the most pronounced complement activation. In severe pdmH1N1, viremia was common and the D222G/N mutant was found in half of the viremic patients. Host immune response was characterized by strong activation of the innate immune system, including complement and granulocytes activation, increased serum levels of inflammation and pulmonary remodelling markers, possibly contributing to the observed tissue damage. However, few patients were included and further studies are needed to characterize the immune response in severe pdmH1N1 infection. Copyright © 2011 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
DrsG from Streptococcus dysgalactiae subsp. equisimilis Inhibits the Antimicrobial Peptide LL-37
Smyth, Danielle; Cameron, Ainslie; Davies, Mark R.; McNeilly, Celia; Hafner, Louise; Sriprakash, Kadaba S.
2014-01-01
SIC and DRS are related proteins present in only 4 of the >200 Streptococcus pyogenes emm types. These proteins inhibit complement-mediated lysis and/or the activity of certain antimicrobial peptides (AMPs). A gene encoding a homologue of these proteins, herein called DrsG, has been identified in the related bacterium Streptococcus dysgalactiae subsp. equisimilis. Here we show that geographically dispersed isolates representing 14 of 50 emm types examined possess variants of drsG. However, not all isolates within the drsG-positive emm types possess the gene. Sequence comparisons also revealed a high degree of conservation in different S. dysgalactiae subsp. equisimilis emm types. To examine the biological activity of DrsG, recombinant versions of two major DrsG variants, DrsGS and DrsGL, were expressed and purified. Western blot analysis using antisera raised to these proteins demonstrated both variants to be expressed and secreted into culture supernatants. Unlike SIC, but similar to DRS, DrsG does not inhibit complement-mediated lysis. However, like both SIC and DRS, DrsG is a ligand of the cathelicidin LL-37 and is inhibitory to its bactericidal activity in in vitro assays. Conservation of prolines in the C-terminal region also suggests that these residues are important in the biology of this family of proteins. This is the first report demonstrating the activity of an AMP-inhibitory protein in S. dysgalactiae subsp. equisimilis and suggests that inhibition of AMP activity is the primary function of this family of proteins. The acquisition of the complement-inhibitory activity of SIC may reflect its continuing evolution. PMID:24664506
Contact Lens-Induced Discomfort and Inflammatory Mediator Changes in Tears.
Masoudi, Simin; Zhao, Zhenjun; Stapleton, Fiona; Willcox, Mark
2017-01-01
Studies indicate that contact lens (CL) discontinuation mostly occurs because of dryness and discomfort symptoms. This study aimed to investigate relationships between changes in the concentration of tear inflammatory mediators with subjective comfort ratings with CL wear and no contact lens wear between morning and evening. Forty-five subjects collected tears twice daily in the morning and in the evening with or without lenses. Comfort was rated subjectively on a scale from 1 to 100 (where 100 was extremely comfortable) just before each tear collection. Tear samples were assayed for complement components (C3 and C3a), leukotriene B4 (LTB4), secretory phospholipase A2 (sPLA2), secretory immunoglobulin A (sIgA), and bradykinin using commercially available immuno-based assay kits. Comfort ratings showed a statistically significant decline from morning to evening both with CL (89.0±10.1 AM vs. 76.7±15.2 PM; P<0.001) and without CL (89.1±10.2 AM vs. 84.2±12.6 PM; P<0.005) wear. The decline was steeper with lens wear (P<0.001). Bradykinin and sPLA2 levels did not change between morning and evening or with CL wear (P>0.05). Leukotriene B4 levels were slightly higher in CL (CL 43.4±12.6 pg/ml vs. No CL 39.4±13.4 pg/mL; P=0.034), whereas the concentration of LTB4, C3, C3a, and sIgA dropped by the end of the day in the presence or absence of lens wear (P<0.001). For most mediators, tear levels were not correlated with comfort ratings in any of the conditions. Leukotriene B4 had a higher concentration in the evening, and when measured as a ratio to sIgA, there was a trend for increased concentration of this mediator during CL wear. Although specific mediators showed changes from morning to evening with and without lens wear, most of these were not correlated with subjective comfort ratings in lens wear. The only mediator that showed an increase in concentration during the day and during lens wear was LTB4, and further studies on this mediator are warranted.
Complement system biomarkers in epilepsy.
Kopczynska, Maja; Zelek, Wioleta M; Vespa, Simone; Touchard, Samuel; Wardle, Mark; Loveless, Samantha; Thomas, Rhys H; Hamandi, Khalid; Morgan, B Paul
2018-05-24
To explore whether complement dysregulation occurs in a routinely recruited clinical cohort of epilepsy patients, and whether complement biomarkers have potential to be used as markers of disease severity and seizure control. Plasma samples from 157 epilepsy cases (106 with focal seizures, 46 generalised seizures, 5 unclassified) and 54 controls were analysed. Concentrations of 10 complement analytes (C1q, C3, C4, factor B [FB], terminal complement complex [TCC], iC3b, factor H [FH], Clusterin [Clu], Properdin, C1 Inhibitor [C1Inh] plus C-reactive protein [CRP]) were measured using enzyme linked immunosorbent assay (ELISA). Univariate and multivariate statistical analysis were used to test whether combinations of complement analytes were predictive of epilepsy diagnoses and seizure occurrence. Correlation between number and type of anti-epileptic drugs (AED) and complement analytes was also performed. We found: CONCLUSION: This study adds to evidence implicating complement in pathogenesis of epilepsy and may allow the development of better therapeutics and prognostic markers in the future. Replication in a larger sample set is needed to validate the findings of the study. Copyright © 2018. Published by Elsevier Ltd.
Influence of heat inactivation of human serum on the opsonization of Streptococcus mutans.
Moore, M A; Hakki, Z W; Gregory, R L; Gfell, L E; Kim-Park, W K; Kowolik, M J
1997-12-15
Phagocytosis of bacteria, such as Streptococcus mutans, is important to host defense. One mechanism by which phagocytosis can be enhanced is by antibody or complement-mediated opsonization of bacteria. Many studies utilize opsonization of bacteria to enhance a cellular response, but little information has been found examining methodology or validity of the opsonization process following the denaturization of the serum. Human serum was inactivated by heat in order to disrupt the classical and alternative pathways of the complement cascade. S. mutans isolated from human subjects were opsonized with heat-inactivated human serum before exposing them to viable neutrophils in vitro. Luminol-dependent chemiluminescence (CL) was used to measure neutrophil activation. Human serum used to opsonize the bacteria was denatured by incubation at 57 degrees C for intervals of 30 and 60 min to inactivate complement. The results from the opsonization data indicated that there was significantly increased CL with 60-min inactivation of the serum (34% increase in mean integration mV.min; p < or = 0.05) over the nonopsonized control. This indicated a successful opsonization of the bacteria. In addition, the data demonstrate that the inactivation of serum requires a minimum of 60 min at 57 degrees C to disrupt the complement cascade, while 30- and 15-min inactivations produced no significant increase in CL activity over the control. Standard sandwich ELISA assays, detecting complement binding to S. mutans, confirmed successful heat inactivation of serum showing a significant decrease (p < or = 0.001) in complement binding to S. mutans after 30 min, but could not explain the increased CL response after 60-min heat deactivation of the serum.
Complementation of a red-light-indifferent cyanobacterial mutant.
Chiang, G G; Schaefer, M R; Grossman, A R
1992-01-01
Many cyanobacteria alter their phycobilisome composition in response to changes in light wavelength in a process termed complementary chromatic adaptation. Mutant strains FdR1 and FdR2 of the filamentous cyanobacterium Fremyella diplosiphon are characterized by aberrant chromatic adaptation. Instead of adjusting to different wavelengths of light, FdR1 and FdR2 behave as if they are always in green light; they do not respond to red light. We have previously reported complementation of FdR1 by conjugal transfer of a wild-type genomic library. The complementing DNA has now been localized by genetic analysis to a region on the rescued genomic subclone that contains a gene designated rcaC. This region of DNA is also able to complement FdR2. Southern blot analysis of genomic DNA from FdR1 and FdR2 indicates that these strains harbor DNA insertions within the rcaC sequence that may have resulted from the activity of transposable genetic elements. The predicted amino acid sequence of RcaC shares strong identity to response regulators of bacterial two-component regulatory systems. This relationship is discussed in the context of the signal-transduction pathway mediating regulation of genes encoding phycobilisome polypeptides during chromatic adaptation. Images PMID:1409650
The Microbiome and Complement Activation: A Mechanistic Model for Preterm Birth
Dunn, Alexis B.; Dunlop, Anne L.; Hogue, Carol J.; Miller, Andrew; Corwin, Elizabeth J.
2018-01-01
Preterm Birth (PTB, < 37 completed weeks' gestation) is one of the leading obstetrical problems in the United States affecting approximately 1 of every 9 births. Even more concerning are the persistent racial disparities in PTB with particularly high rates in African Americans. There are several recognized pathophysiologic pathways to PTB, including infection and/or exaggerated systemic or local inflammation. Intrauterine infection is a causal factor linked to PTB, thought to result most commonly from inflammatory processes triggered by microbial invasion of bacteria ascending from the vaginal microbiome. Trials to treat various infections have shown limited efficacy in reducing PTB risk, suggesting that other complex mechanisms, including those associated with inflammation, may be involved in the relationship between microbes, infection, and PTB. A key mediator of the inflammatory response, and recently shown to be associated with PTB, is the complement system, an innate defense mechanism involved in both normal physiologic processes that occur during pregnancy implantation, as well as processes that promote the elimination of pathogenic microbes. The purpose of this paper is to present a mechanistic model of inflammation-associated PTB, which hypothesizes a relationship between the microbiome and dysregulation of the complement system. Exploring the relationships between the microbial environment and complement biomarkers may elucidate a potentially modifiable biological pathway to preterm birth. PMID:28073296
Woehrl, Bianca; Brouwer, Matthijs C.; Murr, Carmen; Heckenberg, Sebastiaan G.B.; Baas, Frank; Pfister, Hans W.; Zwinderman, Aeilko H.; Morgan, B. Paul; Barnum, Scott R.; van der Ende, Arie; Koedel, Uwe; van de Beek, Diederik
2011-01-01
Pneumococcal meningitis is the most common and severe form of bacterial meningitis. Fatality rates are substantial, and long-term sequelae develop in about half of survivors. Disease outcome has been related to the severity of the proinflammatory response in the subarachnoid space. The complement system, which mediates key inflammatory processes, has been implicated as a modulator of pneumococcal meningitis disease severity in animal studies. Additionally, SNPs in genes encoding complement pathway proteins have been linked to susceptibility to pneumococcal infection, although no associations with disease severity or outcome have been established. Here, we have performed a robust prospective nationwide genetic association study in patients with bacterial meningitis and found that a common nonsynonymous complement component 5 (C5) SNP (rs17611) is associated with unfavorable disease outcome. C5 fragment levels in cerebrospinal fluid (CSF) of patients with bacterial meningitis correlated with several clinical indicators of poor prognosis. Consistent with these human data, C5a receptor–deficient mice with pneumococcal meningitis had lower CSF wbc counts and decreased brain damage compared with WT mice. Adjuvant treatment with C5-specific monoclonal antibodies prevented death in all mice with pneumococcal meningitis. Thus, our results suggest C5-specific monoclonal antibodies could be a promising new antiinflammatory adjuvant therapy for pneumococcal meningitis. PMID:21926466
Gajewska, B; Kamińska, J; Jesionowska, A; Martin, N C; Hopper, A K; Zoładek, T
2001-01-01
Rsp5p, ubiquitin-protein ligase, an enzyme of the ubiquitination pathway, contains three WW domains that mediate protein-protein interactions. To determine if these domains adapt Rsp5p to a subset of substrates involved in numerous cellular processes, we generated mutations in individual or combinations of the WW domains. The rsp5-w1, rsp5-w2, and rsp5-w3 mutant alleles complement RSP5 deletions at 30 degrees. Thus, individual WW domains are not essential. Each rsp5-w mutation caused temperature-sensitive growth. Among variants with mutations in multiple WW domains, only rsp5-w1w2 complemented the deletion. Thus, the WW3 domain is sufficient for Rsp5p essential functions. To determine whether rsp5-w mutations affect endocytosis, fluid phase and uracil permease (Fur4p) endocytosis was examined. The WW3 domain is important for both processes. WW2 appears not to be important for fluid phase endocytosis whereas it is important for Fur4p endocytosis. In contrast, the WW1 domain affects fluid phase endocytosis, but it does not appear to function in Fur4p endocytosis. Thus, various WW domains play different roles in the endocytosis of these two substrates. Rsp5p is located in the cytoplasm in a punctate pattern that does not change during the cell cycle. Altering WW domains does not change the location of Rsp5p.
Gajewska, B; Kamińska, J; Jesionowska, A; Martin, N C; Hopper, A K; Zoładek, T
2001-01-01
Rsp5p, ubiquitin-protein ligase, an enzyme of the ubiquitination pathway, contains three WW domains that mediate protein-protein interactions. To determine if these domains adapt Rsp5p to a subset of substrates involved in numerous cellular processes, we generated mutations in individual or combinations of the WW domains. The rsp5-w1, rsp5-w2, and rsp5-w3 mutant alleles complement RSP5 deletions at 30 degrees. Thus, individual WW domains are not essential. Each rsp5-w mutation caused temperature-sensitive growth. Among variants with mutations in multiple WW domains, only rsp5-w1w2 complemented the deletion. Thus, the WW3 domain is sufficient for Rsp5p essential functions. To determine whether rsp5-w mutations affect endocytosis, fluid phase and uracil permease (Fur4p) endocytosis was examined. The WW3 domain is important for both processes. WW2 appears not to be important for fluid phase endocytosis whereas it is important for Fur4p endocytosis. In contrast, the WW1 domain affects fluid phase endocytosis, but it does not appear to function in Fur4p endocytosis. Thus, various WW domains play different roles in the endocytosis of these two substrates. Rsp5p is located in the cytoplasm in a punctate pattern that does not change during the cell cycle. Altering WW domains does not change the location of Rsp5p. PMID:11139494
Alan, Jamie K; Struckhoff, Eric C; Lundquist, Erik A
2013-01-01
Rho GTPases are key regulators of cellular protrusion and are involved in many developmental events including axon guidance during nervous system development. Rho GTPase pathways display functional redundancy in developmental events, including axon guidance. Therefore, their roles can often be masked when using simple loss-of-function genetic approaches. As a complement to loss-of-function genetics, we constructed a constitutively activated CDC-42(G12V) expressed in C. elegans neurons. CDC-42(G12V) drove the formation of ectopic lamellipodial and filopodial protrusions in the PDE neurons, which resembled protrusions normally found on migrating growth cones of axons. We then used a candidate gene approach to identify molecules that mediate CDC-42(G12V)-induced ectopic protrusions by determining if loss of function of the genes could suppress CDC-42(G12V). Using this approach, we identified 3 cytoskeletal pathways previously implicated in axon guidance, the Arp2/3 complex, UNC-115/abLIM, and UNC-43/Ena. We also identified the Nck-interacting kinase MIG-15/NIK and p21-activated kinases (PAKs), also implicated in axon guidance. Finally, PI3K signaling was required, specifically the Rictor/mTORC2 branch but not the mTORC1 branch that has been implicated in other aspects of PI3K signaling including stress and aging. Our results indicate that multiple pathways can mediate CDC-42-induced neuronal protrusions that might be relevant to growth cone protrusions during axon pathfinding. Each of these pathways involves Rac GTPases, which might serve to integrate the pathways and coordinate the multiple CDC-42 pathways. These pathways might be relevant to developmental events such as axon pathfinding as well as disease states such as metastatic melanoma.
Alan, Jamie K; Struckhoff, Eric C; Lundquist, Erik A
2013-01-01
Rho GTPases are key regulators of cellular protrusion and are involved in many developmental events including axon guidance during nervous system development. Rho GTPase pathways display functional redundancy in developmental events, including axon guidance. Therefore, their roles can often be masked when using simple loss-of-function genetic approaches. As a complement to loss-of-function genetics, we constructed a constitutively activated CDC-42(G12V) expressed in C. elegans neurons. CDC-42(G12V) drove the formation of ectopic lamellipodial and filopodial protrusions in the PDE neurons, which resembled protrusions normally found on migrating growth cones of axons. We then used a candidate gene approach to identify molecules that mediate CDC-42(G12V)-induced ectopic protrusions by determining if loss of function of the genes could suppress CDC-42(G12V). Using this approach, we identified 3 cytoskeletal pathways previously implicated in axon guidance, the Arp2/3 complex, UNC-115/abLIM, and UNC-43/Ena. We also identified the Nck-interacting kinase MIG-15/NIK and p21-activated kinases (PAKs), also implicated in axon guidance. Finally, PI3K signaling was required, specifically the Rictor/mTORC2 branch but not the mTORC1 branch that has been implicated in other aspects of PI3K signaling including stress and aging. Our results indicate that multiple pathways can mediate CDC-42-induced neuronal protrusions that might be relevant to growth cone protrusions during axon pathfinding. Each of these pathways involves Rac GTPases, which might serve to integrate the pathways and coordinate the multiple CDC-42 pathways. These pathways might be relevant to developmental events such as axon pathfinding as well as disease states such as metastatic melanoma. PMID:24149939
Stability and dynamic of strain mediated adatom superlattices on Cu<111 >
NASA Astrophysics Data System (ADS)
Kappus, Wolfgang
2013-03-01
Substrate strain mediated adatom equilibrium density distributions have been calculated for Cu<111 > surfaces using two complementing methods. A hexagonal adatom superlattice in a coverage range up to 0.045 ML is derived for repulsive short range interactions. For zero short range interactions a hexagonal superstructure of adatom clusters is derived in a coverage range about 0.08 ML. Conditions for the stability of the superlattice against formation of dimers or clusters and degradation are analyzed using simple neighborhood models. Such models are also used to investigate the dynamic of adatoms within their superlattice neighborhood. Collective modes of adatom diffusion are proposed from the analogy with bulk lattice dynamics and methods for measurement are suggested. The recently put forward explanation of surface state mediated interactions for superstructures found in scanning tunneling microscopy experiments is put in question and strain mediated interactions are proposed as an alternative.
Role of water mediated interactions in protein-protein recognition landscapes.
Papoian, Garegin A; Ulander, Johan; Wolynes, Peter G
2003-07-30
The energy landscape picture of protein folding and binding is employed to optimize a number of pair potentials for direct and water-mediated interactions in protein complex interfaces. We find that water-mediated interactions greatly complement direct interactions in discriminating against various types of trap interactions that model those present in the cell. We highlight the context dependent nature of knowledge-based binding potentials, as contrasted with the situation for autonomous folding. By performing a Principal Component Analysis (PCA) of the corresponding interaction matrixes, we rationalize the strength of the recognition signal for each combination of the contact type and reference trap states using the differential in the idealized "canonical" amino acid compositions of native and trap layers. The comparison of direct and water-mediated contact potential matrixes emphasizes the importance of partial solvation in stabilizing charged groups in the protein interfaces. Specific water-mediated interresidue interactions are expected to influence significantly the kinetics as well as thermodynamics of protein association.
Wang, Jia; Liu, Ru-De; Ding, Yi; Xu, Le; Liu, Ying; Zhen, Rui
2017-01-01
Previous studies have highlighted the impacts of environmental factors (teacher’s autonomy support) and individual factors (self-efficacy, intrinsic value, and boredom) on academic engagement. This study aimed to investigate these variables and examine the relations among them. Three structural equation models tested the multiple mediational roles of self-efficacy, intrinsic value, and boredom in the relation between teacher’s autonomy support and behavioral, emotional, and cognitive engagement, respectively, in math. A total of 637 Chinese middle school students (313 males, 324 females; mean age = 14.82) voluntarily participated in this study. Results revealed that self-efficacy, intrinsic value, and boredom played important and mediating roles between perceived teacher’s autonomy support and student engagement. Specifically, these three individual variables partly mediated the relations between perceived teacher’s autonomy support and behavioral and cognitive engagement, while fully mediating the relation between perceived teacher’s autonomy support and emotional engagement. These findings complement and extend the understanding of factors affecting students’ engagement in math. PMID:28690560
Wang, Jia; Liu, Ru-De; Ding, Yi; Xu, Le; Liu, Ying; Zhen, Rui
2017-01-01
Previous studies have highlighted the impacts of environmental factors (teacher's autonomy support) and individual factors (self-efficacy, intrinsic value, and boredom) on academic engagement. This study aimed to investigate these variables and examine the relations among them. Three structural equation models tested the multiple mediational roles of self-efficacy, intrinsic value, and boredom in the relation between teacher's autonomy support and behavioral, emotional, and cognitive engagement, respectively, in math. A total of 637 Chinese middle school students (313 males, 324 females; mean age = 14.82) voluntarily participated in this study. Results revealed that self-efficacy, intrinsic value, and boredom played important and mediating roles between perceived teacher's autonomy support and student engagement. Specifically, these three individual variables partly mediated the relations between perceived teacher's autonomy support and behavioral and cognitive engagement, while fully mediating the relation between perceived teacher's autonomy support and emotional engagement. These findings complement and extend the understanding of factors affecting students' engagement in math.
Host Soluble Mediators: Defying the Immunological Inertness of Aspergillus fumigatus Conidia.
Wong, Sarah Sze Wah; Aimanianda, Vishukumar
2017-12-24
Aspergillus fumigatus produce airborne spores (conidia), which are inhaled in abundant quantity. In an immunocompromised population, the host immune system fails to clear the inhaled conidia, which then germinate and invade, leading to pulmonary aspergillosis. In an immunocompetent population, the inhaled conidia are efficiently cleared by the host immune system. Soluble mediators of the innate immunity, that involve the complement system, acute-phase proteins, antimicrobial peptides and cytokines, are often considered to play a complementary role in the defense of the fungal pathogen. In fact, the soluble mediators are essential in achieving an efficient clearance of the dormant conidia, which is the morphotype of the fungus upon inhalation by the host. Importantly, harnessing the host soluble mediators challenges the immunological inertness of the dormant conidia due to the presence of the rodlet and melanin layers. In the review, we summarized the major soluble mediators in the lung that are involved in the recognition of the dormant conidia. This knowledge is essential in the complete understanding of the immune defense against A. fumigatus .
Scabies Mite Peritrophins Are Potential Targets of Human Host Innate Immunity
Holt, Deborah C.; Kemp, Dave J.; Fischer, Katja
2011-01-01
Background Pruritic scabies lesions caused by Sarcoptes scabiei burrowing in the stratum corneum of human skin facilitate opportunistic bacterial infections. Emerging resistance to current therapeutics emphasizes the need to identify novel targets for protective intervention. We have characterized several protein families located in the mite gut as crucial factors for host-parasite interactions. Among these multiple proteins inhibit human complement, presumably to avoid complement-mediated damage of gut epithelial cells. Peritrophins are major components of the peritrophic matrix often found in the gut of arthropods. We hypothesized that a peritrophin, if abundant in the scabies mite gut, could be an activator of complement. Methodology/Principal Findings A novel full length scabies mite peritrophin (SsPTP1) was identified in a cDNA library from scabies mites. The amino acid sequence revealed four putative chitin binding domains (CBD). Recombinant expression of one CBD of the highly repetitive SsPTP1 sequence as TSP-hexaHis-fusion protein resulted in soluble protein, which demonstrated chitin binding activity in affinity chromatography assays. Antibodies against a recombinant SsPTP1 fragment were used to immunohistochemically localize native SsPTP1 in the mite gut and in fecal pellets within the upper epidermis, co-localizing with serum components such as host IgG and complement. Enzymatic deglycosylation confirmed strong N- and O-glycosylation of the native peritrophin. Serum incubation followed by immunoblotting with a monoclonal antibody against mannan binding lectin (MBL), the recognition molecule of the lectin pathway of human complement activation, indicated that MBL may specifically bind to glycosylated SsPTP1. Conclusions/Significance This study adds a new aspect to the accumulating evidence that complement plays a major role in scabies mite biology. It identifies a novel peritrophin localized in the mite gut as a potential target of the lectin pathway of the complement cascade. These initial findings indicate a novel role of scabies mite peritrophins in triggering a host innate immune response within the mite gut. PMID:21980545
Hoh Kam, Jaimie; Lenassi, Eva; Malik, Talat H; Pickering, Matthew C; Jeffery, Glen
2013-08-01
Complement component C3 is the central complement component and a key inflammatory protein activated in age-related macular degeneration (AMD). AMD is associated with genetic variation in complement proteins that results in enhanced activation of C3 through the complement alternative pathway. These include complement factor H (CFH), a negative regulator of C3 activation. Both C3 inhibition and/or CFH augmentation are potential therapeutic strategies in AMD. Herein, we examined retinal integrity in aged (12 months) mice deficient in both factors H and C3 (CFH(-/-).C3(-/-)), CFH alone (CFH(-/-)), or C3 alone (C3(-/-)), and wild-type mice (C57BL/6). Retinal function was assessed by electroretinography, and retinal morphological features were analyzed at light and electron microscope levels. Retinas were also stained for amyloid β (Aβ) deposition, inflammation, and macrophage accumulation. Contrary to expectation, electroretinograms of CFH(-/-).C3(-/-) mice displayed more severely reduced responses than those of other mice. All mutant strains showed significant photoreceptor loss and thickening of Bruch's membrane compared with wild-type C57BL/6, but these changes were greater in CFH(-/-).C3(-/-) mice. CFH(-/-).C3(-/-) mice had significantly more Aβ on Bruch's membrane, fewer macrophages, and high levels of retinal inflammation than the other groups. Our data show that both uncontrolled C3 activation (CFH(-/-)) and complete absence of C3 (CFH(-/-).C3(-/-) and C3(-/-)) negatively affect aged retinas. These findings suggest that strategies that inhibit C3 in AMD may be deleterious. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Plested, Joyce S; Welsch, Jo Anne; Granoff, Dan M
2009-06-01
The binding of complement factor H (fH) to meningococci was recently found to be specific for human fH. Therefore, passive protective antibody activity measured in animal models of meningococcal bacteremia may overestimate protection in humans, since in the absence of bound fH, complement activation is not downregulated. We developed an ex vivo model of meningococcal bacteremia using nonimmune human blood to measure the passive protective activity of stored sera from 36 adults who had been immunized with an investigational meningococcal multicomponent recombinant protein vaccine. Before immunization, human complement-mediated serum bactericidal activity (SBA) titers of > or = 1:4 against group B strains H44/76, NZ98/254, and S3032 were present in 19, 11, and 8% of subjects, respectively; these proportions increased to 97, 22, and 36%, respectively, 1 month after dose 3 (P < 0.01 for H44/76 and S3032). Against the two SBA-resistant strains, NZ98/254 and S3032, passive protective titers of > or = 1:4 were present in 11 and 42% of sera before immunization, respectively, and these proportions increased to 61 and 94% after immunization (P < 0.001 for each strain). Most of the sera with SBA titers of <1:4 and passive protective activity showed a level of killing in the whole-blood assay (>1 to 2 log(10) decreases in CFU/ml during a 90-min incubation) similar to that of sera with SBA titers of > or = 1:4. In conclusion, passive protective activity was 2.6- to 2.8-fold more frequent than SBA after immunization. The ability of SBA-negative sera to kill Neisseria meningitidis in human blood where fH is bound to the bacteria provides further evidence that SBA titers of > or = 1:4 measured with human complement may underestimate meningococcal immunity.
The Murine Factor H-Related Protein FHR-B Promotes Complement Activation.
Cserhalmi, Marcell; Csincsi, Ádám I; Mezei, Zoltán; Kopp, Anne; Hebecker, Mario; Uzonyi, Barbara; Józsi, Mihály
2017-01-01
Factor H-related (FHR) proteins consist of varying number of complement control protein domains that display various degrees of sequence identity to respective domains of the alternative pathway complement inhibitor factor H (FH). While such FHR proteins are described in several species, only human FHRs were functionally investigated. Their biological role is still poorly understood and in part controversial. Recent studies on some of the human FHRs strongly suggest a role for FHRs in enhancing complement activation via competing with FH for binding to certain ligands and surfaces. The aim of the current study was the functional characterization of a murine FHR, FHR-B. To this end, FHR-B was expressed in recombinant form. Recombinant FHR-B bound to human C3b and was able to compete with human FH for C3b binding. FHR-B supported the assembly of functionally active C3bBb alternative pathway C3 convertase via its interaction with C3b. This activity was confirmed by demonstrating C3 activation in murine serum. In addition, FHR-B bound to murine pentraxin 3 (PTX3), and this interaction resulted in murine C3 fragment deposition due to enhanced complement activation in mouse serum. FHR-B also induced C3 deposition on C-reactive protein, the extracellular matrix (ECM) extract Matrigel, and endothelial cell-derived ECM when exposed to mouse serum. Moreover, mouse C3 deposition was strongly enhanced on necrotic Jurkat T cells and the mouse B cell line A20 by FHR-B. FHR-B also induced lysis of sheep erythrocytes when incubated in mouse serum with FHR-B added in excess. Altogether, these data demonstrate that, similar to human FHR-1 and FHR-5, mouse FHR-B modulates complement activity by promoting complement activation via interaction with C3b and via competition with murine FH.
Martins, Viviana; Bassil, Elias; Hanana, Mohsen; Blumwald, Eduardo; Gerós, Hernâni
2014-07-01
The Vitis vinifera copper transporter 1 is capable of self-interaction and mediates intracellular copper transport. An understanding of copper homeostasis in grapevine (Vitis vinifera L.) is particularly relevant to viticulture in which copper-based fungicides are intensively used. In the present study, the Vitis vinifera copper transporter 1 (VvCTr1), belonging to the Ctr family of copper transporters, was cloned and functionally characterized. Amino acid sequence analysis showed that VvCTr1 monomers are small peptides composed of 148 amino acids with 3 transmembrane domains and several amino acid residues typical of Ctr transporters. Bimolecular fluorescence complementation (BiFC) demonstrated that Ctr monomers are self-interacting and subcellular localization studies revealed that VvCTr1 is mobilized via the trans-Golgi network, through the pre-vacuolar compartment and located to the vacuolar membrane. The heterologous expression of VvCTr1 in a yeast strain lacking all Ctr transporters fully rescued the phenotype, while a deficient complementation was observed in a strain lacking only plasma membrane-bound Ctrs. Given the common subcellular localization of VvCTr1 and AtCOPT5 and the highest amino acid sequence similarity in comparison to the remaining AtCOPT proteins, Arabidopsis copt5 plants were stably transformed with VvCTr1. The impairment in root growth observed in copt5 seedlings in copper-deficient conditions was fully rescued by VvCTr1, further supporting its involvement in intracellular copper transport. Expression studies in V. vinifera showed that VvCTr1 is mostly expressed in the root system, but transcripts were also present in leaves and stems. The functional characterization of VvCTr-mediated copper transport provides the first step towards understanding the physiological and molecular responses of grapevines to copper-based fungicides.
Takahashi, Takashi; Fujita, Tomohiro; Shibayama, Akiyoshi; Tsuyuki, Yuzo; Yoshida, Haruno
2017-07-01
Streptococcus dysgalactiae subsp. equisimilis (SDSE; a β-hemolytic streptococcus of human or animal origin) infections are emerging worldwide. We evaluated the clonal distribution of complement-mediated cell lysis-like gene (sicG) among SDSE isolates from three central prefectures of Japan. Group G/C β-hemolytic streptococci were collected from three institutions from April 2014 to March 2016. Fifty-five strains (52 from humans and three from animals) were identified as SDSE on the basis of 16S rRNA sequencing data.; they were obtained from 25 sterile (blood, joint fluid, and cerebrospinal fluid) and 30 non-sterile (skin-, respiratory tract-, and genitourinary tract-origin) samples. emm genotyping, multilocus sequence typing, sicG amplification/sequencing, and random amplified polymorphic DNA (RAPD) analysis of sicG-positive strains were performed. sicG was detected in 30.9% of the isolates (16 human and one canine) and the genes from the 16 human samples (blood, 10; open pus, 3; sputum, 2; throat swab, 1) and one canine sample (open pus) showed the same sequence pattern. All sicG-harboring isolates belonged to clonal complex (CC) 17, and the most prevalent emm type was stG6792 (82.4%). There was a significant association between sicG presence and the development of skin/soft tissue infections. CC17 isolates with sicG could be divided into three subtypes by RAPD analysis. CC17 SDSE harboring sicG might have spread into three closely-related prefectures in central Japan during 2014-2016. Clonal analysis of isolates from other areas might be needed to monitor potentially virulent strains in humans and animals. © The Korean Society for Laboratory Medicine
Veeraraghavalu, Karthikeyan; Subbaiah, Vanitha K.; Srivastava, Sweta; Chakrabarti, Oishee; Syal, Ruchi; Krishna, Sudhir
2005-01-01
We have analyzed the induction and role of phosphatidylinositol 3-kinase (PI3K) by Notch signaling in human papillomavirus (HPV)-derived cancers. Jagged1, in contrast to Delta1, is preferentially upregulated in human cervical tumors. Jagged1 and not Delta1 expression sustained in vivo tumors by HPV16 oncogenes in HaCaT cells. Further, Jagged1 expression correlates with the rapid induction of PI3K-mediated epithelial-mesenchymal transition in both HaCaT cells and a human cervical tumor-derived cell line, suggestive of Delta1;Serrate/Jagged;Lag2 ligand-specific roles. Microarray analysis and dominant-negatives reveal that Notch-PI3K oncogenic functions can be independent of CBF1;Su(H);Lag-1 activation and instead relies on Deltex1, an alternative Notch effector. PMID:15919944
Frazier, Kendall S; Sobry, Cécile; Derr, Victoria; Adams, Mike J; Besten, Cathaline Den; De Kimpe, Sjef; Francis, Ian; Gales, Tracy L; Haworth, Richard; Maguire, Shaun R; Mirabile, Rosanna C; Mullins, David; Palate, Bernard; Doorten, Yolanda Ponstein-Simarro; Ridings, James E; Scicchitano, Marshall S; Silvano, Jérémy; Woodfine, Jennie
2014-07-01
Chronic administration of drisapersen, a 2'-OMe phosphorothioate antisense oligonucleotide (AON) to mice and monkeys resulted in renal tubular accumulation, with secondary tubular degeneration. Glomerulopathy occurred in both species with species-specific characteristics. Glomerular lesions in mice were characterized by progressive hyaline matrix accumulation, accompanied by the presence of renal amyloid and with subsequent papillary necrosis. Early changes involved glomerular endothelial hypertrophy and degeneration, but the chronic glomerular amyloid and hyaline alterations in mice appeared to be species specific. An immune-mediated mechanism for the glomerular lesions in mice was supported by early inflammatory changes including increased expression of inflammatory cytokines and other immunomodulatory genes within the renal cortex, increased stimulation of CD68 protein, and systemic elevation of monocyte chemotactic protein 1. In contrast, kidneys from monkeys given drisapersen chronically showed less severe glomerular changes characterized by increased mesangial and inflammatory cells, endothelial cell hypertrophy, and subepithelial and membranous electron-dense deposits, with ultrastructural and immunohistochemical characteristics of complement and complement-related fragments. Lesions in monkeys resembled typical features of C3 glomerulopathy, a condition described in man and experimental animals to be linked to dysregulation of the alternative complement pathway. Thus, inflammatory/immune mechanisms appear critical to glomerular injury with species-specific sensitivities for mouse and monkey. The lower observed proinflammatory activity in humans as compared to mice and monkeys may reflect a lower risk of glomerular injury in patients receiving AON therapy. © 2014 by The Author(s).
On the Functional Overlap between Complement and Anti-Microbial Peptides.
Zimmer, Jana; Hobkirk, James; Mohamed, Fatima; Browning, Michael J; Stover, Cordula M
2014-01-01
Intriguingly, activated complement and anti-microbial peptides share certain functionalities; lytic, phagocytic, and chemo-attractant activities and each may, in addition, exert cell instructive roles. Each has been shown to have distinct LPS detoxifying activity and may play a role in the development of endotoxin tolerance. In search of the origin of complement, a functional homolog of complement C3 involved in opsonization has been identified in horseshoe crabs. Horseshoe crabs possess anti-microbial peptides able to bind to acyl chains or phosphate groups/saccharides of endotoxin, LPS. Complement activity as a whole is detectable in marine invertebrates. These are also a source of anti-microbial peptides with potential pharmaceutical applicability. Investigating the locality for the production of complement pathway proteins and their role in modulating cellular immune responses are emerging fields. The significance of local synthesis of complement components is becoming clearer from in vivo studies of parenchymatous disease involving specifically generated, complement-deficient mouse lines. Complement C3 is a central component of complement activation. Its provision by cells of the myeloid lineage varies. Their effector functions in turn are increased in the presence of anti-microbial peptides. This may point to a potentiating range of activities, which should serve the maintenance of health but may also cause disease. Because of the therapeutic implications, this review will consider closely studies dealing with complement activation and anti-microbial peptide activity in acute inflammation (e.g., dialysis-related peritonitis, appendicitis, and ischemia).
Complement System Part II: Role in Immunity
Merle, Nicolas S.; Noe, Remi; Halbwachs-Mecarelli, Lise; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.
2015-01-01
The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target. PMID:26074922
Function of Serum Complement in Drinking Water Arsenic Toxicity
Islam, Laila N.; Zahid, M. Shamim Hasan; Nabi, A. H. M. Nurun; Hossain, Mahmud
2012-01-01
Serum complement function was evaluated in 125 affected subjects suffering from drinking water arsenic toxicity. Their mean duration of exposure was 7.4 ± 5.3 yrs, and the levels of arsenic in drinking water and urine samples were 216 ± 211 and 223 ± 302 μg/L, respectively. The mean bactericidal activity of complement from the arsenic patients was 92% and that in the unexposed controls was 99% (P < 0.01), but heat-inactivated serum showed slightly elevated activity than in controls. In patients, the mean complement C3 was 1.56 g/L, and C4 was 0.29 g/L compared to 1.68 g/L and 0.25 g/L, respectively, in the controls. The mean IgG in the arsenic patients was 24.3 g/L that was highly significantly elevated (P < 0.001). Arsenic patients showed a significant direct correlation between C3 and bactericidal activity (P = 0.014). Elevated levels of C4 indicated underutilization and possibly impaired activity of the classical complement pathway. We conclude reduced function of serum complement in drinking water arsenic toxicity. PMID:22545044
An enzyme-mediated protein-fragment complementation assay for substrate screening of sortase A.
Li, Ning; Yu, Zheng; Ji, Qun; Sun, Jingying; Liu, Xiao; Du, Mingjuan; Zhang, Wei
2017-04-29
Enzyme-mediated protein conjugation has gained great attention recently due to the remarkable site-selectivity and mild reaction condition affected by the nature of enzyme. Among all sorts of enzymes reported, sortase A from Staphylococcus aureus (SaSrtA) is the most popular enzyme due to its selectivity and well-demonstrated applications. Position scanning has been widely applied to understand enzyme substrate specificity, but the low throughput of chemical synthesis of peptide substrates and analytical methods (HPLC, LC-ESI-MS) have been the major hurdle to fully decode enzyme substrate profile. We have developed a simple high-throughput substrate profiling method to reveal novel substrates of SaSrtA 7M, a widely used hyperactive peptide ligase, by modified protein-fragment complementation assay (PCA). A small library targeting the LPATG motif recognized by SaSrtA 7M was generated and screened against proteins carrying N-terminal glycine. Using this method, we have confirmed all currently known substrates of the enzyme, and moreover identified some previously unknown substrates with varying activities. The method provides an easy, fast and highly-sensitive way to determine substrate profile of a peptide ligase in a high-throughput manner. Copyright © 2017 Elsevier Inc. All rights reserved.
Simple method to distinguish between primary and secondary C3 deficiencies.
Pereira de Carvalho Florido, Marlene; Ferreira de Paula, Patrícia; Isaac, Lourdes
2003-03-01
Due to the increasing numbers of reported clinical cases of complement deficiency in medical centers, clinicians are now more aware of the role of the complement system in the protection against infections caused by microorganisms. Therefore, clinical laboratories are now prepared to perform a number of diagnostic tests of the complement system other than the standard 50% hemolytic component assay. Deficiencies of alternative complement pathway proteins are related to severe and recurrent infections; and the application of easy, reliable, and low-cost methods for their detection and distinction are always welcome, notably in developing countries. When activation of the alternative complement pathway is evaluated in hemolytic agarose plates, some but not all human sera cross-react to form a late linear lysis. Since the formation of this linear lysis is dependent on C3 and factor B, it is possible to use late linear lysis to routinely screen for the presence of deficiencies of alternative human complement pathway proteins such as factor B. Furthermore, since linear lysis is observed between normal human serum and primary C3-deficient serum but not between normal human serum and secondary C3-deficient serum caused by the lack of factor H or factor I, this assay may also be used to discriminate between primary and secondary C3 deficiencies.
Kang, Sangwook; Jeon, Hyunsoo; Kwon, Sungho; Park, Seungha
2015-02-01
This study examined whether parental attachment mediates the relationship between parental social support and self-esteem in Korean middle and high school athletes. 591 sports athletes attending middle and high schools that specialize in sport volunteered. Parental social support and parental attachment had a significant positive effect on self-esteem; parental attachment had a greater effect on self-esteem. In the structural relationship, direct effects of parental social support on self-esteem were weak, but indirect effects through parental attachment were strong. Therefore, parental attachment complementally mediated the relationship between parental social support and self-esteem. Metric invariance was supported for groups categorized by sex, region, and school level, confirming that the model could be applied to various groups.
Cheng, Hui; Yang, Zhijie; Estabrook, Michele M.; John, Constance M.; Jarvis, Gary A.; McLaughlin, Stephanie; Griffiss, J. McLeod
2011-01-01
Antibodies that initiate complement-mediated killing of Neisseria meningitidis as they enter the bloodstream from the oropharynx protect against disseminated disease. Human IgGs that bind the neisserial L7 lipooligosaccharide (LOS) are bactericidal for L3,7 and L2,4 meningococci in the presence of human complement. These strains share a lacto-N-neotetraose (nLc4) LOS α chain. We used a set of mutants that have successive saccharide deletions from the nLc4 α chain to characterize further the binding and bactericidal activity of nLc4 LOS IgG. We found that the nLc4 α chain conforms at least four different antigens. We separately purified IgG that required the nLc4 (non-reducing) terminal galactose (Gal) for binding and IgG that bound the truncated nLc3 α chain that lacks this Gal residue. IgG that bound the internal nLc3 α chain killed both L3,7 and L2,4 strains, whereas IgG that required the nLc4 terminal Gal residue for binding killed L2,4 stains but not L3,7 strains. These results show that the diversity of LOS antibodies in human serum is as much a function of the conformation of multiple antigens by a single glycoform as of the production of multiple glycoforms. Differences in sensitivity to killing by human nLc4 LOS IgG may account for the fact that fully two-thirds of endemic group B meningococcal disease in infants and children is caused by L3,7 strains, but only 20% is caused by L2,4 stains. PMID:22027827
Ying, Yinghui; Wang, Shoudong; Secco, David; Liu, Yu; Whelan, James; Tyerman, Stephen D.; Shou, Huixia
2015-01-01
To maintain a stable cytosol phosphate (Pi) concentration, plant cells store Pi in their vacuoles. When the Pi concentration in the cytosol decreases, Pi is exported from the vacuole into the cytosol. This export is mediated by Pi transporters on the tonoplast. In this study, we demonstrate that SYG1, PHO81, and XPR1 (SPX)-Major Facility Superfamily (MFS) proteins have a similar structure with yeast (Saccharomyces cerevisiae) low-affinity Pi transporters Phosphatase87 (PHO87), PHO90, and PHO91. OsSPX-MFS1, OsSPX-MFS2, and OsSPX-MFS3 all localized on the tonoplast of rice (Oryza sativa) protoplasts, even in the absence of the SPX domain. At high external Pi concentration, OsSPX-MFS3 could partially complement the yeast mutant strain EY917 under pH 5.5, which lacks all five Pi transporters present in yeast. In oocytes, OsSPX-MFS3 was shown to facilitate Pi influx or efflux depending on the external pH and Pi concentrations. In contrast to tonoplast localization in plants cells, OsSPX-MFS3 was localized to the plasma membrane when expressed in both yeast and oocytes. Overexpression of OsSPX-MFS3 results in decreased Pi concentration in the vacuole of rice tissues. We conclude that OsSPX-MFS3 is a low-affinity Pi transporter that mediates Pi efflux from the vacuole into cytosol and is coupled to proton movement. PMID:26424157
TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response
2013-01-01
Background Arabidopsis thaliana (Arabidopsis) NON-EXPRESSOR OF PR1 (NPR1) is a transcription coactivator that plays a central role in regulating the transcriptional response to plant pathogens. Developing flowers of homozygous npr3 mutants are dramatically more resistant to infection by the pathogenic bacterium Pseudomonas syringae, suggesting a role of NPR3 as a repressor of NPR1-mediated defense response with a novel role in flower development. Results We report here the characterization of a putative NPR3 gene from the tropical tree species Theobroma cacao (TcNPR3). Like in Arabidopsis, TcNPR3 was constitutively expressed across a wide range of tissue types and developmental stages but with some differences in relative levels compared to Arabidopsis. To test the function of TcNPR3, we performed transgenic complementation analysis by introducing a constitutively expressing putative TcNPR3 transgene into an Arabidopsis npr3 mutant. TcNPR3 expressing Arabidopsis plants were partially restored to the WT pathogen phenotype (immature flowers susceptible to bacterial infection). To test TcNPR3 function directly in cacao tissues, a synthetic microRNA targeting TcNPR3 mRNA was transiently expressed in cacao leaves using an Agrobacterium-infiltration method. TcNPR3 knock down leaf tissues were dramatically more resistance to infection with Phytophthora capsici in a leaf bioassay, showing smaller lesion sizes and reduced pathogen replication. Conclusions We conclude that TcNPR3 functions similar to the Arabidopsis NPR3 gene in the regulation of the cacao defense response. Since TcNPR3 did not show a perfect complementation of the Arabidopsis NPR3 mutation, the possibility remains that other functions of TcNPR3 remain to be found. This novel knowledge can contribute to the breeding of resistant cacao varieties against pathogens through molecular markers based approaches or biotechnological strategies. PMID:24314063
TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response.
Shi, Zi; Zhang, Yufan; Maximova, Siela N; Guiltinan, Mark J
2013-12-06
Arabidopsis thaliana (Arabidopsis) NON-EXPRESSOR OF PR1 (NPR1) is a transcription coactivator that plays a central role in regulating the transcriptional response to plant pathogens. Developing flowers of homozygous npr3 mutants are dramatically more resistant to infection by the pathogenic bacterium Pseudomonas syringae, suggesting a role of NPR3 as a repressor of NPR1-mediated defense response with a novel role in flower development. We report here the characterization of a putative NPR3 gene from the tropical tree species Theobroma cacao (TcNPR3). Like in Arabidopsis, TcNPR3 was constitutively expressed across a wide range of tissue types and developmental stages but with some differences in relative levels compared to Arabidopsis. To test the function of TcNPR3, we performed transgenic complementation analysis by introducing a constitutively expressing putative TcNPR3 transgene into an Arabidopsis npr3 mutant. TcNPR3 expressing Arabidopsis plants were partially restored to the WT pathogen phenotype (immature flowers susceptible to bacterial infection). To test TcNPR3 function directly in cacao tissues, a synthetic microRNA targeting TcNPR3 mRNA was transiently expressed in cacao leaves using an Agrobacterium-infiltration method. TcNPR3 knock down leaf tissues were dramatically more resistance to infection with Phytophthora capsici in a leaf bioassay, showing smaller lesion sizes and reduced pathogen replication. We conclude that TcNPR3 functions similar to the Arabidopsis NPR3 gene in the regulation of the cacao defense response. Since TcNPR3 did not show a perfect complementation of the Arabidopsis NPR3 mutation, the possibility remains that other functions of TcNPR3 remain to be found. This novel knowledge can contribute to the breeding of resistant cacao varieties against pathogens through molecular markers based approaches or biotechnological strategies.
Zhao, Xin; Chen, Yun-Xia; Li, Chun-Sheng
2015-01-01
To investigate the prognostic performance of complement components in septic patients, complement 3, membrane attack complex (MAC) and mannose-binding lectin were measured and compared among adult patients with sepsis, severe sepsis and septic shock, as well as between in-hospital nonsurvivors and survivors. The prognostic value of complement components was compared with mortality in emergency department sepsis (MEDS) score. Median complement 3, MAC and mannose-binding lectin increased directly with the sepsis, severe sepsis and septic shock groups, and were significantly higher in nonsurvivors than in survivors. MEDS and MAC independently predicted in-hospital mortality. The prognostic performance of MAC was superior to MEDS as analyzed by receiver operating characteristic curve and area under the curve.
Hirsch, Judith; Estavillo, Gonzalo M.; Javot, Hélène; Chiarenza, Serge; Mallory, Allison C.; Maizel, Alexis; Declerck, Marie; Pogson, Barry J.; Vaucheret, Hervé; Crespi, Martin; Desnos, Thierry; Thibaud, Marie-Christine; Nussaume, Laurent; Marin, Elena
2011-01-01
Background Mutations in the FRY1/SAL1 Arabidopsis locus are highly pleiotropic, affecting drought tolerance, leaf shape and root growth. FRY1 encodes a nucleotide phosphatase that in vitro has inositol polyphosphate 1-phosphatase and 3′,(2′),5′-bisphosphate nucleotide phosphatase activities. It is not clear which activity mediates each of the diverse biological functions of FRY1 in planta. Principal Findings A fry1 mutant was identified in a genetic screen for Arabidopsis mutants deregulated in the expression of Pi High affinity Transporter 1;4 (PHT1;4). Histological analysis revealed that, in roots, FRY1 expression was restricted to the stele and meristems. The fry1 mutant displayed an altered root architecture phenotype and an increased drought tolerance. All of the phenotypes analyzed were complemented with the AHL gene encoding a protein that converts 3′-polyadenosine 5′-phosphate (PAP) into AMP and Pi. PAP is known to inhibit exoribonucleases (XRN) in vitro. Accordingly, an xrn triple mutant with mutations in all three XRNs shared the fry1 drought tolerance and root architecture phenotypes. Interestingly these two traits were also complemented by grafting, revealing that drought tolerance was primarily conferred by the rosette and that the root architecture can be complemented by long-distance regulation derived from leaves. By contrast, PHT1 expression was not altered in xrn mutants or in grafting experiments. Thus, PHT1 up-regulation probably resulted from a local depletion of Pi in the fry1 stele. This hypothesis is supported by the identification of other genes modulated by Pi deficiency in the stele, which are found induced in a fry1 background. Conclusions/Significance Our results indicate that the 3′,(2′),5′-bisphosphate nucleotide phosphatase activity of FRY1 is involved in long-distance as well as local regulatory activities in roots. The local up-regulation of PHT1 genes transcription in roots likely results from local depletion of Pi and is independent of the XRNs. PMID:21304819
Khattab, Ayman; Barroso, Marta; Miettinen, Tiera; Meri, Seppo
2015-01-01
Hematophagous vectors strictly require ingesting blood from their hosts to complete their life cycles. Exposure of the alimentary canal of these vectors to the host immune effectors necessitates efficient counteractive measures by hematophagous vectors. The Anopheles mosquito transmitting the malaria parasite is an example of hematophagous vectors that within seconds can ingest human blood double its weight. The innate immune defense mechanisms, like the complement system, in the human blood should thereby immediately react against foreign cells in the mosquito midgut. A prerequisite for complement activation is that the target cells lack complement regulators on their surfaces. In this work, we analyzed whether human complement is active in the mosquito midgut, and how the mosquito midgut cells protect themselves against complement attack. We found that complement remained active for a considerable time and was able to kill microbes within the mosquito midgut. However, the Anopheles mosquito midgut cells were not injured. These cells were found to protect themselves by capturing factor H, the main soluble inhibitor of the alternative complement pathway. Factor H inhibited complement on the midgut cells by promoting inactivation of C3b to iC3b and preventing the activity of the alternative pathway amplification C3 convertase enzyme. An interference of the FH regulatory activity by monoclonal antibodies, carried to the midgut via blood, resulted in increased mosquito mortality and reduced fecundity. By using a ligand blotting assay, a putative mosquito midgut FH receptor could be detected. Thereby, we have identified a novel mechanism whereby mosquitoes can tolerate human blood. PMID:25679788
Evolution and diversity of the complement system of poikilothermic vertebrates.
Sunyer, J O; Lambris, J D
1998-12-01
In mammals the complement system plays an important role in innate and acquired host defense mechanisms against infection and in various immunoregulatory processes. The complement system is an ancient defense mechanism that is already present in the invertebrate deuterostomes. In these species as well as in agnathans (the most primitive vertebrate species), both the alternative and lectin pathway of complement activation are already present, and the complement system appears to be involved mainly in opsonization of foreign material. With the emergence of immunoglobulins in cartilaginous fish, the classical and lytic pathways first appear. The rest of the poikilothermic species, from teleosts to reptilians, appear to contain a well-developed complement system resembling that of homeothermic vertebrates. However, important differences remain. Unlike homeotherms, several species of poikilotherms have recently been shown to possess multiple forms of complement components (C3 and factor B) that are structurally and functionally more diverse than those of higher vertebrates. It is noteworthy that the multiple forms of C3 that have been characterized in several teleost fish are able to bind with varying efficiencies to various complement-activating surfaces. We hypothesize that this diversity has allowed these animals to expand their innate capacity for immune recognition.
Complement-Opsonized HIV-1 Overcomes Restriction in Dendritic Cells.
Posch, Wilfried; Steger, Marion; Knackmuss, Ulla; Blatzer, Michael; Baldauf, Hanna-Mari; Doppler, Wolfgang; White, Tommy E; Hörtnagl, Paul; Diaz-Griffero, Felipe; Lass-Flörl, Cornelia; Hackl, Hubert; Moris, Arnaud; Keppler, Oliver T; Wilflingseder, Doris
2015-06-01
DCs express intrinsic cellular defense mechanisms to specifically inhibit HIV-1 replication. Thus, DCs are productively infected only at very low levels with HIV-1, and this non-permissiveness of DCs is suggested to go along with viral evasion. We now illustrate that complement-opsonized HIV-1 (HIV-C) efficiently bypasses SAMHD1 restriction and productively infects DCs including BDCA-1 DCs. Efficient DC infection by HIV-C was also observed using single-cycle HIV-C, and correlated with a remarkable elevated SAMHD1 T592 phosphorylation but not SAMHD1 degradation. If SAMHD1 phosphorylation was blocked using a CDK2-inhibitor HIV-C-induced DC infection was also significantly abrogated. Additionally, we found a higher maturation and co-stimulatory potential, aberrant type I interferon expression and signaling as well as a stronger induction of cellular immune responses in HIV-C-treated DCs. Collectively, our data highlight a novel protective mechanism mediated by complement opsonization of HIV to effectively promote DC immune functions, which might be in the future exploited to tackle HIV infection.
Fukutani, Yosuke; Ishii, Jun; Kondo, Akihiko; Ozawa, Takeaki; Matsunami, Hiroaki; Yohda, Masafumi
2017-06-01
The budding yeast Saccharomyces cerevisiae is equipped with G protein-coupled receptors (GPCR). Because the yeast GPCR signaling mechanism is partly similar to that of the mammalian system, S. cerevisiae can be used for a host of mammalian GPCR expression and ligand-mediated activation assays. However, currently available yeast systems require several hours to observe the responses because they depend on the expression of reporter genes. In this study, we attempted to develop a simple GPCR assay system using split luciferase and β-arrestin, which are independent of the endogenous S. cerevisiae GPCR signaling pathways. We applied the split luciferase complementation assay method to S. cerevisiae and found that it can be used to analyze the ligand response of the human somatostatin receptor in S. cerevisiae. On the contrary, the response of the pheromone receptor Ste2 was not observed by the assay. Thus, the split luciferase complementation should be free from the effect of the endogenous GPCR signaling. Biotechnol. Bioeng. 2017;114: 1354-1361. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Lysosome-related organelles as mediators of metal homeostasis.
Blaby-Haas, Crysten E; Merchant, Sabeeha S
2014-10-10
Metal ion assimilation is essential for all forms of life. However, organisms must properly control the availability of these nutrients within the cell to avoid inactivating proteins by mismetallation. To safeguard against an imbalance between supply and demand in eukaryotes, intracellular compartments contain metal transporters that load and unload metals. Although the vacuoles of Saccharomyces cerevisiae and Arabidopsis thaliana are well established locales for the storage of copper, zinc, iron, and manganese, related compartments are emerging as important mediators of metal homeostasis. Here we describe these compartments and review their metal transporter complement. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Le Doare, Kirsty; Faal, Amadou; Jaiteh, Mustapha; Sarfo, Francess; Taylor, Stephen; Warburton, Fiona; Humphries, Holly; Birt, Jessica; Jarju, Sheikh; Darboe, Saffiatou; Clarke, Edward; Antonio, Martin; Foster-Nyarko, Ebenezer; Heath, Paul T; Gorringe, Andrew; Kampmann, Beate
2017-05-19
Vertical transmission of Group B Streptococcus (GBS) is a prerequisite for early-onset disease and a consequence of maternal GBS colonization. Disease protection is associated with maternally-derived anti-GBS antibody. Using a novel antibody-mediated C3b/iC3b deposition flow cytometry assay which correlates with opsonic killing we developed a model to assess the impact of maternally-derived functional anti-GBS antibody on infant GBS colonization from birth to day 60-89 of life. Rectovaginal swabs and cord blood (birth) and infant nasopharyngeal/rectal swabs (birth, day 6 and day 60-89) were obtained from 750 mother/infant pairs. Antibody-mediated C3b/iC3b deposition with cord and infant sera was measured by flow cytometry. We established that as maternally-derived anti-GBS functional antibody increases, infant colonization decreases at birth and up to three months of life, the critical time window for the development of GBS disease. Further, we observed a serotype (ST)-dependent threshold above which no infant was colonized at birth. Functional antibody above the upper 95th confidence interval for the geometric mean concentration was associated with absence of infant GBS colonization at birth for STII (p<0.001), STIII (p=0.01) and STV (p<0.001). Increased functional antibody was also associated with clearance of GBS between birth and day 60-89. Higher concentrations of maternally-derived antibody-mediated complement deposition are associated with a decreased risk of GBS colonization in infants up to day 60-89 of life. Our findings are of relevance to establish thresholds for protection following vaccination of pregnant women with future GBS vaccines. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Membranoproliferative glomerulonephritis associated with autoimmune diseases.
Zand, Ladan; Fervenza, Fernando C; Nasr, Samih H; Sethi, Sanjeev
2014-04-01
Membranoproliferative glomerulonephritis (MPGN) has been classified based on its pathogenesis into immune complex-mediated and complement-mediated MPGN. The immune complex-mediated type is secondary to chronic infections, autoimmune diseases or monoclonal gammopathy. There is a paucity of data on MPGN associated with autoimmune diseases. We reviewed the Mayo Clinic database over a 10-year period and identified 12 patients with MPGN associated with autoimmune diseases, after exclusion of systemic lupus erythematosus. The autoimmune diseases included rheumatoid arthritis, primary Sjögren's syndrome, undifferentiated connective tissue disease, primary sclerosing cholangitis and Graves' disease. Nine of the 12 patients were female, and the mean age was 57.9 years. C4 levels were decreased in nine of 12 patients tested. The serum creatinine at time of renal biopsy was 2.2 ± 1.0 mg/dl and the urinary protein was 2,850 ± 3,543 mg/24 h. Three patients required dialysis at the time of renal biopsy. Renal biopsy showed an MPGN in all cases, with features of cryoglobulins in six cases; immunoglobulin (Ig)M was the dominant Ig, and both subendothelial and mesangial electron dense deposits were noted. Median follow-up was 10.9 months. Serum creatinine and proteinuria improved to 1.6 ± 0.8 mg/dl and 428 ± 677 mg/24 h, respectively, except in 3 patients with end-stage renal disease. In summary, this study describes the clinical features, renal biopsy findings, laboratory evaluation, treatment and prognosis of MPGN associated with autoimmune diseases.
Antibody-Mediated Rejection of Human Orthotopic Liver Allografts
Demetris, A. Jake; Jaffe, Ron; Tzakis, A.; Ramsey, Glenn; Todo, S.; Belle, Steven; Esquivel, Carlos; Shapiro, Ron; Markus, Bernd; Mroczek, Elizabeth; Van Thiel, D. H.; Sysyn, Greg; Gordon, Robert; Makowka, Leonard; Starzl, Tom
1988-01-01
A clinicopathologic analysis of liver transplantation across major ABO blood group barriers was carried out 1) to determine if antibody-mediated (humoral) rejection was a cause of graft failure and if humoral rejection can be identified, 2) to propose criteria for establishing the diagnosis, and 3) to describe the clinical and pathologic features of humoral rejection. A total of 51 (24 primary) ABO-incompatible (ABO-I) liver grafts were transplanted into 49 recipients. There was a 46% graft failure rate during the first 30 days for primary ABO-I grafts compared with an 11% graft failure rate for primary ABO compatible (ABO-C), crossmatch negative, age, sex and priority-matched control patients (P < 0.02). A similarly high early graft failure rate (60%) was seen for nonprimary ABO-I grafts during the first 30 days. Clinically, the patients experienced a relentless rise in serum transaminases, hepatic failure, and coagulopathy during the first weeks after transplant. Pathologic examination of ABO-I grafts that failed early demonstrated widespread areas of geographic hemorrhagic necrosis with diffuse intraorgan coagulation. Prominent arterial deposition of antibody and complement components was demonstrated by immunoflourescent staining. Elution studies confirmed the presence of tissue-bound, donor-specific isoagglutinins within the grafts. No such deposition was seen in control cases. These studies confirm that antibody mediated rejection of the liver occurs and allows for the development of criteria for establishing the diagnosis. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:3046369
Kotimaa, Juha; Klar-Mohammad, Ngaisah; Gueler, Faikah; Schilders, Geurt; Jansen, Aswin; Rutjes, Helma; Daha, Mohamed R; van Kooten, Cees
2016-08-01
Experimental mouse models have been extensively used to elucidate the role of the complement system in different diseases and injuries. Contribution of gender has revealed an intriguing gender specific difference; female mice often show protection against most complement driven injuries such as ischemia/reperfusion injury, graft rejection and sepsis. Interestingly, early studies to the mouse complement system revealed that female mice have very low total complement activity (CH50), which is related to androgen regulation of hepatic complement synthesis. Here, our aim was to understand at which level the female specific differences in mouse complement resides. We have used recently developed complement assays to study the functional activities of female and male mice at the level of C3 and C9 activation, and furthermore assayed key complement factor levels in serum of age-matched female and male C57BL/6 mice. Our results show that the female mice have normal complement cascade functionality at the level of C3 activation, which was supported by determinations of early complement factors. However, all pathways are strongly reduced at the level of C9 activation, suggesting a terminal pathway specific difference. This was in line with C6 and C9 measurements, showing strongly decreased levels in females. Furthermore, similar gender differences were also found in BALB/cJ mice, but not in CD-1 mice. Our results clearly demonstrate that the complement system in females of frequently used mouse strains is restricted by the terminal pathway components and that the perceived female specific protection against experimental disease and injury might be in part explained by the inability promote inflammation through C5b-9. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Complement factor B expression profile in a spontaneous uveitis model.
Zipplies, Johanna K; Kirschfink, Michael; Amann, Barbara; Hauck, Stefanie M; Stangassinger, Manfred; Deeg, Cornelia A
2010-12-01
Equine recurrent uveitis serves as a spontaneous model for human autoimmune uveitis. Unpredictable relapses and ongoing inflammation in the eyes of diseased horses as well as in humans lead to destruction of the retina and finally result in blindness. However, the molecular mechanisms leading to inflammation and retinal degeneration are not well understood. An initial screening for differentially regulated proteins in sera of uveitic cases compared to healthy controls revealed an increase of the alternative pathway complement component factor B in ERU cases. To determine the activation status of the complement system, sera were subsequently examined for complement split products. We could demonstrate a significant higher concentration of the activation products B/Ba, B/Bb, Bb neoantigen, iC3b and C3d in uveitic condition compared to healthy controls, whereas for C5b-9 no differences were detected. Additionally, we investigated complement activation directly in the retina by immunohistochemistry, since it is the main target organ of this autoimmune disease. Interestingly, infiltrating cells co-expressed activated factor Bb neoantigen, complement split product C3d as well as CD68, a macrophage marker. In this study, we could demonstrate activation of the complement system both systemically as well as in the eye, the target organ of spontaneous recurrent uveitis. Based on these novel findings, we postulate a novel role for macrophages in connection with complement synthesis at the site of inflammation. Copyright © 2010 Elsevier GmbH. All rights reserved.
Somatostatin Signaling in Neuronal Cilia Is Criticalfor Object Recognition Memory
Einstein, Emily B.; Patterson, Carlyn A.; Hon, Beverly J.; Regan, Kathleen A.; Reddi, Jyoti; Melnikoff, David E.; Mateer, Marcus J.; Schulz, Stefan; Johnson, Brian N.
2010-01-01
Most neurons possess a single, nonmotile cilium that projects out from the cell surface. These microtubule-based organelles are important in brain development and neurogenesis; however, their function in mature neurons is unknown. Cilia express a complement of proteins distinct from other neuronal compartments, one of which is the somatostatin receptor subtype SST3. We show here that SST3 is critical for object recognition memory in mice. sst3 knock-out mice are severely impaired in discriminating novel objects, whereas they retain normal memory for object location. Further, systemic injection of an SST3 antagonist (ACQ090) disrupts recall of familiar objects in wild-type mice. To examine mechanisms of SST3, we tested synaptic plasticity in CA1 hippocampus. Electrically evoked long-term potentiation (LTP) was normal in sst3 knock-out mice, while adenylyl cyclase/cAMP-mediated LTP was impaired. The SST3 antagonist also disrupted cAMP-mediated LTP. Basal cAMP levels in hippocampal lysate were reduced in sst3 knock-out mice compared with wild-type mice, while the forskolin-induced increase in cAMP levels was normal. The SST3 antagonist inhibited forskolin-stimulated cAMP increases, whereas the SST3 agonist L-796,778 increased basal cAMP levels in hippocampal slices but not hippocampal lysate. Our results show that somatostatin signaling in neuronal cilia is critical for recognition memory and suggest that the cAMP pathway is a conserved signaling motif in cilia. Neuronal cilia therefore represent a novel nonsynaptic compartment crucial for signaling involved in a specific form of synaptic plasticity and in novelty detection. PMID:20335466
Eriksson, Charlotta E; Studahl, Marie; Bergström, Tomas
2016-06-15
Herpes simplex encephalitis (HSE) is characterized by a pronounced inflammatory activity in the central nervous system (CNS). Here, we investigated the acute and prolonged complement system activity in HSE patients, by using enzyme-linked immunosorbent assays (ELISAs) for numerous complement components (C). We found increased cerebrospinal fluid concentrations of C3a, C3b, C5 and C5a in HSE patients compared with healthy controls. C3a and C5a concentrations remained increased also compared with patient controls. Our results conclude that the complement system is activated in CNS during HSE in the acute phase, and interestingly also in later stages supporting previous reports of prolonged inflammation. Copyright © 2016 Elsevier B.V. All rights reserved.
Complement Evasion Strategies of Viruses: An Overview
Agrawal, Palak; Nawadkar, Renuka; Ojha, Hina; Kumar, Jitendra; Sahu, Arvind
2017-01-01
Being a major first line of immune defense, the complement system keeps a constant vigil against viruses. Its ability to recognize large panoply of viruses and virus-infected cells, and trigger the effector pathways, results in neutralization of viruses and killing of the infected cells. This selection pressure exerted by complement on viruses has made them evolve a multitude of countermeasures. These include targeting the recognition molecules for the avoidance of detection, targeting key enzymes and complexes of the complement pathways like C3 convertases and C5b-9 formation – either by encoding complement regulators or by recruiting membrane-bound and soluble host complement regulators, cleaving complement proteins by encoding protease, and inhibiting the synthesis of complement proteins. Additionally, viruses also exploit the complement system for their own benefit. For example, they use complement receptors as well as membrane regulators for cellular entry as well as their spread. Here, we provide an overview on the complement subversion mechanisms adopted by the members of various viral families including Poxviridae, Herpesviridae, Adenoviridae, Flaviviridae, Retroviridae, Picornaviridae, Astroviridae, Togaviridae, Orthomyxoviridae and Paramyxoviridae. PMID:28670306
Banadakoppa, M; Chauhan, M S; Havemann, D; Balakrishnan, M; Dominic, J S; Yallampalli, C
2014-01-01
Spontaneous abortion in early pregnancy due to unknown reasons is a common problem. The excess complement activation and consequent placental inflammation and anti-angiogenic milieu is emerging as an important associated factor in many pregnancy-related complications. In the present study we sought to examine the expression of complement inhibitory proteins at the feto–maternal interface and levels of complement split products in the circulation to understand their role in spontaneous abortion. Consenting pregnant women who either underwent elective abortion due to non-clinical reasons (n = 13) or suffered miscarriage (n = 14) were recruited for the study. Systemic levels of complement factors C3a and C5a were measured by enzyme-linked immunosorbent assay (ELISA). Plasma C5 and C3 protein levels were examined by Western blot. Expressions of complement regulatory proteins such as CD46 and CD55 in the decidua were investigated by quantitative polymerase chain reaction (PCR) and Western blot. The median of plasma C3a level was 82·83 ng/ml and 66·17 ng/ml in elective and spontaneous abortion patients, respectively. Medians of plasma C5a levels in elective and spontaneous abortion patients were 0·96 ng/ml and 1·14 ng/ml, respectively. Only plasma C5a levels but not C3a levels showed significant elevation in spontaneous abortion patients compared to elective abortion patients. Further, there was a threefold decrease in the mRNA expressions of complement inhibitory proteins CD46 and CD55 in the decidua obtained from spontaneous abortion patients compared to that of elective abortion patients. These data suggested that dysregulated complement cascade may be associated with spontaneous abortion. PMID:24802103
Wang, Feng; Zha, Wan-sheng; Zhang, Jia-xiang; Li, Shu-long; Wang, Hui; Ye, Liang-ping; Shen, Tong; Wu, Chang-hao; Zhu, Qi-xing
2014-08-17
Trichloroethylene (TCE) is a major occupational health hazard and causes occupational medicamentosa-like dermatitis (OMLDT) and liver damage. Recent evidence suggests immune response as a distinct mode of action for TCE-induced liver damage. This study aimed to explore the role of the key complement activation product C3a and its receptor C3aR in TCE-induced immune liver injury. A mouse model of skin sensitization was induced by TCE in the presence and absence of the C3aR antagonist SB 290157. Liver function was evaluated by alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in conjunction with histopathological characterizations. C3a and C3aR were detected by immunohistochemistry and C5b-9 was assessed by immunofluorescence. IFN-γ and IL4 expressions were determined by flow cytometry and ELISA. The total sensitization rate was 44.1%. TCE sensitization caused liver cell necrosis and inflammatory infiltration, elevated serum ALT and AST, expression of C3a and C3aR, and deposition of C5b-9 in the liver. IFN-γ and IL-4 expressions were up-regulated in spleen mononuclear cells and their serum levels were also increased. Pretreatment with SB 290157 resulted in more inflammatory infiltration in the liver, higher levels of AST, reduced C3aR expression on Kupffer cells, and decreased IL-4 levels while IFN-γ remained unchanged. These data demonstrate that blocking of C3a binding to C3aR reduces IL4, shifts IFN-γ and IL-4 balance, and aggravates TCE-sensitization induced liver damage. These findings reveal a novel mechanism whereby modulation of Th2 response by C3a binding to C3a receptor contributes to immune-mediated liver damage by TCE exposure. Copyright © 2014. Published by Elsevier Ireland Ltd.
Armed Forces Radiobiology Research Institute Annual Research Report, Fiscal Year 1984.
1984-01-01
thromboxane B2, cyclic AMP and GMP, ACTH, beta -endorphin, cortisol/corticosterone, and complement in bio- logical fluids and tissues. Mediators will...immunomodulators are being tested for their ability to enhance the *recovery of hemopoiesis following irradiation. These include glucan , detoxified...endotoxin, and selected agents from the Biological Response Modifiers Program (NCI, Frederick, MD). Glucan has proved to be very effective in stimulating
Wiedemann, Johanna; Rashid, Khalid; Langmann, Thomas
2018-06-18
Microglia activation is central to the pathophysiology of retinal degenerative disorders. Resveratrol, a naturally occurring non-flavonoid phenolic compound present in red wine has potent anti-inflammatory and immunomodulatory properties. However, molecular mechanisms by which resveratrol influences microglial inflammatory pathways and housekeeping functions remain unclear. Here, we first studied the immuno-modulatory effects of resveratrol on BV-2 microglial cells at the transcriptome level using DNA-microarrays and selected qRT-PCR analyses. We then analyzed resveratrol effects on microglia morphology, phagocytosis and migration and estimated their neurotoxicity on 661 W photoreceptors by quantification of caspase 3/7 levels. We found that resveratrol effectively blocked gene expression of a broad spectrum of lipopolysaccharide (LPS)-induced pro-inflammatory molecules, including cytokines and complement proteins. These transcriptomic changes were accompanied by potent inhibition of LPS-induced nitric oxide secretion and reduced microglia-mediated apoptosis of 661 W photoreceptor cultures. Our findings highlight novel targets involved in the anti-inflammatory and neuroprotective action of resveratrol against neuroinflammatory responses. Copyright © 2018 Elsevier Inc. All rights reserved.
iLIR@viral: A web resource for LIR motif-containing proteins in viruses.
Jacomin, Anne-Claire; Samavedam, Siva; Charles, Hannah; Nezis, Ioannis P
2017-10-03
Macroautophagy/autophagy has been shown to mediate the selective lysosomal degradation of pathogenic bacteria and viruses (xenophagy), and to contribute to the activation of innate and adaptative immune responses. Autophagy can serve as an antiviral defense mechanism but also as a proviral process during infection. Atg8-family proteins play a central role in the autophagy process due to their ability to interact with components of the autophagy machinery as well as selective autophagy receptors and adaptor proteins. Such interactions are usually mediated through LC3-interacting region (LIR) motifs. So far, only one viral protein has been experimentally shown to have a functional LIR motif, leaving open a vast field for investigation. Here, we have developed the iLIR@viral database ( http://ilir.uk/virus/ ) as a freely accessible web resource listing all the putative canonical LIR motifs identified in viral proteins. Additionally, we used a curated text-mining analysis of the literature to identify novel putative LIR motif-containing proteins (LIRCPs) in viruses. We anticipate that iLIR@viral will assist with elucidating the full complement of LIRCPs in viruses.
Zhang, Jia-xiang; Zha, Wan-sheng; Ye, Liang-ping; Wang, Feng; Wang, Hui; Shen, Tong; Wu, Chang-hao; Zhu, Qi-xing
2016-02-01
We have previously shown complement activation as a possible mechanism for trichloroethylene (TCE) sensitization, leading to multi-organ damage including the kidneys. In particular, excessive deposition of C5 and C5b-9-the membrane attack complex, which can generate significant tissue damage, was observed in the kidney tissue after TCE sensitization. The present study tested the hypothesis that anaphylatoxin C5a binding to its receptor C5aR mediates renal injury in TCE-sensitized BALB/c mice. BALB/c mice were sensitized through skin challenge with TCE, with or without pretreatment by the C5aR antagonist W54011. Kidney histopathology and the renal functional test were performed to assess renal injury, and immunohistochemistry and fluorescent labeling were carried out to assess C5a and C5aR expressions. TCE sensitization up-regulated C5a and C5aR expressions in kidney tissue, generated inflammatory infiltration, renal tubule damage, glomerular hypercellularity and impaired renal function. Antagonist pretreatment blocked C5a binding to C5aR and attenuated TCE-induced tissue damage and renal dysfunction. TCE sensitization also caused the deposition of major pro-inflammatory cytokines IL-2, TNF-α and IFN-γ in the kidney tissue (P < 0.05); this was accompanied by increased expression of P-p38, P-ERK and P-JNK proteins (P < 0.05). Pretreatment with the C5aR antagonist attenuated the increase of expression of P-p38, P-ERK and P-JNK proteins (P < 0.05) and also consistently reduced the TCE sensitization-induced increase of IL-2, TNF-α and IFN-γ (P < 0.05). These data identify C5a binding to C5aR, MAP kinase activation, and inflammatory cytokine release as a novel mechanism for complement-mediated renal injury by sensitization with TCE or other environmental chemicals. Copyright © 2015 John Wiley & Sons, Ltd.
Lazar Adler, Natalie R; Stevens, Mark P; Dean, Rachel E; Saint, Richard J; Pankhania, Depesh; Prior, Joann L; Atkins, Timothy P; Kessler, Bianca; Nithichanon, Arnone; Lertmemongkolchai, Ganjana; Galyov, Edouard E
2015-01-01
Burkholderia pseudomallei is the causative agent of the severe tropical disease melioidosis, which commonly presents as sepsis. The B. pseudomallei K96243 genome encodes eleven predicted autotransporters, a diverse family of secreted and outer membrane proteins often associated with virulence. In a systematic study of these autotransporters, we constructed insertion mutants in each gene predicted to encode an autotransporter and assessed them for three pathogenesis-associated phenotypes: virulence in the BALB/c intra-peritoneal mouse melioidosis model, net intracellular replication in J774.2 murine macrophage-like cells and survival in 45% (v/v) normal human serum. From the complete repertoire of eleven autotransporter mutants, we identified eight mutants which exhibited an increase in median lethal dose of 1 to 2-log10 compared to the isogenic parent strain (bcaA, boaA, boaB, bpaA, bpaC, bpaE, bpaF and bimA). Four mutants, all demonstrating attenuation for virulence, exhibited reduced net intracellular replication in J774.2 macrophage-like cells (bimA, boaB, bpaC and bpaE). A single mutant (bpaC) was identified that exhibited significantly reduced serum survival compared to wild-type. The bpaC mutant, which demonstrated attenuation for virulence and net intracellular replication, was sensitive to complement-mediated killing via the classical and/or lectin pathway. Serum resistance was rescued by in trans complementation. Subsequently, we expressed recombinant proteins of the passenger domain of four predicted autotransporters representing each of the phenotypic groups identified: those attenuated for virulence (BcaA), those attenuated for virulence and net intracellular replication (BpaE), the BpaC mutant with defects in virulence, net intracellular replication and serum resistance and those displaying wild-type phenotypes (BatA). Only BcaA and BpaE elicited a strong IFN-γ response in a restimulation assay using whole blood from seropositive donors and were recognised by seropositive human sera from the endemic area. To conclude, several predicted autotransporters contribute to B. pseudomallei virulence and BpaC may do so by conferring resistance against complement-mediated killing.
Wakabayashi, G; Gelfand, J A; Jung, W K; Connolly, R J; Burke, J F; Dinarello, C A
1991-01-01
Tumor necrosis factor (TNF) and IL-1 are thought to mediate many of the pathophysiologic changes of endotoxemia and Gram-negative bacteremia. In these studies, heat-killed Staphylococcus epidermidis were infused into rabbits to determine whether an endotoxin (LPS)-free microorganism also elicits cytokinemia and the physiologic abnormalities seen in Gram-negative bacteremia. S. epidermidis induced complement activation, circulating TNF and IL-1, and hypotension to the same degree as did one-twentieth the number of heat-killed Escherichia coli. Circulating IL-1 beta levels had a greater correlation coefficient (r = 0.81, P less than 0.001) with the degree of hypotension than TNF levels (r = 0.48, P less than 0.02). Leukopenia, thrombocytopenia, diffuse pulmonary capillary aggregation of neutrophils, and hepatic necrosis with neutrophil infiltration were observed to the same extent after either S. epidermidis or E. coli infusion. However, S. epidermidis infusion did not induce significant (less than 60 pg/ml) endotoxemia, whereas E. coli infusion resulted in high (11,000 pg/ml) serum endotoxin levels. S. epidermidis, E. coli, LPS, or S. epidermidis-derived lipoteichoic acid (LTA) induced TNF and IL-1 from blood mononuclear cells in vitro. E. coli organisms and LPS were at least 100-fold more potent than S. epidermidis or LTA. Thus, a shock-like state with similar levels of complement activation as well as circulating levels of IL-1 and TNF were observed following either S. epidermidis or E. coli. These data provide further evidence that host factors such as IL-1 and TNF are common mediators of the septic shock syndrome regardless of the organism. Images PMID:2040686
Viglietti, Denis; Bouatou, Yassine; Kheav, Vissal David; Aubert, Olivier; Suberbielle-Boissel, Caroline; Glotz, Denis; Legendre, Christophe; Taupin, Jean-Luc; Zeevi, Adriana; Loupy, Alexandre; Lefaucheur, Carmen
2018-05-22
A major hurdle to improving clinical care in the field of kidney transplantation is the lack of biomarkers of the response to antibody-mediated rejection (ABMR) treatment. To discover these we investigated the value of complement-binding donor-specific anti-HLA antibodies (DSAs) for evaluating the response to treatment. The study encompassed a prospective cohort of 139 kidney recipients with ABMR receiving the standard of care treatment, including plasma exchange, intravenous immunoglobulin and rituximab. Patients were systematically assessed at the time of diagnosis and three months after treatment initiation for clinical and allograft histological characteristics and anti-HLA DSAs, including their C1q-binding ability. After adjusting for clinical and histological parameters, post-treatment C1q-binding anti-HLA DSA was an independent and significant determinant of allograft loss (adjusted hazard ratio 2.57 (95% confidence interval 1.29-5.12). In 101 patients without post-treatment C1q-binding anti-HLA DSA there was a significantly improved glomerular filtration rate with significantly reduced glomerulitis, peritubular capillaritis, interstitial inflammation, tubulitis, C4d deposition, and endarteritis compared with 38 patients with posttreatment C1q-binding anti-HLA DSA. A conditional inference tree model identified five prognostic groups at the time of post-treatment evaluation based on glomerular filtration rate, presence of cg lesion and C1q-binding anti-HLA DSA (cross-validated accuracy: 0.77). Thus, circulating complement-binding anti-HLA DSAs are strong and independent predictors of allograft outcome after standard of care treatment in kidney recipients with ABMR. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Appeltshauser, Luise; Weishaupt, Andreas; Sommer, Claudia; Doppler, Kathrin
2017-01-01
Inflammatory neuropathies associated with auto-antibodies against paranodal proteins like contactin-1 are reported to respond poorly to treatment with intravenous immunoglobulins (IVIG). A reason might be that IVIG interacts with the complement pathway and these auto-antibodies often belong to the IgG4 subclass that does not activate complement. However, some patients do show a response to IVIG, especially at the beginning of the disease. This corresponds with the finding of coexisting IgG subclasses IgG1, IgG2 and IgG3. We therefore aimed to investigate complement deposition and activation by samples of three patients with anti-contactin-1 IgG auto-antibodies of different subclasses as a potential predictor for response to IVIG. Complement deposition and activation was measured by cell binding and ELISA based assays, and the effect of IVIG on complement deposition was assessed by addition of different concentrations of IVIG. Binding of anti-contactin-1 auto-antibodies of all three patients induced complement deposition and activation with the strongest effect shown by the serum of a patient with predominance of IgG3 auto-antibodies. IVIG led to a reduction of complement deposition in a dose-dependent manner, but did not reduce binding of auto-antibodies to contactin-1. We conclude that complement deposition may contribute to the pathophysiology of anti-contactin-1 associated neuropathy, particularly in patients with predominance of the IgG3 subclass. The proportion of different auto-antibody subclasses may be a predictor for the response to IVIG in patients with auto-antibodies against paranodal proteins. Copyright © 2016 Elsevier Inc. All rights reserved.
Release of complement regulatory proteins from ocular surface cells in infections.
Cocuzzi, E; Guidubaldi, J; Bardenstein, D S; Chen, R; Jacobs, M R; Medof, E M
2000-11-01
The decay accelerating factor (DAF or CD55) and the membrane inhibitor of reactive lysis (MIRL or CD59), two complement regulatory proteins that protect self cells from autologous complement-mediated injury, are attached to corneal and cqonjunctival epithelial cells by glycosylphos-phatidylinositol (GPI) anchors. We sought to 1) determine the frequency with which bacteria recovered from patients with infections of the eye elaborate factors that can remove these surface proteins from ocular cells, 2) determine the spectrum of bacteria from other sites that have similar effects, and 3) establish the time interval required for reconstitution of the two regulators. Culture supernatants of 18 ocular isolates [P. aeruginosa (n = 3), S. marcescens (n = 1), S. epidermidis (n = 9), and S. aureus (n = 5)], and > 100 other clinical specimens isolated in the hospital's microbiology laboratory [P. mirabilis (n = 1), S. aureus (n = 65), S. epidermidis (n = 24), B. cereus (n = 12), H. influenzae (n = 15), and Enterobacter sp. (n = 21)] were incubated at 37 degrees C for various times with conjunctival epithelial cells, conjunctival fibroblasts or HeLa cells and the release of DAF and CD59 proteins from the surfaces of the cells analyzed by 2-site immunoradiometric assays and by Western blotting. The kinetics of recovery of DAF and CD59 expression on the cells was measured by flow cytometry. DAF and/or CD59 release from the cell monolayers varied from < 5% to > 99% at as much as a 1:81 dilution of the supernatant from some bacteria. On conjunctival epithelial cells, more than 8 hr was required for 44% recovery of DAF expression and for 50% recovery of CD59 expression. Bacteria produce phospholipases and/or other enzymes which can efficiently remove DAF and CD59 from ocular cell surfaces. This phenomenon may correlate with their in vivo pathogenicity.
2012-01-01
Paroxysmal nocturnal hemoglobinuria (PNH) is a progressive, life-threatening disorder characterized by chronic intravascular hemolysis caused by uncontrolled complement activation. Hepatic vein thrombosis (Budd-Chiari syndrome) is common in PNH patients. This case report describes the response to eculizumab (a humanized monoclonal antibody that inhibits terminal complement activation) in a 25-year-old male with progressive liver function deterioration despite standard anticoagulation therapy and transjugular intrahepatic porto-systemic shunt. The patient presented with anemia, severe thrombocytopenia, headache, abdominal pain, and distention. He was diagnosed with PNH, cerebral vein thrombosis, and Budd-Chiari syndrome. Despite adequate anticoagulation, diuretic administration, and placement of a transjugular shunt, additional thrombotic events and progressive liver damage were observed. Eculizumab therapy was initiated, resulting in rapid blockade of intravascular hemolysis, increased platelet counts, ascites resolution, and liver function recovery, all of which are presently sustained. Since starting eculizumab the patient has had no further thrombotic events and his quality of life has dramatically improved. This is the first report to confirm the role of complement-mediated injury in the progression of Budd-Chiari syndrome in a patient with PNH. This case shows that terminal complement blockade with eculizumab can reverse progressive thromboses and hepatic failure that is unresponsive to anticoagulation therapy and suggests that early initiation of eculizumab should be included in the therapeutic regimen of patients with PNH-related Budd-Chiari syndrome. PMID:23210433
Bimolecular fluorescence complementation: visualization of molecular interactions in living cells.
Kerppola, Tom K
2008-01-01
A variety of experimental methods have been developed for the analysis of protein interactions. The majority of these methods either require disruption of the cells to detect molecular interactions or rely on indirect detection of the protein interaction. The bimolecular fluorescence complementation (BiFC) assay provides a direct approach for the visualization of molecular interactions in living cells and organisms. The BiFC approach is based on the facilitated association between two fragments of a fluorescent protein when the fragments are brought together by an interaction between proteins fused to the fragments. The BiFC approach has been used for visualization of interactions among a variety of structurally diverse interaction partners in many different cell types. It enables detection of transient complexes as well as complexes formed by a subpopulation of the interaction partners. It is essential to include negative controls in each experiment in which the interface between the interaction partners has been mutated or deleted. The BiFC assay has been adapted for simultaneous visualization of multiple protein complexes in the same cell and the competition for shared interaction partners. A ubiquitin-mediated fluorescence complementation assay has also been developed for visualization of the covalent modification of proteins by ubiquitin family peptides. These fluorescence complementation assays have a great potential to illuminate a variety of biological interactions in the future.
An update for atypical haemolytic uraemic syndrome: diagnosis and treatment. A consensus document.
Campistol, Josep M; Arias, Manuel; Ariceta, Gema; Blasco, Miguel; Espinosa, Laura; Espinosa, Mario; Grinyó, Josep M; Macía, Manuel; Mendizábal, Santiago; Praga, Manuel; Román, Elena; Torra, Roser; Valdés, Francisco; Vilalta, Ramón; Rodríguez de Córdoba, Santiago
2015-01-01
Haemolytic uraemic syndrome (HUS) is a clinical entity defined as the triad of nonimmune haemolytic anaemia, thrombocytopenia, and acute renal failure, in which the underlying lesions are mediated by systemic thrombotic microangiopathy (TMA). Different causes can induce the TMA process that characterizes HUS. In this document we consider atypical HUS (aHUS) a sub-type of HUS in which the TMA phenomena are the consequence of the endotelial damage in the microvasculature of the kidneys and other organs due to a disregulation of the activity of the complement system. In recent years, a variety of aHUs-related mutations have been identified in genes of the the complement system, which can explain approximately 60% of the aHUS cases, and a number of mutations and polymorphisms have been functionally characterized. These findings have stablished that aHUS is a consequence of the insufficient regulation of the activiation of the complement on cell surfaces, leading to endotelial damage mediated by C5 and the complement terminal pathway. Eculizumab is a monoclonal antibody that inhibits the activation of C5 and blocks the generation of the pro-inflammatory molecule C5a and the formation of the cell membrane attack complex. In prospective studies in patients with aHUS, the use of Eculizumab has shown a fast and sustained interruption of the TMA process and it has been associated with significative long-term improvements in renal function, the interruption of plasma therapy and important reductions in the need of dialysis. According to the existing literature and the accumulated clinical experience, the Spanish aHUS Group published a consensus document with recommendations for the treatment of aHUs (Nefrologia 2013;33[1]:27-45). In the current online version of this document, we update the aetiological classification of TMAs, the pathophysiology of aHUS, its differential diagnosis and its therapeutic management. Copyright © 2015 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
CRISPR/Cas9 mediates efficient conditional mutagenesis in Drosophila.
Xue, Zhaoyu; Wu, Menghua; Wen, Kejia; Ren, Menda; Long, Li; Zhang, Xuedi; Gao, Guanjun
2014-09-05
Existing transgenic RNA interference (RNAi) methods greatly facilitate functional genome studies via controlled silencing of targeted mRNA in Drosophila. Although the RNAi approach is extremely powerful, concerns still linger about its low efficiency. Here, we developed a CRISPR/Cas9-mediated conditional mutagenesis system by combining tissue-specific expression of Cas9 driven by the Gal4/upstream activating site system with various ubiquitously expressed guide RNA transgenes to effectively inactivate gene expression in a temporally and spatially controlled manner. Furthermore, by including multiple guide RNAs in a transgenic vector to target a single gene, we achieved a high degree of gene mutagenesis in specific tissues. The CRISPR/Cas9-mediated conditional mutagenesis system provides a simple and effective tool for gene function analysis, and complements the existing RNAi approach. Copyright © 2014 Xue et al.
Cooper, Simon E; Hodimont, Elsie; Green, Catherine M
2015-01-01
The proliferating cell nuclear antigen (PCNA) is a conserved component of DNA replication factories, and interactions with PCNA mediate the recruitment of many essential DNA replication enzymes to these sites of DNA synthesis. A complete description of the structure and composition of these factories remains elusive, and a better knowledge of them will improve our understanding of how the maintenance of genome and epigenetic stability is achieved. To fully characterize the set of proteins that interact with PCNA we developed a bimolecular fluorescence complementation (BiFC) screen for PCNA-interactors in human cells. This 2-hybrid type screen for interactors from a human cDNA library is rapid and efficient. The fluorescent read-out for protein interaction enables facile selection of interacting clones, and we combined this with next generation sequencing to identify the cDNAs encoding the interacting proteins. This method was able to reproducibly identify previously characterized PCNA-interactors but importantly also identified RNF7, Maf1 and SetD3 as PCNA-interacting proteins. We validated these interactions by co-immunoprecipitation from human cell extracts and by interaction analyses using recombinant proteins. These results show that the BiFC screen is a valuable method for the identification of protein-protein interactions in living mammalian cells. This approach has potentially wide application as it is high throughput and readily automated. We suggest that, given this interaction with PCNA, Maf1, RNF7, and SetD3 are potentially involved in DNA replication, DNA repair, or associated processes. PMID:26030842
Perera, Sue; Holt, Mark R; Mankoo, Baljinder S; Gautel, Mathias
2011-03-01
The striated muscle-specific tripartite motif (TRIM) proteins TRIM63/MURF1, TRIM55/MURF2 and TRIM54/MURF3 can function as ubiquitin E3 ligases in ubiquitin-mediated muscle protein turnover. Despite their well-characterised roles in muscle atrophy, the dynamics of MURF expression in the development and early postnatal adaptation of striated muscle is largely unknown. Here, we show that MURF2 is expressed at the very onset of mouse cardiac differentiation at embryonic day 8.5, and represents a sensitive marker for differentiating myocardium. During cardiac development, expression shifts from the 50 kDa to the 60 kDa A-isoform, which dominates postnatally. In contrast, MURF1 shows strong postnatal upregulation and MURF3 is not significantly expressed before birth. MURF2 expression parallels that of the autophagy-associated proteins LC3, p62/SQSTM1 and nbr1. SiRNA knockdown of MURF2 in neonatal rat cardiomyocytes disrupts posttranslational microtubule modification and myofibril assembly, and is only partly compensated by upregulation of MURF3 but not MURF1. Knockdown of both MURF2 and MURF3 severely disrupts the formation of ordered Z- and M-bands, likely by perturbed tubulin dynamics. These results suggest that ubiquitin-mediated protein turnover and MURF2 in particular play an unrecognised role in the earliest steps of heart muscle differentiation, and that partial complementation of MURF2 deficiency is afforded by MURF3. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Vogel, J. P.; Schuerman, P.; Woeste, K.; Brandstatter, I.; Kieber, J. J.; Evans, M. L. (Principal Investigator)
1998-01-01
Cytokinins elevate ethylene biosynthesis in etiolated Arabidopsis seedlings via a post-transcriptional modification of one isoform of the key biosynthetic enzyme ACC synthase. In order to begin to dissect the signaling events leading from cytokinin perception to this modification, we have isolated a series of mutants that lack the ethylene-mediated triple response in the presence of cytokinin due to their failure to increase ethylene biosynthesis. Analysis of genetic complementation and mapping revealed that these Cin mutants (cytokinin-insensitive) represent four distinct complementation groups, one of which, cin4, is allelic to the constitutive photomorphogenic mutant fus9/cop10. The Cin mutants have subtle effects on the morphology of adult plants. We further characterized the Cin mutants by analyzing ethylene biosynthesis in response to various other inducers and in adult tissues, as well as by assaying additional cytokinin responses. The cin3 mutant did not disrupt ethylene biosynthesis under any other conditions, nor did it disrupt any other cytokinin responses. Only cin2 disrupted ethylene biosynthesis in multiple circumstances. cin1 and cin2 made less anthocyanin in response to cytokinin. cin1 also displayed reduced shoot initiation in tissue culture in response to cytokinin, suggesting that it affects a cytokinin signaling element.