Predictability of dune activity in real dune fields under unidirectional wind regimes
NASA Astrophysics Data System (ADS)
Barchyn, Thomas E.; Hugenholtz, Chris H.
2015-02-01
We present an analysis of 10 dune fields to test a model-derived hypothesis of dune field activity. The hypothesis suggests that a quantifiable threshold exists for stabilization in unidirectional wind regimes: active dunes have slipface deposition rates that exceed the vegetation deposition tolerance, and stabilizing dunes have the opposite. We quantified aeolian sand flux, slipface geometry, and vegetation deposition tolerance to directly test the hypothesis at four dune fields (Bigstick, White Sands Stable, White Sands Active, and Cape Cod). We indirectly tested the hypothesis at six additional dune fields with limited vegetation data (Hanford, Año Nuevo, Skagen Odde, Salton Sea, Oceano Stable, and Oceano Active, "inverse calculation sites"). We used digital topographic data and estimates of aeolian sand flux to approximate the slipface deposition rates prior to stabilization. Results revealed a distinct, quantifiable, and consistent pattern despite diverse environmental conditions: the modal peak of prestabilization slipface deposition rates was 80% of the vegetation deposition tolerance at stabilized or stabilizing dune fields. Results from inverse calculation sites indicate deposition rates at stabilized sites were near a hypothesized maximum vegetation deposition tolerance (1 m a-1), and active sites had slipface deposition rates much higher. Overall, these results confirm the hypothesis and provide evidence of a globally applicable, simple, and previously unidentified predictor for the dynamics of vegetation cover in dune fields under unidirectional wind regimes.
Tissue interactions with nonionizing electromagnetic fields. Final report, March 1979-February 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adey, W.R.; Bawin, S.M.; Byus, C.V.
1986-08-01
This report provides an overview of this research program focused on basic research in nervous system responses to electric fields at 60 Hz. The emphasis in this project was to determine the fundamental mechanisms underlying some phenomena of electric field interactions in neural systems. The five studies of the initial program were tests of behavioral responses in the rat based upon the hypothesis that electric field detection might follow psychophysical rules known from prior research with light, sound and other stimuli; tests of electrophysiological responses to ''normal'' forms of stimulation in rat brain tissue exposed in vitro to electric fields,more » based on the hypothesis that the excitability of brain tissue might be affected by fields in the extracellular environment; tests of electrophysiological responses of spontaneously active pacemaker neurons of the Aplysia abdominal ganglion, based on the hypothesis that electric field interactions at the cell membrane might affect the balance among the several membrane-related processes that govern pacemaker activity; studies of mechanisms of low frequency electromagnetic field interactions with bone cells in the context of field therapy of ununited fractures; and manipulation of cell surface receptor proteins in studies of their mobility during EM field exposure.« less
Direct nanoscale imaging of evolving electric field domains in quantum structures.
Dhar, Rudra Sankar; Razavipour, Seyed Ghasem; Dupont, Emmanuel; Xu, Chao; Laframboise, Sylvain; Wasilewski, Zbig; Hu, Qing; Ban, Dayan
2014-11-28
The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the electric field domain (EFD) hypothesis posits that the potential distribution might be simultaneously spatially nonuniform and temporally unstable. Unfortunately, there exists no prior means of probing the inner potential profile directly. Here we report the nanoscale measured electric potential distribution inside operating QCLs by using scanning voltage microscopy at a cryogenic temperature. We prove that, per the EFD hypothesis, the multi-quantum-well active region is indeed divided into multiple sections having distinctly different electric fields. The electric field across these serially-stacked quantum cascade modules does not continuously increase in proportion to gradual increases in the applied device bias, but rather hops between discrete values that are related to tunneling resonances. We also report the evolution of EFDs, finding that an incremental change in device bias leads to a hopping-style shift in the EFD boundary--the higher electric field domain expands at least one module each step at the expense of the lower field domain within the active region.
Direct Nanoscale Imaging of Evolving Electric Field Domains in Quantum Structures
Dhar, Rudra Sankar; Razavipour, Seyed Ghasem; Dupont, Emmanuel; Xu, Chao; Laframboise, Sylvain; Wasilewski, Zbig; Hu, Qing; Ban, Dayan
2014-01-01
The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the electric field domain (EFD) hypothesis posits that the potential distribution might be simultaneously spatially nonuniform and temporally unstable. Unfortunately, there exists no prior means of probing the inner potential profile directly. Here we report the nanoscale measured electric potential distribution inside operating QCLs by using scanning voltage microscopy at a cryogenic temperature. We prove that, per the EFD hypothesis, the multi-quantum-well active region is indeed divided into multiple sections having distinctly different electric fields. The electric field across these serially-stacked quantum cascade modules does not continuously increase in proportion to gradual increases in the applied device bias, but rather hops between discrete values that are related to tunneling resonances. We also report the evolution of EFDs, finding that an incremental change in device bias leads to a hopping-style shift in the EFD boundary – the higher electric field domain expands at least one module each step at the expense of the lower field domain within the active region. PMID:25431158
Direct Nanoscale Imaging of Evolving Electric Field Domains in Quantum Structures
NASA Astrophysics Data System (ADS)
Dhar, Rudra Sankar; Razavipour, Seyed Ghasem; Dupont, Emmanuel; Xu, Chao; Laframboise, Sylvain; Wasilewski, Zbig; Hu, Qing; Ban, Dayan
2014-11-01
The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the electric field domain (EFD) hypothesis posits that the potential distribution might be simultaneously spatially nonuniform and temporally unstable. Unfortunately, there exists no prior means of probing the inner potential profile directly. Here we report the nanoscale measured electric potential distribution inside operating QCLs by using scanning voltage microscopy at a cryogenic temperature. We prove that, per the EFD hypothesis, the multi-quantum-well active region is indeed divided into multiple sections having distinctly different electric fields. The electric field across these serially-stacked quantum cascade modules does not continuously increase in proportion to gradual increases in the applied device bias, but rather hops between discrete values that are related to tunneling resonances. We also report the evolution of EFDs, finding that an incremental change in device bias leads to a hopping-style shift in the EFD boundary - the higher electric field domain expands at least one module each step at the expense of the lower field domain within the active region.
Learning receptive fields using predictive feedback.
Jehee, Janneke F M; Rothkopf, Constantin; Beck, Jeffrey M; Ballard, Dana H
2006-01-01
Previously, it was suggested that feedback connections from higher- to lower-level areas carry predictions of lower-level neural activities, whereas feedforward connections carry the residual error between the predictions and the actual lower-level activities [Rao, R.P.N., Ballard, D.H., 1999. Nature Neuroscience 2, 79-87.]. A computational model implementing the hypothesis learned simple cell receptive fields when exposed to natural images. Here, we use predictive feedback to explain tuning properties in medial superior temporal area (MST). We implement the hypothesis using a new, biologically plausible, algorithm based on matching pursuit, which retains all the features of the previous implementation, including its ability to efficiently encode input. When presented with natural images, the model developed receptive field properties as found in primary visual cortex. In addition, when exposed to visual motion input resulting from movements through space, the model learned receptive field properties resembling those in MST. These results corroborate the idea that predictive feedback is a general principle used by the visual system to efficiently encode natural input.
Kandhadai, Padmapriya; Federmeier, Kara D.
2009-01-01
The coarse coding hypothesis (Jung-Beeman 2005) postulates that the cerebral hemispheres differ in their breadth of semantic activation, with the left hemisphere (LH) activating a narrow, focused semantic field and the right (RH) weakly activating a broader semantic field. In support of coarse coding, studies (e.g., Faust and Lavidor 2003) investigating priming for multiple senses of a lexically ambiguous word have reported a RH benefit. However, studies of mediated priming (Livesay and Burgess 2003; Richards and Chiarello 1995) have failed to find a RH advantage for processing distantly-linked, unambiguous words. To address this debate, the present study made use of a multiple priming paradigm (Balota and Paul, 1996) in which two primes either converged onto the single meaning of an unambiguous, lexically-associated target (LION-STRIPES-TIGER) or diverged onto different meanings of an ambiguous target (KIDNEY-PIANO-ORGAN). In two experiments, participants either made lexical decisions to targets (Experiment 1) or made a semantic relatedness judgment between primes and targets (Experiment 2). In both tasks, for both ambiguous and unambiguous triplets we found equivalent priming strengths and patterns across the two visual fields, counter to the predictions of the coarse coding hypothesis. Priming patterns further suggested that both hemispheres made use of lexical level representations in the lexical decision task and semantic representations in the semantic judgment task. PMID:17459344
NASA Technical Reports Server (NTRS)
Poletto, G.; Vaiana, G. S.; Zombeck, M. V.; Krieger, A. S.; Timothy, A. F.
1975-01-01
The appearances of several X-ray active regions observed on March 7, 1970 and June 15, 1973 are compared with the corresponding coronal magnetic-field topology. Coronal fields have been computed from measurements of the longitudinal component of the underlying magnetic fields, based on the current-free hypothesis. An overall correspondence between X-ray structures and calculated field lines is established, and the magnetic counterparts of different X-ray features are also examined. A correspondence between enhanced X-ray emission and the location of compact closed field lines is suggested. Representative magnetic-field values calculated under the assumption of current-free fields are given for heights up to 200 sec.
Yin, Haichen; Shakeel, Muhammad; Kuang, Jing; Li, Jianhong
2015-01-01
Melanism is a common polymorphism in many insect species that also influences immune function. According to the thermal melanin hypothesis, ectothermic individuals from cooler environments have darker cuticles and higher polyphenol oxidase (PO) levels, which represent a better immunocompetence. In this study, the links among environmental temperature, melanism, and PO activity of Saccharosydne procerus (Matsumura) were examined. Most S. procerus have a black spot on their forewings at high temperatures in the field and in the laboratory. In PO activity assay, a positive association between PO level and temperature was found. Our results showed that a diversification of melanism occurred under different temperatures and that melanism in S. procerus presented an opposite pattern to the one proposed by the thermal hypothesis. PMID:26024474
Tachinardi, Patricia; Valentinuzzi, Verónica S; Oda, Gisele A; Buck, C Loren
The tuco-tuco (Ctenomys aff. knighti) is among the rodent species known to be nocturnal under standard laboratory conditions and diurnal under natural conditions. The circadian thermoenergetics (CTE) hypothesis postulates that switches in activity timing are a response to energetic challenges; daytime activity reduces thermoregulatory costs by consolidating activity to the warmest part of the day. Studying wild animals under both captive and natural conditions can increase understanding of how temporal activity patterns are shaped by the environment and could serve as a test of the CTE hypothesis. We estimated the effects of activity timing on energy expenditure for the tuco-tuco by combining laboratory measurements of metabolic rate with environmental temperature records in both winter and summer. We showed that, in winter, there would be considerable energy savings if activity is allocated at least partially during daylight, lending support to the CTE hypothesis. In summer, the impact of activity timing on energy expenditure is small, suggesting that during this season other factors, such as predation risk, water balance, and social interaction, may have more important roles than energetics in the determination of activity time.
ACTIVATION OF OYSTER DEFENSES BY ENVIRONMENTAL CONTAMINANTS
Four field studies performed on eastern oysters Crassostrea virginica support a hypothesis that Cu, Zn, and perhaps butyltins and polycyclic aromatic hydrocarbons (PAH) can stimulate hemopoiesis, hemocyte locomotion and hemocyte bactericidal capacity. The first study found circul...
Bowman, J D; Thomas, D C; London, S J; Peters, J M
1995-01-01
We present a hypothesis that the risk of childhood leukemia is related to exposure to specific combinations of static and extremely-low-frequency (ELF) magnetic fields. Laboratory data from calcium efflux and diatom mobility experiments were used with the gyromagnetic equation to predict combinations of 60 Hz and static magnetic fields hypothesized to enhance leukemia risk. The laboratory data predicted 19 bands of the static field magnitude with a bandwidth of 9.1 microT that, together with 60 Hz magnetic fields, are expected to have biological activity. We then assessed the association between this exposure metric and childhood leukemia using data from a case-control study in Los Angeles County. ELF and static magnetic fields were measured in the bedrooms of 124 cases determined from a tumor registry and 99 controls drawn from friends and random digit dialing. Among these subjects, 26 cases and 20 controls were exposed to static magnetic fields lying in the predicted bands of biological activity centered at 38.0 microT and 50.6 microT. Although no association was found for childhood leukemia in relation to measured ELF or static magnetic fields alone, an increasing trend of leukemia risk with measured ELF fields was found for subjects within these static field bands (P for trend = 0.041). The odds ratio (OR) was 3.3 [95% confidence interval (CI) = 0.4-30.5] for subjects exposed to static fields within the derived bands and to ELF magnetic field above 0.30 microT (compared to subjects exposed to static fields outside the bands and ELF magnetic fields below 0.07 microT). When the 60 Hz magnetic fields were assessed according to the Wertheimer-Leeper code for wiring configurations, leukemia risks were again greater with the hypothesized exposure conditions (OR = 9.2 for very high current configurations within the static field bands; 95% CI = 1.3-64.6). Although the risk estimates are based on limited magnetic field measurements for a small number of subjects, these findings suggest that the risk of childhood leukemia may be related to the combined effects of the static and ELF magnetic fields. Further tests of the hypothesis are proposed.
Vanderstraeten, Jacques; Burda, Hynek; Verschaeve, Luc; De Brouwer, Christophe
2015-07-01
It has been suggested that weak 50/60 Hz [extremely low frequency (ELF)] magnetic fields (MF) could affect circadian biorhythms by disrupting the clock function of cryptochromes (the "cryptochrome hypothesis," currently under study). That hypothesis is based on the premise that weak (Earth strength) static magnetic fields affect the redox balance of cryptochromes, thus possibly their signaling state as well. An appropriate method for testing this postulate could be real time or short-term study of the circadian clock function of retinal cryptochromes under exposure to the static field intensities that elicit the largest redox changes (maximal "low field" and "high field" effects, respectively) compared to zero field. Positive results might encourage further study of the cryptochrome hypothesis itself. However, they would indicate the need for performing a similar study, this time comparing the effects of only slight intensity changes (low field range) in order to explore the possible role of the proximity of metal structures and furniture as a confounder under the cryptochrome hypothesis.
Antifreeze Protein Mimetic Metallohelices with Potent Ice Recrystallization Inhibition Activity.
Mitchell, Daniel E; Clarkson, Guy; Fox, David J; Vipond, Rebecca A; Scott, Peter; Gibson, Matthew I
2017-07-26
Antifreeze proteins are produced by extremophile species to control ice formation and growth, and they have potential applications in many fields. There are few examples of synthetic materials which can reproduce their potent ice recrystallization inhibition property. We report that self-assembled enantiomerically pure, amphipathic metallohelicies inhibited ice growth at just 20 μM. Structure-property relationships and calculations support the hypothesis that amphipathicity is the key motif for activity. This opens up a new field of metallo-organic antifreeze protein mimetics and provides insight into the origins of ice-growth inhibition.
Knowledge Representations Underlying Covert Metalinguistic Activity: A Working Hypothesis
ERIC Educational Resources Information Center
Gutierrez, Xavier
2011-01-01
Covert metalinguistic activity has received little attention in the field of second language (L2) education, even though the few studies that have examined this type of attention to language note that it plays a role in L2 learning and use. However, little is known about this phenomenon. The study reported in this article focuses on the knowledge…
The Brain as a Distributed Intelligent Processing System: An EEG Study
da Rocha, Armando Freitas; Rocha, Fábio Theoto; Massad, Eduardo
2011-01-01
Background Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. Methodology and Principal Findings In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Whechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. Conclusion The present results support these claims and the neural efficiency hypothesis. PMID:21423657
NASA Astrophysics Data System (ADS)
Li, Chunhai; Zheng, Yunfei; Yu, Shiyong; Li, Yongxiang; Shen, Huadong
2012-03-01
The progressive rise of atmospheric CH4 level since 5 ka has been hypothesized to result from human agricultural activities that turned forested lands, which would otherwise be a carbon sink, into paddy fields. Increasing numbers of Neolithic cultural sites unearthed in coastal eastern China, providing unique opportunities to test this hypothesis. Here, we present detailed pollen data from a buried paddy field at Tianluoshan cultural site on the Ningshao Plain, eastern China, to reconstruct the ecological conditions associated with the establishment of paddy fields. Stratigraphic data, radiocarbon ages, and pollen analyses show that vegetation underwent six phases of evolution and paddy fields were developed from 7000 to 4200 cal. yr BP. We found no evidence of slash-and-burn agriculture at the study site. Together with no presence of the irrigation system, our pollen data suggest the paddy fields at this site originated from wetlands. Hence, our findings do not support the hypothesis that anthropogenic-induced deforestation play ed a significant role in the rise of the atmospheric CH4 rise since the middle Holocene.
Motor control theories and their applications.
Latash, Mark L; Levin, Mindy F; Scholz, John P; Schöner, Gregor
2010-01-01
We describe several influential hypotheses in the field of motor control including the equilibrium-point (referent configuration) hypothesis, the uncontrolled manifold hypothesis, and the idea of synergies based on the principle of motor abundance. The equilibrium-point hypothesis is based on the idea of control with thresholds for activation of neuronal pools; it provides a framework for analysis of both voluntary and involuntary movements. In particular, control of a single muscle can be adequately described with changes in the threshold of motor unit recruitment during slow muscle stretch (threshold of the tonic stretch reflex). Unlike the ideas of internal models, the equilibrium-point hypothesis does not assume neural computations of mechanical variables. The uncontrolled manifold hypothesis is based on the dynamic system approach to movements; it offers a toolbox to analyze synergic changes within redundant sets of elements related to stabilization of potentially important performance variables. The referent configuration hypothesis and the principle of abundance can be naturally combined into a single coherent scheme of control of multi-element systems. A body of experimental data on healthy persons and patients with movement disorders are reviewed in support of the mentioned hypotheses. In particular, movement disorders associated with spasticity are considered as consequences of an impaired ability to shift threshold of the tonic stretch reflex within the whole normal range. Technical details and applications of the mentioned hypo-theses to studies of motor learning are described. We view the mentioned hypotheses as the most promising ones in the field of motor control, based on a solid physical and neurophysiological foundation.
Photosynthesis and stomatal conductance related to reflectance on the canopy scale
NASA Technical Reports Server (NTRS)
Verma, S. B.; Sellers, P. J.; Walthall, C. L.; Hall, F. G.; Kim, J.; Goetz, S. J.
1993-01-01
Field measurements of carbon dioxide and water vapor fluxes were analyzed in conjunction with reflectances obtained from a helicopter-mounted Modular Multiband Radiometer at a grassland study site during the First International Satellite Land Surface Climatology Project Field Experiment. These measurements are representative of the canopy scale and were made over a range of meteorological and soil moisture conditions during different stages in the annual life cycle of the prairie vegetation, and thus provide a good basis for investigating hpotheses/relationships potentially useful in remote sensing applications. We tested the hypothesis (Sellers, 1987) that the simple ratio vegetation index should be near-linearly related to the derivatives of the unstressed canopy stomatal conductance and the unstressed canopy photosynthesis with respect to photosynthetically active radiation. Even though there is some scatter in our data, the results seem to support this hypothesis.
Electric Fields and Enzyme Catalysis
Fried, Stephen D.; Boxer, Steven G.
2017-01-01
What happens inside an enzyme’s active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists’ attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme’s active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site. PMID:28375745
Djekic, Uros V; Gaggar, Amit; Weathington, Nathaniel M
2015-01-01
Protease activity in inflammation is complex. Proteases released by cells in response to infection, cytokines, or environmental triggers like cigarette smoking cause breakdown of the extracellular matrix (ECM). In chronic inflammatory diseases like chronic obstructive pulmonary disease (COPD), current findings indicate that pathology and morbidity are driven by dysregulation of protease activity, either through hyperactivity of proteases or deficiency or dysfunction their antiprotease regulators. Animal studies demonstrate the accuracy of this hypothesis through genetic and pharmacologic tools. New work shows that ECM destruction generates peptide fragments active on leukocytes via neutrophil or macrophage chemotaxis towards collagen and elastin derived peptides respectively. Such fragments now have been isolated and characterized in vivo in each case. Collectively, this describes a biochemical circuit in which protease activity leads to activation of local immunocytes, which in turn release cytokines and more proteases, leading to further leukocyte infiltration and cyclical disease progression that is chronic. This circuit concept is well known, and is intrinsic to the protease-antiprotease hypothesis; recently analytic techniques have become sensitive enough to establish fundamental mechanisms of this hypothesis, and basic and clinical data now implicate protease activity and peptide signaling as pathologically significant pharmacologic targets. This review discusses targeting protease activity for chronic inflammatory disease with special attention to COPD, covering important basic and clinical findings in the field; novel therapeutic strategies in animal or human studies; and a perspective on the successes and failures of agents with a focus on clinical potential in human disease. PMID:19026684
Physical activity and telomere biology: exploring the link with aging-related disease prevention.
Ludlow, Andrew T; Roth, Stephen M
2011-02-21
Physical activity is associated with reduced risk of several age-related diseases as well as with increased longevity in both rodents and humans. Though these associations are well established, evidence of the molecular and cellular factors associated with reduced disease risk and increased longevity resulting from physical activity is sparse. A long-standing hypothesis of aging is the telomere hypothesis: as a cell divides, telomeres shorten resulting eventually in replicative senescence and an aged phenotype. Several reports have recently associated telomeres and telomere-related proteins to diseases associated with physical inactivity and aging including cardiovascular disease, insulin resistance, and hypertension. Interestingly several reports have also shown that longer telomeres are associated with higher physical activity levels, indicating a potential mechanistic link between physical activity, reduced age-related disease risk, and longevity. The primary purpose of this review is to discuss the potential importance of physical activity in telomere biology in the context of inactivity- and age-related diseases. A secondary purpose is to explore potential mechanisms and important avenues for future research in the field of telomeres and diseases associated with physical inactivity and aging.
NASA Astrophysics Data System (ADS)
Steelman, Zachary A.; Tolstykh, Gleb P.; Estlack, Larry E.; Roth, Caleb C.; Ibey, Bennett L.
2015-03-01
Phosphatidylinositol4,5-biphosphate (PIP2) is a membrane phospholipid of particular importance in cell-signaling pathways. Hydrolysis of PIP2 releases inositol-1,4,5-triphosphate (IP3) from the membrane, activating IP3 receptors on the smooth endoplasmic reticulum (ER) and facilitating a release of intracellular calcium stores and activation of protein kinase C (PKC). Recent studies suggest that nanosecond pulsed electric fields (nsPEF) cause depletion of PIP2 in the cellular membrane, activating the IP3 signaling pathway. However, the exact mechanism(s) causing this observed depletion of PIP2 are unknown. Complicating the matter, nsPEF create nanopores in the plasma membrane, allowing calcium to enter the cell and thus causing an increase in intracellular calcium. While elevated intracellular calcium can cause activation of phospholipase C (PLC) (a known catalyst of PIP2 hydrolysis), PIP2 depletion has been shown to occur in the absence of both extracellular and intracellular calcium. These observations have led to the hypothesis that the high electric field itself may be playing a direct role in the hydrolysis of PIP2 from the plasma membrane. To support this hypothesis, we used edelfosine to block PLC and prevent activation of the IP3/DAG pathway in Chinese Hamster Ovarian (CHO) cells prior to applying nsPEF. Fluorescence microscopy was used to monitor intracellular calcium bursts during nsPEF, while MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) survivability assays were utilized to determine whether edelfosine improved cell survival during nsPEF exposure. This work is critical to refine the role of PIP2 in the cellular response to nsPEF, and also to determine the fundamental biological effects of high electric field exposures.
How Corridors Reduce Indigo Bunting Nest Success.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weldon, Aimee, J.
2006-08-01
Abstract: Corridors are a popular strategy to conserve biodiversity and promote gene flow in fragmented landscapes. Corridor effectiveness has been bolstered by the fact that no empirical field studies have shown negative effects on populations or communities. I tested the hypothesis that corridors increase nest predation in connected habitat fragments relative to unconnected fragments. I evaluated this hypothesis in a large-scale experimental system of open-habitat fragments that varied in shape and connectivity. Corridors increased nest predation rates in connected fragments relative to unconnected fragments with lower edge:area ratios. Nest predation rates were similar between connected and unconnected fragments with highermore » edge:area ratios. These results suggest that the increase in predator activity is largely attributable to edge effects incurred through the addition of a corridor. This is the first field study to demonstrate that corridors can negatively impact animal populations occupying connected fragments.« less
Thunderstorm Hypothesis Reasoner
NASA Technical Reports Server (NTRS)
Mulvehill, Alice M.
1994-01-01
THOR is a knowledge-based system which incorporates techniques from signal processing, pattern recognition, and artificial intelligence (AI) in order to determine the boundary of small thunderstorms which develop and dissipate over the area encompassed by KSC and the Cape Canaveral Air Force Station. THOR interprets electric field mill data (derived from a network of electric field mills) by using heuristics and algorithms about thunderstorms that have been obtained from several domain specialists. THOR generates two forms of output: contour plots which visually describe the electric field activity over the network and a verbal interpretation of the activity. THOR uses signal processing and pattern recognition to detect signatures associated with noise or thunderstorm behavior in a near real time fashion from over 31 electrical field mills. THOR's AI component generates hypotheses identifying areas which are under a threat from storm activity, such as lightning. THOR runs on a VAX/VMS at the Kennedy Space Center. Its software is a coupling of C and FORTRAN programs, several signal processing packages, and an expert system development shell.
Towards a General Model of Skills Involved in Sight Reading Music
ERIC Educational Resources Information Center
Kopiez, Reinhard; Lee, Ji In
2008-01-01
Sight reading is a functional skill which is essential for all musicians involved in particular fields of western classical music culture. In the last decade, expertise theory has shown that time spent on activities is a good predictor for later achievement in a domain. However, this study is based on the hypothesis that general and elementary…
Wild Chimpanzees on the Edge: Nocturnal Activities in Croplands
Krief, Sabrina; Cibot, Marie; Bortolamiol, Sarah; Seguya, Andrew; Krief, Jean-Michel; Masi, Shelly
2014-01-01
In a rapidly changing landscape highly impacted by anthropogenic activities, the great apes are facing new challenges to coexist with humans. For chimpanzee communities inhabiting encroached territories, not bordered by rival conspecifics but by human agricultural fields, such boundaries are risky areas. To investigate the hypothesis that they use specific strategies for incursions out of the forest into maize fields to prevent the risk of detection by humans guarding their field, we carried out video recordings of chimpanzees at the edge of the forest bordered by a maize plantation in Kibale National Park, Uganda. Contrary to our expectations, large parties are engaged in crop-raids, including vulnerable individuals such as females with clinging infants. More surprisingly chimpanzees were crop-raiding during the night. They also stayed longer in the maize field and presented few signs of vigilance and anxiety during these nocturnal crop-raids. While nocturnal activities of chimpanzees have been reported during full moon periods, this is the first record of frequent and repeated nocturnal activities after twilight, in darkness. Habitat destruction may have promoted behavioural adjustments such as nocturnal exploitation of open croplands. PMID:25338066
ERIC Educational Resources Information Center
Ponniah, Joseph
2011-01-01
The Comprehension Hypothesis (CH) is the most powerful hypothesis in the field of Second Language Acquisition despite the presence of the rivals the skill-building hypothesis, the output hypothesis, and the interaction hypothesis. The competing hypotheses state that consciously learned linguistic knowledge is a necessary step for the development…
Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh
2007-01-01
A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.
Magnetic Characteristics of Active Region Heating Observed with TRACE, SOHO/EIT, and Yohkoh/SXT
NASA Technical Reports Server (NTRS)
Porter, J. G.; Falconer, D. A.; Moore, R. L.; Rose, M. Franklin (Technical Monitor)
2001-01-01
Over the past several years, we have reported results from studies that have compared the magnetic structure and heating of the transition region and corona (both in active regions and in the quiet Sun) by combining X-ray and EUV images from Yohkoh and Solar and Heliospheric Observatory (SOHO) with photospheric magnetograms from ground-based observatories. Our findings have led us to the hypothesis that most heating throughout the corona is driven from near and below the base of the corona by eruptive microflares occurring in compact low-lying "core magnetic fields (i.e., fields rooted along and closely enveloping polarity inversion lines in the photospheric magnetic flux). We now extend these studies, comparing sequences of UV images from Transition Region and Coronal Explorer (TRACE) with longitudinal magnetograms from Kitt Peak and vector magnetograms from MUSIC. These comparisons confirm the previous results regarding the importance of core-field activity to active region heating. Activity in fields associated with satellite polarity inclusions and/or magnetically sheared configurations is especially prominent. This work is funded by NASA's Office of Space Science through the Sun-Earth Connection Guest Investigator Program and the Solar Physics Supporting Research and Technology Program.
The catecholaminergic-cholinergic balance hypothesis of bipolar disorder revisited
van Enkhuizen, Jordy; Janowsky, David S; Olivier, Berend; Minassian, Arpi; Perry, William; Young, Jared W; Geyer, Mark A
2014-01-01
Bipolar disorder is a unique illness characterized by fluctuations between mood states of depression and mania. Originally, an adrenergic-cholinergic balance hypothesis was postulated to underlie these different affective states. In this review, we update this hypothesis with recent findings from human and animal studies, suggesting that a catecholaminergic-cholinergic hypothesis may be more relevant. Evidence from neuroimaging studies, neuropharmacological interventions, and genetic associations support the notion that increased cholinergic functioning underlies depression, whereas increased activations of the catecholamines (dopamine and norepinephrine) underlie mania. Elevated functional acetylcholine during depression may affect both muscarinic and nicotinic acetylcholine receptors in a compensatory fashion. Increased functional dopamine and norepinephrine during mania on the other hand may affect receptor expression and functioning of dopamine reuptake transporters. Despite increasing evidence supporting this hypothesis, a relationship between these two neurotransmitter systems that could explain cycling between states of depression and mania is missing. Future studies should focus on the influence of environmental stimuli and genetic susceptibilities that may affect the catecholaminergic-cholinergic balance underlying cycling between the affective states. Overall, observations from recent studies add important data to this revised balance theory of bipolar disorder, renewing interest in this field of research. PMID:25107282
NASA Astrophysics Data System (ADS)
Tkachenko, Ekaterina
2017-11-01
This work presents a hypothesis about the mechanism of bromine activation during polar boundary layer ozone depletion events (ODEs) as well as the mechanism of aerosol formation from the frost flowers. The author suggests that ODEs may be initiated by the electric-field gradients created at the sharp tips of ice formations as a result of the combined effect of various environmental conditions. According to the author's estimates, these electric-field gradients may be sufficient for the onset of point or corona discharges followed by generation of high local concentrations of the reactive oxygen species and initiation of free-radical and redox reactions. This process may be responsible for the formation of seed bromine which then undergoes further amplification by HOBr-driven bromine explosion. The proposed hypothesis may explain a variety of environmental conditions and substrates as well as poor reproducibility of ODE initiation observed by researchers in the field. According to the author's estimates, high wind can generate sufficient conditions for overcoming the Rayleigh limit and thus can initiate ;spraying; of charged aerosol nanoparticles. These charged aerosol nanoparticles can provoke formation of free radicals, turning the ODE on. One can also envision a possible emission of halogen ion as a result of the ;electrospray; process analogous to that of electrospray ionization mass-spectrometry.
USDA-ARS?s Scientific Manuscript database
We report results of the last two years of a 7-year (2008-2014) field experiment designed to test the null hypothesis that applications of glyphosate on glyphosate resistant corn (Zea mays L.) as a routine weed control practice under both conventional and reduced tillage practices would have no effe...
Predator and prey activity levels jointly influence the outcome of long-term foraging bouts
2013-01-01
Consistent interindividual differences in behavior (i.e., “behavioral types”) may be a key factor in determining the outcome of species interactions. Studies that simultaneously account for the behavioral types of individuals in multiple interacting species, such as predator–prey systems, may be particularly strong predictors of ecological outcomes. Here, we test the predator–prey locomotor crossover hypothesis, which predicts that active predators are more likely to encounter and consume prey with the opposing locomotor tendency. We test this hypothesis using intraspecific behavioral variation in both a predator and prey species as predictors of foraging outcomes. We use the old field jumping spider, Phidippus clarus (Araneae, Salticidae), and the house cricket, Acheta domesticus (Orthoptera, Gryllidae), as a model predator–prey system in laboratory mesocosm trials. Stable individual differences in locomotor tendencies were identified in both P. clarus and A. domesticus, and the outcome of foraging bouts depended neither on the average activity level of the predator nor on the average activity level of prey. Instead, an interaction between the activity level of spiders and crickets predicted spider foraging success and prey survivorship. Consistent with the locomotor crossover hypothesis, predators exhibiting higher activity levels consumed more prey when in an environment containing low-activity prey items and vice versa. This study highlights 1) the importance of intraspecific variation in determining the outcome of predator–prey interactions and 2) that acknowledging behavioral variation in only a single species may be insufficient to characterize the performance consequences of intraspecific trait variants. PMID:23935257
Entanglement Equilibrium and the Einstein Equation.
Jacobson, Ted
2016-05-20
A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy.
Risk-Based, Hypothesis-Driven Framework for Hydrological Field Campaigns with Case Studies
NASA Astrophysics Data System (ADS)
Harken, B.; Rubin, Y.
2014-12-01
There are several stages in any hydrological modeling campaign, including: formulation and analysis of a priori information, data acquisition through field campaigns, inverse modeling, and prediction of some environmental performance metric (EPM). The EPM being predicted could be, for example, contaminant concentration or plume travel time. These predictions often have significant bearing on a decision that must be made. Examples include: how to allocate limited remediation resources between contaminated groundwater sites or where to place a waste repository site. Answering such questions depends on predictions of EPMs using forward models as well as levels of uncertainty related to these predictions. Uncertainty in EPM predictions stems from uncertainty in model parameters, which can be reduced by measurements taken in field campaigns. The costly nature of field measurements motivates a rational basis for determining a measurement strategy that is optimal with respect to the uncertainty in the EPM prediction. The tool of hypothesis testing allows this uncertainty to be quantified by computing the significance of the test resulting from a proposed field campaign. The significance of the test gives a rational basis for determining the optimality of a proposed field campaign. This hypothesis testing framework is demonstrated and discussed using various synthetic case studies. This study involves contaminated aquifers where a decision must be made based on prediction of when a contaminant will arrive at a specified location. The EPM, in this case contaminant travel time, is cast into the hypothesis testing framework. The null hypothesis states that the contaminant plume will arrive at the specified location before a critical amount of time passes, and the alternative hypothesis states that the plume will arrive after the critical time passes. The optimality of different field campaigns is assessed by computing the significance of the test resulting from each one. Evaluating the level of significance caused by a field campaign involves steps including likelihood-based inverse modeling and semi-analytical conditional particle tracking.
Heyers, Dominik; Manns, Martina; Luksch, Harald; Güntürkün, Onur; Mouritsen, Henrik
2007-09-26
The magnetic compass of migratory birds has been suggested to be light-dependent. Retinal cryptochrome-expressing neurons and a forebrain region, "Cluster N", show high neuronal activity when night-migratory songbirds perform magnetic compass orientation. By combining neuronal tracing with behavioral experiments leading to sensory-driven gene expression of the neuronal activity marker ZENK during magnetic compass orientation, we demonstrate a functional neuronal connection between the retinal neurons and Cluster N via the visual thalamus. Thus, the two areas of the central nervous system being most active during magnetic compass orientation are part of an ascending visual processing stream, the thalamofugal pathway. Furthermore, Cluster N seems to be a specialized part of the visual wulst. These findings strongly support the hypothesis that migratory birds use their visual system to perceive the reference compass direction of the geomagnetic field and that migratory birds "see" the reference compass direction provided by the geomagnetic field.
NASA Astrophysics Data System (ADS)
Drake, J. E.; Darby, B. A.; Giasson, M.-A.; Kramer, M. A.; Phillips, R. P.; Finzi, A. C.
2012-06-01
Healthy plant roots release a wide range of chemicals into soils. This process, termed root exudation, is thought to increase the activity of microbes and the exo-enzymes they synthesize, leading to accelerated rates of carbon (C) mineralization and nutrient cycling in rhizosphere soils relative to bulk soils. The causal role of exudation, however, is difficult to isolate with in-situ observations, given the complex nature of the rhizosphere environment. We investigated the potential effects of root exudation on microbial and exo-enzyme activity using a theoretical model of decomposition and a field experiment, with a specific focus on the stoichiometric constraint of nitrogen (N) availability. The field experiment isolated the effect of exudation by pumping solutions of exudate mimics through microlysimeter "root simulators" into intact forest soils over two 50-day periods. Using a combined model-experiment approach, we tested two hypotheses: (1) exudation alone is sufficient to stimulate microbial and exo-enzyme activity in rhizosphere soils, and (2) microbial response to C-exudates (carbohydrates and organic acids) is constrained by N-limitation. Experimental delivery of exudate mimics containing C and N significantly increased microbial respiration, microbial biomass, and the activity of exo-enzymes that decompose labile components of soil organic matter (SOM, e.g., cellulose, amino sugars), while decreasing the activity of exo-enzymes that degrade recalcitrant SOM (e.g., polyphenols, lignin). However, delivery of C-only exudates had no effect on microbial biomass or overall exo-enzyme activity, and only increased microbial respiration. The theoretical decomposition model produced complementary results; the modeled microbial response to C-only exudates was constrained by limited N supply to support the synthesis of N-rich microbial biomass and exo-enzymes, while exuding C and N together elicited an increase in modeled microbial biomass, exo-enzyme activity, and decomposition. Thus, hypothesis (2) was supported, while hypothesis (1) was only supported when C and N compounds were exuded together. This study supports a cause-and-effect relationship between root exudation and enhanced microbial activity, and suggests that exudate stoichiometry is an important and underappreciated driver of microbial activity in rhizosphere soils.
NASA Astrophysics Data System (ADS)
Thompson, E. M.; Hewlett, J. B.; Baise, L. G.; Vogel, R. M.
2011-01-01
Annual maximum (AM) time series are incomplete (i.e., censored) when no events are included above the assumed censoring threshold (i.e., magnitude of completeness). We introduce a distrtibutional hypothesis test for left-censored Gumbel observations based on the probability plot correlation coefficient (PPCC). Critical values of the PPCC hypothesis test statistic are computed from Monte-Carlo simulations and are a function of sample size, censoring level, and significance level. When applied to a global catalog of earthquake observations, the left-censored Gumbel PPCC tests are unable to reject the Gumbel hypothesis for 45 of 46 seismic regions. We apply four different field significance tests for combining individual tests into a collective hypothesis test. None of the field significance tests are able to reject the global hypothesis that AM earthquake magnitudes arise from a Gumbel distribution. Because the field significance levels are not conclusive, we also compute the likelihood that these field significance tests are unable to reject the Gumbel model when the samples arise from a more complex distributional alternative. A power study documents that the censored Gumbel PPCC test is unable to reject some important and viable Generalized Extreme Value (GEV) alternatives. Thus, we cannot rule out the possibility that the global AM earthquake time series could arise from a GEV distribution with a finite upper bound, also known as a reverse Weibull distribution. Our power study also indicates that the binomial and uniform field significance tests are substantially more powerful than the more commonly used Bonferonni and false discovery rate multiple comparison procedures.
Pre-Mission Input Requirements to Enable Successful Sample Collection by A Remote Field/EVA Team
NASA Technical Reports Server (NTRS)
Cohen, B. A.; Lim, D. S. S.; Young, K. E.; Brunner, A.; Elphic, R. E.; Horne, A.; Kerrigan, M. C.; Osinski, G. R.; Skok, J. R.; Squyres, S. W.;
2016-01-01
The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team, part of the Solar System Exploration Virtual Institute (SSERVI), is a field-based research program aimed at generating strategic knowledge in preparation for human and robotic exploration of the Moon, near-Earth asteroids, Phobos and Deimos, and beyond. In contract to other technology-driven NASA analog studies, The FINESSE WCIS activity is science-focused and, moreover, is sampling-focused with the explicit intent to return the best samples for geochronology studies in the laboratory. We used the FINESSE field excursion to the West Clearwater Lake Impact structure (WCIS) as an opportunity to test factors related to sampling decisions. We examined the in situ sample characterization and real-time decision-making process of the astronauts, with a guiding hypothesis that pre-mission training that included detailed background information on the analytical fate of a sample would better enable future astronauts to select samples that would best meet science requirements. We conducted three tests of this hypothesis over several days in the field. Our investigation was designed to document processes, tools and procedures for crew sampling of planetary targets. This was not meant to be a blind, controlled test of crew efficacy, but rather an effort to explicitly recognize the relevant variables that enter into sampling protocol and to be able to develop recommendations for crew and backroom training in future endeavors.
NASA Technical Reports Server (NTRS)
Abrams, Michael; Verosub, Ken; Finnerty, Tony; Brady, Roland
1987-01-01
The Garlock and Death Valley fault zones in SE California are two active strike-slip faults coming together on the east side of the Avawatz Mtns. The kinematics of this intersection, and the possible continuation of either fault zone, are being investigated using a combination of field mapping, and processing and interpretation of remotely sensed image data. Regional and local relationships are derivable from Thematic Mapper data (30 m resolution), including discrimination and relative age dating of alluvial fans, bedrock mapping, and fault mapping. Aircraft data provide higher spatial resolution over more limited areas. Hypotheses being considered are: (1) the Garlock fault extends east of the intersection; (2) the Garlock fault terminates at the intersection and the Death Valley fault continues southeastward; and (3) the Garlock fault has been offset right laterally by the Death Valley fault which continues to the southeast. Preliminary work indicates that the first hypothesis is invalid. From kinematic considerations, image analysis, and field work the third hypothesis is favored. The projected continuation of the Death Valley zone defines the boundary between the Mojave crustal block and the Basin and Range block.
Continuous monitoring the vehicle dynamics and driver behavior using navigation systems
NASA Astrophysics Data System (ADS)
Ene, George
2017-10-01
In all fields cost is very important and the increasing amount of data that are needed for active safety systems, like ADAS, lead to implementation of some complex and powerful unit for processing raw data. In this manner is necessary a cost-effective method to estimate the maximum available tire road friction during acceleration and braking by continuous monitoring the vehicle dynamics and driver behavior. The method is based on the hypothesis that short acceleration and braking periods can indicate vehicle dynamics, and thus the available tire road friction coefficient, and also human behavior and his limits. Support for this hypothesis is found in the literature and is supported by the result of experiments conducted under different conditions and seasons.
The Invariant Twist of Magnetic Fields in the Relativistic Jets of Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Contopoulos, Ioannis; Christodoulou, Dimitris M.; Kazanas, Demosthenes; Gabuzda, Denise C.
2009-01-01
The origin of cosmic magnetic (B) fields remains an open question. It is generally believed that very weak primordial B fields are amplified by dynamo processes, but it appears unlikely that the amplification proceeds fast enough to account for the fields presently observed in galaxies and galaxy clusters. In an alternative scenario, cosmic B fields are generated near the inner edges of accretion disks in Active Galactic Nuclei (AGNs) by azimuthal electric currents due to the difference between the plasma electron and ion velocities that arises when the electrons are retarded by interactions with photons. While dynamo processes show no preference for the polarity of the (presumably random) seed field that they amplify, this alternative mechanism uniquely relates the polarity of the poloidal B field to the angular velocity of the accretion disk, resulting in a unique direction for the toroidal B field induced by disk rotation. Observations of the toroidal fields of 29 AGN jets revealed by parsec-scale Faraday rotation measurements show a clear asymmetry that is consistent with this model, with the probability that this asymmetry came about by chance being less than 1 %. This lends support to the hypothesis that the Universe is seeded by B fields that are generated in AGN via this mechanism
[The role of workplace health promotion in the concept of corporate social responsibility].
Wojtaszczyk, Patrycja
2008-01-01
Workplace health promotion (WHP) is an idea that was conceived over 25 years ago. At its very core is the wellbeing of employees. The development and dissemination of this notion, as well as the implementation of its basic principles have always been challenged by various theories and practices derived from the field of human resources management. The corporate social responsibility (CSR) is one of such new concepts promulgated within the European Union Based on the literature review, especially European Commission documents, articles retrieved in the EBSCO database, guidelines and guidebooks published by the CSR Forum, other NGOs active in the field, and the publications of the Nofer Institute of Occupational Medicine, the author makes an attempt to compare these two ideas and discuss the coherence between their assumptions. The primary hypothesis was that WHP is an element of CSR. The comparison between CSR and WHP concepts confirm a hypothesis that the latter is an element of the former, which means that activities aimed at taking care of health and well-being of employees contribute to the creation of a socially responsible company. It indicates that the implementation of both ideas requires multidisciplinary and holistic approach. In addition, the role of social dialog and workers' participation in the company management are strongly emphasized.
Long-term effects on symptoms by reducing electric fields from visual display units.
Oftedal, G; Nyvang, A; Moen, B E
1999-10-01
The purpose of the study was to see whether the results of an earlier study [ie, that skin symptoms were reduced by reducing electric fields from visual display units (VDU)] could be reproduced or not. In addition, an attempt was made to determine whether eye symptoms and symptoms from the nervous system could be reduced by reducing VDU electric fields. The study was designed as a controlled double-blind intervention. The electric fields were reduced by using electric-conducting screen filters. Forty-two persons completed the study while working at their ordinary job, first 1 week with no filter, then 3 months with an inactive filter and then 3 months with an active filter (or in reverse order). The inactive filters were identical to the active ones, except that their ground cables were replaced by empty plastic insulation. The inactive filters did not reduce the fields from the VDU. The fields were significantly lower with active filters than with inactive filters. Most of the symptoms were statistically significantly less pronounced in the periods with the filters when compared with the period with no filter. This finding can be explained by visual effects and psychological effects. No statistically significant difference in symptom severeness was observed between the period with an inactive filter and the one with an active filter. The study does not support the hypothesis that skin, eye, or nervous system symptoms can be reduced by reducing VDU electric fields.
NASA Astrophysics Data System (ADS)
Persinger, M. A.; McKay, B. E.; O'Donovan, C. A.; Koren, S. A.
2005-03-01
To test the hypothesis that sudden unexplained death (SUD) in some epileptic patients is related to geomagnetic activity we exposed rats in which limbic epilepsy had been induced to experimentally produced magnetic fields designed to simulate sudden storm commencements (SSCs). Prior studies with rats had shown that sudden death in groups of rats in which epilepsy had been induced months earlier was associated with the occurrence of SSCs and increased geomagnetic activity during the previous night. Schnabel et al. [(2000) Neurology 54:903 908) found no relationship between SUD in human patients and geomagnetic activity. A total of 96 rats were exposed to either 500, 50, 10 40 nT or sham (less than 10 nT) magnetic fields for 6 min every hour between midnight and 0800 hours (local time) for three successive nights. The shape of the complex, amplitude-modulated magnetic fields simulated the shape and structure of an average SSC. The rats were then seized with lithium and pilocarpine and the mortality was monitored. Whereas 10% of the rats that had been exposed to the sham field died within 24 h, 60% of the rats that had been exposed to the experimental magnetic fields simulating natural geomagnetic activity died (P<.001) during this period. These results suggest that correlational analyses between SUD in epileptic patients and increased geomagnetic activity can be simulated experimentally in epileptic rats and that potential mechanisms might be testable directly.
Consistency of field dependence in treated alcoholics.
Danahy, S; Kahn, M W
1981-10-01
In accounting for the consistent finding that alcoholics are more field dependent than other groups, research generally supports the predisposition rather than the consequence hypothesis. In this study 32 alcoholics were tested for field dependence with Embedded Figures on admission to and at discharge from a 60-d treatment program. A large and significant drop in the field dependence measure was found, supporting the consequence hypothesis. The pre-posttime period not controlled in other studies, allowing for clearing acute effects and improved nutrition, health, and test motivation, amy account for this change.
Hypothesis on the nature of atmospheric UFOs
NASA Astrophysics Data System (ADS)
Mukharev, L. A.
1991-08-01
A hypothesis is developed according to which the atmospheric UFO phenomenon has an electromagnetic nature. It is suggested that an atmospheric UFO is an agglomeration of charged atmospheric dust within which there exists a slowly damped electromagnetic field. This field is considered to be the source of the observed optical effects and the motive force of the UFO.
Development and optimization of hardware for delta relaxation enhanced MRI.
Harris, Chad T; Handler, William B; Araya, Yonathan; Martínez-Santiesteban, Francisco; Alford, Jamu K; Dalrymple, Brian; Van Sas, Frank; Chronik, Blaine A; Scholl, Timothy J
2014-10-01
Delta relaxation enhanced magnetic resonance (dreMR) imaging requires an auxiliary B0 electromagnet capable of shifting the main magnetic field within a clinical 1.5 Tesla (T) MR system. In this work, the main causes of interaction between an actively shielded, insertable resistive B0 electromagnet and a 1.5T superconducting system are systematically identified and mitigated. The effects of nonideal fabrication of the field-shifting magnet are taken into consideration through careful measurement during winding and improved accuracy in the design of the associated active shield. The shielding performance of the resultant electromagnet is compared against a previously built system in which the shield design was based on an ideal primary coil model. Hardware and software approaches implemented to eliminate residual image artifacts are presented in detail. The eddy currents produced by the newly constructed dreMR system are shown to have a significantly smaller "long-time-constant" component, consistent with the hypothesis that less energy is deposited into the cryostat of the MR system. With active compensation, the dreMR imaging system is capable of 0.22T field shifts within a clinical 1.5T MRI with no significant residual eddy-current fields. Copyright © 2013 Wiley Periodicals, Inc.
Antarctic Tectonics: Constraints From an ERS-1 Satellite Marine Gravity Field
McAdoo; Laxon
1997-04-25
A high-resolution gravity field of poorly charted and ice-covered ocean near West Antarctica, from the Ross Sea east to the Weddell Sea, has been derived with the use of satellite altimetry, including ERS-1 geodetic phase, wave-form data. This gravity field reveals regional tectonic fabric, such as gravity lineations, which are the expression of fracture zones left by early (65 to 83 million years ago) Pacific-Antarctic sea-floor spreading that separated the Campbell Plateau and New Zealand continent from West Antarctica. These lineations constrain plate motion history and confirm the hypothesis that Antarctica behaved as two distinct plates, separated from each other by an extensional Bellingshausen plate boundary active in the Amundsen Sea before about 61 million years ago.
Role of parietal regions in episodic memory retrieval: the dual attentional processes hypothesis.
Cabeza, Roberto
2008-01-01
Although parietal cortex is frequently activated during episodic memory retrieval, damage to this region does not markedly impair episodic memory. To account for these and other findings, a new dual attentional processes (DAP) hypothesis is proposed. According to this hypothesis, dorsal parietal cortex (DPC) contributes top-down attentional processes guided by retrieval goals, whereas ventral parietal cortex (VPC) contributes bottom-up attentional processes captured by the retrieval output. Consistent with this hypothesis, DPC activity increases with retrieval effort whereas VPC activity increases with confidence in old and new responses. The DAP hypothesis can also account for the overlap of parietal activations across different cognitive domains and for opposing effects of parietal activity on encoding vs. retrieval. Finally, the DAP hypothesis explains why VPC lesions yield a memory neglect syndrome: a deficit in spontaneously reporting relevant memory details but not in accessing the same details when guided by specific questions.
Universality hypothesis breakdown at one-loop order
NASA Astrophysics Data System (ADS)
Carvalho, P. R. S.
2018-05-01
We probe the universality hypothesis by analytically computing the at least two-loop corrections to the critical exponents for q -deformed O (N ) self-interacting λ ϕ4 scalar field theories through six distinct and independent field-theoretic renormalization group methods and ɛ -expansion techniques. We show that the effect of q deformation on the one-loop corrections to the q -deformed critical exponents is null, so the universality hypothesis is broken down at this loop order. Such an effect emerges only at the two-loop and higher levels, and the validity of the universality hypothesis is restored. The q -deformed critical exponents obtained through the six methods are the same and, furthermore, reduce to their nondeformed values in the appropriated limit.
Latest Results From the QuakeFinder Statistical Analysis Framework
NASA Astrophysics Data System (ADS)
Kappler, K. N.; MacLean, L. S.; Schneider, D.; Bleier, T.
2017-12-01
Since 2005 QuakeFinder (QF) has acquired an unique dataset with outstanding spatial and temporal sampling of earth's magnetic field along several active fault systems. This QF network consists of 124 stations in California and 45 stations along fault zones in Greece, Taiwan, Peru, Chile and Indonesia. Each station is equipped with three feedback induction magnetometers, two ion sensors, a 4 Hz geophone, a temperature sensor, and a humidity sensor. Data are continuously recorded at 50 Hz with GPS timing and transmitted daily to the QF data center in California for analysis. QF is attempting to detect and characterize anomalous EM activity occurring ahead of earthquakes. There have been many reports of anomalous variations in the earth's magnetic field preceding earthquakes. Specifically, several authors have drawn attention to apparent anomalous pulsations seen preceding earthquakes. Often studies in long term monitoring of seismic activity are limited by availability of event data. It is particularly difficult to acquire a large dataset for rigorous statistical analyses of the magnetic field near earthquake epicenters because large events are relatively rare. Since QF has acquired hundreds of earthquakes in more than 70 TB of data, we developed an automated approach for finding statistical significance of precursory behavior and developed an algorithm framework. Previously QF reported on the development of an Algorithmic Framework for data processing and hypothesis testing. The particular instance of algorithm we discuss identifies and counts magnetic variations from time series data and ranks each station-day according to the aggregate number of pulses in a time window preceding the day in question. If the hypothesis is true that magnetic field activity increases over some time interval preceding earthquakes, this should reveal itself by the station-days on which earthquakes occur receiving higher ranks than they would if the ranking scheme were random. This can be analysed using the Receiver Operating Characteristic test. In this presentation we give a status report of our latest results, largely focussed on reproducibility of results, robust statistics in the presence of missing data, and exploring optimization landscapes in our parameter space.
Kohane, M J; Tiller, W A
2001-06-01
The general hypothesis that quantum mechanics (QM) and thermodynamic concepts relate to biological systems is discussed and applied to the biological influence of: (1) electromagnetic fields (EMFs); and (2) EMFs that have been exposed to human intention. We illustrate our hypothesis with experiments involving four simultaneous treatments: exposure to ambient EMFs in the laboratory environment (C), exposure in a Faraday cage (F) and exposure in a Faraday cage with either: (i) an electronic device (IIED) which had been exposed to a specific human intention (d,j); or (ii) a non-exposed, physically identical, device (d,o). Experimental systems were fitness and energy metabolism in Drosophila melanogaster, in vitro enzyme activity and molecular concentration variability over time. Results indicated that shielding from ambient EMFs via a Faraday cage (F) made a significant difference relative to the unshielded control (C). Further, (d,o) had a significant lowering effect in the shielded environment. Finally, there was a strong 'intention' effect with the IIED (d,j) producing significant and positive effects in comparison to (d,o) in each experimental system. Copyright 2001 Harcourt Publishers Ltd.
Does the handicap principle explain the evolution of dimorphic ornaments?
Számadó, Szabolcs; Penn, Dustin J
2018-04-01
•We reinvestigate a new model based on the handicap hypothesis.•We show the handicap hypothesis does not explain male dimorphisms.•The results are due to the 'playing-the-field' assumption of the model.•The generality of the 'playing-the-field' assumption is suspect.•The evolutionary stability of the proposed new equilibrium is questionable.
Synchrony and the binding problem in macaque visual cortex
Dong, Yi; Mihalas, Stefan; Qiu, Fangtu; von der Heydt, Rüdiger; Niebur, Ernst
2009-01-01
We tested the binding-by-synchrony hypothesis which proposes that object representations are formed by synchronizing spike activity between neurons that code features of the same object. We studied responses of 32 pairs of neurons recorded with microelectrodes 3 mm apart in the visual cortex of macaques performing a fixation task. Upon mapping the receptive fields of the neurons, a quadrilateral was generated so that two of its sides were centered in the receptive fields at the optimal orientations. This one-figure condition was compared with a two-figure condition in which the neurons were stimulated by two separate figures, keeping the local edges in the receptive fields identical. For each neuron, we also determined its border ownership selectivity (H. Zhou, H. S. Friedman, & R. von der Heydt, 2000). We examined both synchronization and correlation at nonzero time lag. After correcting for effects of the firing rate, we found that synchrony did not depend on the binding condition. However, finding synchrony in a pair of neurons was correlated with finding border-ownership selectivity in both members of the pair. This suggests that the synchrony reflected the connectivity in the network that generates border ownership assignment. Thus, we have not found evidence to support the binding-by-synchrony hypothesis. PMID:19146262
Toward a convergence of regenerative medicine, rehabilitation, and neuroprosthetics.
Aravamudhan, Shyam; Bellamkonda, Ravi V
2011-11-01
No effective therapeutic interventions exist for severe neural pathologies, despite significant advances in regenerative medicine, rehabilitation, and neuroprosthetics. Our current hypothesis is that a specific combination of tissue engineering, pharmacology, cell replacement, drug delivery, and electrical stimulation, together with plasticity-promoting and locomotor training (neurorehabilitation) is necessary to interact synergistically in order to activate and enable all damaged circuits. We postulate that various convergent themes exist among the different therapeutic fields. Therefore, the objective of this review is to highlight the convergent themes, which we believe have a common goal of restoring function after neural damage. The convergent themes discussed in this review include modulation of inflammation and secondary damage, encouraging endogenous repair/regeneration (using scaffolds, cell transplantation, and drug delivery), application of electrical fields to modulate healing and/or activity, and finally modulation of plasticity.
Initiation of Positive Streamers near Uncharged Ice Hydrometeors in the Thundercloud Field
NASA Astrophysics Data System (ADS)
Babich, L. P.; Bochkov, E. I.
2018-05-01
Since the threshold electric field required for breakdown of air is much higher than the maximum field strength measured in thunderstorm clouds, the problem of lightning initiation still remains unsolved. According to the popular hypothesis, lightning can be initiated by a streamer discharge in the field enhanced near a hydrometeor. To verify the adequacy of this hypothesis, the development of a positive streamer propagating along the thunderstorm electric field in the vicinity of an ice needle at an air pressure corresponding to an altitude of 5 km (which is typical of the lightning initiation conditions) was simulated numerically. The hydrometeor dimensions are determined at which streamers can be initiated at different strengths of the thunderstorm electric field.
1984-08-01
Requirements 63 3.3.1 Hypothesis 4: Relationship Between Unit Technology and Information Source Requirements..................64 3.3.2 Hypothesis 5... Relationship Between Environ- mental Uncertainty and Information Source Requirements..................65 3.3.3 Hypothesis 6: Relationship Between Inter-Unit...Sources. ............ 67 3.4.1 Hypothesis 1: Relationship Between Unit Structure and the Accessibility and Quality of Information Sources .. ........ 68
The motivation to be sedentary predicts weight change when sedentary behaviors are reduced.
Epstein, Leonard H; Roemmich, James N; Cavanaugh, Meghan D; Paluch, Rocco A
2011-02-22
Obesity is correlated with a sedentary lifestyle, and the motivation to be active or sedentary is correlated with obesity. The present study tests the hypothesis that the motivation to be active or sedentary is correlated with weight change when children reduce their sedentary behavior. The motivation to be active or sedentary, changes in weight, and accelerometer assessed physical activity were collected for 55 families with overweight/obese children who participated in a nine-week field study to examine behavior and weight change as a function of reducing sedentary behavior. Children were studied in three 3-week phases, baseline, reduce targeted sedentary behaviors by 25% and reduce targeted sedentary behaviors by 50%. The targeted sedentary behaviors included television, video game playing, video watching, and computer use. The reinforcing value of sedentary behavior but not physical activity, was correlated with weight change, as losing weight was associated with lower reinforcing value of sedentary behaviors. Reducing sedentary behavior was not associated with a significant change in objectively measured physical activity, suggesting the main way in which reducing sedentary behavior influenced weight change is by complementary changes in energy intake. Estimated energy intake supported the hypothesis that reducing sedentary behaviors influences weight by reducing energy intake. These data show that the motivation to be sedentary limits the effects of reducing sedentary behavior on weight change in obese children. © 2011 Epstein et al; licensee BioMed Central Ltd.
Research strategies for magnetic fields and cancer.
Peck, Stephen C; Kavet, Robert
2005-02-01
Widespread concerns about whether electric and magnetic fields (EMF) could adversely affect human health have been raised in epidemiologic studies reported since the 1980s. Possible EMF health effects have been widely publicized in the popular press since that time. We consider here three possible mechanisms of action of EMF on childhood leukemia. We identify the first as "magnetic fields": this hypothesis relates the average level of magnetic field to the incidence of childhood leukemia. We identify a second, recently proposed, mechanism as "contact current": this hypothesis relates the low voltage and consequent current that occurs on the domestic water pipe, due to U.S. grounding practices, as a source for exposure of children. The third hypothesis is that the relationship observed is spurious. Using a modified example taken from the work of Von Winterfeldt and Keeney, we use Decision Analysis to estimate the value of information for distinguishing between the three hypotheses. We believe that this improves on the usual process for deciding on research budgets. Depending on which hypothesis we favor a priori, the value of being informed ranges from US 101 dollars to US 233 dollars per "problem household." Since there could be as many as 2 million such households, the value of information for resolving this issue could approach half a billion dollars! We find that there is no value of information for finding the odds ratio given the contact current hypothesis. In writing this article, we have consciously kept the computations as simple as possible so as to engage the reader's attention and interest. In a penultimate section, we suggest numerous possible extensions for a group interested in discussing and deciding on the value of research on the relationship between magnetic fields and cancer.
Spatial attention enhances the selective integration of activity from area MT.
Masse, Nicolas Y; Herrington, Todd M; Cook, Erik P
2012-09-01
Distinguishing which of the many proposed neural mechanisms of spatial attention actually underlies behavioral improvements in visually guided tasks has been difficult. One attractive hypothesis is that attention allows downstream neural circuits to selectively integrate responses from the most informative sensory neurons. This would allow behavioral performance to be based on the highest-quality signals available in visual cortex. We examined this hypothesis by asking how spatial attention affects both the stimulus sensitivity of middle temporal (MT) neurons and their corresponding correlation with behavior. Analyzing a data set pooled from two experiments involving four monkeys, we found that spatial attention did not appreciably affect either the stimulus sensitivity of the neurons or the correlation between their activity and behavior. However, for those sessions in which there was a robust behavioral effect of attention, focusing attention inside the neuron's receptive field significantly increased the correlation between these two metrics, an indication of selective integration. These results suggest that, similar to mechanisms proposed for the neural basis of perceptual learning, the behavioral benefits of focusing spatial attention are attributable to selective integration of neural activity from visual cortical areas by their downstream targets.
Sun, Chengsan
2017-01-01
Neural activity plays a critical role in the development of central circuits in sensory systems. However, the maintenance of these circuits at adulthood is usually not dependent on sensory-elicited neural activity. Recent work in the mouse gustatory system showed that selectively deleting the primary transduction channel for sodium taste, the epithelial sodium channel (ENaC), throughout development dramatically impacted the organization of the central terminal fields of three nerves that carry taste information to the nucleus of the solitary tract. More specifically, deleting ENaCs during development prevented the normal maturation of the fields. The present study was designed to extend these findings by testing the hypothesis that the loss of sodium taste activity impacts the maintenance of the normal adult terminal field organization in male and female mice. To do this, we used an inducible Cre-dependent genetic recombination strategy to delete ENaC function after terminal field maturation occurred. We found that removal of sodium taste neural activity at adulthood resulted in significant reorganization of mature gustatory afferent terminal fields in the nucleus of the solitary tract. Specifically, the chorda tympani and greater superficial petrosal nerve terminal fields were 1.4× and 1.6× larger than age-matched controls, respectively. By contrast, the glossopharyngeal nerve, which is not highly sensitive to sodium taste stimulation, did not undergo terminal field reorganization. These surprising results suggest that gustatory nerve terminal fields remain plastic well into adulthood, which likely impacts central coding of taste information and taste-related behaviors with altered taste experience. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. However, the importance of sensory-driven activity in maintaining these circuits at adulthood, especially in subcortical structures, appears to be much less. Here, we tested whether the loss of sodium taste activity in adult mice impacts the maintenance of how taste nerves project to the first central relay. We found that specific loss of sodium-elicited taste activity at adulthood produced dramatic and selective reorganization of terminal fields in the brainstem. This demonstrates, for the first time, that taste-elicited activity is necessary for the normal maintenance of central gustatory circuits at adulthood and highlights a level of plasticity not seen in other sensory system subcortical circuits. PMID:28676575
ERIC Educational Resources Information Center
Schutte, Anne R.; Spencer, John P.
2009-01-01
This study tested a dynamic field theory (DFT) of spatial working memory and an associated spatial precision hypothesis (SPH). Between 3 and 6 years of age, there is a qualitative shift in how children use reference axes to remember locations: 3-year-olds' spatial recall responses are biased toward reference axes after short memory delays, whereas…
Aguayo, Felipe I; Pacheco, Aníbal A; García-Rojo, Gonzalo J; Pizarro-Bauerle, Javier A; Doberti, Ana V; Tejos, Macarena; García-Pérez, María A; Rojas, Paulina S; Fiedler, Jenny L
2018-05-16
A single stress exposure facilitates memory formation through neuroplastic processes that reshape excitatory synapses in the hippocampus, probably requiring changes in extracellular matrix components. We tested the hypothesis that matrix metalloproteinase 9 (MMP-9), an enzyme that degrades components of extracellular matrix and synaptic proteins such as β-dystroglycan (β-DG 43 ), changes their activity and distribution in rat hippocampus during the acute stress response. After 2.5 h of restraint stress, we found (i) increased MMP-9 levels and potential activity in whole hippocampal extracts, accompanied by β-DG 43 cleavage, and (ii) a significant enhancement of MMP-9 immunoreactivity in dendritic fields such as stratum radiatum and the molecular layer of hippocampus. After 24 h of stress, we found that (i) MMP-9 net activity rises at somatic field, i.e., stratum pyramidale and granule cell layers, and also at synaptic field, mainly stratum radiatum and the molecular layer of hippocampus, and (ii) hippocampal synaptoneurosome fractions are enriched with MMP-9, without variation of its potential enzymatic activity, in accordance with the constant level of cleaved β-DG 43 . These findings indicate that stress triggers a peculiar timing response in the MMP-9 levels, net activity, and subcellular distribution in the hippocampus, suggesting its involvement in the processing of substrates during the stress response.
Search for auroral belt E-parallel fields with high-velocity barium ion injections
NASA Technical Reports Server (NTRS)
Heppner, J. P.; Ledley, B. G.; Miller, M. L.; Marionni, P. A.; Pongratz, M. B.
1989-01-01
In April 1984, four high-velocity shaped-charge Ba(+) injections were conducted from two sounding rockets at 770-975 km over northern Alaska under conditions of active auroral and magnetic disturbance. Spatial ionization (brightness) profiles of high-velocity Ba(+) clouds from photometric scans following each release were found to be consistent with the 28-sec theoretical time constant for Ba photoionization determined by Carlsten (1975). These observations therefore revealed no evidence of anomalous fast ionization predicted by the Alfven critical velocity hypothesis.
Swift does not detect a source near H 1743-322
NASA Astrophysics Data System (ADS)
Motta, S.; Belloni, T.; Campana, S.; Munoz-Darias, T.
2011-04-01
A low-frequency oscillation with a period of approximately 91 s was visible in the RXTE/PCA light curve of the black-hole candidate H1743-322 (ATel #3277), in outburst since April 6, 2011 (ATel #32763) and currently in hard state. The oscillation was detected only in the first RXTE observation (performed 16:05:01 (UTC) on April 12, 2011). The hypothesis that the oscillations are due to a second active source in the PCA field of view was put forward.
Absence of remote earthquake triggering within the Coso and Salton Sea geothermal production fields
NASA Astrophysics Data System (ADS)
Zhang, Qiong; Lin, Guoqing; Zhan, Zhongwen; Chen, Xiaowei; Qin, Yan; Wdowinski, Shimon
2017-01-01
Geothermal areas are long recognized to be susceptible to remote earthquake triggering, probably due to the high seismicity rates and presence of geothermal fluids. However, anthropogenic injection and extraction activity may alter the stress state and fluid flow within the geothermal fields. Here we examine the remote triggering phenomena in the Coso geothermal field and its surrounding areas to assess possible anthropogenic effects. We find that triggered earthquakes are absent within the geothermal field but occur in the surrounding areas. Similar observation is also found in the Salton Sea geothermal field. We hypothesize that continuous geothermal operation has eliminated any significant differential pore pressure between fractures inside the geothermal field through flushing geothermal precipitations and sediments out of clogged fractures. To test this hypothesis, we analyze the pore-pressure-driven earthquake swarms, and they are found to occur outside or on the periphery of the geothermal production field. Therefore, our results suggest that the geothermal operation has changed the subsurface fracture network, and differential pore pressure is the primary controlling factor of remote triggering in geothermal fields.
The GABA Hypothesis in Essential Tremor: Lights and Shadows.
Gironell, Alexandre
2014-01-01
The gamma-aminobutyric acid (GABA) hypothesis in essential tremor (ET) implies a disturbance of the GABAergic system, especially involving the cerebellum. This review examines the evidence of the GABA hypothesis. The review is based on published data about GABA dysfunction in ET, taking into account studies on cerebrospinal fluid, pathology, electrophysiology, genetics, neuroimaging, experimental animal models, and human drug therapies. Findings from several studies support the GABA hypothesis in ET. The hypothesis follows four steps: 1) cerebellar neurodegeneration with Purkinje cell loss; 2) a decrease in GABA system activity in deep cerebellar neurons; 3) disinhibition in output deep cerebellar neurons with pacemaker activity; and 4) an increase in rhythmic activity of the thalamus and thalamo-cortical circuit, contributing to the generation of tremor. Doubts have been cast on this hypothesis, however, by the fact that it is based on relatively few works, controversial post-mortem findings, and negative genetic studies on the GABA system. Furthermore, GABAergic drug efficacy is low and some GABAergic drugs do not have antitremoric efficacy. The GABA hypothesis continues to be the most robust pathophysiological hypothesis to explain ET. There is light in all GABA hypothesis steps, but a number of shadows cannot be overlooked. We need more studies to clarify the neurodegenerative nature of the disease, to confirm the decrease of GABA activity in the cerebellum, and to test more therapies that enhance the GABA transmission specifically in the cerebellum area.
Electric field measurements during the Condor critical velocity experiment
NASA Technical Reports Server (NTRS)
Kelley, M. C.; Pfaff, R. F.; Haerendel, G.
1986-01-01
The instrumentation of the Condor critical velocity Ba experiment (Wescott et al., 1986) for the measurements of the energetic particles and the electric field associated with a Ba explosion is described. The Ba explosion created a complex electric field pulse detected in situ by a single-axis double electric-field probe on a separate spacecraft. The measurements provide evidence of several important links in the critical-velocity chain, and are consistent with two hypotheses. The first hypothesis involves the creation of large polarization electric field due to charge separation; the second hypothesis implies a polarization of the beam by currents flowing across it. The chain of physical processes inferred from the observations is in agreement with most theories for the Alfven process.
Keary, Nina; Bischof, Hans-Joachim
2012-01-01
Many animals are able to perceive the earth magnetic field and to use it for orientation and navigation within the environment. The mechanisms underlying the perception and processing of magnetic field information within the brain have been thoroughly studied, especially in birds, but are still obscure. Three hypotheses are currently discussed, dealing with ferromagnetic particles in the beak of birds, with the same sort of particles within the lagena organs, or describing magnetically influenced radical-pair processes within retinal photopigments. Each hypothesis is related to a well-known sensory organ and claims parallel processing of magnetic field information with somatosensory, vestibular and visual input, respectively. Changes in activation within nuclei of the respective sensory systems have been shown previously. Most of these previous experiments employed intensity enhanced magnetic stimuli or lesions. We here exposed unrestrained zebra finches to either a stationary or a rotating magnetic field of the local intensity and inclination. C-Fos was used as an activity marker to examine whether the two treatments led to differences in fourteen brain areas including nuclei of the somatosensory, vestibular and visual system. An ANOVA revealed an overall effect of treatment, indicating that the magnetic field change was perceived by the birds. While the differences were too small to be significant in most areas, a significant enhancement of activation by the rotating stimulus was found in a hippocampal subdivision. Part of the hyperpallium showed a strong, nearly significant, increase. Our results are compatible with previous studies demonstrating an involvement of at least three different sensory systems in earth magnetic field perception and suggest that these systems, probably less elaborated, may also be found in nonmigrating birds. PMID:22679515
Keary, Nina; Bischof, Hans-Joachim
2012-01-01
Many animals are able to perceive the earth magnetic field and to use it for orientation and navigation within the environment. The mechanisms underlying the perception and processing of magnetic field information within the brain have been thoroughly studied, especially in birds, but are still obscure. Three hypotheses are currently discussed, dealing with ferromagnetic particles in the beak of birds, with the same sort of particles within the lagena organs, or describing magnetically influenced radical-pair processes within retinal photopigments. Each hypothesis is related to a well-known sensory organ and claims parallel processing of magnetic field information with somatosensory, vestibular and visual input, respectively. Changes in activation within nuclei of the respective sensory systems have been shown previously. Most of these previous experiments employed intensity enhanced magnetic stimuli or lesions. We here exposed unrestrained zebra finches to either a stationary or a rotating magnetic field of the local intensity and inclination. C-Fos was used as an activity marker to examine whether the two treatments led to differences in fourteen brain areas including nuclei of the somatosensory, vestibular and visual system. An ANOVA revealed an overall effect of treatment, indicating that the magnetic field change was perceived by the birds. While the differences were too small to be significant in most areas, a significant enhancement of activation by the rotating stimulus was found in a hippocampal subdivision. Part of the hyperpallium showed a strong, nearly significant, increase. Our results are compatible with previous studies demonstrating an involvement of at least three different sensory systems in earth magnetic field perception and suggest that these systems, probably less elaborated, may also be found in nonmigrating birds.
Bielak, Allison A M
2010-01-01
The 'use it or lose it' hypothesis of cognitive aging predicts that engagement in intellectual, social, and physical activities offers protective benefits from age-related cognitive decline and lowers dementia risk. Although this hypothesis has not yet been supported conclusively, there is some empirical evidence in favor of the proposal. However, a number of questions surrounding the relationship between activity participation and cognitive ability in older adulthood are not yet well answered. This mini-review identifies seven key methodological and theoretical issues that are critical to our understanding and eventual possible promotion of activity participation as a way to maintain cognitive well-being. These include the mechanisms involved, the optimal ways of assessing activity engagement, which cognitive domains receive the most benefit from activity engagement, the temporal nature and the directionality of the relationship, the influence of demographic variables such as age, gender, or education, and whether one activity domain offers the most benefit to cognition. The current knowledge on each of these issues is critically evaluated, including describing what we already know about the issue, and identifying potential difficulties and opportunities that may exist in finding an answer. More studies need to take on the challenge of specifically targeting these issues, as each is essential to moving the field forward. Copyright (c) 2009 S. Karger AG, Basel.
Rayleigh's hypothesis and the geometrical optics limit.
Elfouhaily, Tanos; Hahn, Thomas
2006-09-22
The Rayleigh hypothesis (RH) is often invoked in the theoretical and numerical treatment of rough surface scattering in order to decouple the analytical form of the scattered field. The hypothesis stipulates that the scattered field away from the surface can be extended down onto the rough surface even though it is formed by solely up-going waves. Traditionally this hypothesis is systematically used to derive the Volterra series under the small perturbation method which is equivalent to the low-frequency limit. In this Letter we demonstrate that the RH also carries the high-frequency or the geometrical optics limit, at least to first order. This finding has never been explicitly derived in the literature. Our result comforts the idea that the RH might be an exact solution under some constraints in the general case of random rough surfaces and not only in the case of small-slope deterministic periodic gratings.
Sanchez, Gaëtan; Lecaignard, Françoise; Otman, Anatole; Maby, Emmanuel; Mattout, Jérémie
2016-01-01
The relatively young field of Brain-Computer Interfaces has promoted the use of electrophysiology and neuroimaging in real-time. In the meantime, cognitive neuroscience studies, which make extensive use of functional exploration techniques, have evolved toward model-based experiments and fine hypothesis testing protocols. Although these two developments are mostly unrelated, we argue that, brought together, they may trigger an important shift in the way experimental paradigms are being designed, which should prove fruitful to both endeavors. This change simply consists in using real-time neuroimaging in order to optimize advanced neurocognitive hypothesis testing. We refer to this new approach as the instantiation of an Active SAmpling Protocol (ASAP). As opposed to classical (static) experimental protocols, ASAP implements online model comparison, enabling the optimization of design parameters (e.g., stimuli) during the course of data acquisition. This follows the well-known principle of sequential hypothesis testing. What is radically new, however, is our ability to perform online processing of the huge amount of complex data that brain imaging techniques provide. This is all the more relevant at a time when physiological and psychological processes are beginning to be approached using more realistic, generative models which may be difficult to tease apart empirically. Based upon Bayesian inference, ASAP proposes a generic and principled way to optimize experimental design adaptively. In this perspective paper, we summarize the main steps in ASAP. Using synthetic data we illustrate its superiority in selecting the right perceptual model compared to a classical design. Finally, we briefly discuss its future potential for basic and clinical neuroscience as well as some remaining challenges.
Models of hemispheric specialization in facial emotion perception--a reevaluation.
Najt, Pablo; Bayer, Ulrike; Hausmann, Markus
2013-02-01
A considerable amount of research on functional cerebral asymmetries (FCAs) for facial emotion perception has shown conflicting support for three competing models: (i) the Right Hemisphere Hypothesis, (ii) the Valence-Specific Hypothesis, and (iii) the Approach/Withdrawal model. However, the majority of studies evaluating the Right Hemisphere or the Valence-Specific Hypotheses are rather limited by the small number of emotional expressions used. In addition, it is difficult to evaluate the Approach/Withdrawal Hypothesis due to insufficient data on anger and FCAs. The aim of the present study was (a) to review visual half field (VHF) studies of hemispheric specialization in facial emotion perception and (b) to reevaluate empirical evidence with respect to all three partly conflicting hypotheses. Results from the present study revealed a left visual field (LVF)/right hemisphere advantage for the perception of angry, fearful, and sad facial expressions and a right visual field (RVF)/left hemisphere advantage for the perception of happy expressions. Thus, FCAs for the perception of specific facial emotions do not fully support the Right Hemisphere Hypothesis, the Valence-Specific Hypothesis, or the Approach/Withdrawal model. A systematic literature review, together with the results of the present study, indicate a consistent LVF/right hemisphere advantage only for a subset of negative emotions including anger, fear and sadness, rather suggesting a "negative (only) valence model." PsycINFO Database Record (c) 2013 APA, all rights reserved.
Poynting Robertson Battery and the Chiral Magnetic Fields of AGN Jets
NASA Technical Reports Server (NTRS)
Kazanas, Demosthenes
2010-01-01
We propose that the magnetic fields in the accretion disks of active galactic nuclei (AGNs) are generated by azimuthal electric currents due to the difference between the plasma electron and ion velocities that arises when the electrons are retarded by interactions with the AGN photons (the Poynting Robertson battery). This process provides a unique relation between the polarity of the poloidal B field to the angular velocity Omega of the accretion disk (B is parallel to Omega), a relation absent in the more popular dynamo B-field generation. This then leads to a unique direction for the toroidal B field induced by disk rotation. Observations of the toroidal fields of 29 AGN jets revealed by parsec-scale Faraday rotation measurements show a clear asymmetry that is consistent with this model, with the probability that this asymmetry comes about by chance being approx.0.06 %. This lends support to the hypothesis that the universe is seeded by B fields that are generated in AGNs via this mechanism and subsequently injected into intergalactic space by the jet outflows.
Cardiac torsion and electromagnetic fields: the cardiac bioinformation hypothesis.
Burleson, Katharine O; Schwartz, Gary E
2005-01-01
Although in physiology the heart is often referred to as a simple piston pump, there are in fact two additional features that are integral to cardiac physiology and function. First, the heart as it contracts in systole, also rotates and produces torsion due to the structure of the myocardium. Second, the heart produces a significant electromagnetic field with each contraction due to the coordinated depolarization of myocytes producing a current flow. Unlike the electrocardiogram, the magnetic field is not limited to volume conduction and extends outside the body. The therapeutic potential for interaction of this cardioelectromagnetic field both within and outside the body is largely unexplored. It is our hypothesis that the heart functions as a generator of bioinformation that is central to normative functioning of body. The source of this bioinformation is based on: (1) vortex blood flow in the left ventricle; (2) a cardiac electromagnetic field and both; (3) heart sounds; and (4) pulse pressure which produce frequency and amplitude information. Thus, there is a multidimensional role for the heart in physiology and biopsychosocial dynamics. Recognition of these cardiac properties may result in significant implications for new therapies for cardiovascular disease based on increasing cardiac energy efficiency (coherence) and bioinformation from the cardioelectromagnetic field. Research studies to test this hypothesis are suggested.
Endogenous electromagnetic fields in plant leaves: a new hypothesis for vascular pattern formation.
Pietak, Alexis Mari
2011-06-01
Electromagnetic (EM) phenomena have long been implicated in biological development, but few detailed, practical mechanisms have been put forth to connect electromagnetism with morphogenetic processes. This work describes a new hypothesis for plant leaf veination, whereby an endogenous electric field forming as a result of a coherent Frohlich process, and corresponding to an EM resonant mode of the developing leaf structure, is capable of instigating leaf vascularisation. In order to test the feasibility of this hypothesis, a three-dimensional, EM finite-element model (FEM) of a leaf primordium was constructed to determine if suitable resonant modes were physically possible for geometric and physical parameters similar to those of developing leaf tissue. Using the FEM model, resonant EM modes with patterns of relevance to developing leaf vein modalities were detected. On account of the existence of shared geometric signatures in a leaf's vascular pattern and the electric field component of EM resonant modes supported by a developing leaf structure, further theoretical and experimental investigations are warranted. Significantly, this hypothesis is not limited to leaf vascular patterning, but may be applicable to a variety of morphogenetic phenomena in a number of living systems.
Castelló, María E; Rodríguez-Cattáneo, Alejo; Aguilera, Pedro A; Iribarne, Leticia; Pereira, Ana Carolina; Caputi, Angel A
2009-05-01
This article deals with the electric organ and its discharge in Gymnotus coropinae, a representative species of one of the three main clades of the genus. Three regions with bilateral symmetry are described: (1) subopercular (medial and lateral columns of complex shaped electrocytes); (2) abdominal (medial and lateral columns of cuboidal and fusiform electrocytes); and (3) main [four columns, one dorso-lateral (containing fusiform electrocytes) and three medial (containing cuboidal electrocytes)]. Subopercular electrocytes are all caudally innervated whereas two of the medial subopercular ones are also rostrally innervated. Fusiform electrocytes are medially innervated at the abdominal portion, and at their rostral and caudal poles at the main portion. Cuboidal electrocytes are always caudally innervated. The subopercular portion generates a slow head-negative wave (V(1r)) followed by a head-positive spike (V(3r)). The abdominal and main portions generate a fast tetra-phasic complex (V(2345ct)). Since subopercular components prevail in the near field and the rest in the far field, time coincidence of V(3r) with V(2) leads to different waveforms depending on the position of the receiver. This confirms the splitting hypothesis of communication and exploration channels based on the different timing, frequency band and reach of the regional waveforms. The following hypothesis is compatible with the observed anatomo-functional organization: V(1r) corresponds to the rostral activation of medial subopercular electrocytes and V(3r) to the caudal activation of all subopercular electrocytes; V(2), and part of V(3ct), corresponds to the successive activation of the rostral and caudal poles of dorso-lateral fusiform electrocytes; and V(345ct) is initiated in the caudal face of cuboidal electrocytes by synaptic activation (V(3ct)) and it is completed (V(45ct)) by the successive activation of rostral and caudal faces by the action currents evoked in the opposite face.
Spatial updating in area LIP is independent of saccade direction.
Heiser, Laura M; Colby, Carol L
2006-05-01
We explore the world around us by making rapid eye movements to objects of interest. Remarkably, these eye movements go unnoticed, and we perceive the world as stable. Spatial updating is one of the neural mechanisms that contributes to this perception of spatial constancy. Previous studies in macaque lateral intraparietal cortex (area LIP) have shown that individual neurons update, or "remap," the locations of salient visual stimuli at the time of an eye movement. The existence of remapping implies that neurons have access to visual information from regions far beyond the classically defined receptive field. We hypothesized that neurons have access to information located anywhere in the visual field. We tested this by recording the activity of LIP neurons while systematically varying the direction in which a stimulus location must be updated. Our primary finding is that individual neurons remap stimulus traces in multiple directions, indicating that LIP neurons have access to information throughout the visual field. At the population level, stimulus traces are updated in conjunction with all saccade directions, even when we consider direction as a function of receptive field location. These results show that spatial updating in LIP is effectively independent of saccade direction. Our findings support the hypothesis that the activity of LIP neurons contributes to the maintenance of spatial constancy throughout the visual field.
Capocchi, G; Della Torre, G; Grassi, S; Pettorossi, V E; Zampolini, M
1992-01-01
The effect of high frequency stimulation (HFS) of the primary vestibular afferents on field potentials recorded in the ipsilateral Medial Vestibular Nuclei (MVN) was studied. Our results show that potentiation and depression can be induced in different portions of MVN, which are distinguishable by their anatomical organization. HFS induces potentiation of the monosynaptic component in the ventral portion of the MVN, whereas it provokes depression of the polysynaptic component in the dorsal portion of the same nucleus. The induction of both potentiation and depression was blocked under AP5 perfusion, thus demonstrating that NMDA receptor activation mediates both phenomena. Furthermore, the finding that the field potentials were not modified during perfusion with DL-AP5, as previously reported, supports the hypothesis that NMDA receptors are not involved in the normal synaptic transmission from the primary vestibular afferent fibres, but are only activated following hyperstimulation of this afferent system. Our results suggest that the mechanisms of long term modification of synaptic efficacy observed in MVN may underlie the plasticity phenomena occurring in vestibular nuclei.
Flare Activity of Wide Binary Stars with Kepler
NASA Astrophysics Data System (ADS)
Clarke, Riley W.; Davenport, James R. A.; Covey, Kevin R.; Baranec, Christoph
2018-01-01
We present an analysis of flare activity in wide binary stars using a combination of value-added data sets from the NASA Kepler mission. The target list contains a set of previously discovered wide binary star systems identified by proper motions in the Kepler field. We cross-matched these systems with estimates of flare activity for ∼200,000 stars in the Kepler field, allowing us to compare relative flare luminosity between stars in coeval binaries. From a sample of 184 previously known wide binaries in the Kepler field, we find 58 with detectable flare activity in at least 1 component, 33 of which are similar in mass (q > 0.8). Of these 33 equal-mass binaries, the majority display similar (±1 dex) flare luminosity between both stars, as expected for stars of equal mass and age. However, we find two equal-mass pairs where the secondary (lower mass) star is more active than its counterpart, and two equal-mass pairs where the primary star is more active. The stellar rotation periods are also anomalously fast for stars with elevated flare activity. Pairs with discrepant rotation and activity qualitatively seem to have lower mass ratios. These outliers may be due to tidal spin-up, indicating these wide binaries could be hierarchical triple systems. We additionally present high-resolution adaptive optics images for two wide binary systems to test this hypothesis. The demographics of stellar rotation and magnetic activity between stars in wide binaries may be useful indicators for discerning the formation scenarios of these systems.
A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation.
Fiebig, Florian; Lansner, Anders
2017-01-04
A dominant theory of working memory (WM), referred to as the persistent activity hypothesis, holds that recurrently connected neural networks, presumably located in the prefrontal cortex, encode and maintain WM memory items through sustained elevated activity. Reexamination of experimental data has shown that prefrontal cortex activity in single units during delay periods is much more variable than predicted by such a theory and associated computational models. Alternative models of WM maintenance based on synaptic plasticity, such as short-term nonassociative (non-Hebbian) synaptic facilitation, have been suggested but cannot account for encoding of novel associations. Here we test the hypothesis that a recently identified fast-expressing form of Hebbian synaptic plasticity (associative short-term potentiation) is a possible mechanism for WM encoding and maintenance. Our simulations using a spiking neural network model of cortex reproduce a range of cognitive memory effects in the classical multi-item WM task of encoding and immediate free recall of word lists. Memory reactivation in the model occurs in discrete oscillatory bursts rather than as sustained activity. We relate dynamic network activity as well as key synaptic characteristics to electrophysiological measurements. Our findings support the hypothesis that fast Hebbian short-term potentiation is a key WM mechanism. Working memory (WM) is a key component of cognition. Hypotheses about the neural mechanism behind WM are currently under revision. Reflecting recent findings of fast Hebbian synaptic plasticity in cortex, we test whether a cortical spiking neural network model with such a mechanism can learn a multi-item WM task (word list learning). We show that our model can reproduce human cognitive phenomena and achieve comparable memory performance in both free and cued recall while being simultaneously compatible with experimental data on structure, connectivity, and neurophysiology of the underlying cortical tissue. These findings are directly relevant to the ongoing paradigm shift in the WM field. Copyright © 2017 Fiebig and Lansner.
A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation
Fiebig, Florian
2017-01-01
A dominant theory of working memory (WM), referred to as the persistent activity hypothesis, holds that recurrently connected neural networks, presumably located in the prefrontal cortex, encode and maintain WM memory items through sustained elevated activity. Reexamination of experimental data has shown that prefrontal cortex activity in single units during delay periods is much more variable than predicted by such a theory and associated computational models. Alternative models of WM maintenance based on synaptic plasticity, such as short-term nonassociative (non-Hebbian) synaptic facilitation, have been suggested but cannot account for encoding of novel associations. Here we test the hypothesis that a recently identified fast-expressing form of Hebbian synaptic plasticity (associative short-term potentiation) is a possible mechanism for WM encoding and maintenance. Our simulations using a spiking neural network model of cortex reproduce a range of cognitive memory effects in the classical multi-item WM task of encoding and immediate free recall of word lists. Memory reactivation in the model occurs in discrete oscillatory bursts rather than as sustained activity. We relate dynamic network activity as well as key synaptic characteristics to electrophysiological measurements. Our findings support the hypothesis that fast Hebbian short-term potentiation is a key WM mechanism. SIGNIFICANCE STATEMENT Working memory (WM) is a key component of cognition. Hypotheses about the neural mechanism behind WM are currently under revision. Reflecting recent findings of fast Hebbian synaptic plasticity in cortex, we test whether a cortical spiking neural network model with such a mechanism can learn a multi-item WM task (word list learning). We show that our model can reproduce human cognitive phenomena and achieve comparable memory performance in both free and cued recall while being simultaneously compatible with experimental data on structure, connectivity, and neurophysiology of the underlying cortical tissue. These findings are directly relevant to the ongoing paradigm shift in the WM field. PMID:28053032
Applicability of Taylor's hypothesis in thermally driven turbulence
Verma, Mahendra K.
2018-01-01
In this paper, we show that, in the presence of large-scale circulation (LSC), Taylor’s hypothesis can be invoked to deduce the energy spectrum in thermal convection using real-space probes, a popular experimental tool. We perform numerical simulation of turbulent convection in a cube and observe that the velocity field follows Kolmogorov’s spectrum (k−5/3). We also record the velocity time series using real-space probes near the lateral walls. The corresponding frequency spectrum exhibits Kolmogorov’s spectrum (f−5/3), thus validating Taylor’s hypothesis with the steady LSC playing the role of a mean velocity field. The aforementioned findings based on real-space probes provide valuable inputs for experimental measurements used for studying the spectrum of convective turbulence. PMID:29765668
Applicability of Taylor's hypothesis in thermally driven turbulence
NASA Astrophysics Data System (ADS)
Kumar, Abhishek; Verma, Mahendra K.
2018-04-01
In this paper, we show that, in the presence of large-scale circulation (LSC), Taylor's hypothesis can be invoked to deduce the energy spectrum in thermal convection using real-space probes, a popular experimental tool. We perform numerical simulation of turbulent convection in a cube and observe that the velocity field follows Kolmogorov's spectrum (k-5/3). We also record the velocity time series using real-space probes near the lateral walls. The corresponding frequency spectrum exhibits Kolmogorov's spectrum (f-5/3), thus validating Taylor's hypothesis with the steady LSC playing the role of a mean velocity field. The aforementioned findings based on real-space probes provide valuable inputs for experimental measurements used for studying the spectrum of convective turbulence.
Implications of Using the GAD Hypothesis in Paleopole Studies for the Moon
NASA Astrophysics Data System (ADS)
Powell, J.; Stanley, S.
2017-12-01
The Moon does not currently have a dynamo-generated magnetic field, however, observations of crustal magnetism and paleomagnetic analyses of Apollo samples have demonstrated that the Moon did possess a dynamo-generated field in the past. Several studies have attempted to use magnetic paleopole analyses to determine the previous rotation poles of the Moon and thereby infer lunar true polar wander. However, these studies all assumed that the Geocentric Axial Dipole (GAD) hypothesis is valid for the Moon. In this study we perform a paleopole analysis of dynamo simulations relevant to the ancient Moon to show the biases inherent in assuming the GAD hypothesis for the Moon. The results of this research have implications for studies of lunar true polar wander.
Li, Fuhong; Cao, Bihua; Luo, Yuejia; Lei, Yi; Li, Hong
2013-02-01
Functional magnetic resonance imaging (fMRI) was used to examine differences in brain activation that occur when a person receives the different outcomes of hypothesis testing (HT). Participants were provided with a series of images of batteries and were asked to learn a rule governing what kinds of batteries were charged. Within each trial, the first two charged batteries were sequentially displayed, and participants would generate a preliminary hypothesis based on the perceptual comparison. Next, a third battery that served to strengthen, reject, or was irrelevant to the preliminary hypothesis was displayed. The fMRI results revealed that (1) no significant differences in brain activation were found between the 2 hypothesis-maintain conditions (i.e., strengthen and irrelevant conditions); and (2) compared with the hypothesis-maintain conditions, the hypothesis-reject condition activated the left medial frontal cortex, bilateral putamen, left parietal cortex, and right cerebellum. These findings are discussed in terms of the neural correlates of the subcomponents of HT and working memory manipulation. Copyright © 2012 Elsevier Inc. All rights reserved.
Skyberg, Rolf; Sun, Chengsan; Hill, David L
2017-08-09
Neural activity plays a critical role in the development of central circuits in sensory systems. However, the maintenance of these circuits at adulthood is usually not dependent on sensory-elicited neural activity. Recent work in the mouse gustatory system showed that selectively deleting the primary transduction channel for sodium taste, the epithelial sodium channel (ENaC), throughout development dramatically impacted the organization of the central terminal fields of three nerves that carry taste information to the nucleus of the solitary tract. More specifically, deleting ENaCs during development prevented the normal maturation of the fields. The present study was designed to extend these findings by testing the hypothesis that the loss of sodium taste activity impacts the maintenance of the normal adult terminal field organization in male and female mice. To do this, we used an inducible Cre-dependent genetic recombination strategy to delete ENaC function after terminal field maturation occurred. We found that removal of sodium taste neural activity at adulthood resulted in significant reorganization of mature gustatory afferent terminal fields in the nucleus of the solitary tract. Specifically, the chorda tympani and greater superficial petrosal nerve terminal fields were 1.4× and 1.6× larger than age-matched controls, respectively. By contrast, the glossopharyngeal nerve, which is not highly sensitive to sodium taste stimulation, did not undergo terminal field reorganization. These surprising results suggest that gustatory nerve terminal fields remain plastic well into adulthood, which likely impacts central coding of taste information and taste-related behaviors with altered taste experience. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. However, the importance of sensory-driven activity in maintaining these circuits at adulthood, especially in subcortical structures, appears to be much less. Here, we tested whether the loss of sodium taste activity in adult mice impacts the maintenance of how taste nerves project to the first central relay. We found that specific loss of sodium-elicited taste activity at adulthood produced dramatic and selective reorganization of terminal fields in the brainstem. This demonstrates, for the first time, that taste-elicited activity is necessary for the normal maintenance of central gustatory circuits at adulthood and highlights a level of plasticity not seen in other sensory system subcortical circuits. Copyright © 2017 the authors 0270-6474/17/377619-12$15.00/0.
Entorhinal cortex receptive fields are modulated by spatial attention, even without movement
König, Peter; König, Seth; Buffalo, Elizabeth A
2018-01-01
Grid cells in the entorhinal cortex allow for the precise decoding of position in space. Along with potentially playing an important role in navigation, grid cells have recently been hypothesized to make a general contribution to mental operations. A prerequisite for this hypothesis is that grid cell activity does not critically depend on physical movement. Here, we show that movement of covert attention, without any physical movement, also elicits spatial receptive fields with a triangular tiling of space. In monkeys trained to maintain central fixation while covertly attending to a stimulus moving in the periphery we identified a significant population (20/141, 14% neurons at a FDR <5%) of entorhinal cells with spatially structured receptive fields. This contrasts with recordings obtained in the hippocampus, where grid-like representations were not observed. Our results provide evidence that neurons in macaque entorhinal cortex do not rely on physical movement. PMID:29537964
The Two-Brains Hypothesis: Towards a guide for brain-brain and brain-machine interfaces.
Goodman, G; Poznanski, R R; Cacha, L; Bercovich, D
2015-09-01
Great advances have been made in signaling information on brain activity in individuals, or passing between an individual and a computer or robot. These include recording of natural activity using implants under the scalp or by external means or the reverse feeding of such data into the brain. In one recent example, noninvasive transcranial magnetic stimulation (TMS) allowed feeding of digitalized information into the central nervous system (CNS). Thus, noninvasive electroencephalography (EEG) recordings of motor signals at the scalp, representing specific motor intention of hand moving in individual humans, were fed as repetitive transcranial magnetic stimulation (rTMS) at a maximum intensity of 2.0[Formula: see text]T through a circular magnetic coil placed flush on each of the heads of subjects present at a different location. The TMS was said to induce an electric current influencing axons of the motor cortex causing the intended hand movement: the first example of the transfer of motor intention and its expression, between the brains of two remote humans. However, to date the mechanisms involved, not least that relating to the participation of magnetic induction, remain unclear. In general, in animal biology, magnetic fields are usually the poor relation of neuronal current: generally "unseen" and if apparent, disregarded or just given a nod. Niels Bohr searched for a biological parallel to complementary phenomena of physics. Pertinently, the two-brains hypothesis (TBH) proposed recently that advanced animals, especially man, have two brains i.e., the animal CNS evolved as two fundamentally different though interdependent, complementary organs: one electro-ionic (tangible, known and accessible), and the other, electromagnetic (intangible and difficult to access) - a stable, structured and functional 3D compendium of variously induced interacting electro-magnetic (EM) fields. Research on the CNS in health and disease progresses including that on brain-brain, brain-computer and brain-robot engineering. As they grow even closer, these disciplines involve their own unique complexities, including direction by the laws of inductive physics. So the novel TBH hypothesis has wide fundamental implications, including those related to TMS. These require rethinking and renewed research engaging the fully complementary equivalence of mutual magnetic and electric field induction in the CNS and, within this context, a new mathematics of the brain to decipher higher cognitive operations not possible with current brain-brain and brain-machine interfaces. Bohr may now rest.
Rund, B R
2014-06-01
Since the neurotoxicity hypothesis was launched in 1991, it has generated a great deal of interest and given rise to several studies investigating the validity of the hypothesis that being psychotic has a toxic effect on the brain. The toxicity argument is used to justify early treatment. This review attempts to assess the studies that have addressed the question: Does an active psychosis, indexed by the duration of untreated psychosis (DUP), cause neurobiological pathology? The validity of the hypothesis has been studied primarily by correlation analyses that assess whether there are significant correlations between DUP and changes in neurocognitive functioning or brain structure. In this review, relevant reports were identified by a literature survey. Of the 35 studies (33 papers) evaluated, six neurocognitive studies supported the hypothesis and 16 did not. Eight morphology studies supported the hypothesis and five did not. In general, the studies that did not support the neurotoxicity hypothesis were larger in size and had more adequate designs (longitudinal) than those that supported the hypothesis. Overall, there is limited empirical evidence for the neurotoxicity hypothesis in the studies reviewed. However, it is possible that there is a threshold value for a toxic effect of psychosis, rather than a linear relationship between DUP and a neurotoxic effect, and that several of the studies evaluated did not have a long enough DUP to detect a toxic effect of active psychosis.
NASA Astrophysics Data System (ADS)
Weiser, D. A.; Jackson, D. D.
2015-12-01
In a tectonically active area, a definitive discrimination between geothermally-induced and tectonic earthquakes is difficult to achieve. We focus our study on California's 11 major geothermal fields: Amedee, Brawley, Casa Diablo, Coso, East Mesa, The Geysers, Heber, Litchfield, Salton Sea, Susanville, and Wendel. The Geysers geothermal field is the world's largest geothermal energy producer. California's Department of Oil Gas and Geothermal Resources provides field-wide monthly injection and production volumes for each of these sites, which allows us to study the relationship between geothermal pumping activities and seismicity. Since many of the geothermal fields began injecting and producing before nearby seismic stations were installed, we use smoothed seismicity since 1932 from the ANSS catalog as a proxy for tectonic earthquake rate. We examine both geothermal pumping and long-term earthquake rate as factors that may control earthquake rate. Rather than focusing only on the largest earthquake, which is essentially a random occurrence in time, we examine how M≥4 earthquake rate density (probability per unit area, time, and magnitude) varies for each field. We estimate relative contributions to the observed earthquake rate of M≥4 from both a long-term earthquake rate (Kagan and Jackson, 2010) and pumping activity. For each geothermal field, respective earthquake catalogs (NCEDC and SCSN) are complete above at least M3 during the test period (which we tailor to each site). We test the hypothesis that the observed earthquake rate at a geothermal site during the test period is a linear combination of the long-term seismicity and pumping rates. We use a grid search to determine the confidence interval of the weighting parameters.
Testing fundamental ecological concepts with a Pythium-Prunus pathosystem
USDA-ARS?s Scientific Manuscript database
The study of plant-pathogen interactions has enabled tests of basic ecological concepts on plant community assembly (Janzen-Connell Hypothesis) and plant invasion (Enemy Release Hypothesis). We used a field experiment to (#1) test whether Pythium effects depended on host (seedling) density and/or d...
PET-Based Confirmation of Orientation Sensitivity of TMS-Induced Cortical Activation in Humans
Krieg, Todd D.; Salinas, Felipe S.; Narayana, Shalini; Fox, Peter T.; Mogul, David J.
2017-01-01
Background Currently, it is difficult to predict precise regions of cortical activation in response to transcranial magnetic stimulation (TMS). Most analytical approaches focus on applied magnetic field strength in the target region as the primary factor, placing activation on the gyral crowns. However, imaging studies support M1 targets being typically located in the sulcal banks. Objective/hypothesis To more thoroughly investigate this inconsistency, we sought to determine whether neocortical surface orientation was a critical determinant of regional activation. Methods MR images were used to construct cortical and scalp surfaces for 18 subjects. The angle (θ) between the cortical surface normal and its nearest scalp normal for ~50,000 cortical points per subject was used to quantify cortical location (i.e., gyral vs. sulcal). TMS-induced activations of primary motor cortex (M1) were compared to brain activations recorded during a finger-tapping task using concurrent positron emission tomographic (PET) imaging. Results Brain activations were primarily sulcal for both the TMS and task activations (P < 0.001 for both) compared to the overall cortical surface orientation. Also, the location of maximal blood flow in response to either TMS or finger-tapping correlated well using the cortical surface orientation angle or distance to scalp (P < 0.001 for both) as criteria for comparison between different neocortical activation modalities. Conclusion This study provides further evidence that a major factor in cortical activation using TMS is the orientation of the cortical surface with respect to the induced electric field. The results show that, despite the gyral crown of the cortex being subjected to a larger magnetic field magnitude, the sulcal bank of M1 had larger cerebral blood flow (CBF) responses during TMS. PMID:23827648
Parallelism Effects and Verb Activation: The Sustained Reactivation Hypothesis
Shapiro, Lewis P.; Love, Tracy
2010-01-01
This study investigated the processes underlying parallelism by evaluating the activation of a parallel element (i.e., a verb) throughout and-coordinated sentences. Four points were tested: (1) approximately 1,600ms after the verb in the first conjunct (PP1), (2) immediately following the conjunction (PP2), (3) approximately 1,100ms after the conjunction (PP3), (4) at the end of the second conjunct (PP4). The results revealed no activation at PP1, suggesting activation related to the initial presentation had decayed by this point; however, activation was observed at PP2, PP3, and PP4, suggesting the conjunction elicits reactivation that is sustained throughout the second conjunct. These findings support a specific hypothesis about parallelism, the sustained reactivation hypothesis. This hypothesis claims that, in conjoined structures, a cue that is associated with parallelism elicits the reactivation of material from the first conjunct and that this activation is sustained until integration with the second conjunct can be completed. PMID:19774464
Parallelism effects and verb activation: the sustained reactivation hypothesis.
Callahan, Sarah M; Shapiro, Lewis P; Love, Tracy
2010-04-01
This study investigated the processes underlying parallelism by evaluating the activation of a parallel element (i.e., a verb) throughout and-coordinated sentences. Four points were tested: (1) approximately 1,600 ms after the verb in the first conjunct (PP1), (2) immediately following the conjunction (PP2), (3) approximately 1,100 ms after the conjunction (PP3), (4) at the end of the second conjunct (PP4). The results revealed no activation at PP1, suggesting activation related to the initial presentation had decayed by this point; however, activation was observed at PP2, PP3, and PP4, suggesting the conjunction elicits reactivation that is sustained throughout the second conjunct. These findings support a specific hypothesis about parallelism, the sustained reactivation hypothesis. This hypothesis claims that, in conjoined structures, a cue that is associated with parallelism elicits the reactivation of material from the first conjunct and that this activation is sustained until integration with the second conjunct can be completed.
NASA Astrophysics Data System (ADS)
Waldrop, M. P.; Neumann, R. B.; Jones, M.; Manies, K.; Mcfarland, J. W.; Blazewicz, S.; Turetsky, M. R.
2016-12-01
Permafrost thaw is expected to become widespread in interior Alaska over the coming century, resulting in increased CO2 and CH4 fluxes from soils and a positive feedback to global warming. However much of our understanding of the microbial response to thaw is predicated on simple laboratory incubations that preclude the multitude of interactions occurring in soils under field situations. Here, we utilize a time series of 13CO2 and 13CH4 measured in porewater collected from thermokarst bogs of different ages to estimate in-situ reaction rates of microbial respiration, methanogenesis from acetate, methanogenesis from CO2, homoacetogenesis, and methane oxidation from porewater concentrations and 13CO2 and 13CH4. We utilized this modeling technique to test the hypothesis that microbial activities are stimulated soon after permafrost thaw and this effect declines over time. Our field site is a chronosequence of thermokarst bogs at the Alaska Peatland Experiment (APEX) in interior AK where we have observed significant losses of peatland carbon since permafrost collapse over the last half century. Concentrations of dissolved CO2 and CH4 in porewater increased with depth, and were higher in the youngest bog compared to the older bogs. With increasing depth 13CH4 became more depleted while 13CO2 became more enriched. Preliminary modeling results, based upon these porewater gas concentrations and isotope values, indicate that microbial activities are higher in the youngest bogs compared to the older bogs, supporting the hypothesis that accelerated rates of microbial activities in young thermokarst features are responsible for high rates of C losses from these systems. Additionally, model results will be compared to variation in the abundance of methanogens, methane oxidizers, and acetogens as well as process rates measured in lab incubations, providing insights into the mechanisms responsible for these losses.
Retrieval Property of Attractor Network with Synaptic Depression
NASA Astrophysics Data System (ADS)
Matsumoto, Narihisa; Ide, Daisuke; Watanabe, Masataka; Okada, Masato
2007-08-01
Synaptic connections are known to change dynamically. High-frequency presynaptic inputs induce decrease of synaptic weights. This process is known as short-term synaptic depression. The synaptic depression controls a gain for presynaptic inputs. However, it remains a controversial issue what are functional roles of this gain control. We propose a new hypothesis that one of the functional roles is to enlarge basins of attraction. To verify this hypothesis, we employ a binary discrete-time associative memory model which consists of excitatory and inhibitory neurons. It is known that the excitatory-inhibitory balance controls an overall activity of the network. The synaptic depression might incorporate an activity control mechanism. Using a mean-field theory and computer simulations, we find that the synaptic depression enlarges the basins at a small loading rate while the excitatory-inhibitory balance enlarges them at a large loading rate. Furthermore the synaptic depression does not affect the steady state of the network if a threshold is set at an appropriate value. These results suggest that the synaptic depression works in addition to the effect of the excitatory-inhibitory balance, and it might improve an error-correcting ability in cortical circuits.
Pre-Mission Input Requirements to Enable Successful Sample Collection by a Remote Field/EVA Team
NASA Technical Reports Server (NTRS)
Cohen, B. A.; Young, K. E.; Lim, D. S.
2015-01-01
This paper is intended to evaluate the sample collection process with respect to sample characterization and decision making. In some cases, it may be sufficient to know whether a given outcrop or hand sample is the same as or different from previous sampling localities or samples. In other cases, it may be important to have more in-depth characterization of the sample, such as basic composition, mineralogy, and petrology, in order to effectively identify the best sample. Contextual field observations, in situ/handheld analysis, and backroom evaluation may all play a role in understanding field lithologies and their importance for return. For example, whether a rock is a breccia or a clast-laden impact melt may be difficult based on a single sample, but becomes clear as exploration of a field site puts it into context. The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team is a new activity focused on a science and exploration field based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, near-Earth asteroids (NEAs) and Phobos and Deimos. We used the FINESSE field excursion to the West Clearwater Lake Impact structure (WCIS) as an opportunity to test factors related to sampling decisions. In contract to other technology-driven NASA analog studies, The FINESSE WCIS activity is science-focused, and moreover, is sampling-focused, with the explicit intent to return the best samples for geochronology studies in the laboratory. This specific objective effectively reduces the number of variables in the goals of the field test and enables a more controlled investigation of the role of the crewmember in selecting samples. We formulated one hypothesis to test: that providing details regarding the analytical fate of the samples (e.g. geochronology, XRF/XRD, etc.) to the crew prior to their traverse will result in samples that are more likely to meet specific analytical objectives than samples collected in the absence of this premission information. We conducted three tests of this hypothesis. Our investigation was designed to document processes, tools and procedures for crew sampling of planetary targets. This is not meant to be a blind, controlled test of crew efficacy, but rather an effort to recognize the relevant variables that enter into sampling protocol and to develop recommendations for crew and backroom training in future endeavors. Methods: One of the primary FINESSE field deployment objectives was to collect impact melt rocks and impact melt-bearing breccias from a number of locations around the WCIS structure to enable high precision geochronology of the crater to be performed [1]. We conducted three tests at WCIS after two full days of team participation in field site activities, including using remote sensing data and geologic maps, hiking overland to become familiar with the terrain, and examining previously-collected samples from other islands. In addition, the team members shared their projects and techniques with the entire team. We chose our "crew members" as volunteers from the team, all of whom had had moderate training in geologic fieldwork and became familiar with the general field setting. The first two tests were short, focused tests of our hypothesis. Test A was to obtain hydrothermal vugs; Test B was to obtain impact melt and intrusive rock as well as the contact between the two to check for contact metamorphism and age differences. In both cases, the test director had prior knowledge of the site geology and had developed a study-specific objective for sampling prior to deployment. Prior to the field deployment, the crewmember was briefed on the sampling objective and the laboratory techniques that would be used on the samples. At the field sites (Fig. 2), the crewmember was given 30 minutes to survey a small section of outcrop (10-15 m) and acquire a suite of three samples. The crewmember talked through his process and the test director kept track of the timeline in verbal cues to the crewmember. At the conclusion, the team member conducting the scientific study appraised the samples and train of thought. Test C was a 90-minute EVA simulation using two crewmembers working out of line-of-sight in communication with a science backroom. The science objectives were determined by the science backroom team in advance using a Gigapan image of the outcrop (Fig. 1). The science team formulated hypotheses for the outcrop units and created sampling objectives for impact-melt lithologies; the science team turned these into a science plan, which they communicated to the crew in camp prior to crew deployment. As part of the science plan, the science team also discussed their sample needs in depth with the crewmembers, including laboratory methods, objectives, and samples sizes needed. During the deployment, the two crewmembers relayed real-time information to the science backroom by radio with no time delay. Both the crew and science team re-evaluated their hypotheses and science plans in real-time. Discussion: Upon evaluation, we found that the focused tests (Tests A and B) were successful in meeting their scientific objectives. The crewmember used their knowledge of how the samples were to be used in further study (technique, sample size, and scientific need) to focus on the sampling task. The crewmember was comfortable spending minimal time describing and mapping the outcrop. The crewmember used all available time to get a good sample. The larger test was unsuccessful in meeting the sampling objectives. When the crewmembers began describing the lithologies, it was quickly apparent that the lithologies were not as the backroom expected and had communicated to the crew. When the outcrop wasn't as expected, the crew members instinctively switched to field characterization mode, taking significant time to characterize and map the outcrop. One crew member admitted that he "kind of lost track" of the sampling strategy as he focused on the basic outcrop characterization. This is the logical first step in a field geology campaign, that a significant amount of time must be spent by the crew and backroom to understand the outcrop and its significance. Basic field characterization of an outcrop is a focused activity that takes significant time and training [2, 3]. Sampling of representational lithologies can be added to this activity for little cost [4]. However, we have shown that identification of unusual or specific samples for laboratory study also takes significant time and knowledge. We suggest that sampling of this type be considered a separate activity from field characterization, and that crewmembers be trained in sampling needs for different kinds of studies (representative lithologies vs. specialized samples) to acquire a mindset for sampling similar to field mapping. Sampling activities should be given a significant amount of specifically allocated time in scheduling EVA activities; and in the better case, that sampling be done as a second activity to a previously studied outcrop where both crew and backroom are comfortable with its context and characteristics. Our hypothesis posited that crewmember knowledge of how the samples would be used upon return would aid them in choosing relevant samples. Our testing bore this hypothesis out to some extent. We therefore recommend that crewmember training should include exposure to the laboratory techniques and analyses that will be used on the samples to foster this knowledge. There is also the potential for increasing crewmember contextual knowledge real-time in the field through the introduction of in situ geochemical technologies such as field portable XRF. The presence of field portable geochemical technology could enable the astronauts to interrogate the samples for K abundance real-time, ensuring they could collect valuable and dateable samples [5]. Though simulations such as these can teach us a fair bit about decision making processes and timeline building, one EVA participant noted that when he wasn't collecting "real" samples, he wasn't at his best. This effect suggests that higher-fidelity studies involving truly remote participants conducting actual scientific studies merit further attention to capture lessons for application to future crew situations.
Bornmann, Lutz; de Moya Anegón, Félix; Leydesdorff, Loet
2010-10-13
In contrast to Newton's well-known aphorism that he had been able "to see further only by standing on the shoulders of giants," one attributes to the Spanish philosopher Ortega y Gasset the hypothesis saying that top-level research cannot be successful without a mass of medium researchers on which the top rests comparable to an iceberg. The Ortega hypothesis predicts that highly-cited papers and medium-cited (or lowly-cited) papers would equally refer to papers with a medium impact. The Newton hypothesis would be supported if the top-level research more frequently cites previously highly-cited work than that medium-level research cites highly-cited work. Our analysis is based on (i) all articles and proceedings papers which were published in 2003 in the life sciences, health sciences, physical sciences, and social sciences, and (ii) all articles and proceeding papers which were cited within these publications. The results show that highly-cited work in all scientific fields more frequently cites previously highly-cited papers than that medium-cited work cites highly-cited work. We demonstrate that papers contributing to the scientific progress in a field lean to a larger extent on previously important contributions than papers contributing little. These findings support the Newton hypothesis and call into question the Ortega hypothesis (given our usage of citation counts as a proxy for impact).
Reid, B L; Bourke, C
2001-07-01
This thesis explores the activation of chemicals in metabolic systems from the viewpoint that this activation is under the control of elements of the space-sea in which the chemicals are immersed. Themselves inert, the chemicals are theorised to exploit a force or action issuing from space (fluctuation) and characterized by the homogeneity (termed symmetry) of this medium. The fluctuation is heterogenized upon collision with matter from the intervention of well recognized fields of gravity and electromagnetism at the instant of its issue to form the near field of radiation. Fractions of original space waves and of their intrinsic spin are produced resulting in the activation of the orbitals (valency) in the chemical itself. The thesis continues: the disturbed fluctuation must return to space, obliging in turn, a prior return to the homogeneous state requiring special restorative wave rearrangements known as resonance. The success of the restorative resonance is signalled by a singularity of the fluctuation now propelled to infinity (space), and the contingent chemical reactions thereby terminated. Compromise to this return can occur from many causes and, in its presence, activation of the orbitals continues. They now effectively constitute autonomous reactions alienated from the system as a whole. The thesis is supported from evidence from diverse fields such as space theory, history of quantum field theory in attempts to derive its meaning, dielectrics and the near field of electromagnetic radiation, electron-space interactions at the Fermi surface during phase transitions and evolution of equilibrium conditions in resonance phenomena. The utility of the hypothesis rests on recognition of the resonance condition at various points in the system sufficiently macroscopic as to be available clinically as an abrupt interface between physiology and pathology. Copyright 2001 Harcourt Publishers Ltd.
Polarization, Definition, and Selective Media Learning.
ERIC Educational Resources Information Center
Tichenor, P. J.; And Others
The traditional hypothesis that extreme attitudinal positions on controversial issues are likely to produce low understanding of messages on these issues--especially when the messages represent opposing views--is tested. Data for test of the hypothesis are from two field studies, each dealing with reader attitudes and decoding of one news article…
Absence of S-cone input in human blindsight following hemispherectomy.
Leh, Sandra E; Mullen, Kathy T; Ptito, Alain
2006-11-01
Destruction of the occipital cortex presumably leads to permanent blindness in the contralateral visual field. Residual abilities to respond to visual stimuli in the blind field without consciously experiencing them have, however, been described in cortically blind patients and are termed 'blindsight'. Although the neuronal basis of blindsight remains unknown, possible neuronal correlates have been proposed based on the nature of the residual vision observed. The most prominent but still controversial hypothesis postulates the involvement of the superior colliculi in blindsight. Here we demonstrate, using a computer-based reaction time test in a group of hemispherectomized subjects, that human 'attention-blindsight' can be measured for achromatic stimuli but disappears for stimuli that solely activate S-cones. Given that primate data have shown that the superior colliculi lacks input from S-cones, our results lend strong support to the hypothesis that 'attention-blindsight' is mediated through a collicular pathway. The contribution of a direct geniculo-extrastriate-koniocellular projection was ruled out by testing hemispherectomized subjects in whom a whole hemisphere has been removed or disconnected for the treatment of epilepsy. A direct retino-pulvinar-cortical connection is also unlikely as the pulvinar nucleus is known to receive input from S-cones as well as from L/M-cone-driven colour-opponent ganglion cells.
Heesy, Christopher P
2008-01-01
Primates are characterized by forward-facing, or convergent, orbits and associated binocular field overlap. Hypotheses explaining the adaptive significance of these traits often relate to ecological factors, such as arboreality, nocturnal visual predation, or saltatory locomotion in a complex nocturnal, arboreal environment. This study re-examines the ecological factors that are associated with high orbit convergence in mammals. Orbit orientation data were collected for 321 extant taxa from sixteen orders of metatherian (marsupial) and eutherian mammals. These taxa were coded for activity pattern, degree of faunivory, and substrate preference. Results demonstrate that nocturnal and cathemeral mammals have significantly more convergent orbits than diurnal taxa, both within and across orders. Faunivorous eutherians (both nocturnal and diurnal) have higher mean orbit convergence than opportunistically foraging or non-faunivorous taxa. However, substrate preference is not associated with higher orbit convergence and, by extension, greater binocular visual field overlap. These results are consistent with the hypothesis that mammalian predators evolved higher orbit convergence, binocular vision, and stereopsis to counter camouflage in prey inhabiting a nocturnal environment. Strepsirhine primates have a range of orbit convergence values similar to nocturnal or cathemeral predatory non-primate mammals. These data are entirely consistent with the nocturnal visual predation hypothesis of primate origins. (c) 2007 S. Karger AG, Basel.
Alkan, Yelda; Biswal, Bharat B.; Alvarez, Tara L.
2011-01-01
Purpose Eye movement research has traditionally studied solely saccade and/or vergence eye movements by isolating these systems within a laboratory setting. While the neural correlates of saccadic eye movements are established, few studies have quantified the functional activity of vergence eye movements using fMRI. This study mapped the neural substrates of vergence eye movements and compared them to saccades to elucidate the spatial commonality and differentiation between these systems. Methodology The stimulus was presented in a block design where the ‘off’ stimulus was a sustained fixation and the ‘on’ stimulus was random vergence or saccadic eye movements. Data were collected with a 3T scanner. A general linear model (GLM) was used in conjunction with cluster size to determine significantly active regions. A paired t-test of the GLM beta weight coefficients was computed between the saccade and vergence functional activities to test the hypothesis that vergence and saccadic stimulation would have spatial differentiation in addition to shared neural substrates. Results Segregated functional activation was observed within the frontal eye fields where a portion of the functional activity from the vergence task was located anterior to the saccadic functional activity (z>2.3; p<0.03). An area within the midbrain was significantly correlated with the experimental design for the vergence but not the saccade data set. Similar functional activation was observed within the following regions of interest: the supplementary eye field, dorsolateral prefrontal cortex, ventral lateral prefrontal cortex, lateral intraparietal area, cuneus, precuneus, anterior and posterior cingulates, and cerebellar vermis. The functional activity from these regions was not different between the vergence and saccade data sets assessed by analyzing the beta weights of the paired t-test (p>0.2). Conclusion Functional MRI can elucidate the differences between the vergence and saccade neural substrates within the frontal eye fields and midbrain. PMID:22073141
Siviy, Stephen M; McDowell, Lana S; Eck, Samantha R; Turano, Alexandra; Akopian, Garnik; Walsh, John P
2015-12-01
Previous work from our laboratories has shown that juvenile Fischer 344 (F344) rats are less playful than other strains and also appear to be compromised in dopamine (DA) functioning. To determine whether the dysfunctional play in this strain is associated with deficits in the handling and delivery of vesicular DA, the following experiments assessed the extent to which F344 rats are differentially sensitive to the effects of amphetamine. When exposed to amphetamine, striatal slices obtained from F344 rats showed a small increase in unstimulated DA release when compared with slices from Sprague-Dawley rats; they also showed a more rapid high K+-mediated release of DA. These data provide tentative support for the hypothesis that F344 rats have a higher concentration of cytoplasmic DA than Sprague-Dawley rats. When rats were tested for activity in an open field, F344 rats presented a pattern of results that was consistent with either an enhanced response to amphetamine (3 mg/kg) or a more rapid release of DA (10 mg/kg). Although there was some indication that amphetamine had a dose-dependent differential effect on play in the two strains, play in F344 rats was not enhanced to any degree by amphetamine. Although these results are not consistent with our working hypothesis that F344 rats are less playful because of a deficit in vesicular release of DA, they still suggest that this strain may be a useful model for better understanding the role of DA in social behavior during the juvenile period.
MAGNETIC CYCLES IN A DYNAMO SIMULATION OF FULLY CONVECTIVE M-STAR PROXIMA CENTAURI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Rakesh K.; Wolk, Scott J.; Christensen, Ulrich R.
2016-12-20
The recent discovery of an Earth-like exoplanet around Proxima Centauri has shined a spot light on slowly rotating fully convective M-stars. When such stars rotate rapidly (period ≲20 days), they are known to generate very high levels of activity that is powered by a magnetic field much stronger than the solar magnetic field. Recent theoretical efforts are beginning to understand the dynamo process that generates such strong magnetic fields. However, the observational and theoretical landscape remains relatively uncharted for fully convective M-stars that rotate slowly. Here, we present an anelastic dynamo simulation designed to mimic some of the physical characteristicsmore » of Proxima Centauri, a representative case for slowly rotating fully convective M-stars. The rotating convection spontaneously generates differential rotation in the convection zone that drives coherent magnetic cycles where the axisymmetric magnetic field repeatedly changes polarity at all latitudes as time progress. The typical length of the “activity” cycle in the simulation is about nine years, in good agreement with the recently proposed activity cycle length of about seven years for Proxima Centauri. Comparing our results with earlier work, we hypothesis that the dynamo mechanism undergoes a fundamental change in nature as fully convective stars spin down with age.« less
Hypothesis testing in hydrology: Theory and practice
NASA Astrophysics Data System (ADS)
Kirchner, James; Pfister, Laurent
2017-04-01
Well-posed hypothesis tests have spurred major advances in hydrological theory. However, a random sample of recent research papers suggests that in hydrology, as in other fields, hypothesis formulation and testing rarely correspond to the idealized model of the scientific method. Practices such as "p-hacking" or "HARKing" (Hypothesizing After the Results are Known) are major obstacles to more rigorous hypothesis testing in hydrology, along with the well-known problem of confirmation bias - the tendency to value and trust confirmations more than refutations - among both researchers and reviewers. Hypothesis testing is not the only recipe for scientific progress, however: exploratory research, driven by innovations in measurement and observation, has also underlain many key advances. Further improvements in observation and measurement will be vital to both exploratory research and hypothesis testing, and thus to advancing the science of hydrology.
[Age diseases depending on geomagnetic field activity inside the womb period].
Iamshanov, V A
2010-01-01
Between age diseases two are standing out: oncological and cardiovascular ones. They give a main contribution to mortality of the population. Those who avoid these diseases have a chance to live longer. The author suggests a hypothesis of one common factor, which deviation leads to oncology or cardiovascular illness. Such factor is a production of nitric oxide in the organism, which depends on the geomagnetic activity (GMA). At excess production of nitric oxide the risk of oncopathology (breast cancer, bladder and lung cancer and others) is increased. At low NO level in blood the risk of cardiovascular disease is increased. The ability of the organism to utilize the excess level of NO depends on GMA inside the womb period. The production of nitric oxide in the organism goes by different ways, including NO-synthase activity and destruction of neutrophiles, which depends on the GMA and sun activity.
Reinke, Karen S.; LaMontagne, Pamela J.; Habib, Reza
2011-01-01
Spatial attention has been argued to be adaptive by enhancing the processing of visual stimuli within the ‘spotlight of attention’. We previously reported that crude threat cues (backward masked fearful faces) facilitate spatial attention through a network of brain regions consisting of the amygdala, anterior cingulate and contralateral visual cortex. However, results from previous functional magnetic resonance imaging (fMRI) dot-probe studies have been inconclusive regarding a fearful face-elicited contralateral modulation of visual targets. Here, we tested the hypothesis that the capture of spatial attention by crude threat cues would facilitate processing of subsequently presented visual stimuli within the masked fearful face-elicited ‘spotlight of attention’ in the contralateral visual cortex. Participants performed a backward masked fearful face dot-probe task while brain activity was measured with fMRI. Masked fearful face left visual field trials enhanced activity for spatially congruent targets in the right superior occipital gyrus, fusiform gyrus and lateral occipital complex, while masked fearful face right visual field trials enhanced activity in the left middle occipital gyrus. These data indicate that crude threat elicited spatial attention enhances the processing of subsequent visual stimuli in contralateral occipital cortex, which may occur by lowering neural activation thresholds in this retinotopic location. PMID:20702500
Photospheric Current Spikes as Possible Predictors of Flares
NASA Technical Reports Server (NTRS)
Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.
2016-01-01
Flares involve generation of the largest current densities in the solar atmosphere. This suggests the hypothesis that prior to a large (M,X) flare there are related time dependent changes in the photospheric current distribution, and hence in the resistive heating rate in neutral line regions (NLRs). If this is true, these changes might be useful predictors of flares. Preliminary evidence supporting this hypothesis is presented. Results from a data driven, near photospheric, 3D magnetohydrodynamic type model suggest the model might be useful for predicting M and X flares several hours to several days in advance. The model takes as input the photospheric magnetic field observed by the Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) satellite. The model computes quantities in every active region (AR) pixel for 14 ARs, with spurious Doppler periods due to SDO orbital motion filtered out of the time series of the magnetic field for each pixel. Spikes in the NLR resistive heating rate Q, appearing as increases by orders of magnitude above background values in the time series of Q are found to occur, and appear to be correlated with the occurrence of M or X flares a few hours to a few days later. The subset of spikes analyzed at the pixel level are found to occur on HMI and granulation scales of 1 arcsec and 12 minutes. Spikes are found in NLRs with and without M or X flares, and outside as well as inside NLRs, but the largest spikes are localized in the NLRs of ARs with M or X flares, and associated with horizontal magnetic field strengths approximately several hG, and vertical magnetic field strengths several orders of magnitude smaller. The spikes may be signatures of horizontal current sheets associated with emerging magnetic flux.
Photospheric Current Spikes as Possible Predictors of Flares
NASA Technical Reports Server (NTRS)
Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.
2016-01-01
Flares involve generation of the largest current densities in the solar atmosphere. This suggests the hypothesis that prior to a large (M,X) flare there are related time dependent changes in the photospheric current distribution, and hence in the resistive heating rate in neutral line regions (NLRs). If this is true, these changes might be useful predictors of flares. Evidence supporting this hypothesis is presented. Results from a data driven, near photospheric, 3D magnetohydrodynamic type model suggest the model might be useful for predicting M and X flares several hours to several days in advance. The model takes as input the photospheric magnetic field observed by the Helioseismic & Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) satellite. The model computes quantities in every active region (AR) pixel for 14 ARs, with spurious Doppler periods due to SDO orbital motion filtered out of the time series of the magnetic field for each pixel. Spikes in the NLR resistive heating rate Q, appearing as increases by orders of magnitude above background values in the time series of Q are found to occur, and appear to be correlated with the occurrence of M or X flares a few hours to a few days later. The subset of spikes analyzed at the pixel level are found to occur on HMI and granulation scales of 1 arcsec and 12 minutes. Spikes are found in NLRs with and without M or X flares, and outside as well as inside NLRs, but the largest spikes are localized in the NLRs of ARs with M or X flares, and associated with horizontal magnetic field strengths several hG, and vertical magnetic field strengths several orders of magnitude smaller, suggesting that the spikes are associated with current sheets.
NASA Astrophysics Data System (ADS)
Shaar, R.; Tauxe, L.; Ebert, Y.
2017-12-01
Continuous decadal-resolution paleomagnetic data from archaeological and sedimentary sources in the Levant revealed the existence a local high-field anomaly, which spanned the first 350 years of the first millennium BCE. This so-called "the Levantine Iron Age geomagnetic Anomaly" (LIAA) was characterized by a high averaged geomagnetic field (virtual axial dipole moments, VADM > 140 Z Am2, nearly twice of today's field), short decadal-scale geomagnetic spikes (VADM of 160-185 Z Am2), fast directional and intensity variations, and substantial deviation (20°-25°) from dipole field direction. Similar high field values in the time frame of LIAA have been observed north, and northeast to the Levant: Eastern Anatolia, Turkmenistan, and Georgia. West of the Levant, in the Balkans, field values in the same time are moderate to low. The overall data suggest that the LIAA is a manifestation of a local positive geomagnetic field anomaly similar in magnitude and scale to the presently active negative South Atlantic Anomaly. In this presentation we review the overall archaeomagnetic and sedimentary evidences supporting the local anomaly hypothesis, and compare these observations with today's IGRF field. We analyze the global data during the first two millennia BCE, which suggest some unexpected large deviations from a simple dipolar geomagnetic structure.
Terlouw, Thomas J.A.
2007-01-01
Physical medicine, which in the context of this article includes mechanotherapy, hydrotherapy, balneotherapy, electrotherapy, light therapy, air therapy, and thermotherapy, became a new field of labor in the healthcare domain in the Netherlands around 1900. This article gives an account of the introduction and development of mechanotherapy as a professional activity in the Netherlands in the 19th century. Mechanotherapy, which historically included exercises, manipulations, and massage, was introduced in this country around 1840 and became one of the core elements of physical medicine towards the end of that century. In contrast to what one might expect, mostly physical education teachers, referred to as “heilgymnasts,” dedicated themselves to this kind of treatment, whereas only a few physicians were active in this field until the 1880s. When, in the last quarter of the 19th century, differentiation and specialization within the medical profession took place, physicians specializing in physical medicine and orthopaedics began to claim the field of mechanotherapy exclusively for themselves. This led to tensions between them and the group of heilgymnasts that had already been active in this field for decades. The focus of attention in this article is on interprofessional relationships, on the roles played by the different professional organizations in the fields of physical education and medicine, the local and national governments, and the judicial system, and on the social, political, and cultural circumstances under which developments in the field of mechanotherapy took place. The article concludes with the hypothesis that the intra- and inter-occupational rivalries discussed have had a negative impact on the academic development of physical medicine, orthopaedics, and heilgymnastics/physical therapy in the Netherlands in the first half of the 20th century. PMID:19066646
NASA Astrophysics Data System (ADS)
Malmqvist, Elin; Jansson, Samuel; Zhu, Shiming; Li, Wansha; Svanberg, Katarina; Svanberg, Sune; Rydell, Jens; Song, Ziwei; Bood, Joakim; Brydegaard, Mikkel; Åkesson, Susanne
2018-04-01
We present the results of, to our knowledge, the first Lidar study applied to continuous and simultaneous monitoring of aerial insects, bats and birds. It illustrates how common patterns of flight activity, e.g. insect swarming around twilight, depend on predation risk and other constraints acting on the faunal components. Flight activity was monitored over a rice field in China during one week in July 2016, using a high-resolution Scheimpflug Lidar system. The monitored Lidar transect was about 520 m long and covered approximately 2.5 m3. The observed biomass spectrum was bimodal, and targets were separated into insects and vertebrates in a categorization supported by visual observations. Peak flight activity occurred at dusk and dawn, with a 37 min time difference between the bat and insect peaks. Hence, bats started to feed in declining insect activity after dusk and stopped before the rise in activity before dawn. A similar time difference between insects and birds may have occurred, but it was not obvious, perhaps because birds were relatively scarce. Our observations are consistent with the hypothesis that flight activity of bats is constrained by predation in bright light, and that crepuscular insects exploit this constraint by swarming near to sunset/sunrise to minimize predation from bats.
Field Exploration Science for a Return to the Moon
NASA Astrophysics Data System (ADS)
Schmitt, H. H.; Helper, M. A.; Muehlbberger, W.; Snoke, A. W.
2006-12-01
Apollo field exploration science, and subsequent analysis, and interpretation of its findings and collected samples, underpin our current understanding of the origin and history of the Moon. That understanding, in turn, continues to provide new and important insights into the early histories of the Earth and other bodies in the solar system, particularly during the period that life formed and began to evolve on Earth and possibly on Mars. Those early explorations also have disclosed significant and potentially commercially viable lunar resources that might help satisfy future demand for both terrestrial energy alternatives and space consumables. Lunar sortie missions as part of the Vision for Space Exploration provide an opportunity to continue and expand the human geological, geochemical and geophysical exploration of the Moon. Specific objectives of future field exploration science include: (1) Testing of the consensus "giant impact" hypothesis for the origin of the Moon by further investigation of materials that may augment understanding of the chondritic geochemistry of the lower lunar mantle; (2) Testing of the consensus impact "cataclysm" hypothesis by obtaining absolute ages on large lunar basins of relative ages older than the 3.8-3.9 Ga mascon basins dated by Apollo 15 and 17; (3) Calibration of the end of large impacts in the inner solar system; (4) Global delineation of the internal structure of the Moon; (5) Global sampling and field investigations that extend the data necessary to remotely correlate major lunar geological and geochemical units; (6) Definition of the depositional history of polar volatiles - cometary, solar wind, or otherwise; (7) Determine the recoverable in situ concentrations and distribution of potential volatile resources; and (8) Acquisition of information and samples related to relatively less site-specific aspects of lunar geological processes. Planning for renewed field exploration of the Moon depends largely on the selection, training and use of sortie crews; the selection of landing sites; and the adopted operational approach to sortie extravehicular activity (EVA). The equipment necessary for successful exploration consists of that required for sampling, sample documentation, communications, mobility, and position knowledge. Other types of active geophysical. geochemical and petrographic equipment, if available, could clearly enhance the scientific and operational return of extended exploration over that possible during Apollo missions. Equipment to increase the efficiency of exploration should include the following, helmet-mounted, systems: (1) voice activated or automatic, electronic, stereo photo-documentation camera that is photometrically and geometrically fully calibrated; (2) automatic position and elevation determination system; and (3) laser-ranging device, aligned with the stereo camera axis. Heads-up displays and controls on the helmet, activated and selected by voice, should be available for control and use of this equipment.
Disturbances of electrodynamic activity affect abortion in human
NASA Astrophysics Data System (ADS)
Jandová, A.; Nedbalová, M.; Kobilková, J.; Čoček, A.; Dohnalová, A.; Cifra, M.; Pokorný, J.
2011-12-01
Biochemical research of biological systems is highly developed, and it has disclosed a spectrum of chemical reactions, genetic processes, and the pathological development of various diseases. The fundamental hypothesis of physical processes in biological systems, in particular of coherent electrically polar vibrations and electromagnetic activity, was formulated by H. Fröhlich he assumed connection of cancer process with degradation of coherent electromagnetic activity. But the questions of cellular structures capable of the coherent electrical polar oscillation, mechanisms of energy supply, and the specific role of the endogenous electromagnetic fields in transport, organisation, interactions, and information transfer remained open. The nature of physical disturbances caused by some diseases (including the recurrent abortion in humans and the cancer) was unknown. We have studied the reasons of recurrent abortions in humans by means of the cell mediated immunity (using immunologic active RNA prepared from blood of inbred laboratory mice strain C3H/H2K, infected with the lactate dehydrogenase elevating virus-LD V) and the cytogenetic examination from karyotype pictures. The recurrent abortion group contained women with dg. spontaneous abortion (n = 24) and the control group was composed of 30 healthy pregnant women. Our hypothesis was related to quality of endometrium in relation to nidation of the blastocyst. The energetic insufficiency (ATP) inhibits normal development of fetus and placenta. We hope that these ideas might have impact on further research, which could provide background for effective interdisciplinary cooperation of malignant and non-malignant diseases.
Keizer, Hiskias G
2012-11-05
The "cholesterol hypothesis" is the leading theory to explain the cause of atherosclerosis. The "cholesterol hypothesis" assumes that plasma (LDL) cholesterol is an important causal factor for atherosclerosis.However, data of at least seven placebo controlled randomized prospective trials with various cholesterol lowering drugs show that plasma cholesterol lowering does not necessarily lead to protection against cardiovascular disease. Therefore an alternative hypothesis for the etiology of cardiovascular disease is formulated. This alternative hypothesis, the "mevalonate hypothesis", assumes that after stimulation of the mevalonate pathway in endothelial cells by inflammatory factors, these cells start producing cholesterol and free radicals. In this hypothesis, only the latter play a role in the etiology of atherosclerosis by contributing to the formation of oxidized cholesterol which is a widely accepted causal factor for atherosclerosis.Regardless of how the mevalonate pathway is activated (by withdrawal of statin drugs, by inflammatory factors or indirectly by reduced intracellular cholesterol levels) in all these cases free radical production is observed as well as cardiovascular disease. Since in the "mevalonate hypothesis" cholesterol is produced at the same time as the free radicals causing atherosclerosis, this hypothesis provides an explanation for the correlation which exists between cardiovascular disease and plasma cholesterol levels. From an evolutionary perspective, concomitant cholesterol production and free radical production in response to inflammatory factors makes sense if one realizes that both activities potentially protect cells and organisms from infection by gram-negative bacteria.In conclusion, data have been collected which suggest that activation of the mevalonate pathway in endothelial cells is likely to be a causal factor for atherosclerosis. This "mevalonate hypothesis" provides a better explanation for results obtained from recent clinical studies with cholesterol lowering drugs than the "cholesterol hypothesis". Furthermore, this hypothesis explains how cholesterol can be correlated with cardiovascular disease without being a causal factor for it. Finally it provides a logical explanation for the etiology of this disease.
Foley, Kelly A.; Ossenkopp, Klaus-Peter; Kavaliers, Martin; MacFabe, Derrick F.
2014-01-01
Alterations in the composition of the gut microbiome and/or immune system function may have a role in the development of autism spectrum disorders (ASD). The current study examined the effects of prenatal and early life administration of lipopolysaccharide (LPS), a bacterial mimetic, and the short chain fatty acid, propionic acid (PPA), a metabolic fermentation product of enteric bacteria, on developmental milestones, locomotor activity, and anxiety-like behavior in adolescent male and female offspring. Pregnant Long-Evans rats were subcutaneously injected once a day with PPA (500 mg/kg) on gestation days G12–16, LPS (50 µg/kg) on G15–16, or vehicle control on G12–16 or G15–16. Male and female offspring were injected with PPA (500 mg/kg) or vehicle twice a day, every second day from postnatal days (P) 10–18. Physical milestones and reflexes were monitored in early life with prenatal PPA and LPS inducing delays in eye opening. Locomotor activity and anxiety were assessed in adolescence (P40–42) in the elevated plus maze (EPM) and open-field. Prenatal and postnatal treatments altered behavior in a sex-specific manner. Prenatal PPA decreased time spent in the centre of the open-field in males and females while prenatal and postnatal PPA increased anxiety behavior on the EPM in female rats. Prenatal LPS did not significantly influence those behaviors. Evidence for the double hit hypothesis was seen as females receiving a double hit of PPA (prenatal and postnatal) displayed increased repetitive behavior in the open-field. These results provide evidence for the hypothesis that by-products of enteric bacteria metabolism such as PPA may contribute to ASD, altering development and behavior in adolescent rats similar to that observed in ASD and other neurodevelopmental disorders. PMID:24466331
Linguistic embodiment and verbal constraints: human cognition and the scales of time
Cowley, Stephen J.
2014-01-01
Using radical embodied cognitive science, the paper offers the hypothesis that language is symbiotic: its agent-environment dynamics arise as linguistic embodiment is managed under verbal constraints. As a result, co-action grants human agents the ability to use a unique form of phenomenal experience. In defense of the hypothesis, I stress how linguistic embodiment enacts thinking: accordingly, I present auditory and acoustic evidence from 750 ms of mother-daughter talk, first, in fine detail and, then, in narrative mode. As the parties attune, they use a dynamic field to co-embody speech with experience of wordings. The latter arise in making and tracking phonetic gestures that, crucially, mesh use of artifice, cultural products and impersonal experience. As observers, living human beings gain dispositions to display and use social subjectivity. Far from using brains to “process” verbal content, linguistic symbiosis grants access to diachronic resources. On this distributed-ecological view, language can thus be redefined as: “activity in which wordings play a part.” PMID:25324799
NASA Astrophysics Data System (ADS)
Robbins, Dennis M.; Ford, K. E. Saavik
2015-01-01
Strategies to improve the retention of underrepresented students in STEM fields include directly targeted programs and specialized courses. The NSF-supported 'AstroCom NYC' program, a collaboration of the City University of New York, American Museum of Natural History (AMNH), and Columbia University is one example of such a program with the explicit goal of increasing the participation of underrepresented minorities in astronomy and astrophysics through pedagogical mentoring and research experiences for undergraduate students. In addition, 'AstroCom NYC' provides students with a semester-long specialized course emphasizing scientific reasoning and mathematical modeling. The course curriculum uses computers and interfaced digital probeware (sensors) in a laboratory environment that encourages collaborative and active learning.We share course materials on preparing students to reason about control of variable experiment design and hypothesis testing and provide course data on student understanding of scientific reasoning, mathematical modeling and views about science.
Jonas, Ludwig; Jaksch, Heiner; Zellmann, Erhard; Klemm, Kerstin I; Andersen, Peter Hvilshøj
2012-10-01
Hairs more than 400 years old of the famous astronomer Tycho Brahe were studied by electron microscopy to evaluate the hypothesis that Johannes Kepler murdered his teacher Brahe by mercury intoxication. The beard hairs showed a well-preserved ultrastructure with typical hair scales and melanosomes. The authors detected an accumulation of electron-dense granules of about 10 nm inside the outer hair scales, but not in the hair shaft and roots. At the places of these heavy-metal-containing granules they detected mercury besides other elements by energy dispersive X-ray analysis (EDX, Oxford, UK) in a field cathode scanning electron microscope (SEM, Gemini, Zeiss). The mercury-containing granules were found over the whole length of hairs, but only in the outer hair scales. Nevertheless, surface coatings of hairs were free of mercury. This distribution of mercury does not support the murder hypothesis, but could be related to precipitation of mercury dust from the air during long-term alchemistic activities.
Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus
NASA Astrophysics Data System (ADS)
Reid, R. Clay; Shapley, Robert M.
1992-04-01
HUMAN colour vision depends on three classes of cone photoreceptors, those sensitive to short (S), medium (M) or long (L) wavelengths, and on how signals from these cones are combined by neurons in the retina and brain. Macaque monkey colour vision is similar to human, and the receptive fields of macaque visual neurons have been used as an animal model of human colour processing1. P retinal ganglion cells and parvocellular neurons are colour-selective neurons in macaque retina and lateral geniculate nucleus. Interactions between cone signals feeding into these neurons are still unclear. On the basis of experimental results with chromatic adaptation, excitatory and inhibitory inputs from L and M cones onto P cells (and parvocellular neurons) were thought to be quite specific2,3 (Fig. la). But these experiments with spatially diffuse adaptation did not rule out the 'mixed-surround' hypothesis: that there might be one cone-specific mechanism, the receptive field centre, and a surround mechanism connected to all cone types indiscriminately (Fig. le). Recent work has tended to support the mixed-surround hypothesis4-8. We report here the development of new stimuli to measure spatial maps of the linear L-, M- and S-cone inputs to test the hypothesis definitively. Our measurements contradict the mixed-surround hypothesis and imply cone specificity in both centre and surround.
Ionospheric scintillation studies
NASA Technical Reports Server (NTRS)
Rino, C. L.; Freemouw, E. J.
1973-01-01
The diffracted field of a monochromatic plane wave was characterized by two complex correlation functions. For a Gaussian complex field, these quantities suffice to completely define the statistics of the field. Thus, one can in principle calculate the statistics of any measurable quantity in terms of the model parameters. The best data fits were achieved for intensity statistics derived under the Gaussian statistics hypothesis. The signal structure that achieved the best fit was nearly invariant with scintillation level and irregularity source (ionosphere or solar wind). It was characterized by the fact that more than 80% of the scattered signal power is in phase quadrature with the undeviated or coherent signal component. Thus, the Gaussian-statistics hypothesis is both convenient and accurate for channel modeling work.
On the proper study design applicable to experimental balneology.
Varga, Csaba
2016-08-01
The simple message of this paper is that it is the high time to reevaluate the strategies and optimize the efforts for investigation of thermal (spa) waters. Several articles trying to clear mode of action of medicinal waters have been published up to now. Almost all studies apply the unproven hypothesis, namely the inorganic ingredients are in close connection with healing effects of bathing. Change of paradigm would be highly necessary in this field taking into consideration the presence of several biologically active organic substances in these waters. A successful design for experimental mechanistic studies is approved.
Bernardi, Mauro; Moreau, Richard; Angeli, Paolo; Schnabl, Bernd; Arroyo, Vicente
2015-11-01
The peripheral arterial vasodilation hypothesis has been most influential in the field of cirrhosis and its complications. It has given rise to hundreds of pathophysiological studies in experimental and human cirrhosis and is the theoretical basis of life-saving treatments. It is undisputed that splanchnic arterial vasodilation contributes to portal hypertension and is the basis for manifestations such as ascites and hepatorenal syndrome, but the body of research generated by the hypothesis has revealed gaps in the original pathophysiological interpretation of these complications. The expansion of our knowledge on the mechanisms regulating vascular tone, inflammation and the host-microbiota interaction require a broader approach to advanced cirrhosis encompassing the whole spectrum of its manifestations. Indeed, multiorgan dysfunction and failure likely result from a complex interplay where the systemic spread of bacterial products represents the primary event. The consequent activation of the host innate immune response triggers endothelial molecular mechanisms responsible for arterial vasodilation, and also jeopardizes organ integrity with a storm of pro-inflammatory cytokines and reactive oxygen and nitrogen species. Thus, the picture of advanced cirrhosis could be seen as the result of an inflammatory syndrome in contradiction with a simple hemodynamic disturbance. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Wester, Jason C.
2013-01-01
Different levels of cholinergic neuromodulatory tone have been hypothesized to set the state of cortical circuits either to one dominated by local cortical recurrent activity (low ACh) or to one dependent on thalamic input (high ACh). High ACh levels depress intracortical but facilitate thalamocortical synapses, whereas low levels potentiate intracortical synapses. Furthermore, recent work has implicated the thalamus in controlling cortical network state during waking and attention, when ACh levels are highest. To test this hypothesis, we used rat thalamocortical slices maintained in medium to generate spontaneous up- and down-states and applied different ACh concentrations to slices in which thalamocortical connections were either maintained or severed. The effects on spontaneous and evoked up-states were measured using voltage-sensitive dye imaging, intracellular recordings, local field potentials, and single/multiunit activity. We found that high ACh can increase the frequency of spontaneous up-states, but reduces their duration in slices with intact thalamocortical connections. Strikingly, when thalamic connections are severed, high ACh instead greatly reduces or abolishes spontaneous up-states. Furthermore, high ACh reduces the spatial propagation, velocity, and depolarization amplitude of evoked up-states. In contrast, low ACh dramatically increases up-state frequency regardless of the presence or absence of intact thalamocortical connections and does not reduce the duration, spatial propagation, or velocity of evoked up-states. Therefore, our data support the hypothesis that strong cholinergic modulation increases the influence, and thus the signal-to-noise ratio, of afferent input over local cortical activity and that lower cholinergic tone enhances recurrent cortical activity regardless of thalamic input. PMID:24198382
Lee, Heekyung; Dvorak, Dino; Fenton, André A.
2014-01-01
Cognitive symptoms are core features of mental disorders but procognitive treatments are limited. We have proposed a “discoordination” hypothesis that cognitive impairment results from aberrant coordination of neural activity. We reported that neonatal ventral hippocampus lesion (NVHL) rats, an established neurodevelopmental model of schizophrenia, have abnormal neural synchrony and cognitive deficits in the active place avoidance task. During stillness, we observed that cortical local field potentials sometimes resembled epileptiform spike-wave discharges with higher prevalence in NVHL rats, indicating abnormal neural synchrony due perhaps to imbalanced excitation–inhibition coupling. Here, within the context of the hypothesis, we investigated whether attenuating abnormal neural synchrony will improve cognition in NVHL rats. We report that: (1) inter-hippocampal synchrony in the theta and beta bands is correlated with active place avoidance performance; (2) the anticonvulsant ethosuximide attenuated the abnormal spike-wave activity, improved cognitive control, and reduced hyperlocomotion; (3) ethosuximide not only normalized the task-associated theta and beta synchrony between the two hippocampi but also increased synchrony between the medial prefrontal cortex and hippocampus above control levels; (4) the antipsychotic olanzapine was less effective at improving cognitive control and normalizing place avoidance-related inter-hippocampal neural synchrony, although it reduced hyperactivity; and (5) olanzapine caused an abnormal pattern of frequency-independent increases in neural synchrony, in both NVHL and control rats. These data suggest that normalizing aberrant neural synchrony can be beneficial and that drugs targeting the pathophysiology of abnormally coordinated neural activities may be a promising theoretical framework and strategy for developing treatments that improve cognition in neurodevelopmental disorders such as schizophrenia. PMID:24592242
ERIC Educational Resources Information Center
Kim, Hye Jeong; Pedersen, Susan
2011-01-01
Hypothesis development is a complex cognitive activity, but one that is critical as a means of reducing uncertainty during ill-structured problem solving. In this study, we examined the effect of metacognitive scaffolds in strengthening hypothesis development. We also examined the influence of hypothesis development on young adolescents'…
Mechanism of drug-induced gingival overgrowth revisited: a unifying hypothesis
Brown, RS; Arany, PR
2015-01-01
Drug-induced gingival overgrowth (DIGO) is a disfiguring side effect of anti-convulsants, calcineurin inhibitors, and calcium channel blocking agents. A unifying hypothesis has been constructed which begins with cation flux inhibition induced by all three of these drug categories. Decreased cation influx of folic acid active transport within gingival fibroblasts leads to decreased cellular folate uptake, which in turn leads to changes in matrix metalloproteinases metabolism and the failure to activate collagenase. Decreased availability of activated collagenase results in decreased degradation of accumulated connective tissue which presents as DIGO. Studies supporting this hypothesis are discussed. PMID:24893951
Evolution of Motor Control: From Reflexes and Motor Programs to the Equilibrium-Point Hypothesis.
Latash, Mark L
2008-01-01
This brief review analyzes the evolution of motor control theories along two lines that emphasize active (motor programs) and reactive (reflexes) features of voluntary movements. It suggests that the only contemporary hypothesis that integrates both approaches in a fruitful way is the equilibrium-point hypothesis. Physical, physiological, and behavioral foundations of the EP-hypothesis are considered as well as relations between the EP-hypothesis and the recent developments of the notion of motor synergies. The paper ends with a brief review of the criticisms of the EP-hypothesis and challenges that the hypothesis faces at this time.
Reconstructing the 11-year solar cycle length from cosmogenic radionuclides for the last 600 years
NASA Astrophysics Data System (ADS)
Nilsson, Emma; Adolphi, Florian; Mekhaldi, Florian; Muscheler, Raimund
2017-04-01
The cyclic behavior of the solar magnetic field has been known for centuries and the 11-year solar cycle is one of the most important features directly visible on the solar disc. Using sunspot records it is evident that the length of this cycle is variable. A hypothesis of an inverse relationship between the average solar activity level and the solar cycle length has been put forward (e.g. Friis-Christensen & Lassen, 1991), indicating longer solar cycles during periods of low solar activity and vice versa. So far, studies of the behavior of the 11-year solar cycle have largely been limited for the last 4 centuries where observational sunspot data are available. However, cosmogenic radionuclides, such as 10Be and 14C from ice cores and tree rings allow an assessment of the strength of the open solar magnetic field due to its shielding influence on galactic cosmic rays in the heliosphere. Similarly, very strong solar storms can leave their imprint in cosmogenic radionuclide records via solar proton-induced direct production of cosmogenic radionuclides in the Earth atmosphere. Here, we test the hypothesis of an inverse relationship between solar cycle length and the longer-term solar activity level by using cosmogenic radionuclide records as a proxy for solar activity. Our results for the last six centuries suggest significant solar cycle length variations that could exceed the range directly inferred from sunspot records. We discuss the occurrence of SPEs within the 11-year solar cycle from a radionuclide perspective, specifically the largest one known yet, at AD 774-5 (Mekhaldi et al., 2015). References: Friis-Christensen, E. & Lassen, K. Length of the solar-cycle - An indicator of solar activity closely associated with climate. Science 254, 698-700, doi:10.1126/science.254.5032.698 (1991). Mekhaldi, F., Muscheler, R., Adolphi, F., Aldahan, A., Beer, J., McConnell, J. R., Possnert, G., Sigl, M., Svensson, A., Synal, H. A., Welten, K. C. & Woodruff, T. E. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nature Communications 6: 8, doi:10.1038/ncomms9611 (2015).
The source of marine magnetic anomalies
NASA Technical Reports Server (NTRS)
Harrison, Christopher G. A.
1987-01-01
The Vine-Matthews hypothesis (1963) is examined. This hypothesis suggests that oceanic rocks become polarized in the direction of the magnetic field at the time of their formation, thus recording the polarity history of the earth's magnetic field. This produces the lineated magnetic anomalies on either side of the midoceanic ridge crests. The strength of these magnetic anomalies is studied to determine the strength of magnetization. Indirect determinations of the magnetization intensity of the oceanic crust and direct observations of the oceanic crust are compared. It is found that the average magnetization of a 6-km thick oceanic crust is 1.18 A/m.
Impulse Magnetic Fields Generated by Electrostatic Discharges in Protoplanetary Nebulae
NASA Technical Reports Server (NTRS)
Tunyi, I.; Guba, P.; Roth, L. E.; Timko, M.
2002-01-01
We examine quantitative aspects associated with the hypothesis of nebular lightnings as a source of impulse magnetic fields. Our findings support our previous accretion model in which a presence of impulse magnetic fields was of a key necessity. Additional information is contained in the original extended abstract.
Drew, Gary S.; Bissonette, John A.
1997-01-01
Despite their temperate to subarctic geographic range, American martens (Martes americana) possess a thermally inefficient morphology. The lack of morphological adaptations for reducing thermal costs suggests that marten may use behavioral strategies to optimize thermal budgets. During the winters of 1989–1990 and 1990–1991, we radio-collared and monitored the diel activity of 7 martens. A log-linear model suggested that the presence or absence of light was the only factor associated with marten activity patterns (p < 0.001). A regression of the percentage of active fixes on ambient temperature failed to detect an association (b = −4.45, p = 0.084, n = 12). Contents of marten scats suggested that their activity was consistent with the prey-vulnerability hypothesis. While martens must balance multiple life requisites, their activity patterns suggest that they accept increased thermal costs in order to increase foraging efficiency. However, the nocturnal activity of martens during winter was also consistent with the hypothesis that they may be able to limit their own exposure to predation risk. The nocturnal habits of Newfoundland martens in the winter were consistent with the hypothesis of avoidance of predation risk.
Peng, Jiegang
2015-11-04
Weakly electric fish sense their surroundings in complete darkness by their active electrolocation system. For biologists, the active electrolocation system has been investigated for near 60 years. And for engineers, bio-inspired active electrolocation sensor has been investigated for about 20 years. But how the amplitude information response will be affected by frequencies of detecting electric fields in the active electrolocation system was rarely investigated. In this paper, an electrolocation experiment system has been built. The amplitude information-frequency characteristics (AIFC) of the electrolocation system for sinusoidal electric fields of varying frequencies have been investigated. We find that AIFC of the electrolocation system have relevance to the material properties and geometric features of the probed object and conductivity of surrounding water. Detect frequency dead zone (DFDZ) and frequency inflection point (FIP) of AIFC for the electrolocation system were found. The analysis model of the electrolocation system has been investigated for many years, but DFDZ and FIP of AIFC can be difficult to explain by those models. In order to explain those AIFC phenomena for the electrolocation system, a simple relaxation model based on Cole-Cole model which is not only a mathematical explanation but it is a physical one for the electrolocation system was advanced. We also advance a hypothesis for physical mechanism of weakly electrical fish electrolocation system. It may have reference value for physical mechanism of weakly electrical fish active electrolocation system.
ERIC Educational Resources Information Center
Machiels-Bongaerts, Maureen; And Others
Two hypotheses, the cognitive capacity hypothesis and the selective attention hypothesis, try to account for the facilitation effects of prior knowledge activation. They appear to be mutually exclusive since they predict different recall patterns as a result of prior knowledge activation. This study was designed to determine whether the two…
Inter-hemispheric interaction facilitates face processing.
Compton, Rebecca J
2002-01-01
Many recent studies have revealed that interaction between the left and right cerebral hemispheres can aid in task performance, but these studies have tended to examine perception of simple stimuli such as letters, digits or simple shapes, which may have limited naturalistic validity. The present study extends these prior findings to a more naturalistic face perception task. Matching tasks required subjects to indicate when a target face matched one of two probe faces. Matches could be either across-field, requiring inter-hemispheric interaction, or within-field, not requiring inter-hemispheric interaction. Subjects indicated when faces matched in emotional expression (Experiment 1; n=32) or in character identity (Experiment 2; n=32). In both experiments, across-field performance was significantly better than within-field performance, supporting the primary hypothesis. Further, this advantage was greater for the more difficult character identity task. Results offer qualified support for the hypothesis that inter-hemispheric interaction is especially advantageous as task demands increase.
Cryptochrome Mediates Light-Dependent Magnetosensitivity of Drosophila's Circadian Clock
Yoshii, Taishi; Ahmad, Margaret; Helfrich-Förster, Charlotte
2009-01-01
Since 1960, magnetic fields have been discussed as Zeitgebers for circadian clocks, but the mechanism by which clocks perceive and process magnetic information has remained unknown. Recently, the radical-pair model involving light-activated photoreceptors as magnetic field sensors has gained considerable support, and the blue-light photoreceptor cryptochrome (CRY) has been proposed as a suitable molecule to mediate such magnetosensitivity. Since CRY is expressed in the circadian clock neurons and acts as a critical photoreceptor of Drosophila's clock, we aimed to test the role of CRY in magnetosensitivity of the circadian clock. In response to light, CRY causes slowing of the clock, ultimately leading to arrhythmic behavior. We expected that in the presence of applied magnetic fields, the impact of CRY on clock rhythmicity should be altered. Furthermore, according to the radical-pair hypothesis this response should be dependent on wavelength and on the field strength applied. We tested the effect of applied static magnetic fields on the circadian clock and found that flies exposed to these fields indeed showed enhanced slowing of clock rhythms. This effect was maximal at 300 μT, and reduced at both higher and lower field strengths. Clock response to magnetic fields was present in blue light, but absent under red-light illumination, which does not activate CRY. Furthermore, cryb and cryOUT mutants did not show any response, and flies overexpressing CRY in the clock neurons exhibited an enhanced response to the field. We conclude that Drosophila's circadian clock is sensitive to magnetic fields and that this sensitivity depends on light activation of CRY and on the applied field strength, consistent with the radical pair mechanism. CRY is widespread throughout biological systems and has been suggested as receptor for magnetic compass orientation in migratory birds. The present data establish the circadian clock of Drosophila as a model system for CRY-dependent magnetic sensitivity. Furthermore, given that CRY occurs in multiple tissues of Drosophila, including those potentially implicated in fly orientation, future studies may yield insights that could be applicable to the magnetic compass of migratory birds and even to potential magnetic field effects in humans. PMID:19355790
Covariance hypotheses for LANDSAT data
NASA Technical Reports Server (NTRS)
Decell, H. P.; Peters, C.
1983-01-01
Two covariance hypotheses are considered for LANDSAT data acquired by sampling fields, one an autoregressive covariance structure and the other the hypothesis of exchangeability. A minimum entropy approximation of the first structure by the second is derived and shown to have desirable properties for incorporation into a mixture density estimation procedure. Results of a rough test of the exchangeability hypothesis are presented.
Bayesian Hypothesis Testing for Psychologists: A Tutorial on the Savage-Dickey Method
ERIC Educational Resources Information Center
Wagenmakers, Eric-Jan; Lodewyckx, Tom; Kuriyal, Himanshu; Grasman, Raoul
2010-01-01
In the field of cognitive psychology, the "p"-value hypothesis test has established a stranglehold on statistical reporting. This is unfortunate, as the "p"-value provides at best a rough estimate of the evidence that the data provide for the presence of an experimental effect. An alternative and arguably more appropriate measure of evidence is…
Hügel, Theresa; van Meir, Vincent; Muñoz-Meneses, Amanda; Clarin, B-Markus; Siemers, Björn M; Goerlitz, Holger R
2017-01-01
Animals can gain important information by attending to the signals and cues of other animals in their environment, with acoustic information playing a major role in many taxa. Echolocation call sequences of bats contain information about the identity and behaviour of the sender which is perceptible to close-by receivers. Increasing evidence supports the communicative function of echolocation within species, yet data about its role for interspecific information transfer is scarce. Here, we asked which information bats extract from heterospecific echolocation calls during foraging. In three linked playback experiments, we tested in the flight room and field if foraging Myotis bats approached the foraging call sequences of conspecifics and four heterospecifics that were similar in acoustic call structure only (acoustic similarity hypothesis), in foraging ecology only (foraging similarity hypothesis), both, or none. Compared to the natural prey capture rate of 1.3 buzzes per minute of bat activity, our playbacks of foraging sequences with 23-40 buzzes/min simulated foraging patches with significantly higher profitability. In the flight room, M. capaccinii only approached call sequences of conspecifics and of the heterospecific M. daubentonii with similar acoustics and foraging ecology. In the field, M. capaccinii and M. daubentonii only showed a weak positive response to those two species. Our results confirm information transfer across species boundaries and highlight the importance of context on the studied behaviour, but cannot resolve whether information transfer in trawling Myotis is based on acoustic similarity only or on a combination of similarity in acoustics and foraging ecology. Animals transfer information, both voluntarily and inadvertently, and within and across species boundaries. In echolocating bats, acoustic call structure and foraging ecology are linked, making echolocation calls a rich source of information about species identity, ecology and activity of the sender, which receivers might exploit to find profitable foraging grounds. We tested in three lab and field experiments if information transfer occurs between bat species and if bats obtain information about ecology from echolocation calls. Myotis capaccinii/daubentonii bats approached call playbacks, but only those from con- and heterospecifics with similar call structure and foraging ecology, confirming interspecific information transfer. Reactions differed between lab and field, emphasising situation-dependent differences in animal behaviour, the importance of field research, and the need for further studies on the underlying mechanism of information transfer and the relative contributions of acoustic and ecological similarity.
Matsuzaki, Naoyuki; Schwarzlose, Rebecca F.; Nishida, Masaaki; Ofen, Noa; Asano, Eishi
2015-01-01
Behavioral studies demonstrate that a face presented in the upright orientation attracts attention more rapidly than an inverted face. Saccades toward an upright face take place in 100-140 ms following presentation. The present study using electrocorticography determined whether upright face-preferential neural activation, as reflected by augmentation of high-gamma activity at 80-150 Hz, involved the lower-order visual cortex within the first 100 ms post-stimulus presentation. Sampled lower-order visual areas were verified by the induction of phosphenes upon electrical stimulation. These areas resided in the lateral-occipital, lingual, and cuneus gyri along the calcarine sulcus, roughly corresponding to V1 and V2. Measurement of high-gamma augmentation during central (circular) and peripheral (annular) checkerboard reversal pattern stimulation indicated that central-field stimuli were processed by the more polar surface whereas peripheral-field stimuli by the more anterior medial surface. Upright face stimuli, compared to inverted ones, elicited up to 23% larger augmentation of high-gamma activity in the lower-order visual regions at 40-90 ms. Upright face-preferential high-gamma augmentation was more highly correlated with high-gamma augmentation for central than peripheral stimuli. Our observations are consistent with the hypothesis that lower-order visual regions, especially those for the central field, are involved in visual cues for rapid detection of upright face stimuli. PMID:25579446
Millimeter-scale epileptiform spike propagation patterns and their relationship to seizures
Vanleer, Ann C; Blanco, Justin A; Wagenaar, Joost B; Viventi, Jonathan; Contreras, Diego; Litt, Brian
2016-01-01
Objective Current mapping of epileptic networks in patients prior to epilepsy surgery utilizes electrode arrays with sparse spatial sampling (∼1.0 cm inter-electrode spacing). Recent research demonstrates that sub-millimeter, cortical-column-scale domains have a role in seizure generation that may be clinically significant. We use high-resolution, active, flexible surface electrode arrays with 500 μm inter-electrode spacing to explore epileptiform local field potential spike propagation patterns in two dimensions recorded from subdural micro-electrocorticographic signals in vivo in cat. In this study, we aimed to develop methods to quantitatively characterize the spatiotemporal dynamics of epileptiform activity at high-resolution. Approach We topically administered a GABA-antagonist, picrotoxin, to induce acute neocortical epileptiform activity leading up to discrete electrographic seizures. We extracted features from local field potential spikes to characterize spatiotemporal patterns in these events. We then tested the hypothesis that two dimensional spike patterns during seizures were different from those between seizures. Main results We showed that spatially correlated events can be used to distinguish ictal versus interictal spikes. Significance We conclude that sub-millimeter-scale spatiotemporal spike patterns reveal network dynamics that are invisible to standard clinical recordings and contain information related to seizure-state. PMID:26859260
Vácha, M
1997-10-01
While investigating and describing interactions among living organisms and magnetic fields (MFs) it is imperative to lay great emphasis on independent reproducibility of published experimental results. Mutual confrontation of existing theoretical models with reliable data obtained under comparable conditions can aid gradual mapping of this hitherto badly organized and understood discipline of biology. The objective of our experiment, based on analysing extracardiac pulsations of the pupae of Tenebrio molitor under the influence of a MF, was to verify published data on allegedly accelerated development induced by a MF employing a different procedure. The obtained data are in agreement with a hypothesis of increased pupal metabolism during the period of MF activity. Furthermore, some dependence on the age of the pupae cannot be ruled out.
Use it or lose it: engaged lifestyle as a buffer of cognitive decline in aging?
Hultsch, D F; Hertzog, C; Small, B J; Dixon, R A
1999-06-01
Data from the Victoria Longitudinal Study were used to examine the hypothesis that maintaining intellectual engagement through participation in everyday activities buffers individuals against cognitive decline in later life. The sample consisted of 250 middle-aged and older adults tested 3 times over 6 years. Structural equation modeling techniques were used to examine the relationships among changes in lifestyle variables and an array of cognitive variables. There was a relationship between changes in intellectually related activities and changes in cognitive functioning. These results are consistent with the hypothesis that intellectually engaging activities serve to buffer individuals against decline. However, an alternative model suggested the findings were also consistent with the hypothesis that high-ability individuals lead intellectually active lives until cognitive decline in old age limits their activities.
Effects of coil orientation on the electric field induced by TMS over the hand motor area
NASA Astrophysics Data System (ADS)
Laakso, Ilkka; Hirata, Akimasa; Ugawa, Yoshikazu
2014-01-01
Responses elicited by transcranial magnetic stimulation (TMS) over the hand motor area depend on the position and orientation of the stimulating coil. In this work, we computationally investigate the induced electric field for multiple coil orientations and locations in order to determine which parts of the brain are affected and how the sensitivity of motor cortical activation depends on the direction of the electric field. The finite element method is used for calculating the electric field induced by TMS in two individual anatomical models of the head and brain. The orientation of the coil affects both the strength and depth of penetration of the electric field, and the field strongly depends on the direction of the sulcus, where the target neurons are located. The coil position that gives the strongest electric field in the target cortical region may deviate from the closest scalp location by a distance on the order of 1 cm. Together with previous experimental data, the results support the hypothesis that the cortex is most sensitive to fields oriented perpendicular to the cortical layers, while it is relatively insensitive to fields parallel to them. This has important implications for targeting of TMS. To determine the most effective coil position and orientation, it is essential to consider both biological (the direction of the targeted axons) and physical factors (the strength and direction of the electric field).
1982-04-01
Hypothesis: leukocyte endogenous mediator/ endogenous pyrogen /lymphocyte-activating factor modulates the development of nonspecific and specific... endogenous pyrogen /lympho- NI cyte-activating factor (LEM/EP/LAF) integrates the host’s nonspecific and specific immune responses to infection by...mediator/ endogenous pyrogen /lymphocyte-activating factor, nonspecific and specific immunity, infection, metabolism, nutrition. Introduction LAF which lead
Magnetic pattern at supergranulation scale: the void size distribution
NASA Astrophysics Data System (ADS)
Berrilli, F.; Scardigli, S.; Del Moro, D.
2014-08-01
The large-scale magnetic pattern observed in the photosphere of the quiet Sun is dominated by the magnetic network. This network, created by photospheric magnetic fields swept into convective downflows, delineates the boundaries of large-scale cells of overturning plasma and exhibits "voids" in magnetic organization. These voids include internetwork fields, which are mixed-polarity sparse magnetic fields that populate the inner part of network cells. To single out voids and to quantify their intrinsic pattern we applied a fast circle-packing-based algorithm to 511 SOHO/MDI high-resolution magnetograms acquired during the unusually long solar activity minimum between cycles 23 and 24. The computed void distribution function shows a quasi-exponential decay behavior in the range 10-60 Mm. The lack of distinct flow scales in this range corroborates the hypothesis of multi-scale motion flows at the solar surface. In addition to the quasi-exponential decay, we have found that the voids depart from a simple exponential decay at about 35 Mm.
Aphasic Patients Exhibit a Reversal of Hemispheric Asymmetries in Categorical Color Discrimination
Paluy, Yulia; Gilbert, Aubrey L.; Baldo, Juliana V.; Dronkers, Nina F.; Ivry, Richard B.
2010-01-01
Patients with left hemisphere (LH) or right hemisphere (RH) brain injury due to stroke were tested on a speeded, color discrimination task in which two factors were manipulated: 1) the categorical relationship between the target and the distracters and 2) the visual field in which the target was presented. Similar to controls, the RH patients were faster in detecting targets in the right visual field when the target and distracters had different color names compared to when their names were the same. This effect was absent in the LH patients, consistent with the hypothesis that injury to the left hemisphere handicaps the automatic activation of lexical codes. Moreover, the LH patients showed a reversed effect, such that the advantage of different target-distracter names was now evident for targets in the left visual field. This reversal may suggest a reorganization of the color lexicon in the right hemisphere following left hemisphere brain injury and/or the unmasking of a heightened right hemisphere sensitivity to color categories. PMID:21216454
Bödeker, Inga T M; Clemmensen, Karina E; de Boer, Wietse; Martin, Francis; Olson, Åke; Lindahl, Björn D
2014-07-01
In northern forests, belowground sequestration of nitrogen (N) in complex organic pools restricts nutrient availability to plants. Oxidative extracellular enzymes produced by ectomycorrhizal fungi may aid plant N acquisition by providing access to N in macromolecular complexes. We test the hypotheses that ectomycorrhizal Cortinarius species produce Mn-dependent peroxidases, and that the activity of these enzymes declines at elevated concentrations of inorganic N. In a boreal pine forest and a sub-arctic birch forest, Cortinarius DNA was assessed by 454-sequencing of ITS amplicons and related to Mn-peroxidase activity in humus samples with- and without previous N amendment. Transcription of Cortinarius Mn-peroxidase genes was investigated in field samples. Phylogenetic analyses of Cortinarius peroxidase amplicons and genome sequences were performed. We found a significant co-localization of high peroxidase activity and DNA from Cortinarius species. Peroxidase activity was reduced by high ammonium concentrations. Amplification of mRNA sequences indicated transcription of Cortinarius Mn-peroxidase genes under field conditions. The Cortinarius glaucopus genome encodes 11 peroxidases - a number comparable to many white-rot wood decomposers. These results support the hypothesis that some ectomycorrhizal fungi--Cortinarius species in particular--may play an important role in decomposition of complex organic matter, linked to their mobilization of organically bound N. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Evolution of Motor Control: From Reflexes and Motor Programs to the Equilibrium-Point Hypothesis
Latash, Mark L.
2009-01-01
This brief review analyzes the evolution of motor control theories along two lines that emphasize active (motor programs) and reactive (reflexes) features of voluntary movements. It suggests that the only contemporary hypothesis that integrates both approaches in a fruitful way is the equilibrium-point hypothesis. Physical, physiological, and behavioral foundations of the EP-hypothesis are considered as well as relations between the EP-hypothesis and the recent developments of the notion of motor synergies. The paper ends with a brief review of the criticisms of the EP-hypothesis and challenges that the hypothesis faces at this time. PMID:19823595
Pleasants, John M.; Zalucki, Myron P.; Oberhauser, Karen S.; Brower, Lincoln P.; Taylor, Orley R.; Thogmartin, Wayne E.
2017-01-01
To assess the change in the size of the eastern North American monarch butterfly summer population, studies have used long-term data sets of counts of adult butterflies or eggs per milkweed stem. Despite the observed decline in the monarch population as measured at overwintering sites in Mexico, these studies found no decline in summer counts in the Midwest, the core of the summer breeding range, leading to a suggestion that the cause of the monarch population decline is not the loss of Midwest agricultural milkweeds but increased mortality during the fall migration. Using these counts to estimate population size, however, does not account for the shift of monarch activity from agricultural fields to non-agricultural sites over the past 20 years, as a result of the loss of agricultural milkweeds due to the near-ubiquitous use of glyphosate herbicides. We present the counter-hypotheses that the proportion of the monarch population present in non-agricultural habitats, where counts are made, has increased and that counts reflect both population size and the proportion of the population observed. We use data on the historical change in the proportion of milkweeds, and thus monarch activity, in agricultural fields and non-agricultural habitats to show why using counts can produce misleading conclusions about population size. We then separate out the shifting proportion effect from the counts to estimate the population size and show that these corrected summer monarch counts show a decline over time and are correlated with the size of the overwintering population. In addition, we present evidence against the hypothesis of increased mortality during migration. The milkweed limitation hypothesis for monarch decline remains supported and conservation efforts focusing on adding milkweeds to the landscape in the summer breeding region have a sound scientific basis.
Low-dimensional attractor for neural activity from local field potentials in optogenetic mice
Oprisan, Sorinel A.; Lynn, Patrick E.; Tompa, Tamas; Lavin, Antonieta
2015-01-01
We used optogenetic mice to investigate possible nonlinear responses of the medial prefrontal cortex (mPFC) local network to light stimuli delivered by a 473 nm laser through a fiber optics. Every 2 s, a brief 10 ms light pulse was applied and the local field potentials (LFPs) were recorded with a 10 kHz sampling rate. The experiment was repeated 100 times and we only retained and analyzed data from six animals that showed stable and repeatable response to optical stimulations. The presence of nonlinearity in our data was checked using the null hypothesis that the data were linearly correlated in the temporal domain, but were random otherwise. For each trail, 100 surrogate data sets were generated and both time reversal asymmetry and false nearest neighbor (FNN) were used as discriminating statistics for the null hypothesis. We found that nonlinearity is present in all LFP data. The first 0.5 s of each 2 s LFP recording were dominated by the transient response of the networks. For each trial, we used the last 1.5 s of steady activity to measure the phase resetting induced by the brief 10 ms light stimulus. After correcting the LFPs for the effect of phase resetting, additional preprocessing was carried out using dendrograms to identify “similar” groups among LFP trials. We found that the steady dynamics of mPFC in response to light stimuli could be reconstructed in a three-dimensional phase space with topologically similar “8”-shaped attractors across different animals. Our results also open the possibility of designing a low-dimensional model for optical stimulation of the mPFC local network. PMID:26483665
Pleasants, John M; Zalucki, Myron P; Oberhauser, Karen S; Brower, Lincoln P; Taylor, Orley R; Thogmartin, Wayne E
2017-01-01
To assess the change in the size of the eastern North American monarch butterfly summer population, studies have used long-term data sets of counts of adult butterflies or eggs per milkweed stem. Despite the observed decline in the monarch population as measured at overwintering sites in Mexico, these studies found no decline in summer counts in the Midwest, the core of the summer breeding range, leading to a suggestion that the cause of the monarch population decline is not the loss of Midwest agricultural milkweeds but increased mortality during the fall migration. Using these counts to estimate population size, however, does not account for the shift of monarch activity from agricultural fields to non-agricultural sites over the past 20 years, as a result of the loss of agricultural milkweeds due to the near-ubiquitous use of glyphosate herbicides. We present the counter-hypotheses that the proportion of the monarch population present in non-agricultural habitats, where counts are made, has increased and that counts reflect both population size and the proportion of the population observed. We use data on the historical change in the proportion of milkweeds, and thus monarch activity, in agricultural fields and non-agricultural habitats to show why using counts can produce misleading conclusions about population size. We then separate out the shifting proportion effect from the counts to estimate the population size and show that these corrected summer monarch counts show a decline over time and are correlated with the size of the overwintering population. In addition, we present evidence against the hypothesis of increased mortality during migration. The milkweed limitation hypothesis for monarch decline remains supported and conservation efforts focusing on adding milkweeds to the landscape in the summer breeding region have a sound scientific basis.
On the widespread use of the Corrsin hypothesis in diffusion theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tautz, R. C.; Shalchi, A.
2010-12-15
In the past four decades, several nonlinear theories have been developed to describe (i) the motion of charged test particles through a turbulent magnetized plasma and (ii) the random walk of magnetic field lines. In many such theories, the so-called Corrsin independence hypothesis has been applied to enforce analytical tractability. In this note, it is shown that the Corrsin hypothesis is part of most nonlinear diffusion theories. In some cases, the Corrsin approximation is somewhat hidden, while in other cases a different name is used for the same approach. It is shown that even the researchers who criticized the applicationmore » of this hypothesis have used it in their nonlinear diffusion theories. It is hoped that the present article will eliminate the recently caused confusion about the applicability and validity of the Corrsin hypothesis.« less
Dissociation of recombinant prion autocatalysis from infectivity.
Noble, Geoffrey P; Supattapone, Surachai
2015-01-01
Within the mammalian prion field, the existence of recombinant prion protein (PrP) conformers with self-replicating (ie. autocatalytic) activity in vitro but little to no infectious activity in vivo challenges a key prediction of the protein-only hypothesis of prion replication--that autocatalytic PrP conformers should be infectious. To understand this dissociation of autocatalysis from infectivity, we recently performed a structural and functional comparison between a highly infectious and non-infectious pair of autocatalytic recombinant PrP conformers derived from the same initial prion strain. (1) We identified restricted, C-terminal structural differences between these 2 conformers and provided evidence that these relatively subtle differences prevent the non-infectious conformer from templating the conversion of native PrP(C) substrates containing a glycosylphosphatidylinositol (GPI) anchor. (1) In this article we discuss a model, consistent with these findings, in which recombinant PrP, lacking post-translational modifications and associated folding constraints, is capable of adopting a wide variety of autocatalytic conformations. Only a subset of these recombinant conformers can be adopted by post-translationally modified native PrP(C), and this subset represents the recombinant conformers with high specific infectivity. We examine this model's implications for the generation of highly infectious recombinant prions and the protein-only hypothesis of prion replication.
Clark, Cameron M; Lawlor-Savage, Linette; Goghari, Vina M
2017-01-01
Training of working memory as a method of increasing working memory capacity and fluid intelligence has received much attention in recent years. This burgeoning field remains highly controversial with empirically-backed disagreements at all levels of evidence, including individual studies, systematic reviews, and even meta-analyses. The current study investigated the effect of a randomized six week online working memory intervention on untrained cognitive abilities in a community-recruited sample of healthy young adults, in relation to both a processing speed training active control condition, as well as a no-contact control condition. Results of traditional null hypothesis significance testing, as well as Bayesian factor analyses, revealed support for the null hypothesis across all cognitive tests administered before and after training. Importantly, all three groups were similar at pre-training for a variety of individual variables purported to moderate transfer of training to fluid intelligence, including personality traits, motivation to train, and expectations of cognitive improvement from training. Because these results are consistent with experimental trials of equal or greater methodological rigor, we suggest that future research re-focus on: 1) other promising interventions known to increase memory performance in healthy young adults, and; 2) examining sub-populations or alternative populations in which working memory training may be efficacious.
Balmori, Alfonso; Hallberg, Orjan
2007-01-01
During recent decades, there has been a marked decline of the house sparrow (Passer domesticus) population in the United Kingdom and in several western European countries. The aims of this study were to determine whether the population is also declining in Spain and to evaluate the hypothesis that electromagnetic radiation (microwaves) from phone antennae is correlated with the decline in the sparrow population. Between October 2002 and May 2006, point transect sampling was performed at 30 points during 40 visits to Valladolid, Spain. At each point, we carried out counts of sparrows and measured the mean electric field strength (radiofrequencies and microwaves: 1 MHz-3 GHz range). Significant declines (P = 0.0037) were observed in the mean bird density over time, and significantly low bird density was observed in areas with high electric field strength. The logarithmic regression of the mean bird density vs. field strength groups (considering field strength in 0.1 V/m increments) was R = -0.87 (P = 0.0001). The results of this article support the hypothesis that electromagnetic signals are associated with the observed decline in the sparrow population. We conclude that electromagnetic pollution may be responsible, either by itself or in combination with other factors, for the observed decline of the species in European cities during recent years. The appearently strong dependence between bird density and field strength according to this work could be used for a more controlled study to test the hypothesis.
Combination of Interventions Can Change Students' Epistemological Beliefs
ERIC Educational Resources Information Center
Kalman, Calvin S.; Sobhanzadeh, Mandana; Thompson, Robert; Ibrahim, Ahmed; Wang, Xihui
2015-01-01
This study was based on the hypothesis that students' epistemological beliefs could become more expertlike with a combination of appropriate instructional activities: (i) preclass reading with metacognitive reflection, and (ii) in-class active learning that produces cognitive dissonance. This hypothesis was tested through a five-year study…
Yan, Wensheng; Kang, Jie; Zhang, Guoliang; Li, Shuangcheng; Kang, Yunxiao; Wang, Lei; Shi, Geming
2015-09-14
Binge drinking ethanol exposure during adolescence can lead to long-term neurobehavioural damage. It is not known whether the pubertal surge in testosterone that occurs during adolescence might impact the neurobehavioural effects of early ethanol exposure in adult animals. We examined this hypothesis by performing sham or gonadectomy surgeries on Sprague-Dawley rats around postnatal day (P) 23. From P28-65,the rats were administered 3.0g/kg ethanol using a binge-like model of exposure. Dependent measurements included tests of open field behaviour, blood ethanol concentrations, and testosterone levels. As adults, significant decreases in open field activity were observed in the GX rats. The open field behaviour of the GX rats was restored after testosterone administration. Binge-like ethanol exposure altered most of the parameters of the open field behaviour, suggestive of alcohol-induced anxiety, but rats treated with alcohol in combination with gonadectomy showed less motor behaviour and grooming behaviour and an increase in immobility, suggesting ethanol-induced depression. These results indicated that testosterone is required for ethanol-induced behavioural changes and that testicular hormones are potent stimulators of ethanol-induced behaviours. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Assessing Threat Detection Scenarios through Hypothesis Generation and Testing
2015-12-01
Publications. Field, A. (2005). Discovering statistics using SPSS (2nd ed.). Thousand Oaks, CA: Sage Publications. Fisher, S. D., Gettys, C. F...therefore, subsequent F statistics are reported using the Huynh-Feldt correction (Greenhouse-Geisser Epsilon > .775). Experienced and inexperienced...change in hypothesis using experience and initial confidence as predictors. In the Dog Day scenario, the regression was not statistically
ERIC Educational Resources Information Center
Ren, Junhong
2017-01-01
College English writing instruction has been a prominent research area in EFL field in mainland China. This paper has continued the focus by exploring a seemingly effective way for college English writing instruction in China--teaching writing based on reading on the basis of the "output-driven, input-enabled" hypothesis. This hypothesis…
Structure of receptive fields in a computational model of area 3b of primary sensory cortex.
Detorakis, Georgios Is; Rougier, Nicolas P
2014-01-01
In a previous work, we introduced a computational model of area 3b which is built upon the neural field theory and receives input from a simplified model of the index distal finger pad populated by a random set of touch receptors (Merkell cells). This model has been shown to be able to self-organize following the random stimulation of the finger pad model and to cope, to some extent, with cortical or skin lesions. The main hypothesis of the model is that learning of skin representations occurs at the thalamo-cortical level while cortico-cortical connections serve a stereotyped competition mechanism that shapes the receptive fields. To further assess this hypothesis and the validity of the model, we reproduced in this article the exact experimental protocol of DiCarlo et al. that has been used to examine the structure of receptive fields in area 3b of the primary somatosensory cortex. Using the same analysis toolset, the model yields consistent results, having most of the receptive fields to contain a single region of excitation and one to several regions of inhibition. We further proceeded our study using a dynamic competition that deeply influences the formation of the receptive fields. We hypothesized this dynamic competition to correspond to some form of somatosensory attention that may help to precisely shape the receptive fields. To test this hypothesis, we designed a protocol where an arbitrary region of interest is delineated on the index distal finger pad and we either (1) instructed explicitly the model to attend to this region (simulating an attentional signal) (2) preferentially trained the model on this region or (3) combined the two aforementioned protocols simultaneously. Results tend to confirm that dynamic competition leads to shrunken receptive fields and its joint interaction with intensive training promotes a massive receptive fields migration and shrinkage.
Disrupting frontal eye-field activity impairs memory recall.
Wantz, Andrea L; Martarelli, Corinna S; Cazzoli, Dario; Kalla, Roger; Müri, René; Mast, Fred W
2016-04-13
A large body of research demonstrated that participants preferably look back to the encoding location when retrieving visual information from memory. However, the role of this 'looking back to nothing' is still debated. The goal of the present study was to extend this line of research by examining whether an important area in the cortical representation of the oculomotor system, the frontal eye field (FEF), is involved in memory retrieval. To interfere with the activity of the FEF, we used inhibitory continuous theta burst stimulation (cTBS). Before stimulation was applied, participants encoded a complex scene and performed a short-term (immediately after encoding) or long-term (after 24 h) recall task, just after cTBS over the right FEF or sham stimulation. cTBS did not affect overall performance, but stimulation and statement type (object vs. location) interacted. cTBS over the right FEF tended to impair object recall sensitivity, whereas there was no effect on location recall sensitivity. These findings suggest that the FEF is involved in retrieving object information from scene memory, supporting the hypothesis that the oculomotor system contributes to memory recall.
Effect of head pitch and roll orientations on magnetically induced vertigo.
Mian, Omar S; Li, Yan; Antunes, Andre; Glover, Paul M; Day, Brian L
2016-02-15
Lying supine in a strong magnetic field, such as in magnetic resonance imaging scanners, can induce a perception of whole-body rotation. The leading hypothesis to explain this invokes a Lorentz force mechanism acting on vestibular endolymph that acts to stimulate semicircular canals. The hypothesis predicts that the perception of whole-body rotation will depend on head orientation in the field. Results showed that the direction and magnitude of apparent whole-body rotation while stationary in a 7 T magnetic field is influenced by head orientation. The data are compatible with the Lorentz force hypothesis of magnetic vestibular stimulation and furthermore demonstrate the operation of a spatial transformation process from head-referenced vestibular signals to Earth-referenced body motion. High strength static magnetic fields are known to induce vertigo, believed to be via stimulation of the vestibular system. The leading hypothesis (Lorentz forces) predicts that the induced vertigo should depend on the orientation of the magnetic field relative to the head. In this study we examined the effect of static head pitch (-80 to +40 deg; 12 participants) and roll (-40 to +40 deg; 11 participants) on qualitative and quantitative aspects of vertigo experienced in the dark by healthy humans when exposed to the static uniform magnetic field inside a 7 T MRI scanner. Three participants were additionally examined at 180 deg pitch and roll orientations. The effect of roll orientation on horizontal and vertical nystagmus was also measured and was found to affect only the vertical component. Vertigo was most discomforting when head pitch was around 60 deg extension and was mildest when it was around 20 deg flexion. Quantitative analysis of vertigo focused on the induced perception of horizontal-plane rotation reported online with the aid of hand-held switches. Head orientation had effects on both the magnitude and the direction of this perceived rotation. The data suggest sinusoidal relationships between head orientation and perception with spatial periods of 180 deg for pitch and 360 deg for roll, which we explain is consistent with the Lorentz force hypothesis. The effects of head pitch on vertigo and previously reported nystagmus are consistent with both effects being driven by a common vestibular signal. To explain all the observed effects, this common signal requires contributions from multiple semicircular canals. © 2015 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback.
Kok, Peter; Bains, Lauren J; van Mourik, Tim; Norris, David G; de Lange, Floris P
2016-02-08
In addition to bottom-up input, the visual cortex receives large amounts of feedback from other cortical areas [1-3]. One compelling example of feedback activation of early visual neurons in the absence of bottom-up input occurs during the famous Kanizsa illusion, where a triangular shape is perceived, even in regions of the image where there is no bottom-up visual evidence for it. This illusion increases the firing activity of neurons in the primary visual cortex with a receptive field on the illusory contour [4]. Feedback signals are largely segregated from feedforward signals within each cortical area, with feedforward signals arriving in the middle layer, while top-down feedback avoids the middle layers and predominantly targets deep and superficial layers [1, 2, 5, 6]. Therefore, the feedback-mediated activity increase in V1 during the perception of illusory shapes should lead to a specific laminar activity profile that is distinct from the activity elicited by bottom-up stimulation. Here, we used fMRI at high field (7 T) to empirically test this hypothesis, by probing the cortical response to illusory figures in human V1 at different cortical depths [7-14]. We found that, whereas bottom-up stimulation activated all cortical layers, feedback activity induced by illusory figures led to a selective activation of the deep layers of V1. These results demonstrate the potential for non-invasive recordings of neural activity with laminar specificity in humans and elucidate the role of top-down signals during perceptual processing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sadovsky, Alexander J.
2013-01-01
Mapping the flow of activity through neocortical microcircuits provides key insights into the underlying circuit architecture. Using a comparative analysis we determined the extent to which the dynamics of microcircuits in mouse primary somatosensory barrel field (S1BF) and auditory (A1) neocortex generalize. We imaged the simultaneous dynamics of up to 1126 neurons spanning multiple columns and layers using high-speed multiphoton imaging. The temporal progression and reliability of reactivation of circuit events in both regions suggested common underlying cortical design features. We used circuit activity flow to generate functional connectivity maps, or graphs, to test the microcircuit hypothesis within a functional framework. S1BF and A1 present a useful test of the postulate as both regions map sensory input anatomically, but each area appears organized according to different design principles. We projected the functional topologies into anatomical space and found benchmarks of organization that had been previously described using physiology and anatomical methods, consistent with a close mapping between anatomy and functional dynamics. By comparing graphs representing activity flow we found that each region is similarly organized as highlighted by hallmarks of small world, scale free, and hierarchical modular topologies. Models of prototypical functional circuits from each area of cortex were sufficient to recapitulate experimentally observed circuit activity. Convergence to common behavior by these models was accomplished using preferential attachment to scale from an auditory up to a somatosensory circuit. These functional data imply that the microcircuit hypothesis be framed as scalable principles of neocortical circuit design. PMID:23986241
Bolten, Margarete; Nast, Irina; Skrundz, Marta; Stadler, Christina; Hellhammer, Dirk H; Meinlschmidt, Gunther
2013-10-01
Hypothalamic-pituitary-adrenal (HPA) activation during pregnancy is linked to dysfunctional behavioral outcomes in the offspring. According to Belsky's differential susceptibility hypothesis, individuals vary regarding their developmental plasticity. Translating the differential susceptibility hypothesis to the field of fetal programming, we hypothesize that infants' temperament, as the constitutionally based reactivity to stimulation, moderates prenatal environmental effects on postnatal emotion regulation. Maternal HPA axis activity and stress-reactivity during pregnancy was estimated, by measuring cortisol concentrations in saliva, collected at 0, 30, 45 and 60 min after awakening and in blood, collected during a laboratory stress test (Trier Social Stress Test), respectively. Newborns reactivity to stimulation was evaluated between postnatal day 10 and 14 using the Neonatal Intensive Care Unit Network Neurobehavioral Scale. Infant's self-quieting-activities, as an indicator of emotion regulation, were evaluated at the age of six months during the still face paradigm. Maternal cortisol reactivity to stress during pregnancy was associated with infant's emotion regulation at the age of six months. Whereas cortisol levels after awakening in mid and late pregnancy were not associated with emotion regulation. Furthermore, regression analyses revealed that in interaction with neonatal reactivity, both, prenatal maternal HPA activity as well as prenatal maternal HPA reactivity to stress predicted emotion regulation. The findings indicate that newborns' reactivity to stimulation is moderating the association between prenatal exposure to maternal glucocorticoids and emotion regulation in infancy. Data suggests that temperamental characteristics of the newborn are a relevant differential susceptibility factor with regard to prenatal effects on emotion regulation. © 2013.
Martin, Claire; Ravel, Nadine
2014-01-01
Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform, and entorhinal cortices) and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to “bind” distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15–40 Hz) and gamma (60–100 Hz). While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory. PMID:25002840
Lind, Craig M.; Moore, Ignacio T.; Akçay, Çağlar; Vernasco, Ben J.; Lorch, Jeffrey M.; Farrell, Terence M.
2018-01-01
Snake fungal disease (SFD) is an emerging threat to snake populations in the United States. Fungal pathogens are often associated with a physiological stress response mediated by the hypothalamo-pituitary-adrenal axis (HPA), and afflicted individuals may incur steep coping costs. The severity of SFD can vary seasonally; however, little is known regarding (1) how SFD infection relates to HPA activity and (2) how seasonal shifts in environment, life history, or HPA activity may interact to drive seasonal patterns of infection severity and outcomes. To test the hypothesis that SFD is associated with increased HPA activity and to identify potential environmental or physiological drivers of seasonal infection, we monitored baseline corticosterone, SFD infection severity, foraging success, body condition, and reproductive status in a field-active population of pigmy rattlesnakes. Both plasma corticosterone and the severity of clinical signs of SFD peaked in the winter. Corticosterone levels were also elevated in the fall before the seasonal rise in SFD severity. Severely symptomatic snakes were in low body condition and had elevated corticosterone levels compared to moderately infected and uninfected snakes. The monthly mean severity of SFD in the population was negatively related to population-wide estimates of body condition and temperature measured in the precedent month and positively correlated with corticosterone levels measured in the precedent month. Symptomatic females were less likely to enter reproductive bouts compared to asymptomatic females. We propose the hypothesis that the seasonal interplay among environment, host energetics, and HPA activity initiates trade-offs in the fall that drive the increase in SFD prevalence, symptom severity, and decline in condition observed in the population through winter.
HDAC3 and the Molecular Brake Pad Hypothesis
McQuown, Susan C.; Wood, Marcelo A.
2011-01-01
Successful transcription of specific genes required for long-term memory processes involves the orchestrated effort of not only transcription factors, but also very specific enzymatic protein complexes that modify chromatin structure. Chromatin modification has been identified as a pivotal molecular mechanism underlying certain forms of synaptic plasticity and memory. The best-studied form of chromatin modification in the learning and memory field is histone acetylation, which is regulated by histone acetyltransferases and histone deacetylases (HDACs). HDAC inhibitors have been shown to strongly enhance long-term memory processes, and recent work has aimed to identify contributions of individual HDACs. In this review, we focus on HDAC3 and discuss its recently defined role as a negative regulator of long-term memory formation. HDAC3 is part of a corepressor complex and has direct interactions with class II HDACs that may be important for its molecular and behavioral consequences. And last, we propose the “molecular brake pad” hypothesis of HDAC function. The HDACs and associated corepressor complexes may function in neurons, in part, as “molecular brake pads.” HDACs are localized to promoters of active genes and act as a persistent clamp that requires strong activity-dependent signaling to temporarily release these complexes (or brake pads) to activate gene expression required for long-term memory formation. Thus, HDAC inhibition removes the “molecular brake pads” constraining the processes necessary for long-term memory and results in strong, persistent memory formation. PMID:21521655
Labor efficiency and intensity of land use in rice production: an example from Kalimantan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padoch, C.
1986-09-01
The ''Boserup hypothesis'' contends that land-intensive systems of agriculture will be adopted only when high population density precludes the use of land-extensive methods. In the Kerayan District of East Kalimantan (Indonesia) the Lun Dayeh practice permanent-field rice cultivation despite very low human densities. An examination of the relative labor efficiencies of shifting and permanent-field agriculture in the Kerayan, as well as of local environmental and historical variables, explains why this ''anomalous'' situation exists. It is argued that since relative success in production of rice by shifting- and permanent-field irrigated methods depends on many natural and social conditions other than levelsmore » of population density, the ''environment-free'' Boserup hypothesis cannot adequately explain or predict the occurrence of particular forms of rice agriculture.« less
Evidence that displacement activities facilitate behavioural transitions in ring-tailed lemurs.
Buckley, Victoria; Semple, Stuart
2012-07-01
Displacement activities are behavioural patterns defined by their apparent irrelevance to an animal's ongoing actions. Despite being identified in diverse taxa, their function remains poorly understood. One hypothesis posits that displacement activities facilitate transitions between different behaviours by mediating changes in animals' motivational state. Under this hypothesis, it is predicted that displacement activities will occur more frequently around changes in behaviour than at other times, and also that rates of displacement activities will be higher before than after such behavioural transitions. We tested these two predictions in wild ring-tailed lemurs (Lemur catta). During focal observations, animals' behavioural state was continuously recorded, as were all occurrences of self-scratching, a common displacement activity in this species. Self-scratching rates were found to be significantly elevated both before and after behavioural transitions. Furthermore, self-scratching rates were significantly higher before behavioural transitions occurred than after. These results, therefore, provide support for the hypothesis that displacement activities facilitate behavioural transitions in L. catta. Copyright © 2012 Elsevier B.V. All rights reserved.
Testing the single-state dominance hypothesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Álvarez-Rodríguez, R.; Moreno, O.; Moya de Guerra, E.
2013-12-30
We present a theoretical analysis of the single-state dominance hypothesis for the two-neutrino double-beta decay process. The theoretical framework is a proton-neutron QRPA based on a deformed Hartree-Fock mean field with BCS pairing correlations. We focus on the decays of {sup 100}Mo, {sup 116}Cd and {sup 128}Te. We do not find clear evidences for single-state dominance within the present approach.
The Effects of Prior Knowledge Activation on Free Recall and Study Time Allocation.
ERIC Educational Resources Information Center
Machiels-Bongaerts, Maureen; And Others
The effects of mobilizing prior knowledge on information processing were studied. Two hypotheses, the cognitive set-point hypothesis and the selective attention hypothesis, try to account for the facilitation effects of prior knowledge activation. These hypotheses predict different recall patterns as a result of mobilizing prior knowledge. In…
ERIC Educational Resources Information Center
McGaugh, James L.
2005-01-01
Just a little over a century has passed since Muller and Pilzecker (1900) proposed the "perseveration-consolidation" hypothesis suggesting that neural activity initiated by newly learned information perseverates for a while and that such perseveration is critical for consolidating memory. Although memory consolidation is currently the focus of…
Using Backward Design in Education Research: A Research Methods Essay †
Jensen, Jamie L.; Bailey, Elizabeth G.; Kummer, Tyler A.; Weber, K. Scott
2017-01-01
Education research within the STEM disciplines applies a scholarly approach to teaching and learning, with the intent of better understanding how people learn and of improving pedagogy at the undergraduate level. Most of the professionals practicing in this field have ‘crossed over’ from other disciplinary fields and thus have faced challenges in becoming experts in a new discipline. In this article, we offer a novel framework for approaching education research design called Backward Design in Education Research. It is patterned on backward curricular design and provides a three-step, systematic approach to designing education projects: 1) Define a research question that leads to a testable causal hypothesis based on a theoretical rationale; 2) Choose or design the assessment instruments to test the research hypothesis; and 3) Develop an experimental protocol that will be effective in testing the research hypothesis. This approach provides a systematic method to develop and carry out evidence-based research design. PMID:29854045
Zartarian, V G; Streicker, J; Rivera, A; Cornejo, C S; Molina, S; Valadez, O F; Leckie, J O
1995-01-01
A pesticide exposure assessment pilot study was conducted in Salinas Valley, California during September, 1993. The pilot study had two main purposes: 1) to develop general methodologies for videotaping micro-activities of a population, and 2) to collect an initial database of activity patterns of two- to four-year-old farm labor children. Tools to accurately determine exposure and dose through all three pathways (dermal, ingestion, and inhalation) are needed to effectively assess and manage health risks posed by pesticides and other environmental pollutants. Eight to ten hours of videotape data were collected for each of four Mexican-American farm labor children. In addition, the researchers administered a day-after recall questionnaire to the caregivers of the children to test (for the study sample) the hypothesis that recall questionnaires are inadequate for collecting detailed information regarding dermal and hand-to-mouth exposures. The results of this study provide the first detailed set of videotape data on farm labor children, a population at high risk to pesticide exposures. In addition, this is the first project in the exposure assessment field to use direct observation videotaping for collecting micro-activity data in order to quantify dermal and ingestion exposure. The comparison of caregivers' recall of children's activities to actual videotapes from the pilot study supports the hypothesis that videotaping may greatly improve the accuracy of activity information used to compute dermal and ingestion exposures. However, as it was clear that the researchers' presence in some cases altered the activities of the subjects, further experiments need to be conducted to minimize interference of videotaping on exposure-related activities. This paper explains the selection of the study population, the methods used to implement the pilot study, and the lessons learned. While the discussion focuses on four case studies in the Mexican-American farm labor population, the data collection methods developed and the lessons learned can be applied to other populations.
Gubbels, Jessica S; Van Kann, Dave Hh; de Vries, Nanne K; Thijs, Carel; Kremers, Stef Pj
2014-04-17
The ecological perspective holds that human behavior depends on the interaction of different environmental factors and personal characteristics, but it lacks validation and operationalization. In the current paper, an ecological view was adopted to examine the interactive impact of several ecological systems on children's dietary intake and physical activity at childcare or similar facilities. The ecological view was operationalized into three types of interaction: 1) interaction between types of childcare environment (physical, social, political, economic); 2) interaction between micro-systems (the childcare and home environment) in meso-systems; and 3) interaction between childcare environment and child characteristics. The predictive value of each of these interactions was tested based on a systematic review of the literature. Several studies support the hypothesis that the influence of the childcare environment on children's physical activity and diet is moderated by child characteristics (age, gender), but interaction between environmental types as well as between micro-systems is hardly examined in the field of behavioral nutrition and physical activity. Qualitative studies and general child development research provide some valuable insights, but we advocate quantitative research adopting an ecological perspective on environmental influences. Empirical studies operationalizing a true ecological view on diet and physical activity are scarce. Theorizing and assessment of interaction is advocated to become common practice rather than an exception in behavioral nutrition and physical activity research, in order to move the field forward.
2014-01-01
Background The ecological perspective holds that human behavior depends on the interaction of different environmental factors and personal characteristics, but it lacks validation and operationalization. In the current paper, an ecological view was adopted to examine the interactive impact of several ecological systems on children’s dietary intake and physical activity at childcare or similar facilities. The ecological view was operationalized into three types of interaction: 1) interaction between types of childcare environment (physical, social, political, economic); 2) interaction between micro-systems (the childcare and home environment) in meso-systems; and 3) interaction between childcare environment and child characteristics. The predictive value of each of these interactions was tested based on a systematic review of the literature. Discussion Several studies support the hypothesis that the influence of the childcare environment on children’s physical activity and diet is moderated by child characteristics (age, gender), but interaction between environmental types as well as between micro-systems is hardly examined in the field of behavioral nutrition and physical activity. Qualitative studies and general child development research provide some valuable insights, but we advocate quantitative research adopting an ecological perspective on environmental influences. Summary Empirical studies operationalizing a true ecological view on diet and physical activity are scarce. Theorizing and assessment of interaction is advocated to become common practice rather than an exception in behavioral nutrition and physical activity research, in order to move the field forward. PMID:24742167
A Geomagnetic Estimate of Mean Paleointensity
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
2004-01-01
To test a statistical hypothesis about Earth's magnetic field against paleomagnetism, the present field is used to estimate time averaged paleointensity. The estimate used the modern magnetic multipole spectrum R(n), which gives the mean square induction represented by spherical harmonics of degree n averaged over the sphere of radius a = 6371.2 km. The hypothesis asserts that low degree multi-pole powers of the coresource field are distributed as chi-squared with 2n+1 degrees of freedom and expectation values, where c is the 3480 km radius of the Earth's core. (This is compatible with a usually mainly geocentric axial dipolar field). Amplitude K is estimated by fitting theoretical to observational spectra through degree 12. The resulting calibrated expectation spectrum is summed through degree 12 to estimate expected square intensity F(exp 2). The sum also estimates F(exp 2) averaged over geologic time, in so far as the present magnetic spectrum is a fair sample of that generated in the past by core geodynamic processes. Additional information is included in the original extended abstract.
Unification of field theory and maximum entropy methods for learning probability densities
NASA Astrophysics Data System (ADS)
Kinney, Justin B.
2015-09-01
The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.
Unification of field theory and maximum entropy methods for learning probability densities.
Kinney, Justin B
2015-09-01
The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.
An impact-driven dynamo for the early Moon.
Le Bars, M; Wieczorek, M A; Karatekin, O; Cébron, D; Laneuville, M
2011-11-09
The origin of lunar magnetic anomalies remains unresolved after their discovery more than four decades ago. A commonly invoked hypothesis is that the Moon might once have possessed a thermally driven core dynamo, but this theory is problematical given the small size of the core and the required surface magnetic field strengths. An alternative hypothesis is that impact events might have amplified ambient fields near the antipodes of the largest basins, but many magnetic anomalies exist that are not associated with basin antipodes. Here we propose a new model for magnetic field generation, in which dynamo action comes from impact-induced changes in the Moon's rotation rate. Basin-forming impact events are energetic enough to have unlocked the Moon from synchronous rotation, and we demonstrate that the subsequent large-scale fluid flows in the core, excited by the tidal distortion of the core-mantle boundary, could have powered a lunar dynamo. Predicted surface magnetic field strengths are on the order of several microteslas, consistent with palaeomagnetic measurements, and the duration of these fields is sufficient to explain the central magnetic anomalies associated with several large impact basins.
Investigation of a direct effect of nanosecond pulse electric fields on mitochondria
NASA Astrophysics Data System (ADS)
Estlack, Larry E.; Roth, Caleb C.; Cerna, Cesario Z.; Wilmink, Gerald J.; Ibey, Bennett L.
2014-03-01
The unique cellular response to nanosecond pulsed electric field (nsPEF) exposure, as compared to longer pulse exposure, has been theorized to be due to permeabilization of intracellular organelles including the mitochondria. In this investigation, we utilized a high-throughput oxygen and pH sensing system (Seahorse® XF24 extracellular flux analyzer) to assess the mitochondrial activity of Jurkat and U937 cells after nsPEF. The XF Analyzer uses a transient micro-chamber of only a few μL in specialized cell culture micro-plates to enable oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) to be monitored in real-time. We found that for nsPEF exposures of 10 pulses at 10-ns pulse width and at 50 kV/cm e-field, we were able to cause an increase in OCR in both U937 and Jurkat cells. We also found that high pulse numbers (>100) caused a significant decrease in OCR. Higher amplitude 150 kV/cm exposures had no effect on U937 cells and yet they had a deleterious effect on Jurkat cells, matching previously published 24 hour survival data. These results suggest that the exposures were modulating metabolic activity in cells possibly due to direct effects on the mitochondria themselves. To validate this hypothesis, we isolated mitochondria from U937 cells and exposed them similarly and found no significant change in metabolic activity for any pulse number. In a final experiment, we removed calcium from the buffer solution that the cells were exposed in and found that no significant enhancement in metabolic activity was observed. These results suggest that direct permeabilization of the mitochondria is unlikely a primary effect of nsPEF exposure and calcium-mediated intracellular pathway activation is likely responsible for observed pulse-induced mitochondrial effects.
Geomagnetic main field modeling using magnetohydrodynamic constraints
NASA Technical Reports Server (NTRS)
Estes, R. H.
1985-01-01
The influence of physical constraints are investigated which may be approximately satisfied by the Earth's liquid core on models of the geomagnetic main field and its secular variation. A previous report describes the methodology used to incorporate nonlinear equations of constraint into the main field model. The application of that methodology to the GSFC 12/83 field model to test the frozen-flux hypothesis and the usefulness of incorporating magnetohydrodynamic constraints for obtaining improved geomagnetic field models is described.
Ineffective crypsis in a crab spider: a prey community perspective
Brechbühl, Rolf; Casas, Jérôme; Bacher, Sven
2010-01-01
Cryptic coloration is assumed to be beneficial to predators because of an increased encounter rate with unwary prey. This hypothesis is, however, very rarely, if ever, studied in the field. The aim of this study was to quantify the encounter rate and capture success of an ambush predator, in the field, as a function of its level of colour-matching with the background. We used the crab spider Misumena vatia, which varies its body colour and can thereby match the colour of the flower it hunts upon. We carried out a manipulative field experiment using a complete factorial design resulting in six different colour combinations of crab spiders and flowers differing in their degree of colour-matching. A rich and diverse set of naturally occurring insects visited the flowers while we continuously video-recorded the spider's foraging activity. This enabled us to test the crypsis, the spider avoidance and the flower visitor attraction hypotheses, all three supported by previous studies. Flower visitors of different groups either avoided crab spiders independent of colour-matching, such as solitary bees and syrphid flies, or ignored them, such as bumble-bees and honeybees. Moreover, colour-matched spiders did not have a higher encounter rate and capture success compared to the visually apparent ones. Thus, our results support the spider avoidance hypothesis, reject the two other hypotheses and uncovered a fourth behaviour: indifference to predators. Because flower visitors reacted differently, a community approach is mandatory in order to understand the function of background colour-matching in generalist predators. We discuss our results in relation to the size and sociality of the prey and in relation to the functional significance of colour change in this predator. PMID:19889699
Ineffective crypsis in a crab spider: a prey community perspective.
Brechbühl, Rolf; Casas, Jérôme; Bacher, Sven
2010-03-07
Cryptic coloration is assumed to be beneficial to predators because of an increased encounter rate with unwary prey. This hypothesis is, however, very rarely, if ever, studied in the field. The aim of this study was to quantify the encounter rate and capture success of an ambush predator, in the field, as a function of its level of colour-matching with the background. We used the crab spider Misumena vatia, which varies its body colour and can thereby match the colour of the flower it hunts upon. We carried out a manipulative field experiment using a complete factorial design resulting in six different colour combinations of crab spiders and flowers differing in their degree of colour-matching. A rich and diverse set of naturally occurring insects visited the flowers while we continuously video-recorded the spider's foraging activity. This enabled us to test the crypsis, the spider avoidance and the flower visitor attraction hypotheses, all three supported by previous studies. Flower visitors of different groups either avoided crab spiders independent of colour-matching, such as solitary bees and syrphid flies, or ignored them, such as bumble-bees and honeybees. Moreover, colour-matched spiders did not have a higher encounter rate and capture success compared to the visually apparent ones. Thus, our results support the spider avoidance hypothesis, reject the two other hypotheses and uncovered a fourth behaviour: indifference to predators. Because flower visitors reacted differently, a community approach is mandatory in order to understand the function of background colour-matching in generalist predators. We discuss our results in relation to the size and sociality of the prey and in relation to the functional significance of colour change in this predator.
2013-01-01
Background There is extensive evidence for the interaction of metabolic enzymes with the eukaryotic cytoskeleton. The significance of these interactions is far from clear. Presentation of the hypothesis In the cytoskeletal integrative sensor hypothesis presented here, the cytoskeleton senses and integrates the general metabolic activity of the cell. This activity depends on the binding to the cytoskeleton of enzymes and, depending on the nature of the enzyme, this binding may occur if the enzyme is either active or inactive but not both. This enzyme-binding is further proposed to stabilize microtubules and microfilaments and to alter rates of GTP and ATP hydrolysis and their levels. Testing the hypothesis Evidence consistent with the cytoskeletal integrative sensor hypothesis is presented in the case of glycolysis. Several testable predictions are made. There should be a relationship between post-translational modifications of tubulin and of actin and their interaction with metabolic enzymes. Different conditions of cytoskeletal dynamics and enzyme-cytoskeleton binding should reveal significant differences in local and perhaps global levels and ratios of ATP and GTP. The different functions of moonlighting enzymes should depend on cytoskeletal binding. Implications of the hypothesis The physical and chemical effects arising from metabolic sensing by the cytoskeleton would have major consequences on cell shape, dynamics and cell cycle progression. The hypothesis provides a framework that helps the significance of the enzyme-decorated cytoskeleton be determined. PMID:23398642
Batzli, George O
2016-11-01
Increased habitat fragmentation leads to smaller size of habitat patches and to greater distance between patches. The ROMPA hypothesis (ratio of optimal to marginal patch area) uniquely links vole population fluctuations to the composition of the landscape. It states that as ROMPA decreases (fragmentation increases), vole population fluctuations will increase (including the tendency to display multi-annual cycles in abundance) because decreased proportions of optimal habitat result in greater population declines and longer recovery time after a harsh season. To date, only comparative observations in the field have supported the hypothesis. This paper reports the results of the first experimental test. I used prairie voles, Microtus ochrogaster, and mowed grassland to create model landscapes with 3 levels of ROMPA (high with 25% mowed, medium with 50% mowed and low with 75% mowed). As ROMPA decreased, distances between patches of favorable habitat (high cover) increased owing to a greater proportion of unfavorable (mowed) habitat. Results from the first year with intensive live trapping indicated that the preconditions for operation of the hypothesis existed (inversely density dependent emigration and, as ROMPA decreased, increased per capita mortality and decreased per capita movement between optimal patches). Nevertheless, contrary to the prediction of the hypothesis that populations in landscapes with high ROMPA should have the lowest variability, 5 years of trapping indicated that variability was lowest with medium ROMPA. The design of field experiments may never be perfect, but these results indicate that the ROMPA hypothesis needs further rigorous testing. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
A Modified Version of Taylor’s Hypothesis for Solar Probe Plus Observations
NASA Astrophysics Data System (ADS)
Klein, Kristopher G.; Perez, Jean C.; Verscharen, Daniel; Mallet, Alfred; Chandran, Benjamin D. G.
2015-03-01
The Solar Probe Plus (SPP) spacecraft will explore the near-Sun environment, reaching heliocentric distances less than 10 {{R}⊙ }. Near Earth, spacecraft measurements of fluctuating velocities and magnetic fields taken in the time domain are translated into information about the spatial structure of the solar wind via Taylor’s “frozen turbulence” hypothesis. Near the perihelion of SPP, however, the solar-wind speed is comparable to the Alfvén speed, and Taylor’s hypothesis in its usual form does not apply. In this paper, we show that under certain assumptions, a modified version of Taylor’s hypothesis can be recovered in the near-Sun region. We consider only the transverse, non-compressive component of the fluctuations at length scales exceeding the proton gyroradius, and we describe these fluctuations using an approximate theoretical framework developed by Heinemann and Olbert. We show that fluctuations propagating away from the Sun in the plasma frame obey a relation analogous to Taylor’s hypothesis when {{V}sc,\\bot }\\gg {{z}-} and {{z}+}\\gg {{z}-}, where {{V}sc,\\bot } is the component of the spacecraft velocity perpendicular to the mean magnetic field and {{{\\boldsymbol{z}} }+} ({{{\\boldsymbol{z}} }-}) is the Elsasser variable corresponding to transverse, non-compressive fluctuations propagating away from (toward) the Sun in the plasma frame. Observations and simulations suggest that, in the near-Sun solar wind, the above inequalities are satisfied and {{{\\boldsymbol{z}} }+} fluctuations account for most of the fluctuation energy. The modified form of Taylor’s hypothesis that we derive may thus make it possible to characterize the spatial structure of the energetically dominant component of the turbulence encountered by SPP.
Suprathermal electron loss cone distributions in the solar wind: Ulysses observations
NASA Technical Reports Server (NTRS)
Phillips, J. L.; Feldman, W. C.; Gosling, J. T.; Hammond, C. M.; Forsyth, R. J.
1995-01-01
Solar wind suprathermal electron distributions in the solar wind generally carry a field-aligned antisunward heat flux. Within coronal mass ejections and upstream of strong shocks driven by corotating interaction regions (CIRs), counterstreaming electron beams are observed. We present observations by the Ulysses solar wind plasma experiment of a new class of suprathermal electron signatures. At low solar latitudes and heliocentric distances beyond 3.5 AU Ulysses encountered several intervals, ranging in duration from 1 hour to 22 hours, in which the suprathermal distributions included an antisunward field-aligned beam and a return population with a flux dropout typically spanning +/- 60 deg from the sunward field-aligned direction. All events occurred within CIRs, downstream of the forward and reverse shocks or waves bounding the interaction regions. We evaluate the hypothesis that the sunward-moving electrons result from reflection of the antisunward beams at magnetic field compressions downstream from the observations, with wide loss cones caused by the relatively weak compression ratio. This hypothesis requires that field magnitude within the CIRs actually increase with increasing field-aligned distance from the Sun. Details of the electron distributions and ramifications for CIR and shock geometry will be presented.
Lange, Nicholas D; Buttaccio, Daniel R; Davelaar, Eddy J; Thomas, Rick P
2014-02-01
Research investigating top-down capture has demonstrated a coupling of working memory content with attention and eye movements. By capitalizing on this relationship, we have developed a novel methodology, called the memory activation capture (MAC) procedure, for measuring the dynamics of working memory content supporting complex cognitive tasks (e.g., decision making, problem solving). The MAC procedure employs briefly presented visual arrays containing task-relevant information at critical points in a task. By observing which items are preferentially fixated, we gain a measure of working memory content as the task evolves through time. The efficacy of the MAC procedure was demonstrated in a dynamic hypothesis generation task in which some of its advantages over existing methods for measuring changes in the contents of working memory over time are highlighted. In two experiments, the MAC procedure was able to detect the hypothesis that was retrieved and placed into working memory. Moreover, the results from Experiment 2 suggest a two-stage process following hypothesis retrieval, whereby the hypothesis undergoes a brief period of heightened activation before entering a lower activation state in which it is maintained for output. The results of both experiments are of additional general interest, as they represent the first demonstrations of top-down capture driven by participant-established WM content retrieved from long-term memory.
The developmental costs of high self-esteem for antisocial children.
Menon, Madhavi; Tobin, Desiree D; Corby, Brooke C; Menon, Meenakshi; Hodges, Ernest V E; Perry, David G
2007-01-01
Two hypotheses--high self-esteem leads children to act on antisocial cognitions (disposition-activating hypothesis) and high self-esteem leads children to rationalize antisocial conduct (disposition-rationalizing hypothesis)--were investigated in two longitudinal studies. In Study 1 (N= 189; mean age = 11.1 years), antisocial behavior was aggression; in Study 2 (N= 407; mean age = 10.8 years) it was avoidance of the mother. In both studies, there was little evidence for the disposition-activating hypothesis but considerable support for the disposition-rationalizing hypothesis. Over time, aggressive children with high self-esteem increasingly valued the rewards that aggression offers and belittled their victims, and avoidant children with high self-esteem increasingly viewed their mother as harassing and uninvolved. For antisocial children, high self-esteem carries costs.
Debates—Hypothesis testing in hydrology: Theory and practice
NASA Astrophysics Data System (ADS)
Pfister, Laurent; Kirchner, James W.
2017-03-01
The basic structure of the scientific method—at least in its idealized form—is widely championed as a recipe for scientific progress, but the day-to-day practice may be different. Here, we explore the spectrum of current practice in hypothesis formulation and testing in hydrology, based on a random sample of recent research papers. This analysis suggests that in hydrology, as in other fields, hypothesis formulation and testing rarely correspond to the idealized model of the scientific method. Practices such as "p-hacking" or "HARKing" (Hypothesizing After the Results are Known) are major obstacles to more rigorous hypothesis testing in hydrology, along with the well-known problem of confirmation bias—the tendency to value and trust confirmations more than refutations—among both researchers and reviewers. Nonetheless, as several examples illustrate, hypothesis tests have played an essential role in spurring major advances in hydrological theory. Hypothesis testing is not the only recipe for scientific progress, however. Exploratory research, driven by innovations in measurement and observation, has also underlain many key advances. Further improvements in observation and measurement will be vital to both exploratory research and hypothesis testing, and thus to advancing the science of hydrology.
Matrix analysis and risk management to avert depression and suicide among workers
2010-01-01
Suicide is among the most tragic outcomes of all mental disorders, and the prevalence of suicide has risen dramatically during the last decade, particularly among workers. This paper reviews and proposes strategies to avert suicide and depression with regard to the mind body medicine equation hypothesis, metrics analysis of mental health problems from a public health and clinical medicine view. In occupational fields, the mind body medicine hypothesis has to deal with working environment, working condition, and workers' health. These three factors chosen in this paper were based on the concept of risk control, called San-kanri, which has traditionally been used in Japanese companies, and the causation concepts of host, agent, and environment. Working environment and working condition were given special focus with regard to tackling suicide problems. Matrix analysis was conducted by dividing the problem of working conditions into nine cells: three prevention levels (primary, secondary, and tertiary) were proposed for each of the three factors of the mind body medicine hypothesis (working environment, working condition, and workers' health). After using these main strategies (mind body medicine analysis and matrix analysis) to tackle suicide problems, the paper talks about the versatility of case-method teaching, "Hiyari-Hat activity," routine inspections by professionals, risk assessment analysis, and mandatory health check-up focusing on sleep and depression. In the risk assessment analysis, an exact assessment model was suggested using a formula based on multiplication of the following three factors: (1) severity, (2) frequency, and (3) possibility. Mental health problems, including suicide, are rather tricky to deal with because they involve evaluation of individual cases. The mind body medicine hypothesis and matrix analysis would be appropriate tactics for suicide prevention because they would help the evaluation of this issue as a tangible problem. PMID:21054837
ERIC Educational Resources Information Center
Glanzer, Perry L.; Ream, Todd C.
2007-01-01
Scholars of higher education have noted an increased attention to ethics within professional disciplines such as business and journalism. This paper explores the hypothesis that the field of education has not followed that pattern. To test this hypothesis, we review our findings from a study of curricula for professional majors in 156 Christian…
2015-12-11
diameter) are consistent with theoretical predictions based on Taylor’s frozen- turbulence hypothesis and the geometrical - optics approximation. Short...theoretical predictions based on Taylor’s frozen- turbulence hypothesis and the geometrical - optics approximation. Short-term (less than a few seconds... turbulent , quasi-horizontal interfaces, or “sheets”. Collocated in- situ and optical field measurements conducted in the atmospheric surface layer
Motor output evoked by subsaccadic stimulation of primate frontal eye fields.
Corneil, Brian D; Elsley, James K; Nagy, Benjamin; Cushing, Sharon L
2010-03-30
In addition to its role in shifting the line of sight, the oculomotor system is also involved in the covert orienting of visuospatial attention. Causal evidence supporting this premotor theory of attention, or oculomotor readiness hypothesis, comes from the effect of subsaccadic threshold stimulation of the oculomotor system on behavior and neural activity in the absence of evoked saccades, which parallels the effects of covert attention. Here, by recording neck-muscle activity from monkeys and systematically titrating the level of stimulation current delivered to the frontal eye fields (FEF), we show that such subsaccadic stimulation is not divorced from immediate motor output but instead evokes neck-muscle responses at latencies that approach the minimal conduction time to the motor periphery. On average, neck-muscle thresholds were approximately 25% lower than saccade thresholds, and this difference is larger for FEF sites associated with progressively larger saccades. Importantly, we commonly observed lower neck-muscle thresholds even at sites evoking saccades
Volcanic Forcing of Global Warming during the Pleistocene?
NASA Astrophysics Data System (ADS)
Ericson, J. E.
2002-12-01
The volcanic forcing hypothesis is a new model of global climatic change that may have significance for the history of the Earth and palaeoclimate. The rapid injection of CO2 into the atmosphere during volcanic eruption through underlying massive carbonate appears to trigger global warming through the emission of this greenhouse gas. The record of eruptions (10-20 Kya) of 6 volcanoes overlying 900-10,000 meters of carbonate of the Cordillerian geosyncline in the American Southwest is synchronous with the Late Pleistocene marine transgression record. The record of volcanic eruptions through massive carbonates (20-71 Kya) in Italy, Indonesia and the American Southwest appears to be synchronous with the Wisconsin interstadial events. The extension of the volcanic eruption and climatic records to 71 Kya and inclusion of other volcanic regions represents additional supporting of evidence of the volcanic forcing hypothesis. As an example of these processes, the thermal dissociation of carbonate by magma forming a volcanic conduit (0.4 km high, 0.5 km radius) and subsequent release of carbon dioxide would increase the atmospheric carbon dioxide by 25%. The emitted CO2 would trigger a series of other processes, ocean-atmospheric CO2 exchange, increased photosynthesis and changes with terrestrial biome and global warming. [Recent field reconnaissance of Sunset Crater (erupted 1064-65 AD) indicates the evidence for thermal dissolution of limestone during basaltic extrusion.] Carbon dioxide emitted from volcanic-carbonate sources meets several observed conditions: a rapid increase (<20 years) in atmospheric carbon dioxide, abrupt increases of marine (isotopic) carbon, dilution of atmospheric radiocarbon activity independent of fluctuations of the geomagnetic field and cosmic ray fluxes, temporal covariation of sulfate, Ca+2, and CO2 in ice core records and random, interstadial events during glaciation. Volcanic forcing hypothesis represents a new model and synthesis of natural processes involving recycling of marine carbonate through volcanic eruption leading to global warming.
Epistemological controversies in the analytic field elucidated by the theological realm.
Squverer, Amos
2015-08-01
This article proposes to address certain epistemological controversies in psychoanalysis by elucidating them through the religious field. The theological field serves the author as the repressed, which indicates the latent stakes that continue to do work at the heart of these debates. The goal is to show how debates that take place on the epistemological level bring into confrontation different anthropological concepts and discursive traditions that have their roots in religious discourses. The principal hypothesis of the author is that the dissident theories of psychoanalysis can be understood as a return to a pre-monotheistic theological conception or to an idolatrous practice that aims, primarily, to undo castration. This hypothesis will be used to elucidate the debates with two authors: Adler and Rank. The author shows how these theorists, by leaving analytical ground, connect their theories to pre-monotheistic conceptions and highlight conceptual tools that are characteristic to them. Copyright © 2015 Institute of Psychoanalysis.
Evidence for magnetic field reconnection at the earth's magnetopause
NASA Technical Reports Server (NTRS)
Sonnerup, B. U. O.; Paschmann, G.; Papamastorakis, I.; Sckopke, N.; Haerendel, G.; Bame, S. J.; Asbridge, J. R.; Gosling, J. T.; Russell, C. T.
1981-01-01
Eleven Northern Hemisphere crossings of the dayside magnetopause by the ISEE spacecraft are examined to test the hypothesis that the large plasma flow speeds observed in the magnetopause and boundary layer are the result of the plasma acceleration intrinsic to the magnetic field reconnection process. In several cases energetic magnetospheric particles with the proper flow anisotropy, and in one case, reflected magnetosheath particles, were observed outside the magnetopause but adjacent to it. All results support the reconnection hypothesis. The energetic particles were also used to identify the outer separatrix surface, in one case of which is was possible to conclude from its location relative to the magnetopause that the reconnection site was in the vicinity of the equatorial plane rather than in the cusp. The electric field tangential to the magnetopause is inferred to be in the 0.4-2.8 mV/m range.
Covert Auditory Spatial Orienting: An Evaluation of the Spatial Relevance Hypothesis
ERIC Educational Resources Information Center
Roberts, Katherine L.; Summerfield, A. Quentin; Hall, Deborah A.
2009-01-01
The spatial relevance hypothesis (J. J. McDonald & L. M. Ward, 1999) proposes that covert auditory spatial orienting can only be beneficial to auditory processing when task stimuli are encoded spatially. We present a series of experiments that evaluate 2 key aspects of the hypothesis: (a) that "reflexive activation of location-sensitive neurons is…
Sun, Chengsan; Hummler, Edith; Hill, David L
2017-01-18
Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain. Copyright © 2017 the authors 0270-6474/17/370660-13$15.00/0.
Sun, Chengsan; Hummler, Edith
2017-01-01
Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent “pruning” of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain. PMID:28100747
Kolbabová, Tereza; Pascal Malkemper, E.; Bartoš, Luděk; Vanderstraeten, Jacques; Turčáni, Marek; Burda, Hynek
2015-01-01
The question of health effects of extremely low frequency (50/60 Hz) magnetic fields (ELFMF) has been widely discussed, but the mechanisms of interaction of these fields with biological systems for intensities relevant to human and animal exposure are still under question. The melatonin (MLT) hypothesis suggests that exposure to ELFMF might decrease MLT production thereby promoting cancerogenesis. So far, most studies of MLT secretion under exposure to ELFMF reported negative or inconsistent results. Here, we measured salivary MLT in 1–2 months old cattle calves exposed to 50 Hz-MF in the hundreds of nT-range. We found an inhibitory effect of the ELFMF upon MLT secretion in winter (in accordance with the MLT hypothesis). In contrast, in summer, MLT concentration was increased by ELFMF exposure (contrary to the MLT hypothesis). The inhibitory effect in winter was much stronger than the positive effect in summer. We hypothesize that this season-dependent effect upon MLT synthesis might by mediated by an effect of ELFMF upon the serotonin metabolism and conclude that future tests of ELFMF effects should also measure serotonin levels and consider association with the seasonal effects (photoperiod or temperature) during the exposure. PMID:26381579
Lohmann, Kenneth J; Putman, Nathan F; Lohmann, Catherine M F
2008-12-09
Several marine animals, including salmon and sea turtles, disperse across vast expanses of ocean before returning as adults to their natal areas to reproduce. How animals accomplish such feats of natal homing has remained an enduring mystery. Salmon are known to use chemical cues to identify their home rivers at the end of spawning migrations. Such cues, however, do not extend far enough into the ocean to guide migratory movements that begin in open-sea locations hundreds or thousands of kilometers away. Similarly, how sea turtles reach their nesting areas from distant sites is unknown. However, both salmon and sea turtles detect the magnetic field of the Earth and use it as a directional cue. In addition, sea turtles derive positional information from two magnetic elements (inclination angle and intensity) that vary predictably across the globe and endow different geographic areas with unique magnetic signatures. Here we propose that salmon and sea turtles imprint on the magnetic field of their natal areas and later use this information to direct natal homing. This novel hypothesis provides the first plausible explanation for how marine animals can navigate to natal areas from distant oceanic locations. The hypothesis appears to be compatible with present and recent rates of field change (secular variation); one implication, however, is that unusually rapid changes in the Earth's field, as occasionally occur during geomagnetic polarity reversals, may affect ecological processes by disrupting natal homing, resulting in widespread colonization events and changes in population structure.
Lohmann, Kenneth J.; Putman, Nathan F.; Lohmann, Catherine M. F.
2008-01-01
Several marine animals, including salmon and sea turtles, disperse across vast expanses of ocean before returning as adults to their natal areas to reproduce. How animals accomplish such feats of natal homing has remained an enduring mystery. Salmon are known to use chemical cues to identify their home rivers at the end of spawning migrations. Such cues, however, do not extend far enough into the ocean to guide migratory movements that begin in open-sea locations hundreds or thousands of kilometers away. Similarly, how sea turtles reach their nesting areas from distant sites is unknown. However, both salmon and sea turtles detect the magnetic field of the Earth and use it as a directional cue. In addition, sea turtles derive positional information from two magnetic elements (inclination angle and intensity) that vary predictably across the globe and endow different geographic areas with unique magnetic signatures. Here we propose that salmon and sea turtles imprint on the magnetic field of their natal areas and later use this information to direct natal homing. This novel hypothesis provides the first plausible explanation for how marine animals can navigate to natal areas from distant oceanic locations. The hypothesis appears to be compatible with present and recent rates of field change (secular variation); one implication, however, is that unusually rapid changes in the Earth's field, as occasionally occur during geomagnetic polarity reversals, may affect ecological processes by disrupting natal homing, resulting in widespread colonization events and changes in population structure. PMID:19060188
Exploring reconnection, current sheets, and dissipation in a laboratory MHD turbulence experiment
NASA Astrophysics Data System (ADS)
Schaffner, D. A.
2015-12-01
The Swarthmore Spheromak Experiment (SSX) can serve as a testbed for studying MHD turbulence in a controllable laboratory setting, and in particular, explore the phenomena of reconnection, current sheets and dissipation in MHD turbulence. Plasma with turbulently fluctuating magnetic and velocity fields can be generated using a plasma gun source and launched into a flux-conserving cylindrical tunnel. No background magnetic field is applied so internal fields are allowed to evolve dynamically. Point measurements of magnetic and velocity fluctuations yield broadband power-law spectra with a steepening breakpoint indicative of the onset of a dissipation scale. The frequency range at which this steepening occurs can be correlated to the ion inertial scale of the plasma, a length which is characteristic of the size of current sheets in MHD plasmas and suggests a connection to dissipation. Observation of non-Gaussian intermittent jumps in magnetic field magnitude and angle along with measurements of ion temperature bursts suggests the presence of current sheets embedded within the turbulent plasma, and possibly even active reconnection sites. Additionally, structure function analysis coupled with appeals to fractal scaling models support the hypothesis that current sheets are associated with dissipation in this system.
NASA Astrophysics Data System (ADS)
Metois, M.
2017-12-01
Convergence partitioning between subduction zones and crustal active structures has been widely evidenced. For instance, the convergence between the Indian and Sunda plates is accommodated both by the Sumatra subduction zone and the Great Sumatran strike-slip fault, that defines a narrow sliver. In Cascadia, small-scale rotating rigid blocks bounded by active faults have been proposed (e.g. McCaffrey et al. 2007). Recent advances in geodetic measurements along the South-American margin especially in Ecuador, Peru and Chile and the need for precise determination of the coupling amount on the megathrust interface in particular for seismic hazard assessment, led several authors to propose the existence of large-scale Andean slivers rotating clockwise and counter-clockwise South and North of the Arica bend, respectively (e.g. Chlieh et al. 2011, Nocquet et al. 2014, Métois et al. 2013). In Chile, one single large Andean sliver bounded to the west by the subduction thrust and to the east by the subandean fold-an-thrust belt active front is used to mimic the velocities observed in the middle to far field that are misfitted by elastic coupling models on the megathrust interface alone (Métois et al. 2016). This rigid sliver is supposed to rotate clockwise around a Euler pole located in the South Atlantic ocean, consistently with long-term observed rotations detected by paleomagnetism (e.g. Arriagada et al. 2008). However, recent GPS data acquired in the Taltal area ( 26°S, Klein et al. submitted) show higher than expected middle-field eastward velocities and question the first-order assumption of a rigid Andean sliver. Mis-modeling the fore-arc deformation has a direct impact on the inverted coupling amount and distribution, and could therefore bias significantly the megathrust rupture scenarios. Correctly estimating the current-day deformation of the Andes is therefore required to properly assess for coupling on the plate interface and is challenging since crustal active structures are often hidden by the intense seismic activity of the subduction zone. Here we discuss the validity of the rigid Andean sliver hypothesis based on GPS velocities, present alternative models for both coupling and sliver kinematics along the Chilean margin, and discuss the relationship between upper plate long and short-term deformation.
Zavala, Baltazar; Damera, Srikanth; Dong, Jian Wilson; Lungu, Codrin; Brown, Peter; Zaghloul, Kareem A.
2017-01-01
Recent evidence has suggested that prefrontal cortical structures may inhibit impulsive actions during conflict through activation of the subthalamic nucleus (STN). Consistent with this hypothesis, deep brain stimulation to the STN has been associated with altered prefrontal cortical activity and impaired response inhibition. The interactions between oscillatory activity in the STN and its presumably antikinetic neuronal spiking, however, remain poorly understood. Here, we simultaneously recorded intraoperative local field potential and spiking activity from the human STN as participants performed a sensorimotor action selection task involving conflict. We identified several STN neuronal response types that exhibited different temporal dynamics during the task. Some neurons showed early, cue-related firing rate increases that remained elevated longer during high conflict trials, whereas other neurons showed late, movement-related firing rate increases. Notably, the high conflict trials were associated with an entrainment of individual neurons by theta- and beta-band oscillations, both of which have been observed in cortical structures involved in response inhibition. Our data suggest that frequency-specific activity in the beta and theta bands influence STN firing to inhibit impulsivity during conflict. PMID:26494798
Freeman, Walter J
2007-06-01
The hypothesis is proposed that the central dynamics of the action-perception cycle has five steps: emergence from an existing macroscopic brain state of a pattern that predicts a future goal state; selection of a mesoscopic frame for action control; execution of a limb trajectory by microscopic spike activity; modification of microscopic cortical spike activity by sensory inputs; construction of mesoscopic perceptual patterns; and integration of a new macroscopic brain state. The basis is the circular causality between microscopic entities (neurons) and the mesoscopic and macroscopic entities (populations) self-organized by axosynaptic interactions. Self-organization of neural activity is bidirectional in all cortices. Upwardly the organization of mesoscopic percepts from microscopic spike input predominates in primary sensory areas. Downwardly the organization of spike outputs that direct specific limb movements is by mesoscopic fields constituting plans to achieve predicted goals. The mesoscopic fields in sensory and motor cortices emerge as frames within macroscopic activity. Part 1 describes the action-perception cycle and its derivative reflex arc qualitatively. Part 2 describes the perceptual limb of the arc from microscopic MSA to mesoscopic wave packets, and from these to macroscopic EEG and global ECoG fields that express experience-dependent knowledge in successive states. These macroscopic states are conceived to embed and control mesoscopic frames in premotor and motor cortices that are observed in local ECoG and LFP of frontoparietal areas. The fields sampled by ECoG and LFP are conceived as local patterns of neural activity in which trajectories of multiple spike activities (MSA) emerge that control limb movements. Mesoscopic frames are located by use of the analytic signal from the Hilbert transform after band pass filtering. The state variables in frames are measured to construct feature vectors by which to describe and classify frame patterns. Evidence is cited to justify use of linear analysis. The aim of the review is to enable researchers to conceive and identify goal-oriented states in brain activity for use as commands, in order to relegate the details of execution to adaptive control devices outside the brain.
Lawlor-Savage, Linette; Goghari, Vina M.
2017-01-01
Training of working memory as a method of increasing working memory capacity and fluid intelligence has received much attention in recent years. This burgeoning field remains highly controversial with empirically-backed disagreements at all levels of evidence, including individual studies, systematic reviews, and even meta-analyses. The current study investigated the effect of a randomized six week online working memory intervention on untrained cognitive abilities in a community-recruited sample of healthy young adults, in relation to both a processing speed training active control condition, as well as a no-contact control condition. Results of traditional null hypothesis significance testing, as well as Bayesian factor analyses, revealed support for the null hypothesis across all cognitive tests administered before and after training. Importantly, all three groups were similar at pre-training for a variety of individual variables purported to moderate transfer of training to fluid intelligence, including personality traits, motivation to train, and expectations of cognitive improvement from training. Because these results are consistent with experimental trials of equal or greater methodological rigor, we suggest that future research re-focus on: 1) other promising interventions known to increase memory performance in healthy young adults, and; 2) examining sub-populations or alternative populations in which working memory training may be efficacious. PMID:28558000
DOUBLE DYNAMO SIGNATURES IN A GLOBAL MHD SIMULATION AND MEAN-FIELD DYNAMOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaudoin, Patrice; Simard, Corinne; Cossette, Jean-François
The 11 year solar activity cycle is the most prominent periodic manifestation of the magnetohydrodynamical (MHD) large-scale dynamo operating in the solar interior, yet longer and shorter (quasi-) periodicities are also present. The so-called “quasi-biennial” signal appearing in many proxies of solar activity has been gaining increasing attention since its detection in p -mode frequency shifts, which suggests a subphotospheric origin. A number of candidate mechanisms have been proposed, including beating between co-existing global dynamo modes, dual dynamos operating in spatially separated regions of the solar interior, and Rossby waves driving short-period oscillations in the large-scale solar magnetic field producedmore » by the 11 year activity cycle. In this article, we analyze a global MHD simulation of solar convection producing regular large-scale magnetic cycles, and detect and characterize shorter periodicities developing therein. By constructing kinematic mean-field α {sup 2}Ω dynamo models incorporating the turbulent electromotive force (emf) extracted from that same simulation, we find that dual-dynamo behavior materializes in fairly wide regions of the model’s parameters space. This suggests that the origin of the similar behavior detected in the MHD simulation lies with the joint complexity of the turbulent emf and differential rotation profile, rather that with dynamical interactions such as those mediated by Rossby waves. Analysis of the simulation also reveals that the dual dynamo operating therein leaves a double-period signature in the temperature field, consistent with a dual-period helioseismic signature. Order-of-magnitude estimates for the magnitude of the expected frequency shifts are commensurate with helioseismic measurements. Taken together, our results support the hypothesis that the solar quasi-biennial oscillations are associated with a secondary dynamo process operating in the outer reaches of the solar convection zone.« less
Quasi-biennial modulation of solar neutrino flux: connections with solar activity
NASA Astrophysics Data System (ADS)
Vecchio, A.; Laurenza, M.; D'alessi, L.; Carbone, V.; Storini, M.
2011-12-01
A quasi-biennial periodicity has been recently found (Vecchio et al., 2010) in the solar neutrino flux, as detected at the Homestake experiment, as well as in the flux of solar energetic protons, by means of the Empirical Modes Decomposition technique. Moreover, both fluxes have been found to be significantly correlated at the quasi-biennial timescale, thus supporting the hypothesis of a connection between solar neutrinos and solar activity. The origin of this connection is investigated, by modeling how the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect (the process for which the well-known neutrino flavor oscillations are modified in passing through the material) could be influenced by matter fluctuations. As proposed by Burgess et al., 2004, by introducing a background magnetic field in the helioseismic model, density fluctuations can be excited in the radiative zone by the resonance between helioseismic g-modes and Alfvén waves. In particular, with reasonable values of the background magnetic field (10-100 kG), the distance between resonant layers could be of the same order of neutrino oscillation length. We study the effect over this distance of a background magnetic field which is variable with a ~2 yr period, in agreement with typical variations of solar activity. Our findings suggest that the quasi-biennial modulation of the neutrino flux is theoretically possible as a consequence of the magnetic field variations in the solar interior. A. Vecchio, M. Laurenza, V. Carbone, M. Storini, The Astrophysical Journal Letters, 709, L1-L5 (2010). C. Burgess, N. S. Dzhalilov, T. I. Rashba, V., B.Semikoz, J. W. F. Valle, Mon. Not. R. Astron. Soc., 348, 609-624 (2004).
Pursuit of Nontraditional Occupations: Fear of Success or Fear of Not Being Chosen?
ERIC Educational Resources Information Center
Pfost, Karen S.; Fiore, Maria
1990-01-01
This study tested fear of success in women against the competing hypothesis that the interpersonal consequences of deviation from culturally prescribed sex roles restrict women's achievement in traditionally masculine fields. Results suggest that individuals, especially women, who strive to achieve in nontraditional fields may suffer negative…
Field Dependence, Perceptual Instability, and Sex Differences.
ERIC Educational Resources Information Center
Bergum, Judith E.; Bergum, Bruce O.
Recent studies have shown perceptual instability to be related to visual creativity as reflected in career choice. In general, those who display greater perceptual instability perceive themselves to be more creative and tend to choose careers related to visual creativity, regardless of their gender. To test the hypothesis that field independents…
Visual but not trigeminal mediation of magnetic compass information in a migratory bird.
Zapka, Manuela; Heyers, Dominik; Hein, Christine M; Engels, Svenja; Schneider, Nils-Lasse; Hans, Jörg; Weiler, Simon; Dreyer, David; Kishkinev, Dmitry; Wild, J Martin; Mouritsen, Henrik
2009-10-29
Magnetic compass information has a key role in bird orientation, but the physiological mechanisms enabling birds to sense the Earth's magnetic field remain one of the unresolved mysteries in biology. Two biophysical mechanisms have become established as the most promising magnetodetection candidates. The iron-mineral-based hypothesis suggests that magnetic information is detected by magnetoreceptors in the upper beak and transmitted through the ophthalmic branch of the trigeminal nerve to the brain. The light-dependent hypothesis suggests that magnetic field direction is sensed by radical pair-forming photopigments in the eyes and that this visual signal is processed in cluster N, a specialized, night-time active, light-processing forebrain region. Here we report that European robins with bilateral lesions of cluster N are unable to show oriented magnetic-compass-guided behaviour but are able to perform sun compass and star compass orientation behaviour. In contrast, bilateral section of the ophthalmic branch of the trigeminal nerve in European robins did not influence the birds' ability to use their magnetic compass for orientation. These data show that cluster N is required for magnetic compass orientation in this species and indicate that it may be specifically involved in processing of magnetic compass information. Furthermore, the data strongly suggest that a vision-mediated mechanism underlies the magnetic compass in this migratory songbird, and that the putative iron-mineral-based receptors in the upper beak connected to the brain by the trigeminal nerve are neither necessary nor sufficient for magnetic compass orientation in European robins.
Neural dynamics of image representation in the primary visual cortex
Yan, Xiaogang; Khambhati, Ankit; Liu, Lei; Lee, Tai Sing
2013-01-01
Horizontal connections in the primary visual cortex have been hypothesized to play a number of computational roles: association field for contour completion, surface interpolation, surround suppression, and saliency computation. Here, we argue that horizontal connections might also serve a critical role of computing the appropriate codes for image representation. That the early visual cortex or V1 explicitly represents the image we perceive has been a common assumption on computational theories of efficient coding (Olshausen and Field 1996), yet such a framework for understanding the circuitry in V1 has not been seriously entertained in the neurophysiological community. In fact, a number of recent fMRI and neurophysiological studies cast doubt on the neural validity of such an isomorphic representation (Cornelissen et al. 2006, von der Heydt et al. 2003). In this study, we investigated, neurophysiologically, how V1 neurons respond to uniform color surfaces and show that spiking activities of neurons can be decomposed into three components: a bottom-up feedforward input, an articulation of color tuning and a contextual modulation signal that is inversely proportional to the distance away from the bounding contrast border. We demonstrate through computational simulations that the behaviors of a model for image representation are consistent with many aspects of our neural observations. We conclude that the hypothesis of isomorphic representation of images in V1 remains viable and this hypothesis suggests an additional new interpretation of the functional roles of horizontal connections in the primary visual cortex. PMID:22944076
Modulation of V1 Spike Response by Temporal Interval of Spatiotemporal Stimulus Sequence
Kim, Taekjun; Kim, HyungGoo R.; Kim, Kayeon; Lee, Choongkil
2012-01-01
The spike activity of single neurons of the primary visual cortex (V1) becomes more selective and reliable in response to wide-field natural scenes compared to smaller stimuli confined to the classical receptive field (RF). However, it is largely unknown what aspects of natural scenes increase the selectivity of V1 neurons. One hypothesis is that modulation by surround interaction is highly sensitive to small changes in spatiotemporal aspects of RF surround. Such a fine-tuned modulation would enable single neurons to hold information about spatiotemporal sequences of oriented stimuli, which extends the role of V1 neurons as a simple spatiotemporal filter confined to the RF. In the current study, we examined the hypothesis in the V1 of awake behaving monkeys, by testing whether the spike response of single V1 neurons is modulated by temporal interval of spatiotemporal stimulus sequence encompassing inside and outside the RF. We used two identical Gabor stimuli that were sequentially presented with a variable stimulus onset asynchrony (SOA): the preceding one (S1) outside the RF and the following one (S2) in the RF. This stimulus configuration enabled us to examine the spatiotemporal selectivity of response modulation from a focal surround region. Although S1 alone did not evoke spike responses, visual response to S2 was modulated for SOA in the range of tens of milliseconds. These results suggest that V1 neurons participate in processing spatiotemporal sequences of oriented stimuli extending outside the RF. PMID:23091631
Multivariate cross-frequency coupling via generalized eigendecomposition
Cohen, Michael X
2017-01-01
This paper presents a new framework for analyzing cross-frequency coupling in multichannel electrophysiological recordings. The generalized eigendecomposition-based cross-frequency coupling framework (gedCFC) is inspired by source-separation algorithms combined with dynamics of mesoscopic neurophysiological processes. It is unaffected by factors that confound traditional CFC methods—such as non-stationarities, non-sinusoidality, and non-uniform phase angle distributions—attractive properties considering that brain activity is neither stationary nor perfectly sinusoidal. The gedCFC framework opens new opportunities for conceptualizing CFC as network interactions with diverse spatial/topographical distributions. Five specific methods within the gedCFC framework are detailed, these are validated in simulated data and applied in several empirical datasets. gedCFC accurately recovers physiologically plausible CFC patterns embedded in noise that causes traditional CFC methods to perform poorly. The paper also demonstrates that spike-field coherence in multichannel local field potential data can be analyzed using the gedCFC framework, which provides significant advantages over traditional spike-field coherence analyses. Null-hypothesis testing is also discussed. DOI: http://dx.doi.org/10.7554/eLife.21792.001 PMID:28117662
An immunological axis of biocontrol: infections in field-trapped insects
NASA Astrophysics Data System (ADS)
Tunaz, Hasan; Stanley, David
2009-09-01
Insect immunology is an active research arena, however, the vast majority of research in the area is conducted on model species taken from laboratory cultures. We tested the hypothesis that insects are regularly exposed to infections or invasions in nature and here report results of a field study designed to assess the extent of natural infections in insects collected from agrarian fields surrounding Kahramanmaraş, Turkey. Specimens were dissected to assess numbers of nodules. Formation of darkened, melanotic nodules is the predominant cellular immune reaction to microbial and parasitic infection, and once formed, the nodules are permanently attached to internal surfaces. The collected insects were healthy. Of the >400 examined specimens, at least some nodules were found in 98%. Numbers of nodules ranged from ˜2/individual to >100 nodules/individual. We conclude that insects are regularly challenged by microbial and parasitic infections from which they recover. The novel implication of our data is that insect immune systems may limit the host range and effectiveness of agents deployed in biological control programs. Knowledge of insect immune systems may contribute to increased use of biopesticides globally.
Antioxidant effects of nerolidol in mice hippocampus after open field test.
Nogueira Neto, José Damasceno; de Almeida, Antonia Amanda Cardoso; da Silva Oliveira, Johanssy; Dos Santos, Pauline Sousa; de Sousa, Damião Pergentino; de Freitas, Rivelilson Mendes
2013-09-01
The aim of this study was to evaluate the neuroprotective effects of nerolidol in mice hippocampus against oxidative stress in neuronal cells compared to ascorbic acid (positive control) as well as evaluated the nerolidol sedative effects by open field test compared to diazepam (positive control). Thirty minutes prior to behavioral observation on open field test, mice were intraperitoneally treated with vehicle, nerolidol (25, 50 and 75 mg/kg), diazepam (1 mg/kg) or ascorbic acid (250 mg/kg). To clarify the action mechanism of of nerolidol on oxidative stress in animals subjected to the open field test, Western blot analysis of Mn-superoxide dismutase and catalase in mice hippocampus were performed. In nerolidol group, there was a significant decrease in lipid peroxidation and nitrite levels when compared to negative control (vehicle). However, a significant increase was observed in superoxide dismutase and catalase activities in this group when compared to the other groups. Vehicle, diazepam, ascorbic acid and nerolidol groups did not affected Mn-superoxide dismutase, catalase mRNA or protein levels. Our findings strongly support the hypothesis that oxidative stress occurs in hippocampus. Nerolidol showed sedative effects in animals subjected to the open field test. Oxidative process plays a crucial role on neuronal pathological consequence, and implies that antioxidant effects could be achieved using this sesquiterpene.
Muscle Co-activation: Definitions, Mechanisms, and Functions.
Latash, Mark L
2018-03-28
The phenomenon of agonist-antagonist muscle co-activation is discussed with respect to its consequences for movement mechanics (such as increasing joint apparent stiffness, facilitating faster movements, and effects on action stability), implication for movement optimization, and involvement of different neurophysiological structures. Effects of co-activation on movement stability are ambiguous and depend on the effector representing a kinematic chain with a fixed origin or free origin. Further, co-activation is discussed within the framework of the equilibrium-point hypothesis and the idea of hierarchical control with spatial referent coordinates. Relations of muscle co-activation to changes in one of the basic commands, the c-command, are discussed and illustrated. A hypothesis is suggested that agonist-antagonist co-activation reflects a deliberate neural control strategy to preserve effector-level control and avoid making it degenerate and facing the necessity to control at the level of signals to individual muscles. This strategy, in particular, allows stabilizing motor actions by co-varied adjustments in spaces of control variables. This hypothesis is able to account for higher levels of co-activation in young healthy persons performing challenging tasks and across various populations with movement impairments.
Karl J. Romanowicz; Evan S. Kane; Lynette R. Potvin; Aleta L. Daniels; Randy Kolka; Erik A. Lilleskov
2015-01-01
Aims. Our objective was to assess the impacts of water table position and plant functional groups on peatland extracellular enzyme activity (EEA) framed within the context of the enzymic latch hypothesis. Methods. We utilized a full factorial experiment with 2 water table (WT) treatments (high and low) and 3 plant functional...
ERIC Educational Resources Information Center
Mahoney, Joseph L.; Vest, Andrea E.
2012-01-01
Concern exists that youth who spend a lot of time participating in organized out-of-school activities (e.g., sports) are at-risk for poor developmental outcomes. This concern--called the over-scheduling hypothesis--has primarily been assessed in terms of adolescent adjustment. This longitudinal study of a nationally representative sample of 1,115…
ERIC Educational Resources Information Center
Earle, Steven
2003-01-01
Describes an activity in which students are asked to write an essay on the Crustal Displacement hypothesis, an hypothesis that is inconsistent with the accepted understanding of crustal and mantle processes. The assignment is useful because it forces students to solidify their understanding of plate tectonics by applying their knowledge in a new…
The GSK3 hypothesis of Alzheimer's disease
Hooper, Claudie; Killick, Richard; Lovestone, Simon
2008-01-01
Glycogen synthase kinase 3 (GSK3) is a constitutively active, proline-directed serine/threonine kinase that plays a part in a number of physiological processes ranging from glycogen metabolism to gene transcription. GSK3 also plays a pivotal and central role in the pathogenesis of both sporadic and familial forms of Alzheimer's disease (AD), an observation that has led us to coin the ‘GSK3 hypothesis of AD’. According to this hypothesis, over-activity of GSK3 accounts for memory impairment, tau hyper-phosphorylation, increased β-amyloid production and local plaque-associated microglial-mediated inflammatory responses; all of which are hallmark characteristics of AD. If our ‘GSK3 hypothesis of AD’ is substantiated and GSK3 is indeed a causal mediator of AD then inhibitors of GSK3 would provide a novel avenue for therapeutic intervention in this devastating disorder. PMID:18088381
Muscular control of a learned movement: the speed control system hypothesis.
Enoka, R M
1983-01-01
The "speed control system" hypothesis, which represents an attempt to identify an invariant characteristic of learned movements, postulates that movements of variable extent are controlled by regulating the intensity of muscle contractions such that the contraction duration remains constant. The contingency set originally utilized to develop this hypothesis was expanded by examining a movement that was multidirectional and multiarticular, and executed by large muscle groups generating near maximum torques. The investigation focused on the techniques utilized by weightlifters to control lower extremity displacement during the initial phase of the double knee bend execution of the "clean" in Olympic weightlifting. The combination of the quantified muscle activity and the angular velocity, both about the knee joint, revealed a sequence of shortening-lengthening muscle contractions throughout the movement. The first two periods of net muscular activity, one extensor and the other flexor, were utilized to examine the movement for invariant characteristics. As predicted by the speed control system hypothesis, the duration of the first period of net muscle torque activity (extensor) did not vary significantly, for either group of subjects, over the relative loads examined. The duration of the second period of activity (resultant flexor muscle torque), however, was not constant across loads, and further, the direction of the change depended upon the level of expertise. The more capable lifters tended to increase the duration of the resultant flexor involvement while the less skilled athletes utilized the reverse strategy when the load was increased. Conversely, the intensity of the muscle activity for both groups of subjects and both the extensor and flexor periods covaried with load, as predicted by the hypothesis. The speed control system hypothesis, therefore, provided an appropriate explanation for the first component of the movement, the period of extensor dominated (shortening contraction) muscle torque, but was inappropriate for the subsequent interval, a resultant flexor (largely lengthening contraction) muscle torque.
Gibson, D.J.; Middleton, B.A.; Foster, K.; Honu, Y.A.K.; Hoyer, E.W.; Mathis, M.
2005-01-01
Question: Can patterns of species frequency in an old-field be explained within the context of a metapopulation model? Are the patterns observed related to time, spatial scale, disturbance, and nutrient availability? Location: Upland and lowland old-fields in Illinois, USA. Method: Species richness was recorded annually for seven years following plowing of an upland and lowland old-field subject to crossed fertilizer and disturbance treatments (mowing and rototilling). Species occupancy distributions were assessed with respect to the numbers of core and satellite species. Results: In both fields, species richness became higher in disturbed plots than in undisturbed plots over time, and decreased in fertilized plots irrespective of time. A bimodal pattern of species richness consistent with the Core-satellite species (CSS) hypothesis occurred in the initial seed bank and through the course of early succession. The identity of native and exotic core species (those present in > 90% of blocks) changed with time. Some core species from the seed bank became core species in the vegetation, albeit after several years. At the scale of individual plots, a bimodal fit consistent with the CSS hypothesis applied only in year 1 and rarely thereafter. Conclusions: The CSS hypothesis provides a metapopulation perspective for understanding patterns of species richness but requires the assessment of spatial and temporal scaling effects. Regional processes (e.g. propagule availability) at the largest scale have the greatest impact influencing community structure during early secondary succession. Local processes (e.g., disturbance and soil nutrients) are more important at smaller scales and place constraints on species establishment and community structure of both native and exotic species. Under the highest intensity of disturbance, exotic species may be able to use resources unavailable to, or unused by, native species. ?? IAVS; Opulus Press.
Exploring a deep meridional flow hypothesis for a circulation dominated solar dynamo model
NASA Astrophysics Data System (ADS)
Guerrero, G. A.; Muñoz, J. D.; de Gouveia dal Pino, E. M.
2005-09-01
Circulation-dominated solar dynamo models, which employ a helioseismic rotation profile and a fixed meridional flow, give a good approximation to the large scale solar magnetic phenomena, such as the 11-year cycle or the so called Hale's law of polarities. Nevertheless, the larger amplitude of the radial shear ∂Ω/∂r at the high latitudes makes the dynamo to produce a strong toroidal magnetic field at high latitudes, in contradiction with the observations of the sunspots (Sporer's Law). A possible solution was proposed by Nandy and Choudhuri in which a deep meridional flow can conduct the magnetic field inside of a stable layer (the radiative core) and then allow that it erupts just at lower latitudes. Although they obtain good results, this hypothesis generates new problems like the mixture of elements in the radiative core (that alters the abundance of the elements) and the transfer of angular momentum. We have recently explored this hypothesis in a different approximation, using the magnetic buoyancy mechanism proposed by Dikpati and Charbonneau (1999) and found that a deep meridional flow pushes the maximum of the toroidal magnetic field towards the solar equator, but, in contrast to Nandy and Choudhuri (2002 ), a second zone of maximum fields remains at the poles. In that work, we have also introduced a bipolytropic density profile in order to better reproduce the stratification in the radiative zone. We here review these results and also discuss a new possible scenario where the tachocline has an ellipsoidal shape, following early helioseismologic observations, and find that the modification of the geometry of the tachocline can lead to results which are in good agreement with observations and opens the possibility to explore in more detail, through the dynamo model, the place where the magnetic field could be really stored.
Why would Musical Training Benefit the Neural Encoding of Speech? The OPERA Hypothesis.
Patel, Aniruddh D
2011-01-01
Mounting evidence suggests that musical training benefits the neural encoding of speech. This paper offers a hypothesis specifying why such benefits occur. The "OPERA" hypothesis proposes that such benefits are driven by adaptive plasticity in speech-processing networks, and that this plasticity occurs when five conditions are met. These are: (1) Overlap: there is anatomical overlap in the brain networks that process an acoustic feature used in both music and speech (e.g., waveform periodicity, amplitude envelope), (2) Precision: music places higher demands on these shared networks than does speech, in terms of the precision of processing, (3) Emotion: the musical activities that engage this network elicit strong positive emotion, (4) Repetition: the musical activities that engage this network are frequently repeated, and (5) Attention: the musical activities that engage this network are associated with focused attention. According to the OPERA hypothesis, when these conditions are met neural plasticity drives the networks in question to function with higher precision than needed for ordinary speech communication. Yet since speech shares these networks with music, speech processing benefits. The OPERA hypothesis is used to account for the observed superior subcortical encoding of speech in musically trained individuals, and to suggest mechanisms by which musical training might improve linguistic reading abilities.
Study designs appropriate for the workplace.
Hogue, C J
1986-01-01
Carlo and Hearn have called for "refinement of old [epidemiologic] methods and an ongoing evaluation of where methods fit in the overall scheme as we address the multiple complexities of reproductive hazard assessment." This review is an attempt to bring together the current state-of-the-art methods for problem definition and hypothesis testing available to the occupational epidemiologist. For problem definition, meta analysis can be utilized to narrow the field of potential causal hypotheses. Passive active surveillance may further refine issues for analytic research. Within analytic epidemiology, several methods may be appropriate for the workplace setting. Those discussed here may be used to estimate the risk ratio in either a fixed or dynamic population.
Delay activity of saccade-related neurons in the caudal dentate nucleus of the macaque cerebellum
Sommer, Marc A.
2013-01-01
The caudal dentate nucleus (DN) in lateral cerebellum is connected with two visual/oculomotor areas of the cerebrum: the frontal eye field and lateral intraparietal cortex. Many neurons in frontal eye field and lateral intraparietal cortex produce “delay activity” between stimulus and response that correlates with processes such as motor planning. Our hypothesis was that caudal DN neurons would have prominent delay activity as well. From lesion studies, we predicted that this activity would be related to self-timing, i.e., the triggering of saccades based on the internal monitoring of time. We recorded from neurons in the caudal DN of monkeys (Macaca mulatta) that made delayed saccades with or without a self-timing requirement. Most (84%) of the caudal DN neurons had delay activity. These neurons conveyed at least three types of information. First, their activity was often correlated, trial by trial, with saccade initiation. Correlations were found more frequently in a task that required self-timing of saccades (53% of neurons) than in a task that did not (27% of neurons). Second, the delay activity was often tuned for saccade direction (in 65% of neurons). This tuning emerged continuously during a trial. Third, the time course of delay activity associated with self-timed saccades differed significantly from that associated with visually guided saccades (in 71% of neurons). A minority of neurons had sensory-related activity. None had presaccadic bursts, in contrast to DN neurons recorded more rostrally. We conclude that caudal DN neurons convey saccade-related delay activity that may contribute to the motor preparation of when and where to move. PMID:23365182
Brain activity-induced neuronal glucose uptake/glycolysis: Is the lactate shuttle not required?
Tang, Bor Luen
2018-03-01
The astrocyte-neuron lactate shuttle (ANLS) hypothesis posits that during neuronal activation, astrocytic glycolysis consumes glucose and generates lactate, with the latter then imported by neurons as a preferred fuel. The hypothesis has been controversial, with multiple theoretical postulates for and against, and with empirical evidence that were either supportive or otherwise. Recent findings using direct in vivo imaging of lactate and glucose uptake as well as associated metabolic changes in neurons have now placed important constraints on the hypothesis. Here, I review these recent findings and discuss their implications on neuronal energetics. Copyright © 2017 Elsevier Inc. All rights reserved.
Rapid, parallel path planning by propagating wavefronts of spiking neural activity
Ponulak, Filip; Hopfield, John J.
2013-01-01
Efficient path planning and navigation is critical for animals, robotics, logistics and transportation. We study a model in which spatial navigation problems can rapidly be solved in the brain by parallel mental exploration of alternative routes using propagating waves of neural activity. A wave of spiking activity propagates through a hippocampus-like network, altering the synaptic connectivity. The resulting vector field of synaptic change then guides a simulated animal to the appropriate selected target locations. We demonstrate that the navigation problem can be solved using realistic, local synaptic plasticity rules during a single passage of a wavefront. Our model can find optimal solutions for competing possible targets or learn and navigate in multiple environments. The model provides a hypothesis on the possible computational mechanisms for optimal path planning in the brain, at the same time it is useful for neuromorphic implementations, where the parallelism of information processing proposed here can fully be harnessed in hardware. PMID:23882213
Timing Actions to Avoid Refractoriness: A Simple Solution for Streaming Sensory Signals
Nogueira, Javier; Caputi, Ángel Ariel
2011-01-01
Segmenting self- from allo-generated signals is crucial for active sensory processing. We report a dynamic filter used by South American pulse electric fish to distinguish active electro-sensory signals carried by their own electric discharges from other concomitant electrical stimuli (i.e. communication signals). The filter has a sensory component, consisting of an onset type central electro-sensory neuron, and a motor component, consisting of a change in the fish's discharge rate when allo-generated electrical events occur in temporal proximity to the fish's own discharge. We investigated the sensory component of the filter by in vitro mimicking synaptic inputs occurring during behavioral responses to allo-generated interfering signals. We found that active control of the discharge enhances self-generated over allo-generated responses by forcing allo-generated signals into a central refractory period. This hypothesis was confirmed by field potential recordings in freely discharging fish. Similar sensory-motor mechanisms may also contribute to signal segmentation in other sensory systems. PMID:21789228
2012-10-01
support with our hypothesis, expressions of AR co-repressors (48-50), HDAC1, HDAC3 or SirT1 inhibit the ligand-induced AR activation at different...signaling and androgen-dependent growth. We hypothesis that DACH1/Six1/Eya pathway is an endogenous regulator of AR trans- activation and contributes to...mechanism. Inhibitory function of Eya1 on AR transactivation required a phosphates activity and could be enhanced by ectopic expression of co-repressors
Magnetic field effects on shear and normal stresses in magnetorheological finishing.
Lambropoulos, John C; Miao, Chunlin; Jacobs, Stephen D
2010-09-13
We use a recent experimental technique to measure in situ shear and normal stresses during magnetorheological finishing (MRF) of a borosilicate glass over a range of magnetic fields. At low fields shear stresses increase with magnetic field, but become field-independent at higher magnetic fields. Micromechanical models of formation of magnetic particle chains suggest a complex behavior of magnetorheological (MR) fluids that combines fluid- and solid-like responses. We discuss the hypothesis that, at higher fields, slip occurs between magnetic particle chains and the immersed glass part, while the normal stress is governed by the MRF ribbon elasticity.
Women are underrepresented in fields where success is believed to require brilliance.
Meyer, Meredith; Cimpian, Andrei; Leslie, Sarah-Jane
2015-01-01
Women's underrepresentation in science, technology, engineering, and mathematics (STEM) fields is a prominent concern in our society and many others. Closer inspection of this phenomenon reveals a more nuanced picture, however, with women achieving parity with men at the Ph.D. level in certain STEM fields, while also being underrepresented in some non-STEM fields. It is important to consider and provide an account of this field-by-field variability. The field-specific ability beliefs (FAB) hypothesis aims to provide such an account, proposing that women are likely to be underrepresented in fields thought to require raw intellectual talent-a sort of talent that women are stereotyped to possess less of than men. In two studies, we provide evidence for the FAB hypothesis, demonstrating that the academic fields believed by laypeople to require brilliance are also the fields with lower female representation. We also found that the FABs of participants with college-level exposure to a field were more predictive of its female representation than those of participants without college exposure, presumably because the former beliefs mirror more closely those of the field's practitioners (the direct "gatekeepers"). Moreover, the FABs of participants with college exposure to a field predicted the magnitude of the field's gender gap above and beyond their beliefs about the level of mathematical and verbal skills required. Finally, we found that beliefs about the importance of brilliance to success in a field may predict its female representation in part by fostering the impression that the field demands solitary work and competition with others. These results suggest new solutions for enhancing diversity within STEM and across the academic spectrum.
Primary Visual Cortex as a Saliency Map: A Parameter-Free Prediction and Its Test by Behavioral Data
Zhaoping, Li; Zhe, Li
2015-01-01
It has been hypothesized that neural activities in the primary visual cortex (V1) represent a saliency map of the visual field to exogenously guide attention. This hypothesis has so far provided only qualitative predictions and their confirmations. We report this hypothesis’ first quantitative prediction, derived without free parameters, and its confirmation by human behavioral data. The hypothesis provides a direct link between V1 neural responses to a visual location and the saliency of that location to guide attention exogenously. In a visual input containing many bars, one of them saliently different from all the other bars which are identical to each other, saliency at the singleton’s location can be measured by the shortness of the reaction time in a visual search for singletons. The hypothesis predicts quantitatively the whole distribution of the reaction times to find a singleton unique in color, orientation, and motion direction from the reaction times to find other types of singletons. The prediction matches human reaction time data. A requirement for this successful prediction is a data-motivated assumption that V1 lacks neurons tuned simultaneously to color, orientation, and motion direction of visual inputs. Since evidence suggests that extrastriate cortices do have such neurons, we discuss the possibility that the extrastriate cortices play no role in guiding exogenous attention so that they can be devoted to other functions like visual decoding and endogenous attention. PMID:26441341
Neural networks supporting switching, hypothesis testing, and rule application
Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S.; Seger, Carol A.
2015-01-01
We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example “choose the blue letter.” Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest learning speed late in the time course of learning. As subjects shifted from hypothesis testing to rule application, activity in this network decreased and activity in the somatomotor and default mode networks increased. PMID:26197092
Neural networks supporting switching, hypothesis testing, and rule application.
Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S; Seger, Carol A
2015-10-01
We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example "choose the blue letter". Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest learning speed late in the time course of learning. As subjects shifted from hypothesis testing to rule application, activity in this network decreased and activity in the somatomotor and default mode networks increased. Copyright © 2015 Elsevier Ltd. All rights reserved.
Organic supplemental nitrogen sources for field corn production after a hairy vetch cover crop
USDA-ARS?s Scientific Manuscript database
The combined use of legume cover crops and animal byproduct organic amendments could provide agronomic and environmental benefits to organic farmers by increasing corn grain yield while optimizing N and P inputs. To test this hypothesis we conducted a two-year field study and a laboratory soil incu...
My First CMC Article Revisited: A Window on Spanish L2 Interlanguage
ERIC Educational Resources Information Center
Blake, Robert
2016-01-01
The computer-assisted language learning (CALL) field seems to change overnight with new technological affordances. Blake revisits his 2000 "LLT" article on computer-mediation communication (CMC) in order to reflect on how the field has examined this topic over the past decade or so. While the Interaction Hypothesis continues to guide…
A Geomagnetic Estimate of Mean Paleointensity
NASA Technical Reports Server (NTRS)
Voorhies, Coerte
2004-01-01
To test a statistical hypothesis about Earth's magnetic field against paleomagnetism, the present field is used to estimate time averaged paleointensity. The estimate uses the modem magnetic multipole spectrum R(n), which gives the mean square induction represented by spherical harmonics of degree n averaged over the sphere of radius a = 6371.2 km. The hypothesis asserts that the low degree multipole powers of the core-source field are distributed as chi-squared with 2n+l degrees of freedom and expectation values {R(n)} = K[(n+l/2)/n(n+l](c/a)(sup 2n+4), where c is the 3480 km radius of Earth's core. (This is compatible with a usually mainly geocentric axial dipolar field). Amplitude K is estimated by fitting theoretical to observational spectra through degree 12. The resulting calibrated expectation spectrum is summed through degree 12 to estimate expected square intensity {F(sup 2)}. The sum also estimates {F(sup 2)} averaged over geologic time, in so far as the present magnetic spectrum is a fair sample of that generated in the past by core geodynamic processes.
Maximal near-field radiative heat transfer between two plates
NASA Astrophysics Data System (ADS)
Nefzaoui, Elyes; Ezzahri, Younès; Drévillon, Jérémie; Joulain, Karl
2013-09-01
Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the radiative heat flux are reported and compared to real materials usually considered in similar studies, silicon carbide and heavily doped silicon in this case. Results are obtained by exact and approximate (in the extreme near-field regime and the electrostatic limit hypothesis) calculations. The two methods are compared in terms of accuracy and CPU resources consumption. Their differences are explained according to a mesoscopic description of nearfield radiative heat transfer. Finally, the frequently assumed hypothesis which states a maximal radiative heat transfer when the two semi-infinite planes are of identical materials is numerically confirmed. Its subsequent practical constraints are then discussed. Presented results enlighten relevant paths to follow in order to choose or design materials maximizing nano-TPV devices performances.
SINGLE NEURON ACTIVITY AND THETA MODULATION IN POSTRHINAL CORTEX DURING VISUAL OBJECT DISCRIMINATION
Furtak, Sharon C.; Ahmed, Omar J.; Burwell, Rebecca D.
2012-01-01
Postrhinal cortex, the rodent homolog of the primate parahippocampal cortex, processes spatial and contextual information. Our hypothesis of postrhinal function is that it serves to encode context, in part, by forming representations that link objects to places. We recorded postrhinal neuronal activity and local field potentials (LFPs) in rats trained on a two-choice, visual discrimination task. As predicted, a large proportion of postrhinal neurons signaled object-location conjunctions. In addition, postrhinal LFPs exhibited strong oscillatory rhythms in the theta band, and many postrhinal neurons were phase locked to theta. Although correlated with running speed, theta power was lower than predicted by speed alone immediately before and after choice. However, theta power was significantly increased following incorrect decisions, suggesting a role in signaling error. These findings provide evidence that postrhinal cortex encodes representations that link objects to places and suggest that postrhinal theta modulation extends to cognitive as well as spatial functions. PMID:23217745
The interplay between immunity and aging in Drosophila.
Garschall, Kathrin; Flatt, Thomas
2018-01-01
Here, we provide a brief review of the mechanistic connections between immunity and aging-a fundamental biological relationship that remains poorly understood-by considering two intertwined questions: how does aging affect immunity, and how does immunity affect aging? On the one hand, aging contributes to the deterioration of immune function and predisposes the organism to infections ("immuno-senescence"). On the other hand, excessive activation of the immune system can accelerate degenerative processes, cause inflammation and immunopathology, and thus promote aging ("inflammaging"). Interestingly, several recent lines of evidence support the hypothesis that restrained or curbed immune activity at old age (that is, optimized age-dependent immune homeostasis) might actually improve realized immune function and thereby promote longevity. We focus mainly on insights from Drosophila , a powerful genetic model system in which both immunity and aging have been extensively studied, and conclude by outlining several unresolved questions in the field.
The formation of the planetary system
NASA Astrophysics Data System (ADS)
Tscharnuter, W. M.
1984-12-01
The basic ideas concerning solar system formation were developed by Kant (1755) and Laplace (1796) whose starting point was the so-called nebular hypothesis. The great advantage of the nebular hypothesis is that many regularities, e.g. prograde motions of all planets and asteroids in almost coplanar orbits, can be explained. Observations in the radio and infrared region strongly support the nebular hypothesis provided that the angular momentum problem can be solved in some way. Three possibilities are listed: (1) magnetic fields via Alfvén waves which can transport angular momentum from the contracting cloud fragment into the external medium, (2) turbulent friction, (3) gravitational torques exerted by high amplitude spiral or bar-like density waves in the nebula.
The Biochemistry of Memory: The Twenty-Six Year Journey of a ‘New and Specific Hypothesis’
Baudry, Michel; Bi, Xiaoning; Gall, Christine; Lynch, Gary
2010-01-01
This Special Issue of Neurobiology of Learning and Memory dedicated to Dr. Richard Thompson to celebrate his 80th birthday and his numerous contributions to the field of learning and memory gave us the opportunity to revisit the hypothesis we proposed more than 25 years ago regarding the biochemistry of learning and memory. This review summarizes our early 1980s hypothesis and then describes how it was tested and modified over the years following its introduction. We then discuss the current status of the hypothesis and provide some examples of how it has led to unexpected insights into the memory problems that accompany a broad range of neuropsychiatric disorders. PMID:21134478
NASA Astrophysics Data System (ADS)
Gabet, Emmanuel J.; Burnham, Jennifer L. Horwath; Perron, J. Taylor
2016-09-01
A recent paper published in Geomorphology by Gabet et al. (2014) presents the results of a numerical model supporting the hypothesis that burrowing mammals build Mima mounds - small, densely packed hillocks found primarily in the western United States. The model is based on field observations and produces realistic-looking mounds with spatial distributions similar to real moundfields. Alternative explanations have been proposed for these Mima mounds, including formation by seismic shaking and vegetation-controlled erosion and deposition. In this short communication, we present observations from moundfields in the coastal states of the western U.S. that are incompatible with these alternative theories.
A hypothesis for delayed dynamic earthquake triggering
Parsons, T.
2005-01-01
It's uncertain whether more near-field earthquakes are triggered by static or dynamic stress changes. This ratio matters because static earthquake interactions are increasingly incorporated into probabilistic forecasts. Recent studies were unable to demonstrate all predictions from the static-stress-change hypothesis, particularly seismicity rate reductions. However, current dynamic stress change hypotheses do not explain delayed earthquake triggering and Omori's law. Here I show numerically that if seismic waves can alter some frictional contacts in neighboring fault zones, then dynamic triggering might cause delayed triggering and an Omori-law response. The hypothesis depends on faults following a rate/state friction law, and on seismic waves changing the mean critical slip distance (Dc) at nucleation zones.
Hale, M W; Hay-Schmidt, A; Mikkelsen, J D; Poulsen, B; Shekhar, A; Lowry, C A
2008-08-26
Anxiety states and anxiety-related behaviors appear to be regulated by a distributed and highly interconnected system of brain structures including the basolateral amygdala. Our previous studies demonstrate that exposure of rats to an open-field in high- and low-light conditions results in a marked increase in c-Fos expression in the anterior part of the basolateral amygdaloid nucleus (BLA) compared with controls. The neural mechanisms underlying the anatomically specific effects of open-field exposure on c-Fos expression in the BLA are not clear, however, it is likely that this reflects activation of specific afferent input to this region of the amygdala. In order to identify candidate brain regions mediating anxiety-induced activation of the basolateral amygdaloid complex in rats, we used cholera toxin B subunit (CTb) as a retrograde tracer to identify neurons with direct afferent projections to this region in combination with c-Fos immunostaining to identify cells responding to exposure to an open-field arena in low-light (8-13 lux) conditions (an anxiogenic stimulus in rats). Adult male Wistar rats received a unilateral microinjection of 4% CTb in phosphate-buffered saline into the basolateral amygdaloid complex. Rats were housed individually for 11 days after CTb injections and handled (HA) for 2 min each day. On the test day rats were either, 1) exposed to an open-field in low-light conditions (8-13 lux) for 15 min (OF); 2) briefly HA or 3) left undisturbed (control). We report that dual immunohistochemical staining for c-Fos and CTb revealed an increase in the percentage of c-Fos-immunopositive basolateral amygdaloid complex-projecting neurons in open-field-exposed rats compared with HA and control rats in the ipsilateral CA1 region of the ventral hippocampus, subiculum and lateral entorhinal cortex. These data are consistent with the hypothesis that exposure to the open-field arena activates an anxiety-related neuronal system with convergent input to the basolateral amygdaloid complex.
Kim, Hongkeun
2018-03-15
Functional neuroimaging studies on episodic memory retrieval consistently indicated the activation of the precuneus (PCU), mid-cingulate cortex (MCC), and lateral intraparietal sulcus (latIPS) regions. Although studies typically interpreted these activations in terms of memory retrieval processes, resting-state functional connectivity data indicate that these regions are part of the frontoparietal control network, suggesting a more general, cross-functional role. In this regard, this study proposes a novel hypothesis which suggests that the parietal control network plays a strong role in accommodating the co-occurrence of externally directed cognition (EDC) and internally directed cognition (IDC), which are typically antagonistic to each other. To evaluate how well this dual cognitive processes hypothesis can account for parietal activation patterns during memory tasks, this study provides a cross-function meta-analysis involving 3 different memory paradigms, namely, retrieval success (hit > correct rejection), repetition enhancement (repeated > novel), and subsequent forgetting (forgotten > remembered). Common to these paradigms is that the target condition may involve both EDC (stimulus processing and motor responding) and IDC (intentional remembering, involuntary awareness of previous encounter, or task-unrelated thoughts) strongly, whereas the reference condition may involve EDC to a greater extent, but IDC to a lesser extent. Thus, the dual cognitive processes hypothesis predicts that each of these paradigms will activate similar, overlapping PCU, MCC, and latIPS regions. The results were fully consistent with the prediction, supporting the dual cognitive processes hypothesis. Evidence from relevant prior studies suggests that the dual cognitive processes hypothesis may also apply to non-memory domain tasks. Copyright © 2018 Elsevier B.V. All rights reserved.
EVOLUTION OF THE MAGNETIC FIELD LINE DIFFUSION COEFFICIENT AND NON-GAUSSIAN STATISTICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snodin, A. P.; Ruffolo, D.; Matthaeus, W. H.
The magnetic field line random walk (FLRW) plays an important role in the transport of energy and particles in turbulent plasmas. For magnetic fluctuations that are transverse or almost transverse to a large-scale mean magnetic field, theories describing the FLRW usually predict asymptotic diffusion of magnetic field lines perpendicular to the mean field. Such theories often depend on the assumption that one can relate the Lagrangian and Eulerian statistics of the magnetic field via Corrsin’s hypothesis, and additionally take the distribution of magnetic field line displacements to be Gaussian. Here we take an ordinary differential equation (ODE) model with thesemore » underlying assumptions and test how well it describes the evolution of the magnetic field line diffusion coefficient in 2D+slab magnetic turbulence, by comparisons to computer simulations that do not involve such assumptions. In addition, we directly test the accuracy of the Corrsin approximation to the Lagrangian correlation. Over much of the studied parameter space we find that the ODE model is in fairly good agreement with computer simulations, in terms of both the evolution and asymptotic values of the diffusion coefficient. When there is poor agreement, we show that this can be largely attributed to the failure of Corrsin’s hypothesis rather than the assumption of Gaussian statistics of field line displacements. The degree of non-Gaussianity, which we measure in terms of the kurtosis, appears to be an indicator of how well Corrsin’s approximation works.« less
Action perception as hypothesis testing.
Donnarumma, Francesco; Costantini, Marcello; Ambrosini, Ettore; Friston, Karl; Pezzulo, Giovanni
2017-04-01
We present a novel computational model that describes action perception as an active inferential process that combines motor prediction (the reuse of our own motor system to predict perceived movements) and hypothesis testing (the use of eye movements to disambiguate amongst hypotheses). The system uses a generative model of how (arm and hand) actions are performed to generate hypothesis-specific visual predictions, and directs saccades to the most informative places of the visual scene to test these predictions - and underlying hypotheses. We test the model using eye movement data from a human action observation study. In both the human study and our model, saccades are proactive whenever context affords accurate action prediction; but uncertainty induces a more reactive gaze strategy, via tracking the observed movements. Our model offers a novel perspective on action observation that highlights its active nature based on prediction dynamics and hypothesis testing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
2010-09-30
planktonic ecosystems. OBJECTIVES Our objectives in this work are to 1) visualize and quantify herbivorous copepod feeding in the laboratory...and 2) to apply these methods in the field to observe the dynamics of copepod feeding in situ. In particular we intend to test the “feeding sorties...hypothesis vs. the “in situ feeding” hypothesis regarding the location and timing of copepod feeding and vertical migration. APPROACH Previous
Event-induced theta responses as a window on the dynamics of memory.
Bastiaansen, Marcel; Hagoort, Peter
2003-01-01
An important, but often ignored distinction in the analysis of EEG signals is that between evoked activity and induced activity. Whereas evoked activity reflects the summation of transient post-synaptic potentials triggered by an event, induced activity, which is mainly oscillatory in nature, is thought to reflect changes in parameters controlling dynamic interactions within and between brain structures. We hypothesize that induced activity may yield information about the dynamics of cell assembly formation, activation and subsequent uncoupling, which may play a prominent role in different types of memory operations. We then describe a number of analysis tools that can be used to study the reactivity of induced rhythmic activity, both in terms of amplitude changes and of phase variability. We briefly discuss how alpha, gamma and theta rhythms are thought to be generated, paying special attention to the hypothesis that the theta rhythm reflects dynamic interactions between the hippocampal system and the neocortex. This hypothesis would imply that studying the reactivity of scalp-recorded theta may provide a window on the contribution of the hippocampus to memory functions. We review studies investigating the reactivity of scalp-recorded theta in paradigms engaging episodic memory, spatial memory and working memory. In addition, we review studies that relate theta reactivity to processes at the interface of memory and language. Despite many unknowns, the experimental evidence largely supports the hypothesis that theta activity plays a functional role in cell assembly formation, a process which may constitute the neural basis of memory formation and retrieval. The available data provide only highly indirect support for the hypothesis that scalp-recorded theta yields information about hippocampal functioning. It is concluded that studying induced rhythmic activity holds promise as an additional important way to study brain function.
Functional Neuroanatomical Evidence for the Double-Deficit Hypothesis of Developmental Dyslexia
Norton, Elizabeth S.; Black, Jessica M.; Stanley, Leanne M.; Tanaka, Hiroko; Gabrieli, John D. E.; Sawyer, Carolyn; Hoeft, Fumiko
2015-01-01
The double-deficit hypothesis of dyslexia posits that both rapid naming and phonological impairments can cause reading difficulties, and that individuals who have both of these deficits show greater reading impairments compared to those with a single deficit. Despite extensive behavioral research, the brain basis of poor reading with a double-deficit has never been investigated. The goal of the study was to evaluate the double-deficit hypothesis using functional MRI. Activation patterns during a printed word rhyme judgment task in 90 children with a wide range of reading abilities showed dissociation between brain regions that were sensitive to phonological awareness (left inferior frontal and inferior parietal regions) and rapid naming (right cerebellar lobule VI). More specifically, the double-deficit group showed less activation in the fronto-parietal reading network compared to children with only a deficit in phonological awareness, who in turn showed less activation than the typically-reading group. On the other hand, the double-deficit group showed less cerebellar activation compared to children with only a rapid naming deficit, who in turn showed less activation than the typically-reading children. Functional connectivity analyses revealed that bilateral prefrontal regions were key for linking brain regions associated with phonological awareness and rapid naming, with the double-deficit group being the most aberrant in their connectivity. Our study provides the first functional neuroanatomical evidence for the double-deficit hypothesis of developmental dyslexia. PMID:24953957
Linking manipulative experiments to field data to test the dilution effect.
Venesky, Matthew D; Liu, Xuan; Sauer, Erin L; Rohr, Jason R
2014-05-01
The dilution effect, the hypothesis that biodiversity reduces disease risk, has received support in many systems. However, few dilution effect studies have linked mechanistic experiments to field patterns to establish both causality and ecological relevance. We conducted a series of laboratory experiments and tested the dilution effect hypothesis in an amphibian-Batrachochytrium dendrobatidis (Bd) system and tested for consistency between our laboratory experiments and field patterns of amphibian species richness, host identity and Bd prevalence. In our laboratory experiments, we show that tadpoles can filter feed Bd zoospores and that the degree of suspension feeding was positively associated with their dilution potential. The obligate suspension feeder, Gastrophryne carolinensis, generally diluted the risk of chytridiomycosis for tadpoles of Bufo terrestris and Hyla cinerea, whereas tadpoles of B. terrestris (an obligate benthos feeder) generally amplified infections for the other species. In addition, G. carolinensis reduced Bd abundance on H. cinerea more so in the presence than absence of B. terrestris and B. terrestris amplified Bd abundance on H. cinerea more so in the absence than presence of G. carolinensis. Also, when ignoring species identity, species richness was a significant negative predictor of Bd abundance. In our analysis of field data, the presence of Bufo spp. and Gastrophryne spp. were significant positive and negative predictors of Bd prevalence, respectively, even after controlling for climate, vegetation, anthropogenic factors (human footprint), species richness and sampling effort. These patterns of dilution and amplification supported our laboratory findings, demonstrating that the results are likely ecologically relevant. The results from our laboratory and field data support the dilution effect hypothesis and also suggest that dilution and amplification are predictable based on host traits. Our study is among the first to link manipulative experiments, in which a potential dilution mechanism is supported, with analyses of field data on species richness, host identity, spatial autocorrelation and disease prevalence. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
NASA Astrophysics Data System (ADS)
Wang, Y.; Shi, F.; Yu, T.; Zhu, L.; Zhang, J.; Gasc, J.; Incel, S.; Schubnel, A.; Li, Z.; Liu, W.; Jin, Z.
2017-12-01
Southern Tibet is the most active orogenic region on Earth where the Indian plate thrusts under the Eurasian continent, pushing the Moho to unusual depths of 80 km. Seismicity is wide spread, reaching 100 km depth. Mechanisms of these deep earthquakes remain enigmatic. Here we examine the hypothesis of metamorphism induced mechanical instability in granulite-facies rocks, which are the dominant constituent in subducted Indian lower crust. We conducted deformation experiments on natural and nominally dry granulite in a DDIA apparatus within the stability fields of both granulite and eclogite. The system is interfaced with an acoustic emission (AE) monitoring system, allowing in-situ detection of mechanical instability along with the progress of eclogitization. We found that granulite deformed within its own stability field behaved in a ductile fashion without any AE activity. In contrast, numerous AE events were observed during deformation of metastable granulite in the eclogite field. The observed AE activities were episodic. Correlating closely to the AE burst episodes, measured differential stresses rose and fell during deformation, suggesting unstable fault slip. Microstructural observation shows that strain is highly localized around grain boundaries, which are decorated by eclogitization products. Time-resolved event location analysis showed large episodes corresponded to the growth of branches of macroscopic faults in recovered samples. It appears that ruptures originate from weakened grain boundaries, propagate through grains, and self-organize into macroscopic fault zones. No melting is required in the fault zones to facilitate brittle failure. This process may be responsible for the deep crustal seismicity in Southern Tibet and other continental-continental subduction regions.
Effect of enhanced geomagnetic activity on hypothermia and mortality in rats
NASA Astrophysics Data System (ADS)
Bureau, Y. R. J.; Persinger, M. A.; Parker, G. H.
1996-12-01
The hypothesis was investigated that variability in the severity of limbic seizure-induced hypothermia in rats was affected by ambient geomagnetic activity. Data were obtained in support of this hypothesis. The depth of the hypothermia was significantly ( P < 0.001) reduced if the ambient geomagnetic activity exceeded 35 nT to 40 nT. Mortality during the subsequent 5 days was increased when the geomagnetic activity was > 20 nT. The magnitude of the effect was comparable to the difference between exposure to light or to darkness during the 20 h after the induction of limbic seizures.
Knowledge inhibition and N400: a study with words that look like common words.
Debruille, J B
1998-04-01
In addition to their own representations, low frequency words, such as BRIBE, can covertly activate the representations of higher frequency words they look like (e.g., BRIDE). Hence, look-alike words can activate knowledge that is incompatible with the knowledge corresponding to accurate representations. Comparatively, eccentric words, that is, low frequency words that do not look as much like higher frequency words, are less likely to activate incompatible knowledge. This study focuses on the hypothesis that the N400 component of the event-related potential reflects the inhibition of incompatible knowledge. This hypothesis predicts that look-alike words elicit N400s of greater amplitudes than eccentric words in conditions where incompatible knowledge is inhibited. Results from a single item lexical decision experiment are reported which support the inhibition hypothesis. Copyright 1998 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mango, F.
1993-08-01
A new hypothesis is introduced for the generation of petroleum and natural gas. The transition metals, activated under the reducing conditions of diagenesis, are proposed as catalysts in the generation of light hydrocarbons. The objective of this proposal is to test that hypothesis. Transition metals (Ni, V, Ti, Co, Fe), in kerogen, porphyrins, and as pure compounds, will be tested under catagenic conditions for catalytic activity in the conversion of normal paraffins and hydrogen into light hydrocarbons. If the hypothesis is correct, kerogenous transition metals should become catalytically active under the reducing conditions of diagenesis and catalyze the conversion ofmore » paraffins into the light hydrocarbons seen in petroleum. Moreover, the C{sub 1}-C{sub 4} hydrocarbons generated catalytically should be similar in molecular and isotopic compositions to natural gas.« less
Women are underrepresented in fields where success is believed to require brilliance
Meyer, Meredith; Cimpian, Andrei; Leslie, Sarah-Jane
2015-01-01
Women’s underrepresentation in science, technology, engineering, and mathematics (STEM) fields is a prominent concern in our society and many others. Closer inspection of this phenomenon reveals a more nuanced picture, however, with women achieving parity with men at the Ph.D. level in certain STEM fields, while also being underrepresented in some non-STEM fields. It is important to consider and provide an account of this field-by-field variability. The field-specific ability beliefs (FAB) hypothesis aims to provide such an account, proposing that women are likely to be underrepresented in fields thought to require raw intellectual talent—a sort of talent that women are stereotyped to possess less of than men. In two studies, we provide evidence for the FAB hypothesis, demonstrating that the academic fields believed by laypeople to require brilliance are also the fields with lower female representation. We also found that the FABs of participants with college-level exposure to a field were more predictive of its female representation than those of participants without college exposure, presumably because the former beliefs mirror more closely those of the field’s practitioners (the direct “gatekeepers”). Moreover, the FABs of participants with college exposure to a field predicted the magnitude of the field’s gender gap above and beyond their beliefs about the level of mathematical and verbal skills required. Finally, we found that beliefs about the importance of brilliance to success in a field may predict its female representation in part by fostering the impression that the field demands solitary work and competition with others. These results suggest new solutions for enhancing diversity within STEM and across the academic spectrum. PMID:25814964
Transitional geomagnetic impulse hypothesis: Geomagnetic fact or rock-magnetic artifact?
NASA Astrophysics Data System (ADS)
Camps, Pierre; Coe, Robert S.; PréVot, Michel
1999-08-01
A striking feature of the Steens Mountain (Oregon) geomagnetic polarity reversal is the two (maybe three) extremely rapid field directional changes (6 degrees per day) proposed to account for unusual behavior in direction of remanent magnetization in a single lava flow. Each of these very fast field changes, or impulses, is associated with a large directional gap (some 90°) in the record. In order to check the spatial reproducibility of the paleomagnetic signal over distances up to several kilometers, we have carried out a paleomagnetic investigation of two new sections (B and F) in the Steens summit region which cover the second and the third directional gap. The main result is the description of two new directions, which are located between the pre second and post second impulse directions. These findings weigh against the hypothesis that the geomagnetic field cause the unusual intraflow fluctuations, which now appears to be more ad hoc as an explanation of the paleomagnetic data. However, the alternative baking hypothesis remains also ad hoc since we have to assume variable rock magnetic properties that we have not yet been able to detect within the flows at the original section Steens A and D 1.5 km to the north. In addition, new results for 22 transitional and normal lava flows in section B are presented that correlate well with earlier results from section A.
NASA Astrophysics Data System (ADS)
Harken, B.; Geiges, A.; Rubin, Y.
2013-12-01
There are several stages in any hydrological modeling campaign, including: formulation and analysis of a priori information, data acquisition through field campaigns, inverse modeling, and forward modeling and prediction of some environmental performance metric (EPM). The EPM being predicted could be, for example, contaminant concentration, plume travel time, or aquifer recharge rate. These predictions often have significant bearing on some decision that must be made. Examples include: how to allocate limited remediation resources between multiple contaminated groundwater sites, where to place a waste repository site, and what extraction rates can be considered sustainable in an aquifer. Providing an answer to these questions depends on predictions of EPMs using forward models as well as levels of uncertainty related to these predictions. Uncertainty in model parameters, such as hydraulic conductivity, leads to uncertainty in EPM predictions. Often, field campaigns and inverse modeling efforts are planned and undertaken with reduction of parametric uncertainty as the objective. The tool of hypothesis testing allows this to be taken one step further by considering uncertainty reduction in the ultimate prediction of the EPM as the objective and gives a rational basis for weighing costs and benefits at each stage. When using the tool of statistical hypothesis testing, the EPM is cast into a binary outcome. This is formulated as null and alternative hypotheses, which can be accepted and rejected with statistical formality. When accounting for all sources of uncertainty at each stage, the level of significance of this test provides a rational basis for planning, optimization, and evaluation of the entire campaign. Case-specific information, such as consequences prediction error and site-specific costs can be used in establishing selection criteria based on what level of risk is deemed acceptable. This framework is demonstrated and discussed using various synthetic case studies. The case studies involve contaminated aquifers where a decision must be made based on prediction of when a contaminant will arrive at a given location. The EPM, in this case contaminant travel time, is cast into the hypothesis testing framework. The null hypothesis states that the contaminant plume will arrive at the specified location before a critical value of time passes, and the alternative hypothesis states that the plume will arrive after the critical time passes. Different field campaigns are analyzed based on effectiveness in reducing the probability of selecting the wrong hypothesis, which in this case corresponds to reducing uncertainty in the prediction of plume arrival time. To examine the role of inverse modeling in this framework, case studies involving both Maximum Likelihood parameter estimation and Bayesian inversion are used.
Fischer, Petra; Pogosyan, Alek; Herz, Damian M; Cheeran, Binith; Green, Alexander L; Fitzgerald, James; Aziz, Tipu Z; Hyam, Jonathan; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter; Tan, Huiling
2017-01-01
Gamma activity in the subthalamic nucleus (STN) is widely viewed as a pro-kinetic rhythm. Here we test the hypothesis that rather than being specifically linked to movement execution, gamma activity reflects dynamic processing in this nucleus. We investigated the role of gamma during fast stopping and recorded scalp electroencephalogram and local field potentials from deep brain stimulation electrodes in 9 Parkinson’s disease patients. Patients interrupted finger tapping (paced by a metronome) in response to a stop-signal sound, which was timed such that successful stopping would occur only in ~50% of all trials. STN gamma (60–90 Hz) increased most strongly when the tap was successfully stopped, whereas phase-based connectivity between the contralateral STN and motor cortex decreased. Beta or theta power seemed less directly related to stopping. In summary, STN gamma activity may support flexible motor control as it did not only increase during movement execution but also during rapid action-stopping. DOI: http://dx.doi.org/10.7554/eLife.23947.001 PMID:28742498
Reactivation, Replay, and Preplay: How It Might All Fit Together
Buhry, Laure; Azizi, Amir H.; Cheng, Sen
2011-01-01
Sequential activation of neurons that occurs during “offline” states, such as sleep or awake rest, is correlated with neural sequences recorded during preceding exploration phases. This so-called reactivation, or replay, has been observed in a number of different brain regions such as the striatum, prefrontal cortex, primary visual cortex and, most prominently, the hippocampus. Reactivation largely co-occurs together with hippocampal sharp-waves/ripples, brief high-frequency bursts in the local field potential. Here, we first review the mounting evidence for the hypothesis that reactivation is the neural mechanism for memory consolidation during sleep. We then discuss recent results that suggest that offline sequential activity in the waking state might not be simple repetitions of previously experienced sequences. Some offline sequential activity occurs before animals are exposed to a novel environment for the first time, and some sequences activated offline correspond to trajectories never experienced by the animal. We propose a conceptual framework for the dynamics of offline sequential activity that can parsimoniously describe a broad spectrum of experimental results. These results point to a potentially broader role of offline sequential activity in cognitive functions such as maintenance of spatial representation, learning, or planning. PMID:21918724
Explorations in statistics: hypothesis tests and P values.
Curran-Everett, Douglas
2009-06-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This second installment of Explorations in Statistics delves into test statistics and P values, two concepts fundamental to the test of a scientific null hypothesis. The essence of a test statistic is that it compares what we observe in the experiment to what we expect to see if the null hypothesis is true. The P value associated with the magnitude of that test statistic answers this question: if the null hypothesis is true, what proportion of possible values of the test statistic are at least as extreme as the one I got? Although statisticians continue to stress the limitations of hypothesis tests, there are two realities we must acknowledge: hypothesis tests are ingrained within science, and the simple test of a null hypothesis can be useful. As a result, it behooves us to explore the notions of hypothesis tests, test statistics, and P values.
Microsaccade production during saccade cancelation in a stop-signal task
Godlove, David C.; Schall, Jeffrey D.
2014-01-01
We obtained behavioral data to evaluate two alternative hypotheses about the neural mechanisms of gaze control. The “fixation” hypothesis states that neurons in rostral superior colliculus (SC) enforce fixation of gaze. The “microsaccade” hypothesis states that neurons in rostral SC encode microsaccades rather than fixation per se. Previously reported neuronal activity in monkey SC during the saccade stop-signal task leads to specific, dissociable behavioral predictions of these two hypotheses. When subjects are required to cancel partially-prepared saccades, imbalanced activity spreads across rostral and caudal SC with a reliable temporal profile. The microsaccade hypothesis predicts that this imbalance will lead to elevated microsaccade production biased toward the target location, while the fixation hypothesis predicts reduced microsaccade production. We tested these predictions by analyzing the microsaccades produced by 4 monkeys while they voluntarily canceled partially prepared eye movements in response to explicit stop signals. Consistent with the fixation hypothesis and contradicting the microsaccade hypothesis, we found that each subject produced significantly fewer microsaccades when normal saccades were successfully canceled. The few microsaccades escaping this inhibition tended to be directed toward the target location. We additionally investigated interactions between initiating microsaccades and inhibiting normal saccades. Reaction times were longer when microsaccades immediately preceded target presentation. However, pre-target microsaccade production did not affect stop-signal reaction time or alter the probability of canceling saccades following stop signals. These findings demonstrate that imbalanced activity within SC does not necessarily produce microsaccades and add to evidence that saccade preparation and cancelation are separate processes. PMID:25448116
Does mass accretion lead to field decay in neutron stars
NASA Technical Reports Server (NTRS)
Shibazaki, N.; Murakami, T.; Shaham, Jacob; Nomoto, K.
1989-01-01
The recent discovery of cyclotron lines from gamma-ray bursts indicates that the strong magnetic fields of isolated neutron stars might not decay. The possible inverse correlation between the strength of the magnetic field and the mass accreted by the neutron star suggests that mass accretion itself may lead to the decay of the magnetic field. The spin and magnetic field evolution of the neutron star was calculated under the hypothesis of the accretion-induced field decay. It is shown that the calculated results are consistent with the observations of binary and millisecond radio pulsars.
Crustal Fracturing Field and Presence of Fluid as Revealed by Seismic Anisotropy
NASA Astrophysics Data System (ADS)
Pastori, M.; Piccinini, D.; de Gori, P.; Margheriti, L.; Barchi, M. R.; di Bucci, D.
2010-12-01
In the last three years, we developed, tested and improved an automatic analysis code (Anisomat+) to calculate the shear wave splitting parameters, fast polarization direction (φ) and delay time (∂t). The code is a set of MatLab scripts able to retrieve crustal anisotropy parameters from three-component seismic recording of local earthquakes using horizontal component cross-correlation method. The analysis procedure consists in choosing an appropriate frequency range, that better highlights the signal containing the shear waves, and a length of time window on the seismogram centered on the S arrival (the temporal window contains at least one cycle of S wave). The code was compared to other two automatic analysis code (SPY and SHEBA) and tested on three Italian areas (Val d’Agri, Tiber Valley and L’Aquila surrounding) along the Apennine mountains. For each region we used the anisotropic parameters resulting from the automatic computation as a tool to determine the fracture field geometries connected with the active stress field. We compare the temporal variations of anisotropic parameters to the evolution of vp/vs ratio for the same seismicity. The anisotropic fast directions are used to define the active stress field (EDA model), finding a general consistence between fast direction and main stress indicators (focal mechanism and borehole break-out). The magnitude of delay time is used to define the fracture field intensity finding higher value in the volume where micro-seismicity occurs. Furthermore we studied temporal variations of anisotropic parameters and vp/vs ratio in order to explain if fluids play an important role in the earthquake generation process. The close association of anisotropic and vp/vs parameters variations and seismicity rate changes supports the hypothesis that the background seismicity is influenced by the fluctuation of pore fluid pressure in the rocks.
Sivanesam, Kalkena; Shu, Irene; Huggins, Kelly N. L.; Tatarek-Nossol, Marianna; Kapurniotu, Aphrodite; Andersen, Niels H.
2016-01-01
Versions of a previously discovered β-hairpin peptide inhibitor of IAPP aggregation that are stabilized in that conformation, or even forced to remain in the hairpin conformation by a backbone cyclization constraint, display superior activity as inhibitors. The cyclized hairpin, cyclo-WW2, displays inhibitory activity at sub-stoichiometric concentrations relative to this amyloidogenic peptide. The hairpin binding hypothesis stands confirmed. PMID:27317951
Affective Primacy vs. Cognitive Primacy: Dissolving the Debate.
Lai, Vicky Tzuyin; Hagoort, Peter; Casasanto, Daniel
2012-01-01
When people see a snake, they are likely to activate both affective information (e.g., dangerous) and non-affective information about its ontological category (e.g., animal). According to the Affective Primacy Hypothesis, the affective information has priority, and its activation can precede identification of the ontological category of a stimulus. Alternatively, according to the Cognitive Primacy Hypothesis, perceivers must know what they are looking at before they can make an affective judgment about it. We propose that neither hypothesis holds at all times. Here we show that the relative speed with which affective and non-affective information gets activated by pictures and words depends upon the contexts in which stimuli are processed. Results illustrate that the question of whether affective information has processing priority over ontological information (or vice versa) is ill-posed. Rather than seeking to resolve the debate over Cognitive vs. Affective Primacy in favor of one hypothesis or the other, a more productive goal may be to determine the factors that cause affective information to have processing priority in some circumstances and ontological information in others. Our findings support a view of the mind according to which words and pictures activate different neurocognitive representations every time they are processed, the specifics of which are co-determined by the stimuli themselves and the contexts in which they occur.
Arousal and hallucinatory activity under two isolation conditions
NASA Technical Reports Server (NTRS)
Levin, J.
1974-01-01
Experimental exploration of the hypothesis that soundproof-room and water-immersion isolation environments differ with respect to the variety of physiological responses and reported hallucinations they elicit. The results obtained support the hypothesis in regard to physiological responses only.
Temperature Modulation of Electric Fields in Biological Matter
Daniels, Charlotte S.; Rubinsky, Boris
2011-01-01
Pulsed electric fields (PEF) have become an important minimally invasive surgical technology for various applications including genetic engineering, electrochemotherapy and tissue ablation. This study explores the hypothesis that temperature dependent electrical parameters of tissue can be used to modulate the outcome of PEF protocols, providing a new means for controlling and optimizing this minimally invasive surgical procedure. This study investigates two different applications of cooling temperatures applied during PEF. The first case utilizes an electrode which simultaneously delivers pulsed electric fields and cooling temperatures. The subsequent results demonstrate that changes in electrical properties due to temperature produced by this configuration can substantially magnify and confine the electric fields in the cooled regions while almost eliminating electric fields in surrounding regions. This method can be used to increase precision in the PEF procedure, and eliminate muscle contractions and damage to adjacent tissues. The second configuration considered introduces a third probe that is not electrically active and only applies cooling boundary conditions. This second study demonstrates that in this probe configuration the temperature induced changes in electrical properties of tissue substantially reduce the electric fields in the cooled regions. This novel treatment can potentially be used to protect sensitive tissues from the effect of the PEF. Perhaps the most important conclusion of this investigation is that temperature is a powerful and accessible mechanism to modulate and control electric fields in biological tissues and can therefore be used to optimize and control PEF treatments. PMID:21695144
On the insignificance of Herschel's sunspot correlation
NASA Astrophysics Data System (ADS)
Love, Jeffrey J.
2013-08-01
We examine William Herschel's hypothesis that solar-cycle variation of the Sun's irradiance has a modulating effect on the Earth's climate and that this is, specifically, manifested as an anticorrelation between sunspot number and the market price of wheat. Since Herschel first proposed his hypothesis in 1801, it has been regarded with both interest and skepticism. Recently, reports have been published that either support Herschel's hypothesis or rely on its validity. As a test of Herschel's hypothesis, we seek to reject a null hypothesis of a statistically random correlation between historical sunspot numbers, wheat prices in London and the United States, and wheat farm yields in the United States. We employ binary-correlation, Pearson-correlation, and frequency-domain methods. We test our methods using a historical geomagnetic activity index, well known to be causally correlated with sunspot number. As expected, the measured correlation between sunspot number and geomagnetic activity would be an unlikely realization of random data; the correlation is "statistically significant." On the other hand, measured correlations between sunspot number and wheat price and wheat yield data would be very likely realizations of random data; these correlations are "insignificant." Therefore, Herschel's hypothesis must be regarded with skepticism. We compare and contrast our results with those of other researchers. We discuss procedures for evaluating hypotheses that are formulated from historical data.
Endocannabinoid signaling in the etiology and treatment of major depressive illness.
Hillard, Cecilia J; Liu, Qing-song
2014-01-01
The purpose of this review is to examine human and preclinical data that are relevant to the following hypotheses. The first hypothesis is that deficient CB1R-mediated signaling results in symptoms that mimic those seen in depression. The second hypothesis is that activation of CB1R-mediated signaling results in behavioral, endocrine and other effects that are similar to those produced by currently used antidepressants. The third hypothesis is that conventional antidepressant therapies act through enhanced CB1R mediated signaling. Together the available data indicate that activators of CB1R signaling, particularly inhibitors of fatty acid amide hydrolase, should be considered for clinical trials for the treatment of depression.
NASA Astrophysics Data System (ADS)
De Matteo, Ada; Massa, Bruno; D'Auria, Luca; Castaldo, Raffaele
2017-04-01
Geological processes are generally very complex and too slow to be directly observed in their completeness; modelling procedures overcome this limit. The state of stress in the upper lithosphere is the main responsible for driving geodynamical processes; in order to retrieve the active stress field in a rock volume, stress inversion techniques can be applied on both seismological and structural datasets. This approach has been successfully applied to active tectonics as well as volcanic areas. In this context the best approach in managing heterogeneous datasets in volcanic environments consists in the analysis of spatial variations of the stress field by applying robust techniques of inversion. The study of volcanic seismicity is an efficient tool to retrieve spatial and temporal pattern of the pre-, syn- and inter-eruptive stress field: magma migration as well as dynamics of magma chamber and hydrothermal system are directly connected to the volcanic seismicity. Additionally, analysis of the temporal variations of stress field pattern in volcanoes could be a useful monitoring tool. Recently the stress field acting on several active volcanoes has been investigated by using stress inversion techniques on seismological datasets (Massa et al., 2016). The Bayesian Right Trihedra Method (BRTM; D'Auria and Massa, 2015) is able to successfully manage heterogeneous datasets allowing the identification of regional fields locally overcame by the stress field due to volcano specific dynamics. In particular, the analysis of seismicity and stress field inversion at the Somma-Vesuvius highlighted the presence of two superposed volumes characterized by different behaviour and stress field pattern: a top volume dominated by an extensional stress field, in accordance with a gravitational spreading-style of deformation, and a bottom volume related to a regional extensional stress field. In addition, in order to evaluate the dynamics of deformation, both analogue and numerical modelling are being performed. Scaled analogue models of the Somma-Vesuvius are being built accordingly with the actual geometrical asymmetry of the volcano, varying just few parameters connected to the uncertainty of the depth and thickness of a buried decoupling layer. Experiments are being monitored by an optical stereo image system, useful to build a 3D time-lapsed models used to retrieve the model deformations. Simultaneously, a time-dependent 3D Finite Element model is being carried out in a fluid-dynamic context by fixing the same parameters of the proposed analogue model. Finally, a comparative analysis is being made between the model deformations and the DInSAR measurements derived from satellite data in order to estimate the uncertain parameters (i.e., thickness and viscosity of ductile layer). Preliminary results of the analogue models fit with the hypothesis of a spreading deformation active at the Somma-Vesuvius.
Can Neural Activity Propagate by Endogenous Electrical Field?
Qiu, Chen; Shivacharan, Rajat S.; Zhang, Mingming
2015-01-01
It is widely accepted that synaptic transmissions and gap junctions are the major governing mechanisms for signal traveling in the neural system. Yet, a group of neural waves, either physiological or pathological, share the same speed of ∼0.1 m/s without synaptic transmission or gap junctions, and this speed is not consistent with axonal conduction or ionic diffusion. The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments. Simulation results show that field effects alone can indeed mediate propagation across layers of neurons with speeds of 0.12 ± 0.09 m/s with pathological kinetics, and 0.11 ± 0.03 m/s with physiologic kinetics, both generating weak field amplitudes of ∼2–6 mV/mm. Further, the model predicted that propagation speed values are inversely proportional to the cell-to-cell distances, but do not significantly change with extracellular resistivity, membrane capacitance, or membrane resistance. In vitro recordings in mice hippocampi produced similar speeds (0.10 ± 0.03 m/s) and field amplitudes (2.5–5 mV/mm), and by applying a blocking field, the propagation speed was greatly reduced. Finally, osmolarity experiments confirmed the model's prediction that cell-to-cell distance inversely affects propagation speed. Together, these results show that despite their weak amplitude, electric fields can be solely responsible for spike propagation at ∼0.1 m/s. This phenomenon could be important to explain the slow propagation of epileptic activity and other normal propagations at similar speeds. SIGNIFICANCE STATEMENT Neural activity (waves or spikes) can propagate using well documented mechanisms such as synaptic transmission, gap junctions, or diffusion. However, the purpose of this paper is to provide an explanation for experimental data showing that neural signals can propagate by means other than synaptic transmission, gap junction, or diffusion. The results indicate that electric fields (ephaptic effects) are capable of mediating propagation of self-regenerating neural waves. This novel mechanism coupling cell-by-volume conduction could be involved in other types of propagating neural signals, such as slow-wave sleep, sharp hippocampal waves, theta waves, or seizures. PMID:26631463
Motor resonance may originate from sensorimotor experience.
Petroni, Agustín; Baguear, Federico; Della-Maggiore, Valeria
2010-10-01
In humans, the motor system can be activated by passive observation of actions or static pictures with implied action. The origin of this facilitation is of major interest to the field of motor control. Recently it has been shown that sensorimotor learning can reconfigure the motor system during action observation. Here we tested directly the hypothesis that motor resonance arises from sensorimotor contingencies by measuring corticospinal excitability in response to abstract non-action cues previously associated with an action. Motor evoked potentials were measured from the first dorsal interosseus (FDI) while human subjects observed colored stimuli that had been visually or motorically associated with a finger movement (index or little finger abduction). Corticospinal excitability was higher during the observation of a colored cue that preceded a movement involving the recorded muscle than during the observation of a different colored cue that preceded a movement involving a different muscle. Crucially this facilitation was only observed when the cue was associated with an executed movement but not when it was associated with an observed movement. Our findings provide solid evidence in support of the sensorimotor hypothesis of action observation and further suggest that the physical nature of the observed stimulus mediating this phenomenon may in fact be irrelevant.
Pogosyan, Alek; Ashkan, Keyoumars; Cheeran, Binith; FitzGerald, James J.; Green, Alexander L.; Aziz, Tipu; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter
2015-01-01
Local field potential (LFP) recordings from patients with deep brain stimulation electrodes in the basal ganglia have suggested that frequency-specific activities correlate with force or effort, but previous studies have not been able to disambiguate the two. Here, we dissociated effort from actual force generated by contrasting the force generation of different fingers while recording LFP activity from the subthalamic nucleus (STN) in patients with Parkinson's disease who had undergone functional surgery. Patients were studied while on their normal dopaminergic medication. We investigated the relationship between frequency-specific oscillatory activity in the STN and voluntary flexion of either the index or little finger at different effort levels. At each tested effort level (10%, 25%, and 40% of the maximal voluntary contraction force of each individual finger), the index finger generated larger force than the little finger. Movement-related suppression of beta-band power in the STN LFP was significantly modulated by effort, but not by which finger was used, suggesting that the beta suppression in the STN LFP during sustained contraction serves as a proxy for effort. The absolute force scaled with beta power suppression, but with the scaling determined by the maximal voluntary contraction force of the motor effector. Our results argue against the hypothesis that the basal ganglia are directly involved in the parameterization of force during movement and support a role of the STN in the control of motor effort to be attributed to a response. PMID:25878267
The Function and Organization of Lateral Prefrontal Cortex: A Test of Competing Hypotheses
Reynolds, Jeremy R.; O'Reilly, Randall C.; Cohen, Jonathan D.; Braver, Todd S.
2012-01-01
The present experiment tested three hypotheses regarding the function and organization of lateral prefrontal cortex (PFC). The first account (the information cascade hypothesis) suggests that the anterior-posterior organization of lateral PFC is based on the timing with which cue stimuli reduce uncertainty in the action selection process. The second account (the levels-of-abstraction hypothesis) suggests that the anterior-posterior organization of lateral PFC is based on the degree of abstraction of the task goals. The current study began by investigating these two hypotheses, and identified several areas of lateral PFC that were predicted to be active by both the information cascade and levels-of-abstraction accounts. However, the pattern of activation across experimental conditions was inconsistent with both theoretical accounts. Specifically, an anterior area of mid-dorsolateral PFC exhibited sensitivity to experimental conditions that, according to both accounts, should have selectively engaged only posterior areas of PFC. We therefore investigated a third possible account (the adaptive context maintenance hypothesis) that postulates that both posterior and anterior regions of PFC are reliably engaged in task conditions requiring active maintenance of contextual information, with the temporal dynamics of activity in these regions flexibly tracking the duration of maintenance demands. Activity patterns in lateral PFC were consistent with this third hypothesis: regions across lateral PFC exhibited transient activation when contextual information had to be updated and maintained in a trial-by-trial manner, but sustained activation when contextual information had to be maintained over a series of trials. These findings prompt a reconceptualization of current views regarding the anterior-posterior organization of lateral PFC, but do support other findings regarding the active maintenance role of lateral PFC in sequential working memory paradigms. PMID:22355309
Bancroft, Matthew J.; Day, Brian L.
2016-01-01
Postural activity normally precedes the lift of a foot from the ground when taking a step, but its function is unclear. The throw-and-catch hypothesis of human gait proposes that the pre-step activity is organized to generate momentum for the body to fall ballistically along a specific trajectory during the step. The trajectory is appropriate for the stepping foot to land at its intended location while at the same time being optimally placed to catch the body and regain balance. The hypothesis therefore predicts a strong coupling between the pre-step activity and step location. Here we examine this coupling when stepping to visually-presented targets at different locations. Ten healthy, young subjects were instructed to step as accurately as possible onto targets placed in five locations that required either different step directions or different step lengths. In 75% of trials, the target location remained constant throughout the step. In the remaining 25% of trials, the intended step location was changed by making the target jump to a new location 96 ms ± 43 ms after initiation of the pre-step activity, long before foot lift. As predicted by the throw-and-catch hypothesis, when the target location remained constant, the pre-step activity led to body momentum at foot lift that was coupled to the intended step location. When the target location jumped, the pre-step activity was adjusted (median latency 223 ms) and prolonged (on average by 69 ms), which altered the body’s momentum at foot lift according to where the target had moved. We conclude that whenever possible the coupling between the pre-step activity and the step location is maintained. This provides further support for the throw-and-catch hypothesis of human gait. PMID:28066208
Bancroft, Matthew J; Day, Brian L
2016-01-01
Postural activity normally precedes the lift of a foot from the ground when taking a step, but its function is unclear. The throw-and-catch hypothesis of human gait proposes that the pre-step activity is organized to generate momentum for the body to fall ballistically along a specific trajectory during the step. The trajectory is appropriate for the stepping foot to land at its intended location while at the same time being optimally placed to catch the body and regain balance. The hypothesis therefore predicts a strong coupling between the pre-step activity and step location. Here we examine this coupling when stepping to visually-presented targets at different locations. Ten healthy, young subjects were instructed to step as accurately as possible onto targets placed in five locations that required either different step directions or different step lengths. In 75% of trials, the target location remained constant throughout the step. In the remaining 25% of trials, the intended step location was changed by making the target jump to a new location 96 ms ± 43 ms after initiation of the pre-step activity, long before foot lift. As predicted by the throw-and-catch hypothesis, when the target location remained constant, the pre-step activity led to body momentum at foot lift that was coupled to the intended step location. When the target location jumped, the pre-step activity was adjusted (median latency 223 ms) and prolonged (on average by 69 ms), which altered the body's momentum at foot lift according to where the target had moved. We conclude that whenever possible the coupling between the pre-step activity and the step location is maintained. This provides further support for the throw-and-catch hypothesis of human gait.
Bilbo, Staci D; Block, Carina L; Bolton, Jessica L; Hanamsagar, Richa; Tran, Phuong K
2018-01-01
Immune molecules such as cytokines and chemokines and the cells that produce them within the brain, notably microglia, are critical for normal brain development. This recognition has in recent years led to the working hypothesis that inflammatory events during pregnancy, e.g. in response to infection, may disrupt the normal expression of immune molecules during critical stages of neural development and thereby contribute to the risk for neurodevelopmental disorders such as autism spectrum disorder (ASD). This hypothesis has in large part been shepherded by the work of Dr. Paul Patterson and colleagues, which has elegantly demonstrated that a single viral infection or injection of a viral mimetic to pregnant mice significantly and persistently impacts offspring immune and nervous system function, changes that underlie ASD-like behavioral dysfunction including social and communication deficits. Subsequent studies by many labs - in humans and in non-human animal models - have supported the hypothesis that ongoing disrupted immune molecule expression and/or neuroinflammation contributes to at least a significant subset of ASD. The heterogeneous clinical and biological phenotypes observed in ASD strongly suggest that in genetically susceptible individuals, environmental risk factors combine or synergize to create a tipping or threshold point for dysfunction. Importantly, animal studies showing a link between maternal immune activation (MIA) and ASD-like outcomes in offspring involve different species and diverse environmental factors associated with ASD in humans, beyond infection, including toxin exposures, maternal stress, and maternal obesity, all of which impact inflammatory or immune pathways. The goal of this review is to highlight the broader implications of Dr. Patterson's work for the field of autism, with a focus on the impact that MIA by diverse environmental factors has on fetal brain development, immune system development, and the pathophysiology of ASD. Copyright © 2017 Elsevier Inc. All rights reserved.
Contribution of Monoamine Oxidase Inhibition to Tobacco Dependence: A Review of the Evidence.
Hogg, Ron C
2016-05-01
There is a hypothesis that substances present in, or derived from, tobacco smoke inhibit monoamine oxidase (MAO) in the brains of smokers, reducing the degradation of catecholamine neurotransmitters involved in central reward pathways and acting synergistically with nicotine to increase its addictive effects. The objective of this review was to evaluate the evidence for a role of MAO inhibition by tobacco-derived substances in tobacco dependence. Relevant studies on the effects of tobacco use on MAO levels or activity in humans were identified by electronic searches. The identified data show a clear association between smoking and lower density of MAO-A and MAO-B binding sites in the brains of smokers and strong evidence that MAO is inhibited by a substance or substances in, or derived from, tobacco smoke. There was little evidence to support the hypothesis that low MAO levels/activity is a predictive factor for tobacco use. Substances that inhibit MAO in in vitro assays have been isolated from tobacco leaves and tobacco smoke; however, no single substance has been shown to be absorbed from tobacco smoke and to inhibit MAO in the brains of human smokers. Nevertheless, it is possible that MAO inhibition in smokers could result from additive or synergistic effects of several tobacco-derived substances. MAO inhibition potentiates the reinforcing effects of intravenous nicotine in rodents; however, no data were identified to support the hypothesis that MAO inhibitors in or derived from tobacco or tobacco additives affect tobacco dependence in human smokers. This comprehensive review describes the available evidence for the role of MAO inhibition in tobacco dependence and points the way for further research in this field. In view of the large number of MAO inhibitors identified in tobacco and tobacco smoke, identification of the putative inhibitors responsible for the lower level/activity of MAO in smokers may be impractical. Future studies must address whether the lower level/activity of MAO observed in smokers is also seen in users of other tobacco products and if this change is implicated in their dependence-inducing effects. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Should Mathematics Be a Mandatory Fundamental Component of Any IT Discipline?
ERIC Educational Resources Information Center
Eid, Chaker; Millham, Richard
2013-01-01
In this paper, we investigate whether and how mathematics factors into students' performance in IT learning. The involved cognitive levels of students learning mathematics and hence problem solving, are correlated to how well they are able to transpose their knowledge and apply it to problem solving in the IT field(s). Our hypothesis is that if…
A.M. Nagle; B.A. McPherson; D.L. Wood; M. Garbelotto; A.O. Conrad; S. Opiyo; P. Bonello
2012-01-01
Sudden oak death, caused by Phytophthora ramorum, has resulted in high levels of coast live oak (Quercus agrifolia Nee (CLO) mortality. However, some CLO survive in areas with high disease pressure and may thus be resistant. We tested the hypothesis that such field resistant trees contain constitutively higher levels of...
Evaluation of the endogenous glucocorticoid hypothesis of denervation atrophy
NASA Technical Reports Server (NTRS)
Konagaya, Masaaki; Konagaya, Yoko; Max, Stephen R.
1988-01-01
The effects are studied of the oral administration of RU38486, a potent selective glucocorticoid antagonist, on muscle weight, non-collagen protein content, and selected enzyme activities (choline acetyltransferase, glucose 6-phosphate dehydrogenase, and glutamine synthetase) following denervation of rat skeletal muscle. Neither decreases in muscle weight, protein content, and choline acetyltransferase activity, nor increases in the activities of glucose 6-phosphate dehydrogernase and glutamine synthetase were affected by RU38486. These data do not support the hypothesis that denervation atrophy results from enhanced sensitivity of muscle to endogenous glucocorticoids.
North-south asymmetry of ultra-low-frequency oscillations of Earth's electromagnetic field
NASA Astrophysics Data System (ADS)
Guglielmi, Anatol; Klain, Boris; Potapov, Alexander
2017-12-01
In the paper, we present the result of an experimental study of north-south asymmetry of ultralow-frequency electromagnetic oscillations IPCL. This study is based on observations made at Mirny Observatory (Antarctica). IPCLs are excited in the dayside sector of the auroral oval in the range 3-10 min periods and represent one of the most powerful types of oscillations of Earth's magnetosphere. These oscillations were discovered in the 1970s during IPhE AS USSR polar expeditions organized by Prof. V.A. Troitskaya. We have shown that IPCL activity in Mirny depends on the inclination (north-south asymmetry) of interplanetary magnetic field (IMF) lines to the plane of the geomagnetic equator before the front of the magnetosphere. The result suggests a controlling exposure of IMF on the magnetospheric oscillations and gives rise to the hypothesis that IPCLs are forced oscillations of a nonlinear dynamical system whose major structural elements are dayside polar cusps. The paper is dedicated to the memory of Professor V.A. Troitskaya (1917-2010).
NASA Astrophysics Data System (ADS)
Bhattacharya, Purba; Bhattacharya, Deb Sankar; Mukhopadhyay, Supratik; Majumdar, Nayana; Bhattacharya, Sudeb; Colas, Paul; Attié, David
2018-02-01
The R&D activities for the linear collider TPC (LC-TPC) are currently working on the adoption of the micro pattern devices for the gaseous amplification stage. Several beam tests have been carried out at DESY with a 5 GeV electron beam in a 1 T superconducting magnet. We worked on a large prototype TPC with an end-plate that was built, for the first time, using seven resistive bulk Micromegas modules. During experiments, reduced signal sensitivity was observed at the boundary of these modules. Electrostatic field distortion near the module boundaries was considered to be the possible major reason behind these observations. In the present work, we will explore this hypothesis through numerical simulation. Our aim has been to understand the origin of distortions observed close to the edges of the test beam modules and to explore the possibility of using the Garfield simulation framework for investigating a phenomenon as complex as distortion.
Shape perception simultaneously up- and downregulates neural activity in the primary visual cortex.
Kok, Peter; de Lange, Floris P
2014-07-07
An essential part of visual perception is the grouping of local elements (such as edges and lines) into coherent shapes. Previous studies have shown that this grouping process modulates neural activity in the primary visual cortex (V1) that is signaling the local elements [1-4]. However, the nature of this modulation is controversial. Some studies find that shape perception reduces neural activity in V1 [2, 5, 6], while others report increased V1 activity during shape perception [1, 3, 4, 7-10]. Neurocomputational theories that cast perception as a generative process [11-13] propose that feedback connections carry predictions (i.e., the generative model), while feedforward connections signal the mismatch between top-down predictions and bottom-up inputs. Within this framework, the effect of feedback on early visual cortex may be either enhancing or suppressive, depending on whether the feedback signal is met by congruent bottom-up input. Here, we tested this hypothesis by quantifying the spatial profile of neural activity in V1 during the perception of illusory shapes using population receptive field mapping. We find that shape perception concurrently increases neural activity in regions of V1 that have a receptive field on the shape but do not receive bottom-up input and suppresses activity in regions of V1 that receive bottom-up input that is predicted by the shape. These effects were not modulated by task requirements. Together, these findings suggest that shape perception changes lower-order sensory representations in a highly specific and automatic manner, in line with theories that cast perception in terms of hierarchical generative models. Copyright © 2014 Elsevier Ltd. All rights reserved.
2007-09-30
Planar Laser Imaging of Scattering and Fluorescence of Zooplankton Feeding in Layers of Phytoplankton in situ Peter J.S. Franks Scripps...herbivorous copepod feeding in the laboratory, and 2) to apply these methods in the field to observe the dynamics of copepod feeding in situ. In...particular we intend to test the “ feeding sorties” hypothesis vs. the “in situ feeding ” hypothesis regarding the location and timing of copepod feeding
Share Market Analysis Using Various Economical Determinants to Predict Decision of Investors
NASA Astrophysics Data System (ADS)
Ghosh, Arijit; Roy, Samrat; Bandyopadhyay, Gautam; Choudhuri, Kripasindhu
2010-10-01
The following paper tries to develop six major hypotheses in Bombay Stock Exchange (BSE) in India. The paper tries to proof the hypothesis by collecting data from the fields on six sectors: oil prices, gold price, Cash Reserve Ratio, food price inflation, call money rate and Dollar price. The research uses these data as indicators to identify relationship and level of influence on Share prices of Bombay Stock Exchange by rejecting and accepting the null hypothesis.
Omics strategies for revealing Yersinia pestis virulence
Yang, Ruifu; Du, Zongmin; Han, Yanping; Zhou, Lei; Song, Yajun; Zhou, Dongsheng; Cui, Yujun
2012-01-01
Omics has remarkably changed the way we investigate and understand life. Omics differs from traditional hypothesis-driven research because it is a discovery-driven approach. Mass datasets produced from omics-based studies require experts from different fields to reveal the salient features behind these data. In this review, we summarize omics-driven studies to reveal the virulence features of Yersinia pestis through genomics, trascriptomics, proteomics, interactomics, etc. These studies serve as foundations for further hypothesis-driven research and help us gain insight into Y. pestis pathogenesis. PMID:23248778
Creation, Phase Change and Evolution of the Universe Based on the "Convection Bang Hypothesis"
NASA Astrophysics Data System (ADS)
Gholibeigian, Hassan; Amirshahkarami, Abdolazim; Gholibeigian, Kazem
2016-04-01
In our vision, it is believed that creation and phase change of universe and their coupling began by the gigantic Large Scale Forced Convection System (LSFCS) in very high temperature including a swirling wild wind and energetic particles like gravitons. That wind as the creator of the inflation process was carrying many Quantum Convection Loops (QCLs). Those QCLs have been transformed to black holes as the cores of galaxies. Convection Bang (CB) Model for creation, phase change and evolution of the Universe is constituted based on three assumptions as follows: The first is: "Gravity Hypothesis" that describes the gravity fields generation by the LSFCSs of the heat and mass inside the planets, stars, galaxies and clusters. The LSFCS changes the material properties of the domain and produces coupling of the matched electromagnetic and gravity fields. Gravity hypothesis is a new way to understand gravitation phenomenon which is different from the both Newton's law of gravity and Einstein's theory of general relativity approaches [Gholibeigian et. al, AGU Fall Meeting 2015, P11A-2056 ]. The second is: "Substantial Motion" theory of Iranian philosopher, Mulla Sadra (1571/2-1640), which describes space-time, time's relativity for all atoms (bodies) which are different from each other [Gholibeigian, APS April Meeting 2015, abstract #L1.027], atom's (body) volume squeezing, black hole's mass lightening while increases the velocities of its involved masses inward (a paradox with general relativity), and changes of material properties and geometries in speed of near light speed [Gholibeigian, APS March Meeting 2016, abstract #]. The third is: "Animated Sub-particles" model. These sub-particles (sub-strings) are origin of life and creator of the momentums of the fundamental particles and forces, and basic link of the information transfer to them, [Gholibeigian, APS April Meeting 2015, abstract #L1.027]. In this model, there are four proposed animated sub-particles of mater, plant, animal and human in substructure of each fundamental particle (string) as the origins of life and cause of differences between their spins. Material's sub-particle is always on and active (from beginning of CB). When the environmental conditions became ready for creation of each field of the plants, animals and humans, sub-particles of their elementary particles became on and active and then, those elementary particles participated in processes of creation (phase change) in their own fields. Sub-particles lead the fundamental particles in both individually and systematic (nucleons, atoms, molecules, gens, us...) forms. Sub-particles' system is inside of particles' (bodies)' system. Mechanism: Universe has been managed by coupling of these three assumptions in two micro and macro coupling scales. God, as the main source of information, has been communicated with sub-particles and transfers a package (bit) of information and laws (plus standard ethics for human's sub-particles) to each of them from their inside and outside for process and selection (mutation) of the next step of the motion (phase change) and coupling/communication of their fundamental particles with each other in each Plank's time (or smaller scale). This process is causality for particles' motion in quantum scale too [Gholibeigian, APS March Meeting 2015, abstract #V1.023].
Cryptochrome expression in the eye of migratory birds depends on their migratory status.
Fusani, Leonida; Bertolucci, Cristiano; Frigato, Elena; Foà, Augusto
2014-03-15
Most passerine birds are nocturnal migrants. When kept in captivity during the migratory periods, these species show a migratory restlessness, or Zugunruhe. Recent studies on Sylvia warblers have shown that Zugunruhe is an excellent proxy of migratory disposition. Passerine birds can use the Earth's geomagnetic field as a compass to keep their course during their migratory flight. Among the candidate magnetoreceptive mechanisms are the cryptochromes, flavoproteins located in the retina that are supposed to perceive the magnetic field through a light-mediated process. Previous work has suggested that expression of Cryptochrome 1 (Cry1) is increased in migratory birds compared with non-migratory species. Here we tested the hypothesis that Cry1 expression depends on migratory status. Blackcaps Sylvia atricapilla were caught before fall migration and held in registration cages. When the birds were showing robust Zugunruhe, we applied a food deprivation protocol that simulates a long migratory flight. When the birds were refed after 2 days, their Zugunruhe decreased substantially, as is expected from birds that would interrupt migration for a refuelling stopover. We found that Cry1 expression was higher at night than during daytime in birds showing Zugunruhe, whereas in birds that underwent the fasting-and-refeeding protocol and reduced their levels of Zugunruhe, night Cry1 expression decreased to daytime levels. Our work shows that Cry1 expression is dependent on the presence of Zugunruhe and not on species-specific or seasonal factors, or on the birds being active versus inactive. These results support the hypothesis that cryptochromes underlie magnetoreceptive mechanisms in birds.
Abnormal amygdala activation profile in pedophilia.
Sartorius, Alexander; Ruf, Matthias; Kief, Christine; Demirakca, Traute; Bailer, Josef; Ende, Gabriele; Henn, Fritz A; Meyer-Lindenberg, Andreas; Dressing, Harald
2008-08-01
Despite considerable public interest research in neurobiological correlates of pedophilia is scarce. Since amygdala activation is central for emotional valuation, arousal, and salience, we investigated the activation profile of this structure in 10 male subjects with pedophilia (exclusively attracted to boys), all convicted sex-offenders and sentenced to forensic psychiatric treatment along with ten male heterosexual matched controls. We used a sexually non-explicit functional Magnetic Resonance Imaging (fMRI) paradigm with images of men, women, boys or girls randomly embedded in neutral target/non-target geometrical symbols. We applied statistical parametric mapping (SPM2) and SPSS 14 for image processing and analysis. While controls activated significantly less to pictures of children compared to adults, the activation profile was reversed in subjects with pedophilia, who exhibited significantly more activation to children than adults. The highest activation was observed for boys in the patient group, and for women in control participants. Our data show enhanced activation to children's pictures even in an incidental context and suggest the provocative hypothesis that a normally present mechanism for reduced emotional arousal for children relative to adults is reversed in pedophilia, suggesting a neural substrate associated with deviant sexual preference in this condition. More extensive research in this field would be of benefit for both the victims and the offenders.
Sivanesam, Kalkena; Shu, Irene; Huggins, Kelly N L; Tatarek-Nossol, Marianna; Kapurniotu, Aphrodite; Andersen, Niels H
2016-08-01
Versions of a previously discovered β-hairpin peptide inhibitor of IAPP aggregation that are stabilized in that conformation, or even forced to remain in the hairpin conformation by a backbone cyclization constraint, display superior activity as inhibitors. The cyclized hairpin, cyclo-WW2, displays inhibitory activity at substoichiometric concentrations relative to this amyloidogenic peptide. The hairpin-binding hypothesis stands confirmed. © 2016 Federation of European Biochemical Societies.
Illusory motion reversal is caused by rivalry, not by perceptual snapshots of the visual field.
Kline, Keith; Holcombe, Alex O; Eagleman, David M
2004-10-01
In stroboscopic conditions--such as motion pictures--rotating objects may appear to rotate in the reverse direction due to under-sampling (aliasing). A seemingly similar phenomenon occurs in constant sunlight, which has been taken as evidence that the visual system processes discrete "snapshots" of the outside world. But if snapshots are indeed taken of the visual field, then when a rotating drum appears to transiently reverse direction, its mirror image should always appeared to reverse direction simultaneously. Contrary to this hypothesis, we found that when observers watched a rotating drum and its mirror image, almost all illusory motion reversals occurred for only one image at a time. This result indicates that the motion reversal illusion cannot be explained by snapshots of the visual field. The same result is found when the two images are presented within one visual hemifield, further ruling out the possibility that discrete sampling of the visual field occurs separately in each hemisphere. The frequency distribution of illusory reversal durations approximates a gamma distribution, suggesting perceptual rivalry as a better explanation for illusory motion reversal. After adaptation of motion detectors coding for the correct direction, the activity of motion-sensitive neurons coding for motion in the reverse direction may intermittently become dominant and drive the perception of motion.
Neumann, W-J; Huebl, J; Brücke, C; Gabriëls, L; Bajbouj, M; Merkl, A; Schneider, G-H; Nuttin, B; Brown, P; Kühn, AA
2016-01-01
The role of distinct limbic areas in emotion regulation has been largely inferred from neuroimaging studies. Recently, the opportunity for intracranial recordings from limbic areas has arisen in patients undergoing deep brain stimulation (DBS) for neuropsychiatric disorders including major depressive disorder (MDD) and obsessive compulsive disorder (OCD). Here we test the hypothesis that distinct temporal patterns of local field potential (LFP) activity in the human limbic system reflect disease state and symptom severity in MDD and OCD patients. To this end, we recorded LFPs via implanted DBS electrodes from the bed nucleus of stria terminalis (BNST area) in 12 patients (5 OCD, 7 MDD) and from the subgenual cingulate cortex in 7 MDD patients (CG25 area). We found a distinct pattern of oscillatory activity with significantly higher α-power in MDD compared with OCD in the BNST area (broad α-band 8–14 Hz; P<0.01) and a similar level of α-activity in the CG25 area as in the BNST area in MDD patients. The mean α-power correlated with severity of depressive symptoms as assessed by the Beck depression inventory in MDD (n = 14, r = 0.55, P = 0.042) but not with severity of obsessive compulsive symptoms in OCD. Here we show larger α-band activity in MDD patients compared with OCD recorded from intracranial DBS targets. Our results suggest that α-activity in the limbic system may be a signature of symptom severity in MDD and may serve as a potential state biomarker for closed loop DBS in MDD. PMID:24514569
Warren, Ted J.; Van Hook, Matthew J.; Tranchina, Daniel
2016-01-01
Inhibitory feedback from horizontal cells (HCs) to cones generates center-surround receptive fields and color opponency in the retina. Mechanisms of HC feedback remain unsettled, but one hypothesis proposes that an ephaptic mechanism may alter the extracellular electrical field surrounding photoreceptor synaptic terminals, thereby altering Ca2+ channel activity and photoreceptor output. An ephaptic voltage change produced by current flowing through open channels in the HC membrane should occur with no delay. To test for this mechanism, we measured kinetics of inhibitory feedback currents in Ambystoma tigrinum cones and rods evoked by hyperpolarizing steps applied to synaptically coupled HCs. Hyperpolarizing HCs stimulated inward feedback currents in cones that averaged 8–9 pA and exhibited a biexponential time course with time constants averaging 14–17 ms and 120–220 ms. Measurement of feedback-current kinetics was limited by three factors: (1) HC voltage-clamp speed, (2) cone voltage-clamp speed, and (3) kinetics of Ca2+ channel activation or deactivation in the photoreceptor terminal. These factors totaled ∼4–5 ms in cones meaning that the true fast time constants for HC-to-cone feedback currents were 9–13 ms, slower than expected for ephaptic voltage changes. We also compared speed of feedback to feedforward glutamate release measured at the same cone/HC synapses and found a latency for feedback of 11–14 ms. Inhibitory feedback from HCs to rods was also significantly slower than either measurement kinetics or feedforward release. The finding that inhibitory feedback from HCs to photoreceptors involves a significant delay indicates that it is not due to previously proposed ephaptic mechanisms. SIGNIFICANCE STATEMENT Lateral inhibitory feedback from horizontal cells (HCs) to photoreceptors creates center-surround receptive fields and color-opponent interactions. Although underlying mechanisms remain unsettled, a longstanding hypothesis proposes that feedback is due to ephaptic voltage changes that regulate photoreceptor synaptic output by altering Ca2+ channel activity. Ephaptic processes should occur with no delay. We measured kinetics of inhibitory feedback currents evoked in photoreceptors with voltage steps applied to synaptically coupled HCs and found that feedback is too slow to be explained by ephaptic voltage changes generated by current flowing through continuously open channels in HC membranes. By eliminating the proposed ephaptic mechanism for HC feedback regulation of photoreceptor Ca2+ channels, our data support earlier proposals that synaptic cleft pH changes are more likely responsible. PMID:27683904
2009-07-01
Performance Analysis of the Probabilistic Multi- Hypothesis Tracking Algorithm On the SEABAR Data Sets Dr. Christian G . Hempel Naval...Hypothesis Tracking,” NUWC-NPT Technical Report 10,428, Naval Undersea Warfare Center Division, Newport, RI, 15 February 1995. [2] G . McLachlan, T...the 9th International Conference on Information Fusion, Florence Italy, July, 2006. [8] C. Hempel, “Track Initialization for Multi-Static Active Sonay
Hypothesis testing of scientific Monte Carlo calculations.
Wallerberger, Markus; Gull, Emanuel
2017-11-01
The steadily increasing size of scientific Monte Carlo simulations and the desire for robust, correct, and reproducible results necessitates rigorous testing procedures for scientific simulations in order to detect numerical problems and programming bugs. However, the testing paradigms developed for deterministic algorithms have proven to be ill suited for stochastic algorithms. In this paper we demonstrate explicitly how the technique of statistical hypothesis testing, which is in wide use in other fields of science, can be used to devise automatic and reliable tests for Monte Carlo methods, and we show that these tests are able to detect some of the common problems encountered in stochastic scientific simulations. We argue that hypothesis testing should become part of the standard testing toolkit for scientific simulations.
Hypothesis testing of scientific Monte Carlo calculations
NASA Astrophysics Data System (ADS)
Wallerberger, Markus; Gull, Emanuel
2017-11-01
The steadily increasing size of scientific Monte Carlo simulations and the desire for robust, correct, and reproducible results necessitates rigorous testing procedures for scientific simulations in order to detect numerical problems and programming bugs. However, the testing paradigms developed for deterministic algorithms have proven to be ill suited for stochastic algorithms. In this paper we demonstrate explicitly how the technique of statistical hypothesis testing, which is in wide use in other fields of science, can be used to devise automatic and reliable tests for Monte Carlo methods, and we show that these tests are able to detect some of the common problems encountered in stochastic scientific simulations. We argue that hypothesis testing should become part of the standard testing toolkit for scientific simulations.
NASA Astrophysics Data System (ADS)
Casas, José C. Escamilla; Muñetón, Gustavo Murillo; Piñán-Llamas, Aránzazu; López, Salvador Cruz
2008-05-01
A prominent semicircular structure bounded by circular normal faults and a northeast-southwest trending, active normal fault are the main structures identified in Santa Maria Amajac, south central Hidalgo, Mexico, in the Trans Mexican Volcanic Belt. Fieldwork, assisted by a Geographic Information System helped to refine the traces of the identified geologic structures. The field evidences supports our hypothesis that the lacustrine deposits in the area are associated with the evolution of a possible volcanic collapse caldera. Our results are the base for a geological risk map and will shed light on the understanding of the mechanisms that governed the evolution of the suspect collapse caldera.
Dynamic energy budget approach to evaluate antibiotic effects on biofilms
NASA Astrophysics Data System (ADS)
Birnir, Bjorn; Carpio, Ana; Cebrián, Elena; Vidal, Perfecto
2018-01-01
Quantifying the action of antibiotics on biofilms is essential to devise therapies against chronic infections. Biofilms are bacterial communities attached to moist surfaces, sheltered from external aggressions by a polymeric matrix. Coupling a dynamic energy budget based description of cell metabolism to surrounding concentration fields, we are able to approximate survival curves measured for different antibiotics. We reproduce numerically stratified distributions of cell types within the biofilm and introduce ways to incorporate different resistance mechanisms. Qualitative predictions follow that are in agreement with experimental observations, such as higher survival rates of cells close to the substratum when employing antibiotics targeting active cells or enhanced polymer production when antibiotics are administered. The current computational model enables validation and hypothesis testing when developing therapies.
NASA Astrophysics Data System (ADS)
Teller, Sara; Tahirbegi, Islam Bogachan; Mir, Mònica; Samitier, Josep; Soriano, Jordi
2015-11-01
The understanding of the key mechanisms behind human brain deterioration in Alzheimer’ disease (AD) is a highly active field of research. The most widespread hypothesis considers a cascade of events initiated by amyloid-β peptide fibrils that ultimately lead to the formation of the lethal amyloid plaques. Recent studies have shown that other agents, in particular magnetite, can also play a pivotal role. To shed light on the action of magnetite and amyloid-β in the deterioration of neuronal circuits, we investigated their capacity to alter spontaneous activity patterns in cultured neuronal networks. Using a versatile experimental platform that allows the parallel monitoring of several cultures, the activity in controls was compared with the one in cultures dosed with magnetite, amyloid-β and magnetite-amyloid-β complex. A prominent degradation in spontaneous activity was observed solely when amyloid-β and magnetite acted together. Our work suggests that magnetite nanoparticles have a more prominent role in AD than previously thought, and may bring new insights in the understanding of the damaging action of magnetite-amyloid-β complex. Our experimental system also offers new interesting perspectives to explore key biochemical players in neurological disorders through a controlled, model system manner.
Tzeng, Wann-Nian; Tseng, Yu-Heng; Han, Yu-San; Hsu, Chih-Chieh; Chang, Chih-Wei; Di Lorenzo, Emanuele; Hsieh, Chih-hao
2012-01-01
Long-term (1967–2008) glass eel catches were used to investigate climatic effects on the annual recruitment of Japanese eel to Taiwan. Specifically, three prevailing hypotheses that potentially explain the annual recruitment were evaluated. Hypothesis 1: high precipitation shifts the salinity front northward, resulting in favorable spawning locations. Hypothesis 2: a southward shift of the position of the North Equatorial Current (NEC) bifurcation provides a favorable larval transport route. Hypothesis 3: ocean conditions (eddy activities and productivity) along the larval migration route influence larval survival. Results of time series regression and wavelet analyses suggest that Hypothesis 1 is not supported, as the glass eel catches exhibited a negative relationship with precipitation. Hypothesis 2 is plausible. However, the catches are correlated with the NEC bifurcation with a one-year lag. Considering the time needed for larval transport (only four to six months), the one-year lag correlation does not support the direct transport hypothesis. Hypothesis 3 is supported indirectly by the results. Significant correlations were found between catches and climate indices that affect ocean productivity and eddy activities, such as the Quasi Biennial Oscillation (QBO), North Pacific Gyre Oscillation (NPGO), Pacific Decadal Oscillation (PDO), and Western Pacific Oscillation (WPO). Wavelet analysis reveals three periodicities of eel catches: 2.7, 5.4, and 10.3 years. The interannual coherence with QBO and the Niño 3.4 region suggests that the shorter-term climate variability is modulated zonally by equatorial dynamics. The low-frequency coherence with WPO, PDO, and NPGO demonstrates the decadal modulation of meridional teleconnection via ocean–atmosphere interactions. Furthermore, WPO and QBO are linked to solar activities. These results imply that the Japanese eel recruitment may be influenced by multi-timescale climate variability. Our findings call for investigation of extra-tropical ocean dynamics that affect survival of eels during transport, in addition to the existing efforts to study the equatorial system. PMID:22383976
Tzeng, Wann-Nian; Tseng, Yu-Heng; Han, Yu-San; Hsu, Chih-Chieh; Chang, Chih-Wei; Di Lorenzo, Emanuele; Hsieh, Chih-Hao
2012-01-01
Long-term (1967-2008) glass eel catches were used to investigate climatic effects on the annual recruitment of Japanese eel to Taiwan. Specifically, three prevailing hypotheses that potentially explain the annual recruitment were evaluated. Hypothesis 1: high precipitation shifts the salinity front northward, resulting in favorable spawning locations. Hypothesis 2: a southward shift of the position of the North Equatorial Current (NEC) bifurcation provides a favorable larval transport route. Hypothesis 3: ocean conditions (eddy activities and productivity) along the larval migration route influence larval survival. Results of time series regression and wavelet analyses suggest that Hypothesis 1 is not supported, as the glass eel catches exhibited a negative relationship with precipitation. Hypothesis 2 is plausible. However, the catches are correlated with the NEC bifurcation with a one-year lag. Considering the time needed for larval transport (only four to six months), the one-year lag correlation does not support the direct transport hypothesis. Hypothesis 3 is supported indirectly by the results. Significant correlations were found between catches and climate indices that affect ocean productivity and eddy activities, such as the Quasi Biennial Oscillation (QBO), North Pacific Gyre Oscillation (NPGO), Pacific Decadal Oscillation (PDO), and Western Pacific Oscillation (WPO). Wavelet analysis reveals three periodicities of eel catches: 2.7, 5.4, and 10.3 years. The interannual coherence with QBO and the Niño 3.4 region suggests that the shorter-term climate variability is modulated zonally by equatorial dynamics. The low-frequency coherence with WPO, PDO, and NPGO demonstrates the decadal modulation of meridional teleconnection via ocean-atmosphere interactions. Furthermore, WPO and QBO are linked to solar activities. These results imply that the Japanese eel recruitment may be influenced by multi-timescale climate variability. Our findings call for investigation of extra-tropical ocean dynamics that affect survival of eels during transport, in addition to the existing efforts to study the equatorial system.
Gagliardo, Anna; Ioalè, Paolo; Filannino, Caterina; Wikelski, Martin
2011-01-01
A large body of evidence has shown that anosmic pigeons are impaired in their navigation. However, the role of odours in navigation is still subject to debate. While according to the olfactory navigation hypothesis homing pigeons possess a navigational map based on the distribution of environmental odours, the olfactory activation hypothesis proposes that odour perception is only needed to activate a navigational mechanism based on cues of another nature. Here we tested experimentally whether the perception of artificial odours is sufficient to allow pigeons to navigate, as expected from the olfactory activation hypothesis. We transported three groups of pigeons in air-tight containers to release sites 53 and 61 km from home in three different olfactory conditions. The Control group received natural environmental air; both the Pure Air and the Artificial Odour groups received pure air filtered through an active charcoal filter. Only the Artificial Odour group received additional puffs of artificial odours until release. We then released pigeons while recording their tracks with 1 Hz GPS data loggers. We also followed non-homing pigeons using an aerial data readout to a Cessna plane, allowing, for the first time, the tracking of non-homing homing pigeons. Within the first hour after release, the pigeons in both the Artificial Odour and the Pure Air group (receiving no environmental odours) showed impaired navigational performances at each release site. Our data provide evidence against an activation role of odours in navigation, and document that pigeons only navigate well when they perceive environmental odours.
Demer, Joseph L.
2007-01-01
Background Late in the 20th Century, it was recognized that connective tissue structures in the orbit influence the paths of the extraocular muscles, and constitute their functional origins. Targeted investigations of these connective tissue “pulleys” led to the formulation of the active pulley hypothesis, which proposes that pulling directions of the rectus extraocular muscles are actively controlled via connective tissues. Purpose This review rebuts a series of criticisms of the active pulley hypothesis published by Jampel, and Jampel and Shi, in which these authors have disputed the existence and function of the pulleys. Methods The current paper reviews published evidence for the existence of orbital pulleys, the active pulley hypothesis, and physiologic tests of the active pulley hypothesis. Magnetic resonance imaging in a living subject, and histological examination of a human cadaver directly illustrate the relationship of pulleys to extraocular muscles. Results Strong scientific evidence is cited that supports the existence of orbital pulleys, and their role in ocular motility. The criticisms of have ignored mathematical truisms and strong scientific evidence. Conclusions Actively controlled orbital pulleys play a fundamental role in ocular motility. Pulleys profoundly influence the neural commands required to control eye movements and binocular alignment. Familiarity with the anatomy and physiology of the pulleys is requisite for a rational approach to diagnosing and treating strabismus using emerging methods. Conversely, approaches that deny or ignore the pulleys risk the sorts of errors that arise in geography and navigation from incorrect assumptions such as those of a flat (“platygean”) earth. PMID:17022164
Does the hippocampus mediate objective binding or subjective remembering?
Slotnick, Scott D
2010-01-15
Human functional magnetic resonance imaging (fMRI) evidence suggests the hippocampus is associated with context memory to a greater degree than item memory (where only context memory requires item-in-context binding). A separate line of fMRI research suggests the hippocampus is associated with "remember" responses to a greater degree than "know" or familiarity based responses (where only remembering reflects the subjective experience of specific detail). Previous studies, however, have confounded context memory with remembering and item memory with knowing. The present fMRI study independently tested the binding hypothesis and remembering hypothesis of hippocampal function by evaluating activity within hippocampal regions-of-interest (ROIs). At encoding, participants were presented with colored and gray abstract shapes and instructed to remember each shape and whether it was colored or gray. At retrieval, old and new shapes were presented in gray and participants classified each shape as "old and previously colored", "old and previously gray", or "new", followed by a "remember" or "know" response. In 3 of 11 hippocampal ROIs, activity was significantly greater for context memory than item memory, the context memory-item memory by remember-know interaction was significant, and activity was significantly greater for context memory-knowing than item memory-remembering. This pattern of activity only supports the binding hypothesis. The analogous pattern of activity that would have supported the remembering hypothesis was never observed in the hippocampus. However, a targeted analysis revealed remembering specific activity in the left inferior parietal cortex. The present results suggest parietal cortex may be associated with subjective remembering while the hippocampus mediates binding.
Application of logistic analysis to the history of physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LePoire, D. J.; Environmental Assessment
2005-05-01
Recently, two analyses have tried to put technological progress in a larger context. One interpretation hypothesizes that technological progress is likely to continue at increasingly higher rates of change. Another interpretation, which includes data from the beginning of the universe to the present, suggests that the universe is approaching a transition point in a logistic development of complexity. This logistic development is similar to the way ideas or products diffuse in a population, i.e., the rate of discovery in a field of knowledge is proportional to the amount discovered and the amount to be discovered. To test a part ofmore » this hypothesis, a leading indicator field (fundamental physics) was identified and the events in the history of this field were analyzed. Twelve subfields were identified and grouped into six stages. Each stage seemed to demonstrate a logistic-like development. By analyzing both the median time of development and the characteristic time of development of these stages, the overall development of this one field was found to suggest logistic development. These data seem to indicate that development in fundamental physics is slowing down, with at least one subfield beyond string physics yet to be developed. The data tend to support the hypothesis that a knowledge field can develop logistically.« less
NASA Astrophysics Data System (ADS)
Kang, H.; Seo, J.; Kim, M.; Jung, J. Y.; Lee, Y. K.
2017-12-01
Arctic tundra ecosystems are of great importance because they store a large amount of carbon as un-decomposed organic matter. Global climate change is expected to affect enzyme activities and heterotrophic respiration in Arctic soils, which may accelerate greenhouse gas (GHG) emission through positive biological feedbacks. Unlike laboratory-based incubation experiments, field measurements often show different warming effects on decomposition of organic carbon and releases of GHGs. In the present study, we conducted a field-based warming experiment in Cambridge Bay, Canada (69°07'48″N, 105°03'36″W) by employing passive chambers during growing seasons over 6 years. A suite of enzyme activities (ß-glucosidase, cellobiohydrolase, N-acetylglucosaminidase, leucine aminopeptidase and phenol oxidase), microbial community structure (NGS), microbial abundances (gene copy numbers of bacteria and fungi), and soil chemical properties have been monitored in two depths (0-5 cm and 5-10 cm) of tundra soils, which were exposed to four different treatments (`control', `warming-only', `water-addition only', and both `warming and water-addition'). Phenol oxidase activity increased substantially, and bacterial community structure and abundance changed in the early stage (after 1 year's warming manipulation), but these changes disappeared afterwards. Most hydrolases were enhanced in surface soils by `water-addition only' over the period. However, the long-term effects of warming appeared in sub-surface soils where both `warming only' and `warming and water addition' increased hydrolase activities. Overall results of this study indicate that the warming effects on enzyme activities in surface soils are only short-term (phenol oxidase) or masked by water-limitation (hydrolases). However, hydrolases activities in sub-surface soils are more strongly enhanced than surface soils by warming, probably due to the lack of water limitation. Meanwhile, negative correlations between hydrolase activities and humic fraction of DOC appeared following the sudden increase in phenol oxidase after 1 year's manipulation, suggesting that `enzyme latch' hypothesis is partially responsible for the control of hydrolases in the ecosystem.
Large numbers hypothesis. IV - The cosmological constant and quantum physics
NASA Technical Reports Server (NTRS)
Adams, P. J.
1983-01-01
In standard physics quantum field theory is based on a flat vacuum space-time. This quantum field theory predicts a nonzero cosmological constant. Hence the gravitational field equations do not admit a flat vacuum space-time. This dilemma is resolved using the units covariant gravitational field equations. This paper shows that the field equations admit a flat vacuum space-time with nonzero cosmological constant if and only if the canonical LNH is valid. This allows an interpretation of the LNH phenomena in terms of a time-dependent vacuum state. If this is correct then the cosmological constant must be positive.
Magnetospheric convection during quiet or moderately disturbed times
NASA Technical Reports Server (NTRS)
Caudal, G.; Blanc, M.
1988-01-01
The processes which contribute to the large-scale plasma circulation in the earth's environment during quiet times, or during reasonable stable magnetic conditions are reviewed. The various sources of field-aligned current generation in the solar wind and the magnetosphere are presented. The generation of field-aligned currents on open field lines connected to either polar cap and the generation of closed field lines of the inner magnetosphere are examined. Consideration is given to the hypothesis of Caudal (1987) that loss processes of trapped particles are competing with adiabatic motions in the generation of field-aligned currents in the inner magnetosphere.
Field Line Random Walk in Isotropic Magnetic Turbulence up to Infinite Kubo Number
NASA Astrophysics Data System (ADS)
Sonsrettee, W.; Wongpan, P.; Ruffolo, D. J.; Matthaeus, W. H.; Chuychai, P.; Rowlands, G.
2013-12-01
In astrophysical plasmas, the magnetic field line random walk (FLRW) plays a key role in the transport of energetic particles. In the present, we consider isotropic magnetic turbulence, which is a reasonable model for interstellar space. Theoretical conceptions of the FLRW have been strongly influenced by studies of the limit of weak fluctuations (or a strong mean field) (e.g, Isichenko 1991a, b). In this case, the behavior of FLRW can be characterized by the Kubo number R = (b/B0)(l_∥ /l_ \\bot ) , where l∥ and l_ \\bot are turbulence coherence scales parallel and perpendicular to the mean field, respectively, and b is the root mean squared fluctuation field. In the 2D limit (R ≫ 1), there has been an apparent conflict between concepts of Bohm diffusion, which is based on the Corrsin's independence hypothesis, and percolative diffusion. Here we have used three non-perturbative analytic techniques based on Corrsin's independence hypothesis for B0 = 0 (R = ∞ ): diffusive decorrelation (DD), random ballistic decorrelation (RBD) and a general ordinary differential equation (ODE), and compared them with direct computer simulations. All the analytical models and computer simulations agree that isotropic turbulence for R = ∞ has a field line diffusion coefficient that is consistent with Bohm diffusion. Partially supported by the Thailand Research Fund, NASA, and NSF.
Praetorius, Summer; Mix, Alan; Jensen, Britta; Froese, Duane; Milne, Glenn A.; Wolhowe, Matthew; Addison, Jason A.; Prahl, Fred
2016-01-01
Observations of enhanced volcanic frequency during the last deglaciation have led to the hypothesis that ice unloading in glaciated volcanic terrains can promote volcanism through decompression melting in the shallow mantle or a reduction in crustal magma storage time. However, a direct link between regional climate change, isostatic adjustment, and the initiation of volcanism remains to be demonstrated due to the difficulty of obtaining high-resolution well-dated records that capture short-term climate and volcanic variability traced to a particular source region. Here we present an exceptionally resolved record of 19 tephra layers paired with foraminiferal oxygen isotopes and alkenone paleotemperatures from marine sediment cores along the Southeast Alaska margin spanning the last deglacial transition. Major element compositions of the tephras indicate a predominant source from the nearby Mt. Edgecumbe Volcanic Field (MEVF). We constrain the timing of this regional eruptive sequence to 14.6–13.1 ka. The sudden increase in volcanic activity from the MEVF coincides with the onset of Bølling–Allerød interstadial warmth, the disappearance of ice-rafted detritus, and rapid vertical land motion associated with modeled regional isostatic rebound in response to glacier retreat. These data support the hypothesis that regional deglaciation can rapidly trigger volcanic activity. Rapid sea surface temperature fluctuations and an increase in local salinity (i.e., δ18Osw) variability are associated with the interval of intense volcanic activity, consistent with a two-way interaction between climate and volcanism in which rapid volcanic response to ice unloading may in turn enhance short-term melting of the glaciers, plausibly via albedo effects on glacier ablation zones.
IS BRAIN AMYLOID PRODUCTION A CAUSE OR A RESULT OF DEMENTIA OF THE ALZHEIMER TYPE?
Ala, Tom; Patrylo, Peter R.; Brewer, Gregory J.; Yan, Xiao-Xin
2011-01-01
The amyloid cascade hypothesis has guided much of research into Alzheimer disease (AD) over the last 25 years. We argue that the hypothesis of beta amyloid (Aβ) as the primary cause of dementia may not be fully correct. Rather, we propose that decline in brain metabolic activity, which is tightly linked to synaptic activity, actually underlies both the cognitive decline and the deposition of Aβ. Aβ may further exacerbate metabolic decline and result in a downward spiral of cognitive function, leading to dementia. This novel interpretation can tie the disparate risk factors for dementia to a unifying hypothesis and present a roadmap for interventions to decrease the prevalence of dementia in the elderly population. PMID:20847431
Chentsova-Dutton, Yulia E; Tsai, Jeanne L; Gotlib, Ian H
2010-04-01
How does culture shape the effects of depression on emotion? A previous study showed that depression dampened negative emotional responses in European Americans, but increased these responses in Asian Americans (Chentsova-Dutton et al., 2007). These findings support the cultural norm hypothesis, which predicts that depression reduces individuals' abilities to react in culturally ideal ways (i.e., disrupting European Americans' abilities to express emotions openly and Asian Americans' abilities to moderate emotions). In the present study, we examined the generalizability of this hypothesis to positive emotion. We measured the emotional reactivity of 35 European Americans (17 depressed) and 31 Asian Americans (15 depressed) to an amusing film. Consistent with the cultural norm hypothesis, European Americans who were depressed showed dampened emotional reactivity (i.e., fewer smiles, less intense reports of positive emotion, lower cardiac activation) compared to control European Americans, whereas Asian Americans who were depressed showed similar (for smiles and reports of positive emotion), and even greater (for higher cardiac activation) emotional reactivity compared to control Asian Americans. These findings suggest that the cultural norm hypothesis generalizes to positive emotion. PsycINFO Database Record (c) 2010 APA, all rights reserved.
The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease.
Cohen, Jeremy M; Venesky, Matthew D; Sauer, Erin L; Civitello, David J; McMahon, Taegan A; Roznik, Elizabeth A; Rohr, Jason R
2017-02-01
Parasites typically have broader thermal limits than hosts, so large performance gaps between pathogens and their cold- and warm-adapted hosts should occur at relatively warm and cold temperatures, respectively. We tested this thermal mismatch hypothesis by quantifying the temperature-dependent susceptibility of cold- and warm-adapted amphibian species to the fungal pathogen Batrachochytrium dendrobatidis (Bd) using laboratory experiments and field prevalence estimates from 15 410 individuals in 598 populations. In both the laboratory and field, we found that the greatest susceptibility of cold- and warm-adapted hosts occurred at relatively warm and cool temperatures, respectively, providing support for the thermal mismatch hypothesis. Our results suggest that as climate change shifts hosts away from their optimal temperatures, the probability of increased host susceptibility to infectious disease might increase, but the effect will depend on the host species and the direction of the climate shift. Our findings help explain the tremendous variation in species responses to Bd across climates and spatial, temporal and species-level variation in disease outbreaks associated with extreme weather events that are becoming more common with climate change. © 2017 John Wiley & Sons Ltd/CNRS.
Core-satellite species hypothesis and native versus exotic species in secondary succession
Martinez, Kelsey A.; Gibson, David J.; Middleton, Beth A.
2015-01-01
A number of hypotheses exist to explain species’ distributions in a landscape, but these hypotheses are not frequently utilized to explain the differences in native and exotic species distributions. The core-satellite species (CSS) hypothesis predicts species occupancy will be bimodally distributed, i.e., many species will be common and many species will be rare, but does not explicitly consider exotic species distributions. The parallel dynamics (PD) hypothesis predicts that regional occurrence patterns of exotic species will be similar to native species. Together, the CSS and PD hypotheses may increase our understanding of exotic species’ distribution relative to natives. We selected an old field undergoing secondary succession to study the CSS and PD hypotheses in conjunction with each other. The ratio of exotic to native species (richness and abundance) was observed through 17 years of secondary succession. We predicted species would be bimodally distributed and that exotic:native species ratios would remain steady or decrease through time under frequent disturbance. In contrast to the CSS and PD hypotheses, native species occupancies were not bimodally distributed at the site, but exotic species were. The exotic:native species ratios for both richness (E:Nrichness) and abundance (E:Ncover) generally decreased or remained constant throughout supporting the PD hypothesis. Our results suggest exotic species exhibit metapopulation structure in old field landscapes, but that metapopulation structures of native species are disrupted, perhaps because these species are dispersal limited in the fragmented landscape.
Quantifying pulsed electric field-induced membrane nanoporation in single cells.
Moen, Erick K; Ibey, Bennett L; Beier, Hope T; Armani, Andrea M
2016-11-01
Plasma membrane disruption can trigger a host of cellular activities. One commonly observed type of disruption is pore formation. Molecular dynamic (MD) simulations of simplified lipid membrane structures predict that controllably disrupting the membrane via nano-scale poration may be possible with nanosecond pulsed electric fields (nsPEF). Until recently, researchers hoping to verify this hypothesis experimentally have been limited to measuring the relatively slow process of fluorescent markers diffusing across the membrane, which is indirect evidence of nanoporation that could be channel-mediated. Leveraging recent advances in nonlinear optical microscopy, we elucidate the role of pulse parameters in nsPEF-induced membrane permeabilization in live cells. Unlike previous techniques, it is able to directly observe loss of membrane order at the onset of the pulse. We also develop a complementary theoretical model that relates increasing membrane permeabilization to membrane pore density. Due to the significantly improved spatial and temporal resolution possible with our imaging method, we are able to directly compare our experimental and theoretical results. Their agreement provides substantial evidence that nanoporation does occur and that its development is dictated by the electric field distribution. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Barboza, Gustavo A.; Pesek, James
2012-01-01
Assessment of the business curriculum and its learning goals and objectives has become a major field of interest for business schools. The exploratory results of the authors' model using a sample of 173 students show robust support for the hypothesis that high marks in course-embedded assessment on business-specific analytical skills positively…
Signal enhancement, not active suppression, follows the contingent capture of visual attention.
Livingstone, Ashley C; Christie, Gregory J; Wright, Richard D; McDonald, John J
2017-02-01
Irrelevant visual cues capture attention when they possess a task-relevant feature. Electrophysiologically, this contingent capture of attention is evidenced by the N2pc component of the visual event-related potential (ERP) and an enlarged ERP positivity over the occipital hemisphere contralateral to the cued location. The N2pc reflects an early stage of attentional selection, but presently it is unclear what the contralateral ERP positivity reflects. One hypothesis is that it reflects the perceptual enhancement of the cued search-array item; another hypothesis is that it is time-locked to the preceding cue display and reflects active suppression of the cue itself. Here, we varied the time interval between a cue display and a subsequent target display to evaluate these competing hypotheses. The results demonstrated that the contralateral ERP positivity is tightly time-locked to the appearance of the search display rather than the cue display, thereby supporting the perceptual enhancement hypothesis and disconfirming the cue-suppression hypothesis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Kosson, David S; Miller, Sarah K; Byrnes, Katherine A; Leveroni, Catherine L
2007-03-01
Competing hypotheses about neuropsychological mechanisms underlying psychopathy are seldom examined in the same study. We tested the left hemisphere activation hypothesis and the response modulation hypothesis of psychopathy in 172 inmates completing a global-local processing task under local bias, global bias, and neutral conditions. Consistent with the left hemisphere activation hypothesis, planned comparisons showed that psychopathic inmates classified local targets more slowly than nonpsychopathic inmates in a local bias condition and exhibited a trend toward similar deficits for global targets in this condition. However, contrary to the response modulation hypothesis, psychopaths were no slower to respond to local targets in a global bias condition. Because psychopathic inmates were not generally slower to respond to local targets, results are also not consistent with a general left hemisphere dysfunction account. Correlational analyses also indicated deficits specific to conditions presenting most targets at the local level initially. Implications for neuropsychological conceptualizations of psychopathy are considered.
The atmospheric electric global circuit. [thunderstorm activity
NASA Technical Reports Server (NTRS)
Kasemir, H. W.
1979-01-01
The hypothesis that world thunderstorm activity represents the generator for the atmospheric electric current flow in the earth atmosphere between ground and the ionosphere is based on a close correlation between the magnitude and the diurnal variation of the supply current (thunderstorm generator current) and the load current (fair weather air-earth current density integrated over the earth surface). The advantages of using lightning survey satellites to furnish a base for accepting or rejecting the thunderstorm generator hypothesis are discussed.
Farming fit? Dispelling the Australian agrarian myth
2011-01-01
Background Rural Australians face a higher mental health and lifestyle disease burden (obesity, diabetes and cardiovascular disease) than their urban counterparts. Our ongoing research reveals that the Australian farming community has even poorer physical and mental health outcomes than rural averages. In particular, farm men and women have high rates of overweightness, obesity, abdominal adiposity, high blood pressure and psychological distress when compared against Australian averages. Within our farming cohort we observed a significant association between psychological distress and obesity, abdominal adiposity and body fat percentage in the farming population. Presentation of hypothesis This paper presents a hypothesis based on preliminary data obtained from an ongoing study that could potentially explain the complex correlation between obesity, psychological distress and physical activity among a farming population. We posit that spasmodic physical activity, changing farm practices and climate variability induce prolonged stress in farmers. This increases systemic cortisol that, in turn, promotes abdominal adiposity and weight gain. Testing the hypothesis The hypothesis will be tested by anthropometric, biochemical and psychological analysis matched against systemic cortisol levels and the physical activity of the subjects. Implications of the hypothesis tested Previous studies indicate that farming populations have elevated rates of psychological distress and high rates of suicide. Australian farmers have recently experienced challenging climatic conditions including prolonged drought, floods and cyclones. Through our interactions and through the media it is not uncommon for farmers to describe the effect of this long-term stress with feelings of 'defeat'. By gaining a greater understanding of the role cortisol and physical activity have on mental and physical health we may positively impact the current rates of psychological distress in farmers. Trial registration ACTRN12610000827033 PMID:21447192
On the insignificance of Herschel's sunspot correlation
Love, Jeffrey J.
2013-01-01
We examine William Herschel's hypothesis that solar-cycle variation of the Sun's irradiance has a modulating effect on the Earth's climate and that this is, specifically, manifested as an anticorrelation between sunspot number and the market price of wheat. Since Herschel first proposed his hypothesis in 1801, it has been regarded with both interest and skepticism. Recently, reports have been published that either support Herschel's hypothesis or rely on its validity. As a test of Herschel's hypothesis, we seek to reject a null hypothesis of a statistically random correlation between historical sunspot numbers, wheat prices in London and the United States, and wheat farm yields in the United States. We employ binary-correlation, Pearson-correlation, and frequency-domain methods. We test our methods using a historical geomagnetic activity index, well known to be causally correlated with sunspot number. As expected, the measured correlation between sunspot number and geomagnetic activity would be an unlikely realization of random data; the correlation is “statistically significant.” On the other hand, measured correlations between sunspot number and wheat price and wheat yield data would be very likely realizations of random data; these correlations are “insignificant.” Therefore, Herschel's hypothesis must be regarded with skepticism. We compare and contrast our results with those of other researchers. We discuss procedures for evaluating hypotheses that are formulated from historical data.
Social play among juvenile wild Japanese macaques (Macaca fuscata) strengthens their social bonds.
Shimada, Masaki; Sueur, Cédric
2018-01-01
Social play and grooming are typical affiliative interactions for many primate species, and are thought to have similar biological functions. However, grooming increases with age, whereas social play decreases. We proposed the hypothesis that both social grooming and social play in juveniles strengthen their social bonds in daily activities. We carried out field research on the social relationships among juvenile wild Japanese macaques in a troop in Kinkazan, Miyagi Prefecture, Japan, from fall 2007 to spring 2008 to investigate this hypothesis. We evaluated three relationships among juveniles, play indices (PI), grooming indices (GI), and 3-m-proximity indices (3mI) of each dyad (i.e., interacting pair), and compared these social networks based on the matrices of the indices. The play and grooming networks were correlated with the association network throughout the two research periods. The multiple network level measurements of the play network, but not the grooming network, resembled those of the association network. Using a causal step approach, we showed that social play and grooming interactions in fall seem to predict associations in the following spring, controlling for the PI and GI matrix in spring, respectively. Social play and grooming for each juvenile were negatively correlated. The results partially support our predictions; therefore, the hypothesis that the biological function of social play among immature Japanese macaques is to strengthen their social bonds in the near future and develop their social life appears to be correct. For juvenile macaques, social play, rather than grooming, functions as an important social mechanism to strengthen affiliative relationships. © 2017 Wiley Periodicals, Inc.
Dudley, Leah S; Hove, Alisa A; Emms, Simon K; Verhoeven, Amy S; Mazer, Susan J
2015-06-01
One explanation for the evolution of selfing, the drought escape hypothesis, proposes that self-fertilization may evolve under conditions of intensifying seasonal drought as part of a suite of traits that enable plants to accelerate the completion of their life cycle, thereby escaping late-season drought. Here, we test two fundamental assumptions of this hypothesis in Clarkia xantiana: (1) that a seasonal decline in precipitation causes an increase in drought stress and (2) that this results in changes in physiological performance, reflecting these deteriorating conditions. We examined seasonal and interannual variation in abiotic environmental conditions (estimated by ambient temperature, relative humidity, predawn leaf water potentials, and carbon isotope ratios) and physiological traits (photosynthesis, conductance, transpiration, instantaneous water-use efficiency, ascorbate peroxidase and glutathione reductase activities, quantum yield of photosystem II, PSII potential efficiency) in field populations of C. xantiana in 2009 and 2010. In both years, plants experienced intensifying drought across the growing season. Gas exchange rates decreased over the growing season and were lower in 2009 (a relatively dry year) than in 2010, suggesting that the temporal changes from early to late spring were directly linked to the deteriorating environmental conditions. Seasonal declines in transpiration rate may have increased survival by protecting plants from desiccation. Concomitant declines in photosynthetic rate likely reduced the availability of resources for seed production late in the season. Thus, the physiological patterns observed are consistent with the conditions required for the drought escape hypothesis. © 2015 Botanical Society of America, Inc.
The Role of the Central Noradrenergic System in Behavioral Inhibition
Stone, Eric A.; Lin, Yan; Sarfraz, Yasmeen; Quartermain, David
2011-01-01
Although the central noradrenergic system has been shown to be involved in a number of behavioral and neurophysiological processes, the relation of these to its role in depressive illness has been difficult to define. The present review discusses the hypothesis that one of its chief functions that may be related to affective illness is the inhibition of behavioral activation, a prominent symptom of the disorder. This hypothesis is found to be consistent with most previous neuropsychopharmacological and immunohistochemical experiments on active behavior in rodents in a variety of experimental conditions using manipulation of neurotransmission at both locus coeruleus and forebrain adrenergic receptors. The findings support a mechanism in which high rates of noradrenergic neural activity suppress the neural activity of principal neurons in forebrain regions mediating active behavior. The suppression may be mediated through postsynaptic galaninergic and adrenergic receptors, and via the release of corticotrophin-releasing hormone. The hypothesis is consistent with clinical evidence for central noradrenergic system hyperactivity in depressives and with the view that this hyperactivity is a contributing etiological factor in the disorder. A similar mechanism may underlie the ability of the noradrenergic system to suppress seizure activity suggesting that inhibition of the spread of neural activation may be a unifying function. PMID:21315760
Zhang, Yanfang; Lyu, Chenang; Liu, Yu; Lv, Yanpeng; Chang, Tammy T; Rubinsky, Boris
2018-06-07
Non-thermal irreversible electroporation (NTIRE) is a biophysical phenomenon in which certain electric fields delivered across the cell membrane in tissue, cause cell death, without affecting the extracellular matrix. "Minimally invasive regenerative surgery" is a new medical modality for treatment of end-stage organ or tissue failure in which exogenous cells are implanted in a decellularized niche in tissue, formed by the delivery of NTIRE electric fields across a targeted volume of tissue. We anticipate that the success of the procedure will depend on the time of implantation relative to the application of NTIRE. This study was performed to elucidate the histological and molecular events that occur within 24 h after NTIRE, in the context of optimal criteria for the time of implantation. To this end, we examined the histology of NTIRE treated rat liver with H&E, Masson trichrome and TUNEL staining. Western blot was used to examine pro and cleaved caspase-3 (marker for apoptosis), pro and cleaved caspase-1 and gasdermin D (markers for pyroptosis), and RIP3 and MLKL (markers for necroptosis). The key findings are that, complete hepatocytes disintegration within an intact extracellular matrix is seen at 6 h and, new hepatocytes are seen in the treated region at 24 h, after NTIRE. There is no evidence of apoptotic cell death from NTIRE, contrary to commonly made claims in the NTIRE literature. However, molecular pathways of pyroptosis and necroptosis, programed necrosis associated with inflammation, are activated at 6 h after NTIRE and are not evident at 24 h after NTIRE. These are fundamental new findings of basic value to the field of NTIRE in all its applications. Taken together the results suggest the hypothesis that an optimal time for implantation is about 24 h after NTIRE. Future studies in which exogenous cells are implanted at different times after NTIRE are required to examine this hypothesis. Copyright © 2018 Elsevier Inc. All rights reserved.
Lehmann, D; Strik, W K; Henggeler, B; Koenig, T; Koukkou, M
1998-06-01
Prompted reports of recall of spontaneous, conscious experiences were collected in a no-input, no-task, no-response paradigm (30 random prompts to each of 13 healthy volunteers). The mentation reports were classified into visual imagery and abstract thought. Spontaneous 19-channel brain electric activity (EEG) was continuously recorded, viewed as series of momentary spatial distributions (maps) of the brain electric field and segmented into microstates, i.e. into time segments characterized by quasi-stable landscapes of potential distribution maps which showed varying durations in the sub-second range. Microstate segmentation used a data-driven strategy. Different microstates, i.e. different brain electric landscapes must have been generated by activity of different neural assemblies and therefore are hypothesized to constitute different functions. The two types of reported experiences were associated with significantly different microstates (mean duration 121 ms) immediately preceding the prompts; these microstates showed, across subjects, for abstract thought (compared to visual imagery) a shift of the electric gravity center to the left and a clockwise rotation of the field axis. Contrariwise, the microstates 2 s before the prompt did not differ between the two types of experiences. The results support the hypothesis that different microstates of the brain as recognized in its electric field implement different conscious, reportable mind states, i.e. different classes (types) of thoughts (mentations); thus, the microstates might be candidates for the 'atoms of thought'.
Effects of forest management legacies on spruce budworm (Choristoneura fumiferana) outbreaks
Louis-Etienne Robert; Daniel Kneeshaw; Brian R. Sturtevant
2012-01-01
The "silvicultural hypothesis" of spruce budworm (Choristoneura fumiferana Clem.) dynamics postulates that increasing severity of spruce budworm outbreaks over the last century resulted from forest conditions created by past management activities. Yet, definitive tests of the hypothesis remain elusive. We examined spruce budworm outbreak...
The role of photogeologic mapping in traverse planning: Lessons from DRATS 2010 activities
Skinner, James A.; Fortezzo, Corey M.
2013-01-01
We produced a 1:24,000 scale photogeologic map of the Desert Research and Technology Studies (DRATS) 2010 simulated lunar mission traverse area and surrounding environments located within the northeastern part of the San Francisco Volcanic Field (SFVF), north-central Arizona. To mimic an exploratory mission, we approached the region “blindly” by rejecting prior knowledge or preconceived notions of the regional geologic setting and focused instead only on image and topographic base maps that were intended to be equivalent to pre-cursor mission “orbital returns”. We used photogeologic mapping techniques equivalent to those employed during the construction of modern planetary geologic maps. Based on image and topographic base maps, we identified 4 surficial units (talus, channel, dissected, and plains units), 5 volcanic units (older cone, younger cone, older flow, younger flow, and block field units), and 5 basement units (grey-toned mottled, red-toned platy, red-toned layered, light-toned slabby, and light-toned layered units). Comparison of our remote-based map units with published field-based map units indicates that the two techniques yield pervasively similar results of contrasting detail, with higher accuracies linked to remote-based units that have high topographic relief and tonal contrast relative to adjacent units. We list key scientific questions that remained after photogeologic mapping and prior to DRATS activities and identify 13 specific observations that the crew and science team would need to make in order to address those questions and refine the interpreted geologic context. We translated potential observations into 62 recommended sites for visitation and observation during the mission traverse. The production and use of a mission-specific photogeologic map for DRATS 2010 activities resulted in strategic and tactical recommendations regarding observational context and hypothesis tracking over the course of an exploratory mission.
Erich, Roger; Eaton, Melinda; Mayes, Ryan; Pierce, Lamar; Knight, Andrew; Genovesi, Paul; Escobar, James; Mychalczuk, George; Selent, Monica
2016-08-01
Preparing data for medical research can be challenging, detail oriented, and time consuming. Transcription errors, missing or nonsensical data, and records not applicable to the study population may hamper progress and, if unaddressed, can lead to erroneous conclusions. In addition, study data may be housed in multiple disparate databases and complex formats. Merging methods may be incomplete to obtain temporally synchronized data elements. We created a comprehensive database to explore the general hypothesis that environmental and occupational factors influence health outcomes and risk-taking behavior among active duty Air Force personnel. Several databases containing demographics, medical records, health survey responses, and safety incident reports were cleaned, validated, and linked to form a comprehensive, relational database. The final step involved removing and transforming personally identifiable information to form a Health Insurance Portability and Accountability Act compliant limited database. Initial data consisted of over 62.8 million records containing 221 variables. When completed, approximately 23.9 million clean and valid records with 214 variables remained. With a clean, robust database, future analysis aims to identify high-risk career fields for targeted interventions or uncover potential protective factors in low-risk career fields. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Motor Synergies and the Equilibrium-Point Hypothesis
Latash, Mark L.
2010-01-01
The article offers a way to unite three recent developments in the field of motor control and coordination: (1) The notion of synergies is introduced based on the principle of motor abundance; (2) The uncontrolled manifold hypothesis is described as offering a computational framework to identify and quantify synergies; and (3) The equilibrium-point hypothesis is described for a single muscle, single joint, and multi-joint systems. Merging these concepts into a single coherent scheme requires focusing on control variables rather than performance variables. The principle of minimal final action is formulated as the guiding principle within the referent configuration hypothesis. Motor actions are associated with setting two types of variables by a controller, those that ultimately define average performance patterns and those that define associated synergies. Predictions of the suggested scheme are reviewed, such as the phenomenon of anticipatory synergy adjustments, quick actions without changes in synergies, atypical synergies, and changes in synergies with practice. A few models are briefly reviewed. PMID:20702893
Motor synergies and the equilibrium-point hypothesis.
Latash, Mark L
2010-07-01
The article offers a way to unite three recent developments in the field of motor control and coordination: (1) The notion of synergies is introduced based on the principle of motor abundance; (2) The uncontrolled manifold hypothesis is described as offering a computational framework to identify and quantify synergies; and (3) The equilibrium-point hypothesis is described for a single muscle, single joint, and multijoint systems. Merging these concepts into a single coherent scheme requires focusing on control variables rather than performance variables. The principle of minimal final action is formulated as the guiding principle within the referent configuration hypothesis. Motor actions are associated with setting two types of variables by a controller, those that ultimately define average performance patterns and those that define associated synergies. Predictions of the suggested scheme are reviewed, such as the phenomenon of anticipatory synergy adjustments, quick actions without changes in synergies, atypical synergies, and changes in synergies with practice. A few models are briefly reviewed.
Clustering, randomness, and regularity in cloud fields: 2. Cumulus cloud fields
NASA Astrophysics Data System (ADS)
Zhu, T.; Lee, J.; Weger, R. C.; Welch, R. M.
1992-12-01
During the last decade a major controversy has been brewing concerning the proper characterization of cumulus convection. The prevailing view has been that cumulus clouds form in clusters, in which cloud spacing is closer than that found for the overall cloud field and which maintains its identity over many cloud lifetimes. This "mutual protection hypothesis" of Randall and Huffman (1980) has been challenged by the "inhibition hypothesis" of Ramirez et al. (1990) which strongly suggests that the spatial distribution of cumuli must tend toward a regular distribution. A dilemma has resulted because observations have been reported to support both hypotheses. The present work reports a detailed analysis of cumulus cloud field spatial distributions based upon Landsat, Advanced Very High Resolution Radiometer, and Skylab data. Both nearest-neighbor and point-to-cloud cumulative distribution function statistics are investigated. The results show unequivocally that when both large and small clouds are included in the cloud field distribution, the cloud field always has a strong clustering signal. The strength of clustering is largest at cloud diameters of about 200-300 m, diminishing with increasing cloud diameter. In many cases, clusters of small clouds are found which are not closely associated with large clouds. As the small clouds are eliminated from consideration, the cloud field typically tends towards regularity. Thus it would appear that the "inhibition hypothesis" of Ramirez and Bras (1990) has been verified for the large clouds. However, these results are based upon the analysis of point processes. A more exact analysis also is made which takes into account the cloud size distributions. Since distinct clouds are by definition nonoverlapping, cloud size effects place a restriction upon the possible locations of clouds in the cloud field. The net effect of this analysis is that the large clouds appear to be randomly distributed, with only weak tendencies towards regularity. For clouds less than 1 km in diameter, the average nearest-neighbor distance is equal to 3-7 cloud diameters. For larger clouds, the ratio of cloud nearest-neighbor distance to cloud diameter increases sharply with increasing cloud diameter. This demonstrates that large clouds inhibit the growth of other large clouds in their vicinity. Nevertheless, this leads to random distributions of large clouds, not regularity.
Genesis of magnetic fields in isolated white dwarfs
NASA Astrophysics Data System (ADS)
Briggs, Gordon P.; Ferrario, Lilia; Tout, Christopher A.; Wickramasinghe, Dayal T.
2018-05-01
A dynamo mechanism driven by differential rotation when stars merge has been proposed to explain the presence of strong fields in certain classes of magnetic stars. In the case of the high field magnetic white dwarfs (HFMWDs), the site of the differential rotation has been variously thought to be the common envelope, the hot outer regions of a merged degenerate core or an accretion disc formed by a tidally disrupted companion that is subsequently accreted by a degenerate core. We have shown previously that the observed incidence of magnetism and the mass distribution in HFMWDs are consistent with the hypothesis that they are the result of merging binaries during common envelope evolution. Here we calculate the magnetic field strengths generated by common envelope interactions for synthetic populations using a simple prescription for the generation of fields and find that the observed magnetic field distribution is also consistent with the stellar merging hypothesis. We use the Kolmogorov-Smirnov test to study the correlation between the calculated and the observed field strengths and find that it is consistent for low envelope ejection efficiency. We also suggest that field generation by the plunging of a giant gaseous planet on to a white dwarf may explain why magnetism among cool white dwarfs (including DZ white dwarfs) is higher than among hot white dwarfs. In this picture a super-Jupiter residing in the outer regions of the white dwarf's planetary system is perturbed into a highly eccentric orbit by a close stellar encounter and is later accreted by the white dwarf.
Genesis of magnetic fields in isolated white dwarfs
NASA Astrophysics Data System (ADS)
Briggs, Gordon P.; Ferrario, Lilia; Tout, Christopher A.; Wickramasinghe, Dayal T.
2018-07-01
A dynamo mechanism driven by differential rotation when stars merge has been proposed to explain the presence of strong fields in certain classes of magnetic stars. In the case of the high-field magnetic white dwarfs (HFMWDs), the site of the differential rotation has been variously thought to be the common envelope, the hot outer regions of a merged degenerate core or an accretion disc are formed by a tidally disrupted companion that is subsequently accreted by a degenerate core. We have shown previously that the observed incidence of magnetism and the mass distribution in HFMWDs are consistent with the hypothesis that they are the result of merging binaries during common envelope evolution. Here, we calculate the magnetic field strengths generated by common envelope interactions for synthetic populations using a simple prescription for the generation of fields and find that the observed magnetic field distribution is also consistent with the stellar merging hypothesis. We use the Kolmogorov-Smirnov test to study the correlation between the calculated and the observed field strengths and find that it is consistent for low envelope ejection efficiency. We also suggest that the field generation by the plunging of a giant gaseous planet on to a white dwarf may explain why magnetism among cool white dwarfs (including DZ white dwarfs) is higher than among hot white dwarfs. In this picture, a super-Jupiter residing in the outer regions of the white dwarf's planetary system is perturbed into a highly eccentric orbit by a close stellar encounter and is later accreted by the white dwarf.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juanes, Ruben
The overarching goal of this project was to develop a new continuum theory of multiphase flow in porous media. The theory follows a phase-field modeling approach, and therefore has a sound thermodynamical basis. It is a phenomenological theory in the sense that its formulation is driven by macroscopic phenomena, such as viscous instabilities during multifluid displacement. The research agenda was organized around a set of hypothesis on hitherto unexplained behavior of multiphase flow. All these hypothesis are nontrivial, and testable. Indeed, a central aspect of the project was testing each hypothesis by means of carefully-designed laboratory experiments, therefore probing themore » validity of the proposed theory. The proposed research places an emphasis on the fundamentals of flow physics, but is motivated by important energy-driven applications in earth sciences, as well as microfluidic technology.« less
Taymans, Jean-Marc; Nkiliza, Aurore; Chartier-Harlin, Marie-Christine
2015-08-01
Protein translation is one of the most fundamental and exquisitely controlled processes in biology, and is energetically demanding. The deregulation of this process is deleterious to cells, as demonstrated by several diseases caused by mutations in protein translation machinery. Emerging evidence now points to a role for protein translation in the pathogenesis of Parkinson's disease (PD); a debilitating neurodegenerative movement disorder. In this paper, we propose a hypothesis that protein translation machinery, PD-associated proteins and PD pathology are connected in a functional network linking cell survival to protein translation control. This hypothesis is a potential game changer in the field of the molecular pathogenesis of PD, with implications for the development of PD diagnostics and disease-modifying therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ausloos, M.
2000-09-01
Recent observations have indicated that the traditional equilibrium market hypothesis (EMH; also known as Efficient Market Hypothesis) is unrealistic. It is shown here that it is the analog of a Boltzmann equation in physics, thus having some bad properties of mean-field approximations like a Gaussian distribution of price fluctuations. A kinetic theory for prices can be simply derived, considering in a first approach that market actors have all identical relaxation times, and solved within a Chapman-Enskog like formalism. In closing the set of equations, (i) an equation of state with a pressure and (ii) the equilibrium (isothermal) equation for the price (taken as the order parameter) of a stock as a function of the volume of money available are obtained.
Crater Flux Transfer Events: Highroad to the X Line?
NASA Technical Reports Server (NTRS)
Farrugia, C. J.; Chen, Li-Jen; Torbert, R. B.; Southwood, D. J.; Cowley, S. W. H.; Vrublevskis, A.; Mouikis, C.; Vaivads, A.; Andre, M.; Decreau, P.;
2011-01-01
We examine Cluster observations of a so-called magnetosphere crater FTE, employing data from five instruments (FGM, CIS, EDI, EFW, and WHISPER), some at the highest resolution. The aim of doing this is to deepen our understanding of the reconnection nature of these events by applying recent advances in the theory of collisionless reconnection and in detailed observational work. Our data support the hypothesis of a stratified structure with regions which we show to be spatial structures. We support the bulge-like topology of the core region (R3) made up of plasma jetting transverse to reconnected field lines. We document encounters with a magnetic separatrix as a thin layer embedded in the region (R2) just outside the bulge, where the speed of the protons flowing approximately parallel to the field maximizes: (1) short (fraction of a sec) bursts of enhanced electric field strengths (up to approximately 30 mV/m) and (2) electrons flowing against the field toward the X line at approximately the same time as the bursts of intense electric fields. R2 also contains a density decrease concomitant with an enhanced magnetic field strength. At its interface with the core region, R3, electric field activity ceases abruptly. The accelerated plasma flow profile has a catenary shape consisting of beams parallel to the field in R2 close to the R2/R3 boundary and slower jets moving across the magnetic field within the bulge region. We detail commonalities our observations of crater FTEs have with reconnection structures in other scenarios. We suggest that in view of these properties and their frequency of occurrence, crater FTEs are ideal places to study processes at the separatrices, key regions in magnetic reconnection. This is a good preparation for the MMS mission.
Silva, Alcino J
2007-01-01
Studies of cognitive function include a wide spectrum of disciplines, with very diverse theoretical and practical frameworks. For example, in Behavioral Neuroscience cognitive mechanisms are mostly inferred from loss of function (lesion) experiments while in Cognitive Neuroscience these mechanisms are commonly deduced from brain activation patterns. Although neuroscientists acknowledge the limitations of deriving conclusions using a limited scope of approaches, there are no systematically studied, objective and explicit criteria for what is required to test a given hypothesis of cognitive function. This problem plagues every discipline in science: scientific research lacks objective, systematic studies that validate the principles underlying even its most elemental practices. For example, scientists decide what experiments are best suited to test key ideas in their field, which hypotheses have sufficient supporting evidence and which require further investigation, which studies are important and which are not, based on intuitions derived from experience, implicit principles learned from mentors and colleagues, traditions in their fields, etc. Philosophers have made numerous attempts to articulate and frame the principles that guide research and innovation, but these speculative ideas have remained untested and have had a minimal impact on the work of scientists. Here, I propose the development of methods for systematically and objectively studying and improving the modus operandi of research and development. This effort (the science of scientific research or S2) will benefit all aspects of science, from education of young scientists to research, publishing and funding, since it will provide explicit and systematically tested frameworks for practices in science. To illustrate its goals, I will introduce a hypothesis (the Convergent Four) derived from experimental practices common in molecular and cellular biology. This S2 hypothesis proposes that there are at least four fundamentally distinct strategies that scientists can use to test the connection between two phenomena of interest (A and B), and that to establish a compelling connection between A and B it is crucial to develop independently confirmed lines of convergent evidence in each of these four categories. The four categories include negative alteration (decrease probability of A or p(A) and determine p(B)), positive alteration (increase p(A) and determine p(B)), non-intervention (examine whether A precedes B) and integration (develop ideas about how to get from A to B and integrate those ideas with other available information about A and B). I will discuss both strategies to test this hypothesis and its implications for studies of cognitive function.
PEOPLE IN PHYSICS: Atom - from hypothesis to certainty
NASA Astrophysics Data System (ADS)
Lacina, Ales
1999-11-01
The concept of atoms should not be taken for granted. It was developed relatively recently and based on observations in the fields of thermal phenomena, crystallography and chemistry and the crucial discovery of Brownian motion.
Measurement model as a means for studying the process of emotion origination
NASA Astrophysics Data System (ADS)
Taymanov, R.; Baksheeva, Iu; Sapozhnikova, K.; Chunovkina, A.
2016-11-01
In the last edition of the International Vocabulary of Metrology the concept “measurement” was spread outside the field of physical quantities. This fact makes it relevant to analyze the experience of developing the models of multidimensional quantity measurements. The model of measurements of expected emotions caused by musical and other acoustic impacts, is considered. The model relies upon a hypothesis of a nonlinear conversion of acoustic signals to a neurophysiological reaction giving rise to emotion. Methods for checking this hypothesis as well as experimental results are given.
NASA Technical Reports Server (NTRS)
Ake, Thomas B.; Johnson, Hollis R.
1988-01-01
Ultraviolet spectra of the peculiar red giants (PRGs) called MS stars are investigated, and the discovery of a white dwarf (WD) companion to the MS star 4 Omicron(1) Orionis is reported. The observations and data analysis are discussed and compared with those for field WDs in order to derive parameters for the WD and the luminosity of the primary. Detection limits for the other MS stars investigated are derived, and the binary hypothesis for PRGs is reviewed.
Oceanic turbulence - Big bangs or continuous creation?
NASA Technical Reports Server (NTRS)
Caldwell, D. R.
1983-01-01
A hypothesis concerning the turbulence characteristics of 'microstructure' patches in the ocean is proposed in which a turbulence field is driven at the same time and scale at which it is observed. The driving energy is converted into turbulence kinetic energy in such a way that the observed overturning thickness scale is linearly related to the length scale. This hypothesis is contrasted with that of Gibson (1982), in which the 'patches' are produced by rare, powerful turbulence generators that have 'fossilized' prior to their observation. Careful attention is given to the sampling process and its assumptions.
Vohs, Kathleen D; Baumeister, Roy F; Schmeichel, Brandon J; Twenge, Jean M; Nelson, Noelle M; Tice, Dianne M
2008-05-01
The current research tested the hypothesis that making many choices impairs subsequent self-control. Drawing from a limited-resource model of self-regulation and executive function, the authors hypothesized that decision making depletes the same resource used for self-control and active responding. In 4 laboratory studies, some participants made choices among consumer goods or college course options, whereas others thought about the same options without making choices. Making choices led to reduced self-control (i.e., less physical stamina, reduced persistence in the face of failure, more procrastination, and less quality and quantity of arithmetic calculations). A field study then found that reduced self-control was predicted by shoppers' self-reported degree of previous active decision making. Further studies suggested that choosing is more depleting than merely deliberating and forming preferences about options and more depleting than implementing choices made by someone else and that anticipating the choice task as enjoyable can reduce the depleting effect for the first choices but not for many choices. (c) 2008 APA, all rights reserved
NASA Astrophysics Data System (ADS)
Machet, Tania; Lowe, David; Gütl, Christian
2012-12-01
This paper explores the hypothesis that embedding a laboratory activity into a virtual environment can provide a richer experimental context and hence improve the understanding of the relationship between a theoretical model and the real world, particularly in terms of the model's strengths and weaknesses. While an identified learning objective of laboratories is to support the understanding of the relationship between models and reality, the paper illustrates that this understanding is hindered by inherently limited experiments and that there is scope for improvement. Despite the contextualisation of learning activities having been shown to support learning objectives in many fields, there is traditionally little contextual information presented during laboratory experimentation. The paper argues that the enhancing laboratory activity with contextual information affords an opportunity to improve students' understanding of the relationship between the theoretical model and the experiment (which is effectively a proxy for the complex real world), thereby improving their understanding of the relationship between the model and reality. The authors propose that these improvements can be achieved by setting remote laboratories within context-rich virtual worlds.
Echolocation system of the bottlenose dolphin
NASA Astrophysics Data System (ADS)
Dubrovsky, N. A.
2004-05-01
The hypothesis put forward by Vel’min and Dubrovsky [1] is discussed. The hypothesis suggests that bottlenose dolphins possess two functionally separate auditory subsystems: one of them serves for analyzing extraneous sounds, as in nonecholocating terrestrial animals, and the other performs the analysis of echoes caused by the echolocation clicks of the animal itself. The first subsystem is called passive hearing, and the second, active hearing. The results of experimental studies of dolphin’s echolocation system are discussed to confirm the proposed hypothesis. For the active hearing of dolphins, the notion of a critical interval is considered as the interval of time within which the formation of a merged auditory image of the echolocation object is formed when all echo highlights of the echo from this object fall within the critical interval.
Explorations in Statistics: Power
ERIC Educational Resources Information Center
Curran-Everett, Douglas
2010-01-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This fifth installment of "Explorations in Statistics" revisits power, a concept fundamental to the test of a null hypothesis. Power is the probability that we reject the null hypothesis when it is false. Four…
The Developmental Costs of High Self-Esteem for Antisocial Children
ERIC Educational Resources Information Center
Menon, Madhavi; Tobin, Desiree D.; Corby, Brooke C.; Menon, Meenakshi; Hodges, Ernest V. E.; Perry, David G.
2007-01-01
Two hypotheses--high self-esteem leads children to act on antisocial cognitions (disposition-activating hypothesis) and high self-esteem leads children to rationalize antisocial conduct (disposition-rationalizing hypothesis)--were investigated in two longitudinal studies. In Study 1 (N = 189; mean age = 11.1 years), antisocial behavior was…
Functions of Marijuana Use in College Students
ERIC Educational Resources Information Center
Bates, Julie K.; Accordino, Michael P.; Hewes, Robert L.
2010-01-01
Hierarchical regression analysis was used to test the hypothesis that specific functional factors of marijuana use would predict past 30-day marijuana use in 425 college students more precisely than demographic variables alone. This hypothesis was confirmed. Functional factors of personal/physical enhancement as well as activity enhancement were…
Comments on Hamaker's hypothesis of a coming CO/sub 2/-induced ice age
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacCracken, M.C.
1989-06-01
Over the past several years, John Hamaker and a number of followers have put forth a hypothesis that the imminent demise of the world's forests from lack of vital mineral nutrients will trigger an ice age. Their evidence in support of this hypothesis has recently appeared as a videotape entitled ''Stopping the Coming Ice Age.'' These comments were prepared in response to the arguments presented on this tape, which several people have suggested presents a highly important scientific analysis unfairly receiving too little attention. I will focus primarily on analysis of the climatic aspects of the Hamaker hypothesis. The videotapemore » attempts to put forth a coherent and appealing story, but does so by taking comments of some scientists out of context, by quoting some scientists out of their field of expertise, by skimming over some serious shortcomings, by facile assumptions not easily spotted by the non-specialist, and by mixing in many true statements (which makes it especially difficult for the lay listener to spot the problems). Overall, these actions combine to make the presentation of the hypothesis very appealing, but also very deceptive.« less
Limb Dominance Results from Asymmetries in Predictive and Impedance Control Mechanisms
Yadav, Vivek; Sainburg, Robert L.
2014-01-01
Handedness is a pronounced feature of human motor behavior, yet the underlying neural mechanisms remain unclear. We hypothesize that motor lateralization results from asymmetries in predictive control of task dynamics and in control of limb impedance. To test this hypothesis, we present an experiment with two different force field environments, a field with a predictable magnitude that varies with the square of velocity, and a field with a less predictable magnitude that varies linearly with velocity. These fields were designed to be compatible with controllers that are specialized in predicting limb and task dynamics, and modulating position and velocity dependent impedance, respectively. Because the velocity square field does not change the form of the equations of motion for the reaching arm, we reasoned that a forward dynamic-type controller should perform well in this field, while control of linear damping and stiffness terms should be less effective. In contrast, the unpredictable linear field should be most compatible with impedance control, but incompatible with predictive dynamics control. We measured steady state final position accuracy and 3 trajectory features during exposure to these fields: Mean squared jerk, Straightness, and Movement time. Our results confirmed that each arm made straighter, smoother, and quicker movements in its compatible field. Both arms showed similar final position accuracies, which were achieved using more extensive corrective sub-movements when either arm performed in its incompatible field. Finally, each arm showed limited adaptation to its incompatible field. Analysis of the dependence of trajectory errors on field magnitude suggested that dominant arm adaptation occurred by prediction of the mean field, thus exploiting predictive mechanisms for adaptation to the unpredictable field. Overall, our results support the hypothesis that motor lateralization reflects asymmetries in specific motor control mechanisms associated with predictive control of limb and task dynamics, and modulation of limb impedance. PMID:24695543
Soil fumigation to control spread of Fomes annosus: results of field trials
David R. Houston
1975-01-01
A field trial was run to test the hypothesis that a band of roots killed by soil fumigation with methyl bromide would be unsuitable for invasion by F. annosus and would block the underground spread of the fungus from diseased trees to healthy trees. Infection centers in red pine plantations from New York to Rhode Island were delineated on the basis...
Rapid burster - a weakly magnetized neutron star
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanawa, T.; Hirotani, K.; Kawai, N.
1989-01-01
The magnetic field of a neutron star involved in the rapid burster MXB 1730-335 is studied using a MHD instability model for type II bursts. It is suggested that the magnetic field on the surface is about 10 to the 8th G. The radius of the magnetosphere is estimated to be about 10 km. Observational evidence supporting this hypothesis is examined. 30 references.
Bacterial quorum sensing and nitrogen cycling in rhizosphere soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeAngelis, K.M.; Lindow, S.E.; Firestone, M.K.
2008-10-01
Plant photosynthate fuels carbon-limited microbial growth and activity, resulting in increased rhizosphere nitrogen (N)-mineralization. Most soil organic N is macromolecular (chitin, protein, nucleotides); enzymatic depolymerization is likely rate-limiting for plant N accumulation. Analyzing Avena (wild oat) planted in microcosms containing sieved field soil, we observed increased rhizosphere chitinase and protease specific activities, bacterial cell densities, and dissolved organic nitrogen (DON) compared to bulk soil. Low-molecular weight DON (<3000 Da) was undetectable in bulk soil but comprised 15% of rhizosphere DON. Extracellular enzyme production in many bacteria requires quorum sensing (QS), cell-density dependent group behavior. Because proteobacteria are considered major rhizospheremore » colonizers, we assayed the proteobacterial QS signals acyl-homoserine lactones (AHLs), which were significantly increased in the rhizosphere. To investigate the linkage between soil signaling and N cycling, we characterized 533 bacterial isolates from Avena rhizosphere: 24% had chitinase or protease activity and AHL production; disruption of QS in 7 of 8 eight isolates disrupted enzyme activity. Many {alpha}-Proteobacteria were newly found with QS-controlled extracellular enzyme activity. Enhanced specific activities of N-cycling enzymes accompanied by bacterial density-dependent behaviors in rhizosphere soil gives rise to the hypothesis that QS could be a control point in the complex process of rhizosphere N-mineralization.« less
2015-01-01
Activation of a catalyst [IrCl(COD)(IMes)] (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene; COD = cyclooctadiene)] for signal amplification by reversible exchange (SABRE) was monitored by in situ hyperpolarized proton NMR at 9.4 T. During the catalyst-activation process, the COD moiety undergoes hydrogenation that leads to its complete removal from the Ir complex. A transient hydride intermediate of the catalyst is observed via its hyperpolarized signatures, which could not be detected using conventional nonhyperpolarized solution NMR. SABRE enhancement of the pyridine substrate can be fully rendered only after removal of the COD moiety; failure to properly activate the catalyst in the presence of sufficient substrate can lead to irreversible deactivation consistent with oligomerization of the catalyst molecules. Following catalyst activation, results from selective RF-saturation studies support the hypothesis that substrate polarization at high field arises from nuclear cross-relaxation with hyperpolarized 1H spins of the hydride/orthohydrogen spin bath. Importantly, the chemical changes that accompanied the catalyst’s full activation were also found to endow the catalyst with water solubility, here used to demonstrate SABRE hyperpolarization of nicotinamide in water without the need for any organic cosolvent—paving the way to various biomedical applications of SABRE hyperpolarization methods. PMID:25372972
Similar brain networks for detecting visuo-motor and visuo-proprioceptive synchrony.
Balslev, Daniela; Nielsen, Finn A; Lund, Torben E; Law, Ian; Paulson, Olaf B
2006-05-15
The ability to recognize feedback from own movement as opposed to the movement of someone else is important for motor control and social interaction. The neural processes involved in feedback recognition are incompletely understood. Two competing hypotheses have been proposed: the stimulus is compared with either (a) the proprioceptive feedback or with (b) the motor command and if they match, then the external stimulus is identified as feedback. Hypothesis (a) predicts that the neural mechanisms or brain areas involved in distinguishing self from other during passive and active movement are similar, whereas hypothesis (b) predicts that they are different. In this fMRI study, healthy subjects saw visual cursor movement that was either synchronous or asynchronous with their active or passive finger movements. The aim was to identify the brain areas where the neural activity depended on whether the visual stimulus was feedback from own movement and to contrast the functional activation maps for active and passive movement. We found activity increases in the right temporoparietal cortex in the condition with asynchronous relative to synchronous visual feedback from both active and passive movements. However, no statistically significant difference was found between these sets of activated areas when the active and passive movement conditions were compared. With a posterior probability of 0.95, no brain voxel had a contrast effect above 0.11% of the whole-brain mean signal. These results do not support the hypothesis that recognition of visual feedback during active and passive movement relies on different brain areas.
Damodaran, Srinivasan
2015-01-01
Many life-sustaining activities in living cells occur at the membrane-water interface. The pertinent questions that we need to ask are, what are the evolutionary reasons in biology for choosing the membrane-water interface as the site for performing and/or controlling crucial biological reactions, and what is the key physical principle that is very singular to the membrane-water interface that biology exploits for regulating metabolic processes in cells? In this chapter, a hypothesis is developed, which espouses that cells control activities of membrane-bound enzymes through manipulation of the thermodynamic activity of water in the lipid-water interfacial region. The hypothesis is based on the fact that the surface pressure of a lipid monolayer is a direct measure of the thermodynamic activity of water at the lipid-water interface. Accordingly, the surface pressure-dependent activation or inactivation of interfacial enzymes is directly related to changes in the thermodynamic activity of interfacial water. Extension of this argument suggests that cells may manipulate conformations (and activities) of membrane-bound enzymes by manipulating the (re)activity of interfacial water at various locations in the membrane by localized compression or expansion of the interface. In this respect, cells may use the membrane-bound hormone receptors, lipid phase transition, and local variations in membrane lipid composition as effectors of local compression and/or expansion of membrane, and thereby local water activity. Several experimental data in the literature will be reexamined in the light of this hypothesis.
Control of thermal therapies with moving power deposition field.
Arora, Dhiraj; Minor, Mark A; Skliar, Mikhail; Roemer, Robert B
2006-03-07
A thermal therapy feedback control approach to control thermal dose using a moving power deposition field is developed and evaluated using simulations. A normal tissue safety objective is incorporated in the controller design by imposing constraints on temperature elevations at selected normal tissue locations. The proposed control technique consists of two stages. The first stage uses a model-based sliding mode controller that dynamically generates an 'ideal' power deposition profile which is generally unrealizable with available heating modalities. Subsequently, in order to approximately realize this spatially distributed idealized power deposition, a constrained quadratic optimizer is implemented to compute intensities and dwell times for a set of pre-selected power deposition fields created by a scanned focused transducer. The dwell times for various power deposition profiles are dynamically generated online as opposed to the commonly employed a priori-decided heating strategies. Dynamic intensity and trajectory generation safeguards the treatment outcome against modelling uncertainties and unknown disturbances. The controller is designed to enforce simultaneous activation of multiple normal tissue temperature constraints by rapidly switching between various power deposition profiles. The hypothesis behind the controller design is that the simultaneous activation of multiple constraints substantially reduces treatment time without compromising normal tissue safety. The controller performance and robustness with respect to parameter uncertainties is evaluated using simulations. The results demonstrate that the proposed controller can successfully deliver the desired thermal dose to the target while maintaining the temperatures at the user-specified normal tissue locations at or below the maximum allowable values. Although demonstrated for the case of a scanned focused ultrasound transducer, the developed approach can be extended to other heating modalities with moving deposition fields, such as external and interstitial ultrasound phased arrays, multiple radiofrequency needle applicators and microwave antennae.
Investigations of the gravity profile below the Tibetan plateau
NASA Astrophysics Data System (ADS)
Shen, W. B.; Han, J. C.
2012-04-01
Scientists pay great attention to the structure and dynamics of the Tibetan plateau due to the fact that it is a natural experiment site for geoscience studies. The gravity profiles below the Tibetan plateau with successive high-accuracy play more and more significant role in studying the structure and evolution of the Tibetan plateau. This study focuses on determining the inner gravity field of the Tibetan plateau until to the depth of D and interpret possible mechanism of the gravity profile below the Tibetan plateau, especially reinvestigating the isostasy problem (Pratt hypothesis and Airy hypothesis). The inner gravity field below the Tibetan plateau is determined based on a simple technique (i.e. a combination of Newtonian integral, downward continuation of gravity field, and "remove-restore" scheme) and the following datasets: the external Earth gravitational model EGM2008 and the digital topographic model DTM2006.0 released by NGA (National Geospatial-Intelligence Agency, USA), and the crust density distribution model CRUST2.0 released by NGS (National Geological Survey, USA). This study is supported by Natural Science Foundation China (grant No.40974015; No.41174011).
Constraining the String Gauge Field by Galaxy Rotation Curves and Perihelion Precession of Planets
NASA Astrophysics Data System (ADS)
Cheung, Yeuk-Kwan E.; Xu, Feng
2013-09-01
We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter string model as compared to the three-parameter dark matter model with the NFW profile. The average χ2 value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.
Negi, Pooja; Rai, Archana N; Suprasanna, Penna
2016-01-01
The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original 'Controlling Element' hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as "distributed genomic control modules." According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement.
Negi, Pooja; Rai, Archana N.; Suprasanna, Penna
2016-01-01
The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original ‘Controlling Element’ hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as “distributed genomic control modules.” According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement. PMID:27777577
The Effects of a Magnetic Field on the Crystallization of a Fluorozirconate Glass
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Lapointe, Michael R.; Jia, Zhiyong
2006-01-01
An axial magnetic field of 0.1T was applied to ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fibers during heating to the glass crystallization temperature. Scanning electron microscopy and x-ray diffraction were used to identify crystal phases. It was shown that fibers exposed to the magnetic field did not crystallize while fibers not exposed to the field did crystallize. A hypothesis based on magnetic work was proposed to explain the results and tested by measuring the magnetic susceptibilities of the glass and crystal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorka, K. M.; Copeland, E. K.; Winterhalter, W. E.
To improve thermoregulation in colder environments, insects are expected to darken their cuticles with melanin via the phenoloxidase cascade, a phenomenon predicted by the thermal melanin hypothesis. However, the phenoloxidase cascade also plays a significant role in insect immunity, leading to the additional hypothesis that the thermal environment indirectly shapes immune function via direct selection on cuticle color. Support for the latter hypothesis comes from the cricket Allonemobius socius, where cuticle darkness and immune-related phenoloxidase activity increase with latitude. However, thermal environments vary seasonally as well as geographically, suggesting that seasonal plasticity in immunity may also exist. Although seasonal fluctuationsmore » in vertebrate immune function are common (because of flux in breeding or resource abundance), seasonality in invertebrate immunity has not been widely explored. We addressed this possibility by rearing crickets in simulated summer and fall environments and assayed their cuticle color and immune function. Prior to estimating immunity, crickets were placed in a common environment to minimize metabolic rate differences. Individuals reared under fall-like conditions exhibited darker cuticles, greater phenoloxidase activity and greater resistance to the bacteria Serratia marcescens. These data support the hypothesis that changes in the thermal environment modify cuticle color, which indirectly shapes immune investment through pleiotropy. This hypothesis may represent a widespread mechanism governing immunity in numerous systems, considering that most insects operate in seasonally and geographically variable thermal environments.« less
Chentsova-Dutton, Yulia E.; Tsai, Jeanne L.; Gotlib, Ian H.
2010-01-01
How does culture shape the experience and expression of depression? Previously we observed that depression dampened negative emotional responses in European Americans, but increased negative emotional responses in Asian Americans (Chentsova-Dutton et al., 2007). We interpreted these findings as support for the cultural norm hypothesis, which predicts that depression reduces individuals’ abilities to react in culturally normative or ideal ways (i.e., disrupting European Americans’ abilities to express their emotions openly and Asian Americans’ abilities to moderate and control their emotions). In the present study, we examined the generalizability of the cultural norm hypothesis to positive emotion. We measured the emotional reactivity of 35 European Americans (17 depressed, 18 controls) and 31 Asian Americans (15 depressed, 16 controls) to an amusing film clip. Consistent with the cultural norm hypothesis, depressed European Americans showed dampened positive emotional reactivity (i.e., fewer enjoyment and non-enjoyment smiles, less intense reports of positive emotion, lower cardiac activation) compared to control European Americans, whereas depressed Asian Americans showed similar (i.e., smiles, reports of positive emotion), and even greater (i.e., higher cardiac activation) positive emotional reactivity compared to control Asian Americans. These findings suggest that the cultural norm hypothesis generalizes to the experience and expression of positive emotion. PMID:20438167
Is it better to select or to receive? Learning via active and passive hypothesis testing.
Markant, Douglas B; Gureckis, Todd M
2014-02-01
People can test hypotheses through either selection or reception. In a selection task, the learner actively chooses observations to test his or her beliefs, whereas in reception tasks data are passively encountered. People routinely use both forms of testing in everyday life, but the critical psychological differences between selection and reception learning remain poorly understood. One hypothesis is that selection learning improves learning performance by enhancing generic cognitive processes related to motivation, attention, and engagement. Alternatively, we suggest that differences between these 2 learning modes derives from a hypothesis-dependent sampling bias that is introduced when a person collects data to test his or her own individual hypothesis. Drawing on influential models of sequential hypothesis-testing behavior, we show that such a bias (a) can lead to the collection of data that facilitates learning compared with reception learning and (b) can be more effective than observing the selections of another person. We then report a novel experiment based on a popular category learning paradigm that compares reception and selection learning. We additionally compare selection learners to a set of "yoked" participants who viewed the exact same sequence of observations under reception conditions. The results revealed systematic differences in performance that depended on the learner's role in collecting information and the abstract structure of the problem.
Paul, Carsten; Reunamo, Anna; Lindehoff, Elin; Bergkvist, Johanna; Mausz, Michaela A.; Larsson, Henrik; Richter, Hannes; Wängberg, Sten-Åke; Leskinen, Piia; Båmstedt, Ulf; Pohnert, Georg
2012-01-01
Several marine and freshwater diatoms produce polyunsaturated aldehydes (PUA) in wound-activated processes. These metabolites are also released by intact diatom cells during algal blooms. Due to their activity in laboratory experiments, PUA are considered as potential mediators of diatom-bacteria interactions. Here, we tested the hypothesis that PUA mediate such processes in a close-to-field mesocosm experiment. Natural plankton communities enriched with Skeletonema marinoi strains that differ in their PUA production, a plankton control, and a plankton control supplemented with PUA at natural and elevated concentrations were observed. We monitored bacterial and viral abundance as well as bacterial community composition and did not observe any influence of PUA on these parameters even at elevated concentrations. We rather detected an alternation of the bacterial diversity over time and differences between the two S. marinoi strains, indicating unique dynamic bacterial communities in these algal blooms. These results suggest that factors other than PUA are of significance for interactions between diatoms and bacteria. PMID:22690143
Sexual Signaling and Immune Function in the Black Field Cricket Teleogryllus commodus
Drayton, Jean M.; Hall, Matthew D.; Hunt, John; Jennions, Michael D.
2012-01-01
The immunocompetence handicap hypothesis predicts that male sexual trait expression should be positively correlated with immunocompetence. Here we investigate if immune function in the cricket, Teleogryllus commodus, is related to specific individual components of male sexual signals, as well as to certain multivariate combinations of these components that females most strongly prefer. Male T. commodus produce both advertisement and courtship calls prior to mating. We measured fine-scale structural parameters of both call types and also recorded nightly advertisement calling effort. We then measured two standard indices of immune function: lysozyme-like activity of the haemolymph and haemocyte counts. We found a weak, positive relationship between advertisement calling effort and lysozyme-like activity. There was, however, little evidence that individual structural call components or the net multivariate attractiveness of either call type signalled immune function. The relationships between immunity and sexual signaling did not differ between inbred and outbred males. Our data suggest that it is unlikely that females assess overall male immune function using male calls. PMID:22808047
NASA Technical Reports Server (NTRS)
Sohn, Byung-Ju; Smith, Eric A.
1993-01-01
The maximum entropy production principle suggested by Paltridge (1975) is applied to separating the satellite-determined required total transports into atmospheric and oceanic components. Instead of using the excessively restrictive equal energy dissipation hypothesis as a deterministic tool for separating transports between the atmosphere and ocean fluids, the satellite-inferred required 2D energy transports are imposed on Paltridge's energy balance model, which is then solved as a variational problem using the equal energy dissipation hypothesis only to provide an initial guess field. It is suggested that Southern Ocean transports are weaker than previously reported. It is argued that a maximum entropy production principle can serve as a governing rule on macroscale global climate, and, in conjunction with conventional satellite measurements of the net radiation balance, provides a means to decompose atmosphere and ocean transports from the total transport field.
Chromospheric heating by acoustic shock waves
NASA Technical Reports Server (NTRS)
Jordan, Stuart D.
1993-01-01
Work by Anderson & Athay (1989) suggests that the mechanical energy required to heat the quiet solar chromosphere might be due to the dissipation of weak acoustic shocks. The calculations reported here demonstrate that a simple picture of chromospheric shock heating by acoustic waves propagating upward through a model solar atmosphere, free of both magnetic fields and local inhomogeneities, cannot reproduce their chromospheric model. The primary reason is the tendency for vertically propagating acoustic waves in the range of allowed periods to dissipate too low in the atmosphere, providing insufficient residual energy for the middle chromosphere. The effect of diverging magnetic fields and the corresponding expanding acoustic wavefronts on the mechanical dissipation length is then discussed as a means of preserving a quasi-acoustic heating hypothesis. It is argued that this effect, in a canopy that overlies the low chromosphere, might preserve the acoustic shock hypothesis consistent with the chromospheric radiation losses computed by Anderson & Athay.
Large-scale galactic motions: test of the Dipole Repeller model with the RFGC galaxies data
NASA Astrophysics Data System (ADS)
Parnovsky, S.
2017-06-01
The paper "The Dipole Repeller" in Nature Astronomy by Hoffman et al. state that the local large-scale galactic flow is dominated by a single attractor - associated with the Shapley Concentration - and a single previously unidentified repeller. We check this hypothesis using the data for 1459 galaxies from RFGC catalogue with distances up to 100 h-1 Mpc. We compared the models with multipole velocity field for pure Hubble expansion and dipole, quadrupole and octopole motion with the models with two attractors in the regions indicated by Hoffman et al with the multipole velocity field background. The results do not support the hypothesis, but does not contradict it. In any case, the inclusion of the following multipole is more effective than the addition of two attractors. Estimations of excess mass of attractors vary greatly, even changing their sign depending on the highest multipole used in model.
Terrestrial nitrogen and noble gases in lunar soils.
Ozima, M; Seki, K; Terada, N; Miura, Y N; Podosek, F A; Shinagawa, H
2005-08-04
The nitrogen in lunar soils is correlated to the surface and therefore clearly implanted from outside. The straightforward interpretation is that the nitrogen is implanted by the solar wind, but this explanation has difficulties accounting for both the abundance of nitrogen and a variation of the order of 30 per cent in the 15N/14N ratio. Here we propose that most of the nitrogen and some of the other volatile elements in lunar soils may actually have come from the Earth's atmosphere rather than the solar wind. We infer that this hypothesis is quantitatively reasonable if the escape of atmospheric gases, and implantation into lunar soil grains, occurred at a time when the Earth had essentially no geomagnetic field. Thus, evidence preserved in lunar soils might be useful in constraining when the geomagnetic field first appeared. This hypothesis could be tested by examination of lunar farside soils, which should lack the terrestrial component.
The association between male-biased sex ratio and indicators of stress in red-spotted newts.
Aspbury, Andrea S; Grayson, Kristine L; Fantaye, Selamawit; Nichols, Ian; Myers-Burton, Miranda; Ortiz-Mangual, Xavier; Gabor, Caitlin R
2017-05-01
In populations with a male-biased operational sex ratio, coercive mating by males can have fitness consequences for females. One component of reduced fitness for females in populations with a male-biased OSR may be greater activation of the stress response, resulting in higher corticosterone release rates (CORT; a glucocorticoid stress hormone in amphibians). We test the hypothesis that a male-biased sex ratio affects female activity and release rates of CORT and testosterone (T) in male and female red-spotted newts (Notophthalmus viridescens). First, we evaluated if chemical cues from a male-biased sex ratio affect activity and CORT release rates in females. We predicted that females exposed to chemical cues of three males would be less active and have higher CORT release rates than those exposed to chemical cues of one male. Second, we measured CORT release rates of red-spotted newts in field enclosures with either a male-biased or a female-biased sex ratio. We predicted that females in the male-biased treatment would have higher CORT and T release rates than those in a female-biased treatment, owing to higher levels of male harassment. We also predicted that males would have higher CORT and T release rates in male-biased treatments due to higher levels of male-male competition. Females were not less active in response to chemical cues from more males over fewer males, but there was a positive relationship between female activity and CORT when they were exposed to the cues of three males. We also found that females, but not males, in the male-biased sex ratio treatment had higher CORT and T release rates than those in the female-biased treatment. Our results support the hypothesis that a male-biased sex ratio leads to a higher stress response, which may underlie the observed decrease in immune function and body condition in previous work exposing female red-spotted newts to a male-biased sex ratio. This study furthers our understanding of the mechanistic basis for costs associated with a male-biased sex ratio in a pond-breeding amphibian. Copyright © 2017 Elsevier Inc. All rights reserved.
Convectively driven decadal zonal accelerations in Earth's fluid core
NASA Astrophysics Data System (ADS)
More, Colin; Dumberry, Mathieu
2018-04-01
Azimuthal accelerations of cylindrical surfaces co-axial with the rotation axis have been inferred to exist in Earth's fluid core on the basis of magnetic field observations and changes in the length-of-day. These accelerations have a typical timescale of decades. However, the physical mechanism causing the accelerations is not well understood. Scaling arguments suggest that the leading order torque averaged over cylindrical surfaces should arise from the Lorentz force. Decadal fluctuations in the magnetic field inside the core, driven by convective flows, could then force decadal changes in the Lorentz torque and generate zonal accelerations. We test this hypothesis by constructing a quasi-geostrophic model of magnetoconvection, with thermally driven flows perturbing a steady, imposed background magnetic field. We show that when the Alfvén number in our model is similar to that in Earth's fluid core, temporal fluctuations in the torque balance are dominated by the Lorentz torque, with the latter generating mean zonal accelerations. Our model reproduces both fast, free Alfvén waves and slow, forced accelerations, with ratios of relative strength and relative timescale similar to those inferred for the Earth's core. The temporal changes in the magnetic field which drive the time-varying Lorentz torque are produced by the underlying convective flows, shearing and advecting the magnetic field on a timescale associated with convective eddies. Our results support the hypothesis that temporal changes in the magnetic field deep inside Earth's fluid core drive the observed decadal zonal accelerations of cylindrical surfaces through the Lorentz torque.
Firsov, Mikhail L; Donner, Kristian; Govardovskii, Victor I
2002-01-01
Thermal activation of the visual pigment constitutes a fundamental constraint on visual sensitivity. Its electrical correlate in the membrane current of dark-adapted rods are randomly occurring discrete ‘dark events’ indistinguishable from responses to single photons. It has been proposed that thermal activation occurs in a small subpopulation of rhodopsin molecules where the Schiff base linking the chromophore to the protein part is unprotonated. On this hypothesis, rates of thermal activation should increase strongly with rising pH. The hypothesis has been tested by measuring the effect of pH changes on the frequency of discrete dark events in red rods of the common toad Bufo bufo. Dark noise was recorded from isolated rods using the suction pipette technique. Changes in cytoplasmic pH upon manipulations of extracellular pH were quantified by measuring, using fast single-cell microspectrophotometry, the pH-dependent metarhodopsin I-metarhodopsin II equilibrium and subsequent metarhodopsin III formation. These measurements show that, in the conditions of the electrophysiological experiments, changing perfusion pH from 6.5 to 9.3 resulted in a cytoplasmic pH shift from 7.6 to 8.5 that was readily sensed by the rhodopsin. This shift, which implies an 8-fold decrease in cytoplasmic [H+], did not increase the rate of dark events. The results contradict the hypothesis that thermal pigment activation depends on prior deprotonation of the Schiff base. PMID:11897853
Benigni, Romualdo; Bossa, Cecilia; Richard, Ann M; Yang, Chihae
2008-01-01
Mutagenicity and carcinogenicity databases are crucial resources for toxicologists and regulators involved in chemicals risk assessment. Until recently, existing public toxicity databases have been constructed primarily as "look-up-tables" of existing data, and most often did not contain chemical structures. Concepts and technologies originated from the structure-activity relationships science have provided powerful tools to create new types of databases, where the effective linkage of chemical toxicity with chemical structure can facilitate and greatly enhance data gathering and hypothesis generation, by permitting: a) exploration across both chemical and biological domains; and b) structure-searchability through the data. This paper reviews the main public databases, together with the progress in the field of chemical relational databases, and presents the ISSCAN database on experimental chemical carcinogens.
The "Rod and Fran Test": relationship priming influences cognitive-perceptual performance.
Baldwin, Mark W; Bagust, Jeff; Docherty, Sharon; Browman, Alexander S; Jackson, Joshua C
2014-01-01
We theorized that interpersonal relationships can provide structures for experience. In particular, we tested whether primes of same-sex versus mixed-sex relationships could foster cognitive-perceptual processing styles known to be associated with independence versus interdependence respectively. Seventy-two participants visualized either a same-sex or other-sex relationship partner and then performed two measures of cognitive-perceptual style. On a computerized Rod and Frame Test, individuals were more field-dependent after visualizing a mixed-sex versus same-sex relationship partner. On a measure involving perceptions of group behavior, participants demonstrated more holistic/contextually based perception after being primed with a female versus male relationship partner. These findings support the hypothesis that activated cognitive structures representing interpersonal relationships can shape individuals' cognitive-perceptual performance.
Remembering Jan Svoboda: A Personal Reflection.
Weiss, Robin A
2018-04-18
The Czech scientist Jan Svoboda was a pioneer of Rous sarcoma virus (RSV). In the 1960s, before the discovery of reverse transcriptase, he demonstrated the long-term persistence of the viral genome in non-productive mammalian cells, and he supported the DNA provirus hypothesis of Howard Temin. He showed how the virus can be rescued in the infectious form and elucidated the replication-competent nature of the Prague strain of RSV later used for the identification of the src oncogene. His studies straddled molecular oncology and virology, and he remained an active contributor to the field until his death last year. Throughout the 50 years that I was privileged to know Svoboda as my mentor and friend, I admired his depth of scientific inquiry and his steadfast integrity in the face of political oppression.
Chicken or the egg: Warburg effect and mitochondrial dysfunction
Senyilmaz, Deniz
2015-01-01
Compared with normal cells, cancer cells show alterations in many cellular processes, including energy metabolism. Studies on cancer metabolism started with Otto Warburg's observation at the beginning of the last century. According to Warburg, cancer cells rely on glycolysis more than mitochondrial respiration for energy production. Considering that glycolysis yields much less energy compared with mitochondrial respiration, Warburg hypothesized that mitochondria must be dysfunctional and this is the initiating factor for cancer formation. However, this hypothesis did not convince every scientist in the field. Some believed the opposite: the reduction in mitochondrial activity is a result of increased glycolysis. This discrepancy of opinions is ongoing. In this review, we will discuss the alterations in glycolysis, pyruvate metabolism, and the Krebs cycle in cancer cells and focus on cause and consequence. PMID:26097714
[The glymphatic system: concept, function and research progresses].
Wang, Lin-Hui; Wang, Zi-Lan; Chen, Wen-Yue; Chen, Ming-Jia; Xu, Guang-Yin
2018-02-25
The glymphatic system is a cerebrospinal fluid-interstitial fluid exchange system dependent on the water channel aquaporin-4 polarized on astrocyte endfeet, which is proposed to account for the clearance of abnormal proteins (e.g. β-amyloid) and metabolites (e.g. lactate) from the brain. Accumulating studies have revealed that glymphatic activity during sleep and general anesthesia is dramatically enhanced, while its function is significantly damaged during aging, traumatic brain injury, Alzheimer's disease, stroke, and diabetes. The glymphatic hypothesis is a breakthrough in the field of neuroscience recently, which would considerably enhance our comprehension on the cerebrospinal fluid circulation and its role in the maintenance of brain homeostasis. In this review, we briefly introduced the conceptualization of glymphatic system, summarized the recent progresses, and prospected its future investigation and potential clinical application.
Remembering Jan Svoboda: A Personal Reflection
Weiss, Robin A.
2018-01-01
The Czech scientist Jan Svoboda was a pioneer of Rous sarcoma virus (RSV). In the 1960s, before the discovery of reverse transcriptase, he demonstrated the long-term persistence of the viral genome in non-productive mammalian cells, and he supported the DNA provirus hypothesis of Howard Temin. He showed how the virus can be rescued in the infectious form and elucidated the replication-competent nature of the Prague strain of RSV later used for the identification of the src oncogene. His studies straddled molecular oncology and virology, and he remained an active contributor to the field until his death last year. Throughout the 50 years that I was privileged to know Svoboda as my mentor and friend, I admired his depth of scientific inquiry and his steadfast integrity in the face of political oppression. PMID:29670049
Volcanism, Iron, and Phytoplankton in the Heard and McDonald Islands Region, Southern Indian Ocean
NASA Astrophysics Data System (ADS)
Coffin, M. F.; Arculus, R. J.; Bowie, A. R.; Chase, Z.; Robertson, R.; Trull, T. W.; Heobi in2016 v01 Shipboard Party, T.
2016-12-01
Phytoplankton supply approximately half of the oxygen in Earth's atmosphere, and iron supply limits the growth of phytoplankton in the anemic Southern Ocean. Situated entirely within the Indian Ocean sector of the Southern Ocean are Australia's only active subaerial volcanoes, Heard and McDonald islands (HIMI) on the central Kerguelen Plateau, a large igneous province. Widespread fields of submarine volcanoes, some of which may be active, extend for distances of up to several hundred kilometers from the islands. The predominantly eastward-flowing Antarctic Circumpolar Current sweeps across the central Kerguelen Plateau, and extensive blooms of phytoplankton are observed on the Plateau down-current of HIMI. The goal of RV Investigator voyage IN2016_V01, conducted in January/February 2016, is to test the hypothesis that hydrothermal fluids, which cool active submarine volcanoes in the HIMI region, ascend from the seafloor and fertilise surface waters with iron, thereby enhancing biological productivity beginning with phytoplankton. Significant initial shipboard results include: Documentation, for the first time, of the role of active HIMI and nearby submarine volcanoes in supplying iron to the Southern Ocean. Nearshore waters had elevated dissolved iron levels. Although biomass was not correspondingly elevated, fluorescence induction data indicated highly productive resident phytoplankton. Discovery of >200 acoustic plumes emanating from the seafloor and ascending up to tens of meters into the water column near HIMI. Deep tow camera footage shows bubbles rising from the seafloor in an acoustic plume field north of Heard Island. Mapping 1,000 km2 of uncharted seafloor around HIMI. Submarine volcanic edifices punctuate the adjacent seafloor, and yielded iron-rich rocks similar to those found on HIMI, respectively. Acoustic plumes emanating from some of these features suggest active seafloor hydrothermal systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jack M.
Although several kinds of biological effects of electric and magnetic fields have been reported from laboratory studies, few have been independently replicated. When this study was being planned, the suppression of nighttime melatonin in rodents was thought to represent one of the strongest known effects of these fields. The effect had been replicated by a single laboratory for 60-Hz electric fields, and by multiple laboratories for d-c magnetic fields. The primary objective of this study was to determine whether the effect of electric and magnetic fields on melatonin would also occur in sheep exposed to a high voltage transmission line.more » The specific hypothesis tested by this experiment was as follows: The electrical environment produced by a 60-Hz, 500-kV transmission line causes a depression in nocturnal melatonin in chronically exposed female lambs. This may mimic effects of pinealectomy or constant long-day photoperiods, thus delaying the onset of reproductive cycles. Results of the study do not provide evidence to support the hypothesis. Melatonin concentrations in the sheep exposed to the transmission line showed the normal pattern of low daytime and high nighttime serum levels. As compared to the control group, there were no statistically significant group differences in the mean amplitude, phase, or duration of the nighttime melatonin elevation.« less
Benefits of interhemispheric integration on the Japanese Kana script-matching tasks.
Yoshizaki, K; Tsuji, Y
2000-02-01
We tested Banich's hypothesis that the benefits of bihemispheric processing were enhanced as task complexity increased, when some procedural shortcomings in the previous studies were overcome by using Japanese Kana script-matching tasks. In Exp. 1, the 20 right-handed subjects were given the Physical-Identity task (Katakana-Katakana scripts matching) and the Name-Identity task (Katakana-Hiragana scripts matching). On both tasks, a pair of Kana scripts was tachistoscopically presented in the left, right, and bilateral visual fields. Distractor stimuli were also presented with target Kana scripts on both tasks to equate the processing load between the hemispheres. Analysis showed that, while a bilateral visual-field advantage was found on the name-identity task, a unilateral visual-field advantage was found on the physical-identity task, suggesting that, as the computational complexity of the encoding stage was enhanced, the benefits of bilateral hemispheric processing increased. In Exp. 2, the 16 right-handed subjects were given the same physical-identity task as in Exp. 1, except Hiragana scripts were used as distractors instead of digits to enhance task difficulty. Analysis showed no differences in performance between the unilateral and bilateral visual fields. Taking into account these results of physical-identity tasks for both Exps. 1 and 2, enhancing task demand in the stage of ignoring distractors made the unilateral visual-field advantage obtained in Exp. 1 disappear in Exp. 2. These results supported Banich's hypothesis.
Cognitive Contributions of the Ventral Parietal Cortex: An Integrative Theoretical Account
Cabeza, Roberto; Ciaramelli, Elisa; Moscovitch, Morris
2012-01-01
Although ventral parietal cortex (VPC) activations can be found in a variety of cognitive domains, these activations have been typically attributed to cognitive operations specific to each domain. In this article, we propose a hypothesis that can account for VPC activations across all the cognitive domains reviewed. We first review VPC activations in the domains of perceptual and motor reorienting, episodic memory retrieval, language and number processing, theory of mind, and episodic memory encoding. Then, we consider the localization of VPC activations across domains, and conclude that they are largely overlapping with some differences around the edges. Finally, we assess how well four different hypotheses of VPC function can explain findings in various domains, and conclude that a bottom-up attention hypothesis provides the most complete and parsimonious account. PMID:22609315
Enriching plausible new hypothesis generation in PubMed.
Baek, Seung Han; Lee, Dahee; Kim, Minjoo; Lee, Jong Ho; Song, Min
2017-01-01
Most of earlier studies in the field of literature-based discovery have adopted Swanson's ABC model that links pieces of knowledge entailed in disjoint literatures. However, the issue concerning their practicability remains to be solved since most of them did not deal with the context surrounding the discovered associations and usually not accompanied with clinical confirmation. In this study, we aim to propose a method that expands and elaborates the existing hypothesis by advanced text mining techniques for capturing contexts. We extend ABC model to allow for multiple B terms with various biological types. We were able to concretize a specific, metabolite-related hypothesis with abundant contextual information by using the proposed method. Starting from explaining the relationship between lactosylceramide and arterial stiffness, the hypothesis was extended to suggest a potential pathway consisting of lactosylceramide, nitric oxide, malondialdehyde, and arterial stiffness. The experiment by domain experts showed that it is clinically valid. The proposed method is designed to provide plausible candidates of the concretized hypothesis, which are based on extracted heterogeneous entities and detailed relation information, along with a reliable ranking criterion. Statistical tests collaboratively conducted with biomedical experts provide the validity and practical usefulness of the method unlike previous studies. Applying the proposed method to other cases, it would be helpful for biologists to support the existing hypothesis and easily expect the logical process within it.
Investigating thought disorder in schizophrenia: evidence for pathological activation.
Safadi, Ziad; Lichtenstein-Vidne, Limor; Dobrusin, Michael; Henik, Avishai
2013-01-01
Previous research has yielded evidence for enhanced semantic priming in formal thought-disordered schizophrenia patients, a result that fits well with the hypothesis of disinhibited processes of spreading activation in this population. The current study examined whether hyper priming among schizophrenia patients is an outcome of further spreading of activation of a node or a result of farther activation of nodes in the semantic network. We also try to shed light on the fate of this activation. The present study tested this hypothesis by using semantic and identical priming in two different experiments. SOA (stimulus onset asynchrony) was manipulated (240 ms vs. 740 ms) within block. It is assumed that among healthy individuals, performance relies on a balance between activation and inhibition processes, contrary to in schizophrenic individuals. In order to examine this hypothesis, we compared formal thought-disordered schizophrenia patients, non thought-disordered schizophrenia patients, and healthy controls. For thought-disordered schizophrenia patients, we found a large positive semantic effect and identical priming effect (129 ms and 154 ms, respectively) only with short SOA. SOA and type of priming did not modulate priming effects in the control groups. This result supports the claim that there is a lack of inhibitory processes among thought-disordered patients. Hyper priming in the thought-disorder group may be an outcome of hyper activation followed by rapid decay below baseline threshold.
Facial expressions of emotion are not culturally universal.
Jack, Rachael E; Garrod, Oliver G B; Yu, Hui; Caldara, Roberto; Schyns, Philippe G
2012-05-08
Since Darwin's seminal works, the universality of facial expressions of emotion has remained one of the longest standing debates in the biological and social sciences. Briefly stated, the universality hypothesis claims that all humans communicate six basic internal emotional states (happy, surprise, fear, disgust, anger, and sad) using the same facial movements by virtue of their biological and evolutionary origins [Susskind JM, et al. (2008) Nat Neurosci 11:843-850]. Here, we refute this assumed universality. Using a unique computer graphics platform that combines generative grammars [Chomsky N (1965) MIT Press, Cambridge, MA] with visual perception, we accessed the mind's eye of 30 Western and Eastern culture individuals and reconstructed their mental representations of the six basic facial expressions of emotion. Cross-cultural comparisons of the mental representations challenge universality on two separate counts. First, whereas Westerners represent each of the six basic emotions with a distinct set of facial movements common to the group, Easterners do not. Second, Easterners represent emotional intensity with distinctive dynamic eye activity. By refuting the long-standing universality hypothesis, our data highlight the powerful influence of culture on shaping basic behaviors once considered biologically hardwired. Consequently, our data open a unique nature-nurture debate across broad fields from evolutionary psychology and social neuroscience to social networking via digital avatars.
Facial expressions of emotion are not culturally universal
Jack, Rachael E.; Garrod, Oliver G. B.; Yu, Hui; Caldara, Roberto; Schyns, Philippe G.
2012-01-01
Since Darwin’s seminal works, the universality of facial expressions of emotion has remained one of the longest standing debates in the biological and social sciences. Briefly stated, the universality hypothesis claims that all humans communicate six basic internal emotional states (happy, surprise, fear, disgust, anger, and sad) using the same facial movements by virtue of their biological and evolutionary origins [Susskind JM, et al. (2008) Nat Neurosci 11:843–850]. Here, we refute this assumed universality. Using a unique computer graphics platform that combines generative grammars [Chomsky N (1965) MIT Press, Cambridge, MA] with visual perception, we accessed the mind’s eye of 30 Western and Eastern culture individuals and reconstructed their mental representations of the six basic facial expressions of emotion. Cross-cultural comparisons of the mental representations challenge universality on two separate counts. First, whereas Westerners represent each of the six basic emotions with a distinct set of facial movements common to the group, Easterners do not. Second, Easterners represent emotional intensity with distinctive dynamic eye activity. By refuting the long-standing universality hypothesis, our data highlight the powerful influence of culture on shaping basic behaviors once considered biologically hardwired. Consequently, our data open a unique nature–nurture debate across broad fields from evolutionary psychology and social neuroscience to social networking via digital avatars. PMID:22509011
Land-use change and soil type are drivers of fungal and archaeal communities in the Pampa biome.
Lupatini, Manoeli; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Suleiman, Afnan Khalil Ahmad; Fulthorpe, Roberta R; Roesch, Luiz Fernando Würdig
2013-02-01
The current study aimed to test the hypothesis that both land-use change and soil type are responsible for the major changes in the fungal and archaeal community structure and functioning of the soil microbial community in Brazilian Pampa biome. Soil samples were collected at sites with different land-uses (native grassland, native forest, Eucalyptus and Acacia plantation, soybean and watermelon field) and in a typical toposequence in Pampa biome formed by Paleudult, Albaqualf and alluvial soils. The structure of soil microbial community (archaeal and fungal) was evaluated by ribosomal intergenic spacer analysis and soil functional capabilities were measured by microbial biomass carbon and metabolic quotient. We detected different patterns in microbial community driven by land-use change and soil type, showing that both factors are significant drivers of fungal and archaeal community structure and biomass and microbial activity. Fungal community structure was more affected by land-use and archaeal community was more affected by soil type. Irrespective of the land-use or soil type, a large percentage of operational taxonomic unit were shared among the soils. We accepted the hypothesis that both land-use change and soil type are drivers of archaeal and fungal community structure and soil functional capabilities. Moreover, we also suggest the existence of a soil microbial core.
Are personality differences in a small iteroparous mammal maintained by a life-history trade-off?
Dammhahn, Melanie
2012-01-01
Despite increasing interest, animal personality is still a puzzling phenomenon. Several theoretical models have been proposed to explain intraindividual consistency and interindividual variation in behaviour, which have been primarily supported by qualitative data and simulations. Using an empirical approach, I tested predictions of one main life-history hypothesis, which posits that consistent individual differences in behaviour are favoured by a trade-off between current and future reproduction. Data on life-history were collected for individuals of a natural population of grey mouse lemurs (Microcebus murinus). Using open-field and novel-object tests, I quantified variation in activity, exploration and boldness for 117 individuals over 3 years. I found systematic variation in boldness between individuals of different residual reproductive value. Young males with low current but high expected future fitness were less bold than older males with high current fecundity, and males might increase in boldness with age. Females have low variation in assets and in boldness with age. Body condition was not related to boldness and only explained marginal variation in exploration. Overall, these data indicate that a trade-off between current and future reproduction might maintain personality variation in mouse lemurs, and thus provide empirical support of this life-history trade-off hypothesis. PMID:22398164
Hippocampal Replay Captures the Unique Topological Structure of a Novel Environment
Wu, Xiaojing
2014-01-01
Hippocampal place-cell replay has been proposed as a fundamental mechanism of learning and memory, which might support navigational learning and planning. An important hypothesis of relevance to these proposed functions is that the information encoded in replay should reflect the topological structure of experienced environments; that is, which places in the environment are connected with which others. Here we report several attributes of replay observed in rats exploring a novel forked environment that support the hypothesis. First, we observed that overlapping replays depicting divergent trajectories through the fork recruited the same population of cells with the same firing rates to represent the common portion of the trajectories. Second, replay tended to be directional and to flip the represented direction at the fork. Third, replay-associated sharp-wave–ripple events in the local field potential exhibited substructure that mapped onto the maze topology. Thus, the spatial complexity of our recording environment was accurately captured by replay: the underlying neuronal activities reflected the bifurcating shape, and both directionality and associated ripple structure reflected the segmentation of the maze. Finally, we observed that replays occurred rapidly after small numbers of experiences. Our results suggest that hippocampal replay captures learned information about environmental topology to support a role in navigation. PMID:24806672
Genomic instantiation of consciousness in neurons through a biophoton field theory.
Cacha, Lleuvelyn A; Poznanski, Roman R
2014-06-01
A theoretical framework is developed based on the premise that brains evolved into sufficiently complex adaptive systems capable of instantiating genomic consciousness through self-awareness and complex interactions that recognize qualitatively the controlling factors of biological processes. Furthermore, our hypothesis assumes that the collective interactions in neurons yield macroergic effects, which can produce sufficiently strong electric energy fields for electronic excitations to take place on the surface of endogenous structures via alpha-helical integral proteins as electro-solitons. Specifically the process of radiative relaxation of the electro-solitons allows for the transfer of energy via interactions with deoxyribonucleic acid (DNA) molecules to induce conformational changes in DNA molecules producing an ultra weak non-thermal spontaneous emission of coherent biophotons through a quantum effect. The instantiation of coherent biophotons confined in spaces of DNA molecules guides the biophoton field to be instantaneously conducted along the axonal and neuronal arbors and in-between neurons and throughout the cerebral cortex (cortico-thalamic system) and subcortical areas (e.g., midbrain and hindbrain). Thus providing an informational character of the electric coherence of the brain - referred to as quantum coherence. The biophoton field is realized as a conscious field upon the re-absorption of biophotons by exciplex states of DNA molecules. Such quantum phenomenon brings about self-awareness and enables objectivity to have access to subjectivity in the unconscious. As such, subjective experiences can be recalled to consciousness as subjective conscious experiences or qualia through co-operative interactions between exciplex states of DNA molecules and biophotons leading to metabolic activity and energy transfer across proteins as a result of protein-ligand binding during protein-protein communication. The biophoton field as a conscious field is attributable to the resultant effect of specifying qualia from the metabolic energy field that is transported in macromolecular proteins throughout specific networks of neurons that are constantly transforming into more stable associable representations as molecular solitons. The metastability of subjective experiences based on resonant dynamics occurs when bottom-up patterns of neocortical excitatory activity are matched with top-down expectations as adaptive dynamic pressures. These dynamics of on-going activity patterns influenced by the environment and selected as the preferred subjective experience in terms of a functional field through functional interactions and biological laws are realized as subjectivity and actualized through functional integration as qualia. It is concluded that interactionism and not information processing is the key in understanding how consciousness bridges the explanatory gap between subjective experiences and their neural correlates in the transcendental brain.
Forecast for solar cycle 23 activity: a progress report
NASA Astrophysics Data System (ADS)
Ahluwalia, H. S.
2001-08-01
At the 25th International Cosmic Ray Conference (ICRC) at Durban, South Africa, I announced the discovery of a three cycle quasi-periodicity in the ion chamber data string assembled by me, for the 1937 to 1994 period (Conf. Pap., v. 2, p. 109, 1997). It corresponded in time with a similar quasi-periodicity observed in the dataset for the planetary index Ap. At the 26th ICRC at Salt Lake City, UT, I reported on our analysis of the Ap data to forecast the amplitude of solar cycle 23 activity (Conf. Pap., v. 2, pl. 260, 1999). I predicted that cycle 23 will be moderate (a la cycle 17), notwithstanding the early exuberant forecasts of some solar astronomers that cycle 23, "may be one of the greatest cycles in recent times, if not the greatest." Sunspot number data up to April 2001 indicate that our forecast appears to be right on the mark. We review the solar, interplanetary and geophysical data and describe the important lessons learned from this experience. 1. Introduction Ohl (1971) was the first to realize that Sun may be sending us a subliminal message as to its intent for its activity (Sunspot Numbers, SSN) in the next cycle. He posited that the message was embedded in the geomagnetic activity (given by sum Kp). Schatten at al (1978) suggested that Ohl hypothesis could be understood on the basis of the model proposed by Babcock (1961) who suggested that the high latitude solar poloidal fields, near a minimum, emerge as the toroidal fields on opposite sides of the solar equator. This is known as the Solar Dynamo Model. One can speculate that the precursor poloidal solar field is entrained in the high speed solar wind streams (HSSWS) from the coronal holes which are observed at Earth's orbit during the descending phase of the previous cycle. The interaction
Do the Brain Networks of Scientists Account for Their Superiority in Hypothesis-Generating?
ERIC Educational Resources Information Center
Lee, Jun-Ki
2012-01-01
Where do scientists' superior abilities originate from when generating a creative idea? What different brain functions are activated between scientists and i) general academic high school students and ii) science high school students when generating a biological hypothesis? To reveal brain level explanations for these questions, this paper…
ERIC Educational Resources Information Center
Lee, Jun-Ki; Kwon, Yong-Ju
2011-01-01
Using functional magnetic resonance imaging (fMRI), this study investigates and discusses neurological explanations for, and the educational implications of, the neural network activations involved in hypothesis-generating and hypothesis-understanding for biology education. Two sets of task paradigms about biological phenomena were designed:…
Dark Energy and Dark Matter Phenomena and the Universe with Variable Gravitational Mass
NASA Astrophysics Data System (ADS)
Gorkavyi, N.
2005-12-01
Generation of high-frequency gravitational waves near the singularity is a crucial factor for understanding the origin and dynamics of the Universe. Emission of gravitational waves increases with a decreasing radius of collapsed object much faster than a gravitational force itself. Gravitationally unstable matter of the Universe will be completely converted into gravitational radiation during the Big Crunch. According to Misner, Thorne & Wheeler (Gravitation, 1977, p.959) plane gravitational waves have not gravitational mass or spacetime is flat everywhere outside the pulse. We can propose that the gravitational mass of the Universe is vanished after converting matter into gravitational waves. This hypothesis in the framework of Einstein's theory of gravitation can solve the problem of singularity without contradiction with theorems by Penrose-Hawking; explain the acceleration of our Universe as the effect of a retarded gravitational potential (Gorkavyi, BAAS, 2003, 35, #3) and the low quadrupole in fluctuations in CMB as result of blue-shift effect in a gravitational field. Proposed solution of dark energy problem free from coincidence problems. The hypothesis keeps best parts of Big Bang theory and inflation model without any unknown physical fields or new dimensions. According to this hypothesis a relic sea of high-frequency gravitational radiation in our Universe can be very dense. Interaction of relic gravitational waves with gravitational fields of galaxies and stars can create an additional dynamical effects like pressure of relic radiation that proportional to gravitational potential GM/(Rc2). This effect can be responsible for dark matter phenomena in galaxies and the Pioneer acceleration in the solar system (Gorkavyi, BAAS, 2005, 37, #2).
NASA Technical Reports Server (NTRS)
Hussain, A. K. M. F.
1980-01-01
Comparisons of the distributions of large scale structures in turbulent flow with distributions based on time dependent signals from stationary probes and the Taylor hypothesis are presented. The study investigated an area in the near field of a 7.62 cm circular air jet at a Re of 32,000, specifically having coherent structures through small-amplitude controlled excitation and stable vortex pairing in the jet column mode. Hot-wire and X-wire anemometry were employed to establish phase averaged spatial distributions of longitudinal and lateral velocities, coherent Reynolds stress and vorticity, background turbulent intensities, streamlines and pseudo-stream functions. The Taylor hypothesis was used to calculate spatial distributions of the phase-averaged properties, with results indicating that the usage of the local time-average velocity or streamwise velocity produces large distortions.
[Interoception and decision-making].
Ohira, Hideki
2015-02-01
We sometimes make decisions relying not necessarily on deliberative thoughts but on intuitive and emotional processes in uncertain situations. The somatic marker hypothesis proposed by Damasio argued that interoception, which means bodily responses such as sympathetic activity, can be represented in the insula and anterior cingulate cortex and can play critical roles in decision-making. Though this hypothesis has been criticized in its theoretical and empirical aspects, recent studies are expanding the hypothesis to elucidate multiple bodily responses including autonomic, endocrine, and immune activities that affect decision-making. In addition, cumulative findings suggest that the anterior insula where the inner model of interoception is represented can act as an interface between the brain and body in decision-making. This article aims to survey recent findings on the brain-body interplays underlying decision-making, and to propose hypotheses on the significance of the body in decision-making.
On the interdependence of cognition and emotion
Storbeck, Justin; Clore, Gerald L.
2008-01-01
Affect and cognition have long been treated as independent entities, but in the current review we suggest that affect and cognition are in fact highly interdependent. We open the article by discussing three classic views for the independence of affect. These are (i) the affective independence hypothesis, that emotion is processed independently from cognition, (ii) the affective primacy hypothesis, that evaluative processing precedes semantic processing, and (iii) the affective automaticity hypothesis, that affectively potent stimuli commandeer attention and evaluation is automatic. We argue that affect is not independent from cognition, that affect is not primary to cognition, nor is affect automatically elicited. The second half of the paper discusses several instances of how affect influences cognition. We review experiments showing affective involvement in perception, semantic activation, and attitude activation. We conclude that one function of affect is to regulate cognitive processing. PMID:18458789
Roelle, Julian; Müller, Claudia; Roelle, Detlev; Berthold, Kirsten
2015-01-01
Although instructional explanations are commonly provided when learners are introduced to new content, they often fail because they are not integrated into effective learning activities. The recently introduced active-constructive-interactive framework posits an effectiveness hierarchy in which interactive learning activities are at the top; these are then followed by constructive and active learning activities, respectively. Against this background, we combined instructional explanations with different types of prompts that were designed to elicit these learning activities and tested the central predictions of the active-constructive-interactive framework. In Experiment 1, N = 83 students were randomly assigned to one of four combinations of instructional explanations and prompts. To test the active < constructive learning hypothesis, the learners received either (1) complete explanations and engaging prompts designed to elicit active activities or (2) explanations that were reduced by inferences and inference prompts designed to engage learners in constructing the withheld information. Furthermore, in order to explore how interactive learning activities can be elicited, we gave the learners who had difficulties in constructing the prompted inferences adapted remedial explanations with either (3) unspecific engaging prompts or (4) revision prompts. In support of the active < constructive learning hypothesis, we found that the learners who received reduced explanations and inference prompts outperformed the learners who received complete explanations and engaging prompts. Moreover, revision prompts were more effective in eliciting interactive learning activities than engaging prompts. In Experiment 2, N = 40 students were randomly assigned to either (1) a reduced explanations and inference prompts or (2) a reduced explanations and inference prompts plus adapted remedial explanations and revision prompts condition. In support of the constructive < interactive learning hypothesis, the learners who received adapted remedial explanations and revision prompts as add-ons to reduced explanations and inference prompts acquired more conceptual knowledge.
Roelle, Julian; Müller, Claudia; Roelle, Detlev; Berthold, Kirsten
2015-01-01
Although instructional explanations are commonly provided when learners are introduced to new content, they often fail because they are not integrated into effective learning activities. The recently introduced active-constructive-interactive framework posits an effectiveness hierarchy in which interactive learning activities are at the top; these are then followed by constructive and active learning activities, respectively. Against this background, we combined instructional explanations with different types of prompts that were designed to elicit these learning activities and tested the central predictions of the active-constructive-interactive framework. In Experiment 1, N = 83 students were randomly assigned to one of four combinations of instructional explanations and prompts. To test the active < constructive learning hypothesis, the learners received either (1) complete explanations and engaging prompts designed to elicit active activities or (2) explanations that were reduced by inferences and inference prompts designed to engage learners in constructing the withheld information. Furthermore, in order to explore how interactive learning activities can be elicited, we gave the learners who had difficulties in constructing the prompted inferences adapted remedial explanations with either (3) unspecific engaging prompts or (4) revision prompts. In support of the active < constructive learning hypothesis, we found that the learners who received reduced explanations and inference prompts outperformed the learners who received complete explanations and engaging prompts. Moreover, revision prompts were more effective in eliciting interactive learning activities than engaging prompts. In Experiment 2, N = 40 students were randomly assigned to either (1) a reduced explanations and inference prompts or (2) a reduced explanations and inference prompts plus adapted remedial explanations and revision prompts condition. In support of the constructive < interactive learning hypothesis, the learners who received adapted remedial explanations and revision prompts as add-ons to reduced explanations and inference prompts acquired more conceptual knowledge. PMID:25853629
Parallel Activation in Bilingual Phonological Processing
ERIC Educational Resources Information Center
Lee, Su-Yeon
2011-01-01
In bilingual language processing, the parallel activation hypothesis suggests that bilinguals activate their two languages simultaneously during language processing. Support for the parallel activation mainly comes from studies of lexical (word-form) processing, with relatively less attention to phonological (sound) processing. According to…
[PHYSIOLOGY AND PHARMACOLOGICAL PROPERTIES OF NANOMATERIALS].
Chekman, I S
2015-01-01
Literature data and results of our department studies on theoretical and practical basics of nanoscience were summarized in the article. Much attention is paid to research in the field of physical, chemical, biological, medical, physiological, pharmacological, and toxicological properties of nanomaterials with the aim of their wider implementation into practice lately. The discovery of new quantum/wave properties of nanoparticles is of particular importance. The author of the article advances an idea: wave properties of nanomaterials play greater role with a decrease in particle size. The preponderance of wave properties compared with corpuscular ones in nanostructures determines a great change in their physical. chemical properties and an increase in physical, mechanical biological, physiological, pharmacological, and toxicologica activity. The idea advanced in the article hasn't been verified by theoretical or experimental studies for now. Joined efforts of scientists of different scientific fields are needed. A confirmation of hypothesis by specific findings will be of great importance for physiology, medicine, pharmacology and promote an implementation of new efficacious preparations into clinical practice. New fundamental discoveries could be made only by multidisciplinary approach.
Michmizos, Kostis P; Nikita, Konstantina S
2011-01-01
The crucial engagement of the subthalamic nucleus (STN) with the neurosurgical procedure of deep brain stimulation (DBS) that alleviates medically intractable Parkinsonian tremor augments the need to refine our current understanding of STN. To enhance the efficacy of DBS as a result of precise targeting, STN boundaries are accurately mapped using extracellular microelectrode recordings (MERs). We utilized the intranuclear MER to acquire the local field potential (LFP) and drive an Izhikevich model of an STN neuron. Using the model as the test bed for clinically acquired data, we demonstrated that stimulation of the STN neuron produces excitatory responses that tonically increase its average firing rate and alter the pattern of its neuronal activity. We also found that the spiking rhythm increases linearly with the increase of amplitude, frequency, and duration of the DBS pulse, inside the clinical range. Our results are in agreement with the current hypothesis that DBS increases the firing rate of STN and masks its pathological bursting firing pattern.
Eye Velocity Gain Fields in MSTd During Optokinetic Stimulation
Brostek, Lukas; Büttner, Ulrich; Mustari, Michael J.; Glasauer, Stefan
2015-01-01
Lesion studies argue for an involvement of cortical area dorsal medial superior temporal area (MSTd) in the control of optokinetic response (OKR) eye movements to planar visual stimulation. Neural recordings during OKR suggested that MSTd neurons directly encode stimulus velocity. On the other hand, studies using radial visual flow together with voluntary smooth pursuit eye movements showed that visual motion responses were modulated by eye movement-related signals. Here, we investigated neural responses in MSTd during continuous optokinetic stimulation using an information-theoretic approach for characterizing neural tuning with high resolution. We show that the majority of MSTd neurons exhibit gain-field-like tuning functions rather than directly encoding one variable. Neural responses showed a large diversity of tuning to combinations of retinal and extraretinal input. Eye velocity-related activity was observed prior to the actual eye movements, reflecting an efference copy. The observed tuning functions resembled those emerging in a network model trained to perform summation of 2 population-coded signals. Together, our findings support the hypothesis that MSTd implements the visuomotor transformation from retinal to head-centered stimulus velocity signals for the control of OKR. PMID:24557636
Olokundun, Maxwell; Moses, Chinonye Love; Iyiola, Oluwole; Ibidunni, Stephen; Ogbari, Mercy; Peter, Fred; Borishade, Taiye
2018-08-01
Traditional methods of teaching entrepreneurship in universities involves more theoretical approaches which are less effective in motivating considerations for an entrepreneurship career. This owes to the fact that such techniques essentially make students develop a dormant attitude rather than active participation. Expert views suggest that experiential entrepreneurship teaching methods in universities which involve practical activities and active participation can be considered salient to students' development of entrepreneurial interest an business startup potentials. This present study presents data on the extent to which experiential teaching methods in entrepreneurship adopted by Nigerian universities stimulate students' entrepreneurial interest and business startups. Data have been gathered following a descriptive cross-sectional quantitative survey conducted among university students ( N = 600) of four selected institutions in Nigeria offering a degree programme in entrepreneurship. Hierarchical Multiple Regression Analysis was used in confirming the hypothesis proposed in the study using the Statistical Package for Social Sciences (SPSS) version 22.The findings from the analysis showed that the adoption of experiential practical activities considered as best practices in entrepreneurship teaching in Nigerian universities can stimulate students' interest and drive for engaging in business start-up activities even as undergraduates. The field data set is made extensively available to allow for critical investigation.
Joundi, Raed A; Brittain, John-Stuart; Green, Alex L; Aziz, Tipu Z; Brown, Peter; Jenkinson, Ned
2013-03-01
The function of synchronous oscillatory activity at beta band (15-30Hz) frequencies within the basal ganglia is unclear. Here we sought support for the hypothesis that beta activity has a global function within the basal ganglia and is not directly involved in the coding of specific biomechanical parameters of movement. We recorded local field potential activity from the subthalamic nuclei of 11 patients with Parkinson's disease during a synchronized tapping task at three different externally cued rates. Beta activity was suppressed during tapping, reaching a minimum that differed little across the different tapping rates despite an increase in velocity of finger movements. Thus beta power suppression was independent of specific motor parameters. Moreover, although beta oscillations remained suppressed during all tapping rates, periods of resynchronization between taps were markedly attenuated during high rate tapping. As such, a beta rebound above baseline between taps at the lower rates was absent at the high rate. Our results demonstrate that beta desynchronization in the region of the subthalamic nucleus is independent of motor parameters and that the beta resynchronization is differentially modulated by rate of finger tapping, These findings implicate consistent beta suppression in the facilitation of continuous movement sequences. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Zavala, Baltazar; Damera, Srikanth; Dong, Jian Wilson; Lungu, Codrin; Brown, Peter; Zaghloul, Kareem A
2017-01-01
Recent evidence has suggested that prefrontal cortical structures may inhibit impulsive actions during conflict through activation of the subthalamic nucleus (STN). Consistent with this hypothesis, deep brain stimulation to the STN has been associated with altered prefrontal cortical activity and impaired response inhibition. The interactions between oscillatory activity in the STN and its presumably antikinetic neuronal spiking, however, remain poorly understood. Here, we simultaneously recorded intraoperative local field potential and spiking activity from the human STN as participants performed a sensorimotor action selection task involving conflict. We identified several STN neuronal response types that exhibited different temporal dynamics during the task. Some neurons showed early, cue-related firing rate increases that remained elevated longer during high conflict trials, whereas other neurons showed late, movement-related firing rate increases. Notably, the high conflict trials were associated with an entrainment of individual neurons by theta- and beta-band oscillations, both of which have been observed in cortical structures involved in response inhibition. Our data suggest that frequency-specific activity in the beta and theta bands influence STN firing to inhibit impulsivity during conflict. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Adult-Supplied Structure and Children's Activity Levels.
ERIC Educational Resources Information Center
Carpenter, C. J.; And Others
This study investigated the relationship between preschool children's participation in play activities structured by adults and the level of motor activity children exhibited while in those activities, to test the hypothesis that children's motor activity levels vary according to the level of structure imposed on activities by adults. Subjects…
Ohta, Shinri; Fukui, Naoki; Sakai, Kuniyoshi L.
2013-01-01
The nature of computational principles of syntax remains to be elucidated. One promising approach to this problem would be to construct formal and abstract linguistic models that parametrically predict the activation modulations in the regions specialized for linguistic processes. In this article, we review recent advances in theoretical linguistics and functional neuroimaging in the following respects. First, we introduce the two fundamental linguistic operations: Merge (which combines two words or phrases to form a larger structure) and Search (which searches and establishes a syntactic relation of two words or phrases). We also illustrate certain universal properties of human language, and present hypotheses regarding how sentence structures are processed in the brain. Hypothesis I is that the Degree of Merger (DoM), i.e., the maximum depth of merged subtrees within a given domain, is a key computational concept to properly measure the complexity of tree structures. Hypothesis II is that the basic frame of the syntactic structure of a given linguistic expression is determined essentially by functional elements, which trigger Merge and Search. We then present our recent functional magnetic resonance imaging experiment, demonstrating that the DoM is indeed a key syntactic factor that accounts for syntax-selective activations in the left inferior frontal gyrus and supramarginal gyrus. Hypothesis III is that the DoM domain changes dynamically in accordance with iterative Merge applications, the Search distances, and/or task requirements. We confirm that the DoM accounts for activations in various sentence types. Hypothesis III successfully explains activation differences between object- and subject-relative clauses, as well as activations during explicit syntactic judgment tasks. A future research on the computational principles of syntax will further deepen our understanding of uniquely human mental faculties. PMID:24385957
Ohta, Shinri; Fukui, Naoki; Sakai, Kuniyoshi L
2013-01-01
The nature of computational principles of syntax remains to be elucidated. One promising approach to this problem would be to construct formal and abstract linguistic models that parametrically predict the activation modulations in the regions specialized for linguistic processes. In this article, we review recent advances in theoretical linguistics and functional neuroimaging in the following respects. First, we introduce the two fundamental linguistic operations: Merge (which combines two words or phrases to form a larger structure) and Search (which searches and establishes a syntactic relation of two words or phrases). We also illustrate certain universal properties of human language, and present hypotheses regarding how sentence structures are processed in the brain. Hypothesis I is that the Degree of Merger (DoM), i.e., the maximum depth of merged subtrees within a given domain, is a key computational concept to properly measure the complexity of tree structures. Hypothesis II is that the basic frame of the syntactic structure of a given linguistic expression is determined essentially by functional elements, which trigger Merge and Search. We then present our recent functional magnetic resonance imaging experiment, demonstrating that the DoM is indeed a key syntactic factor that accounts for syntax-selective activations in the left inferior frontal gyrus and supramarginal gyrus. Hypothesis III is that the DoM domain changes dynamically in accordance with iterative Merge applications, the Search distances, and/or task requirements. We confirm that the DoM accounts for activations in various sentence types. Hypothesis III successfully explains activation differences between object- and subject-relative clauses, as well as activations during explicit syntactic judgment tasks. A future research on the computational principles of syntax will further deepen our understanding of uniquely human mental faculties.
Do physical leisure time activities prevent fatigue? A 15 month prospective study of nurses' aides.
Eriksen, W; Bruusgaard, D
2004-06-01
To test the hypothesis that physical leisure time activities reduce the risk of developing persistent fatigue. The hypothesis was tested in a sample that was homogeneous with respect to sex and occupation, with a prospective cohort design. Of 6234 vocationally active, female, Norwegian nurses' aides, not on leave because of illness or pregnancy when they completed a mailed questionnaire in 1999, 5341 (85.7%) completed a second questionnaire 15 months later. The main outcome measure was the prevalence of persistent fatigue-that is, always or usually feeling fatigued in the daytime during the preceding 14 days. In participants without persistent fatigue at baseline, reported engagement in physical leisure time activities for 20 minutes or more at least once a week during the three months before baseline was associated with a reduced risk of persistent fatigue at the follow up (odds ratio = 0.70; 95% confidence interval 0.55 to 0.89), after adjustments for age, affective symptoms, sleeping problems, musculoskeletal pain, long term health problems of any kind, smoking, marital status, tasks of a caring nature during leisure time, and work factors at baseline. The study supports the hypothesis that physical leisure time activities reduce the risk of developing persistent fatigue.
Extracurricular participation and academic outcomes: testing the over-scheduling hypothesis.
Fredricks, Jennifer A
2012-03-01
There is a growing concern that some youth are overscheduled in extracurricular activities, and that this increasing involvement has negative consequences for youth functioning. This article used data from the Educational Longitudinal Study (ELS: 2002), a nationally representative and ethnically diverse longitudinal sample of American high school students, to evaluate this hypothesis (N = 13,130; 50.4% female). On average, 10th graders participated in between 2 and 3 extracurricular activities, for an average of 5 h per week. Only a small percentage of 10th graders reported participating in extracurricular activities at high levels. Moreover, a large percentage of the sample reported no involvement in school-based extracurricular contexts in the after-school hours. Controlling for some demographic factors, prior achievement, and school size, the breadth (i.e., number of extracurricular activities) and the intensity (i.e., time in extracurricular activities) of participation at 10th grade were positively associated with math achievement test scores, grades, and educational expectations at 12th grade. Breadth and intensity of participation at 10th grade also predicted educational status at 2 years post high school. In addition, the non-linear function was significant. At higher breadth and intensity, the academic adjustment of youth declined. Implications of the findings for the over-scheduling hypothesis are discussed.
Damodaran, Srinivasan
2015-07-01
Many life-sustaining processes in living cells occur at the membrane-water interface. The pertinent questions that need to be asked are what is the evolutionary reason for biology to choose the membrane-water interface as the site for performing and/or controlling crucial biological reactions and what is the key physical principle that is singular to the membrane-water interface that biology exploits for regulating metabolic processes in cells? In this review, a hypothesis is developed, which espouses that cells control activities of membrane-bound enzymes and receptor activated processes via manipulating the thermodynamic activity of water at the membrane-water interfacial region. In support of this hypothesis, first we establish that the surface pressure of a lipid monolayer is a direct measure of a reduction in the thermodynamic activity of interfacial water. Second, we show that the surface pressure-dependent activation/inactivation of interfacial enzymes is fundamentally related to their dependence on interfacial water activity. We extend this argument to infer that cells might manipulate activities of membrane-associated biological processes via manipulating the activity of interfacial water via localized compression or expansion of the interface. In this paper, we critically analyze literature data on mechano-activation of large pore ion channels in Escherichia coli spheroplasts and G-proteins in reconstituted lipid vesicles, and show that these pressure-induced activation processes are fundamentally and quantitatively related to changes in the thermodynamic state of interfacial water, caused by mechanical stretching of the bilayer. Copyright © 2015 Elsevier B.V. All rights reserved.
A heating mechanism for the chromospheres of M dwarf stars
NASA Technical Reports Server (NTRS)
Giampapa, M. S.; Golub, L.; Rosner, R.; Vaiana, G.; Linsky, J. L.; Worden, S. P.
1981-01-01
The atmospheric structure of the dwarf M-stars which is especially important to the general field of stellar chromospheres and coronae was investigated. The M-dwarf stars constitute a class of objects for which the discrepancy between the predictions of the acoustic wave chromospheric/coronal heating hypothesis and the observations is most vivid. It is assumed that they represent a class of stars where alternative atmospheric heating mechanisms, presumably magnetically related, are most clearly manifested. Ascertainment of the validity of a hypothesis to account for the origin of the chromospheric and transition region line emission in M-dwarf stars is proposed.
Increased Course Structure Improves Performance in Introductory Biology
Freeman, Scott; Haak, David; Wenderoth, Mary Pat
2011-01-01
We tested the hypothesis that highly structured course designs, which implement reading quizzes and/or extensive in-class active-learning activities and weekly practice exams, can lower failure rates in an introductory biology course for majors, compared with low-structure course designs that are based on lecturing and a few high-risk assessments. We controlled for 1) instructor effects by analyzing data from quarters when the same instructor taught the course, 2) exam equivalence with new assessments called the Weighted Bloom's Index and Predicted Exam Score, and 3) student equivalence using a regression-based Predicted Grade. We also tested the hypothesis that points from reading quizzes, clicker questions, and other “practice” assessments in highly structured courses inflate grades and confound comparisons with low-structure course designs. We found no evidence that points from active-learning exercises inflate grades or reduce the impact of exams on final grades. When we controlled for variation in student ability, failure rates were lower in a moderately structured course design and were dramatically lower in a highly structured course design. This result supports the hypothesis that active-learning exercises can make students more skilled learners and help bridge the gap between poorly prepared students and their better-prepared peers. PMID:21633066
Decoding and disrupting left midfusiform gyrus activity during word reading
Hirshorn, Elizabeth A.; Ward, Michael J.; Fiez, Julie A.; Ghuman, Avniel Singh
2016-01-01
The nature of the visual representation for words has been fiercely debated for over 150 y. We used direct brain stimulation, pre- and postsurgical behavioral measures, and intracranial electroencephalography to provide support for, and elaborate upon, the visual word form hypothesis. This hypothesis states that activity in the left midfusiform gyrus (lmFG) reflects visually organized information about words and word parts. In patients with electrodes placed directly in their lmFG, we found that disrupting lmFG activity through stimulation, and later surgical resection in one of the patients, led to impaired perception of whole words and letters. Furthermore, using machine-learning methods to analyze the electrophysiological data from these electrodes, we found that information contained in early lmFG activity was consistent with an orthographic similarity space. Finally, the lmFG contributed to at least two distinguishable stages of word processing, an early stage that reflects gist-level visual representation sensitive to orthographic statistics, and a later stage that reflects more precise representation sufficient for the individuation of orthographic word forms. These results provide strong support for the visual word form hypothesis and demonstrate that across time the lmFG is involved in multiple stages of orthographic representation. PMID:27325763
Decoding and disrupting left midfusiform gyrus activity during word reading.
Hirshorn, Elizabeth A; Li, Yuanning; Ward, Michael J; Richardson, R Mark; Fiez, Julie A; Ghuman, Avniel Singh
2016-07-19
The nature of the visual representation for words has been fiercely debated for over 150 y. We used direct brain stimulation, pre- and postsurgical behavioral measures, and intracranial electroencephalography to provide support for, and elaborate upon, the visual word form hypothesis. This hypothesis states that activity in the left midfusiform gyrus (lmFG) reflects visually organized information about words and word parts. In patients with electrodes placed directly in their lmFG, we found that disrupting lmFG activity through stimulation, and later surgical resection in one of the patients, led to impaired perception of whole words and letters. Furthermore, using machine-learning methods to analyze the electrophysiological data from these electrodes, we found that information contained in early lmFG activity was consistent with an orthographic similarity space. Finally, the lmFG contributed to at least two distinguishable stages of word processing, an early stage that reflects gist-level visual representation sensitive to orthographic statistics, and a later stage that reflects more precise representation sufficient for the individuation of orthographic word forms. These results provide strong support for the visual word form hypothesis and demonstrate that across time the lmFG is involved in multiple stages of orthographic representation.
Increased course structure improves performance in introductory biology.
Freeman, Scott; Haak, David; Wenderoth, Mary Pat
2011-01-01
We tested the hypothesis that highly structured course designs, which implement reading quizzes and/or extensive in-class active-learning activities and weekly practice exams, can lower failure rates in an introductory biology course for majors, compared with low-structure course designs that are based on lecturing and a few high-risk assessments. We controlled for 1) instructor effects by analyzing data from quarters when the same instructor taught the course, 2) exam equivalence with new assessments called the Weighted Bloom's Index and Predicted Exam Score, and 3) student equivalence using a regression-based Predicted Grade. We also tested the hypothesis that points from reading quizzes, clicker questions, and other "practice" assessments in highly structured courses inflate grades and confound comparisons with low-structure course designs. We found no evidence that points from active-learning exercises inflate grades or reduce the impact of exams on final grades. When we controlled for variation in student ability, failure rates were lower in a moderately structured course design and were dramatically lower in a highly structured course design. This result supports the hypothesis that active-learning exercises can make students more skilled learners and help bridge the gap between poorly prepared students and their better-prepared peers.
Magnetic field structure and evolution features of selected stars. III.
NASA Astrophysics Data System (ADS)
Glagolevskij, Yu. V.
2016-01-01
We present the results of modeling for about a hundred magnetic stars. It is shown that the dipole representation of magnetic field structures describes the distribution of the magnetic field over stellar surfaces fairly well. We analyze some patterns which support the relic hypothesis of magnetic field formation.Arguments are given in favor of the assumption that themain properties ofmagnetic stars—slow rotation, predominant orientation of magnetic field lines along the plane of the rotation equator, complex internal structures of magnetic fields—are acquired in the process of gravitational collapse. There are no conditions for that in the non-stationary Hayashi phase and in the stage of a radiative young star.
Gradiometry and gravitomagnetic field detection
NASA Technical Reports Server (NTRS)
Mashhoon, Bahram
1989-01-01
Gravitomagnetism was apparently first introduced into physics about 120 years ago when major developments in electrodynamics and the strong similarity between Coulomb's law of electricity and Newton's law of gravity led to the hypothesis that mass current generates a fundamental force of gravitational origin analogous to the magnetic force caused by charge current. According to general relativity, the rotation of a body leads to the dragging of the local inertial frames. In the weak-field approximation, the dragging frequency can be interpreted, up to a constant proportionality factor, as a gravitational magnetic field. There is, as yet, no direct evidence regarding the existence of such a field. The possibility is examined of detecting the gravitomagnetic field of the Earth by gravity gradiometry.
NASA Astrophysics Data System (ADS)
Scheingross, J. S.; Dellinger, M.; Eglinton, T. I.; Fuchs, M. C.; Golombek, N.; Hilton, R. G.; Hovius, N.; Lupker, M.; Repasch, M. N.; Sachse, D.; Turowski, J. M.; Vieth-Hillebrand, A.; Wittmann, H.
2017-12-01
Over geologic timescales, the exchange of organic carbon (OC) between the atmosphere, hydropshere, biosphere and geosphere can be a major control on atmospheric carbon dioxide concentrations. The carbon fluxes from the oxidation of rock-derived OC (a CO2 source) and erosion, transport, and burial of biospheric OC (a potential CO2 sink) during fluvial transit are approximately the same order of magnitude or larger than those from silicate weathering. Despite field data showing increasing oxidation of OC moving downstream in lowland rivers, it is unclear if losses occur primarily during active fluvial transport, where OC is in continual motion within an aerated river, or during periods of temporary storage in river floodplains which may be anoxic. The unknown location of OC oxidation (i.e., river vs. floodplain) limits our ability to mechanistically link geochemical and geomorphic processes which are required to develop models capable of predicting OC losses, constrain carbon budgets, and unravel links between climate, tectonics, and erosion. To fill this knowledge gap, we investigated OC oxidation in controlled laboratory experiments and a simplified field setting. We performed experiments in annular flumes that simulate fluvial transport without floodplain storage, allowing mixtures of OC-rich and siliciclastic sediment to be transported for distances of 1000 km. Preliminary experiments exploring both rock-derived and biospheric OC sources show minimal OC oxidation during active river transport, consistent with the idea that the majority of OC loss occurs during transient floodplain storage. These results are also consistent with new field data collected in the Rio Bermejo, Argentina, a lowland river traversing 800 km with no tributary inputs, where aged floodplain deposits have 3 to 10 times lower OC concentrations compared to modern river sediments. Together our field data and experiments support the hypothesis that oxidation of OC occurs primarily during floodplain storage rather than fluvial transport.
Kinsey, K; Anderson, S J; Hadjipapas, A; Holliday, I E
2011-03-01
The perception of an object as a single entity within a visual scene requires that its features are bound together and segregated from the background and/or other objects. Here, we used magnetoencephalography (MEG) to assess the hypothesis that coherent percepts may arise from the synchronized high frequency (gamma) activity between neurons that code features of the same object. We also assessed the role of low frequency (alpha, beta) activity in object processing. The target stimulus (i.e. object) was a small patch of a concentric grating of 3c/°, viewed eccentrically. The background stimulus was either a blank field or a concentric grating of 3c/° periodicity, viewed centrally. With patterned backgrounds, the target stimulus emerged--through rotation about its own centre--as a circular subsection of the background. Data were acquired using a 275-channel whole-head MEG system and analyzed using Synthetic Aperture Magnetometry (SAM), which allows one to generate images of task-related cortical oscillatory power changes within specific frequency bands. Significant oscillatory activity across a broad range of frequencies was evident at the V1/V2 border, and subsequent analyses were based on a virtual electrode at this location. When the target was presented in isolation, we observed that: (i) contralateral stimulation yielded a sustained power increase in gamma activity; and (ii) both contra- and ipsilateral stimulation yielded near identical transient power changes in alpha (and beta) activity. When the target was presented against a patterned background, we observed that: (i) contralateral stimulation yielded an increase in high-gamma (>55 Hz) power together with a decrease in low-gamma (40-55 Hz) power; and (ii) both contra- and ipsilateral stimulation yielded a transient decrease in alpha (and beta) activity, though the reduction tended to be greatest for contralateral stimulation. The opposing power changes across different regions of the gamma spectrum with 'figure/ground' stimulation suggest a possible dual role for gamma rhythms in visual object coding, and provide general support of the binding-by-synchronization hypothesis. As the power changes in alpha and beta activity were largely independent of the spatial location of the target, however, we conclude that their role in object processing may relate principally to changes in visual attention. Copyright © 2010 Elsevier B.V. All rights reserved.
Simmons, L W
2003-07-01
The sexy-sperm hypothesis predicts that females obtain indirect benefits for their offspring via polyandy, in the form of increased fertilization success for their sons. I use a quantitative genetic approach to test the sexy-sperm hypothesis using the field cricket Teleogryllus oceanicus. Previous studies of this species have shown considerable phenotypic variation in fertilization success when two or more males compete. There were high broad-sense heritabilities for both paternity and polyandry. Patterns of genotypic variance were consistent with X-linked inheritance and/or maternal effects on these traits. The genetic architecture therefore precludes the evolution of polyandry via a sexy-sperm process. Thus the positive genetic correlation between paternity in sons and polyandry in daughters predicted by the sexy-sperm hypothesis was absent. There was significant heritable variation in the investment by females in ovaries and by males in the accessory gland. Surprisingly there was a very strong genetic correlation between these two traits. The significance of this genetic correlation for the coevolution of male seminal products and polyandry is discussed.
Selection against small males in utero: a test of the Wells hypothesis.
Catalano, R; Goodman, J; Margerison-Zilko, C E; Saxton, K B; Anderson, E; Epstein, M
2012-04-01
The argument that women in stressful environments spontaneously abort their least fit fetuses enjoys wide dissemination despite the fact that several of its most intuitive predictions remain untested. The literature includes no tests, for example, of the hypothesis that these mechanisms select against small for gestational age (SGA) males. We apply time-series modeling to 4.9 million California male term births to test the hypothesis that the rate of SGA infants in 1096 weekly birth cohorts varies inversely with labor market contraction, a known stressor of contemporary populations. We find support for the hypothesis that small size becomes less frequent among term male infants when the labor market contracts. Our findings contribute to the evidence supporting selection in utero. They also suggest that research into the association between maternal stress and adverse birth outcomes should acknowledge the possibility that fetal loss may affect findings and their interpretation. Strengths of our analyses include the large number and size of our birth cohorts and our control for autocorrelation. Weaknesses include that we, like nearly all researchers in the field, have no direct measure of fetal loss.
The Multi-Feature Hypothesis: Connectionist Guidelines for L2 Task Design
ERIC Educational Resources Information Center
Moonen, Machteld; de Graaff, Rick; Westhoff, Gerard; Brekelmans, Mieke
2014-01-01
This study focuses on the effects of task type on the retention and ease of activation of second language (L2) vocabulary, based on the multi-feature hypothesis (Moonen, De Graaff, & Westhoff, 2006). Two tasks were compared: a writing task and a list-learning task. It was hypothesized that performing the writing task would yield higher…
Explorations in Statistics: Hypothesis Tests and P Values
ERIC Educational Resources Information Center
Curran-Everett, Douglas
2009-01-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This second installment of "Explorations in Statistics" delves into test statistics and P values, two concepts fundamental to the test of a scientific null hypothesis. The essence of a test statistic is that it compares what…
Hua, Yuan-Yuan; Wang, Xiao-Shu; Zhang, Yu; Yao, Chen-Guo; Zhang, Xi-Ming; Xiong, Zheng-Ai
2012-04-01
The application of pulsed electric fields (PEF) is emerging as a new technique for tumor therapy. Picosecond pulsed electric fields (psPEF) can be transferred to target deep tissue non-invasively and precisely, but the research of the biological effects of psPEF on cells is limited. Electric theory predicts that intense psPEF will target mitochondria and lead to changes in transmembrane potential, therefore, it is hypothesized that it can induce mitochondrial-mediated apoptosis. HeLa cells were exposed to psPEF in this study to investigate this hypothesis. MTT assay demonstrated that intense psPEF significantly inhibited the proliferation of HeLa cells in a dose-dependent manner. Typical characteristics of apoptosis in HeLa cells were observed, using transmission electron microscopy. Loss of mitochondrial transmembrane potential was explored using laser scanning confocal microscopy with Rhodamine-123 (Rh123) staining. Furthermore, the mitochondrial apoptotic events were also confirmed by western blot analysis for the release of cytochrome C and apoptosis-inducing factor from mitochondria into the cytosol. In addition, activation of caspase-3, caspase-9, upregulation of Bax, p53 and downregulation of Bcl-2 were observed in HeLa cells also indicating apoptosis. Taken together, these results demonstrate that intense psPEF induce cell apoptosis through a mitochondrial-mediated pathway.
Seismo-magnetic observations aboard the upcoming Chinese CSES satellite
NASA Astrophysics Data System (ADS)
Schwingenschuh, Konrad; Magnes, Werner; Xuhui, Shen; Wang, Jindong; Pollinger, Andreas; Hagen, Christian; Lammegger, Roland; Ellmeier, Michaela; Prattes, Gustav; Eichelberger, Hans U.; Wolbang, Daniel; Boudjada, Mohammed Y.; Besser, Bruno P.; Rozhnoi, Alexander A.; Zhang, Tielong; Delva, Magda; Jernej, Irmgard; Aydogar, Özer
2017-04-01
One objective of the upcoming Chinese Seismo-Electromagnetic Satellite (CSES) mission is the observation of seismo-magnetic phenomena aboard CSES. Several hypothesis exist in order to explain the influence of seismic phenomena on magnetic field variations in the atmosphere and in the ionosphere. The so called microfracture electrification (Molchanov and Hayakawa, 1998) proposes the generation of a broad band electric-magnetic signal which is low-pass filtered by the crustal and atmospheric/ionospheric conductivity. Depending on the environmental conductivity sigma and on the permeability mu (Prattes et al., 2008) the electromagnetic field fluctuations with the frequency omega can propagate approximately d_skin. (d_skin) = sqrt(2/(mu*sigma*omega)) We present the sensitivity of the CSES scalar dark state magnetometer (Schwingenschuh et al., 2016) after the final tests and compare it with seismo-magnetic ULF model results using various earthquake parameters. References: Prattes, G. et al.: Multi-point ground-based ULF magnetic field observations in Europe during seismic active periods in 2004 and 2005, Nat. Hazards Earth Syst. Sci., 8, 501-507, 2008 Molchanov, O. and Hayakawa, M.: On the generation mechanism of ULF seismogenic electromagnetic emissions, Phys. of the Earth and Planet. Int., 105, 201-210, 1998 Schwingenschuh, K. et al.: Study of earthquakes and related phenomena using a satellite scalar magnetometer, Geophysical Research Abstracts, Vol. 18, EGU2016-8448, 2016
Subresolution Activity in Solar and Stellar Coronae from Magnetic Field Line Tangling
NASA Astrophysics Data System (ADS)
Rappazzo, A. F.; Dahlburg, R. B.; Einaudi, G.; Velli, M.
2018-05-01
The heating of coronal loops is investigated to understand the observational consequences in terms of the thermodynamics and radiative losses from the Sun as well as the magnetized coronae of stars with an outer convective envelope. The dynamics of the Parker coronal heating model are studied for different ratios of the photospheric forcing velocity timescale tp to the Alfvén crossing time along a loop tA. It is shown that for tp/tA ≳ 10-24 the heating rate and maximum temperature are largest and approximately independent of tp/tA, leading to a strong emission in X-rays and EUV. On the opposite decreasing tp/tA to smaller values leads to lower heating rates and plasma temperatures, and consequently fading high-energy radiative emission once tp/tA ≲ 1-3. The average volumetric loop heating rate is shown to scale as ℓ _p u_p B_0^2/4π L^2, where ℓp and up are respectively the convective granule length-scale and velocity, B0 is the intensity of the strong magnetic field threading the loop, and L the loop length. These findings support a recent hypothesis explaining ultracool dwarf observations of stars with similar magnetic field strength but radically different topologies displaying different radiative emission.
Multiple-hypothesis multiple-model line tracking
NASA Astrophysics Data System (ADS)
Pace, Donald W.; Owen, Mark W.; Cox, Henry
2000-07-01
Passive sonar signal processing generally includes tracking of narrowband and/or broadband signature components observed on a Lofargram or on a Bearing-Time-Record (BTR) display. Fielded line tracking approaches to date have been recursive and single-hypthesis-oriented Kalman- or alpha-beta filters, with no mechanism for considering tracking alternatives beyond the most recent scan of measurements. While adaptivity is often built into the filter to handle changing track dynamics, these approaches are still extensions of single target tracking solutions to multiple target tracking environment. This paper describes an application of multiple-hypothesis, multiple target tracking technology to the sonar line tracking problem. A Multiple Hypothesis Line Tracker (MHLT) is developed which retains the recursive minimum-mean-square-error tracking behavior of a Kalman Filter in a maximum-a-posteriori delayed-decision multiple hypothesis context. Multiple line track filter states are developed and maintained using the interacting multiple model (IMM) state representation. Further, the data association and assignment problem is enhanced by considering line attribute information (line bandwidth and SNR) in addition to beam/bearing and frequency fit. MHLT results on real sonar data are presented to demonstrate the benefits of the multiple hypothesis approach. The utility of the system in cluttered environments and particularly in crossing line situations is shown.
Re-examining the gesture engram hypothesis. New perspectives on apraxia of tool use.
Osiurak, François; Jarry, Christophe; Le Gall, Didier
2011-02-01
In everyday life, we are led to reuse the same tools (e.g., fork, hammer, coffee-maker), raising the question as to whether we have to systematically recreate the idea of the manipulation which is associated with these tools. The gesture engram hypothesis offers a straightforward answer to this issue, by suggesting that activation of gesture engrams provides a processing advantage, avoiding portions of the process from being reconstructed de novo with each experience. At first glance, the gesture engram hypothesis appears very plausible. But, behind this beguiling simplicity lies a set of unresolved difficulties: (1) What is the evidence in favour of the idea that the mere observation of a tool is sufficient to activate the corresponding gesture engram? (2) If tool use can be supported by a direct route between a structural description system and gesture engrams, what is the role of knowledge about tool function? (3) And, more importantly, what does it mean to store knowledge about how to manipulate tools? We begin by outlining some of the main formulations of the gesture engram hypothesis. Then, we address each of these issues in more detail. To anticipate our discussion, the gesture engram hypothesis appears to be clearly unsatisfactory, notably because of its incapacity to offer convincing answers to these different issues. We conclude by arguing that neuropsychology may greatly benefit from adopting the hypothesis that the idea of how to manipulate a tool is recreated de novo with each experience, thus opening interesting perspectives for future research on apraxia. Copyright © 2011 Elsevier Ltd. All rights reserved.
Testing the activitystat hypothesis: a randomised controlled trial protocol.
Gomersall, Sjaan; Maher, Carol; Norton, Kevin; Dollman, Jim; Tomkinson, Grant; Esterman, Adrian; English, Coralie; Lewis, Nicole; Olds, Tim
2012-10-08
The activitystat hypothesis proposes that when physical activity or energy expenditure is increased or decreased in one domain, there will be a compensatory change in another domain to maintain an overall, stable level of physical activity or energy expenditure. To date, there has been no experimental study primarily designed to test the activitystat hypothesis in adults. The aim of this trial is to determine the effect of two different imposed exercise loads on total daily energy expenditure and physical activity levels. This study will be a randomised, multi-arm, parallel controlled trial. Insufficiently active adults (as determined by the Active Australia survey) aged 18-60 years old will be recruited for this study (n=146). Participants must also satisfy the Sports Medicine Australia Pre-Exercise Screening System and must weigh less than 150 kg. Participants will be randomly assigned to one of three groups using a computer-generated allocation sequence. Participants in the Moderate exercise group will receive an additional 150 minutes of moderate to vigorous physical activity per week for six weeks, and those in the Extensive exercise group will receive an additional 300 minutes of moderate to vigorous physical activity per week for six weeks. Exercise targets will be accumulated through both group and individual exercise sessions monitored by heart rate telemetry. Control participants will not be given any instructions regarding lifestyle. The primary outcome measures are activity energy expenditure (doubly labeled water) and physical activity (accelerometry). Secondary measures will include resting metabolic rate via indirect calorimetry, use of time, maximal oxygen consumption and several anthropometric and physiological measures. Outcome measures will be conducted at baseline (zero weeks), mid- and end-intervention (three and six weeks) with three (12 weeks) and six month (24 week) follow-up. All assessors will be blinded to group allocation. This protocol has been specifically designed to test the activitystat hypothesis while taking into account the key conceptual and methodological considerations of testing a biologically regulated homeostatic feedback loop. Results of this study will be an important addition to the growing literature and debate concerning the possible existence of an activitystat. Australian New Zealand Clinical Trials Registry ACTRN12610000248066.
Testing the activitystat hypothesis: a randomised controlled trial protocol
2012-01-01
Background The activitystat hypothesis proposes that when physical activity or energy expenditure is increased or decreased in one domain, there will be a compensatory change in another domain to maintain an overall, stable level of physical activity or energy expenditure. To date, there has been no experimental study primarily designed to test the activitystat hypothesis in adults. The aim of this trial is to determine the effect of two different imposed exercise loads on total daily energy expenditure and physical activity levels. Methods This study will be a randomised, multi-arm, parallel controlled trial. Insufficiently active adults (as determined by the Active Australia survey) aged 18–60 years old will be recruited for this study (n=146). Participants must also satisfy the Sports Medicine Australia Pre-Exercise Screening System and must weigh less than 150 kg. Participants will be randomly assigned to one of three groups using a computer-generated allocation sequence. Participants in the Moderate exercise group will receive an additional 150 minutes of moderate to vigorous physical activity per week for six weeks, and those in the Extensive exercise group will receive an additional 300 minutes of moderate to vigorous physical activity per week for six weeks. Exercise targets will be accumulated through both group and individual exercise sessions monitored by heart rate telemetry. Control participants will not be given any instructions regarding lifestyle. The primary outcome measures are activity energy expenditure (doubly labeled water) and physical activity (accelerometry). Secondary measures will include resting metabolic rate via indirect calorimetry, use of time, maximal oxygen consumption and several anthropometric and physiological measures. Outcome measures will be conducted at baseline (zero weeks), mid- and end-intervention (three and six weeks) with three (12 weeks) and six month (24 week) follow-up. All assessors will be blinded to group allocation. Discussion This protocol has been specifically designed to test the activitystat hypothesis while taking into account the key conceptual and methodological considerations of testing a biologically regulated homeostatic feedback loop. Results of this study will be an important addition to the growing literature and debate concerning the possible existence of an activitystat. Trial registration Australian New Zealand Clinical Trials Registry ACTRN12610000248066 PMID:23043381
Zhang, R-X; Wang, X-Y; Chen, D; Huizinga, J D
2011-09-01
Interstitial cells of Cajal (ICC) are intimately linked to the enteric nervous system and a better understanding of the interactions between the two systems is going to advance our understanding of gut motor control. The objective of the present study was to investigate the role of ICC in the generation of gastric motor activity induced by cholinergic neurotransmission. Gastric motor activity was evoked through activation of intrinsic cholinergic neural activity, in in vitro muscle strips by electrical field stimulation, in the in vitro whole stomach by distension and in vivo by fluoroscopy after gavaging the stomach with barium sulfate. The cholinergic activity was assessed as that component of the effect of the stimulus that was sensitive to atropine. These experiments were carried out in wild-type and Ws/Ws rats that have few intramuscular ICC (ICC-IM) in the stomach. Under all three experimental conditions, cholinergic activity was prominent in both wild-type and W mutant rats providing evidence against the hypothesis that cholinergic neurotransmission to smooth muscle is primarily mediated by ICC-IM. Strong cholinergic activity in Ws/Ws rats was not due to upregulation of muscarinic receptors in ICC but possibly in smooth muscle of the antrum. Pacemaker ICC play a prominent role in the expression of motor activity induced by cholinergic activity and our data suggest that cholinergic neurotransmission to ICC affects the pacemaker frequency. © 2011 Blackwell Publishing Ltd.
Plasma expansion into a vacuum with an arbitrarily oriented external magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Rubio, F., E-mail: fernando.garcia.rubio@upm.es; Sanz, J.; Ruocco, A.
2016-01-15
Plasma expansion into a vacuum with an external magnetic field is studied under the ideal magnetohydrodynamic hypothesis. The inclination of the magnetic field with respect to the expansion direction is arbitrary, and both the perpendicular and the oblique cases are separately analyzed. A self-similar solution satisfying the boundary conditions is obtained. The interface with the vacuum is treated as a fluid surface, and jump conditions concerning the momentum conservation are imposed. The effect of the intensity of the magnetic field and its inclination is thoroughly studied, and the consistency of the solution for small and large inclinations is investigated.
Glycogen metabolism and the homeostatic regulation of sleep.
Petit, Jean-Marie; Burlet-Godinot, Sophie; Magistretti, Pierre J; Allaman, Igor
2015-02-01
In 1995 Benington and Heller formulated an energy hypothesis of sleep centered on a key role of glycogen. It was postulated that a major function of sleep is to replenish glycogen stores in the brain that have been depleted during wakefulness which is associated to an increased energy demand. Astrocytic glycogen depletion participates to an increase of extracellular adenosine release which influences sleep homeostasis. Here, we will review some evidence obtained by studies addressing the question of a key role played by glycogen metabolism in sleep regulation as proposed by this hypothesis or by an alternative hypothesis named "glycogenetic" hypothesis as well as the importance of the confounding effect of glucocorticoïds. Even though actual collected data argue in favor of a role of sleep in brain energy balance-homeostasis, they do not support a critical and direct involvement of glycogen metabolism on sleep regulation. For instance, glycogen levels during the sleep-wake cycle are driven by different physiological signals and therefore appear more as a marker-integrator of brain energy status than a direct regulator of sleep homeostasis. In support of this we provide evidence that blockade of glycogen mobilization does not induce more sleep episodes during the active period while locomotor activity is reduced. These observations do not invalidate the energy hypothesis of sleep but indicate that underlying cellular mechanisms are more complex than postulated by Benington and Heller.
NASA Astrophysics Data System (ADS)
Bertazzon, Stefania
The present research focuses on the interaction of supply and demand of down-hill ski tourism in the province of Alberta. The main hypothesis is that the demand for skiing depends on the socio-economic and demographic characteristics of the population living in the province and outside it. A second, consequent hypothesis is that the development of ski resorts (supply) is a response to the demand for skiing. From the latter derives the hypothesis of a dynamic interaction between supply (ski resorts) and demand (skiers). Such interaction occurs in space, within a range determined by physical distance and the means available to overcome it. The above hypotheses implicitly define interactions that take place in space and evolve over time. The hypotheses are tested by temporal, spatial, and spatio-temporal regression models, using the best available data and the latest commercially available software. The main purpose of this research is to explore analytical techniques to model spatial, temporal, and spatio-temporal dynamics in the context of regional science. The completion of the present research has produced more significant contributions than was originally expected. Many of the unexpected contributions resulted from theoretical and applied needs arising from the application of spatial regression models. Spatial regression models are a new and largely under-applied technique. The models are fairly complex and a considerable amount of preparatory work is needed, prior to their specification and estimation. Most of this work is specific to the field of application. The originality of the solutions devised is increased by the lack of applications in the field of tourism. The scarcity of applications in other fields adds to their value for other applications. The estimation of spatio-temporal models has been only partially attained in the present research. This apparent limitation is due to the novelty and complexity of the analytical methods applied. This opens new directions for further work in the field of spatial analysis, in conjunction with the development of specific software.
Combination of interventions can change students' epistemological beliefs
NASA Astrophysics Data System (ADS)
Kalman, Calvin S.; Sobhanzadeh, Mandana; Thompson, Robert; Ibrahim, Ahmed; Wang, Xihui
2015-12-01
This study was based on the hypothesis that students' epistemological beliefs could become more expertlike with a combination of appropriate instructional activities: (i) preclass reading with metacognitive reflection, and (ii) in-class active learning that produces cognitive dissonance. This hypothesis was tested through a five-year study involving close to 1000 students at two institutions, in four physics courses. Using an experimental design, data from student interviews, writing product assessments, and the Discipline-Focused Epistemological Beliefs Questionnaire (DFEBQ) we demonstrate that the beliefs of novice science learners became more expertlike on 2 of the 4 DFEBQ factors. We conclude that a combination of an activity that gets students to examine textual material metacognitively (Reflective Writing) with one or more types of in-class active learning interventions can promote positive change in students' epistemological beliefs.
Divided attention modulates semantic activation: evidence from a nonletter-level prime task.
Otsuka, Sachio; Kawaguchi, Jun
2007-12-01
Research has recently shown that semantic activation is modulated in proportion to the amount of attention required for letter-level processing of the prime (the attention modulation hypothesis; Smith, Bentin, & Spalek, 2001). In this study, we examined this hypothesis with an auditory divided-attention task. Participants were asked to decide whether the pitch of a probe tone presented with the prime word was higher or lower than the basic tone presented with the fixation cross. Their target task was lexical decision to the target word. Experiment 1 showed that semantic priming was modulated by the amount of attentional resources. Moreover, in Experiment 2, this modulation was also found in a situation that eliminated the possibility of participants' response strategies. Yet, Experiment 3 showed repetition priming to be unaffected. These results support an amended attention modulation hypothesis in which modulation is not limited to letter-level processing.
Patterns of neural activity associated with honest and dishonest moral decisions
Greene, Joshua D.; Paxton, Joseph M.
2009-01-01
What makes people behave honestly when confronted with opportunities for dishonest gain? Research on the interplay between controlled and automatic processes in decision making suggests 2 hypotheses: According to the “Will” hypothesis, honesty results from the active resistance of temptation, comparable to the controlled cognitive processes that enable the delay of reward. According to the “Grace” hypothesis, honesty results from the absence of temptation, consistent with research emphasizing the determination of behavior by the presence or absence of automatic processes. To test these hypotheses, we examined neural activity in individuals confronted with opportunities for dishonest gain. Subjects undergoing functional magnetic resonance imaging (fMRI) gained money by accurately predicting the outcomes of computerized coin-flips. In some trials, subjects recorded their predictions in advance. In other trials, subjects were rewarded based on self-reported accuracy, allowing them to gain money dishonestly by lying about the accuracy of their predictions. Many subjects behaved dishonestly, as indicated by improbable levels of “accuracy.” Our findings support the Grace hypothesis. Individuals who behaved honestly exhibited no additional control-related activity (or other kind of activity) when choosing to behave honestly, as compared with a control condition in which there was no opportunity for dishonest gain. In contrast, individuals who behaved dishonestly exhibited increased activity in control-related regions of prefrontal cortex, both when choosing to behave dishonestly and on occasions when they refrained from dishonesty. Levels of activity in these regions correlated with the frequency of dishonesty in individuals. PMID:19622733
Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages
Stout, Robert D.; Watkins, Stephanie K.; Suttles, Jill
2009-01-01
The extent to which the functional heterogeneity of Mϕs is dependent on the differentiation of functional sublineages remains unresolved. One alternative hypothesis proposes that Mϕs are functionally plastic cells, which are capable of altering their functional activities progressively in response to progressively changing signaling molecules generated in their microenvironment. This “functional plasticity” hypothesis predicts that the functionally polarized Mϕs in chronic pathologies do not represent Mϕ sublineages but rather, are mutable phenotypes sustained by chronic signaling from the pathological environment. Solid TAMϕs are chronically polarized to provide activities that support tumor growth and metastasis and suppress adaptive immune responses. In support of the functional plasticity hypothesis, administration of slow-release microsphere-encapsulated IL-12 successfully reprogrammed TAMϕs in situ, reducing Mϕ support of tumor growth and metastasis and enhancing Mϕ proimmunogenic activities. Increased knowledge of how Mϕ function is regulated and how polarized Mϕs can be reprogrammed in situ will increase our ability to control Mϕ function in a variety of pathological states, including cancer and chronic inflammatory disease. PMID:19605698
The active learning hypothesis of the job-demand-control model: an experimental examination.
Häusser, Jan Alexander; Schulz-Hardt, Stefan; Mojzisch, Andreas
2014-01-01
The active learning hypothesis of the job-demand-control model [Karasek, R. A. 1979. "Job Demands, Job Decision Latitude, and Mental Strain: Implications for Job Redesign." Administration Science Quarterly 24: 285-307] proposes positive effects of high job demands and high job control on performance. We conducted a 2 (demands: high vs. low) × 2 (control: high vs. low) experimental office workplace simulation to examine this hypothesis. Since performance during a work simulation is confounded by the boundaries of the demands and control manipulations (e.g. time limits), we used a post-test, in which participants continued working at their task, but without any manipulation of demands and control. This post-test allowed for examining active learning (transfer) effects in an unconfounded fashion. Our results revealed that high demands had a positive effect on quantitative performance, without affecting task accuracy. In contrast, high control resulted in a speed-accuracy tradeoff, that is participants in the high control conditions worked slower but with greater accuracy than participants in the low control conditions.
Octopamine influences honey bee foraging preference.
Giray, Tugrul; Galindo-Cardona, Alberto; Oskay, Devrim
2007-07-01
Colony condition and differences in individual preferences influence forage type collected by bees. Physiological bases for the changing preferences of individual foragers are just beginning to be examined. Recently, for honey bees octopamine is shown to influence age at onset of foraging and probability of dance for rewards. However, octopamine has not been causally linked with foraging preference in the field. We tested the hypothesis that changes in octopamine may alter forage type (preference hypothesis). We treated identified foragers orally with octopamine or its immediate precursor, tyramine, or sucrose syrup (control). Octopamine-treated foragers switched type of material collected; control bees did not. Tyramine group results were not different from the control group. In addition, sugar concentrations of nectar collected by foragers after octopamine treatment were lower than before treatment, indicating change in preference. In contrast, before and after nectar concentrations for bees in the control group were similar. These results, taken together, support the preference hypothesis.
[The neurological and embryological studies of Santiago Ramon y Cajal].
Baratas Diaz, L A
1997-01-01
The neurological and embryological work of Santiago Ramon y Cajal appeared in three stages: a) Between 1888 and 1893 observations on the development of neuron prolongations led to the observation of the growth cone and formulation of the neurotropic hypothesis. b) Between 1905 and 1908 the study of regenerative phenomena in nerves and nervours centers presented a large body of evidence consistent with the neurotropic hypothesis. c)Between 1910 and 1914 an experimental program was undertaken to test the neurotropic hypothesis; this program led to conclusions on the origin and chemical nature of the growth stimulating factor. These contributions initiated an important line of research that none of Ramon y Cajal's disciples could continue. In the nineteen fifties a group of researchers from three disciplines (biochemistry, embryology and neurohistology) discovered the existence of nerve growth factor (NGF), thus initiating a fertile new field of knowledge in cell biology.
Simões, C A; Valle, A C; Timo-Iaria, C
1996-12-01
Theta waves, which are the main electrophysiological expression of dreaming activity in many brain structures of rats, often undergo specific changes in voltage and frequency according to the oniric patterns. Much is known about their mechanisms but little is known regarding their origin, which has been ascribed to a specific activation of either the reticular formation or the septal nuclei or nucleus reticularis pontis oralis. In the present study, rats were prepared for chronic recording of the electro-oscillograms of cortical areas 10, 3 and 17, of hippocampal CA1 and CA3 fields, of nucleus reticularis thalami, nucleus reticularis pontis oralis and occasionally of nucleus reticularis caudalis. Head, rostrum, eye and forelimb movements were also recorded, so that the oniric behaviors could be precisely identified. The scatter diagrams and the corresponding correlation coefficients (r) of the voltage of concomitant waves were determined for each possible pair of leads. The potentials were analyzed at a frequency of 256 Hz over a period of 1 to 3 sec. A very high degree of correlation was observed between theta waves in nucleus reticularis pontis oralis, hippocampal fields and nucleus reticularis pontis caudalis; sometimes r approached unity. Although these data cannot be taken as proof of nucleus reticularis pontis oralis being the source of theta waves, they are at least compatible with this hypothesis.
NASA Astrophysics Data System (ADS)
Yang, Kai; Longcope, Dana; Guo, Yang; Ding, Mingde
2017-08-01
Numerous proposed coronal heating mechanisms have invoked magnetic reconnection in some role. Testing such a mechanism requires a method of measuring magnetic reconnection coupled with a prediction of the heat delivered by reconnection at the observed rate. In the absence of coronal reconnection, field line footpoints move at the same velocity as the plasma they find themselves in. The rate of coronal reconnection is therefore related to any discrepancy observed between footpoint motion and that of the local plasma — so-called slipping motion. We propose a novel method to measure this velocity discrepancy by combining a sequence of non-linear force-free field extrapolations with maps of photospheric velocity. We obtain both from a sequence of vector magnetograms of an active region (AR). We then propose a method of computing the coronal heating produced under the assumption the observed slipping velocity was due entirely to coronal reconnection. This heating rate is used to predict density and temperature at points along an equilibrium loop. This, in turn, is used to synthesize emission in EUV and SXR bands. We perform this analysis using a sequence of HMI vector magnetograms of a particular AR and compare synthesized images to observations of the same AR made by SDO. We also compare differential emission measure inferred from those observations to that of the modeled corona.
Musical emotions: Functions, origins, evolution
NASA Astrophysics Data System (ADS)
Perlovsky, Leonid
2010-03-01
Theories of music origins and the role of musical emotions in the mind are reviewed. Most existing theories contradict each other, and cannot explain mechanisms or roles of musical emotions in workings of the mind, nor evolutionary reasons for music origins. Music seems to be an enigma. Nevertheless, a synthesis of cognitive science and mathematical models of the mind has been proposed describing a fundamental role of music in the functioning and evolution of the mind, consciousness, and cultures. The review considers ancient theories of music as well as contemporary theories advanced by leading authors in this field. It addresses one hypothesis that promises to unify the field and proposes a theory of musical origin based on a fundamental role of music in cognition and evolution of consciousness and culture. We consider a split in the vocalizations of proto-humans into two types: one less emotional and more concretely-semantic, evolving into language, and the other preserving emotional connections along with semantic ambiguity, evolving into music. The proposed hypothesis departs from other theories in considering specific mechanisms of the mind-brain, which required the evolution of music parallel with the evolution of cultures and languages. Arguments are reviewed that the evolution of language toward becoming the semantically powerful tool of today required emancipation from emotional encumbrances. The opposite, no less powerful mechanisms required a compensatory evolution of music toward more differentiated and refined emotionality. The need for refined music in the process of cultural evolution is grounded in fundamental mechanisms of the mind. This is why today's human mind and cultures cannot exist without today's music. The reviewed hypothesis gives a basis for future analysis of why different evolutionary paths of languages were paralleled by different evolutionary paths of music. Approaches toward experimental verification of this hypothesis in psychological and neuroimaging research are reviewed.
Simulations of centriole of polarized centrosome as a monopole antenna in immune and viral synapses.
Dvorak, Josef; Melichar, Bohuslav; Filipova, Alzbeta; Grimova, Jana; Grimova, Nela; Rozsypalova, Aneta; Buka, David; Voboril, Rene; Zapletal, Radek; Buchler, Tomas; Richter, Igor; Buka, David
2018-01-01
The immune synapse (IS) is a temporary interface between an antigen-presenting cell and an effector lymphocyte. Viral synapse is a molecularly organized cellular junction that is structurally similar to the IS. Primary cilium is considered as a functional homologue of the IS due to the morphological and functional similarities in architecture between both micotubule structures. It has been hypothesized that endogenous electromagnetic field in the cell is generated by a unique cooperating system between mitochondria and microtubules. We are extending this prior hypothesis of the endogenous electromagnetic field in the cell postulating that polarized centriole in immune and viral synapse could serve as a monopole antenna. This is an addition to our hypothesis that primary cilium could serve as a monopole antenna. We simulated the distribution of electric field of centriole of polarized centrosome as a monopole antenna in immune and viral synapse. Very weak electromagnetic field of polarized centriole of CD8+ T lymphocyte in IS can contribute to the transport of cytolytic granules into the attacked (cancer) cell. Analogically, very weak electromagnetic field of polarized centriole in viral synapse of infected CD4 cells can aid the transport of viruses (human immunodeficiency virus) to non-infected CD4 cells. We hypothesized that healthy organisms need these monopole antennas. If, during the neoplastic transformation, healthy cells lose monopole antennas in form of primary cilia, the IS aims to replace them by monopole antennas of polarized centrioles in IS to restore homeostasis.
Analysis and interpretation of MAGSAT anomalies over north Africa
NASA Technical Reports Server (NTRS)
Phillips, R. J.
1985-01-01
Crustal anomaly detection with MAGSAT data is frustrated by inherent resolving power of the data and by contamination from external and core fields. Quality of the data might be tested by modeling specific tectonic features which produce anomalies that fall within proposed resolution and crustal amplitude capabilities of MAGSAT fields. To test this hypothesis, north African hotspots associated with Ahaggar, Tibesti and Darfur were modeled as magnetic induction anomalies. MAGSAT data were reduced by subtracting external and core fields to isolate scalar and vertical component crustal signals. Of the three volcanic areas, only the Ahaggar region had an associated anomaly of magnitude above error limits of the data. Hotspot hypothesis was tested for Ahaggar by seeing if predicted magnetic signal matched MAGSAT anomaly. Predicted model magnetic signal arising from surface topography of the uplift and the Curie isothermal surface was calculated at MAGSAT altitudes by Fourier transform technique modified to allow for variable magnetization. Curie isotherm surface was calculated using a method for temperature distribution in a moving plate above a fixed hotspot. Magnetic signal was calculated for a fixed plate as well as a number of plate velocities and directions.
Testing the Axion-Conversion Hypothesis of 3.5 keV Emission with Polarization.
Gong, Yan; Chen, Xuelei; Feng, Hua
2017-02-10
The recently measured 3.5 keV line in a number of galaxy clusters, the Andromeda galaxy (M31), and the Milky Way (MW) center can be well accounted for by a scenario in which dark matter decays to axionlike particles (ALPs) and subsequently convert to 3.5 keV photons in magnetic fields of galaxy clusters or galaxies. We propose to test this hypothesis by performing x-ray polarization measurements. Since ALPs can only couple to photons with a polarization orientation parallel to the magnetic field, we can confirm or reject this model by measuring the polarization of the 3.5 keV line and compare it to the orientation of the magnetic field. We discuss luminosity and polarization measurements for both a galaxy cluster and spiral galaxy, and provide a general relation between the polarization and galaxy inclination angle. This effect is marginally detectable with x-ray polarimetry detectors currently under development, such as the enhanced X-ray Timing and Polarization satellite, the Imaging X-ray Polarimetry Explorer and the X-ray Imaging Polarimetry Explorer. The sensitivity can be further improved in the future with detectors of a larger effective area or better energy resolutions.
Clustering, randomness, and regularity in cloud fields. 4. Stratocumulus cloud fields
NASA Astrophysics Data System (ADS)
Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.
1994-07-01
To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (>900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.
Clustering, randomness, and regularity in cloud fields. 4: Stratocumulus cloud fields
NASA Technical Reports Server (NTRS)
Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.
1994-01-01
To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (more than 900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.
Skin-layer of the eruptive magnetic flux rope in large solar flares
NASA Astrophysics Data System (ADS)
Kichigin, G. N.; Miroshnichenko, L. I.; Sidorov, V. I.; Yazev, S. A.
2016-07-01
The analysis of observations of large solar flares made it possible to propose a hypothesis on existence of a skin-layer in magnetic flux ropes of coronal mass ejections. On the assumption that the Bohm coefficient determines the diffusion of magnetic field, an estimate of the skin-layer thickness of ~106 cm is obtained. According to the hypothesis, the electric field of ~0.01-0.1 V/cm, having the nonzero component along the magnetic field of flux rope, arises for ~5 min in the surface layer of the eruptive flux rope during its ejection into the upper corona. The particle acceleration by the electric field to the energies of ~100 MeV/nucleon in the skin-layer of the flux rope leads to their precipitation along field lines to footpoints of the flux rope. The skin-layer presence induces helical or oval chromospheric emission at the ends of flare ribbons. The emission may be accompanied by hard X-ray radiation and by the production of gamma-ray line at the energy of 2.223 MeV (neutron capture line in the photosphere). The magnetic reconnection in the corona leads to a shift of the skin-layer of flux rope across the magnetic field. The area of precipitation of accelerated particles at the flux-rope footpoints expands in this case from the inside outward. This effect is traced in the chromosphere and in the transient region as the expanding helical emission structures. If the emission extends to the spot, a certain fraction of accelerated particles may be reflected from the magnetic barrier (in the magnetic field of the spot). In the case of exit into the interplanetary space, these particles may be recorded in the Earth's orbit as solar proton events.
Honu, Y.A.K.; Gibson, D.J.; Middleton, B.A.
2006-01-01
Soil nutrients and disturbance are two of the main abiotic factors that influence plant dominance (canopy cover), density, and fecundity in early successional old field plant communities. The manner in which the dominant species in old field successional systems respond to the interaction of nutrients and disturbance is poorly known. We examined the dominance, density of flowering tillers, and reproductive output of Tridens flavus, a perennial, warm-season bunchgrass that is important in old field succession, to varying soil nutrient and disturbance regimes. We tested the hypothesis that the interaction between nutrients and disturbance would influence the performance (cover, density, fecundity) of T. flavus. To test this hypothesis, we subjected 25 m2 experimental plots to various combinations of fertilizer and mowing treatments for eight years after initially plowing the field. The performance of T. flavus was measured by estimating percent cover for 8 years (1996-2003) and both density of flowering tillers and reproductive output (panicle length and number of branches per panicle) for three years (2001-2003). The pattern of canopy cover of T. flavus over the first eight years of succession varied over time depending on mowing regime. Dominance was significantly higher in plots that were fertilized only in years one and five than in annually fertilized and unfertilized control plots. The length of panicles and density of flowering tillers were both significantly greater in annually mowed plots than in unmowed plots. In the absence of mowing in particular, T. flavus became overtopped by woody species and declined in this old field community. Therefore, disturbances such as mowing and fertilization may be important in maintaining grasses such as Tridens flavus in old fields.
Coral snake mimicry: does it occur?
Greene, H.W.; McDiarmid, R.W.
1981-01-01
Field observations and experimental evidence refute previous objections to the coral snake mimicry hypothesis. Concordant color pattern variation spanning hundreds of miles and several presumed venemous models strongly suggests that several harmless or mildly venemous colubrid snakes are indeed mimics of highly venemous elapids.
ERIC Educational Resources Information Center
Hunt, Madgie Mae
In an effort to create a multilevel, interactive, and hypothesis-based model of the reading comprehension process that bridges interdisciplinary gaps in the theory of learning, this report focuses on descriptions of cognitive processes developed in the fields of cognitive psychology, artificial intelligence, sociolinguistics, linguistics, and…
The critical role of fire in catchment coevolution in South Eastern Australia
NASA Astrophysics Data System (ADS)
Nyman, P.; Inbar, A.; Lane, P. N. J.; Sheridan, G. J.
2016-12-01
Temperate south east Australian forested uplands are characterised by complex spatial patterns in forest types, soils and fire regimes, even within areas with similar geologies and landscape position. Preliminary measurements and experiments suggest that positive and negative feedbacks between the vegetation, fuels, fire frequency and soil erosion may control the coevolution of these observed system states. Here we propose the hypotheses that in this landscape post-fire soil erosion has played a dominant role in the coevolved system-state combinations of standing biomass, fire frequency and soil depth. To test the hypothesis a 1D simulation model was developed that links together an ecohydrological model to drive the biomass production and water and energy partitioning, a stochastic fire model that is controlled by climate, fuel load and moisture conditions, and a geomorphic model that controls soil production and fluvial and diffusive sediment transport rates. The model was calibrated to the range of existing observed quasi-equalibrium system-states of soil depth, standing biomass, fuel loading and fire frequency using field measurements from 12 instrumented eco-hydrologic microclimate research sites. The long-term partitioning of rainfall into evaporation, transpiration, and streamflow was calibrated against field and literature values. Fuel moisture and micro-climate variables were calibrated to the field microclimate stations. The calibrated model was able to reasonably replicate the observed quasi-equilibrium system-states and hydrologic outputs using current climate forcings operating over a 10,000 year period, providing confidence in the model structure and performance. The model was then used to test the hypothesis stated above, by alternatively including or excluding the post fire erosion process. An alternate hypothesis, whereby the observed system states are dominated by climate related differences in soil production rates was also tested in this way. The results support the hypothesis that feedbacks between fire, ecology, hydrology and geomorphology have played a critical role in the coevolution of south east Australian forested uplands. Similar pyro-eco-hydrologic feedbacks may play a critical role in catchment coevolution in other forested systems globally.
The role of Sphagnum mosses in the methane cycling of a boreal mire.
Larmola, Tuula; Tuittila, Eeva-Stiina; Tiirola, Marja; Nykänen, Hannu; Martikainen, Pertti J; Yrjälä, Kim; Tuomivirta, Tero; Fritze, Hannu
2010-08-01
Peatlands are a major natural source of atmospheric methane (CH4). Emissions from Sphagnum-dominated mires are lower than those measured from other mire types. This observation may partly be due to methanotrophic (i.e., methane-consuming) bacteria associated with Sphagnum. Twenty-three of the 41 Sphagnum species in Finland can be found in the peatland at Lakkasuo. To better understand the Sphagnum-methanotroph system, we tested the following hypotheses: (1) all these Sphagnum species support methanotrophic bacteria; (2) water level is the key environmental determinant for differences in methanotrophy across habitats; (3) under dry conditions, Sphagnum species will not host methanotrophic bacteria; and (4) methanotrophs can move from one Sphagnum shoot to another in an aquatic environment. To address hypotheses 1 and 2, we measured the water table and CH4 oxidation for all Sphagnum species at Lakkasuo in 1-5 replicates for each species. Using this systematic approach, we included Sphagnum spp. with narrow and broad ecological tolerances. To estimate the potential contribution of CH4 to moss carbon, we measured the uptake of delta13C supplied as CH4 or as carbon dioxide dissolved in water. To test hypotheses 2-4, we transplanted inactive moss patches to active sites and measured their methanotroph communities before and after transplantation. All 23 Sphagnum species showed methanotrophic activity, confirming hypothesis 1. We found that water level was the key environmental factor regulating methanotrophy in Sphagnum (hypothesis 2). Mosses that previously exhibited no CH4 oxidation became active when transplanted to an environment in which the microbes in the control mosses were actively oxidizing CH4 (hypothesis 4). Newly active transplants possessed a Methylocystis signature also found in the control Sphagnum spp. Inactive transplants also supported a Methylocystis signature in common with active transplants and control mosses, which rejects hypothesis 3. Our results imply a loose symbiosis between Sphagnum spp. and methanotrophic bacteria that accounts for potentially 10-30% of Sphagnum carbon.
NASA Astrophysics Data System (ADS)
Fisher, Jonathan A. N.; Gumenchuk, Iryna
2018-06-01
Objective. The use of transcranial, low intensity focused ultrasound (FUS) is an emerging neuromodulation technology that shows promise for both therapeutic and research applications. Among many, one of the most exciting applications is the use of FUS to rehabilitate or augment human sensory capabilities. While there is compelling empirical evidence demonstrating this capability, basic questions regarding the spatiotemporal extent of the modulatory effects remain. Our objective was to assess the basic, yet often overlooked hypothesis that FUS in fact alters sensory-evoked neural activity within the region of the cerebral cortex at the beam’s focus. Approach. To address this knowledge gap, we developed an approach to optically interrogate patterns of neural activity in the cortex directly at the acoustic focus, in vivo. Implementing simultaneous wide-field optical imaging and FUS stimulation in mice, our experiments probed somatosensory-evoked electrical activity through the use of voltage sensitive dyes (VSDs) and, in transgenic mice expressing GCaMP6f, monitored associated Ca2+ responses. Main results. Our results demonstrate that low-intensity FUS alters both the kinetics and spatial patterns of neural activity in primary somatosensory cortex at the acoustic focus. When preceded by 1 s of pulsed ultrasound at intensities below 1 W cm‑2 (I sppa), the onset of sensory-evoked cortical responses occurred 3.0 ± 0.7 ms earlier and altered the surface spatial morphology of Ca2+ responses. Significance. These findings support the heretofore unconfirmed assumption that FUS-induced sensory modulation reflects, at least in part, altered reactivity in primary sensory cortex at the site of sonication. The findings are significant given the interest in using FUS to target and alter spatial aspects of sensory receptive fields on the cerebral cortex.
Fisher, Jonathan A N; Gumenchuk, Iryna
2018-06-01
The use of transcranial, low intensity focused ultrasound (FUS) is an emerging neuromodulation technology that shows promise for both therapeutic and research applications. Among many, one of the most exciting applications is the use of FUS to rehabilitate or augment human sensory capabilities. While there is compelling empirical evidence demonstrating this capability, basic questions regarding the spatiotemporal extent of the modulatory effects remain. Our objective was to assess the basic, yet often overlooked hypothesis that FUS in fact alters sensory-evoked neural activity within the region of the cerebral cortex at the beam's focus. To address this knowledge gap, we developed an approach to optically interrogate patterns of neural activity in the cortex directly at the acoustic focus, in vivo. Implementing simultaneous wide-field optical imaging and FUS stimulation in mice, our experiments probed somatosensory-evoked electrical activity through the use of voltage sensitive dyes (VSDs) and, in transgenic mice expressing GCaMP6f, monitored associated Ca 2+ responses. Our results demonstrate that low-intensity FUS alters both the kinetics and spatial patterns of neural activity in primary somatosensory cortex at the acoustic focus. When preceded by 1 s of pulsed ultrasound at intensities below 1 W cm -2 (I sppa ), the onset of sensory-evoked cortical responses occurred 3.0 ± 0.7 ms earlier and altered the surface spatial morphology of Ca 2+ responses. These findings support the heretofore unconfirmed assumption that FUS-induced sensory modulation reflects, at least in part, altered reactivity in primary sensory cortex at the site of sonication. The findings are significant given the interest in using FUS to target and alter spatial aspects of sensory receptive fields on the cerebral cortex.
Fatigue mechanism of textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics
NASA Astrophysics Data System (ADS)
Yan, Yongke; Zhou, Yuan; Gupta, Shashaank; Priya, Shashank
2013-08-01
Grain orientation, BaTiO3 heterogeneous template content, and electrode materials are expected to play an important role in controlling the polarization fatigue behavior of ⟨001⟩ textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. A comparative analysis with randomly oriented ceramics showed that ⟨001⟩ grain orientation/texture exhibits improved fatigue characteristics due to the reduced switching activation energy and high domain mobility. The hypothesis was validated from the systematic characterization of polarization—electric field behavior and domain wall density. The defect accumulation at the grain boundary and clamping effect arising from the presence of BaTiO3 heterogeneous template in the final microstructure was found to be the main cause for polarization degradation in textured ceramic.
Martig, Adria K; Mizumori, Sheri JY
2010-01-01
Hippocampus (HPC) receives dopaminergic (DA) projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences HPC dependent behaviors and place fields. We examined how efferent projections from VTA to HPC influence spatial working memory and place fields when the reward context changes. CA1 and CA3 process environmental context changes differently and VTA preferentially innervates CA1. Given these anatomical data and electrophysiological evidence that implicates DA in reward processing, we predicted that CA1 place fields would respond more strongly to both VTA disruption and changes in the reward context than CA3 place fields. Rats (N=9) were implanted with infusion cannula targeting VTA and recording tetrodes aimed at HPC. Then they were tested on a differential reward, win-shift working memory task. One recording session consisted of 5 baseline and 5 manipulation trials during which place cells in CA1/CA2 (N=167) and CA3 (N=94) were recorded. Prior to manipulation trials rats were infused with either baclofen or saline and then subjected to control or reward conditions during which the learned locations of large and small reward quantities were reversed. VTA disruption resulted in an increase in errors, and in CA1/CA2 place field reorganization. There were no changes in any measures of CA3 place field stability during VTA disruption. Reward manipulations did not affect performance or place field stability in CA1/CA2 or CA3; however, changes in the reward locations “rescued” performance and place field stability in CA1/CA2 when VTA activity was compromised, perhaps by trigging compensatory mechanisms. These data support the hypothesis that VTA contributes to spatial working memory performance perhaps specifically by maintaining place field stability selectively in CA1/CA2. PMID:20082295
Colonizing the Red Planet: An Interdisciplinary Activity.
ERIC Educational Resources Information Center
Tomblin, David C.; Bentley, Michael L.
1998-01-01
Describes a simulation activity based on the hypothesis that human habitation on Mars is a realistic future public policy issue and a reasonable consequence of space exploration. Uses cooperative learning. (DDR)
Plant hybridization: the role of human disturbance and biological invasion
Qinfeng Guo
2014-01-01
Aim Anderson & Stebbins (1954, Evolution, 8, 378â388) posited that human activities promote species hybridizations by creating opportunities for hybridization and new habitats for hybrids to persist through disturbances (i.e. the âdisturbance hypothesisâ). While the first part of this hypothesis appears to be well supported, the second part has...
Ramification of Channel Networks Incised by Groundwater Flow
NASA Astrophysics Data System (ADS)
Yi, R. S.; Seybold, H. F.; Petroff, A. P.; Devauchelle, O.; Rothman, D.
2011-12-01
The geometry of channel networks has been a source of fascination since at least Leonardo da Vinci's time. Yet a comprehensive understanding of ramification---the mechanism of branching by which a stream network acquires its geometric complexity---remains elusive. To investigate the mechanisms of ramification and network growth, we consider channel growth driven by groundwater flow as a model system, analogous to a medical scientist's laboratory rat. We test our theoretical predictions through analysis of a particularly compelling example found on the Florida Panhandle north of Bristol. As our ultimate goal is to understand ramification and growth dynamics of the entire network, we build a computational model based on the following growth hypothesis: Channels grow in the direction that captures the maximum water flux. When there are two such directions, tips bifurcate. The direction of growth can be determined from the expansion of the ground water field around each tip, where each coefficient in this expansion has a physical interpretation. The first coefficient in the expansion determines the ground water discharge, leading to a straight growth of the channel. The second term describes the asymmetry in the water field leading to a bending of the stream in the direction of maximal water flux. The ratio between the first and the third coefficient determines a critical distance rc over which the tip feels inhomogeneities in the ground water table. This initiates then the splitting of the tip. In order to test our growth hypothesis and to determine rc, we grow the Florida network backward. At each time step we calculate the solution of the ground water field and determine the appropriate expansion coefficients around each tip. Comparing this simulation result to the predicted values provides us with a stringent measure for rc and the significance of our growth hypothesis.
Governa, M; Valentino, M; Amati, M; Visonà, I; Botta, G C; Marcer, G; Gemignani, C
1997-06-01
A sample of silicon carbide dust taken in the field from a plant producing abrasives was studied in vitro. The SiC particles (part unmilled and part milled) were able to disturb the structure of erythrocyte membranes and to lead to blood red-cell lysis; they also either interfered with complement and activated the alternate pathway, or interacted with biological media and polymorphonuclear leucocyte membranes, thus eliciting reactive oxygen species production. These in vitro properties were detected both in original large particles and unmilled particles, over 40% of which were of respirable size. The ability of these SiC particles to produce complement activation in vitro lends support to the previous hypothesis, that the radiographic opacities found in two workers employed in the same area of the plant from which the dust tested was taken are due to a reaction by pulmonary interstitial structures to SiC particle inhalation. It is speculated that SiC particles could act like asbestos, the ability of which to activate complement through the alternate pathway is considered to be one of the mechanisms by which the initial asbestotic lesions and subsequent fibrotic inflammatory infiltrates are generated in the lung.
NASA Astrophysics Data System (ADS)
Balazs, A. C.; Johnson, K. H.
1982-01-01
Electronic structures have been calculated for 5-, 6-, and 10-atom Pt clusters, as well as for a Pt(PH 3) 4 coordination complex, using the self-consistent-field X-alpha scattered-wave (SCF-Xα-SW) molecular-orbital technique. The 10-atom cluster models the local geometry of a flat, unreconstructed Pt(100) surface, while the 5- and 6-atom clusters show features of a stepped Pt surface. Pt(PH 3) 4 resembles the chemically similar homogeneous catalyst Pt(PPh 3) 4. Common to all these coordinatively unsaturated complexes are orbitals lying near or coinciding with the highest occupied molecular orbital ("Fermi level") which show pronounced d lobes pointing directly into the vacuum. Under the hypothesis that these molecular orbitals are mainly responsible for the chemical activities of the above species, one can account for the relative similarities and differences in catalytic activity and selectivity displayed by unreconstructed Pt(100) surfaces, stepped Pt surfaces or particles, and isolated Pt(PPh 3) 4 coordination complexes. The relevance of these findings to catalyst-support interactions is also discussed. Finally, relativistic corrections to the electronic structures are calculated and their implications on catalytic properties discussed.
Millimeter-scale epileptiform spike propagation patterns and their relationship to seizures
NASA Astrophysics Data System (ADS)
Vanleer, Ann C.; Blanco, Justin A.; Wagenaar, Joost B.; Viventi, Jonathan; Contreras, Diego; Litt, Brian
2016-04-01
Objective. Current mapping of epileptic networks in patients prior to epilepsy surgery utilizes electrode arrays with sparse spatial sampling (∼1.0 cm inter-electrode spacing). Recent research demonstrates that sub-millimeter, cortical-column-scale domains have a role in seizure generation that may be clinically significant. We use high-resolution, active, flexible surface electrode arrays with 500 μm inter-electrode spacing to explore epileptiform local field potential (LFP) spike propagation patterns in two dimensions recorded from subdural micro-electrocorticographic signals in vivo in cat. In this study, we aimed to develop methods to quantitatively characterize the spatiotemporal dynamics of epileptiform activity at high-resolution. Approach. We topically administered a GABA-antagonist, picrotoxin, to induce acute neocortical epileptiform activity leading up to discrete electrographic seizures. We extracted features from LFP spikes to characterize spatiotemporal patterns in these events. We then tested the hypothesis that two-dimensional spike patterns during seizures were different from those between seizures. Main results. We showed that spatially correlated events can be used to distinguish ictal versus interictal spikes. Significance. We conclude that sub-millimeter-scale spatiotemporal spike patterns reveal network dynamics that are invisible to standard clinical recordings and contain information related to seizure-state.
Social support as a mediator between job control and psychological strain.
Blanch, Angel
2016-05-01
Social support is a key influencing factor on health, and one of the main dimensions of the Demand - Control - Support (DCS) model within the occupational health field. The buffer hypothesis of the DCS determines that job control and social support relieve the effects of a high job demand on health. This hypothesis has been evaluated in several studies to predict worker's health, even though it has yielded ambiguous and inconclusive results. This study evaluated whether social support mediated the effect of job demand or job control on job strain. This mediation mechanism might represent a plausible and coherent alternative to the buffer hypothesis deserving to be analyzed within this field. Two models considering support as the mediator variable in the explanation of job strain were assessed with a group of administrative and technical workers (N = 281). While there was no evidence for support behaving as a mediator variable between demand and job strain, social support was a consistent mediator in the association of job control with job strain. The effect of job control on job strain was fully mediated by social support from supervisors and coworkers. The role of social support as a mediator implicates that the prevention of psychosocial stressors in the job place should place a stronger emphasis on improving social relationships at work. Copyright © 2016 Elsevier Ltd. All rights reserved.
An interpretation of the ion pile-up region outside the ionospheric contact surface. [Halley's comet
NASA Technical Reports Server (NTRS)
Ip, WING-H.; Schwenn, R.; Rosenbauer, H.; Balsiger, H.; Neugebauer, M.; Shelley, E. G.
1986-01-01
The possibility that the formation of the plasma pile-up region at comet Halley as observed by Giotto could be the combined result of field-aligned transport and recombination process is discussed. Giotto measurements support the hypothesis.
NASA Astrophysics Data System (ADS)
Abakumov, M. V.; Chechetkin, V. M.; Shalimov, S. L.
2018-05-01
The flow structure induced by thermal convection in a rotating spherical shell with viscous boundary conditions is considered under the assumption that the differential rotation of the core relative to the mantle is absent. The radial, azimuthal, and meridional components of the flow's velocity and helicity are studied. With the magnetic field assumed to be frozen into a liquid (frozen-flux hypothesis), it is shown that the numerical results fit the observations of the geomagnetic field variations close to the pole.
Kelley, Steven E
1989-08-01
Sexually and asexually derived tillers of Anthoxanthum odoratum were planted directly in the field to test the hypothesis that competition among groups of sexual and asexual siblings favors the maintenance of sexual reproduction in populations. The results showed a substantial fitness advantage for sexual tillers. However, in contrast with the models, the advantage of sex did not increase with increasing numbers of colonists in the patch, there were multiple survivors among colonists, and an advantage was observed even for singly planted tillers. When a truncation-selection scheme was imposed ex post facto on the data, the relative performance of sexual tillers was similar to that predicted by the Bulmer (1980) model, suggesting that sib-competition models fail due to the violation of the assumption of truncation selection. The advantage of sex was not correlated with the presence of other species, total percentage cover, or species diversity, although sites where sex was favored were physically clustered. © 1989 The Society for the Study of Evolution.
Santostefano, Francesca; Wilson, Alastair J; Niemelä, Petri T; Dingemanse, Niels J
2017-10-11
The pace-of-life syndrome (POLS) hypothesis predicts associations between life history and 'risky' behaviours. Individuals with 'fast' lifestyles should develop faster, reproduce earlier, exhibit more risk-prone behaviours, and die sooner than those with 'slow' lifestyles. While support for POLS has been equivocal to date, studies have relied on individual-level (phenotypic) patterns in which genetic trade-offs may be masked by environmental effects on phenotypes. We estimated genetic correlations between life history (development, lifespan, size) and risky behaviours (exploration, aggression) in a pedigreed population of Mediterranean field crickets ( Gryllus bimaculatus ). Path analyses showed that behaviours mediated some genetic relationships between life history traits, though not those involved in trade-offs. Thus, while specific predictions of POLS theory were not supported, genetic integration of behaviour and life history was present. This implies a major role for risky behaviours in life history evolution. © 2017 The Author(s).
Birth Order and Activity Level in Children.
ERIC Educational Resources Information Center
Eaton, Warren O.; And Others
1989-01-01
Studied 7,018 children between birth and 7 years and 81 children of 5-8 years to test the hypothesis that birth order is negatively related to motor activity level. Activity level declined linearly across birth position, so that early-borns were rated as more active than later-borns. (RJC)
Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance
West, John D; Dorà, Natalie J; Collinson, J Martin
2015-01-01
In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell (LESC) hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient (or transit) amplifying cells (TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell (CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed by the LESC hypothesis. PMID:25815115
Using modern human cortical bone distribution to test the systemic robusticity hypothesis.
Baab, Karen L; Copes, Lynn E; Ward, Devin L; Wells, Nora; Grine, Frederick E
2018-06-01
The systemic robusticity hypothesis links the thickness of cortical bone in both the cranium and limb bones. This hypothesis posits that thick cortical bone is in part a systemic response to circulating hormones, such as growth hormone and thyroid hormone, possibly related to physical activity or cold climates. Although this hypothesis has gained popular traction, only rarely has robusticity of the cranium and postcranial skeleton been considered jointly. We acquired computed tomographic scans from associated crania, femora and humeri from single individuals representing 11 populations in Africa and North America (n = 228). Cortical thickness in the parietal, frontal and occipital bones and cortical bone area in limb bone diaphyses were analyzed using correlation, multiple regression and general linear models to test the hypothesis. Absolute thickness values from the crania were not correlated with cortical bone area of the femur or humerus, which is at odds with the systemic robusticity hypothesis. However, measures of cortical bone scaled by total vault thickness and limb cross-sectional area were positively correlated between the cranium and postcranium. When accounting for a range of potential confounding variables, including sex, age and body mass, variation in relative postcranial cortical bone area explained ∼20% of variation in the proportion of cortical cranial bone thickness. While these findings provide limited support for the systemic robusticity hypothesis, cranial cortical thickness did not track climate or physical activity across populations. Thus, some of the variation in cranial cortical bone thickness in modern humans is attributable to systemic effects, but the driving force behind this effect remains obscure. Moreover, neither absolute nor proportional measures of cranial cortical bone thickness are positively correlated with total cranial bone thickness, complicating the extrapolation of these findings to extinct species where only cranial vault thickness has been measured. Copyright © 2018 Elsevier Ltd. All rights reserved.
Butler, Tracy R; O'Mara, Erin M; Wilson, Josephine F
2018-04-26
The Valence Hypothesis of cerebral lateralization of emotion suggests greater right hemisphere activation during negative mood and greater left hemisphere activation during positive mood. This can manifest as visual field attentional bias. Here, study participants completed an assessment of current mood state (PANAS) and made a drawing (Drawing 1). To induce positive or negative mood, participants played a game; then, the winner read a script depicting a positive interpersonal interaction and the loser read a script depicting a negative interpersonal interaction. Participants then drew a second picture (Drawing 2) and completed the PANAS. We hypothesized that the game outcome would change current mood state and hemispheric activation, which would be reflected in drawing placement. The placement of Drawing 2 moved right for winners and left for losers. Winners experienced a greater increase in positive affect from Time 1 to Time 2 than losers and had decreased negative affect from Time 1. Losers had decreased positive affect from Time 1 and had a greater increase in negative affect from Time 1 to Time 2 than winners. Our results suggest that change in current mood state may be objectively observed by evaluating hemispatial bias reflective of brain hemispheric activation with drawings. Copyright © 2018 Elsevier Inc. All rights reserved.
Tošić, Tamara; Sellers, Kristin K; Fröhlich, Flavio; Fedotenkova, Mariia; Beim Graben, Peter; Hutt, Axel
2015-01-01
For decades, research in neuroscience has supported the hypothesis that brain dynamics exhibits recurrent metastable states connected by transients, which together encode fundamental neural information processing. To understand the system's dynamics it is important to detect such recurrence domains, but it is challenging to extract them from experimental neuroscience datasets due to the large trial-to-trial variability. The proposed methodology extracts recurrent metastable states in univariate time series by transforming datasets into their time-frequency representations and computing recurrence plots based on instantaneous spectral power values in various frequency bands. Additionally, a new statistical inference analysis compares different trial recurrence plots with corresponding surrogates to obtain statistically significant recurrent structures. This combination of methods is validated by applying it to two artificial datasets. In a final study of visually-evoked Local Field Potentials in partially anesthetized ferrets, the methodology is able to reveal recurrence structures of neural responses with trial-to-trial variability. Focusing on different frequency bands, the δ-band activity is much less recurrent than α-band activity. Moreover, α-activity is susceptible to pre-stimuli, while δ-activity is much less sensitive to pre-stimuli. This difference in recurrence structures in different frequency bands indicates diverse underlying information processing steps in the brain.
Tošić, Tamara; Sellers, Kristin K.; Fröhlich, Flavio; Fedotenkova, Mariia; beim Graben, Peter; Hutt, Axel
2016-01-01
For decades, research in neuroscience has supported the hypothesis that brain dynamics exhibits recurrent metastable states connected by transients, which together encode fundamental neural information processing. To understand the system's dynamics it is important to detect such recurrence domains, but it is challenging to extract them from experimental neuroscience datasets due to the large trial-to-trial variability. The proposed methodology extracts recurrent metastable states in univariate time series by transforming datasets into their time-frequency representations and computing recurrence plots based on instantaneous spectral power values in various frequency bands. Additionally, a new statistical inference analysis compares different trial recurrence plots with corresponding surrogates to obtain statistically significant recurrent structures. This combination of methods is validated by applying it to two artificial datasets. In a final study of visually-evoked Local Field Potentials in partially anesthetized ferrets, the methodology is able to reveal recurrence structures of neural responses with trial-to-trial variability. Focusing on different frequency bands, the δ-band activity is much less recurrent than α-band activity. Moreover, α-activity is susceptible to pre-stimuli, while δ-activity is much less sensitive to pre-stimuli. This difference in recurrence structures in different frequency bands indicates diverse underlying information processing steps in the brain. PMID:26834580
Reiss, Philip T
2015-08-01
The "ten ironic rules for statistical reviewers" presented by Friston (2012) prompted a rebuttal by Lindquist et al. (2013), which was followed by a rejoinder by Friston (2013). A key issue left unresolved in this discussion is the use of cross-validation to test the significance of predictive analyses. This note discusses the role that cross-validation-based and related hypothesis tests have come to play in modern data analyses, in neuroimaging and other fields. It is shown that such tests need not be suboptimal and can fill otherwise-unmet inferential needs. Copyright © 2015 Elsevier Inc. All rights reserved.
Hypothesis on how to measure electromagnetic hypersensitivity.
Tuengler, Andreas; von Klitzing, Lebrecht
2013-09-01
Electromagnetic hypersensitivity (EHS) is an ill-defined term to describe the fact that people who experience health symptoms in the vicinity of electromagnetic fields (EMFs) regard them as causal for their complaints. Up to now most scientists assume a psychological cause for the suffering of electromagnetic hypersensitive individuals. This paper addresses reasons why most provocation studies could not find any association between EMF exposure and EHS and presents a hypothesis on diagnosis and differentiation of this condition. Simultaneous recordings of heart rate variability, microcirculation and electric skin potentials are used for classification of EHS. Thus, it could be possible to distinguish "genuine" electromagnetic hypersensitive individuals from those who suffer from other conditions.
On the interpretation of the geomagnetic energy spectrum
Benton, E.R.; Alldredge, L.R.
1987-01-01
Two recent high-degree magnetic energy spectra, based mostly on MAGSAT data, are compared and found to agree very well out to order and degree n = 15, but the spectrum remains somewhat uncertain for higher degrees. The hypothesis that a primary break in the slope of the spectrum, plotted semi-logarithmically, is due to a transition from dominance by core sources to dominance by crustal magnetization is tested. Simple arrays of dipoles and current loops are found whose combined fields fit the spectrum. Two distinctly different ranges of source depth are found to be adequate. Because one range is shallow and the other deep, the hypothesis is supported. ?? 1987.
CONSTRAINING THE STRING GAUGE FIELD BY GALAXY ROTATION CURVES AND PERIHELION PRECESSION OF PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Yeuk-Kwan E.; Xu Feng, E-mail: cheung@nju.edu.cn
2013-09-01
We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter stringmore » model as compared to the three-parameter dark matter model with the NFW profile. The average {chi}{sup 2} value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.« less